Science.gov

Sample records for cold regions research

  1. Cold Plasma Research and Development at the USDA Eastern Regional Research Center

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cold plasma is a promising new technology that has been the subject of research effort at the Eastern Regional Research Center (ERRC) since 2004. As a commodity group, the quality and sensory requirements of fresh and fresh-cut fruits and vegetables limit the antimicrobial technologies which can be...

  2. Regional collaborative research on cold tolerance of exotic biofuel grasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cold tolerance is a selectable trait for many exotic grasses, even those of tropical or subtropical origin. We are conducting cold tolerance assessments on an array of perennial biofuel grasses at Booneville, AR. In study one (published), we reported that two sugarcane clones (US84-1028 and US84-1...

  3. Integrated research and observation experiment of hydrological process in small watershed in cold regions of Qilian Mountain

    NASA Astrophysics Data System (ADS)

    Chen, R.; Liu, J.

    2012-04-01

    Heihe Qilian Mountain station is located at QingHai Province, northeast of Tibetan Plateau, belongs to the Source Region of Heihe River Basin at latitude 38° 15¢542 N and longitude 99° 52¢ 532 E. The research objective of this station is to find the mutual mechanisms of eco-hydrological processes and to predict the runoff with high precision in cold watershed in China under global warming. Hulugou watershed, with a total area of 23.1 km2 and elevation fluctuating from 2960m to 4820m, has obvious vertical landscape and all types of typical underlying surface of cold regions. Thus, it was chosen as the researched watershed for integrated research and observation experiment of hydrological process in cold regions. In 2008, four ENVIS (Environmental Information System) were built along different altitude gradient in Hulugou experiment watershed to measure heat and water flux of the frozen soil-vegetation-atmosphere-transfer systems. Besides, many apparatus measuring snow, frozen soil, glacier, evapotranspiration, infiltration and runoff were built on various typical underlying surfaces. Through the observation net in Hulugou experiment watershed, various hydrological and meteorological data was obtained for hydrological processes research in cold regions.

  4. Cold fusion research

    SciTech Connect

    1989-11-01

    I am pleased to forward to you the Final Report of the Cold Fusion Panel. This report reviews the current status of cold fusion and includes major chapters on Calorimetry and Excess Heat, Fusion Products and Materials Characterization. In addition, the report makes a number of conclusions and recommendations, as requested by the Secretary of Energy.

  5. Cold Dust in Hot Regions

    NASA Astrophysics Data System (ADS)

    Sreenilayam, Gopika; Fich, Michel; Ade, Peter; Bintley, Dan; Chapin, Ed; Chrysostomou, Antonio; Dunlop, James S.; Gibb, Andy; Greaves, Jane S.; Halpern, Mark; Holland, Wayne S.; Ivison, Rob; Jenness, Tim; Robson, Ian; Scott, Douglas

    2014-03-01

    We mapped five massive star-forming regions with the SCUBA-2 camera on the James Clerk Maxwell Telescope. Temperature and column density maps are obtained from the SCUBA-2 450 and 850 μm images. Most of the dense clumps we find have central temperatures below 20 K, with some as cold as 8 K, suggesting that they have no internal heating due to the presence of embedded protostars. This is surprising, because at the high densities inferred from these images and at these low temperatures such clumps should be unstable, collapsing to form stars and generating internal heating. The column densities at the clump centers exceed 1023 cm-2, and the derived peak visual extinction values are from 25 to 500 mag for β = 1.5-2.5, indicating highly opaque centers. The observed cloud gas masses range from ~10 to 103 M ⊙. The outer regions of the clumps follow an r -2.36 ± 0.35 density distribution, and this power-law structure is observed outside of typically 104 AU. All these findings suggest that these clumps are high-mass starless clumps and most likely contain high-mass starless cores.

  6. Cold dust in hot regions

    SciTech Connect

    Sreenilayam, Gopika; Fich, Michel; Ade, Peter; Bintley, Dan; Chapin, Ed; Chrysostomou, Antonio; Jenness, Tim; Dunlop, James S.; Holland, Wayne S.; Ivison, Rob; Gibb, Andy; Halpern, Mark; Scott, Douglas; Greaves, Jane S.; Robson, Ian

    2014-03-01

    We mapped five massive star-forming regions with the SCUBA-2 camera on the James Clerk Maxwell Telescope. Temperature and column density maps are obtained from the SCUBA-2 450 and 850 μm images. Most of the dense clumps we find have central temperatures below 20 K, with some as cold as 8 K, suggesting that they have no internal heating due to the presence of embedded protostars. This is surprising, because at the high densities inferred from these images and at these low temperatures such clumps should be unstable, collapsing to form stars and generating internal heating. The column densities at the clump centers exceed 10{sup 23} cm{sup –2}, and the derived peak visual extinction values are from 25 to 500 mag for β = 1.5-2.5, indicating highly opaque centers. The observed cloud gas masses range from ∼10 to 10{sup 3} M {sub ☉}. The outer regions of the clumps follow an r {sup –2.36±0.35} density distribution, and this power-law structure is observed outside of typically 10{sup 4} AU. All these findings suggest that these clumps are high-mass starless clumps and most likely contain high-mass starless cores.

  7. Assessment of cold-climate environmental research priorities

    SciTech Connect

    States, J.B.

    1983-04-01

    The Environmental Protection Agency (EPA) has consistently recognized that cold regions pose unique environmental problems. This report sets forth the conceptual framework and research plans for several high priority research areas. It provides the fundamental basis for implementation of the EPA Cold-Climate Environmental Research Program. This three- to five-year program encompasses both short- and long-term research of high relevance to the EPA and to the cold regions that it serves.

  8. Application of Heat Pipes in Cold Region

    NASA Astrophysics Data System (ADS)

    Mochizuki, Masataka

    Recently, there has been put into practical use of heat pipes as space application, electronics cooling, and waste heat recovery. Especially, the low temperature heat pipe which can be used in below atmospheric temperature are also actively developed and applied in terrestrial field. These are based on utilization of natural energy in cold region. This paper is described about application of snow melting and deicing system on a road and roof, snow damage prevention system for electric pole branch wire, artificial permafrost storage system as a reverse utilization of cold atmosphere, and cryo-anchor applied in Alaska and northern Canada.

  9. COLD REGIONS AIR POLLUTION: BIBLIOGRAPHY AND SUMMARY

    EPA Science Inventory

    Through a series of workshops on cold climate environmental research priorities, conducted in 1982 by Battelle for the Environmental Protection Agency and the Department of Energy, air pollution was identified as the topic of highest priority. The current state of knowledge on ai...

  10. On the variability of cold region flooding

    NASA Astrophysics Data System (ADS)

    Matti, Bettina; Dahlke, Helen E.; Lyon, Steve W.

    2016-03-01

    Cold region hydrological systems exhibit complex interactions with both climate and the cryosphere. Improving knowledge on that complexity is essential to determine drivers of extreme events and to predict changes under altered climate conditions. This is particularly true for cold region flooding where independent shifts in both precipitation and temperature can have significant influence on high flows. This study explores changes in the magnitude and the timing of streamflow in 18 Swedish Sub-Arctic catchments over their full record periods available and a common period (1990-2013). The Mann-Kendall trend test was used to estimate changes in several hydrological signatures (e.g. annual maximum daily flow, mean summer flow, snowmelt onset). Further, trends in the flood frequency were determined by fitting an extreme value type I (Gumbel) distribution to test selected flood percentiles for stationarity using a generalized least squares regression approach. Results highlight shifts from snowmelt-dominated to rainfall-dominated flow regimes with all significant trends (at the 5% significance level) pointing toward (1) lower magnitudes in the spring flood; (2) earlier flood occurrence; (3) earlier snowmelt onset; and (4) decreasing mean summer flows. Decreasing trends in flood magnitude and mean summer flows suggest widespread permafrost thawing and are supported by increasing trends in annual minimum daily flows. Trends in selected flood percentiles showed an increase in extreme events over the full periods of record (significant for only four catchments), while trends were variable over the common period of data among the catchments. An uncertainty analysis emphasizes that the observed trends are highly sensitive to the period of record considered. As such, no clear overall regional hydrological response pattern could be determined suggesting that catchment response to regionally consistent changes in climatic drivers is strongly influenced by their physical

  11. Cold-Flow Propulsion Research Test

    NASA Technical Reports Server (NTRS)

    1997-01-01

    An engineer at the Marshall Space Flight Center (MSFC) Wind Tunnel Facility uses lasers to measure the velocity and gradient distortion across an eight inch curved pipe with joints and turning valves during a cold-flow propulsion research test; simulating the conditions found in the X-33's hydrogen feedline. Lasers are used because they are non-intrusive and do not disturb the flow like a probe would. The feedline supplies propellants to the turbo pump. The purpose of this project was to design the feedline to provide uniform flow into the turbo pump.

  12. Cold Fronts Research Programme: Progress, Future Plans, and Research Directions.

    NASA Astrophysics Data System (ADS)

    Ryan, B. F.; Wilson, K. J.; Garratt, J. R.; Smith, R. K.

    1985-09-01

    Following the analysis of data collected during Phases land II of the Cold Fronts Research Programme (CFRP) a conceptual model for the Australian summertime "cool change" has been proposed. The model provides a focus and a framework for the design of Phase III.The model is based on data gathered from a mesoscale network centered on Mount Gambier, South Australia, and includes the coastal waters to the west and relatively flat terrain to the east. The first objective of Phase III is to generalize the model so that it is applicable to the ocean waters to the far west of Mount Gambier and to the more rugged terrain farther to the east in the vicinity of Melbourne, Victoria. The remaining objectives concentrate on resolving unsatisfactory aspects of the model such as the evolution of convective lines and the relationship between the surface cold front and the upper-tropospheric cold pool and its associated jet stream.The integrated nature of the Cold Fronts Research Programme has meant that it has stimulated a wide range of research activities that extend beyond the field observations. The associated investigations include climatological, theoretical, and numerical modeling studies.

  13. Antimatter Matters: Progress in Cold Antihydrogen Research

    NASA Astrophysics Data System (ADS)

    Yamazaki, Yasunori

    2012-11-01

    The purpose of cold antihydrogen research is briefly reviewed together with the latest developments of manipulating antihydrogen atoms. Two major progresses last year were the trapping of antihydrogen atoms in a magnetic bottle and synthesis of antihydrogen atoms in a cusp trap, where a spin-polarized antihydrogen beam can be extracted as an intensified beam. The magnetic bottle consists of an octupole coil and a pair of mirror coils, which improved the magnetic field uniformity near the axis, and so the stability of trapping antiprotons and positrons. Eventually, antihydrogen atoms were trapped for more than 1000s, which is ready to be testified with high precision laser spectroscopy. The cusp trap consists of a superconducting anti-Helmholtz coil and a stack of multiple ring electrodes. This success opens a new path to make a stringent test of the CPT symmetry via high precision microwave spectroscopy of ground-state hyperfine transitions of antihydrogen atoms.

  14. Early winter cold spells over the Euro-Mediterranean region

    NASA Astrophysics Data System (ADS)

    Toreti, Andrea; Xoplaki, Elena; Luterbacher, Juerg

    2016-04-01

    In a changing climate context, temperature extremes are expected to heavily impact societies and economies. Projected changes in warm extremes have been extensively investigated, while less efforts are devoted to cold extremes. Despite the projected warming of the climate system, cold extremes could still occur and have an impact on several sectors, such as human health and agriculture. Here, we focus on cold spells that have a potential high impact, i.e. early winter cold spells occurring after a mild-to-warm autumn. Projected changes of these events over the Euro-Mediterranean region are analysed by using the latest Euro-Cordex simulations under the scenarios RCP4.5 and RCP8.5. In terms of spatial extension of cold spells, a significant reduction can be seen only at the end of the 21st century and under the RCP8.5 scenario. As for the changes in intensity in the mid-century, no consistency is found among models over large areas. At the end of the century, the north-eastern part of the domain and northern Africa are projected to be early-cold-spell free under the RCP4.5 scenario, while, almost the entire domain is projected to be early-cold-spell free under the RCP8.5 scenario.

  15. Challenges in precipitation observation and analysis over the cold/mountain regions

    NASA Astrophysics Data System (ADS)

    Yang, D.; Zhang, Y.; Ma, Y.

    2012-12-01

    Precipitation is one of the most important variables for climate, hydrology, glacier, and ecosystem research at local, regional, and global scales. It is a great challenge to compile regional precipitation datasets and to develop reliable products for various research activities over the cold regions, i.e. the high altitudes and high latitudes. The TPE program has recognized the urgent need and critical importance for accurate regional precipitation datasets and products. This presentation will show new results from regional analyses of surface and remote sensing precipitation datasets for the TPE. It will also discuss key issues in cold region precipitation research, such as compatibility of data/observations over the national borders, bias-correction methods and results, and common challenges and linkages between high-latitude and high-altitude regions.

  16. Assessment of cold-climate environmental research priorities. Appendixes A, B

    SciTech Connect

    States, J.B.

    1983-04-01

    These appendices present research plans in the areas of air pollution, water contamination/consumption, habitat modification and waste management that are relevant to the EPA's cold regions program. (ACR)

  17. Fuel cell power source for a cold region

    NASA Astrophysics Data System (ADS)

    Datta, B. K.; Velayutham, G.; Goud, A. Prasad

    operation. Based on the results of these experiments, the design of the fuel cell power source for cold region application has been finalised. The paper deals with the design criteria and design factors to be considered for the fuel cell power source for cold region application and details of tests and test results that led to the final design concept for such an application. The paper also deals with a proposed hybrid power plant taking into account the exploitation of wind energy with a fuel cell and generation of hydrogen by an electrolyser and provision of hydrogen storage.

  18. What caused the 2009 cold event in the Atlantic cold tongue region?

    NASA Astrophysics Data System (ADS)

    Burmeister, Kristin; Brandt, Peter; Lübbecke, Joke F.

    2016-04-01

    The tropical Atlantic (TA) exhibits sea surface temperature (SST) variability on seasonal to inter-annual time scales. This variability is associated with changes of atmospheric dynamics, linking it to severe flooding or droughts in South America and West Africa. This study investigates processes in the TA that might have caused the extreme cold event in the Atlantic cold tongue (ACT) region in 2009. During boreal spring, a strong negative Atlantic meridional mode event developed in the TA associated with northwesterly wind anomalies along the equator. Contrary to what would be expected from ENSO-like dynamics, these wind anomalies did not lead to a warming in the eastern equatorial Atlantic in boreal summer. Instead, from May to August 2009, an abrupt cooling took place in the ACT region resulting in the coldest August ACT SST on record. In the literature, two processes - equatorial wave reflection and meridional advection of subsurface temperatures - are discussed as potential causes of such an event. Whereas previous studies are mainly based on satellite data, reanalysis products and model output, we here use in situ measurements (data from Argo floats, PIRATA buoys, and TACE moorings, as well as CTD data of various ship cruises) in addition to satellite and reanalysis products to investigate the contribution of both processes to the strong surface cooling in the ACT region in 2009. Results based on the Argo float data confirm previous findings that equatorial wave reflection contributed to the cold event in the ACT region in 2009. They further indicate that higher baroclinic mode waves played an important role. The analysis of in situ and reanalysis temperature and velocity data does not suggest a significant contribution of meridional advection of subsurface temperatures for the onset of the 2009 cold event. The results indicate an asymmetry in the importance of meridional advection for non-ENSO-like cold and warm events with warm events more strongly affected

  19. HOT AND COLD DUST NEAR H II REGIONS

    SciTech Connect

    Sreenilayam, Gopika; Fich, Michel

    2011-07-15

    We estimate the mass, temperature, and luminosity of the hot ({>=}100 K), cool (20-40 K), and cold ({<=}20 K) dust in the environs of Galactic H II regions using Infrared Astronomical Satellite (IRAS) and Submillimeter Common User Bolometric Array (SCUBA) data. A total of 83 clouds have been examined using IRAS data. A two-component model spectral energy distribution (SED) of hot and cool dust is used to fit the IRAS data. All of the SEDs use a graphite/silicate mix of grains in an MRN distribution. A three-component model SED is fitted to combined SCUBA and IRAS data for 15 clouds near H II regions to measure the cold dust component. Surprisingly, the ratio of the bolometric luminosity of the cool dust to the hot dust appears to be the same (2.8) in virtually all objects. The cool dust has typically four-five orders of magnitude greater mass than the hot dust. However, the mass in cold dust is much greater than the mass in cool and hot dust. We also find some evidence for a relationship between the cool and cold dust masses. These results may prove useful for using IR observations for estimating gas masses in extragalactic systems with active high-mass star formation.

  20. CO2 laser cold cathode research results

    NASA Technical Reports Server (NTRS)

    Hochuli, U.

    1973-01-01

    The construction and processing of four test lasers are discussed, and the test results are assessed. Tests show that the best performance was obtained from cathodes made from internally oxidized Ag-Cu alloys or pure Cu. Due to the cold cathode technology developments, sealed-off 1 w CO2 lasers with gas volumes of only 50 cu cm were duplicated, and have performed satisfactorily for more than 6000 hours.

  1. Complex regional pain syndrome: evidence for warm and cold subtypes in a large prospective clinical sample.

    PubMed

    Bruehl, Stephen; Maihöfner, Christian; Stanton-Hicks, Michael; Perez, Roberto S G M; Vatine, Jean-Jacques; Brunner, Florian; Birklein, Frank; Schlereth, Tanja; Mackey, Sean; Mailis-Gagnon, Angela; Livshitz, Anatoly; Harden, R Norman

    2016-08-01

    Limited research suggests that there may be Warm complex regional pain syndrome (CRPS) and Cold CRPS subtypes, with inflammatory mechanisms contributing most strongly to the former. This study for the first time used an unbiased statistical pattern recognition technique to evaluate whether distinct Warm vs Cold CRPS subtypes can be discerned in the clinical population. An international, multisite study was conducted using standardized procedures to evaluate signs and symptoms in 152 patients with clinical CRPS at baseline, with 3-month follow-up evaluations in 112 of these patients. Two-step cluster analysis using automated cluster selection identified a 2-cluster solution as optimal. Results revealed a Warm CRPS patient cluster characterized by a warm, red, edematous, and sweaty extremity and a Cold CRPS patient cluster characterized by a cold, blue, and less edematous extremity. Median pain duration was significantly (P < 0.001) shorter in the Warm CRPS (4.7 months) than in the Cold CRPS subtype (20 months), with pain intensity comparable. A derived total inflammatory score was significantly (P < 0.001) elevated in the Warm CRPS group (compared with Cold CRPS) at baseline but diminished significantly (P < 0.001) over the follow-up period, whereas this score did not diminish in the Cold CRPS group (time × subtype interaction: P < 0.001). Results support the existence of a Warm CRPS subtype common in patients with acute (<6 months) CRPS and a relatively distinct Cold CRPS subtype most common in chronic CRPS. The pattern of clinical features suggests that inflammatory mechanisms contribute most prominently to the Warm CRPS subtype but that these mechanisms diminish substantially during the first year postinjury. PMID:27023422

  2. Acoustic-to-seismic coupling variations in cold regions

    NASA Astrophysics Data System (ADS)

    Albert, Donald G.

    2002-05-01

    Experiments were conducted to investigate the variations that may occur in acoustic-to-seismic coupling arising from changes in local near-surface conditions. The emphasis of the investigations was on cold regions, where many different surface conditions exist and where conditions may change over a short time period from wind, precipitation, freezing, or thawing. The measurements were conducted by recording blank pistol shots with surface geophones and microphones. Results are presented for grassland, thin and thick seasonal snow covers, polar firn, thin grounded ice, thick glacier ice, and floating river ice. The ratio of induced ground motion to acoustic pressure ranged from 0.5 to 20 micro-meters per second per Pascal. Often two arrivals were detected on the geophones, a high-speed seismic compressional wave followed by the air wave. [Work funded by the U.S. Army.

  3. Tumor Cold Ischemia - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    In a recently published manuscript in the journal of Molecular and Cellular Proteomics, researchers from the National Cancer Institutes (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) investigated the effect of cold ischemia on the proteome of fresh frozen tumors.

  4. Biomembranes research using thermal and cold neutrons.

    PubMed

    Heberle, F A; Myles, D A A; Katsaras, J

    2015-11-01

    In 1932 James Chadwick discovered the neutron using a polonium source and a beryllium target (Chadwick, 1932). In a letter to Niels Bohr dated February 24, 1932, Chadwick wrote: "whatever the radiation from Be may be, it has most remarkable properties." Where it concerns hydrogen-rich biological materials, the "most remarkable" property is the neutron's differential sensitivity for hydrogen and its isotope deuterium. Such differential sensitivity is unique to neutron scattering, which unlike X-ray scattering, arises from nuclear forces. Consequently, the coherent neutron scattering length can experience a dramatic change in magnitude and phase as a result of resonance scattering, imparting sensitivity to both light and heavy atoms, and in favorable cases to their isotopic variants. This article describes recent biomembranes research using a variety of neutron scattering techniques. PMID:26241882

  5. Biomembranes research using thermal and cold neutrons

    DOE PAGESBeta

    Heberle, Frederick A.; Myles, Dean A. A.; Katsaras, John

    2015-08-01

    In 1932 James Chadwick discovered the neutron using a polonium source and a beryllium target (Chadwick, 1932). In a letter to Niels Bohr dated February 24, 1932, Chadwick wrote: “whatever the radiation from Be may be, it has most remarkable properties.” Where it concerns hydrogen-rich biological materials, the “most remarkable” property is the neutron’s differential sensitivity for hydrogen and its isotope deuterium. Such differential sensitivity is unique to neutron scattering, which unlike X-ray scattering, arises from nuclear forces. Consequently, the coherent neutron scattering length can experience a dramatic change in magnitude and phase as a result of resonance scattering, impartingmore » sensitivity to both light and heavy atoms, and in favorable cases to their isotopic variants. Furthermore, this article describes recent biomembranes research using a variety of neutron scattering techniques.« less

  6. Biomembranes research using thermal and cold neutrons

    SciTech Connect

    Heberle, Frederick A.; Myles, Dean A. A.; Katsaras, John

    2015-08-01

    In 1932 James Chadwick discovered the neutron using a polonium source and a beryllium target (Chadwick, 1932). In a letter to Niels Bohr dated February 24, 1932, Chadwick wrote: “whatever the radiation from Be may be, it has most remarkable properties.” Where it concerns hydrogen-rich biological materials, the “most remarkable” property is the neutron’s differential sensitivity for hydrogen and its isotope deuterium. Such differential sensitivity is unique to neutron scattering, which unlike X-ray scattering, arises from nuclear forces. Consequently, the coherent neutron scattering length can experience a dramatic change in magnitude and phase as a result of resonance scattering, imparting sensitivity to both light and heavy atoms, and in favorable cases to their isotopic variants. Furthermore, this article describes recent biomembranes research using a variety of neutron scattering techniques.

  7. A new water level gauge for cold region application

    SciTech Connect

    Shih, H.H.; Moss, M.K.; Dixon, J.C.

    1995-12-31

    The traditional gas purging (bubbler) water level gauge has been widely sued because of its simplicity, ruggedness and ability to operate in areas of ice cover. However, its mechanically-based sensing and recording system and the need for density information to compute water level have caused inconveniences in field operations. This paper describes a new design that records and telemeters digital data and allows computation of water density directly from the pressure measurements. Major measurement error sources are also identified and quantified. The performance in water level measurement is comparable to the National Ocean Service`s standard air acoustic tide gauge. Deriving density from pressure measurements obviates the need for use of a separate conductivity/temperature/depth instrument, which can be prone to fouling. The uncertainty in density determination is less than 0.0005 g/cc in laboratory tests; in the field, it varies from 0.0015 g/cc under low wave conditions to 0.003 g/cc for high wave conditions. The instrument has been successfully deployed at several cold region sites including the Arctic and Antarctic regions.

  8. The NIST NBSR and Cold Neutron Research Facility

    SciTech Connect

    Rush, J.J.

    1994-12-31

    The 20 MW Neutron Beam Split-Core Reactor (NBSR) has nine radial thermal beam tubes, and a large, highly accessible (35cm) cold source serving an extensive network of eight guide tubes. In operation or under construction are twenty-five neutron beam instruments (20 for neutron scattering) and about a dozen other facilities for neutron trace analysis, dosimetry and irradiation. The 6 x 15cm cold neutron guides are coated with {sup 58}Ni, and the last three being installed this fall are coated top and bottom with supermirrors for further increases in intensity. The new semi-spherical liquid hydrogen source will be described, along with the eight scattering instruments (reflectometry, SANS and high-resolution spectroscopy) which have, or will have, an extensive use in biological research. These instruments will likely provide the best overall capability in the U.S. for the next decade for a number of applications in biomolecular structure and dynamics.

  9. Martian (and Cold Region Lunar) Soil Mechanics Considerations

    NASA Astrophysics Data System (ADS)

    Chua, Koon Meng; Johnson, Stewart W.

    1998-01-01

    The exploration of Mars has generated a lot of interest in recent years. With the completion of the Pathfinder Mission and the commencement of detailed mapping by Mars Global Surveyor, the possibility of an inhabited outpost on the planet is becoming more realistic. In spite of the upbeat mood, human exploration of Mars is still many years in the future. Additionally, the earliest return of any martian soil samples will probably not be until 2008. So why the discussion about martian soil mechanics when there are no returned soil samples on hand to examine? In view of the lack of samples, the basis of this or any discussion at this time must necessarily be one that involves conjecture, but not without the advantage of our knowledge of regolith mechanics of the Moon and soil mechanics on Earth. The objective of this presentation/discussion is fourfold: (1) Review some basic engineering-related information about Mars that may be of interest to engineers, and scientists - including characteristics of water and C02 at low temperature; (2) review and bring together principles of soil mechanics pertinent to studying and predicting how martian soil may behave, including the morphology and physical characteristics of coarse-grained and fine-grained soils (including clays), the characteristics of collapsing soils, potentials and factors that affect migration of water in unfrozen and freezing/frozen soils, and the strength and stiffness characteristics of soils at cold temperatures; (3) discuss some preliminary results of engineering experiments performed with frozen lunar soil simulants, JSC-1, in the laboratory that show the response to temperature change with and without water, effects of water on the strength and stiffness at ambient and at below freezing temperatures; and (4) discuss engineering studies that could be performed prior to human exploration and engineering research to be performed alongside future scientific missions to that planet.

  10. [Research progress in biological basis of cold and heat essence of Chinese medicine].

    PubMed

    Yin, Yu-Ting; Li, Xiao-Wan; Dong, Yang; Shi, Jian-Rong

    2012-12-01

    Cold-heat problem is one core of traditional Chinese medicine theory. This paper summarizes the experimental research related to the biological basis of cold-heat essence in cold-heat syndrome, cold-heat body constitution and cold-heat property of Chinese herbs. In view of the classical physiological and biochemical indices, gene expression, protein expression and metabolic differences, differences in cold-heat syndrome or cold-heat constitution are mainly based on neurotransmitter, thyroid function, sex hormone, cyclic nucleotide system, and energy metabolism relating to the corresponding gene and protein expression. Furthermore, this paper analyses the change of correlation indices that accompany with a dynamic development process of "constitution-syndrome-herbal intervention", implying that the research of biological basis of cold-heat essence has turned from single index to multiple indices, and from dispersion research to system research. PMID:23257124

  11. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Cold Climates

    SciTech Connect

    Building Industry Research Alliance; Building Science Consortium; Consortium for Advanced Residential Buildings; Florida Solar Energy Center; IBACOS; National Renewable Energy Laboratory

    2006-08-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in Cold Climates on a cost-neutral basis.

  12. Improved management of winter operations to limit subsurface contamination with degradable deicing chemicals in cold regions.

    PubMed

    French, Helen K; van der Zee, Sjoerd E A T M

    2014-01-01

    This paper gives an overview of management considerations required for better control of deicing chemicals in the unsaturated zone at sites with winter maintenance operations in cold regions. Degradable organic deicing chemicals are the main focus. The importance of the heterogeneity of both the infiltration process, due to frozen ground and snow melt including the contact between the melting snow cover and the soil, and unsaturated flow is emphasised. In this paper, the applicability of geophysical methods for characterising soil heterogeneity is considered, aimed at modelling and monitoring changes in contamination. To deal with heterogeneity, a stochastic modelling framework may be appropriate, emphasizing the more robust spatial and temporal moments. Examples of a combination of different field techniques for measuring subsoil properties and monitoring contaminants and integration through transport modelling are provided by the SoilCAM project and previous work. Commonly, the results of flow and contaminant fate modelling are quite detailed and complex and require post-processing before communication and advising stakeholders. The managers' perspectives with respect to monitoring strategies and challenges still unresolved have been analysed with basis in experience with research collaboration with one of the case study sites, Oslo airport, Gardermoen, Norway. Both scientific challenges of monitoring subsoil contaminants in cold regions and the effective interaction between investigators and management are illustrated. PMID:24281673

  13. Revising the history of Cold War research ethics.

    PubMed

    Moreno, Jonathan D; Lederer, Susan E

    1996-09-01

    President Clinton's charge to the Advisory Committee on Human Radiation Experiments included the identification of ethical and legal standards for evaluating government-sponsored radiation experiments conducted during the Cold War. In this paper, we review the traditional account of the history of American research ethics, and then highlight and explain the significance of a number of the Committee's historical findings as they relate to this account. These findings include both the national defense establishment's struggles with legal and insurance issues concerning human experiments, and the medical profession's perspective on human experimentation in the years following the Nuremberg Medical Trials. We conclude that the Committee's work both enriches the traditional view of the history of research ethics and opens important new areas for study. PMID:11653394

  14. INTERFROST: a benchmark of Thermo-Hydraulic codes for cold regions hydrology

    NASA Astrophysics Data System (ADS)

    Grenier, C. F.; Roux, N.; Costard, F.; Pessel, M.

