Science.gov

Sample records for cold neutron curved

  1. Imaging with cold neutrons

    NASA Astrophysics Data System (ADS)

    Lehmann, E. H.; Kaestner, A.; Josic, L.; Hartmann, S.; Mannes, D.

    2011-09-01

    Neutrons for imaging purposes are provided mainly from thermal beam lines at suitable facilities around the world. The access to cold neutrons is presently limited to very few places only. However, many challenging options for imaging with cold neutrons have been found out, given by the interaction behavior of the observed materials with neutrons in the cold energy range (3-10 Å). For absorbing materials, the interaction probability increases proportionally with the wavelength with the consequence of more contrast but less transmission with cold neutrons. Many materials are predominantly scattering neutrons, in particular most of crystalline structural materials. In these cases, cold neutrons play an important role by covering the energy range of the most important Bragg edges given by the lattice planes of the crystallites. This particular behavior can be used for at least two important aspects—choosing the right energy of the initial beam enables to have a material more or less transparent, and a direct macroscopic visualization of the crystalline structure and its change in a manufacturing process. Since 2006, PSI operates its second beam line for neutron imaging, where cold neutrons are provided from a liquid deuterium cold source (operated at 25 K). It has been designed to cover the most current aspects in neutron imaging research with the help of high flexibility. This has been done with changeable inlet apertures, a turbine based velocity selector, two beam positions and variable detector systems, satisfying the demands of the individual investigation. The most important detection system was found to be a micro-tomography system that enables studies in the presently best spatial resolution. In this case, the high contrast from the sample interaction process and the high detection probability for the cold neutrons combines in an ideal combination for the best possible performance. Recently, it was found out that the energy selective studies might become a

  2. Spectroscopy with cold and ultra-cold neutrons

    NASA Astrophysics Data System (ADS)

    Abele, Hartmut; Jenke, Tobias; Konrad, Gertrud

    2015-05-01

    We present two new types of spectroscopy methods for cold and ultra-cold neutrons. The first method, which uses the R×B drift effect to disperse charged particles in a uniformly curved magnetic field, allows to study neutron β-decay. We aim for a precision on the 10-4 level. The second method that we refer to as gravity resonance spectroscopy (GRS) allows to test Newton's gravity law at short distances. At the level of precision we are able to provide constraints on any possible gravity-like interaction. In particular, limits on dark energy chameleon fields are improved by several orders of magnitude.

  3. The University of Texas Cold Neutron Source

    NASA Astrophysics Data System (ADS)

    Ünlü, Kenan; Ríos-Martínez, Carlos; Wehring, Bernard W.

    1994-12-01

    A cold neutron source has been designed, constructed, and tested by the Nuclear Engineering Teaching Laboratory (NETL) at The University of Texas at Austin. The Texas Cold Neutron Source (TCNS) is located in one of the beam ports of the NETL 1-MW TRIGA Mark II research reactor. The main components of the TCNS are a cooled moderator, a heat pipe, a cryogenic refrigerator, and a neutron guide. 80 ml of mesitylene moderator are maintained at about 30 K in a chamber within the reactor graphite reflector by the heat pipe and cryogenic refrigerator. The heat pipe is a 3-m long aluminum tube that contains neon as the working fluid. The cold neutrons obtained from the moderator are transported by a curved 6-m long neutron guide. This neutron guide has a radius of curvature of 300 m, a 50 × 15 mm cross-section, 58Ni coating, and is separated into three channels. The TCNS will provide a low-background subthermal neutron beam for neutron capture and scattering research. After the installation of the external portion of the neutron guide, a neutron focusing system and a Prompt Gamma Activation Analysis facility will be set up at the TCNS.

  4. Study of neutron focusing at the Texas Cold Neutron Source. Final report

    SciTech Connect

    Wehring, B.W.; Uenlue, K.

    1996-12-19

    The goals of this three-year study were: (1) design a neutron focusing system for use with the Texas Cold Neutron Source (TCNS) to produce an intense beam of cold neutrons appropriate for prompt gamma activation analysis (PGAA); (2) orchestrate the construction of the focusing system, integrate it into the TCNS neutron guide complex, and measure its performance; and (3) design, setup, and test a cold-neutron PGAA system which utilizes the guided focused cold neutron beam. During the first year of the DOE grant, a new procedure was developed and used to design a focusing converging guide consisting of truncated rectangular cone sections. Detailed calculations were performed using a 3-D Monte Carlo code which the authors wrote to trace neutrons through the curved guide of the TCNS into the proposed converging guide. Using realistic reflectivities for Ni-Ti supermirrors, the authors obtained gains of 3 to 5 for 4 different converging guide geometries. During the second year of the DOE grant, the subject of this final report, Ovonic Synthetic Materials Company was contracted to build a converging neutron guide focusing system to the specifications. Considerable time and effort were spent working with Ovonics on selecting the materials for the converging neutron guide system. The major portion of the research on the design of a cold-neutron PGAA system was also completed during the second year. At the beginning of the third year of the grant, a converging neutron guide focusing system had been ordered, and a cold-neutron PGAA system had been designed. Since DOE did not fund the third year, there was no money to purchase the required equipment for the cold-neutron PGAA system and no money to perform tests of either the converging neutron guide or the cold-neutron PGAA system. The research already accomplished would have little value without testing the systems which had been designed. Thus the project was continued at a pace that could be sustained with internal funding.

  5. Neutron interferometry with cold stage

    NASA Astrophysics Data System (ADS)

    Mineeva, Taisiya; Arif, M.; Huber, M. G.; Shahi, C. B.; Clark, C. W.; Cory, D. G.; Nsofini, J.; Sarenac, D.; Pushin, D. A.

    Neutron interferometry (NI) is amongst the most precise methods for characterizing neutron interactions by measuring the relative difference between two neutron paths, one of which contains a sample-of-interest. Because neutrons carry magnetic moment and are deeply penetrating, they are excellent probes to investigate properties of magnetic materials. The advantage of NI is its unique sensitivity which allows to directly measure magnetic and structural transitions in materials. Up to now NI has been sparingly used in material research due to its sensitivity to environmental noise. However, recent successes in implementing Quantum Error Correction principles lead to an improved NI design making it robust against mechanical vibrations. Following these advances, a new user facility at the National Institute for Standards and Technology was built to study condensed matter applications, biology and quantum physics. Incorporating cold sample stage inside NI is the first of its kind experiment which can be carried out on large range of temperatures down to 4K. Upon successful realization, it will open new frontiers to characterize magnetic domains, phase transitions and spin properties in a variety of materials such as, for example, iron-based superconductors and spintronic materials. Supported in part by CERC, CIFAR, NSERC and CREATE.

  6. International workshop on cold neutron sources

    SciTech Connect

    Russell, G.J.; West, C.D. )

    1991-08-01

    The first meeting devoted to cold neutron sources was held at the Los Alamos National Laboratory on March 5--8, 1990. Cosponsored by Los Alamos and Oak Ridge National Laboratories, the meeting was organized as an International Workshop on Cold Neutron Sources and brought together experts in the field of cold-neutron-source design for reactors and spallation sources. Eighty-four people from seven countries attended. Because the meeting was the first of its kind in over forty years, much time was spent acquainting participants with past and planned activities at reactor and spallation facilities worldwide. As a result, the meeting had more of a conference flavor than one of a workshop. The general topics covered at the workshop included: Criteria for cold source design; neutronic predictions and performance; energy deposition and removal; engineering design, fabrication, and operation; material properties; radiation damage; instrumentation; safety; existing cold sources; and future cold sources.

  7. Cold moderators for pulsed neutron sources

    SciTech Connect

    Carpenter, J.M.

    1990-01-01

    This paper reviews cold moderators in pulsed neutron sources and provides details of the performance of different cold moderator materials and configurations. Analytical forms are presented which describe wavelength spectra and emission time distributions. Several types of cooling arrangements used in pulsed source moderators are described. Choices of materials are surveyed. The author examines some of the radiation damage effects in cold moderators, including the phenomenon of burping'' in irradiated cold solid methane. 9 refs., 15 figs., 4 tabs.

  8. Shaping micron-sized cold neutron beams

    NASA Astrophysics Data System (ADS)

    Ott, Frédéric; Kozhevnikov, Sergey; Thiaville, André; Torrejón, Jacob; Vázquez, Manuel

    2015-07-01

    In the field of neutron scattering, the need for micro-sized (1-50 μm) thermal or cold neutron beams has recently appeared, typically in the field of neutron imaging to probe samples with a high spatial resolution. We discuss various possibilities of producing such micro-sized neutron beams. The advantages and drawbacks of the different techniques are discussed. We show that reflective optics offers the most flexible way of producing tiny neutron beams together with an enhanced signal to background ratio. The use of such micro beams is illustrated by the study of micrometric diameter magnetic wires.

  9. Outer crust of nonaccreting cold neutron stars

    NASA Astrophysics Data System (ADS)

    Rüster, Stefan B.; Hempel, Matthias; Schaffner-Bielich, Jürgen

    2006-03-01

    The properties of the outer crust of nonaccreting cold neutron stars are studied by using modern nuclear data and theoretical mass tables, updating in particular the classic work of Baym, Pethick, and Sutherland. Experimental data from the atomic mass table from Audi, Wapstra, and Thibault of 2003 are used and a thorough comparison of many modern theoretical nuclear models, both relativistic and nonrelativistic, is performed for the first time. In addition, the influences of pairing and deformation are investigated. State-of-the-art theoretical nuclear mass tables are compared to check their differences concerning the neutron drip line, magic neutron numbers, the equation of state, and the sequence of neutron-rich nuclei up to the drip line in the outer crust of nonaccreting cold neutron stars.

  10. Outer crust of nonaccreting cold neutron stars

    SciTech Connect

    Ruester, Stefan B.; Hempel, Matthias; Schaffner-Bielich, Juergen

    2006-03-15

    The properties of the outer crust of nonaccreting cold neutron stars are studied by using modern nuclear data and theoretical mass tables, updating in particular the classic work of Baym, Pethick, and Sutherland. Experimental data from the atomic mass table from Audi, Wapstra, and Thibault of 2003 are used and a thorough comparison of many modern theoretical nuclear models, both relativistic and nonrelativistic, is performed for the first time. In addition, the influences of pairing and deformation are investigated. State-of-the-art theoretical nuclear mass tables are compared to check their differences concerning the neutron drip line, magic neutron numbers, the equation of state, and the sequence of neutron-rich nuclei up to the drip line in the outer crust of nonaccreting cold neutron stars.

  11. Polarized Cold Neutron Capture in ^27Al

    NASA Astrophysics Data System (ADS)

    Balascuta, Septimiu

    2013-04-01

    The NPDGamma Experiment at the Spallation Neutron Source at ORNL is measuring the parity-odd correlation between the neutron spin and the direction of the emitted photon in the capture of cold neutrons on a 16-liter liquid parahydrogen target. The goal is to determine the strength of the weak nucleon-nucleon interaction. One of the main background contributions comes from the gamma rays produced by neutrons captured in the Al walls of the target vessel. To quantify this effect a commissioning experiment measured the parity-odd and parity-even asymmetries in the angular distribution of the gamma rays from the capture of polarized cold neutrons in a solid Al target. A status of the analysis of this experiment will be presented.

  12. The decompression of cold neutron star matter

    NASA Technical Reports Server (NTRS)

    Lattimer, J. M.; Mackie, F.; Ravenhall, D. G.; Schramm, D. N.

    1977-01-01

    The ejection of cold neutron-star matter is examined, and an attempt is made to determine whether the final composition of this matter may be similar to that normally associated with the hot high-neutron-flux r-process. A semiempirical liquid-drop model is used for the nucleus, and the equilibrium composition of the matter is determined by assuming it to be in its absolute ground state at a given density. Physical mechanisms operating during the expansion are analyzed, and the composition of the ejected matter is found as a function of its density during expansion. The results indicate that it is virtually impossible for deuterium to form, that neutrons can be captured only after beta decay increases the atomic numbers of nuclei, and that no free neutrons can escape. It is concluded that neutron-star ejecta can produce heavy neutron-rich nuclei and may produce somewhat heavier nuclei than a standard r-process.

  13. Cold atom reflection from curved magnetic mirrors

    NASA Astrophysics Data System (ADS)

    Hughes, Ifan G.; Barton, P. A.; Boshier, M. G.; Hinds, Edward A.

    1997-05-01

    Multiple bounces of cold rubidium atoms have been observed for times up to one second in a trap formed by gravity and a 2 cm-diameter spherical mirror made from a sinusoidally magnetized floppy disk. We have studied the dynamics of the atoms bouncing in this trap from several different heights up to 40.5 mm and we conclude that the atoms are reflected specularly and with reflectivity 1.01(3). Slight roughness of the mirror is caused by harmonics in the magnetization of the surface and by discontinuities at the boundaries between recorded tracks. As the next step in this atom optics program we propose using a magnetic mirror to create a 2D atomic gas. We discuss how cold atoms can be loaded into the ground state of a static magnetic potential well that exists above the surface of the mirror as a consequence of the intermediate-field Zeeman effect.

  14. Precision Polarimetry for Cold Neutrons

    NASA Astrophysics Data System (ADS)

    Barron-Palos, Libertad; Bowman, J. David; Chupp, Timothy E.; Crawford, Christopher; Danagoulian, Areg; Gentile, Thomas R.; Jones, Gordon; Klein, Andreas; Penttila, Seppo I.; Salas-Bacci, Americo; Sharma, Monisha; Wilburn, W. Scott

    2007-10-01

    The abBA and PANDA experiments, currently under development, aim to measure the correlation coefficients in the polarized free neutron beta decay at the FnPB in SNS. The polarization of the neutron beam, polarized with a ^3He spin filter, has to be known with high precision in order to achieve the goal accuracy of these experiments. In the NPDGamma experiment, where a ^3He spin filter was used, it was observed that backgrounds play an important role in the precision to which the polarization can be determined. An experiment that focuses in the reduction of background sources to establish techniques and find the upper limit for the polarization accuracy with these spin filters is currently in progress at LANSCE. A description of the measurement and results will be presented.

  15. Study of neutron focusing at the Texas Cold Neutron Source. Final report

    SciTech Connect

    Wehring, B.W.; Uenlue, K.

    1995-03-06

    Funds were received for the first year of a three year DOE Nuclear Engineering Research Grant, ``Study of Neutron Focusing at the Texas Cold Neutron Source`` (FGO2-92ER75711). The purpose of this three year study was to develop a neutron focusing system to be used with the Texas Cold Neutron Source (TCNS) to produce an intense beam of neutrons. A prompt gamma activation analysis (PGAA) facility was also to be designed, setup, and tested under the three year project. During the first year of the DOE grant, a new procedure was developed and used to design a focusing converging guide consisting of truncated rectangular cone sections. Detailed calculations were performed using a 3-D Monte Carlo code which we wrote to trace neutrons through the curved guide of the TCNS into the proposed converging guide. Using realistic reflectivities for Ni-Ti supermirrors, we obtained gains of 3 to 5 for the neutron flux averaged over an area of 1 {times} 1 cm.

  16. The new cold neutron radiography and tomography instrument CONRAD at HMI Berlin

    NASA Astrophysics Data System (ADS)

    Hilger, A.; Kardjilov, N.; Strobl, M.; Treimer, W.; Banhart, J.

    2006-11-01

    The new cold neutron radiography instrument CONRAD is a multifunctional facility for radiography and tomography with cold neutrons at Hahn-Meitner Institut, Berlin. It is located at the end of a curved neutron guide, which faces the cold-neutron source of the BER-II research reactor. The geometry provides a cold-neutron beam with wavelengths between 2 and 12 Å. Two measuring positions are available for radiography and tomography investigations. The first one is placed at the end of the guide and it is optimized for in situ experiments in which a high neutron flux is required. The available flux at this position is approximately 10 8 cm -2 s -1. The second measuring position uses a pin-hole geometry which allows better beam collimation ( L/ D up to 1000) and higher image resolution in the range of 200 μm in the CCD based detector system (10×10 cm 2). The use of cold neutrons for radiography purposes increases the image contrast and improves the sensibility e.g., the detection of small amounts of water and hydrogen-containing materials in metal matrixes. On the other hand the cold-neutron beam can be modified easily by using diffraction and neutron optical techniques. This enables to perform radiography and tomography experiments with more sophisticated measuring techniques. Recent examples of research and industrial applications will be presented.

  17. HFIR cold neutron source moderator vessel design analysis

    SciTech Connect

    Chang, S.J.

    1998-04-01

    A cold neutron source capsule made of aluminum alloy is to be installed and located at the tip of one of the neutron beam tubes of the High Flux Isotope Reactor. Cold hydrogen liquid of temperature approximately 20 degree Kelvin and 15 bars pressure is designed to flow through the aluminum capsule that serves to chill and to moderate the incoming neutrons produced from the reactor core. The cold and low energy neutrons thus produced will be used as cold neutron sources for the diffraction experiments. The structural design calculation for the aluminum capsule is reported in this paper.

  18. The Thermodynamic Functions in Curved Space of Neutron Star

    NASA Astrophysics Data System (ADS)

    Hussein, N. A.; Eisa, D. A.; Sayed, E. G.

    2016-04-01

    The aim of this article is to calculate the thermodynamic functions of a neutron star in curved space. We obtained equation of state (EOS) and the excess free energy for a neutron star in curved space up to order n4, where n is the density of particles.

  19. Holographic cold nuclear matter and neutron star

    NASA Astrophysics Data System (ADS)

    Ghoroku, Kazuo; Kubo, Kouki; Tachibana, Motoi; Toyoda, Fumihiko

    2014-04-01

    We have previously found a new phase of cold nuclear matter based on a holographic gauge theory, where baryons are introduced as instanton gas in the probe D8//lineD8 branes. In our model, we could obtain the equation of state (EOS) of our nuclear matter by introducing Fermi momentum. Then, here we apply this model to the neutron star and study its mass and radius by solving the Tolman-Oppenheimer-Volkoff (TOV) equations in terms of the EOS given here. We give some comments for our holographic model from a viewpoint of the other field theoretical approaches.

  20. A Program For Optics of Curved Crystal Neutron Spectrometers.

    Energy Science and Technology Software Center (ESTSC)

    1990-04-26

    Version 00 TRAX computes the resolution matrix and characteristic line widths and intensities for three-axis slow-neutron spectrometers with flat or curved, mosaic or perfect crystals, with or without Soller collimators or limiting diaphragms.

  1. Design Analyses and Shielding of HFIR Cold Neutron Scattering Instruments

    SciTech Connect

    Gallmeier, F.X.; Selby, D.L.; Winn, B.; Stoica, D.; Jones, A.B.; Crow, L.

    2011-07-01

    Research reactor geometries and special characteristics present unique dosimetry analysis and measurement issues. The introduction of a cold neutron moderator and the production of cold neutron beams at the Oak Ridge National Laboratory High Flux Isotope Reactor have created the need for modified methods and devices for analyzing and measuring low energy neutron fields (0.01 to 100 meV). These methods include modifications to an MCNPX version to provide modeling of neutron mirror reflection capability. This code has been used to analyze the HFIR cold neutron beams and to design new instrument equipment that will use the beams. Calculations have been compared with time-of-flight measurements performed at the start of the neutron guides and at the end of one of the guides. The results indicate that we have a good tool for analyzing the transport of these low energy beams through neutron mirror and guide systems for distance up to 60 meters from the reactor. (authors)

  2. The world's first pelletized cold neutron moderator at a neutron scattering facility

    NASA Astrophysics Data System (ADS)

    Ananiev, V.; Belyakov, A.; Bulavin, M.; Kulagin, E.; Kulikov, S.; Mukhin, K.; Petukhova, T.; Sirotin, A.; Shabalin, D.; Shabalin, E.; Shirokov, V.; Verhoglyadov, A.

    2014-02-01

    In July 10, 2012 cold neutrons were generated for the first time with the unique pelletized cold neutron moderator CM-202 at the IBR-2M reactor. This new moderator system uses small spherical beads of a solid mixture of aromatic hydrocarbons (benzene derivatives) as the moderating material. Aromatic hydrocarbons are known as the most radiation-resistant hydrogenous substances and have properties to moderate slow neutrons effectively. Since the new moderator was put into routine operation in September 2013, the IBR-2 research reactor of the Frank Laboratory of Neutron Physics has consolidated its position among the world's leading pulsed neutron sources for investigation of matter with neutron scattering methods.

  3. Production and storage of ultra cold neutrons in superfluid helium

    SciTech Connect

    Greene, G.L.; Lamoreaux, S.

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL) concerning the investigation of a new method for the experimental exploitation of ultra-cold neutrons. The production and storage of ultra cold neutrons in superfluid helium has been suggested as a tool for the production of high densities of ultra cold neutrons for fundamental nuclear physics as well as for sensitive measurements for condensed matter. A particular application of this technique has been suggested by Doyle and Lamoreaux that involves the trapping of neutrons in a magnetic field within the superfluid helium volume. Neutron decays within the trap volume are detected by the scintillation light produced in the liquid helium. A cryostat and magnetic trap have been constructed as well as a prototype light detection system. This system was installed on a cold neutron beam line at the NIST Cold Neutron Research Facility in the summer of 1997. Preliminary results indicate the detection of helium scintillation light from the detection vessel.

  4. Light curves from binary neutron star coalescence

    NASA Astrophysics Data System (ADS)

    Ortiz, Nestor; Green, Stephen; Lehner, Luis; Ponce, Marcelo; HAD Collaboration

    2015-04-01

    Evolution of binary neutron stars, and the extraction of associated gravitational waveforms, have acquired certain maturity using numerical simulations. In this work we look to augment the observational predictions by extracting electromagnetic counterparts. That is, given results from a merger simulation, we produce a photon emission sky map. Our ray-tracing algorithm employ the two-pole caustic model of gamma-ray emission from the binary system's magnetosphere. The combined measurement of both gravitational and electromagnetic wave signals provides additional information to characterize the merger.

  5. Cold neutron gain calculations for the NBSR using MCNP

    SciTech Connect

    Williams, R.E.; Rowe, J.M. ); Blau, M. )

    1993-01-01

    The existing D[sub 2]O-ice cold neutron source in the 20-MW National Bureau of Standards reactor (NBSR) will be replaced in 1994 with a liquid-hydrogen (LH2) source, to increase the yield of cold neutrons (X > 0.4 nm). Two series of Monte Carlo calculations using MCNP were performed to determine the optimum cold moderator geometry and to verify its performance. Only the region near the cryostat was modeled for the first series of calculations, leading to the choice of a spherical annulus for the LH[sub 2] source. A complete MCNP model of the core was subsequently developed.

  6. High Flux Isotope Reactor cold neutron source reference design concept

    SciTech Connect

    Selby, D.L.; Lucas, A.T.; Hyman, C.R.

    1998-05-01

    In February 1995, Oak Ridge National Laboratory`s (ORNL`s) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH{sub 2}) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH{sub 2} cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept.

  7. The NIST NBSR and Cold Neutron Research Facility

    SciTech Connect

    Rush, J.J.

    1994-12-31

    The 20 MW Neutron Beam Split-Core Reactor (NBSR) has nine radial thermal beam tubes, and a large, highly accessible (35cm) cold source serving an extensive network of eight guide tubes. In operation or under construction are twenty-five neutron beam instruments (20 for neutron scattering) and about a dozen other facilities for neutron trace analysis, dosimetry and irradiation. The 6 x 15cm cold neutron guides are coated with {sup 58}Ni, and the last three being installed this fall are coated top and bottom with supermirrors for further increases in intensity. The new semi-spherical liquid hydrogen source will be described, along with the eight scattering instruments (reflectometry, SANS and high-resolution spectroscopy) which have, or will have, an extensive use in biological research. These instruments will likely provide the best overall capability in the U.S. for the next decade for a number of applications in biomolecular structure and dynamics.

  8. Cold Neutrons Trapped in External Fields

    SciTech Connect

    Gandolfi, S.; Carlson, J.; Pieper, Steven C.

    2011-01-07

    The properties of inhomogeneous neutron matter are crucial to the physics of neutron-rich nuclei and the crust of neutron stars. Advances in computational techniques now allow us to accurately determine the binding energies and densities of many neutrons interacting via realistic microscopic interactions and confined in external fields. We perform calculations for different external fields and across several shells to place important constraints on inhomogeneous neutron matter, and hence the large isospin limit of the nuclear energy density functionals that are used to predict properties of heavy nuclei and neutron star crusts. We find important differences between microscopic calculations and current density functionals; in particular, the isovector gradient terms are significantly more repulsive than in traditional models, and the spin-orbit and pairing forces are comparatively weaker.

  9. Cold neutrons trapped in external fields.

    SciTech Connect

    Gandolfi, S.; Carlson, J.; Pieper, S. C.

    2011-01-05

    The properties of inhomogeneous neutron matter are crucial to the physics of neutron-rich nuclei and the crust of neutron stars. Advances in computational techniques now allow us to accurately determine the binding energies and densities of many neutrons interacting via realistic microscopic interactions and confined in external fields. We perform calculations for different external fields and across several shells to place important constraints on inhomogeneous neutron matter, and hence the large isospin limit of the nuclear energy density functionals that are used to predict properties of heavy nuclei and neutron star crusts. We find important differences between microscopic calculations and current density functionals; in particular, the isovector gradient terms are significantly more repulsive than in traditional models, and the spin-orbit and pairing forces are comparatively weaker.

  10. A liquid-hydrogen cold neutron source for the NBSR

    SciTech Connect

    Williams, R.E.; Roew, J.M.; Kopetka, P. )

    1992-01-01

    The National Bureau of Standards Reactor (NBSR) is a 20-MW research reactor operated by the National Institute of Standards and Technology. It was designed with a 55-cm-diam beamport for the purpose of installing a D[sub 2]O-ice cold neutron source, completed in 1987. The success of the cold source led to the construction of the Cold Neutron Research Facility, an experimental hall ultimately to have 7 neutron guides and 15 instruments. A liquid-hydrogen cold neutron source is being developed to replace the D[sub 2]O ice in order to increase the cold neutron yield. A simple, passively safe system has been designed with multiple barriers that prevent air from mixing with hydrogen. A thermosiphon will be used to maintain the liquid-hydrogen inventory in the moderator chamber. The thermosiphon relies on natural circulation; no pumps or moving parts are required to adequately cool the moderator chamber. The hydrogen condenser is cooled by a 3.5-kW helium refrigerator. A ballast tank is connected to the condenser so the entire hydrogen inventory can expand freely into the tank, providing completely passive protection against refrigerator failures.

  11. Biomembranes research using thermal and cold neutrons.

    PubMed

    Heberle, F A; Myles, D A A; Katsaras, J

    2015-11-01

    In 1932 James Chadwick discovered the neutron using a polonium source and a beryllium target (Chadwick, 1932). In a letter to Niels Bohr dated February 24, 1932, Chadwick wrote: "whatever the radiation from Be may be, it has most remarkable properties." Where it concerns hydrogen-rich biological materials, the "most remarkable" property is the neutron's differential sensitivity for hydrogen and its isotope deuterium. Such differential sensitivity is unique to neutron scattering, which unlike X-ray scattering, arises from nuclear forces. Consequently, the coherent neutron scattering length can experience a dramatic change in magnitude and phase as a result of resonance scattering, imparting sensitivity to both light and heavy atoms, and in favorable cases to their isotopic variants. This article describes recent biomembranes research using a variety of neutron scattering techniques. PMID:26241882

  12. Average Soil Water Retention Curves Measured by Neutron Radiography

    SciTech Connect

    Cheng, Chu-Lin; Perfect, Edmund; Kang, Misun; Voisin, Sophie; Bilheux, Hassina Z; Horita, Juske; Hussey, Dan

    2011-01-01

    Water retention curves are essential for understanding the hydrologic behavior of partially-saturated porous media and modeling flow transport processes within the vadose zone. In this paper we report direct measurements of the main drying and wetting branches of the average water retention function obtained using 2-dimensional neutron radiography. Flint sand columns were saturated with water and then drained under quasi-equilibrium conditions using a hanging water column setup. Digital images (2048 x 2048 pixels) of the transmitted flux of neutrons were acquired at each imposed matric potential (~10-15 matric potential values per experiment) at the NCNR BT-2 neutron imaging beam line. Volumetric water contents were calculated on a pixel by pixel basis using Beer-Lambert s law after taking into account beam hardening and geometric corrections. To remove scattering effects at high water contents the volumetric water contents were normalized (to give relative saturations) by dividing the drying and wetting sequences of images by the images obtained at saturation and satiation, respectively. The resulting pixel values were then averaged and combined with information on the imposed basal matric potentials to give average water retention curves. The average relative saturations obtained by neutron radiography showed an approximate one-to-one relationship with the average values measured volumetrically using the hanging water column setup. There were no significant differences (at p < 0.05) between the parameters of the van Genuchten equation fitted to the average neutron radiography data and those estimated from replicated hanging water column data. Our results indicate that neutron imaging is a very effective tool for quantifying the average water retention curve.

  13. Biomembranes research using thermal and cold neutrons

    DOE PAGESBeta

    Heberle, Frederick A.; Myles, Dean A. A.; Katsaras, John

    2015-08-01

    In 1932 James Chadwick discovered the neutron using a polonium source and a beryllium target (Chadwick, 1932). In a letter to Niels Bohr dated February 24, 1932, Chadwick wrote: “whatever the radiation from Be may be, it has most remarkable properties.” Where it concerns hydrogen-rich biological materials, the “most remarkable” property is the neutron’s differential sensitivity for hydrogen and its isotope deuterium. Such differential sensitivity is unique to neutron scattering, which unlike X-ray scattering, arises from nuclear forces. Consequently, the coherent neutron scattering length can experience a dramatic change in magnitude and phase as a result of resonance scattering, impartingmore » sensitivity to both light and heavy atoms, and in favorable cases to their isotopic variants. Furthermore, this article describes recent biomembranes research using a variety of neutron scattering techniques.« less

  14. Biomembranes research using thermal and cold neutrons

    SciTech Connect

    Heberle, Frederick A.; Myles, Dean A. A.; Katsaras, John

    2015-08-01

    In 1932 James Chadwick discovered the neutron using a polonium source and a beryllium target (Chadwick, 1932). In a letter to Niels Bohr dated February 24, 1932, Chadwick wrote: “whatever the radiation from Be may be, it has most remarkable properties.” Where it concerns hydrogen-rich biological materials, the “most remarkable” property is the neutron’s differential sensitivity for hydrogen and its isotope deuterium. Such differential sensitivity is unique to neutron scattering, which unlike X-ray scattering, arises from nuclear forces. Consequently, the coherent neutron scattering length can experience a dramatic change in magnitude and phase as a result of resonance scattering, imparting sensitivity to both light and heavy atoms, and in favorable cases to their isotopic variants. Furthermore, this article describes recent biomembranes research using a variety of neutron scattering techniques.

  15. Cold neutron diffraction contrast tomography of polycrystalline material.

    PubMed

    Peetermans, S; King, A; Ludwig, W; Reischig, P; Lehmann, E H

    2014-11-21

    Traditional neutron imaging is based on the attenuation of a neutron beam through scattering and absorption upon traversing a sample of interest. It offers insight into the sample's material distribution at high spatial resolution in a non-destructive way. In this work, it is expanded to include the diffracted neutrons that were ignored so far and obtain a crystallographic distribution (grain mapping). Samples are rotated in a cold neutron beam of limited wavelength band. Projections of the crystallites formed by the neutrons they diffract are captured on a two dimensional imaging detector. Their positions on the detector reveal their orientation whereas the projections themselves are used to reconstruct the shape of the grains. Indebted to established synchrotron diffraction contrast tomography, this 'cold neutron diffraction contrast tomography' is performed on recrystallized aluminium for experimental comparison between both. Differences between set-up and method are discussed, followed by the application range in terms of sample properties (crystallite size and number, mosaicity and typical materials). Neutron diffraction contrast tomography allows to study large grains in bulky metallic structures. PMID:25274183

  16. A small angle neutron scattering (SANS) experiment using very cold neutrons (VCN)

    NASA Astrophysics Data System (ADS)

    Bleuel, M.; Carpenter, J. M.; Micklich, B. J.; Geltenbort, P.; Mishima, K.; Shimizu, H. M.; Iwashita, Y.; Hirota, K.; Hino, M.; Kennedy, S. J.; Lal, J.

    2009-09-01

    This paper describes the results of SANS measurements of small samples using the very cold neutron (VCN) beam of the PF2 instrument at the Institut Laue Langevin (ILL), France. In addition to a classical SANS pinhole collimation, the experiment used a polarizing supermirror as a monochromator and a magnetic sextupole lens to focus the neutron beam in order to gain intensity and avoid any material in the neutron beam besides the sample.

  17. Time-resolved neutron imaging at ANTARES cold neutron beamline

    NASA Astrophysics Data System (ADS)

    Tremsin, A. S.; Dangendorf, V.; Tittelmeier, K.; Schillinger, B.; Schulz, M.; Lerche, M.; Feller, W. B.

    2015-07-01

    In non-destructive evaluation with X-rays light elements embedded in dense, heavy (or high-Z) matrices show little contrast and their structural details can hardly be revealed. Neutron radiography, on the other hand, provides a solution for those cases, in particular for hydrogenous materials, owing to the large neutron scattering cross section of hydrogen and uncorrelated dependency of neutron cross section on the atomic number. The majority of neutron imaging experiments at the present time is conducted with static objects mainly due to the limited flux intensity of neutron beamline facilities and sometimes due to the limitations of the detectors. However, some applications require the studies of dynamic phenomena and can now be conducted at several high intensity beamlines such as the recently rebuilt ANTARES beam line at the FRM-II reactor. In this paper we demonstrate the capabilities of time resolved imaging for repetitive processes, where different phases of the process can be imaged simultaneously and integrated over multiple cycles. A fast MCP/Timepix neutron counting detector was used to image the water distribution within a model steam engine operating at 10 Hz frequency. Within <10 minutes integration the amount of water was measured as a function of cycle time with a sub-mm spatial resolution, thereby demonstrating the capabilities of time-resolved neutron radiography for the future applications. The neutron spectrum of the ANTARES beamline as well as transmission spectra of a Fe sample were also measured with the Time Of Flight (TOF) technique in combination with a high resolution beam chopper. The energy resolution of our setup was found to be ~ 0.8% at 5 meV and ~ 1.7% at 25 meV. The background level (most likely gammas and epithermal/fast neutrons) of the ANTARES beamline was also measured in our experiments and found to be on the scale of 3% when no filters are installed in the beam. Online supplementary data available from stacks.iop.org/jinst/10

  18. The new cold neutron chopper spectrometer at the Spallation Neutron Source: design and performance.

    PubMed

    Ehlers, G; Podlesnyak, A A; Niedziela, J L; Iverson, E B; Sokol, P E

    2011-08-01

    The design and performance of the new cold neutron chopper spectrometer (CNCS) at the Spallation Neutron Source in Oak Ridge are described. CNCS is a direct-geometry inelastic time-of-flight spectrometer, designed essentially to cover the same energy and momentum transfer ranges as IN5 at ILL, LET at ISIS, DCS at NIST, TOFTOF at FRM-II, AMATERAS at J-PARC, PHAROS at LANSCE, and NEAT at HZB, at similar energy resolution. Measured values of key figures such as neutron flux at sample position and energy resolution are compared between measurements and ray tracing Monte Carlo simulations, and good agreement (better than 20% of absolute numbers) has been achieved. The instrument performs very well in the cold and thermal neutron energy ranges, and promises to become a workhorse for the neutron scattering community for quasielastic and inelastic scattering experiments. PMID:21895276

  19. The new cold neutron chopper spectrometer at the Spallation Neutron Source: Design and performance

    SciTech Connect

    Ehlers, G.; Podlesnyak, A. A.; Niedziela, J. L.; Iverson, E. B.; Sokol, P. E.

    2011-08-15

    The design and performance of the new cold neutron chopper spectrometer (CNCS) at the Spallation Neutron Source in Oak Ridge are described. CNCS is a direct-geometry inelastic time-of-flight spectrometer, designed essentially to cover the same energy and momentum transfer ranges as IN5 at ILL, LET at ISIS, DCS at NIST, TOFTOF at FRM-II, AMATERAS at J-PARC, PHAROS at LANSCE, and NEAT at HZB, at similar energy resolution. Measured values of key figures such as neutron flux at sample position and energy resolution are compared between measurements and ray tracing Monte Carlo simulations, and good agreement (better than 20% of absolute numbers) has been achieved. The instrument performs very well in the cold and thermal neutron energy ranges, and promises to become a workhorse for the neutron scattering community for quasielastic and inelastic scattering experiments.

  20. The new Cold Neutron Chopper Spectrometer at the Spallation Neutron Source -- Design and Performance

    SciTech Connect

    Ehlers, Georg; Podlesnyak, Andrey A.; Niedziela, Jennifer L.; Iverson, Erik B.; Sokol, Paul E.

    2011-01-01

    The design and performance of the new cold neutron chopper spectrometer (CNCS) at the Spallation Neutron Source in Oak Ridge are described. CNCS is a direct-geometry inelastic time-of-flight spectrometer, designed essentially to cover the same energy and momentum transfer ranges as IN5 at ILL, LET at ISIS, DCS at NIST, TOFTOF at FRM-II, AMATERAS at J-PARC, PHAROS at LANSCE, and NEAT at HZB, at similar energy resolution. Measured values of key figures such as neutron flux at sample position and energy resolution are compared between measurements and ray tracing Monte Carlo simulations, and good agreement (better than 20% of absolute numbers) has been achieved. The instrument performs very well in the cold and thermal neutron energy ranges, and promises to become a workhorse for the neutron scattering community for quasielastic and inelastic scattering experiments.

  1. Physics design of a cold neutron source for KIPT neutron source facility.

    SciTech Connect

    Zhong, Z.; Gohar, Y.; Kellogg, R.; Nuclear Engineering Division

    2009-02-17

    Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of a neutron source facility. It is based on the use of an electron accelerator driven subcritical (ADS) facility with low enriched uranium fuel, using the existing electron accelerators at KIPT of Ukraine [1]. The neutron source of the subcritical assembly is generated from the interaction of 100-KW electron beam, which has a uniform spatial distribution and the electron energy in the range of 100 to 200 MeV, with a natural uranium target [2]. The main functions of the facility are the production of medical isotopes and the support of the Ukraine nuclear power industry. Neutron beam experiments and material studies are also included. Over the past two-three decades, structures with characteristic lengths of 100 {angstrom} and correspondingly smaller vibrational energies have become increasingly important for both science and technology [3]. The characteristic dimensions of the microstructures can be well matched by neutrons with longer vibrational wavelength and lower energy. In the accelerator-driven subcritical facility, most of the neutrons are generated from fission reactions with energy in the MeV range. They are slowed down to the meV energy range through scattering reactions in the moderator and reflector materials. However, the fraction of neutrons with energies less than 5 meV in a normal moderator spectrum is very low because of up-scattering caused by the thermal motion of moderator or reflector molecules. In order to obtain neutrons with energy less than 5 meV, cryogenically cooled moderators 'cold neutron sources' should be used to slow down the neutrons. These cold moderators shift the neutron energy spectrum down because the thermal motion of moderator molecules as well as the up-scattering is very small, which provides large gains in intensity of low energy neutrons, E < 5 meV. The

  2. Deuterated polyethylene coatings for ultra-cold neutron applications

    NASA Astrophysics Data System (ADS)

    Brenner, Th.; Fierlinger, P.; Geltenbort, P.; Gutsmiedl, E.; Hollering, A.; Lauer, T.; Petzoldt, G.; Ruhstorfer, D.; Schroffenegger, J.; Seemann, K. M.; Soltwedel, O.; Stuiber, St.; Taubenheim, B.; Windmayer, D.; Zechlau, T.

    2015-09-01

    We report on the fabrication and use of deuterated polyethylene as a coating material for ultra-cold neutron (UCN) storage and transport. The Fermi potential has been determined to be 214 neV, and the wall loss coefficient η is 1.3 × 104 per wall collision. The coating technique allows for a wide range of applications in this field of physics. In particular, flexible and quasi-massless UCN guides with slit-less shutters and seamless UCN storage volumes become possible. These properties enable the use in next-generation measurements of the electric dipole moment of the neutron.

  3. An ultra-cold neutron source at the MLNSC

    SciTech Connect

    Bowles, T.J.; Brun, T.; Hill, R.; Morris, C.; Seestrom, S.J.; Crow, L.; Serebrov, A.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors have carried out the research and development of an Ultra-Cold Neutron (UCN) source at the Manuel Lujan Neutron Scattering Center (MLNSC). A first generation source was constructed to test the feasibility of a rotor source. The source performed well with an UCN production rate reasonably consistent with that expected. This source can now provide the basis for further development work directed at using UCN in fundamental physics research as well as possible applications in materials science.

  4. Simulation of Cold Neutron Experiments using GEANT4

    NASA Astrophysics Data System (ADS)

    Frlez, Emil; Hall, Joshua; Root, Melinda; Baessler, Stefan; Pocanic, Dinko

    2013-10-01

    We review the available GEANT4 physics processes for the cold neutrons in the energy range 1-100 meV. We consider the cases of the neutron beam interacting with (i) para- and ortho- polarized liquid hydrogen, (ii) Aluminum, and (iii) carbon tetrachloride (CCl4) targets. Scattering, thermal and absorption cross sections used by GEANT4 and MCNP6 libraries are compared with the National Nuclear Data Center (NNDC) compilation. NPDGamma detector simulation is presented as an example of the implementation of the resulting GEANT4 code. This work is supported by NSF grant PHY-0970013.

  5. Deuterated polyethylene coatings for ultra-cold neutron applications

    SciTech Connect

    Brenner, Th.; Geltenbort, P.; Fierlinger, P.; Gutsmiedl, E.; Hollering, A.; Petzoldt, G.; Ruhstorfer, D.; Stuiber, St.; Taubenheim, B.; Windmayer, D.; Lauer, T.; Schroffenegger, J.; Zechlau, T.; Seemann, K. M.; Soltwedel, O.

    2015-09-21

    We report on the fabrication and use of deuterated polyethylene as a coating material for ultra-cold neutron (UCN) storage and transport. The Fermi potential has been determined to be 214 neV, and the wall loss coefficient η is 1.3 × 10{sup 4} per wall collision. The coating technique allows for a wide range of applications in this field of physics. In particular, flexible and quasi-massless UCN guides with slit-less shutters and seamless UCN storage volumes become possible. These properties enable the use in next-generation measurements of the electric dipole moment of the neutron.

  6. Plans for an Ultra Cold Neutron source at Los Alamos

    SciTech Connect

    Seestrom, S.J.; Bowles, T.J.; Hill, R.; Greene, G.L.

    1996-10-01

    Ultra Cold Neutrons (UCN) can be produced at spallation sources using a variety of techniques. To date the technique used has been to Bragg scatter and Doppler shift cold neutrons into UCN from a moving crystal. This is particularly applicable to short-pulse spallation sources. We are presently constructing a UCN source at LANSCE using this method. In addition, large gains in UCN density should be possible using cryogenic UCN sources. Research is under way at Gatchina to demonstrate technical feasibility of a frozen deuterium source. If successful, a source of this type could be implemented at future spallation source, such as the long pulse source being planned at Los Alamos, with a UCN density that may be two orders of magnitude higher than that presently available at reactors.

  7. Development of an ultra cold neutron source at MLNSC

    SciTech Connect

    Seestrom, S.J.; Bowles, T.J.; Hill, R.; Greene, G.L.; Morris, C.L.

    1996-09-01

    Ultra Cold Neutrons (UCN) can be produced at spallation sources using a variety of techniques. To date the technique used has been to Bragg scatter and Doppler shift cold neutrons into UCN from a moving crystal. This is particularly applicable to short-pulse spallation sources. We are presently constructing a UCN source at LANSCE using this method. In addition, large gains in UCN density should be possible using cryogenic UCN sources. Research is under way at Gatchina to demonstrate technical feasibility of a frozen deuterium source. If successful, a source of this type could be implemented at future spallation sources, such as the long pulse source being planned at Los Alamos, with a UCN density that may be two orders of magnitude higher than that presently available at reactors.

  8. The Design and Construction of a Cold Neutron Source for Use in the Cornell University Triga Reactor

    NASA Astrophysics Data System (ADS)

    Young, Lydia Jane

    A cold neutron source has been designed and constructed for insertion into the 6"-radial beam port of the Cornell University TRIGA reactor for use with a neutron guide tube system. The main differences between this cold source and other existing sources are the use of heat conduction as the method of cooling and the use of mesitylene (1,3,5 -trimethylbenzene; melting point, 228(DEGREES)K; boiling point, 437(DEGREES)K) as the moderating material. This thesis describes the design and construction details of the cold neutron source, discusses its safety aspects, and presents its cryogenic performance curves and also the results of a test of its neutron moderating ability. A closed-cycle helium gas refrigerator, located outside the reactor shielding, cools the 500 cm('3) moderator chamber and its surrounding heat shield by heat conduction through two meters of copper and rod tubing. Moderator temperatures of 23 (+OR-) 3(DEGREES)K have been achieved. Mesitylene, a hydrocarbon, is an effective cold moderator because even at low temperatures the weakly hindered rotational motions of its methyl groups enable the absorption of small amounts of energy ((LESSTHEQ) 0.005 eV) from neutrons. The use of mesitylene simplifies the cold source design because it is a liquid at room temperature and thus, the usual design safeguards required for sources using gaseous moderators are not necessary. Moreover, the flammability of mesitylene is much smaller than that of hydrogen and methane, which are the commonly used cold moderators. A method of transferring and handling the mesitylene, a carcinogen, was devised to ensure minimal contact with this substance. To test the neutron moderating ability of the cold neutron source, an out-of-reactor neutron transmission experiment was performed with the moderator chamber first at room temperature and then at about 23(DEGREES)K. The results indicate that the neutron energy spectrum is strongly shifted to lower energies when the chamber is cold

  9. The Advanced Neutron Source liquid deuterium cold source

    SciTech Connect

    Lucas, A.T.

    1995-08-01

    The Advanced Neutron Source will employ two cold sources to moderate neutrons to low energy (<10 meV). The cold neutrons produced are then passed through beam guides to various experiment stations. Each cold source moderator is a sphere of 410-mm internal diameter. The moderator material is liquid deuterium flowing at a rate of 1 kg/s and maintained at subcooled temperatures at all points of the circuit, to prevent boiling. Nuclear beat deposited within the liquid deuterium and its containment structure totals more than 30 kW. All of this heat is removed by the liquid deuterium, which raises its temperature by 5 K. The liquid prime mover is a cryogenic circulator that is situated in the return leg of the flow loop. This arrangement minimizes the heat added to the liquid between the heat exchanger and the moderator vessel, allowing the moderator to be operated at the minimum practical temperature. This report describes the latest thinking at the time of project termination. It also includes the status of various systems at that time and outlines anticipated directions in which the design would have progressed. In this regard, some detail differences between this report and official design documents reflect ideas that were not approved at the time of closure but are considered noteworthy.

  10. A Precision Measurement of Neutron Beta Decay Angular Correlations with Polarized Pulsed Cold Neutrons

    NASA Astrophysics Data System (ADS)

    Seo, Pil-Neyo

    2004-05-01

    The abBA collaboration is developing an experiment to measure the neutron beta decay angular correlations, a, b, B, A, to 0.1the very high pulsed cold neutron intensities in a new nuclear physics beam line that is under construction at SNS. The design of the experiment is based on three important technical advances: the pulsed cold neutron beam, a polarized ^3He neutron spin filter, and large-area thin-dead layer silicon detectors. Both electrons and protons resulting from the decay will be guided in the spectrometer by electric and magnetic fields and then detected in coincidence with two 2π large-segmented silicon detectors. Measuring the correlations in the same apparatus provides a redundant measurement of λ=G_A/G_V. I will describe the experiment and report the status of the development.

  11. Multiple pixel-scale soil water retention curves quantified by neutron radiography

    NASA Astrophysics Data System (ADS)

    Kang, M.; Perfect, E.; Cheng, C. L.; Bilheux, H. Z.; Lee, J.; Horita, J.; Warren, J. M.

    2014-03-01

    The soil water retention function is needed for modeling multiphase flow in porous media. Traditional techniques for measuring the soil water retention function, such as the hanging water column or pressure cell methods, yield average water retention data which have to be modeled using inverse procedures to extract relevant point parameters. In this study, we have developed a technique for directly measuring multiple point (pixel-scale) water retention curves for a repacked sand material using 2-D neutron radiography. Neutron radiographic images were obtained under quasi-equilibrium conditions at nine imposed basal matric potentials during monotonic drying of Flint sand at the High Flux Isotope Reactor (HFIR) Cold Guide (CG) 1D beamline at Oak Ridge National Laboratory. All of the images were normalized with respect to an image of the oven dry sand column. Volumetric water contents were computed on a pixel by pixel basis using an empirical calibration equation after taking into account beam hardening and geometric corrections. Corresponding matric potentials were calculated from the imposed basal matric potential and pixel elevations. Volumetric water content and matric potential data pairs corresponding to 120 selected pixels were used to construct 120 point water retention curves. Each curve was fitted to the Brooks and Corey equation using segmented non-linear regression in SAS. A 98.5% convergence rate was achieved resulting in 115 estimates of the four Brooks and Corey parameters. A single Brooks and Corey point water retention function was constructed for Flint sand using the median values of these parameter estimates. This curve corresponded closely with the point Brooks and Corey function inversely extracted from the average water retention data using TrueCell. Forward numerical simulations performed using HYDRUS 1-D showed that the cumulative outflows predicted using the point Brooks and Corey functions from both the direct (neutron radiography) and

  12. True stress-strain curves of cold worked stainless steel over a large range of strains

    NASA Astrophysics Data System (ADS)

    Kamaya, Masayuki; Kawakubo, Masahiro

    2014-08-01

    True stress-strain curves for cold worked stainless steel were obtained over a range of strains that included a large strain exceeding the strain for the tensile strength (post-necking strain). A specified testing method was used to obtain the stress-strain curves in air at room temperature. The testing method employed the digital image correlation (DIC) technique and iterative finite element analyses (FEA) and was referred to as IFD (Iteration FEA procedure based on DIC measurement) method. Although hourglass type specimens have been previously used for the IFD method, in this study, plate specimens with a parallel gage section were used to obtain accurate yield and tensile strengths together with the stress-strain curves. The stress-strain curves including the post-necking strain were successfully obtained by the IFD method, and it was shown that the stress-strain curves for different degrees of cold work collapsed onto a single curve when the offset strain was considered. It was also shown that the Swift type constitutive equation gave good regression for the true stress-strain curves including the post-necking strain regardless of the degree of cold work, although the Ramberg-Osgood type constitutive equation showed poor fit. In the regression for the Swift type constitutive equation, the constant for power law could be assumed to be nS = 0.5.

  13. Beam-transport optimization for cold-neutron spectrometer

    NASA Astrophysics Data System (ADS)

    Nakajima, Kenji; Ohira-Kawamura, Seiko; Kikuchi, Tatsuya; Kajimoto, Ryoichi; Takahashi, Nobuaki; Nakamura, Mitsutaka; Soyama, Kazuhiko; Osakabe, Toyotaka

    2015-01-01

    We report the design of the beam-transport system (especially the vertical geometry) for a cold-neutron disk-chopper spectrometer AMATERAS at J-PARC. Based on the elliptical shape, which is one of the most effective geometries for a ballistic mirror, the design was optimized to obtain, at the sample position, a neutron beam with high flux without serious degrading in divergence and spacial homogeneity within the boundary conditions required from actual spectrometer construction. The optimum focal point was examined. An ideal elliptical shape was modified to reduce its height without serious loss of transmission. The final result was adapted to the construction requirements of AMATERAS. Although the ideas studied in this paper are considered for the AMATERAS case, they can be useful also to other spectrometers in similar situations.

  14. On the measurement the neutron lifetime using ultra-cold neutrons in a vacuum quadrupole trap

    SciTech Connect

    Bowman, J. D.; Penttila, S. I.

    2004-01-01

    We present a conceptual design for an experiment to measure the neutron lifetime ({approx}882 s) with an accuracy of 10{sup -4}. The lifetime will be measured by observing the decay rate of a sample of UCNs confined in vacuum in a magnetic trap. The UCN collaboration at LANL has developed a prototype ultra-cold neutron UCN source that is expected to produce a bottled UCN density of more than 100 UCN/cm{sup 3}. The availability of such an intense source makes it possible to approach the measurement of the neutron lifetime in a new way. We argue below that it is possible to measure the neutron lifetime to 10{sup -4} in a vacuum magnetic trap. The measurement involves no new technology beyond the expected UCN density. If even higher densities are available, the experiment can be made better and/or less expensive. We present the design and methodology for the measurement. The slow loss of neutrons that have stable orbits, but are not energetically trapped would produce a systematic error in the measurement. We discuss a new approach, chaotic cleaning, to the elimination of quasi-neutrons from the trap by breaking the rotational symmetry of the quadrupole trap. The neutron orbits take on a chaotic character and mode mixing causes the neutrons on the quasi-bound orbits to leave the trap.

  15. Neutron capture studies of 206Pb at a cold neutron beam

    NASA Astrophysics Data System (ADS)

    Schillebeeckx, P.; Belgya, T.; Borella, A.; Kopecky, S.; Mengoni, A.; Quétel, C. R.; Szentmiklósi, L.; Trešl, I.; Wynants, R.

    2013-11-01

    Gamma-ray transitions following neutron capture in 206Pb have been studied at the cold neutron beam facility of the Budapest Neutron Centre using a metallic sample enriched in 206Pb and a natural lead nitrate powder pellet. The measurements were performed using a coaxial HPGe detector with Compton suppression. The observed -rays have been incorporated into a decay scheme for neutron capture in 206Pb . Partial capture cross sections for 206Pb(n,) at thermal energy have been derived relative to the cross section for the 1884keV transition after neutron capture in 14N . From the average crossing sum a total thermal neutron capture cross section of mb was derived for the 206Pb(n,) reaction. The thermal neutron capture cross section for 206Pb has been compared with contributions due to both direct capture and distant unbound s-wave resonances. From the same measurements a thermal neutron-induced capture cross section of mb was determined for the 207Pb(n,) reaction.

  16. Materials Selection for the HFIR Cold Neutron Source

    SciTech Connect

    Farrell, K.

    2001-08-24

    In year 2002 the High Flux Isotope Reactor (HFIR) will be fitted with a source of cold neutrons to upgrade and expand its existing neutron scattering facilities. The in-reactor components of the new source consist of a moderator vessel containing supercritical hydrogen gas moderator at a temperature of 20K and pressure of 15 bar, and a surrounding vacuum vessel. They will be installed in an enlarged beam tube located at the site of the present horizontal beam tube, HB-4; which terminates within the reactor's beryllium reflector. These components must withstand exceptional service conditions. This report describes the reasons and factors underlying the choice of 6061-T6 aluminum alloy for construction of the in-reactor components. The overwhelming considerations are the need to minimize generation of nuclear heat and to remove that heat through the flowing moderator, and to achieve a minimum service life of about 8 years coincident with the replacement schedule for the beryllium reflector. 6061-T6 aluminum alloy offers the best combination of low nuclear heating, high thermal conductivity, good fabricability, compatibility with hydrogen, superior cryogenic properties, and a well-established history of satisfactory performance in nuclear environments. These features are documented herein. An assessment is given of the expected performance of each component of the cold source.

  17. Cold neutron moderator on an upgraded IBR-2 reactor: The first set of results

    NASA Astrophysics Data System (ADS)

    Anan'ev, V. D.; Belyakov, A. A.; Bulavin, M. V.; Verkhoglyadov, A. E.; Kulikov, S. A.; Mukhin, K. A.; Shabalin, E. P.

