Science.gov

Sample records for cold seep sediments

  1. Anaerobic oxidation of methane in hypersaline cold seep sediments.

    PubMed

    Maignien, Loïs; Parkes, R John; Cragg, Barry; Niemann, Helge; Knittel, Katrin; Coulon, Stephanie; Akhmetzhanov, Andrey; Boon, Nico

    2013-01-01

    Life in hypersaline environments is typically limited by bioenergetic constraints. Microbial activity at the thermodynamic edge, such as the anaerobic oxidation of methane (AOM) coupled to sulphate reduction (SR), is thus unlikely to thrive in these environments. In this study, carbon and sulphur cycling was investigated in the extremely hypersaline cold seep sediments of Mercator mud volcano. AOM activity was partially inhibited but still present at salinity levels of 292 g L(-1) (c. eightfold sea water concentration) with rates of 2.3 nmol cm(-3) day(-1) and was even detectable under saturated conditions. Methane and evaporite-derived sulphate comigrated in the ascending geofluids, which, in combination with a partial activity inhibition, resulted in AOM activity being spread over unusually wide depth intervals. Up to 79% of total cells in the AOM zone were identified by fluorescence in situ hybridization (FISH) as anaerobic methanotrophs of the ANME-1. Most ANME-1 cells formed monospecific chains without any attached partner. At all sites, AOM activity co-occurred with SR activity and sometimes significantly exceeded it. Possible causes of these unexpected results are discussed. This study demonstrates that in spite of a very low energy yield of AOM, microorganisms carrying this reaction can thrive in salinity up to halite saturation. PMID:22882187

  2. Evidence of Active Methanogen Communities in Shallow Sediments of the Sonora Margin Cold Seeps

    PubMed Central

    L'Haridon, Stéphane; Godfroy, Anne; Roussel, Erwan G.; Cragg, Barry A.; Parkes, R. John; Toffin, Laurent

    2015-01-01

    In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic Archaea were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic Methanococcoides burtonii relatives and several new autotrophic Methanogenium lineages, confirming the cooccurrence of Methanosarcinales and Methanomicrobiales methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps. PMID:25769831

  3. Short-chain alkane cycling in deep Gulf of Mexico cold-seep sediments

    NASA Astrophysics Data System (ADS)

    Sibert, R.; Joye, S. B.; Hunter, K.

    2015-12-01

    Mixtures of light hydrocarbon gases are common in deep Gulf of Mexico cold-seep sediments, and are typically dissolved in pore fluids, adsorbed to sediment particles, trapped in methane ice, or as free gas. The dominant component in these natural gas mixtures is usually methane (>80% C1), but ethane (C2) and propane (C3) are nearly always present in trace amounts (<1% total). The processes that control the concentration and isotopic signature of these gases in sediments are well explained for methane, but the controls for C2/C3 cycling are still a relative mystery. Methane production proceeds in deep anoxic sediments by either 1) thermocatalytic cracking of fossil organic matter, or 2) as a direct product of microbial metabolism, i.e. methanogenesis. In surface sediments, it appears that both microbial consumption and chemical deposition of methane (i.e. as methane clathrate) ensures that >95% of the methane produced at depth never reaches the water column. Production of C1 and C2 in deep-sea sediments has been historically attributed only to thermocatalytic processes, though limited data suggests production of C2/C3 compounds through the activity of archaea at depth. Furthermore, carbon isotopic data on ethane and propane from deep cores of Gulf of Mexico sediments suggest alkanogenesis at >3 m depth in the sediment column and alkane oxidation in uppermost oxidant-rich sediments. Additional studies have also isolated microorganisms capable of oxidizing ethane and propane in the laboratory, but field studies of microbial-driven dynamics of C2/C3 gases in cold-seep sediments are rare. Here, we present the results of a series of incubation experiments using sediment slurries culled from surface sediments from one of the most prolific natural oil and gas seeps in the Gulf of Mexico. Rates of alkane oxidation were measured under a variety of conditions to assess the surface-driven microbial controls on C2/C3 cycling in cold-seep environments. Such microbial processes

  4. Enumeration of viruses and prokaryotes in deep-sea sediments and cold seeps of the Gulf of Mexico

    USGS Publications Warehouse

    Kellogg, Christina A.

    2010-01-01

    Little is known about the distribution and abundance of viruses in deep-sea cold-seep environments. Like hydrothermal vents, seeps support communities of macrofauna that are sustained by chemosynthetic bacteria. Sediments close to these communities are hypothesized to be more microbiologically active and therefore to host higher numbers of viruses than non-seep areas. Push cores were taken at five types of Gulf of Mexico habitats at water depths below 1000 m using a remotely operated vehicle (ROV). The habitats included non-seep reference sediment, brine seeps, a microbial mat, an urchin field, and a pogonophoran worm community. Samples were processed immediately for enumeration of viruses and prokaryotes without the addition of a preservative. Prokaryote counts were an order of magnitude lower in sediments directly in contact with macrofauna (urchins, pogonophorans) compared to all other samples (107 vs. 108 cells g-1 dry weight) and were highest in areas of elevated salinity (brine seeps). Viral-Like Particle (VLP) counts were lowest in the reference sediments and pogonophoran cores (108 VLP g-1 dry wt), higher in brine seeps (109 VLP g-1 dry wt), and highest in the microbial mats (1010 VLP g-1 dry wt). Virus-prokaryote ratios (VPR) ranged from <5 in the reference sediment to >30 in the microbial mats and >60 in the urchin field. VLP counts and VPR were all significantly greater than those reported from sediments in the deep Mediterranean Sea and in most cases were higher than recent data from a cold-seep site near Japan. The high VPR suggest that greater microbial activity in or near cold-seep environments results in greater viral production and therefore higher numbers of viruses.

  5. Shimia sagamensis sp. nov., a marine bacterium isolated from cold-seep sediment.

    PubMed

    Nogi, Yuichi; Mori, Kozue; Uchida, Hiromi; Hatada, Yuji

    2015-09-01

    A novel marine bacterial strain designated JAMH 011(T) was isolated from the cold-seep sediment in Sagami Bay, Japan. Cells were Gram-stain-negative, rod-shaped, non-spore-forming, aerobic chemo-organotrophs and motile by means of a single polar flagellum. Growth occurred at temperatures below 31 °C, with the optimum at 25 °C. The major respiratory quinone was Q-10. The predominant fatty acid was C18 : 1ω7c. On the basis of 16S rRNA gene sequence analysis, the isolated strain was closely affiliated with members of the genus Shimia in the class Alphaproteobacteria, and the 16S rRNA gene sequence similarity of the novel isolate with the type strain of the closest related species, Shimia haliotis WM35(T), was 98.1%. The DNA G+C content of the novel strain was 57.3 mol%. The hybridization values for DNA-DNA relatedness between strain JAMH 011(T) and reference strains belonging to the genus Shimia were less than 9.4 ± 0.7%. Based on differences in taxonomic characteristics, the isolated strain represents a novel species of the genus Shimia, for which the name Shimia sagamensis sp. nov. is proposed. The type strain is JAMH 011(T) ( = JCM 30583(T) = DSM 29734(T)). PMID:25977284

  6. Evidence and biogeochemical implications for glacially-derived sediments in an active margin cold seep

    USGS Publications Warehouse

    Pohlman, John W.; Riedel, Michael; Novosel, Ivana; Bauer, James E.; Canuel, Elizabeth A.; Paull, Charles K.; Coffin, Richard B.; Grabowski, Kenneth S.; Knies, David L.; Hyndman, Roy D.; Spence, George D.

    2011-01-01

    Delineating sediment organic matter origins and sediment accumulation rates at gas hydratebearing and hydrocarbon seeps is complicated by the microbial transfer of 13C-depleted and 14Cdepleted methane carbon into sedimentary pools. Sediment 13C and 14C measurements from four cores recovered at Bullseye vent on the northern Cascadia margin are used to identify methane carbon assimilation into different carbon pools. While the total organic carbon (TOC) is mostly unaltered and primarily terrigenous in origin, planktonic foraminifera and the bulk carbonate display evidence of methane overprinting. Mass balance models are applied to determine the extent to which methane overprinting increased the radiocarbon ages of the biogenic foraminifera. The corrected and calibrated foraminifera ages between sediment depths of 70 and 573 cm are from 14.9 to 15.9 ka BP, which coincides with the retreat of the late Quaternary Cordilleran Ice Sheet from Vancouver Island. Uniform TOC _13C values of -24.5 ± 0.5‰ from the upper 8 meters of sediment at Bullseye vent suggest all cored material is Pleistocene-derived glacimarine material deposited as the ice edge retreated landward. Bullseye vent is located within an uplifted sediment block isolated from turbidite deposition and has been a site of non-deposition since the ice sheet retreated from the shelf. Biogeochemical implications of seep sediments being dominated by aged, organic-poor (<0.4 wt% TOC) material are that methane is the primary energy source, and microbes directly and indirectly associated with the anaerobic oxidation of methane (AOM) will dominate the seep microbial community.

  7. Geochemical Tracers and Rates of Short-Chain Alkane Production in Gulf of Mexico Cold Seep Sediments

    NASA Astrophysics Data System (ADS)

    Sibert, R.; Bernard, B. B.; Brooks, J. M.; Hunter, K.; Joye, S. B.

    2014-12-01

    The organic-rich cold seep sediments in the deep Gulf of Mexico commonly contain mixtures of light hydrocarbon gases either dissolved in pore fluids, adsorbed to sediment particles, trapped in methane ice, or as free gas. The dominant component in these natural gas mixtures is typically methane (C1), but ethane (C2) and propane (C3) are nearly always present in trace or major amounts. The ratio of C1:C2:C3 varies but C2 and C3 are typically present at single digit percent levels, whereas methane usually dominates at >80%. Methane production proceeds by at least two well-studied mechanisms: either 1) by thermocatalytic cracking of fossil organic matter, or 2) as a direct product of microbial metabolism, methanogenesis. In contrast, ethane and propane production in deep-sea sediments has been historically attributed only to thermocatalytic processes. However, limited data suggests production of C2/C3 compounds through the activity of archaea. Such studies of microbial- driven dynamics of C2/C3 gases (i.e. 'alkanogenesis') in cold seep sediments are rare. Furthermore, the identities of potential substrates are poorly constrained and no attempt has been made to quantify production rates of C2/C3 gases. However, carbon isotopic data on ethane and propane from deep cores from the Gulf of Mexico suggest alkanogenesis at depth in the sediment column and alkane oxidation in uppermost oxidant-rich sediments. Here, we present the results of a series of incubation experiments using sediment slurries culled from GC600, one of the most prolific natural oil and gas seeps in the Gulf of Mexico. Rates of both alkane production and oxidation were measured under a variety of conditions to assess the net rates of alkane production and elucidate the driving microbiological mechanisms and controls on the central processes of >C1 alkane cycling in cold seep sediments. Microbial processes are important both in terms of alkane production and oxidation, raising many questions as to the

  8. Authigenesis of vivianite as influenced by methane-induced sulfidization in cold-seep sediments off southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Hsu, Ta-Wei; Jiang, Wei-Teh; Wang, Yunshuen

    2014-08-01

    Authigenesis of iron-rich phosphate nodules occurs in iron-rich cold-seep sediments (MD052911 core) at Yung-An Ridge offshore southwestern Taiwan. Raman, FTIR, and quantitative X-ray energy-dispersive spectroscopic analyses indicate that the phosphate mineral is vivianite (or barićite) and shows Fe/Mg molar ratios spanning from ca. 0.6 to 4.0 and a general down core trend of increasing Fe/Mg ratios. The formation of vivianite is limited to a depth interval of 13-17 mbsf (meters below seafloor) and is most prominent at ∼16 mbsf in association with high dissolved iron concentrations and depleted dissolved sulfide below a peak sulfidization zone (enriched in mackinawite and greigite). Alternate growths of vivianite and iron monosulfides and compositional zoning with Mg enriched towards the peripheries of individual nodules occur in the transition from the zone of vivianite mineralization to the sulfidization zone. The crystallization of vivianite below the sulfidization front could have been favored by scavenging of downward diffusive dissolved sulfide from pore waters in the sulfidization zone. Alternate growths and overlapping of the zones of iron monosulfides and vivianite can be attributed to fluctuations of the sulfidization front and methane flux. The discovery of vivianite in the Yung-An Ridge sediments implies that authigenic vivianite can be an important sink for phosphorus burial in cold-seep sediments that have high reactive-iron contents and high sedimentation rates.

  9. Presence and diversity of anammox bacteria in cold hydrocarbon-rich seeps and hydrothermal vent sediments of the Guaymas Basin.

    PubMed

    Russ, Lina; Kartal, Boran; Op den Camp, Huub J M; Sollai, Martina; Le Bruchec, Julie; Caprais, Jean-Claude; Godfroy, Anne; Sinninghe Damsté, Jaap S; Jetten, Mike S M

    2013-01-01

    Hydrothermally active sediments are highly productive, chemosynthetic areas which are characterized by the rapid turnover of particulate organic matter under extreme conditions in which ammonia is liberated. These systems might be suitable habitats for anaerobic ammonium oxidizing (anammox) bacteria but this has not been investigated in detail. Here we report the diversity and abundance of anammox bacteria in sediments that seep cold hydrocarbon-rich fluids and hydrothermal vent areas of the Guaymas Basin in the Cortés Sea using the unique functional anammox marker gene, hydrazine synthase (hzsA). All clones retrieved were closely associated to the "Candidatus Scalindua" genus. Phylogenetic analysis revealed two distinct clusters of hzsA sequences (Ca. Scalindua hzsA cluster I and II). Comparison of individual sequences from both clusters showed that several of these sequences had a similarity as low as 76% on nucleotide level. Based on the analysis of this phylomarker, a very high interspecies diversity within the marine anammox group is apparent. Absolute numbers of anammox bacteria in the sediments samples were determined by amplification of a 257 bp fragment of the hszA gene in a qPCR assay. The results indicate that numbers of anammox bacteria are generally higher in cold hydrocarbon-rich sediments compared to the vent areas and the reference zone. Ladderanes, lipids unique to anammox bacteria were also detected in several of the sediment samples corroborating the hzsA analysis. Due to the high concentrations of reduced sulfur compounds and its potential impact on the cycling of nitrogen we aimed to get an indication about the key players in the oxidation of sulfide in the Guaymas Basin sediments using the alpha subunit of the adenosine-5'-phosphosulfate (APS) reductase (aprA). Amplification of the aprA gene revealed a high number of gammaproteobacterial aprA genes covering the two sulfur-oxidizing bacteria aprA lineages as well as sulfate-reducers. PMID

  10. Presence and diversity of anammox bacteria in cold hydrocarbon-rich seeps and hydrothermal vent sediments of the Guaymas Basin

    PubMed Central

    Russ, Lina; Kartal, Boran; op den Camp, Huub J. M.; Sollai, Martina; Le Bruchec, Julie; Caprais, Jean-Claude; Godfroy, Anne; Sinninghe Damsté, Jaap S.; Jetten, Mike S. M.

    2013-01-01

    Hydrothermally active sediments are highly productive, chemosynthetic areas which are characterized by the rapid turnover of particulate organic matter under extreme conditions in which ammonia is liberated. These systems might be suitable habitats for anaerobic ammonium oxidizing (anammox) bacteria but this has not been investigated in detail. Here we report the diversity and abundance of anammox bacteria in sediments that seep cold hydrocarbon-rich fluids and hydrothermal vent areas of the Guaymas Basin in the Cortés Sea using the unique functional anammox marker gene, hydrazine synthase (hzsA). All clones retrieved were closely associated to the “Candidatus Scalindua” genus. Phylogenetic analysis revealed two distinct clusters of hzsA sequences (Ca. Scalindua hzsA cluster I and II). Comparison of individual sequences from both clusters showed that several of these sequences had a similarity as low as 76% on nucleotide level. Based on the analysis of this phylomarker, a very high interspecies diversity within the marine anammox group is apparent. Absolute numbers of anammox bacteria in the sediments samples were determined by amplification of a 257 bp fragment of the hszA gene in a qPCR assay. The results indicate that numbers of anammox bacteria are generally higher in cold hydrocarbon-rich sediments compared to the vent areas and the reference zone. Ladderanes, lipids unique to anammox bacteria were also detected in several of the sediment samples corroborating the hzsA analysis. Due to the high concentrations of reduced sulfur compounds and its potential impact on the cycling of nitrogen we aimed to get an indication about the key players in the oxidation of sulfide in the Guaymas Basin sediments using the alpha subunit of the adenosine-5′-phosphosulfate (APS) reductase (aprA). Amplification of the aprA gene revealed a high number of gammaproteobacterial aprA genes covering the two sulfur-oxidizing bacteria aprA lineages as well as sulfate

  11. Functional diversity patterns of abyssal nematodes in the Eastern Mediterranean: A comparison between cold seeps and typical deep sea sediments

    NASA Astrophysics Data System (ADS)

    Kalogeropoulou, V.; Keklikoglou, K.; Lampadariou, N.

    2015-04-01

    Spatial patterns in deep sea nematode biological trait composition and functional diversity were investigated between chemosynthetic and typical deep sea ecosystems as well as between different microhabitats within the chemosynthetic ecosystems, in the Eastern Mediterranean. The chemosynthetic ecosystems chosen were two mud volcanoes, Napoli at 1950 m depth and Amsterdam at 2040 m depth which are cold seeps characterized by high chemosynthetic activity and spatial heterogeneity. Typical deep sea ecosystems consisted of fine-grained silt-clay sediments which were collected from three areas located in the south Ionian Sea at 2765 to 2840 m depth, the southern Cretan margin at 1089 to 1998 m depth and the Levantine Sea at 3055 to 3870 m depth. A range of biological traits (9 traits; 31 categories) related to buccal morphology, tail shape, body size, body shape, life history strategy, sediment position, cuticle morphology, amphid shape and presence of somatic setae were combined to identify patterns in the functional composition of nematode assemblages between the two habitats, the two mud volcanoes (macroscale) and between the microhabitats within the mud volcanoes (microscale). Data on trait correspondence was provided by biological information on species and genera. A total of 170 nematode species were allocated in 67 different trait combinations, i.e. functional groups, based on taxonomic, morphological and behavioral characteristics. The Biological Trait Analysis (BTA) revealed significant differences between the mud volcanoes and the typical deep sea sediments indicating the presence of different biological functions in ecologically very different environments. Moreover, chemosynthetic activity and habitat heterogeneity within mud volcanoes enhance the presence of different biological and ecological functions in nematode assemblages of different microhabitats. Functional diversity and species richness patterns varied significantly across the different

  12. Psychromonas kaikoae sp. nov., a novel from the deepest piezophilic bacterium cold-seep sediments in the Japan Trench.

    PubMed

    Nogi, Yuichi; Kato, Chiaki; Horikoshi, Koki

    2002-09-01

    Two strains of obligately piezophilic bacteria were isolated from sediment collected from the deepest cold-seep environment with chemosynthesis-based animal communities within the Japan Trench, at a depth of 7434 m. The isolated strains, JT7301 and JT7304T, were closely affiliated with members of the genus Psychromonas on the basis of 16S rDNA sequence analysis. Hybridization values for DNA-DNA relatedness between these strains and the Psychromonas antarctica reference strain were significantly lower than that accepted as the phylogenetic definition of a species. The optimal temperature and pressure for growth of the isolates were 10 degrees C and 50 MPa and they produced both eicosapentaenoic acid (C20:5omega3) and docosahexaenoic acid (C22:6) in the membrane layer. Based on the taxonomic differences observed, the isolated strains appear to represent a novel obligately piezophilic Psychromonas species. The name Psychromonas kaikoae sp. nov. (type strain JT7304T = JCM 11054T = ATCC BAA-363T) is proposed. This is the first proposed obligately piezophilic species of the genus Psychromonas. PMID:12361254

  13. Community Proteogenomics of a Cold-methane Seep Sediment at Nyegga, Mid-Norwegian Margin

    NASA Astrophysics Data System (ADS)

    Stokke, R.; Roalkvam, I.; Lanzen, A.; Chen, Y.; Haflidason, H.; Steen, I.

    2010-12-01

    Anaerobic oxidation of methane (AOM) is limited to anoxic environments and differs in its rates from a few pmol cm-3day-1 in subsurface SMTZ (sulfate-methane transition zone) of deep margins, to a few μmol cm-3 day-1 in surface sediments above gas hydrates [1]. This process is catalyzed by consortia of anaerobic methane oxidizing archaea (ANME) in association with sulfate-reducing bacteria. The Nyegga area is located on the Mid-Norwegian continental slope at the northern flank of the Storegga Slide at 700-800 mbsl. Hundreds of pockmarks are widespread on the seabed in Nyegga and sub-zero temperatures (-0.7 °C), and pingo-structures within the pockmarks are indicators of active fluid flow locations. Preliminary microbial and geochemical profiling of a 22 cm push-core within the G11 pockmark gave strong indications of an ANME-1 dominated community at 14-16 cmbsf. In light of these findings we submitted extracted DNA to 454-pyrosequencing. Sequencing data (829,527 reads) was assembled using the Newbler v2.3, resulting in 13,151 contigs (357,530 reads) over 500 bp with the longest contig being 24,521 bp. MEGAN taxonomic analysis supported the high abundance of Euryarchaea (70%) with 66% of the assembled metagenome belonging to ANME-1. In order to obtain functional information of the ANME-1 community, protein extraction protocols from sediment samples was established. Extracted proteins was separated on a large (18cm) 1D-SDS-PAGE and subsequently cut in 30 gel slices. Peptides extracted after In-gel tryptic digest was injected into an Ultimate 3000 nanoLC system connected to a linear quadropole ion trap-orbitrap (LTQ-Orbitrap XL) mass spectrometer equipped with a nanoelectrospray ion source. A custom database of open reading frames (ORFs) from the metagenome including known contaminants such as trypsin and human keratin was search against using Mascot 2.2. IRMa tool box [2] was used in peptide validation and peptides whose score >= 25.0 (i.e avg identity, p<0.05) and

  14. Spatial scales of bacterial community diversity at cold seeps (Eastern Mediterranean Sea).

    PubMed

    Pop Ristova, Petra; Wenzhöfer, Frank; Ramette, Alban; Felden, Janine; Boetius, Antje

    2015-06-01

    Cold seeps are highly productive, fragmented marine ecosystems that form at the seafloor around hydrocarbon emission pathways. The products of microbial utilization of methane and other hydrocarbons fuel rich chemosynthetic communities at these sites, with much higher respiration rates compared with the surrounding deep-sea floor. Yet little is known as to the richness, composition and spatial scaling of bacterial communities of cold seeps compared with non-seep communities. Here we assessed the bacterial diversity across nine different cold seeps in the Eastern Mediterranean deep-sea and surrounding seafloor areas. Community similarity analyses were carried out based on automated ribosomal intergenic spacer analysis (ARISA) fingerprinting and high-throughput 454 tag sequencing and were combined with in situ and ex situ geochemical analyses across spatial scales of a few tens of meters to hundreds of kilometers. Seep communities were dominated by Deltaproteobacteria, Epsilonproteobacteria and Gammaproteobacteria and shared, on average, 36% of bacterial types (ARISA OTUs (operational taxonomic units)) with communities from nearby non-seep deep-sea sediments. Bacterial communities of seeps were significantly different from those of non-seep sediments. Within cold seep regions on spatial scales of only tens to hundreds of meters, the bacterial communities differed considerably, sharing <50% of types at the ARISA OTU level. Their variations reflected differences in porewater sulfide concentrations from anaerobic degradation of hydrocarbons. This study shows that cold seep ecosystems contribute substantially to the microbial diversity of the deep-sea. PMID:25500510

  15. Spatial scales of bacterial community diversity at cold seeps (Eastern Mediterranean Sea)

    PubMed Central

    Pop Ristova, Petra; Wenzhöfer, Frank; Ramette, Alban; Felden, Janine; Boetius, Antje

    2015-01-01

    Cold seeps are highly productive, fragmented marine ecosystems that form at the seafloor around hydrocarbon emission pathways. The products of microbial utilization of methane and other hydrocarbons fuel rich chemosynthetic communities at these sites, with much higher respiration rates compared with the surrounding deep-sea floor. Yet little is known as to the richness, composition and spatial scaling of bacterial communities of cold seeps compared with non-seep communities. Here we assessed the bacterial diversity across nine different cold seeps in the Eastern Mediterranean deep-sea and surrounding seafloor areas. Community similarity analyses were carried out based on automated ribosomal intergenic spacer analysis (ARISA) fingerprinting and high-throughput 454 tag sequencing and were combined with in situ and ex situ geochemical analyses across spatial scales of a few tens of meters to hundreds of kilometers. Seep communities were dominated by Deltaproteobacteria, Epsilonproteobacteria and Gammaproteobacteria and shared, on average, 36% of bacterial types (ARISA OTUs (operational taxonomic units)) with communities from nearby non-seep deep-sea sediments. Bacterial communities of seeps were significantly different from those of non-seep sediments. Within cold seep regions on spatial scales of only tens to hundreds of meters, the bacterial communities differed considerably, sharing <50% of types at the ARISA OTU level. Their variations reflected differences in porewater sulfide concentrations from anaerobic degradation of hydrocarbons. This study shows that cold seep ecosystems contribute substantially to the microbial diversity of the deep-sea. PMID:25500510

  16. Substrate-specific pressure-dependence of microbial sulfate reduction in deep-sea cold seep sediments of the Japan Trench

    PubMed Central

    Vossmeyer, Antje; Deusner, Christian; Kato, Chiaki; Inagaki, Fumio; Ferdelman, Timothy G.