    2013-12-01

    Large focus was put recently on the impact of climate changes in boreal regions due to the large temperature amplitudes expected. Large portions of these regions, corresponding to permafrost areas, are covered by water bodies (lakes, rivers) with very specific evolution and water budget. These water bodies generate taliks (unfrozen zones below) that may play a key role in the context of climate change. Recent studies and modeling exercises showed that a fully coupled 2D or 3D Thermo-Hydraulic (TH) approach is a minimal requirement to model and understand the evolution of the river and lake - soil continuum in a changing climate (e.g. Mc Kenzie et al., 2007; Bense et al 2009, Rowland et al 2011; Painter 2011; Grenier et al 2012; Painter et al 2012 and others from the 2012 special issue Hydrogeology Journal: 'Hydrogeology of cold regions'). However, 3D studies are still scarce while numerical approaches can only be validated against analytical solutions for the purely thermal equation with conduction and phase change (e.g. Neumann, Lunardini). When it comes to the coupled TH system (coupling two highly non-linear equations), the only possible approach is to compare different codes on provided test cases and/or to have controlled experiments for validation. We propose here to initiate a benchmark exercise, detail some of its planned test cases (phase I) and invite other research groups to join. This initial phase of the benchmark will consist of some test cases inspired by existing literature (e.g. Mc Kenzie et al., 2007) as well as new ones. Some experimental cases in cold room will complement the validation approach. In view of a Phase II, the project is open as well to other test cases reflecting a numerical or a process oriented interest or answering a more general concern among the cold region community. A further purpose of the benchmark exercise is to propel discussions for the optimization of codes and numerical approaches in order to develop validated and

  15. INTERFROST: a benchmark of Thermo-Hydraulic codes for cold regions hydrology

    NASA Astrophysics Data System (ADS)

    Grenier, Christophe; Roux, Nicolas; Costard, François; Pessel, Marc

    2014-05-01

    Large focus was put recently on the impact of climate changes in boreal regions due to the large temperature amplitudes expected. Large portions of these regions, corresponding to permafrost areas, are covered by water bodies (lakes, rivers) with very specific evolution and water budget. These water bodies generate taliks (unfrozen zones below) that may play a key role in the context of climate change. Recent studies and modeling exercises showed that a fully coupled 2D or 3D Thermo-Hydraulic (TH) approach is a minimal requirement to model and understand the evolution of the river and lake - soil continuum in a changing climate (e.g. Mc Kenzie et al., 2007; Bense et al 2009, Rowland et al 2011; Painter 2011; Grenier et al 2012; Painter et al 2012 and others from the 2012 special issue Hydrogeology Journal: "Hydrogeology of cold regions"). However, 3D studies are still scarce while numerical approaches can only be validated against analytical solutions for the purely thermal equation with conduction and phase change (e.g. Neumann, Lunardini). When it comes to the coupled TH system (coupling two highly non-linear equations), the only possible approach is to compare different codes on provided test cases and/or to have controlled experiments for validation. We propose here to join the INTERFROST benchmark exercise addressing these issues. We give an overview of some of its test cases (phase I) as well as provide the present stand of the exercise and invite other research groups to join. This initial phase of the benchmark consists of some test cases inspired by existing literature (e.g. Mc Kenzie et al., 2007) as well as new ones. Some experimental cases in cold room complement the validation approach. In view of a Phase II, the project is open as well to other test cases reflecting a numerical or a process oriented interest or answering a more general concern among the cold region community. A further purpose of the benchmark exercise is to propel discussions for the

  16. THE COLD SHOULDER: EMISSION MEASURE DISTRIBUTIONS OF ACTIVE REGION CORES

    SciTech Connect

    Schmelz, J. T.; Pathak, S.

    2012-09-10

    The coronal heating mechanism for active region core loops is difficult to determine because these loops are often not resolved and cannot be studied individually. Rather, we concentrate on the 'inter-moss' areas between loop footpoints. We use observations from the Hinode EUV Imaging Spectrometer and the X-Ray Telescope to calculate the emission measure distributions of eight inter-moss areas in five different active regions. The combined data sets provide both high- and low-temperature constraints and ensure complete coverage in the temperature range appropriate for active regions. For AR 11113, the emission can be modeled with heating events that occur on timescales less than the cooling time. The loops in the core regions appear to be close to equilibrium and are consistent with steady heating. The other regions studied, however, appear to be dominated by nanoflare heating. Our results are consistent with the idea that active region age is an important parameter in determining whether steady or nanoflare heating is primarily responsible for the core emission, that is, older regions are more likely to be dominated by steady heating, while younger regions show more evidence of nanoflares.

  17. Improving Snow Measurement Technology to Better Parameterise Cold Regions Hydrometeorology Models

    NASA Astrophysics Data System (ADS)

    Pomeroy, J.; Debeer, C.; Ellis, C.; Essery, R.; Helgason, W.; Kinar, N.; Link, T.; MacDonald, J.

    2008-12-01

    Marmot Creek Research Basin, in the Rocky Mountains of Alberta, Canada constitutes a long term cold regions hydrometeorological observatory with over 45 years of intensive observations in alpine and forested zones. Recently, novel combinations of measurement technology to snow have been deployed in Marmot Creek to advance the understanding of snow processes and to improve hydrometeorological models of streamflow and atmospheric variables. One advance has been the development and application of portable acoustic reflectometry to measure the density and structure of seasonal snowpacks using an audible sound wave. This has permitted the non-invasive measurement of snow water equivalent for both stationary and snow survey applications. Another advance has been the use of oblique time-lapse digital photography which is corrected for elevation and view angle from a LiDAR DEM to produce daily orthogonal snow covered area images of the alpine zone. These images are used to calculate snowcovered area and to develop and test improved snowcover melt and depletion algorithms. Deployment of 3-axis ultrasonic anemometers and fast hygrometers with collection of 10 Hz data and full correction for non-stationarity, axis rotation and other effects has shown that horizontal turbulence is often advected into mountain clearings and causes failure of traditional bulk transfer calculations of latent and sensible heat. For forest snow a hanging, weighed spruce tree and hanging, weighed sub-canopy troughs are used to capture intercepted snow load and unloaded snow fluxes respectively. These quantities provide the information needed to test detailed models of the snow interception and unloading processes. To quantify variations in sub-canopy energy for snowmelt, infrared imaging radiometers and narrow beam radiometers are used to measure thermal radiation exitance from needles, stems and trunks in forests of varying structure. These measurements are being used to develop improved models of

  18. Diviner lunar radiometer observations of cold traps in the moon's south polar region

    USGS Publications Warehouse

    Paige, D.A.; Siegler, M.A.; Zhang, J.A.; Hayne, P.O.; Foote, E.J.; Bennett, K.A.; Vasavada, A.R.; Greenhagen, B.T.; Schofield, J.T.; McCleese, D.J.; Foote, M.C.; DeJong, E.; Bills, B.G.; Hartford, W.; Murray, B.C.; Allen, C.C.; Snook, K.; Soderblom, L.A.; Calcutt, S.; Taylor, F.W.; Bowles, N.E.; Bandfield, J.L.; Elphic, R.; Ghent, R.; Glotch, T.D.; Wyatt, M.B.; Lucey, P.G.

    2010-01-01

    Diviner Lunar Radiometer Experiment surface-temperature maps reveal the existence of widespread surface and near-surface cryogenic regions that extend beyond the boundaries of persistent shadow. The Lunar Crater Observation and Sensing Satellite (LCROSS) struck one of the coldest of these regions, where subsurface temperatures are estimated to be 38 kelvin. Large areas of the lunar polar regions are currently cold enough to cold-trap water ice as well as a range of both more volatile and less volatile species. The diverse mixture of water and high-volatility compounds detected in the LCROSS ejecta plume is strong evidence for the impact delivery and cold-trapping of volatiles derived from primitive outer solar system bodies.

  19. Diviner Lunar Radiometer observations of cold traps in the Moon's south polar region.

    PubMed

    Paige, David A; Siegler, Matthew A; Zhang, Jo Ann; Hayne, Paul O; Foote, Emily J; Bennett, Kristen A; Vasavada, Ashwin R; Greenhagen, Benjamin T; Schofield, John T; McCleese, Daniel J; Foote, Marc C; DeJong, Eric; Bills, Bruce G; Hartford, Wayne; Murray, Bruce C; Allen, Carlton C; Snook, Kelly; Soderblom, Laurence A; Calcutt, Simon; Taylor, Fredric W; Bowles, Neil E; Bandfield, Joshua L; Elphic, Richard; Ghent, Rebecca; Glotch, Timothy D; Wyatt, Michael B; Lucey, Paul G

    2010-10-22

    Diviner Lunar Radiometer Experiment surface-temperature maps reveal the existence of widespread surface and near-surface cryogenic regions that extend beyond the boundaries of persistent shadow. The Lunar Crater Observation and Sensing Satellite (LCROSS) struck one of the coldest of these regions, where subsurface temperatures are estimated to be 38 kelvin. Large areas of the lunar polar regions are currently cold enough to cold-trap water ice as well as a range of both more volatile and less volatile species. The diverse mixture of water and high-volatility compounds detected in the LCROSS ejecta plume is strong evidence for the impact delivery and cold-trapping of volatiles derived from primitive outer solar system bodies. PMID:20966246

  20. Cold Stress

    MedlinePlus

    ... be at risk of cold stress. Extreme cold weather is a dangerous situation that can bring on ... the country. In regions relatively unaccustomed to winter weather, near freezing temperatures are considered factors for cold ...

  1. Optimization of Domestic-Size Renewable Energy System Designs Suitable for Cold Climate Regions

    NASA Astrophysics Data System (ADS)

    Akpan, Itoro Etim; Sasaki, Masafumi; Endoh, Noboru

    Five different kinds of domestic-size renewable energy system configurations for very cold climate regions were investigated. From detailed numerical modeling and system simulations, it was found that the consumption of fuel oil for the auxiliary boiler in residential-type households can almost be eliminated with a renewable energy system that incorporates photovoltaic panel arrays for electricity generation and two storage tanks: a well-insulated electric water storage tank that services the hot water loads, and a compact boiler/geothermal heat pump tank for room heating during very cold seasons. A reduction of Greenhouse Gas Emissions (GHG) of about 28% was achieved for this system compared to an equivalent conventional system. The near elimination of the use of fuel oil in this system makes it very promising for very cold climate regions in terms of energy savings because the running cost is not so dependent on the unstable nature of global oil prices.

  2. REGIONAL RESEARCH, METHODS, AND SUPPORT

    EPA Science Inventory

    The Human Exposure and Atmospheric Sciences Division (HEASD) has several collaborations with regional partners through the Regional Science Program (RSP) managed by ORD's Office of Science Policy (OSP). These projects resulted from common interests outlined in the Regional Appli...

  3. Glacial Isostatic Adjustment - a hot topic in cold regions

    NASA Astrophysics Data System (ADS)

    Whitehouse, Pippa

    2016-04-01

    Glacial Isostatic Adjustment (GIA) modelling tackles the classic geodynamical problem of determining the solid Earth response to surface load changes by ice and ocean water whilst at the same time solving for the gravitationally-consistent redistribution of ice sheet meltwater across the global ocean. Understanding this process is important for quantifying both present-day ice mass balance and the response of ice sheets to past and future climatic change. The two fundamental unknowns in this problem are (i) the rheology of the solid Earth, and (ii) the history of global ice sheet change. In this talk I will discuss the myriad of approaches that are used to constrain these two components. In particular, I will focus on Antarctica, where the presence of a continuously-evolving ice sheet, situated on top of one of the most rheologically-diverse regions of the planet, provides us with a challenge that can only be resolved by drawing on knowledge from across the fields of geodynamics, glaciology, geology, geodesy and seismology.

  4. Proceedings: International Symposium on Thermal Engineering and Science for Cold Regions

    NASA Astrophysics Data System (ADS)

    Lunardini, V. J.; Bowen, S. L.

    This document contains a collection of papers from the Fourth International Symposium on Thermal Engineering and Science for Cold Regions. Topics covered include: some topics on melting heat transfer problems; osmotic model of ice segregation; thermosyphon applications in cold regions; an analytic study of liquid solidification in low Peclet number forced flows inside a parallel plate channel concerning axial heat conduction; freezing within laminar fast-growing thermally developing region of a uniform heat flux cooled parallel plate duct; the morphology of ice layers in curved rectangular channels; effect of heat conductor plates on ice formation near a wall; freezing characteristics of water flow in a horizontal cooled tube with the separated region; stability of thick ice formation in pipes; experiments and analysis of pipe freezing; experimental study of freezing of water in a closed circular tube with pressure increasing; and effects of a porous medium in a flow passage with miter bend.

  5. Ionospheric research. [E region, F region, D region

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Progress is reported in the following areas: D-region theory; E and F-region; wave propagation; mass spectrometer measurements; and atmospheric reactions. Various supporting operations are included: design and construction of instrumentation; and programming.

  6. Isolated cold plasma regions: Observations and their relation to possible production mechanisms

    NASA Technical Reports Server (NTRS)

    Maynard, N. C.; Chen, A. J.

    1974-01-01

    Regions of enhanced cold plasma, isolated from the main plasmasphere along the Explorer 45 orbit on the equatorial plane, are reported using the sheath induced potentials seen by the electric field experiment. The occurrence of these regions has a strong correlation with negative enhancements of Dst, and their locations are primarily in the noon-dusk quadrant. The data support the concept that changes in large scale convection play a dominant role in the formation of these regions. Plasmatails that are predicted from enhancements of large scale convection electric fields in general define where these regions may be found. More localized processes are necessary to account for the exact configuration and structure seen in these regions and may eventually result in detachment from the main plasmasphere.

  7. The Changing Cold Regions Network: Atmospheric, Cryospheric, Ecological and Hydrological Change in the Saskatchewan and Mackenzie River Basins, Canada (Invited)

    NASA Astrophysics Data System (ADS)

    Wheater, H. S.; DeBeer, C.

    2013-12-01

    The cold interior of Northwestern Canada has one of the world's most extreme and varied climates and, as with other regions across the Arctic, is experiencing rapid environmental change. The Changing Cold Regions Network (CCRN) is a new Canadian research network devoted to addressing key challenges and globally-important issues facing the Arctic by improving the understanding of past and ongoing changes in climate, land, vegetation, and water, and predicting their future integrated responses, with a geographic focus on the Saskatchewan and Mackenzie River Basins. The network is funded for 5 years (2013-18) by the Natural Sciences and Engineering Research Council of Canada, and combines the unique expertise of 36 Canadian scientists representing 8 universities and 4 Federal government agencies, as well as 15 international researchers from the United States, China, Australia, the UK, France, and Germany. The network will also involve the World Climate Research Programme, NASA, the Canadian Space Agency, and the National Center for Atmospheric Research. CCRN will integrate existing and new experimental data with modelling and remote sensing products to understand, diagnose and predict changing land, water and climate, and their interactions and feedbacks, for Northwestern Canada's cold interior. It will use a network of world class observatories to study the detailed connections among changing climate, ecosystems and water in the permafrost regions of the Sub-arctic, the Boreal Forest, the Western Cordillera, and the Prairies. Specifically, the network will: 1. Document and evaluate observed Earth system change, including hydrological, ecological, cryospheric and atmospheric components over a range of scales from local observatories to biome and regional scales; 2. Improve understanding and diagnosis of local-scale change by developing new and integrative knowledge of Earth system processes, incorporating these processes into a suite of process-based integrative

  8. Modelling and Analysis of Hydrodynamics and Water Quality for Rivers in the Northern Cold Region of China.

    PubMed

    Tang, Gula; Zhu, Yunqiang; Wu, Guozheng; Li, Jing; Li, Zhao-Liang; Sun, Jiulin

    2016-04-01

    In this study, the Mudan River, which is the most typical river in the northern cold region of China was selected as the research object; Environmental Fluid Dynamics Code (EFDC) was adopted to construct a new two-dimensional water quality model for the urban sections of the Mudan River, and concentrations of COD(Cr) and NH₃N during ice-covered and open-water periods were simulated and analyzed. Results indicated that roughness coefficient and comprehensive pollutant decay rate were significantly different in those periods. To be specific, the roughness coefficient in the ice-covered period was larger than that of the open-water period, while the decay rate within the former period was smaller than that in the latter. In addition, according to the analysis of the simulated results, the main reasons for the decay rate reduction during the ice-covered period are temperature drop, upstream inflow decrease and ice layer cover; among them, ice sheet is the major contributor of roughness increase. These aspects were discussed in more detail in this work. The model could be generalized to hydrodynamic water quality process simulation researches on rivers in other cold regions as well. PMID:27070631

  9. Modelling and Analysis of Hydrodynamics and Water Quality for Rivers in the Northern Cold Region of China

    PubMed Central

    Tang, Gula; Zhu, Yunqiang; Wu, Guozheng; Li, Jing; Li, Zhao-Liang; Sun, Jiulin

    2016-01-01

    In this study, the Mudan River, which is the most typical river in the northern cold region of China was selected as the research object; Environmental Fluid Dynamics Code (EFDC) was adopted to construct a new two-dimensional water quality model for the urban sections of the Mudan River, and concentrations of CODCr and NH3N during ice-covered and open-water periods were simulated and analyzed. Results indicated that roughness coefficient and comprehensive pollutant decay rate were significantly different in those periods. To be specific, the roughness coefficient in the ice-covered period was larger than that of the open-water period, while the decay rate within the former period was smaller than that in the latter. In addition, according to the analysis of the simulated results, the main reasons for the decay rate reduction during the ice-covered period are temperature drop, upstream inflow decrease and ice layer cover; among them, ice sheet is the major contributor of roughness increase. These aspects were discussed in more detail in this work. The model could be generalized to hydrodynamic water quality process simulation researches on rivers in other cold regions as well. PMID:27070631

  10. Research on work roll thermal crown in cold rolling mill

    NASA Astrophysics Data System (ADS)

    Song, Lei; Shen, Mingang; Chen, Xuebo; Wang, Junsheng

    2013-05-01

    The factors which have influence on the work roll thermal crown in cold strip rolling are discussed. The heat transferring in three directions (radial axis and circumference) were considered for calculating the work roll thermal deformation. Therefore, it is a three dimensions unstable system for the work roll temperature calculation. The plastic deformation work and friction heat are calculated by the divided element and digital integration method. The simplified calculation model is built for the heat transferring along work roll. There are four zones for work roll heat transferring: roll gap zone air cooling zone emulsion zone rolls contact zone. The heat transferring between the zones is decided by the temperature difference. The inter temperature field and thermal deformation of work roll can be calculated by two-dimension finite difference method. The work roll temperature and thermal crown of actual application cold rolling mill are analyzed by the model. By the comparison between calculated values and measured values, the work roll thermal calculation model can meet the accuracy requirement of on-line control.

  11. Lawrence Livermore National Laboratory (LLNL) research on cold fusion

    NASA Astrophysics Data System (ADS)

    Thomassen, K. I.; Holzrichter, J. F.; Aldridge, F. T.; Balke, B.; Bowers, J.; Bullen, D. B.; Cable, M. D.; Caffee, M.; Campbell, R. B.; Colmenares, C.

    1989-09-01

    With the appearance of reports on Cold Fusion, scientists at the Lawrence Livermore National Laboratory (LLNL) began a series of increasingly sophisticated experiments and calculations to explain these phenomena. These experiments can be categorized as follows: (1) simple experiments to replicate the Utah results, (2) more sophisticated experiments to place lower bounds on the generation of heat and production of nuclear products, (3) a collaboration with Texas A and M University to analyze electrodes and electrolytes for fusion by-products in a cell producing 10 pct excess heat (we found no by-products), and (4) attempts to replicate the Frascati experiment that first found neutron bursts when high-pressure deuterium gas in a cylinder with Ti chips was temperature-cycled. We failed in categories (1) and (2) to replicate either the Pons/Fleischmann or the Jones phenomena. We have seen phenomena similar to the Frascati results, (4) but these low-level burst signals may not be coming from neutrons generated in the Ti chips. Summaries of our experiments are described in Section 2, as is a theoretical effort based on cosmic ray muons to describe low-level neutron production. Details of the experimental groups' work are contained in the six appendices. At LLNL, independent teams were spontaneously formed in response to the early announcements on cold fusion. This report's format follows this organization.

  12. LLNL (Lawrence Livermore National Laboratory) research on cold fusion

    SciTech Connect

    Thomassen, K I; Holzrichter, J F

    1989-09-14

    With the appearance of reports on Cold Fusion,'' scientists at the Lawrence Livermore National Laboratory (LLNL) began a series of increasingly sophisticated experiments and calculations to explain these phenomena. These experiments can be categorized as follows: (a) simple experiments to replicate the Utah results, (b) more sophisticated experiments to place lower bounds on the generation of heat and production of nuclear products, (c) a collaboration with Texas A M University to analyze electrodes and electrolytes for fusion by-products in a cell producing 10% excess heat (we found no by-products), and (d) attempts to replicate the Frascati experiment that first found neutron bursts when high-pressure deuterium gas in a cylinder with Ti chips was temperature-cycled. We failed in categories (a) and (b) to replicate either the Pons/Fleischmann or the Jones phenomena. We have seen phenomena similar to the Frascati results, (d) but these low-level burst signals may not be coming from neutrons generated in the Ti chips. Summaries of our experiments are described in Section II, as is a theoretical effort based on cosmic ray muons to describe low-level neutron production. Details of the experimental groups' work are contained in the six appendices. At LLNL, independent teams were spontaneously formed in response to the early announcements on cold fusion. This report's format follows this organization.

  13. The Net Energy Budget at the Surface Interface of the "Cold Tongue" Region

    NASA Astrophysics Data System (ADS)

    Bentamy, Abderrahim; Pinker, Rachel; Zhang, Banglin; Ma, Yingtao

    2016-04-01

    The southern tropical Pacific region also known as the "cold tongue" region is of great interest in terms of understanding the atmosphere-ocean coupling, and the observed strong seasonal cycle in sea surface temperature. The primary goal of our study is to investigate the spatial and temporal variability of air-sea interaction through the analysis of the net heat budget over the "cold tongue" region. Such analysis requires high quality heat budget estimates which are impacted by the complex and extensive low-level stratocumulus clouds in this region. The accuracy at which current satellite and numerical model methods can estimate this net heat budget is of interest. In this paper, the heat budget at the ocean-atmosphere interface in a region bound by 0o S - 30o S, 110o W - 70o W has been derived using satellite observations and compared to in situ measurements and to predictions from numerical models. The approach is based on multi-satellite sensors, buoy observations and numerical analyses. The fluxes are generated at daily and monthly time scales for a 10 year period (2002-2012) at a nominal 10 resolution (some parameters are available at higher resolution). Once the metrics on the accuracy of the satellite estimates are known, they can serve as "ground truth" for evaluating numerical models.

  14. Green Roof Research through EPA's Regional Applied Research Effort - slides

    EPA Science Inventory

    The U.S. Environmental Protection Agency’s (EPA) Regional Applied Research Effort (RARE) allows the Regions of the EPA to choose research projects to be performed in partnership with EPA’s Office of Research and Development (ORD). Over the last decade, several green roof projects...

  15. Green Roof Research through EPA's Regional Applied Research Effort

    EPA Science Inventory

    ABSTRACT The U.S. Environmental Protection Agency’s (EPA) Regional Applied Research Effort (RARE) allows the Regions of the EPA to choose research projects to be performed in partnership with EPA’s Office of Research and Development (ORD). Over the last decade, several green roo...

  16. A comprehensive evaluation of high friction overlay systems on bridge decks in cold climate regions

    NASA Astrophysics Data System (ADS)

    Kostick, Robert D.

    In recent history the Minnesota Department of Transportation has looked to improve the safety of bridge decks by installing high friction overlays (HFO). A comprehensive study researched four different proprietary HFO systems placed on fourteen bridge decks throughout Minnesota. Research was split into three separate tasks: (1) laboratory testing of aggregate properties, (2) field observations and testing, and (3) a comprehensive analysis of crash data investigated crash rates on bridges with HFO systems. Field observations and testing revealed that the use of snowplows quickly abrades HFO systems. Abrasion, among other factors, causes a reduction in surface friction values, and reduces the life of HFO systems. Furthermore, improving crash rate trends cannot be directly correlated to the installation of HFO systems. Research concludes that HFO systems should not be used in Minnesota. Other cold climate transportation agencies should conduct research emulated after this study to assess HFO systems in their jurisdiction.

  17. Changing Cold Regions: Addressing Atmospheric, Cryospheric, Ecological and Hydrological Change in the Saskatchewan and Mackenzie River Basins, Canada

    NASA Astrophysics Data System (ADS)

    Pomeroy, J. W.; Wheater, H. S.; Quinton, W. L.; Stewart, R. E.

    2013-05-01

    The cold interior region of Western Canada east of the Continental Divide from the US border to the Arctic Ocean has one of the world's most extreme and variable climates and is experiencing rapid environmental change. Climate warming and precipitation change have resulted in altered patterns of snowfall and snowmelt, conversion of snowfall to rainfall, loss of glaciated area and thawing of permafrost. Effects of these changes on terrestrial ecosystems include changing alpine and arctic treelines, extreme variability in Prairie wetland extent and storage of subsurface water in soil and groundwater, "browning" of the boreal forest and prairie aspen woodlands, forest conversion to wetlands in areas of permafrost loss, increased tundra shrub height and coverage, with associated impacts on snow accumulation and melt and ground thaw regimes. These atmospheric, cryospheric and ecological changes have produced changes to water storage and cycling with lower, earlier and more variable streamflow from the Western Cordillera, earlier and more variable Prairie streamflow, more variable agricultural soil moisture, substantially earlier and sometimes higher streamflows with greater winter baseflows in the North, and indications of changes in extreme precipitation events and resulting flooding and drought. The recently formed Changing Cold Regions Network (CCRN) will investigate the integrated response of mountain, boreal forest, prairie and sub-arctic biomes to climate change at the scales of the Saskatchewan and Mackenzie River Basins and the regional climate system. The multi-prong approach will first inventory and evaluate observable recent change in the Earth system state, fluxes and variability, and then explore the complex interrelationships of changing Earth system processes through the development of improved models and their application in diagnosis and prediction at multiple scales, from small headwater basins to large river basins, major biomes and the regional

  18. Common Cold

    MedlinePlus

    ... News & Events Volunteer NIAID > Health & Research Topics > Common Cold Skip Website Tools Website Tools Print this page ... Help people who are suffering from the common cold by volunteering for NIAID clinical studies on ClinicalTrials. ...

  19. Trends of Future Heavy Snowfall and Accumulated Freezing Indexes in Japanese Snowy Cold Region

    NASA Astrophysics Data System (ADS)

    Harada, Y.; Matsuzawa, M.

    2015-12-01

    To achieve sufficient, effective winter road maintenance, it is important that long-term snow and ice hazard mitigation plans be examined and formulated by taking into consideration the influence of climate change. In this study, we have developed a method of predicting more accurately the indexes of heavy snowfall events that occur over short periods of time and future projections of winter temperatures based on the relationship of observed data to the climate model predicted values. The indexes for heavy snowfall were the maximum 24-hour snowfall and the frequency of 10-cm or more snowfall within a maximum 6-hour period. Indexes for cold weather were the accumulated freezing index in winter and the number of days of freeze-thaw days. Subsequently, we have applied this methodology for Japanese snowy cold regions, in order to clarify the trends for near future and century-end future period changes. The results indicate that current measures to mitigate the effects of extremely heavy snowfall in inland areas of Hokkaido may require enhancement of operational procedures. In addition, the possibility of pavement and concrete damage in the colder regions is expected to increase due to the increment in the number of freeze-thaw days. Based upon the results of this study, we will identify the road management issues associated with climate change using the recent trends and predictions for the near future and century-end future climate periods.

  20. Effects of ice and floods on vegetation in streams in cold regions: implications for climate change

    PubMed Central

    Lind, Lovisa; Nilsson, Christer; Weber, Christine

    2014-01-01

    Riparian zones support some of the most dynamic and species-rich plant communities in cold regions. A common conception among plant ecologists is that flooding during the season when plants are dormant generally has little effect on the survival and production of riparian vegetation. We show that winter floods may also be of fundamental importance for the composition of riverine vegetation. We investigated the effects of ice formation on riparian and in-stream vegetation in northern Sweden using a combination of experiments and observations in 25 reaches, spanning a gradient from ice-free to ice-rich reaches. The ice-rich reaches were characterized by high production of frazil and anchor ice. In a couple of experiments, we exposed riparian vegetation to experimentally induced winter flooding, which reduced the dominant dwarf-shrub cover and led to colonization of a species-rich forb-dominated vegetation. In another experiment, natural winter floods caused by anchor-ice formation removed plant mimics both in the in-stream and in the riparian zone, further supporting the result that anchor ice maintains dynamic plant communities. With a warmer winter climate, ice-induced winter floods may first increase in frequency because of more frequent shifts between freezing and thawing during winter, but further warming and shortening of the winter might make them less common than today. If ice-induced winter floods become reduced in number because of a warming climate, an important disturbance agent for riparian and in-stream vegetation will be removed, leading to reduced species richness in streams and rivers in cold regions. Given that such regions are expected to have more plant species in the future because of immigration from the south, the distribution of species richness among habitats can be expected to show novel patterns. PMID:25505542

  1. Effects of ice and floods on vegetation in streams in cold regions: implications for climate change.

    PubMed

    Lind, Lovisa; Nilsson, Christer; Weber, Christine

    2014-11-01

    Riparian zones support some of the most dynamic and species-rich plant communities in cold regions. A common conception among plant ecologists is that flooding during the season when plants are dormant generally has little effect on the survival and production of riparian vegetation. We show that winter floods may also be of fundamental importance for the composition of riverine vegetation. We investigated the effects of ice formation on riparian and in-stream vegetation in northern Sweden using a combination of experiments and observations in 25 reaches, spanning a gradient from ice-free to ice-rich reaches. The ice-rich reaches were characterized by high production of frazil and anchor ice. In a couple of experiments, we exposed riparian vegetation to experimentally induced winter flooding, which reduced the dominant dwarf-shrub cover and led to colonization of a species-rich forb-dominated vegetation. In another experiment, natural winter floods caused by anchor-ice formation removed plant mimics both in the in-stream and in the riparian zone, further supporting the result that anchor ice maintains dynamic plant communities. With a warmer winter climate, ice-induced winter floods may first increase in frequency because of more frequent shifts between freezing and thawing during winter, but further warming and shortening of the winter might make them less common than today. If ice-induced winter floods become reduced in number because of a warming climate, an important disturbance agent for riparian and in-stream vegetation will be removed, leading to reduced species richness in streams and rivers in cold regions. Given that such regions are expected to have more plant species in the future because of immigration from the south, the distribution of species richness among habitats can be expected to show novel patterns. PMID:25505542

  2. Low modulus polymer packaged optical fiber sensor for macrocrack monitoring in ice structures of cold regions

    NASA Astrophysics Data System (ADS)

    Ren, Peng; Zhou, Zhi

    2014-09-01

    Ice structures provide load-bearing capability for energy exploitation and transportation in cold regions. Meanwhile, staff and facilities take a risk due to large amounts of distributed macrocracks in ice roads, ice bridges, and ice platforms. It is critical to monitor macrocracks for detecting and understanding the fracture process under such a harsh environment. Aiming to obtain real-time, long-term, and quantitative crack opening information for ice structures, this paper presents a feasibility study on monitoring macrocracks with a low modulus polymer packaged optical fiber sensor. Brillouin optical time-domain analysis-based sensing technology is utilized for the distributed strain measurement. According to in situ monitoring requirements, a type of silicone rubber material with appropriate mechanical properties is selected to fabricate the sensor. On this basis, a strain transfer analysis on the packaged and embedded sensor is carried out to derive the relation between the optical measurement and the increment of the crack width. The prototypes have been evaluated by demonstration tests on a tensile device and an ice road model. The experimental results show the sensor can survive in a cold environment and under the large strain resulting from the macrocrack opening. These measured data agree well with the linear calibration. The macrocracks opening in large-scale ice structures can be characterized based on the optical sensor.

  3. LLNL`s regional seismic discrimination research

    SciTech Connect

    Walter, W.R.; Mayeda, K.M.; Goldstein, P.

    1995-07-01

    The ability to negotiate and verify a Comprehensive Test Ban Treaty (CTBT) depends in part on the ability to seismically detect and discriminate between potential clandestine underground nuclear tests and other seismic sources, including earthquakes and mining activities. Regional techniques are necessary to push detection and discrimination levels down to small magnitudes, but existing methods of event discrimination are mainly empirical and show much variability from region to region. The goals of Lawrence Livermore National Laboratory`s (LLNL`s) regional discriminant research are to evaluate the most promising discriminants, improve our understanding of their physical basis and use this information to develop new and more effective discriminants that can be transported to new regions of high monitoring interest. In this report we discuss our preliminary efforts to geophysically characterize two regions, the Korean Peninsula and the Middle East-North Africa. We show that the remarkable stability of coda allows us to develop physically based, stable single station magnitude scales in new regions. We then discuss our progress to date on evaluating and improving our physical understanding and ability to model regional discriminants, focusing on the comprehensive NTS dataset. We apply this modeling ability to develop improved discriminants including slopes of P to S ratios. We find combining disparate discriminant techniques is particularly effective in identifying consistent outliers such as shallow earthquakes and mine seismicity. Finally we discuss our development and use of new coda and waveform modeling tools to investigate special events.