    2014-02-01

    The first criticality of a new KZ-202 neutron moderator on the IBR-2M reactor is achieved. The moderator consists of thermal and cold units. The former is a room-temperature comb water moderator; the latter, a moderator using a mixture of aromatic hydrocarbons (mesitylene and m-xylene). The cold moderator is filled with granules of this mixture, which are supplied by a cold helium flow, and operates at 30 K. The combination of two units in one moderator makes it possible to simultaneously take the thermal and cold neutron spectra for extracted-beam spectrometers. The arrangement of the thermal and cold moderators is numerically optimized by the Monte Carlo method. The use of the cold moderator allows a 13-fold increase in the cold neutron intensity from its surface.

  18. New Pulsed Cold Neutron Beam Line for Fundamental Nuclear Physics at LANSCE.

    PubMed

    Seo, P-N; Bowman, J D; Gericke, M; Gillis, R C; Greene, G L; Leuschner, M B; Long, J; Mahurin, R; Mitchell, G S; Penttila, S I; Peralta, G; Sharapov, E I; Wilburn, W S

    2005-01-01

    The NPDGamma collaboration has completed the construction of a pulsed cold neutron beam line on flight path12 at the Los Alamos Neutron Science Center (LANSCE). We describe the new beam line and characteristics of the beam. We report results of the moderator brightness and the guide performance measurements. FP12 has the highest pulsed cold neutron intensity for nuclear physics in the world. PMID:27308111

  19. New Pulsed Cold Neutron Beam Line for Fundamental Nuclear Physics at LANSCE

    PubMed Central

    Seo, P.-N.; Bowman, J. D.; Gericke, M.; Gillis, R. C.; Greene, G. L.; Leuschner, M. B.; Long, J.; Mahurin, R.; Mitchell, G. S.; Penttila, S. I.; Peralta, G.; Sharapov, E. I.; Wilburn, W. S.

    2005-01-01

    The NPDGamma collaboration has completed the construction of a pulsed cold neutron beam line on flight path12 at the Los Alamos Neutron Science Center (LANSCE). We describe the new beam line and characteristics of the beam. We report results of the moderator brightness and the guide performance measurements. FP12 has the highest pulsed cold neutron intensity for nuclear physics in the world. PMID:27308111

  20. Neutron conversion and cascaded cooling in paramagnetic systems for a high-flux source of very cold neutrons

    NASA Astrophysics Data System (ADS)

    Zimmer, Oliver

    2016-03-01

    A new neutron-cooling mechanism is proposed with potential benefits for novel intense sources of very cold neutrons with wavelengths >2 nm, and for enhancing the production of ultracold neutrons. It employs inelastic magnetic scattering in weakly absorbing, cold paramagnetic systems. Kinetic energy is removed from the neutron stepwise in constant decrements determined by the Zeeman energy of paramagnetic atoms or ions in an external magnetic field, or by zero-field level splittings in magnetic molecules. The stationary neutron transport equation is analyzed for an infinite, homogeneous medium with Maxwellian neutron sources, using inelastic scattering cross sections derived in an appendix. Nonmagnetic inelastic scattering processes are neglected. The solution therefore still underestimates very cold neutron densities that should be achievable in a real medium. Molecular oxygen with its triplet ground state appears particularly promising, notably as a host in fully deuterated O2-clathrate hydrate. Other possibilities are dry O2-4He van der Waals clusters and O2 intercalated in fcc-C60. For conversion of cold to ultracold neutrons, where an incident neutron imparts only a single energy quantum to the medium, the paramagnetic scattering in the clathrate system is found to be stronger, by more than an order of magnitude, than the single-phonon emission in superfluid helium, when evaluated for an incident neutron spectrum with the optimum temperature for the respective medium. Moreover, the multistep paramagnetic cooling cascade leads to further strong enhancements of very cold neutron densities, e.g., by a factor 14 (57) for an initial neutron temperature of 30 K (100 K ), for the moderator held at about 1.3 K . Due to a favorable Bragg cutoff of the O2 clathrate, the cascade-cooling can take effect in a moderator with linear extensions smaller than a meter.

  1. Search for Neutron Anti-Neutron Oscillation using Cold Neutron Beams with Focusing Optics

    NASA Astrophysics Data System (ADS)

    Shimizu, Hirohiko; NNBar Collaboration

    2014-09-01

    The electric charge of neutrons is experimentally known as less than 10-21 e and considered as exactly zero and the transition between neutron and anti-neutron is allowed in terms of the conservation of the electric charge but is considered forbidden according to the empirical conservation law of the baryon number. On the other hand, the existence of physical processes which violates the conservation of the baryon number is required in the Sakharov's conditions to explain the baryon assymmetry in the big-bang cosmology. The search for the neutron antineutron (n n) oscillation offers information the baryon number violation with the Δ (B - L) = 2 complementary to the attempts with Δ (B - L) = 0 . The sensitivity to the n n oscillation has been improved by searching for the instability of nuclei via n n oscillation in large-scale deep-underground experiments, which are now limited by the background. On the other hand, the improvement of accelerator-driven neutron sources and transport optics of slow neutron beams have introduced new possibility to improve the sensitivity to n n by orders of magnitude. In this paper, we discuss the experimental sensitivity to n n oscillation with accelerator-based neutron sources and neutron focusing optics.

  2. Physics Analyses in the Design of the HFIR Cold Neutron Source

    SciTech Connect

    Bucholz, J.A.

    1999-09-27

    Physics analyses have been performed to characterize the performance of the cold neutron source to be installed in the High Flux Isotope Reactor at the Oak Ridge National Laboratory in the near future. This paper provides a description of the physics models developed, and the resulting analyses that have been performed to support the design of the cold source. These analyses have provided important parametric performance information, such as cold neutron brightness down the beam tube and the various component heat loads, that have been used to develop the reference cold source concept.

  3. Thermal-hydraulic studies of the Advanced Neutron Source cold source

    SciTech Connect

    Williams, P.T.; Lucas, A.T.

    1995-08-01

    The Advanced Neutron Source (ANS), in its conceptual design phase at Oak Ridge National Laboratory, was to be a user-oriented neutron research facility producing the most intense steady-state flux of thermal and cold neutrons in the world. Among its many scientific applications, the production of cold neutrons was a significant research mission for the ANS. The cold neutrons come from two independent cold sources positioned near the reactor core. Contained by an aluminum alloy vessel, each cold source is a 410-mm-diam sphere of liquid deuterium that functions both as a neutron moderator and a cryogenic coolant. With nuclear heating of the containment vessel and internal baffling, steady-state operation requires close control of the liquid deuterium flow near the vessel`s inner surface. Preliminary thermal-hydraulic analyses supporting the cold source design were performed with heat conduction simulations of the vessel walls and multidimensional computational fluid dynamics simulations of the liquid deuterium flow and heat transfer. This report presents the starting phase of a challenging program and describes the cold source conceptual design, the thermal-hydraulic feasibility studies of the containment vessel, and the future computational and experimental studies that were planned to verify the final design.

  4. Isodose Curves and Treatment Planning for Boron Neutron Capture Therapy.

    NASA Astrophysics Data System (ADS)

    Liu, Hungyuan B.

    The development of Boron Neutron Capture Therapy (BNCT) has been progressing in both ^{10 }B compound development and testing and neutron beam delivery. Animal tests are now in progress with several ^{10}B compounds and once the results of these animal tests are promising, patient trials can be initiated. The objective of this study is to create a treatment planning method based on the dose calculations by a Monte Carlo code of a mixed radiation field to provide linkage between phantom dosimetry and patient irradiation. The research started with an overall review of the development of BNCT. Three epithermal neutron facilities are described, including the operating Brookhaven Medical Research Reactor (BMRR) beam, the designed Missouri University Research Reactor (MURR) beam, and a designed accelerator based neutron source. The flux and dose distributions in a head model have been calculated for irradiation by these neutron beams. Different beam parameters were inter -compared for effectiveness. Dosimetric measurements in an elliptical lucite phantom and a cylindrical water phantom were made and compared to the MCNP calculations for irradiation by the BMRR beam. Repeated measurements were made and show consistent. To improve the statistical results calculated by MCNP, a neutron source plane was designed to start neutrons at the BMRR irradiation port. The source plane was used with the phantoms for dosimetric calculations. After being verified by different phantom dosimetry and in-air flux measurements at the irradiation port, the source plane was used to calculate the flux and dose distributions in the head model. A treatment planning program was created for use on a PC which uses the MCNP calculated results as input. This program calculates the thermal neutron flux and dose distributions of each component of radiation in the central coronal section of the head model for irradiation by a neutron beam. Different combinations of head orientations and irradiation

  5. Nuclear heat load calculations for the NBSR cold neutron source using MCNP

    SciTech Connect

    Blau, M. ); Rowe, J.M.; Williams, R.E. )

    1993-01-01

    A liquid-hydrogen (LH2) cold neutron source is being designed for installation in the 20-MW National Bureau of Standards reactor (NBSR) at National Institute of Standards and Technology to replace the D[sub 2]O-ice cold source currently in use. An accurate estimate of the heat deposited in the cold source is needed to ensure that it can be adequately cooled for successful operation. The heat load is caused by the interaction of neutrons and gamma rays with the cold moderator and the walls of the moderator chamber. The Monte Carlo code, MCNP (Version 4.2), was used to model the entire NBSR core and both the existing and the proposed cold sources. The model was used to calculate not only the heat load but also the reactivity and neutron gain of each source.

  6. Measurement of cold neutron spectra using a model cryogenic moderator of the IBR-2M reactor

    NASA Astrophysics Data System (ADS)

    Kulikov, S. A.; Kalinin, I. V.; Morozov, V. M.; Novikov, A. G.; Puchkov, A. V.; Chernikov, A. N.; Shabalin, E. P.

    2010-01-01

    The method and results of an experiment to determine the cold neutron spectrum from solid mesitylene at moderator temperatures of 10-50 K are presented. This study was performed at the DIN-2PI spectrometer of the IBR-2 reactor. The objective of the study was to verify the system of constants used in the Monte Carlo simulation of cryogenic neutron moderators of the IBR-2M reactor and to obtain the cold neutron yield as a function of the moderator temperature. Satisfactory agreement between the experimental and calculated neutron spectra at a mesitylene temperature of 20 K has been obtained; the ratio of cold neutron intensities at 10 and 50 K is ˜1.8.

  7. Accelerator-based neutron source using a cold deuterium target with degenerate electrons

    SciTech Connect

    Phillips, R. E.; Ordonez, C. A.

    2013-07-15

    A neutron generator is considered in which a beam of tritons is incident on a hypothetical cold deuterium target with degenerate electrons. The energy efficiency of neutron generation is found to increase substantially with electron density. Recent reports of potential targets are discussed.

  8. A New Method for Precision Cold Neutron Polarimetry Using a 3He Spin Filter

    PubMed Central

    Wietfeldt, F. E.; Gentile, T. R.

    2005-01-01

    We present a new method for precision measurement of the capture flux polarization of a polychromatic (white), continuous cold neutron beam, polarized by a 3He spin filter. This method allows an in situ measurement and does not require knowledge of the neutron beam wavelength distribution. We show that a polarimetry precision of 0.1 % is possible.

  9. Precision Measurement of Parity Violation in Polarized Cold Neutron Capture on the Proton: the NPDGamma Experiment

    SciTech Connect

    Bernhard Lauss; J.D. Bowman; R. Carlini; T.E. Chupp; W. Chen; S. Corvig; M. Dabaghyan; D. Desai; S.J. Freeman; T.R. Gentile; M.T. Gericke; R.C. Gillis; G.L. Greene; F.W. Hersman; T. Ino; T. Ito; G.L. Jones; M. Kandes; M. Leuschner; B. Lozowski; R. Mahurin; M. Mason; Y. Masuda; J. Mei; G.S. Mitchell; S. Muto; H. Nann; S.A. Page; S.I. Penttila; W.D. Ramsay; S. Santra; P.-N. Seo; E.I. Sharapov; T.B. Smith; W.M. Snow; W.S. Wilburn; V. Yuan; H. Zhu

    2005-10-24

    The NPD{gamma} experiment at the Los Alamos Neutron Science Center (LANSCE) is dedicated to measure with high precision the parity violating asymmetry in the {gamma} emission after capture of spin polarized cold neutrons in para-hydrogen. The measurement will determine unambiguously the weak pion-nucleon-nucleon ({pi} NN) coupling constant (line integral){sub {pi}}{sup l}.

  10. Powder diffraction in materials science using the KENS cold-neutron source

    SciTech Connect

    Kamiyama, T.; Oikawa, K.; Akiba, E.

    1997-12-01

    Since superconductivity fever spread around the world, neutron powder diffraction has become very popular and been widely used by crystallographers, physicists, chemists, mineralogists, and materials scientists. The purpose of present paper is to show, firstly, important characteristics of time-of-flight TOF powder diffraction using cold-neutron source in the study of materials science, and, secondly, recent studies on the structure and function of batteries at the Neutron Science Laboratory (KENS) in the High Energy Accelerator Research Organization (KEK).

  11. Industrial applications at the new cold neutron radiography and tomography facility of the HMI

    NASA Astrophysics Data System (ADS)

    Kardjilov, N.; Hilger, A.; Manke, I.; Strobl, M.; Treimer, W.; Banhart, J.

    2005-04-01

    The new cold neutron radiography and tomography facility at the Hahn-Meitner-Institut Berlin is suited for the investigation of components and materials from different industrial fields. The high-flux measuring position of the facility allows real-time imaging of fast dynamical processes. Cold neutrons interact stronger with the matter compared to thermal neutrons, which leads to a much better radiography contrast. Some examples of different industry applications like investigations on discharging of a Lithium battery or on oil sediments in a vent pipe are presented.

  12. A SIGNATURE OF CHEMICAL SEPARATION IN THE COOLING LIGHT CURVES OF TRANSIENTLY ACCRETING NEUTRON STARS

    SciTech Connect

    Medin, Zach; Cumming, Andrew E-mail: cumming@physics.mcgill.ca

    2014-03-01

    We show that convection driven by chemical separation can significantly affect the cooling light curves of accreting neutron stars after they go into quiescence. We calculate the thermal relaxation of the neutron star ocean and crust including the thermal and compositional fluxes due to convection. After the inward propagating cooling wave reaches the base of the neutron star ocean, the ocean begins to freeze, driving chemical separation. The resulting convection transports heat inward, giving much faster cooling of the surface layers than found assuming the ocean cools passively. The light curves including convection show a rapid drop in temperature weeks after outburst. Identifying this signature in observed cooling curves would constrain the temperature and composition of the ocean as well as offer a real time probe of the freezing of a classical multicomponent plasma.

  13. MnO spin-wave dispersion curves from neutron powder diffraction

    SciTech Connect

    Goodwin, Andrew L.; Dove, Martin T.; Tucker, Matthew G.; Keen, David A.

    2007-02-15

    We describe a model-independent approach for the extraction of spin-wave dispersion curves from powder neutron total scattering data. Our approach is based on a statistical analysis of real-space spin configurations to calculate spin-dynamical quantities. The RMCPROFILE implementation of the reverse Monte Carlo refinement process is used to generate a large ensemble of supercell spin configurations from MnO powder diffraction data collected at 100 K. Our analysis of these configurations gives spin-wave dispersion curves for MnO that agree well with those determined independently using neutron triple-axis spectroscopic techniques.

  14. Determination of boron in materials by cold neutron prompt gamma-ray activation analysis.

    PubMed

    Paul, Rick L

    2005-01-01

    An instrument for cold neutron prompt gamma-ray activation analysis (PGAA), located at the NIST Center for Neutron Research (NCNR), has proven useful for the measurement of boron in a variety of materials. Neutrons, moderated by passage through liquid hydrogen at 20 K, pass through a (58)Ni coated guide to the PGAA station in the cold neutron guide hall of the NCNR. The thermal equivalent neutron fluence rate at the sample position is 9 x 10(8) cm(-2) s(-1). Prompt gamma rays are measured by a cadmium- and lead-shielded high-purity germanium detector. The instrument has been used to measure boron mass fractions in minerals, in NIST SRM 2175 (Refractory Alloy MP-35-N) for certification of boron, and most recently in semiconductor-grade silicon. The limit of detection for boron in many materials is <10 ng g(-1). PMID:15614360

  15. A Long-Pulse Spallation Source at Los Alamos: Facility description and preliminary neutronic performance for cold neutrons

    SciTech Connect

    Russell, G.J.; Weinacht, D.J.; Pitcher, E.J.; Ferguson, P.D.

    1998-03-01

    The Los Alamos National Laboratory has discussed installing a new 1-MW spallation neutron target station in an existing building at the end of its 800-MeV proton linear accelerator. Because the accelerator provides pulses of protons each about 1 msec in duration, the new source would be a Long Pulse Spallation Source (LPSS). The facility would employ vertical extraction of moderators and reflectors, and horizontal extraction of the spallation target. An LPSS uses coupled moderators rather than decoupled ones. There are potential gains of about a factor of 6 to 7 in the time-averaged neutron brightness for cold-neutron production from a coupled liquid H{sub 2} moderator compared to a decoupled one. However, these gains come at the expense of putting ``tails`` on the neutron pulses. The particulars of the neutron pulses from a moderator (e.g., energy-dependent rise times, peak intensities, pulse widths, and decay constant(s) of the tails) are crucial parameters for designing instruments and estimating their performance at an LPSS. Tungsten is the reference target material. Inconel 718 is the reference target canister and proton beam window material, with Al-6061 being the choice for the liquid H{sub 2} moderator canister and vacuum container. A 1-MW LPSS would have world-class neutronic performance. The authors describe the proposed Los Alamos LPSS facility, and show that, for cold neutrons, the calculated time-averaged neutronic performance of a liquid H{sub 2} moderator at the 1-MW LPSS is equivalent to about 1/4th the calculated neutronic performance of the best liquid D{sub 2} moderator at the Institute Laue-Langevin reactor. They show that the time-averaged moderator neutronic brightness increases as the size of the moderator gets smaller.

  16. Production of tritium, neutrons, and heat based on the transmission resonance model (TRM) for cold fusion

    NASA Astrophysics Data System (ADS)

    Bush, Robert T.

    1991-05-01

    The TRM has recently been successful in fitting calorimetric data having interesting nonlinear structure. The model appears to provide a natural description for electrolytic cold fusion in terms of ``fractals''. Extended to the time dimension, the model can apparently account for the phenomenon of heat ``bursts''. The TRM combines a transmission condition involving quantized energies and an engergy shift of a Maxwell-Boltzmann energy distribution of deuterons at the cathodic surface that appears related to the concentration overpotential (hydrogen overvoltage). The model suggest three possible regimes vis-a-vis tritium production in terms of this energy shift, and indicates why measurable tritium production in the electrolytic case will tend to be the exception rather than the rule in absence of a recipe: Below a shift of approximately 2.8 meV there is production of both tritium and measureable excess heat, with the possibility of accounting for the Bockris curve indicating about a 1% correlation between excess heat and tritium. However, over the large range from about 2.8 meV to 340 meV energy shift there is a regime of observable excess heat production but little, and probably no measurable, tritium production. The third regime is more hypothetical: It begins at an energy shift of about 1 keV and extends to the boundaries of ``hot'' fusion at about 10 keV. A new type of nucelar reaction, trint (for transmission resonance-induced neutron transfer), is suggested by the model leading to triton and neutron production. A charge distribution ``polarization conjecture'' is the basis for theoretical derivation for the low-energy limit for an energy-dependent branching ratio for D-on-D. When the values of the parameters are inserted, this expression yields an estimate for the ratio of neutron-to-triton production of about 1.64×10-9. The possibility of some three-body reactions is also suggested. A comparison of the TRM's transmission energy levels for palladium deuteride

  17. CABRI Reactor: The fast neutron Hodoscope Calibration curves calculation with MORET

    NASA Astrophysics Data System (ADS)

    Bernard, Franck; Chevalier, Vincent; Venanzi, Damiano

    2014-06-01

    This poster presents the Hodoscope calibration curves calculation with 3D Monte Carlo code MORET. The fast neutron hodoscope is a facility of the CABRI research reactor at Cadarache (FRANCE). This hodoscope is designed to measure the fuel motion during a RIA in a pressurized water reactor. The fuel motion is measured by counting fast fission neutrons emerging from the test fuel placed in an experimental loop functioning like a Pressurized Water Reactor (T=300°C and P=155 bar), at the center of the CABRI core. The detection system of the hodoscope measures a signal which is a function of the fuel motion. The calibration curves allow then to convert the signal in a fuel mass. In order to calculate these curves, we have developed a method based on a Monte Carlo calculation code.

  18. Design of the cold neutron triple-axis spectrometer at the China Advanced Research Reactor

    NASA Astrophysics Data System (ADS)

    Cheng, P.; Zhang, Hongxia; Bao, W.; Schneidewind, A.; Link, P.; Grünwald, A. T. D.; Georgii, R.; Hao, L. J.; Liu, Y. T.

    2016-06-01

    The design of the first cold neutron triple-axis spectrometer at the China Advanced Research Reactor is presented. Based on the Monte Carlo simulations using neutron ray-tracing program McStas, the parameters of major neutron optics in this instrument are optimized. The neutron flux at sample position is estimated to be 5.6 ×107 n/cm2/s at neutron incident energy Ei=5 meV when the reactor operates normally at the designed 60 MW power. The performances of several neutron supermirror polarizing devices are compared and their critical parameters are optimized for this spectrometer. The polarization analysis will be realized with a flexible switch from the unpolarized experimental mode.

  19. ASIC Development for Three-Dimensional Silicon Imaging Array for Cold Neutrons

    SciTech Connect

    Britton, C.L.; Jagadish, U.; Bryan, W.L.

    2004-05-19

    An Integrated Circuit (IC) readout chip with four channels arranged so as to receive input charge from the corners of the chip was designed for use with 5- to 7-mm pixel detectors. This Application Specific IC (ASIC) can be used for cold neutron imaging, for study of structural order in materials using cold neutron scattering or for particle physics experiments. The ASIC is fabricated in a 0.5-{micro}m n-well AMI process. The design of the ASIC and the test measurements made is reported. Noise measurements are also reported.

  20. Pulsed neutron source cold moderators --- concepts, design and engineering

    SciTech Connect

    Bauer, Guenter S.

    1997-01-01

    Moderator design for pulsed neutron sources is becoming more and more an interface area between source designers and instrument designers. Although there exists a high degree of flexibility, there are also physical and technical limitations. This paper aims at pointing out these limitations and examining ways to extend the current state of moderator technology in order to make the next generation neutron sources even more versatile and flexible tools for science in accordance with the users' requirements. (auth)

  1. Instrument resolution of the vertical-type cold-neutron reflectometer at HANARO

    NASA Astrophysics Data System (ADS)

    Lee, Jeong Soo

    2016-05-01

    The characteristics of the instrument resolution of the vertical-type cold-neutron reflectometer installed at HANARO, a research reactor in Korea, are estimated. In order to ascertain differences in the instrument resolution according to two scan modes, i.e., the fixed-slit and the variable-slit scan modes, for the measurement of the neutron reflectivity profile, we estimated the beam status of the instrument. Moreover, because the footprint effect and the limitation of the neutron beam window arise during measurements of the neutron reflectivity profiles and affect the instrument resolution, the causes of their occurrence were determined and a correction method was devised. The neutron reflectivity profiles of a SiO2 standard thin-film sample were measured in a Q range up to 0.2 Å-1 by using the two scan modes, and the sample structure was analyzed with the weighted least-squares fitting program Parratt32. During the process of the least-squares fitting of the neutron reflectivity profiles for the structural analysis, the method used to correct for the footprint effect and the limitation of neutron beam window was found to be reasonable. Also, the modified instrument resolutions in the two scan modes for the vertical-type cold-neutron reflectometer were found to be suitable.

  2. Excitations of one-valence-proton, one-valence-neutron nucleus {sup 210}Bi from cold-neutron capture

    SciTech Connect

    Cieplicka-Oryńczak, N.; Fornal, B.; Szpak, B.; Leoni, S.; Bottoni, S.; Bazzacco, D.; Blanc, A.; Jentschel, M.; Köster, U.; Mutti, P.; Soldner, T.; Bocchi, G.; France, G. de; Simpson, G.; Urban, W.

    2015-10-15

    The low-spin structure of one-proton, one-neutron {sup 210}Bi nucleus was investigated in cold-neutron capture reaction on {sup 209}Bi. The γ-coincidence measurements were performed with use of EXILL array consisted of 16 HPGe detectors. The experimental results were compared to shell-model calculations involving valence particles excitations. The {sup 210}Bi nucleus offers the potential to test the effective proton-neutron interactions because most of the states should arise from the proton-neutron excitations. Additionally, it was discovered that a few states should come from the couplings of valence particles to the 3{sup −} octupole vibration in {sup 208}Pb which provides also the possibility of testing the calculations involving the core excitations.

  3. Neutron Spectral Brightness of Cold Guide 4 at the High Flux Isotope Reactor

    SciTech Connect

    Winn, B. L.; Robertson, J. L.; Iverson, Erik B.; Selby, D. L.

    2009-05-03

    The High Flux Isotope Reactor resumed operation in June of 2007 with a super-critical hydrogen cold source in horizontal beam tube 4. Cold guide 4 is a guide system designed to deliver neutrons from this source at reasonable flux at wavelengths greater than 4 Å to several instruments, and includes a 15-m, 96-section, 4-channel bender. A time-of-flight spectrum with calibrated detector was recorded at port C of cold guide 4, and compared to McStas simulations, to generate a brightness spectrum.

  4. Properties of a Cold-Neutron Irradiation Facility for In Vitro Research on Boron Neutron Capture Therapy at the Geesthacht Neutron Facility

    SciTech Connect

    Luedemann, L.; Kampmann, R.; Sosaat, W.; Staron, P.; Wille, P.

    2000-05-15

    A new irradiation facility, GBET (basic research on boron neutron capture therapy), especially designed for in vitro experiments on boron neutron capture therapy was put into operation at the Geesthacht Neutron Facility of the GKSS Research Center. Its location at a cold-neutron guide without direct view of the reactor core has two advantages: First, contamination of the primary beam with fast neutrons or photons is negligible. Second, GBET yields a high cold-neutron flux of 1.4 x 10{sup 8}/(cm{sup 2}.s) over an area of 3 x 4 cm. As a result of the energy dependence of the neutron absorption cross section of boron, this corresponds to a higher effective thermal flux of 4.7 x 10{sup 8}/(cm{sup 2}.s). This effect is used to reduce the irradiation times by a factor of 3.32.The effective flux is sufficient for irradiation of thin samples like cell monolayers in conventional culture flasks. For such in vitro irradiations, a survival fraction of 1% is achieved at a homogeneous boron concentration of 100 ppm {sup 10}B within {approx}20 min. Furthermore, the beam can be used for boron radiography. The respective experimental conditions are discussed, especially the neutron flux distribution, available for these different types of samples.

  5. A New Cold Neutron Imaging Instrument at NIST

    NASA Astrophysics Data System (ADS)

    Hussey, D. S.; Brocker, C.; Cook, J. C.; Jacobson, D. L.; Gentile, T. R.; Chen, W. C.; Baltic, E.; Baxter, D. V.; Doskow, J.; Arif, M.

    The NIST neutron imaging program will build a new imaging instrument in the NCNR guide hall at the end of the neutron guide NG-6, beginning operation in summer of 2015. The NG-6 guide has a spectrum that is strongly peaked at a neutron wavelength of 0.5 nm, with a fluence rate of 2 × 109 cm-2 s-1 before a bismuth filter that is cooled by liquid nitrogen. The instrument will be developed in a phased manner and with an emphasis on maintaining a flexible space to conduct experiments and test new instrument concepts. In the initial phase of the instrument, the available space will permit a flight path of about 9 m, and will provide a platform for standard neutron radiography and tomography, wavelength selective imaging with a double crystal monochromator, and phase imaging based on a Talbot-Lau interferometer. The novel feature of the instrument will be the incorporation of Wolter optics to create a neutron microscope. Initially, prototype optics will be used in the microscope configuration to assess optic characteristics and image acquisition techniques. In the final form, the microscope will enable users to acquire images with ˜10 μm resolution 10-100x faster than current practice, and with a 10x magnifying optic to acquire images with ˜1 μm spatial resolution with image acquisition time similar to that for current images with ˜10 μm resolution.

  6. Demonstration of achromatic cold-neutron microscope utilizing axisymmetric focusing mirrors

    SciTech Connect

    Liu, D.; Khaykovich, B.; Hussey, D.; Jacobson, D.; Arif, M.; Gubarev, M. V.; Ramsey, B. D.; Moncton, D. E.

    2013-05-06

    An achromatic cold-neutron microscope with magnification 4 is demonstrated. The image-forming optics is composed of nested coaxial mirrors of full figures of revolution, so-called Wolter optics. The spatial resolution, field of view, and depth of focus are measured and found consistent with ray-tracing simulations. Methods of increasing the resolution and magnification are discussed, as well as the scientific case for the neutron microscope. In contrast to traditional pinhole-camera neutron imaging, the resolution of the microscope is determined by the mirrors rather than by the collimation of the beam, leading to possible dramatic improvements in the signal rate and resolution.

  7. Entrainment parameters in a cold superfluid neutron star core

    SciTech Connect

    Chamel, Nicolas; Haensel, Pawel

    2006-04-15

    Hydrodynamic simulations of neutron star cores that are based on a two-fluid description in terms of a neutron-proton superfluid mixture require the knowledge of the Andreev-Bashkin entrainment matrix which relates the momentum of one constituent to the currents of both constituents. This matrix is derived for arbitrary nuclear asymmetry at zero temperature and in the limits of small relative currents in the framework of the energy density functional theory. The Skyrme energy density functional is considered as a particular case. General analytic formulas for the entrainment parameters and various corresponding effective masses are obtained. These formulas are applied to the liquid core of a neutron star composed of homogeneous plasma of nucleons, electrons, and possibly muons in {beta} equilibrium.

  8. Calculating cold curves for Equation of State using different types of Density Functional Theory codes

    NASA Astrophysics Data System (ADS)

    Mattsson, Ann E.; Cochrane, Kyle R.; Carpenter, John H.; Desjarlais, Michael P.

    2008-03-01

    With fast computers and improved radiation-hydrodynamics simulation techniques, increasingly complex high energy-density physics systems are investigated by modeling and simulation efforts, putting unprecedented strain on the underlying Equation of State (EOS) modeling. EOS models that have been adequate in the past can fail in unexpected ways. With the aim of improving the EOS, models are often fitted to calculated data in parts of the parameter space where little or no experimental data is available. One example is the compression part of the cold curve. We show that care needs to be taken in using Density Functional Theory (DFT) codes. While being perfectly adequate for calculations in many parts of the parameter space, approximations inherent to pseudo-potential codes can limit their applicability for large compressions. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  9. Cold neutron depth profiling of lithium-ion battery materials

    NASA Astrophysics Data System (ADS)

    Lamaze, G. P.; Chen-Mayer, H. H.; Becker, D. A.; Vereda, F.; Goldner, R. B.; Haas, T.; Zerigian, P.

    We report the characterization of two thin-film battery materials using neutron techniques. Neutron depth profiling (NDP) has been employed to determine the distribution of lithium and nitrogen simultaneously in lithium phosphorous oxynitride (LiPON) deposited by ion beam assisted deposition (IBAD). The depth profiles are based on the measurement of the energy of the charged particle products from the 6Li(n,α) 3H and 14N(n,p) 14C reactions for lithium and nitrogen, respectively. Lithium at the level of 10 22 atoms/cm 3 and N of 10 21 atoms/cm 3, distributed in the film thickness on the order of 1 μm, have been determined. This information provides insights into nitrogen incorporation and lithium concentration in the films under various fabrication conditions. NDP of lithium has also been performed on IBAD LiCoO 2 films, in conjunction with instrumental neutron activation analysis (INAA) to determine the cobalt concentration. The Li/Co ratio thus obtained serves as an ex situ control for the thin-film evaporation process. The non-destructive nature of the neutron techniques is especially suitable for repeated analysis of these materials and for actual working devices.

  10. Analytical description of true stress-true strain curves for neutron-irradiated stainless austenitic steels

    SciTech Connect

    Gussev, Maxim N; Byun, Thak Sang; Busby, Jeremy T

    2012-01-01

    This paper summarizes the results of an investigation for the deformation hardening behaviors of neutron-irradiated stainless steels in terms of true stress( ) true strain( ) curves. It is commonly accepted that the - curves are more informative for describing plastic flow, but there are few papers devoted to using the true curves for describing constitutive behaviors of materials. This study uses the true curves obtained from stainless steel samples irradiated to doses in the range of 0 55 dpa by various means: finite element calculation, optic extensomentry, and recalculation of engineering curves. It is shown that for the strain range 0 0.6 the true curves can be well described by the Swift equation: =k ( - 0)0.5. The influence of irradiation on the parameters of the Swift equation is investigated in detail. It is found that in most cases the k-parameter of this equation is not changed significantly by irradiation. Since large data scattering was observed for the 0-parameter, a modified Swift equation =k*( - 0 2/k2)0.5 was proposed and evaluated. This equation is based on the concept of zero stress, which is, in general, close to yield stress. The relationships among k, 0, and damage dose are discussed in detail, so as to more accurately describe the true curves for irradiated stainless steels.

  11. Development of modulating permanent magnet sextupole lens for focusing of pulsed cold neutrons

    NASA Astrophysics Data System (ADS)

    Yamada, Masako; Iwashita, Yoshihisa; Ichikawa, Masahiro; Sugimoto, Takanori; Tongu, Hiromu; Fujisawa, Hiroshi; Shimizu, Hirohiko M.; Ino, Takashi; Mishima, Kenji; Taketani, Kaoru; Yoshioka, Tamaki; Muto, Suguru; Morishima, Takahiro; Oku, Takayuki; Suzuki, Jun-ichi; Shinohara, Takenao; Sakai, Kenji; Sato, Hiromi; Hirota, Katsuya; Otake, Yoshie; Seki, Yoshichika; Kawasaki, Shinsuke; Komamiya, Sachio; Kamiya, Yoshio; Otono, Hidetoshi; Yamashita, Satoru; Geltenbort, Peter

    2009-09-01

    Modulating permanent magnet sextupole lens (PMSx) for focusing pulsed cold neutrons is under development. The synchronized modulation of its field gradient suppresses the chromatic aberration which arises from the Time Of Flight method. The strength of the magnetic field, the torque, and the rise of temperature during its operation are studied on a fabricated prototype. Experiments on focusing pulsed very cold neutrons (VCN) at ILL (Institute of Laue Langevin, France) were carried out and VCN with around λ=40 Å were focused by the PMSx at a focal length of about 0.5 m. The experimental results are presented in conjunction with the principle of the neutron focusing and the modulating method of the focal strength of permanent magnet lens with the double ring structure.

  12. New precision measurements of free neutron beta decay with cold neutrons

    SciTech Connect

    Baeßler, Stefan; Bowman, James David; Penttilä, Seppo I.; Počanić, Dinko

    2014-10-14

    Precision measurements in free neutron beta decay serve to determine the coupling constants of beta decay, and offer several stringent tests of the standard model. This study describes the free neutron beta decay program planned for the Fundamental Physics Beamline at the Spallation Neutron Source at Oak Ridge National Laboratory, and finally puts it into the context of other recent and planned measurements of neutron beta decay observables.

  13. Pulsed ultra-cold neutron production using a Doppler shifter at J-PARC

    NASA Astrophysics Data System (ADS)

    Imajo, S.; Mishima, K.; Kitaguchi, M.; Iwashia, Y.; Yamada, N. L.; Hino, M.; Oda, T.; Ino, T.; Shimizu, H. M.; Yamashita, S.; Katayama, R.

    2016-01-01

    We have constructed a Doppler-shifter-type pulsed ultra-cold neutron (UCN) source at the Materials and Life Science Experiment Facility of the Japan Proton Accelerator Research Complex. Very cold neutrons (VCNs) with 136 m s^{-1} velocity in a neutron beam supplied by a pulsed neutron source are decelerated by reflection on an m=10 wide-band multilayer mirror, yielding pulsed UCNs. The mirror is fixed to the tip of a 2000 rpm rotating arm moving with 68 m s^{-1} velocity in the same direction as the VCNs. The repetition frequency of the pulsed UCNs is 8.33 Hz and the time width of the pulse at production is 4.4 ms. In order to increase the UCN flux, a supermirror guide, wide-band monochromatic mirrors, focus guides, and a UCN extraction guide have been newly installed or improved. The 1 MW-equivalent count rate of the output neutrons with longitudinal wavelengths longer than 58 nm is 1.6 × 102 cps, while that of the true UCNs is 80 cps. The spatial density at production is 1.4 UCN cm^{-3}. This new UCN source enables us to research and develop apparatuses necessary for the investigation of the neutron electric dipole moment.

  14. Surface physics with cold and thermal neutron reflectometry. Progress report, April 1, 1991--September 30, 1993

    SciTech Connect

    Steyerl, A.

    1993-09-01

    Within the past two and one half years of the project ``Surface Physics With Cold and Thermal Neutron Reflectometry`` a new thermal neutron reflectometer was constructed at the Rhode Island Nuclear Science Center (RINSC). It was used to study various liquid and solid surfaces. Furthermore, neutron reflection experiments were be un at different laboratories in collaboration with Dr. G.P. Fetcher (at Argonne National Laboratory), Dr. T. Russell (IBM Almaden) and Drs. S.K. Satija and A. Karim (at the National Institute for Standards and Technology). The available resources allowed partial construction of an imaging system for ultracold neutrons. It is expected to provide an extremely high resolution in momentum and energy transfer in surface studies using neutron reflectometry. Much of the work reported here was motivated by the possibility of later implementation at the planned Advanced Neutron Source at Oak Ridge. In a separate project the first concrete plans for an intense source of ultracold neutrons for the Advanced Neutron Source were developed.

  15. Production of ultra cold neutrons by a doppler shifter with pulsed neutrons at J-PARC

    NASA Astrophysics Data System (ADS)

    Mishima, K.; Imajo, S.; Hino, M.; Ino, T.; Iwashita, Y.; Katayama, R.; Kitaguchi, M.; Oda, T.; Shimizu, H. M.; Utsuro, M.; Yamashita, S.; Yoshioka, T.

    2014-07-01

    Ultracold neutrons (UCNs) are neutrons whose kinetic energy is around a few hundred nanoelectronvolts. Neutrons with such small kinetic energy can be trapped in a material vessel or magnetic fields. Because of these unique characteristics, UCNs are used for some important experiments of fundamental physics. The Doppler shifter is a device to produce UCN by slowing them down by the reflection on a mirror moving with half of the velocity of incoming neutrons. A Doppler shifter using a quadruple-stack of monochromatic supermirrors that reflects neutrons with a velocity around 68m/s [1, Hino et al.(2010)] was fabricated, and operated with a pulsed neutron source of J-PARC. An important feature of the Doppler shifter is the use of a pulsed neutron beam. Unlike in continuous neutron beams, the neutron velocity can be selected by choosing a time slice in a pulsed neutron bunch. Thus the UCN production improves by ~80 times in the case of J-PARC. We successfully produced the UCNs by the Doppler shifter: the measured UCN production rate is consistent with the simulations.

  16. Development of a cold-neutron reflectometer (CN REF-V) at the HANARO

    NASA Astrophysics Data System (ADS)

    Lee, Jeong-Soo; Koo, Jaseung; So, Ji-Yong; Kim, Tae Ho; Park, Sungkyun

    2015-11-01

    A new neutron reflectometer, CN REF-V, has been installed in the cold-neutron laboratory building at the HANARO, a research reactor in Korea. The instrument has a vertical scattering plane and uses a constant wavelength of λ = 4.7535 Å, and it is monochromated by using pyrolytic graphite (PG) crystals. Its measurable minimum reflectivity and maximum momentum transfer for typical solid films are 10-8 and 0.3 Å-1, respectively. A liquid-nitrogen-cooled beryllium filter is used to remove λ/2 contamination due to the PG (002) crystals. With a gold wire activation analysis method, the neutron flux at its sample position was measured and found to be 5.67 × 105 neutrons/cm2 /s. Reflectivity measurements of thin films were successfully carried out with the instrument. A detailed characterization of the instrument and the results of the reflectivity measurements are described.

  17. The upgraded cold neutron triple-axis spectrometer FLEXX - enhanced capabilities by new instrumental options

    NASA Astrophysics Data System (ADS)

    Habicht, Klaus; Lucía Quintero-Castro, Diana; Toft-Petersen, Rasmus; Kure, Mathias; Mäde, Lucas; Groitl, Felix; Le, Manh Duc

    2015-01-01

    The upgrade of the cold neutron triple axis spectrometer FLEXX, a work-horse instrument for inelastic neutron scattering matching the sample environment capabilities at Helmholtz-Zentrum Berlin, has been successfully accomplished. Experiments confirmed an order of magnitude gain in flux now allowing for intensity demanding options to be fully exploited at FLEXX. In this article, we describe the layout and design of two newly available FLEXX instrument options in detail. The new Heusler analyzer gives an increase of the detected polarized neutron flux due to its superior focusing properties, significantly improving the feasibility of future polarized and neutron resonance spin echo experiments. The MultiFLEXX option provides simultaneous access to large regions in wavevector and energy space for inelastic excitations thus adding mapping capabilities to the spectrometer.

  18. Magnetic compound refractive lens for focusing and polarizing cold neutron beams.

    PubMed

    Littrell, K C; te Velthuis, S G E; Felcher, G P; Park, S; Kirby, B J; Fitzsimmons, M R

    2007-03-01

    Biconcave cylindrical lenses are used to focus beams of x rays or neutrons using the refractive properties of matter. In the case of neutrons, the refractive properties of magnetic induction can similarly focus and simultaneously polarize the neutron beam without the concomitant attenuation of matter. This concept of a magnetic refractive lens was tested using a compound lens consisting of 99 pairs of cylindrical permanent magnets. The assembly successfully focused the intensity of a white beam of cold neutrons of one spin state at the detector, while defocusing the other. This experiment confirmed that a lens of this nature may boost the intensity locally by almost an order of magnitude and create a polarized beam. An estimate of the performance of a more practically dimensioned device suitable for incorporation in reflectometers and slit-geometry small angle scattering instruments is given. PMID:17411211

  19. A Precision Measurement of Neutron {beta}-Decay Angular Correlations with Pulsed Cold Neutrons -- The abBA Experiment

    SciTech Connect

    Seo, P.-N.; Bowman, J.D.; O'Donnell, J.M.; Mitchell, G.S.; Penttilae, S.I.; Wilburn, W.S.; Calarco, J.R.; Hersman, F.W.; Chupp, T.E.; Cianciolo, T.V.; Rykaczewski, K.P.; Young, G.R.; Desai, D.; Grzywacz, R.K.; Souza, R.T. de; Snow, W.M.; Frlez, E.; Pocanic, D.; Gentile, T.; Greene, G.L.

    2005-05-24

    The abBA collaboration is developing a new type of field-expansion spectrometer to measure neutron beta decay angular parameters, a, b, B, and A, to the 0.1% precision level. This precision will be achieved by combining three new technical approaches; a pulsed cold neutron beam, a 3He neutron spin filter, and segmented large-area thin-dead layer silicon detectors. Both the electron and proton resulting from the decay will be guided by electric and magnetic fields and detected in coincidence by two 2{pi} solid-angle silicon detectors. For the neutron polarization-dependent observables A and B, a novel precision neutron polarimetry technique has been developed. The parameters a and b will be obtained from the proton time-of-flight and the measured electron energy spectrum. Measurement of the four parameters in the same apparatus provides a redundant determination of parameter {lambda}=gA/gV, providing a test of the standard electroweak interaction.

  20. A Precision Measurement of Neutron β-Decay Angular Correlations with Pulsed Cold Neutrons — The abBA Experiment

    NASA Astrophysics Data System (ADS)

    Seo, P.-N.; Bowman, J. D.; Calarco, J. R.; Chupp, T. E.; Cianciolo, T. V.; Desai, D.; De Souza, R. T.; O'Donnell, J. M.; Frlež, E.; Gentile, T.; Greene, G. L.; Grzywacz, R. K.; Gudkov, V.; Hersman, F. W.; Jones, G. L.; Mitchell, G. S.; Penttilä, S. I.; Počanić, D.; Rykaczewski, K. P.; Snow, W. M.; Wilburn, W. S.; Young, G. R.

    2005-05-01

    The abBA collaboration is developing a new type of field-expansion spectrometer to measure neutron beta decay angular parameters, a, b, B, and A, to the 0.1% precision level. This precision will be achieved by combining three new technical approaches; a pulsed cold neutron beam, a 3He neutron spin filter, and segmented large-area thin-dead layer silicon detectors. Both the electron and proton resulting from the decay will be guided by electric and magnetic fields and detected in coincidence by two 2π solid-angle silicon detectors. For the neutron polarization-dependent observables A and B, a novel precision neutron polarimetry technique has been developed. The parameters a and b will be obtained from the proton time-of-flight and the measured electron energy spectrum. Measurement of the four parameters in the same apparatus provides a redundant determination of parameter λ=gA/gV, providing a test of the standard electroweak interaction.

  1. The time-of-flight spectrometer with cold neutrons at the FRM-II

    NASA Astrophysics Data System (ADS)

    Zirkel, A.; Roth, S.; Schneider, W.; Neuhaus, J.; Petry, W.

    2000-03-01

    We are presenting a design study of the new cold-time-of-flight spectrometer to be built at the FRM-II. Monte Carlo techniques were used to optimize the flux at the sample position and to calculate the elastic energy resolution. A doubly focusing neutron guide is used to enhance the intensity on the sample. Magnetic bearings and carbon fiber composite disks will give access to very high chopper speeds, thereby considerably increasing the overall performance of the instrument.

  2. New Converging Collimator for Cold Neutrons Time-Of-Flight Measurements

    NASA Astrophysics Data System (ADS)

    Naguib, K.; Sallam, O. H.; Salama, Mohamed

    An idea to design a new converging collimator for cold neutron time-of-flight measurements is presented. Using this new facility in combination with a neutron time-of-flight spectrometer, we may have neutron intensity gain factors about three times that obtained using the conventional straight slit collimators. Expressions for calculating the collimators dimensions as well as the intensity gain and the time resolution broading were presented.Translated AbstractEin neuer, konvergierender Kollimator für Flugzeitmessungen mit langsamen NeutronenDie Idee der Konstruktion eines neuen, konvergierenden Kollimators für Flugzeitmessungen mit langsamen Neutronen wird vorgestellt. Mit diesem neuen Gerät in Kombination mit einem Neutronenflugzeitspektrometer sollte sich ein Intensitätsgewinn von drei gegenüber konventionellen Anordnungen ergeben. Die Kollimatordimensionen, der Intensitätsgewinn und die Verbreiterung der Zeitauflösung werden berechnet.

  3. Washing Up with Hot and Cold Running Neutrons: Tests of Fundamental Physical Laws

    SciTech Connect

    Lamoreaux, Steve K.

    2005-05-24

    The properties of the Neutron and its interactions with matter have been long applied to tests of fundamental physical principles. An example of such an application is a test of the stability of the fundamental constants of physics based on possible changes in low energy absorption resonances and the isotopic composition of a prehistoric natural reactor that operated two billion years ago in equatorial Africa. A recent re-analysis of this event indicates that some fundamental constants have changed. The focus of the presentation will be on the uses of cold and ultracold neutrons (UCNs), and in particular, the experimental search for the neutron electric dipole moment (EDM) which would be evidence for time reversal asymmetry in the microscopic interactions within the neutron. Ultracold neutrons are neutrons with kinetic energy sufficiently low that they can be reflected from material surfaces for all angles of incidence, allowing UCNs to be stored in material bottles for times approaching the beta decay lifetime of the neutron. Vagaries associated with the production, transport, and storage of UCNs will be described, and an overview progress on development of a new neutron EDM experiment to be operated at LANSCE will be presented. This new experiment has potential to improve the measurement sensitivity by a factor of 100. Although an EDM has not be observed for any elementary particle, experimental limits have been crucial for testing extensions to the so-called Standard Model of Electroweak Interactions. Our anticipated sensitivity will be sufficient to address questions regarding the observed matter-antimatter asymmetry in the Universe.

  4. Flexible polyvinyl chloride neutron guides for transporting ultracold and very cold neutrons

    SciTech Connect

    Arzumanov, S. S. Bondarenko, L. N.; Geltenbort, P.; Morozov, V. I.; Nesvizhevsky, V. V.; Panin, Yu. N.; Strepetov, A. N.; Chuvilin, D. Yu.

    2011-12-15

    The transmission of ultracold neutrons (UCNs) through flexible polyvinyl chloride (PVC) tubes with lengths of up to 3 m and an internal diameter of 6-8 mm has been studied. High UCN transmission is found even for arbitrarily bent tubes (single bend, double bend, triple bend, figure eight, etc.). The transmission can be improved significantly by coating the inner surface of the tube with a thin layer of liquid fluorine polymer. The prospects of these neutron guides in fundamental and applied research are discussed.

  5. Performance of the Los Alamos National Laboratory spallation-driven solid-deuterium ultra-cold neutron source

    SciTech Connect

    Saunders, A.; Makela, M.; Bagdasarova, Y.; Boissevain, J.; Bowles, T. J.; Currie, S. A.; Hill, R. E.; Hogan, G.; Morris, C. L.; Mortensen, R. N.; Ramsey, J.; Seestrom, S. J.; Sondheim, W. E.; Teasdale, W.; Wang, Z.; Back, H. O.; Broussard, L. J.; Hoagland, J.; Holley, A. T.; Pattie, R. W. Jr.; and others

    2013-01-15

    In this paper, we describe the performance of the Los Alamos spallation-driven solid-deuterium ultra-cold neutron (UCN) source. Measurements of the cold neutron flux, the very low energy neutron production rate, and the UCN rates and density at the exit from the biological shield are presented and compared to Monte Carlo predictions. The cold neutron rates compare well with predictions from the Monte Carlo code MCNPX and the UCN rates agree with our custom UCN Monte Carlo code. The source is shown to perform as modeled. The maximum delivered UCN density at the exit from the biological shield is 52(9) UCN/cc with a solid deuterium volume of {approx}1500 cm{sup 3}.

  6. Performance of the solid deuterium ultra-cold neutron source at the pulsed reactor TRIGA Mainz

    NASA Astrophysics Data System (ADS)

    Karch, J.; Sobolev, Yu.; Beck, M.; Eberhardt, K.; Hampel, G.; Heil, W.; Kieser, R.; Reich, T.; Trautmann, N.; Ziegner, M.

    2014-04-01

    The performance of the solid deuterium ultra-cold neutron (UCN) source at the pulsed reactor TRIGA Mainz with a maximum peak energy of 10MJ is described. The solid deuterium converter with a volume of cm3 (8mol), which is exposed to a thermal neutron fluence of n/cm2, delivers up to 240000 UCN ( m/s) per pulse outside the biological shield at the experimental area. UCN densities of 10 cm3 are obtained in stainless-steel bottles of 10 L. The measured UCN yields compare well with the predictions from a Monte Carlo simulation developed to model the source and to optimize its performance for the upcoming upgrade of the TRIGA Mainz into a user facility for UCN physics.

  7. Mass, radius and composition of the outer crust of nonaccreting cold neutron stars

    NASA Astrophysics Data System (ADS)

    Hempel, Matthias; Schaffner-Bielich, Jürgen

    2008-01-01

    The properties and composition of the outer crust of nonaccreting cold neutron stars are studied by applying the model of Baym, Pethick and Sutherland, which was extended by including higher order corrections of the atomic binding, screening, exchange and zero-point energy. The most recent experimental nuclear data from the atomic mass table of Audi, Wapstra and Thibault from 2003 are used. Extrapolation to the drip line is utilized by various state-of-the-art theoretical nuclear models (finite range droplet, relativistic nuclear field and non-relativistic Skyrme Hartree Fock parameterizations). The different nuclear models are compared with respect to the mass and radius of the outer crust for different neutron star configurations and the nuclear compositions of the outer crust.

  8. Angular distribution of products of ternary nuclear fission induced by cold polarized neutrons

    NASA Astrophysics Data System (ADS)

    Bunakov, V. E.; Kadmensky, S. G.; Kadmensky, S. S.

    2008-11-01

    Within quantum fission theory, angular distributions of products originating from the ternary fission of nuclei that is induced by polarized cold and thermal neutrons are investigated on the basis of a nonevaporative mechanism of third-particle emission and a consistent description of fission-channel coupling. It is shown that the inclusion of Coriolis interaction both in the region of the discrete and in the region of the continuous spectrum of states of the system undergoing fission leads to T-odd correlations in the aforementioned angular distributions. The properties of the TRI and ROT effects discovered recently, which are due to the interference between the fission amplitudes of neutron resonances, are explored. The results obtained here are compared with their counterparts from classic calculations based on the trajectory method.

  9. The rotation of scissioning nucleus considered trajectory calculations for ternary fission induced by cold polarized neutrons

    NASA Astrophysics Data System (ADS)

    Guseva, I.; Gusev, Yu.

    2009-10-01

    On the base of modified trajectory calculations the shift of angular distribution of α-particles accompanied the reaction 235U(n,f) induced by cold polarized neutrons is evaluated. It was supposed that angular distribution shift is caused by the rotation of nuclear system before scission. The orientation of a rotation motion is determined by the neutron spin polarization along and opposite to the beam direction. For the first time the estimation was done in the frame of trajectory calculations assuming the rotation motion of scissioning nucleus [1]. The result of the calculation is in a good agreement with experimental data of paper [2], where this new phenomenon was named as ROT-effect.

  10. Angular distribution of products of ternary nuclear fission induced by cold polarized neutrons

    SciTech Connect

    Bunakov, V. E. Kadmensky, S. G. Kadmensky, S. S.

    2008-11-15

    Within quantum fission theory, angular distributions of products originating from the ternary fission of nuclei that is induced by polarized cold and thermal neutrons are investigated on the basis of a non-evaporative mechanism of third-particle emission and a consistent description of fission-channel coupling. It is shown that the inclusion of Coriolis interaction both in the region of the discrete and in the region of the continuous spectrum of states of the system undergoing fission leads to T-odd correlations in the aforementioned angular distributions. The properties of the TRI and ROT effects discovered recently, which are due to the interference between the fission amplitudes of neutron resonances, are explored. The results obtained here are compared with their counterparts from classic calculations based on the trajectory method.

  11. Helium refrigerator maintenance and reliability at the OPAL cold neutron source

    NASA Astrophysics Data System (ADS)

    Thiering, Russell; Taylor, David; Lu, Weijian

    2012-06-01

    Australia's first Cold Neutron Source (CNS) is a major asset to its nuclear research program. The CNS, and associated helium refrigerator, was commissioned in 2006 and is operated at the Open Pool Light Water nuclear Reactor (OPAL). The OPAL CNS operates a 20K, 5 kW Brayton cycle helium refrigerator. In this paper relevant experiences from helium refrigerator operation, maintenance and repair are presented along with the lessons learnt from a series of technical investigations. Turbine failure, due to volatile organic species, is discussed along with the related compressor oil degradation and oil separation efficiency.

  12. Cold Uniform Matter and Neutron Stars in the Quark-Meson-Coupling Model

    SciTech Connect

    J.R. Stone; P.A.M. Guichon; H.H. Matevosyan; A.W. Thomas

    2007-08-01

    A new density dependent effective baryon-baryon interaction has been recently derived from the quark-meson-coupling (QMC) model, offering impressive results in application to finite nuclei and dense baryon matter. This self-consistent, relativistic quark-level approach is used to construct the Equation of State (EoS) and to calculate key properties of high density matter and cold, slowly rotating neutron stars. The results include predictions for the maximum mass of neutron star models, together with the corresponding radius and central density, as well the properties of neutron stars with mass of order 1.4 M{sub {circle_dot}}. The cooling mechanism allowed by the QMC EoS is explored and the parameters relevant to slow rotation, namely the moment of inertia and the period of rotation investigated. The results of the calculation, which are found to be in good agreement with available observational data, are compared with the predictions of more traditional EoS, based on the A18+{delta}v+UIX* and modified Reid soft core potentials, the Skyrme SkM* interaction and two relativistic mean field (RMF) models for a hybrid stars including quark matter. The QMC EoS provides cold neutron star models with maximum mass 1.9-2.1 M{sub {circle_dot}}, with central density less than 6 times nuclear saturation density (n{sub 0} = 0.16 fm{sup -3}) and offers a consistent description of the stellar mass up to this density limit. In contrast with other models, QMC predicts no hyperon contribution at densities lower than 3n{sub 0}, for matter in {beta}-equilibrium. At higher densities, {Xi}{sup -,0} and {Lambda} hyperons are present. The absence of lighter {Sigma}{sup {+-},0} hyperons is understood as a consequence of antisymmetrization, together with the implementation of the color hyperfine interaction in the response of the quark bag to the nuclear scalar field.