    2012-01-01

    The influence of hydrostatic pressure on microbial sulfate reduction (SR) was studied using sediments obtained at cold seep sites from 5500 to 6200 m water depth of the Japan Trench. Sediment samples were stored under anoxic conditions for 17 months in slurries at 4°C and at in situ pressure (50 MPa), at atmospheric pressure (0.1 MPa), or under methanic conditions with a methane partial pressure of 0.2 MPa. Samples without methane amendment stored at in situ pressure retained higher levels of sulfate reducing activity than samples stored at 0.1 MPa. Piezophilic SR showed distinct substrate specificity after hydrogen and acetate addition. SR activity in samples stored under methanic conditions was one order of magnitude higher than in non-amended samples. Methanic samples stored under low hydrostatic pressure exhibited no increased SR activity at high pressure even with the amendment of methane. These new insights into the effects of pressure on substrate specific sulfate reducing activity in anaerobic environmental samples indicate that hydrostatic pressure must be considered to be a relevant parameter in ecological studies of anaerobic deep-sea microbial processes and long-term storage of environmental samples. PMID:22822404

  17. Lipid biomarkers for anaerobic oxidation of methane and sulphate reduction in cold seep sediments of Nyegga pockmarks (Norwegian margin): discrepancies in contents and carbon isotope signatures

    NASA Astrophysics Data System (ADS)

    Chevalier, Nicolas; Bouloubassi, Ioanna; Stadnitskaia, Alina; Taphanel, Marie-Hélène; Sinninghe Damsté, Jaap S.

    2014-06-01

    Distributions and carbon isotopic compositions of microbial lipid biomarkers were investigated in sediment cores from the G11 and G12 pockmarks in the Nyegga sector of the Storegga Slide on the mid-Norwegian margin to explore differences in depth zonation, type and carbon assimilation mode of anaerobic methane-oxidizing archaea (ANMEs) and associated sulphate-reducing bacteria responsible for anaerobic oxidation of methane (AOM) in these cold seep environments. While the G11 site is characterised by black reduced sediments colonized by gastropods and Siboglinidae tubeworms, the G12 site has black reduced sediments devoid of fauna but surrounded by a peripheral occurrence of gastropods and white filamentous microbial mats. At both sites, bulk sediments contained abundant archaeal and bacterial lipid biomarkers substantially depleted in 13C, consisting mainly of isoprenoidal hydrocarbons and dialkyl glycerol diethers, fatty acids and non-isoprenoidal monoalkylglycerol ethers. At the G11 site, down-core profiles revealed that lipid biomarkers were in maximum abundance from 10 cm depth to the core bottom at 16 cm depth, associated with δ13C values of -57 to -136‰. At the G12 site, by contrast, lipid biomarkers were in high abundance in the upper 5 cm sediment layer, associated with δ13C values of -43 to -133‰. This suggests that, as expected from the benthic fauna characteristics of the sites, AOM takes place mainly at depth in the G11 pockmark but just below the seafloor in the G12 pockmark. These patterns can be explained largely by variable fluid flow rates. Furthermore, at both sites, a dominance of ANME-2 archaea accompanied by their bacterial partners is inferred based on lipid biomarker distributions and carbon isotope signatures, which is in agreement with recently published DNA analyses for the G11 pockmark. However, the present data reveal high discrepancies in the contents and δ13C values for both archaeal and bacterial lipid profiles, implying the

  18. Efficiency and adaptability of the benthic methane filter at Quepos Slide cold seeps, offshore Costa Rica

    NASA Astrophysics Data System (ADS)

    Steeb, P.; Krause, S.; Linke, P.; Hensen, C.; Dale, A. W.; Nuzzo, M.; Treude, T.

    2014-11-01

    Large amounts of methane are delivered by fluids through the erosive forearc of the convergent margin offshore Costa Rica and lead to the formation of cold seeps at the sediment surface. Besides mud extrusion, numerous cold seeps are created by landslides induced by seamount subduction or fluid migration along major faults. Most of the dissolved methane reaching the seafloor at cold seeps is oxidized within the benthic microbial methane filter by anaerobic oxidation of methane (AOM). Measurements of AOM and sulfate reduction as well as numerical modeling of porewater profiles revealed a highly active and efficient benthic methane filter at Quepos Slide site; a landslide on the continental slope between the Nicoya and Osa Peninsula. Integrated areal rates of AOM ranged from 12.9 ± 6.0 to 45.2 ± 11.5 mmol m-2 d-1, with only 1 to 2.5% of the upward methane flux being released into the water column. Additionally, two parallel sediment cores from Quepos Slide were used for in vitro experiments in a recently developed Sediment-F low-Through (SLOT) system to simulate an increased fluid and methane flux from the bottom of the sediment core. The benthic methane filter revealed a high adaptability whereby the methane oxidation efficiency responded to the increased fluid flow within 150-170 days. To our knowledge, this study provides the first estimation of the natural biogeochemical response of seep sediments to changes in fluid flow.

  19. Hydrocarbon geochemistry of cold seeps in the Monterey Bay National Marine Sanctuary

    USGS Publications Warehouse

    Lorenson, T.D.; Kvenvolden, K.A.; Hostettler, F.D.; Rosenbauer, R.J.; Orange, D.L.; Martin, J.B.

    2002-01-01

    Samples from four geographically and tectonically discrete cold seeps named Clam Flat, Clamfield, Horseshoe Scarp South, and Tubeworm City, within the Monterey Bay National Marine Sanctuary were analyzed for their hydrocarbon content. The sediment contains gaseous hydrocarbons and CO2, as well as high molecular weight aliphatic and aromatic hydrocarbons with various combinations of thermogenic and biogenic contributions from petroleum, marine, and terrigenous sources. Of particular interest is the cold seep site at Clamfield which is characterized by the presence of thermogenic hydrocarbons including oil that can likely be correlated with oil-saturated strata at Majors Creek near Davenport, CA, USA. At Clam Flat, the evidence for thermogenic hydrocarbons is equivocal. At Horseshoe Scarp South and Tubeworm City, hydrocarbon gases, mainly methane, are likely microbial in origin. These varied sources of hydrocarbon gases highlight the diverse chemical systems that appear at cold seep communities. ?? 2002 Elsevier Science B.V. All rights reserved.

  20. Infaunal and megafaunal benthic community structure associated with cold seeps at the Vestnesa Ridge (79 N°)

    NASA Astrophysics Data System (ADS)

    Åström, Emmelie K. L.; Carroll, Michael L.; Sen, Arunima; Ambrose, William G., Jr.; Silyakova, Anna; Carroll, JoLynn

    2016-04-01

    Cold seeps are locations where hydrocarbons, sulfide or reduced compounds emanate from the seafloor, which may fuel chemoautotrophic production and form additional hard bottom substrate through carbonate precipitation. Chemosynthetic symbiosis, trophic interactions, and additional bottom substrate types can provide a heterogeneous environment for deep-sea organisms supporting macrofaunal communities including increased biodiversity and biomass. We combined quantitative benthic faunal samples with sea floor photographs from an active, methane seeping pockmark at Vestnesa Ridge (1200 meters depth) to examine community structure and biodiversity in a high Arctic deep cold seep. Quantitative data were compared with samples from the nearby inactive Svyatogor Ridge (1577-1706 meters depth). We measured highly elevated methane concentrations (up to 100x background levels) in the sediment at Vestnesa Ridge. Faunal abundance, species richness and biomass were significantly higher at the Vestnesa pockmark compared to inactive Svyatogor Ridge. Seabed photos from Vestnesa Ridge reveal high megafaunal diversity and biomass and cold seep features including carbonate crust and microbial mats. Our observations indicate that chemoautotrophic production enhances deep-sea biomass and diversity at Vestnesa Ridge. The focused methane emissions create a heterogeneous deep-sea habitat for chemo-associated organisms coexisting with heterotrophic conventional fauna in a high Arctic seep. Keywords: Arctic, benthic ecology, biodiversity, chemosynthesis, methane

  1. Brine induced low-Magnesium calcite formation at cold seeps

    NASA Astrophysics Data System (ADS)

    Feng, Dong; Roberts, Harry; Joye, Samantha; Heydari, Ezat

    2013-04-01

    Low-Mg calcite (LMC; < 5 mol% Mg), commonly observed during time intervals of "calcite seas," since the beginning of the Paleozoic Era, is a good indicator of low Mg/Ca ratio (< 2) in seawater. Calcite seas were coincident with times of active seawater-basalt interactions along mid-ocean ridges at high temperatures, which extract Mg from seawater and release Ca to it. In the modern aragonite sea, most carbonate minerals precipitate at the seafloor, including deposits from cold seep environments are primarily either aragonite or high-Mg calcite (HMC). Here, we report the finding of non-skeletal LMC from cold seeps in Alaminos Canyon block 601 (AC 601), 2200 m below the sea surface on northern Gulf of Mexico (GOM) continental slope. Low-Mg calcite usually represents the only carbonate mineral in the studied samples. Dominant allochems in these seep carbonates are peloids, grain aggregates, pelagic forams, and fragments of mollusks and echinoids. The limestone is heavily cemented. The observed cements include micrite, microspar, mosaic, bladed, fan, and needle cements. The dissolution of grains and cements was observed. Not only originally aragonitic mollusks shells, but also carbonate cement have been dissolved. The aerobic oxidation of reduced chemical species such as methane and H2S is responsible for an increase in pCO2 and a decrease of pH, leading to local carbonate dissolution. The occurrence of oxic conditions is confirmed by the presence of negative Ce anomalies of the carbonates. Further, we report on analyses showing that the ambient porewater Mg/Ca ratio actually governs the carbonate mineralogy. The occurrence of LMC may be attributed to the brine fluids, which is relatively Mg-depleted (Mg/Ca mole ratio is below 0.7) compared to pore fluid of the subsurface sediments from the reference site (Mg/Ca mole ratio is above 4.1) that usually produce HMC. The 87Sr/86Sr values of LMC (mean = 0.708001, sd = 0.000034, n=2) are significantly lower than that of the

  2. Diversity and distribution of methanotrophic archaea at cold seeps.

    PubMed

    Knittel, Katrin; Lösekann, Tina; Boetius, Antje; Kort, Renate; Amann, Rudolf

    2005-01-01

    In this study we investigated by using 16S rRNA-based methods the distribution and biomass of archaea in samples from (i) sediments above outcropping methane hydrate at Hydrate Ridge (Cascadia margin off Oregon) and (ii) massive microbial mats enclosing carbonate reefs (Crimea area, Black Sea). The archaeal diversity was low in both locations; there were only four (Hydrate Ridge) and five (Black Sea) different phylogenetic clusters of sequences, most of which belonged to the methanotrophic archaea (ANME). ANME group 2 (ANME-2) sequences were the most abundant and diverse sequences at Hydrate Ridge, whereas ANME-1 sequences dominated the Black Sea mats. Other seep-specific sequences belonged to the newly defined group ANME-3 (related to Methanococcoides spp.) and to the Crenarchaeota of marine benthic group B. Quantitative analysis of the samples by fluorescence in situ hybridization (FISH) showed that ANME-1 and ANME-2 co-occurred at the cold seep sites investigated. At Hydrate Ridge the surface sediments were dominated by aggregates consisting of ANME-2 and members of the Desulfosarcina-Desulfococcus branch (DSS) (ANME-2/DSS aggregates), which accounted for >90% of the total cell biomass. The numbers of ANME-1 cells increased strongly with depth; these cells accounted 1% of all single cells at the surface and more than 30% of all single cells (5% of the total cells) in 7- to 10-cm sediment horizons that were directly above layers of gas hydrate. In the Black Sea microbial mats ANME-1 accounted for about 50% of all cells. ANME-2/DSS aggregates occurred in microenvironments within the mat but accounted for only 1% of the total cells. FISH probes for the ANME-2a and ANME-2c subclusters were designed based on a comparative 16S rRNA analysis. In Hydrate Ridge sediments ANME-2a/DSS and ANME-2c/DSS aggregates differed significantly in morphology and abundance. The relative abundance values for these subgroups were remarkably different at Beggiatoa sites (80% ANME-2a, 20

  3. Co-Occurrence of Nitrate Reduction and Anaerobic Oxidation of Methane in Gulf of Mexico Cold Seep Habitats

    NASA Astrophysics Data System (ADS)

    Fields, L.; Joye, S. B.

    2014-12-01

    Cold seeps are abundant in the Gulf of Mexico; they are fuelled by methane gas and hydrocarbon seepage at the seafloor and support diverse chemosynthetic microbial communities. Microorganisms form the base of the food chain at cold seeps, and high rates of anaerobic oxidation of methane (AOM) are characteristic of these methane-rich environments. While sulfate is often the electron acceptor for AOM in cold seep environments, recent evidence suggests that AOM can also be coupled to nitrate reduction. Little is known about nitrogen cycling in these habitats, though recent work indicates that denitrification is an important process in oily and gassy seep sediments. The co-occurrence of nitrate reduction and AOM suggests a potential coupling between the two processes in our study area. We used stable isotope (15N) tracer techniques to measure the capacity of Northern Gulf of Mexico cold seep sediments to reduce nitrate by denitrification and anammox. These measurements were made in surface and sub-surface sediments in conjunction with measurements of AOM, and with quantification of various geochemical and molecular characteristics. Here, we present our measurements of denitrification and anammox capacity in the context of environmental characteristics. Additionally, we examine spatial trends in the co-occurrence of AOM and nitrate reduction in these sediments.

  4. Macro-Ecology of Gulf of Mexico Cold Seeps

    NASA Astrophysics Data System (ADS)

    Cordes, Erik E.; Bergquist, Derk C.; Fisher, Charles R.

    2009-01-01

    Shortly after the discovery of chemosynthetic ecosystems at deep-sea hydrothermal vents, similar ecosystems were found at cold seeps in the Gulf of Mexico. Over the past two decades, these sites have become model systems for understanding the physiology of the symbiont-containing megafauna and the ecology of seep communities worldwide. Symbiont-containing bivalves and siboglinid polychaetes dominate the communities, including five bathymodiolin mussel species and six vestimentiferan (siboglinid polychaete) species in the Gulf of Mexico. The mussels include the first described examples of methanotrophic symbiosis and dual methanotrophic/thiotrophic symbiosis. Studies with the vestimentiferans have demonstrated their potential for extreme longevity and their ability to use posterior structures for subsurface exchange of dissolved metabolites. Ecological investigations have demonstrated that the vestimentiferans function as ecosystem engineers and identified a community succession sequence from a specialized high-biomass endemic community to a low-biomass community of background fauna over the life of a hydrocarbon seep site.

  5. Formation of modern and Paleozoic stratiform barite at cold methane seeps on continental margins

    USGS Publications Warehouse

    Torres, M.E.; Bohrmann, G.; Dube, T.E.; Poole, F.G.

    2003-01-01

    Stratiform (bedded) Paleozoic barite occurs as large conformable beds within organic- and chert-rich sediments; the beds lack major sulfide minerals and are the largest and most economically significant barite deposits in the geologic record. Existing models for the origin of bedded barite fail to explain all their characteristics: the deposits display properties consistent with an exhalative origin involving fluid ascent to the seafloor, but they lack appreciable polymetallic sulfide minerals and the corresponding strontium isotopic composition to support a hydrothermal vent source. A new mechanism of barite formation, along structurally controlled sites of cold fluid seepage in continental margins, involves barite remobilization in organic-rich, highly reducing sediments, transport of barium-rich fluids, and barite precipitation at cold methane seeps. The lithologic and depositional framework of Paleozoic and cold seep barite, as well as morphological, textural, and chemical characteristics of the deposits, and associations with chemosymbiotic fauna, all support a cold seep origin for stratiform Paleozoic barite. This understanding is highly relevant to paleoceanographic and paleotectonic studies, as well as to economic geology.

  6. Microbial community changes along the active seepage site of one cold seep in the Red Sea

    PubMed Central

    Cao, Huiluo; Zhang, Weipeng; Wang, Yong; Qian, Pei-Yuan

    2015-01-01

    The active seepage of the marine cold seeps could be a critical process for the exchange of energy between the submerged geosphere and the sea floor environment through organic-rich fluids, potentially even affecting surrounding microbial habitats. However, few studies have investigated the associated microbial community changes. In the present study, 16S rRNA genes were pyrosequenced to decipher changes in the microbial communities from the Thuwal seepage point in the Red Sea to nearby marine sediments in the brine pool, normal marine sediments and water, and benthic microbial mats. An unexpected number of reads from unclassified groups were detected in these habitats; however, the ecological functions of these groups remain unresolved. Furthermore, ammonia-oxidizing archaeal community structures were investigated using the ammonia monooxygenase subunit A (amoA) gene. Analysis of amoA showed that planktonic marine habitats, including seeps and marine water, hosted archaeal ammonia oxidizers that differed from those in microbial mats and marine sediments, suggesting modifications of the ammonia oxidizing archaeal (AOA) communities along the environmental gradient from active seepage sites to peripheral areas. Changes in the microbial community structure of AOA in different habitats (water vs. sediment) potentially correlated with changes in salinity and oxygen concentrations. Overall, the present results revealed for the first time unanticipated novel microbial groups and changes in the ammonia-oxidizing archaea in response to environmental gradients near the active seepages of a cold seep. PMID:26284035

  7. Microbial community changes along the active seepage site of one cold seep in the Red Sea.

    PubMed

    Cao, Huiluo; Zhang, Weipeng; Wang, Yong; Qian, Pei-Yuan

    2015-01-01

    The active seepage of the marine cold seeps could be a critical process for the exchange of energy between the submerged geosphere and the sea floor environment through organic-rich fluids, potentially even affecting surrounding microbial habitats. However, few studies have investigated the associated microbial community changes. In the present study, 16S rRNA genes were pyrosequenced to decipher changes in the microbial communities from the Thuwal seepage point in the Red Sea to nearby marine sediments in the brine pool, normal marine sediments and water, and benthic microbial mats. An unexpected number of reads from unclassified groups were detected in these habitats; however, the ecological functions of these groups remain unresolved. Furthermore, ammonia-oxidizing archaeal community structures were investigated using the ammonia monooxygenase subunit A (amoA) gene. Analysis of amoA showed that planktonic marine habitats, including seeps and marine water, hosted archaeal ammonia oxidizers that differed from those in microbial mats and marine sediments, suggesting modifications of the ammonia oxidizing archaeal (AOA) communities along the environmental gradient from active seepage sites to peripheral areas. Changes in the microbial community structure of AOA in different habitats (water vs. sediment) potentially correlated with changes in salinity and oxygen concentrations. Overall, the present results revealed for the first time unanticipated novel microbial groups and changes in the ammonia-oxidizing archaea in response to environmental gradients near the active seepages of a cold seep. PMID:26284035

  8. Anaerobic methane oxidation in low-organic content methane seep sediments

    USGS Publications Warehouse

    Pohlman, John W.; Riedel, Michael; Bauer, James E.; Canuel, Elizabeth A.; Paull, Charles K.; Lapham, Laura; Grabowski, Kenneth S.; Coffin, Richard B.; Spence, George D.

    2013-01-01

    Sulfate-dependent anaerobic oxidation of methane (AOM) is the key sedimentary microbial process limiting methane emissions from marine sediments and methane seeps. In this study, we investigate how the presence of low-organic content sediment influences the capacity and efficiency of AOM at Bullseye vent, a gas hydrate-bearing cold seep offshore of Vancouver Island, Canada. The upper 8 m of sediment contains 14C. A fossil origin for the DIC precludes remineralization of non-fossil OM present within the sulfate zone as a significant contributor to pore water DIC, suggesting that nearly all sulfate is available for anaerobic oxidation of fossil seep methane. Methane flux from the SMT to the sediment water interface in a diffusion-dominated flux region of Bullseye vent was, on average, 96% less than at an OM-rich seep in the Gulf of Mexico with a similar methane flux regime. Evidence for enhanced methane oxidation capacity within OM-poor sediments has implications for assessing how climate-sensitive reservoirs of sedimentary methane (e.g., gas hydrate) will respond to ocean warming, particularly along glacially-influenced mid and high latitude continental margins.

  9. Barite encrustation of benthic sulfur-oxidizing bacteria at a marine cold seep.

    PubMed

    Stevens, E W N; Bailey, J V; Flood, B E; Jones, D S; Gilhooly, W P; Joye, S B; Teske, A; Mason, O U

    2015-11-01

    Crusts and chimneys composed of authigenic barite are found at methane seeps and hydrothermal vents that expel fluids rich in barium. Microbial processes have not previously been associated with barite precipitation in marine cold seep settings. Here, we report on the precipitation of barite on filaments of sulfide-oxidizing bacteria at a brine seep in the Gulf of Mexico. Barite-mineralized bacterial filaments in the interiors of authigenic barite crusts resemble filamentous sulfide-oxidizing bacteria of the genus Beggiatoa. Clone library and iTag amplicon sequencing of the 16S rRNA gene show that the barite crusts that host these filaments also preserve DNA of Candidatus Maribeggiatoa, as well as sulfate-reducing bacteria. Isotopic analyses show that the sulfur and oxygen isotope compositions of barite have lower δ(34)S and δ(18)O values than many other marine barite crusts, which is consistent with barite precipitation in an environment in which sulfide oxidation was occurring. Laboratory experiments employing isolates of sulfide-oxidizing bacteria from Gulf of Mexico seep sediments showed that under low sulfate conditions, such as those encountered in brine fluids, sulfate generated by sulfide-oxidizing bacteria fosters rapid barite precipitation localized on cell biomass, leading to the encrustation of bacteria in a manner reminiscent of our observations of barite-mineralized Beggiatoa in the Gulf of Mexico. The precipitation of barite directly on filaments of sulfide-oxidizing bacteria, and not on other benthic substrates, suggests that sulfide oxidation plays a role in barite formation at certain marine brine seeps where sulfide is oxidized to sulfate in contact with barium-rich fluids, either prior to, or during, the mixing of those fluids with sulfate-containing seawater in the vicinity of the sediment/water interface. As with many other geochemical interfaces that foster mineral precipitation, both biological and abiological processes likely contribute

  10. Efficiency and adaptability of the benthic methane filter at Quepos Slide cold seeps, offshore of Costa Rica

    NASA Astrophysics Data System (ADS)

    Steeb, P.; Krause, S.; Linke, P.; Hensen, C.; Dale, A. W.; Nuzzo, M.; Treude, T.