  4. [Spatial and temporal variations of hydrological characteristic on the landscape zone scale in alpine cold region].

    PubMed

    Yang, Yong-Gang; Hu, Jin-Fei; Xiao, Hong-Lang; Zou, Song-Bing; Yin, Zhen-Liang

    2013-10-01

    There are few studies on the hydrological characteristics on the landscape zone scale in alpine cold region at present. This paper aimed to identify the spatial and temporal variations in the origin and composition of the runoff, and to reveal the hydrological characteristics in each zone, based on the isotopic analysis of glacier, snow, frozen soil, groundwater, etc. The results showed that during the wet season, heavy precipitation and high temperature in the Mafengou River basin caused secondary evaporation which led to isotope fractionation effects. Therefore, the isotope values remained high. Temperature effects were significant. During the dry season, the temperature was low. Precipitation was in the solid state during the cold season and the evaporation was weak. Water vapor came from the evaporation of local water bodies. Therefore, less secondary evaporation and water vapor exchange occurred, leading to negative values of delta18O and deltaD. delta18O and deltaD values of precipitation and various water bodies exhibited strong seasonal variations. Precipitation exhibited altitude effects, delta18O = -0. 005 2H - 8. 951, deltaD = -0.018 5H - 34. 873. Other water bodies did not show altitude effects in the wet season and dry season, because the runoff was not only recharged by precipitation, but also influenced by the freezing and thawing process of the glacier, snow and frozen soil. The mutual transformation of precipitation, melt water, surface water and groundwater led to variations in isotopic composition. Therefore, homogenization and evaporation effect are the main control factors of isotope variations. PMID:24364295

  5. Solute transport modelling in a coupled water and heat flow system applied to cold regions hydrogeology

    NASA Astrophysics Data System (ADS)

    Frampton, Andrew; Destouni, Georgia

    2016-04-01

    In cold regions, flow in the unsaturated zone is highly dynamic with seasonal variability and changes in temperature, moisture, and heat and water fluxes, all of which affect ground freeze-thaw processes and influence transport of inert and reactive waterborne substances. In arctic permafrost environments, near-surface groundwater flow is further restricted to a relatively shallow and seasonally variable active layer, confined by perennially frozen ground below. The active layer is typically partially saturated with ice, liquid water and air, and is strongly dependent on seasonal temperature fluctuations, thermal forcing and infiltration patterns. Here there is a need for improved understanding of the mechanisms controlling subsurface solute transport in the partially saturated active layer zone. Studying solute transport in cold regions is relevant to improve the understanding of how natural and anthropogenic pollution may change as activities in arctic and sub-arctic regions increase. It is also particularly relevant for understanding how dissolved carbon is transported in coupled surface and subsurface hydrological systems under climate change, in order to better understand the permafrost-hydrological-carbon climate feedback. In this contribution subsurface solute transport under surface warming and degrading permafrost conditions is studied using a physically based model of coupled cryotic and hydrogeological flow processes combined with a particle tracking method. Changes in subsurface water flows and solute transport travel times are analysed for different modelled geological configurations during a 100-year warming period. Results show that for all simulated cases, the minimum and mean travel times increase non-linearly with warming irrespective of geological configuration and heterogeneity structure. The travel time changes are shown to depend on combined warming effects of increase in pathway length due to deepening of the active layer, reduced transport

  6. Regional seismic discrimination research at LLNL

    SciTech Connect

    Walter, W.R.; Mayeda, K.M.; Goldstein, P.; Patton, H.J.; Jarpe, S.; Glenn, L.

    1995-10-01

    The ability to verify a Comprehensive Test Ban Treaty (CTBT) depends in part on the ability to seismically detect and discriminate between potential clandestine underground nuclear tests and other seismic sources, including earthquakes and mining activities. Regional techniques are necessary to push detection and discrimination levels down to small magnitudes, but existing methods of event discrimination are mainly empirical and show much variability from region to region. The goals of Lawrence Livermore National Laboratory`s (LLNL`s) regional discriminant research are to evaluate the most promising discriminants, improve the understanding of their physical basis and use this information to develop new and more effective discriminants that can be transported to new regions of high monitoring interest. In this report the authors discuss preliminary efforts to geophysically characterize the Middle East and North Africa. They show that the remarkable stability of coda allows one to develop physically based, stable single station magnitude scales in new regions. They then discuss progress to date on evaluating and improving physical understanding and ability to model regional discriminants, focusing on the comprehensive NTS dataset. The authors apply this modeling ability to develop improved discriminants including slopes of P to S ratios. They find combining disparate discriminant techniques is particularly effective in identifying consistent outliers such as shallow earthquakes and mine seismicity. Finally they discuss development and use of new coda and waveform modeling tools to investigate special events.

  7. Lidar Temperature Measurements During the SOLVE Campaign and the Absence of PSCs from Regions of Very Cold Air

    NASA Technical Reports Server (NTRS)

    Burris, John; McGee, Thomas; Hoegy, Walt; Newman, Paul; Lait, Leslie; Twigg, Laurence; Sumnicht, Grant; Heaps, William; Hostetler, Chris; Neuber, Roland; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    NASA Goddard Space Flight Center's Airborne Raman Ozone, Temperature and Aerosol Lidar (AROTEL) measured extremely cold temperatures during all three deployments (December 1-16, 1999, January 14-29, 2000 and February 27-March 15, 2000) of the Sage III Ozone Loss and Validation Experiment (SOLVE). Temperatures were significantly below values observed in previous years with large regions regularly below 191 K and frequent temperature retrievals yielding values at or below 187 K. Temperatures well below the saturation point of type I polar stratospheric clouds (PSCs) were regularly encountered but their presence was not well correlated with PSCs observed by the NASA Langley Research Center's Aerosol Lidar co-located with AROTEL. Temperature measurements by meteorological sondes launched within areas traversed by the DC-8 showed minimum temperatures consistent in time and vertical extent with those derived from AROTEL data. Calculations to establish whether PSCs could exist at measured AROTEL temperatures and observed mixing ratios of nitric acid and water vapor showed large regions favorable to PSC formation. On several occasions measured AROTEL temperatures up to 10 K below the NAT saturation temperature were insufficient to produce PSCs even though measured values of nitric acid and water were sufficient for their formation.

  8. Effects of Land Management Practices on Cold Region Hydrological Processes in an Agricultural Prairie Basin (Invited)

    NASA Astrophysics Data System (ADS)

    Mahmood, T. H.; Pomeroy, J. W.; Wheater, H. S.; Baulch, H. M.

    2013-12-01

    Conservation tillage including zero and reduced tillage, crop rotation and upstream reservoirs are commonly implemented as beneficial management practices (BMPs) in the Canadian Prairies. However, their effects are strongly dependent on interactions with cold region hydrological processes, such as wind redistribution of snow, snowmelt, infiltration to frozen soils and evaporation, due to strong coupling between land surface characteristics and hydrology. These interactions are poorly understood and few studies have investigated them using a physically-based modeling framework. In this study, we deploy a physically-based, semi-distributed cold regions hydrological model (CRHM) to investigate the impacts of land management practices in the South Tobacco Creek Basin (STC) which forms part of the Red River Basin in southern Manitoba, Canada. The STC (~73 km2) is set in a gently rolling landscape of low relief (~200 m). Detailed field data such as crop type, tillage practices, crop residue and planting and harvesting dates are available from 1995 and are used to parameterize the model. While the majority of parameters are specified a priori, we have manually calibrated roughness and initial soil water storage parameters to compare the simulations with runoff observations at multiple scales (upstream catchment, mid-basin gauge and outlet gauge) and snow observations during 2000-2001 water year. The calibrated model based on the 2000-2001 period is further evaluated over the 2001-2011 period, which includes high inter-annual variability. The results suggest good agreement between observations and simulations and provide insight into hydrological controls. Snowmelt runoff is a major contributor to streamflow while the contribution of summer rainfall runoff is highly variable. The evaporative fraction is high during dry years (2002-2004) indicating a vertical flux controlled mass balance while the runoff fraction dominates during wet years (2005-2011), suggesting overland

  9. Objective identification research on cold vortex and mid-summer rainy periods in Northeast China

    NASA Astrophysics Data System (ADS)

    Gong, Zhi-Qiang; Feng, Tai-Chen; Fang, Yi-He

    2015-04-01

    Considering the differences between the Northeast China Cold Vortex (CV) and the Mid-Summer (MS) rainy period and their corresponding atmospheric circulations are comprehensively analyzed, and the objective identification methods of defining the annual beginning and ending dates of Northeast China CV and MS rainy periods are developed respectively. The annual beginning date of the CV (MS) rainy period is as follows. In a period from April to August, if daily regional mean precipitation ryi is larger than yearly regional mean precipitation R (or 2R) on a certain day, the station precipitation rs is larger than the station yearly mean precipitation (or 2) in at least 50% of stations in Northeast China, and this condition is satisfied in the following 2 (7) days, then this date is defined as the beginning date of the CV (MS) rainy period. While the definition of the ending date of the MS rainy period shows the opposite process to its beginning date. With this objective identification method, the multi-year average (1981-2010) beginning date of the CV rainy period is May 3, the beginning date of the MS rainy period is June 27, the ending day of the CV rainy period is defined as the day before the beginning date of the MS rainy period, and the ending date of the MS rainy period is August 29. Meanwhile, corresponding anomaly analysis at a 500-hPa geopotential height, 850-hPa wind, Omega and relative humidity fields all show that the definitions of the average beginning and ending dates of the CV and MS rainy periods have a certain circulation meaning. Furthermore, the daily evolution of the CV index, meridional and zonal wind index, etc. all show that these objectively defined beginning and ending dates of the CV and MS rainy periods have climate significance. Project supported by the National Natural Science Foundation of China (Grant Nos. 41205040 and 41375078), the State Key Development Program for Basic Research, China (Grant No. 2012CB955203), and the Special

  10. Assessing the performance of a cold region evapotranspiration landfill cover using lysimetry and electrical resistivity tomography.

    PubMed

    Schnabel, William E; Munk, Jens; Abichou, Tarek; Barnes, David; Lee, William; Pape, Barbara

    2012-01-01

    In order to test the efficacy ofa cold-region evapotranspiration (ET) landfill cover against a conventional compacted clay (CCL) landfill cover, two pilot scale covers were constructed in side-by-side basin lysimeters (20m x 10m x 2m) at a site in Anchorage, Alaska. The primary basis of comparison between the two lysimeters was the percolation of moisture from the bottom of each lysimeter. Between 30 April 2005 and 16 May 2006, 51.5 mm of water percolated from the ET lysimeter, compared to 50.6 mm for the the CCL lysimeter. This difference was not found to be significant at the 95% confidence level. As part of the project, electrical resistivity tomography (ERT) was utilized to measure and map soil moisture in ET lysimeter cross sections. The ERT-generated cross sections were found to accurately predict the onset and duration of lysimeter percolation. Moreover, ERT-generated soil moisture values demonstrated a strong linear relationship to lysimeter percolation rates (R-Squared = 0.92). Consequently, ERT is proposed as a reliable tool for assessing the function of field scale ET covers in the absence of drainage measurement devices. PMID:22574381

  11. Processing of analogues of plume fallout in cold regions of Enceladus by energetic electrons

    NASA Astrophysics Data System (ADS)

    Bergantini, A.; Pilling, S.; Nair, B. G.; Mason, N. J.; Fraser, H. J.

    2014-10-01

    Context. Enceladus, a small icy moon of Saturn, is one of the most remarkable bodies in the solar system. This moon is a geologically active object, and despite the lower temperatures on most of its surface, the geothermally heated south polar region presents geysers that spouts a plume made of water (~90%), carbon dioxide, methane, ammonia, and methanol, among other molecules. Most of the upward-moving particles do not have the velocity to escape from the gravitational influence of the moon and fall back to the surface. The molecules in the ice are continuously exposed to ionizing radiation, such as UV and X-rays photons, cosmic rays, and electrons. Over time, the ionizing radiation promotes molecular bond rupture, destroying and also forming molecules, radicals, and fragments. Aims: We analyse the processing of an ice mixture analogue to the Enceladus fallout ice in cold resurfaced areas (north pole) by 1 keV electrons. The main goal is to search for complex species that have not yet been detected in this moon, and to determine relevant physico-chemical parameters, such as destruction and formation cross-sections and the half-life of the studied molecules in the ice. Methods: The experiment consisted of the electron irradiation of an Enceladus-like ice mixture (H2O:CO2:CH4:NH3:CH3OH) in an ultra-high vacuum chamber at 20 K. The analysis was made by infrared spectrometry in the mid-infrared region (4000-800 cm-1 or 2.5-12.5 μm). Results: The absolute dissociation cross-sections of the parent molecules, the formation cross-section of daughter species, and the half-life of the parental species in a simulated Enceladus irradiation scenario were determined. Among the produced species, CO (carbon monoxide), OCN- (cyanate anion), HCONH2 (formamide), and H2CO (formaldehyde) were tentatively detected.

  12. Current status of advanced pelletized cold moderators development for IBR-2M research reactor

    NASA Astrophysics Data System (ADS)

    Kulikov, S.; Belyakov, A.; Bulavin, M.; Mukhin, K.; Shabalin, E.; Verhoglyadov, A.

    2013-03-01

    The world's first advanced pelletized cold neutron moderator is prepared to be put into operation at the IBR-2M pulsed research reactor. It provides long-wavelength neutrons to the most of neutron spectrometers at the beams of the IBR-2M reactor. Aromatic hydrocarbons are used as a material for cold moderators. It is a very attractive material because of its high radiation resistance, good moderating properties, incombustibility, etc. It is shown that the idea of beads transport by a helium flow at cryogenic temperatures is successful. The recent progress and plans for moderator development at the IBR-2M reactor as well as the experimental results of beads transport are discussed in the paper.

  13. Research aircraft observations of the mesoscale and microscale structure of a cold front over the eastern Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Bond, Nicholas A.; Shapiro, M. A.

    1991-01-01

    The structure of an oceanic cold front is described on the basis of research aircraft observations taken during the Ocean Storms field experiment. Synoptic and mesoscale analyses compare the structure of an upper-level jet-front system observed slightly downstream from the wind speed maximum to its structure in the upstream entrance region. Stratospheric potential vorticity and ozone were found within the frontal zone down to about 800 mb. Microscale analyses of the front near the sea surface were carried out for a portion of the front having the signature of a 'rope' cloud in satellite imagery. A narrow (less than 1 km) zone of upward motion (about 4 m/s) and of horizontal shear (about 0.01/s) characterized the front near the surface. Significant alongfront variability was found, including lateral displacements in the frontal zone where there were weaker updrafts.

  14. Analysis of various descent trajectories for a hypersonic-cruise, cold-wall research airplane

    NASA Technical Reports Server (NTRS)

    Lawing, P. L.

    1975-01-01

    The probable descent operating conditions for a hypersonic air-breathing research airplane were examined. Descents selected were cruise angle of attack, high dynamic pressure, high lift coefficient, turns, and descents with drag brakes. The descents were parametrically exercised and compared from the standpoint of cold-wall (367 K) aircraft heat load. The descent parameters compared were total heat load, peak heating rate, time to landing, time to end of heat pulse, and range. Trends in total heat load as a function of cruise Mach number, cruise dynamic pressure, angle-of-attack limitation, pull-up g-load, heading angle, and drag-brake size are presented.

  15. The last stand of the psychocultural cold warriors: military contract research in Vietnam.

    PubMed

    Rohde, Joy

    2011-01-01

    In 1966, the social scientists of the Simulmatics Corporation arrived in Saigon. Tasked by the Pentagon with helping to pacify South Vietnam, they conducted political and social psychological research on Viet Cong defectors, government soldiers, and Vietnamese villagers. This essay argues that Simulmatics's work captures some of the ironies of Cold War social science: its tendency to mask militarization behind the rhetoric of peaceful nation-building, its blurring of data collection and intelligence gathering, and its ambitious dedication to revealing the unseen contents of hearts and minds while remaining ignorant of the historical, cultural, and linguistic contexts in which its subjects lived. PMID:21732374

  16. Evaluation of liquid water measuring instruments in cold clouds sampled during FIRE. [First ISCCP Research Experiment

    NASA Technical Reports Server (NTRS)

    Heymsfield, Andrew J.; Miloshevich, Larry M.

    1989-01-01

    Airborne liquid water content (LWC) measurements were conducted with an icing detector and a forward-scattering spectrometer probe during 10 flights into cold clouds, as part of the First ISCCP Research Experiment (FIRE). The LWC measurements thus obtained compare favorably with those from the hot-wire probes in the range where LWC is above the detection limits of the latter; the hot-wire probes have detection thresholds about one order of magnitude higher than is possible with the icing detector and spectrometer probe. FIRE experiment data indicate that LWC should be taken into consideration in cloud studies at temperatures down to at least 35 C.

  17. Vitamin C and colds

    MedlinePlus

    Colds and vitamin C ... belief that vitamin C can cure the common cold , research about this claim is conflicting. Large doses ... vitamin C may help reduce how long a cold lasts, but they do not appear to protect ...

  18. The Changing Cold Regions Network: Improving the Understanding and Prediction of Changing Land, Water, and Climate in the Mackenzie and Saskatchewan River Basins, Canada

    NASA Astrophysics Data System (ADS)

    DeBeer, C. M.; Wheater, H. S.; Chun, K. P.; Shook, K.; Whitfield, P. H.

    2014-12-01

    Within the cold interior of western and northern Canada, rapid and widespread environmental changes are taking place, which are of serious concern for society and have a range of implications from local to regional and global scales. From a scientific standpoint there is an urgent need to understand the changes and develop improved diagnostic and predictive modelling tools to deal with the uncertainty faced in the future. The Changing Cold Regions Network (CCRN) is a research consortium of over 50 Canadian university and government scientists and international researchers aimed at addressing these issues within the geographic domain of the Mackenzie and Saskatchewan River Basins. CCRN's primary focus is to integrate existing and new experimental data with modelling and remote sensing products to understand, diagnose and predict changing land, water and climate, and their interactions and feedbacks. To support these activities, the network utilizes a suite of 14 world-class water, ecosystem, cryosphere and climate (WECC) observatories across this region that provide exceptional opportunities to observe change, investigate processes and their dynamics, and develop and test environmental models. This talk will briefly describe the CCRN thematic components and WECC observatories, and will then describe some of the observed environmental changes and their linkages across the northern and mountainous parts of the network study domain. In particular, this will include changes in permafrost, terrestrial vegetation, snowcover, glaciers, and river discharge in relation to observed climatic changes across the region. The observations draw on a wide range of literature sources and statistical analyses of federal and provincial regional monitoring network data, while more detailed observations at some of the WECC observatories help to show how these regional changes are manifested at local scales and vice versa. A coordinated special observation and analysis period across all

  19. Characterization of cold hardiness in quince: potential pear rootstock candidates for northern pear production regions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The US pear industry lacks a size-controlling, precocious rootstock for pear production. Commercially available selections of quince (Cydonia oblonga Mill.) have been reported to possess insufficient cold tolerance for northern latitude sites. Fifty in-situ clonal quince accessions with diverse orig...

  20. European cold wave during February 2012 and impacts in wine growing regions of Moldavia (Romania)

    NASA Astrophysics Data System (ADS)

    Planchon, Olivier; Quénol, Hervé; Irimia, Liviu; Patriche, Cristi

    2015-05-01

    A severe cold wave hits a large part of Europe between late January and mid-February 2012 and caused damages in the vineyard of Moldavia in Northeastern Romania. During the cold wave, the daily minimum temperature fell near -30 °C at some weather stations in Moldavia, but the hilly terrain caused strong temperature differences at small scales: up to 10 °C in a few kilometres. Three main cold spells with very low minimum temperatures were identified in association with the succession of three circulation types (according to the Hess-Brezowsky classification): Fennoscandian high anticyclonic (HFA, January 29-February 4), Central European ridge (BM, February 5-7) and northeast anticyclonic NEA (NEA, February 8-11). A multi-scale agroclimatic analysis in the vineyard of Cotnari (Moldavia, Romania) was carried out in the particular meteorological context of the early 2012 European cold wave. The results especially pointed out the local-scale (topoclimatic) effects on the high spatial variability of temperature and consequently a contrasting spatial distribution of damage on grape vine. The analysis of data recorded from temperature loggers installed in several test sites in the vineyard of Cotnari, depending on its topographical features, and of the observations of frost damage on grape vines (on vine buds, vine canes and even vine arms and trunks) pointed out a significant correlation between the topographic position and the grape vine variety.

  1. Storms or cold fronts: what is really responsible for the extreme waves regime in the Colombian Caribbean coastal region?

    NASA Astrophysics Data System (ADS)

    Otero, L. J.; Ortiz-Royero, J. C.; Ruiz-Merchan, J. K.; Higgins, A. E.; Henriquez, S. A.

    2016-02-01

    The aim of this study is to determine the contribution and importance of cold fronts and storms to extreme waves in different areas of the Colombian Caribbean in an attempt to determine the extent of the threat posed by the flood processes to which these coastal populations are exposed. Furthermore, the study wishes to establish the actions to which coastal engineering constructions should be subject. In the calculation of maritime constructions, the most important parameter is the height of the wave. For this reason, it is necessary to establish the design wave height to which a coastal engineering structure should be resistant. This wave height varies according to the return period considered. The significant height values for the areas focused on in the study were calculated in accordance with Gumbel's extreme value methodology. The methodology was evaluated using data from the reanalysis of the spectral National Oceanic and Atmospheric Administration (NOAA) WAVEWATCH III® (WW3) model for 15 points along the 1600 km of the Colombian Caribbean coastline (continental and insular) between the years 1979 and 2009. The results demonstrated that the extreme waves caused by tropical cyclones and those caused by cold fronts have different effects along the Colombian Caribbean coast. Storms and hurricanes are of greater importance in the Guajira Peninsula (Alta Guajira). In the central area (consisting of Baja Guajira, and the cities of Santa Marta, Barranquilla, and Cartagena), the strong impact of cold fronts on extreme waves is evident. However, in the southern region of the Colombian Caribbean coast (ranging from the Gulf of Morrosquillo to the Gulf of Urabá), the extreme values of wave heights are lower than in the previously mentioned regions, despite being dominated mainly by the passage of cold fronts. Extreme waves in the San Andrés and Providencia insular region present a different dynamic from

  2. A review of research in ``cold fusion`` and its impact on energy conservation

    SciTech Connect

    Hurtak, J.J.; Bailey, P.G.

    1995-12-31

    During the past six years, cold fusion enhancement through a variety of research techniques has grown at a rapid rate to the point where it now can be regarded as a major field of endeavor, a second generation heat transfer technology. Observations have been made of deuteron-deuteron (d-d) fusion at room temperature during low voltage electrolytic infusion of deuterons into metallic titanium or palladium electrodes. Neutrons with and energy of approximately 2.5 MeV were with a sensitive neutron spectrometer at a rate of 2 {times} 10{sup {minus}3} n/s, which cannot be accounted for by ambient-neutron background variations. These reactions have been known to yield an excited helium nucleus ({sup 4} He) with approximately 23.8 MeV excess energy, where d+d= {sup 4}He + energy. In most successful experiments, 1% to 50% more heat than the input of electric power into the electrolytic cells has been recorded. These experiments are being successfully repeated on an international basis. Some of these results and various theories proposed to explain this phenomena are presented. Possible applications of ``cold fusion`` technology are given, and its impact on energy conservation is discussed.

  3. Cold Atmospheric Plasma for Medicine: State of Research and Clinical Application

    NASA Astrophysics Data System (ADS)

    von Woedtke, Thomas

    2015-09-01

    Basic research in plasma medicine has made excellent progress and resulted in the fundamental insights that biological effects of cold atmospheric plasmas (CAP) are significantly caused by changes of the liquid environment of cells, and are dominated by redox-active species. First CAP sources are CE-certified as medical devices. Main focus of plasma application is on wound healing and treatment of infective skin diseases. Clinical applications in this field confirm the supportive effect of cold plasma treatment in acceleration of healing of chronic wounds above all in cases where conventional treatment fails. Cancer treatment is another actual and emerging field of CAP application. The ability of CAP to kill cancer cells by induction of apoptosis has been proved in vitro. First clinical applications of CAP in palliative care of cancer are realized. In collaboration with Hans-Robert Metelmann, University Medicine Greifswald; Helmut Uhlemann, Klinikum Altenburger Land GmbH Altenburg; Anke Schmidt and Kai Masur, Leibniz Institute for Plasma Science and Technology (INP Greifswald); Renate Schönebeck, Neoplas Tools GmbH Greifswald; and Klaus-Dieter Weltmann, Leibniz Institute for Plasma Science and Technology (INP Greifswald).

  4. Design of the cold neutron triple-axis spectrometer at the China Advanced Research Reactor

    NASA Astrophysics Data System (ADS)

    Cheng, P.; Zhang, Hongxia; Bao, W.; Schneidewind, A.; Link, P.; Grünwald, A. T. D.; Georgii, R.; Hao, L. J.; Liu, Y. T.

    2016-06-01

    The design of the first cold neutron triple-axis spectrometer at the China Advanced Research Reactor is presented. Based on the Monte Carlo simulations using neutron ray-tracing program McStas, the parameters of major neutron optics in this instrument are optimized. The neutron flux at sample position is estimated to be 5.6 ×107 n/cm2/s at neutron incident energy Ei=5 meV when the reactor operates normally at the designed 60 MW power. The performances of several neutron supermirror polarizing devices are compared and their critical parameters are optimized for this spectrometer. The polarization analysis will be realized with a flexible switch from the unpolarized experimental mode.

  5. Research Directions in Cotton Structure and Quality Research at the USDA, Southern Regional Research Center

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Cotton and Structure (CSQ) Research Unit is a core cotton research unit at the Southern Regional Research Center (SRRC). The mission of the CSQ is to develop and improve the methods for assessing quality and structural attributes of cotton fiber through all stages of production and processing. S...

  6. An overview of the latest results of cold seep research along the Hikurangi Margin, New Zealand

    NASA Astrophysics Data System (ADS)

    Greinert, J.; Faure, K.; Bialas, J.; Linke, P.; Pecher, I.; Rowden, A.

    2008-12-01

    Prior to 2006, the knowledge about cold seeps around New Zealand was based mainly on accidental recovery of seep fauna or methane-derived carbonates by fishermen and flares in echo sounders. Lewis and Marshall (1996) compiled these findings, providing the first details on 13 seep sites. Four of those are located at the Hikurangi Margin along the east coast of New Zealand's North Island. Since then, three international cruises in 2006 and 2007 enhanced our knowledge considerably about methane seepage along the Hikurangi Margin, an area which has in places very strong BSRs. Two cruises on RV TANGAROA in 2006 focused on extensive reconnaissance work as well as fauna sampling, geochemical pore water analyses and CTD casts including water sampling for methane analyses. Several new seep sites were discovered during these cruises. Using these data, very detailed investigations in four main working areas could be performed during a 10-weeks expedition with RV SONNE (SO191). All research topics currently discussed in the scientific community were addressed using state-of-the-art equipment (e.g. deep- tow side-scan and ROV-deployments). Fourteen institutes from seven countries were involved. Echosounder and sidescan surveys unmistakably revealed active seep sites by detecting bubbles in the water column and carbonate precipitation at the seafloor forming massive chemoherm complexes. These complexes are associated with typical seep fauna like tube worms, bivalve mollusk species (Calyptogena, Bathymodiolus),and bacterial mats. At the fringe of these chemoherms dark sediment patches were observed which exihibit a novel seep habitat dominated by dense beds of two new species of heterotrophic ampharetid polychaetes. Bubble release was visually observed at several sites and recorded in the backscatter of various acoustic devices. At one site (680m water depth) very strong, pulsing outbursts could be observed repeatedly with methane fluxes of 20 to 25 l/min (60 to 74 mol

  7. Integrated research on the Pen Duick cold-water coral mounds: the MiCROSYSTEMS approach

    NASA Astrophysics Data System (ADS)

    van Rooij, David; de Mol, Lies; Blamart, Dominique; Mienis, Furu; Wehrmann, Laura M.; Barbieri, Roberto; Maignien, Lois; Templer, Stefanie P.; de Haas, Henk; Henriet, Jean-Pierre

    2010-05-01

    The ESF EuroDIVERSITY MiCROSYSTEMS project aimed to turn the cold-water coral (CWC) mounds on the Pen Duick Escarpment (PDE) in the Gulf of Cadiz into a natural laboratory, exploring this highly complex biotope and to characterize its biodiversity. A common point of discussion with all other CWC mound provinces, surpassing its broad range of regional and morphological variability, concerns the driving forces regarding the initiation of these complex deep-water systems. Both oceanographic and geological processes have been proposed to play a significant role in the mound nucleation, growth and decline. During IODP Expedition 307, the importance of biogeochemical processes was already elucidated. Here, we present the preliminary results of the MD169 campaign as an integrated case study of three PDE CWC mounds: Alpha, Beta and Gamma mounds. Although cold-water corals are a common feature on the adjacent cliffs, mud volcanoes and seafloor, no actual living reef has been observed during the many ROV surveys. This multidisciplinary study aims to present a comprehensive and holistic view on the local dynamic geological and oceanographic environment. Coring data suggests (past or present) methane seepage near the Pen Duick Escarpment. Several sources and pathways are proposed, among which a stratigraphic migration through uplifted Miocene series underneath PDE. Its dominant morphology has influenced the local hydrodynamics within the course of the Pliocene, as documented by the emplacement of a sediment drift. Predominantly during post-Middle Pleistocene glacial episodes, favourable conditions were present for mound growth. An additional advantage for CWC mound nucleation near the top of PDE is offered through seepage-related carbonate crusts which might offer elevated colonization positions. Present-day seabed observations also suggested a possible important role of open coral rubble frameworks in the mound building process. These graveyards not only act as sediment trap

  8. An integrated numerical framework for water quality modelling in cold-region rivers: A case of the lower Athabasca River.