  13. Approaching complete low-spin spectroscopy of 210Bi with a cold-neutron capture reaction

    NASA Astrophysics Data System (ADS)

    Cieplicka-Oryńczak, N.; Fornal, B.; Leoni, S.; Bazzacco, D.; Blanc, A.; Bocchi, G.; Bottoni, S.; de France, G.; Jentschel, M.; Köster, U.; Mutti, P.; Simpson, G.; Soldner, T.; Szpak, B.; Ur, C.; Urban, W.

    2016-05-01

    The low-spin structure of the 210Bi nucleus was investigated in the neutron capture experiment 209Bi(n ,γ )210Bi performed at ILL Grenoble at the PF1B cold-neutron facility. By using the EXILL multidetector array, consisting of 46 high-purity germanium crystals, and γ γ -coincidence technique, 64 primary γ rays were observed (40 new) and a total number of 70 discrete states (33 new) were located below the neutron binding energy in 210Bi. The analysis of the angular correlations of γ rays provided information about transitions multipolarities, which made it possible to confirm most of the previously known spin-parity assignments and helped establish new ones. The obtained experimental results were compared to shell-model calculations involving one-valence-proton, one-valence-neutron excitations outside the 208Pb core. It has been found that while up to the energy of ˜2 MeV each state observed in 210Bi has its calculated counterpart; at higher excitation energies some levels cannot be described by the valence particle couplings. These states may arise from couplings of valence particles to the 3- octupole phonon of the doubly magic 208Pb core and may serve as a testing ground for models which describe single particle-phonon excitations.

  14. Development of low temperature solid state detectors for ultra-cold neutrons within superfluid 4He

    NASA Astrophysics Data System (ADS)

    Baker, C. A.; Balashov, S. N.; Green, K.; van der Grinten, M. G. D.; Iaydjiev, P. S.; Ivanov, S. N.; Pendlebury, J. M.; Shiers, D. B.; Tucker, M. A. H.; Yoshiki, H.; Geltenbort, P.

    2003-04-01

    As part of an R&D programme for the development of a next-generation experiment to measure the neutron electric dipole moment, in which ultra-cold neutrons (UCN) are produced and stored in superfluid 4He (superthermal source), we have developed cryogenic detectors of UCN that can operate in situ within the superfluid. Surface barrier detectors and PIN diode detectors have been tested and proven to work well at temperatures as low as 80 mK. When combined with a layer of 6LiF which converts neutrons to charged particles, these detectors form a reliable UCN detection system which has been tested in liquid helium down to 430 mK. The detectors have operated within superfluid helium for periods of up to 30 days with no signs of degradation. The development of this detection system has enabled us to measure the flux of UCN from a superthermal UCN source with no intervening transmission windows which can attenuate the flux. The addition of thin films of magnetically aligned iron also enables these detectors to be used in situ for neutron spin-polarisation analysis.

  15. Prompt gamma-ray analysis using cold and thermal guided neutron beams at JAERI.

    PubMed

    Yonezawa, C

    1999-01-01

    A highly sensitive neutron-induced prompt gamma-ray analysis (PGA) system, usable at both cold and thermal neutron beam guides of JRR-3M, has been constructed. The system was designed to achieve the lowest gamma-ray background by using lithium fluoride tiles as neutron shielding, by placing the samples in a He atmosphere and by using a Ge-bismuth germanate detector system for Compton suppression. The gamma-ray spectrometer can acquire three modes of spectra simultaneously: single, Compton suppression, and pair modes. Because of the low-energy guided neutron beams and the low-background system, analytical sensitivities and detection limits better than those in usual PGA systems have been achieved. Boron and multielemental determination by a comparative standardization have been investigated, and accuracy, precision, and detection limits for the elements in various materials were evaluated. The system has been applied to the determination of B and multielements in samples of various fields such as medical, environmental, and geological sciences. PMID:10676516

  16. Determination of hydrogen in metals, semiconductors, and other materials by cold neutron prompt gamma-ray activation analysis

    SciTech Connect

    Paul, R.L.; Lindstrom, R.M.

    1998-12-31

    Cold neutron prompt gamma-ray activation analysis has proven useful for nondestructive measurement of trace hydrogen. The sample is irradiated in a beam of neutrons; the presence of hydrogen is confirmed by the emission of a 2223 keV gamma-ray. Detection limits for hydrogen are 3 mg/kg in quartz and 8 mg/kg in titanium. The authors have used the technique to measure hydrogen in titanium alloys, germanium, quartz, fullerenes and their derivatives, and other materials.

  17. Preliminary probabilistic design accident evaluation of the cold source facilities of the advanced neutron source

    SciTech Connect

    Harrington, R.M.; Ramsey, C.T.

    1995-08-01

    Consistent with established Advanced Neutron Source (ANS) project policy for the use of probabilistic risk assessment (PRA) in design, a task has been established to use PRA techniques to help guide the design and safety analysis of the ANS cold sources. The work discussed in this report is the first formal output of the cold source PRA task. The major output at this stage is a list of design basis accidents, categorized into approximate frequency categories. This output is expected to focus attention on continued design work to define and optimize the design such that design basis accidents are better defined and have acceptable outcomes. Categorizing the design basis events (DBEs) into frequency categories should prove helpful because it will allow appropriate acceptance criteria to be applied. Because the design of the cold source is still proceeding, it is beyond the scope of this task to produce detailed event probability calculations or even, in some cases, detailed event sequence definitions. That work would take place as a logically planned follow-on task, to be completed as the design matures. Figure 1.1 illustrates the steps that would typically be followed in selecting design basis accidents with the help of PRA. Only those steps located above the dashed line on Fig. 1.1 are included in the scope of the present task. (Only an informal top-level failure modes and effects analysis was done.) With ANS project closeout expected in the near future, the scope of this task has been abbreviated somewhat beyond the state of available design information on the ANS cold sources, or what could be achieved in a reasonable time. This change was necessary to ensure completion before the closeout and because the in-depth analytical support necessary to define fully some of the accidents has already been curtailed.

  18. Effect of crystal shape on neutron rocking curves of perfect single crystals designed for ultra-small-angle scattering experiments

    NASA Astrophysics Data System (ADS)

    Freund, A. K.; Rehm, C.

    2014-07-01

    The present study has been conducted in the framework of the channel-cut crystal design for the Kookaburra ultra-small-angle neutron scattering (USANS) instrument to be installed at the OPAL reactor of ANSTO. This facility is based on the classical Bonse-Hart method that uses two multiple-reflection crystal systems. The dynamical theory of diffraction by perfect crystals distinguishes two cases: the Darwin case applying to infinitely thick crystals and the Ewald solution for very small absorption taking into account the reflection from the rear face of a plane-parallel crystal reflecting in Bragg geometry. The former is preferable because it yields narrower rocking curves. To prevent the neutrons to "see" the rear face, grooves were machined into the backside of perfect Si test crystals for single reflection and filled with neutron absorbing material. These samples were examined at the S18 instrument of the Institut Laue-Langevin. Unexpectedly the crystals with empty slots showed an increase of the rocking curve width. When filling the slots with an absorber the widths decreased, but without reaching that of the Darwin curve. Understanding the results and achieving a successful crystal design call for the development of a theory that permits to describe neutron diffraction from crystals with a structured back face.

  19. The upgrade of the cold neutron three-axis spectrometer IN12 at the ILL

    NASA Astrophysics Data System (ADS)

    Schmalzl, K.; Schmidt, W.; Raymond, S.; Feilbach, H.; Mounier, C.; Vettard, B.; Brückel, T.

    2016-05-01

    After nearly 40 years of successful operation the cold three-axis spectrometer IN12 at the Institut Laue-Langevin, Grenoble, France, has been relocated to a new position and the primary spectrometer has been upgraded. Latest modern optical components are employed. A new guide in combination with a virtual source concept and a double focusing monochromator guarantee highest flux. With its high unpolarized and polarized neutron flux IN12 allows for demanding experiments. A velocity selector in the guide ensures a clean beam and a very low background. A gain in flux of about an order of magnitude at the sample position has been achieved compared to the previous instrument and IN12's wavelength range now extends far into the warmish region.

  20. Control system of pelletized cold neutron moderator at the IBR-2 reactor

    NASA Astrophysics Data System (ADS)

    Belyakov, A.; Bulavin, M.; Chernikov, A.; Churakov, A.; Kulikov, S.; Litvinenko, E.; Mukhin, K.; Petrenko, A.; Petukhova, T.; Sirotin, A.; Shabalin, E.; Shirokov, V.; Verhoglyadov, A.

    2015-11-01

    The unique pelletized cold neutron moderator CM-202 at the IBR-2 reactor was put into test operation and have already worked more than 2000 hours. Normal, fast and trouble-free operation of the cryogenic moderator requires strict adherence to technological conditions (fast charging and discharging of moderator chamber, maintenance of required temperature and pressure at different parts of cryogenic system). The system of control and measuring equipment, designed for cryogenic moderator of the IBR-2 reactor, satisfies all the requirements and is simple to use. Access to the system of measuring instruments is organized via network. The working cycles of moderator confirmed the reliability and stable operation of the whole control system.

  1. The New Cold Neutron Radiography Facility (CNRF) at the Mianyang Research Reactor of the China Academy of Engineering Physics

    NASA Astrophysics Data System (ADS)

    Bin, Tang; Heyong, Huo; Ke, Tang; Rogers, John; Haste, Martin; Christodoulou, Marios

    A new cold neutron radiography beamline has been designed and constructed for the Mianyang reactor at the Institute of Nuclear Physics and Chemistry of the China Academy of Engineering Physics. This paper describes the components of the system and demonstrates the achievable image resolution.

  2. Experimental characterization of the Advanced Liquid Hydrogen Cold Neutron Source spectrum of the NBSR reactor at the NIST Center for Neutron Research

    NASA Astrophysics Data System (ADS)

    Cook, J. C.; Barker, J. G.; Rowe, J. M.; Williams, R. E.; Gagnon, C.; Lindstrom, R. M.; Ibberson, R. M.; Neumann, D. A.

    2015-08-01

    The recent expansion of the National Institute of Standards and Technology (NIST) Center for Neutron Research facility has offered a rare opportunity to perform an accurate measurement of the cold neutron spectrum at the exit of a newly-installed neutron guide. Using a combination of a neutron time-of-flight measurement, a gold foil activation measurement, and Monte Carlo simulation of the neutron guide transmission, we obtain the most reliable experimental characterization of the Advanced Liquid Hydrogen Cold Neutron Source brightness to date. Time-of-flight measurements were performed at three distinct fuel burnup intervals, including one immediately following reactor startup. Prior to the latter measurement, the hydrogen was maintained in a liquefied state for an extended period in an attempt to observe an initial radiation-induced increase of the ortho (o)-hydrogen fraction. Since para (p)-hydrogen has a small scattering cross-section for neutron energies below 15 meV (neutron wavelengths greater than about 2.3 Å), changes in the o- p hydrogen ratio and in the void distribution in the boiling hydrogen influence the spectral distribution. The nature of such changes is simulated with a continuous-energy, Monte Carlo radiation-transport code using 20 K o and p hydrogen scattering kernels and an estimated hydrogen density distribution derived from an analysis of localized heat loads. A comparison of the transport calculations with the mean brightness function resulting from the three measurements suggests an overall o- p ratio of about 17.5(±1) % o- 82.5% p for neutron energies<15 meV, a significantly lower ortho concentration than previously assumed.

  3. Thermal-Hydraulic Mockup Tests with Two-Phase Thermosyphon for Cold Neutron Source

    SciTech Connect

    Lee, C.H.; Chan, Y.K.; Lee, D.J.; Chang, C.J.; Hong, W.T.

    2002-07-01

    The improvement and utilization promotion project of the Taiwan Research Reactor (TRR-II) is carrying out at the Institute of Nuclear Energy Research (INER). The Cold Neutron Source (CNS) with a two-phase thermosyphon will be installed in the heavy water reactor of TRR-II. The hydrogen cold loop of TRR-II CNS consists of a cylindrical moderator cell, a single transfer tube, and a condenser. The thermal-hydraulic characteristics of a two-phase thermosyphon are investigated against the variations of mass inventory, tube geometry and heat loads. The thermal-hydraulic experiments have been performed using a full-scale mockup loop and a Freon-11 as a working fluid. The scaling approach is that the mass-fluxes of the liquid and the vapor in the Wallis correlation are identical between hydrogen and Freon-11. So, the same density ratio and a scaling heat load are applied to the loop. The flooding limitations as a function of initial Freon-11 inventory, transfer tube diameter, transfer tube geometry, and heat loads are presented. (authors)

  4. A compact TOF-SANS using focusing lens and very cold neutrons

    NASA Astrophysics Data System (ADS)

    Yamada, Masako; Iwashita, Yoshihisa; Kanaya, Toshiji; Yamada, Norifumi L.; Shimizu, Hirohiko M.; Mishima, Kenji; Hino, Masahiro; Kitaguchi, Masaaki; Hirota, Katsuya; Geltenbort, Peter; Guerard, Bruno; Manzin, Giuliana; Andersen, Ken; Lal, Jyotsana; Carpenter, John M.; Bleuel, Markus; Kennedy, Shane J.

    2011-06-01

    We are developing a high-resolution small angle neutron scattering instrument for very cold neutrons (VCN). Our concept includes a magnetic lens for focusing of the beam at the detector plane. The lens consists of one permanent-magnet sextupole array rotating outside another stationary sextupole array, to focus a pulsed white beam of neutrons. Thus the instrument operates in time of flight mode. The prototype magnetic lens has a bore of 15 mm diameter and length of 66 mm, producing a magnetic field gradient oscillating from 1.5×10 4 to 5.9×10 4 T/m 2, with frequency ≤25 Hz. A torque-canceling magnet around the lens suppresses the torque of rotation from the outer array to 1/3. We have demonstrated the performance of the lens, over wavelength range from 30 to 48 Å, on the PF2-VCN beam line at the Institut Laue-Langevin, France. The focused beam image was the same size as the source, without chromatic aberration, with focal length of 1.14 m. We also studied the performance of this configuration for high-resolution SANS, in a compact geometry (just 5 m long). The measurable q range of this system was 0.009 Å -1≤ q≤0.3 Å -1 or 0.004 Å -1≤ q≤0.08 Å -1 for sample to detector distances of 100 and 465 mm, respectively. Here, we present the results of our lens characterization study along with the SANS results on a tri-block copolymer (F127 Pluronic) and on a stretched polymer blend (with the Shish-Kebab structure).

  5. Fingerprinting Morphology of Magnetic Shape Memory Alloys Using First Order Reversal Curves (FORC) and Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Roshchin, Igor V.; Lapa, Pavel N.; Krycka, Kathryn L.; Maranville, Brian B.; Monroe, James A.; Franco, Brian E.; Karaman, Ibrahim

    In Ni-Mn-In- and Ni-Mn-Sn-based alloys, two magnetic phases with ferromagnetic and antiferromagnetic exchange couplings between two nearest Mn atoms can coexist. The interaction between these phases results in exchange bias (EB). The EB field depends on the cluster sizes. Using the first order reversal curve (FORC) analysis of magnetization for Ni-Co-Mn-Sn and Ni-Co-Mn-In samples with different heat treatment, we can obtain information about cluster sizes of the structural phases in these alloys. This is especially important for polycrystalline alloy samples where dark-field images showing different phases are hard to obtain. Such a Ni-Co-Mn-Sn polycrystalline sample was characterized with small angle neutron scattering (SANS). Analyses of the scattering as a function of wavevector transfer in 50 Oe and 15 kOe applied field yield the average magnetic domain size of 21.2 +/-6.6 nm and a polydispersity of 0.32 +/-0.02 at 300 K, in good agreement with our prediction. The temperature evolution of the domain size will be discussed. Using an off-specular reflectometer in transmission geometry, the same sample was measured at a field of 270 Oe and 5.15 kOe. The fit of the 270 Oe data yields grain sizes of approximately 0.11-0.12 μm with polydispersities between 0.98 and 1.27. Supported by Texas A&M University, US-DOE, and US NSF-DMR.

  6. Analysis of neutron spectra and fluxes obtained with cold and thermal moderators at IBR-2 reactor: Experimental and computer-modeling studies

    NASA Astrophysics Data System (ADS)

    Kuklin, A. I.; Rogov, A. D.; Gorshkova, Yu. E.; Utrobin, P. K.; Kovalev, Yu. S.; Rogachev, A. V.; Ivankov, O. I.; Kutuzov, S. A.; Soloviov, D. V.; Gordeliy, V. I.

    2011-03-01

    The results of experimental and computer-modeling investigations of neutron spectra and fluxes obtained with cold and thermal moderators at the IBR-2 reactor (Joint Institute for Nuclear Research (JINR), Dubna) are presented. These studies are for the YuMO small-angle neutron scattering (SANS) spectrometer (IBR-2 beamline 4). The neutron spectra have been measured for two methane cold moderators for the standard configuration of the SANS instrument. The data from both moderators under different conditions of their operation are compared. The ratio of experimentally determined neutron fluxes of cold and thermal moderators is shown at different wavelengths. Monte Carlo simulations have been carried out to determine the spectra for cold-methane and thermal moderators. The results of calculations of the ratio of neutron fluxes of cold and thermal moderators at different wavelengths are demonstrated. In addition, the absorption of neutrons in the air gaps on the way from the moderator to the investigated sample is presented. SANS with the protein apoferritin was done with both cold methane and a thermal moderator and the data were compared. The prospects for the use of a cold moderator for a SANS spectrometer at IBR-2 are discussed. The advantages of using the YuMO spectrometer with a thermal moderator with respect to the tested cold moderator are shown.

  7. In Vitro Evaluation of Apical Sealing Ability of HEROfill® Obturator Versus Cold Lateral Condensation in Curved Root Canals

    PubMed Central

    Zarei, Mina; Javidi, Maryam; Kazemi, Zeinab

    2015-01-01

    Objectives: This study aimed to assess and compare the apical sealing ability of HEROfill® Soft-Core system and lateral condensation technique in fine curved canals using the fluid filtration method. Materials and Methods: Forty human mesiobuccal root canals of mandibular first molars with 25° to 40° curvatures were instrumented to an apical size 30/0.04. Roots were randomly assigned to two experimental groups of 15, designated as groups A and B. Two control groups, each containing five teeth, served as positive and negative controls. Group A was obturated using lateral condensation technique and group B with the HEROfill® Soft-Core system. The groups were tested for microleakage using an in vitro fluid filtration apparatus with 0.5 atm pressure at zero, two, four, six, eight and 10 minutes. Independent t-test was used to analyze the microleakage data. Results: The mean and standard deviation (SD) values for fluid microleakage in the lateral condensation group were 0.58±0.49 μL/min, 0.68±0.35 μL/min, 0.74±0.22 μL/min, 0.71±0.29 μL/min and 0.60± 0.29 μL/min at two, four, six, eight and 10 minutes, respectively. The mean and SD values for fluid microleakage in the HEROfill® group were 0.53±0.42 μL/min, 0.67±0.34 μL/min, 0.69±0.26 μL/min, 0.73±0.33 μL/min and 0.63±0.26 μL/min at two, four, six, eight and 10 minutes, respectively. The difference between the lateral condensation and HEROfill® groups was not statistically significant at two (P=0.776), four (P=0.909), six (P=0.562), eight (P=0.861) or 10 (P=0.765) minutes. Conclusion: The HEROfill® system and cold lateral condensation technique were equally effective for apical sealing of curved canals. PMID:27123020

  8. Longitudinal-gradient magnet for time focusing of ultra-cold neutrons

    NASA Astrophysics Data System (ADS)

    Arimoto, Y.; Yoshioka, T.; Shimizu, H. M.; Mishima, K.; Ino, T.; Taketani, K.; Muto, S.; Kitaguchi, M.; Imajo, S.; Iwashita, Y.; Yamashita, S.; Kamiya, Y.; Yoshimi, A.; Asahi, K.; Shima, T.; Sakai, K.

    A gradient DC magnet is designed using 3D magnetic field analysis code. This magnet, referred to as a B0 magnet, is one of the key elements of a time-focusing device for ultra-cold neutrons (UCNs) based on a radio frequency gradient flipper - a so-called rebuncher. The magnet generates a guide and a potential field that interacts with the magnetic moment of UCNs and its main body comprises a C-shaped yoke made from iron. A field gradient is generated by a pole arrangement that includes an anisotropic inter-pole, which causes the fringe field to be uniform in the longitudinal direction even when the pole gap distance changes. The designed magnet has the following properties: (1) a maximum B-field of 10 kGauss, decreasing to 2 kGauss at a longitudinal distance of 25 cm, with a gradient of less than 400 Gauss/cm, (2) variations in the fringe field along the y direction is less than 4% over a range of - 3 cm≤ y ≤ 3 cm at any z position in the spin-flipping region. Tracking simulations show that the B0 magnet is capable of accepting UCNs in the velocity range 2.3∼3.3 m/s.

  9. Measurement of the Neutron Spectrum of the HB-4 Cold Source at the High Flux Isotope Reactor at Oak Ridge National Laboratory

    NASA Astrophysics Data System (ADS)

    Robertson, J. L.; Iverson, E. B.

    2009-08-01

    Measurements of the cold neutron spectrum from the super critical hydrogen cold source at the High Flux Isotope Reactor at Oak Ridge National Laboratory were made using time-of-flight spectroscopy. Data were collected at reactor power levels of 8.5MW, 42.5MW and 85MW. The moderator temperature was also varied. Data were collected at 17K and 25K while the reactor power was at 8.5MW, 17K and 25K while at 42.5MW and 18K and 22K while at 85MW. The purpose of these measurements was to characterize the brightness of the cold source and to better understand the relationship between reactor power, moderator temperature, and cold neutron production. The authors will discuss the details of the measurement, the changes observed in the neutron spectrum, and the process for determining the source brightness from the measured neutron intensity.

  10. Mutations induced in Tradescantia by small doses of X-rays and neutrons - Analysis of dose-response curves.

    NASA Technical Reports Server (NTRS)

    Sparrow, A. H.; Underbrink, A. G.; Rossi, H. H.

    1972-01-01

    Dose-response curves for pink somatic mutations in Tradescantia stamen hairs were analyzed after neutron and X-ray irradiation with doses ranging from a fraction of a rad to the region of saturation. The dose-effect relation for neutrons indicates a linear dependence from 0.01 to 8 rads; between 0.25 and 5 rads, a linear dependence is indicated for X-rays also. As a consequence the relative biological effectiveness reaches a constant value (about 50) at low doses. The observations are in good agreement with the predictions of the theory of dual radiation action and support its interpretation of the effects of radiation on higher organisms. The doubling dose of X-rays was found to be nearly 1 rad.

  11. The rotation curve conspiracy and neutron star/asteroid models for Gamma Ray Bursts

    NASA Technical Reports Server (NTRS)

    Salpeter, Edwin E.; Wasserman, Ira

    1993-01-01

    Gamma Ray Bursts (GRB) were analyzed using new GRO/BATSE results in conjunction with older PVO and KONUS data. It is suggested that the distribution in space of the GRB sources must have an outer bounding surface which is approximately a sphere centered on the location. Neutron stars in some kind of extended halo around the Galaxy with the required mass of an infalling object of order about 10 exp 21 to 10 exp 23 gm are considered.

  12. The temperature dependence of ultra-cold neutron wall losses in material bottles coated with deuterated polystryene

    SciTech Connect

    Cooper, Martiin D; Bagdasarova, Yelena; Clayton, Steven M; Currie, Scott A; Griffith, William C; Ito, Takeyasu; Makela, Mark F; Morris, Cheistopher; Rahaman, Mohamad S; Ramsey, John C; Saunders, Alexander; Rios, Raymond

    2011-01-18

    Ultra-cold neutrons (UCN) from the LANSCE super-thermal deuterium source were used to fill an acrylic bottle coated with deuterated polystyrene. The bottle was constructed to minimize losses through the filling valve. The storage time was extracted from a series of measurements where the number of neutrons was counted after they were held in the bottle for durations varying from 60-1200 s. The data were collected at temperatures of 18, 40, 65, 105, and 295 K. The data has been analyzed in terms of the ratio of the imaginary to real part of the wall potential. The analysis considers the velocity dependence of the probability per bounce of wall loss. The implication of these measurements for the SNS electric dipole moment search will be presented.

  13. Radiometric Investigation of Water Vapour Movement in Wood-based Composites by Means of Cold and Thermal Neutrons

    NASA Astrophysics Data System (ADS)

    Solbrig, K.; Frühwald, K.; Ressel, J. B.; Mannes, D.; Schillinger, B.; Schulz, M.

    Wood-based composites are industrially produced panels made of resin-blended wood furnish material consolidated by hot pressing. Precise knowledge of the physical interrelations, such as heat and mass transfer induced densification and curing, are inevitable to control process performance and final product properties. Neutron radiography is able to distinguish between moisture and wood matter movement and thus to provide quantitative information considering the hot pressing process where only models exist. To this end, preliminary experiments were carried out utilising both cold and thermal neutrons to visualise and to quantify the water vapour movement within wood-based composites heated under sealing within a simplified mimicry of the hot pressing process conditions. Neutron radiography of this rather fast process was found to be feasible in general. The evaluation of the time-resolved image data maps the relative water content distribution within the sample during 9 min process time. A presumed wavefront-like vapour movement was confirmed. Hence, the results enhance the understanding of heat and mass transfer inside consolidated resin-blended wood furnish. These preliminary experiments prove neutron radiography as viable method for further comprehensive in-situ investigations of the hot pressing process of wood-based composites.

  14. Thermal and Cold Neutron Computed Tomography at the Los Alamos Neutron Scattering Center Using an Amorphous Silicon Detector Array

    SciTech Connect

    Claytor, T.N.; Schwab, M.J.; Farnum, E.H.; McDonald, T.E.; Summa, D.A.; Sheats, M.J.; Stupin, D.M.; Sievers, W.L.

    1998-07-19

    The use of the EG and G-Heimann RTM 128 or dpiX FS20 amorphous silicon (a-Si) detector array for thermal neutron radiography/computed tomography has proven to be a quick and efficient means of producing high quality digital radiographic images. The resolution, although not as good as film, is about 750 pm with the RTM and 127 pm with the dpiX array with a dynamic range in excess of 2,800. In many respects using an amorphous silicon detector is an improvement over other techniques such as imaging with a CCD camera, using a storage phosphor plate or film radiography. Unlike a CCD camera, which is highly susceptible to radiation damage, a-Si detectors can be placed in the beam directly behind the object under examination and do not require any special optics or turning mirrors. The amorphous silicon detector also allows enough data to be acquired to construct a digital image in just a few seconds (minimum gate time 40 ms) whereas film or storage plate exposures can take many minutes and then need to be digitized with a scanner. The flat panel can therefore acquire a complete 3D computed tomography data set in just a few tens of minutes. While a-Si detectors have been proposed for use in imaging neutron beams, this is the first reported implementation of such a detector for neutron imaging.

  15. Commissioning of the NPDGamma Detector Array: Counting Statistics in Current Mode Operation and Parity Violation in the Capture of Cold Neutrons on B4C and 27Al

    PubMed Central

    Gericke, M. T.; Bowman, J. D.; Carlini, R. D.; Chupp, T. E.; Coulter, K. P.; Dabaghyan, M.; Desai, D.; Freedman, S. J.; Gentile, T. R.; Gillis, R. C.; Greene, G. L.; Hersman, F. W.; Ino, T.; Ishimoto, S.; Jones, G. L.; Lauss, B.; Leuschner, M. B.; Losowski, B.; Mahurin, R.; Masuda, Y.; Mitchell, G. S.; Muto, S.; Nann, H.; Page, S. A.; Penttila, S. I.; Ramsay, W. D.; Santra, S.; Seo, P.-N.; Sharapov, E. I.; Smith, T. B.; Snow, W. M.; Wilburn, W. S.; Yuan, V.; Zhu, H.

    2005-01-01

    The NPDGamma γ-ray detector has been built to measure, with high accuracy, the size of the small parity-violating asymmetry in the angular distribution of gamma rays from the capture of polarized cold neutrons by protons. The high cold neutron flux at the Los Alamos Neutron Scattering Center (LANSCE) spallation neutron source and control of systematic errors require the use of current mode detection with vacuum photodiodes and low-noise solid-state preamplifiers. We show that the detector array operates at counting statistics and that the asymmetries due to B4C and 27Al are zero to with- in 2 × 10−6 and 7 × 10−7, respectively. Boron and aluminum are used throughout the experiment. The results presented here are preliminary. PMID:27308124

  16. T invariance and T-odd asymmetries for the cold-polarized-neutron-induced fission of nonoriented nuclei

    SciTech Connect

    Kadmensky, S. G.; Bunakov, V. E.; Titova, L. V.

    2014-12-15

    It is shown that the coefficients D{sup exp} for all T-odd asymmetries observed experimentally in the cross sections for the reactions of cold-polarized-neutron-induced fission of nonoriented target nuclei (which involves the emission of prescission and evaporated particles) comply in shape and scale with the coefficients D{sup theor} calculated for the analogous asymmetries on the basis of quantum-mechanical nuclear-fission theory for T-invariant Hamiltonians of fissile systems. It is also shown that the asymmetries in question arise upon taking into account the effect of (i) the interference between the fission amplitudes of s- and p-wave resonances of a polarized fissile compound nucleus formed in the aforementioned reactions; (ii) the collective rotation of the compound nucleus in question (this rotation entails a change in the angular distributions of fission fragments and third particles); and (iii) the wriggling vibrations of this compound nucleus in the vicinity of its scission point, which lead to the appearance of high aligned spins of fission fragments, with the result that the emission of neutrons and photons evaporated from these fragments becomes anisotropic. The possible contribution of T-noninvariant interactions to the formation of the T-odd asymmetries under analysis is estimated by using the results obtained in experimentally testing the detailed-balance principle, (P-A) theorem, and T invariance of cross sections for elastic proton-proton and proton-neutron scattering.

  17. Use of Zircaloy 4 material for the pressure vessels of hot and cold neutron sources and beam tubes for research reactors

    NASA Astrophysics Data System (ADS)

    Gutsmiedl, Erwin; Scheuer, Anton

    2002-01-01

    The material Zircaloy 4 can be used for the pressure retaining walls for the cold and hot neutron sources and beam tubes. For the research reactor FRM-II of the Technical University Munich, Germany, the material Zircaloy 4 were chosen for the vessels of the cold and hot neutron source and for the beam tube No. 6. The sheets and forgings of Zircaloy 4 were examined in the temperature range between -256°C and 250°C. The thickness of the sheets are 3, 4, 5 and 10 mm, the maximum diameter of the forgings was 560 mm. This great forging diameters are not be treated in the ASTM rule B 351 for nuclear material, so a special approval with independent experts was necessary. The requirements for the material examinations were specified in a material specification and material test sheets which based on the ASTM rules B 351 and B 352 with additional restriction and additional requirements of the basic safety concept for nuclear power plants in Germany, which was taken into consideration in the nuclear licensing procedure. Charpy-impact-test samples were carried out in the temperature range between -256°C and 150°C to get more information on the ductile behaviour of the Zircaloy 4. The results of the sheet examination confirm the requirements of the specifications, the results of the forging examination in the tangential testing direction are lower than specified and expected for the tensile strength. The axial and transverse values confirm the specification requirements. For the strength calculation of the pressure retaining wall a reduced material value for the forgings has to be taken into consideration. The material behaviour of Zircaloy 4 under irradiation up to a fluence of ∼1×10 22 n/cm 2 was investigated. The loss of ductility was determined. As additional criteria the variation of the fracture toughness was studied. Fracture mechanic calculations of the material were carried out in the licensing procedure with the focus to fulfil the leak criteria before rupture

  18. A systematic study of the inner rotation curves of galaxies observed as part of the GASS and COLD GASS surveys

    NASA Astrophysics Data System (ADS)

    Kauffmann, Guinevere; Huang, Mei-Ling; Moran, Sean; Heckman, Timothy M.

    2015-07-01

    We present a systematic analysis of the rotation curves of 187 galaxies with stellar masses greater than 1010 M⊙, with atomic gas masses from the GALEX Arecibo Sloan Survey (GASS) and with follow-up long-slit spectroscopy from the MMT. Our analysis focuses on stellar rotation curves derived by fitting stellar template spectra to the galaxy spectra binned along the slit. In this way, we are able to obtain accurate rotation velocity measurements for a factor of 2 more galaxies than possible with the Hα line. Galaxies with high atomic gas mass fractions are the most dark-matter-dominated galaxies in our sample and have dark matter halo density profiles that are to first order well described by Navarro-Frenk-White profiles with an average concentration parameter of 10. The inner slopes of the rotation curves correlate more strongly with stellar population age than with galaxy mass or structural parameters. At fixed stellar mass, the rotation curves of more actively star-forming galaxies have steeper inner slopes than less actively star-forming galaxies. The ratio between the galaxy specific angular momentum and the total specific angular momentum of its dark matter halo, Rj, correlates strongly with galaxy mass, structure and gas content. Low-mass, disc-dominated galaxies with atomic gas mass fractions greater than 20 per cent have median values of Rj of around 1, but massive, bulge-dominated galaxies have Rj = 0.2-0.3. We argue that these trends can be understood in a picture where gas inflows triggered by disc instabilities lead to the formation of passive, bulge-dominated galaxies with low specific angular momentum.

  19. Determining the 6Li doped side of a glass scintillator for ultra cold neutrons

    NASA Astrophysics Data System (ADS)

    Jamieson, Blair; Rebenitsch, Lori Ann

    2015-08-01

    Ultracold neutron (UCN) detectors using two visually very similar, to the microscopic level, pieces of optically contacted cerium doped lithium glasses have been proposed for high rate UCN experiments. The chief difference between the two glass scintillators is that one side is 6Li depleted and the other side 6Li doped. This note outlines a method to determine which side of the glass stack is doped with 6Li using AmBe and 252Cf neutron sources, and a Si surface barrier detector. The method sees an excess of events around the α and triton energies of neutron capture on 6Li when the enriched side is facing the Si surface barrier detector.

  20. Experimental characterization of a prototype secondary spectrometer for vertically scattering multiple energy analysis at cold-neutron triple axis spectrometers

    NASA Astrophysics Data System (ADS)

    Toft-Petersen, Rasmus; Groitl, Felix; Kure, Mathias; Lim, Joshua; Čermák, Petr; Alimov, Svyatoslav; Wilpert, Thomas; Le, Manh Duc; Quintero-Castro, Diana; Niedermayer, Christof; Schneidewind, Astrid; Habicht, Klaus

    2016-09-01

    A thorough experimental characterization of a multiplexing backend with multiple energy analysis on a cold-neutron triple axis spectrometer (cTAS) is presented. The prototype employs two angular segments (2 θ -segments) each containing five vertically scattering analyzers (energy channels), which simultaneously probe an energy transfer range of 2 meV at the corresponding two scattering angles. The feasibility and strength of such a vertically scattering multiple energy analysis setup is clearly demonstrated. It is shown, that the energy resolution near the elastic line is comparable to the energy resolution of a standard cTAS. The dispersion relation of the antiferromagnetic excitations in MnF2 has been mapped out by performing constant energy transfer maps. These results show that the tested setup is virtually spurion free. In addition, focusing effects due to (mis)matching of the instrumental resolution ellipsoid to the excitation branch are clearly evident.

  1. Analyses of the reflector tank, cold source, and beam tube cooling for ANS reactor. [Advanced Neutron Source (ANS)

    SciTech Connect

    Marland, S. )

    1992-07-01

    This report describes my work as an intern with Martin Marietta Energy Systems, Inc., in the summer of 1991. I was assigned to the Reactor Technology Engineering Department, working on the Advanced Neutron Source (ANS). My first project was to select and analyze sealing systems for the top of the diverter/reflector tank. This involved investigating various metal seals and calculating the forces necessary to maintain an adequate seal. The force calculations led to an analysis of several bolt patterns and lockring concepts that could be used to maintain a seal on the vessel. Another project involved some pressure vessel stress calculations and the calculation of the center of gravity for the cold source assembly. I also completed some sketches of possible cooling channel patterns for the inner vessel of the cold source. In addition, I worked on some thermal design analyses for the reflector tank and beam tubes, including heat transfer calculations and assisting in Patran and Pthermal analyses. To supplement the ANS work, I worked on other projects. I completed some stress/deflection analyses on several different beams. These analyses were done with the aid of CAASE, a beam-analysis software package. An additional project involved bending analysis on a carbon removal system. This study was done to find the deflection of a complex-shaped beam when loaded with a full waste can.

  2. On the optimisation of the spectral resolution in spectrographs for cold neutrons based on refraction at grazing incidence

    NASA Astrophysics Data System (ADS)

    Jark, Werner

    2014-01-01

    Recently the wavelength dispersion of cold neutrons in the refraction process at inclined interfaces was identified as an efficient tool for neutron spectrographs, in which a larger wavelength band can be registered simultaneously. This registration mode reduces the data acquisition time significantly as no need to monochromatise the incident neutron beam by use of inefficient choppers exists. In the related studies the spectrograph performance is treated with rather complex equations. This study instead provides a theoretical treatment of the dispersion properties with simpler analytical equations, which were previously used in connection with X-rays. It can be shown, that the spectral resolution in the original spectrographs is mostly limited by the finite size of the refracted beam, which is inconveniently increasing upon refraction at grazing internal incidence onto an inclined refracting interface. The blurring of the beam size of a monochromatic beam at the detector due to the angular spread of the incident beam is mostly negligible. It is thus proposed that a significant improvement in the spectral resolution of such a spectrograph can be achieved, when the beam size at the detector is reduced by introducing focusing in the refraction process. It is shown, that the spectral resolution can then ultimately be limited by the smaller size of the blurred image caused by the angular spread of the beam. Then the improvement in this beam divergence limit can be by an order of magnitude and it is achieved by refraction upon internal incidence onto a concave interface. It is found that such a configuration will focus appropriately in a larger wavelength interval. By this means for wavelengths between 5 Å and 12 Å spectral resolutions of below 1% are feasible, which are not yet reported for such prism spectrographs.

  3. Semiclassical description of TRI asymmetry in ternary fission induced by cold polarized neutrons

    SciTech Connect

    Bunakov, V. E.; Kadmensky, S. G.

    2011-11-15

    The possibility of semiclassically describing T-even TRI-type asymmetry in ternary fission induced by polarized neutrons is considered on the basis of employing Coriolis interaction that takes into account the coupling of a light charged particle to the collective rotation of a polarized fissile nucleus. It is shown that allowance for this interaction makes it possible to explain qualitatively the magnitudes of two asymmetry effects observed in light-charge-particle emission both within the semiclassical and within the quantum-mechanical approach. The difference in the relative magnitudes and signs of the effects between different target nuclei is associated with the interference contributions to the cross section from neighboring neutron resonances and therefore cannot be explained within the semiclassical approach.

  4. Quantum diffusion of ultra-cold neutrons in a rough waveguide in a gravity field

    NASA Astrophysics Data System (ADS)

    Escobar, Mauricio

    We report the results of our study of propagation of gravitationally quantized ultracold neutrons in rough waveguides in conjunction with GRANIT experiments (ILL, Grenoble). Our theoretical study is done within the frame of the general theory of transport in systems with random rough boundaries developed by Meyerovich et al. We present a theoretical description of GRANIT experiments in the biased diffusion approximation for waveguides with one- and two-dimensional (1Dd and 2D) roughness. All system parameters collapse into a single constant (phi) which determines the depletion times for the gravitational quantum states and the exit neutron count. phi is determined by a complicated integral of the correlation function (CF) of surface roughness. For waveguides with 1D roughness most of the calculations can be performed analytically for the main common types of CF. For waveguides with 2D roughness the final calculations are mostly numerical. We also developed useful scaling equations for phi which can allow experimentalists to accommodate our results to different experimental setups. The reliable identification of the CF is always hindered by the presence of long fluctuation-driven correlation tails in finite-size samples. In order to deal with this issue, we perform numerical experiments relevant for the identification of the roughness CF. We generate surfaces with predetermined CF using rotation of uncorrelated surfaces or using Monte Carlo simulations based on the Ising model. These numerical experiments show how to circumvent the difficulties that arise in extracting the correlation properties of surface roughness using the data on the surface profile obtained in STM-like experiments. This experience helps us to analyze the new rough mirror and make theoretical predictions for ongoing GRANIT experiments. We also propose an alternative waveguide design which can improve the accuracy of experimental results.

  5. Atomic dynamics in molten AlCu alloys of different compositions and at different temperatures by cold neutron scattering

    SciTech Connect

    Dahlborg, U.; Besser, M.; Kramer, Matthew J.; Morris, J. R.; Calvo-Dahlborg, M.

    2013-12-21

    The atomic motions in molten Al1-xCux (x=0.10, 0.171 and 0.25) around the eutectic composition (x=0.171) were studied by cold neutron inelastic scattering at three different temperatures (973 K, 1173 K and 1373 K). An alloy of eutectic composition containing the 63Cu isotope was also studied. Self-diffusion coefficients for the Cu ions were determined from the width of quasielastic peaks and were found to decrease slightly with increasing Cu concentration. Longitudinal current correlation functions Jl(Q,E) exhibit at all temperatures and at all compositions a shoulder at energies below 10 meV and one main maximum at higher energies. These features can be interpreted in terms of excitations of acoustic and optic nature. The shape of Jl(Q,E) is sensitive to composition, being considerably more structured for larger Cu content. This can be coupled to the existence of a prepeak in the measured zeroth moment of dynamic scattering function indicating an increased chemical ordering with increasing Cu concentration for all temperatures. Indications for an existence of a liquid–liquid phase transition are presented.

  6. Equation of state constraints for the cold dense matter inside neutron stars using the cooling tail method

    NASA Astrophysics Data System (ADS)

    Nättilä, J.; Steiner, A. W.; Kajava, J. J. E.; Suleimanov, V. F.; Poutanen, J.

    2016-06-01

    The cooling phase of thermonuclear (type-I) X-ray bursts can be used to constrain neutron star (NS) compactness by comparing the observed cooling tracks of bursts to accurate theoretical atmosphere model calculations. By applying the so-called cooling tail method, where the information from the whole cooling track is used, we constrain the mass, radius, and distance for three different NSs in low-mass X-ray binaries 4U 1702-429, 4U 1724-307, and SAX J1810.8-260. Care is taken to use only the hard state bursts where it is thought that the NS surface alone is emitting. We then use a Markov chain Monte Carlo algorithm within a Bayesian framework to obtain a parameterized equation of state (EoS) of cold dense matter from our initial mass and radius constraints. This allows us to set limits on various nuclear parameters and to constrain an empirical pressure-density relationship for the dense matter. Our predicted EoS results in NS a radius between 10.5-12.8 km (95% confidence limits) for a mass of 1.4 M⊙, depending slightly on the assumed composition. Because of systematic errors and uncertainty in the composition, these results should be interpreted as lower limits for the radius.

  7. Thermal hydraulic analysis of two-phase closed thermosyphon cooling system for new cold neutron source moderator of Breazeale research reactor at Penn State

    NASA Astrophysics Data System (ADS)

    Habte, Melaku

    A cold neutron source cooling system is required for the Penn State's next generation cold neutron source facility that can accommodate a variable heat load up to about ˜10W with operating temperature of about 28K. An existing cold neutron source cooling system operating at the University of Texas Cold Neutron Source (TCNS) facility failed to accommodate heat loads upwards of 4W with the moderator temperature reaching a maximum of 44K, which is the critical temperature for the operating fluid neon. The cooling system that was used in the TCNS cooling system was a two-phase closed thermosyphon with a reservoir (TPCTR). The reservoir containing neon gas is kept at room temperature. In this study a detailed thermal analysis of the fundamental operating principles of a TPCTR were carried out. A detailed parametric study of the various geometric and thermo-physical factors that affect the limits of the operational capacity of the TPCTR investigated. A CFD analysis is carried out in order to further refine the heat transfer analysis and understand the flow structure inside the thermosyphon and the two-phase nucleate boiling in the evaporator section of the thermosyphon. In order to help the new design, a variety of ways of increasing the operating range and heat removal capacity of the TPCTR cooling system were analyzed so that it can accommodate the anticipated heat load of 10W or more. It is found, for example, that doubling the pressure of the system will increase the capacity index zeta by 50% for a system with an initial fill ratio FR of 1. A decrease in cryorefrigeration performance angle increases the capacity index. For example taking the current condition of the TCNS system and reducing the angle from the current value of ˜700 by half (˜350) will increase the cooling power 300%. Finally based on detailed analytic and CFD analysis the best operating condition were proposed.

  8. Rotation of the compound nucleus 236U ∗ in the fission reaction 235U( n,f) induced by cold polarised neutrons

    NASA Astrophysics Data System (ADS)

    Goennenwein, F.; Mutterer, M.; Gagarski, A.; Guseva, I.; Petrov, G.; Sokolov, V.; Zavarukhina, T.; Gusev, Yu.; von Kalben, J.; Nesvizhevski, V.; Soldner, T.

    2007-08-01

    Surprisingly, for one of the best investigated nuclear reactions a new phenomenon was discovered. In an experiment performed at the High Flux Reactor of the Institut Laue Langevin in Grenoble, France, the reaction 235U(n , f) was studied. Fission was induced by cold polarised neutrons. Besides the two main fragments also ternary light charged particles were measured. The centres or the detector assemblies for fragments and light particles were positioned at right angles relative to each other in a plane perpendicular to the neutron beam. It is well known that the majority of ternary particles are emitted closely perpendicular to the fission axis. With the neutron spin pointing parallel or anti-parallel to the neutron beam it was observed that, upon flipping periodically the neutron spin, the distributions of angles between fragments and light particles are wobbling back and forth. The phenomenon is traced to the rotation of the scissioning nucleus while the light particles are ejected. This interpretation is corroborated by trajectory calculations for ternary α-particles being accelerated in a rotating Coulomb field provided by the two main fragments. The angle through which the fission axis and the trajectories of α-particles rotate is very small and barely exceeds 0.2°. This so far unreported feature of nuclear fission has been called the “ROT-effect”.

  9. Fission with cold neutrons

    SciTech Connect

    Sanchez, R. G.

    2002-01-01

    As NASA continues the exploration of deep space, there is a need for safe, reliable, and long-lasting source of energy. Solar cells, which are useful at the inner solar system, cannot provide adequate power for a spacecraft once it has passed beyond Jupiter's orbit. For missions to the outer planets, NASA has relied on radioisotope thermoelectric generators (RTGs) using 238Pua s a heat source. RTGs are an excellent power conversion technology but, unfortunately, 238Pu is a potential environmental hazard. In the past, the use of 238Pu has generated much controversy and turmoil. Its use in future missions is doubtful because of environmental concerns. This paper presents calculations performed with MCNP for a power source that will take advantage of the low temperatures found in deep space.

  10. Application of gamma densitometer for measurement of void fraction in liquid hydrogen moderator of HANARO cold neutron source

    NASA Astrophysics Data System (ADS)

    Kim, Myong-Seop; Choi, Jungwoon; Sun, Gwang-Min; Lee, Kye-Hong

    2009-06-01

    The void fraction in the liquid hydrogen used for the moderator of the HANARO cold neutron source (CNS) was measured by using a gamma densitometer technique. A mock-up of the HANARO CNS facility with an electric heating system as the heat source instead of radiations was constructed. The photon transmissions through the hydrogen moderator were simulated to search for an optimum experimental condition. From the simulation, it was confirmed that Am-241 was suitable for the measurement of the void fraction in the liquid hydrogen medium. A gamma densitometer using the Am-241 gamma-ray source was designed and installed at the mock-up of the CNS. The attenuation of 59.5 keV gamma-rays from the Am-241 through the hydrogen medium was measured by using an HPGe detector. The void fraction was determined using the amount of the gamma-ray attenuation. The void fractions in the hydrogen moderator were measured for stable thermo-siphon loops with several electric heat loads applied to the moderator cell of the CNS mock-up. The longitudinal distribution of the void fraction inside the moderator cell was also determined. The void fraction measured at a heat load of 720 W had values of 8-41% depending on the height from the bottom of the moderator cell. The overall void fraction was obtained by volume-weighted averaging of its longitudinal distribution. The void fraction at the nuclear heating power expected at the normal operation condition of the HANARO CNS facility was determined to be about 20%. The large uncertainty was expected in the void fraction determination by a gamma densitometer for the liquid hydrogen medium with the void fraction less than 10%. When the void fraction of the liquid hydrogen was near 20%, the uncertainty in the void fraction determination by using a gamma densitometer became relatively small, and it was regarded as an acceptable level. The measurements for the void fraction will be very useful for the design and operation of the HANARO CNS.

  11. Estimation of neutron mean wavelength from rocking curve dataThis work is a contribution of NIST, an agency of the US Government, and not subject to copyright laws.

    NASA Astrophysics Data System (ADS)

    Coakley, K. J.; Chowdhuri, Z.; Snow, W. M.; Richardson, J. M.; Dewey, M. S.

    2003-01-01

    At NIST, an in-beam neutron lifetime experiment is underway. In part of the experiment, a neutron detector is calibrated. The accuracy of the detector calibration depends, in part, on how accurately the mean wavelength of a neutron beam can be estimated from rocking curve data. Based on a stochastic model for neutron scattering, we simulate rocking curve data. To speed up the simulation, an importance sampling method is used. For the cases studied, importance sampling reduces the execution time of the simulation code by over a factor of 500. For simulated data, the statistical bias of the mean wavelength estimate is found to be 0.004%. This work is a contribution of NIST, an agency of the US Government, and not subject to copyright laws.

  12. Measurement of the parity-violating triton emission asymmetry in the reaction {sup 6}Li(n,{alpha}){sup 3}H with polarized cold neutrons

    SciTech Connect

    Vesna, V. A.; Shulgina, E. V.; Gledenov, Yu. M.; Sedyshev, P. V.; Nesvizhevsky, V. V.; Petoukhov, A. K.; Soldner, T.; Zimmer, O.

    2008-03-15

    We describe measurements of the parity-violating (P-odd) triton emission asymmetry coefficient a{sub P-odd} in the {sup 6}Li(n,{alpha}){sup 3}H reaction with polarized cold neutrons. Experiments were carried out at the Petersburg Nuclear Physics Institute (Gatchina, Russia) and at the Institut Laue-Langevin (Grenoble, France). We employed an ionisation chamber in a configuration allowing us to suppress the left-right asymmetry well below 10{sup -8}. An additional test for a false asymmetry due to eventual target impurities (''zero test'') resulted in a{sub 0-test}=(0.0{+-}0.5)x10{sup -8}. As final result of this series of experiments we obtained a{sub P-odd}=(-8.8{+-}2.1)x10{sup -8}.

  13. Optical polarizing neutron devices designed for pulsed neutron sources

    SciTech Connect

    Takeda, M.; Kurahashi, K.; Endoh, Y.; Itoh, S.

    1997-09-01

    We have designed two polarizing neutron devices for pulsed cold neutrons. The devices have been tested at the pulsed neutron source at the Booster Synchrotron Utilization Facility of the National Laboratory for High Energy Physics. These two devices proved to have a practical use for experiments to investigate condensed matter physics using pulsed cold polarized neutrons.

  14. Simulation of the Performance of a Fundamental Neutron Physics Beamline at the High Flux Isotope Reactor.

    PubMed

    Mahurin, Rob; Greene, Geoffrey; Kohler, Paul; Cianciolo, Vince

    2005-01-01

    We study the expected performance of the proposed fundamental neutron physics beamline at the upgraded High Flux Isotope Reactor at Oak Ridge National Laboratory. A curved neutron guide transmits the neutrons from the new cold source into a guide hall. A novel feature of the proposed guide is the use of vertical focussing to increase the flux for experiments that require relatively small cross-section beams. We use the simulation code IB to model straight, multi-channel curved, and tapered guides of various m values. Guide performance for the current NPDGamma and proposed abBA experiments is evaluated. PMID:27308114

  15. Simulation of the Performance of a Fundamental Neutron Physics Beamline at the High Flux Isotope Reactor

    SciTech Connect

    Mahurin, R.; Greene, Geoffrey L; Koehler, Paul Edward; Cianciolo, Vince

    2005-05-01

    We study the expected performance of the proposed fundamental neutron physics beamline at the upgraded High Flux Isotope Reactor at Oak Ridge National Laboratory. A curved neutron guide transmits the neutrons from the new cold source into a guide hall. A novel feature of the proposed guide is the use of vertical focusing to increase the flux for experiments that require relatively small cross-section beams. We use the simulation code IB to model straight, multi-channel curved, and tapered guides of various m values. Guide performance for the current NPDGamma and proposed abBA experiments is evaluated.

  16. Simulation of the Performance of a Fundamental Neutron Physics Beamline at the High Flux Isotope Reactor

    PubMed Central

    Mahurin, Rob; Greene, Geoffrey; Kohler, Paul; Cianciolo, Vince

    2005-01-01

    We study the expected performance of the proposed fundamental neutron physics beamline at the upgraded High Flux Isotope Reactor at Oak Ridge National Laboratory. A curved neutron guide transmits the neutrons from the new cold source into a guide hall. A novel feature of the proposed guide is the use of vertical focussing to increase the flux for experiments that require relatively small cross-section beams. We use the simulation code IB to model straight, multi-channel curved, and tapered guides of various m values. Guide performance for the current NPDGamma and proposed abBA experiments is evaluated. PMID:27308114

  17. Development of the quantum theory of T-odd asymmetries for prescission and evaporated third particles in ternary nuclear fission induced by cold polarized neutrons

    SciTech Connect

    Kadmensky, S. G.; Bunakov, V. E.; Titova, L. V.; Kadmensky, S. S.

    2011-10-15

    A comparative analysis of the results obtained by experimentally and theoretically studying T-odd asymmetries for various third particles in the true and delayed ternary nuclear fission induced by cold polarized neutrons was performed. It was confirmed that the appearance of these asymmetries was associated with the effect of rotation of a polarized system undergoing fission on the angular distributions of prescission and evaporated third particles with respect to the direction along which the emerging fission fragments flew apart, this effect being determined by the Coriolis interaction of the rotational and the internalmotion of the fissioning system. A quantum-mechanical description of particle motion in a rotating coordinate system was generalized to the case where gamma-ray emission was present. It was shown that the separation of the motions of an axially symmetric fissile system into a rotational and an internal motion was valid in the external region as well, where ternary-fission products had already been formed, if it was considered that the motion of fission fragments was tightly connected with the system symmetry axis, which rotated in the laboratory frame. It was found that the dependence of the fissile-system moment of inertia appearing in the Coriolis interaction Hamiltonian on the distance between the fission fragments flying apart generated an additional phase in the amplitude of the radial distribution of fission fragments. It was shown that this phase might change sizably the contribution of the interference between fission amplitudes of neutron resonances excited in a fissile compound nucleus to the absolute values of T -odd asymmetries, especially for third particles such as neutrons and photons, which interacted only slightly with fission fragments.

  18. Development and applications of a new neutron single-crystal diffractometer based on a two-dimensional large-area curved position-sensitive detector.