    2015-11-01

    Large amounts of methane are delivered by fluids through the erosive forearc of the convergent margin offshore of Costa Rica and lead to the formation of cold seeps at the sediment surface. Besides mud extrusion, numerous cold seeps are created by landslides induced by seamount subduction or fluid migration along major faults. Most of the dissolved methane migrating through the sediments of cold seeps is oxidized within the benthic microbial methane filter by anaerobic oxidation of methane (AOM). Measurements of AOM and sulfate reduction as well as numerical modeling of porewater profiles revealed a highly active and efficient benthic methane filter at the Quepos Slide site, a landslide on the continental slope between the Nicoya and Osa Peninsula. Integrated areal rates of AOM ranged from 12.9 ± 6.0 to 45.2 ± 11.5 mmol m-2 d-1, with only 1 to 2.5 % of the upward methane flux being released into the water column. Additionally, two parallel sediment cores from Quepos Slide were used for in vitro experiments in a recently developed sediment-flow-through (SLOT) system to simulate an increased fluid and methane flux from the bottom of the sediment core. The benthic methane filter revealed a high adaptability whereby the methane oxidation efficiency responded to the increased fluid flow within ca. 170 d. To our knowledge, this study provides the first estimation of the natural biogeochemical response of seep sediments to changes in fluid flow.

  11. Sulfur biogeochemistry of cold seeps in the Green Canyon region of the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Formolo, Michael J.; Lyons, Timothy W.

    2013-10-01

    Cold seeps in the Gulf of Mexico provide a natural laboratory to study biogeochemical cycling of sulfur, carbon, and oxygen at hydrate- and hydrocarbon-rich deep marine settings with obvious additional relevance to studies of diverse modern and ancient seeps. Of particular interest are the sulfur isotope signatures of microbial sulfate reduction coupled to anaerobic oxidation of methane and other non-methane liquid and gaseous hydrocarbons. Whereas most of the published sulfur isotope data from cold seep systems pertain to pore-water species, our study integrates both solid and dissolved sulfur: acid-volatile sulfides (SAVS), pyrite (Spy), elemental sulfur (S°), dissolved sulfate and ΣH2S. Modeled and 35SO42- reduction rates and δ13C and δ18O data for authigenic carbonates are integrated within this sulfur framework. Our results indicate extreme variability over narrow spatial and temporal scales within short distances (meters) from active seeps. High rates of microbial sulfate reduction can lead to complete consumption of the sulfate within the upper few centimeters of burial, while meters away the sulfate profile shows little depletion. Such small-scale variability must reflect the structure and temporal dynamics of hydrocarbon migration in the presence of low amounts of background organic matter. Our past work demonstrated that electron donors other than methane drive significant levels of microbial activity at these seeps, and very recent work has demonstrated that oxidation of higher chain volatile hydrocarbons can contribute to the high levels of microbial activity. These findings are consistent with our new results. Elevated concentrations of pyrite and diagenetic carbonate relative to background sediments are diagnostic of active seepage, yet the S isotopes tell more complex stories. Low levels of the transient, 'instantaneous' products of S cycling-AVS and S°-show high δ34S values that increase with depth. Most of the pyrite formation, however, seems

  12. An overview of the latest results of cold seep research along the Hikurangi Margin, New Zealand

    NASA Astrophysics Data System (ADS)

    Greinert, J.; Faure, K.; Bialas, J.; Linke, P.; Pecher, I.; Rowden, A.

    2008-12-01

    Prior to 2006, the knowledge about cold seeps around New Zealand was based mainly on accidental recovery of seep fauna or methane-derived carbonates by fishermen and flares in echo sounders. Lewis and Marshall (1996) compiled these findings, providing the first details on 13 seep sites. Four of those are located at the Hikurangi Margin along the east coast of New Zealand's North Island. Since then, three international cruises in 2006 and 2007 enhanced our knowledge considerably about methane seepage along the Hikurangi Margin, an area which has in places very strong BSRs. Two cruises on RV TANGAROA in 2006 focused on extensive reconnaissance work as well as fauna sampling, geochemical pore water analyses and CTD casts including water sampling for methane analyses. Several new seep sites were discovered during these cruises. Using these data, very detailed investigations in four main working areas could be performed during a 10-weeks expedition with RV SONNE (SO191). All research topics currently discussed in the scientific community were addressed using state-of-the-art equipment (e.g. deep- tow side-scan and ROV-deployments). Fourteen institutes from seven countries were involved. Echosounder and sidescan surveys unmistakably revealed active seep sites by detecting bubbles in the water column and carbonate precipitation at the seafloor forming massive chemoherm complexes. These complexes are associated with typical seep fauna like tube worms, bivalve mollusk species (Calyptogena, Bathymodiolus),and bacterial mats. At the fringe of these chemoherms dark sediment patches were observed which exihibit a novel seep habitat dominated by dense beds of two new species of heterotrophic ampharetid polychaetes. Bubble release was visually observed at several sites and recorded in the backscatter of various acoustic devices. At one site (680m water depth) very strong, pulsing outbursts could be observed repeatedly with methane fluxes of 20 to 25 l/min (60 to 74 mol

  13. Metagenomics in methane seep detection and studies of the microbial methane sediment filter

    NASA Astrophysics Data System (ADS)

    Gunn Rike, Anne; Håvelsrud, Othilde Elise; Haverkamp, Thomas; Kristensen, Tom; Jakobsen, Kjetill

    2013-04-01

    and represent a carbon source for the autotrophic nitrifying community. In this way the sediments at Troll probably contributes to reduce the methane emissions to the water body and further to the atmosphere (3). References: 1) Niemann H, Lösekann T, Boetius A, Kort R, Amann R. Diversity and distribution of methanotrophic archaea at cold seeps. Appl Environ Microbiol 2005, 71(1), 467-479. 2) Håvelsrud, O. E., Haverkamp, T.H.A., Kristensen, T., Jakobsen, K.S. and Rike A.G. Metagenomic study of methane oxidation in Coal Oil Point seep sediments. BMC Microbiology 2011, 11:221 3) Håvelsrud OE, Haverkamp THA., Kristensen T, Jakobsen KS and Rike AG. Metagenomic and geochemical characterization of pockmarked sediments overlaying the Troll petroleum reservoir in the North Sea. BMC Microbiology 2012, 12:203

  14. Cold Seep Epifaunal Communities on the Hikurangi Margin, New Zealand: Composition, Succession, and Vulnerability to Human Activities

    PubMed Central

    Bowden, David A.; Rowden, Ashley A.; Thurber, Andrew R.; Baco, Amy R.; Levin, Lisa A.; Smith, Craig R.

    2013-01-01

    Cold seep communities with distinctive chemoautotrophic fauna occur where hydrocarbon-rich fluids escape from the seabed. We describe community composition, population densities, spatial extent, and within-region variability of epifaunal communities at methane-rich cold seep sites on the Hikurangi Margin, New Zealand. Using data from towed camera transects, we match observations to information about the probable life-history characteristics of the principal fauna to develop a hypothetical succession sequence for the Hikurangi seep communities, from the onset of fluid flux to senescence. New Zealand seep communities exhibit taxa characteristic of seeps in other regions, including predominance of large siboglinid tubeworms, vesicomyid clams, and bathymodiolin mussels. Some aspects appear to be novel; however, particularly the association of dense populations of ampharetid polychaetes with high-sulphide, high-methane flux, soft-sediment microhabitats. The common occurrence of these ampharetids suggests they play a role in conditioning sulphide-rich sediments at the sediment-water interface, thus facilitating settlement of clam and tubeworm taxa which dominate space during later successional stages. The seep sites are subject to disturbance from bottom trawling at present and potentially from gas hydrate extraction in future. The likely life-history characteristics of the dominant megafauna suggest that while ampharetids, clams, and mussels exploit ephemeral resources through rapid growth and reproduction, lamellibrachid tubeworm populations may persist potentially for centuries. The potential consequences of gas hydrate extraction cannot be fully assessed until extraction methods and target localities are defined but any long-term modification of fluid flow to seep sites would have consequences for all chemoautotrophic fauna. PMID:24204691

  15. Methane sources in gas hydrate-bearing cold seeps: Evidence from radiocarbon and stable isotopes

    USGS Publications Warehouse

    Pohlman, J.W.; Bauer, J.E.; Canuel, E.A.; Grabowski, K.S.; Knies, D.L.; Mitchell, C.S.; Whiticar, Michael J.; Coffin, R.B.

    2009-01-01

    Fossil methane from the large and dynamic marine gas hydrate reservoir has the potential to influence oceanic and atmospheric carbon pools. However, natural radiocarbon (14C) measurements of gas hydrate methane have been extremely limited, and their use as a source and process indicator has not yet been systematically established. In this study, gas hydrate-bound and dissolved methane recovered from six geologically and geographically distinct high-gas-flux cold seeps was found to be 98 to 100% fossil based on its 14C content. Given this prevalence of fossil methane and the small contribution of gas hydrate (??? 1%) to the present-day atmospheric methane flux, non-fossil contributions of gas hydrate methane to the atmosphere are not likely to be quantitatively significant. This conclusion is consistent with contemporary atmospheric methane budget calculations. In combination with ??13C- and ??D-methane measurements, we also determine the extent to which the low, but detectable, amounts of 14C (~ 1-2% modern carbon, pMC) in methane from two cold seeps might reflect in situ production from near-seafloor sediment organic carbon (SOC). A 14C mass balance approach using fossil methane and 14C-enriched SOC suggests that as much as 8 to 29% of hydrate-associated methane carbon may originate from SOC contained within the upper 6??m of sediment. These findings validate the assumption of a predominantly fossil carbon source for marine gas hydrate, but also indicate that structural gas hydrate from at least certain cold seeps contains a component of methane produced during decomposition of non-fossil organic matter in near-surface sediment.

  16. More than three thousand years of microbial methane consumption at cold seeps offshore Svalbard

    NASA Astrophysics Data System (ADS)

    Steinle, Lea; Vögtli, Irina; Liebetrau, Volker; Krause, Stefan; Treude, Tina; Lehmann, Moritz; Niemann, Helge

    2014-05-01

    Microbial consumption retains a significant fraction of methane in marine sediments. Under anoxic conditions, the anaerobic oxidation of methane (AOM) is mediated by archaea with sulfate as the terminal electron acceptor, whereas the aerobic oxidation of methane (MOx) is mediated by bacteria. MOx is typically less important in marine systems because oxygen availability in sediments is very low and methane is consumed in deeper sediments through AOM. At cold seeps, however, the methane flux can be high enough to bypass the AOM filter so that methane and oxygen overlap in surface sediments. The role of MOx thus becomes more significant at highly active cold seeps. To further test this hypothesis, and the applicability of MOx-signatures as a tracer for paleo seep activity, we investigated lipid biomarkers of methanotrophic communities in modern sediments and compared them to fossilised lipids in more than 3000 years old authigenic carbonate accretions. Sediments and carbonates were recovered in the direct vicinity of bubble release sites at cold seeps offshore Svalbard, systems that have been active for at least 3000 years (Berndt et al., 2014). Samples were recovered with the submersible JAGO during an expedition with R/V M.S. Merian (MSM 21/4) in 2012. The composition of lipid biomarkers and their associated stable carbon isotope signatures provide evidence for distinctly different methanotrophic communities in modern sediments and the old carbonates. In deeper sediments, where AOM rate measurements were maximal (~500 nmol ml-1 d-1 at ~5 cm sediment depth), the dominance of the 13C-depleted archaeal biomarker archaeol and the absence of sn2-hydroxyarchaeol and crocetane point to an AOM community dominated by ANME1-archaea. At the surface of the sediment core, we found 13C-depleted 4α-methylsteroids and diploptene, lipid biomarkers originating from MOx communities. The biomarker profiles are consistent with our visual observations. During sampling, methane bubbles

  17. Geochemical zonation and characteristics of cold seeps along the Makran continental margin off Pakistan

    NASA Astrophysics Data System (ADS)

    Fischer, D.; Bohrmann, G.; Zabel, M.; Kasten, S.

    2009-04-01

    Several highly dynamic and spatially extended cold seeps were found and analyzed on the Makran accretionary wedge off Pakistan during R/V Meteor cruise M74-3 in 2007. In water depths of 550m to 2870m along the continental slope nine different gas escape structures were examined some of which are situated within a stable oxygen minimum zone (OMZ) between 150m and 1100m water depth (von Rad et al., 1996, 2000). Echosounder data indicate several gas bubble streams in the water column. The gas seepage presumably originates from squeezing of massive sediment packages being compressed by subduction at the continental margin off Pakistan. Gas- and fluid venting and associated surface-near anaerobic oxidation of methane (AOM) feed several cold seepage systems in the seabed. The seep sites show strong inter- and intraspecific variability of benthic chemosynthetic microhabitats. Singular seeps are often colonized by different chemosynthetic organisms in a concentric fashion. The seep-center, where active bubble ebullition occurs, is often colonized by large hydrogen sulfide-oxidizing bacteria, which are surrounded by a rim inhabited by small chemosynthetic clams and tube worms. These different habitats and the associated sediments show distinct geochemical zonations and gradients. Geochemical analyses of pore water and sediment samples obtained via ROV (push corer) show that concentrations of hydrogen sulfide and alkalinity rapidly increase to >15 mmol/l and >35 mmol/l respectively several cm below the seafloor in the center of the cold seep. In places, sulfate is depleted to concentrations below detection limit at the same depth (ROV push core GeoB 12313-6). Ammonium concentrations in this core on the other hand show a different pattern: In the center of the cold seep, which is colonized by bacterial assemblages, ammonium concentrations fluctuate around 100 µmol/l and peak with 274.4 µmol/l just above the aforementioned sulfide maximum values at 5 cm followed by a rapid

  18. Sulfur isotope and porewater geochemistry of Florida escarpment seep sediments

    USGS Publications Warehouse

    Chanton, J.P.; Martens, C.S.; Paull, C.K.; Coston, J.A.

    1993-01-01

    Distributions of porewater constituents, SO4=, NH4+, Cl-, ???CO2, and H2S, solid phase iron, and sulfur concentrations, and the sulfur isotopic composition of dissolved and solid phases were investigated in sediments from abyssal seeps at the base of the Florida escarpment. Despite the apparent similarity of seep sediment porewater chemistry to that of typical marine sediments undergoing early diagenesis, relationships between chemical distributions and isotopic measurements revealed that the distribution of pore fluid constituents was dominated by processes occurring within the platform rather than by in situ microbial processes. Ammonium and sulfate concentrations were linearly correlated with chloride concentrations, indicating that variations in porewater chemistry were controlled by the admixture of seawater and a sulfate depleted brine with a chlorinity of 27.5 ?? 1.9%. and 2.2 ?? 1.3 mM ammonium concentration. At sites dominated by seepage, dissolved sulfate isotopic composition remained near seawater values despite depletion in porewater concentrations. Porewater ???CO2 concentrations were found to be elevated relative to seawater, but not to the extent predicted from the observed sulfate depletion. Sediment solid phase sulfur was predominantly pyrite, at concentrations as high as 20% S by weight. In contrast to typical marine deposits, pyrite concentrations were not related to the quantity of sedimentary organic matter. Pyrite ??34S values ranged from -29%. to + 21%. (CDT). However, only positive ??34S values were observed at sites associated with high pyrite concentrations. Isotopically heavy pyrite was observed at sites with porewater sulfate of seawater-like isotopic composition. Isotopically light pyrite was associated with sites where porewater sulfate exhibited ??34S values greater than those in seawater, indicating the activity of in situ microbial sulfate reduction. Thus, dual sulfide sources are suggested to explain the range in sediment pyrite

  19. Three-dimensional structure of fluid conduits sustaining an active deep marine cold seep

    USGS Publications Warehouse

    Hornbach, M.J.; Ruppel, C.; Van Dover, C.L.

    2007-01-01

    Cold seeps in deep marine settings emit fluids to the overlying ocean and are often associated with such seafloor flux indicators as chemosynthetic biota, pockmarks, and authigenic carbonate rocks. Despite evidence for spatiotemporal variability in the rate, locus, and composition of cold seep fluid emissions, the shallow subseafloor plumbing systems have never been clearly imaged in three dimensions. Using a novel, high-resolution approach, we produce the first three-dimensional image of possible fluid conduits beneath a cold seep at a study site within the Blake Ridge gas hydrate province. Complex, dendritic features diverge upward toward the seafloor from feeder conduits at depth and could potentially draw flow laterally by up to 103 m from the known seafloor seep, a pattern similar to that suggested for some hydrothermal vents. The biodiversity, community structure, and succession dynamics of chemosynthetic communities at cold seeps may largely reflect these complexities of subseafloor fluid flow.

  20. Cold-seep carbonates of the middle and lower continental slope, northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Roberts, Harry H.; Feng, Dong; Joye, Samantha B.

    2010-11-01

    Authigenic carbonates from cold seeps on the middle and lower continental slope of the northern Gulf of Mexico (GOM) exhibit a wide range of mineralogical and stable isotopic compositions. These carbonates consist of concretions and nodules in surface sediments, hardgrounds of crusts and isolated slabs, and mounded buildups of blocks and slabs of up to over 10 meters in relief above the surrounding seafloor. Mineralogically, the carbonates are dominated by high-Mg calcite (HMC) and aragonite. However, low levels (<5 wt%) of dolomite are present in most samples. Petrographically, Mg-calcite peloidal matrix and acicular to botryoidal aragonitic void-filling cements are the most frequent associations. The carbon isotopic compositions of the carbonates range from -60.8 to 14.0‰ PDB, indicating complex carbon sources that include 13C-depleted biogenic and thermogenic methane, biodegraded crude oil, seawater CO2, and 13C-enriched residual CO2 from methanogenesis. A similarly large variability in δ18O values (2.5 to 6.7‰ PDB) demonstrates the geochemical complexity of the slope, with some samples pointing toward an 18O-enriched oxygen source that is possibly related to advection of 18O-enriched formation water and/or to the decomposition of gas hydrate. A considerable range of mineralogical and isotopic variations in cold-seep carbonate composition was noted even within individual study sites. However, common trends occur across multiple geographic areas. This situation suggests that local controls on fluid and gas flux, types of seep hydrocarbons, the presence or absence of gas hydrate in the near-surface sediment, and chemosynthetic communities, as well as the temporal evolution of the local hydrocarbon reservoir, all may play a part in determining carbonate mineralogy and isotope geochemistry. The carbon isotope data clearly indicate that between-site variation is greater than within-site variation. Seep carbonates formed on the middle and lower continental slope

  1. Rare earth element geochemistry in cold-seep pore waters of Hydrate Ridge, northeast Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Himmler, Tobias; Haley, Brian A.; Torres, Marta E.; Klinkhammer, Gary P.; Bohrmann, Gerhard; Peckmann, Jörn

    2013-07-01

    The concentrations of rare earth elements (REEs), sulphate, hydrogen sulphide, total alkalinity, calcium, magnesium and phosphate were measured in shallow (<12 cm below seafloor) pore waters from cold-seep sediments on the northern and southern summits of Hydrate Ridge, offshore Oregon. Downward-decreasing sulphate and coevally increasing sulphide concentrations reveal sulphate reduction as dominant early diagenetic process from ~2 cm depth downwards. A strong increase of total dissolved REE (∑REE) concentrations is evident immediately below the sediment-water interface, which can be related to early diagenetic release of REEs into pore water resulting from the re-mineralization of particulate organic matter. The highest pore water ∑REE concentrations were measured close to the sediment-water interface at ~2 cm depth. Distinct shale-normalized REE patterns point to particulate organic matter and iron oxides as main REE sources in the upper ~2-cm depth interval. In general, the pore waters have shale-normalized patterns reflecting heavy REE (HREE) enrichment, which suggests preferential complexation of HREEs with carbonate ions. Below ~2 cm depth, a downward decrease in ∑REE correlates with a decrease in pore water calcium concentrations. At this depth, the anaerobic oxidation of methane (AOM) coupled to sulphate reduction increases carbonate alkalinity through the production of bicarbonate, which results in the precipitation of carbonate minerals. It seems therefore likely that the REEs and calcium are consumed during vast AOM-induced precipitation of carbonate in shallow Hydrate Ridge sediments. The analysis of pore waters from Hydrate Ridge shed new light on early diagenetic processes at cold seeps, corroborating the great potential of REEs to identify geochemical processes and to constrain environmental conditions.

  2. Cold seeps associated with a submarine debris avalanche deposit at Kick'em Jenny volcano, Grenada (Lesser Antilles)

    NASA Astrophysics Data System (ADS)

    Carey, Steven; Ballard, Robert; Bell, Katherine L. C.; Bell, Richard J.; Connally, Patrick; Dondin, Frederic; Fuller, Sarah; Gobin, Judith; Miloslavich, Patricia; Phillips, Brennan; Roman, Chris; Seibel, Brad; Siu, Nam; Smart, Clara

    2014-11-01

    Remotely operated vehicle (ROV) exploration at the distal margins of a debris avalanche deposit from Kick'em Jenny submarine volcano in Grenada has revealed areas of cold seeps with chemosynthetic-based ecosystems. The seeps occur on steep slopes of deformed, unconsolidated hemipelagic sediments in water depths between 1952 and 2042 m. Two main areas consist of anastomosing systems of fluid flow that have incised local sediments by several tens of centimeters. No temperature anomalies were observed in the vent areas and no active flow was visually observed, suggesting that the venting may be waning. An Eh sensor deployed on a miniature autonomous plume recorder (MAPR) recorded a positive signal and the presence of live organisms indicates at least some venting is still occurring. The chemosynthetic-based ecosystem included giant mussels (Bathymodiolus sp.) with commensal polychaetes (Branchipolynoe sp.) and cocculinid epibionts, other bivalves, Siboglinida (vestimentiferan) tubeworms, other polychaetes, and shrimp, as well as associated heterotrophs, including gastropods, anemones, crabs, fish, octopods, brittle stars, and holothurians. The origin of the seeps may be related to fluid overpressure generated during the collapse of an ancestral Kick'em Jenny volcano. We suggest that deformation and burial of hemipelagic sediment at the front and base of the advancing debris avalanche led to fluid venting at the distal margin. Such deformation may be a common feature of marine avalanches in a variety of geological environments especially along continental margins, raising the possibility of creating large numbers of ephemeral seep-based ecosystems.

  3. Cold seep carbonates along the Norwegian margin, insights into U-Th geochronology and S geochemistry

    NASA Astrophysics Data System (ADS)

    Cremiere, A.; Lepland, A.; Wing, B. A.; Sahy, D.; Condon, D. J.; Chand, S.; Noble, S. R.; Bui, T. H.; Thorsnes, T.; Brunstad, H.