    PubMed

    Shakibaeinia, Ahmad; Kashyap, Shalini; Dibike, Yonas B; Prowse, Terry D

    2016-11-01

    There is a great deal of interest to determine the state and variations of water quality parameters in the lower Athabasca River (LAR) ecosystem, northern Alberta, Canada, due to industrial developments in the region. As a cold region river, the annual cycle of ice cover formation and breakup play a key role in water quality transformation and transportation processes. An integrated deterministic numerical modelling framework is developed and applied for long-term and detailed simulation of the state and variation (spatial and temporal) of major water quality constituents both in open-water and ice covered conditions in the lower Athabasca River (LAR). The framework is based on the a 1D and a 2D hydrodynamic and water quality models externally coupled with the 1D river ice process models to account for the cold season effects. The models are calibrated/validated using available measured data and applied for simulation of dissolved oxygen (DO) and nutrients (i.e., nitrogen and phosphorus). The results show the effect of winter ice cover on reducing the DO concentration, and a fluctuating temporal trend for DO and nutrients during summer periods with substantial differences in concentration between the main channel and flood plains. This numerical frame work can be the basis for future water quality scenario-based studies in the LAR. PMID:27376919

  9. Regional Body-Wave Discrimination Research

    SciTech Connect

    Walter, W R; Rodgers, A; Mayeda, K; Taylor, S

    2000-07-28

    Monitoring the world for potential nuclear explosions requires identifying them by their expected seismic signatures and discriminating them from earthquakes and other sources of seismic waves. Large events (approximately m{sub b} > 4.0) can often be successfully identified by the M{sub s}:m{sub b} discriminant. In order to monitor small events (approximately m{sub b}, < 4.0) short-period regional waveform data recorded within 2000 km will be needed because of poor signal-to-noise at large distances and/or long-periods. Many studies have shown that short-period (0.5-10 Hz) regional body wave phases (e.g. Pn, Pg, Sn, Lg and coda) have excellent discrimination power down to very small magnitudes when used at various nuclear tests sites. In order to broaden the application of these regional body wave techniques, we are developing size-, distance- and location-based corrections to apply to the regional data to allow wider data comparison and better discrimination performance. Building on prior work (e.g. Taylor et al. 1999, Rodgers and Walter, 2000), we are developing a revised Magnitude and Distance Amplitude Correction (MDAC) procedure. The procedure makes use of the very stable moment magnitude determinations from regional coda envelopes (see Mayeda et al, this Symposium) to provide an independent size estimate. Using a Brune (1970) style omega-squared source spectral model, we parameterize the source in terms of apparent stress and its scaling with moment. For the distance corrections we parameterize in terms of geometrical spreading, and frequency-dependent attenuation. In addition there are constants associated with velocities, densities and a phase- and frequency-dependent site effect. Using this relatively simple model we can remove much of the magnitude and distance trends from the regional data. We use a grid-search technique to explore the model space with more emphasis on removing the magnitude and distance trends than in fitting the observable spectra

  10. Research Review: City and Regional Magazines.

    ERIC Educational Resources Information Center

    Hynds, Ernest C.

    1994-01-01

    Argues that city magazines have vast unexplored potential as agenda setters, investigative reporters, and advocates of improved cities. Traces the historical development of city magazines, reviews the limited research in the field, and suggests research approaches that the magazines could use to expand their services to readers, advertisers,…

  11. Optical and microphysical properties of a cold cirrus cloud - Evidence for regions of small ice particles

    NASA Technical Reports Server (NTRS)

    Platt, C. M. R.; Spinhirne, J. D.; Hart, W. D.

    1989-01-01

    An airborne lidar and a scanning radiometer aboard an ER-2 aircraft were used to observe a cold cirrus cloud, and a Forward Scattering Spectrometer Probe (FSSP) was used to obtain simultaneous in situ microphysical observations at two altitudes within the cloud. Lidar depolarization ratio data show that the clouds were composed predominantly of ice crystals. At an altitude where the temperature was -62.7 C, the lidar and radiometer analysis gave a visible extinction to infrared absorption ratio (alpha) of 2.3, while the cloud microphysics data provided an alpha value of 3.77. The discrepancy is attributed to undersizing of particles by the FSSP. Direct and remote measurements showed better agreement for a lower layer where the temperature was -47.3 C.

  12. Translating Research from Animal Models: Does It Matter that Our Rodents are So Cold?

    EPA Science Inventory

    Does it matter that preclinical rodent models are routinely housed below their thermoneutral zone and are thereby cold-stressed? We compile evidence showing that rodents housed below their thermoneutral zone are cold-stressed, hypermetalbolic, hypertensive, sleep-deprived, obesi...

  13. REGIONAL METHODS INITIATIVE RESEARCH PROJECTS AT HEASD

    EPA Science Inventory

    EPA Regional Laboratories are currently using high volume samplers with a combination of filter and sorbent vapor trap to collect large volume samples (250 liter/min for 24 hours) of semi-volatile organic compounds (SVOCs) and non-volatile organic compounds (NVOCs). These are su...

  14. Intercomparison of Global Reanalyses and Regional Simulations of Cold Season Water Budgets in the Western United States

    SciTech Connect

    Leung, Lai R.; Qian, Yun; Han, Jongil; Roads, John O.

    2003-12-01

    Estimating water budgets of river basins in the western U.S. is a challenge because of the effects of complex terrain and lack of comprehensive observational datasets. This study aims at understanding the uncertainty in estimating water budgets of the Columbia River (CRB) and Sacramento-San Joaquin (SSJ) River basins. An intercomparison was performed based on the NCEP/NCAR Reanalysis I (NRA1), NCEP/DOE Reanalysis II (NRA2), ECMWF reanalyses (ERA), regional climate simulations produced by the Penn State/NCAR Mesoscale Model (MM5) and NCEP Regional Spectral Model (RSM), and two precipitation datasets gridded at 2.5 and 1/8 degree for seven years between 1986 and 1993 to study the effects of spatial resolutions, model configurations and parameterizations, and large-scale conditions on basin-scale water budgets. Results showed that overall, the regional simulations were superior in terms of simulating the spatial distributions of mean precipitation and precipitation anomalies compared to the global reanalyses. However, cold season precipitation was generally amplified through downscaling using the regional models such that basin mean precipitations were typically higher than the observed, while the opposite was true for the reanalyses. The amplification was the largest in the RSM simulation driven by NRA2, which showed the biggest difference between the large-scale and regional-scale basin mean precipitations. ERA and the MM5 simulation driven by ERA provided the best basin mean precipitation estimates when compared to the 1/8o observational dataset.

  15. Tree-Ring Proxies of Hydroclimate Variability in the Great Lakes Region during Cold Excursions Back to 15ka

    NASA Astrophysics Data System (ADS)

    Panyushkina, I. P.; Leavitt, S. W.

    2014-12-01

    A decade-long investigation of subfossil wood buried in glacio-fluvial, fluvial and lacustrine deposits from the U.S. Great Lakes region has resulted in a Great Lakes tree-ring network (GLTRN) comprising 47 sites dated from ca. 15 ka to 3ka. The GLTRN provides high-resolution proxies for exploration of local and regional responses to hydroclimate change at inter-annual scales during the transition from the Late Pleistocene to the Holocene. Classification of radiometric ages of GLTRN wood with relative cumulative-probability function delineates intervals and importance of hydrological changes in time and space. The overwhelming majority of wood burial events correlate with generally cold climate excursions. Forest-stand deterioration and tree mortality events at the studied sites are demonstrated to result from flooding, via river aggradation (identifying occurrence of extreme hydrologic events), rise of water table, or lake inundation. To better evaluate the special patterns of hydrological change back to 15ka, we developed four floating d13C chronologies from spruce tree rings. The length of these tree-ring proxy series that capture high-frequency moisture variability of the Great Lakes area ranges from 120 to 250 years. Our data indicate progressive wet intervals during the cold excursions precisely dated with 14C tree-ring wiggles at 13.7ka, 12.1ka, and 11.3ka that fall in the Bølling-Allerød and Pre-Boreal Interstadials, and Younger Dryas Stadial. The inter-annual and decadal variability of tree-ring moisture proxies are similar across the studied locations and time intervals. Such coherence of respective proxies may result from both local ecological stability of spruce communities or regional response to a common source of moisture at the studied time intervals and locations. This study demonstrates a potential of GLTRN proxies for modeling hydroclimatic changes at the North American continent back 15 ka.

  16. Restriction to large-scale gene flow vs. regional panmixia among cold seep Escarpia spp. (Polychaeta, Siboglinidae).

    PubMed

    Cowart, Dominique A; Huang, Chunya; Arnaud-Haond, Sophie; Carney, Susan L; Fisher, Charles R; Schaeffer, Stephen W

    2013-08-01

    The history of colonization and dispersal in fauna distributed among deep-sea chemosynthetic ecosystems remains enigmatic and poorly understood because of an inability to mark and track individuals. A combination of molecular, morphological and environmental data improves understanding of spatial and temporal scales at which panmixia, disruption of gene flow or even speciation may occur. Vestimentiferan tubeworms of the genus Escarpia are important components of deep -sea cold seep ecosystems, as they provide long-term habitat for many other taxa. Three species of Escarpia, Escarpia spicata [Gulf of California (GoC)], Escarpia laminata [Gulf of Mexico (GoM)] and Escarpia southwardae (West African Cold Seeps), have been described based on morphology, but are not discriminated through the use of mitochondrial markers (cytochrome oxidase subunit 1; large ribosomal subunit rDNA, 16S; cytochrome b). Here, we also sequenced the exon-primed intron-crossing Haemoglobin subunit B2 intron and genotyped 28 microsatellites to (i) determine the level of genetic differentiation, if any, among the three geographically separated entities and (ii) identify possible population structure at the regional scale within the GoM and West Africa. Results at the global scale support the occurrence of three genetically distinct groups. At the regional scale among eight sampling sites of E. laminata (n = 129) and among three sampling sites of E. southwardae (n = 80), no population structure was detected. These findings suggest that despite the patchiness and isolation of seep habitats, connectivity is high on regional scales. PMID:23879204

  17. Sulfur biogeochemistry of cold seeps in the Green Canyon region of the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Formolo, Michael J.; Lyons, Timothy W.

    2013-10-01

    Cold seeps in the Gulf of Mexico provide a natural laboratory to study biogeochemical cycling of sulfur, carbon, and oxygen at hydrate- and hydrocarbon-rich deep marine settings with obvious additional relevance to studies of diverse modern and ancient seeps. Of particular interest are the sulfur isotope signatures of microbial sulfate reduction coupled to anaerobic oxidation of methane and other non-methane liquid and gaseous hydrocarbons. Whereas most of the published sulfur isotope data from cold seep systems pertain to pore-water species, our study integrates both solid and dissolved sulfur: acid-volatile sulfides (SAVS), pyrite (Spy), elemental sulfur (S°), dissolved sulfate and ΣH2S. Modeled and 35SO42- reduction rates and δ13C and δ18O data for authigenic carbonates are integrated within this sulfur framework. Our results indicate extreme variability over narrow spatial and temporal scales within short distances (meters) from active seeps. High rates of microbial sulfate reduction can lead to complete consumption of the sulfate within the upper few centimeters of burial, while meters away the sulfate profile shows little depletion. Such small-scale variability must reflect the structure and temporal dynamics of hydrocarbon migration in the presence of low amounts of background organic matter. Our past work demonstrated that electron donors other than methane drive significant levels of microbial activity at these seeps, and very recent work has demonstrated that oxidation of higher chain volatile hydrocarbons can contribute to the high levels of microbial activity. These findings are consistent with our new results. Elevated concentrations of pyrite and diagenetic carbonate relative to background sediments are diagnostic of active seepage, yet the S isotopes tell more complex stories. Low levels of the transient, 'instantaneous' products of S cycling-AVS and S°-show high δ34S values that increase with depth. Most of the pyrite formation, however, seems

  18. [Healthcare research and regional programming in Umbria (Italy)].

    PubMed

    Romagnoli, Carlo; Minelli, Liliana

    2008-01-01

    This paper discusses the relationship between regional programming and national health research policy, and in particular evaluates the role that intellectual capital plays in innovation processes of knowledge-based organizations. The concepts of intellectual capital and knowledge-based organization are defined in the paper, as these are especially useful when speaking of university, healthcare systems and research and development companies. The paper also examines the various types of healthcare research (basic research, clinical trial, epidemiological research, valutative research) and the role that each type of research plays in healthcare programming at the national and regional levels. PMID:19219082

  19. Project COLD.

    ERIC Educational Resources Information Center

    Kazanjian, Wendy C.

    1982-01-01

    Describes Project COLD (Climate, Ocean, Land, Discovery) a scientific study of the Polar Regions, a collection of 35 modules used within the framework of existing subjects: oceanography, biology, geology, meterology, geography, social science. Includes a partial list of topics and one activity (geodesic dome) from a module. (Author/SK)

  20. Simplifications of Simulation on Energy Balances and Estimations of a Hybrid Renewable Energy System for Use in Cold Climate Regions

    NASA Astrophysics Data System (ADS)

    Akpan, Itoro Etim; Sasaki, Masafumi; Endoh, Noboru

    A simplified double grade meteorological data model for the simulation of the annual performance of a domestic-size renewable energy system is proposed. With the model, only two representative days (clearest and cloudiest) during each season of the year are necessary to estimate annual energy balances, carbon emissions and the running costs. The model was chosen in preference to other simplified models based on the error distributions from the results of the continuous simulations in a test period. Detailed numerical simulation studies show that the carbon emissions from the renewable energy system are about 16%of a comparable conventional system. The thermal energy produced by a solar collector during the winter season, however, is insufficient to meet all the loads so that frequent heat pump operations and the auxiliary boiler are necessary in cold climate regions.

  1. Cold Crucible Induction Melter Technology: Results of Laboratory Directed Research and Development

    SciTech Connect

    Gombert, Dirk; Richardson, John Grant

    2001-09-01

    This report provides a review of cold crucible induction melter (CCIM) technology and presents summaries of alternatives and design issues associated with major system components. The objective in this report is to provide background systems level information relating to development and application of cold crucible induction-heated melter technology for radiological waste processing. Included is a detailed description of the bench-top melter system at the V. G. Khlopin Radium Institute currently being used for characterization testing

  2. Some research concerning the cold drawing of tubes on an ultrasonically activated plug

    NASA Technical Reports Server (NTRS)

    Dragan, O.; Ciovica, D.; Novac, S.

    1974-01-01

    The results are discussed of studies of the influence of macrosounds on a metal's friction and deformation conditions at the focus of deformation, on the mechanical characteristics of cold-drawn tubes, and on the dynamic stability of the focus of deformation. In the course of these studies, experimental equipment was developed and perfected. Under the proposed conditions the cold drawing of tubes on an ultrasonically activated plug turned out to be viable and efficient.

  3. Investigating the performance and energy saving potential of Chinese commercial building benchmark models for the hot humid and severe cold climate regions

    NASA Astrophysics Data System (ADS)

    Herrmann, Lesley Anne

    2011-12-01

    The demand for energy in China is growing at an alarming rate. Buildings have become a significant component of the energy-demand mix accounting for nearly one-quarter of the country's total primary energy consumption. This study compares the building code standards for office and hotel buildings in the hot humid and severe cold climate regions of China and the United States. Benchmark office and hotel building models have been developed for Guangzhou and Harbin, China that meets China's minimum national and regional building energy codes with the integration of common design and construction practices for each region. These models are compared to the ASHRAE standard based US reference building models for Houston, Texas and Duluth, Minnesota which have similar climate conditions. The research further uses a building energy optimization tool to optimize the Chinese benchmarks using existing US products to identify the primary areas for potential energy savings. In the case of the Harbin models, an economic analysis has also been performed to determine the economic feasibility of alternative building designs. The most significant energy-saving options are then presented as recommendations for potential improvements to current China building energy codes.

  4. EXPERIENCE IN REDUCING ELECTRON CLOUD AND DYNAMIC PRESSURE RISE IN WARM AND COLD REGIONS IN RHIC.

    SciTech Connect

    ZHANG, S.Y.; AHRENS,L.; ALLESI, J.; BAI, M.; BLASKIEWICZ, M.; CAMERON, P.; CONNOLLY, R.; DREES, A.; FISCHER, W.; GULLOTTA, J.; HE, P.; HSEUH, H.C.; HUANG, H.; LEE, R.; LITVINENKO, V.; MACKAY, W.W.; MONTAG, C.; NICOLETTI, A.; OERTER, B.; PILAT, F.; PTITSYN, V.; ROSER, T.; SATOGATA, T.; SMART, L.; SYNDSTRUP, L.; TEPIKIAN, S.; THIEBERGER, P.; TRBOJEVIC, D.; WEI, J.; ZENO, K.

    2006-06-23

    The large scale application of non-evaporable getter coating in RHIC has been effective in reducing the electron cloud. Since beams with higher intensity and smaller bunch spacing became possible in operation, the emittance growth is of concern. Study results are reported together with experiences of machine improvements: saturated NEG coatings, anti-grazing ridges in warm sections, and the pre-pumping in cryogenic regions.

  5. On improving cold region hydrological processes in the Canadian Land Surface Scheme

    NASA Astrophysics Data System (ADS)

    Ganji, Arman; Sushama, Laxmi; Verseghy, Diana; Harvey, Richard

    2015-09-01

    Regional and global climate model simulated streamflows for high-latitude regions show systematic biases, particularly in the timing and magnitude of spring peak flows. Though these biases could be related to the snow water equivalent and spring temperature biases in models, a good part of these biases is due to the unaccounted effects of non-uniform infiltration capacity of the frozen ground and other related processes. In this paper, the treatment of frozen water in the Canadian Land Surface Scheme (CLASS), which is used in the Canadian regional and global climate models, is modified to include fractional permeable area, supercooled liquid water and a new formulation for hydraulic conductivity. The impact of these modifications on the regional hydrology, particularly streamflow, is assessed by comparing three simulations performed with the original and two modified versions of CLASS, driven by atmospheric forcing data from the European Centre for Medium-Range Weather Forecast (ECMWF) reanalysis (ERA-Interim) for the 1990-2001 period over a northeast Canadian domain. The two modified versions of CLASS differ in the soil hydraulic conductivity and matric potential formulations, with one version being based on formulations from a previous study and the other one is newly proposed. Results suggest statistically significant decreases in infiltration and therefore soil moisture during the snowmelt season for the simulation with the new hydraulic conductivity and matric potential formulations and fractional permeable area concept compared to the original version of CLASS, which is also reflected in the increased spring surface runoff and streamflows in this simulation with modified CLASS over most of the study domain. The simulated spring peaks and their timing in this simulation are also in better agreement to those observed. This study thus demonstrates the importance of treatment of frozen water for realistic simulation of streamflows.

  6. On the orbital motion of cold clouds in broad-line regions

    NASA Astrophysics Data System (ADS)

    Shadmehri, Mohsen

    2015-08-01

    We study the orbit of a pressure-confined cloud in the broad-line region (BLR) of active galactic nuclei when the combined effects of the central gravity and anisotropic radiation pressure and the drag force are considered. The physical properties of the intercloud gas, such as its pressure and dynamic viscosity, are defined as power-law functions of the radial distance. For a drag force proportional to the relative velocity of a cloud and the background gas, a detailed analysis of the orbits is performed for different values of the input parameters. We also present analytical solutions for when the intercloud pressure is uniform and the viscosity is proportional to the inverse square of the radial distance. Our analytical and numerical solutions demonstrate decay of the orbits due to the drag force, so that a cloud will eventually fall on to the central region after the so-called time-of-flight. We found that the time-of-flight of a BLR cloud is proportional to the inverse of the dimensionless drag coefficient. If the time-of-flight becomes shorter than the lifetime of the whole system, then mechanisms for continually forming BLR clouds are needed.

  7. The Application Research of Modern Intelligent Cold Chain Distribution System Based on Internet of Things Technology

    NASA Astrophysics Data System (ADS)

    Fan, Dehui; Gao, Shan

    This paper implemented an intelligent cold chain distribution system based on the technology of Internet of things, and took the protoplasmic beer logistics transport system as example. It realized the remote real-time monitoring material status, recorded the distribution information, dynamically adjusted the distribution tasks and other functions. At the same time, the system combined the Internet of things technology with weighted filtering algorithm, realized the real-time query of condition curve, emergency alarming, distribution data retrieval, intelligent distribution task arrangement, etc. According to the actual test, it can realize the optimization of inventory structure, and improve the efficiency of cold chain distribution.

  8. The Impact of the Atlantic Cold Tongue on West African Monsoon Onset in Regional Model Simulations for 1998-2002

    NASA Technical Reports Server (NTRS)

    Druyan, Leonard M.; Fulakeza, Matthew B.

    2014-01-01

    The Atlantic cold tongue (ACT) develops during spring and early summer near the Equator in the Eastern Atlantic Ocean and Gulf of Guinea. The hypothesis that the ACT accelerates the timing of West African monsoon (WAM) onset is tested by comparing two regional climate model (RM3) simulation ensembles. Observed sea surface temperatures (SST) that include the ACT are used to force a control ensemble. An idealized, warm SST perturbation is designed to represent lower boundary forcing without the ACT for the experiment ensemble. Summer simulations forced by observed SST and reanalysis boundary conditions for each of five consecutive years are compared to five parallel runs forced by SST with the warm perturbation. The article summarizes the sequence of events leading to the onset of the WAM in the Sahel region. The representation of WAM onset in RM3 simulations is examined and compared to Tropical Rainfall Measuring Mission (TRMM), Global Precipitation Climatology Project (GPCP) and reanalysis data. The study evaluates the sensitivity of WAM onset indicators to the presence of the ACT by analysing the differences between the two simulation ensembles. Results show that the timing of major rainfall events and therefore theWAM onset in the Sahel are not sensitive to the presence of the ACT. However, the warm SST perturbation does increase downstream rainfall rates over West Africa as a consequence of enhanced specific humidity and enhanced northward moisture flux in the lower troposphere.

  9. Characteristics of organic soil in black spruce forests: Implications for the application of land surface and ecosystem models in cold regions

    USGS Publications Warehouse

    Yi, S.; Manies, K.; Harden, J.; McGuire, A.D.

    2009-01-01

    Soil organic layers (OL) play an important role in landatmosphere exchanges of water, energy and carbon in cold environments. The proper implementation of OL in land surface and ecosystem models is important for predicting dynamic responses to climate warming. Based on the analysis of OL samples of black spruce (Picea mariana), we recommend that implementation of OL for cold regions modeling: (1) use three general organic horizon types (live, fibrous, and amorphous) to represent vertical soil heterogeneity; (2) implement dynamics of OL over the course of disturbance, as there are significant differences of OL thickness between young and mature stands; and (3) use two broad drainage classes to characterize spatial heterogeneity, as there are significant differences in OL thickness between dry and wet sites. Implementation of these suggestions into models has the potential to substantially improve how OL dynamics influence variability in surface temperature and soil moisture in cold regions. Copyright 2009 by the American Geophys.ical Union.

  10. Metal flowing of involute spline cold roll-beating forming

    NASA Astrophysics Data System (ADS)

    Cui, Fengkui; Wang, Xiaoqiang; Zhang, Fengshou; Xu, Hongyu; Quan, Jianhui; Li, Yan

    2013-09-01

    The present research on involute spline cold roll-beating forming is mainly about the principles and motion relations of cold roll-beating, the theory of roller design, and the stress and strain field analysis of cold roll-beating, etc. However, the research on law of metal flow in the forming process of involute spline cold roll-beating is rare. According to the principle of involute spline cold roll-beating, the contact model between the rollers and the spline shaft blank in the process of cold roll-beating forming is established, and the theoretical analysis of metal flow in the cold roll-beating deforming region is proceeded. A finite element model of the spline cold roll-beating process is established, the formation mechanism of the involute spline tooth profile in cold roll-beating forming process is studied, and the node flow tracks of the deformation area are analyzed. The experimental research on the metal flow of cold roll-beating spline is conducted, and the metallographic structure variation, grain characteristics and metal flow line of the different tooth profile area are analyzed. The experimental results show that the particle flow directions of the deformable bodies in cold roll-beating deformation area are determined by the minimum moving resistance. There are five types of metal flow rules of the deforming region in the process of cold roll-beating forming. The characteristics of involute spline cold roll-beating forming are given, and the forming mechanism of involute spline cold roll-beating is revealed. This paper researches the law of metal flow in the forming process of involute spline cold roll-beating, which provides theoretical supports for solving the tooth profile forming quality problem.

  11. Cold war arms control motivations and techniques - a guide for the future. Research report

    SciTech Connect

    White, E.G.

    1996-01-01

    This paper provides a brief historical account of some of the arms control agreements between the U.S. and the Soviet Union, examines their major motivations to enter into negotiations, and illustrates some successful negotiation techniques. The author hypothesizes on the utility of this Cold War arms control experience as a useful guide for arms control in a single superpower world.

  12. Coupling of the simultaneous heat and water model with a distributed hydrological model and evaluation of the combined model in a cold region watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To represent the effects of frozen soil on hydrology in cold regions, a new physically based distributed hydrological model has been developed by coupling the simultaneous heat and water model (SHAW) with the geomorphology based distributed hydrological model (GBHM), under the framework of the water...

  13. Cold Sores

    MedlinePlus

    ... delivered directly to your desktop! more... What Are Cold Sores? Article Chapters What Are Cold Sores? Cold ... January 2012 Previous Next Related Articles: Canker and Cold Sores Aloe Vera May Help Relieve Mouth Sores ...

  14. Development of An Enthalpy-based Frozen Soil Model and Its Validation in A Cold Region in China

    NASA Astrophysics Data System (ADS)

    Bao, H.

    2015-12-01

    A physically-based frozen soil model was developed based on the Water and Energy Budget-based Distributed Hydrological model (WEB-DHM) for the simulation of water and energy transfer in cold regions. In order to simulate the soil freezing/thawing processes stably and efficiently, a two-step algorithm is applied to solve the non-linear energy governing equations: 1) the thermal diffusion equation is used to simulate the heat fluxes between soil layers without considering liquid-ice phase change; 2) a freezing/thawing scheme is used to derive soil temperature, liquid water content and ice content from enthalpy conservation, mass conservation, and freezing point depression equations. In the algorithm, a parameterization set is adopted to update hydraulic and thermal properties by considering the presence of ice and low soil temperatures. The performance of the frozen soil model was validated at point scale in a typical mountainous permafrost region of Binggou Watershed, Heihe Basin, Northwest China. Results show that the model can achieve a convergent solution at a typical time step (hourly) and layer sizes (centimeters) of current land process models. It is able to reproduce the observed soil freezing/thawing processes and hydrological processes. The simulated profiles of soil temperature, liquid water content, ice content and thawing front depth are in good agreement with the observations and the characteristics of permafrost. The freeze-thaw cycle in frozen soil evolution was continuously represented by the contour map of soil temperature and ice content of all soil layers. Therefore, this model can be coupled with hydrological, ecological and climate models to deepen our physical understanding in permafrost regions.

  15. Differential Acetylation of Histone H3 at the Regulatory Region of OsDREB1b Promoter Facilitates Chromatin Remodelling and Transcription Activation during Cold Stress

    PubMed Central

    Roy, Dipan; Paul, Amit; Roy, Adrita; Ghosh, Ritesh; Ganguly, Payel; Chaudhuri, Shubho

    2014-01-01

    The rice ortholog of DREB1, OsDREB1b, is transcriptionally induced by cold stress and over-expression of OsDREB1b results in increase tolerance towards high salt and freezing stress. This spatio-temporal expression of OsDREB1b is preceded by the change in chromatin structure at the promoter and the upstream region for gene activation. The promoter and the upstream region of OsDREB1b genes appear to be arranged into a nucleosome array. Nucleosome mapping of ∼700bp upstream region of OsDREB1b shows two positioned nucleosomes between −610 to −258 and a weakly positioned nucleosome at the core promoter and the TSS. Upon cold stress, there is a significant change in the nucleosome arrangement at the upstream region with increase in DNaseI hypersensitivity or MNase digestion in the vicinity of cis elements and TATA box at the core promoter. ChIP assays shows hyper-acetylation of histone H3K9 throughout the locus whereas region specific increase was observed in H3K14ac and H3K27ac. Moreover, there is an enrichment of RNA PolII occupancy at the promoter region during transcription activation. There is no significant change in the H3 occupancy in OsDREB1b locus negating the possibility of nucleosome loss during cold stress. Interestingly, cold induced enhanced transcript level of OsDREB1b as well as histone H3 acetylation at the upstream region was found to diminish when stressed plants were returned to normal temperature. The result indicates absolute necessity of changes in chromatin conformation for the transcription up-regulation of OsDREB1b gene in response to cold stress. The combined results show the existence of closed chromatin conformation at the upstream and promoter region of OsDREB1b in the transcription “off” state. During cold stress, changes in region specific histone modification marks promote the alteration of chromatin structure to facilitate the binding of transcription machinery for proper gene expression. PMID:24940877

  16. Development of an enthalpy-based frozen soil model and its validation in a cold region in China

    NASA Astrophysics Data System (ADS)

    Bao, Huiyi; Koike, Toshio; Yang, Kun; Wang, Lei; Shrestha, Maheswor; Lawford, Peter

    2016-05-01

    An enthalpy-based frozen soil model was developed for the simulation of water and energy transfer in cold regions. To simulate the soil freezing/thawing processes stably and efficiently, a three-step algorithm was applied to solve the nonlinear governing equations: (1) a thermal diffusion equation was implemented to simulate the heat conduction between soil layers; (2) a freezing/thawing scheme used a critical temperature criterion to judge the phase status and introduced enthalpy and total water mass into freezing depression equation to represent ice formation/melt and corresponding latent heat release/absorption; and (3) a water flow scheme was employed to describe the liquid movement within frozen soil. In addition, a parameterization set of hydraulic and thermal properties was updated by considering the frozen soil effect. The performance of the frozen soil model was validated at point scale in a typical mountainous permafrost basin of China. An ice profile initialization method is proposed for permafrost modeling. Results show that the model can achieve a convergent solution at a time step of hourly and a surface layer thickness of centimeters that are typically used in current land surface models. The simulated profiles of soil temperature, liquid water content, ice content and thawing front depth are in good agreement with the observations and the characteristics of permafrost. The model is capable of continuously reproducing the diurnal and seasonal freeze-thaw cycle and simulating frozen soil hydrological processes.

  17. Hydrochemical evolution of Na-SO4-Cl groundwaters in a cold, semi-arid region of southern Siberia

    NASA Astrophysics Data System (ADS)

    Parnachev, V. P.; Banks, D.; Berezovsky, A. Y.; Garbe-Schönberg, D.

    1999-12-01

    The Shira region of Khakassia in southern Siberia exhibits many features governing the evolution of groundwater and surface-water chemistry that are common to other cold, semi-arid areas of the world: (1) a continental climate, (2) location in a rain shadow, (3) low density of surface-water drainage, (4) occurrence of saline lakes, and (5) occurrence of palaeo- and modern evaporite mineralisation. In lowland areas of Shira, the more saline groundwaters and lake waters have a sodium-sulphate (-chloride) composition. Results of thermodynamic modelling suggest that these evolve by a combination of silicate weathering and gypsum and halite dissolution, coupled with carbonate precipitation to remove calcium and bicarbonate ions. An approximately 1:1 sodium:sulphate ratio occurs even in groundwaters from non-evaporite-bearing aquifers. This may indicate the formation of secondary sodium sulphate evaporites (in or near saline lakes or in soil profiles where the water table is shallow), which are subsequently distributed throughout the study area by atmospheric transport. Several urban groundwaters are characterised by very high nitrate concentrations, conceivably derived from sewage/latrine leakage.

  18. [Research progress on index system of regional ecological risk assessment].