    PubMed

    Lee, Chang-Hee; Noda, Yukio; Ishikawa, Yoshihisa; Kim, Shin Ae; Moon, Myungkook; Kimura, Hiroyuki; Watanabe, Masashi; Dohi, Yuki

    2013-06-01

    A new single-crystal neutron diffractometer based on a large-area curved two-dimensional position-sensitive detector (C-2DPSD) has been developed. The diffractometer commissioning is almost complete, together with development of the measurement methodology and the raw data processing software package, the Reciprocal Analyzer, and the instrument is now ready to be launched for users. Position decoding of the C-2DPSD is via a delay-line readout method with an effective angular range of 110 × 54° in the horizontal and vertical directions, respectively, with a nominal radius of curvature of 530 mm. The diffractometer is equipped with a Ge(311) mosaic monochromator and two supermirror vacuum guide paths, one before and one after the monochromator position. The commissioning incorporates corrections and calibration of the instrument using an NaCl crystal, various applications such as crystallographic and magnetic structure measurements, a crystallinity check on large crystals, and a study on the composition or dopant content of a mixed crystal of (Tm x Yb1-x )Mn2O5. The installation of the diffractometer and the measurement method, the calibration procedure and results, the raw data treatment and visualization, and several applications using the large C-2DPSD-based diffractometer are reported. PMID:23682194

  19. Development and applications of a new neutron single-crystal diffractometer based on a two-dimensional large-area curved position-sensitive detector

    PubMed Central

    Lee, Chang-Hee; Noda, Yukio; Ishikawa, Yoshihisa; Kim, Shin Ae; Moon, Myungkook; Kimura, Hiroyuki; Watanabe, Masashi; Dohi, Yuki

    2013-01-01

    A new single-crystal neutron diffractometer based on a large-area curved two-dimensional position-sensitive detector (C-2DPSD) has been developed. The diffractometer commissioning is almost complete, together with development of the measurement methodology and the raw data processing software package, the Reciprocal Analyzer, and the instrument is now ready to be launched for users. Position decoding of the C-2DPSD is via a delay-line readout method with an effective angular range of 110 × 54° in the horizontal and vertical directions, respectively, with a nominal radius of curvature of 530 mm. The diffractometer is equipped with a Ge(311) mosaic monochromator and two supermirror vacuum guide paths, one before and one after the monochromator position. The commissioning incorporates corrections and calibration of the instrument using an NaCl crystal, various applications such as crystallographic and magnetic structure measurements, a crystallinity check on large crystals, and a study on the composition or dopant content of a mixed crystal of (TmxYb1−x)Mn2O5. The installation of the diffractometer and the measurement method, the calibration procedure and results, the raw data treatment and visualization, and several applications using the large C-2DPSD-based diffractometer are reported. PMID:23682194

  20. Neutron Optics Optimization for the SNS EQ-SANS Diffractometer

    SciTech Connect

    Zhao, Jinkui

    2011-01-01

    The extended Q-range small angle neutron scattering (EQ-SANS) diffractometer at the Spallation Neutron Source has recently been completed. Initial commissioning has shown that it has achieved its high intensity, low background, and wide dynamic range design goals. One of the key components that enable these performances is its neutron optics, which are extensively optimized using analytical and Monte Carlo methods. The EQ-SANS optics consist of a curved multichannel beam bender and sections of straight neutron guides on both ends of the bender. The bender and the guide are made of float glass coated with supermirror multilayers. The function of the optics is to ensure low instrument background by avoiding the direct line of sight of the neutron moderator at downstream locations, while transporting thermal and cold neutrons to the sample with maximum efficiency. In this work, the optimization of the EQ-SANS optics is presented.

  1. Neutron optics optimization for the SNS EQ-SANS diffractometer

    NASA Astrophysics Data System (ADS)

    Zhao, Jinkui

    2012-03-01

    The extended Q-range small angle neutron scattering (EQ-SANS) diffractometer at the Spallation Neutron Source has recently been completed. Initial commissioning has shown that it has achieved its high intensity, low background, and wide dynamic range design goals. One of the key components that enable these performances is its neutron optics, which are extensively optimized using analytical and Monte Carlo methods. The EQ-SANS optics consist of a curved multichannel beam bender and sections of straight neutron guides on both ends of the bender. The bender and the guide are made of float glass coated with supermirror multilayers. The function of the optics is to ensure low instrument background by avoiding the direct line of sight of the neutron moderator at downstream locations, while transporting thermal and cold neutrons to the sample with maximum efficiency. In this work, the optimization of the EQ-SANS optics is presented.

  2. The cold equation of state of tantalum

    SciTech Connect

    Greeff, Carl W; Rudin, Sven P; Corckett, Scott D; Wills, John M

    2009-01-01

    In high-pressure isentropic compression experiments (ICE), the pressure is dominated by the cold curve. In order to obtain an accurate semi-empirical cold curve for Ta, we calculate the thermal pressure from ab initio phonon and electronic excitation spectra. The cold curve is then inferred from ultrasonic and shock data. Our empirical cold pressure is compared to density functional calculations and found to be closer to GGA results at low pressure and to approach LDA at high pressure.

  3. Using a multi-parameter monitoring methodology to predict failures in the cryogenic plant of the cold neutron source at Australia's OPAL reactor

    NASA Astrophysics Data System (ADS)

    Lu, Weijian; Thiering, Russell

    2012-06-01

    A 5 kW Brayton-cycle helium refrigeration plant provides cooling at 20 K to the Cold Neutron Source (CNS) at Australia's OPAL Reactor. During several years of operation to the present day, the plant has experienced an unusually high number of turbine and compressor failures. The root cause for some of the failures is known, but for others remains to be determined. All of the failures were catastrophic without any prior warning from standard industrial monitoring based on singular process variables such as temperature, pressure and vibration. The failures and the down time they caused have been very costly. As the operator of the plant, we have developed a multi-parameter monitoring (MPM) methodology to track the performance of the plant. The methodology utilises indicators obtained from a combination of process variables based on their thermodynamic relations. By studying the historical trends of appropriate indicators, especially during the past failures, we have found some indicators that would be able to improve our predictive capability so that we can avoid similar failures in the future.

  4. Frequency curves

    USGS Publications Warehouse

    Riggs, H.C.

    1968-01-01

    This manual describes graphical and mathematical procedures for preparing frequency curves from samples of hydrologic data. It also discusses the theory of frequency curves, compares advantages of graphical and mathematical fitting, suggests methods of describing graphically defined frequency curves analytically, and emphasizes the correct interpretations of a frequency curve.

  5. Cold Sores

    MedlinePlus

    ... delivered directly to your desktop! more... What Are Cold Sores? Article Chapters What Are Cold Sores? Cold ... January 2012 Previous Next Related Articles: Canker and Cold Sores Aloe Vera May Help Relieve Mouth Sores ...

  6. The Isis cold moderators

    SciTech Connect

    Allen, G. M.; Broome, T. A.; Burridge, R. A.; Cragg, D.; Hall, R.; Haynes, D.; Hirst, J.; Hogston, J. R.; Jones, H. H.; Sexton, J.; Wright, P.

    1997-09-01

    ISIS is a pulsed spallation neutron source where neutrons are produced by the interaction of a 160 kW proton beam of energy 800 MeV in a water-cooled Tantalum Target. The fast neutrons produced are thermalized in four moderators: two ambient water, one liquid methane operating at 100K and a liquid hydrogen moderator at 20 K. This paper gives a description of the construction of both cold moderator systems, details of the operating experience and a description of the current development program.

  7. Probing cold dense nuclear matter.

    PubMed

    Subedi, R; Shneor, R; Monaghan, P; Anderson, B D; Aniol, K; Annand, J; Arrington, J; Benaoum, H; Benmokhtar, F; Boeglin, W; Chen, J-P; Choi, Seonho; Cisbani, E; Craver, B; Frullani, S; Garibaldi, F; Gilad, S; Gilman, R; Glamazdin, O; Hansen, J-O; Higinbotham, D W; Holmstrom, T; Ibrahim, H; Igarashi, R; de Jager, C W; Jans, E; Jiang, X; Kaufman, L J; Kelleher, A; Kolarkar, A; Kumbartzki, G; Lerose, J J; Lindgren, R; Liyanage, N; Margaziotis, D J; Markowitz, P; Marrone, S; Mazouz, M; Meekins, D; Michaels, R; Moffit, B; Perdrisat, C F; Piasetzky, E; Potokar, M; Punjabi, V; Qiang, Y; Reinhold, J; Ron, G; Rosner, G; Saha, A; Sawatzky, B; Shahinyan, A; Sirca, S; Slifer, K; Solvignon, P; Sulkosky, V; Urciuoli, G M; Voutier, E; Watson, J W; Weinstein, L B; Wojtsekhowski, B; Wood, S; Zheng, X-C; Zhu, L

    2008-06-13

    The protons and neutrons in a nucleus can form strongly correlated nucleon pairs. Scattering experiments, in which a proton is knocked out of the nucleus with high-momentum transfer and high missing momentum, show that in carbon-12 the neutron-proton pairs are nearly 20 times as prevalent as proton-proton pairs and, by inference, neutron-neutron pairs. This difference between the types of pairs is due to the nature of the strong force and has implications for understanding cold dense nuclear systems such as neutron stars. PMID:18511658

  8. Probing Cold Dense Nuclear Matter

    SciTech Connect

    Subedi, Ramesh; Shneor, R.; Monaghan, Peter; Anderson, Bryon; Aniol, Konrad; Annand, John; Arrington, John; Benaoum, Hachemi; Benmokhtar, Fatiha; Bertozzi, William; Boeglin, Werner; Chen, Jian-Ping; Choi, Seonho; Cisbani, Evaristo; Craver, Brandon; Frullani, Salvatore; Garibaldi, Franco; Gilad, Shalev; Gilman, Ronald; Glamazdin, Oleksandr; Hansen, Jens-Ole; Higinbotham, Douglas; Holmstrom, Timothy; Ibrahim, Hassan; Igarashi, Ryuichi; De Jager, Cornelis; Jans, Eddy; Jiang, Xiaodong; Kaufman, Lisa; Kelleher, Aidan; Kolarkar, Ameya; Kumbartzki, Gerfried; LeRose, John; Lindgren, Richard; Liyanage, Nilanga; Margaziotis, Demetrius; Markowitz, Pete; Marrone, Stefano; Mazouz, Malek; Meekins, David; Michaels, Robert; Moffit, Bryan; Perdrisat, Charles; Piasetzky, Eliazer; Potokar, Milan; Punjabi, Vina; Qiang, Yi; Reinhold, Joerg; Ron, Guy; Rosner, Guenther; Saha, Arunava; Sawatzky, Bradley; Shahinyan, Albert; Sirca, Simon; Slifer, Karl; Solvignon, Patricia; Sulkosky, Vince; Sulkosky, Vincent; Sulkosky, Vince; Sulkosky, Vincent; Urciuoli, Guido; Voutier, Eric; Watson, John; Weinstein, Lawrence; Wojtsekhowski, Bogdan; Wood, Stephen; Zheng, Xiaochao; Zhu, Lingyan

    2008-06-01

    The protons and neutrons in a nucleus can form strongly correlated nucleon pairs. Scattering experiments, in which a proton is knocked out of the nucleus with high-momentum transfer and high missing momentum, show that in carbon-12 the neutron-proton pairs are nearly 20 times as prevalent as proton-proton pairs and, by inference, neutron-neutron pairs. This difference between the types of pairs is due to the nature of the strong force and has implications for understanding cold dense nuclear systems such as neutron stars.

  9. Cold Stress

    MedlinePlus

    ... be at risk of cold stress. Extreme cold weather is a dangerous situation that can bring on ... the country. In regions relatively unaccustomed to winter weather, near freezing temperatures are considered factors for cold ...

  10. Cold intolerance

    MedlinePlus

    ... intolerance is an abnormal sensitivity to a cold environment or cold temperatures. ... can be a symptom of a problem with metabolism. Some people (often very thin women) do not tolerate cold environments because they have very little body fat and ...

  11. Common cold

    MedlinePlus

    ... are the most common reason that children miss school and parents miss work. Parents often get colds ... other children. A cold can spread quickly through schools or daycares. Colds can occur at any time ...

  12. Common Cold

    MedlinePlus

    ... coughing - everyone knows the symptoms of the common cold. It is probably the most common illness. In ... people in the United States suffer 1 billion colds. You can get a cold by touching your ...

  13. Cold moderators at ORNL

    SciTech Connect

    Lucas, A. T.

    1997-09-01

    The Advanced Neutron Source (ANS) cold moderators were not an 'Oak Ridge first', but would have been the largest both physically and in terms of cold neutron flux. Two cold moderators were planned each 410 mm in diameter and containing about 30L of liquid deuterium. They were to be completely independent of each other. A modular system design was used to provide greater reliability and serviceability. When the ANS was terminated, up–grading of the resident High Flux Isotope Reactor (HFIR) was examined and an initial study was made into the feasibility of adding a cold source. Because the ANS design was modular, it was possible to use many identical design features. Sub-cooled liquid at 4 bar abs was initially chosen for the HFIR design concept, but this was subsequently changed to 15 bar abs to operate above the critical pressure. As in the ANS, the hydrogen will operate at a constant pressure throughout the temperature range and a completely closed loop with secondary containment was adopted. The heat load of 2 kW made the heat flux comparable with that of the ANS. Subsequent studies into the construction of cryogenic moderators for the proposed new Synchrotron Neutron source indicated that again many of the same design concepts could be used. By connecting the two cold sources together in series, the total heat load of 2 kW is very close to that of the HFIR allowing a very similar supercritical hydrogen system to be configured. The two hydrogen moderators of the SNS provide a comparable heat load to the HFIR moderator. It is subsequently planned to connect the two in series and operate from a single cold loop system, once again using supercritical hydrogen. The spallation source also provided an opportunity to re-examine a cold pellet solid methane moderator operating at 20K.

  14. Design and estimated performance of a new neutron guide system for the NCNR expansion project

    SciTech Connect

    Cook, J. C.

    2009-02-15

    An integral part of the National Institute of Standards and Technology Center for Neutron Research (NCNR) expansion project is the addition of five cold neutron guide tubes serving multiple experimental stations in an expanded guide hall. The guides have curved-straight arrangements in the horizontal plane, employing horizontally or vertically defocusing and focusing sections in some cases to improve transmission efficiency or for beam reshaping. The horizontally curved sections eliminate direct lines of sight between the source and the experimental stations, and the outer (concave) surfaces generally have higher critical angles than the inner (convex) surfaces. These features result in well-filtered cold neutron beams with no intensity losses at shorter wavelengths with respect to curved guides having the higher critical angle coatings on both surfaces. For all guides the critical angle of the outer coating of the curved section is selected to achieve a desirable characteristic wavelength, consistent with the instrument requirements. On guides where the scattering-plane beam divergence must be strictly limited, the inner radial coatings of the curved sections and the side coatings and lengths of the final straight sections are chosen to produce the desired beam divergence while the outer radial coating is selected so as to obtain a spatial-angular uniformity of the transmitted beam that is not achievable using a curved guide alone. The long-wavelength transmission of such guides tends to exceed that of equivalent straight guides using crystal filters.

  15. Design and estimated performance of a new neutron guide system for the NCNR expansion project.

    PubMed

    Cook, J C

    2009-02-01

    An integral part of the National Institute of Standards and Technology Center for Neutron Research (NCNR) expansion project is the addition of five cold neutron guide tubes serving multiple experimental stations in an expanded guide hall. The guides have curved-straight arrangements in the horizontal plane, employing horizontally or vertically defocusing and focusing sections in some cases to improve transmission efficiency or for beam reshaping. The horizontally curved sections eliminate direct lines of sight between the source and the experimental stations, and the outer (concave) surfaces generally have higher critical angles than the inner (convex) surfaces. These features result in well-filtered cold neutron beams with no intensity losses at shorter wavelengths with respect to curved guides having the higher critical angle coatings on both surfaces. For all guides the critical angle of the outer coating of the curved section is selected to achieve a desirable characteristic wavelength, consistent with the instrument requirements. On guides where the scattering-plane beam divergence must be strictly limited, the inner radial coatings of the curved sections and the side coatings and lengths of the final straight sections are chosen to produce the desired beam divergence while the outer radial coating is selected so as to obtain a spatial-angular uniformity of the transmitted beam that is not achievable using a curved guide alone. The long-wavelength transmission of such guides tends to exceed that of equivalent straight guides using crystal filters. PMID:19256634

  16. The Fundamental Neutron Physics Beamline at the Spallation Neutron Source

    PubMed Central

    Greene, Geoffrey; Cianciolo, Vince; Koehler, Paul; Allen, Richard; Snow, William Michael; Huffman, Paul; Gould, Chris; Bowman, David; Cooper, Martin; Doyle, John

    2005-01-01

    The Spallation Neutron Source (SNS), currently under construction at Oak Ridge National Laboratory with an anticipated start-up in early 2006, will provide the most intense pulsed beams of cold neutrons in the world. At a projected power of 1.4 MW, the time averaged fluxes and fluences of the SNS will approach those of high flux reactors. One of the flight paths on the cold, coupled moderator will be devoted to fundamental neutron physics. The fundamental neutron physics beamline is anticipated to include two beam-lines; a broad band cold beam, and a monochromatic beam of 0.89 nm neutrons for ultracold neutron (UCN) experiments. The fundamental neutron physics beamline will be operated as a user facility with experiment selection based on a peer reviewed proposal process. An initial program of five experiments in neutron decay, hadronic weak interaction and time reversal symmetry violation have been proposed. PMID:27308112

  17. Common Cold

    MedlinePlus

    ... News & Events Volunteer NIAID > Health & Research Topics > Common Cold Skip Website Tools Website Tools Print this page ... Help people who are suffering from the common cold by volunteering for NIAID clinical studies on ClinicalTrials. ...

  18. Neutron streak camera

    DOEpatents

    Wang, C.L.

    1981-05-14

    Apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon.

  19. Neutron streak camera

    DOEpatents

    Wang, C.L.

    1983-09-13

    Disclosed is an apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon. 4 figs.

  20. Neutron streak camera

    DOEpatents

    Wang, Ching L.

    1983-09-13

    Apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon.

  1. Bradford Curves.

    ERIC Educational Resources Information Center

    Rousseau, Ronald

    1994-01-01

    Discussion of informetric distributions shows that generalized Leimkuhler functions give proper fits to a large variety of Bradford curves, including those exhibiting a Groos droop or a rising tail. The Kolmogorov-Smirnov test is used to test goodness of fit, and least-square fits are compared with Egghe's method. (Contains 53 references.) (LRW)

  2. Boron-copper neutron absorbing material and method of preparation

    DOEpatents

    Wiencek, Thomas C.; Domagala, Robert F.; Thresh, Henry

    1991-01-01

    A composite, copper clad neutron absorbing material is comprised of copper powder and boron powder enriched with boron 10. The boron 10 content can reach over 30 percent by volume, permitting a very high level of neutron absorption. The copper clad product is also capable of being reduced to a thickness of 0.05 to 0.06 inches and curved to a radius of 2 to 3 inches, and can resist temperatures of 900.degree. C. A method of preparing the material includes the steps of compacting a boron-copper powder mixture and placing it in a copper cladding, restraining the clad assembly in a steel frame while it is hot rolled at 900.degree. C. with cross rolling, and removing the steel frame and further rolling the clad assembly at 650.degree. C. An additional sheet of copper can be soldered onto the clad assembly so that the finished sheet can be cold formed into curved shapes.

  3. A neutron reflectometer with horizontal sample geometry at CARR

    NASA Astrophysics Data System (ADS)

    Yuan, Guangcui; Zhang, Hongxia; Cheng, He; Han, Charles C.; Li, Tianfu; He, Linfeng; Liu, YunTao; Chen, Dongfeng

    2011-11-01

    A neutron reflectometer with horizontal sample geometry has been developed by the Institute of Chemistry, Chinese Academy of Sciences (ICCAS), and recently installed at China Advanced Research Reactor (CARR) under the participating research team agreement with China Institute of Atomic Energy (CIAE). This instrument is the first neutron reflectometer in China, and is dedicated to the structural characterization of thin films and multilayers of soft matter. For the cold neutron source and curved guide, the feasible wavelength of the incident neutron beam is 4.75 Å monochromated by pyrolytic graphite crystals, and this permits the scattering vector Q ranging from -0.23 to 0.4 Å-1. This instrument is equipped with a 3He point detector to measure the incident neutron beam and a 3He point detector or linear position sensitive detector to detect the reflected neutron beam. It allows a step-by-step measurement by isochronously changing the incident and reflective angles, and also can be treated as a simple optical imaging element simultaneously measuring neutron reflectivity of multi incident angles using a loosely collimated beam in the absence of significant off-specular scattering. A detailed description of this flexible instrument and its performance characteristics are given.

  4. Characterization of large area, thick, and segmented silicon detector for electron and proton detection from neutron beta decay experiments in the cold and ultracold energies

    NASA Astrophysics Data System (ADS)

    Salas Bacci, Americo; McGaughey, Patrick; Baessler, Stefan; Broussard, Leah; Makela, Mark; Mirabal, Jacqueline; Pattie, Robert; Pocanic, Dinko; Hoedl, Seth; Sjue, Sky; Penttila, Seppo; Hasan, Syed; Wilburn, Scott; Young, Albert; Zeck, Bryan; Wang, Zhehui

    2012-10-01

    The ``Nab'' and ``UCNB'' collaborations have proposed to measure the correlation parameters in neutron β-decay at Oak Ridge and Los Alamos National Laboratory, using a novel detector design and electromagnetic spectrometers. Two large area, thick, hexagonal-segmented Silicon detectors containing 128 pixels per detector are going to be used to detect the electron and proton from neutron decay. Both Silicon detectors are connected by magnetic field lines of few Tesla field strength, and set on an electrostatic potential, such that protons can be accelerated up to 30 keV in order to be detected. We report the characterization, operation, proton detection from 15 to 30 keV, total pulse height defect, computation of atomic scattering defect, recombination defect, and evaluation of dead layer for these large area and thick Silicon detectors.

  5. Neutron dose equivalent meter

    DOEpatents

    Olsher, Richard H.; Hsu, Hsiao-Hua; Casson, William H.; Vasilik, Dennis G.; Kleck, Jeffrey H.; Beverding, Anthony

    1996-01-01

    A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.

  6. Common cold

    MedlinePlus

    ... often causes a runny nose, nasal congestion, and sneezing. You may also have a sore throat, cough, ... symptoms are: Nasal congestion Runny nose Scratchy throat Sneezing Adults and older children with colds generally have ...

  7. Cold Intolerance

    MedlinePlus

    ... from the Handbook on the Late Effects of Poliomyelitis for Physicians and Survivors © Cold Intolerance Many polio ... index of Handbook on the Late Effects of Poliomyelitis for Physicians and Survivors © Back to top Contact ...

  8. Cold injuries.

    PubMed

    Long, William B; Edlich, Richard F; Winters, Kathryne L; Britt, L D

    2005-01-01

    Exposure to cold can produce a variety of injuries that occur as a result of man's inability to adapt to cold. These injuries can be divided into localized injury to a body part, systemic hypothermia, or a combination of both. Body temperature may fall as a result of heat loss by radiation, evaporation, conduction, and convection. Hypothermia or systemic cold injury occurs when the core body temperature has decreased to 35 degrees C (95 degrees F) or less. The causes of hypothermia are either primary or secondary. Primary, or accidental, hypothermia occurs in healthy individuals inadequately clothed and exposed to severe cooling. In secondary hypothermia, another illness predisposes the individual to accidental hypothermia. Hypothermia affects multiple organs with symptoms of hypothermia that vary according to the severity of cold injury. The diagnosis of hypothermia is easy if the patient is a mountaineer who is stranded in cold weather. However, it may be more difficult in an elderly patient who has been exposed to a cold environment. In either case, the rectal temperature should be checked with a low-reading thermometer. The general principals of prehospital management are to (1) prevent further heat loss, (2) rewarm the body core temperature in advance of the shell, and (3) avoid precipitating ventricular fibrillation. There are two general techniques of rewarming--passive and active. The mechanisms of peripheral cold injury can be divided into phenomena that affect cells and extracellular fluids (direct effects) and those that disrupt the function of the organized tissue and the integrity of the circulation (indirect effects). Generally, no serious damage is seen until tissue freezing occurs. The mildest form of peripheral cold injury is frostnip. Chilblains represent a more severe form of cold injury than frostnip and occur after exposure to nonfreezing temperatures and damp conditions. Immersion (trench) foot, a disease of the sympathetic nerves and blood

  9. Precision Polarization of Neutrons

    NASA Astrophysics Data System (ADS)

    Martin, Elise; Barron-Palos, Libertad; Couture, Aaron; Crawford, Christopher; Chupp, Tim; Danagoulian, Areg; Estes, Mary; Hona, Binita; Jones, Gordon; Klein, Andi; Penttila, Seppo; Sharma, Monisha; Wilburn, Scott

    2009-05-01

    Determining polarization of a cold neutron beam to high precision is required for the next generation neutron decay correlation experiments at the SNS, such as the proposed abBA and PANDA experiments. Precision polarimetry measurements were conducted at Los Alamos National Laboratory with the goal of determining the beam polarization to the level of 10-3 or better. The cold neutrons from FP12 were polarized using optically polarized ^3He gas as a spin filter, which has a highly spin-dependent absorption cross section. A second ^ 3He spin filter was used to analyze the neutron polarization after passing through a resonant RF spin rotator. A discussion of the experiment and results will be given.

  10. Curves and Their Properties.

    ERIC Educational Resources Information Center

    Yates, Robert C.

    This volume, a reprinting of a classic first published in 1952, presents detailed discussions of 26 curves or families of curves, and 17 analytic systems of curves. For each curve the author provides a historical note, a sketch or sketches, a description of the curve, a discussion of pertinent facts, and a bibliography. Depending upon the curve,…

  11. COLD TRAP

    DOEpatents

    Milleron, N.

    1963-03-12

    An improved linear-flow cold trap is designed for highvacuum applications such as mitigating back migration of diffusion pump oil moiecules. A central pot of liquid nitrogen is nested within and supported by a surrounding, vertical, helical coil of metai sheet, all enveloped by a larger, upright, cylindrical, vacuum vessel. The vertical interstices between successive turns of the coil afford lineal, axial, high-vacuum passages between open mouths at top and bottom of said vessel, while the coil, being cold by virtue of thermal contact of its innermost turn with the nitrogen pot, affords expansive proximate condensation surfaces. (AEC)

  12. European Neutrons form Parasitic Research to Global Strategy: Realizing Plans for a Transnational European Spallation Source in the Wake of the Cold War

    NASA Astrophysics Data System (ADS)

    Kaiserfeld, Thomas

    2016-03-01

    Studies of Big Science have early on focused on instrumentation and scientific co-operation in large organizations, later on to take into account symbolic values and specific research styles while more recently also involving the relevance of commercial interests and economic development as well as the assimilation of research traditions. In accordance with these transformed practices, this presentation will analyze how an organization with the purpose of realizing a Big-Science facility, The European Spallation Source, has successfully managed to present the project as relevant to different national and international policy-makers, to the community of European neutron researchers as well as to different industrial interests. All this has been achieved in a research-policy environment, which has been the subject to drastic transformations, from calls to engage researchers from the former eastern bloc in the early 1990s via competition with American and Asian researchers at the turn of the century 2000 to intensified demands on business applications. During this process, there has also been fierce competition between different potential sites in the U.K., Germany, Spain, Hungary and Sweden, not once, but twice. The project has in addition been plagued by withdrawals of key actors as well as challenging problems in the field of spallation-source construction. Nevertheless, the European Spallation Source has survived from the early 1990s until today, now initiating the construction process at Lund in southern Sweden. In this presentation, the different measures taken and arguments raised by the European Spallation Source project in order to realize the facility will be analysed. Especially the different designs of the European Spallation Source will be analysed as responses to external demands and threats.

  13. NEUTRON DENSITY CONTROL IN A NEUTRONIC REACTOR

    DOEpatents

    Young, G.J.

    1959-06-30

    The method and means for controlling the neutron density in a nuclear reactor is described. It describes the method and means for flattening the neutron density distribution curve across the reactor by spacing the absorbing control members to varying depths in the central region closer to the center than to the periphery of the active portion of the reactor to provide a smaller neutron reproduction ratio in the region wherein the members are inserted, than in the remainder of the reactor thereby increasing the over-all potential power output.

  14. Project COLD.

    ERIC Educational Resources Information Center

    Kazanjian, Wendy C.

    1982-01-01

    Describes Project COLD (Climate, Ocean, Land, Discovery) a scientific study of the Polar Regions, a collection of 35 modules used within the framework of existing subjects: oceanography, biology, geology, meterology, geography, social science. Includes a partial list of topics and one activity (geodesic dome) from a module. (Author/SK)

  15. Cold Sores

    MedlinePlus

    ... causes oral herpes, or cold sores. Type 1 herpes virus infects more than half of the U.S. population by the time they reach their 20s. Type 2 usually affects the genital area Some people have no symptoms from the ...

  16. Standard Mastery Curves and Skew Curves.

    ERIC Educational Resources Information Center

    Warries, Egbert

    The objective of the study is to convince educational researchers of the necessity for "standard mastery curves" for the graphical representation of scores on summative tests for a group of students. Attention is drawn to the study of theoretical and empirical skew curves in education and biology. Use of standard mastery curves and study of skew…

  17. Hot, Cold, and Really Cold.

    ERIC Educational Resources Information Center

    Leyden, Michael

    1997-01-01

    Describes a physics experiment investigating temperature prediction and the relationship between the physical properties of heat units, melting, dissolving, states of matter, and energy loss. Details the experimental setup, which requires hot and cold water, a thermometer, and ice. Notes that the experiment employs a deliberate counter-intuitive…

  18. Chilling Out with Colds

    MedlinePlus

    ... most common cold virus, but more than 200 viruses can cause colds. Because there are so many, ... to help you feel better. Take that, cold viruses! continue How Kids Catch Colds Mucus (say: MYOO- ...

  19. Coping with Cold Sores

    MedlinePlus

    ... Here's Help White House Lunch Recipes Coping With Cold Sores KidsHealth > For Kids > Coping With Cold Sores ... sore." What's that? Adam wondered. What Is a Cold Sore? Cold sores are small blisters that is ...

  20. Visualization of water usage and photosynthetic activity of street trees exposed to 2 ppm of SO 2—A combined evaluation by cold neutron and chlorophyll fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Matsushima, U.; Kardjilov, N.; Hilger, A.; Manke, I.; Shono, H.; Herppich, W. B.

    2009-06-01

    Photosynthetic efficacy and auto-exhaust-fume resistance of street trees were evaluated by cold neutron radiography (CNR) with D 2O tracer and chlorophyll fluorescence (CF) imaging. With these techniques, information on the responses of water usage and photosynthetic activity of plants exposed to simulate toxic auto-exhaust fumes (2 ppm SO 2 in air) were obtained. Branches of hibiscus trees were detached, placed into a tub with aerated water and used for the experiments after rooting. A CF image was taken before SO 2 was applied for 1 h. During the experiment, CNR and CF imaging were conduced. H 2O and D 2O in the plant container were exchanged every 30 min to observe water uptake. D 2O tracer clearly showed water uptake into the hibiscus stem during each treatment. When the atmosphere was changed from simulated auto-exhaust fumes to normal air again, the amount of D 2O and, hence, water uptake increased. CF imaging was well suited to evaluate the effects of SO 2 as simulated toxic auto-exhaust fumes on plants. The maximum photochemical efficiency ( Fv/ Fm), a sensitive indicator of the efficacy and the integrity of plants' photosynthesis, immediately dropped by 30% after supplying the simulated auto-exhaust fumes. This indicates that toxic auto-exhaust fumes negatively affected the photosynthetic activity of hibiscus leaves. Simultaneous CNR and CF imaging successfully visualized variations of photosynthetic activity and water uptake in the sample. Thus, this combination method was effective to non-destructive analyze the physiological status of plants.

  1. Combined neutron imaging techniques for cultural heritage purpose

    SciTech Connect

    Materna, T.

    2009-01-28

    This article presents the different new neutron techniques developed by the Ancient Charm collaboration to image objects of cultural heritage importance: Prompt-gamma-ray activation imaging (PGAI) coupled to cold/thermal neutron transmission tomography, Neutron Resonance Capture Imaging (NRCI) and Neutron Resonance Tomography.

  2. Explicit superconic curves.

    PubMed

    Cho, Sunggoo

    2016-09-01

    Conics and Cartesian ovals are extremely important curves in various fields of science. In addition, aspheric curves based on conics are useful in optical design. Superconic curves, recently suggested by Greynolds, are extensions of both conics and Cartesian ovals and have been applied to optical design. However, they are not extensions of aspheric curves based on conics. In this work, we investigate another type of superconic curves. These superconic curves are extensions of not only conics and Cartesian ovals but also aspheric curves based on conics. Moreover, these are represented in explicit form, while Greynolds's superconic curves are in implicit form. PMID:27607506

  3. Precision Neutron Polarimetry for Neutron Beta Decay

    PubMed Central

    Penttila, S. I.; Bowman, J. D.

    2005-01-01

    The abBA collaboration is developing a new type of field-expansion spectrometer for a measurement of the three correlation coefficients a, A, and B and the shape parameter b. The measurement of A and B requires precision neutron polarimetry. We will polarize a pulsed cold neutron beam from the SNS using a 3He neutron spin filter. The well-known polarizing cross section for n-3He has a 1/v dependence, where v is the neutron velocity, which is used to determine the absolute beam polarization through a time-of-flight (TOF) measurement. We show that by measuring the TOF dependence of A and B, the coefficients and the neutron polarization can be determined with a small loss of the statistical precision and with negligible systematic error. We conclude that it is possible to determine the neutron polarization averaged over a long run in the neutron beta decay experiment with a statistical error less than 10−4. We discuss various sources of systematic uncertainty in the measurement of A and B and conclude that the fractional systematic errors are less than 2 × 10−4. PMID:27308142

  4. COLD TRAPS

    DOEpatents

    Thompson, W.I.

    1958-09-30

    A cold trap is presented for removing a condensable component from a gas mixture by cooling. It consists of a shell, the exterior surface of which is chilled by a refrigerant, and conductive fins welded inside the shell to condense the gas, and distribute the condensate evenly throughout the length of the trap, so that the trap may function until it becomes completely filled with the condensed solid. The contents may then be removed as either a gas or as a liquid by heating the trap. This device has particuinr use as a means for removing uranium hexafluoride from the gaseous diffusion separation process during equipment breakdown and repair periods.

  5. Precision neutron polarimetry for neutron beta decay

    SciTech Connect

    Penttila, S. I.; Bowman, J. D.

    2004-01-01

    The abBA collaboration is developing a new type of field-expansion spectrometer for measurement of the three correlation coefficients a, A, and B and shape parameter b. The measurement of A and B requires precision neutron polarimetry. We will polarize a pulsed cold neutron beam from SNS using a {sup 3}He neutron spin filter. The well-known polarizing cross section for n-{sup 3}He has 1/v dependence, which is used to determine the absolute beam polarization through a time-of-flight (TOF) measurement. We show that measuring the TOF dependence of A and B, the coefficients and the neutron polarization can be determined with small loss of statistical precision and negligible systematic error. We conclude that it is possible to determine the neutron polarization averaged over a run in the neutron beta decay experiment to better than 10{sup -3}. We discuss various sources of systematic uncertainties in the measurement of A and B and conclude that they are less than 10{sup -4}.

  6. Optimization of neutron source

    SciTech Connect

    Hooper, E.B.

    1993-11-09

    I consider here the optimization of the two component neutron source, allowing beam species and energy to vary. A simple model is developed, based on the earlier publications, that permits the optimum to be obtained simply. The two component plasma, with one species of hot ion (D{sup +} or T{sup +}) and the complementary species of cold ion, is easy to analyze in the case of a spatially uniform cold plasma, as to good approximation the total number of hot ions is important but not their spatial distribution. Consequently, the optimization can ignore spatial effects. The problem of a plasma with both types of hot ions and cold ions is rather more difficult, as the neutron production by hot-hot interactions is sensitive to their spatial distributions. Consequently, consideration of this problem will be delayed to a future memorandum. The basic model is that used in the published articles on the two-component, beam-plasma mirror source. I integrate the Fokker-Planck equation analytically, obtaining good agreement with previous numerical results. This simplifies the optimization, by providing a functional form for the neutron production. The primary result is expressed in terms of the power efficiency: watts of neutrons/watts of primary power. The latter includes the positive ion neutralization efficiency. At 150 keV, the present model obtains an efficiency of 0.66%, compared with 0.53% of the earlier calculation.

  7. Cough & Cold Medicine Abuse

    MedlinePlus

    ... I Help a Friend Who Cuts? Cough & Cold Medicine Abuse KidsHealth > For Teens > Cough & Cold Medicine Abuse ... DXM Why Do People Use Cough and Cold Medicines to Get High? There's an ingredient in many ...

  8. Cold symptoms (image)

    MedlinePlus

    Colds are caused by a virus and can occur year-round. The common cold generally involves a runny nose, nasal congestion, and ... symptoms include sore throat, cough, and headache. A cold usually lasts about 7 days, with perhaps a ...

  9. Colds and flus - antibiotics

    MedlinePlus

    Antibiotics - colds and flu ... treat infections that are caused by a virus. Colds and flu are caused by viruses. If you ... Hamilton A. Treatments for symptoms of the common cold. Am Fam Physician. 2013;88(12):Online. PMID: ...

  10. Vitamin C and colds

    MedlinePlus

    Colds and vitamin C ... belief that vitamin C can cure the common cold , research about this claim is conflicting. Large doses ... vitamin C may help reduce how long a cold lasts, but they do not appear to protect ...

  11. Cold Atoms

    NASA Astrophysics Data System (ADS)

    Bellac, Michel Le

    2014-11-01

    This chapter and the following one address collective effects of quantum particles, that is, the effects which are observed when we put together a large number of identical particles, for example, electrons, helium-4 or rubidium-85 atoms. We shall see that quantum particles can be classified into two categories, bosons and fermions, whose collective behavior is radically different. Bosons have a tendency to pile up in the same quantum state, while fermions have a tendency to avoid each other. We say that bosons and fermions obey two different quantum statistics, the Bose-Einstein and the Fermi-Dirac statistics, respectively. Temperature is a collective effect, and in Section 5.1 we shall explain the concept of absolute temperature and its relation to the average kinetic energy of molecules. We shall describe in Section 5.2 how we can cool atoms down thanks to the Doppler effect, and explain how cold atoms can be used to improve the accuracy of atomic clocks by a factor of about 100. The effects of quantum statistics are prominent at low temperatures, and atom cooling will be used to obtain Bose-Einstein condensates at low enough temperatures, when the atoms are bosons.

  12. Earth formation porosity determination with dual epithermal neutron detector system

    SciTech Connect

    Mongne, M. L.

    1985-03-19

    A method of determining the porosity of earth formations surrounding a wellbore despite shielding of that formation by well casing, cement or mud cake. The method includes producing fast neutrons in a wellbore and detecting a first epithermal neutron population resulting from passage of neutrons from the source through a designated first region and a second epithermal neutron population resulting from passage of neutrons through a designated second region. The relationship of the logarithms of a first and a second epithermal neutron population resulting from passage of neutrons through a plurality of known porosity homogenous mediums is determined and plotted as a first curve with each point representing a unique value of porosity. A second curve of the logarithms of the first and second epithermal neutron populations in the actual wellbore is plotted. Individual points on the second curve are then corrected to the first curve utilizing known attenuating factors to determine the porosity of the earth formation.

  13. Cold energy

    SciTech Connect

    Wallace, John P.

    2015-12-04

    Deviations in Q for resonant superconducting radio frequency niobium accelerator cavities are generally correlated with resistivity loss mechanisms. Field dependent Qs are not well modeled by these classical loss mechanisms, but rather can represent a form of precision cavity surface thermometry. When the field dependent Q variation shows improvement with increasing B field level the classical treatment of this problem is inadequate. To justify this behavior hydrogen as a ubiquitous impurity in niobium, which creates measurable property changes, even at very low concentrations is typically considered the cause of such anomalous behavior. This maybe the case in some instances, but more importantly any system operating with a highly coherent field with a significant time dependent magnetic component at near 2° K will have the ability to organize the remaining free spins within the London penetration depth to form a coupled energy reservoir in the form of low mass spin waves. The niobium resonant cavities are composed of a single isotope with a large nuclear spin. When the other loss mechanisms are stripped away this may be the gain medium activated by the low level residual magnetic fields. It was found that one resonant cavity heat treatment produced optimum surface properties and then functioned as a MASER extracting energy from the 2° K thermal bath while cooling the cavity walls. The cavity operating in this mode is a simulator of what can take place in the wider but not colder universe using the cosmic microwave background (CMB) as a thermal source. The low mass, long lifetimes, and the scale of the magnetic spin waves on the weakly magnetized interstellar medium allows energy to be stored that is many orders of magnitude colder than the cosmic microwave background. A linear accelerator cavity becomes a tool to explore the properties of the long wave length magnetic spin waves that populate this cold low energy regime.

  14. Cold energy

    NASA Astrophysics Data System (ADS)

    Wallace, John P.

    2015-12-01

    Deviations in Q for resonant superconducting radio frequency niobium accelerator cavities are generally correlated with resistivity loss mechanisms. Field dependent Qs are not well modeled by these classical loss mechanisms, but rather can represent a form of precision cavity surface thermometry. When the field dependent Q variation shows improvement with increasing B field level the classical treatment of this problem is inadequate. To justify this behavior hydrogen as a ubiquitous impurity in niobium, which creates measurable property changes, even at very low concentrations is typically considered the cause of such anomalous behavior. This maybe the case in some instances, but more importantly any system operating with a highly coherent field with a significant time dependent magnetic component at near 2° K will have the ability to organize the remaining free spins within the London penetration depth to form a coupled energy reservoir in the form of low mass spin waves. The niobium resonant cavities are composed of a single isotope with a large nuclear spin. When the other loss mechanisms are stripped away this may be the gain medium activated by the low level residual magnetic fields. It was found that one resonant cavity heat treatment produced optimum surface properties and then functioned as a MASER extracting energy from the 2° K thermal bath while cooling the cavity walls. The cavity operating in this mode is a simulator of what can take place in the wider but not colder universe using the cosmic microwave background (CMB) as a thermal source. The low mass, long lifetimes, and the scale of the magnetic spin waves on the weakly magnetized interstellar medium allows energy to be stored that is many orders of magnitude colder than the cosmic microwave background. A linear accelerator cavity becomes a tool to explore the properties of the long wave length magnetic spin waves that populate this cold low energy regime.

  15. A simple expression for the cold compression curve.

    NASA Astrophysics Data System (ADS)

    Čelebonović, V.

    1996-10-01

    The aim of this contribution is to present expressions for the bulk modulus of a material and its pressure derivative obtained by using the semi-classical theory of dense matter proposed by P. Savić and R. Kašanin. Some possibilities for the application of these expressions are briefly discussed.

  16. Neutronic reactor

    DOEpatents

    Wende, Charles W. J.; Babcock, Dale F.; Menegus, Robert L.

    1983-01-01

    A nuclear reactor includes an active portion with fissionable fuel and neutron moderating material surrounded by neutron reflecting material. A control element in the active portion includes a group of movable rods constructed of neutron-absorbing material. Each rod is movable with respect to the other rods to vary the absorption of neutrons and effect control over neutron flux.

  17. LENS: A New Pulsed Neutron Source for Research and Education

    PubMed Central

    Leuschner, M.; Baxter, D. V.; Cameron, J. M.; Derenchuk, V.; Lavelle, C.; Lone, A.; Nann, H.; Rinckel, T.; Snow, W. M.

    2005-01-01

    A new pulsed neutron source is under construction at the Indiana University Cyclotron Facility (IUCF). Neutrons are produced via (p,n) reactions by a low-energy proton beam incident on a thin beryllium target. The source is tightly coupled to a cold methane moderator held at a temperature of 20 K or below. The resulting time-averaged cold neutron flux is expected to be comparable to that of the Intense Pulsed Neutron Source (IPNS) facility at Argonne National Laboratory. The initial experimental suite will include instrumentation for small angle neutron scattering (SANS), moderator studies, radiography, and zero-field spin-echo SANS. PMID:27308113

  18. Cold fusion studies

    NASA Astrophysics Data System (ADS)

    Hembree, D. M.; Burchfield, L. A.; Fuller, E. L., Jr.; Perey, F. G.; Mamantov, G.

    1990-06-01

    A series of experiments designed to detect the by-products expected from deuterium fusion occurring in the palladium and titanium cathodes of heavy water, D2O, electrolysis cells is reported. The primary purpose of this account is to outline the integrated experimental design developed to test the cold fusion hypothesis and to report preliminary results that support continuing the investigation. Apparent positive indicators of deuterium fusion were observed, but could not be repeated or proved to originate from the electrochemical cells. In one instance, two large increases in the neutron count rate, the largest of which exceeded the background by 27 standard deviations, were observed. In a separate experiment, one of the calorimetry cells appeared to be producing approximately 18 percent more power that the input value, but thermistor failure prevented an accurate recording of the event as a function of time. In general, the tritium levels in most cells followed the slow enrichment expected from the electrolysis of D2O containing a small amount of tritium. However, after 576 hours of electrolysis, one cell developed a tritium concentration approximately seven times greater than expected level.

  19. Cold dark matter halos

    NASA Astrophysics Data System (ADS)

    Dubinski, John Joseph

    The dark halos arising in the Cold Dark Matter (CDM) cosmology are simulated to investigate the relationship between the structure and kinematics of dark halos and galaxies. Realistic cosmological initial conditions and tidal field boundary conditions are used in N-body simulations of the collapse of density peaks to form dark halos. The core radii of dark halos are no greater than the softening radius, rs = 1.4 kpc. The density profiles can be fit with an analytical Hernquist (1990) profile with an effective power law which varies between -1 in the center to -4 at large radii. The rotation curves of dark halos resemble the flat rotation curves of spiral galaxies in the observed range, 1.5 approximately less than r approximately less than 30 kpc. The halos are strongly triaxial and very flat with (c/a) = 0.50 and (b/a) = 0.71. The distribution of ellipticities for dark halos reaches a maximum at epsilon = 0.5 in contrast to the distribution for elliptical galaxies which peaks at epsilon = 0.2 suggesting that ellipticals are much rounder than dark halos. Dark halos are generally flatter than their progenitor density peaks. The final shape and orientation of a dark halo are largely determined by tidal torquing and are sensitive to changes in the strength and orientation of a tidal field. Dark halos are pressure supported objects with negligible rotational support as indicated by the mean dimensionless spin, lamda = 0.042 +/- 0.024. The angular momentum vector tends to align with the true minor axis of dark halos. Elliptical galaxies have a similar behavior implied by the observation of the tendency for alignment of the rotation vector and the apparent minor axis. The origin of this behavior may be traced to the tendency for tidal torques to misalign with the major axis of a density peak. Tidal torques are found to isotropize the velocity ellipsoids of dark halos at large radii, contrary to the expectation of radially anisotropic velocity ellipsoids in cold collapse

  20. Neutron star structure from QCD

    NASA Astrophysics Data System (ADS)

    Fraga, Eduardo S.; Kurkela, Aleksi; Vuorinen, Aleksi

    2016-03-01

    In this review article, we argue that our current understanding of the thermodynamic properties of cold QCD matter, originating from first principles calculations at high and low densities, can be used to efficiently constrain the macroscopic properties of neutron stars. In particular, we demonstrate that combining state-of-the-art results from Chiral Effective Theory and perturbative QCD with the current bounds on neutron star masses, the Equation of State of neutron star matter can be obtained to an accuracy better than 30% at all densities.

  1. QPO Constraints on Neutron Stars

    NASA Technical Reports Server (NTRS)

    Miller, M. Coleman

    2005-01-01

    The kilohertz frequencies of QPOs from accreting neutron star systems imply that they are generated in regions of strong gravity, close to the star. This suggests that observations of the QPOs can be used to constrain the properties of neutron stars themselves, and in particular to inform us about the properties of cold matter beyond nuclear densities. Here we discuss some relatively model-insensitive constraints that emerge from the kilohertz QPOs, as well as recent developments that may hint at phenomena related to unstable circular orbits outside neutron stars.

  2. Crystallization of dense neutron matter

    NASA Technical Reports Server (NTRS)

    Canuto, V.; Chitre, S. M.

    1974-01-01

    The equation of state for cold neutron matter at high density is studied in the t-matrix formulation, and it is shown that energetically it is convenient to have neutrons in a crystalline configuration rather than in a liquid state for values of the density exceeding 1600 Tg/cu cm. The study of the mechanical properties indicates that the system is stable against shearing stresses. A solid core in the deep interior of heavy neutron stars appears to offer the most plausible explanation of speed-ups observed in the Vela pulsar.

  3. The genus curve of the Abell clusters

    NASA Technical Reports Server (NTRS)

    Rhoads, James E.; Gott, J. Richard, III; Postman, Marc

    1994-01-01

    We study the topology of large-scale structure through a genus curve measurement of the recent Abell catalog redshift survey of Postman, Huchra, and Geller (1992). The structure is found to be spongelike near median density and to exhibit isolated superclusters and voids at high and low densities, respectively. The genus curve shows a slight shift toward 'meatball' topology, but remains consistent with the hypothesis of Gaussian random phase initial conditions. The amplitude of the genus curve corresponds to a power-law spectrum with index n = 0.21(sub -0.47 sup +0.43) on scales of 48/h Mpc or to a cold dark matter power spectrum with omega h = 0.36(sub -0.17 sup +0.46).

  4. Cold denaturation of monoclonal antibodies

    PubMed Central

    Lazar, Kristi L; Patapoff, Thomas W

    2010-01-01

    The susceptibility of monoclonal antibodies (mAbs) to undergo cold denaturation remains unexplored. In this study, the phenomenon of cold denaturation was investigated for a mAb, mAb1, through thermodynamic and spectroscopic analyses. tryptophan fluorescence and circular dichroism (CD) spectra were recorded for the guanidine hydrochloride (GuHCl)-induced unfolding of mAb1 at pH 6.3 at temperatures ranging from −5 to 50°C. A three-state unfolding model incorporating the linear extrapolation method was fit to the fluorescence data to obtain an apparent free energy of unfolding, ΔGu, at each temperature. CD studies revealed that mAb1 exhibited polyproline II helical structure at low temperatures and at high GuHCl concentrations. the Gibbs-Helmholtz expression fit to the ΔGu versus temperature data from fluorescence gave a ΔCp of 8.0 kcal mol−1 K−1, a maximum apparent stability of 23.7 kcal mol−1 at 18°C, and an apparent cold denaturation temperature (TCD) of −23°C. ΔGu values for another mAb (mAb2) with a similar framework exhibited less stability at low temperatures, suggesting a depressed protein stability curve and a higher relative TCD. Direct experimental evidence of the susceptibility of mAb1 and mAb2 to undergo cold denaturation in the absence of denaturant was confirmed at pH 2.5. thus, mAbs have a potential to undergo cold denaturation at storage temperatures near −20°C (pH 6.3), and this potential needs to be evaluated independently for individual mAbs. PMID:20093856

  5. The Skipping Rope Curve

    ERIC Educational Resources Information Center

    Nordmark, Arne; Essen, Hanno

    2007-01-01

    The equilibrium of a flexible inextensible string, or chain, in the centrifugal force field of a rotating reference frame is investigated. It is assumed that the end points are fixed on the rotation axis. The shape of the curve, the skipping rope curve or "troposkien", is given by the Jacobi elliptic function sn. (Contains 3 figures.)

  6. Anodic Polarization Curves Revisited

    ERIC Educational Resources Information Center

    Liu, Yue; Drew, Michael G. B.; Liu, Ying; Liu, Lin

    2013-01-01

    An experiment published in this "Journal" has been revisited and it is found that the curve pattern of the anodic polarization curve for iron repeats itself successively when the potential scan is repeated. It is surprising that this observation has not been reported previously in the literature because it immediately brings into…

  7. Flow-duration curves

    USGS Publications Warehouse

    Searcy, James Kincheon

    1959-01-01

    The flow-duration curve is a cumulative frequency curve that shows the percent of time specified discharges were equaled or exceeded during a given period. It combines in one curve the flow characteristics of a stream throughout the range of discharge, without regard to the sequence of occurrence. If the period upon which the curve is based represents the long-term flow of a stream, the curve may be used to predict the distribution of future flows for water- power, water-supply, and pollution studies. This report shows that differences in geology affect the low-flow ends of flow-duration curves of streams in adjacent basins. Thus, duration curves are useful in appraising the geologic characteristics of drainage basins. A method for adjusting flow-duration curves of short periods to represent long-term conditions is presented. The adjustment is made by correlating the records of a short-term station with those of a long-term station.

  8. Weathering Patterns of Ignitable Liquids with the Advanced Distillation Curve Method

    PubMed Central

    Bruno, Thomas J; Allen, Samuel

    2013-01-01

    One can take advantage of the striking similarity of ignitable liquid vaporization (or weathering) patterns and the separation observed during distillation to predict the composition of residual compounds in fire debris. This is done with the advanced distillation curve (ADC) metrology, which separates a complex fluid by distillation into fractions that are sampled, and for which thermodynamically consistent temperatures are measured at atmospheric pressure. The collected sample fractions can be analyzed by any method that is appropriate. Analytical methods we have applied include gas chromatography (with flame ionization, mass spectrometric and sulfur chemiluminescence detection), thin layer chromatography, FTIR, Karl Fischer coulombic titrimetry, refractometry, corrosivity analysis, neutron activation analysis and cold neutron prompt gamma activation analysis. We have applied this method on product streams such as finished fuels (gasoline, diesel fuels, aviation fuels, rocket propellants), crude oils (including a crude oil made from swine manure) and waste oils streams (used automotive and transformer oils). In this paper, we present results on a variety of ignitable liquids that are not commodity fuels, chosen from the Ignitable Liquids Reference Collection (ILRC). These measurements are assembled into a preliminary database. From this selection, we discuss the significance and forensic application of the temperature data grid and the composition explicit data channel of the ADC. PMID:26401423

  9. Weathering Patterns of Ignitable Liquids with the Advanced Distillation Curve Method.

    PubMed

    Bruno, Thomas J; Allen, Samuel

    2013-01-01

    One can take advantage of the striking similarity of ignitable liquid vaporization (or weathering) patterns and the separation observed during distillation to predict the composition of residual compounds in fire debris. This is done with the advanced distillation curve (ADC) metrology, which separates a complex fluid by distillation into fractions that are sampled, and for which thermodynamically consistent temperatures are measured at atmospheric pressure. The collected sample fractions can be analyzed by any method that is appropriate. Analytical methods we have applied include gas chromatography (with flame ionization, mass spectrometric and sulfur chemiluminescence detection), thin layer chromatography, FTIR, Karl Fischer coulombic titrimetry, refractometry, corrosivity analysis, neutron activation analysis and cold neutron prompt gamma activation analysis. We have applied this method on product streams such as finished fuels (gasoline, diesel fuels, aviation fuels, rocket propellants), crude oils (including a crude oil made from swine manure) and waste oils streams (used automotive and transformer oils). In this paper, we present results on a variety of ignitable liquids that are not commodity fuels, chosen from the Ignitable Liquids Reference Collection (ILRC). These measurements are assembled into a preliminary database. From this selection, we discuss the significance and forensic application of the temperature data grid and the composition explicit data channel of the ADC. PMID:26401423

  10. Cold Stress and the Cold Pressor Test

    ERIC Educational Resources Information Center

    Silverthorn, Dee U.; Michael, Joel

    2013-01-01

    Temperature and other environmental stressors are known to affect blood pressure and heart rate. In this activity, students perform the cold pressor test, demonstrating increased blood pressure during a 1- to 2-min immersion of one hand in ice water. The cold pressor test is used clinically to evaluate autonomic and left ventricular function. This…

  11. Mechanics of Curved Folds

    NASA Astrophysics Data System (ADS)

    Dias, Marcelo A.; Santangelo, Christian D.