    2015-12-01

    Cold seep carbonates along the Norwegian margin, insights into U-Th geochronology and S geochemistryAuthigenic carbonate crusts form in shallow subsurface of marine sediments due to the microbial anaerobic oxidation of methane (AOM). As a result they are unique archives of the locus and intensity of past methane seepage that can be dated by using U-daughter decay affording the unique opportunity to constrain the absolute timing of methane release events. Because AOM is mainly driven by the microbial reduction of seawater sulfate, multiple sulfur isotope compositions of paired carbonate-associated sulfate (CAS) and pyrite in seep carbonates taken as proxies for porewater sulfate and sulfide, respectively, have the potential to reconstruct the biogeochemical conditions under which seep carbonates precipitate. Methane-derived carbonate crusts were collected from several seepage sites on the Norwegian continental shelf, including sites in the North Sea, the Norwegian Sea and the Barents Sea. The U-Th dating results constrain the main episode of carbonate crust formation in the Barents and Norwegian seas during the time interval between 14 and 7 ka. Such ages suggest that the methane seepage along the northern Norwegian margin was most active after the collapse of the Scandinavian ice sheet and deglaciation of the area that took place at about 15 ka. The methane flux for the carbonate crust formation was likely provided by the dissociation of methane hydrates that extensively formed in underlying sediments during the last glacial period, but became unstable due to depressuring effects of retreating ice sheet. The precipitation of studied North Sea carbonate crusts occurred more recently, from 6 to 1 ka, suggesting that their formation is unrelated to the glacial history of the area. The paired sulfur stable isotope compositions of pyrite-CAS record a large range of fractionation factors (from 30 to 70 ‰) reflecting change of sulfate-reduction rates possibly controlled

  4. Trace element behaviour at cold seeps and the potential export of dissolved iron to the ocean

    NASA Astrophysics Data System (ADS)

    Lemaitre, Nolwenn; Bayon, Germain; Ondréas, Hélène; Caprais, Jean-Claude; Freslon, Nicolas; Bollinger, Claire; Rouget, Marie-Laure; de Prunelé, Alexis; Ruffine, Livio; Olu-Le Roy, Karine; Sarthou, Géraldine

    2014-10-01

    Seawater samples were collected by submersible above methane seeps in the Gulf of Guinea (Regab and Baboon pockmarks) in order to investigate the behaviour of iron (Fe), manganese (Mn) and rare earth elements (REE) during fluid seepage. Our aim was to determine whether cold seeps may represent potential sources of dissolved chemical species to the ocean. Dissolved (<0.45 μm filtered samples) and total dissolvable (unfiltered samples) concentrations were determined over ∼50 m long vertical transects above the seafloor and at various discrete locations within the pockmarks. We show that substantial amounts of Fe and Mn are released into seawater during seepage of methane-rich fluids. Mn is exported almost quantitatively in the dissolved form (more than 90% of total Mn; mean MnDISS∼12±11 nmol/kg). Although a significant fraction of Fe is bound to particulate phases, the dissolved iron pool still accounts on average for approximately 20 percent of total iron flux at vent sites (mean FeDISS∼22±11 nmol/kg). This dissolved Fe fraction also appears to remain stable in the water column. In contrast, there was no evidence for any significant benthic fluxes of pore water REE associated with fluid seepage at the studied sites. Overall, our results point towards distinct trace element behaviour during fluid seepage, with potential implications for the marine geochemical budget. The absence of any dissolved REE enrichments in bottom waters clearly indicates effective removal in sub-surface sediments. Most likely, precipitation of authigenic mineral phases at cold seeps (i.e. carbonates) represents a net sink for these elements. While Mn appears to behave near-conservatively during fluid seepage, the observed relative stability of dissolved Fe in the water column above seepage sites could be explained by complexation with strong organic ligands and/or the presence of Fe-bearing sulfide nanoparticles, as reported previously for submarine hydrothermal systems. Considering

  5. In situ Raman-based detections of the hydrothermal vent and cold seep fluids

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Du, Zengfeng; Zheng, Ronger; Luan, Zhendong; Qi, Fujun; Cheng, Kai; Wang, Bing; Ye, Wangquan; Liu, Xiaorui; Chen, Changan; Guo, Jinjia; Li, Ying; Yan, Jun

    2016-04-01

    sediment pore water from the northern South China Sea. Several sediment pore water profiles nearly at the cold seep vent showed the characteristic loss of SO42‑, and the increase of CH4, H2S and HS‑ peaks. Dissolved S8 and CH4had been first found at the fluids under the lush biological communities of the cold seep. This may indicate some bacteria mats at the lush biological communities oxidize hydrogen sulfide and produce elemental sulfur as a byproduct. Our research suggests that the in situ observed H2S:HS‑, and HSO4‑:SO42‑ ratios provide elegant pH sensitive "dyes" with which to diagnose the geochemical reactions occurring.

  6. Overpressure and fluid flow in the new jersey continental slope: implications for slope failure and cold seeps

    PubMed

    Dugan; Flemings

    2000-07-14

    Miocene through Pleistocene sediments on the New Jersey continental slope (Ocean Drilling Program Site 1073) are undercompacted (porosity between 40 and 65%) to 640 meters below the sea floor, and this is interpreted to record fluid pressures that reach 95% of the lithostatic stress. A two-dimensional model, where rapid Pleistocene sedimentation loads permeable sandy silt of Miocene age, successfully predicts the observed pressures. The model describes how lateral pressure equilibration in permeable beds produces fluid pressures that approach the lithostatic stress where overburden is thin. This transfer of pressure may cause slope failure and drive cold seeps on passive margins around the world. PMID:10894774

  7. Biogeochemistry of a low-activity cold seep in the Larsen B area, western Weddell Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Niemann, H.; Fischer, D.; Graffe, D.; Knittel, K.; Montiel, A.; Heilmayer, O.; Nöthen, K.; Pape, T.; Kasten, S.; Bohrmann, G.; Boetius, A.; Gutt, J.

    2009-06-01

    First videographic indication of an Antarctic cold seep ecosystem was recently obtained from the collapsed Larsen B ice shelf, western Weddell Sea (Domack et al., 2005). Within the framework of the R/V Polarstern expedition ANTXXIII-8, we revisited this area for geochemical, microbiological and further videographical examinations. During two dives with ROV Cherokee (MARUM, Bremen), several bivalve shell agglomerations of the seep-associated, chemo syntheticclam Calyptogena sp. were found in the trough of the Crane and Evans glacier. The absence of living clam specimens indicates that the flux of sulphide and hence the seepage activity is diminished at present. This impression was further substantiated by our geochemical observations. Concentrations of thermogenic methane were moderately elevated with 2 μM in surface sediments of a clam patch, increasing up to 9 μM at a sediment depth of about 1 m in the bottom sections of the sediment cores. This correlated with a moderate decrease in sulphate from 28 mM at the surface down to 23.4 mM, an increase in sulphide to up to 1.43 mM and elevated rates of the anaerobic oxidation of methane (AOM) of up to 600 pmol cm-3 d-1 at about 1 m below the seafloor. Molecular analyses indicate that methanotrophic archaea related to ANME-3 are the most likely candidates mediating AOM in sediments of the Larsen B seep (Domack et al., 2005; EOS 86, 269-276).

  8. Biogeochemistry of a low-activity cold seep in the Larsen B area, western Weddell Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Niemann, H.; Fischer, D.; Graffe, D.; Knittel, K.; Montiel, A.; Heilmayer, O.; Nöthen, K.; Pape, T.; Kasten, S.; Bohrmann, G.; Boetius, A.; Gutt, J.

    2009-11-01

    First videographic indication of an Antarctic cold seep ecosystem was recently obtained from the collapsed Larsen B ice shelf, western Weddell Sea (Domack et al., 2005). Within the framework of the R/V Polarstern expedition ANTXXIII-8, we revisited this area for geochemical, microbiological and further videographical examinations. During two dives with ROV Cherokee (MARUM, Bremen), several bivalve shell agglomerations of the seep-associated, chemosynthetic clam Calyptogena sp. were found in the trough of the Crane and Evans glacier. The absence of living clam specimens indicates that the flux of sulphide and hence the seepage activity is diminished at present. This impression was further substantiated by our geochemical observations. Concentrations of thermogenic methane were moderately elevated with 2 μM in surface sediments of a clam patch, increasing up to 9 μM at a sediment depth of about 1 m in the bottom sections of the sediment cores. This correlated with a moderate decrease in sulphate from about 28 mM at the surface down to 23.4 mM, an increase in sulphide to up to 1.43 mM and elevated rates of the anaerobic oxidation of methane (AOM) of up to 600 pmol cm-3 d-1 at about 1 m below the seafloor. Molecular analyses indicate that methanotrophic archaea related to ANME-3 are the most likely candidates mediating AOM in sediments of the Larsen B seep.

  9. The role of bacteria in the formation of cold seep carbonates: geological evidence from Monferrato (Tertiary, NW Italy)

    NASA Astrophysics Data System (ADS)

    Cavagna, Simona; Clari, Pierangelo; Martire, Luca

    1999-07-01

    Methane-derived carbonate rocks ( Lucina limestone and Marmorito limestone) crop out in Monferrato (NW Italy) and represent one of the first described examples of rocks produced at fossil cold seeps. These rocks, of Miocene age, consist of strongly carbonate-cemented siliciclastic sediments ranging in grain size from mud to coarse sand. The methane-related origin of Monferrato carbonates is based on: (a) outcrop-scale evidence: patchiness of cementation, chemosymbiotic fossil communities, presence of a network of polyphase carbonate-filled veins not related to tectonics; (b) isotope geochemistry: very depleted δ 13C values, as low as -50‰ PDB; (c) peculiar petrographic features. Diverse microbial communities have been observed in present-day cold seeps. These communities include sulphate-reducing, sulphur-oxidizing and methane-oxidizing bacteria. The present work is focused on the identification and description of fossil evidence of such microbial activity in the Monferrato carbonates. Examples of fossilization of microbial structures are probably represented by pyritic rods and dolomite tubes referable to sulphur-oxidizing and to unspecified bacteria, respectively. Less direct but more abundant evidence has been found through petrographic and SEM studies of seep carbonates. Many features point to the presence of organic clumps or mats capable of trapping sediment and promoting carbonate precipitation: microcrystalline calcite peloids; dolomite crystals with irregular hollow cores; dolomite spheroids with dumbbell-shaped cores; laminated internal sediments lining cavities completely. All these features are interpreted to result from bacterially mediated, sedimentary and diagenetic processes and can therefore be considered as an additional evidence of ancient methane seeps.

  10. Marine cold seeps and their manifestations: geological control, biogeochemical criteria and environmental conditions

    NASA Astrophysics Data System (ADS)

    Suess, Erwin

    2014-10-01

    Characteristics of cold seeps at different geologic settings are the subject of this review primarily based on results of the Research Consortium SFB 574. Criteria are drawn from examples on the erosive convergent margin off Costa Rica, the accretionary margin off Chile supplemented by examples from the transform margin of the Golf of Cadiz and the convergent Hikurangi margin off New Zealand. Others are from well-studied passive margins of the Black Sea, the Golf of Mexico, the eastern Mediterranean Sea and the South China Sea. Seeps at all settings transport water and dissolved compounds to the ocean through the seafloor by different forcing mechanism and from different depths of the submerged geosphere (10s of meters to 10s of km). The compounds sustain oasis-type ecosystems by providing bioactive reductants sulfide, methane and hydrogen. Hereby, the interaction between fluid composition, flux rates and biota results in a diagnostic hydrocarbon-metazoan-microbe-carbonate association; currently, well over 100 active sites are known. The single most important reaction is microbially mediated anaerobic oxidation of methane with secondary reactions involving S-biogeochemistry and carbonate mineral precipitation. Seep fluids and their seafloor manifestations provide clues as to source depth, fluid-sediment/rock interaction during ascent, lifetime and cyclicity of seepage events but less so on the magnitude of return flow. At erosive margins, Cl-depleted and B-enriched fluids from clay dehydration provide criteria for source depth and temperature. The upward material flow generates mud volcanoes at the seafloor above the projected location of dehydration at depth. At accretionary margins, fluids are derived from more shallow depths by compaction of sediments as they ride on the incoming oceanic plate; they are emitted through thrust faults. At highly sedimented margins, organic-rich and evaporite-containing strata (when present) determine the final fluid composition

  11. An overview of gas hydrate and cold seep research along the Hikurangi Margin, New Zealand (2006 & 2007)

    NASA Astrophysics Data System (ADS)

    Greinert, J.; Faure, K.; Naudts, L.; de Batist, M.; Bialas, J.; Linke, P.; Pecher, I.; Rowden, R.

    2009-04-01

    Prior to 2006, the knowledge about cold seeps around New Zealand was based mainly on accidental recovery of seep fauna or methane-derived carbonates by fishermen and the detection of flares in fish-finding sonars. Lewis and Marshall (1996; NZJGG) compiled these findings, providing the first details on 13 seep sites. Four of those are located at the Hikurangi Margin along the east coast of New Zealand's North Island. Since then, three international cruises in 2006 and 2007 enhanced our knowledge considerably about methane seepage along the Hikurangi Margin, an area which has widely distributed and in places very strong BSR. Two cruises on the RV TANGAROA (led by GNS Science and NIWA, NZ) in 2006 focused on extensive reconnaissance work (multibeam mapping, seismic surveys, flare imaging, visual observations) as well as fauna sampling, geochemical pore water analyses and CTD casts including water sampling for methane analyses. Several new seep sites were discovered during these cruises. Using these data, very detailed investigations in four main working areas could be performed during a 10-week expedition with RV SONNE (SO191, led by IFM-GEOMAR, Germany). All research topics currently discussed in the scientific community were addressed using state-of-the-art equipment (e.g. deep-tow side-scan, TV-guided sampling, lander and ROV-deployments). Fourteen institutes from seven countries were involved (Australia, Belgium, Germany, New Zealand, United Kingdom, United States, Switzerland). Echosounder and sidescan surveys unmistakably revealed active seep sites by detecting bubbles in the water column and carbonate precipitation at the seafloor forming massive chemoherm complexes. These complexes are associated with typical seep fauna like tube worms, bivalve mollusk species (Calyptogena, Bathymodiolus),and bacterial mats. At the fringe of these chemoherms dark sediment patches were observed which exihibit a novel seep habitat dominated by dense beds of two new species of

  12. Epizooic metazoan meiobenthos associated with tubeworm and mussel aggregations from cold seeps of the northern Gulf of Mexico

    PubMed Central

    Bright, M.; Plum, C.; Riavitz, L.A.; Nikolov, N.; Martinez Arbizu, P.; Cordes, E.E.; Gollner, S.

    2010-01-01

    The abundance and higher taxonomic composition of epizooic metazoan meiobenthic communities associated with mussel and tubeworm aggregations of hydrocarbon seeps at Green Canyon, Atwater Valley, and Alaminos Canyon in depths between 1400 and 2800 m were studied and compared to the infaunal community of non-seep sediments nearby. Epizooic meiofaunal abundances of associated meiobenthos living in tubeworm bushes and mussel beds at seeps were extremely low (usually <100 ind. 10 cm−2), similar to epizooic meiofauna at deep-sea hydrothermal vents, and the communities were composed primarily of nematodes, copepods, ostracods, and halacarids. In contrast, epizooic meiobenthic abundance is lower than previous studies have reported for infauna from seep sediments. Interestingly, non-seep sediments contained higher abundances and higher taxonomic diversity than epizooic seep communities, although in situ primary production is restricted to seeps. PMID:21264038

  13. Epizooic metazoan meiobenthos associated with tubeworm and mussel aggregations from cold seeps of the northern Gulf of Mexico.

    PubMed

    Bright, M; Plum, C; Riavitz, L A; Nikolov, N; Martinez Arbizu, P; Cordes, E E; Gollner, S

    2010-11-01

    The abundance and higher taxonomic composition of epizooic metazoan meiobenthic communities associated with mussel and tubeworm aggregations of hydrocarbon seeps at Green Canyon, Atwater Valley, and Alaminos Canyon in depths between 1400 and 2800 m were studied and compared to the infaunal community of non-seep sediments nearby. Epizooic meiofaunal abundances of associated meiobenthos living in tubeworm bushes and mussel beds at seeps were extremely low (usually <100 ind. 10 cm(-2)), similar to epizooic meiofauna at deep-sea hydrothermal vents, and the communities were composed primarily of nematodes, copepods, ostracods, and halacarids. In contrast, epizooic meiobenthic abundance is lower than previous studies have reported for infauna from seep sediments. Interestingly, non-seep sediments contained higher abundances and higher taxonomic diversity than epizooic seep communities, although in situ primary production is restricted to seeps. PMID:21264038

  14. Cold seep status archived in authigenic carbonates: Mineralogical and isotopic evidence from Northern South China Sea

    NASA Astrophysics Data System (ADS)

    Lu, Yang; Sun, Xiaoming; Lin, Zhiyong; Xu, Li; Gong, Junli; Lu, Hongfeng

    2015-12-01

    Cold-seep carbonates are precipitated under high alkalinity conditions created by the anaerobic oxidation of methane in cold-seep sites. Multiple Ca-Mg-carbonate phases are identified, including aragonite, low-Mg calcite (LMC), high-Mg calcite (HMC), protodolomite, and dolomite. These phases result from different conditions that are related with cold-seep activities. Here, we report on the relationship between the Ca-Mg-carbonate phases and the cold-seep status. Authigenic carbonates were sampled from northern slope of South China Sea. Carbon isotopic compositions of samples from Shenhu area are lower than -40‰, indicating methane-derived carbon. The δ13C values of samples from Southwest (SW) Taiwan area range from ~-30‰ to ~-20‰, which is the result of the mixture of methane carbon and seawater carbon. Carbonate phases were identified according to the composition and structure results. Samples from Shenhu area are composed of protodolomite and HMC. Three zones were discovered from the center to the rim of the cross-section of the tube-like sample from SW Taiwan area. From the external to the internal zones, the carbonate phases are HMC; LMC and protodolomite; HMC, respectively. The intensity of superstructure reflections of the protodolomite from Shenhu area is stronger than that from SW Taiwan area, indicating higher MgCO3 content. Based on the formation conditions of Ca-Mg-carbonates from LMC to dolomite, those with higher MgCO3 content are formed in more active cold-seep environment. According to the distribution of carbonate phases in each sample, the cold seep flux was high in Shenhu area and was sustained for a long time. By contrast, the flux in SW Taiwan area was relatively low and not stable. It once became higher, but finally returned to low.

  15. Application of parasound data for sediment study on methane seep site at Simeulue basin

    SciTech Connect

    Wiguna, Taufan Ardhyastuti, Sri

    2015-09-30

    The Parasound data presents sea depth and sub-bottom profiler. In terms of geological terminology, parasound data represents significant recent surface sedimentary structures that valuable for the selection of subsequent sampling site such as sampling at methane seep site. Therefore, Parasound is used to detailing methane seep at surface sediment following seismic data interpretation. In this study, parasound is used to focus observe area especially for sediment study on methane seep site. The Parasound systems works both as narrow beam sounder use high frequency and as sediment echosounder use low frequency. Parasound acquisition applies parametric effect. It produces additional frequency by nonlinear acoustic interaction of finite amplitude waves. Parasound transducers have 128 elements on 1 m2 and need transmission power up to 70 kW. The results of this study are discovered large seep carbonate with porous surface which means there are gas expulsions passing through that rock.

  16. Evidence of paleo-cold seep activity from the Bay of Bengal, offshore India

    NASA Astrophysics Data System (ADS)

    Mazumdar, A.; Dewangan, P.; JoäO, H. M.; Peketi, A.; Khosla, V. R.; Kocherla, M.; Badesab, F. K.; Joshi, R. K.; Roxanne, P.; Ramamurty, P. B.; Karisiddaiah, S. M.; Patil, D. J.; Dayal, A. M.; Ramprasad, T.; Hawkesworth, C. J.; Avanzinelli, R.

    2009-06-01

    We report evidence of paleo-cold seep associated activities, preserved in methane-derived carbonates in association with chemosynthetic clams (Calyptogena sp.) from a sediment core in the Krishna-Godavari basin, Bay of Bengal. Visual observations and calculations based on high-resolution wet bulk density profile of a core collected on board R/V Marion Dufresne (May 2007) show zones of sharp increase in carbonate content (10-55 vol %) within 16-20 meters below seafloor (mbsf). The presence of Calyptogena clam shells, chimneys, shell breccias with high Mg calcite cement, and pyrite within this zone suggest seepage of methane and sulfide-bearing fluid to the seafloor in the past. Highly depleted carbon isotopic values (δ13C ranges from -41 to -52‰ VPDB) from these carbonates indicate carbon derived via anaerobic oxidation of methane. Extrapolated mean calendar age (˜58.7 ka B.P.) of the clastic sediments at a depth of 16 mbsf is close to the upper limit of the U-Th based depositional age (46.2 ± 3.7 and 53.0 ± 1.6 ka) of authigenic carbonates sampled from this level, thereby constraining the younger age limit of the carbonate deposition/methane expulsion events. The observed carbonate deposition might have resulted from the flow of methane-enriched fluids through the fracture network formed because of shale diapirism.

  17. Anaerobic Oxidation of Methane at a Marine Methane Seep in a Forearc Sediment Basin off Sumatra, Indian Ocean

    PubMed Central

    Siegert, Michael; Krüger, Martin; Teichert, Barbara; Wiedicke, Michael; Schippers, Axel

    2011-01-01

    A cold methane seep was discovered in a forearc sediment basin off the island Sumatra, exhibiting a methane-seep adapted microbial community. A defined seep center of activity, like in mud volcanoes, was not discovered. The seep area was rather characterized by a patchy distribution of active spots. The relevance of anaerobic oxidation of methane (AOM) was reflected by 13C-depleted isotopic signatures of dissolved inorganic carbon. The anaerobic conversion of methane to CO2 was confirmed in a 13C-labeling experiment. Methane fueled a vital microbial community with cell numbers of up to 4 × 109 cells cm−3 sediment. The microbial community was analyzed by total cell counting, catalyzed reporter deposition–fluorescence in situ hybridization (CARD–FISH), quantitative real-time PCR (qPCR), and denaturing gradient gel electrophoresis (DGGE). CARD–FISH cell counts and qPCR measurements showed the presence of Bacteria and Archaea, but only small numbers of Eukarya. The archaeal community comprised largely members of ANME-1 and ANME-2. Furthermore, members of the Crenarchaeota were frequently detected in the DGGE analysis. Three major bacterial phylogenetic groups (δ-Proteobacteria, candidate division OP9, and Anaerolineaceae) were abundant across the study area. Several of these sequences were closely related to the genus Desulfococcus of the family Desulfobacteraceae, which is in good agreement with previously described AOM sites. In conclusion, the majority of the microbial community at the seep consisted of AOM-related microorganisms, while the relevance of higher hydrocarbons as microbial substrates was negligible. PMID:22207865

  18. Differential methane oxidation activity and microbial community composition at cold seeps in the Arctic off western Svalbard

    NASA Astrophysics Data System (ADS)

    Gründger, Friederike; Svenning, Mette M.; Niemann, Helge; Silyakova, Anna; Serov, Pavel; Li Hong, Wei; Wegener, Gunter; Panieri, Giuliana; Carroll, JoLynn

    2016-04-01

    Most models considering climate change related bottom water warming suggest that gas hydrates may become destabilized, leading to the mobilization of methane into seabed and water column ecosystems, and, eventually, into the atmosphere. However, the capacity of methanotrophic microbes retaining methane in sediments and the hydrosphere is not well constrained. Here, we investigate the microbial utilization of methane in sediments and the water column, focusing on cold seeps discovered at the arctic continental margin of western Svalbard. We measured ex situ rates of methane oxidation and sulfate reduction in two active gas flare sites with different geological settings at the Vestnesa Ridge (1204 m water depth) and within a pingolike feature area southwest off Svalbard (PLF; 380 m water depth). Our results show contrarily situations at our two sampling sites: At Vestnesa Ridge we find high methane oxidation rates with values up to 2055 nmol cm‑3 d‑1 at the sediment surface where the sediments are oversaturated with methane. Whereas, methane concentration and oxidation rates are low in the overlying water column (2 pmol cm‑3 d‑1). In contrast, at the sediment surface at PLF methane concentration and oxidation rates are considerably lower (up to 1.8 nmol cm‑3 d‑1). While the overlying bottom water contains high concentration of methane and shows oxidation rates with values of up to 3.8 nmol cm‑3 d‑1. The data on methane oxidation and sulfate reduction activity are compared to the sediment geochemistry and to data from metagenomic analysis identifying the methanotrophic community composition. These results provide unique insight into the dynamic responses of the seabed biological filter at cold seeps in the Arctic off western Svalbard. This study is part of the Centre for Arctic Gas Hydrate, Environment and Climate and was supported by the Research Council of Norway through its Centres of Excellence funding scheme grant No. 223259.