    PubMed

    Meng, Ji-Jun; Zhao, Chun-Hong

    2009-04-01

    Regional ecological risk assessment (RERA) covers the assessments of multiple risk sources, receptors, and endpoints, while the selection of assessment indices is quite complicated, being a hotspot in regional environment management research. Domestic and international researches on RERA revealed that three processes in RERA are of vital, i.e., risk probability assessment measured by risk probability index, status and value assessment of ecosystem at regional scale indicated by ecological index, and vulnerability assessment of each ecosystem in a region under risk measured by vulnerability index. The main problems in the establishment of RERA index system are the strong subjectivity and poor comparability, and thus, the index system should be set up in the three key processes under the principles of objectivity, integration, hierarchy, and comparability. Due to the fact that the status and value assessment of ecosystem is most complicated, the index system should be formulated by compulsory and optional components to increase the comparability of RERA results between regions. PMID:19565785

  19. Translating animal model research: does it matter that our rodents are cold?

    PubMed

    Maloney, Shane K; Fuller, Andrea; Mitchell, Duncan; Gordon, Christopher; Overton, J Michael

    2014-11-01

    Does it matter that rodents used as preclinical models of human biology are routinely housed below their thermoneutral zone? We compile evidence showing that such rodents are cold-stressed, hypermetabolic, hypertensive, sleep-deprived, obesity-resistant, fever-resistant, aging-resistant, and tumor-prone compared with mice housed at thermoneutrality. The same genotype of mouse has a very different phenotype and response to physiological or pharmacological intervention when raised below or at thermoneutrality. PMID:25362635

  20. Modeling and predicting the shape of the far-infrared to submillimeter emission in ultra-compact HII regions and cold clumps

    NASA Astrophysics Data System (ADS)

    Paradis, D.; Mény, C.; Noriega-Crespo, A.; Paladini, R.; Bernard, J.-P.; Bot, C.; Cambrésy, L.; Demyk, K.; Gromov, V.; Rivera-Ingraham, A.; Veneziani, M.

    2014-12-01

    Context. Dust properties are very likely affected by the environment in which dust grains evolve. For instance, some analyses of cold clumps (7-17 K) indicate that the aggregation process is favored in dense environments. However, studying warm (30-40 K) dust emission at long wavelength (λ> 300 μm) has been limited because it is difficult to combine far infrared-to-millimeter (FIR-to-mm) spectral coverage and high angular resolution for observations of warm dust grains. Aims: Using Herschel data from 70 to 500 μm, which are part of the Herschel infrared Galactic (Hi-GAL) survey combined with 1.1 mm data from the Bolocam Galactic Plane Survey (BGPS), we compared emission in two types of environments: ultra-compact HII (UCHII) regions, and cold molecular clumps (denoted as cold clumps). With this comparison we tested dust emission models in the FIR-to-mm domain that reproduce emission in the diffuse medium, in these two environments (UCHII regions and cold clumps). We also investigated their ability to predict the dust emission in our Galaxy. Methods: We determined the emission spectra in twelve UCHII regions and twelve cold clumps, and derived the dust temperature (T) using the recent two-level system (TLS) model with three sets of parameters and the so-called T-β (temperature-dust emissivity index) phenomenological models, with β set to 1.5, 2 and 2.5. Results: We tested the applicability of the TLS model in warm regions for the first time. This analysis indicates distinct trends in the dust emission between cold and warm environments that are visible through changes in the dust emissivity index. However, with the use of standard parameters, the TLS model is able to reproduce the spectral behavior observed in cold and warm regions, from the change of the dust temperature alone, whereas a T-β model requires β to be known. Tables 2, 4, 7 are available in electronic form at http://www.aanda.org

  1. Vernalization Requirement and the Chromosomal VRN1-Region can Affect Freezing Tolerance and Expression of Cold-Regulated Genes in Festuca pratensis

    PubMed Central

    Ergon, Åshild; Melby, Tone I.; Höglind, Mats; Rognli, Odd A.

    2016-01-01

    Plants adapted to cold winters go through annual cycles of gain followed by loss of freezing tolerance (cold acclimation and deacclimation). Warm spells during winter and early spring can cause deacclimation, and if temperatures drop, freezing damage may occur. Many plants are vernalized during winter, a process making them competent to flower in the following summer. In winter cereals, a coincidence in the timing of vernalization saturation, deacclimation, downregulation of cold-induced genes, and reduced ability to reacclimate, occurs under long photoperiods and is under control of the main regulator of vernalization requirement in cereals, VRN1, and/or closely linked gene(s). Thus, the probability of freezing damage after a warm spell may depend on both vernalization saturation and photoperiod. We investigated the role of vernalization and the VRN1-region on freezing tolerance of meadow fescue (Festuca pratensis Huds.), a perennial grass species. Two F2 populations, divergently selected for high and low vernalization requirement, were studied. Each genotype was characterized for the copy number of one of the four parental haplotypes of the VRN1-region. Clonal plants were cold acclimated for 2 weeks or vernalized/cold acclimated for a total of 9 weeks, after which the F2 populations reached different levels of vernalization saturation. Vernalized and cold acclimated plants were deacclimated for 1 week and then reacclimated for 2 weeks. All treatments were given at 8 h photoperiod. Flowering response, freezing tolerance and expression of the cold-induced genes VRN1, MADS3, CBF6, COR14B, CR7 (BLT14), LOS2, and IRI1 was measured. We found that some genotypes can lose some freezing tolerance after vernalization and a deacclimation–reacclimation cycle. The relationship between vernalization and freezing tolerance was complex. We found effects of the VRN1-region on freezing tolerance in plants cold acclimated for 2 weeks, timing of heading after 9 weeks of

  2. Vernalization Requirement and the Chromosomal VRN1-Region can Affect Freezing Tolerance and Expression of Cold-Regulated Genes in Festuca pratensis.

    PubMed

    Ergon, Åshild; Melby, Tone I; Höglind, Mats; Rognli, Odd A

    2016-01-01

    Plants adapted to cold winters go through annual cycles of gain followed by loss of freezing tolerance (cold acclimation and deacclimation). Warm spells during winter and early spring can cause deacclimation, and if temperatures drop, freezing damage may occur. Many plants are vernalized during winter, a process making them competent to flower in the following summer. In winter cereals, a coincidence in the timing of vernalization saturation, deacclimation, downregulation of cold-induced genes, and reduced ability to reacclimate, occurs under long photoperiods and is under control of the main regulator of vernalization requirement in cereals, VRN1, and/or closely linked gene(s). Thus, the probability of freezing damage after a warm spell may depend on both vernalization saturation and photoperiod. We investigated the role of vernalization and the VRN1-region on freezing tolerance of meadow fescue (Festuca pratensis Huds.), a perennial grass species. Two F2 populations, divergently selected for high and low vernalization requirement, were studied. Each genotype was characterized for the copy number of one of the four parental haplotypes of the VRN1-region. Clonal plants were cold acclimated for 2 weeks or vernalized/cold acclimated for a total of 9 weeks, after which the F2 populations reached different levels of vernalization saturation. Vernalized and cold acclimated plants were deacclimated for 1 week and then reacclimated for 2 weeks. All treatments were given at 8 h photoperiod. Flowering response, freezing tolerance and expression of the cold-induced genes VRN1, MADS3, CBF6, COR14B, CR7 (BLT14), LOS2, and IRI1 was measured. We found that some genotypes can lose some freezing tolerance after vernalization and a deacclimation-reacclimation cycle. The relationship between vernalization and freezing tolerance was complex. We found effects of the VRN1-region on freezing tolerance in plants cold acclimated for 2 weeks, timing of heading after 9 weeks of

  3. Joint EPA-EPRI (Environmental Protection Agency-Electric Power Research Institute) Cold Weather Plume Study (CWPS): overview of measurements and data base. Final report

    SciTech Connect

    Gillani, N.V.; Bohm, V.L.

    1987-03-01

    The Cold Weather Plume Study (CWPS) was a field measurement program carried out in February 1981 under the joint sponsorship of the U.S. Environmental Protection Agency and the Electric Power Research Institute. Its objective was to generate a data base suitable for quantitative analysis of the mesoscale physical dynamics and SOx, NOx chemistry of the plume of the 1320-MW coal-fired Kincaid power plant near Springfield, Illinois. The data base was intended to complement similar measurements made by other EPA and EPRI studies in the same region during other seasons. Measurements included in-situ chemical measurements from two instrumented aircraft, remote-sensing lidar measurements and meteorological measurements from a surface station, two towers, and from vertical soundings. The report provides a brief overview of the measurement platforms, the measured parameters, and the daily experiments, and describes and documents the data base available on magnetic tapes and in hard copy form.

  4. Strengthening integrated research and capacity development within the Caribbean region

    PubMed Central

    2011-01-01

    Background The Caribbean region, like other developing regions of the world, faces significant challenges in conducting research, especially in the context of limited resource capacities and capabilities. Further, due to its diverse and multiple island states, research capacity is scattered and unevenly spread within the region. The Caribbean EcoHealth Programme (CEHP) is a research program that is structured to improve the capacity and capability of health professionals in the Caribbean region to respond in integrative and innovative ways to on-going and emerging environmental health challenges by means of multi-sectoral interventions. Methods Core parts of the CEHP’s mission are to (1) conduct collaborative research in areas that the region has identified as critical; (2) build and strengthening integrated approaches to research; and (3) develop and enhance basic research capacity within the Caribbean region. Fundamental to the success of the CEHP’s human and resource development mission has been its use of the Atlantis Mobile Laboratory (AML). The AML has allowed the CEHP program to move throughout the Caribbean and be able to respond to calls for specific research and capacity building opportunities. Results The CEHP’s five main research projects have generated the following results: (1) the Persistent Organic Pollutants (POPs) study has evaluated human exposures to POPs, heavy metals, pesticides, and zoonotic infections; (2) the Burden of Illness (BOI) studies have developed protocols for the testing of foodborne microorganisms, strengthen laboratory analytical capabilities, and determined the prevalence and incidence of food-borne illness; (3) the Rainwater Harvesting (RWH) study has evaluated the microbial and chemical quality of rainwater harvesting systems; (4) the Ecotoxicology Water (ETW) studies have provided much needed data on the quality of recreational and drinking water supplies, and (5) the Food Safety Training Program has developed Diploma

  5. Research on insulation design method of a cold dielectric type superconducting cable

    NASA Astrophysics Data System (ADS)

    Kwag, D. S.; Choi, J. W.; Kim, H. J.; Cho, J. W.; Kim, S. H.

    2008-09-01

    It is important that study on cryogenic electrical insulation design to develop the cold dielectric (CD) type high temperature superconducting (HTS) cable because the cable is operated under the high-voltage environment in cryogenic temperature. Therefore, this paper describes a design method for the electrical insulation layer of the CD type HTS cable adopting the partial discharge (PD)-free design under ac stress, based on the experimental results such a partial discharge inception stress (PDIE) and V- t characteristics, and an impulse breakdown strength of liquid nitrogen (LN 2)/laminated polypropylene paper (LPP) composite insulation system in which the mini-model cable is immersed into pressurized LN 2.

  6. General-Purpose Heat Source: Research and development program: Cold-Process Verification Test Series

    SciTech Connect

    Reimus, M.A.H.; George, T.G.

    1996-06-01

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements. Because any space mission could experience a launch abort or return from orbit, the heat source must be designed and constructed to survive credible accident environments. Previous testing conducted in support of the Galileo and Ulysses missions documented the response of GPHSs and individual GPHS capsules fueled with {sup 238}UO{sub 2} ({sup 235}U-depleted) to a variety of explosive overpressure and impact events. In the early 1990s, Los Alamos National Laboratory (LANL) resumed fabrication of {sup 238}UO{sub 2} GPHS pellets. The Cold-Process Verification (CPV) Test Series was designed to compare the response of GPHS heat sources loaded with recently fabricated hot- and cold-pressed {sup 238}UO{sub 2} pellets to the response of urania pellets used in the Galileo and Ulysses performance tests. This report documents eleven bare-capsule impacts and one impact of a fully loaded GPHS module. All of the failures observed in the bare-clad impact tests were similar to failures observed in previous safety tests. No failures occurred in the module impact test.

  7. [The Early Years of Military Laser Research and Technology in the Federal Republic of Germany During the Cold War].

    PubMed

    Albrecht, Helmuth

    2014-01-01

    The invention of the laser in 1960 and the innovation process of laser technology during the following years coincided with the dramatic increase of the East-West-conflict during the 1960s - the peak of the so-called Cold War after the erection of the Berlin Wall in 1961. The predictable features of the new device, not only for experimental sciences, but also for technical and military applications, led instantly to a laser hype all over the world. Military funding and research played a major part in this development. Especially in the United States military laser research and development played an important role in the formation of Cold War sciences. The European allies followed this example to a certain degree, but their specific national environments led to quite different solutions and results. This article describes and analyzes the special features and background of this development for the Federal Republic of Germany in the area of conflict between science, politics and industry from 1960 to the early 1970s. PMID:26070381

  8. Priority regions for research on dryland cereals and legumes

    PubMed Central

    Hyman, Glenn; Barona, Elizabeth; Biradar, Chandrashekhar; Guevara, Edward; Dixon, John; Beebe, Steve; Castano, Silvia Elena; Alabi, Tunrayo; Gumma, Murali Krishna; Sivasankar, Shoba; Rivera, Ovidio; Espinosa, Herlin; Cardona, Jorge

    2016-01-01

    Dryland cereals and legumes  are important crops in farming systems across the world.  Yet they are frequently neglected among the priorities for international agricultural research and development, often due to lack of information on their magnitude and extent. Given what we know about the global distribution of dryland cereals and legumes, what regions should be high priority for research and development to improve livelihoods and food security? This research evaluated the geographic dimensions of these crops and the farming systems where they are found worldwide. The study employed geographic information science and data to assess the key farming systems and regions for these crops. Dryland cereal and legume crops should be given high priority in 18 farming systems worldwide, where their cultivated area comprises more than 160 million ha. These regions include the dryer areas of South Asia, West and East Africa, the Middle East and North Africa, Central America and other parts of Asia. These regions are prone to drought and heat stress, have limiting soil constraints, make up half of the global population and account for 60 percent of the global poor and malnourished. The dryland cereal and legume crops and farming systems merit more research and development attention to improve productivity and address development problems. This project developed an open access dataset and information resource that provides the basis for future analysis of the geographic dimensions of dryland cereals and legumes. PMID:27303632

  9. Priority regions for research on dryland cereals and legumes.

    PubMed

    Hyman, Glenn; Barona, Elizabeth; Biradar, Chandrashekhar; Guevara, Edward; Dixon, John; Beebe, Steve; Castano, Silvia Elena; Alabi, Tunrayo; Gumma, Murali Krishna; Sivasankar, Shoba; Rivera, Ovidio; Espinosa, Herlin; Cardona, Jorge

    2016-01-01

    Dryland cereals and legumes  are important crops in farming systems across the world.  Yet they are frequently neglected among the priorities for international agricultural research and development, often due to lack of information on their magnitude and extent. Given what we know about the global distribution of dryland cereals and legumes, what regions should be high priority for research and development to improve livelihoods and food security? This research evaluated the geographic dimensions of these crops and the farming systems where they are found worldwide. The study employed geographic information science and data to assess the key farming systems and regions for these crops. Dryland cereal and legume crops should be given high priority in 18 farming systems worldwide, where their cultivated area comprises more than 160 million ha. These regions include the dryer areas of South Asia, West and East Africa, the Middle East and North Africa, Central America and other parts of Asia. These regions are prone to drought and heat stress, have limiting soil constraints, make up half of the global population and account for 60 percent of the global poor and malnourished. The dryland cereal and legume crops and farming systems merit more research and development attention to improve productivity and address development problems. This project developed an open access dataset and information resource that provides the basis for future analysis of the geographic dimensions of dryland cereals and legumes. PMID:27303632

  10. Defining and Measuring Entrepreneurship for Regional Research: A New Approach

    ERIC Educational Resources Information Center

    Low, Sarah A.

    2009-01-01

    In this dissertation, I develop a definition and regional measure of entrepreneurship that will aid entrepreneurship research and economic development policy. My new indicators represent an improvement over current measures of entrepreneurship. The chief contribution of these new indicators is that they incorporate innovation, which others ignore.…

  11. Common cold

    MedlinePlus

    ... are the most common reason that children miss school and parents miss work. Parents often get colds ... other children. A cold can spread quickly through schools or daycares. Colds can occur at any time ...

  12. Common Cold

    MedlinePlus

    ... coughing - everyone knows the symptoms of the common cold. It is probably the most common illness. In ... people in the United States suffer 1 billion colds. You can get a cold by touching your ...

  13. Cold intolerance

    MedlinePlus

    ... intolerance is an abnormal sensitivity to a cold environment or cold temperatures. ... can be a symptom of a problem with metabolism. Some people (often very thin women) do not tolerate cold environments because they have very little body fat and ...

  14. GLOBAL CHANGE RESEARCH NEWS #1: SPECIAL ISSUE OF CLIMATE RESEARCH FOCUSING ON REGIONAL ASSESSMENTS

    EPA Science Inventory

    The first installment of Global Change Research News announces the publication of a Special Issue of the journal Climate Research entitled, Regional Assessments of Climate Change and Policy Implications. ORD's Global Change Research Program worked closely with the editors of Clim...

  15. Genetics/Genomics Research in the Central Region

    USGS Publications Warehouse

    U.S. Geological Survey

    2006-01-01

    Genetics-based research within the Biological Resources Discipline (BRD) Science Centers in the Central Region incorporates many aspects of the field of genetics. Research activities range from documenting patterns of genetic variation in order to investigate relationships among species, populations and individuals to investigating the structure, function and expression of genes and their response to environmental stressors. Research in the broad areas of genetics requires multidisciplinary expertise and specialized equipment and instrumentation. Brief summaries of the capabilities of the five BRD Centers are given below.

  16. Cold Climate Foundation Retrofit Experimental Hygrothermal Performance. Cloquet Residential Research Facility Laboratory Results

    SciTech Connect

    Goldberg, Louise F.; Harmon, Anna C.

    2015-04-09

    This project was funded jointly by the National Renewable Energy Laboratory (NREL) and Oak Ridge National Laboratory (ORNL). ORNL focused on developing a full basement wall system experimental database to enable others to validate hygrothermal simulation codes. NREL focused on testing the moisture durability of practical basement wall interior insulation retrofit solutions for cold climates. The project has produced a physically credible and reliable long-term hygrothermal performance database for retrofit foundation wall insulation systems in zone 6 and 7 climates that are fully compliant with the performance criteria in the 2009 Minnesota Energy Code. These data currently span the period from November 10, 2012 through May 31, 2014 and are anticipated to be extended through November 2014. The experimental data were configured into a standard format that can be published online and that is compatible with standard commercially available spreadsheet and database software.

  17. Artic and subarctic environmental analyses utilizing ERTS-1 imagery. Cold regions environmental analysis based on ERTS-1 imagery (preprint)

    NASA Technical Reports Server (NTRS)

    Anderson, D. M. (Principal Investigator); Haugen, R. K.; Gatto, L. W.; Slaughter, C. W.; Marlar, T. L.; Mckim, H. L.

    1972-01-01

    There are no author-identified significant results in this report. An overriding problem in arctic and subarctic environmental research has been the absence of long-term observational data and the sparseness of geographical coverage of existing data. A first look report is presented on the use of ERTS-1 imagery as a major tool in two large area environmental studies: (1) investigation of sedimentation and other nearshore marine processes in Cook Inlet, Alaska; and (2) a regional study of permafrost regimes in the discontinuous permafrost zone of Alaska. These studies incorporate ground truth acquisition techniques that are probably similar to most ERTS investigations. Studies of oceanographic processes in Cook Inlet will be focused on seasonal changes in nearshore bathymetry, tidal and major current circulation patterns, and coastal sedimentation processes, applicable to navigation, construction, and maintenance of harbors. Analyses will be made of the regional permafrost distribution and regimes in the Upper Koyukuk-Kobuk River area located in NW Alaska.

  18. [The role of regional research laboratories of the local government in administering regional EQA programs].

    PubMed

    Ohishi, Hisae; Mikuriya, Hisatoshi; Kumasaka, Kazunari

    2005-04-01

    In 1981, the Japanese Ministry of Health and Welfare revised the enforcement of regulations of the Medical Technologists' Act. The amendments stipulate that all independent laboratories are legally obliged to introduce laboratory quality assurance programs and are responsible for the quality of all test results. To ensure adherence to these regulations, regional research laboratories of local governments such as the Tokyo Metropolitan Research Laboratory of Public Health should conduct regional external quality assessment (EQA) programs. We did a survey, in the form of a questionnaire, of the regional research laboratories of public health across the country. We found that commitment to the regional EQA in almost all of these public laboratories is insufficient. The main problem is that restructuring of local governments has resulted in lower budgets and so they are short of human resources. Nationwide EQA programs are only able to detect gross errors and use invalid methods for evaluating routine performance. We conclude that the regional EQA should be further developed. PMID:15915768

  19. Climate change and health research in the Eastern Mediterranean Region.

    PubMed

    Habib, Rima R; Zein, Kareem El; Ghanawi, Joly

    2010-06-01

    Anthropologically induced climate change, caused by an increased concentration of greenhouse gases in the atmosphere, is an emerging threat to human health. Consequences of climate change may affect the prevalence of various diseases and environmental and social maladies that affect population health. In this article, we reviewed the literature on climate change and health in the Eastern Mediterranean Region. This region already faces numerous humanitarian crises, from conflicts to natural hazards and a high burden of disease. Climate change is likely to aggravate these emergencies, necessitating a strengthening of health systems and capacities in the region. However, the existing literature on climate change from the region is sparse and informational gaps stand in the way of regional preparedness and adaptation. Further research is needed to assess climatic changes and related health impacts in the Eastern Mediterranean Region. Such knowledge will allow countries to identify preparedness vulnerabilities, evaluate capacity to adapt to climate change, and develop adaptation strategies to allay the health impacts of climate change. PMID:20658168

  20. Cold Climate Foundation Retrofit Experimental Hygrothermal Performance: Cloquet Residential Research Facility Laboratory Results

    SciTech Connect

    Goldberg, Louise F.; Harmon, Anna C.

    2015-04-01

    Thermal and moisture problems in existing basements create a unique challenge because the exterior face of the wall is not easily or inexpensively accessible. This approach addresses thermal and moisture management from the interior face of the wall without disturbing the exterior soil and landscaping. the interior and exterior environments. This approach has the potential for improving durability, comfort, and indoor air quality. This project was funded jointly by the National Renewable Energy Laboratory (NREL) and Oak Ridge National Laboratory (ORNL). ORNL focused on developing a full basement wall system experimental database to enable others to validate hygrothermal simulation codes. NREL focused on testing the moisture durability of practical basement wall interior insulation retrofit solutions for cold climates. The project has produced a physically credible and reliable long-term hygrothermal performance database for retrofit foundation wall insulation systems in zone 6 and 7 climates that are fully compliant with the performance criteria in the 2009 Minnesota Energy Code. The experimental data were configured into a standard format that can be published online and that is compatible with standard commercially available spreadsheet and database software.

  1. Fundamental Research on Heat Transfer Characteristics in Shell & Tube Type Ice Forming Cold Energy Storage

    NASA Astrophysics Data System (ADS)

    Saito, Akio; Utaka, Yoshio; Okawa, Seiji; Ishibashi, Hiroaki

    Investigation of heat transfer characteristics in an ice making cold energy storage using a set of horizontal cooling pipes was carried out experimentally. Cooling pipe arrangement, number of pipes used and initial water temperature were varied, and temperature distribution in the tank and the volume of ice formed around the pipe were measured. Natural convection was also observed visually. During the experiment, two kinds of layers were observed. One is the layer where ice forming is interfered by natural convection and its temperature decreases rapidly with an almost uniform temperature distribution, and the other is the layer where ice forms steadily under a stagnant water condition. The former was called that the layer is under a cooling process and the latter that the layer is under an ice forming process. The effect of the experimental parameters, such as the arrangement of the cooling pipes, the number of pipes, the initial water temperature and the flow rate of the cooling medium, on the cooling process and the ice forming process were discussed. Approximate analysis was also carried out and compared with the experimental results. Finally, the relationship between the ice packing factor, which is significant in preventing the blockade, and experimental parameters was discussed.

  2. Variable regions in Flavobacterium psychrophilum strains identified by comparative genomics: application to selective breeding for cold water disease resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial cold water disease is one of the most frequent causes of elevated loss in juvenile salmonids, and the development of effective control strategies is a high priority to aquaculturists, management agencies, and conservationists. Since 2005, rainbow trout (Oncorhynchus mykiss) have been bred ...

  3. Technology Solutions Case Study: Cold Climate Foundation Wall Hygrothermal Research Facility, Cloquet, Minnesota

    SciTech Connect

    2014-09-01

    This case study describes the University of Minnesota’s Cloquet Residential Research Facility (CRRF) in northern Minnesota, which features more than 2,500 ft2 of below-grade space for building systems foundation hygrothermal research. Here, the NorthernSTAR Building America Partnership team researches ways to improve the energy efficiency of the building envelope, including wall assemblies, basements, roofs, insulation, and air leakage.

  4. The InterFrost benchmark of Thermo-Hydraulic codes for cold regions hydrology - first inter-comparison phase results

    NASA Astrophysics Data System (ADS)

    Grenier, Christophe; Rühaak, Wolfram

    2016-04-01

    Climate change impacts in permafrost regions have received considerable attention recently due to the pronounced warming trends experienced in recent decades and which have been projected into the future. Large portions of these permafrost regions are characterized by surface water bodies (lakes, rivers) that interact with the surrounding permafrost often generating taliks (unfrozen zones) within the permafrost that allow for hydrologic interactions between the surface water bodies and underlying aquifers and thus influence the hydrologic response of a landscape to climate change. Recent field studies and modeling exercises indicate that a fully coupled 2D or 3D Thermo-Hydraulic (TH) approach is required to understand and model past and future evolution such units (Kurylyk et al. 2014). However, there is presently a paucity of 3D numerical studies of permafrost thaw and associated hydrological changes, which can be partly attributed to the difficulty in verifying multi-dimensional results produced by numerical models. A benchmark exercise was initialized at the end of 2014. Participants convened from USA, Canada, Europe, representing 13 simulation codes. The benchmark exercises consist of several test cases inspired by existing literature (e.g. McKenzie et al., 2007) as well as new ones (Kurylyk et al. 2014; Grenier et al. in prep.; Rühaak et al. 2015). They range from simpler, purely thermal 1D cases to more complex, coupled 2D TH cases (benchmarks TH1, TH2, and TH3). Some experimental cases conducted in a cold room complement the validation approach. A web site hosted by LSCE (Laboratoire des Sciences du Climat et de l'Environnement) is an interaction platform for the participants and hosts the test case databases at the following address: https://wiki.lsce.ipsl.fr/interfrost. The results of the first stage of the benchmark exercise will be presented. We will mainly focus on the inter-comparison of participant results for the coupled cases TH2 & TH3. Both cases

  5. The InterFrost benchmark of Thermo-Hydraulic codes for cold regions hydrology - first inter-comparison results

    NASA Astrophysics Data System (ADS)

    Grenier, Christophe; Roux, Nicolas; Anbergen, Hauke; Collier, Nathaniel; Costard, Francois; Ferrry, Michel; Frampton, Andrew; Frederick, Jennifer; Holmen, Johan; Jost, Anne; Kokh, Samuel; Kurylyk, Barret; McKenzie, Jeffrey; Molson, John; Orgogozo, Laurent; Rivière, Agnès; Rühaak, Wolfram; Selroos, Jan-Olof; Therrien, René; Vidstrand, Patrik

    2015-04-01

    The impacts of climate change in boreal regions has received considerable attention recently due to the warming trends that have been experienced in recent decades and are expected to intensify in the future. Large portions of these regions, corresponding to permafrost areas, are covered by water bodies (lakes, rivers) that interact with the surrounding permafrost. For example, the thermal state of the surrounding soil influences the energy and water budget of the surface water bodies. Also, these water bodies generate taliks (unfrozen zones below) that disturb the thermal regimes of permafrost and may play a key role in the context of climate change. Recent field studies and modeling exercises indicate that a fully coupled 2D or 3D Thermo-Hydraulic (TH) approach is required to understand and model the past and future evolution of landscapes, rivers, lakes and associated groundwater systems in a changing climate. However, there is presently a paucity of 3D numerical studies of permafrost thaw and associated hydrological changes, and the lack of study can be partly attributed to the difficulty in verifying multi-dimensional results produced by numerical models. Numerical approaches can only be validated against analytical solutions for a purely thermic 1D equation with phase change (e.g. Neumann, Lunardini). When it comes to the coupled TH system (coupling two highly non-linear equations), the only possible approach is to compare the results from different codes to provided test cases and/or to have controlled experiments for validation. Such inter-code comparisons can propel discussions to try to improve code performances. A benchmark exercise was initialized in 2014 with a kick-off meeting in Paris in November. Participants from USA, Canada, Germany, Sweden and France convened, representing altogether 13 simulation codes. The benchmark exercises consist of several test cases inspired by existing literature (e.g. McKenzie et al., 2007) as well as new ones. They

  6. An overview of gas hydrate and cold seep research along the Hikurangi Margin, New Zealand (2006 & 2007)

    NASA Astrophysics Data System (ADS)

    Greinert, J.; Faure, K.; Naudts, L.; de Batist, M.; Bialas, J.; Linke, P.; Pecher, I.; Rowden, R.

    2009-04-01

    Prior to 2006, the knowledge about cold seeps around New Zealand was based mainly on accidental recovery of seep fauna or methane-derived carbonates by fishermen and the detection of flares in fish-finding sonars. Lewis and Marshall (1996; NZJGG) compiled these findings, providing the first details on 13 seep sites. Four of those are located at the Hikurangi Margin along the east coast of New Zealand's North Island. Since then, three international cruises in 2006 and 2007 enhanced our knowledge considerably about methane seepage along the Hikurangi Margin, an area which has widely distributed and in places very strong BSR. Two cruises on the RV TANGAROA (led by GNS Science and NIWA, NZ) in 2006 focused on extensive reconnaissance work (multibeam mapping, seismic surveys, flare imaging, visual observations) as well as fauna sampling, geochemical pore water analyses and CTD casts including water sampling for methane analyses. Several new seep sites were discovered during these cruises. Using these data, very detailed investigations in four main working areas could be performed during a 10-week expedition with RV SONNE (SO191, led by IFM-GEOMAR, Germany). All research topics currently discussed in the scientific community were addressed using state-of-the-art equipment (e.g. deep-tow side-scan, TV-guided sampling, lander and ROV-deployments). Fourteen institutes from seven countries were involved (Australia, Belgium, Germany, New Zealand, United Kingdom, United States, Switzerland). Echosounder and sidescan surveys unmistakably revealed active seep sites by detecting bubbles in the water column and carbonate precipitation at the seafloor forming massive chemoherm complexes. These complexes are associated with typical seep fauna like tube worms, bivalve mollusk species (Calyptogena, Bathymodiolus),and bacterial mats. At the fringe of these chemoherms dark sediment patches were observed which exihibit a novel seep habitat dominated by dense beds of two new species of

  7. Regional research priorities in brain and nervous system disorders.

    PubMed

    Ravindranath, Vijayalakshmi; Dang, Hoang-Minh; Goya, Rodolfo G; Mansour, Hader; Nimgaonkar, Vishwajit L; Russell, Vivienne Ann; Xin, Yu

    2015-11-19

    The characteristics of neurological, psychiatric, developmental and substance-use disorders in low- and middle-income countries are unique and the burden that they have will be different from country to country. Many of the differences are explained by the wide variation in population demographics and size, poverty, conflict, culture, land area and quality, and genetics. Neurological, psychiatric, developmental and substance-use disorders that result from, or are worsened by, a lack of adequate nutrition and infectious disease still afflict much of sub-Saharan Africa, although disorders related to increasing longevity, such as stroke, are on the rise. In the Middle East and North Africa, major depressive disorders and post-traumatic stress disorder are a primary concern because of the conflict-ridden environment. Consanguinity is a serious concern that leads to the high prevalence of recessive disorders in the Middle East and North Africa and possibly other regions. The burden of these disorders in Latin American and Asian countries largely surrounds stroke and vascular disease, dementia and lifestyle factors that are influenced by genetics. Although much knowledge has been gained over the past 10 years, the epidemiology of the conditions in low- and middle-income countries still needs more research. Prevention and treatments could be better informed with more longitudinal studies of risk factors. Challenges and opportunities for ameliorating nervous-system disorders can benefit from both local and regional research collaborations. The lack of resources and infrastructure for health-care and related research, both in terms of personnel and equipment, along with the stigma associated with the physical or behavioural manifestations of some disorders have hampered progress in understanding the disease burden and improving brain health. Individual countries, and regions within countries, have specific needs in terms of research priorities. PMID:26580328

  8. Cold plasma technologies for the inactivation of human pathogens on fresh and fresh-cut produce

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research in cold plasma processing at the USDA’s Eastern Regional Research Center is focused on developing this technology into an effective tool to improve the safety of a variety of foods. Cold plasma applied to outbreak strains of Escherichia coli O157:H7 and Salmonella Stanley inoculated on the ...