    2011-03-01

    Despite an almost two thousand year history, origami, the art of folding paper, remains a challenge both artistically and scientifically. Traditionally, origami is practiced by folding along straight creases. A whole new set of shapes can be explored, however, if, instead of straight creases, one folds along arbitrary curves. We present a mechanical model for curved fold origami in which the energy of a plastically-deformed crease is balanced by the bending energy of developable regions on either side of the crease. Though geometry requires that a sheet buckle when folded along a closed curve, its shape depends on the elasticity of the sheet. NSF DMR-0846582.

  12. Cold and Cough Medicines

    MedlinePlus

    ... What can you do for your cold or cough symptoms? Besides drinking lots of fluids and getting ... medicines. There are lots of different cold and cough medicines, and they do different things. Nasal decongestants - ...

  13. Cold knife cone biopsy

    MedlinePlus

    A cold knife cone biopsy (conization) is surgery to remove a sample of abnormal tissue from the cervix. The ... Cold knife cone biopsy is done to detect cervical cancer or early changes that lead to cancer. ...

  14. Cold wave lotion poisoning

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/002693.htm Cold wave lotion poisoning To use the sharing features on this page, please enable JavaScript. Cold wave lotion is a hair care product used ...

  15. Cold knife cone biopsy

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003910.htm Cold knife cone biopsy To use the sharing features on this page, please enable JavaScript. A cold knife cone biopsy (conization) is surgery to remove ...

  16. Cold Sores (Orofacial Herpes)

    MedlinePlus

    ... rash and rashes clinical tools newsletter | contact Share | Cold Sores (Orofacial Herpes) Information for adults A A ... face, known as orofacial herpes simplex, herpes labialis, cold sores, or fever blisters, is a common, recurrent ...

  17. Cold and Cough Medicines

    MedlinePlus

    ... What can you do for your cold or cough symptoms? Besides drinking plenty of fluids and getting ... medicines. There are lots of different cold and cough medicines, and they do different things. Nasal decongestants - ...

  18. Neutron-fragment and Neutron-neutron Correlations in Low-energy Fission

    NASA Astrophysics Data System (ADS)

    Lestone, J. P.

    2016-01-01

    A computational method has been developed to simulate neutron emission from thermal-neutron induced fission of 235U and from spontaneous fission of 252Cf. Measured pre-emission mass-yield curves, average total kinetic energies and their variances, both as functions of mass split, are used to obtain a representation of the distribution of fragment velocities. Measured average neutron multiplicities as a function of mass split and their dependence on total kinetic energy are used. Simulations can be made to reproduce measured factorial moments of neutron-multiplicity distributions with only minor empirical adjustments to some experimental inputs. The neutron-emission spectra in the rest-frame of the fragments are highly constrained by ENDF/B-VII.1 prompt-fission neutron-spectra evaluations. The n-f correlation measurements of Vorobyev et al. (2010) are consistent with predictions where all neutrons are assumed to be evaporated isotropically from the rest frame of fully accelerated fragments. Measured n-f and n-n correlations of others are a little weaker than the predictions presented here. These weaker correlations could be used to infer a weak scission-neutron source. However, the effect of neutron scattering on the experimental results must be studied in detail before moving away from a null hypothesis that all neutrons are evaporated from the fragments.

  19. Development of neutron depth profiling at CMRR

    NASA Astrophysics Data System (ADS)

    Li, Run-dong; Yang, Xin; Wang, Guan-bo; Dou, Hai-feng; Qian, Da-zhi; Wang, Shu-yu

    2015-07-01

    A neutron depth profiling (NDP) system has been developed at China Mianyang Research Reactor (CMRR) at Institute of Nuclear Physics and Chemistry (INPC), CAEP. The INPC-NDP system utilizes cold neutrons which are transported along the C1 neutron guide from the cold neutron source. It consists of a beam entrance, a target chamber, a beam stopper, and data acquisition electronics for charged particle pulse-height analysis. A 90 cm in diameter stainless steel target chamber was designed to control the positions of the sample and detector. The neutron beam intensity of 2.1×108 n cm-2 s-1 was calibrated by the Au foil activation method at the sample position. The INPC-NDP system was tested by using a Standard Reference Materials SRM-2137. The measured results agreed well with the reference values.

  20. Exercising in Cold Weather

    MedlinePlus

    ... www.nia.nih.gov/Go4Life Exercising in Cold Weather Exercise has benefits all year, even during winter. ... activities when it’s cold outside: l Check the weather forecast. If it’s very windy or cold, exercise ...

  1. Curve Stitching in LOGO.

    ERIC Educational Resources Information Center

    Muscat, Jean-Paul

    1992-01-01

    Uses LOGO to enhance the applicability of curve stitching in the mathematics curriculum. Presents the formulas and computer programs for the construction of parabolas, concentric circles, and epicycloids. Diagrams of constructed figures are provided. (MDH)

  2. Cold Fronts in Cold Dark Matter Clusters

    NASA Astrophysics Data System (ADS)

    Nagai, Daisuke; Kravtsov, Andrey V.

    2003-04-01

    Recently, high-resolution Chandra observations revealed the existence of very sharp features in the X-ray surface brightness and temperature maps of several clusters. These features, called cold fronts, are characterized by an increase in surface brightness by a factor >~2 over 10-50 kpc accompanied by a drop in temperature of a similar magnitude. The existence of such sharp gradients can be used to put interesting constraints on the physics of the intracluster medium (ICM) if their mechanism and longevity are well understood. Here, we present results of a search for cold fronts in high-resolution simulations of galaxy clusters in cold dark matter models. We show that sharp gradients with properties similar to those of observed cold fronts naturally arise in cluster mergers when the shocks heat gas surrounding the merging subcluster, while its dense core remains relatively cold. The compression induced by supersonic motions and shock heating during the merger enhance the amplitude of gas density and temperature gradients across the front. Our results indicate that cold fronts are nonequilibrium transient phenomena and can be observed for a period of less than a billion years. We show that the velocity and density fields of gas surrounding the cold front can be very irregular, which would complicate analyses aiming to put constraints on the physical conditions of the ICM in the vicinity of the front.

  3. Neutron stars as cosmic hadron physics laboratories

    NASA Technical Reports Server (NTRS)

    Pines, D.

    1985-01-01

    Extensive observations of Her-1 with the Exosat satellite have led to a new understanding of both the dynamics of neutron-star superfluids and the free precession of neutron stars. Detailed microscopic calculations on neutron matter and the properties of the pinned crustal superfluid are provided to serve as a basis for comparing theory with observation on neutron stars. Topics discussed include the Hadron matter equation of state, neutron star structure, Hadron superfluids, the vortex creep theory, Vela pulsar glitches, astrophysical constraints on neutron matter energy gaps, the 35 day periodicity of Her-1, and the neutron matter equation of state. It is concluded that since the post-glitch fits and the identification of the 35th periodicity in Her X-1 as stellar wobble require a rigid neutron matter equation of state, the astrophysical evidence for such an equation seems strong, as well as that for an intermediate Delta(rho) curve.

  4. Highly curved microchannel plates

    NASA Technical Reports Server (NTRS)

    Siegmund, O. H. W.; Cully, S.; Warren, J.; Gaines, G. A.; Priedhorsky, W.; Bloch, J.

    1990-01-01

    Several spherically curved microchannel plate (MCP) stack configurations were studied as part of an ongoing astrophysical detector development program, and as part of the development of the ALEXIS satellite payload. MCP pairs with surface radii of curvature as small as 7 cm, and diameters up to 46 mm have been evaluated. The experiments show that the gain (greater than 1.5 x 10 exp 7) and background characteristics (about 0.5 events/sq cm per sec) of highly curved MCP stacks are in general equivalent to the performance achieved with flat MCP stacks of similar configuration. However, gain variations across the curved MCP's due to variations in the channel length to diameter ratio are observed. The overall pulse height distribution of a highly curved surface MCP stack (greater than 50 percent FWHM) is thus broader than its flat counterpart (less than 30 percent). Preconditioning of curved MCP stacks gives comparable results to flat MCP stacks, but it also decreases the overall gain variations. Flat fields of curved MCP stacks have the same general characteristics as flat MCP stacks.

  5. Cough and Cold Medicine Abuse

    MedlinePlus

    ... and Cold Medicine Abuse DrugFacts: Cough and Cold Medicine Abuse Email Facebook Twitter Revised May 2014 Some ... diverted for abuse. How Are Cough and Cold Medicines Abused? Cough and cold medicines are usually consumed ...

  6. The composition-explicit distillation curve technique: Relating chemical analysis and physical properties of complex fluids.

    PubMed

    Bruno, Thomas J; Ott, Lisa S; Lovestead, Tara M; Huber, Marcia L

    2010-04-16

    The analysis of complex fluids such as crude oils, fuels, vegetable oils and mixed waste streams poses significant challenges arising primarily from the multiplicity of components, the different properties of the components (polarity, polarizability, etc.) and matrix properties. We have recently introduced an analytical strategy that simplifies many of these analyses, and provides the added potential of linking compositional information with physical property information. This aspect can be used to facilitate equation of state development for the complex fluids. In addition to chemical characterization, the approach provides the ability to calculate thermodynamic properties for such complex heterogeneous streams. The technique is based on the advanced distillation curve (ADC) metrology, which separates a complex fluid by distillation into fractions that are sampled, and for which thermodynamically consistent temperatures are measured at atmospheric pressure. The collected sample fractions can be analyzed by any method that is appropriate. The analytical methods we have applied include gas chromatography (with flame ionization, mass spectrometric and sulfur chemiluminescence detection), thin layer chromatography, FTIR, corrosivity analysis, neutron activation analysis and cold neutron prompt gamma activation analysis. By far, the most widely used analytical technique we have used with the ADC is gas chromatography. This has enabled us to study finished fuels (gasoline, diesel fuels, aviation fuels, rocket propellants), crude oils (including a crude oil made from swine manure) and waste oils streams (used automotive and transformer oils). In this special issue of the Journal of Chromatography, specifically dedicated to extraction technologies, we describe the essential features of the advanced distillation curve metrology as an analytical strategy for complex fluids. PMID:20004402

  7. From X-Ray Telescopes to Neutron Focusing

    NASA Technical Reports Server (NTRS)

    Gubarev, M. V.; Khaykovich, B.; Ramsey, B.; Moncton, D. E.

    2011-01-01

    In the case of neutrons the refractive index is slightly less than unity for most elements and their isotopes. Consequently, thermal and cold neutrons can be reflected from smooth surfaces at grazing-incidence angles. Hence, the optical technologies developed for x-ray astronomy can be applied for neutron focusing. The focusing capabilities of grazing incidence neutron imaging optics have been successfully demonstrated using nickel mirrors. The mirrors were fabricated using an electroformed nickel replication process at Marshall Space Flight Center. Results of the neutron optics experiments will be presented. Challenges of the neutron imaging optics as well as possible applications of the optics will be discussed.

  8. Why Being Cold Might Foster a Cold

    MedlinePlus

    ... These cells produce essential immune system proteins called interferons that respond to a cold virus. The cells ... several degrees below core body temperature, virus-fighting interferons were less able to do their job. The ...

  9. How cold is cold dark matter?

    SciTech Connect

    Armendariz-Picon, Cristian; Neelakanta, Jayanth T. E-mail: jtneelak@syr.edu

    2014-03-01

    If cold dark matter consists of particles, these must be non-interacting and non-relativistic by definition. In most cold dark matter models however, dark matter particles inherit a non-vanishing velocity dispersion from interactions in the early universe, a velocity that redshifts with cosmic expansion but certainly remains non-zero. In this article, we place model-independent constraints on the dark matter temperature to mass ratio, whose square root determines the dark matter velocity dispersion. We only assume that dark matter particles decoupled kinetically while non-relativistic, when galactic scales had not entered the horizon yet, and that their momentum distribution has been Maxwellian since that time. Under these assumptions, using cosmic microwave background and matter power spectrum observations, we place upper limits on the temperature to mass ratio of cold dark matter today (away from collapsed structures). These limits imply that the present cold dark matter velocity dispersion has to be smaller than 54 m/s. Cold dark matter has to be quite cold, indeed.

  10. Radiation shielding for neutron guides

    NASA Astrophysics Data System (ADS)

    Ersez, T.; Braoudakis, G.; Osborn, J. C.

    2006-11-01

    Models of the neutron guide shielding for the out of bunker guides on the thermal and cold neutron beam lines of the OPAL Reactor (ANSTO) were constructed using the Monte Carlo code MCNP 4B. The neutrons that were not reflected inside the guides but were absorbed by the supermirror (SM) layers were noted to be a significant source of gammas. Gammas also arise from neutrons absorbed by the B, Si, Na and K contained in the glass. The proposed shielding design has produced compact shielding assemblies. These arrangements are consistent with safety requirements, floor load limits, and cost constraints. To verify the design a prototype was assembled consisting of 120 mm thick Pb(96%)Sb(4%) walls resting on a concrete block. There was good agreement between experimental measurements and calculated dose rates for bulk shield regions.

  11. Wolter Optics for Neutron Focusing

    NASA Technical Reports Server (NTRS)

    Mildner, D. F. R.; Gubarev, M. V.

    2010-01-01

    Focusing optics based on Wolter optical geometries developed for x-ray grazing incidence beams can be designed for neutron beams. Wolter optics are formed by grazing incidence reflections from two concentric conic sections (for example, a paraboloid and a hyperboloid). This has transformed observational X-ray astronomy by increasing the sensitivity by many orders of magnitude for research in astrophysics and cosmology. To increase the collection area, many reflecting mirrors of different diameters are nested with a common focal plane. These mirrors are fabricated using nickel-electroformed replication techniques. We apply these ideas to neutron focusing using nickel mirrors. We show an initial test of a conical mirror using a beam of cold neutrons. key words: electroformed nickel replication, focusing optics, grazing angle incidence, mirror reflection, neutron focusing, Wolter optics

  12. Human responses to cold.

    PubMed

    Rintamäki, Hannu

    2007-01-01

    The thermoneutral ambient temperature for naked and resting humans is ca. 27 degrees C. Exposure to cold stimulates cold receptors of the skin which causes cold thermal sensations and stimulation of the sympathetic nervous system. Sympathetic stimulation causes vasoconstriction in skin, arms and legs. Diminished skin and extremity blood flow increases the thermal insulation of superficial tissues more than 300% corresponding to 0.9 clo (0.13 degrees C x m(-2) x W(-1)). With thermoregulatory vasoconstriction/ vasodilatation the body heat balance can be maintained within a range of ca. 4 degrees C, the middle of the range being at ca. 21 degrees C when light clothing is used. Below the thermoneutral zone metabolic heat production (shivering) is stimulated and above the zone starts heat loss by evaporation (sweating). Cold induced vasoconstriction increases blood pressure and viscosity and decreases plasma volume consequently increasing cardiac work. Cold induced hypertensive response can be counteracted by light exercise, while starting heavy work in cold markedly increases blood pressure. Under very cold conditions the sympathetic stimulation opens the anastomoses between arterioles and venules which increases skin temperatures markedly but temporarily, especially in finger tips. Adaptation to cold takes ca. 2 weeks, whereafter the physiological responses to cold are attenuated and cold exposure is subjectively considered less stressful. PMID:17929604

  13. Atmospheric neutrons

    NASA Technical Reports Server (NTRS)

    Korff, S. A.; Mendell, R. B.; Merker, M.; Light, E. S.; Verschell, H. J.; Sandie, W. S.

    1979-01-01

    Contributions to fast neutron measurements in the atmosphere are outlined. The results of a calculation to determine the production, distribution and final disappearance of atmospheric neutrons over the entire spectrum are presented. An attempt is made to answer questions that relate to processes such as neutron escape from the atmosphere and C-14 production. In addition, since variations of secondary neutrons can be related to variations in the primary radiation, comment on the modulation of both radiation components is made.

  14. IGMtransmission: Transmission curve computation

    NASA Astrophysics Data System (ADS)

    Harrison, Christopher M.; Meiksin, Avery; Stock, David

    2015-04-01

    IGMtransmission is a Java graphical user interface that implements Monte Carlo simulations to compute the corrections to colors of high-redshift galaxies due to intergalactic attenuation based on current models of the Intergalactic Medium. The effects of absorption due to neutral hydrogen are considered, with particular attention to the stochastic effects of Lyman Limit Systems. Attenuation curves are produced, as well as colors for a wide range of filter responses and model galaxy spectra. Photometric filters are included for the Hubble Space Telescope, the Keck telescope, the Mt. Palomar 200-inch, the SUBARU telescope and UKIRT; alternative filter response curves and spectra may be readily uploaded.

  15. Neutron guide

    DOEpatents

    Greene, Geoffrey L.

    1999-01-01

    A neutron guide in which lengths of cylindrical glass tubing have rectangular glass plates properly dimensioned to allow insertion into the cylindrical glass tubing so that a sealed geometrically precise polygonal cross-section is formed in the cylindrical glass tubing. The neutron guide provides easier alignment between adjacent sections than do the neutron guides of the prior art.

  16. Neutron dosimetry

    DOEpatents

    Quinby, Thomas C.

    1976-07-27

    A method of measuring neutron radiation within a nuclear reactor is provided. A sintered oxide wire is disposed within the reactor and exposed to neutron radiation. The induced radioactivity is measured to provide an indication of the neutron energy and flux within the reactor.

  17. Graphing Polar Curves

    ERIC Educational Resources Information Center

    Lawes, Jonathan F.

    2013-01-01

    Graphing polar curves typically involves a combination of three traditional techniques, all of which can be time-consuming and tedious. However, an alternative method--graphing the polar function on a rectangular plane--simplifies graphing, increases student understanding of the polar coordinate system, and reinforces graphing techniques learned…

  18. The Bacterial Growth Curve.

    ERIC Educational Resources Information Center

    Paulton, Richard J. L.

    1991-01-01

    A procedure that allows students to view an entire bacterial growth curve during a two- to three-hour student laboratory period is described. Observations of the lag phase, logarithmic phase, maximum stationary phase, and phase of decline are possible. A nonpathogenic, marine bacterium is used in the investigation. (KR)

  19. Textbook Factor Demand Curves.

    ERIC Educational Resources Information Center

    Davis, Joe C.

    1994-01-01

    Maintains that teachers and textbook graphics follow the same basic pattern in illustrating changes in demand curves when product prices increase. Asserts that the use of computer graphics will enable teachers to be more precise in their graphic presentation of price elasticity. (CFR)

  20. Optical neutron polarizers

    SciTech Connect

    Hayter, J.B.

    1990-01-01

    A neutron wave will be refracted by an appropriately varying potential. Optical neutron polarizers use spatially varying, spin- dependent potentials to refract neutrons of opposite spin states into different directions, so that an unpolarized beam will be split into two beams of complementary polarization by such a device. This paper will concentrate on two methods of producing spin-dependent potentials which are particularly well-suited to polarizing cold neutron beams, namely thin-film structures and field-gradient techniques. Thin-film optical devices, such as supermirror multilayer structures, are usually designed to deviate only one spin-state, so that they offer the possibility of making insertion (transmission) polarizers. Very good supermirrors may now be designed and fabricated, but it is not always straightforward to design mirror-based devices which are useful in real (divergent beam) applications, and some practical configurations will be discussed. Field-gradient devices, which are usually based on multipolar magnets, have tended to be too expensive for general use, but this may change with new developments in superconductivity. Dipolar and hexapolar configurations will be considered, with emphasis on the focusing characteristics of the latter. 21 refs., 7 figs.

  1. Absolute Neutron Fluence Measurements at the NIST Center for Neutron Research

    NASA Astrophysics Data System (ADS)

    Yue, A.; Dewey, M.; Gilliam, D.; Nico, J.; Anderson, E.; Snow, M.; Greene, G.; Laptev, A.

    2015-10-01

    Precise, absolute fluence measurements of cold and thermal neutron beams are of primary importance to beam-type determinations of the neutron lifetime, measurements of standard neutron cross sections, and the development of standards for neutron dosimetry. At the National Institute of Standards and Technology (NIST), a totally absorbing neutron detector based on absolute counting of the 10B(n,α1)7Li reaction 478 keV gamma ray has been used to perform fluence measurements with a precision of 0.06%. This detector has been used to improve the neutron fluence determination in the 2000 NIST beam neutron lifetime by a factor of five, significantly reducing the uncertainty in the lifetime result. Ongoing and possible future uses of the Alpha-Gamma device include 1) Calibration of the neutron fluence monitors that will be used in the upcoming NIST beam neutron lifetime measurement BL2; 2) The first direct, absolute measurement of the 6Li(n,t)4He neutron cross section at sub-thermal neutron energy; 3) Measurements of the 10B(n, γ)11B and 235U(n,f) neutron cross sections; 4) A re-calibration of the national neutron standard NBS-1. The apparatus, measurement technique, and applications will be discussed.

  2. Cold pool dissipation

    NASA Astrophysics Data System (ADS)

    Grant, Leah D.; Heever, Susan C.

    2016-02-01

    The mechanisms by which sensible heat fluxes (SHFs) alter cold pool characteristics and dissipation rates are investigated in this study using idealized two-dimensional numerical simulations and an environment representative of daytime, dry, continental conditions. Simulations are performed with no SHFs, SHFs calculated using a bulk formula, and constant SHFs for model resolutions with horizontal (vertical) grid spacings ranging from 50 m (25 m) to 400 m (200 m). In the highest resolution simulations, turbulent entrainment of environmental air into the cold pool is an important mechanism for dissipation in the absence of SHFs. Including SHFs enhances cold pool dissipation rates, but the processes responsible for the enhanced dissipation differ depending on the SHF formulation. The bulk SHFs increase the near-surface cold pool temperatures, but their effects on the overall cold pool characteristics are small, while the constant SHFs influence the near-surface environmental stability and the turbulent entrainment rates into the cold pool. The changes to the entrainment rates are found to be the most significant of the SHF effects on cold pool dissipation. SHFs may also influence the timing of cold pool-induced convective initiation by altering the environmental stability and the cold pool intensity. As the model resolution is coarsened, cold pool dissipation is found to be less sensitive to SHFs. Furthermore, the coarser resolution simulations not only poorly but sometimes wrongly represent the SHF impacts on the cold pools. Recommendations are made regarding simulating the interaction of cold pools with convection and the land surface in cloud-resolving models.

  3. Cold fusion, Alchemist's dream

    SciTech Connect

    Clayton, E.D.

    1989-09-01

    In this report the following topics relating to cold fusion are discussed: muon catalysed cold fusion; piezonuclear fusion; sundry explanations pertaining to cold fusion; cosmic ray muon catalysed cold fusion; vibrational mechanisms in excited states of D{sub 2} molecules; barrier penetration probabilities within the hydrogenated metal lattice/piezonuclear fusion; branching ratios of D{sub 2} fusion at low energies; fusion of deuterons into {sup 4}He; secondary D+T fusion within the hydrogenated metal lattice; {sup 3}He to {sup 4}He ratio within the metal lattice; shock induced fusion; and anomalously high isotopic ratios of {sup 3}He/{sup 4}He.

  4. Neutron depth profiling: Overview and description of NIST facilities

    SciTech Connect

    Downing, R.G.; Lamaze, G.P.; Langland, J.K.; Hwang, S.T.

    1993-01-01

    The Cold Neutron Depth Profiling (CNDP) instrument at the NIST Cold Neutron Research Facility (CNRF) is now operational. The neutron beam originates from a 16 L D2O ice cold source and passes through a filter of 135 mm of single crystal sapphire. The neutron energy spectrum may be described by a 65 K Maxwellian distribution. The sample chamber configuration allows for remote controlled scanning of 150 x 150 mm sample areas including the varying of both sample and detector angle. The improved sensitivity over the current thermal depth profiling instrument has permitted the first nondestructive measurements of (17)O profiles. The paper describes the CNDP instrument, illustrates the neutron depth profiling (NDP) technique with examples, and gives a separate bibliography of NDP publications.

  5. An Alpha-Gamma Counter for Absolute Neutron Flux Measurement

    NASA Astrophysics Data System (ADS)

    Yue, A.; Greene, G.; Dewey, M.; Gilliam, D.; Nico, J.; Laptev, A.

    2012-03-01

    An alpha-gamma counter was used to measure the absolute neutron flux of a monochromatic cold neutron beam to sub-0.1,% precision. Simultaneously, the counter was used to calibrate a thin neutron flux monitor based on neutron absorption on ^6Li to the same precision. This monitor was used in the most precise beam-based measurement of the neutron lifetime, where the limiting systematic effect was the uncertainty in the neutron counting efficiency (0.3,%). The counter uses a thick target of ^10B-enriched boron carbide to completely absorb the beam. The rate of absorbed neutrons is determined by counting 478 keV gamma rays from neutron capture on ^10B with calibrated high-purity germanium detectors. The calibration results and the implications for the neutron lifetime will be discussed.

  6. The Art of Neutron Spin Flipping

    NASA Astrophysics Data System (ADS)

    Lieffers, Justin; Holley, Adam; Snow, W. M.

    2014-09-01

    Low energy precision measurements complement high energy collider results in the search for physics beyond the Standard Model. Neutron spin rotation is a sensitive technique to search for possible exotic velocity and spin-dependent interactions involving the neutron from the exchange of light (~ meV) spin 1 bosons. We plan to conduct such searches using beams of cold neutrons at the Los Alamos Neutron Science Center (LANSCE) and the National Institute of Standards and Technology (NIST). To change the spin state of the neutrons in the apparatus we have developed an Adiabatic Fast Passage (AFP) neutron spin flipper. I will present the mechanical design, static and RF magnetic field modeling and measurements, and spin flip efficiency optimization of the constructed device. I would like to acknowledge the NSF REU program (NSF-REU grant PHY-1156540) and the Indiana University nuclear physics group (NSF grant PHY-1306942) for this opportunity.

  7. Paschen Curve Observations at Liquid Nitrogen Temperatures

    NASA Astrophysics Data System (ADS)

    Dugger, Chip; Rielage, Keith; Elliott, Steven; Massarczyk, Ralph; Chu, Pinghan

    2015-10-01

    Paschen's Law states an equation giving the relationship between variables involved when forming an electrical arc between two conductive objects, otherwise known as the breakdown voltage. This equation for the breakdown voltage VB is as follows: VB =apd/ln (pd) + b where p is the pressure in Atmospheres (or Bar), d is the gap or distance between the two conductive objects, and both a and b are constants that depend on the composition of the gas. In our experiment, the Paschen curve for gases (such as nitrogen) at temperatures lower than -200 degrees Celsius will be measured. The Paschen curve for air at room temperature will also be measured in order to test and calibrate our system. The goal of this experiment is to test how accurately Paschen's Law can predict the breakdown voltage in these specific, cold conditions. This experiment is being performed to gather information for a possible future experiment, which might use high purity germanium (HPGe) detectors in a similar cold environment to search for neutrinoless double beta decay, a rare hypothesized process that may yield valuable insight into the fundamental properties of the neutrino. This work is being supported by the DOE through the LANL LDRD program. Charles ``Chip'' Dugger, Los Alamos National Laboratory and New Mexico Institute of Mining and Technology.

  8. Neutron and high speed photogrammetric arcjet diagnosis

    NASA Technical Reports Server (NTRS)

    Stewart, P. A. E.; Rogers, J. D.; Fowler, P. H.; Deininger, W. D.; Taylor, A. D.

    1989-01-01

    Two methods for real time internal diagnostics of arcjet engines are described. One method uses cold, thermal, or epithermal neutrons. Cold neutrons are used to detect the presence and location of hydrogenous propellants. Thermal neutrons are used to delineate the edge contours of anode and cathode surfaces and to measure stress/strain. Epithermal neutrons are used to measure temperatures on arcjet surfaces, bulk material temperatures, and point temperatures in bulk materials. It is found that this method, with an exposure time of 10 min, produces at temperature accuracy for W or Re of + or - 2.5 C. The other method uses visible-light high-speed photogrammetry to obtain images of the transient behavior of the arc during start-up and to relate this behavior to electrial supply characteristics such as voltage, current, and ripple.

  9. Progress in constraining the asymmetry dependence of the nuclear caloric curve

    NASA Astrophysics Data System (ADS)

    McIntosh, Alan B.; Yennello, Sherry J.

    2016-05-01

    The nuclear equation of state is a basic emergent property of nuclear material. Despite its importance in nuclear physics and astrophysics, aspects of it are still poorly constrained. Our research focuses on answering the question: How does the nuclear caloric curve depend on the neutron-proton asymmetry? We briefly describe our initial observation that increasing neutron-richness leads to lower temperatures. We then discuss the status of our recently executed experiment to independently measure the asymmetry dependence of the caloric curve.

  10. Cold stress and the cold pressor test.

    PubMed

    Silverthorn, Dee U; Michael, Joel

    2013-03-01

    Temperature and other environmental stressors are known to affect blood pressure and heart rate. In this activity, students perform the cold pressor test, demonstrating increased blood pressure during a 1- to 2-min immersion of one hand in ice water. The cold pressor test is used clinically to evaluate autonomic and left ventricular function. This activity is easily adapted to an inquiry format that asks students to go to the scientific literature to learn about the test and then design a protocol for carrying out the test in classmates. The data collected are ideal for teaching graphical presentation of data and statistical analysis. PMID:23471256

  11. ORNL Neutron Sciences Annual Report for 2007

    SciTech Connect

    Anderson, Ian S; Horak, Charlie M; Counce, Deborah Melinda; Ekkebus, Allen E

    2008-07-01

    This is the first annual report of the Oak Ridge National Laboratory Neutron Sciences Directorate for calendar year 2007. It describes the neutron science facilities, current developments, and future plans; highlights of the year's activities and scientific research; and information on the user program. It also contains information about education and outreach activities and about the organization and staff. The Neutron Sciences Directorate is responsible for operation of the High Flux Isotope Reactor and the Spallation Neutron Source. The main highlights of 2007 were highly successful operation and instrument commissioning at both facilities. At HFIR, the year began with the reactor in shutdown mode and work on the new cold source progressing as planned. The restart on May 16, with the cold source operating, was a significant achievement. Furthermore, measurements of the cold source showed that the performance exceeded expectations, making it one of the world's most brilliant sources of cold neutrons. HFIR finished the year having completed five run cycles and 5,880 MWd of operation. At SNS, the year began with 20 kW of beam power on target; and thanks to a highly motivated staff, we reached a record-breaking power level of 183 kW by the end of the year. Integrated beam power delivered to the target was 160 MWh. Although this is a substantial accomplishment, the next year will bring the challenge of increasing the integrated beam power delivered to 887 MWh as we chart our path toward 5,350 MWh by 2011.

  12. Factorization with genus 2 curves

    NASA Astrophysics Data System (ADS)

    Cosset, Romain

    2010-04-01

    The elliptic curve method (ECM) is one of the best factorization methods available. It is possible to use hyperelliptic curves instead of elliptic curves but it is in theory slower. We use special hyperelliptic curves and Kummer surfaces to reduce the complexity of the algorithm. Our implementation GMP-HECM is faster than GMP-ECM for factoring large numbers.

  13. State of the Art in Electronic Dosemeters for Neutrons

    SciTech Connect

    Luszik-Bhadra, Marlies

    2011-05-05

    The paper presents an overview of electronic personal dosemeters for neutrons in mixed neutron/photon fields. The energy response of commercially available electronic dosemeters in quasi-monoenergetic neutron fields and their performance in working places is discussed. The response curves are extended to high-energy neutrons up to 100 MeV, new prototype dosemeters are described and discussed especially for use at high-energy accelerators and in space.

  14. State of the Art in Electronic Dosemeters for Neutrons

    NASA Astrophysics Data System (ADS)

    Luszik-Bhadra, Marlies

    2011-05-01

    The paper presents an overview of electronic personal dosemeters for neutrons in mixed neutron/photon fields. The energy response of commercially available electronic dosemeters in quasi-monoenergetic neutron fields and their performance in working places is discussed. The response curves are extended to high-energy neutrons up to 100 MeV, new prototype dosemeters are described and discussed especially for use at high-energy accelerators and in space.

  15. Atlas of fatigue curves

    SciTech Connect

    Boyer, H.E.

    1986-01-01

    This Atlas was developed to serve engineers who are looking for fatigue data on a particular metal or alloy. Having these curves compiled in a single book will also facilitate the computerization of the involved data. It is pointed out that plans are under way to make the data in this book available in ASCII files for analysis by computer programs. S-N curves which typify effects of major variables are considered along with low-carbon steels, medium-carbon steels, alloy steels, HSLA steels, high-strength alloy steels, heat-resisting steels, stainless steels, maraging steels, cast irons, and heat-resisting alloys. Attention is also given to aluminum alloys, copper alloys, magnesium alloys, molybdenum, tin alloys, titanium and titanium alloys, zirconium, steel castings, closed-die forgings, powder metallurgy parts, composites, effects of surface treatments, and test results for component parts.

  16. Advanced Neutron Source (ANS) Project progress report

    SciTech Connect

    McBee, M.R.; Chance, C.M. ); Selby, D.L.; Harrington, R.M.; Peretz, F.J. )

    1990-04-01

    This report discusses the following topics on the advanced neutron source: quality assurance (QA) program; reactor core development; fuel element specification; corrosion loop tests and analyses; thermal-hydraulic loop tests; reactor control concepts; critical and subcritical experiments; material data, structural tests, and analysis; cold source development; beam tube, guide, and instrument development; hot source development; neutron transport and shielding; I C research and development; facility concepts; design; and safety.

  17. Mouse Curve Biometrics

    SciTech Connect

    Schulz, Douglas A.

    2007-10-08

    A biometric system suitable for validating user identity using only mouse movements and no specialized equipment is presented. Mouse curves (mouse movements with little or no pause between them) are individually classied and used to develop classication histograms, which are representative of an individual's typical mouse use. These classication histograms can then be compared to validate identity. This classication approach is suitable for providing continuous identity validation during an entire user session.

  18. Spinal curves and scoliosis.

    PubMed

    Anderson, Susan M

    2007-01-01

    Scoliosis, an abnormal side-to-side curve of the spine with associated vertebral rotation, affects as many as 4% of all adolescents. Several different categories of scoliosis exist, and treatment can range from observation and follow-up to bracing and surgical correction. This article discusses special imaging series for scoliosis and emphasizes the need for proper radiation protection techniques for patients with scoliosis, most of whom are girls in their early to mid-teens. PMID:17848532

  19. Primary cold agglutinin disease.

    PubMed

    Mondal, Prabodh Chandra; Chakraborty, Partha Pratim; Bera, Mitali

    2011-07-01

    A 4-year-old girl presented with severe pallor and intermittent passage of cola-coloured urine. Routine investigations were suggestive of auto-immune haemolytic anaemia. Red cell agglutination was observed in peripheral smear and patient's serum was positive for cold agglutinins. Thorough work-up ruled out secondary cold agglutinin disease. Patient was treated successfully with corticosteroids. PMID:22315851

  20. Cold Sores (HSV-1)

    MedlinePlus

    ... Help a Friend Who Cuts? Cold Sores (HSV-1) KidsHealth > For Teens > Cold Sores (HSV-1) Print A A A Text Size What's in ... person's lips, are caused by herpes simplex virus-1 (HSV-1) . But they don't just show ...

  1. Liquid metal cold trap

    DOEpatents

    Hundal, Rolv

    1976-01-01

    A cold trap assembly for removing impurities from a liquid metal being provided with a hole between the incoming impure liquid metal and purified outgoing liquid metal which acts as a continuous bleed means and thus prevents the accumulation of cover gases within the cold trap assembly.

  2. Cold fusion research

    SciTech Connect

    1989-11-01

    I am pleased to forward to you the Final Report of the Cold Fusion Panel. This report reviews the current status of cold fusion and includes major chapters on Calorimetry and Excess Heat, Fusion Products and Materials Characterization. In addition, the report makes a number of conclusions and recommendations, as requested by the Secretary of Energy.

  3. The Stephan Curve revisited.

    PubMed

    Bowen, William H

    2013-01-01

    The Stephan Curve has played a dominant role in caries research over the past several decades. What is so remarkable about the Stephan Curve is the plethora of interactions it illustrates and yet acid production remains the dominant focus. Using sophisticated technology, it is possible to measure pH changes in plaque; however, these observations may carry a false sense of accuracy. Recent observations have shown that there may be multiple pH values within the plaque matrix, thus emphasizing the importance of the milieu within which acid is formed. Although acid production is indeed the immediate proximate cause of tooth dissolution, the influence of alkali production within plaque has received relative scant attention. Excessive reliance on Stephan Curve leads to describing foods as "safe" if they do not lower the pH below the so-called "critical pH" at which point it is postulated enamel dissolves. Acid production is just one of many biological processes that occur within plaque when exposed to sugar. Exploration of methods to enhance alkali production could produce rich research dividends. PMID:23224410

  4. Cold denaturation as a tool to measure protein stability.

    PubMed

    Sanfelice, Domenico; Temussi, Piero Andrea

    2016-01-01

    Protein stability is an important issue for the interpretation of a wide variety of biological problems but its assessment is at times difficult. The most common parameter employed to describe protein stability is the temperature of melting, at which the populations of folded and unfolded species are identical. This parameter may yield ambiguous results. It would always be preferable to measure the whole stability curve. The calculation of this curve is greatly facilitated whenever it is possible to observe cold denaturation. Using Yfh1, one of the few proteins whose cold denaturation occurs at neutral pH and low ionic strength, we could measure the variation of its full stability curve under several environmental conditions. Here we show the advantages of gauging stability as a function of external variables using stability curves. PMID:26026885

  5. Cold denaturation as a tool to measure protein stability

    PubMed Central

    Sanfelice, Domenico; Temussi, Piero Andrea

    2016-01-01

    Protein stability is an important issue for the interpretation of a wide variety of biological problems but its assessment is at times difficult. The most common parameter employed to describe protein stability is the temperature of melting, at which the populations of folded and unfolded species are identical. This parameter may yield ambiguous results. It would always be preferable to measure the whole stability curve. The calculation of this curve is greatly facilitated whenever it is possible to observe cold denaturation. Using Yfh1, one of the few proteins whose cold denaturation occurs at neutral pH and low ionic strength, we could measure the variation of its full stability curve under several environmental conditions. Here we show the advantages of gauging stability as a function of external variables using stability curves. PMID:26026885

  6. Smarandache curves according to Sabban frame of fixed pole curve belonging to the Bertrand curves pair

    NASA Astrophysics Data System (ADS)

    Şenyurt, Süleyman; Altun, Yasin; Cevahir, Ceyda

    2016-04-01

    In this paper, we investigate the Smarandache curves according to Sabban frame of fixed pole curve which drawn by the unit Darboux vector of the Bertrand partner curve. Some results have been obtained. These results were expressed as the depends Bertrand curve.

  7. Neutron detector

    DOEpatents

    Stephan, Andrew C.; Jardret; Vincent D.

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  8. A neutron detector to monitor the intensity of transmitted neutrons for small-angle neutron scattering instruments

    NASA Astrophysics Data System (ADS)

    De Lurgio, Patrick M.; Klann, Raymond T.; Fink, Charles L.; McGregor, Douglas S.; Thiyagarajan, Pappannan; Naday, Istvan

    2003-06-01

    A semiconductor-based neutron detector was developed at Argonne National Laboratory (ANL) for use as a neutron beam monitor for small-angle neutron scattering instruments. The detector is constructed using a coating of 10B on a gallium-arsenide semiconductor detector and is mounted directly within a cylindrical (2.2 cm dia. and 4.4 cm long) enriched 10B 4C beam stop in the time-of-flight Small Angle Neutron Diffractometer (SAND) instrument at the Intense Pulsed Neutron Source (IPNS) facility at ANL. The neutron beam viewed by the SAND is from a pulsed spallation source moderated by a solid methane moderator that produces useful neutrons in the wavelength range of 0.5-14 Å. The SAND instrument uses all detected neutrons in the above wavelength range sorted by time-of-flight into 68 constant Δ T/ T=0.05 channels. This new detector continuously monitors the transmitted neutron beam through the sample during scattering measurements and takes data concurrently with the other detectors in the instrument. The 10B coating on the GaAs detector allows the detection of the cold neutron spectrum with reasonable efficiency. This paper describes the details of the detector fabrication, the beam stop monitor design, and includes a discussion of results from preliminary tests using the detector during several run cycles at the IPNS.

  9. From x-ray telescopes to neutron focusing

    NASA Astrophysics Data System (ADS)

    Gubarev, Mikhail V.; Khaykovich, Boris; Ramsey, Brian; Moncton, David; Zavlin, Vyacheslav E.; Kilaru, Kiranmayee; Romaine, Suzanne; Rosati, Richard E.; Bruni, Ricardo; Robertson, Lee; Crow, Lowell; Ambaye, Haile; Lauter, Valeria

    2011-09-01

    In the case of neutrons the refractive index is slightly less than unity for most elements and their isotopes [1]. Consequently, thermal and cold neutrons can be reflected from smooth surfaces at grazing-incidence angles. Hence, the optical technologies developed for x-ray astronomy can be applied for neutron focusing. The focusing capabilities of grazing incidence neutron imaging optics have been successfully demonstrated using nickel mirrors. The mirrors were fabricated using an electroformed nickel replication process at Marshall Space Flight Center. Results of the neutron optics experiments and current status of the multilayer coating replication technique development are presented.

  10. Status of the Neutron Imaging and Diffraction Instrument IMAT

    NASA Astrophysics Data System (ADS)

    Kockelmann, Winfried; Burca, Genoveva; Kelleher, Joe F.; Kabra, Saurabh; Zhang, Shu-Yan; Rhodes, Nigel J.; Schooneveld, Erik M.; Sykora, Jeff; Pooley, Daniel E.; Nightingale, Jim B.; Aliotta, Francesco; Ponterio, Rosa C.; Salvato, Gabriele; Tresoldi, Dario; Vasi, Cirino; McPhate, Jason B.; Tremsin, Anton S.

    A cold neutron imaging and diffraction instrument, IMAT, is currently being constructed at the ISIS second target station. IMAT will capitalize on time-of-flight transmission and diffraction techniques available at a pulsed neutron source. Analytical techniques will include neutron radiography, neutron tomography, energy-selective neutron imaging, and spatially resolved diffraction scans for residual strain and texture determination. Commissioning of the instrument will start in 2015, with time-resolving imaging detectors and two diffraction detector prototype modules. IMAT will be operated as a user facility for material science applications and will be open for developments of time-of-flight imaging methods.

  11. Operational status of the Los Alamos neutron science center (LANSCE)

    SciTech Connect

    Jones, Kevin W; Erickson, John L; Schoenberg, Kurt F

    2010-01-01

    The Los Alamos Neutron Science Center (LANSCE) accelerator and beam delivery complex generates the proton beams that serve three neutron production sources; the thermal and cold source for the Manuel Lujan Jr. Neutron Scattering Center, the Weapons Neutron Research (WNR) high-energy neutron source, and a pulsed Ultra-Cold Neutron Source. These three sources are the foundation of strong and productive multi-disciplinary research programs that serve a diverse and robust user community. The facility also provides multiplexed beams for the production of medical radioisotopes and proton radiography of dynamic events. The recent operating history of these sources will be reviewed and plans for performance improvement will be discussed, together with the underlying drivers for the proposed LANSCE Refurbishment project. The details of this latter project are presented in a separate contribution.

  12. Hypothermia: A Cold Weather Hazard

    MedlinePlus

    ... Weather Hazard Heath and Aging Hypothermia: A Cold Weather Hazard What Are The Signs Of Hypothermia? Taking ... cold air. But, not everyone knows that cold weather can also lower the temperature inside your body. ...

  13. A New Method of Neutron Detecton for UCN Lifetime Measrements

    SciTech Connect

    Morris, C. L.; Salvat, D. J.; Adamek, E. R.; Bowman, D.; Clayton, S.; Cude, C.; Fox, W.; Hogan, G.; Hickerson, K.; Holley, A. T.; Liu, C.-Y.; Makela, M.; Manus, G.; Penttila, S.; Ramsey, J.; Saunders, A.; Sawtelle, S.; Seestrom, S. J.; Solberg, K.; Vanderwerp, J.; VornDick, B.; Walstrom, P.; Wang, Z.; Young, A. R.

    2014-01-01

    A number of inconsistant neutron lifetime measurements have been reported. The disagreement among the various measurements made with material neutron traps with ultra-cold neutrons (UCN) suggests unaccounted for systematic errors in these measurements. One potential source of error is due to the long emptying times which may be time dependent due to the UCN phase space evolution in the trap. We present a way to reduce this effect.

  14. Neutron scattering instrumentation for biology at spallation neutron sources

    SciTech Connect

    Pynn, R.

    1994-12-31

    Conventional wisdom holds that since biological entities are large, they must be studied with cold neutrons, a domain in which reactor sources of neutrons are often supposed to be pre-eminent. In fact, the current generation of pulsed spallation neutron sources, such as LANSCE at Los Alamos and ISIS in the United Kingdom, has demonstrated a capability for small angle scattering (SANS) - a typical cold- neutron application - that was not anticipated five years ago. Although no one has yet built a Laue diffractometer at a pulsed spallation source, calculations show that such an instrument would provide an exceptional capability for protein crystallography at one of the existing high-power spoliation sources. Even more exciting is the prospect of installing such spectrometers either at a next-generation, short-pulse spallation source or at a long-pulse spallation source. A recent Los Alamos study has shown that a one-megawatt, short-pulse source, which is an order of magnitude more powerful than LANSCE, could be built with today`s technology. In Europe, a preconceptual design study for a five-megawatt source is under way. Although such short-pulse sources are likely to be the wave of the future, they may not be necessary for some applications - such as Laue diffraction - which can be performed very well at a long-pulse spoliation source. Recently, it has been argued by Mezei that a facility that combines a short-pulse spallation source similar to LANSCE, with a one-megawatt, long-pulse spallation source would provide a cost-effective solution to the global shortage of neutrons for research. The basis for this assertion as well as the performance of some existing neutron spectrometers at short-pulse sources will be examined in this presentation.

  15. Biological imaging with a neutron microscope

    SciTech Connect

    Cremer, J.T.; Piestrup, M.A.; Gary, C.K.; Pantell, R.H.; Glinka, C.J.

    2004-07-19

    A simple microscope employing a compound refractive lens (CRL) composed of 100 biconcave lenses was used to image a biological sample with a 9.4x magnification using 10 A ring cold neutrons. The microscope's resolution, 0.5 mm, was primarily determined by the neutron detector 5.0 mm pixel size. Unlike previous work the CRL's field of view was large (44 mm) and increased as the distance between the exit of neutron-waveguide and the specimen decreased. Short source-to-specimen distances allowed the 1.2-cm-diam CRL to view a biological sample with this field of view.

  16. Micromegas neutron beam monitor neutronics.

    PubMed

    Stephan, Andrew C; Miller, Laurence F

    2005-01-01

    The Micromegas is a type of ionising radiation detector that consists of a gas chamber sandwiched between two parallel plate electrodes, with the gas chamber divided by a Frisch grid into drift and amplification gaps. Investigators have applied it to a number of different applications, such as charged particle, X-ray and neutron detection. A Micromegas device has been tested as a neutron beam monitor at CERN and is expected to be used for that purpose at the Spallation Neutron Source (SNS) under construction in Oak Ridge, TN. For the Micromegas to function effectively as neutron beam monitor, it should cause minimal disruption to the neutron beam in question. Specifically, it should scatter as few neutrons as possible and avoid neutron absorption when it does not contribute to generating useful information concerning the neutron beam. Here, we present the results of Monte Carlo calculations of the effect of different types of wall materials and detector gases on neutron beams and suggest methods for minimising disruption to the beam. PMID:16381746

  17. Neutronic reactor

    DOEpatents

    Wende, Charles W. J.

    1976-08-17

    A safety rod for a nuclear reactor has an inner end portion having a gamma absorption coefficient and neutron capture cross section approximately equal to those of the adjacent shield, a central portion containing materials of high neutron capture cross section and an outer end portion having a gamma absorption coefficient at least equal to that of the adjacent shield.

  18. NEUTRONIC REACTOR

    DOEpatents

    Fermi, E.; Zinn, W.H.; Anderson, H.L.

    1958-09-16

    Means are presenied for increasing the reproduction ratio of a gaphite- moderated neutronic reactor by diminishing the neutron loss due to absorption or capture by gaseous impurities within the reactor. This means comprised of a fluid-tight casing or envelope completely enclosing the reactor and provided with a valve through which the casing, and thereby the reactor, may be evacuated of atmospheric air.

  19. The Characteristic Curves of Water

    NASA Astrophysics Data System (ADS)

    Neumaier, Arnold; Deiters, Ulrich K.

    2016-09-01

    In 1960, E. H. Brown defined a set of characteristic curves (also known as ideal curves) of pure fluids, along which some thermodynamic properties match those of an ideal gas. These curves are used for testing the extrapolation behaviour of equations of state. This work is revisited, and an elegant representation of the first-order characteristic curves as level curves of a master function is proposed. It is shown that Brown's postulate—that these curves are unique and dome-shaped in a double-logarithmic p, T representation—may fail for fluids exhibiting a density anomaly. A careful study of the Amagat curve (Joule inversion curve) generated from the IAPWS-95 reference equation of state for water reveals the existence of an additional branch.

  20. Febrile/cold agglutinins

    MedlinePlus

    ... diagnose certain infections and find the cause of hemolytic anemia (a type of anemia that occurs when red ... or cold agglutinins can help explain why the hemolytic anemia is occurring and direct treatment.

  1. Neutron source

    DOEpatents

    Cason, J.L. Jr.; Shaw, C.B.

    1975-10-21

    A neutron source which is particularly useful for neutron radiography consists of a vessel containing a moderating media of relatively low moderating ratio, a flux trap including a moderating media of relatively high moderating ratio at the center of the vessel, a shell of depleted uranium dioxide surrounding the moderating media of relatively high moderating ratio, a plurality of guide tubes each containing a movable source of neutrons surrounding the flux trap, a neutron shield surrounding one part of each guide tube, and at least one collimator extending from the flux trap to the exterior of the neutron source. The shell of depleted uranium dioxide has a window provided with depleted uranium dioxide shutters for each collimator. Reflectors are provided above and below the flux trap and on the guide tubes away from the flux trap.

  2. Neutron tubes

    DOEpatents

    Leung, Ka-Ngo; Lou, Tak Pui; Reijonen, Jani

    2008-03-11

    A neutron tube or generator is based on a RF driven plasma ion source having a quartz or other chamber surrounded by an external RF antenna. A deuterium or mixed deuterium/tritium (or even just a tritium) plasma is generated in the chamber and D or D/T (or T) ions are extracted from the plasma. A neutron generating target is positioned so that the ion beam is incident thereon and loads the target. Incident ions cause D-D or D-T (or T-T) reactions which generate neutrons. Various embodiments differ primarily in size of the chamber and position and shape of the neutron generating target. Some neutron generators are small enough for implantation in the body. The target may be at the end of a catheter-like drift tube. The target may have a tapered or conical surface to increase target surface area.

  3. Advancing Materials Science using Neutrons at Oak Ridge National Laboratory

    ScienceCinema

    Carpenter, John

    2014-06-03

    Jack Carpenter, pioneer of accelerator-based pulsed spallation neutron sources, talks about neutron science at Oak Ridge National Laboratory (ORNL) and a need for a second target station at the Spallation Neutron Source (SNS). ORNL is the Department of Energy's largest multiprogram science and energy laboratory, and is home to two scientific user facilities serving the neutron science research community: the High Flux Isotope Reactor (HFIR) and SNS. HFIR and SNS provide researchers with unmatched capabilities for understanding the structure and properties of materials, macromolecular and biological systems, and the fundamental physics of the neutron. Neutrons provide a window through which to view materials at a microscopic level that allow researchers to develop better materials and better products. Neutrons enable us to understand materials we use in everyday life. Carpenter explains the need for another station to produce long wavelength neutrons, or cold neutrons, to answer questions that are addressed only with cold neutrons. The second target station is optimized for that purpose. Modern technology depends more and more upon intimate atomic knowledge of materials, and neutrons are an ideal probe.

  4. Advancing Materials Science using Neutrons at Oak Ridge National Laboratory

    SciTech Connect

    Carpenter, John

    2014-04-24

    Jack Carpenter, pioneer of accelerator-based pulsed spallation neutron sources, talks about neutron science at Oak Ridge National Laboratory (ORNL) and a need for a second target station at the Spallation Neutron Source (SNS). ORNL is the Department of Energy's largest multiprogram science and energy laboratory, and is home to two scientific user facilities serving the neutron science research community: the High Flux Isotope Reactor (HFIR) and SNS. HFIR and SNS provide researchers with unmatched capabilities for understanding the structure and properties of materials, macromolecular and biological systems, and the fundamental physics of the neutron. Neutrons provide a window through which to view materials at a microscopic level that allow researchers to develop better materials and better products. Neutrons enable us to understand materials we use in everyday life. Carpenter explains the need for another station to produce long wavelength neutrons, or cold neutrons, to answer questions that are addressed only with cold neutrons. The second target station is optimized for that purpose. Modern technology depends more and more upon intimate atomic knowledge of materials, and neutrons are an ideal probe.

  5. 3He Spin Filter for Neutrons

    PubMed Central

    Batz, M.; Baeßler, S.; Heil, W.; Otten, E. W.; Rudersdorf, D.; Schmiedeskamp, J.; Sobolev, Y.; Wolf, M.

    2005-01-01

    The strongly spin-dependent absorption of neutrons in nuclear spin-polarized 3He opens up the possibility of polarizing neutrons from reactors and spallation sources over the full kinematical range of cold, thermal and hot neutrons. This paper gives a report on the neutron spin filter (NSF) development program at Mainz. The polarization technique is based on direct optical pumping of metastable 3He atoms combined with a polarization preserving mechanical compression of the gas up to a pressure of several bar, necessary to run a NSF. The concept of a remote type of operation using detachable NSF cells is presented which requires long nuclear spin relaxation times of order 100 hours. A short survey of their use under experimental conditions, e.g. large solid-angle polarization analysis, is given. In neutron particle physics NSFs are used in precision measurements to test fundamental symmetry concepts. PMID:27308139

  6. Plastic fiber scintillator response to fast neutrons

    NASA Astrophysics Data System (ADS)

    Danly, C. R.; Sjue, S.; Wilde, C. H.; Merrill, F. E.; Haight, R. C.

    2014-11-01

    The Neutron Imaging System at NIF uses an array of plastic scintillator fibers in conjunction with a time-gated imaging system to form an image of the neutron emission from the imploded capsule. By gating on neutrons that have scattered from the 14.1 MeV DT energy to lower energy ranges, an image of the dense, cold fuel around the hotspot is also obtained. An unmoderated spallation neutron beamline at the Weapons Neutron Research facility at Los Alamos was used in conjunction with a time-gated imaging system to measure the yield of a scintillating fiber array over several energy bands ranging from 1 to 15 MeV. The results and comparison to simulation are presented.

  7. Plastic fiber scintillator response to fast neutrons

    SciTech Connect

    Danly, C. R.; Sjue, S.; Wilde, C. H.; Merrill, F. E.; Haight, R. C.

    2014-11-15

    The Neutron Imaging System at NIF uses an array of plastic scintillator fibers in conjunction with a time-gated imaging system to form an image of the neutron emission from the imploded capsule. By gating on neutrons that have scattered from the 14.1 MeV DT energy to lower energy ranges, an image of the dense, cold fuel around the hotspot is also obtained. An unmoderated spallation neutron beamline at the Weapons Neutron Research facility at Los Alamos was used in conjunction with a time-gated imaging system to measure the yield of a scintillating fiber array over several energy bands ranging from 1 to 15 MeV. The results and comparison to simulation are presented.