  19. Deep-sea methane seep sediments in the Okhotsk Sea sustain diverse and abundant anammox bacteria.

    PubMed

    Shao, Sudong; Luan, Xiwu; Dang, Hongyue; Zhou, Haixia; Zhao, Yakun; Liu, Haitao; Zhang, Yunbo; Dai, Lingqing; Ye, Ying; Klotz, Martin G

    2014-02-01

    Marginal sea methane seep sediments sustain highly productive chemosynthetic ecosystems and are hotspots of intense biogeochemical cycling. Rich methane supply stimulates rapid microbial consumption of oxygen; these systems are thus usually hypoxic to anoxic. This and reported evidence for resident nitrogen fixation suggest the presence of an anaerobic ammonium-oxidizing (anammox) bacterial community in methane seep sediments. To test this hypothesis, we employed detection of genes encoding 16S rRNA gene and hydrazine dehydrogenase (hzo) to investigate the structure, abundance and distribution of the anammox bacterial community in the methane seep sediments of the Okhotsk Sea. Diverse complements of Candidatus Scalindua-related 16S rRNA and hzo gene sequences were obtained. Most of the deep-sea sites harbored abundant hzo genes with copy numbers as high as 10(7)  g(-1) sediment. In general, anammox bacterial signatures were significantly more abundant in the deep-water sediments. Sediment porewater NO3-, NOx- (i.e. NO3- + NO2-), NOx-/NH4+ and sediment silt content correlated with in situ distribution patterns of anammox bacterial marker genes, likely because they determine anammox substrate availability and sediment geochemistry, respectively. The abundance and distribution of anammox bacterial gene markers indicate a potentially significant contribution of anammox bacteria to the marine N cycle in the deep-sea methane seep sediments. PMID:24164560

  20. Possible roles of uncultured archaea in carbon cycling in methane-seep sediments

    NASA Astrophysics Data System (ADS)

    Yoshinaga, Marcos Y.; Lazar, Cassandre S.; Elvert, Marcus; Lin, Yu-Shih; Zhu, Chun; Heuer, Verena B.; Teske, Andreas; Hinrichs, Kai-Uwe

    2015-09-01

    Studies on microbial carbon cycling uniformly confirm that anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria represent the dominant and most active fraction of the sedimentary microbial community in methane-seep sediments. However, little is known about other frequently observed and abundant microbial taxa, their role in carbon cycling and association with the anaerobic oxidation of methane (AOM). Here, we provide a comprehensive characterization of stable carbon isotopes (δ13C) from several intact polar lipid (IPL) classes and metabolite pools in a downcore profile at a cold seep within the oxygen minimum zone off Pakistan. We aimed to evaluate microbial carbon metabolism using IPLs in relation to redox conditions, metabolites and 16S rRNA gene libraries. The 13C-depleted signature of carbon pools and microbial metabolites in pore waters (e.g., dissolved inorganic carbon, lactate and acetate) demonstrated high accumulation of AOM-associated biomass and subsequent turnover thereof. ANMEs accounted for a small fraction of the archaeal 16S rRNA gene survey, whereas sequences of other uncultured benthic archaea dominated the clone libraries, particularly the Marine Benthic Group D. On the basis of lipid diversity and carbon isotope information, we suggest that structurally diverse phospho- and glycolipids, including the recently identified unsaturated tetraethers that are particularly abundant in this setting, are likely derived from archaea other than ANMEs. Through the evaluation of δ13C values of individual IPL, our results indicate heterotrophy as a possible metabolic pathway of archaea in these AOM-dominated sediments.

  1. Shell growth and environmental control of methanophyllic Thyasirid bivalves from Svalbard cold seeps

    NASA Astrophysics Data System (ADS)

    Carroll, Michael; Åström, Emmelie; Ambrose, William; Locke, William; Oliver, Graham; Hong, Wei-Li; Carroll, JoLynn

    2016-04-01

    The analysis of molluscan shell material (sclerochronology) can provide information about an organism's age, growth history, and environmental conditions during its lifetime. Bivalve molluscs are common members of hydrothermal vents and methane cold seeps communities where, supported by chemosynthetic symbionts, they can reach high density and biomass. But little is known about methane-associated bivalve populations inhabiting high-Arctic cold seeps, and sclerochronological analysis of methane-influenced bivalves is rare. We measured growth rates and elemental and isotopic shell signatures in a newly discovered species of bivalve (Thyasiridae) from cold seeps at 350-390m depth southwest of Svalbard. First discovered in 2014, recently described shells of Thyasira capitanea sp.nov. were found at 2 independent seep systems in Storfjordrenna. Mean shell carbon isotopic ratios from inorganic δ13C (mean = -4.8‰) and organic δ13C (mean = -26.9‰) fractions clearly indicate a methane influenced habitat and food source for these organisms. Shell mineral ratios (Li/Ca, Mg/Ca, Mn/Ca, Fe/Ca, Sr/Ca, Ba/Ca, Pb/Ca) sampled along the axis of growth with laser-ablated ICP-MS exhibit variability through time and between sites, suggesting that concentrations of these elements that may be affected by methane emissions. The mineralogical data also elucidates the internal pattern of shell deposition and growth checks, and combined with the isotopic and growth rate data, enables us to interpret the temporal history of methane release from these locations.

  2. [Methanotrophic bacteria in cold seeps of the floodplains of northern rivers].

    PubMed

    Belova, S É; Oshkin, I Iu; Glagolev, M V; Lapshina, E D; Maksiutov, Sh Sh; Dedysh, S N

    2013-01-01

    Small mud volcanoes (cold seeps), which are common in the floodplains of northern rivers, are a potentially important, although poorly studied sources of atmospheric methane. Field research on the cold seeps of the Mukhrina River (Khanty-Mansiysk Autonomous okrug, Russia) revealed methane fluxes from these structures to be orders of magnitude higher than from equivalent areas of the mid-taiga bogs. Microbial communities developing around the seeps were formed under conditions of high methane concentrations, low temperatures (3-5 degrees C), and near-neutral pH. Molecular identification of methane-oxidizing bacteria from this community by analysis of the pmoA gene encoding particulate methane monooxygenase revealed both type I and type II methanotrophs (classes Gammaproteobacteria and Alphaproteobacteria, respectively), with predomination of type I methanotrophs. Among the latter, microorganisms related to Methylobacterpsychrophilus and Methylobacter tundripaludum, Crenothrix polyspora (a stagnant water dweller), and a number of methanotrophs belonging to unknown taxa were detected. Growth characteristics of two isolates were determined. Methylobactersp. CMS7 exhibited active growth at 4-10 degrees C, while Methylocystis sp. SB12 grew better at 20 degrees C. Experimental results confirmed the major role ofmethanotrophic gammaproteobacteria in controlling the methane emission from cold river seeps. PMID:25509412

  3. Biogeography and Potential Exchanges Among the Atlantic Equatorial Belt Cold-Seep Faunas

    PubMed Central

    Olu, Karine; Cordes, Erik E.; Fisher, Charles R.; Brooks, James M.; Sibuet, Myriam; Desbruyères, Daniel

    2010-01-01

    Like hydrothermal vents along oceanic ridges, cold seeps are patchy and isolated ecosystems along continental margins, extending from bathyal to abyssal depths. The Atlantic Equatorial Belt (AEB), from the Gulf of Mexico to the Gulf of Guinea, was one focus of the Census of Marine Life ChEss (Chemosynthetic Ecosystems) program to study biogeography of seep and vent fauna. We present a review and analysis of collections from five seep regions along the AEB: the Gulf of Mexico where extensive faunal sampling has been conducted from 400 to 3300m, the Barbados accretionary prism, the Blake ridge diapir, and in the Eastern Atlantic from the Congo and Gabon margins and the recently explored Nigeria margin. Of the 72 taxa identified at the species level, a total of 9 species or species complexes are identified as amphi-Atlantic. Similarity analyses based on both Bray Curtis and Hellinger distances among 9 faunal collections, and principal component analysis based on presence/absence of megafauna species at these sites, suggest that within the AEB seep megafauna community structure is influenced primarily by depth rather than by geographic distance. Depth segregation is observed between 1000 and 2000m, with the middle slope sites either grouped with those deeper than 2000m or with the shallower sites. The highest level of community similarity was found between the seeps of the Florida escarpment and Congo margin. In the western Atlantic, the highest degree of similarity is observed between the shallowest sites of the Barbados prism and of the Louisiana slope. The high number of amphi-atlantic cold-seep species that do not cluster according to biogeographic regions, and the importance of depth in structuring AEB cold-seep communities are the major conclusions of this study. The hydrothermal vent sites along the Mid Atlantic Ridge (MAR) did not appear as “stepping stones” for dispersal of the AEB seep fauna, however, the south MAR and off axis regions should be further

  4. Methane oxidation in permeable sediments at hydrocarbon seeps in the Santa Barbara Channel, California

    NASA Astrophysics Data System (ADS)

    Treude, T.; Ziebis, W.

    2010-03-01

    A shallow-water area in the Santa Barbara Channel (California), known collectively as the Coal Oil Point seep field, is one the largest natural submarine oil and gas emission areas in the world. Both gas and oil are seeping constantly through a predominantly sandy seabed into the ocean. This study focused on the methanotrophic activity within the surface sediments (0-15 cm) of the permeable seabed in the so-called Brian Seep area at a water depth ~10 m. Detailed investigations of biogeochemical parameters in the sediment surrounding active gas vents indicated that methane seepage through the permeable seabed induces a convective transport of fluids within the surface sediment layer, which results in a deeper penetration of oxidants (oxygen, sulfate) into the sediment, as well as in a faster removal of potentially inhibiting reduced end products (e.g. hydrogen sulfide). Methanotrophic activity was often found close to the sediment-water interface, indicating the involvement of aerobic bacteria. However, biogeochemical data suggests that the majority of methane is consumed by anaerobic oxidation of methane (AOM) coupled to sulfate reduction below the surface layer (>15 cm), where sulfate is still available in high concentrations. This subsurface maximum of AOM activity in permeable sands is in contrast to known deep-sea seep habitats, where upward fluid advection through more fine-grained sediments leads to an accumulation of AOM activity within the top 10 cm of the sediments, because sulfate is rapidly depleted.

  5. Transpressional segment boundaries in strike-slip fault systems offshore southern California: Implications for fluid expulsion and cold seep habitats

    NASA Astrophysics Data System (ADS)

    Maloney, Jillian M.; Grupe, Benjamin M.; Pasulka, Alexis L.; Dawson, Katherine S.; Case, David H.; Frieder, Christina A.; Levin, Lisa A.; Driscoll, Neal W.

    2015-05-01

    The importance of tectonics and fluid flow in controlling cold seep habitats has long been appreciated at convergent margins but remains poorly understood in strike-slip systems. Here we present geophysical, geochemical, and biological data from an active methane seep offshore from Del Mar, California, in the inner California borderlands (ICB). The location of this seep appears controlled by localized transpression associated with a step in the San Diego Trough fault zone and provides an opportunity to examine the interplay between fluid expulsion and restraining step overs along strike-slip fault systems. These segment boundaries may have important controls on seep locations in the ICB and other margins characterized by strike-slip faulting (e.g., Greece, Sea of Marmara, and Caribbean). The strike-slip fault systems offshore southern California appear to have a limited distribution of seep sites compared to a wider distribution at convergent plate boundaries, which may influence seep habitat diversity and connectivity.

  6. Microbial Sulfate Reduction at Cold Seeps Based on Analysis of Carbonate Associated Sulfate

    NASA Astrophysics Data System (ADS)

    Feng, D.; Peng, Y.

    2014-12-01

    Microbial sulfate reduction and coupled anaerobic oxidation of methane (AOM) are the dominant biogeochemical processes occurring at cold seeps in marine settings. These processes not only support the growth of chemosynthetic communities but also promote the precipitation of authigenic carbonates. However, investigations of microbial sulfate reduction have been conducted only using porewaters or seep-related barites. The fact is that many seeps are either inactive or do not precipitate any barite minerals. Thus, little is known about the microbial sulfate reduction at these seep environments. The occurrence of authigenic carbonate has been documented at almost all cold seep sites, which provide a unique opportunity to investigate the microbial sulfate reduction using such carbonate. The presentation is focused on the concentrations and isotopic signatures of carbonate associated sulfate (CAS). The aim of the project is to determine the role of sulfate and sulfate reduction during carbonate precipitation at cold seeps. The CAS concentrations are 67-537 ppm in high-Mg calcite, 51-181 ppm in low-Mg calcite, and 116-565 in aragonite. The δ34SCAS and δ18OCAS also vary considerably, ranging from 21.9‰ to 56.2‰ (V-CDT) and from 10.1‰ to 24.8‰ (V-SMOW), respectively. On δ34SCAS versus δ18OCAS plots, both aragonite and calcite show linear trends that project down toward those of open seawater sulfate. The trends suggest that sulfate has been isotopically modified to various degrees in pore fluids before being incorporated into carbonate lattice. The much narrower δ34SCAS and δ18OCAS ranges for aragonite than for calcite suggests a much "pickier" condition for aragonite formation during early diagenesis. Our results suggest that concentration and isotopic composition of CAS in seep carbonates may be controlled by the supply of pore-water sulfate during carbonate precipitation. The reliability of CAS in carbonate of early diagenetic origin as a proxy of

  7. Lipid Biomarkers and Carbon Isotopic Composition from Authigenic Carbonates and Seep Sediments from the US Mid-Atlantic Margin

    NASA Astrophysics Data System (ADS)

    Campbell, P.; Prouty, N.; Demopoulos, A. W.; Roark, B.; Coykendall, K.

    2015-12-01

    Anaerobic oxidation of methane (AOM), mediated by Archaea and sulfate-reducing bacteria, is common in continental margin sediment and can result in authigenic carbonate precipitation. A lipid biomarker study was undertaken in Mid-Atlantic submarine canyons, focusing specifically on Baltimore and Norfolk canyons, to determine biomarker variability of carbonate rock and the associated sediment in cold seep communities dominated by chemosynthetic mussels, Bathymodiolus childressi. Preliminary 16S metagenomic results confirm the presence of free-living sulfur-reducing bacteria and methantrophic endosymbiotic bacteria in the mussels. Depleted d13C values in both the mussel tissue (-63 ‰) and authigenic carbonates (-48 ‰) support methanotrophy as the dominant nutritional pathway and AOM as the main driver of carbonate precipitation. In addition, paired 14C and 230Th dates are highly discordant, reflecting dilution of the 14C pool with fossil hydrocarbon derived carbon. Seep and canyon sediment, as well as authigenic carbonates, were collected and analyzed for a suite of biomarkers, including sterols, alcohols, alkanes and fatty acids, as well as δ13C values of select biomarkers, to elucidate pathways of organic matter cycling. A comparison of terrestrial biomarker signatures (e.g., n-alkane carbon preference index and C23 / (C23 + C29) values, HMW n-alkanes and C29 sterols) suggests that terrestrial inputs dominate the submarine canyon surface sediment, whereas seep sediment is predominantly marine autochthonous (i.e., cholesterol and 5α-cholestanol). Lipid biomarker profiles (e.g., n-alkanes in the C15 to C33 range) from authigenic carbonates mirror those found in the seep sediment, suggesting that the organisms mediating carbonate precipitation on the seafloor are characteristic of the assemblages present in the sediment at these sites. With widespread methane leakage recently discovered along the Atlantic Margin, the presence of AOM-mediated carbonate

  8. Characterisation of the Nematode Community of a Low-Activity Cold Seep in the Recently Ice-Shelf Free Larsen B Area, Eastern Antarctic Peninsula

    PubMed Central

    Hauquier, Freija; Ingels, Jeroen; Gutt, Julian; Raes, Maarten; Vanreusel, Ann

    2011-01-01

    Background Recent climate-induced ice-shelf disintegration in the Larsen A (1995) and B (2002) areas along the Eastern Antarctic Peninsula formed a unique opportunity to assess sub-ice-shelf benthic community structure and led to the discovery of unexplored habitats, including a low-activity methane seep beneath the former Larsen B ice shelf. Since both limited particle sedimentation under previously permanent ice coverage and reduced cold-seep activity are likely to influence benthic meiofauna communities, we characterised the nematode assemblage of this low-activity cold seep and compared it with other, now seasonally ice-free, Larsen A and B stations and other Antarctic shelf areas (Weddell Sea and Drake Passage), as well as cold-seep ecosystems world-wide. Principal Findings The nematode community at the Larsen B seep site differed significantly from other Antarctic sites in terms of dominant genera, diversity and abundance. Densities in the seep samples were high (>2000 individuals per 10 cm2) and showed below-surface maxima at a sediment depth of 2–3 cm in three out of four replicates. All samples were dominated by one species of the family Monhysteridae, which was identified as a Halomonhystera species that comprised between 80 and 86% of the total community. The combination of high densities, deeper density maxima and dominance of one species is shared by many cold-seep ecosystems world-wide and suggested a possible dependence upon a chemosynthetic food source. Yet stable 13C isotopic signals (ranging between −21.97±0.86‰ and −24.85±1.89‰) were indicative of a phytoplankton-derived food source. Conclusion The recent ice-shelf collapse and enhanced food input from surface phytoplankton blooms were responsible for the shift from oligotrophic pre-collapse conditions to a phytodetritus-based community with high densities and low diversity. The parthenogenetic reproduction of the highly dominant Halomonhystera species is rather unusual for marine

  9. Microbial Oxidation of Ethane within Seep Sediment at Coal Oil Point, Santa Barbara, CA

    NASA Astrophysics Data System (ADS)

    Mendes, S. D.; Duncombe, R.; Scarlett, R. D.; Shaffer, J.; Lensch, S.; Valentine, D. L.

    2013-12-01

    The hydrocarbon seep field at Coal Oil Point (COP), off the coast of Santa Barbara, California, releases more than 10^10 g of thermogenic natural gas each year. Only a fraction of this methane, ethane, propane, and butane reaches the atmosphere, and is instead consumed by marine microbes in both the sediment and water column. Bacterial respiration of these gases has been observed in aerobic and anaerobic conditions, with the exception of ethane (aerobic only) (Kniemeyer et. al 2007). This work seeks to quantify the rate of ethane oxidation (both aerobic and anaerobic) in marine sediment. A series of experiments, to be conducted using COP seep sediment aboard the R/V Atlantis in October 2013, will test how varying oxygen conditions impact ethane oxidation rate. Oxidation rates will be quantified using sensitive 3H-ethane tracers. Preliminary data from Shane's Seep, located within the COP seep field, indicates that ethane oxidation is restricted to the top 6 cm of sediment. This suggests that oxygen is a limiting factor, but further work is needed to establish if ethane oxidation is restricted to exclusively aerobic environments.

  10. Distribution and Geochemistry of Methane-Derived Cold Seep Carbonates Panoche, California

    NASA Astrophysics Data System (ADS)

    Csar, A. J.; Sample, J.

    2007-12-01

    Isolated authigenic carbonate concretions and pavements occur locally within fine grained siliciclastic rocks of the Tertiary Great Valley Sequence of western California. Outcrops in the Panoche and Tumey Hills region are a record of prolonged expulsion of methane- and H2S- rich fluids from a relict cold seep system at the sea floor of a paleo-forearc basin. The entire outcrop length of the seep horizons is at least 15 km along strike. Sandstone injectites underlie the main seep horizons and may have provided fluid pathways to the sea floor. The concretions found in this locality are commonly rounded and vertically elongate, up to 15 m in height and resembling pillars in current outcrop form. Discrete carbonate pavements crop out continuously for as much as 100 m, are generally less then 3 m thick, and lacking any discernable stratification. The entire surface expression of the cold seep carbonates follows along strike, as a series of discontinuous shale encased mounds. Faunal assemblages (tubeworms, bivalves, and textures suggestive of algal mats) are fossilized, commonly in living position, within the carbonate cements. Growth and cross cutting relations recorded in these carbonate cements provides a chronology of the geochemical evolution of fluid venting at the cold seep. The earliest cement phase typically encasing the fossils and sedimentary structures is generally a high magnesium, detritus rich, finely micritic calcite or protodolomite. Energy dispersive spectrometry indicates that these cements have Ca/Mg ratios ranging from 8:1 to nearly 1:1. Within this hosting matrix are commonly a series of circular or wavy planar precipitation bands indicating sequential cementation. These later cements tend to be low Mg calcite (Ca/Mg below 8:1) which precipitated into void spaces from edge to center as coarsely fibrous crystals as large as 1 mm in width and several mm long. Each of these cement types has evidence of multiple phases of dissolution and precipitation

  11. Origin and transport of pore fluids in the Nankai accretionary prism inferred from chemical and isotopic compositions of pore water at cold seep sites off Kumano

    NASA Astrophysics Data System (ADS)

    Toki, Tomohiro; Higa, Ryosaku; Ijiri, Akira; Tsunogai, Urumu; Ashi, Juichiro

    2014-12-01

    We used push corers during manned submersible dives to obtain sediment samples of up to 30 cm from the subseafloor at the Oomine Ridge. The concentrations of B in pore water extracted from the sediment samples from cold seep sites were higher than could be explained by organic matter decomposition, suggesting that the seepage fluid at the site was influenced by B derived from smectite-illite alteration, which occurs between 50°C and 160°C. Although the negative δ18OH2O and δDH2O values of the pore fluids cannot be explained by freshwater derived from clay mineral dehydration (CMD), we considered the contribution of pore fluids in the shallow sediments of the accretionary prism, which showed negative δ18OH2O and δDH2O values according to the results obtained during Integrated Ocean Drilling Program (IODP) Expeditions 315 and 316. We calculated the mixing ratios based on a four-end-member mixing model including freshwater derived from CMD, pore fluids in the shallow (SPF) accretionary prism sediment, seawater (SW), and freshwater derived from methane hydrate (MH) dissociation. However, the Oomine seep fluids were unable to be explained without four end members, suggesting that deep-sourced fluids in the accretionary prism influenced the seeping fluids from this area. This finding presents the first evidence of deep-sourced fluids at cold seep sites in the Oomine Ridge, indicating that a megasplay fault is a potential pathway for the deep-sourced fluids.

  12. High-throughput transcriptome sequencing of the cold seep mussel Bathymodiolus platifrons.

    PubMed

    Wong, Yue Him; Sun, Jin; He, Li Sheng; Chen, Lian Guo; Qiu, Jian-Wen; Qian, Pei-Yuan

    2015-01-01

    Bathymodiolid mussels dominate hydrothermal vents, cold methane/sulfide-hydrocarbon seeps, and other sites of organic enrichment. Here, we aimed to explore the innate immune system and detoxification mechanism of the deep sea mussel Bathymodiolus platifrons collected from a methane seep in the South China Sea. We sequenced the transcriptome of the mussels' gill, foot and mantle tissues and generated a transcriptomic database containing 96,683 transcript sequences. Based on GO and KEGG annotations, we reported transcripts that were related to the innate immune system, heavy metal detoxification and sulfide metabolic genes. Our in-depth analysis on the isoforms of peptidoglycan recognition protein (PGRP) that have different cellular location and potentially differential selectivity towards peptidoglycan (PGN) from gram-positive and gram-negative bacteria were differentially expressed in different tissues. We also reported a potentially novel form of metallothionein and the production of phytochelatin in B. platifrons, which has not been reported in any of its coastal relative Mytilus mussel species. Overall, the present study provided new insights into heavy metal and sulfide metabolism in B. platifrons and can be served as the basis for future molecular studies on host-symbiont interactions in cold seep mussels. PMID:26593439

  13. High-throughput transcriptome sequencing of the cold seep mussel Bathymodiolus platifrons

    PubMed Central

    Wong, Yue Him; Sun, Jin; He, Li Sheng; Chen, Lian Guo; Qiu, Jian-Wen; Qian, Pei-Yuan

    2015-01-01

    Bathymodiolid mussels dominate hydrothermal vents, cold methane/sulfide-hydrocarbon seeps, and other sites of organic enrichment. Here, we aimed to explore the innate immune system and detoxification mechanism of the deep sea mussel Bathymodiolus platifrons collected from a methane seep in the South China Sea. We sequenced the transcriptome of the mussels’ gill, foot and mantle tissues and generated a transcriptomic database containing 96,683 transcript sequences. Based on GO and KEGG annotations, we reported transcripts that were related to the innate immune system, heavy metal detoxification and sulfide metabolic genes. Our in-depth analysis on the isoforms of peptidoglycan recognition protein (PGRP) that have different cellular location and potentially differential selectivity towards peptidoglycan (PGN) from gram-positive and gram-negative bacteria were differentially expressed in different tissues. We also reported a potentially novel form of metallothionein and the production of phytochelatin in B. platifrons, which has not been reported in any of its coastal relative Mytilus mussel species. Overall, the present study provided new insights into heavy metal and sulfide metabolism in B. platifrons and can be served as the basis for future molecular studies on host-symbiont interactions in cold seep mussels. PMID:26593439

  14. Hypotaurine, N-methyltaurine, taurine, and glycine betaine as dominant osmolytes of vestimentiferan tubeworms from hydrothermal vents and cold seeps.