  9. Superfund Record of Decision (EPA Region 2): Marathon Battery, Cold Spring, NY. (Third remedial action), September 1989. Final report

    SciTech Connect

    Not Available

    1989-09-29

    The Marathon Battery site is a former battery-manufacturing plant in Cold Spring, Putnam County, New York. The site is composed of three study areas: Area I, which consists of East Foundry Cove Marsh and Constitution Marsh; Area II, which encompasses the former plant, presently a book-storage warehouse, the surrounding grounds, and a vault with cadmium contaminated sediment dredged from East Foundry Cove; and Area III, which includes East Foundry Cove (48 acres), West Foundry Cove and the Hudson River in the vicinity of Cold Spring pier and a sewer outfall. Contamination in Area III emanates from plant waste water that was discharged via the city sewer system into the Hudson River at Cold Spring Pier or, in some instances, through a storm sewer into East Foundry Cove. A Record of Decision (ROD) was signed for Area I in September 1986 with cleanup activities to include dredging the East Foundry Cove Marsh. The second ROD for the site was signed in September 1988 and included decontamination of the battery plant and soil excavation in Area II. The 1989 ROD represents the third and final operable unit for the site and addresses sediment contamination in Area III. The primary contaminants of concern affecting sediment at the site are metals, including cadmium and nickel.

  10. Food Safety and Intervention Technologies Research: Cold Plasma as a Nonthermal food processing technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Contamination of meats, seafood, poultry, eggs, and fresh and fresh-cut fruits and vegetables is an ongoing concern. The Food Safety and Intervention Technologies Research Unit develops and validates innovative approaches and new technologies that control pathogenic bacteria and viruses while preser...

  11. Regional analysis of wet deposition for effects research. Project report

    SciTech Connect

    Vong, R.; Cline, S.; Reams, G.; Bernert, J.; Charles, D.

    1989-02-01

    The basis for regional analysis of precipitation amount, concentration and deposition is investigated. When performing such a spatial analysis, key issues are the data selection, data compositing, the interpolation technique, and the uncertainty of the results. Sources of data on precipitation amount and chemical composition are presented along with procedures for screening the chemical data. A review of recent work reveals that different scientists select different data sets and that data selection plays an important role in the resulting maps. Important issues in data preprocessing include temporal resolution, data stratification into geographic regions, and choosing between direct and indirect methods for interpolating wet deposition. Available spatial interpolation techniques are discussed. The geostatistical technique, kriging, is discussed in detail to allow other researchers the benefit of previous applications to precipitation chemistry. Procedures for generating and checking uncertainty estimates are discussed.

  12. Regional Seismic Identification Research:Processing, Transportability and Source Models

    SciTech Connect

    Walter, W; Mayeda, K; Rodgers, A; Taylor, S; Dodge, D; Matzel, E; Ganzberger, M

    2004-07-09

    Our identification research for the past several years has focused on the problem of correctly discriminating small-magnitude explosions from a background of earthquakes, mining tremors, and other events. Small magnitudes lead to an emphasis on regional waveforms. It has been shown that at each test site where earthquake and explosions are in close proximity and recorded at the same station, clear differences in the regional body waves such as the relative high frequency amplitudes of P and S waves can be used to discriminate between event types. However path and source effects can also induce such differences, therefore these must be quantified and accounted for. We have been using a specific technique called Magnitude and Distance Amplitude Correction (MDAC), with some success to account for some of these effects.

  13. [Research on climatic factors of ecology suitability regionalization of atractylodis].

    PubMed

    Tan, Zhe-tian; Wang, Hao; Zhu, Shou-dong; Yan, Yu-ping; Guo, Lan-ping; Zheng, Yu-guang

    2015-11-01

    Through study on the correlation between atractylodis lactones ingredient content and climatic factors, we research regionalization from climatic of five main producing provinces of the country, in order to provide a scientific basis for atractylodis' conscious cultivation. By sampling from 40 origins which from five main producing provinces of the country, we use SPSS to analysis variation of atractylodis lactones ingredient content in different conditions of climatic factors and the effect of each factors. Then according to the relationship between atractylodis lactones ingredient content and climatic factors, we use ArcGIS to conduct ecological suitability regionalization based on climatic factors. The most suitable climatic condition for cultivation of atractylodis: the wettest month precipitation 220-230 mm, the warmest average temperature 25 degrees C, the average temperature of driest season 10 degrees C. PMID:27071251

  14. Diving of Great Shearwaters (Puffinus gravis) in Cold and Warm Water Regions of the South Atlantic Ocean

    PubMed Central

    Ronconi, Robert A.; Ryan, Peter G.; Ropert-Coudert, Yan

    2010-01-01

    Background Among the most widespread seabirds in the world, shearwaters of the genus Puffinus are also some of the deepest diving members of the Procellariiformes. Maximum diving depths are known for several Puffinus species, but dive depths or diving behaviour have never been recorded for great shearwaters (P. gravis), the largest member of this genus. This study reports the first high sampling rate (2 s) of depth and diving behaviour for Puffinus shearwaters. Methodology/Principal Findings Time-depth recorders (TDRs) were deployed on two female great shearwaters nesting on Inaccessible Island in the South Atlantic Ocean, recording 10 consecutive days of diving activity. Remote sensing imagery and movement patterns of 8 males tracked by satellite telemetry over the same period were used to identify probable foraging areas used by TDR-equipped females. The deepest and longest dive was to 18.9 m and lasted 40 s, but most (>50%) dives were <2 m deep. Diving was most frequent near dawn and dusk, with <0.5% of dives occurring at night. The two individuals foraged in contrasting oceanographic conditions, one in cold (8 to 10°C) water of the Sub-Antarctic Front, likely 1000 km south of the breeding colony, and the other in warmer (10 to 16°C) water of the Sub-tropical Frontal Zone, at the same latitude as the colony, possibly on the Patagonian Shelf, 4000 km away. The cold water bird spent fewer days commuting, conducted four times as many dives as the warm water bird, dived deeper on average, and had a greater proportion of bottom time during dives. Conclusions/Significance General patterns of diving activity were consistent with those of other shearwaters foraging in cold and warm water habitats. Great shearwaters are likely adapted to forage in a wide range of oceanographic conditions, foraging mostly with shallow dives but capable of deep diving. PMID:21152089

  15. JOINT EPA-EPRI (ENVIRONMENTAL PROTECTION AGENCY-ELECTRIC POWER RESEARCH INSTITUTE) COLD WEATHER PLUME STUDY (CWPS): OVERVIEW OF MEASUREMENTS AND DATA BASE

    EPA Science Inventory

    The Cold Weather Plume Study (CWPS) was a field measurement program carried out in February 1981 under the joint sponsorship of the U.S. Environmental Protection Agency and the Electric Power Research Institute. Its objective was to generate a data base suitable for quantitative ...

  16. Health assessment for Marathon Battery, Cold Springs, New York, Region 2. CERCLIS No. NYD001959757. Preliminary report

    SciTech Connect

    Not Available

    1987-07-16

    The 11-acre Marathon Battery Site (MBS) Plant is located in Putnam County, Cold Springs, New York. The site is bordered to the east by a wooded area and to the south by a junkyard and Foundary Cove. Foundary Cove is a wetland marsh connected by several channels to the Hudson River. Various heavy metals have been identified on-site. They include arsenic, cadmium, cobalt, lead, nickel, and zinc. In addition, a previous ATSDR memorandum reports the results of a ground-water sample containing high concentrations of trichloroethylene. Based on the preliminary information reviewed concerning on-site and off-site contamination, MBS represents a potential public health threat to area residents.

  17. [Effect of tillage patterns on the structure of weed communities in oat fields in the cold and arid region of North China].

    PubMed

    Zhang, Li; Zhang, Li; Wu, Dong-Xia; Zhang, Jun-Jun

    2014-06-01

    In order to clarify the effects of tillage patterns on farmland weed community structure and crop production characteristics, based on 10 years location experiment with no-tillage, subsoiling and conventional tillage in the cold and arid region of North China, and supplementary experiment of plowing after 10 years no-tillage and subsoiling, oat was planted in 2 soils under different tillage patterns, and field weed total density, dominant weed types, weed diversity index, field weed biomass and oats yield were measured. The results showed that the regional weed community was dominated by foxtail weed (Setaira viridis); the weed density under long-term no-tillage was 2.20-5.14 times of tillage at different growing stages of oat, but there were no significant differences between conditional tillage and plowing after long-term no-tillage and subsoiling. Field weed Shannon diversity indices were 0.429 and 0.531, respectively, for sandy chestnut soil and loamy meadow soil under no-tillage conditions, and field weed biomass values were 1.35 and 2.26 times of plowing treatment, while the oat biomass values were only 2807.4 kg x hm(-2) and 4053.9 kg x hm(-2), decreased by 22.3% and 46.2%, respectively. The results showed that the weed community characteristics were affected by both tillage patterns and soil types. Long-term no-tillage farmland in the cold and arid region of North China could promote the natural evolution of plant communities by keeping more perennial weeds, and the plowing pattern lowered the annual weed density, eliminated perennial weeds with shallow roots, and stimulated perennial weeds with deep roots. PMID:25223030

  18. A Numerical Study of Sea-Fog Formation over Cold Sea Surface Using a One-Dimensional Turbulence Model Coupled with the Weather Research and Forecasting Model

    NASA Astrophysics Data System (ADS)

    Kim, Chang Ki; Yum, Seong Soo

    2012-06-01

    The formation mechanism of a cold sea-fog case observed over the Yellow Sea near the western coastal area of the Korean Peninsula is investigated using numerical simulation with a one-dimensional turbulence model coupled with a three-dimensional regional model. The simulation was carried out using both Eulerian and Lagrangian approaches; both approaches produced sea fog in a manner consistent with observation. For the selected cold sea-fog case, the model results suggested the following: as warm and moist air flows over a cold sea surface, the lower part of the air column is modified by the turbulent exchange of heat and moisture and the diurnal variation in radiation. The modified boundary-layer structure represents a typical stable thermally internal boundary layer. Within the stable thermally internal boundary layer, the air temperature is decreased by radiative cooling and turbulent heat exchange but the moisture loss due to the downward vapour flux in the lowest part of the air column is compensated by moisture advection and therefore the dewpoint temperature does not decrease as rapidly as does the air temperature. Eventually water vapour saturation is achieved and the cold sea fog forms in the thermal internal boundary layer.

  19. Cold Plasma Inactivates Salmonella and Escherichia coli O157:H7 on Fresh Produce

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This presentation will summarize recent advances in cold plasma technology at the USDA’s Eastern Regional Research Center. Cold plasma generated in a gliding arc was applied to outbreak strains of Escherichia coli O157:H7 and Salmonella Stanley inoculated on the surfaces of golden delicious apples. ...

  20. Thermoregulatory modeling for cold stress.

    PubMed

    Xu, Xiaojiang; Tikuisis, Peter

    2014-07-01

    Modeling for cold stress has generated a rich history of innovation, has exerted a catalytic influence on cold physiology research, and continues to impact human activity in cold environments. This overview begins with a brief summation of cold thermoregulatory model development followed by key principles that will continue to guide current and future model development. Different representations of the human body are discussed relative to the level of detail and prediction accuracy required. In addition to predictions of shivering and vasomotor responses to cold exposure, algorithms are presented for thermoregulatory mechanisms. Various avenues of heat exchange between the human body and a cold environment are reviewed. Applications of cold thermoregulatory modeling range from investigative interpretation of physiological observations to forecasting skin freezing times and hypothermia survival times. While these advances have been remarkable, the future of cold stress modeling is still faced with significant challenges that are summarized at the end of this overview. PMID:24944030

  1. Cold Plasma: A Novel Intervention for Fresh Fruits and Vegetables

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research in cold plasma processing at the USDA’s Eastern Regional Research Center is focused on developing this technology into an effective tool to improve the safety of a variety of foods. This presentation will provide an introduction to the technology that will explain the engineering and microb...

  2. Analytical solutions for benchmarking cold regions subsurface water flow and energy transport models: one-dimensional soil thaw with conduction and advection

    USGS Publications Warehouse

    Kurylyk, Barret L.; McKenzie, Jeffrey M; MacQuarrie, Kerry T. B.; Voss, Clifford I.

    2014-01-01

    Numerous cold regions water flow and energy transport models have emerged in recent years. Dissimilarities often exist in their mathematical formulations and/or numerical solution techniques, but few analytical solutions exist for benchmarking flow and energy transport models that include pore water phase change. This paper presents a detailed derivation of the Lunardini solution, an approximate analytical solution for predicting soil thawing subject to conduction, advection, and phase change. Fifteen thawing scenarios are examined by considering differences in porosity, surface temperature, Darcy velocity, and initial temperature. The accuracy of the Lunardini solution is shown to be proportional to the Stefan number. The analytical solution results obtained for soil thawing scenarios with water flow and advection are compared to those obtained from the finite element model SUTRA. Three problems, two involving the Lunardini solution and one involving the classic Neumann solution, are recommended as standard benchmarks for future model development and testing.

  3. Bridging the Gap between Academic Research and Regional Development in the Basque Country

    ERIC Educational Resources Information Center

    Karlsen, James; Larrea, Miren; Wilson, James R.; Aranguren, Mari Jose

    2012-01-01

    The discussion in this article focuses on how the gap between academic knowledge and regional development can be bridged, creating conditions for change processes between researchers and regional agents. Institutional entrepreneurs can create regional development organisations and research organisations, but in order to fulfil regional needs it is…

  4. Assessment of climate change impacts on watershed in cold-arid region: an integrated multi-GCM-based stochastic weather generator and stepwise cluster analysis method

    NASA Astrophysics Data System (ADS)

    Zhuang, X. W.; Li, Y. P.; Huang, G. H.; Liu, J.

    2016-07-01

    An integrated multi-GCM-based stochastic weather generator and stepwise cluster analysis (MGCM-SWG-SCA) method is developed, through incorporating multiple global climate models (MGCM), stochastic weather generator (SWG), and stepwise-clustered hydrological model (SCHM) within a general framework. MGCM-SWG-SCA can investigate uncertainties of projected climate changes as well as create watershed-scale climate projections from large-scale variables. It can also assess climate change impacts on hydrological processes and capture nonlinear relationship between input variables and outputs in watershed systems. MGCM-SWG-SCA is then applied to the Kaidu watershed with cold-arid characteristics in the Xinjiang Uyghur Autonomous Region of northwest China, for demonstrating its efficiency. Results reveal that the variability of streamflow is mainly affected by (1) temperature change during spring, (2) precipitation change during winter, and (3) both temperature and precipitation changes in summer and autumn. Results also disclose that: (1) the projected minimum and maximum temperatures and precipitation from MGCM change with seasons in different ways; (2) various climate change projections can reproduce the seasonal variability of watershed-scale climate series; (3) SCHM can simulate daily streamflow with a satisfactory degree, and a significant increasing trend of streamflow is indicated from future (2015-2035) to validation (2006-2011) periods; (4) the streamflow can vary under different climate change projections. The findings can be explained that, for the Kaidu watershed located in the cold-arid region, glacier melt is mainly related to temperature changes and precipitation changes can directly cause the variability of streamflow.

  5. Assessment of climate change impacts on watershed in cold-arid region: an integrated multi-GCM-based stochastic weather generator and stepwise cluster analysis method

    NASA Astrophysics Data System (ADS)

    Zhuang, X. W.; Li, Y. P.; Huang, G. H.; Liu, J.

    2015-12-01

    An integrated multi-GCM-based stochastic weather generator and stepwise cluster analysis (MGCM-SWG-SCA) method is developed, through incorporating multiple global climate models (MGCM), stochastic weather generator (SWG), and stepwise-clustered hydrological model (SCHM) within a general framework. MGCM-SWG-SCA can investigate uncertainties of projected climate changes as well as create watershed-scale climate projections from large-scale variables. It can also assess climate change impacts on hydrological processes and capture nonlinear relationship between input variables and outputs in watershed systems. MGCM-SWG-SCA is then applied to the Kaidu watershed with cold-arid characteristics in the Xinjiang Uyghur Autonomous Region of northwest China, for demonstrating its efficiency. Results reveal that the variability of streamflow is mainly affected by (1) temperature change during spring, (2) precipitation change during winter, and (3) both temperature and precipitation changes in summer and autumn. Results also disclose that: (1) the projected minimum and maximum temperatures and precipitation from MGCM change with seasons in different ways; (2) various climate change projections can reproduce the seasonal variability of watershed-scale climate series; (3) SCHM can simulate daily streamflow with a satisfactory degree, and a significant increasing trend of streamflow is indicated from future (2015-2035) to validation (2006-2011) periods; (4) the streamflow can vary under different climate change projections. The findings can be explained that, for the Kaidu watershed located in the cold-arid region, glacier melt is mainly related to temperature changes and precipitation changes can directly cause the variability of streamflow.

  6. Comparison of effects of cold-region soil/snow processes and the uncertainties from model forcing data on permafrost physical characteristics

    NASA Astrophysics Data System (ADS)

    Barman, Rahul; Jain, Atul K.

    2016-03-01

    We used a land surface model to (1) evaluate the influence of recent improvements in modeling cold-region soil/snow physics on near-surface permafrost physical characteristics (within 0-3 m soil column) in the northern high latitudes (NHL) and (2) compare them with uncertainties from climate and land-cover data sets. Specifically, four soil/snow processes are investigated: deep soil energetics, soil organic carbon (SOC) effects on soil properties, wind compaction of snow, and depth hoar formation. In the model, together they increased the contemporary NHL permafrost area by 9.2 × 106 km2 (from 2.9 to 12.3—without and with these processes, respectively) and reduced historical degradation rates. In comparison, permafrost area using different climate data sets (with annual air temperature difference of ˜0.5°C) differed by up to 2.3 × 106 km2, with minimal contribution of up to 0.7 × 106 km2 from substantial land-cover differences. Individually, the strongest role in permafrost increase was from deep soil energetics, followed by contributions from SOC and wind compaction, while depth hoar decreased permafrost. The respective contribution on 0-3 m permafrost stability also followed a similar pattern. However, soil temperature and moisture within vegetation root zone (˜0-1 m), which strongly influence soil biogeochemistry, were only affected by the latter three processes. The ecosystem energy and water fluxes were impacted the least due to these soil/snow processes. While it is evident that simulated permafrost physical characteristics benefit from detailed treatment of cold-region biogeophysical processes, we argue that these should also lead to integrated improvements in modeling of biogeochemistry.

  7. Research and Evaluation in Regional Education Agencies: A Texas Perspective.

    ERIC Educational Resources Information Center

    Roecks, Alan L.; Noonan, Albert J.

    Texas is divided into 20 regions served by intermediate education agencies offering school districts the opportunity to receive specialized services normally beyond the reach of school systems. This report examines how one such regional educational agency in Region 20, which serves 50 districts in 14 counties, is organized to provide evaluation…

  8. Research Information Needs of Public Policy Oriented Researchers at a Regional University: Issues Emerging from a Pilot Study

    ERIC Educational Resources Information Center

    Miller, Faye

    2008-01-01

    This article presents the results of a pilot study of the research information needs, behaviour and source preferences of academic researchers at a regional university engaged in a public policy research project. In-depth interviews with three public policy oriented academic researchers undertaking interdisciplinary research projects at Charles…

  9. Human whole body cold adaptation.

    PubMed

    Daanen, Hein A M; Van Marken Lichtenbelt, Wouter D

    2016-01-01

    Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced vasodilation in fingers and toes compared to Caucasians and Inuit. About 40,000 y after humans left Africa, natives in cold terrestrial areas seems to have developed not only behavioral adaptations, but also physiological adaptations to cold. Dedicated studies show that repeated whole body exposure of individual volunteers, mainly Caucasians, to severe cold results in reduced cold sensation but no major physiological changes. Repeated cold water immersion seems to slightly reduce metabolic heat production, while repeated exposure to milder cold conditions shows some increase in metabolic heat production, in particular non-shivering thermogenesis. In conclusion, human cold adaptation in the form of increased metabolism and insulation seems to have occurred during recent evolution in populations, but cannot be developed during a lifetime in cold conditions as encountered in temperate and arctic regions. Therefore, we mainly depend on our behavioral skills to live in and survive the cold. PMID:27227100

  10. Human whole body cold adaptation

    PubMed Central

    Daanen, Hein A.M.; Van Marken Lichtenbelt, Wouter D.

    2016-01-01

    ABSTRACT Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced vasodilation in fingers and toes compared to Caucasians and Inuit. About 40,000 y after humans left Africa, natives in cold terrestrial areas seems to have developed not only behavioral adaptations, but also physiological adaptations to cold. Dedicated studies show that repeated whole body exposure of individual volunteers, mainly Caucasians, to severe cold results in reduced cold sensation but no major physiological changes. Repeated cold water immersion seems to slightly reduce metabolic heat production, while repeated exposure to milder cold conditions shows some increase in metabolic heat production, in particular non-shivering thermogenesis. In conclusion, human cold adaptation in the form of increased metabolism and insulation seems to have occurred during recent evolution in populations, but cannot be developed during a lifetime in cold conditions as encountered in temperate and arctic regions. Therefore, we mainly depend on our behavioral skills to live in and survive the cold. PMID:27227100

  11. Global characteristics of the cold plasma in the equatorial plasmapause region as deduced from the geos 1 mutual impedance probe

    SciTech Connect

    Decreu, P.M.E.; Beghin, C.; Parrot, M.

    1982-02-01

    Thermal plasma parameters derived by the muntal impedance experiment on GEOS are described. The experiment is well suited to the measurement of the electron density and temperature of the outer plasmasphere (when kT/sub e//N/sub e/<1.6 eV/cm/sup 3/). This investigation of the whole set of data supplied by GEOS 1 (4regions: the plasmasphere, an intermediate region of ionospheric refilling, and the plasma trough. In the plasmasphere, we observe profiles with N/sub e/proportionalL/sup -4/, while T/sub e/ stands around 10,000 /sup 0/K or less. The intermediate region, situated next to the plasmasphere and above it, is always present in the day sector, where the ionospheric source plays a leading part. In that zone, the plasma parameters, poorly known up to now, exhibit N/sub e/ values approx.2 to 20 cm/sup -3/, together with T/sub e/ values of 20,000 /sup 0/K on the average, dispersed over a 5,000 to 100,000 /sup 0/K range during disturbances. In the night sector, the intermediate region is seen only during the recovery phase. The region of depleted density is observed at the higher L values in the night and morning MTL sectors. There, plasmas out of Maxwellian equilibrium are seen under disturbed conditions. The dynamic response of the thermal plasma parameters to temporal variations of the a/sub m/ index of magnetic activity follows a known scenario as concerns N/sub e/, making apparent a night-to-day, MTL dependent time delay. As concerns T/sub e/, the dynamical study reveals striking features, such as the persistance of the T/sub e/ modifications into the dusk sector, the interpretation of which remains to be clarified.

  12. Two-dimensional finite difference model to study temperature distribution in SST regions of human limbs immediately after physical exercise in cold climate

    NASA Astrophysics Data System (ADS)

    Kumari, Babita; Adlakha, Neeru

    2015-02-01

    Thermoregulation is a complex mechanism regulating heat production within the body (chemical thermoregulation) and heat exchange between the body and the environment (physical thermoregulation) in such a way that the heat exchange is balanced and deep body temperatures are relatively stable. The external heat transfer mechanisms are radiation, conduction, convection and evaporation. The physical activity causes thermal stress and poses challenges for this thermoregulation. In this paper, a model has been developed to study temperature distribution in SST regions of human limbs immediately after physical exercise under cold climate. It is assumed that the subject is doing exercise initially and comes to rest at time t = 0. The human limb is assumed to be of cylindrical shape. The peripheral region of limb is divided into three natural components namely epidermis, dermis and subdermal tissues (SST). Appropriate boundary conditions have been framed based on the physical conditions of the problem. Finite difference has been employed for time, radial and angular variables. The numerical results have been used to obtain temperature profiles in the SST region immediately after continuous exercise for a two-dimensional unsteady state case. The results have been used to analyze the thermal stress in relation to light, moderate and vigorous intensity exercise.

  13. Frontier Science in the Polar Regions: Current Activities of the Polar Research Board

    NASA Astrophysics Data System (ADS)

    Brown, L. M.

    2011-12-01

    The National Academies (the umbrella term for the National Academy of Sciences, National Academy of Engineering, Institute of Medicine, and National Research Council) is a private, nonprofit organization chartered by Congress in 1863. The Polar Research Board (PRB) is the focal point within the Academies for providing advice on issues related to the Arctic, Antarctic, and cold regions in general. Tasks within the PRB mission include: providing a forum for the polar science community to address research needs and policy issues; conducting studies and workshops on emerging scientific and policy issues in response to requests from federal agencies and others; providing program reviews, guidance, and assessments of priorities; and facilitating communication on polar issues among academia, industry, and government. The PRB also serves as the US National Committee to two international, nongovernmental polar science organizations: the Scientific Committee on Antarctic Research (SCAR) and the International Arctic Science Committee (IASC). The polar regions are experiencing rapid changes in environment and climate, and the PRB has a number of completed and ongoing studies that will enhance scientific understanding of these issues. This poster will illustrate current PRB activities as well as results from two recently released reports: Frontiers in Understanding Climate Change and Polar Ecosystems and Future Science Opportunities in Antarctica and the Southern Ocean. In the former, a set of frontier research questions are developed to help scientists understand the impacts of climate change on polar ecosystems. The report builds on existing knowledge of climate change impacts and highlights the next big topics to be addressed in the coming decades. In addition, a number of methods and technologies are identified that will be useful to advance future research in polar ecosystem science. In the latter, changes to important science conducted on Antarctica and the surrounding

  14. The New Cold Neutron Radiography Facility (CNRF) at the Mianyang Research Reactor of the China Academy of Engineering Physics

    NASA Astrophysics Data System (ADS)

    Bin, Tang; Heyong, Huo; Ke, Tang; Rogers, John; Haste, Martin; Christodoulou, Marios

    A new cold neutron radiography beamline has been designed and constructed for the Mianyang reactor at the Institute of Nuclear Physics and Chemistry of the China Academy of Engineering Physics. This paper describes the components of the system and demonstrates the achievable image resolution.

  15. Research on winter-hardiness: deacclimation resistance, reacclimation ability, photoprotection strategies, and a cold acclimation protocol design

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Freezing is a major environmental stress during the annual cycle of temperate zone perennials. Freeze- injury can occur due to mid-winter temperatures that are colder than the tolerance threshold of a tissue / plant or due to untimely freezing temperatures before cold acclimation (development of fre...

  16. [Textual research on the time of completion of XU Shuwei' books on exo-pathogenic cold diseases].

    PubMed

    Lu, Mingxin

    2015-11-01

    Shang han bai zheng ge (Poets of Syndromes of Exo-pathogenic Cold Disease), Shang han fa wei lun (Discourse on Elucidation of Exo-pathogenic Cold Disease), Shang han jiu shi lun (90 Discourses on Exo-pathogenic Cold Disease) were the three extant books on exo-pathogenic cold disease written by Xu Shuwei among his other works of its kind. Although there were carved editions of the Yuan and Ming Dynasties, these books were gradually paid attention for citations by other physicians till the Qing Dynasty. Through comparison of its texts, it can be found that the title of Shang han bai zheng ge was mentioned in his other medical works. While Shang han fa wei lun and Shang han jiu shi lun contained some overlapping contents, some even carrying concept contradictory to each other. According to historical materials, Xu Shuwei began to write the above-mentioned 3 books in the Northern Song Dynasty. In the several early years of the Southern Song Dynasty after crossing the Yangtze River, he collected the remained manuscripts and continued to write. Among them, Shang han bai zheng ge was completed first, followed by Shang han fa wei lun, with Shang han jiu shi lun came as the last. PMID:26813319

  17. Social Research in North American Moisture-Deficient Regions.

    ERIC Educational Resources Information Center

    Bennett, John W., Ed.

    Five papers presented at the 9th symposium held during the 42nd annual meeting of the Southwestern and Rocky Mountain Division of the American Association for the Advancement of Science are: (1) "Do We Need a Sociology of Arid Regions"?; (2) "Deficit Creating Influences for Role Performance and Status Acquisition in Sparsely Populated Regions of…

  18. Overview of the Western Regional Research Center, Albany, California.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This presentation is a brief overview of the Agricultural Research Service (ARS). It describes the missions, resources, collaborators and partners of the ARS. In addition it provides a brief description of seven research units in the WRRC....

  19. Common cold

    MedlinePlus

    ... often causes a runny nose, nasal congestion, and sneezing. You may also have a sore throat, cough, ... symptoms are: Nasal congestion Runny nose Scratchy throat Sneezing Adults and older children with colds generally have ...

  20. Cold Intolerance

    MedlinePlus

    ... from the Handbook on the Late Effects of Poliomyelitis for Physicians and Survivors © Cold Intolerance Many polio ... index of Handbook on the Late Effects of Poliomyelitis for Physicians and Survivors © Back to top Contact ...

  1. The Economic Impact of Eight Research Universities on the Boston Region

    ERIC Educational Resources Information Center

    Simha, O. Robert

    2005-01-01

    The greater Boston region's eight research universities play a key role in the region's economic health and welfare. They are magnets for research and development talent and for billions of dollars in investment. These institutions contribute $7.4 billion dollars to the regional economy, jobs for about 50,000 university employees and 37,000…

  2. Regional Art History: A Procedural Model for Research, Central Ohio 1945-1995.

    ERIC Educational Resources Information Center

    Yates, Christopher A.

    This paper documents the creation of a procedural model for researching regional art history. It focuses on the region of Central Ohio and identifies art historical resources and a sampling of artists from 1945-1995. Topics discussed include: art history in Europe and in the United States; the problem of researching regional art history; review of…

  3. Measurements and modeling of cold 13CH4 spectra in the 3750-4700 cm-1 region

    NASA Astrophysics Data System (ADS)

    Brown, L. R.; Nikitin, A. V.; Sung, K.; Rey, M.; Tashkun, S. A.; Tyuterev, Vl. G.; Crawford, T. J.; Smith, M. A. H.; Mantz, A. W.