  8. Titration Curves: Fact and Fiction.

    ERIC Educational Resources Information Center

    Chamberlain, John

    1997-01-01

    Discusses ways in which datalogging equipment can enable titration curves to be measured accurately and how computing power can be used to predict the shape of curves. Highlights include sources of error, use of spreadsheets to generate titration curves, titration of a weak acid with a strong alkali, dibasic acids, weak acid and weak base, and…

  9. Neutron Spectroscopy on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Knauer, J. P.

    2012-10-01

    The performance of cryogenic fuel implosion experiments in progress at the National Ignition Facility (NIF) is measured by an experimental threshold factorfootnotetextM. J. Edwards et al., Phys. Plasmas 18, 051003 (2011). (ITFX) and a generalized Lawson Criterion.footnotetextC. D. Zhou and R. Betti, Phys. Plasmas 15, 102707 (2008); P. Y. Chang et al., Phys. Rev. Lett. 104, 135002 (2010); and R. Betti et al., Phys. Plasmas 17, 058102 (2010). The ITFX metric is determined by the fusion yield and the areal density of an assembled deuterium-tritium (DT) fuel mass. Typical neutron yields from NIF implosions are greater than 10^14 allowing the neutron energy spectrum to be measured with unprecedented precision. A NIF spectrum is composed of neutrons created by fusion (DT, DD, and TT reactions) and neutrons scattered by the dense, cold fuel layer. Neutron scattering is used to determine the areal density of a NIF implosion and is measured along four lines of sight by two neutron time-of-flight detectors, a neutron imaging system, and the magnetic recoil spectrometer. An accurate measurement of the instrument response function for these detectors allows for the routine production of neutron spectra showing DT fuel areal densities up to 1.3 g/cm^2. Spectra over neutron energies of 10 to 17 MeV show areal-density asymmetries of 20% that are inconsistent with simulations. New calibrations and analyses have expended the spectral coverage down to energies less than the deuterium backscatter edge (1.5 MeV for 14 MeV neutrons). These data and analyses are presented along with a compilation of other nuclear diagnostic data that show a larger-than-expected variation in the areal density over the cold fuel mass. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No DE-FC52-08NA28302. In collaboration with NIC.

  10. Teaching in a Cold Environment.

    ERIC Educational Resources Information Center

    Ewert, Alan

    1979-01-01

    Designed to help teachers deal with students in a cold environment, this article explains cold physiology and fundamental laws of heat; describes 14 common cold injuries and their current treatment; and lists a number of useful teaching techniques for cold environments. (SB)

  11. Teaching in a Cold Environment.

    ERIC Educational Resources Information Center

    Ewert, Alan

    Instructors who teach outdoors in an environment so cold as to cause injury must satisfy program objectives while avoiding cold injury to themselves and students, help students focus on learning instead of discomfort, and alleviate some students' intense fear of the cold. Dealing with the cold successfully requires a thorough knowledge of:…

  12. High resolution neutron imaging capabilities at BOA beamline at Paul Scherrer Institut

    NASA Astrophysics Data System (ADS)

    Tremsin, A. S.; Morgano, M.; Panzner, T.; Lehmann, E.; Filgers, U.; Vallerga, J. V.; McPhate, J. B.; Siegmund, O. H. W.; Feller, W. B.

    2015-06-01

    The cold neutron spectrum of the Beamline for neutron Optics and other Applications (BOA) at Paul Scherrer Institut enables high contrast neutron imaging because neutron cross sections for many materials increase with neutron wavelength. However, for many neutron imaging applications, spatial resolution can be as important as contrast. In this paper the neutron transmission imaging capabilities of an MCP/Timepix detector installed at the BOA beamline are presented, demonstrating the possibilities for studying sub-20 μm features in various samples. In addition to conventional neutron radiography and microtomography, the high degree of neutron polarization at the BOA beamline can be very attractive for imaging of magnetic fields, as demonstrated by our measurements. We also show that a collimated cold neutron beamline combined with a high resolution detector can produce image artifacts, (e.g. edge enhancements) due to neutron refraction and scattering. The results of our experiments indicate that the BOA beamline is a valuable addition to neutron imaging facilities, providing improved and sometimes unique capabilities for non-destructive studies with cold neutrons.

  13. Curved Waveguide Based Nuclear Fission for Small, Lightweight Reactors

    NASA Technical Reports Server (NTRS)

    Coker, Robert; Putnam, Gabriel

    2012-01-01

    The focus of the presented work is on the creation of a system of grazing incidence, supermirror waveguides for the capture and reuse of fission sourced neutrons. Within research reactors, neutron guides are a well known tool for directing neutrons from the confined and hazardous central core to a more accessible testing or measurement location. Typical neutron guides have rectangular, hollow cross sections, which are crafted as thin, mirrored waveguides plated with metal (commonly nickel). Under glancing angles with incoming neutrons, these waveguides can achieve nearly lossless transport of neutrons to distant instruments. Furthermore, recent developments have created supermirror surfaces which can accommodate neutron grazing angles up to four times as steep as nickel. A completed system will form an enclosing ring or spherical resonator system to a coupled neutron source for the purpose of capturing and reusing free neutrons to sustain and/or accelerate fission. While grazing incidence mirrors are a known method of directing and safely using neutrons, no method has been disclosed for capture and reuse of neutrons or sustainment of fission using a circular waveguide structure. The presented work is in the process of fabricating a functional, highly curved, neutron supermirror using known methods of Ni-Ti layering capable of achieving incident reflection angles up to four times steeper than nickel alone. Parallel work is analytically investigating future geometries, mirror compositions, and sources for enabling sustained fission with applicability to the propulsion and energy goals of NASA and other agencies. Should research into this concept prove feasible, it would lead to development of a high energy density, low mass power source potentially capable of sustaining fission with a fraction of the standard critical mass for a given material and a broadening of feasible materials due to reduced rates of release, absorption, and non-fission for neutrons. This

  14. NEUTRON SOURCE

    DOEpatents

    Bernander, N.K. et al.

    1960-10-18

    An apparatus is described for producing neutrons through target bombardment with deuterons. Deuterium gas is ionized by electron bombardment and the deuteron ions are accelerated through a magnetic field to collimate them into a continuous high intensity beam. The ion beam is directed against a deuteron pervious metal target of substantially the same nnaterial throughout to embed the deuterous therein and react them to produce neutrons. A large quantity of neutrons is produced in this manner due to the increased energy and quantity of ions bombarding the target.

  15. Neutron guides at the FRM-II

    NASA Astrophysics Data System (ADS)

    Aschauer, H.; Fleischmann, A.; Schanzer, C.; Steichele, E.

    2000-06-01

    The new research reactor FRM-II in Garching will be equipped with thermal, cold and (optional) very cold neutron guides. The main system in a specially designed beam tube (SR-1) looks onto the cold source and consists of six primary guides of cross-section 120×60 mm 2 (2 guides), 170×60 mm 2 (2) and 170×50 mm 2, respectively. These guides enter a neutron guide hall of 53×26 m 2 experimental area, some of the guides can be lengthened into the old reactor hall of the old “Atom-Ei”. The guides will be coated with either Ni-58 or super-mirror (mostly m=2, 3.5 in focussing sections near the instruments). For optimum background conditions the guides are designed for a short length of direct sight by coating at least the garland side with super-mirror and/or subdividing the width by thin mirror plates into narrower channels. In order to obtain many “endposition” places the primary beams are subdivided in height or width and individual beams are obtained by beam benders. One of the guides, which provides a high-resolution TOF-spectrometer, is double-bent S-shaped in order to get a sharp cut-off at short wavelength. A second pair of cold neutron guides will be installed in beam tube SR-4. A pair of thermal guides for two diffractometers in the experimental hall of the reactor will be installed at beam tube SR-8. Similar to the TGV at ILL a vertical guide can be installed in the vertical cold source to guide very cold neutrons into the reactor hall in first floor.

  16. Thermal neutron detection system

    DOEpatents

    Peurrung, Anthony J.; Stromswold, David C.

    2000-01-01

    According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

  17. Neutron multiplicity analysis tool

    SciTech Connect

    Stewart, Scott L

    2010-01-01

    I describe the capabilities of the EXCOM (EXcel based COincidence and Multiplicity) calculation tool which is used to analyze experimental data or simulated neutron multiplicity data. The input to the program is the count-rate data (including the multiplicity distribution) for a measurement, the isotopic composition of the sample and relevant dates. The program carries out deadtime correction and background subtraction and then performs a number of analyses. These are: passive calibration curve, known alpha and multiplicity analysis. The latter is done with both the point model and with the weighted point model. In the current application EXCOM carries out the rapid analysis of Monte Carlo calculated quantities and allows the user to determine the magnitude of sample perturbations that lead to systematic errors. Neutron multiplicity counting is an assay method used in the analysis of plutonium for safeguards applications. It is widely used in nuclear material accountancy by international (IAEA) and national inspectors. The method uses the measurement of the correlations in a pulse train to extract information on the spontaneous fission rate in the presence of neutrons from ({alpha},n) reactions and induced fission. The measurement is relatively simple to perform and gives results very quickly ({le} 1 hour). By contrast, destructive analysis techniques are extremely costly and time consuming (several days). By improving the achievable accuracy of neutron multiplicity counting, a nondestructive analysis technique, it could be possible to reduce the use of destructive analysis measurements required in safeguards applications. The accuracy of a neutron multiplicity measurement can be affected by a number of variables such as density, isotopic composition, chemical composition and moisture in the material. In order to determine the magnitude of these effects on the measured plutonium mass a calculational tool, EXCOM, has been produced using VBA within Excel. This

  18. Birational maps that send biquadratic curves to biquadratic curves

    NASA Astrophysics Data System (ADS)

    Roberts, John A. G.; Jogia, Danesh

    2015-02-01

    Recently, many papers have begun to consider so-called non-Quispel-Roberts-Thompson (QRT) birational maps of the plane. Compared to the QRT family of maps which preserve each biquadratic curve in a fibration of the plane, non-QRT maps send a biquadratic curve to another biquadratic curve belonging to the same fibration or to a biquadratic curve from a different fibration of the plane. In this communication, we give the general form of a birational map derived from a difference equation that sends a biquadratic curve to another. The necessary and sufficient condition for such a map to exist is that the discriminants of the two biquadratic curves are the same (and hence so are the j-invariants). The result allows existing examples in the literature to be better understood and allows some statements to be made concerning their generality.

  19. Cold-Flow Propulsion Research Test

    NASA Technical Reports Server (NTRS)

    1997-01-01

    An engineer at the Marshall Space Flight Center (MSFC) Wind Tunnel Facility uses lasers to measure the velocity and gradient distortion across an eight inch curved pipe with joints and turning valves during a cold-flow propulsion research test; simulating the conditions found in the X-33's hydrogen feedline. Lasers are used because they are non-intrusive and do not disturb the flow like a probe would. The feedline supplies propellants to the turbo pump. The purpose of this project was to design the feedline to provide uniform flow into the turbo pump.

  20. NEUTRONIC REACTOR

    DOEpatents

    Wade, E.J.

    1958-09-16

    This patent relates to a reflector means for a neutronic reactor. A reflector comprised of a plurality of vertically movable beryllium control members is provided surrounding the sides of the reactor core. An absorber of fast neutrons comprised of natural uramum surrounds the reflector. An absorber of slow neutrons surrounds the absorber of fast neutrons and is formed of a plurality of beryllium blocks having natural uranium members distributcd therethrough. in addition, a movable body is positioned directly below the core and is comprised of a beryllium reflector and an absorbing member attached to the botiom thereof, the absorbing member containing a substance selected from the goup consisting of natural urantum and Th/sup 232/.

  1. The Advanced Neutron Source (ANS) project: A world-class research reactor facility

    SciTech Connect

    Thompson, P.B.; Meek, W.E.

    1993-07-01

    This paper provides an overview of the Advanced Neutron Source (ANS), a new research facility being designed at Oak Ridge National Laboratory. The facility is based on a 330 MW, heavy-water cooled and reflected reactor as the neutron source, with a thermal neutron flux of about 7.5{times}10{sup 19}m{sup {minus}2}{center_dot}sec{sup {minus}1}. Within the reflector region will be one hot source which will serve 2 hot neutron beam tubes, two cryogenic cold sources serving fourteen cold neutron beam tubes, two very cold beam tubes, and seven thermal neutron beam tubes. In addition there will be ten positions for materials irradiation experiments, five of them instrumented. The paper touches on the project status, safety concerns, cost estimates and scheduling, a description of the site, the reactor, and the arrangements of the facilities.

  2. Superthermal source of ultracold neutrons for fundamental physics experiments.

    PubMed

    Zimmer, Oliver; Piegsa, Florian M; Ivanov, Sergey N

    2011-09-23

    Ultracold neutrons (UCNs) play an important role for precise measurements of the properties of the neutron and its interactions. During the past 25 years, a neutron turbine coupled to a liquid deuterium cold neutron source at a high-flux reactor has defined the state of the art for UCN production, despite a long history of efforts towards a new generation of UCN sources. This Letter reports a world-best UCN density available for users, achieved with a new source based on conversion of cold neutrons in superfluid helium. A conversion volume of 5 liters provides at least 274,000 UCN in a single accumulation run. Cyclically repeated operation of the source has been demonstrated, as well. PMID:22026860

  3. Superthermal Source of Ultracold Neutrons for Fundamental Physics Experiments

    SciTech Connect

    Zimmer, Oliver; Piegsa, Florian M.; Ivanov, Sergey N.

    2011-09-23

    Ultracold neutrons (UCNs) play an important role for precise measurements of the properties of the neutron and its interactions. During the past 25 years, a neutron turbine coupled to a liquid deuterium cold neutron source at a high-flux reactor has defined the state of the art for UCN production, despite a long history of efforts towards a new generation of UCN sources. This Letter reports a world-best UCN density available for users, achieved with a new source based on conversion of cold neutrons in superfluid helium. A conversion volume of 5 liters provides at least 274 000 UCN in a single accumulation run. Cyclically repeated operation of the source has been demonstrated, as well.

  4. "Cold training" affects rat liver responses to continuous cold exposure.

    PubMed

    Venditti, Paola; Napolitano, Gaetana; Barone, Daniela; Di Meo, Sergio

    2016-04-01

    Continuous exposure of homeothermic animals to low environmental temperatures elicits physiological adaptations necessary for animal survival, which are associated to higher generation of pro-oxidants in thermogenic tissues. It is not known whether intermittent cold exposure (cold training) is able to affect tissue responses to continuous cold exposure. Therefore, we investigated whether rat liver responses to continuous cold exposure of 2 days are modified by cold training (1h daily for 5 days per week for 3 consecutive weeks). Continuous cold increased liver oxidative metabolism by increasing tissue content of mitochondrial proteins and mitochondrial aerobic capacity. Cold training did not affect such parameters, but attenuated or prevented the changes elicited by continuous cold exposure. Two-day cold exposure increased lipid hydroperoxide and protein-bound carbonyl levels in homogenates and mitochondria, whereas cold training decreased such effects although it decreased only homogenate protein damage in control rats. The activities of the antioxidant enzymes GPX and GR and H2O2 production were increased by continuous cold exposure. Despite the increase in GPX and GR activities, livers from cold-exposed rats showed increased susceptibility to in vitro oxidative challenge. Such cold effects were decreased by cold training, which in control rats reduced only H2O2 production and susceptibility to stress. The changes of PGC-1, NRF-1, and NRF-2 expression levels were consistent with those induced by cold exposure and cold training in mitochondrial protein content and antioxidant enzyme activities. However, the mechanisms by which cold training attenuates the effects of the continuous cold exposure remain to be elucidated. PMID:26808664

  5. NEUTRONIC REACTOR

    DOEpatents

    Fraas, A.P.; Mills, C.B.

    1961-11-21

    A neutronic reactor in which neutron moderation is achieved primarily in its reflector is described. The reactor structure consists of a cylindrical central "island" of moderator and a spherical moderating reflector spaced therefrom, thereby providing an annular space. An essentially unmoderated liquid fuel is continuously passed through the annular space and undergoes fission while contained therein. The reactor, because of its small size, is particularly adapted for propulsion uses, including the propulsion of aircraft. (AEC)

  6. NEUTRON SOURCES

    DOEpatents

    Richmond, J.L.; Wells, C.E.

    1963-01-15

    A neutron source is obtained without employing any separate beryllia receptacle, as was formerly required. The new method is safer and faster, and affords a source with both improved yield and symmetry of neutron emission. A Be container is used to hold and react with Pu. This container has a thin isolating layer that does not obstruct the desired Pu--Be reaction and obviates procedures previously employed to disassemble and remove a beryllia receptacle. (AEC)

  7. Tolerance to ethanol hypothermia in HOT and COLD mice.

    PubMed

    Crabbe, J C

    1994-02-01

    COLD and HOT mice have been selected to be sensitive or resistant, respectively, to the acute hypothermic effect of ethanol. Previous studies have found HOT mice to be relatively resistant to the development of tolerance to this effect, whereas COLD mice readily develop tolerance. By administering several doses of ethanol and recording multiple postdrug temperatures, in the current study we equated the selected lines for area under the curve describing initial hypothermic response over time, a measure reflecting both maximal hypothermia achieved and the duration of total hypothermic response. The dose-response function for COLD mice was much steeper than that for HOT mice, and HOT mice recovered to baseline body temperatures more slowly. Doses were administered daily for 5 days. Both lines developed tolerance to ethanol hypothermia. The magnitude of tolerance developed was greater in COLD than in HOT mice. At higher doses, HOT mice showed a progressively enhanced hypothermic response over days (i.e., sensitization). PMID:8198225

  8. Cold-start characteristics of polymer electrolyte fuel cells

    SciTech Connect

    Mishler, Jeff; Mukundan, Rangachary; Wang, Yun; Mishler, Jeff; Mukherjee, Partha P

    2010-01-01

    In this paper, we investigate the electrochemical reaction kinetics, species transport, and solid water dynamics in a polymer electrolyte fuel cell (PEFC) during cold start. A simplitied analysis is developed to enable the evaluation of the impact of ice volume fraction on cell performance during coldstart. Supporting neutron imaging data are also provided to reveal the real-time water evolution. Temperature-dependent voltage changes due to the reaction kinetics and ohmic loss are also analyzed based on the ionic conductivity of the membrane at subfreezing temperature. The analysis is valuable for the fundamental study of PEFC cold-start.

  9. A modular approach to the design of cold moderators

    SciTech Connect

    Lucas, A.T.

    1998-11-01

    Cold moderators are usually designed to the specific requirements of the parent neutron source. However since all cryogenic moderators within a broad design envelope require certain common parameters, it should be possible to create a central core design served by smaller packages designed, or selected to satisfy a wide range of individual requirements. This paper describes a modular design philosophy that has been applied to two very different cold sources with only minor changes to two of the modules in the system. Both of the systems and the basic differences between them are described in detail.

  10. Massive cold cloud clusters

    NASA Astrophysics Data System (ADS)

    Toth, L. Viktor; Marton, Gabor; Zahorecz, Sarolta

    2015-08-01

    The all-sky Planck catalogue of Galactic Cold Clumps (PGCC, Planck 2015 results XXVIII 2015) allows an almost unbiased study of the early phases of star-formation in our Galaxy. Several thousand of the clumps have also distance estimates allowing a mass, and density determination. The nature of Planck clumps varies from IRDCs to tiny nearby cold clouds with masses ranging from one to several tens of thousands solar masses. Some of the clumps are embedded in GMCs, others are isolated. Some are close or even very close to OB associations, while others lay far from any UV luminous objects.The small scale clustering of these objects was studied with the improved Minimum Spanning Tree method of Cartwright & Whitworth identifying groups in 3D space. As a result also massive cold cloud clusters were identified. We analyse the MST structures, and discuss their relation to ongoing and future massive star formation.

  11. Neutron range spectrometer

    DOEpatents

    Manglos, S.H.

    1988-03-10

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are colliminated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. 1 fig.

  12. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.

    1958-04-22

    A nuclear reactor for isotope production is described. This reactor is designed to provide a maximum thermal neutron flux in a region adjacent to the periphery of the reactor rather than in the center of the reactor. The core of the reactor is generally centrally located with respect tn a surrounding first reflector, constructed of beryllium. The beryllium reflector is surrounded by a second reflector, constructed of graphite, which, in tune, is surrounded by a conventional thermal shield. Water is circulated through the core and the reflector and functions both as a moderator and a coolant. In order to produce a greatsr maximum thermal neutron flux adjacent to the periphery of the reactor rather than in the core, the reactor is designed so tbat the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the materials in the reflector is approximately twice the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the material of the core of the reactor.

  13. Cold-responsive gene regulation during cold acclimation in plants.

    PubMed

    Lissarre, Mickael; Ohta, Masaru; Sato, Aiko; Miura, Kenji

    2010-08-01

    Regulation of the transcriptome is necessary for plants to acquire cold tolerance, and cold induces several genes via a cold signaling pathway. The transcription factors CBF/DREB1 (C-repeat binding factor/dehydration responsive element binding1) and ICE1 (inducer of CBF expression1) have important roles in the regulation of cold-responsive gene expression. ICE1 is post-translationally regulated by ubiquitylation-mediated proteolysis and sumoylation. This mini-review highlights some recent studies on plant cold signaling. The relationships among cold signaling, salicylic acid accumulation and stomatal development are also discussed. PMID:20699657

  14. FOREWORD: Neutron metrology Neutron metrology

    NASA Astrophysics Data System (ADS)

    Thomas, David J.; Nolte, Ralf; Gressier, Vincent

    2011-12-01

    The International Committee for Weights and Measures (CIPM) has consultative committees covering various areas of metrology. The Consultative Committee for Ionizing Radiation (CCRI) differs from the others in having three sections: Section (I) deals with radiation dosimetry, Section (II) with radionuclide metrology and Section (III) with neutron metrology. In 2003 a proposal was made to publish special issues of Metrologia covering the work of the three Sections. Section (II) was the first to complete their task, and their special issue was published in 2007, volume 44(4). This was followed in 2009 by the special issue on radiation dosimetry, volume 46(2). The present issue, volume 48(6), completes the trilogy and attempts to explain neutron metrology, the youngest of the three disciplines, the neutron only having been discovered in 1932, to a wider audience and to highlight the relevance and importance of this field. When originally approached with the idea of this special issue, Section (III) immediately saw the value of a publication specifically on neutron metrology. It is a topic area where papers tend to be scattered throughout the literature in journals covering, for example, nuclear instrumentation, radiation protection or radiation measurements in general. Review articles tend to be few. People new to the field often ask for an introduction to the various topics. There are some excellent older textbooks, but these are now becoming obsolete. More experienced workers in specific areas of neutron metrology can find it difficult to know the latest position in related areas. The papers in this issue attempt, without presenting a purely historical outline, to describe the field in a sufficiently logical way to provide the novice with a clear introduction, while being sufficiently up-to-date to provide the more experienced reader with the latest scientific developments in the different topic areas. Neutron radiation fields obviously occur throughout the nuclear

  15. Status Report on the Spallation Neutron Source

    SciTech Connect

    Gabriel, T.A.

    1998-10-12

    The purpose of the Spallation Neutron Source Project (SNS) is to generate low-energy neutrons (ambient [{approximately}200 meV] and cold [{approximately}50 meV]) which can be used by up to 18 neutron beam lines to study the structure and functionality of materials. The neutrons are generated by the spallation process initiated by the interactions of 1-GeV protons with a Hg target. These neutrons are reflected by a Pb reflector and are moderated by 2 water (ambient) and 2 super critical hydrogen (cryogenic) moderators. The pulse structure for the 1 MW proton beam is 60 Hertz and < 0.7 {micro}s/pulse. The facility must be upgradable to higher power levels (2- and 4- MW) with minimal operational interruptions. Although not included in the current funding or baseline, a second target station and associated support structure which will be designed to utilize cold neutrons is also considered to be an upgrade that must be incorporated with minimal impact on operations.

  16. Drug and tobacco detection using neutron transmission/attenuation

    NASA Astrophysics Data System (ADS)

    Miller, Thomas G.

    1994-10-01

    A neutron transmission/attenuation spectrometer has been used to obtain the neutron attenuation signature of cocaine, heroin, hashish, methamphetamine, pipe tobacco and chewing tobacco. A pulsed `white neutron' source was created by bombarding a thick beryllium target with a 5 MeV pulsed deuteron beam. The neutron intensity was measured from about 0.75 MeV to about 4 MeV with the suitcase in and out of the neutron beam to determine the neutron attenuation. Experiments were performed for drugs and tobacco alone and when imbedded in an `average suitcase'. The experimentally determined neutron attenuation curves were used to determine the atomic ratios C/O, N/O, and H/C through the samples using measured neutron cross sections.

  17. The Jülich high-brilliance neutron source project

    NASA Astrophysics Data System (ADS)

    Rücker, U.; Cronert, T.; Voigt, J.; Dabruck, J. P.; Doege, P.-E.; Ulrich, J.; Nabbi, R.; Beßler, Y.; Butzek, M.; Büscher, M.; Lange, C.; Klaus, M.; Gutberlet, T.; Brückel, T.

    2016-01-01

    With the construction of the European Spallation Source ESS, the European neutron user community is looking forward to the brightest source worldwide. At the same time there is an ongoing concentration of research with neutrons to only a few but very powerful neutron facilities. Responding to this situation the Jülich Centre for Neutron Science has initiated a project for a compact accelerator driven high-brilliance neutron source, optimized for neutron scattering on small samples and to be realized at reasonable costs. The project deals with the optimization of potential projectiles, target and moderator concepts, versatile accelerator systems, cold sources, beam extraction systems and optimized instrumentation. A brief outline of the project, the achievements already reached, will be presented, as well as a vision for the future neutron landscape in Europe.

  18. FOREWORD: Neutron metrology Neutron metrology

    NASA Astrophysics Data System (ADS)

    Thomas, David J.; Nolte, Ralf; Gressier, Vincent

    2011-12-01

    The International Committee for Weights and Measures (CIPM) has consultative committees covering various areas of metrology. The Consultative Committee for Ionizing Radiation (CCRI) differs from the others in having three sections: Section (I) deals with radiation dosimetry, Section (II) with radionuclide metrology and Section (III) with neutron metrology. In 2003 a proposal was made to publish special issues of Metrologia covering the work of the three Sections. Section (II) was the first to complete their task, and their special issue was published in 2007, volume 44(4). This was followed in 2009 by the special issue on radiation dosimetry, volume 46(2). The present issue, volume 48(6), completes the trilogy and attempts to explain neutron metrology, the youngest of the three disciplines, the neutron only having been discovered in 1932, to a wider audience and to highlight the relevance and importance of this field. When originally approached with the idea of this special issue, Section (III) immediately saw the value of a publication specifically on neutron metrology. It is a topic area where papers tend to be scattered throughout the literature in journals covering, for example, nuclear instrumentation, radiation protection or radiation measurements in general. Review articles tend to be few. People new to the field often ask for an introduction to the various topics. There are some excellent older textbooks, but these are now becoming obsolete. More experienced workers in specific areas of neutron metrology can find it difficult to know the latest position in related areas. The papers in this issue attempt, without presenting a purely historical outline, to describe the field in a sufficiently logical way to provide the novice with a clear introduction, while being sufficiently up-to-date to provide the more experienced reader with the latest scientific developments in the different topic areas. Neutron radiation fields obviously occur throughout the nuclear

  19. Personal neutron dosimetry at a research reactor facility.

    PubMed

    Kamenopoulou, V; Carinou, E; Stamatelatos, I E

    2001-01-01

    Individual neutron monitoring presents several difficulties due to the differences in energy response of the dosemeters. In the present study, an individual dosemeter (TLD) calibration approach is attempted for the personnel of a research reactor facility. The neutron energy response function of the dosemeter was derived using the MCNP code. The results were verified by measurements to three different neutron spectra and were found to be in good agreement. Three different calibration curves were defined for thermal, intermediate and fast neutrons. At the different working positions around the reactor, neutron spectra were defined using the Monte Carlo technique and ambient dose rate measurements were performed. An estimation of the neutrons energy is provided by the ratio of the different TLD pellets of each dosemeter in combination with the information concerning the worker's position; then the dose equivalent is deduced according to the appropriate calibration curve. PMID:11586728

  20. Synthetic RR Lyrae velocity curves

    SciTech Connect

    Liu, Tianxing Boston Univ., MA )

    1991-02-01

    An amplitude correlation between the pulsation velocity curves and visual light curves of ab-type RR Lyrae stars is derived from a large number of RR Lyrae that have high-precision radial-velocity and photometric data. Based on the determined AVp, AV ralation, a synthetic radial-velocity curve for a typical ab-type RR Lyrae star is constructed. This would be of particular use in determining the systemic velocities of RR Lyrae. 17 refs.

  1. Comparative photosynthetic and metabolic analyses reveal mechanism of improved cold stress tolerance in bermudagrass by exogenous melatonin.

    PubMed

    Hu, Zhengrong; Fan, Jibiao; Xie, Yan; Amombo, Erick; Liu, Ao; Gitau, Margaret Mukami; Khaldun, A B M; Chen, Liang; Fu, Jinmin

    2016-03-01

    Melatonin (N-acetyl-5-methoxytryptamine) has been reported to participate in plant development and abiotic stress responses. The main objective of this study was to investigate the role of melatonin in the cold-sensitive (S) and the cold-tolerant (T) bermudagrass genotypes' response to cold stress. The genotypes were treated with 100 μM melatonin and exposed to 4 °C temperature for 3 days. In both genotypes, cold stress increased the endogenous melatonin levels, and more prominently in T than S. Physiological responses indicated that exogenous melatonin triggered antioxidant activities in both genotypes, while it alleviated cell damage in the T genotype response to cold stress. Melatonin treatment under cold stress increased fluorescence curve levels for both genotypes, and higher in T than S genotypes. In both genotypes, the alterations in photosynthetic fluorescence parameters after melatonin treatment highlighted the participation of melatonin in improving photosystem response to cold stress, particularly for the cold-tolerant genotype. The metabolic analyses revealed the alterations of 44 cold-responsive metabolites in the two genotypes, mainly including carbohydrates, organic acids and amino acids. After exogenous melatonin treatment under cold condition, there was high accumulation of metabolites in the cold-tolerant regimes than their cold-sensitive counterparts. Collectively, the present study revealed differential modulations of melatonin between the cold-sensitive and the cold-tolerant genotypes in response to cold stress. This was mainly by impacting antioxidant system, photosystem II, as well as metabolic homeostasis. PMID:26807934

  2. Experimental studies of gravity with slow neutrons

    NASA Astrophysics Data System (ADS)

    Kitaguchi, Masaaki; Ichikawa, Go; Hirota, Katsuya; Shimizu, Hirohiko; Sumi, Naoyuki; Matsumoto, Satoru; Yoshioka, Tamaki; Shima, Tatsushi; Mishima, Kenji; Ino, Takashi; Seki, Yoshichika

    2014-09-01

    Neutron is a chargeless massive particle with the lifetime in the macroscopic range, which is suitable for precision measurement of the small influence of new physics including gravity. We have started the experimental studies of the gravity with slow neutrons in order to search non-Newtonian effect at the short range which is lead by the existence of extra-dimension of the space. Combination of the pulsed neutrons provided by J-PARC and the advanced optical devices enables us to perform new types of high precision measurements. Neutron scattering with noble gas target enables us to measure the interaction at the range of the order of 1 nm. The apparatus was installed into beamline NOP and commissioning has been started. Neutron interferometer has the advantage to measure the gravitational potential precisely. We are developing the large-scale interferometer using long-wavelength neutrons, which is realized by using multilayer mirrors. Ultra-cold neutrons in a small cavity can be bound to the discrete energy eigenstates by Earth's gravitational field. We are discussing the direct measurement of the spatial localization of the neutrons with high resolution detectors, for example, CCD and nuclear emulation.

  3. The synchronous active neutron detection assay system

    SciTech Connect

    Pickrell, M.M.; Kendall, P.K.

    1994-08-01

    We have begun to develop a novel technique for active neutron assay of fissile material in spent nuclear fuel. This approach will exploit a 14-MeV neutron generator developed by Schlumberger. The technique, termed synchronous active neutron detection (SAND), follows a method used routinely in other branches of physics to detect very small signals in presence of large backgrounds. Synchronous detection instruments are widely available commercially and are termed ``lock-in`` amplifiers. We have implemented a digital lock-in amplifier in conjunction with the Schlumberger neutron generator to explore the possibility of synchronous detection with active neutrons. The Schlumberger system can operate at up to a 50% duty factor, in effect, a square wave of neutron yield. Results are preliminary but promising. The system is capable of resolving the fissile material contained in a small fraction of the fuel rods in a cold fuel assembly; it also appears resilient to background neutron interference. The interrogating neutrons appear to be non-thermal and penetrating. Work remains to fully explore relevant physics and optimize instrument design.

  4. Heating up cold agglutinins.

    PubMed

    Stone, Marvin J

    2010-10-28

    In this issue of Blood, Berentsen and coworkers describe a high response rate which is durable in some patients who receive combination fludarabine and rituximab for chronic cold agglutinin disease (CAD). If confirmed, this is a significant advance in therapy for a frequently difficult clinical problem. PMID:21030565

  5. Cold agglutinin disease.

    PubMed

    Swiecicki, Paul L; Hegerova, Livia T; Gertz, Morie A

    2013-08-15

    Cold agglutinin disease is a rare and poorly understood disorder affecting 15% of patients with autoimmune hemolytic anemia. We reviewed the clinical and pathologic features, prognosis, and management in the literature and describe our institutional experience to improve strategies for accurate diagnosis and treatment. Retrospective analysis identified 89 patients from our institution with cold agglutinin disease from 1970 through 2012. Median age at symptom onset was 65 years (range, 41 to 83 years), whereas the median age at diagnosis was 72 years (range, 43 to 91 years). Median survival of all patients was 10.6 years, and 68 patients (76%) were alive 5 years after the diagnosis. The most common symptom was acrocyanosis (n = 39 [44%]), and many had symptoms triggered by cold (n = 35 [39%]) or other factors (n = 20 [22%]). An underlying hematologic disorder was detected in 69 patients (78%). Thirty-six patients (40%) received transfusions during their disease course, and 82% received drug therapy. Rituximab was associated with the longest response duration (median, 24 months) and the lowest proportion of patients needing further treatment (55%). Our institution's experience and review of the literature confirms that early diagnostic evaluation and treatment improves outcomes in cold agglutinin disease. PMID:23757733

  6. Out in the cold.

    PubMed

    Bates, Jane

    2016-05-01

    Every now and then, you say something to a patient and wonder whether you should have kept quiet. On this occasion, a female patient and I were indulging in a moment of shared empathy over an annoying symptom we both experience - permanently cold feet. PMID:27154099

  7. Cold spray nozzle design

    DOEpatents

    Haynes, Jeffrey D.; Sanders, Stuart A.

    2009-06-09

    A nozzle for use in a cold spray technique is described. The nozzle has a passageway for spraying a powder material, the passageway having a converging section and a diverging section, and at least the diverging section being formed from polybenzimidazole. In one embodiment of the nozzle, the converging section is also formed from polybenzimidazole.

  8. Cold Facts about Viruses.

    ERIC Educational Resources Information Center

    Pea, Celeste; Sterling, Donna R.

    2002-01-01

    Provides ways for students to demonstrate their understanding of scientific concepts and skills. Describes a mini-unit around the cold in which students can relate humans to viruses. Includes activities and a modified simulation that provides questions to guide students. Discusses ways that allows students to apply prior knowledge, take ownership…

  9. Breeding Cold Hardy Begonias

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hardy begonia cultivars have potential as a new crop for Southern nurseries. Current begonia breeding efforts are focused on sections Begonia and Pritzelia. Diverse begonia germplasm has been collected to study fertility and hardiness.To date cold hardy germplasm which has produced viable seeds inc...

  10. Recent Cold War Studies

    ERIC Educational Resources Information Center

    Pineo, Ronn

    2003-01-01

    Cold War historiography has undergone major changes since the 1991 collapse of the Soviet Union. For two years (1992-1993) the principal Soviet archives fell open to scholars, and although some of the richest holdings are now once again closed, new information continues to find its way out. Moreover, critical documentary information has become…

  11. Teaching "In Cold Blood."

    ERIC Educational Resources Information Center

    Berbrich, Joan D.

    1967-01-01

    The Truman Capote nonfiction novel, "In Cold Blood," which reflects for adolescents the immediacy of the real world, illuminates (1) social issues--capital punishment, environmental influence, and the gap between the "haves" and "have-nots," (2) moral issues--the complexity of man's nature, the responsibility of one man for another, and the place…

  12. Titanium Cold Spray Coatings

    NASA Astrophysics Data System (ADS)

    Ajaja, Jihane; Goldbaum, Dina; Chromik, Richard; Yue, Stephen; Rezaeian, Ahmad; Wong, Wilson; Irissou, Eric; Legoux, Jean-Gabriel

    Titanium Cold Spray Coatings Cold Spray is an emerging technology used for the deposition of coatings for many industries including aerospace. This technique allows the deposition of metallic materials at low temper-atures below their melting point. The aim of this research was to develop a test technique that can measure the degree to which a cold spray coating achieves mechanical properties similar to a traditional bulk material. Vickers hardness testing and nanoindentation were used as micro-and nano-scale measurement techniques to characterize the mechanical properties of titanium coatings, deposited at different deposition conditions, and bulk Ti. The mechanical properties of bulk titanium and titanium coatings were measured over a range of length scales, with the indentation size effect examined with Meyer's law. Hardness measurements are shown to be affected by material porosity, microstructure and coating particle bonding mechanism. Hard-ness measurements showed that Ti coatings deposited at higher gas pressures and temperatures demonstrate an indentation load response similar to bulk Ti. Key words: titanium, cold spray, Vickers hardness, nanoindentation, indentation size effect, microstructure, mechanical properties

  13. Diffraction by cold atoms

    NASA Astrophysics Data System (ADS)

    Strauch, F.; Gomer, V.; Schadwinkel, H.; Ueberholz, B.; Haubrich, D.; Meschede, D.

    1998-01-01

    We have observed diffraction of a laser probe beam by a trapped sample of cold atoms. The effect is only visible in the vicinity of a resonance line. The observed diffraction pattern arises from interference of the incident and scattered light wave, allowing reconstruction of geometric properties of the trapped sample from the holographic record.

  14. Expert Cold Structure Development

    NASA Astrophysics Data System (ADS)

    Atkins, T.; Demuysere, P.

    2011-05-01

    The EXPERT Program is funded by ESA. The objective of the EXPERT mission is to perform a sub-orbital flight during which measurements of critical aero- thermodynamic phenomena will be obtained by using state-of-the-art instrumentation. As part of the EXPERT Flight Segment, the responsibility of the Cold Structure Development Design, Manufacturing and Validation was committed to the Belgian industrial team SONACA/SABCA. The EXPERT Cold Structure includes the Launcher Adapter, the Bottom Panel, the Upper Panel, two Cross Panels and the Parachute Bay. An additional Launcher Adapter was manufactured for the separation tests. The selected assembly definition and manufacturing technologies ( machined parts and sandwich panels) were dictated classically by the mass and stiffness, but also by the CoG location and the sensitive separation interface. Used as support for the various on-board equipment, the Cold Structure is fixed to but thermally uncoupled from the PM 1000 thermal shield. It is protect on its bottom panel by a thermal blanket. As it is a protoflight, analysis was the main tool for the verification. Low level stiffness and modal analysis tests have also been performed on the Cold Structure equipped with its ballast. It allowed to complete its qualification and to prepare SONACA/SABCA support for the system dynamic tests foreseen in 2011. The structure was finally coated with a thermal control black painting and delivered on time to Thales Alenia Space-Italy end of March 201.

  15. Cold War Propaganda.

    ERIC Educational Resources Information Center

    Bennett, Paul W.

    1988-01-01

    Briefly discusses the development of Cold War propaganda in the United States, Canada, and the USSR after 1947. Presents two movie reviews and a Canadian magazine advertisement of the period which illustrate the harshness of propaganda used by both sides in the immediate postwar years. (GEA)

  16. Neutron Compound Refractive Prisms - DOE SBIR Phase II Final Report

    SciTech Connect

    Cremer, Jr, Jay Theodore

    2011-06-25

    The results of the research led to a pulsed electromagnetic periodic magnetic field array (PMF), which coupled with a pair of collimation slits, and a mechanical chopper slit, were able to deflect spin-up neutrons to a band of line-fused neutrons a focal plane heights that correspond to the time-varying magnetic field amplitude. The electromagnetic field PMF produced 5.4 pulses per minute in which each pulse was 50 msec in duration with a full width half maximum (FWHM) of 7.5 msec. The calculated 7.7 mm vertical height of the band of focused spin-up neutrons corresponded closely to the measured 7.5 mm height of the center line of the imaged band of neutrons. The band of deflected spin-up neutrons was 5 mm in vertical width and the bottom of the band was 5 mm above the surface of the PMF pole. The limited exposure time of 3 hours and the smaller 0.78 T magnetic field allowed focused and near focused neutrons of 1.8 to 2.6 neutrons, which were in the tails of the McClellan Nuclear Radiation Center Bay 4 Maxwell Boltzmann distribution of neutrons with peak flux at 1.1-1.2. The electromagnetic PMF was expected to produces a 2.0 T peak magnetic field amplitude, which would be operational at a higher duty factor, rather than the as built 7.5 msec FWHM with pulse repetition frequency of 5.4 pulses per minute. The fabricated pulsed electromagnetic PMF with chopper is expected to perform well on a cold, very cold or ultra cold beam line as a spectrometer or monochromator source of spin-up polarized neutron. In fact there may be a possible use of the PMF to do ultra-cold neutron trapping, see paper by A. I. Frank1, V. G. Nosov, Quantum Effects in a One-Dimensional Magnetic Gravitational Trap for Ultracold Neutrons, JETP Letters, Vol. 79, No. 7, 2004, pp. 313-315. The next step is to find a cold or very cold neutron facility, where further testing or use of the pulsed magnetic field PMF can be pursued.

  17. The astrophysical torus. 2: Light curves of SS 433

    NASA Astrophysics Data System (ADS)

    Sanbuichi, Kiyotaka; Fukue, Jun

    1993-10-01

    Using the mass function obtained by D'Odorico et al. (1991), we recalculate the theoretical light curves of SS 433 in the primary eclipse and confront them with observations. We assume that in SS 433 there exists a geometrically thick torus around a compact object, and that the primary eclipse is an eclipse of the torus by a companion of an early-type star. The main parameters are the shape of the tori, the size of the tori, and the binary mass ratio. We obtain light curves for several combinations of parameters. The light curves for sufficiently thick tori are deep at the mid-eclipse and preferable, while those for geometrically thin tori are shallow. The duration of eclipse for a large torus is long and beneficial, while that for a small torus is short. Finally, Delta m at mid-eclipse for a thick torus around a neutron star becomes approximately 0.6 and suitable, whereas for thick tori around a black hole it is approximately 0.3. Hence, under the new mass function, geometrically thick and wide tori around a neutron star can well reproduce the observed light curves of SS 433.

  18. Digital-voltage curve generator

    NASA Technical Reports Server (NTRS)

    Perlman, M.

    1970-01-01

    Curve generator capable of producing precisely repeatable curve for any single-valued function of voltage versus time uses digital approach, implemented by means of clocked feedback shift register, large scale integrated circuit diode matrix comprising about 12,000 diodes, counter, and digital-to-analog converter.

  19. Tool For Making Curved Holes

    NASA Technical Reports Server (NTRS)

    Allard, Robert; Calve, Andrew; Pastreck, Edwin; Padden, Edward

    1992-01-01

    Tool for use in electrical-discharge machining (EDM) guides EDM electrode in making curved holes. Guide rod fits in slot in arm, which moves through arc. Motion drives electrode into workpiece along desired curved path. Electrode burns into workpiece while arm rotates on spindle. Discharge cuts hole of same radius of curvature.

  20. Changes in ventricular function during emotional stress and cold exposure

    SciTech Connect

    Kiess, M.C.; Moore, R.A.; Dimsdale, J.; Alpert, N.M.; Boucher, C.A.; Strauss, H.W.

    1984-01-01

    Patients with cardiac disease frequently develop symptoms with emotional stress or cold exposure. To investigate the effects of these stresses in normal subjects, an ambulatory ventricular function monitor (VEST) (previously reported to measure EFs which correlate well with gamma camera measurements) was employed to record sequential 2 minute time activity curves from the left ventricles of 6 healthy men (ages 19-24) during a control period and during a 30 minute stress interview with a psychiatrist. Four of the subjects were also monitored in a cold room (1/sup 0/C) for 20 min. In addition to the left ventricular time-activity curve, heart rate (HR), and BP (cuff) were recorded. All subjects had increases in HR, BP and EF during the stress interview. Cold, however, produced decreases in HR and EF and an increase in BP. The results (mean +- SD) are tabulated. End-systolic and end-diastolic counts and hence volume decreased during the interview and increased during cold exposure. The results suggest that (1) ambulatory changes in ventricular function can be measured with the VEST, and (2) significant changes in cardiovascular physiology are seen in normal subjects during a stress interview and exposure to cold.

  1. Advanced Neutron Sources: Plant Design Requirements

    SciTech Connect

    Not Available

    1990-07-01

    The Advanced Neutron Source (ANS) is a new, world class facility for research using hot, thermal, cold, and ultra-cold neutrons. At the heart of the facility is a 350-MW{sub th}, heavy water cooled and moderated reactor. The reactor is housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides fans out into a large guide hall, housing about 30 neutron research stations. Office, laboratory, and shop facilities are included to provide a complete users facility. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory at the end of the decade. This Plant Design Requirements document defines the plant-level requirements for the design, construction, and operation of the ANS. This document also defines and provides input to the individual System Design Description (SDD) documents. Together, this Plant Design Requirements document and the set of SDD documents will define and control the baseline configuration of the ANS.

  2. Advanced Neutron Source: Plant Design Requirements

    SciTech Connect

    Not Available

    1990-07-01

    The Advanced Neutron Source will be a new world-class facility for research using hot, thermal, cold, and ultra-cold neutrons. The heart of the facility will be a 330-MW (fission), heavy-water cooled and heavy-water moderated reactor. The reactor will be housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides will fan out into a large guide hall, housing about 30 neutron research stations. Appropriate office, laboratory, and shop facilities will be included to provide a complete facility for users. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory early in the next decade. This PDR document defines the plant-level requirements for the design, construction, and operation of ANS. It also defines and provides input to the individual System Design Description (SDD) documents. Together, this PDR document and the set of SDD documents will define and control the baseline configuration of ANS.

  3. Thermoregulatory modeling for cold stress.

    PubMed

    Xu, Xiaojiang; Tikuisis, Peter

    2014-07-01

    Modeling for cold stress has generated a rich history of innovation, has exerted a catalytic influence on cold physiology research, and continues to impact human activity in cold environments. This overview begins with a brief summation of cold thermoregulatory model development followed by key principles that will continue to guide current and future model development. Different representations of the human body are discussed relative to the level of detail and prediction accuracy required. In addition to predictions of shivering and vasomotor responses to cold exposure, algorithms are presented for thermoregulatory mechanisms. Various avenues of heat exchange between the human body and a cold environment are reviewed. Applications of cold thermoregulatory modeling range from investigative interpretation of physiological observations to forecasting skin freezing times and hypothermia survival times. While these advances have been remarkable, the future of cold stress modeling is still faced with significant challenges that are summarized at the end of this overview. PMID:24944030

  4. Prescription Drugs and Cold Medicines

    MedlinePlus

    ... Abuse » Prescription Drugs & Cold Medicines Prescription Drugs & Cold Medicines Email Facebook Twitter What is Prescription Drug Abuse: ... treatment of addiction. Read more Safe Disposal of Medicines Disposal of Unused Medicines: What You Should Know ( ...

  5. Cryogenic hydrogen circulation system of neutron source

    SciTech Connect

    Qiu, Y. N.; Hu, Z. J.; Wu, J. H.; Li, Q.; Zhang, Y.; Zhang, P.; Wang, G. P.

    2014-01-29

    Cold neutron sources of reactors and spallation neutron sources are classic high flux neutron sources in operation all over the world. Cryogenic fluids such as supercritical or supercooled hydrogen are commonly selected as a moderator to absorb the nuclear heating from proton beams. By comparing supercritical hydrogen circulation systems and supercooled hydrogen circulation systems, the merits and drawbacks in both systems are summarized. When supercritical hydrogen circulates as the moderator, severe pressure fluctuations caused by temperature changes will occur. The pressure control system used to balance the system pressure, which consists of a heater as an active controller for thermal compensation and an accumulator as a passive volume controller, is preliminarily studied. The results may provide guidelines for design and operation of other cryogenic hydrogen system for neutron sources under construction.

  6. Neutron Imaging Calibration to Measure Void Fraction

    SciTech Connect

    Geoghegan, Patrick J; Bilheux, Hassina Z; Sharma, Vishaldeep; Fricke, Brian A

    2015-01-01

    Void fraction is an intuitive parameter that describes the fraction of vapor in a two-phase flow. It appears as a key variable in most heat transfer and pressure drop correlations used to design evaporating and condensing heat exchangers, as well as determining charge inventory in refrigeration systems. Void fraction measurement is not straightforward, however, and assumptions on the invasiveness of the measuring technique must be made. Neutron radiography or neutron imaging has the potential to be a truly non-invasive void fraction measuring technique but has until recently only offered qualitative descriptions of two-phase flow, in terms of flow maldistributions, for example. This paper describes the calibration approach necessary to employ neutron imaging to measure steady-state void fraction. Experiments were conducted at the High Flux Isotope Reactor (HFIR) Cold Guide 1D neutron imaging facility at Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, USA.

  7. NEUTRONIC REACTOR

    DOEpatents

    Hurwitz, H. Jr.; Brooks, H.; Mannal, C.; Payne, J.H.; Luebke, E.A.

    1959-03-24

    A reactor of the heterogeneous, liquid cooled type is described. This reactor is comprised of a central region of a plurality of vertically disposed elongated tubes surrounded by a region of moderator material. The central region is comprised of a central core surrounded by a reflector region which is surrounded by a fast neutron absorber region, which in turn is surrounded by a slow neutron absorber region. Liquid sodium is used as the primary coolant and circulates through the core which contains the fuel elements. Control of the reactor is accomplished by varying the ability of the reflector region to reflect neutrons back into the core of the reactor. For this purpose the reflector is comprised of moderator and control elements having varying effects on reactivity, the control elements being arranged and actuated by groups to give regulation, shim, and safety control.

  8. Modeling the Stability of Volatile Deposits in Lunar Cold Traps

    NASA Technical Reports Server (NTRS)

    Crider, D. H.; Vondrak, R. R.

    2002-01-01

    There are several mechanisms acting at the cold traps that can alter the inventory of volatiles there. Primarily, the lunar surface is bombarded by meteoroids which impact, melt, process, and redistribute the regolith. Further, solar wind and magnetospheric ion fluxes are allowed limited access onto the regions in permanent shadow. Also, although cold traps are in the permanent shadow of the Sun, there is a small flux of radiation incident on the regions from interstellar sources. We investigate the effects of these space weathering processes on a deposit of volatiles in a lunar cold trap through simulations. We simulate the development of a column of material near the surface of the Moon resulting from space weathering. This simulation treats a column of material at a lunar cold trap and focuses on the hydrogen content of the column. We model space weathering processes on several time and spatial scales to simulate the constant rain of micrometeoroids as well as sporadic larger impactors occurring near the cold traps to determine the retention efficiency of the cold traps. We perform the Monte Carlo simulation over many columns of material to determine the expectation value for hydrogen content of the top few meters of soil for comparison with Lunar Prospector neutron data.

  9. Neutron therapy of cancer

    NASA Technical Reports Server (NTRS)

    Frigerio, N. A.; Nellans, H. N.; Shaw, M. J.

    1969-01-01

    Reports relate applications of neutrons to the problem of cancer therapy. The biochemical and biophysical aspects of fast-neutron therapy, neutron-capture and neutron-conversion therapy with intermediate-range neutrons are presented. Also included is a computer program for neutron-gamma radiobiology.

  10. High flux isotope reactor cold source preconceptual design study report

    SciTech Connect

    Selby, D.L.; Bucholz, J.A.; Burnette, S.E.

    1995-12-01

    In February 1995, the deputy director of Oak Ridge National Laboratory (ORNL) formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced Neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. The anticipated cold source will consist of a cryogenic LH{sub 2} moderator plug, a cryogenic pump system, a refrigerator that uses helium gas as a refrigerant, a heat exchanger to interface the refrigerant with the hydrogen loop, liquid hydrogen transfer lines, a gas handling system that includes vacuum lines, and an instrumentation and control system to provide constant system status monitoring and to maintain system stability. The scope of this project includes the development, design, safety analysis, procurement/fabrication, testing, and installation of all of the components necessary to produce a working cold source within an existing HFIR beam tube. This project will also include those activities necessary to transport the cold neutron beam to the front face of the present HFIR beam room. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and research and development (R and D), (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the preconceptual phase and establishes the concept feasibility. The information presented includes the project scope, the preliminary design requirements, the preliminary cost and schedule, the preliminary performance data, and an outline of the various plans for completing the project.

  11. NEUTRON SOURCE

    DOEpatents

    Foster, J.S. Jr.

    1960-04-19

    A compact electronic device capable of providing short time high density outputs of neutrons is described. The device of the invention includes an evacuated vacuum housing adapted to be supplied with a deuterium, tritium, or other atmosphere and means for establishing an electrical discharge along a path through the gas. An energized solenoid is arranged to constrain the ionized gas (plasma) along the path. An anode bearing adsorbed or adherent target material is arranged to enclose the constrained plasma. To produce neutrons a high voltage is applied from appropriate supply means between the plasma and anode to accelerate ions from the plasma to impinge upcn the target material, e.g., comprising deuterium.

  12. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.; Weinberg, A.W.; Young, G.J.

    1958-04-15

    A nuclear reactor which uses uranium in the form of elongated tubes as fuel elements and liquid as a coolant is described. Elongated tubular uranium bodies are vertically disposed in an efficient neutron slowing agent, such as graphite, for example, to form a lattice structure which is disposed between upper and lower coolant tanks. Fluid coolant tubes extend through the uranium bodies and communicate with the upper and lower tanks and serve to convey the coolant through the uranium body. The reactor is also provided with means for circulating the cooling fluid through the coolant tanks and coolant tubes, suitable neutron and gnmma ray shields, and control means.

  13. Health problems in cold work.

    PubMed

    Mäkinen, Tiina M; Hassi, Juhani

    2009-07-01

    Cold in- and outdoor work can result in different adverse effects on human health. Health problems decrease performance and work productivity and increase the occurrence of accidents and injuries. Serious health problems can also result in absence from work due to sick leave or hospitalization. At its worst, work in cold conditions could be associated with deaths due to cold-related accidents or a sudden health event. Musculoskeletal complaints, like pain, aches etc. are common in indoor cold work. Breathing cold air while working may lead to respiratory symptoms, which can decrease performance in cold. The symptoms are usually worsened by exercise and ageing, being more common in persons having a respiratory disease. Cardiovascular complaints and related performance decrements could be especially pronounced during work in cold weather and involving physical exercise, especially among those with an underlying cardiovascular disease. The article also reviews the current information related to diabetes, skin disorders and diseases, as well as cold injuries and accidents occurring in cold work. Increasing awareness and identifying workplace- and individual-related cold risks is the first step in proper cold risk management. Following this, the susceptible population groups need customized advice on proper prevention and protection in cold work. PMID:19531906

  14. Human whole body cold adaptation

    PubMed Central

    Daanen, Hein A.M.; Van Marken Lichtenbelt, Wouter D.