    PubMed

    Yin, M; Palmer, H R; Fyfe-Johnson, A L; Bedford, J J; Smith, R A; Yancey, P H

    2000-01-01

    Organic osmolytes, solutes that regulate cell volume, occur at high levels in marine invertebrates. These are mostly free amino acids such as taurine, which are "compatible" with cell macromolecules, and methylamines such as trimethylamine oxide, which may have a nonosmotic role as a protein stabilizer, and which is higher in many deep-sea animals. To better understand nonosmotic roles of osmolytes, we used high-performance liquid chromatography and (1)H-nuclear magnetic resonance (NMR) to analyze vestimentiferans (vestimentum tissue) from unusual marine habitats. Species from deep hydrothermal vents were Riftia pachyptila of the East Pacific Rise (2,636 m) and Ridgeia piscesae of the Juan de Fuca Ridge (2,200 m). Species from cold hydrocarbon seeps were Lamellibrachia sp. and an unnamed escarpid species from subtidal sediment seeps (540 m) off Louisiana and Lamellibrachia barhami from bathyal tectonic seeps (1,800-2,000 m) off Oregon. Riftia were dominated by hypotaurine (152 mmol/kg wet wt), an antioxidant, and an unidentified solute with an NMR spectrum consistent with a methylamine. Ridgeia were dominated by betaine (N-trimethylglycine; 109 mmol/kg), hypotaurine (64 mmol/kg), and taurine (61 mmol/kg). The escarpids were dominated by taurine (138 mmol/kg) and hypotaurine (69 mmol/kg). Both Lamellibrachia populations were dominated by N-methyltaurine (209-252 mmol/kg), not previously reported as a major osmolyte, which may be involved in methane and sulfate metabolism. Trunk and plume tissue of the Oregon Lamellibrachia were nearly identical to vestimentum in osmolyte composition. The methylamines may also stabilize proteins against pressure; they were significantly higher in the three deeper-dwelling groups. PMID:11073799

  15. Geomicrobiological linkages between short-chain alkane consumption and sulfate reduction rates in seep sediments

    PubMed Central

    Bose, Arpita; Rogers, Daniel R.; Adams, Melissa M.; Joye, Samantha B.; Girguis, Peter R.

    2013-01-01

    Marine hydrocarbon seeps are ecosystems that are rich in methane, and, in some cases, short-chain (C2–C5) and longer alkanes. C2–C4 alkanes such as ethane, propane, and butane can be significant components of seeping fluids. Some sulfate-reducing microbes oxidize short-chain alkanes anaerobically, and may play an important role in both the competition for sulfate and the local carbon budget. To better understand the anaerobic oxidation of short-chain n-alkanes coupled with sulfate-reduction, hydrocarbon-rich sediments from the Gulf of Mexico (GoM) were amended with artificial, sulfate-replete seawater and one of four n-alkanes (C1–C4) then incubated under strict anaerobic conditions. Measured rates of alkane oxidation and sulfate reduction closely follow stoichiometric predictions that assume the complete oxidation of alkanes to CO2 (though other sinks for alkane carbon likely exist). Changes in the δ13C of all the alkanes in the reactors show enrichment over the course of the incubation, with the C3 and C4 incubations showing the greatest enrichment (4.4 and 4.5‰, respectively). The concurrent depletion in the δ13C of dissolved inorganic carbon (DIC) implies a transfer of carbon from the alkane to the DIC pool (−3.5 and −6.7‰ for C3 and C4 incubations, respectively). Microbial community analyses reveal that certain members of the class Deltaproteobacteria are selectively enriched as the incubations degrade C1–C4 alkanes. Phylogenetic analyses indicate that distinct phylotypes are enriched in the ethane reactors, while phylotypes in the propane and butane reactors align with previously identified C3–C4 alkane-oxidizing sulfate-reducers. These data further constrain the potential influence of alkane oxidation on sulfate reduction rates (SRRs) in cold hydrocarbon-rich sediments, provide insight into their contribution to local carbon cycling, and illustrate the extent to which short-chain alkanes can serve as electron donors and govern microbial

  16. Petrology of a Jurassic cold seep carbonate mound, Great Valley Group, northern California

    SciTech Connect

    Campbell, K.A.; Bottjer, D.J. . Dept. of Geological Sciences)

    1992-01-01

    Ancient sites of chemosynthetic marine invertebrate communities have been increasingly described from the stratigraphic record. Fossil cold seeps are best identified by the stratigraphically restricted co-occurrence of anomalous carbonates and fossils of organisms that in modern environments are chemosymbiotic. A Late Jurassic (Tithonian) age fossil seep site is preserved in deep-water turbidites of the Stony Creek Formation (Great Valley Group). Two low-relief carbonate mounds contain an abundant and diverse fossil macrofauna including taxa whose modern counterparts are chemosymbiotic, as well as several associate taxa. Two broad carbonate fabric types are present: a bioturbated, peloidal, fossiliferous micrite with abundant flecks of organic matter and several wavy laminated marine cements. The micrite and cements are either irregularly interlayered on distinctly separated by corrosion surfaces coated with iron oxides that may mark pulses of H[sub 2]S-rich fluids to the seep. Petrographic observations indicate the following idealized paragenetic sequence: deposition of micrite, with contemporaneous biotic activity; corrosion event, with preferential preservation of some peloids; precipitation of pyrite on some corrosion surfaces and concentration of insoluble siltstone linings where corrosion has opened vugs; precipitation of blocky yellow calcite cement with organic-rich inclusions in void spaces and around peloids; growth of clear to gray, botryoidal to fibrous cement; and precipitation of late, clear calcite spar. Similar fabrics and abundant tube-like structures are present in another Great Valley carbonate lens of Early Cretaceous (Albian-Aptian) age exposed on the Cold Fork of Cottonwood Creek near Red Bluff, California. Detailed integration of petrological studies of these fabrics with stable isotope studies and fossil faunal distributions provide a powerful approach for understanding the history of development and individual fossil seeps.

  17. Stable isotopes provide new insights into vestimentiferan physiological ecology at Gulf of Mexico cold seeps

    NASA Astrophysics Data System (ADS)

    Becker, Erin Leigh; Macko, Stephen A.; Lee, Raymond W.; Fisher, Charles R.

    2011-02-01

    On the otherwise low-biomass seafloor of the Gulf of Mexico (GoM) continental slope, natural oil and gas seeps are oases of local primary production that support lush animal communities. Hundreds of seep communities have been documented on the continental slope, and nutrition derived from seeps could be an important link in the overall GoM food web. Here, we present a uniquely large and cohesive data set of δ13C, δ15N, and δ34S compositions of the vestimentiferan tubeworms Escarpia laminata and Lamellibrachia sp. 1, which dominate biomass at GoM seeps and provide habitat for hundreds of other species. Our sampling design encompassed an entire region of the GoM lower slope, allowing us for the first time to assess spatial variability in isotope compositions and to robustly address long-standing hypotheses about how vestimentiferans acquire and cycle nutrients over their long lifespan (200+ years). Tissue δ13C values provided strong evidence that larger adult vestimentiferans use their buried roots to take up dissolved inorganic carbon from sediment pore water, while very small individuals use their plume to take up carbon dioxide from the seawater. δ34S values were extremely variable among individuals of the same species within one location (<1 m2 area), indicating high variability in the inorganic sulfur pools on a very small spatial scale. This finding supports the hypothesis that vestimentiferans use their roots to cycle sulfate and sulfide between their symbionts and free-living consortia of sulfate-reducing archaea in the sediment. Finally, consistent differences in δ15N between two cooccurring vestimentiferan species provided the first strong evidence for partitioning of inorganic resources, which has significant implications for the ecology and evolution of this taxonomic group.

  18. Archaeal and anaerobic methane oxidizer communities in the Sonora Margin cold seeps, Guaymas Basin (Gulf of California)

    PubMed Central

    Vigneron, Adrien; Cruaud, Perrine; Pignet, Patricia; Caprais, Jean-Claude; Cambon-Bonavita, Marie-Anne; Godfroy, Anne; Toffin, Laurent

    2013-01-01

    Cold seeps, located along the Sonora Margin transform fault in the Guaymas Basin, were extensively explored during the ‘BIG' cruise in June 2010. They present a seafloor mosaic pattern consisting of different faunal assemblages and microbial mats. To investigate this mostly unknown cold and hydrocarbon-rich environment, geochemical and microbiological surveys of the sediments underlying two microbial mats and a surrounding macrofaunal habitat were analyzed in detail. The geochemical measurements suggest biogenic methane production and local advective sulfate-rich fluxes in the sediments. The distributions of archaeal communities, particularly those involved in the methane cycle, were investigated at different depths (surface to 18 cm below the sea floor (cmbsf)) using complementary molecular approaches, such as Automated method of Ribosomal Intergenic Spacer Analysis (ARISA), 16S rRNA libraries, fluorescence in situ hybridization and quantitative polymerase chain reaction with new specific primer sets targeting methanogenic and anaerobic methanotrophic lineages. Molecular results indicate that metabolically active archaeal communities were dominated by known clades of anaerobic methane oxidizers (archaeal anaerobic methanotroph (ANME)-1, -2 and -3), including a novel ‘ANME-2c Sonora' lineage. ANME-2c were found to be dominant, metabolically active and physically associated with syntrophic Bacteria in sulfate-rich shallow sediment layers. In contrast, ANME-1 were more prevalent in the deepest sediment samples and presented a versatile behavior in terms of syntrophic association, depending on the sulfate concentration. ANME-3 were concentrated in small aggregates without bacterial partners in a restricted sediment horizon below the first centimetres. These niche specificities and syntrophic behaviors, depending on biological surface assemblages and environmental availability of electron donors, acceptors and carbon substrates, suggest that ANME could support

  19. Geochemical characteristics of the barite deposits at cold seeps from the northern Gulf of Mexico continental slope

    NASA Astrophysics Data System (ADS)

    Feng, Dong; Roberts, Harry H.

    2011-09-01

    Although less common than the occurrence of authigenic carbonate, barite has been observed frequently at cold seeps on continental margins worldwide. It is understood that barite forms by the interaction of barium-rich and sulfate-free seeping fluids with dissolved sulfate of pore water near the seafloor, but questions remain about the geochemical processes and mode(s) of the barite formation. Here, we report geochemical characteristics of barite deposits at 11 cold seep locations from the northern Gulf of Mexico continental slope. Samples from these sites of fluid and gas expulsion provide environmental information on barite formation. Seafloor observations and samples acquired indicate that barites occur as chimneys, cones, crusts, irregular mound-like buildups up to 2-meters high, and as a material disseminated in host sediment. Most barite samples are white-to-gray and usually have a porous fabric and layered internal structure. Mineralogically, samples of barite may contain a significant amounts of carbonate minerals, such as calcite and dolomite, but aragonite is absent in all samples analyzed in this study. Negative δ 13C values (as low as - 46.4‰ V-PDB) of the associated carbonates strongly suggests that methane is the primary carbon source. The δ 34S and δ 18O values of the barites have large variations, ranging from 18‰ to 80.4‰ V-CDT, and 7.5‰ to 26.7‰ V-SMOW, respectively. On δ 34S versus δ 18O plots, many barite deposits show a linear trend that projects down toward the isotopic composition of seawater sulfate. The trend suggests that barite formed from seawater sulfate that has been isotopically modified to varying degrees by biological sulfate reduction. The δ 34S/δ 18O ratios vary between 2.4 and 4.1. The variations are interpreted to reflect local controls on the flux of barium-rich seep fluids, changes in the rate of bacterial sulfate reduction, and/or the openness of pore fluid system. The 87Sr/ 86Sr values of the barites

  20. Comparative Composition, Diversity and Trophic Ecology of Sediment Macrofauna at Vents, Seeps and Organic Falls

    PubMed Central

    Bernardino, Angelo F.; Levin, Lisa A.; Thurber, Andrew R.; Smith, Craig R.

    2012-01-01

    Sediments associated with hydrothermal venting, methane seepage and large organic falls such as whale, wood and plant detritus create deep-sea networks of soft-sediment habitats fueled, at least in part, by the oxidation of reduced chemicals. Biological studies at deep-sea vents, seeps and organic falls have looked at macrofaunal taxa, but there has yet to be a systematic comparison of the community-level attributes of sediment macrobenthos in various reducing ecosystems. Here we review key similarities and differences in the sediment-dwelling assemblages of each system with the goals of (1) generating a predictive framework for the exploration and study of newly identified reducing habitats, and (2) identifying taxa and communities that overlap across ecosystems. We show that deep-sea seep, vent and organic-fall sediments are highly heterogeneous. They sustain different geochemical and microbial processes that are reflected in a complex mosaic of habitats inhabited by a mixture of specialist (heterotrophic and symbiont-associated) and background fauna. Community-level comparisons reveal that vent, seep and organic-fall macrofauna are very distinct in terms of composition at the family level, although they share many dominant taxa among these highly sulphidic habitats. Stress gradients are good predictors of macrofaunal diversity at some sites, but habitat heterogeneity and facilitation often modify community structure. The biogeochemical differences across ecosystems and within habitats result in wide differences in organic utilization (i.e., food sources) and in the prevalence of chemosynthesis-derived nutrition. In the Pacific, vents, seeps and organic-falls exhibit distinct macrofaunal assemblages at broad-scales contributing to ß diversity. This has important implications for the conservation of reducing ecosystems, which face growing threats from human activities. PMID:22496753

  1. Comparative composition, diversity and trophic ecology of sediment macrofauna at vents, seeps and organic falls.

    PubMed

    Bernardino, Angelo F; Levin, Lisa A; Thurber, Andrew R; Smith, Craig R

    2012-01-01

    Sediments associated with hydrothermal venting, methane seepage and large organic falls such as whale, wood and plant detritus create deep-sea networks of soft-sediment habitats fueled, at least in part, by the oxidation of reduced chemicals. Biological studies at deep-sea vents, seeps and organic falls have looked at macrofaunal taxa, but there has yet to be a systematic comparison of the community-level attributes of sediment macrobenthos in various reducing ecosystems. Here we review key similarities and differences in the sediment-dwelling assemblages of each system with the goals of (1) generating a predictive framework for the exploration and study of newly identified reducing habitats, and (2) identifying taxa and communities that overlap across ecosystems. We show that deep-sea seep, vent and organic-fall sediments are highly heterogeneous. They sustain different geochemical and microbial processes that are reflected in a complex mosaic of habitats inhabited by a mixture of specialist (heterotrophic and symbiont-associated) and background fauna. Community-level comparisons reveal that vent, seep and organic-fall macrofauna are very distinct in terms of composition at the family level, although they share many dominant taxa among these highly sulphidic habitats. Stress gradients are good predictors of macrofaunal diversity at some sites, but habitat heterogeneity and facilitation often modify community structure. The biogeochemical differences across ecosystems and within habitats result in wide differences in organic utilization (i.e., food sources) and in the prevalence of chemosynthesis-derived nutrition. In the Pacific, vents, seeps and organic-falls exhibit distinct macrofaunal assemblages at broad-scales contributing to ß diversity. This has important implications for the conservation of reducing ecosystems, which face growing threats from human activities. PMID:22496753

  2. Diversity and distribution of eukaryotic microbes in and around a brine pool adjacent to the Thuwal cold seeps in the Red Sea

    PubMed Central

    Wang, Yong; Zhang, Wei Peng; Cao, Hui Luo; Shek, Chun Shum; Tian, Ren Mao; Wong, Yue Him; Batang, Zenon; Al-Suwailem, Abdulaziz; Qian, Pei-Yuan

    2014-01-01

    A hypoxic/suboxic brine pool at a depth of about 850 m was discovered near the Thuwal cold seeps in the Red Sea. Filled with high concentrations of hydrogen sulfide and ammonia, such a brine pool might limit the spread of eukaryotic organisms. Here, we compared the communities of the eukaryotic microbes in a microbial mat, sediments and water samples distributed in 7 sites within and adjacent to the brine pool. Taxonomic classification of the pyrosequenced 18S rRNA amplicon reads showed that fungi highly similar to the species identified along the Arabic coast were almost ubiquitous in the water and sediment samples, supporting their wide distribution in various environments. The microbial mat displayed the highest species diversity and contained grazers and a considerable percentage of unclassified species. Phylogeny-based methods revealed novel lineages representing a majority of the reads from the interface between the sea water and brine pool. Phylogenetic relationships with more reference sequences suggest that the lineages were affiliated with novel Alveolata and Euglenozoa inhabiting the interface where chemosynthetic prokaryotes are highly proliferative due to the strong chemocline and halocline. The brine sediments harbored abundant species highly similar to invertebrate gregarine parasites identified in different oxygen-depleted sediments. Therefore, the present findings support the uniqueness of some microbial eukaryotic groups in this cold seep brine system. PMID:24575081

  3. Diversity and distribution of eukaryotic microbes in and around a brine pool adjacent to the Thuwal cold seeps in the Red Sea.

    PubMed

    Wang, Yong; Zhang, Wei Peng; Cao, Hui Luo; Shek, Chun Shum; Tian, Ren Mao; Wong, Yue Him; Batang, Zenon; Al-Suwailem, Abdulaziz; Qian, Pei-Yuan

    2014-01-01

    A hypoxic/suboxic brine pool at a depth of about 850 m was discovered near the Thuwal cold seeps in the Red Sea. Filled with high concentrations of hydrogen sulfide and ammonia, such a brine pool might limit the spread of eukaryotic organisms. Here, we compared the communities of the eukaryotic microbes in a microbial mat, sediments and water samples distributed in 7 sites within and adjacent to the brine pool. Taxonomic classification of the pyrosequenced 18S rRNA amplicon reads showed that fungi highly similar to the species identified along the Arabic coast were almost ubiquitous in the water and sediment samples, supporting their wide distribution in various environments. The microbial mat displayed the highest species diversity and contained grazers and a considerable percentage of unclassified species. Phylogeny-based methods revealed novel lineages representing a majority of the reads from the interface between the sea water and brine pool. Phylogenetic relationships with more reference sequences suggest that the lineages were affiliated with novel Alveolata and Euglenozoa inhabiting the interface where chemosynthetic prokaryotes are highly proliferative due to the strong chemocline and halocline. The brine sediments harbored abundant species highly similar to invertebrate gregarine parasites identified in different oxygen-depleted sediments. Therefore, the present findings support the uniqueness of some microbial eukaryotic groups in this cold seep brine system. PMID:24575081

  4. Food-web structure of seep sediment macrobenthos from the Gulf of Mexico

    USGS Publications Warehouse

    Demopoulos, Amanda W.J.; Gualtieri, Daniel; Kovacs, Kaitlin

    2010-01-01

    The slope environment of the Gulf of Mexico (GOM) supports dense communities of seep megafaunal invertebrates that rely on endosymbiotic bacteria for nutrition. Seep sediments also contain smaller macrofaunal invertebrates whose nutritional pathways are not well understood. Using stable-isotope analysis, we investigate the utilization of chemosynthetically fixed and methane-derived organic matter by macrofauna. Biological sampling was conducted in three lower-slope GOM seep environs: Green Canyon (GC852, 1428 m), Atwater Valley (AT340, 2230 m), and Alaminos Canyon (AC601, 2384 m). Infaunal delta13C and delta15N exhibited a broad range of values; most infauna appeared to be heterotrophic, although several taxa had very light delta15N and delta13C values, indicating possible reliance on chemoautotrophic symbioses. The lightest delta13C and delta15N values were observed in nematodes (delta13C=-54.6 + or - 0.1 per mil, delta15N=-6.1 + or - 0.2 per mil) and one gastropod (delta13C=-54.1 per mil, delta15N=-1.1 per mil) from Green Canyon. Mixing-model results indicated that sulfur-oxidizing Beggiatoa may be an important food source for seep infauna; the rate of utilization ranged from 60% to 100% at Green Canyon and Atwater Valley. The overall range in isotope values was similar across the three sites, suggesting that biogeochemical processes may be very similar in these geographically distinct areas.

  5. Food-web structure of seep sediment macrobenthos from the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Demopoulos, Amanda W. J.; Gualtieri, Daniel; Kovacs, Kaitlin

    2010-11-01

    The slope environment of the Gulf of Mexico (GOM) supports dense communities of seep megafaunal invertebrates that rely on endosymbiotic bacteria for nutrition. Seep sediments also contain smaller macrofaunal invertebrates whose nutritional pathways are not well understood. Using stable-isotope analysis, we investigate the utilization of chemosynthetically fixed and methane-derived organic matter by macrofauna. Biological sampling was conducted in three lower-slope GOM seep environs: Green Canyon (GC852, 1428 m), Atwater Valley (AT340, 2230 m), and Alaminos Canyon (AC601, 2384 m). Infaunal δ13C and δ15N exhibited a broad range of values; most infauna appeared to be heterotrophic, although several taxa had very light δ15N and δ13C values, indicating possible reliance on chemoautotrophic symbioses. The lightest δ13C and δ15N values were observed in nematodes (δ13C=-54.6±0.1‰, δ15N=-6.1±0.2‰) and one gastropod (δ13C=-54.1‰, δ15N=-1.1‰) from Green Canyon. Mixing-model results indicated that sulfur-oxidizing Beggiatoa may be an important food source for seep infauna; the rate of utilization ranged from 60% to 100% at Green Canyon and Atwater Valley. The overall range in isotope values was similar across the three sites, suggesting that biogeochemical processes may be very similar in these geographically distinct areas.

  6. Environmental switching during biofilm development in a cold seep system and functional determinants of species sorting.

    PubMed

    Zhang, Weipeng; Tian, Renmao; Bo, Yang; Cao, Huiluo; Cai, Lin; Chen, Lianguo; Zhou, Guowei; Sun, Jin; Zhang, Xixiang; Al-Suwailem, Abdulaziz; Qian, Pei-Yuan

    2016-05-01

    The functional basis for species sorting theory remains elusive, especially for microbial community assembly in deep-sea environments. Using artificial surface-based biofilm models, our recent work revealed taxonomic succession during biofilm development in a newly defined cold seep system, the Thuwal cold seeps II, which comprises a brine pool and the adjacent normal bottom water (NBW) to form a metacommunity via the potential immigration of organisms from one patch to another. Here, we designed an experiment to investigate the effects of environmental switching between the brine pool and the NBW on biofilm assembly, which could reflect environmental filtering effects during bacterial immigration to new environments. Analyses of 16S rRNA genes of 71 biofilm samples suggested that the microbial composition of biofilms established in new environments was determined by both the source community and the incubation conditions. Moreover, a comparison of 18 metagenomes provided evidence for biofilm community assembly that was based primarily on functional features rather than taxonomic identities; metal ion resistance and amino acid metabolism were the major species sorting determinants for the succession of biofilm communities. Genome binning and pathway reconstruction of two bacterial species (Marinobacter sp. and Oleispira sp.) further demonstrated metal ion resistance and amino acid metabolism as functional traits conferring the survival of habitat generalists in both the brine pool and NBW. The results of this study shed new light on microbial community assembly in special habitats and bridge a gap in species sorting theory. PMID:26614914

  7. An evaluation of petrogenic hydrocarbons in northern Gulf of Alaska continental shelf sediments - The role of coastal oil seep inputs

    USGS Publications Warehouse

    Short, J.W.; Kolak, J.J.; Payne, J.R.; Van Kooten, G. K.

    2007-01-01

    We compared hydrocarbons in water, suspended particulate matter (SPM), and riparian sediment collected from coastal watersheds along the Yakataga foreland with corresponding hydrocarbons in Gulf of Alaska benthic sediments. This comparison allows an evaluation of hydrocarbon contributions to marine sediments from natural oil seeps, coal and organic matter (e.g., kerogen) associated with eroding siliciclastic rocks. The samples from oil seeps show extensive loss of low-molecular weight n-alkanes (sediment samples collected upstream from the oil seeps. After entering the fluvial systems, hydrocarbons from seep oils are rapidly diluted, and associate with the SPM phase as oil-mineral-aggregates (OMA). Johnston Creek, the watershed containing the most prolific seep, conveys detectable seep-derived hydrocarbons to the Gulf of Alaska, but overall seep inputs are largely attenuated by the (non-seep) petrogenic hydrocarbon content of the high SPM loads. In contrast to the geochemical signature of seep oil, Gulf of Alaska benthic sediments are characterized by abundant alkylated naphthalene homologues, relatively smooth n-alkane envelopes (n-C9 through n-C34, but with elevated levels of n-C27, n-C29, and n-C31), and small UCMs. Further, hydrocarbons in benthic sediments are highly intercorrelated. Taken together, these characteristics indicate that seep oil is a negligible petrogenic hydrocarbon source to the Gulf of Alaska continental shelf. Coaly material separated from the benthic sediment samples using a dense liquid (???2.00 g cm-3) also accounted for a minor portion of the total PAH (1-6%) and total n-alkanes (0.4-2%) in the benthic samples. Most of the hydrocarbon burden in the sediments is found in the denser sediment fraction and likely derives from organic matter contributed by denudation of siliciclastic formations in

  8. Galatheid and chirostylid crustaceans (Decapoda: Anomura) from a cold seep environment in the northeastern South China Sea.