    2016-05-01

    A new study of 13CH4 line intensities and positions was performed in the Octad region between 3750 and 4700 cm-1. Using 13C-enriched samples, spectra were recorded with both the McMath-Pierce FTS at Kitt Peak Observatory in Arizona and the Bruker IFS-125HR at JPL. Sample temperatures ranged between 80 and 296 K. Line positions and intensities of ~15,000 features were retrieved at different temperatures by non-linear least squares curve-fitting procedures. Intensities were used to estimate the lower state energies for 60% of the features in order to determine quantum assignments up to J=10. A preliminary analysis was performed using the effective Hamiltonian and the effective dipole transition moment expressed in terms of irreducible tensor operators adapted to spherical top molecules. Selected assignments were made up to J=10 for all 24 sub-vibrational states of the Octad; these were modeled for 4752 experimental line positions and 3301 selected line intensities fitted with RMS standard deviations of 0.004 cm-1 and 6.9%, respectively. Integrated intensities of the eight Octad bands are compared to ab initio variational calculations. A prediction of the 13CH4 is given, but further analysis to improve the calculation will be reported in the future.

  4. Research Ready Program: A First in Regional South Australia

    ERIC Educational Resources Information Center

    Penman, Joy; Oliver, Mary

    2012-01-01

    In response to the South Australian Certificate of Education (SACE) Board's introduction in 2010 of the new Research Project subject, the University of South Australia's Centre for Participation and Community Engagement took the opportunity to engage further with school students by organising the Research Ready Program. The adoption of the program…

  5. Chapter 1. The shortgrass steppe: The region and research sites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The central grassland region of North America (Figure 1.1) is the largest contiguous grassland environment on earth. Prior to European settlement, it was a vast treeless area characterized by dense head-high grasses in the wet, eastern portion, and very short, sparse grasses in the dry west. As sett...

  6. Cold injuries.

    PubMed

    Long, William B; Edlich, Richard F; Winters, Kathryne L; Britt, L D

    2005-01-01

    Exposure to cold can produce a variety of injuries that occur as a result of man's inability to adapt to cold. These injuries can be divided into localized injury to a body part, systemic hypothermia, or a combination of both. Body temperature may fall as a result of heat loss by radiation, evaporation, conduction, and convection. Hypothermia or systemic cold injury occurs when the core body temperature has decreased to 35 degrees C (95 degrees F) or less. The causes of hypothermia are either primary or secondary. Primary, or accidental, hypothermia occurs in healthy individuals inadequately clothed and exposed to severe cooling. In secondary hypothermia, another illness predisposes the individual to accidental hypothermia. Hypothermia affects multiple organs with symptoms of hypothermia that vary according to the severity of cold injury. The diagnosis of hypothermia is easy if the patient is a mountaineer who is stranded in cold weather. However, it may be more difficult in an elderly patient who has been exposed to a cold environment. In either case, the rectal temperature should be checked with a low-reading thermometer. The general principals of prehospital management are to (1) prevent further heat loss, (2) rewarm the body core temperature in advance of the shell, and (3) avoid precipitating ventricular fibrillation. There are two general techniques of rewarming--passive and active. The mechanisms of peripheral cold injury can be divided into phenomena that affect cells and extracellular fluids (direct effects) and those that disrupt the function of the organized tissue and the integrity of the circulation (indirect effects). Generally, no serious damage is seen until tissue freezing occurs. The mildest form of peripheral cold injury is frostnip. Chilblains represent a more severe form of cold injury than frostnip and occur after exposure to nonfreezing temperatures and damp conditions. Immersion (trench) foot, a disease of the sympathetic nerves and blood

  7. [Effects of different organic matter mulching on water content, temperature, and available nutrients of apple orchard soil in a cold region].

    PubMed

    Zhou, Jiang-Tao; Lü, De-Guo; Qin, Si-Jun

    2014-09-01

    The effects of different organic matter covers on soil physical-chemical properties were investigated in a 'Hanfu' apple orchard located in a cold region. Four treatments were applied (weed mulching, rice straw mulching, corn straw mulching, and crushed branches mulching), and physical-chemical properties, including orchard soil moisture and nutrient contents, were compared among treatment groups and between organic matter-treated and untreated plots. The results showed that soil water content increased in the plots treated with organic matter mulching, especially in the arid season. Cover with organic matter mulch slowed the rate of soil temperature increase in spring, which was harmful to the early growth of fruit trees. Organic matter mulching treatments decreased the peak temperature of orchard soil in the summer and increased the minimum soil temperature in the fall. pH was increased in soils treated with organic matter mulching, especially in the corn straw mulching treatment, which occurred as a response to alleviating soil acidification to achieve near-neutral soil conditions. The soil organic matter increased to varying extents among treatment groups, with the highest increase observed in the weed mulching treatment. Overall, mulching increased alkali-hydrolyzable nitrogen, available phosphorus, and available potassium in the soil, but the alkali-hydrolyzable nitrogen content in the rice straw mulching treatment was lower than that of the control. PMID:25757304

  8. Involvement of the 5'-untranslated region in cold-regulated expression of the rbpA1 gene in the cyanobacterium Anabaena variabilis M3.

    PubMed Central

    Sato, N; Nakamura, A

    1998-01-01

    Transcript of the rbpA1 gene in Anabaena variabilis accumulates significantly at low growth temperatures below 28 degreesC. This accumulation was maximal at 16 degreesC. Accumulation of the rbpA1 transcript was completely abolished by rifampicin, but not by chloramphenicol. Photosynthesis was not required for this cold-induced accumulation. This accumulation of transcript was partly accounted for by increased stability of the rbpA1 transcript at low temperature. Expression of chimeric genes containing 3'-deleted rbpA1 sequences fused to the lacZ gene was regulated by low temperature when almost the entire 5'-untranslated region (5'-UTR) remained undeleted. Further deletion resulted in constitutive expression of the chimeric gene. The 5'-UTR sequence formed two types of complexes in vitro with protein extract from cells grown at 38 degreesC, but not with extract from the 22 degreesC grown cells. Affinity purification identified polypeptides of 75 and 32 kDa in Complex 1 and a 72 kDa polypeptide in Complex 2. These results are compatible with a model in which expression of the rbpA1 gene is regulated by transcriptional derepression at low temperature, although additional mechanisms, such as regulation of mRNA stability, might also contribute to temperature-dependent regulation. PMID:9547280

  9. CURRENT and FUTURE DIRECTIONS in COTTON STRUCTURE and QUALITY RESEARCH at the USDA SOUTHERN REGIONAL RESEARCH CENTER

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Cotton and Structure (CSQ) Research Unit is one of 3 core cotton research units at the Southern Regional Research Center (SRRC). The mission of the CSQ is to develop and improve the methods for assessing quality and structural attributes of cotton fiber through all stages of production and proc...

  10. Helium Find Thaws the Cold Fusion Trail.

    ERIC Educational Resources Information Center

    Pennisi, E.

    1991-01-01

    Reported is a study of cold fusion in which trace amounts of helium, possible evidence of an actual fusion reaction, were found. Research methodology is detailed. The controversy over the validity of experimental results with cold fusion are reviewed. (CW)

  11. COLD TRAP

    DOEpatents

    Milleron, N.

    1963-03-12

    An improved linear-flow cold trap is designed for highvacuum applications such as mitigating back migration of diffusion pump oil moiecules. A central pot of liquid nitrogen is nested within and supported by a surrounding, vertical, helical coil of metai sheet, all enveloped by a larger, upright, cylindrical, vacuum vessel. The vertical interstices between successive turns of the coil afford lineal, axial, high-vacuum passages between open mouths at top and bottom of said vessel, while the coil, being cold by virtue of thermal contact of its innermost turn with the nitrogen pot, affords expansive proximate condensation surfaces. (AEC)

  12. The Research of Historical Trusses in Northern Regions of Slovakia

    NASA Astrophysics Data System (ADS)

    Korenková, Renáta; Krušinský, Peter

    2014-06-01

    The blanket research of historical trusses in the territory of Slovakia has been running at our department since 2008. This research is done as teamwork in cooperation with experts from the field of conservation, and it is mainly focused on typology, construction, and the current technical and constructional state of investigated trusses. The long-time support of the grant scheme from the Ministry of Culture allows to get a fair amount of different data related to individual buildings and structures, which enables to carry out the in-depth research. In terms of their conservation and maintenance with an effort to extend their lifetime (the oldest known historical trusses in Slovakia are those of the 13th century), it is necessary to look into the microclimate impact of the under-roof space on wooden roof structures as well as to monitor the contemporary constructional and technical condition of a roof structure itself. The suitable microclimate in the under-roof space is influenced by a number of marginal conditions, constructional solutions of roof details, proper space ventilation etc

  13. The clinical potential of Enhanced-ice-COLD-PCR.

    PubMed

    Tost, Jörg

    2016-01-01

    Enhanced-ice-COLD-PCR (E-ice-COLD-PCR) is a novel assay format that allows for the efficient enrichment and sensitive detection of all mutations in a region of interest using a chemically modified blocking oligonucleotide, which impedes the amplification of wild-type sequences. The assay is compatible with DNA extracted from tissue and cell-free circulating DNA. The main features of E-ice-COLD-PCR are the simplicity of the setup and the optimization of the assay, the use of standard laboratory equipment and the very short time to results (~4 h including DNA extraction, enrichment and sequence-based identification of mutations). E-ice-COLD-PCR is therefore a highly promising technology for a number of basic research as well as clinical applications including detection of clinically relevant mutated subclones and monitoring of treatment response or disease recurrence. PMID:26589575

  14. Strip edge cracking simulation in cold rolling

    SciTech Connect

    Hubert, C.; Dubar, L.; Dubar, M.; Dubois, A.

    2011-01-17

    This research work focuses on a specific defect which occurs during cold rolling of steel strips: edge-serration. Investigations on the industrial processes have led to the conclusion that this defect is the result of the edge-trimming and cold rolling sequences. The aim of this research work is to analyze the effect of the cutting process and the cold rolling on cracks occurrence, especially on strip edges.This study is performed using an experimental testing stand called Upsetting Rolling Test (URT). It allows to reproduce cold rolling contact parameters such as forward slip, reduction ratio and friction coefficients. Specimens sampled near trimmed industrial strip edges are deformed using the URT stand. Two sets of specimens with different stress states, obtained by annealing, are submitted to two reduction passes with extreme forward slips.Scanning electron microscopy observations added to 3D optical surface profiler topographies show that on one hand, forward slip has a major effect on cracks opening. On the other hand, cracks opening decreases according to high roll strip speed gradient. Concerning the heat-treated specimens, no crack appeared after all reduction passes, showing a large influence of the cutting process and consequently of the local stress state in the vicinity of the burnish and fracture regions.

  15. Cold Sores

    MedlinePlus

    ... causes oral herpes, or cold sores. Type 1 herpes virus infects more than half of the U.S. population by the time they reach their 20s. Type 2 usually affects the genital area Some people have no symptoms from the ...

  16. Psychological and psychophysiological factors in prevention and treatment of cold injuries.

    PubMed

    Kappes, B; Mills, W; O'Malley, J

    1993-01-01

    health, performance, and injury prevention in extreme isolated cold environments has important strategic and scientific implications. What is learned from behavioral studies of cold survival provides an opportunity to increase our scientific knowledge and understanding. These cold research findings can assist in our future exploration of cold, underwater farming at great depths, and to far distance space travel to cold planets. The relatively new research frontier "Polar Psychology" has evolved to study how interactions with cold environments can have both positive and/or negative consequences. This research simulates the psychological factors likely to be encountered while exploring isolated cold regions of distant galaxies. The psychological and psychophysiological correlates of cold experience appear to be a function of four interactive issues: the environment, genetic predisposition, learning or experience, and finally perception or cognition. Individual cold tolerance seems to relate heavily on sensation, perception and behavior.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:8214374

  17. Disconnected Youth in the Research Triangle Region: An Ominous Problem Hidden in Plain Sight

    ERIC Educational Resources Information Center

    Dodson, David; Guillory, Ferrel; Lipsitz, Joan; Raper, Noah; Rausch, Christina

    2008-01-01

    In September 2006, the North Carolina GlaxoSmithKline Foundation commissioned MDC, Inc. of Chapel Hill to analyze the problem of "disconnected youth" in the Research Triangle region, determine the current state of the region's responses to the challenge, and recommend steps to deepen and accelerate action on the issue. The research process was…

  18. Advancements in Micrometeorological Technique for Monitoring CH4 Release from Remote Permafrost Regions: Principles, Emerging Research, and Latest Updates

    NASA Astrophysics Data System (ADS)

    Burba, George; Budishchev, Artem; Gioli, Beniamino; Haapanala, Sami; Helbig, Manuel; Losacco, Salvatore; Mammarella, Ivan; Moreaux, Virginie; Murphy, Patrick; Oechel, Walter; Peltola, Olli; Rinne, Janne; Sonnentag, Oliver; Sturtevant, Cove; Vesala, Timo; Zona, Donatella; Zulueta, Rommel

    2014-05-01

    in permafrost regions have mostly been made with static chamber techniques, and few were done with the eddy covariance approach using closed-path analyzers. Although chambers and closed-path analyzers have advantages, both techniques have significant limitations, especially for remote or portable research in cold regions. Static chamber measurements are discrete in time and space, and particularly difficult to use over polygonal tundra with highly non-uniform micro-topography and active soil layer. Closed-path gas analyzers for measuring CH4 eddy fluxes require climate control, employ high-power pumps, and generally require grid power and infrastructure. As a result, spatial coverage of eddy covariance CH4 flux measurements in cold regions remains limited. Existing stations are often located near grid power sources and roads rather than in the middle of the methane-producing ecosystem, while those that are placed appropriately may require extraordinary efforts to build and maintain them, with large investments into manpower and infrastructure. In this presentation, basic principles of eddy covariance flux measurements are explained, along with details on the CH4, CO2 and H2O exchange measurements using low-power flux stations. Also included are latest updates on the emerging research utilizing such stations in remote permafrost regions, and on the 2013-2014 development of fully automated remote unattended flux station capable of processing data on-the-go to continuously output final CH4 release rates.

  19. Converged Infrastructure for Emerging Regions - A Research Agenda

    NASA Astrophysics Data System (ADS)

    Chevrollier, Nicolas; Zidbeck, Juha; Ntlatlapa, Ntsibane; Simsek, Burak; Marikar, Achim

    In remote parts of Africa, the lack of energy supply, of wired infrastructure, of trained personnel and the limitation in OPEX and CAPEX impose stringent requirements on the network building blocks that support the communication infrastructure. Consequently, in this promising but untapped market, the research aims at designing and implementing energy-efficient, robust, reliable and affordable wide heterogeneous wireless mesh networks to connect geographically very large areas in a challenged environment. This paper proposes a solution that is aimed at enhancing the usability of Internet services in the harsh target environment and especially how the end-users experience the reliability of these services.

  20. Moving Research to Practice in America's Schools. Annual Report of the Regional Educational Laboratories, 1997.

    ERIC Educational Resources Information Center

    Office of Educational Research and Improvement (ED), Washington, DC.

    The network of 10 Regional Educational Laboratories works to ensure that those involved in educational improvement at the local, state, and regional levels have access to the best available information from research and practice. This report highlights major 1997 accomplishments of the Regional Educational Laboratory Program supported by contracts…

  1. Properties of a Cold-Neutron Irradiation Facility for In Vitro Research on Boron Neutron Capture Therapy at the Geesthacht Neutron Facility

    SciTech Connect

    Luedemann, L.; Kampmann, R.; Sosaat, W.; Staron, P.; Wille, P.

    2000-05-15

    A new irradiation facility, GBET (basic research on boron neutron capture therapy), especially designed for in vitro experiments on boron neutron capture therapy was put into operation at the Geesthacht Neutron Facility of the GKSS Research Center. Its location at a cold-neutron guide without direct view of the reactor core has two advantages: First, contamination of the primary beam with fast neutrons or photons is negligible. Second, GBET yields a high cold-neutron flux of 1.4 x 10{sup 8}/(cm{sup 2}.s) over an area of 3 x 4 cm. As a result of the energy dependence of the neutron absorption cross section of boron, this corresponds to a higher effective thermal flux of 4.7 x 10{sup 8}/(cm{sup 2}.s). This effect is used to reduce the irradiation times by a factor of 3.32.The effective flux is sufficient for irradiation of thin samples like cell monolayers in conventional culture flasks. For such in vitro irradiations, a survival fraction of 1% is achieved at a homogeneous boron concentration of 100 ppm {sup 10}B within {approx}20 min. Furthermore, the beam can be used for boron radiography. The respective experimental conditions are discussed, especially the neutron flux distribution, available for these different types of samples.

  2. Ocean-Atmosphere Environments of Antarctic-Region Cold-Air Mesocyclones: Evaluation of Reanalyses for Contrasting Adjacent 10-Day Periods ("Macro-Weather") in Winter.

    NASA Astrophysics Data System (ADS)

    Carleton, A. M.; Auger, J.; Birkel, S. D.; Maasch, K. A.; Mayewski, P. A.; Claud, C.

    2015-12-01

    Mesoscale cyclones in cold-air outbreaks (mesocyclones) feature in the weather and climate of the Antarctic (e.g., Ross Sea) and sub-antarctic (Drake Passage). They adversely impact field operations, and influence snowfall, the ice-sheet mass balance, and sea-air energy fluxes. Although individual mesocyclones are poorly represented on reanalyses, these datasets robustly depict the upper-ocean and troposphere environments in which multiple mesocyclones typically form. A spatial metric of mesocyclone activity—the Meso-Cyclogenesis Potential (MCP)—used ERA-40 anomaly fields of: sea surface temperature (SST) minus marine air temperature (MAT), near-surface winds, 500 hPa air temperature, and the sea-ice edge location. MCP maps composited by teleconnection phases for 1979-2001, broadly correspond to short-period satellite "climatologies" of mesocyclones. Here, we assess 3 reanalysis datasets (CFSR, ERA-I and MERRA) for their reliably to depict MCP patterns on weekly to sub-monthly periods marked by strong regional shifts in mesocyclone activity (frequencies, track densities) occurring during a La Niña winter: June 21-30, 1999 (SE Indian Ocean) and September 1-10, 1999 (Ross Sea sector). All reanalyses depict the marked variations in upper ocean and atmosphere variables between adjacent 10-day periods. Slight differences may owe to model resolution or internal components (land surface, coupled ocean models), and/or how the observations are assimilated. For June 21-30, positive SST-MAT, southerly winds, proximity to the ice edge, and negative T500, accompany increased meso-cyclogenesis. However, for September 1-10, surface forcing does not explain frequent comma cloud "polar lows" north-east of the Ross Sea. Inclusion of the upper-level diffluence (e.g., from Z300 field) in the MCP metric, better depicts the observed mesocyclone activity. MCP patterns on these "macro-weather" time scales appear relatively insensitive to the choice of reanalysis.

  3. Hot, Cold, and Really Cold.

    ERIC Educational Resources Information Center

    Leyden, Michael

    1997-01-01

    Describes a physics experiment investigating temperature prediction and the relationship between the physical properties of heat units, melting, dissolving, states of matter, and energy loss. Details the experimental setup, which requires hot and cold water, a thermometer, and ice. Notes that the experiment employs a deliberate counter-intuitive…

  4. Ecohydrological research in the Poyang lake region in China

    NASA Astrophysics Data System (ADS)

    Schmalz, Britta; Fohrer, Nicola; Jähnig, Sonja; Cai, Qinghua; Bieger, Katrin

    2010-05-01

    The presented concept of the DFG project "Integrated modelling of the response of aquatic ecosystems to land use and climate change in the Poyang lake region, China" is part of the NSFC/DFG-Joint funding programme "Land Use and Water Resources Management under Changing Environmental Conditions". The aim of our project is the development of an integrated modelling methodology to assess the impact of fast environmental changes on aquatic ecosystems in the example catchment of the Changjiang (6260 km²) in the Poyang lake area (China). Joint measurement and sampling campaigns will be the basis for integrating three different models: we aim to model a dynamic DPSI(R)-system, for the first time coupling the models SWAT (catchment processes), HEC-RAS (in-stream processes) and MAXENT/BIOMOD (biological responses). Major drivers (climate, land use, channel alteration) are model input data, while the main pressures on the ecosystem (water balance, nutrients, sedimentation) are defined and represented in the model algorithms of SWAT and HEC-RAS. Based on the multiple pressures, we aim to dynamically assess the changes of the state of habitat parameters (e.g. flow, depth, substrate) in the model output. Finally, the impact of the state on the aquatic eco-systems will be evaluated by analysing shift of distribution ranges modelled by MAXENT/BIOMOD and changes in biodiversity or ecosystem health indicators of benthic invertebrates, an important group in freshwater ecosystems. Joint scenario runs considering climate or land use changes will particularly enhance understanding (1) how landscape processes and nutrient cycles interact with ecohydrological and aquatic system properties and (2) how the impact of land use, climate and hydromorphological change on aquatic ecosystem properties can be assessed.

  5. Monitoring of Sedimentary Fluxes in Cold Environments: The SEDIBUD (Sediment Budgets in Cold Environments) Programme

    NASA Astrophysics Data System (ADS)

    Beylich, Achim A.

    2014-05-01

    Projected climate change in cold regions is expected to alter melt season duration and intensity, along with the number of extreme rainfall events, total annual precipitation and the balance between snowfall and rainfall. Similarly, changes to the thermal balance are expected to reduce the extent of permafrost and seasonal ground frost and increase active layer depths. These effects will undoubtedly change surface environments in cold regions and alter the fluxes of sediments, nutrients and solutes, but the absence of quantitative data and coordinated geomorphic process monitoring and analysis to understand the sensitivity of the Earth surface environment is acute in cold climate environments. The International Association of Geomorphologists` (I.A.G. / A.I.G.) SEDIBUD (Sediment Budgets in Cold Environments) Program (2005 - 2017) is addressing this existing key knowledge gap. The central research question of this global group of scientists is to: Assess and model the contemporary sedimentary fluxes in cold climates, with emphasis on both particulate and dissolved components. Research carried out at each of the ca. 50 defined SEDIBUD key test sites varies by program, logistics and available resources, but typically represent interdisciplinary collaborations of geomorphologists, hydrologists, ecologists, permafrost scientists and glaciologists. SEDIBUD has developed manuals and protocols (SEDIFLUX Manual) with a key set of primary surface process monitoring and research data requirements to incorporate results from these diverse projects and allow coordinated quantitative analysis across the program. Defined SEDIBUD key tasks for the coming years include (i) The continued generation and compilation of comparable longer-term datasets on contemporary sedimentary fluxes and sediment yields from SEDIBUD key test sites worldwide, (ii) The continued extension of the SEDIBUD metadata database with these datasets, (iii) The testing of defined SEDIBUD hypotheses (available

  6. Chilling Out with Colds

    MedlinePlus

    ... most common cold virus, but more than 200 viruses can cause colds. Because there are so many, ... to help you feel better. Take that, cold viruses! continue How Kids Catch Colds Mucus (say: MYOO- ...

  7. Coping with Cold Sores

    MedlinePlus

    ... Here's Help White House Lunch Recipes Coping With Cold Sores KidsHealth > For Kids > Coping With Cold Sores ... sore." What's that? Adam wondered. What Is a Cold Sore? Cold sores are small blisters that is ...

  8. Cold Stowage Flight Systems

    NASA Technical Reports Server (NTRS)

    Campana, Sharon E.; Melendez, David T.

    2011-01-01

    The International Space Station (ISS) provides a test bed for researchers to perform science experiments in a variety of fields, including human research, life sciences, and space medicine. Many of the experiments being conducted today require science samples to be stored and transported in a temperature controlled environment. NASA provides several systems which aid researchers in preserving their science. On orbit systems provided by NASA include the Minus Eighty Laboratory freezer for ISS (MELFI), Microgravity Experiment Research Locker Incubator (MERLIN), and Glacier. These freezers use different technologies to provide rapid cooling and cold stowage at different temperature levels on board ISS. Systems available to researchers during transportation to and from ISS are MERLIN, Glacier, and Coldbag. Coldbag is a passive cold stowage system that uses phase change materials to maintain temperature. Details of these current technologies are provided along with operational experience gained to date. This paper discusses the capability of the current cold stowage hardware and how it may continue to support NASA s mission on ISS and in future exploration missions.

  9. Cold Stowage Flight Systems

    NASA Technical Reports Server (NTRS)

    Campana, Sharon

    2010-01-01

    The International Space Station (ISS) provides a test bed for researchers to perform science experiments in a variety of fields, including human research, life sciences, and space medicine. Many of the experiments being conducted today require science samples to be stored and transported in a temperature controlled environment. NASA provides several systems which aide researchers in preserving their science. On orbit systems provided by NASA include the Minus Eighty Laboratory freezer for ISS (MELFI), Microgravity Experiment Research Locker Incubator (MERLIN), and Glacier. These freezers use different technologies to provide rapid cooling and cold stowage at different temperature levels on board ISS. Systems available to researchers during transportation to and from ISS are MERLIN, Glacier, and Coldbag. Coldbag is a passive cold stowage system that uses phase change materials. Details of these current technologies will be provided along with operational experience gained to date. With shuttle retirement looming, NASA has protected the capability to provide a temperature controlled environment during transportation to and from the ISS with the use of Glacier and Coldbags, which are compatible with future commercial vehicles including SpaceX's Dragon Capsule, and Orbital s Cygnus vehicle. This paper will discuss the capability of the current cold stowage hardware and how it may continue to support NASA s mission on ISS and in future exploration missions.

  10. 20 Years of Developing Capacity for Action-Oriented Collaborative Regional Research in the Asia-Pacific Region

    NASA Astrophysics Data System (ADS)

    Tupas, L. M.; Stevenson, L. A.

    2015-12-01

    During its 3rd strategic phase, which ran from 2010 to 2015, the APN provided support for 123 projects through its competitive collaborative regional research and capacity development programmes. With over 250 peer-reviewed papers and the underlying philosophy that the regional research it undertakes engages at least two developing countries, the 3rd strategic phase is not only improving the research capabilities of nations in the region, but is engaging the developing country community in underpinning policy-relevant research. The extent to which science is contributing to policy is further evident in that 69% of the activities conducted had some form of science-policy mechanism built in to the project activities. The period of the 3rd Strategic Phase has been witness to significant changes in the make-up of the "conventional" global change arena, with the transition of some global change programmes into the new "Future Earth" initiative. At the same time, major events such as the Rio+20 Summit, the post-2015 Sustainable Development Goals, the establishment of an IPCC-related platform for biodiversity, i.e. IPBES, and the evolving engagement of science and policy communities has kept the APN busy at what it does best - networking and partnering with the international community. The APN has embraced these changes through its dynamism, allowing the APN to meet not only the needs of the scientists and decision makers its serves in the region but those of the international science communities as well. The challenge for the APN in its next two decades will be to ensure alignment with the transforming global change arena. With key phrases such as "policy-relevant science" and "science-policy interactions" being adopted broadly by the community at large these days, the APN's niche in the global community has received considerable recognition, particularly as other institutions strive to adopt similar practices that the APN has built over the last 20 years.

  11. “You Can’t be Cold and Scientific”: Community Views on Ethical Issues in Intellectual Disability Research

    PubMed Central

    McDonald, Katherine E.; Schwartz, Nicole M.; Gibbons, Colleen M.; Olick, Robert S.

    2015-01-01

    Perceptions, attitudes, and ethical concerns related to conducting research with adults with intellectual disability hinder scientific innovation to promote health. Yet we lack an understanding of community views on effective research policy and practice. To address this knowledge void, we qualitatively studied the views of adults with intellectual disability and those who provide them support regarding research participation of adults with intellectual disability. We found substantial support for their inclusion, particularly given the possibility of benefits to adults with intellectual disability, researchers, and society. We also found concerns for potential harm and differing ideas on how to promote safety. Our findings emphasize the importance of their inclusion in research, and the need for policies and practices that promote respect and safety. PMID:25769310

  12. Status of national health research systems in ten countries of the WHO African Region

    PubMed Central

    Kirigia, Joses M; Wambebe, Charles

    2006-01-01

    Background The World Health Organization (WHO) Regional Committee for Africa, in 1998, passed a resolution (AFR/RC48/R4) which urged its Member States in the Region to develop national research policies and strategies and to build national health research capacities, particularly through resource allocation, training of senior officials, strengthening of research institutions and establishment of coordination mechanisms. The purpose of this study was to take stock of some aspects of national resources for health research in the countries of the Region; identify current constraints facing national health research systems; and propose the way forward. Methods A questionnaire was prepared and sent by pouch to all the 46 Member States in the WHO African Region through the WHO Country Representatives for facilitation and follow up. The health research focal person in each of the countries Ministry of Health (in consultation with other relevant health research bodies in the country) bore the responsibility for completing the questionnaire. The data were entered and analysed in Excel spreadsheet. Results The key findings were as follows: the response rate was 21.7% (10/46); three countries had a health research policy; one country reported that it had a law relating to health research; two countries had a strategic health research plan; three countries reported that they had a functional national health research system (NHRS); two countries confirmed the existence of a functional national health research management forum (NHRMF); six countries had a functional ethical review committee (ERC); five countries had a scientific review committee (SRC); five countries reported the existence of health institutions with institutional review committees (IRC); two countries had a health research programme; and three countries had a national health research institute (NHRI) and a faculty of health sciences in the national university that conducted health research. Four out of the ten

  13. COLD TRAPS

    DOEpatents

    Thompson, W.I.

    1958-09-30

    A cold trap is presented for removing a condensable component from a gas mixture by cooling. It consists of a shell, the exterior surface of which is chilled by a refrigerant, and conductive fins welded inside the shell to condense the gas, and distribute the condensate evenly throughout the length of the trap, so that the trap may function until it becomes completely filled with the condensed solid. The contents may then be removed as either a gas or as a liquid by heating the trap. This device has particuinr use as a means for removing uranium hexafluoride from the gaseous diffusion separation process during equipment breakdown and repair periods.

  14. The Development of a Regional Nursing History Collection: Its Relevance to Practice, Education, and Research.

    ERIC Educational Resources Information Center

    Hezel, Linda F.; Linebach, Laura M.

    1991-01-01

    The Nursing History Collection at the University of Missouri-Kansas City preserves artifacts and memorabilia of regional nursing history. Such collections are essential to practice, education, and research in nursing. (SK)

  15. COLLABORATIVE RESEARCH, MONITORING AND ASSESSMENT IN THE MID-ATLANTIC REGION

    EPA Science Inventory

    EPA Region 3 to implement a long-term research, monitoring, and assessment program in the Mid-Atlantic region - the Mid-Atlantic Integrated Assessment (MAIA). The MAIA mission is to develop a broad-based partnership to integrate scientific knowledge into the decision-making proc...

  16. Handbook of Research on Higher Education in the MENA Region: Policy and Practice

    ERIC Educational Resources Information Center

    Baporikar, Neeta, Ed.

    2014-01-01

    As the Middle East and North Africa (MENA) region becomes increasingly intertwined in the global economy, investment continues to be made in the educational sector. Multidimensional approaches to higher education have greatly influenced the state of business and government in the region. The "Handbook of Research on Higher Education in the…

  17. Regional Educational Laboratories 2002 Annual Report: Improving the Lives of Children through Education Research & Development.

    ERIC Educational Resources Information Center

    Northeast and Islands Regional Educational Lab. at Brown Univ., Providence, RI.

    This report, the second annual report of the Regional Educational Laboratory (REL) system's current 5-year contract, shows the progress laboratories have made in meeting regional challenges and establishing national leadership in critical areas. The report also illustrates who the labs are using research and development to gain knowledge about how…

  18. GLOBAL CHANGE RESEARCH NEWS #6: PUBLICATION OF FIRST REPORT FROM MID-ATLANTIC REGIONAL ASSESSMENT (MARA)

    EPA Science Inventory

    This research news edition announces the publication of the first report from the Mid-Atlantic Regional Assessment (MARA). The report is entitled, *Climate Change Impacts in the Mid-Atlantic Region -- A Workshop Report.* MARA is being conducted as part of the USGCRP First Nation...