    2016-01-01

    ABSTRACT Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced vasodilation in fingers and toes compared to Caucasians and Inuit. About 40,000 y after humans left Africa, natives in cold terrestrial areas seems to have developed not only behavioral adaptations, but also physiological adaptations to cold. Dedicated studies show that repeated whole body exposure of individual volunteers, mainly Caucasians, to severe cold results in reduced cold sensation but no major physiological changes. Repeated cold water immersion seems to slightly reduce metabolic heat production, while repeated exposure to milder cold conditions shows some increase in metabolic heat production, in particular non-shivering thermogenesis. In conclusion, human cold adaptation in the form of increased metabolism and insulation seems to have occurred during recent evolution in populations, but cannot be developed during a lifetime in cold conditions as encountered in temperate and arctic regions. Therefore, we mainly depend on our behavioral skills to live in and survive the cold. PMID:27227100

  15. Remedies for Common Cold Symptoms

    PubMed Central

    Miller, Penny F.

    1991-01-01

    Individuals suffering from intolerable symptoms of the common cold can now be advised of safe and effective products for symptomatic relief. This article describes and discusses four categories of drugs used to treat the common cold. To simplify the product selection process for family physicians, suggestions are included for possible ingredients for treatments of specific cold symptoms. PMID:21234087

  16. Human whole body cold adaptation.

    PubMed

    Daanen, Hein A M; Van Marken Lichtenbelt, Wouter D

    2016-01-01

    Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced vasodilation in fingers and toes compared to Caucasians and Inuit. About 40,000 y after humans left Africa, natives in cold terrestrial areas seems to have developed not only behavioral adaptations, but also physiological adaptations to cold. Dedicated studies show that repeated whole body exposure of individual volunteers, mainly Caucasians, to severe cold results in reduced cold sensation but no major physiological changes. Repeated cold water immersion seems to slightly reduce metabolic heat production, while repeated exposure to milder cold conditions shows some increase in metabolic heat production, in particular non-shivering thermogenesis. In conclusion, human cold adaptation in the form of increased metabolism and insulation seems to have occurred during recent evolution in populations, but cannot be developed during a lifetime in cold conditions as encountered in temperate and arctic regions. Therefore, we mainly depend on our behavioral skills to live in and survive the cold. PMID:27227100

  17. Effect of cold rolling on the precipitation behavior of {delta} phase in INCONEL 718

    SciTech Connect

    Liu, W.C.; Yao, M.; Chen, Z.L.

    1999-01-01

    Systematic research has been undertaken on the effect of cold rolling on the precipitation kinetics of {delta} phase in INCONEL 718. Above 910 C, cold rolling promotes the precipitation of {delta} phase. Below 910 C, the precipitation of {delta} phase is still preceded by the {gamma}{double_prime} precipitation in cold-rolled INCONEL 718. Cold rolling promotes not only the precipitation of {gamma}{double_prime} phase but also the {gamma}{double_prime} {r_arrow} {delta} transformation. The relationship between the weight percentage of {delta} phase and aging time follows the Avrami equation. Below 910 C, as cold rolling reduction and temperature increase, the time exponent (n) decreases, whereas the rate of {delta} precipitation increases. The apparent activation energy of {delta} precipitation varies in the range of 1113 to 577 kJ/mol for 25 to 65% cold-rolled INCONEL 718 and decreases as cold rolling reduction increases. Precipitation-time-temperature (PTT) diagrams have been determined for the four cold-rolled INCONEL 718. The noses of the PTT curves are located at about 910 C. These curves are shifted significantly to longer times as cold rolling reductions decrease.

  18. When blood runs cold: cold agglutinins and cardiac surgery.

    PubMed

    Findlater, Rhonda R; Schnell-Hoehn, Karen N

    2011-01-01

    Cold agglutinins are particular cold-reactive antibodies that react with red blood cells when the blood temperature drops below normal body temperature causing increased blood viscosity and red blood cell clumping. Most individuals with cold agglutinins are not aware of their presence, as these antibodies have little effect on daily living, often necessitating no treatment. However, when those with cold agglutinins are exposed to hypothermic situations or undergo procedures such as cardiopulmonary bypass with hypothermia during cardiac surgery, lethal complications of hemolysis, microvascular occlusion and organ failure can occur. By identifying those suspected of possessing cold agglutinins through a comprehensive nursing assessment and patient history, cold agglutinin screening can be performed prior to surgery to determine a diagnosis of cold agglutinin disease. With a confirmed diagnosis of cold agglutinin disease, the plan of care can be focused on measures to maintain the patient's blood temperature above the thermal amplitude throughout their hospitalization including the use of normothermic cardiopulmonary bypass with warm myocardial preservation techniques to prevent these fatal complications. Using a case report approach, the authors review the mechanism, clinical manifestations, detection and nursing management of a patient with cold agglutinins undergoing scheduled cardiac surgery. Cold agglutinin disease is rare. However, the risk to patients warrants an increased awareness of cold agglutinins and screening for those who are suspected of carrying these antibodies. PMID:21630629

  19. Radial cold trap

    DOEpatents

    Grundy, Brian R.

    1981-01-01

    The radial cold trap comprises a housing having a plurality of mesh bands disposed therein. The mesh bands comprise concentrically arranged bands of mesh with the mesh specific surface area of each band increasing from the outermost mesh band to the innermost mesh band. An inlet nozzle is attached to the outside section of the housing while an outlet nozzle is attached to the inner portion of the housing so as to be concentrically connected to the innermost mesh band. An inlet baffle having orifices therein may be disposed around the outermost mesh band and within the housing for directing the flow of the fluid from the inlet nozzle to the outermost mesh band in a uniform manner. The flow of fluid passes through each consecutive mesh band and into the outlet nozzle. The circular pattern of the symmetrically arranged mesh packing allows for better utilization of the entire cold trap volume.

  20. Radial cold trap

    DOEpatents

    Grundy, B.R.

    1981-09-29

    The radial cold trap comprises a housing having a plurality of mesh bands disposed therein. The mesh bands comprise concentrically arranged bands of mesh with the mesh specific surface area of each band increasing from the outermost mesh band to the innermost mesh band. An inlet nozzle is attached to the outside section of the housing while an outlet nozzle is attached to the inner portion of the housing so as to be concentrically connected to the innermost mesh band. An inlet baffle having orifices therein may be disposed around the outermost mesh band and within the housing for directing the flow of the fluid from the inlet nozzle to the outermost mesh band in a uniform manner. The flow of fluid passes through each consecutive mesh band and into the outlet nozzle. The circular pattern of the symmetrically arranged mesh packing allows for better utilization of the entire cold trap volume. 2 figs.

  1. Cold nuclear fusion

    SciTech Connect

    Tsyganov, E. N.

    2012-02-15

    Recent accelerator experiments on fusion of various elements have clearly demonstrated that the effective cross-sections of these reactions depend on what material the target particle is placed in. In these experiments, there was a significant increase in the probability of interaction when target nuclei are imbedded in a conducting crystal or are a part of it. These experiments open a new perspective on the problem of so-called cold nuclear fusion.

  2. Clumpy cold dark matter

    NASA Technical Reports Server (NTRS)

    Silk, Joseph; Stebbins, Albert

    1993-01-01

    A study is conducted of cold dark matter (CDM) models in which clumpiness will inhere, using cosmic strings and textures suited to galaxy formation. CDM clumps of 10 million solar mass/cu pc density are generated at about z(eq) redshift, with a sizable fraction surviving. Observable implications encompass dark matter cores in globular clusters and in galactic nuclei. Results from terrestrial dark matter detection experiments may be affected by clumpiness in the Galactic halo.

  3. Gamma-Ray Measurement of 152Eu Produced by Neutrons from the Hiroshima Atomic Bomb and Evaluation of Neutron Fluence

    NASA Astrophysics Data System (ADS)

    Kato, Kazuo; Habara, Minoru; Aoyama, Tetsuhisa; Sakata, Hidefumi; Yoshizawa, Yasukazu

    1990-08-01

    The 152Eu/Eu ratios were measured in a tombstone exposed to neutrons of the Hiroshima atomic bomb near the hypocenter. Measurements of 152Eu gamma rays were performed for europium samples chemically isolated from numerous rock specimens taken from the tombstone. A reliable attenuation curve of the 152Eu/Eu ratios was obtained. The curve suggests that the thermal neutron component was relatively small and the average incident angle of neutrons to the tombstone was roughly 45° from the perpendicular downward direction. It revealed to us several important pieces of information concerning the energy and angular distributions near the Hiroshima bomb hypocenter.

  4. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.

    1960-09-27

    A unit assembly is described for a neutronic reactor comprising a tube and plurality of spaced parallel sandwiches in the tube extending lengthwise thereof, each sandwich including a middle plate having a central opening for plutonium and other openings for fertile material at opposite ends of the plate.

  5. Neutronic reactor

    DOEpatents

    Carleton, John T.

    1977-01-25

    A graphite-moderated nuclear reactor includes channels between blocks of graphite and also includes spacer blocks between adjacent channeled blocks with an axis of extension normal to that of the axis of elongation of the channeled blocks to minimize changes in the physical properties of the graphite as a result of prolonged neutron bombardment.

  6. Poiseuille flow in curved spaces

    NASA Astrophysics Data System (ADS)

    Debus, J.-D.; Mendoza, M.; Succi, S.; Herrmann, H. J.

    2016-04-01

    We investigate Poiseuille channel flow through intrinsically curved media, equipped with localized metric perturbations. To this end, we study the flux of a fluid driven through the curved channel in dependence of the spatial deformation, characterized by the parameters of the metric perturbations (amplitude, range, and density). We find that the flux depends only on a specific combination of parameters, which we identify as the average metric perturbation, and derive a universal flux law for the Poiseuille flow. For the purpose of this study, we have improved and validated our recently developed lattice Boltzmann model in curved space by considerably reducing discrete lattice effects.

  7. Poiseuille flow in curved spaces.

    PubMed

    Debus, J-D; Mendoza, M; Succi, S; Herrmann, H J

    2016-04-01

    We investigate Poiseuille channel flow through intrinsically curved media, equipped with localized metric perturbations. To this end, we study the flux of a fluid driven through the curved channel in dependence of the spatial deformation, characterized by the parameters of the metric perturbations (amplitude, range, and density). We find that the flux depends only on a specific combination of parameters, which we identify as the average metric perturbation, and derive a universal flux law for the Poiseuille flow. For the purpose of this study, we have improved and validated our recently developed lattice Boltzmann model in curved space by considerably reducing discrete lattice effects. PMID:27176437

  8. Cold Stowage Flight Systems

    NASA Technical Reports Server (NTRS)

    Campana, Sharon

    2010-01-01

    The International Space Station (ISS) provides a test bed for researchers to perform science experiments in a variety of fields, including human research, life sciences, and space medicine. Many of the experiments being conducted today require science samples to be stored and transported in a temperature controlled environment. NASA provides several systems which aide researchers in preserving their science. On orbit systems provided by NASA include the Minus Eighty Laboratory freezer for ISS (MELFI), Microgravity Experiment Research Locker Incubator (MERLIN), and Glacier. These freezers use different technologies to provide rapid cooling and cold stowage at different temperature levels on board ISS. Systems available to researchers during transportation to and from ISS are MERLIN, Glacier, and Coldbag. Coldbag is a passive cold stowage system that uses phase change materials. Details of these current technologies will be provided along with operational experience gained to date. With shuttle retirement looming, NASA has protected the capability to provide a temperature controlled environment during transportation to and from the ISS with the use of Glacier and Coldbags, which are compatible with future commercial vehicles including SpaceX's Dragon Capsule, and Orbital s Cygnus vehicle. This paper will discuss the capability of the current cold stowage hardware and how it may continue to support NASA s mission on ISS and in future exploration missions.

  9. Cold Stowage Flight Systems

    NASA Technical Reports Server (NTRS)

    Campana, Sharon E.; Melendez, David T.

    2011-01-01

    The International Space Station (ISS) provides a test bed for researchers to perform science experiments in a variety of fields, including human research, life sciences, and space medicine. Many of the experiments being conducted today require science samples to be stored and transported in a temperature controlled environment. NASA provides several systems which aid researchers in preserving their science. On orbit systems provided by NASA include the Minus Eighty Laboratory freezer for ISS (MELFI), Microgravity Experiment Research Locker Incubator (MERLIN), and Glacier. These freezers use different technologies to provide rapid cooling and cold stowage at different temperature levels on board ISS. Systems available to researchers during transportation to and from ISS are MERLIN, Glacier, and Coldbag. Coldbag is a passive cold stowage system that uses phase change materials to maintain temperature. Details of these current technologies are provided along with operational experience gained to date. This paper discusses the capability of the current cold stowage hardware and how it may continue to support NASA s mission on ISS and in future exploration missions.

  10. Neutron Imaging at the Oak Ridge National Laboratory: Application to Biological Research

    SciTech Connect

    Bilheux, Hassina Z; Cekanova, Maria; Bilheux, Jean-Christophe; Bailey, William Barton; Keener, Wylie S; Davis, Larry E; Herwig, Kenneth W

    2014-01-01

    The Oak Ridge National Laboratory Neutron Sciences Directorate (NScD) has recently installed a neutron imaging beamline at the High Flux Isotope Reactor (HFIR) cold guide hall. The CG-1D beamline supports a broad range of user research spanning from engineering to material research, energy storage, additive manufacturing, vehicle technologies, archaeology, biology, and plant physiology. The beamline performance (spatial resolution, field of view, etc.) and its utilization for biological research are presented. The NScD is also considering a proposal to build the VENUS imaging beamline (beam port 10) at the Spallation Neutron Source (SNS). Unlike CG-1D which provides cold neutrons, VENUS will offer a broad range of neutron wavelengths, from epithermal to cold, and enhanced contrast mechanisms. This new capability will also enable the imaging of thicker biological samples than is currently available at CG-1D. A brief overview of the VENUS capability for biological research is discussed.

  11. Methods for absorbing neutrons

    DOEpatents

    Guillen, Donna P.; Longhurst, Glen R.; Porter, Douglas L.; Parry, James R.

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  12. Voltage-Current Curves to Characterize Thermoelectric Generators

    NASA Astrophysics Data System (ADS)

    McCarty, Robin; Piper, Robert

    2015-06-01

    There are many ways to experimentally characterize thermoelectric generator (TEG) performance, but most methods provide an incomplete picture. The authors propose using voltage-current ( V- I) curves generated at two different thermal conditions to provide an estimation of maximum power, optimum efficiency, ZT of the device, and thermal resistance due to ceramics and thermal interface materials on the outside of the thermoelectric material (HSR). The two thermal conditions are both steady state, electrically open in one case and electrically shorted in the other, and the heat flow into the device is adjusted to keep the hot-side and cold-side temperatures of the exterior of the module the same in both thermal conditions. The V- I curves are generated from four data points by instantaneously changing the external electrical load such that the TEG does not have time to respond thermally. After these two V- I curves are generated, the performance at any electrical condition can be predicted for the given hot-side and cold-side device temperatures. The authors present experimental data for a bismuth telluride (Bi2Te3) device as verification of this characterization method.

  13. Curved characteristics behind blast waves.

    NASA Technical Reports Server (NTRS)

    Laporte, O.; Chang, T. S.

    1972-01-01

    The behavior of nonisentropic flow behind a propagating blast wave is theoretically studied. Exact solutions, expressed in closed form in terms of elementary functions, are presented for three sets of curved characteristicseind a self-similar, strong blast wave.

  14. Parabolic curves in Lie groups

    SciTech Connect

    Pauley, Michael

    2010-05-15

    To interpolate a sequence of points in Euclidean space, parabolic splines can be used. These are curves which are piecewise quadratic. To interpolate between points in a (semi-)Riemannian manifold, we could look for curves such that the second covariant derivative of the velocity is zero. We call such curves Jupp and Kent quadratics or JK-quadratics because they are a special case of the cubic curves advocated by Jupp and Kent. When the manifold is a Lie group with bi-invariant metric, we can relate JK-quadratics to null Lie quadratics which arise from another interpolation problem. We solve JK-quadratics in the Lie groups SO(3) and SO(1,2) and in the sphere and hyperbolic plane, by relating them to the differential equation for a quantum harmonic oscillator00.

  15. Cold Hybrid Star Properties

    SciTech Connect

    Moshfegh, H. R.; Darehmoradi, M.; Mojarrad, M. Ghazanfari

    2011-10-28

    Properties of neutron stars with quark core are investigated. The equation of state of hadronic matter is calculated using Myers and Swiatecki two nucleon interaction within Thomas-Fermi semiclassical approximation (TF). For quark matter we employ The MIT bag model with constant and density dependent bag parameter. With use of the obtained equation of states we have calculated mass-radius relation of such hybrid stars.

  16. Dense cold matter

    SciTech Connect

    Stavinskiy, A. V.

    2015-07-15

    The possibility of studying matter at densities on the order of or higher than the neutron-star density in laboratory experiments is considered. For this, it is proposed to employ a rare kinematical trigger in collisions of relativistic ions. The expected properties of matter under such unusual conditions and a program for investigations into it are discussed, and a design of experimental setup for such investigations is proposed.

  17. Flow over riblet curved surfaces

    NASA Astrophysics Data System (ADS)

    Loureiro, J. B. R.; Silva Freire, A. P.

    2011-12-01

    The present work studies the mechanics of turbulent drag reduction over curved surfaces by riblets. The effects of surface modification on flow separation over steep and smooth curved surfaces are investigated. Four types of two-dimensional surfaces are studied based on the morphometric parameters that describe the body of a blue whale. Local measurements of mean velocity and turbulence profiles are obtained through laser Doppler anemometry (LDA) and particle image velocimetry (PIV).

  18. Neutron reflecting supermirror structure

    DOEpatents

    Wood, James L.

    1992-01-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources.

  19. Neutron reflecting supermirror structure

    DOEpatents

    Wood, J.L.

    1992-12-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. 2 figs.

  20. Recent Advances in Neutron Physics

    ERIC Educational Resources Information Center

    Feshbach, Herman; Sheldon, Eric

    1977-01-01

    Discusses new studies in neutron physics within the last decade, such as ultracold neutrons, neutron bottles, resonance behavior, subthreshold fission, doubly radiative capture, and neutron stars. (MLH)

  1. Space weathering on volatile deposits in lunar cold traps

    NASA Astrophysics Data System (ADS)

    Crider, D.; Vondrak, R.

    There are several mechanisms acting at the cold traps that can alter the inventory of volatiles there, including micrometeoroid bombardment, solar wind and magnetospheric ion sputtering, photon-stimulated desorption, and sublimation. We investigate the effects of these space weathering processes on a deposit of volatiles in a lunar cold trap by simulating the development of a column of material near the surface of the Moon. This simulation treats a column of material at a lunar cold trap and focuses on the hydrogen content of the column. We model space weathering processes on several time and spatial scales to simulate the constant rain of micrometeoroids as well as sporadic larger impactors occurring near the cold traps to determine the retention efficiency of the cold traps. We perform the Monte Carlo simulation over many columns of material to determine the expected hydrogen content of the top few meters of soil for comparison with Lunar Prospector neutron data. Each column is initialized with a random starting depth profile of hydrogen content assuming very immature soil. Time is allowed to run for 1 billion years and all changes to the column are calculated. An impactor flux from Gault [1972] is imposed to determine the timing and location of all nearby impacts. Nearby impacts excavate material from the column, exposing material from depth. More distant impacts cover the column with an ejecta blanket with a size and time dependent maturity value. In between impacts, the competing short term effects are simulated. Using the steady state delivery rate of water vapor to the lunar cold traps from Crider and Vondrak [2002], we find that the removal rate from space weathering processes does not exceed the rate at which volatiles are delivered to the cold traps on average. Together with the steady migration of hydrogen released from the soil elsewhere on the Moon, the predicted hydrogen content of the topmost meter of regolith in cold traps is within a factor of 2 of

  2. Advanced Neutron Source (ANS) Project Progress report, FY 1991

    SciTech Connect

    Campbell, J.H.; Selby, D.L.; Harrington, R.M.; Thompson, P.B.

    1992-01-01

    This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I & C Research and Development; Design; and Safety.

  3. Advanced Neutron Source (ANS) Project Progress report, FY 1991

    SciTech Connect

    Campbell, J.H. ); Selby, D.L.; Harrington, R.M. ); Thompson, P.B. . Engineering Division)

    1992-01-01

    This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I C Research and Development; Design; and Safety.

  4. Six-Axis Inertial Sensor Using Cold-Atom Interferometry

    SciTech Connect

    Canuel, B.; Leduc, F.; Holleville, D.; Gauguet, A.; Fils, J.; Virdis, A.; Clairon, A.; Dimarcq, N.; Borde, Ch.J.; Landragin, A.; Bouyer, P.

    2006-07-07

    We have developed an atom interferometer providing a full inertial base. This device uses two counterpropagating cold-atom clouds that are launched in strongly curved parabolic trajectories. Three single Raman beam pairs, pulsed in time, are successively applied in three orthogonal directions leading to the measurement of the three axis of rotation and acceleration. In this purpose, we introduce a new atom gyroscope using a butterfly geometry. We discuss the present sensitivity and the possible improvements.

  5. Paroxysmal cold hemoglobinuria.

    PubMed

    Shanbhag, Satish; Spivak, Jerry

    2015-06-01

    Paroxysmal cold hemoglobinuria is a rare cause of autoimmune hemolytic anemia predominantly seen as an acute form in young children after viral illnesses and in a chronic form in some hematological malignancies and tertiary syphilis. It is a complement mediated intravascular hemolytic anemia associated with a biphasic antibody against the P antigen on red cells. The antibody attaches to red cells at colder temperatures and causes red cell lysis when blood recirculates to warmer parts of the body. Treatment is mainly supportive and with red cell transfusion, but immunosuppressive therapy may be effective in severe cases. PMID:26043386

  6. Cochlear microphonic broad tuning curves

    NASA Astrophysics Data System (ADS)

    Ayat, Mohammad; Teal, Paul D.; Searchfield, Grant D.; Razali, Najwani

    2015-12-01

    It is known that the cochlear microphonic voltage exhibits much broader tuning than does the basilar membrane motion. The most commonly used explanation for this is that when an electrode is inserted at a particular point inside the scala media, the microphonic potentials of neighbouring hair cells have different phases, leading to cancelation at the electrodes location. In situ recording of functioning outer hair cells (OHCs) for investigating this hypothesis is exceptionally difficult. Therefore, to investigate the discrepancy between the tuning curves of the basilar membrane and those of the cochlear microphonic, and the effect of phase cancellation of adjacent hair cells on the broadness of the cochlear microphonic tuning curves, we use an electromechanical model of the cochlea to devise an experiment. We explore the effect of adjacent hair cells (i.e., longitudinal phase cancellation) on the broadness of the cochlear microphonic tuning curves in different locations. The results of the experiment indicate that active longitudinal coupling (i.e., coupling with active adjacent outer hair cells) only slightly changes the broadness of the CM tuning curves. The results also demonstrate that there is a π phase difference between the potentials produced by the hair bundle and the soma near the place associated with the characteristic frequency based on place-frequency maps (i.e., the best place). We suggest that the transversal phase cancellation (caused by the phase difference between the hair bundle and the soma) plays a far more important role than longitudinal phase cancellation in the broadness of the cochlear microphonic tuning curves. Moreover, by increasing the modelled longitudinal resistance resulting the cochlear microphonic curves exhibiting sharper tuning. The results of the simulations suggest that the passive network of the organ of Corti determines the phase difference between the hair bundle and soma, and hence determines the sharpness of the

  7. RF EXCITATION OF LINEAR AND CURVED SECTIONS OF THE CRFQ PROJECT.

    SciTech Connect

    DAVINO,D.; CAMPAJOLA,L.; MASULLO,M.R.; RUGGIERO,A.

    2004-07-05

    The design criteria of the linear and first curved sectors of the Circular Radiofrequency Quadrupole (CRFQ) proof of principle are presented in this paper. Radiofrequency measurements on a cold model of the linear sector and comparisons with numerical simulations are presented too.

  8. Supernova Light Curves Powered by Fallback Accretion

    NASA Astrophysics Data System (ADS)

    Dexter, Jason; Kasen, Daniel

    2013-07-01

    Some fraction of the material ejected in a core collapse supernova explosion may remain bound to the compact remnant, and eventually turn around and fall back. We show that the late time (gsimdays) power potentially associated with the accretion of this "fallback" material could significantly affect the optical light curve, in some cases producing super-luminous or otherwise peculiar supernovae. We use spherically symmetric hydrodynamical models to estimate the accretion rate at late times for a range of progenitor masses and radii and explosion energies. The accretion rate onto the proto-neutron star or black hole decreases as \\dot{M} \\propto t^{-5/3} at late times, but its normalization can be significantly enhanced at low explosion energies, in very massive stars, or if a strong reverse shock wave forms at the helium/hydrogen interface in the progenitor. If the resulting super-Eddington accretion drives an outflow which thermalizes in the outgoing ejecta, the supernova debris will be re-energized at a time when photons can diffuse out efficiently. The resulting light curves are different and more diverse than previous fallback supernova models which ignored the input of accretion power and produced short-lived, dim transients. The possible outcomes when fallback accretion power is significant include super-luminous (gsim 1044 erg s-1) Type II events of both short and long durations, as well as luminous Type I events from compact stars that may have experienced significant mass loss. Accretion power may unbind the remaining infalling material, causing a sudden decrease in the brightness of some long duration Type II events. This scenario may be relevant for explaining some of the recently discovered classes of peculiar and rare supernovae.

  9. SUPERNOVA LIGHT CURVES POWERED BY FALLBACK ACCRETION

    SciTech Connect

    Dexter, Jason; Kasen, Daniel

    2013-07-20

    Some fraction of the material ejected in a core collapse supernova explosion may remain bound to the compact remnant, and eventually turn around and fall back. We show that the late time ({approx}>days) power potentially associated with the accretion of this 'fallback' material could significantly affect the optical light curve, in some cases producing super-luminous or otherwise peculiar supernovae. We use spherically symmetric hydrodynamical models to estimate the accretion rate at late times for a range of progenitor masses and radii and explosion energies. The accretion rate onto the proto-neutron star or black hole decreases as M-dot {proportional_to}t{sup -5/3} at late times, but its normalization can be significantly enhanced at low explosion energies, in very massive stars, or if a strong reverse shock wave forms at the helium/hydrogen interface in the progenitor. If the resulting super-Eddington accretion drives an outflow which thermalizes in the outgoing ejecta, the supernova debris will be re-energized at a time when photons can diffuse out efficiently. The resulting light curves are different and more diverse than previous fallback supernova models which ignored the input of accretion power and produced short-lived, dim transients. The possible outcomes when fallback accretion power is significant include super-luminous ({approx}> 10{sup 44} erg s{sup -1}) Type II events of both short and long durations, as well as luminous Type I events from compact stars that may have experienced significant mass loss. Accretion power may unbind the remaining infalling material, causing a sudden decrease in the brightness of some long duration Type II events. This scenario may be relevant for explaining some of the recently discovered classes of peculiar and rare supernovae.

  10. Calibration system for albedo neutron dosimeters

    SciTech Connect

    Rothermich, N.E.

    1981-01-01

    Albedo neutron dosimeters have proven to be effective as a method of measuring the dose from neutron exposures that other types of neutron detectors cannot measure. Results of research conducted to calibrate an albedo neutron dosemeter are presented. The calibration procedure consisted of exposing the TLD chips to a 46 curie /sup 238/PuBe source at known distances, dose rates and exposure periods. The response of the TLD's is related to the dose rate measured with a dose rate meter to obtain the calibration factor. This calibration factor is then related to the ratio of the counting rates determined by 9-inch and 3-inch Bonner spheres (also called remmeters) and a calibration curve was determined. 17 references, 10 figures, 3 tables.

  11. Beamline Performance Simulations for the Fundamental Neutron Physics Beamline at the Spallation Neutron Source

    PubMed Central

    Huffman, P. R.; Greene, G. L.; Allen, R. R.; Cianciolo, V.; Huerto, R. R.; Koehler, P.; Desai, D.; Mahurin, R.; Yue, A.; Palmquist, G. R.; Snow, W. M.

    2005-01-01

    Monte Carlo simulations are being performed to design and characterize the neutron optics components for the two fundamental neutron physics beamlines at the Spallation Neutron Source. Optimization of the cold beamline includes characterization of the guides and benders, the neutron transmission through the 0.89 nm monochromator, and the expected performance of the four time-of-flight choppers. The locations and opening angles of the choppers have been studied using a simple spreadsheet-based analysis that was developed for other SNS chopper instruments. The spreadsheet parameters are then optimized using Monte Carlo techniques to obtain the results presented in this paper. Optimization of the 0.89 nm beamline includes characterizing the double crystal monochromator and the downstream guides. The simulations continue to be refined as components are ordered and their exact size and performance specifications are determined.

  12. Neutrino mean free path in neutron matter with Brussels-Montreal Skyrme functionals

    NASA Astrophysics Data System (ADS)

    Pastore, A.; Martini, M.; Davesne, D.; Navarro, J.; Chamel, N.; Goriely, S.

    2016-01-01

    We calculate the neutrino mean free path in cold neutron matter with some modern Brussels-Montreal functionals. The three typical functionals used in this article produce quite different results implying a possible impact on the cooling mechanism of neutron stars.

  13. Direct evidence for inelastic neutron 'acceleration' by {sup 177}Lu{sup m}

    SciTech Connect

    Roig, O.; Meot, V.; Rosse, B.; Belier, G.; Daugas, J.-M.; Morel, P.; Letourneau, A.; Menelle, A.

    2011-06-15

    The inelastic neutron acceleration cross section on the long-lived metastable state of {sup 177}Lu has been measured using a direct method. High-energy neutrons have been detected using a specially designed setup placed on a cold neutron beam extracted from the ORPHEE reactor in Saclay. The 146{+-}19 b inelastic neutron acceleration cross section in the ORPHEE cold neutron flux confirms the high cross section for this process on the {sup 177}Lu{sup m} isomer. The deviation from the 258{+-}58 b previously published obtained for a Maxwellian neutron flux at a 323 K temperature could be explained by the presence of a low energy resonance. Resonance parameters are deduced and discussed.

  14. Parity-Violating Neutron Spin Rotation in a Liquid Parahydrogen Target

    PubMed Central

    Markoff, Diane M.

    2005-01-01

    Our understanding of hadronic parity violation is far from clear despite nearly 50 years of theoretical and experimental progress. Measurements of low-energy parity-violating observables in nuclear systems are the only accessible means to study the flavor-conserving weak hadronic interaction. To reduce the uncertainties from nuclear effects, experiments in the few and two-body system are essential. The parity-violating rotation of the transverse neutron polarization vector about the momentum axis as the neutrons traverse a target material has been measured in heavy nuclei and few nucleon systems using reactor cold neutron sources. We describe here an experiment to measure the neutron spin-rotation in a parahydrogen target (n-p system) using pulsed cold-neutrons from the fundamental symmetries beam line at the Spallation Neutron Source under construction at the Oak Ridge National Laboratory. PMID:27308123

  15. Relative Locality in Curved Spacetime

    NASA Astrophysics Data System (ADS)

    Kowalski-Glikman, Jerzy; Rosati, Giacomo

    2013-07-01

    In this paper we construct the action describing dynamics of the particle moving in curved spacetime, with a nontrivial momentum space geometry. Curved momentum space is the core feature of theories where relative locality effects are present. So far aspects of nonlinearities in momentum space have been studied only for flat or constantly expanding (de Sitter) spacetimes, relying on their maximally symmetric nature. The extension of curved momentum space frameworks to arbitrary spacetime geometries could be relevant for the opportunities to test Planck-scale curvature/deformation of particles momentum space. As a first example of this construction we describe the particle with κ-Poincaré momentum space on a circular orbit in Schwarzschild spacetime, where the contributes of momentum space curvature turn out to be negligible. The analysis of this problem relies crucially on the solution of the soccer ball problem.

  16. Phase nucleation in curved space

    NASA Astrophysics Data System (ADS)

    Gómez, Leopoldo; García, Nicolás; Vitelli, Vincenzo; Lorenzana, José; Daniel, Vega

    Nucleation and growth is the dominant relaxation mechanism driving first-order phase transitions. In two-dimensional flat systems, nucleation has been applied to a wide range of problems in physics, chemistry and biology. Here we study nucleation and growth of two-dimensional phases lying on curved surfaces and show that curvature modifies both critical sizes of nuclei and paths towards the equilibrium phase. In curved space, nucleation and growth becomes inherently inhomogeneous and critical nuclei form faster on regions of positive Gaussian curvature. Substrates of varying shape display complex energy landscapes with several geometry-induced local minima, where initially propagating nuclei become stabilized and trapped by the underlying curvature (Gómez, L. R. et al. Phase nucleation in curved space. Nat. Commun. 6:6856 doi: 10.1038/ncomms7856 (2015).).

  17. Neutron beta decay measurements planned for the SNS

    NASA Astrophysics Data System (ADS)

    Pocanic, Dinko

    2009-10-01

    A cold neutron beam line, dedicated to fundamental neutron physics (FnPB), is presently being completed at the Oak Ridge, TN, Spallation Neutron Source. Among other experiments, the beamline will host a comprehensive set of precise studies of the neutron beta decay. Neutron beta decay is characterised by the decay rate (or its inverse, the neutron lifetime), and a set of decay parameters describing the kinematical and spin correlations among the participating particles. Within the standard model (SM), the neutron lifetime and three decay parameters (a, A, and B) are fixed by two parameters: the Vud element of the Cabibbo-Kobayashi-Maskawa mixing matrix, and λ=GA/GV, the ratio of axial vector and vector nucleon form factors. This overdetermined system provides a unique opportunity to explore possible departures from the simple SM, as well as the nature of such departures, e.g., left-right supersymmetric extensions, leptoquarks, non-(V-A) admixtures, etc., with broad implications in subatomic physics. The FnPB neutron beta decay program will include measurements of the neutron lifetime, continuing the present NIST experiment, a measurement of a, the electron-neutrino correlation, and b, the Fierz interference term, (the ``Nab'' experiment), along with measurements of A and B, the correlations between neutron spin and electron and neutrino momenta, respectively, (the ``abBA'' experiment). Current plans for these experiments will be discussed in detail.

  18. Results from neutron imaging of ICF experiments at NIF

    NASA Astrophysics Data System (ADS)

    Merrill, F. E.; Danly, C. R.; Fittinghoff, D. N.; Grim, G. P.; Guler, N.; Volegov, P. L.; Wilde, C. H.

    2016-03-01

    In 2011 a neutron imaging diagnostic was commissioned at the National Ignition Facility (NIF). This new system has been used to collect neutron images to measure the size and shape of the burning DT plasma and the surrounding fuel assembly. The imaging technique uses a pinhole neutron aperture placed between the neutron source and a neutron detector. The detection system measures the two-dimensional distribution of neutrons passing through the pinhole. This diagnostic collects two images at two times. The long flight path for this diagnostic, 28 m, results in a chromatic separation of the neutrons, allowing the independently timed images to measure the source distribution for two neutron energies. Typically one image measures the distribution of the 14 MeV neutrons, and the other image measures the distribution of the 6-12 MeV neutrons. The combination of these two images has provided data on the size and shape of the burning plasma within the compressed capsule, as well as a measure of the quantity and spatial distribution of the cold fuel surrounding this core. Images have been collected for the majority of the experiments performed as part of the ignition campaign. Results from this data have been used to estimate a burn-averaged fuel assembly as well as providing performance metrics to gauge progress towards ignition. This data set and our interpretation are presented.

  19. Active particles on curved surfaces

    NASA Astrophysics Data System (ADS)

    Fily, Yaouen; Baskaran, Aparna; Hagan, Michael

    Active systems have proved to be very sensitive to the geometry of their environment. This is often achieved by spending significant time at the boundary, probing its shape by gliding along it. I will discuss coarse graining the microscopic dynamics of self-propelled particles on a general curved surface to predict the way the density profile on the surface depends on its geometry. Beyond confined active particles, this formalism is a natural starting point to study objects that cannot leave the boundary at all, such as cells crawling on a curved substrate, animals running on uneven ground, or active colloids trapped at an interface.

  20. Fitting curves to cyclic data

    USGS Publications Warehouse

    Langbein, W.B.

    1955-01-01

    A common problem in hydrology is to fit a smooth curve to cyclic or periodic data, either to define the most probable values of the data or to test some principle that one wishes to demonstrate.  This study treats of those problems where the length or period of the cycle is know beforehand - as a day, year, or meander length for example.  Curve-fitting can be made by free-hand drawing, and where the data are closely aligned this method offers the simplest and most direct course.  However, there are many problems where the best fit is far from obvious, and analytical methods may be necessary.

  1. NEXT Performance Curve Analysis and Validation

    NASA Technical Reports Server (NTRS)

    Saripalli, Pratik; Cardiff, Eric; Englander, Jacob

    2016-01-01

    Performance curves of the NEXT thruster are highly important in determining the thruster's ability in performing towards mission-specific goals. New performance curves are proposed and examined here. The Evolutionary Mission Trajectory Generator (EMTG) is used to verify variations in mission solutions based on both available thruster curves and the new curves generated. Furthermore, variations in BOL and EOL curves are also examined. Mission design results shown here validate the use of EMTG and the new performance curves.

  2. Short-range nucleon correlations and neutrino emission by neutron stars

    SciTech Connect

    Frankfurt, Leonid; Strikman, Mark

    2008-10-13

    We argue that significant probability of protons with momenta above their Fermi surface leads for proton concentrations p/n{>=}1/8 to the enhancement of termally excited direct and modified URCA processes within a cold neutron star, and to a nonzero probability of direct URCA processes for small proton concentrations (p/n{<=}1/8). We evaluate high momentum tails of neutron, proton and electrons distributions within a neutron star. We expect also significantly faster neutrino cooling of hyperon stars.

  3. Neutron beam characterization at the Intense Pulsed Neutron Source.

    SciTech Connect

    Iverson, E. B.

    1998-05-18

    The Intense Pulsed Neutron Source (IPNS) at Argonne National Laboratory is a spallation neutron source dedicated to materials research. Its three cryogenic methane moderators provide twelve neutron beams to fourteen neutron scattering instruments and test facilities. The moderators at IPNS are of cryogenic methane (CH{sub 4}); one of liquid methane at 100 K, and two of solid methane at 30 K. These moderators produce intense beams of both cold and thermal neutrons. The moderators are each of a different physical configuration in order to tailor their performance for the instruments and facilities that operate on the neutron beams. As part of the ongoing operation of IPNS, as well as new enhancements to the target, moderator, and reflector systems, we have performed experiments characterizing the energy and time distribution of neutrons in the various beams. These measurements provide absolutely normalized energy spectra using foil activation techniques joined with time-of-flight measurements, and energy-dependent time distributions using a time-focused crystal analyzer. The IPNS accelerator system delivers 14 {micro}A of 450 MeV protons, in 100 ns pulses at 30 Hz, to a target composed of water-cooled depleted uranium disks. The solid methane ''H'' moderator is 100 by 100 by 45 mm in size, centerline poisoned with 0.25 mg/mm{sup 2} gadolinium, and decoupled from the graphite reflector with 0.5 mm of cadmium. The liquid methane ''F'' moderator, which is viewed from both faces, is also 100 by 100 by 45 mm in size, gadolinium poisoned 16 mm below each of the two viewed surfaces, and decoupled from the graphite reflector with cadmium. The solid methane ''C'' moderator has a re-entrant ''grooved'' geometry. The moderator is 100 by 100 by 80 mm overall, with 40 mm deep 12 mm wide horizontal grooves in the viewed surface. These grooves cover 50% of the viewed surface area. The ''C'' moderator is unpoisoned, but is decoupled from the graphite reflector with 0.5 mm of cadmium.

  4. High energy neutron radiography

    SciTech Connect

    Gavron, A.; Morley, K.; Morris, C.; Seestrom, S.; Ullmann, J.; Yates, G.; Zumbro, J.

    1996-06-01

    High-energy spallation neutron sources are now being considered in the US and elsewhere as a replacement for neutron beams produced by reactors. High-energy and high intensity neutron beams, produced by unmoderated spallation sources, open potential new vistas of neutron radiography. The authors discuss the basic advantages and disadvantages of high-energy neutron radiography, and consider some experimental results obtained at the Weapons Neutron Research (WNR) facility at Los Alamos.

  5. The synchronous active neutron detection assay system

    SciTech Connect

    Pickrell, M.M.; Kendall, P.K.

    1994-09-01

    The authors have begun to develop a novel technique for active neutron assay of fissile material in spent nuclear fuel. They are using a Schlumberger neutron generator for the direct measurement of the fissile material content in spent fuel, in place of the indirect measures used at present. The technique they are investigating is termed synchronous active neutron detection (SAND). It closely follows a method that has been used routinely in other branches of physics for the detection of very small signals in the presence of large backgrounds. Synchronous detection instruments are widely available commercially and are termed ``lock-in`` amplifiers. They have implemented a digital lock-in amplifier in conjunction with the Schlumberger neutron generator to explore the possibility of synchronous detection with active neutrons. The results to data are preliminary but quite promising. The system is capable of resolving the fissile material contained in a small fraction of the fuel rods in a cold fuel assembly. It also appears to be quite resilient to background neutron interference.

  6. Neutron Stars and Thermonuclear X-ray Bursts

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, Sudip

    2007-01-01

    Studies of thermonuclear X-ray bursts can be very useful to constrain the spin rate, mass and radius of a neutron star approaching EOS model of high density cold matter in the neutron star cores. +k Extensive observation and analysis of the data from the rising portions of the bursts - modeling of burst oscillations and thermonuclear flame spreading. +k Theoretical study of thermonuclear flame spreading on the rapidly spinning neutron stars should be done considering all the main physical effects (including magnetic field, nuclear energy generation, Coriolis effect, strong gravity, etc.).

  7. Understanding Neutron Stars using Thermonuclear X-ray Bursts

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, S.

    2007-01-01

    Studies of thermonuclear X-ray bursts can be very useful to constrain the spin rate, mass and radius of a neutron star = EOS model of high density cold matter in the neutron star cores. Extensive observation and analysis of the data from the rising portions of the bursts = modeling of burst oscillations and thermonuclear flame spreading. Theoretical study of thermonuclear flame spreading on the rapidly spinning neutron stars should be done considering all the main physical effects (including magnetic field, nuclear energy generation, Coriolis effect, strong gravity, etc.).

  8. Alternative Gravity Rotation Curves for the LITTLE THINGS Survey

    NASA Astrophysics Data System (ADS)

    Stulge, Modestas; Stefanski, Brian; Dentico, Jeremy; O'Brien, James; Gay, Joseph; Moss, Robert; Young, Bryan; Smith, Adam

    2016-03-01

    Galactic rotation curves have proven to be the testing ground for dark matter bounds in spiral galaxies of all morphologies. Dwarf Galaxies serve as an increasingly interesting testing ground of rotation curve dynamics due to their increased stellar formation and typically rising rotation curve. These galaxies usually are not dominated by typical stellar structure and mostly terminate at small radial distances. This, coupled with the fact that Cold Dark Matter theories such as NFW (ΛCDM) struggle with the universality of galactic rotation curves, allow for exclusive features of alternative gravitational models to be analyzed. Recently, the THINGS (The HI Nearby Galactic Survey) has been extended to include a sample of 25 dwarf galaxies now known as the LITTLE THINGS Survey. Here, we present a thorough application of alternative gravitational models to the LITTLE THINGS survey, specifically focusing on MOND and Conformal Gravity. An analysis and discussion of the results of the fitting procedure of the two alternative gravitational models are explored. We posit here that both the Conformal Gravity and MOND can provide an accurate description of the galactic dynamics without the need for copious dark matter.

  9. Testing MONDian dark matter with galactic rotation curves

    SciTech Connect

    Edmonds, Doug; Farrah, Duncan; Minic, Djordje; Takeuchi, Tatsu; Ho, Chiu Man; Ng, Y. Jack E-mail: farrah@vt.edu E-mail: takeuchi@vt.edu E-mail: yjng@physics.unc.edu

    2014-09-20

    MONDian dark matter (MDM) is a new form of dark matter quantum that naturally accounts for Milgrom's scaling, usually associated with modified Newtonian dynamics (MOND), and theoretically behaves like cold dark matter (CDM) at cluster and cosmic scales. In this paper, we provide the first observational test of MDM by fitting rotation curves to a sample of 30 local spiral galaxies (z ≈ 0.003). For comparison, we also fit the galactic rotation curves using MOND and CDM. We find that all three models fit the data well. The rotation curves predicted by MDM and MOND are virtually indistinguishable over the range of observed radii (∼1 to 30 kpc). The best-fit MDM and CDM density profiles are compared. We also compare with MDM the dark matter density profiles arising from MOND if Milgrom's formula is interpreted as Newtonian gravity with an extra source term instead of as a modification of inertia. We find that discrepancies between MDM and MOND will occur near the center of a typical spiral galaxy. In these regions, instead of continuing to rise sharply, the MDM mass density turns over and drops as we approach the center of the galaxy. Our results show that MDM, which restricts the nature of the dark matter quantum by accounting for Milgrom's scaling, accurately reproduces observed rotation curves.

  10. Neutron electric dipole moment and dressed spin

    NASA Astrophysics Data System (ADS)

    Chu, Ping-Han

    The neutron electric dipole moment (EDM) experiment has played a unique role in examining the violation of fundamental symmetries and understanding the nature of electroweak and strong interaction. A non-zero neutron EDM is one of direct evidence for CP and T violation and has the potential to reveal the origin of CP violation and to explore physics beyond the Standard Model. A new neutron EDM experiment will be built to improve a factor of 100 by using a novel technique of ultra-cold neutrons(UCN) in superfluid 4He at the Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory (ORNL). In the experiment, 3He in the measurement cell will be used as a neutron spin analyzer and a comagnetometer. The absorption between UCN and 3He atoms will emit scintillation light in the superfluid 4He depending on the angle between nuclear spins of two particles. Consequently, the neutron precession frequency can be derived by the scintillation light amplitude. Furthermore, the 3He precession frequency can be measured by the superconducting quantum interference device (SQUID). A dressed-spin technique will also be applied to measure the small precession frequency change due to a non-zero neutron EDM. The dressed-spin technique is used to modify the effective precession frequencies of neutrons and 3He atoms to make them equal by applying an oscillatory field (dressing field) that is perpendicular to the static magnetic field. The phenomenon of the dressed spin for 3He in a cell should be demonstrated before the proposed neutron EDM experiment. A successful measurement over a broad range of the amplitude and frequency of the dressing field was done at the University of Illinois. The observed effects can be explained by using quantum optics formalism. The formalism is diagonalized to solve the solution and confirms the data. In addition, the application of the dressed-spin technique was investigated. The modulation and the feedback loop technique should be considered with

  11. NEUTRON SOURCE

    DOEpatents

    Reardon, W.A.; Lennox, D.H.; Nobles, R.G.

    1959-01-13

    A neutron source of the antimony--beryllium type is presented. The source is comprised of a solid mass of beryllium having a cylindrical recess extending therein and a cylinder containing antimony-124 slidably disposed within the cylindrical recess. The antimony cylinder is encased in aluminum. A berylliunn plug is removably inserted in the open end of the cylindrical recess to completely enclose the antimony cylinder in bsryllium. The plug and antimony cylinder are each provided with a stud on their upper ends to facilitate handling remotely.

  12. Cold Atom Magnetometers

    NASA Astrophysics Data System (ADS)

    Eto, Yujiro; Sadrove, Mark; Hirano, Takuya

    Detection of weak magnetic fields with high spatial resolution is an important technology for various applications such as biological imaging, detection of MRI signals and fundamental physics. Cold atom magnetometry enables 10-11 T/ Hz sqrt{text{Hz}} sensitivities at the micron scale, that is, at the scale of a typical biological cell size. This magnetometry takes advantage of unique properties of atomic gaseous Bose-Einstein condensates with internal spin degrees of freedom. In this chapter, we first overview various state-of-the-art magnetometers, addressing their sensitivities and spatial resolutions. Then we describe properties of spinor condensates, ultracold atom magnetometers, and the latest research developments achieved in the FIRST project, especially for the detection of alternate current magnetic fields using a spin-echo-based magnetometer. We also discuss future prospects of the magnetometers.

  13. Cold isopressing method

    DOEpatents

    Chen, Jack C.; Stawisuck, Valerie M.; Prasad, Ravi

    2003-01-01

    A cold isopressing method in which two or more layers of material are formed within an isopressing mold. One of the layers consists of a tape-cast film. The layers are isopressed within the isopressing mold, thereby to laminate the layers and to compact the tape-cast film. The isopressing mold can be of cylindrical configuration with the layers being coaxial cylindrical layers. The materials used in forming the layers can contain green ceramic materials and the resultant structure can be fired and sintered as necessary and in accordance with known methods to produce a finished composite, ceramic structure. Further, such green ceramic materials can be of the type that are capable of conducting hydrogen or oxygen ions at high temperature with the object of utilizing the finished composite ceramic structure as a ceramic membrane element.

  14. Calculations of neutron spectra after neutron neutron scattering

    NASA Astrophysics Data System (ADS)

    Crawford, B. E.; Stephenson, S. L.; Howell, C. R.; Mitchell, G. E.; Tornow, W.; Furman, W. I.; Lychagin, E. V.; Muzichka, A. Yu; Nekhaev, G. V.; Strelkov, A. V.; Sharapov, E. I.; Shvetsov, V. N.

    2004-09-01

    A direct neutron-neutron scattering length, ann, measurement with the goal of 3% accuracy (0.5 fm) is under preparation at the aperiodic pulsed reactor YAGUAR. A direct measurement of ann will not only help resolve conflicting results of ann by indirect means, but also in comparison to the proton-proton scattering length, app, shed light on the charge-symmetry of the nuclear force. We discuss in detail the analysis of the nn-scattering data in terms of a simple analytical expression. We also discuss calibration measurements using the time-of-flight spectra of neutrons scattered on He and Ar gases and the neutron activation technique. In particular, we calculate the neutron velocity and time-of-flight spectra after scattering neutrons on neutrons and after scattering neutrons on He and Ar atoms for the proposed experimental geometry, using a realistic neutron flux spectrum—Maxwellian plus epithermal tail. The shape of the neutron spectrum after scattering is appreciably different from the initial spectrum, due to collisions between thermal-thermal and thermal-epithermal neutrons. At the same time, the integral over the Maxwellian part of the realistic scattering spectrum differs by only about 6 per cent from that of a pure Maxwellian nn-scattering spectrum.

  15. Supply Curves of Conserved Energy

    SciTech Connect

    Meier, Alan Kevin

    1982-05-01

    Supply curves of conserved energy provide an accounting framework that expresses the potential for energy conservation. The economic worthiness of a conservation measure is expressed in terms of the cost of conserved energy, and a measure is considered economical when the cost of conserved energy is less than the price of the energy it replaces. A supply curve of conserved energy is independent of energy prices; however, the economical reserves of conserved energy will depend on energy prices. Double-counting of energy savings and error propagation are common problems when estimating conservation potentials, but supply curves minimize these difficulties and make their consequences predictable. The sensitivity of the cost of conserved energy is examined, as are variations in the optimal investment strategy in response to changes in inputs. Guidelines are presented for predicting the consequences of such changes. The conservation supply curve concept can be applied to peak power, water, pollution, and other markets where consumers demand a service rather than a particular good.

  16. Interpolation and Polynomial Curve Fitting

    ERIC Educational Resources Information Center

    Yang, Yajun; Gordon, Sheldon P.

    2014-01-01

    Two points determine a line. Three noncollinear points determine a quadratic function. Four points that do not lie on a lower-degree polynomial curve determine a cubic function. In general, n + 1 points uniquely determine a polynomial of degree n, presuming that they do not fall onto a polynomial of lower degree. The process of finding such a…

  17. Geomorphological origin of recession curves

    NASA Astrophysics Data System (ADS)

    Biswal, Basudev; Marani, Marco

    2010-12-01

    We identify a previously undetected link between the river network morphology and key recession curves properties through a conceptual-physical model of the drainage process of the riparian unconfined aquifer. We show that the power-law exponent, α, of -dQ/dt vs. Q curves is related to the power-law exponent of N(l) vs. G(l) curves (which we show to be connected to Hack's law), where l is the downstream distance from the channel heads, N(l) is the number of channel reaches exactly located at a distance l from their channel head, and G(l) is the total length of the network located at a distance greater or equal to l from channel heads. Using Digital Terrain Models and daily discharge observations from 67 US basins we find that geomorphologic α estimates match well the values obtained from recession curves analyses. Finally, we argue that the link between recession flows and network morphology points to an important role of low-flow discharges in shaping the channel network.

  18. CURVES, VERTICES, KNOTS AND SUCH.

    ERIC Educational Resources Information Center

    FOLEY, JACK L.

    THIS BOOKLET, ONE OF A SERIES, HAS BEEN DEVELOPED FOR THE PROJECT, A PROGRAM FOR MATHEMATICALLY UNDERDEVELOPED PUPILS. A PROJECT TEAM, INCLUDING INSERVICE TEACHERS, IS BEING USED TO WRITE AND DEVELOP THE MATERIALS FOR THIS PROGRAM. THE MATERIALS DEVELOPED IN THIS BOOKLET INCLUDE SUCH CONCEPTS AS (1) SIMPLE CLOSED CURVES, (2) NETWORKS, (3) MAP…

  19. Highlights of papers presented at the workshop on cold fusion phenomena

    SciTech Connect

    Not Available

    1989-09-01

    This report contains highlights of formal oral papers presented at the Workshop on Cold Fusion Phenomena, hosted by Los Alamos National Laboratory and held May 23--25, 1989, in Santa Fe, New Mexico. General topics covered are: physics of fusion reactions; neutron and gamma-ray spectroscopy; colorimetry; and applicable condensed-matter physics, electrochemistry, and analytical chemistry.

  20. Investigation of neutron converters for production of optically stimulated luminescence (OSL) neutron dosimeters using Al 2O 3:C

    NASA Astrophysics Data System (ADS)

    Mittani, J. C. R.; da Silva, A. A. R.; Vanhavere, F.; Akselrod, M. S.; Yukihara, E. G.

    2007-07-01

    This paper presents the optically stimulated luminescence (OSL) properties of neutron dosimeters in powder and in the form of pellets prepared with a mixture of Al 2O 3:C and neutron converters. The neutron converters investigated were high density polyethylene (HDPE), lithium fluoride (LiF), lithium fluoride 95% enriched with 6Li ( 6LiF), lithium carbonate 95% enriched with 6Li ( 6Li 2CO 3), boric acid enriched with 99% of 10B (H310BO) and gadolinium oxide (Gd 2O 3). The proportion of Al 2O 3:C and neutron converter in the mixture was varied to optimize the total OSL signal and neutron sensitivity. The neutron sensitivity and dose-response were determined for the OSL dosimeters using a bare 252Cf source and compared to the response of Harshaw TLD-600 and TLD-700 dosimeters ( 6LiF:Mg,Ti and 7LiF:Mg,Ti). The results demonstrate the possibility of developing an OSL dosimeter made of Al 2O 3:C powder and neutron converter with a neutron sensitivity (defined as the ratio between the 60Co equivalent gamma dose and the reference neutron absorbed dose) and neutron-gamma discrimination comparable to the TLD-600/TLD-700 combination. It was shown that the shape of the OSL decay curves varied with the type of the neutron converter, demonstrating the influence of the energy deposition mechanism and ionization density on the OSL process in Al 2O 3:C.

  1. Visualization of Bulk Magnetic Properties by Neutron Grating Interferometry

    NASA Astrophysics Data System (ADS)

    Betz, B.; Rauscher, P.; Siebert, R.; Schaefer, R.; Kaestner, A.; Van Swygenhoven, H.; Lehmann, E.; Grünzweig, C.