    PubMed

    Dong, Dong; Li, Xinzheng

    2015-01-01

    Six species of squat lobsters from a cold seep field in the northeastern South China Sea are studied. Two new species, Uroptychus jiaolongae n. sp. and U. spinulosus n. sp., are described, and their distinctions from the related species are detailed. Two species, Munidopsis tuberosa Osawa, Lin & Chan, 2008 and M. verrilli Benedict, 1902, are herein reported for the first time from a cold seep/hydrothermal vent environment. The number of squat lobsters species associated with those chemosynthetic environments now stands at forty-one. PMID:26701467

  9. Cold-seep habitat mapping: high-resolution spatial characterization of the Blake Ridge Diapir seep field

    USGS Publications Warehouse

    Wagner, Jamie K.S.; McEntee, Molly H.; Brothers, Laura L.; German, Christopher R.; Kaiser, Carl L.; Yoerger, Dana R.; Van Dover, Cindy Lee

    2013-01-01

    Relationships among seep community biomass, diversity, and physiographic controls such as underlying geology are not well understood. Previous efforts to constrain these relationships at the Blake Ridge Diapir were limited to observations from piloted deep-submergence vehicles. In August 2012, the autonomous underwater vehicle (AUV) Sentry collected geophysical and photographic data over a 0.131 km2 area at the Blake Ridge Diapir seeps. A nested survey approach was used that began with a regional or reconnaissance-style survey using sub-bottom mapping systems to locate and identify seeps and underlying conduits. This survey was followed by AUV-mounted sidescan sonar and multibeam echosounder systems mapping on a mesoscale to characterize the seabed physiography. At the most detailed survey level, digital photographic imaging was used to resolve sub-meter characteristics of the biology. Four pockmarks (25–70 m diameter) were documented, each supporting chemosynthetic communities. Concentric zonation of mussels and clams suggests the influence of chemical gradients on megafaunal distribution. Data collection and analytical techniques used here yield high-resolution habitat maps that can serve as baselines to constrain temporal evolution of seafloor seeps, and to inform ecological niche modeling and resource management.

  10. Cold-seep habitat mapping: High-resolution spatial characterization of the Blake Ridge Diapir seep field

    NASA Astrophysics Data System (ADS)

    Wagner, Jamie K. S.; McEntee, Molly H.; Brothers, Laura L.; German, Christopher R.; Kaiser, Carl L.; Yoerger, Dana R.; Van Dover, Cindy Lee

    2013-08-01

    Relationships among seep community biomass, diversity, and physiographic controls such as underlying geology are not well understood. Previous efforts to constrain these relationships at the Blake Ridge Diapir were limited to observations from piloted deep-submergence vehicles. In August 2012, the autonomous underwater vehicle (AUV) Sentry collected geophysical and photographic data over a 0.131 km2 area at the Blake Ridge Diapir seeps. A nested survey approach was used that began with a regional or reconnaissance-style survey using sub-bottom mapping systems to locate and identify seeps and underlying conduits. This survey was followed by AUV-mounted sidescan sonar and multibeam echosounder systems mapping on a mesoscale to characterize the seabed physiography. At the most detailed survey level, digital photographic imaging was used to resolve sub-meter characteristics of the biology. Four pockmarks (25-70 m diameter) were documented, each supporting chemosynthetic communities. Concentric zonation of mussels and clams suggests the influence of chemical gradients on megafaunal distribution. Data collection and analytical techniques used here yield high-resolution habitat maps that can serve as baselines to constrain temporal evolution of seafloor seeps, and to inform ecological niche modeling and resource management.

  11. Benthic Community Structure and Sediment Geochemical Properties at Hydrocarbon Seeps Along the Continental Slope of the Western North Atlantic

    NASA Astrophysics Data System (ADS)

    Demopoulos, A. W.; Bourque, J. R.; Brooke, S.

    2015-12-01

    Hydrocarbon seeps support distinct benthic communities capable of utilizing reduced chemical compounds for nutrition. In recent years, methane seepage has been increasingly documented along the continental slope of the U.S. Atlantic margin. In 2012 and 2013, two seeps were investigated in this region: a shallow site near Baltimore Canyon (410-450 m) and a deep site near Norfolk Canyon (1600 m). Both sites contain extensive mussel beds and microbial mats. Sediment cores and grab samples were collected to quantify the abundance, diversity, and community structure of benthic macrofauna (>300 mm) in relationship to the associated sediment environment (organic carbon and nitrogen, stable isotopes 13C and 15N, grain size, and depth) of mussel beds, mats, and slope habitats. Macrofaunal densities in microbial mats were four times greater than those present in mussel beds and slope sediments. Macrofaunal communities were distinctly different both between depths and among habitat types. Specifically, microbial mat sediments were dominated by the annelid families Dorvilleidae, Capitellidae, and Tubificidae, while mussel habitats had higher proportions of crustaceans. Diversity was lower in Baltimore microbial mat habitats, but higher in mussel and slope sediments compared to Norfolk seep habitats found at deeper depths. Multivariate statistical analysis identified sediment carbon:nitrogen (C:N) ratios and 13C values as important variables for structuring the macrofaunal communities. Higher C:N ratios were present within microbial mat habitats and depleted 13C values occurred in sediments adjacent to mussel beds found in Norfolk Canyon seeps. Differences in the quality and source of organic matter present in the seep habitats are known to be important drivers in macrofaunal community structure and associated food webs. The multivariate analysis provides new insight into the relative importance of the seep sediment quality in supporting dense macrofaunal communities compared

  12. In Situ Stable Isotopic Detection of Anaerobic Oxidation of Methane in Monterey Bay Cold Seeps Via Off-Axis Integrated Cavity Output Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wankel, S. D.; Gupta, M.; Leen, J.; Provencal, R. A.; Parsotam, V.; Girguis, P. R.

    2010-12-01

    Anaerobic methane oxidation (AOM) plays an important role in global climate change by governing the release of methane from anoxic sediments into the global ocean and ultimately the atmosphere. Thus, gaining an accurate understanding of both the distribution of methane sources and the occurrence of AOM as well as the spatial and temporal variability of cycling pathways is critical. Environmental analyses of methane stable isotopic composition (δ13C-CH4) provide just such an indicator of methane source, whether biogenic or thermogenic, as well as a spatial and temporal integrator of microbial cycling pathways, such as AOM. Here we present results from several deployments of a newly developed in situ methane stable isotope analyzer capable of measuring δ13C-CH4 to full ocean depths. The instrument consisted of a miniaturized Off-Axis Integrated Cavity Output Spectroscopy (Off-Axis ICOS) analyzer housed in a cylindrical titanium pressure vessel for deep sea deployment. Dissolved gas was extracted from seawater using a Teflon AF diffusion membrane inlet. The instrument had an operating wavelength of 1647 nm and used chemometric spectral decomposition to determine the relative concentrations of 13CH4 and 12CH4 with a sensitivity of ± 0.2‰. Deployments to cold seep environments revealed a distinct separation in carbon isotopic composition between methane in advecting fluids as compared with methane from sediment pore fluids. During multiple visits to two different sites at Extrovert Cliff in Monterey Bay (960m), methane in advecting fluids ranged from -70.2‰ to -63.8‰. In contrast, methane-rich fluids sampled directly from pushcore holes taken through seep sediments contained methane with substantially higher δ13C values ranging from -64.2‰ to -50.2‰. These data implicate the influence of anaerobic oxidation of methane within these seep sediments. While the advective flux of methane to the seafloor from the central orifice of the seep is substantial, using

  13. In situ environment rather than substrate type dictates microbial community structure of biofilms in a cold seep system

    NASA Astrophysics Data System (ADS)

    Lee, On On; Wang, Yong; Tian, Renmao; Zhang, Weipeng; Shek, Chun Shum; Bougouffa, Salim; Al-Suwailem, Abdulaziz; Batang, Zenon B.; Xu, Wei; Wang, Guang Chao; Zhang, Xixiang; Lafi, Feras F.; Bajic, Vladmir B.; Qian, Pei-Yuan

    2014-01-01

    Using microscopic and molecular techniques combined with computational analysis, this study examined the structure and composition of microbial communities in biofilms that formed on different artificial substrates in a brine pool and on a seep vent of a cold seep in the Red Sea to test our hypothesis that initiation of the biofilm formation and spreading mode of microbial structures differs between the cold seep and the other aquatic environments. Biofilms on different substrates at two deployment sites differed morphologically, with the vent biofilms having higher microbial abundance and better structural features than the pool biofilms. Microbes in the pool biofilms were more taxonomically diverse and mainly composed of various sulfate-reducing bacteria whereas the vent biofilms were exclusively dominated by sulfur-oxidizing Thiomicrospira. These results suggest that the redox environments at the deployment sites might have exerted a strong selection on microbes in the biofilms at two sites whereas the types of substrates had limited effects on the biofilm development.

  14. Community composition and temporal change at deep Gulf of Mexico cold seeps

    NASA Astrophysics Data System (ADS)

    Lessard-Pilon, Stephanie; Porter, Matthew D.; Cordes, Erik E.; MacDonald, Ian; Fisher, Charles R.

    2010-11-01

    Specialized cold-seep communities have been known to exist in the Gulf of Mexico (GOM) since the mid-1980s, but only recently has extensive research been carried out on sites at depths >1000 m. This study uses a combination of imagery and analyses within a Geographic Information Systems (GIS) framework to examine the composition of mussel and tubeworm communities at depths between 2200 and 2800 m in the Gulf of Mexico, spatial relations among the fauna, and changes in these communities over time. Photomosaics at three discrete seep communities were obtained in 2006 and a video mosaic of another community was obtained in 1992. Each of these communities was re-imaged in 2007. In addition, quantitative physical collections were made within two of the photomosaic sites and used to confirm the identification of megafauna, quantify the occurrence of smaller and cryptic macrofauna, and allow first-order calculations of biomass within the sites. Substrate type had a significant effect on community composition. Significant associations were identified between live mussels with anemones, shrimp, and sea cucumbers, and between tubeworm aggregations and Munidopsis sp. crabs and encrusting fauna, indicating differences in the composition of megafauna associated with adjacent mussel and tubeworm aggregations. Little change was seen in the total area colonized by foundation fauna (tubeworms and mussels) between years at any site. However, significant changes occurred in the positions of mussels, even over periods of a single year, at all sites, and evidence for the establishment of new tubeworm aggregations between 1992 and 2007 was noted at one site. These photomosaics provide data suggesting that environmental conditions can change over small spatial and temporal scales and mussels move in response to these changes. The successional trends are examined and compared to the patterns that have been documented in shallow (<1000-m depth) Gulf of Mexico seep communities.

  15. Spatial distribution of diverse cold seep communities living on various diapiric structures of the southern Barbados prism

    NASA Astrophysics Data System (ADS)

    Olu, K.; Sibuet, M.; Harmegnies, F.; Foucher, J.-P.; Fiala-Médioni, A.

    , both associated with sulfur-oxydizing bacteria, and there were numerous empty shells. The densities and biomasses of symbiotic bivalves were far greater in the area studied than in a deeper mud volcano field on the same prism that had been studied previously. This is consistent with a report that methane production is greater in the southern region of this accretionary prism than in the northern. Numerous non-symbiotic organisms were observed in and around the areas of the seeps, some are endemic to the seep communities, including some gastropods and shrimps, others are either colonists or vagrants from the surrounding deep-sea floor. Filter feeders were very abundant, and some of these, like the serpulids and large sponges, may also be dependent on the chemosynthetic production. Faunistic composition of both symbiotic and non-symbiotic taxa, of the assemblages around these cold seeps, is closely related to that reported for communities living on hydrocarbon seeps in the Gulf of Mexico.

  16. First respiration estimates of cold-seep vesicomyid bivalves from in situ total oxygen uptake measurements.

    PubMed

    Decker, Carole; Caprais, Jean-Claude; Khripounoff, Alexis; Olu, Karine

    2012-04-01

    Vesicomyid bivalves are one of the most abundant symbiont-bearing species inhabiting deep-sea reducing ecosystems. Nevertheless, except for the hydrothermal vent clam Calyptogena magnifica, their metabolic rates have not been documented, and only assessed with ex situ experiments. In this study, gathering benthic chamber measurements and biomass estimation, we give the first in situ assessment of the respiration rate of these bivalves. The giant pockmark Regab, located at 3160m depth along the Congo-Angola margin, is a cold-seep site characterised by dense assemblages of two species of vesicomyids: Christineconcha regab and Laubiericoncha chuni with high dominance of C. regab. Two sites with dense aggregates of vesicomyids were selected to measure total oxygen uptake (TOU), and methane fluxes using IFREMER's benthic chamber CALMAR deployed by the ROV Quest 4000 (MARUM). Photographs were taken and bivalves were sampled using blade corers to estimate density and biomass. Total oxygen uptake was higher at Site 2 compared to Site 1 (respectively 492 mmol.m(-2).d(-1) and 332 mmol.m(-2).d(-1)). However, given vesicomyid densities and biomass, mean oxygen consumption rates were similar at both sites (1.9 to 2.5 μmol.g total dry mass(-1).h(-1) at the Site 1 and 1.8 to 2.3 μmol.g total dry mass(-1).h(-1) at Site 2). These respiration rates are higher than published ex situ estimates for cold-seep or hydrothermal vent bivalves. Although methane fluxes at the base of sulphide production were clearly higher at Site 2 (14.6 mmol.m(-2).d(-1)) than at Site 1 (0.3 mmol.m(-2).d(-1)), they do not seem to influence the respiration rates of these bivalves associated to sulphide-oxidizing symbionts. PMID:22578572

  17. Post depositional alteration of foraminiferal shells in cold seep settings: New insights from Flow-Through Time-Resolved Analyses of biogenic and inorganic seep carbonates

    NASA Astrophysics Data System (ADS)

    Martin, R.; Torres, M. E.; Klinkhammer, G. P.; Nesbitt, E. A.

    2010-12-01

    Transient hydrocarbon migration within a sediment package leaves behind robust geological signatures in the biogenic and authigenic carbonate record. Here we apply Flow-Through Time Resolved Analyses (FT-TRA) to unravel the compositional changes in foraminifera from coastal fossil methane seeps exposed from Oregon to Vancouver Island: The Eocene-Oligocene Keasey Formation, the Oligocene-Miocene Pysht and Sooke Formations, and the Pliocene Quinault Formation. Our data show that secondary mineralization can be traced with the use of Mg/Ca ratios, which in altered foraminifera are significantly higher than the biogenic ratio (<3 mmol/mol in biogenic carbonate compared to values as high as 69 mmol/mol for inorganic carbonate). Analogous to the record in authigenic carbonate, secondary mineralization contains valuable information about seep characteristics and their geologic history. Data from the Quinault Formation reflect the influence of anaerobic oxidation of biogenic methane in both bleb (δ13C: -29.8 ‰ to -14.0‰) and foraminiferal (δ13C: -43.0‰ to 2.0‰) carbonate. Oxygen isotopes from blebs and foraminifera indicate precipitation at bottom water temperatures in an environment comparable to conditions observed in modern seeps on the Oregon slope and elsewhere. The carbonates in these seeps are enriched in barium and strontium over biogenic values, and such elevated values may be used a diagnostic tool to identify methane-related carbonates. In contrast, in the Pysht and Sooke formations, carbonate precipitation (including secondary mineralization of foraminifera), was fueled by a thermogenic carbon source (δ13C: -14 to 3.4‰). These carbonates reflect a more complex paragenetic history and suggest alteration driven by post-depositional warm and/or meteoric fluids.

  18. Cold-seep-driven carbonate deposits at the Central American forearc: contrasting evolution and timing in escarpment and mound settings

    NASA Astrophysics Data System (ADS)

    Liebetrau, V.; Augustin, N.; Kutterolf, S.; Schmidt, M.; Eisenhauer, A.; Garbe-Schönberg, D.; Weinrebe, W.

    2014-10-01

    Continuous surface cores of cold-seep carbonates were recovered offshore Pacific Nicaragua and Costa Rica from 800 to 1,500-m water depths (Meteor 66/3) in order to decipher their evolution and methane enriched fluid emanation in contrasting geological settings. Cores from the mounds Iguana, Perezoso, Baula V and from the Jaco Scarp escarpment were used for a multi-method approach. For both settings aragonite was revealed as dominant authigenic carbonate phase in vein fillings and matrix cementation, followed by Mg-calcite as second most abundant. This common precipitation process of CaCO3 polymorphs could be ascribed as indirectly driven by chemical changes of the advecting pore water due to anaerobic oxidation of methane. A more direct influence of seep-related microbial activity on the authigenic mineral assemblage in both settings is probably reflected by the observed minor amounts of dolomite and a dolomite-like CaMg carbonate (MgCO3 ~ 42 %). δ13C data of Jaco Scarp samples are significantly lower (-43 to -56 ‰ PDB) than for mound samples (-22 to -36 ‰ PDB), indicating differences in fluid composition and origin. Noteworthy, δ18O values of Scarp samples correlate most closely with the ocean signature at their time of formation. Documenting the archive potential, a high resolution case study of a mound core implies at least 40 changes in fluid supply within a time interval of approximately 14 ky. As most striking difference, the age data indicate a late-stage downward-progressing cementation front for all three mound cap structures (approx. 2-5 cm/ky), but a significantly faster upward carbonate buildup in the bulging sediments on top of the scarp environment (approx. 120 cm/ky). The latter data set leads to the hypothesis of chemoherm carbonate emplacement in accord with reported sedimentation rates until decompression of the advective fluid system, probably caused by the Jaco Scarp landslide and dating this to approximately 13,000 years ago.

  19. Interaction between hydrocarbon seepage, chemosynthetic communities, and bottom water redox at cold seeps of the Makran accretionary prism: insights from habitat-specific pore water sampling and modeling

    NASA Astrophysics Data System (ADS)

    Fischer, D.; Sahling, H.; Nöthen, K.; Bohrmann, G.; Zabel, M.; Kasten, S.

    2012-06-01

    The interaction between fluid seepage, bottom water redox, and chemosynthetic communities was studied at cold seeps across one of the world's largest oxygen minimum zones (OMZ) located at the Makran convergent continental margin. Push cores were obtained from seeps within and below the core-OMZ with a remotely operated vehicle. Extracted sediment pore water was analyzed for sulfide and sulfate concentrations. Depending on oxygen availability in the bottom water, seeps were either colonized by microbial mats or by mats and macrofauna. The latter, including ampharetid polychaetes and vesicomyid clams, occurred in distinct benthic habitats, which were arranged in a concentric fashion around gas orifices. At most sites colonized by microbial mats, hydrogen sulfide was exported into the bottom water. Where macrofauna was widely abundant, hydrogen sulfide was retained within the sediment. Numerical modeling of pore water profiles was performed in order to assess rates of fluid advection and bioirrigation. While the magnitude of upward fluid flow decreased from 11 cm yr-1 to <1 cm yr-1 and the sulfate/methane transition (SMT) deepened with increasing distance from the central gas orifice, the fluxes of sulfate into the SMT did not significantly differ (6.6-9.3 mol m-2 yr-1). Depth-integrated rates of bioirrigation increased from 120 cm yr-1 in the central habitat, characterized by microbial mats and sparse macrofauna, to 297 cm yr-1 in the habitat of large and few small vesicomyid clams. These results reveal that chemosynthetic macrofauna inhabiting the outer seep habitats below the core-OMZ efficiently bioirrigate and thus transport sulfate down into the upper 10 to 15 cm of the sediment. In this way the animals deal with the lower upward flux of methane in outer habitats by stimulating rates of anaerobic oxidation of methane (AOM) with sulfate high enough to provide hydrogen sulfide for chemosynthesis. Through bioirrigation, macrofauna engineer their geochemical

  20. A Peek at Fluid Flow in Monterey bay Cold Seeps Using Peepers

    NASA Astrophysics Data System (ADS)

    Plant, J. N.; Wheat, C. G.; Jannasch, H.

    2001-12-01

    The egress of pore water from the oceanic crust along plate boundaries includes pore water and bound volatiles from sediment as well as seawater that have interacted with basement rock. The chemical composition of these fluids is governed by complex water-rock interactions that are also a function of temperature and pressure. Several such sites of fluid seepage were located in Monterey Bay (USA), which has active strike-slip faulting and evidence for compression in the northern portion of the bay. Fluid and chemical fluxes were determined from these seeps to provide insights to the mechanisms for fluid release and the chemical conditions under which this fluid was altered. Systematic variations in pore water chemical and thermal data provide a measure of the composition of the fluid at depth, an estimate of the speed of upwelling, and an assessment of chemical reactions that alter the fluid as it ascends to the seafloor. Pore water chemical data, which were collected from in-situ extractors ("peepers") that provide for a contamination-free sample, and thermal data indicate maximum upwelling speeds of 1-5 cm/yr at most seeps, with the exception of Extrovert Cliff where upwelling speeds are as high as hundreds of m/yr. These fluids are the most altered fluids in the bay (units mmol/kg: S 12; SO4 0; Ca 16.4; Mg 28.4; K 6.0; Sr 0.35; Li 0.038; Alk 15; Cl 560). Elucidating environmental conditions under which fluids from each of the sites formed may ultimately permit us to constrain some of the variables controlling tectonic phenomena in Monterey Bay and along plate margins in general.

  1. Interaction between hydrocarbon seepage, chemosynthetic communities and bottom water redox at cold seeps of the Makran accretionary prism: insights from habitat-specific pore water sampling and modeling

    NASA Astrophysics Data System (ADS)

    Fischer, D.; Sahling, H.; Nöthen, K.; Bohrmann, G.; Zabel, M.; Kasten, S.

    2011-09-01

    The interaction between fluid seepage, bottom water redox, and chemosynthetic communities was studied at cold seeps across one of the world's largest oxygen minimum zones (OMZ) located at the Makran convergent continental margin. Push cores were obtained from seeps within and at the lower boundary of the core-OMZ with a remotely operated vehicle. Extracted pore water was analyzed for sulfide and sulfate contents. Depending on oxygen availability, seeps were either colonized by microbial mats or by mats and macrofauna. The latter, including ampharetid polychaetes and vesicomyid clams, occurred in distinct benthic habitats which were arranged in a concentric fashion around gas orifices. At most sites colonized by microbial mats, hydrogen sulfide was exported into the bottom water. Where macrofauna was widely abundant, hydrogen sulfide was consumed within the sediment. Numerical modeling of pore water profiles was performed in order to assess rates of fluid advection and bioirrigation. While the magnitude of upward fluid flow decreased from 11 cm yr-1 to <1 cm yr-1 and the sulfate/methane transition zone (SMTZ) deepened with increasing distance from the central gas orifice, the fluxes of sulfate into the SMTZ did not significantly differ (6.6-9.3 mol m-2 yr-1). Depth-integrated rates of bioirrigation increased from 162 cm yr-1 in central habitats characterized by microbial mats and sparse macrofauna to 348 cm yr-1 in habitats of large and small vesicomyid clams. These results reveal that chemosynthetic macrofauna inhabiting the outer seep habitats at the lower boundary of the OMZ efficiently bioirrigate and thus transport sulfate into the upper 10 to 15 cm of the sediment. In this way bioirrigation compensates for the lower upward flux of methane in outer habitats and stimulates rates of anaerobic oxidation of methane (AOM) with sulfate high enough to provide sulfide for chemosynthesis. Through bioirrigation macrofauna engineer their geochemical environment and fuel

  2. Metatranscriptomic Analysis of Diminutive Thiomargarita-Like Bacteria (“Candidatus Thiopilula” spp.) from Abyssal Cold Seeps of the Barbados Accretionary Prism

    PubMed Central

    Flood, Beverly E.