  19. Current and Future Directions for Cotton Utilization Research at the USDA Southern Regional Research Center

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research directed at discovering and developing new ways to use cotton, new and valuable end use attributes and new functional properties will expand the volume and value of cotton fiber through increased demand for cotton containing products. The Cotton Utilization Research at the USDA Southern Reg...

  20. Titanium Cold Spray Coatings

    NASA Astrophysics Data System (ADS)

    Ajaja, Jihane; Goldbaum, Dina; Chromik, Richard; Yue, Stephen; Rezaeian, Ahmad; Wong, Wilson; Irissou, Eric; Legoux, Jean-Gabriel

    Titanium Cold Spray Coatings Cold Spray is an emerging technology used for the deposition of coatings for many industries including aerospace. This technique allows the deposition of metallic materials at low temper-atures below their melting point. The aim of this research was to develop a test technique that can measure the degree to which a cold spray coating achieves mechanical properties similar to a traditional bulk material. Vickers hardness testing and nanoindentation were used as micro-and nano-scale measurement techniques to characterize the mechanical properties of titanium coatings, deposited at different deposition conditions, and bulk Ti. The mechanical properties of bulk titanium and titanium coatings were measured over a range of length scales, with the indentation size effect examined with Meyer's law. Hardness measurements are shown to be affected by material porosity, microstructure and coating particle bonding mechanism. Hard-ness measurements showed that Ti coatings deposited at higher gas pressures and temperatures demonstrate an indentation load response similar to bulk Ti. Key words: titanium, cold spray, Vickers hardness, nanoindentation, indentation size effect, microstructure, mechanical properties

  1. ROCKY MOUNTAIN REGIONAL HAZARDOUS SUBSTANCE RESEARCH CENTER FOR REMEDIATION OF MINE WASTE SITES

    EPA Science Inventory

    A total of 11 research projects were funded as part of the Rocky Mountain Regional HSRC. The typical project duration was 2 years, with one project funded for 3 years and another project funded for only 1 year. Three projects were funded in each of three research focus areas, ...

  2. Researching School Choice in Regional Australia: What Can This Tell Us about the Ethnographic Imaginary?

    ERIC Educational Resources Information Center

    Tsolidis, Georgina

    2016-01-01

    This is an exploration of methodological debates related to ethnographic research. Reflection on conducting research on school choice in an Australian regional centre is the beginning point for a discussion of what Appadurai describes as a dialectical relationship between the neighbourhood and its capacity to exist and reshape itself in relation…

  3. Indiana Vocational Technical College: Region 8. Organizational Development Research. A Multiplex Opportunities for Vocational Education Report.

    ERIC Educational Resources Information Center

    Britton, Ronald B.

    Four major components comprised the Organizational Development Research Project at Indiana Vocational Technical College (Ivy Tech). The major component of the research was an evaluation of a model of cost effectiveness/benefit analysis previously developed for postsecondary vocational educators in Indiana. Cost data for all Region 8 Ivy Tech…

  4. Regional Exchanges of Information through Intermediate Linkages Affiliated with SEAs: The Research and Development Exchange (RDx).

    ERIC Educational Resources Information Center

    Kronkosky, Preston C.

    The Research and Development Exchange (RDx) is a network of eight regional educational laboratories, one university-based research and development center, and a consortium of seven state education agencies working to support state and local school improvement efforts. The RDx has four goals, designed to support dissemination and school improvement…

  5. GLOBAL CHANGE RESEARCH NEWS #2: MID-ATLANTIC REGIONAL ASSESSMENT (MARA)

    EPA Science Inventory

    As part of this National Assessment effort mandated by the Global Change Research Act of 1990, EPA's Global Change Research Program is sponsoring the Mid-Atlantic Regional Assessment (MARA). With EPA sponsorship, a multi-disciplinary team of faculty members is leading the first a...

  6. Overview of Predictive Microbiology Research in the Microbial Food Safety Research Unit at the USDA-Eastern Regional Research Center

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Microbial Food Safety Research Unit (MFSRU) maintains a commitment to high quality basic and applied research on pathogenic bacteria and virus to ensure a safe food supply. Their research addresses high priority U.S. national needs by developing technical information and technologies needed by F...

  7. Experimental characterization of the Advanced Liquid Hydrogen Cold Neutron Source spectrum of the NBSR reactor at the NIST Center for Neutron Research

    NASA Astrophysics Data System (ADS)

    Cook, J. C.; Barker, J. G.; Rowe, J. M.; Williams, R. E.; Gagnon, C.; Lindstrom, R. M.; Ibberson, R. M.; Neumann, D. A.

    2015-08-01

    The recent expansion of the National Institute of Standards and Technology (NIST) Center for Neutron Research facility has offered a rare opportunity to perform an accurate measurement of the cold neutron spectrum at the exit of a newly-installed neutron guide. Using a combination of a neutron time-of-flight measurement, a gold foil activation measurement, and Monte Carlo simulation of the neutron guide transmission, we obtain the most reliable experimental characterization of the Advanced Liquid Hydrogen Cold Neutron Source brightness to date. Time-of-flight measurements were performed at three distinct fuel burnup intervals, including one immediately following reactor startup. Prior to the latter measurement, the hydrogen was maintained in a liquefied state for an extended period in an attempt to observe an initial radiation-induced increase of the ortho (o)-hydrogen fraction. Since para (p)-hydrogen has a small scattering cross-section for neutron energies below 15 meV (neutron wavelengths greater than about 2.3 Å), changes in the o- p hydrogen ratio and in the void distribution in the boiling hydrogen influence the spectral distribution. The nature of such changes is simulated with a continuous-energy, Monte Carlo radiation-transport code using 20 K o and p hydrogen scattering kernels and an estimated hydrogen density distribution derived from an analysis of localized heat loads. A comparison of the transport calculations with the mean brightness function resulting from the three measurements suggests an overall o- p ratio of about 17.5(±1) % o- 82.5% p for neutron energies<15 meV, a significantly lower ortho concentration than previously assumed.

  8. Assessing the state of health research in the Eastern Mediterranean Region

    PubMed Central

    Ismail, S A; McDonald, A; Dubois, E; Aljohani, F G; Coutts, A P; Majeed, A; Rawaf, S

    2013-01-01

    Summary Member states across the Eastern Mediterranean region face unprecedented health challenges, buffeted by demographic change, a dual disease burden, rising health costs, and the effects of ongoing conflict and population movements – exacerbated in the near-term by instability arising from recent political upheaval in the Middle East. However, health actors in the region are not well positioned to respond to these challenges because of a dearth of good quality health research. This review presents an assessment of the current state of health research systems across the Eastern Mediterranean based on publicly available literature and data sources. The review finds that – while there have been important improvements in productivity in the Region since the early 1990s – overall research performance is poor with critical deficits in system stewardship, research training and human resource development, and basic data surveillance. Translation of research into policy and practice is hampered by weak institutional and financial incentives, and concerns over the political sensitivity of findings. These problems are attributable primarily to chronic under-investment – both financial and political – in Research and Development systems. This review identifies key areas for a regional strategy and how to address challenges, including increased funding, research capacity-building, reform of governance arrangements and sustained political investment in research support. A central finding is that the poverty of publicly available data on research systems makes meaningful cross-comparisons of performance within the EMR difficult. We therefore conclude by calling for work to improve understanding of health research systems across the region as a matter of urgency. PMID:23761582

  9. A Preliminary Study of Surface Temperature Cold Bias in COAMPS

    SciTech Connect

    Chin, H-N S; Leach, M J; Sugiyama, G A; Aluzzi, F J

    2001-04-27

    It is well recognized that the model predictability is more or less hampered by the imperfect representations of atmospheric state and model physics. Therefore, it is a common problem for any numerical models to exhibit some sorts of biases in the prediction. In this study, the emphasis is focused on the cold bias of surface temperature forecast in Naval Research Laboratory's three-dimensional mesoscale model, COAMPS (Coupled Ocean/Atmosphere Mesoscale Prediction System). Based on the comparison with the ground station data, there were two types of ground temperature cold biases identified in LLNL (Lawrence Livermore National Laboratory) operational forecasts of COAMPS over the California and Nevada regions during the 1999 winter and the 2000 spring. The first type of cold bias appears at high elevation regions covered by snow, and its magnitude can be as large as 30 F - 40 F lower than observed. The second type of cold bias mainly exists in the snow-free clear-sky regions, where the surface temperature is above the freezing point, and its magnitude can be up to 5 F - 10 F lower than observed. These cold biases can affect the low-level stratification, and even the diurnal variation of winds in the mountain regions, and therefore impact the atmospheric dispersion forecast. The main objective of this study is to explore the causes of such cold bias, and to further the improvement of the forecast performance in COAMPS. A series of experiments are performed to gauge the sensitivity of the model forecast due to the physics changes and large-scale data with various horizontal and vertical resolutions.

  10. Imaging with cold neutrons

    NASA Astrophysics Data System (ADS)

    Lehmann, E. H.; Kaestner, A.; Josic, L.; Hartmann, S.; Mannes, D.

    2011-09-01

    Neutrons for imaging purposes are provided mainly from thermal beam lines at suitable facilities around the world. The access to cold neutrons is presently limited to very few places only. However, many challenging options for imaging with cold neutrons have been found out, given by the interaction behavior of the observed materials with neutrons in the cold energy range (3-10 Å). For absorbing materials, the interaction probability increases proportionally with the wavelength with the consequence of more contrast but less transmission with cold neutrons. Many materials are predominantly scattering neutrons, in particular most of crystalline structural materials. In these cases, cold neutrons play an important role by covering the energy range of the most important Bragg edges given by the lattice planes of the crystallites. This particular behavior can be used for at least two important aspects—choosing the right energy of the initial beam enables to have a material more or less transparent, and a direct macroscopic visualization of the crystalline structure and its change in a manufacturing process. Since 2006, PSI operates its second beam line for neutron imaging, where cold neutrons are provided from a liquid deuterium cold source (operated at 25 K). It has been designed to cover the most current aspects in neutron imaging research with the help of high flexibility. This has been done with changeable inlet apertures, a turbine based velocity selector, two beam positions and variable detector systems, satisfying the demands of the individual investigation. The most important detection system was found to be a micro-tomography system that enables studies in the presently best spatial resolution. In this case, the high contrast from the sample interaction process and the high detection probability for the cold neutrons combines in an ideal combination for the best possible performance. Recently, it was found out that the energy selective studies might become a

  11. COLD-PCR amplification of bisulfite-converted DNA allows the enrichment and sequencing of rare un-methylated genomic regions.

    PubMed

    Castellanos-Rizaldos, Elena; Milbury, Coren A; Karatza, Elli; Chen, Clark C; Makrigiorgos, G Mike; Merewood, Anne

    2014-01-01

    Aberrant hypo-methylation of DNA is evident in a range of human diseases including cancer and diabetes. Development of sensitive assays capable of detecting traces of un-methylated DNA within methylated samples can be useful in several situations. Here we describe a new approach, fast-COLD-MS-PCR, which amplifies preferentially un-methylated DNA sequences. By employing an appropriate denaturation temperature during PCR of bi-sulfite converted DNA, fast-COLD-MS-PCR enriches un-methylated DNA and enables differential melting analysis or bisulfite sequencing. Using methylation on the MGMT gene promoter as a model, it is shown that serial dilutions of controlled methylation samples lead to the reliable sequencing of un-methylated sequences down to 0.05% un-methylated-to-methylated DNA. Screening of clinical glioma tumor and infant blood samples demonstrated that the degree of enrichment of un-methylated over methylated DNA can be modulated by the choice of denaturation temperature, providing a convenient method for analysis of partially methylated DNA or for revealing and sequencing traces of un-methylated DNA. Fast-COLD-MS-PCR can be useful for the detection of loss of methylation/imprinting in cancer, diabetes or diet-related methylation changes. PMID:24728321

  12. Regional discrimination research and methodology implementation: Analyses of CDSN and Soviet IRIS data. Technical report

    SciTech Connect

    Bennett, T.J.; Scheimer, J.F.; Campanella, A.K.; Murphy, J.R.

    1990-07-01

    The objective of this research is to evaluate the capability of regional stations in discrimination of underground nuclear explosions from earthquakes and non-nuclear explosions. Efforts during the first year of this program have focused on studies of regional data from the Chinese Digital Seismic Network(CDSN) and Incorporated Research Institutions for Seismology(IRIS) stations in the Soviet Union. A previous report described observations from the CDSN station at WMQ which indicated differences in relative spectral content of Lg versus regional P for explosions and earthquakes. In the current research we used different spectral analyses to study the signals from a larger event sample including 27 East Kazakh explosions and 32 regional earthquakes. Lg/P ratios for regional earthquakes were found to be enriched at high frequencies compared to similar explosions. In comparing explosions from Shagan River and Degelen Mountain areas it was found that regional P signals are relatively stronger from SR than from DM explosions with similar Lg signals. Analysis of East Kazakh explosion signals recorded at Soviet IRIS stations indicates that regional signals are observable down to very low magnitudes. Lg magnitude residuals from these stations have been used to derive effective Q values for these paths.

  13. Peaceful atoms in agriculture and food: how the politics of the Cold War shaped agricultural research using isotopes and radiation in post war divided Germany.

    PubMed

    Zachmann, Karin

    2015-01-01

    During the Cold War, the super powers advanced nuclear literacy and access to nuclear resources and technology to a first-class power factor. Both national governments and international organizations developed nuclear programs in a variety of areas and promoted the development of nuclear applications in new environments. Research into the use of isotopes and radiation in agriculture, food production, and storage gained major importance as governments tried to promote the possibility of a peaceful use of atomic energy. This study is situated in divided Germany as the intersection of the competing socio-political systems and focuses on the period of the late 1940s and 1950s. It is argued that political interests and international power relations decisively shaped the development of "nuclear agriculture". The aim is to explore whether and how politicians in both parts of the divided country fostered the new field and exerted authority over the scientists. Finally, it examines the ways in which researchers adapted to the altered political conditions and expectations within the two political structures, by now fundamentally different. PMID:26775431

  14. Extending Lkn Climate Regionalization with Spatial Regularization: AN Application to Epidemiological Research

    NASA Astrophysics Data System (ADS)

    Liss, Alexander; Gel, Yulia R.; Kulinkina, Alexandra; Naumova, Elena N.

    2016-06-01

    Regional climate is a critical factor in public health research, adaptation studies, climate change burden analysis, and decision support frameworks. Existing climate regionalization schemes are not well suited for these tasks as they rarely take population density into account. In this work, we are extending our recently developed method for automated climate regionalization (LKN-method) to incorporate the spatial features of target population. The LKN method consists of the data limiting step (L-step) to reduce dimensionality by applying principal component analysis, a classification step (K-step) to produce hierarchical candidate regions using k-means unsupervised classification algorithm, and a nomination step (N-step) to determine the number of candidate climate regions using cluster validity indexes. LKN method uses a comprehensive set of multiple satellite data streams, arranged as time series, and allows us to define homogeneous climate regions. The proposed approach extends the LKN method to include regularization terms reflecting the spatial distribution of target population. Such tailoring allows us to determine the optimal number and spatial distribution of climate regions and thus, to ensure more uniform population coverage across selected climate categories. We demonstrate how the extended LKN method produces climate regionalization can be better tailored to epidemiological research in the context of decision support framework.

  15. Cold symptoms (image)

    MedlinePlus

    Colds are caused by a virus and can occur year-round. The common cold generally involves a runny nose, nasal congestion, and ... symptoms include sore throat, cough, and headache. A cold usually lasts about 7 days, with perhaps a ...

  16. Colds and flus - antibiotics

    MedlinePlus

    Antibiotics - colds and flu ... treat infections that are caused by a virus. Colds and flu are caused by viruses. If you ... Hamilton A. Treatments for symptoms of the common cold. Am Fam Physician. 2013;88(12):Online. PMID: ...

  17. Cough & Cold Medicine Abuse

    MedlinePlus

    ... I Help a Friend Who Cuts? Cough & Cold Medicine Abuse KidsHealth > For Teens > Cough & Cold Medicine Abuse ... DXM Why Do People Use Cough and Cold Medicines to Get High? There's an ingredient in many ...

  18. Cold plasma decontamination of foods.

    PubMed

    Niemira, Brendan A

    2012-01-01

    Cold plasma is a novel nonthermal food processing technology that uses energetic, reactive gases to inactivate contaminating microbes on meats, poultry, fruits, and vegetables. This flexible sanitizing method uses electricity and a carrier gas, such as air, oxygen, nitrogen, or helium; antimicrobial chemical agents are not required. The primary modes of action are due to UV light and reactive chemical products of the cold plasma ionization process. A wide array of cold plasma systems that operate at atmospheric pressures or in low pressure treatment chambers are under development. Reductions of greater than 5 logs can be obtained for pathogens such as Salmonella, Escherichia coli O157:H7, Listeria monocytogenes, and Staphylococcus aureus. Effective treatment times can range from 120 s to as little as 3 s, depending on the food treated and the processing conditions. Key limitations for cold plasma are the relatively early state of technology development, the variety and complexity of the necessary equipment, and the largely unexplored impacts of cold plasma treatment on the sensory and nutritional qualities of treated foods. Also, the antimicrobial modes of action for various cold plasma systems vary depending on the type of cold plasma generated. Optimization and scale up to commercial treatment levels require a more complete understanding of these chemical processes. Nevertheless, this area of technology shows promise and is the subject of active research to enhance efficacy. PMID:22149075

  19. Cold Metal-Enhanced Fusion, Geo-Fusion and Cold Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Jones, S. E.; Ellsworth, J. E.

    2005-12-01

    In our 1986 and 1989 papers, we discussed the hypothesis of cold nuclear fusion in condensed matter (which we also call metal-enhanced fusion), particularly in the planets.1,2 The purpose of this paper is to provide an update on geo-fusion research, then to consider an important extension of the cold-fusion idea: cold nucleosynthesis in condensed matter. Cold nucleosynthesis experiments are underway at Brigham Young University.

  20. Western Regional Center of the National Institute for Climatic Change Research

    SciTech Connect

    Hungate, Bruce A.

    2013-05-02

    The major goal of this project was fostering, integrating, synthesizing, and disseminating experimental, observational, and modeling research on predicted climate change in the western region of the U.S. and the impacts of that change on the structure, productivity, and climatic interactions of the region's natural and managed ecological systems. This was accomplished through administering a competitive grants program developed in collaboration with the other four regional centers of the NICCR. The activities supported included efforts to synthesize research on climate change in the western U.S. through meta-analysis studies, model comparisons, and data synthesis workshops. Results from this work were disseminated to the scientific and public media. This project also supported the development of the NICCR web site, hosted at NAU, which was used as the means to accept pre-proposal and proposal submissions for each funding cycle, and served as a clearing house for public outreach for results from NICCR-funded research

  1. Cold Atoms

    NASA Astrophysics Data System (ADS)

    Bellac, Michel Le

    2014-11-01

    This chapter and the following one address collective effects of quantum particles, that is, the effects which are observed when we put together a large number of identical particles, for example, electrons, helium-4 or rubidium-85 atoms. We shall see that quantum particles can be classified into two categories, bosons and fermions, whose collective behavior is radically different. Bosons have a tendency to pile up in the same quantum state, while fermions have a tendency to avoid each other. We say that bosons and fermions obey two different quantum statistics, the Bose-Einstein and the Fermi-Dirac statistics, respectively. Temperature is a collective effect, and in Section 5.1 we shall explain the concept of absolute temperature and its relation to the average kinetic energy of molecules. We shall describe in Section 5.2 how we can cool atoms down thanks to the Doppler effect, and explain how cold atoms can be used to improve the accuracy of atomic clocks by a factor of about 100. The effects of quantum statistics are prominent at low temperatures, and atom cooling will be used to obtain Bose-Einstein condensates at low enough temperatures, when the atoms are bosons.

  2. Pan Eurasian Experiment (PEEX): a new research initiative focused on the Northern Pan-Eurasian Region

    NASA Astrophysics Data System (ADS)

    Petäjä, Tuukka; Lappalainen, Hanna; Zaytseva, Nina; Shvidenko, Anatoli; Kujansuu, Joni; Kerminen, Veli-Matti; Viisanen, Yrjö; Kotlyakov, Vladimir; Kasimov, Nikolai; Bondur, Valery; Matvienko, Gennadi; Zilitinkevich, Sergej; Kulmala, Markku

    2014-05-01

    The increasing human activities are changing the environment and the humanity is we are pushing the safe boundaries of the globe. It is of utmost importance to gauge with a comprehensive research program on the current status of the environment, particularly in the most vulnerable locations. Pan-Eurasian Experiment (PEEX) is a new multidisciplinary research approach aiming at resolving the major uncertainties in the Earth system science and global sustainability questions in the Arctic and boreal Pan-Eurasian regions. The PEEX program aims (i) to understand the Earth system and the influence of environmental and societal changes in pristine and industrialized Pan-Eurasian environments, (ii) to establish and sustain long-term, continuous and comprehensive ground-based airborne and seaborne research infrastructures, and to utilize satellite data and multi-scale model frameworks, (iii) to contribute to regional climate scenarios in the northern Pan-Eurasia and determine the relevant factors and interactions influencing human and societal wellbeing (iv) to promote the dissemination of PEEX scientific results and strategies in scientific and stake-holder communities and policy making, (v) to educate the next generation of multidisciplinary global change experts and scientists, and (vi) to increase the public awareness of climate change impacts in the Pan-Eurasian region. The development of PEEX research infrastructure will be one of the first activities of PEEX. PEEX will find synergies with the major European land-atmosphere observation infrastructures such as ICOS a research infrastructure to decipher the greenhouse gas balance of Europe and adjacent regions, ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure Network-project), and ANAEE (The experimentation in terrestrial ecosystem research) networks and with the flag ship stations like the SMEARs (Station for Measuring Ecosystem-Atmosphere Relations) when design, re-organizing and networking existing

  3. Crater degradation in the Noachian highlands of Mars: Assessing the hypothesis of regional snow and ice deposits on a cold and icy early Mars

    NASA Astrophysics Data System (ADS)

    Weiss, David K.; Head, James W.

    2015-11-01

    The presence of valley networks and the highly degraded state of Noachian highland craters has led to the interpretation that Mars was once warmer and wetter. Recent climate models have suggested, however, that the extremely cold climate in the Noachian would be unlikely to support liquid water precipitation. The presence of a thicker atmosphere thermally coupled to the surface is predicted instead to concentrate surface snow and ice deposits in the higher-altitude southern highlands, producing a Late Noachian Icy Highlands (LNIH) characterized by hundreds of meters of relatively continuous ice cover. In this study we test this hypothesis by reevaluating the degradation state of Noachian highland craters to assess whether their degradation state might be attained in such a cold and icy climate. We review the characteristics of Amazonian-aged impact craters hypothesized to form in surface snow and ice layers (excess ejecta, EE; double-layered ejecta, DLE; and pedestal, Pd, craters) to provide the potential initial conditions of craters forming in Late Noachian surface snow and ice layers. We then examine modification processes active in the Amazonian that may have played a role in crater degradation in the Late Noachian. In addition, we examine the potential morphometric effects of impacting into a thick surface ice deposit, and the potential erosive effects of backwasting, top-down melting, basal ice melting, and atmospheric warming pulses on the morphology of Noachian highland craters. We find that several aspects of the highly degraded state of Noachian craters could be accounted for in the context of a cold and icy climate, and we outline further tests of the hypothesis.

  4. Applications of monsoon research: Opportunities to inform decisionmaking and reduce regional vulnerability

    NASA Astrophysics Data System (ADS)

    Ray, A. J.; Garfin, G. M.; Wilder, M.; Lenart, M.; Vásquez-León, M.; Comrie, A. C.

    2007-05-01

    This presentation will describe ongoing efforts to understand interactions between the North American Monsoon and society, in order to develop applications for monsoon research in a highly complex, multicultural and binational region. The North American Monsoon is an annual precipitation regime that begins in early June in Mexico and progresses northward to the southwestern United States. The region includes stakeholders in large urban complexes, productive agricultural areas, and sparsely populated arid and semi-arid ecosystems. The political, cultural, and socioeconomic divisions between the U.S. and Mexico create a broad range of sensitivities to climate variability as well as capacities to use forecasts and other information to cope with climate. We will highlight methodologies to link climate science with society and analyze opportunities for monsoon science to benefit society in four sectors: natural hazards management, agriculture, public health, and water management. We present a synthesized list of stakeholder needs and a calendar of decisions to help scientists link user needs to potential forecasts and products. To ensure usability of forecasts and other research products, we recommend iterative scientist-stakeholder interactions, through integrated assessments. These knowledge- exchange interactions can improve the capacity for stakeholders to use forecasts thoughtfully and inform the development of research, and for the research community to obtain feedback on climate-related products and receive insights to guide research direction. We expect that integrated assessments can capitalize on the opportunities for monsoon science to inform decisionmaking, in the best instances, reduce regional climate vulnerabilities and enhance regional sustainability

  5. MISR Browse Images: Cold Land Processes Experiment (CLPX)

    Atmospheric Science Data Center

    2013-04-02

    ... MISR Browse Images: Cold Land Processes Experiment (CLPX) These MISR Browse images provide a ... over the region observed during the NASA Cold Land Processes Experiment (CLPX). CLPX involved ground, airborne, and satellite measurements ...

  6. Cold Confusion.

    ERIC Educational Resources Information Center

    Fogle, Pamela W.

    1991-01-01

    Public relations issues arising from the University of Utah's controversial announcement of research claiming achievement of nuclear fusion at room temperature are discussed. They include problems occurring before and after the initial press conference, secrecy vs. openness, research ethics, and effects lasting past the original incident and…

  7. Cold energy

    NASA Astrophysics Data System (ADS)

    Wallace, John P.

    2015-12-01

    Deviations in Q for resonant superconducting radio frequency niobium accelerator cavities are generally correlated with resistivity loss mechanisms. Field dependent Qs are not well modeled by these classical loss mechanisms, but rather can represent a form of precision cavity surface thermometry. When the field dependent Q variation shows improvement with increasing B field level the classical treatment of this problem is inadequate. To justify this behavior hydrogen as a ubiquitous impurity in niobium, which creates measurable property changes, even at very low concentrations is typically considered the cause of such anomalous behavior. This maybe the case in some instances, but more importantly any system operating with a highly coherent field with a significant time dependent magnetic component at near 2° K will have the ability to organize the remaining free spins within the London penetration depth to form a coupled energy reservoir in the form of low mass spin waves. The niobium resonant cavities are composed of a single isotope with a large nuclear spin. When the other loss mechanisms are stripped away this may be the gain medium activated by the low level residual magnetic fields. It was found that one resonant cavity heat treatment produced optimum surface properties and then functioned as a MASER extracting energy from the 2° K thermal bath while cooling the cavity walls. The cavity operating in this mode is a simulator of what can take place in the wider but not colder universe using the cosmic microwave background (CMB) as a thermal source. The low mass, long lifetimes, and the scale of the magnetic spin waves on the weakly magnetized interstellar medium allows energy to be stored that is many orders of magnitude colder than the cosmic microwave background. A linear accelerator cavity becomes a tool to explore the properties of the long wave length magnetic spin waves that populate this cold low energy regime.

  8. Cold energy

    SciTech Connect

    Wallace, John P.

    2015-12-04

    Deviations in Q for resonant superconducting radio frequency niobium accelerator cavities are generally correlated with resistivity loss mechanisms. Field dependent Qs are not well modeled by these classical loss mechanisms, but rather can represent a form of precision cavity surface thermometry. When the field dependent Q variation shows improvement with increasing B field level the classical treatment of this problem is inadequate. To justify this behavior hydrogen as a ubiquitous impurity in niobium, which creates measurable property changes, even at very low concentrations is typically considered the cause of such anomalous behavior. This maybe the case in some instances, but more importantly any system operating with a highly coherent field with a significant time dependent magnetic component at near 2° K will have the ability to organize the remaining free spins within the London penetration depth to form a coupled energy reservoir in the form of low mass spin waves. The niobium resonant cavities are composed of a single isotope with a large nuclear spin. When the other loss mechanisms are stripped away this may be the gain medium activated by the low level residual magnetic fields. It was found that one resonant cavity heat treatment produced optimum surface properties and then functioned as a MASER extracting energy from the 2° K thermal bath while cooling the cavity walls. The cavity operating in this mode is a simulator of what can take place in the wider but not colder universe using the cosmic microwave background (CMB) as a thermal source. The low mass, long lifetimes, and the scale of the magnetic spin waves on the weakly magnetized interstellar medium allows energy to be stored that is many orders of magnitude colder than the cosmic microwave background. A linear accelerator cavity becomes a tool to explore the properties of the long wave length magnetic spin waves that populate this cold low energy regime.

  9. Cold H I in faint dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Patra, Narendra Nath; Chengalur, Jayaram N.; Karachentsev, Igor D.; Kaisin, Serafim S.; Begum, Ayesha

    2016-03-01

    We present the results of a study of the amount and distribution of cold atomic gas, as well its correlation with recent star formation in a sample of extremely faint dwarf irregular galaxies. Our sample is drawn from the Faint Irregular Galaxy GMRT Survey (FIGGS) and its extension, FIGGS2. We use two different methods to identify cold atomic gas. In the first method, line-of-sight H I spectra were decomposed into multiple Gaussian components and narrow Gaussian components were identified as cold H I. In the second method, the brightness temperature (TB ) is used as a tracer of cold H I. We find that the amount of cold gas identified using the TB method is significantly larger than the amount of gas identified using Gaussian decomposition. We also find that a large fraction of the cold gas identified using the TB method is spatially coincident with regions of recent star formation, although the converse is not true. That is only a small fraction of the regions with recent star formation are also covered by cold gas. For regions where the star formation and the cold gas overlap, we study the relationship between the star formation rate density and the cold H I column density. We find that the star formation rate density has a power-law dependence on the H I column density, but that the slope of this power law is significantly flatter than that of the canonical Kennicutt-Schmidt relation.

  10. An invitation to measure insect cold tolerance: Methods, approaches, and workflow.

    PubMed

    Sinclair, Brent J; Coello Alvarado, Litza E; Ferguson, Laura V

    2015-10-01

    Insect performance is limited by the temperature of the environment, and in temperate, polar, and alpine regions, the majority of insects must face the challenge of exposure to low temperatures. The physiological response to cold exposure shapes the ability of insects to survive and thrive in these environments, and can be measured, without great technical difficulty, for both basic and applied research. For example, understanding insect cold tolerance allows us to predict the establishment and spread of insect pests and biological control agents. Additionally, the discipline provides the tools for drawing physiological comparisons among groups in wider studies that may not be focused primarily on the ability of insects to survive the cold. Thus, the study of insect cold tolerance is of a broad interest, and several reviews have addressed the theories and advances in the field. Here, however, we aim to clarify and provide rationale for common practices used to study cold tolerance, as a guide for newcomers to the field, students, and those wishing to incorporate cold tolerance into a broader study. We cover the 'tried and true' measures of insect cold tolerance, the equipment necessary for these measurement, and summarize the ecological and biological significance of each. Finally, we suggest a framework and workflow for measuring cold tolerance and low temperature performance in insects. PMID:26590471