    The neutron Grating Interferometer (nGI) is a standard user instrument at the cold neutron imaging beamline ICON (Kaestner, 2011) at the neutron source SINQ at Paul Scherrer Institute (PSI), Switzerland. The setup is able to deliver simultaneously information about the attenuation, phase shift (DPC) (Pfeiffer, 2006) and scattering properties in the so-called dark-field image (DFI) (Grünzweig, 2008-I) of a sample. Since neutrons only interact with the nucleus they are often able to penetrate deeper into matter than X-rays, in particular heavier materials. A further advantage of neutrons compared to X-rays is the interaction of the neutron's magnetic moment with magnetic structures that allows for the bulk investigation of magnetic domain structures using the nGI technique (Grünzweig, 2008-II). The nGI-setup and its technique for imaging with cold neutrons is presented in this contribution. The main focus will be on magnetic investigations of electrical steel laminations using the nGI technique. Both, grain-oriented (GO) and non-oriented (NO) laminations will be presented. GO-laminations are widely used in industrial transformer applications, while NO-sheets are common in electrical machines. For grain-oriented sheet, domain walls were visualized individually,spatially resolved, while in NO-sheet a relative density distribution is depicted.

  2. The status of cold fusion

    NASA Astrophysics Data System (ADS)

    Storms, E.

    This report attempts to update the status of the phenomenon of cold fusion. The new field is continuing to grow as a variety of nuclear reactions are discovered to occur in a variety of chemical environments at modest temperatures. However, it must be cautioned that most scientists consider cold fusion as something akin to UFO's, ESP, and numerology.

  3. Lawrence Livermore National Laboratory (LLNL) research on cold fusion

    NASA Astrophysics Data System (ADS)

    Thomassen, K. I.; Holzrichter, J. F.; Aldridge, F. T.; Balke, B.; Bowers, J.; Bullen, D. B.; Cable, M. D.; Caffee, M.; Campbell, R. B.; Colmenares, C.

    1989-09-01

    With the appearance of reports on Cold Fusion, scientists at the Lawrence Livermore National Laboratory (LLNL) began a series of increasingly sophisticated experiments and calculations to explain these phenomena. These experiments can be categorized as follows: (1) simple experiments to replicate the Utah results, (2) more sophisticated experiments to place lower bounds on the generation of heat and production of nuclear products, (3) a collaboration with Texas A and M University to analyze electrodes and electrolytes for fusion by-products in a cell producing 10 pct excess heat (we found no by-products), and (4) attempts to replicate the Frascati experiment that first found neutron bursts when high-pressure deuterium gas in a cylinder with Ti chips was temperature-cycled. We failed in categories (1) and (2) to replicate either the Pons/Fleischmann or the Jones phenomena. We have seen phenomena similar to the Frascati results, (4) but these low-level burst signals may not be coming from neutrons generated in the Ti chips. Summaries of our experiments are described in Section 2, as is a theoretical effort based on cosmic ray muons to describe low-level neutron production. Details of the experimental groups' work are contained in the six appendices. At LLNL, independent teams were spontaneously formed in response to the early announcements on cold fusion. This report's format follows this organization.

  4. LLNL (Lawrence Livermore National Laboratory) research on cold fusion

    SciTech Connect

    Thomassen, K I; Holzrichter, J F

    1989-09-14

    With the appearance of reports on Cold Fusion,'' scientists at the Lawrence Livermore National Laboratory (LLNL) began a series of increasingly sophisticated experiments and calculations to explain these phenomena. These experiments can be categorized as follows: (a) simple experiments to replicate the Utah results, (b) more sophisticated experiments to place lower bounds on the generation of heat and production of nuclear products, (c) a collaboration with Texas A M University to analyze electrodes and electrolytes for fusion by-products in a cell producing 10% excess heat (we found no by-products), and (d) attempts to replicate the Frascati experiment that first found neutron bursts when high-pressure deuterium gas in a cylinder with Ti chips was temperature-cycled. We failed in categories (a) and (b) to replicate either the Pons/Fleischmann or the Jones phenomena. We have seen phenomena similar to the Frascati results, (d) but these low-level burst signals may not be coming from neutrons generated in the Ti chips. Summaries of our experiments are described in Section II, as is a theoretical effort based on cosmic ray muons to describe low-level neutron production. Details of the experimental groups' work are contained in the six appendices. At LLNL, independent teams were spontaneously formed in response to the early announcements on cold fusion. This report's format follows this organization.

  5. Lattice Waves, Spin Waves, and Neutron Scattering

    DOE R&D Accomplishments Database

    Brockhouse, Bertram N.

    1962-03-01

    Use of neutron inelastic scattering to study the forces between atoms in solids is treated. One-phonon processes and lattice vibrations are discussed, and experiments that verified the existence of the quantum of lattice vibrations, the phonon, are reviewed. Dispersion curves, phonon frequencies and absorption, and models for dispersion calculations are discussed. Experiments on the crystal dynamics of metals are examined. Dispersion curves are presented and analyzed; theory of lattice dynamics is considered; effects of Fermi surfaces on dispersion curves; electron-phonon interactions, electronic structure influence on lattice vibrations, and phonon lifetimes are explored. The dispersion relation of spin waves in crystals and experiments in which dispersion curves for spin waves in Co-Fe alloy and magnons in magnetite were obtained and the reality of the magnon was demonstrated are discussed. (D.C.W)

  6. Experimental study of ultracold neutron production in pressurized superfluid helium

    NASA Astrophysics Data System (ADS)

    Schmidt-Wellenburg, P.; Bossy, J.; Farhi, E.; Fertl, M.; Leung, K. K. H.; Rahli, A.; Soldner, T.; Zimmer, O.

    2015-08-01

    We investigate experimentally the pressure dependence of the production of ultracold neutrons (UCNs) in superfluid helium in the range from saturated vapor pressure to 20 bar. A neutron velocity selector allows the separation of underlying single-phonon and multiphonon processes by varying the incident cold neutron (CN) wavelength in the range from 3.5 to 10 Å. The predicted pressure dependence of UCN production derived from inelastic neutron scattering data is confirmed for the single-phonon excitation. For multiphonon-based UCN production we found no significant dependence on pressure, whereas calculations from inelastic neutron scattering data predict an increase of 43(6)% at 20 bar relative to saturated vapor pressure. From our data we conclude that applying pressure to superfluid helium does not increase the overall UCN production rate at a typical CN guide.

  7. Observational constraints on neutron star masses and radii

    NASA Astrophysics Data System (ADS)

    Miller, M. Coleman; Lamb, Frederick K.

    2016-03-01

    Precise and reliable measurements of the masses and radii of neutron stars with a variety of masses would provide valuable guidance for improving models of the properties of cold matter with densities above the saturation density of nuclear matter. Several different approaches for measuring the masses and radii of neutron stars have been tried or proposed, including analyzing the X-ray fluxes and spectra of the emission from neutron stars in quiescent low-mass X-ray binary systems and thermonuclear burst sources; fitting the energy-dependent X-ray waveforms of rotation-powered millisecond pulsars, burst oscillations with millisecond periods, and accretion-powered millisecond pulsars; and modeling the gravitational radiation waveforms of coalescing double neutron star and neutron star - black hole binary systems. We describe the strengths and weaknesses of these approaches, most of which currently have substantial systematic errors, and discuss the prospects for decreasing the systematic errors in each method.

  8. Design of the Mechanical Parts for the Neutron Guide System at HANARO

    SciTech Connect

    Shin, J. W.; Cho, Y. G.; Cho, S. J.; Ryu, J. S.

    2008-03-17

    The research reactor HANARO (High-flux Advanced Neutron Application ReactOr) in Korea will be equipped with a neutron guide system, in order to transport cold neutrons from the neutron source to the neutron scattering instruments in the neutron guide hall near the reactor building. The neutron guide system of HANARO consists of the in-pile plug assembly with in-pile guides, the primary shutter with in-shutter guides, the neutron guides in the guide shielding room with dedicated secondary shutters, and the neutron guides connected to the instruments in the neutron guide hall. Functions of the in-pile plug assembly are to shield the reactor environment from nuclear radiation and to support the neutron guides and maintain them precisely oriented. The primary shutter is a mechanical structure to be installed just after the in-pile plug assembly, which stops neutron flux on demand. This paper describes the design of the in-pile assembly and the primary shutter for the neutron guide system at HANARO. The design of the guide shielding assembly for the primary shutter and the neutron guides is also presented.

  9. Comparison of Two Algebraic Methods for Curve/curve Intersection

    NASA Technical Reports Server (NTRS)

    Demontaudouin, Y.; Tiller, W.

    1985-01-01

    Most geometric modeling systems use either polynomial or rational functions to represent geometry. In such systems most computational problems can be formulated as systems of polynomials in one or more variables. Classical elimination theory can be used to solve such systems. Here Cayley's method of elimination is summarized and it is shown how it can best be used to solve the curve/curve intersection problem. Cayley's method was found to be a more straightforward approach. Furthermore, it is computationally simpler, since the elements of the Cayley matrix are one variable instead of two variable polynomials. Researchers implemented and tested both methods and found Cayley's to be more efficient. Six pairs of curves, representing mixtures of lines, circles, and cubic arcs were used. Several examples had multiple intersection points. For all six cases Cayley's required less CPU time than the other method. The average time ratio of method 1 to method 2 was 3.13:1, the least difference was 2.33:1, and the most dramatic was 6.25:1. Both of the above methods can be extended to solve the surface/surface intersection problem.

  10. Cold source moderator vessel development for the High Flux Isotope Reactor: Thermal-hydraulic studies

    SciTech Connect

    Williams, P.T.; Lucas, A.T.; Wendel, M.W.

    1998-07-01

    A project is underway at Oak Ridge National Laboratory (ORNL) to design, test, and install a cold neutron source facility in the High Flux Isotope Reactor (HFIR). This new cold source employs supercritical hydrogen at cryogenic temperatures both as the medium for neutron moderation and as the working fluid for removal of internally-generated nuclear heating. The competing design goals of minimizing moderator vessel mass and providing adequate structural integrity for the vessel motivated the requirement of detailed multidimensional thermal-hydraulic analyses of the moderator vessel as a critical design subtask. This paper provides a summary review of the HFIR cold source moderator vessel design and a description of the thermal-hydraulic studies that were carried out to support the vessel development.

  11. A COLD NEPTUNE-MASS PLANET OGLE-2007-BLG-368Lb: COLD NEPTUNES ARE COMMON

    SciTech Connect

    Sumi, T.; Abe, F.; Fukui, A. E-mail: abe@stelab.nagoya-u.ac.j

    2010-02-20

    We present the discovery of a Neptune-mass planet OGLE-2007-BLG-368Lb with a planet-star mass ratio of q = [9.5 +- 2.1] x 10{sup -5} via gravitational microlensing. The planetary deviation was detected in real-time thanks to the high cadence of the Microlensing Observations in Astrophysics survey, real-time light-curve monitoring and intensive follow-up observations. A Bayesian analysis returns the stellar mass and distance at M{sub l} = 0.64{sup +0.21}{sub -0.26} M{sub sun} and D{sub l} = 5.9{sup +0.9}{sub -1.4} kpc, respectively, so the mass and separation of the planet are M{sub p} = 20{sup +7}{sub -8} M{sub +} and a = 3.3{sup +1.4}{sub -0.8} AU, respectively. This discovery adds another cold Neptune-mass planet to the planetary sample discovered by microlensing, which now comprises four cold Neptune/super-Earths, five gas giant planets, and another sub-Saturn mass planet whose nature is unclear. The discovery of these 10 cold exoplanets by the microlensing method implies that the mass ratio function of cold exoplanets scales as dN{sub pl}/dlog q {proportional_to} q {sup -0.7+}-{sup 0.2} with a 95% confidence level upper limit of n < -0.35 (where dN{sub pl}/dlog q {proportional_to} q{sup n} ). As microlensing is most sensitive to planets beyond the snow-line, this implies that Neptune-mass planets are at least three times more common than Jupiters in this region at the 95% confidence level.

  12. Time reversal invariance in polarized neutron decay

    SciTech Connect

    Wasserman, E.G.

    1994-03-01

    An experiment to measure the time reversal invariance violating (T-violating) triple correlation (D) in the decay of free polarized neutrons has been developed. The detector design incorporates a detector geometry that provides a significant improvement in the sensitivity over that used in the most sensitive of previous experiments. A prototype detector was tested in measurements with a cold neutron beam. Data resulting from the tests are presented. A detailed calculation of systematic effects has been performed and new diagnostic techniques that allow these effects to be measured have been developed. As the result of this work, a new experiment is under way that will improve the sensitivity to D to 3 {times} 10{sup {minus}4} or better. With higher neutron flux a statistical sensitivity of the order 3 {times} 10{sup {minus}5} is ultimately expected. The decay of free polarized neutrons (n {yields} p + e + {bar v}{sub e}) is used to search for T-violation by measuring the triple correlation of the neutron spin polarization, and the electron and proton momenta ({sigma}{sub n} {center_dot} p{sub p} {times} p{sub e}). This correlation changes sign under reversal of the motion. Since final state effects in neutron decay are small, a nonzero coefficient, D, of this correlation indicates the violation of time reversal invariance. D is measured by comparing the numbers of coincidences in electron and proton detectors arranged symmetrically about a longitudinally polarized neutron beam. Particular care must be taken to eliminate residual asymmetries in the detectors or beam as these can lead to significant false effects. The Standard Model predicts negligible T-violating effects in neutron decay. Extensions to the Standard Model include new interactions some of which include CP-violating components. Some of these make first order contributions to D.

  13. Current status of advanced pelletized cold moderators development for IBR-2M research reactor

    NASA Astrophysics Data System (ADS)

    Kulikov, S.; Belyakov, A.; Bulavin, M.; Mukhin, K.; Shabalin, E.; Verhoglyadov, A.

    2013-03-01

    The world's first advanced pelletized cold neutron moderator is prepared to be put into operation at the IBR-2M pulsed research reactor. It provides long-wavelength neutrons to the most of neutron spectrometers at the beams of the IBR-2M reactor. Aromatic hydrocarbons are used as a material for cold moderators. It is a very attractive material because of its high radiation resistance, good moderating properties, incombustibility, etc. It is shown that the idea of beads transport by a helium flow at cryogenic temperatures is successful. The recent progress and plans for moderator development at the IBR-2M reactor as well as the experimental results of beads transport are discussed in the paper.

  14. Common cold - how to treat at home

    MedlinePlus

    ... page: //medlineplus.gov/ency/patientinstructions/000466.htm Common cold - how to treat at home To use the ... green snot, and sneezing Sore throat Treating your Cold Treating your symptoms will not make your cold ...

  15. Cold-Weather Sports and Your Family

    MedlinePlus

    ... 5 Things to Know About Zika & Pregnancy Cold-Weather Sports and Your Family KidsHealth > For Parents > Cold- ... once the weather turns frosty. Beating the Cold-Weather Blahs Once a chill is in the air, ...

  16. Optical conductivity of curved graphene.

    PubMed

    Chaves, A J; Frederico, T; Oliveira, O; de Paula, W; Santos, M C

    2014-05-01

    We compute the optical conductivity for an out-of-plane deformation in graphene using an approach based on solutions of the Dirac equation in curved space. Different examples of periodic deformations along one direction translates into an enhancement of the optical conductivity peaks in the region of the far- and mid-infrared frequencies for periodicities ∼100 nm. The width and position of the peaks can be changed by dialling the parameters of the deformation profiles. The enhancement of the optical conductivity is due to intraband transitions and the translational invariance breaking in the geometrically deformed background. Furthermore, we derive an analytical solution of the Dirac equation in a curved space for a general deformation along one spatial direction. For this class of geometries, it is shown that curvature induces an extra phase in the electron wave function, which can also be explored to produce interference devices of the Aharonov-Bohm type. PMID:24759188

  17. Flow Through Randomly Curved Manifolds

    PubMed Central

    Mendoza, M.; Succi, S.; Herrmann, H. J.

    2013-01-01

    We present a computational study of the transport properties of campylotic (intrinsically curved) media. It is found that the relation between the flow through a campylotic media, consisting of randomly located curvature perturbations, and the average Ricci scalar of the system, exhibits two distinct functional expressions, depending on whether the typical spatial extent of the curvature perturbation lies above or below the critical value maximizing the overall scalar of curvature. Furthermore, the flow through such systems as a function of the number of curvature perturbations is found to present a sublinear behavior for large concentrations, due to the interference between curvature perturbations leading to an overall less curved space. We have also characterized the flux through such media as a function of the local Reynolds number and the scale of interaction between impurities. For the purpose of this study, we have also developed and validated a new lattice Boltzmann model. PMID:24173367

  18. Analysis of Exoplanet Light Curves

    NASA Astrophysics Data System (ADS)

    Erdem, A.; Budding, E.; Rhodes, M. D.; Püsküllü, Ç.; Soydugan, F.; Soydugan, E.; Tüysüz, M.; Demircan, O.

    2015-07-01

    We have applied the close binary system analysis package WINFITTER to a variety of exoplanet transiting light curves taken both from the NASA Exoplanet Archive and our own ground-based observations. WINFitter has parameter options for a realistic physical model, including gravity brightening and structural parameters derived from Kopal's applications of the relevant Radau equation, and it includes appropriate tests for determinacy and adequacy of its best fitting parameter sets. We discuss a number of issues related to empirical checking of models for stellar limb darkening, surface maculation, Doppler beaming, microvariability, and transit time variation (TTV) effects. The Radau coefficients used in the light curve modeling, in principle, allow structural models of the component stars to be tested.

  19. Quantum walking in curved spacetime

    NASA Astrophysics Data System (ADS)

    Arrighi, Pablo; Facchini, Stefano; Forets, Marcelo

    2016-08-01

    A discrete-time quantum walk (QW) is essentially a unitary operator driving the evolution of a single particle on the lattice. Some QWs admit a continuum limit, leading to familiar PDEs (e.g., the Dirac equation). In this paper, we study the continuum limit of a wide class of QWs and show that it leads to an entire class of PDEs, encompassing the Hamiltonian form of the massive Dirac equation in (1+1) curved spacetime. Therefore, a certain QW, which we make explicit, provides us with a unitary discrete toy model of a test particle in curved spacetime, in spite of the fixed background lattice. Mathematically, we have introduced two novel ingredients for taking the continuum limit of a QW, but which apply to any quantum cellular automata: encoding and grouping.

  20. Neutron standard data

    SciTech Connect

    Peelle, R.; Conde, H.

    1988-01-01

    The neutron standards are reviewed with emphasis on the evaluation for ENDFB-VI. Also discussed are the neutron spectrum of /sup 252/Cf spontaneous fission, activation cross sections for neutron flux measurement, and standards for neutron energies greater than 20 MeV. Recommendations are made for future work. 21 refs., 6 figs., 3 tabs.

  1. Borner Ball Neutron Detector

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Bonner Ball Neutron Detector measures neutron radiation. Neutrons are uncharged atomic particles that have the ability to penetrate living tissues, harming human beings in space. The Bonner Ball Neutron Detector is one of three radiation experiments during Expedition Two. The others are the Phantom Torso and Dosimetric Mapping.

  2. Gravitational-wave sensitivity curves

    NASA Astrophysics Data System (ADS)

    Moore, C. J.; Cole, R. H.; Berry, C. P. L.

    2015-01-01

    There are several common conventions in use by the gravitational-wave community to describe the amplitude of sources and the sensitivity of detectors. These are frequently confused. We outline the merits of and differences between the various quantities used for parameterizing noise curves and characterizing gravitational-wave amplitudes. We conclude by producing plots that consistently compare different detectors. Similar figures can be generated on-line for general use at http://rhcole.com/apps/GWplotter.

  3. NEUTRONIC REACTOR

    DOEpatents

    Stewart, H.B.

    1958-12-23

    A nuclear reactor of the type speclfically designed for the irradiation of materials is discussed. In this design a central cyllndrical core of moderating material ls surrounded by an active portlon comprlsed of an annular tank contalning fissionable material immersed ln a liquid moderator. The active portion ls ln turn surrounded by a reflector, and a well ls provided in the center of the core to accommodate the materlals to be irradiated. The over-all dimensions of the core ln at least one plane are equal to or greater than twice the effective slowing down length and equal to or less than twlce the effective diffuslon length for neutrons in the core materials.

  4. NEUTRONIC REACTORS

    DOEpatents

    Wigner, E.P.; Young, G.J.

    1958-10-14

    A method is presented for loading and unloading rod type fuel elements of a neutronic reactor of the heterogeneous, solld moderator, liquid cooled type. In the embodiment illustrated, the fuel rods are disposed in vertical coolant channels in the reactor core. The fuel rods are loaded and unloaded through the upper openings of the channels which are immersed in the coolant liquid, such as water. Unloading is accomplished by means of a coffer dam assembly having an outer sleeve which is placed in sealing relation around the upper opening. A radiation shield sleeve is disposed in and reciprocable through the coffer dam sleeve. A fuel rod engaging member operates through the axial bore in the radiation shield sleeve to withdraw the fuel rod from its position in the reactor coolant channel into the shield, the shield snd rod then being removed. Loading is accomplished in the reverse procedure.

  5. Phase Curves of Eccentric Exoplanets

    NASA Astrophysics Data System (ADS)

    Lewis, Nikole K.; de Wit, Julien; Laughlin, Gregory P.; Knutson, Heather

    2016-01-01

    Nearly 15% of the known exoplanet population have significantly eccentric orbits (e > 0.25). Systems with planets on highly eccentric orbits provide natural laboratories to test theories of orbital evolution, tidal forcing, and atmospheric response. The two best studied eccentric exoplanets are HAT-P-2b (e~0.5) and HD 80606 b (e~0.9). Both of these eccentric planets have full or partial orbit phase curve observations taken with the 3.6, 4.5, and 8.0 micron channels of the Spitzer IRAC instrument. These phase-curve observations of HAT-P-2b and HD 80606 b have given us important insights into atmospheric radiative timescales, planetary rotation rates and orbital evolution, and planet-star tidal interactions. Here I will overview the key results from the Spitzer observational campaigns for HAT-P-2b and HD 80606 b and look toward the future of phase curve observations of eccentric exoplanets in the era of JWST.

  6. Growth curves for Laron syndrome.

    PubMed Central

    Laron, Z; Lilos, P; Klinger, B

    1993-01-01

    Growth curves for children with Laron syndrome were constructed on the basis of repeated measurements made throughout infancy, childhood, and puberty in 24 (10 boys, 14 girls) of the 41 patients with this syndrome investigated in our clinic. Growth retardation was already noted at birth, the birth length ranging from 42 to 46 cm in the 12/20 available measurements. The postnatal growth curves deviated sharply from the normal from infancy on. Both sexes showed no clear pubertal spurt. Girls completed their growth between the age of 16-19 years to a final mean (SD) height of 119 (8.5) cm whereas the boys continued growing beyond the age of 20 years, achieving a final height of 124 (8.5) cm. At all ages the upper to lower body segment ratio was more than 2 SD above the normal mean. These growth curves constitute a model not only for primary, hereditary insulin-like growth factor-I (IGF-I) deficiency (Laron syndrome) but also for untreated secondary IGF-I deficiencies such as growth hormone gene deletion and idiopathic congenital isolated growth hormone deficiency. They should also be useful in the follow up of children with Laron syndrome treated with biosynthetic recombinant IGF-I. PMID:8333769

  7. Cold plasma decontamination of foods.

    PubMed

    Niemira, Brendan A

    2012-01-01

    Cold plasma is a novel nonthermal food processing technology that uses energetic, reactive gases to inactivate contaminating microbes on meats, poultry, fruits, and vegetables. This flexible sanitizing method uses electricity and a carrier gas, such as air, oxygen, nitrogen, or helium; antimicrobial chemical agents are not required. The primary modes of action are due to UV light and reactive chemical products of the cold plasma ionization process. A wide array of cold plasma systems that operate at atmospheric pressures or in low pressure treatment chambers are under development. Reductions of greater than 5 logs can be obtained for pathogens such as Salmonella, Escherichia coli O157:H7, Listeria monocytogenes, and Staphylococcus aureus. Effective treatment times can range from 120 s to as little as 3 s, depending on the food treated and the processing conditions. Key limitations for cold plasma are the relatively early state of technology development, the variety and complexity of the necessary equipment, and the largely unexplored impacts of cold plasma treatment on the sensory and nutritional qualities of treated foods. Also, the antimicrobial modes of action for various cold plasma systems vary depending on the type of cold plasma generated. Optimization and scale up to commercial treatment levels require a more complete understanding of these chemical processes. Nevertheless, this area of technology shows promise and is the subject of active research to enhance efficacy. PMID:22149075

  8. Lyoluminescence dosimetry in photon and fast neutron beams.

    PubMed

    Puite, K J; Crebolder, D L

    1977-11-01

    The lyoluminescence (LL) technique using mannose, a monosaccharide, is described. Dose-response curves for 60Co-gamma-rays (5 rad to 120 krad), fission neutrons, 5.3 MeV and 15 MeV neutrons (100 rad to 20 krad) have been measured. The close tissue-equivalence of mannose makes this material well suited for dosimetric use in low energy X-ray fields for radiotherapy and radiobiology. It also provides a cheap, simple and reproducible dosemeter in industrial applications of radiation (sprouting inhibition of onions and potatoes; control of insect infestation). After correction for the gamma contamination of the neutron beam the LL signal per rad in ICRU muscle tissue from the neutron irradiations has been derived and the relative effectiveness of the LL signal for fast neutrons in mannose has been calculated as 0.34 +/- 0.03 (fission neutrons), 0.63 +/- 0.07 (5.3 MeV neutrons) and 0.74 +/- 0.05 (15 MeV neutrons). These results are compared with data from other systems. It is concluded that mannose can be used as a transfer system in neutron dosimetry, if its variation in sensitivity with neutron energy is taken into account. PMID:594143

  9. Direct Measurement of Neutron-Neutron Scattering

    SciTech Connect

    Sharapov, E.I.; Furman, W.I.; Lychagin, W.I.; Muzichka, G.V.; Nekhaev, G.V.; Safronov, Yu.V.; Shvetsov, V.N.; Strelkov, A.V.; Bowman, C.D.; Crawford, B.E.; Stephenson, S.L.; Howell, C.R.; Tornow, W.; Levakov, B.G.; Litvin, V.I.; Lyzhin, A.E.; Magda, E.P.; Mitchell, G.E.

    2003-08-26

    In order to resolve long-standing discrepancies in indirect measurements of the neutron-neutron scattering length ann and contribute to solving the problem of the charge symmetry of the nuclear force, the collaboration DIANNA (Direct Investigation of ann Association) plans to measure the neutron-neutron scattering cross section {sigma}nn. The key issue of our approach is the use of the through-channel in the Russia reactor YAGUAR with a peak neutron flux of 10{sup 18} /cm2/s. The proposed experimental setup is described. Results of calculations are presented to connect {sigma}nn with the nn-collision detector count rate and the neutron flux density in the reactor channel. Measurements of the thermal neutron fields inside polyethylene converters show excellent prospects for the realization of the direct nn-experiment.

  10. Neutron reflecting supermirror structure

    DOEpatents

    Wood, James L.

    1992-01-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. One layer of each set of bilayers consist of titanium, and the second layer of each set of bilayers consist of an alloy of nickel with carbon interstitially present in the nickel alloy.

  11. Cold quark matter

    SciTech Connect

    Kurkela, Aleksi; Romatschke, Paul; Vuorinen, Aleksi

    2010-05-15

    We perform an O({alpha}{sub s}{sup 2}) perturbative calculation of the equation of state of cold but dense QCD matter with two massless and one massive quark flavor, finding that perturbation theory converges reasonably well for quark chemical potentials above 1 GeV. Using a running coupling constant and strange quark mass, and allowing for further nonperturbative effects, our results point to a narrow range where absolutely stable strange quark matter may exist. Absent stable strange quark matter, our findings suggest that quark matter in (slowly rotating) compact star cores becomes confined to hadrons only slightly above the density of atomic nuclei. Finally, we show that equations of state including quark matter lead to hybrid star masses up to M{approx}2M{sub {center_dot},} in agreement with current observations. For strange stars, we find maximal masses of M{approx}2.75M{sub {center_dot}}and conclude that confirmed observations of compact stars with M>2M{sub {center_dot}}would strongly favor the existence of stable strange quark matter.

  12. Formation of superheavy nuclei in cold fusion reactions

    SciTech Connect

    Feng Zhaoqing; Jin Genming; Li Junqing; Scheid, Werner

    2007-10-15

    Within the concept of the dinuclear system (DNS), a dynamical model is proposed for describing the formation of superheavy nuclei in complete fusion reactions by incorporating the coupling of the relative motion to the nucleon transfer process. The capture of two heavy colliding nuclei, the formation of the compound nucleus, and the de-excitation process are calculated by using an empirical coupled channel model, solving a master equation numerically and applying statistical theory, respectively. Evaporation residue excitation functions in cold fusion reactions are investigated systematically and compared with available experimental data. Maximal production cross sections of superheavy nuclei in cold fusion reactions with stable neutron-rich projectiles are obtained. Isotopic trends in the production of the superheavy elements Z=110, 112, 114, 116, 118, and 120 are analyzed systematically. Optimal combinations and the corresponding excitation energies are proposed.

  13. Neutrons in cancer therapy

    NASA Astrophysics Data System (ADS)

    Allen, Barry J.

    1995-03-01

    The role of neutrons in the management of cancer has a long history. However, it is only in recent years that neutrons are beginning to find an accepted place as an efficacious radiation modality. Fast neutron therapy is already well established for the treatment of certain cancers, and clinical trials are ongoing. Californium neutron sources are being used in brachytherapy. Boron neutron capture therapy has been well tested with thermal neutrons and epithermal neutron dose escalation studies are about to commence in the USA and Europe. Possibilities of neutron induced auger electron therapy are also discussed. With respect to chemotherapy, prompt neutron capture analysis is being used to study the dose optimization of chemotherapy in the management of breast cancer. The rationales behind these applications of neutrons in the management of cancer are examined.

  14. Plants in a cold climate.

    PubMed Central

    Smallwood, Maggie; Bowles, Dianna J

    2002-01-01

    Plants are able to survive prolonged exposure to sub-zero temperatures; this ability is enhanced by pre-exposure to low, but above-zero temperatures. This process, known as cold acclimation, is briefly reviewed from the perception of cold, through transduction of the low-temperature signal to functional analysis of cold-induced gene products. The stresses that freezing of apoplastic water imposes on plant cells is considered and what is understood about the mechanisms that plants use to combat those stresses discussed, with particular emphasis on the role of the extracellular matrix. PMID:12171647

  15. Versatile cold atom target apparatus

    SciTech Connect

    Goetz, Simone; Hoeltkemeier, Bastian; Hofmann, Christoph S.; Litsch, Dominic; DePaola, Brett D.; Weidemueller, Matthias

    2012-07-15

    We report on a compact and transportable apparatus that consists of a cold atomic target at the center of a high resolution recoil ion momentum spectrometer. Cold rubidium atoms serve as a target which can be operated in three different modes: in continuous mode, consisting of a cold atom beam generated by a two-dimensional magneto-optical trap, in normal mode in which the atoms from the beam are trapped in a three-dimensional magneto-optical trap (3D MOT), and in high density mode in which the 3D MOT is operated in dark spontaneous optical trap configuration. The targets are characterized using photoionization.

  16. Nonfreezing cold-induced injuries.

    PubMed

    Imray, C H E; Richards, P; Greeves, J; Castellani, J W

    2011-03-01

    Non-freezing cold injury (NFCI) is the Cinderella of thermal injuries and is a clinical syndrome that occurs when tissues are exposed to cold temperatures close to freezing point for sustained periods. NFCI is insidious in onset, often difficult to recognize and problematic to treat, and yet the condition accounts for significant morbidity in both military and civilians who work in cold conditions. Consequently recognition of those at risk, limiting their exposure and the appropriate and timely use of suitable protective equipment are essential steps in trying to reduce the impact of the condition. This review addresses the issues surrounding NFCI. PMID:21465916

  17. Synthesis of the heaviest nuclei in cold fusion reactions

    NASA Astrophysics Data System (ADS)

    Münzenberg, G.; Morita, K.

    2015-12-01

    Cold fusion of heavy ions paved the way to superheavy elements. It was proposed by Yu.Ts. Oganessian more than forty years ago in 1974 [1,2]. First experiments were carried out at JINR Dubna, starting with the reaction 40Ar + 208Pb → 248Fm* where several hundreds to thousand atoms were produced on one day. The large production rate indicating an enhancement of the fusion cross section, especially for the evaporation of two or three neutrons, proved the concept of cold-fusion with the use of the doubly magic nucleus 208Pb as a target. The Dubna experiments were extended to the transactinide region beyond rutherfordium. The breakthrough came with the separation in-flight. Two different approaches were used: kinematic separation with the velocity filter SHIP [3] at GSI Darmstadt, and with the gasfilled separator GARIS [4,5] at RIKEN. With SHIP the concept of cold fusion of massive nuclear systems was convincingly confirmed by the observation of the one-neutron evaporation channel in the production of 247Rf in an irradiation of 208Pb with 50Ti [6] in 1981 which opened the way to the transactinide region. At SHIP the elements bohrium (107) to copernicium (112) were discovered [7]. A new closed shell region around hassium was found. The RIKEN experiments started in 2002. They confirmed the GSI results and in addition improved the data on structure and production of elements hassium to copernicium significantly. The heaviest element ever created in a cold fusion reaction, Z = 113, was observed at GARIS [8,9].

  18. Lunar Polar Cold Traps: Spatial Distribution and Temperatures

    NASA Astrophysics Data System (ADS)

    Paige, David A.; Siegler, M.; Lawrence, D. J.

    2006-09-01

    We have developed a ray-tracing and radiosity model that can accurately calculate lunar surface and subsurface temperatures for arbitrary topography. Using available digital elevation models for the lunar north and south polar regions derived from Clementine laser altimeter and image data, as well as ground-based radar data, we have calculated lunar surface and subsurface temperatures at 2 km resolution that include full effects of indirect solar and infrared radiation due to topography. We compare our thermal model results with maps of epithermal neutron flux measured by Lunar Prospector. When we use the ray tracing and thermal model to account for the effects of temperature and topography on the neutron measurements, our results show that the majority of the moon's polar cold traps are not filled with water ice.

  19. Thermal, thermoelectric, and cathode poisoning effects in cold fusion experiments

    SciTech Connect

    Keesing, R.G.; Greenhow, R.C.; Cohler, M.D. ); McQuillan, A.J. )

    1991-03-01

    This paper reports on an unsuccessful attempt to repeat the observations by Fleischmann and Pons of cold nuclear fusion in deuterium-charged palladium; no excess heat is found, nor is any gamma or neutron activity identified. Peltier heating at the palladium/platinum junction is investigated, but no effects are seen; the possibility remains, however, that a large Peltier coefficient may arise for deuterium concentrations that render the palladium-deuterium semiconducting. Finally, the effects of poisoning the palladium with cyanide were investigated.

  20. Cold dark matter and the cosmic phase transition

    NASA Astrophysics Data System (ADS)

    Sinha, Bikash

    2016-01-01

    It is entirely plausible that during the primordial quark- hadron phase transition in the universe, microseconds after the Big Bang, supercooling takes place, accompanied by miniinflation. With µ/T ∼ 1 (µ is chemical potential), leading to a first order phase transition from quarks to hadrons; there will be relics in the form of quark nuggets, and, that they consist of Strange Quark Matter. The possibility that these SQM nuggets may well be the candidates of cold dark matter is critically examined. A cursory comparison with the neutron star is presented at the end.

  1. Lattice dynamics in copper indium diselenide by inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Derollez, P.; Fouret, R.; Laamyem, A.; Hennion, B.; Gonzalez, J.

    1999-05-01

    The phonon dispersion curves along the [100] and [001] directions of CuInSe2 have been measured by inelastic neutron scattering. The neutron measurements reveal the uncertainty of optical measurements because of the large absorption of this material. The lattice dynamics is analysed with a rigid ion model: Born-von Karman short range interactions associated with long range electrostatic forces. The calculated dispersion curves are in good agreement with the experiment. The atomic displacements associated with each vibrational mode are used to discuss the optical phonons. The obtained results provide a strong experimental basis from which we can validate the ab initio methods.

  2. Non-streaming high-efficiency perforated semiconductor neutron detectors, methods of making same and measuring wand and detector modules utilizing same

    DOEpatents

    McGregor, Douglas S.; Shultis, John K.; Rice, Blake B.; McNeil, Walter J.; Solomon, Clell J.; Patterson, Eric L.; Bellinger, Steven L.

    2010-12-21

    Non-streaming high-efficiency perforated semiconductor neutron detectors, method of making same and measuring wands and detector modules utilizing same are disclosed. The detectors have improved mechanical structure, flattened angular detector responses, and reduced leakage current. A plurality of such detectors can be assembled into imaging arrays, and can be used for neutron radiography, remote neutron sensing, cold neutron imaging, SNM monitoring, and various other applications.

  3. First Tests of 6Li Doped Glass Scintillators for Ultracold Neutron Detection

    PubMed Central

    Ban, G.; Fléchard, X.; Labalme, M.; Lefort, T.; Liénard, E.; Naviliat-Cuncic, O.; Fierlinger, P.; Kirch, K.; Bodek, K.; Geltenbort, P.

    2005-01-01

    We report the results of test measurements aimed at determining the performances of 6Li doped glass scintillators for the detection of ultra-cold neutrons. Four types of scintillators, GS1, GS3, GS10 and GS20, which differ by their 6Li concentrations, have been tested. The signal to background separation is fully acceptable. The relative detection efficiencies have been determined as a function of the neutron velocity. We find that GS10 has a higher efficiency than the others for the detection of neutrons with velocities below 7 m/s. Two pieces of scintillators have been irradiated with a high flux of cold neutrons to test the radiation hardness of the glasses. No reduction in the pulse height has been observed up to an absorbed neutron dose of 1 × 1013 cm−3. PMID:27308137

  4. Demonstration of a single-crystal reflector-filter for enhancing slow neutron beams

    NASA Astrophysics Data System (ADS)

    Muhrer, G.; Schönfeldt, T.; Iverson, E. B.; Mocko, M.; Baxter, D. V.; Hügle, Th.; Gallmeier, F. X.; Klinkby, E. B.

    2016-09-01

    The cold polycrystalline beryllium reflector-filter concept has been used to enhance the cold neutron emission of cryogenic hydrogen moderators, while suppressing the intermediate wavelength and fast neutron emission at the same time. While suppressing the fast neutron emission is often desired, the suppression of intermediate wavelength neutrons is often unwelcome. It has been hypothesized that replacing the polycrystalline reflector-filter concept with a single-crystal reflector-filter concept would overcome the suppression of intermediate wavelength neutrons and thereby extend the usability of the reflector-filter concept to shorter but still important wavelengths. In this paper we present the first experimental data on a single-crystal reflector-filter at a reflected neutron source and compare experimental results with hypothesized performance. We find that a single-crystal reflector-filter retains the long-wavelength benefit of the polycrystalline reflector-filter, without suffering the same loss of important intermediate wavelength neutrons. This finding extends the applicability of the reflector-filter concept to intermediate wavelengths, and furthermore indicates that the reflector-filter benefits arise from its interaction with fast (background) neutrons, not with intermediate wavelength neutrons of potential interest in many types of neutron scattering.

  5. Trapping cold molecular hydrogen.

    PubMed

    Seiler, Ch; Hogan, S D; Merkt, F

    2011-11-14

    Translationally cold H(2) molecules excited to non-penetrating |M(J)| = 3 Rydberg states of principal quantum number in the range 21-37 have been decelerated and trapped using time-dependent inhomogeneous electric fields. The |M(J)| = 3 Rydberg states were prepared from the X (1)Σ(+)(u)(v = 0, J = 0) ground state using a resonant three-photon excitation sequence via the B (1)Σ(+)(u)(v = 3, J = 1) and I (1)Π(g) (v = 0, J = 2) intermediate states and circularly polarized laser radiation. The circular polarization of the vacuum ultraviolet radiation used for the B ← X transition was generated by resonance-enhanced four-wave mixing in xenon and the degree of circular polarization was determined to be 96%. To analyse the deceleration and trapping experiments, the Stark effect in Rydberg states of molecular hydrogen was calculated using a matrix diagonalization procedure similar to that presented by Yamakita et al., J. Chem. Phys., 2004, 121, 1419. Particular attention was given to the prediction of zero-field positions of low-l states and of avoided crossings between Rydberg-Stark states with different values of |M(J)|. The calculated Stark maps and probabilities for diabatic traversal of the avoided crossings were used as input to Monte-Carlo particle-trajectory simulations. These simulations provide a quantitatively satisfactory description of the experimental data and demonstrate that particle loss caused by adiabatic traversals of avoided crossings between adjacent |M(J)| = 3 Stark states of H(2) is small at principal quantum numbers beyond n = 25. The main source of trap losses was found to be from collisional processes. Predissociation following the absorption of blackbody radiation is estimated to be the second most important trap-loss mechanism at room temperature, and trap loss by spontaneous emission is negligible under our experimental conditions. PMID:21818497

  6. Cold nuclear fusion

    NASA Astrophysics Data System (ADS)

    Tsyganov, E. N.; Bavizhev, M. D.; Buryakov, M. G.; Dabagov, S. B.; Golovatyuk, V. M.; Lobastov, S. P.

    2015-07-01

    If target deuterium atoms were implanted in a metal crystal in accelerator experiments, a sharp increase in the probability of DD-fusion reaction was clearly observed when compared with the reaction's theoretical value. The electronic screening potential, which for a collision of free deuterium atoms is about 27 eV, reached 300-700 eV in the case of the DD-fusion in metallic crystals. These data leads to the conclusion that a ban must exist for deuterium atoms to be in the ground state 1s in a niche filled with free conduction electrons. At the same time, the state 2p whose energy level is only 10 eV above that of state 1s is allowed in these conditions. With anisotropy of 2p, 3p or above orbitals, their spatial positions are strictly determined in the lattice coordinate system. When filling out the same potential niches with two deuterium atoms in the states 2p, 3p or higher, the nuclei of these atoms can be permanently positioned without creating much Coulomb repulsion at a very short distance from each other. In this case, the transparency of the potential barrier increases dramatically compared to the ground state 1s for these atoms. The probability of the deuterium nuclei penetrating the Coulomb barrier by zero quantum vibration of the DD-system also increases dramatically. The so-called cold nuclear DD-fusion for a number of years was registered in many experiments, however, was still rejected by mainstream science for allegedly having no consistent scientific explanation. Finally, it received the validation. Below, we outline the concept of this explanation and give the necessary calculations. This paper also considers the further destiny of the formed intermediate state of 4He∗.

  7. Experiments and nuclear measurements in search of cold fusion processes

    NASA Astrophysics Data System (ADS)

    Gottesfeld, S.; Anderson, R. E.; Baker, D. A.; Bolton, R. D.; Butterfield, K. B.; Garzon, F. H.; Goulding, C. A.; Johnson, M. W.; Leonard, E. M.; Springer, T. E.; Zawodzinski, T.

    1990-09-01

    This paper reports a collaborative effort of a team which formed at Los Alamos to investigate the announcement that “cold fusion” may be occurring in electrochemical cells using palladium cathodes and platinum anodes in a LiOD electrolyte. Four electrochemical cells were construced and operated for 3-5 weeks under various geometrical and electrical conditions. Nuclear diagnostic measurements included high and low resolution gamma-ray spectroscopy, integral neutron counting with well detectors and banks of3He tubes, and neutron spectroscopy with NE-213 scintillators. For one of the cells, the deuterium loading of the cathode was determined from resistance measurements to be D/Pd⩽ 0.8. No conclusive evidence was found for the production of neutrons or 2.223-MeV gammas above levels consistent with background. The results of the measurements of tritium levels in the cell electrolytes are also reported. Experiments to reproduce the observation of neutrons from high pressure Ti- D 2 gas experiments were also performed with negative results.

  8. Flu and Colds: In Depth

    MedlinePlus

    ... Allergy and Infectious Diseases Web site . What the Science Says About Complementary Health Approaches for the Flu ... tea Oscillococcinum Vitamin C Vitamin D What the Science Says About Complementary Health Approaches for Colds The ...

  9. Compression of contour data through exploiting curve-to-curve dependence

    NASA Technical Reports Server (NTRS)

    Yalabik, N.; Cooper, D. B.

    1975-01-01

    An approach to exploiting curve-to-curve dependencies in order to achieve high data compression is presented. One of the approaches to date of along curve compression through use of cubic spline approximation is taken and extended by investigating the additional compressibility achievable through curve-to-curve structure exploitation. One of the models under investigation is reported on.

  10. Fracture toughness curve shift method

    SciTech Connect

    Nanstad, R.K.; Sokolov, M.A.; McCabe, D.E.

    1995-10-01

    The purpose of this task is to examine the technical basis for the currently accepted methods for shifting fracture toughness curves to account for irradiation damage, and to work through national codes and standards bodies to revise those methods, if a change is warranted. During this reporting period, data from all the relevant HSSI Programs were acquired and stored in a database and evaluated. The results from that evaluation have been prepared in a draft letter report and are summarized here. A method employing Weibull statistics was applied to analyze fracture toughness properties of unirradiated and irradiated pressure vessel steels. Application of the concept of a master curve for irradiated materials was examined and used to measure shifts of fracture toughness transition curves. It was shown that the maximum likelihood approach gave good estimations of the reference temperature, T{sub o}, determined by rank method and could be used for analyzing of data sets where application of the rank method did not prove to be feasible. It was shown that, on average, the fracture toughness shifts generally exceeded the Charpy 41-J shifts; a linear least-squares fit to the data set yielded a slope of 1.15. The observed dissimilarity was analyzed by taking into account differences in effects of irradiation on Charpy impact and fracture toughness properties. Based on these comparisons, a procedure to adjust Charpy 41-J shifts for achieving a more reliable correlation with the fracture toughness shifts was evaluated. An adjustment consists of multiplying the 41-J energy level by the ratio of unirradiated to irradiated Charpy upper shelves to determine an irradiated transition temperature, and then subtracting the unirradiated transition temperature determined at 41 J. For LUS welds, however, an unirradiated level of 20 J (15 ft-1b) was used for the corresponding adjustment for irradiated material.

  11. NLINEAR - NONLINEAR CURVE FITTING PROGRAM

    NASA Technical Reports Server (NTRS)

    Everhart, J. L.

    1994-01-01

    A common method for fitting data is a least-squares fit. In the least-squares method, a user-specified fitting function is utilized in such a way as to minimize the sum of the squares of distances between the data points and the fitting curve. The Nonlinear Curve Fitting Program, NLINEAR, is an interactive curve fitting routine based on a description of the quadratic expansion of the chi-squared statistic. NLINEAR utilizes a nonlinear optimization algorithm that calculates the best statistically weighted values of the parameters of the fitting function and the chi-square that is to be minimized. The inputs to the program are the mathematical form of the fitting function and the initial values of the parameters to be estimated. This approach provides the user with statistical information such as goodness of fit and estimated values of parameters that produce the highest degree of correlation between the experimental data and the mathematical model. In the mathematical formulation of the algorithm, the Taylor expansion of chi-square is first introduced, and justification for retaining only the first term are presented. From the expansion, a set of n simultaneous linear equations are derived, which are solved by matrix algebra. To achieve convergence, the algorithm requires meaningful initial estimates for the parameters of the fitting function. NLINEAR is written in Fortran 77 for execution on a CDC Cyber 750 under NOS 2.3. It has a central memory requirement of 5K 60 bit words. Optionally, graphical output of the fitting function can be plotted. Tektronix PLOT-10 routines are required for graphics. NLINEAR was developed in 1987.

  12. Dirac's aether in curved spacetime.

    PubMed

    Oliveira; Teixeira

    2000-06-01

    Proca's equations for two types of fields in a Dirac's aether with electric conductivity sigma are solved exactly. The Proca electromagnetic fields are assumed with cylindrical symmetry. The background is a static, curved spacetime whose spatial section is homogeneous and has the topology of either the three-sphere S 3 or the projective three-space P 3. Simple relations between the range of Proca field lambda, the Universe radius R, the limit of photon rest mass mgamma and the conductivity sigma are written down. PMID:10932114

  13. Seeing effects on occultation curves.

    NASA Technical Reports Server (NTRS)

    Young, A. T.

    1971-01-01

    Evaluation of seeing effects on the light curve of a stellar occultation by the moon. Some theoretical studies of Fried (1966) and Hulett (1967) on the linear size of the downward-looking seeing disk are cited, showing that the seeing blur amounts to a few centimeters for a star in the zenith and that the linear blur must grow approximately as (sec z) to the 3/2 power. For most observations the seeing blur will not exceed 8 to 10 cm. The limitation on angular resolution imposed by this seeing effect is calculated.

  14. Observable Zitterbewegung in curved spacetimes

    NASA Astrophysics Data System (ADS)

    Kobakhidze, Archil; Manning, Adrian; Tureanu, Anca

    2016-06-01

    Zitterbewegung, as it was originally described by Schrödinger, is an unphysical, non-observable effect. We verify whether the effect can be observed in non-inertial reference frames/curved spacetimes, where the ambiguity in defining particle states results in a mixing of positive and negative frequency modes. We explicitly demonstrate that such a mixing is in fact necessary to obtain the correct classical value for a particle's velocity in a uniformly accelerated reference frame, whereas in cosmological spacetime a particle does indeed exhibit Zitterbewegung.

  15. Polymer gel dosimetry for neutron beam in the Neutron Exposure Accelerator System for Biological Effect Experiments (NASBEE)

    NASA Astrophysics Data System (ADS)

    Kawamura, H.; Sato, H.; Hamano, T.; Suda, M.; Yoshii, H.

    2015-01-01

    This study aimed to investigate whether gel dosimetry could be used to measure neutron beams. We irradiated a BANG3-type polymer gel dosimeter using neutron beams in the Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) at the National Institute of Radiological Sciences (NIRS) in Japan. First, the polymer gels were irradiated from 0 to 7.0 Gy to investigate the dose-R2 responses. Irradiated gels were evaluated using 1.5-T magnetic resonance R2 images. Second, the polymer gels were irradiated to 1.0, 3.0, and 5.0 Gy to acquire a depth-R2 response curve. The dose-R2 response curve was linear up to approximately 7 Gy, with a slope of 1.25 Gy-1·s-1. Additionally, compared with the photon- irradiated gels, the neutron-irradiated gels had lower R2 values. The acquired depth-R2 curves of the central axis from the 3.0- and 5.0-Gy neutron dose-irradiated gels exhibited an initial build-up. Although, a detailed investigation is needed, polymer gel dosimetry is effective for measuring the dose-related R2 linearity and depth-R2 relationships of neutron beams.

  16. Development of Grazing Incidence Optics for Neutron Imaging and Scattering

    NASA Technical Reports Server (NTRS)

    Gubarev, M. V.; Khaykovich, B.; Liu, D.; Ramsey, B. D.; Zavlin, V. E.; Kilaru, K.; Romaine, S.; Rosati, R. E.; Bruni, R.; Moncton, D. E.

    2012-01-01

    Because of their wave nature, thermal and cold neutrons can be reflected from smooth surfaces at grazing incidence angles, be reflected by multilayer coatings or be refracted at boundaries of different materials. The optical properties of materials are characterized by their refractive indices which are slightly less than unity for most elements and their isotopes in the case of cold and thermal neutrons as well as for x-rays. The motivation for the optics use for neutrons as well as for x-rays is to increase the signal rate and, by virtue of the optic's angular resolution, to improve the signal-to-noise level by reducing the background so the efficiency of the existing neutron sources use can be significantly enhanced. Both refractive and reflective optical techniques developed for x-ray applications can be applied to focus neutron beams. Typically neutron sources have lower brilliance compared to conventional x-ray sources so in order to increase the beam throughput the neutron optics has to be capable of capturing large solid angles. Because of this, the replicated optics techniques developed for x-ray astronomy applications would be a perfect match for neutron applications, so the electroformed nickel optics under development at the Marshall Space Flight Center (MSFC) can be applied to focus neutron beams. In this technique, nickel mirror shells are electroformed onto a figured and superpolished nickel-plated aluminum cylindrical mandrel from which they are later released by differential thermal contraction. Cylindrical mirrors with different diameters, but the same focal length, can be nested together to increase the system throughput. The throughput can be increased further with the use of the multilayer coatings deposited on the reflectivr surface of the mirror shells. While the electroformed nickel replication technique needs to be adopted for neutron focusing, the technology to coat the inside of cylindrical mirrors with neutron multilayers has to be

  17. Neutron range spectrometer

    DOEpatents

    Manglos, Stephen H.

    1989-06-06

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are collimnated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. The computer solves the following equation in the analysis: ##EQU1## where: N(x).DELTA.x=the number of neutron interactions measured between a position x and x+.DELTA.x, A.sub.i (E.sub.i).DELTA.E.sub.i =the number of incident neutrons with energy between E.sub.i and E.sub.i +.DELTA.E.sub.i, and C=C(E.sub.i)=N .sigma.(E.sub.i) where N=the number density of absorbing atoms in the position sensitive counter means and .sigma. (E.sub.i)=the average cross section of the absorbing interaction between E.sub.i and E.sub.i +.DELTA.E.sub.i.

  18. Neutronics design

    SciTech Connect

    Moir, R.

    1984-10-01

    Initial scoping calculations were done by Lee at LLNL with the TART code and ENDL data to determine the tritium breeding potential of this blanket type. A radially zoned cylindrical nucleonics model was used and is described. Results, local (100% blanket coverage) T and M vs Be zone thickness, are shown. The tritium breeding ratio, T, is seen to vary between 0.5 with no Be to 1.7 with a 60-cm Be zone. Correspondingly, energy multiplication, M, varies between 1.1 and 1.4. The effects of less than 100% blanket coverage on T is shown. For example, if the effective coverage is only 80, a 15-cm Be zone is needed for T = 1.01 compared to 10 cm at full coverage. Higher T can be achieved, of course, by increasing the Be zone thickness. Another possibly attractive use of the excess neutrons generated in Be is for higher M. While this was not the objective here it is clearly possible to include material in the blanket with significantly higher Q's than 4.8 MeV for the Li6(n,t) reaction. Also enriching the Li in Li6 can increase T.

  19. NEUTRONIC REACTOR

    DOEpatents

    Ohlinger, L.A.; Wigner, E.P.; Weinberg, A.M.; Young, G.J.

    1958-09-01

    This patent relates to neutronic reactors of the heterogeneous water cooled type, and in particular to a fuel element charging and discharging means therefor. In the embodiment illustrated the reactor contains horizontal, parallel coolant tubes in which the fuel elements are disposed. A loading cart containing a magnzine for holding a plurality of fuel elements operates along the face of the reactor at the inlet ends of the coolant tubes. The loading cart is equipped with a ram device for feeding fuel elements from the magazine through the inlot ends of the coolant tubes. Operating along the face adjacent the discharge ends of the tubes there is provided another cart means adapted to receive irradiated fuel elements as they are forced out of the discharge ends of the coolant tubes by the incoming new fuel elements. This cart is equipped with a tank coataining a coolant, such as water, into which the fuel elements fall, and a hydraulically operated plunger to hold the end of the fuel element being discharged. This inveation provides an apparatus whereby the fuel elements may be loaded into the reactor, irradiated therein, and unloaded from the reactor without stopping the fiow of the coolant and without danger to the operating personnel.

  20. Rabbit's ear in cold acclimation studied on the change in ear temperature.

    PubMed

    Harada, E; Kanno, T

    1975-03-01

    The role of the rabbit's ear in cold acclimation was studied by varying the temperature of a climatic room in the range from -10 to +30 degrees C; The skin temperature in a nonanesthetized rabbit's ear showed a characteristic response to changes in ambient temperatures; plotting the ear temperature against the ambient temperature yielded an S-shaped curve. The mean ambient temperature corresponding to the inflection point on the S-shaped curve shifted significantly from about 13 degrees C to about 8 degrees C after cold acclimated of a group fed for 7 wk at -10 degrees C. The shift of the S-shaped curve after cold acclimation may not be due to the change in the norepinephrine sensitivity of the vascular beds of the ear: the effect of norepinephrine on the pressure-flow curve in the isolated rabbit's ear was almost unchanged between the control and the cold-acclimated groups. It is proposed that the shift of the inflection point gives a qualitative index of the acclimated state of the rabbit at a particular temperature. PMID:1150550