    2015-01-01

    Large sulfur-oxidizing bacteria in the family Beggiatoaceae are important players in the global sulfur cycle. This group contains members of the well-known genera Beggiatoa, Thioploca, and Thiomargarita but also recently identified and relatively unknown candidate taxa, including “Candidatus Thiopilula” spp. and “Ca. Thiophysa” spp. We discovered a population of “Ca. Thiopilula” spp. colonizing cold seeps near Barbados at a ∼4.7-km water depth. The Barbados population consists of spherical cells that are morphologically similar to Thiomargarita spp., with elemental sulfur inclusions and a central vacuole, but have much smaller cell diameters (5 to 40 μm). Metatranscriptomic analysis revealed that when exposed to anoxic sulfidic conditions, Barbados “Ca. Thiopilula” organisms expressed genes for the oxidation of elemental sulfur and the reduction of nitrogenous compounds, consistent with their vacuolated morphology and intracellular sulfur storage capability. Metatranscriptomic analysis further revealed that anaerobic methane-oxidizing and sulfate-reducing organisms were active in the sediment, which likely provided reduced sulfur substrates for “Ca. Thiopilula” and other sulfur-oxidizing microorganisms in the community. The novel observations of “Ca. Thiopilula” and associated organisms reported here expand our knowledge of the globally distributed and ecologically successful Beggiatoaceae group and thus offer insight into the composition and ecology of deep cold seep microbial communities. PMID:25724961

  3. Cold seep and oxygen minimum zone associated sources of margin heterogeneity affect benthic assemblages, diversity and nutrition at the Cascadian margin (NE Pacific Ocean)

    NASA Astrophysics Data System (ADS)

    Guilini, Katja; Levin, Lisa A.; Vanreusel, Ann

    2012-04-01

    Hydrate Ridge (HR), located on the northeastern Pacific margin off Oregon, is characterized by the presence of outcropping hydrates and active methane seepage. Additionally, permanent low oxygen conditions overlay the benthic realm. This study evaluated the relative influence of both seepage and oxygen minima as sources of habitat heterogeneity and potential stress-inducing features on the bathyal metazoan benthos (primarily nematodes) at three different seep and non-seep HR locations, exposed to decreasing bottom-water oxygen concentrations with increasing water depth. The nematode seep communities at HR exhibited low diversity with dominance of only one or two genera (Daptonema and Metadesmolaimus), elevated average individual biomass and δ13C evidence for strong dependance on chemosynthesis-derived carbon, resembling deep-sea seeps worldwide. Although the HR seep habitats harbored a distinct nematode community like in other known seep communities, they differed from deep-sea seeps in well-oxygenated waters based on that they shared the dominant genera with the surrounding non-seep sediments overlain by oxygen-deficient bottom water. The homogenizing effect of the oxygen minimum zone on the seep nematode assemblages and surrounding sediments was constant with increasing water depth and concomitant greater oxygen-deficiency, resulting in a loss of habitat heterogeneity.

  4. Methane-Carbon Flow into the Benthic Food Web at Cold Seeps – A Case Study from the Costa Rica Subduction Zone

    PubMed Central

    Niemann, Helge; Linke, Peter; Knittel, Katrin; MacPherson, Enrique; Boetius, Antje; Brückmann, Warner; Larvik, Gaute; Wallmann, Klaus; Schacht, Ulrike; Omoregie, Enoma; Hilton, David; Brown, Kevin; Rehder, Gregor

    2013-01-01

    Cold seep ecosystems can support enormous biomasses of free-living and symbiotic chemoautotrophic organisms that get their energy from the oxidation of methane or sulfide. Most of this biomass derives from animals that are associated with bacterial symbionts, which are able to metabolize the chemical resources provided by the seeping fluids. Often these systems also harbor dense accumulations of non-symbiotic megafauna, which can be relevant in exporting chemosynthetically fixed carbon from seeps to the surrounding deep sea. Here we investigated the carbon sources of lithodid crabs (Paralomis sp.) feeding on thiotrophic bacterial mats at an active mud volcano at the Costa Rica subduction zone. To evaluate the dietary carbon source of the crabs, we compared the microbial community in stomach contents with surface sediments covered by microbial mats. The stomach content analyses revealed a dominance of epsilonproteobacterial 16S rRNA gene sequences related to the free-living and epibiotic sulfur oxidiser Sulfurovum sp. We also found Sulfurovum sp. as well as members of the genera Arcobacter and Sulfurimonas in mat-covered surface sediments where Epsilonproteobacteria were highly abundant constituting 10% of total cells. Furthermore, we detected substantial amounts of bacterial fatty acids such as i-C15∶0 and C17∶1ω6c with stable carbon isotope compositions as low as −53‰ in the stomach and muscle tissue. These results indicate that the white microbial mats at Mound 12 are comprised of Epsilonproteobacteria and that microbial mat-derived carbon provides an important contribution to the crab's nutrition. In addition, our lipid analyses also suggest that the crabs feed on other 13C-depleted organic matter sources, possibly symbiotic megafauna as well as on photosynthetic carbon sources such as sedimentary detritus. PMID:24116017

  5. A microbiological and biogeochemical investigation of the cold seep tubeworm Escarpia southwardae (Annelida: Siboglinidae): Symbiosis and trace element composition of the tube

    NASA Astrophysics Data System (ADS)

    Duperron, Sébastien; Gaudron, Sylvie M.; Lemaitre, Nolwenn; Bayon, Germain

    2014-08-01

    Tubeworms within the annelid family Siboglinidae rely on sulfur-oxidizing autotrophic bacterial symbionts for their nutrition, and are among the dominant metazoans occurring at deep-sea hydrocarbon seeps. Contrary to their relatives from hydrothermal vents, sulfide uptake for symbionts occurs within the anoxic subsurface sediment, in the posterior ‘root' region of the animal. This study reports on an integrated microbiological and geochemical investigation of the cold seep tubeworm Escarpia southwardae collected at the Regab pockmark (Gulf of Guinea). Our aim was to further constrain the links between the animal and its symbiotic bacteria, and their environment. We show that E. southwardae harbors abundant sulfur-oxidizing bacterial symbionts in its trophosome. Symbionts are able to fix inorganic carbon using the Calvin-Benson cycle, as reported in most other Siboglinidae, but can also use the reverse Tricarboxilic Acid Cycle. Surprisingly, the observed bacteria appear to be more closely related to symbionts of Escarpia and Lamellibrachia species from very distant sites located in the Gulf of Mexico and eastern Pacific, than to symbionts of a siboglinid occurring at a nearby methane seep site, only a few hundred km away from Regab. Then, by combining scanning electron microscopy and trace element (Mn, Fe, Sr, Zr) analyses of E. southwardae tube, we also show that two distinct oxidation fronts occur along the tube. The first one, near the posterior end of the tube, corresponds to the interface between oxic bottom waters and the underlying anoxic sediment. In contrast, the second redox front is located in the most anterior part of the tube, and could result from active oxygen uptake by the plume of the tubeworm. We speculate that intense oxygen consumption in this region could create favorable conditions for sulfate reduction by specialized bacteria associated with the plume, possibly leading to an additional source of dissolved sulfide that would further enhance

  6. Methane-carbon flow into the benthic food web at cold seeps--a case study from the Costa Rica subduction zone.

    PubMed

    Niemann, Helge; Linke, Peter; Knittel, Katrin; MacPherson, Enrique; Boetius, Antje; Brückmann, Warner; Larvik, Gaute; Wallmann, Klaus; Schacht, Ulrike; Omoregie, Enoma; Hilton, David; Brown, Kevin; Rehder, Gregor

    2013-01-01

    Cold seep ecosystems can support enormous biomasses of free-living and symbiotic chemoautotrophic organisms that get their energy from the oxidation of methane or sulfide. Most of this biomass derives from animals that are associated with bacterial symbionts, which are able to metabolize the chemical resources provided by the seeping fluids. Often these systems also harbor dense accumulations of non-symbiotic megafauna, which can be relevant in exporting chemosynthetically fixed carbon from seeps to the surrounding deep sea. Here we investigated the carbon sources of lithodid crabs (Paralomis sp.) feeding on thiotrophic bacterial mats at an active mud volcano at the Costa Rica subduction zone. To evaluate the dietary carbon source of the crabs, we compared the microbial community in stomach contents with surface sediments covered by microbial mats. The stomach content analyses revealed a dominance of epsilonproteobacterial 16S rRNA gene sequences related to the free-living and epibiotic sulfur oxidiser Sulfurovum sp. We also found Sulfurovum sp. as well as members of the genera Arcobacter and Sulfurimonas in mat-covered surface sediments where Epsilonproteobacteria were highly abundant constituting 10% of total cells. Furthermore, we detected substantial amounts of bacterial fatty acids such as i-C15∶0 and C17∶1ω6c with stable carbon isotope compositions as low as -53‰ in the stomach and muscle tissue. These results indicate that the white microbial mats at Mound 12 are comprised of Epsilonproteobacteria and that microbial mat-derived carbon provides an important contribution to the crab's nutrition. In addition, our lipid analyses also suggest that the crabs feed on other (13)C-depleted organic matter sources, possibly symbiotic megafauna as well as on photosynthetic carbon sources such as sedimentary detritus. PMID:24116017

  7. Characteristics of vesicomyid clams and their environment at the Blake Ridge cold seep, South Carolina, USA

    USGS Publications Warehouse

    Heyl, Taylor P.; Gilhooly, William P.; Chambers, Randolph M.; Gilchrist, George W.; Macko, Stephen A.; Ruppel, Carolyn D.; Van Dover, Cindy L.

    2007-01-01

    Spatial distributions and patchiness of dominant megafaunal invertebrates in deep-sea seep environments may indicate heterogeneities in the flux of reduced chemical compounds. At the Blake Ridge seep off South Carolina, USA, the invertebrate assemblage includes dense populations of live vesicomyid clams (an undescribed species) as well as extensive clam shell beds (i.e. dead clams). In the present study, we characterized clam parameters (density, size-frequency distribution, reproductive condition) in relation to sulfur chemistry (sulfide and sulfate concentrations and isotopic compositions, pyrite and elemental sulfur concentrations) and other sedimentary metrics (grain size, organic content). For clams >5 mm, clam density was highest where the total dissolved sulfide concentration at 10 cm depth (ΣH2S10cm) was 0.4 to 1.1 mmol l–1; juvenile clams (2S10cm was lowest. Clams were reproductively capable across a broad range of ΣH2S10cm (0.1 to 6.4 mmol l–1), and females in the sampled populations displayed asynchronous gametogenesis. Sulfide concentrations in porewaters at the shell–sediment interface of cores from shell beds were high, 3.3 to 12.1 mmol l–1, compared to –1 sulfide concentrations at the clam–sediment interface in live clam beds. Concentration profiles for sulfide and sulfate in shell beds were typical of those expected where there is active microbial sulfate reduction. In clam beds, profiles of sulfide and sulfate concentrations were also consistent with rapid uptake of sulfide by the clams. Sulfate in shell beds was systematically enriched in 34S relative to that in clam beds due to microbial fractionation during sulfate reduction, but in clam beds, sulfate δ34S matched that of seawater (~20‰). Residual sulfide values in clam and shell beds were correspondingly depleted in 34S. Based on porewater sulfide concentrations in shell beds at the time of sampling, we suggest that clam mortality may have been due to an abrupt increase in

  8. Distribution of Dissolved Hydrogen in Pore Water at Cold Seep Site

    NASA Astrophysics Data System (ADS)

    Toki, T.; Maegawa, K.; Tsunogai, U.; Ashi, J.; Kinoshita, M.; Gamo, T.

    2005-12-01

    White patches have been observed at the Oomine Ridge (33°7.32'N, 136°28.75'E) on the Nankai accretionary prism. During the KY04-11 cruise (2004. 9. 5 ~ 2004. 10. 2) of the R/V Kaiyo (JAMSTEC), a sediment sample was obtained with a piston corer from the seafloor at the Oomine Ridge. The recovered sediment was 268.5 cm long. Subsampled sediments for gas analysis were taken and were treated for the extraction of dissolved gas in the pore water. The gas samples were measured for CH4, δ13C(CH4), CO2, δ13C(CO2), and H2. The other subsamples for pore water analysis were taken from the residual sediment in the corer. The retrieved pore water samples were analyzed for NH4+, Cl-, SO42-, CH4, δ13C(CH4), CO2, δ13C(CO2), δ18O(H2O), and δD(H2O). Chloride concentrations and both isotopic signatures (δ18O and δD) of the pore water decreased with depth, suggesting that the pore water in this site was affected by seeping fluid characterized by Cl, δ18O, and δD-depleted. Sulfate concentrations rapidly decreased within 2 m, indicating that sulfate consumption occurred in the surface sediments and/or sulfate-free fluid flowing upward. Ammonium concentrations increased with depth even after sulfate was completely reduced, which indicates that there are processes of organic matter decomposition that are capable of producing ammonium after sulfate reduction is complete. Methane concentrations showed concave-upward depth profile and carbon isotopic compositions of methane were as low as _E0 ‰PDB, indicating that methane is derived from microbial production in sediments. We observed a significant H2 peak reaching 500 μmol/kg at the deepest sample, which would be produced as an intermediate during processes of organic matter decomposition in oxide-free environments.

  9. Post depositional alteration of foraminiferal shells in cold seep settings: New insights from flow-through time-resolved analyses of biogenic and inorganic seep carbonates

    NASA Astrophysics Data System (ADS)

    Torres, Marta E.; Martin, Ruth A.; Klinkhammer, Gary P.; Nesbitt, Elizabeth A.

    2010-10-01

    Transient hydrocarbon migration within a sediment package leaves behind robust geological signatures in the biogenic and authigenic carbonate record. Here we apply Flow-Through Time Resolved Analyses (FT-TRA) to unravel the compositional changes in foraminifera from coastal fossil methane seeps exposed from Oregon to Vancouver Island: The Eocene-Oligocene Keasey Formation, the Oligocene-Miocene Pysht and Sooke Formations, and the Pliocene Quinault Formation. Our data show that secondary mineralization can be traced with the use of Mg/Ca ratios, which in altered foraminifera are significantly higher than the biogenic ratio (< 3 compared to values as high as 69 mol/mol). Analogous to the record in authigenic carbonate, secondary mineralization contains valuable information about seep characteristics and their geologic history. Data from the Quinault Formation reflect the influence of anaerobic oxidation of biogenic methane in both bleb (δ 13C: - 29.8‰ to - 14.0‰) and foraminiferal (δ 13C: - 43.0‰ to 2.0‰) carbonate. Oxygen isotopes from blebs and foraminifera indicate precipitation at bottom water temperatures in an environment comparable to conditions observed in modern seeps on the Oregon slope and elsewhere. The carbonates in these seeps are enriched in barium and strontium over biogenic values, and such elevated values may be used a diagnostic tool to identify methane-related carbonates. In contrast, in the Pysht and Sooke formations, carbonate precipitation (including secondary mineralization of foraminifera), was fueled by a thermogenic carbon source (δ 13C: - 14 to 3.4‰). These carbonates reflect a more complex paragenetic history and suggest alteration driven by post-depositional warm and/or meteoric fluids. The high manganese (up to 12 mmol/mol in foraminifera and 60.1 mmol/mol in a carbonate nodule) and low oxygen isotope values (δ 18O as low as - 7.7‰ in foraminifera and - 11.6‰ in a carbonate pavement) observed for the Pysht and Sooke

  10. A novel sister clade to the enterobacteria microviruses (family Microviridae) identified in methane seep sediments.

    PubMed

    Bryson, Samuel Joseph; Thurber, Andrew R; Correa, Adrienne M S; Orphan, Victoria J; Vega Thurber, Rebecca

    2015-10-01

    Methane seep microbial communities perform a key ecosystem service by consuming the greenhouse gas methane prior to its release into the hydrosphere, minimizing the impact of marine methane sources on our climate. Although previous studies have examined the ecology and biochemistry of these communities, none has examined viral assemblages associated with these habitats. We employed virus particle purification, genome amplification, pyrosequencing and gene/genome reconstruction and annotation on two metagenomic libraries, one prepared for ssDNA and the other for all DNA, to identify the viral community in a methane seep. Similarity analysis of these libraries (raw and assembled) revealed a community dominated by phages, with a significant proportion of similarities to the Microviridae family of ssDNA phages. We define these viruses as the Eel River Basin Microviridae (ERBM). Assembly and comparison of 21 ERBM closed circular genomes identified five as members of a novel sister clade to the Microvirus genus of Enterobacteria phages. Comparisons among other metagenomes and these Microviridae major-capsid sequences indicated that this clade of phages is currently unique to the Eel River Basin sediments. Given this ERBM clade's relationship to the Microviridae genus Microvirus, we define this sister clade as the candidate genus Pequeñovirus. PMID:25640518

  11. Helium systematics of cold seep fluids at Monterey Bay, California, USA: Temporal variations and mantle contributions

    NASA Astrophysics Data System (ADS)

    Füri, E.; Hilton, D. R.; Brown, K. M.; Tryon, M. D.

    2009-08-01

    We report helium isotope ratios (3He/4He) as well as helium and neon abundance results for submarine cold seep fluids from Extrovert Cliff in Monterey Bay, California. Samples were collected in copper tubing attached to submarine flux meters operating in continuous pumping mode. Following instrumentation recovery, the tubing was sectioned to produce for the first time a high-resolution time series of dissolved He and Ne variations over a time span of several days. Noble gas concentrations are variable and appear affected by interaction with a hydrocarbon phase within the aquifer. However, it is still possible to resolve the He signal into components associated with air equilibration, excess air entrainment, and terrigenic fluxes (both crustal and mantle-derived). The mantle He contribution reaches ˜25-30% in some samples (up to 2.3 RA, where RA = air 3He/4He). Our quasi-continuous He-Ne record shows remarkable fluctuations over time scales of only a few hours and reflects the combined effects of gas stripping by hydrocarbons and an episodic input of mantle-derived fluids.

  12. A metagenomic study of methanotrophic microorganisms in Coal Oil Point seep sediments

    PubMed Central

    2011-01-01

    Background Methane oxidizing prokaryotes in marine sediments are believed to function as a methane filter reducing the oceanic contribution to the global methane emission. In the anoxic parts of the sediments, oxidation of methane is accomplished by anaerobic methanotrophic archaea (ANME) living in syntrophy with sulphate reducing bacteria. This anaerobic oxidation of methane is assumed to be a coupling of reversed methanogenesis and dissimilatory sulphate reduction. Where oxygen is available aerobic methanotrophs take part in methane oxidation. In this study, we used metagenomics to characterize the taxonomic and metabolic potential for methane oxidation at the Tonya seep in the Coal Oil Point area, California. Two metagenomes from different sediment depth horizons (0-4 cm and 10-15 cm below sea floor) were sequenced by 454 technology. The metagenomes were analysed to characterize the distribution of aerobic and anaerobic methanotrophic taxa at the two sediment depths. To gain insight into the metabolic potential the metagenomes were searched for marker genes associated with methane oxidation. Results Blast searches followed by taxonomic binning in MEGAN revealed aerobic methanotrophs of the genus Methylococcus to be overrepresented in the 0-4 cm metagenome compared to the 10-15 cm metagenome. In the 10-15 cm metagenome, ANME of the ANME-1 clade, were identified as the most abundant methanotrophic taxon with 8.6% of the reads. Searches for particulate methane monooxygenase (pmoA) and methyl-coenzyme M reductase (mcrA), marker genes for aerobic and anaerobic oxidation of methane respectively, identified pmoA in the 0-4 cm metagenome as Methylococcaceae related. The mcrA reads from the 10-15 cm horizon were all classified as originating from the ANME-1 clade. Conclusions Most of the taxa detected were present in both metagenomes and differences in community structure and corresponding metabolic potential between the two samples were mainly due to abundance

  13. Unexpected co-occurrence of six bacterial symbionts in the gills of the cold seep mussel Idas sp. (Bivalvia: Mytilidae).

    PubMed

    Duperron, Sébastien; Halary, Sébastien; Lorion, Julien; Sibuet, Myriam; Gaill, Françoise

    2008-02-01

    Bathymodioline mussels occur in chemosynthesis-based ecosystems such as cold seeps, hydrothermal vents and organic debris worldwide. Their key adaptation to these environments is their association with bacterial endosymbionts which ensure a chemosynthetic primary production based on the oxidation of reduced compounds such as methane and sulfide. We herein report a multiple symbiosis involving six distinct bacterial 16S rRNA phylotypes, including two belonging to groups not yet reported as symbionts in mytilids, in a small Idas mussel found on carbonate crusts in a cold seep area located north to the Nile deep-sea fan (Eastern Mediterranean). Symbionts co-occur within hosts bacteriocytes based on fluorescence in situ hybridizations, and sequencing of functional genes suggests they have the potential to perform autotrophy, and sulfide and methane oxidation. Previous studies indicated the presence of only one or two symbiont 16S rRNA phylotypes in bathymodioline mussels. Together with the recent discovery of four bacterial symbionts in the large seep species Bathymodiolus heckerae, this study shows that symbiont diversity has probably been underestimated, and questions whether the common ancestor of bathymodioline mussels was associated with multiple bacteria. PMID:18093159

  14. Depth-related structure and ecological significance of cold-seep communities—a case study from the Sea of Okhotsk

    NASA Astrophysics Data System (ADS)

    Sahling, Heiko; Galkin, Sergey V.; Salyuk, Anatoly; Greinert, Jens; Foerstel, Hilmar; Piepenburg, Dieter; Suess, Erwin

    2003-12-01

    We discovered and investigated several cold-seep sites in four depth zones of the Sea of Okhotsk off Northeast Sakhalin: outer shelf (160-250 m), upper slope (250-450 m), intermediate slope (450-800 m), and Derugin Basin (1450-1600 m). Active seepage of free methane or methane-rich fluids was detected in each zone. However, seabed photography and sampling revealed that the number of chemoautotrophic species decreases dramatically with decreasing water depth. At greatest depths in the Derugin Basin, the seeps were inhabited by bacterial mats and bivalves of the families Vesicomyidae ( Calyptogena aff. pacifica, C. rectimargo, Archivesica sp.), Solemyidae ( Acharax sp.) and Thyasiridae ( Conchocele bisecta). In addition, pogonophoran tubeworms of the family Sclerolinidae were found in barite edifices. At the shallowest sites, on the shelf at 160 m, the seeps lack chemoautotrophic macrofauna; their locations were indicated only by the patchy occurrence of bacterial mats. Typical seep-endemic metazoans with chemosynthetic symbionts were confined to seep sites at depths below 370 m. A comparative analysis of the structure of seep and background communities suggests that differences in predation pressure may be an important determinant of this pattern. The abundance of predators such as carnivorous brachyurans and asteroids, which can invade seeps from adjacent habitats and efficiently prey on sessile seep bivalves, decreased very pronouncedly with depth. We conclude from the obvious correlation with the conspicuous pattern in the distribution of seep assemblages that, on the shelf and at the upper slope, predator pressure may be high enough to effectively impede any successful settlement of viable populations of seep-endemic metazoans. However, there was also evidence that other depth-related factors, such as bottom-water current, sedimentary regimes, oxygen concentrations and the supply of suitable settling substrates, may additionally regulate the distribution of seep

  15. Coupled LBM-DEM Three-phase Simulation on Gas Flux Seeping from Marine Sediment

    NASA Astrophysics Data System (ADS)

    Kano, Y.; Sato, T.

    2014-12-01

    One of the main issues of the geological storage of CO2 under the seabed is a risk of CO2 leakage. Once CO2seeps into the ocean, it rises in water column dissolving into seawater, which results in the acidification of seawater and/or returning to the air. Its behaviour significantly depends on flow rate and bubble size (Kano et al., 2009; Dewar et al., 2013). As for porous media, bubble size is generally predicted through simple force balance based on flow rate, surface tension and channel size which is estimated by porosity and grain size. However, in shallow marine sediments, grains could be mobilised and displaced by buoyant gas flow, which causes distinctive phenomena such as blow-out or formation of gas flow conduit. As a result, effective gas flux into seawater can be intermissive, and/or concentrated in narrow area (QICS, 2012; Kawada, 2013). Bubble size is also affected by these phenomena. To predict effective gas flux and bubble size into seawater, three-phase behaviour of gas-water-sediment grains should be revealed. In this presentation, we will report the results of gas-liquid-solid three-phase simulations and their comparisons with experimental and observation data. Size of solid particles is based on grain size composing marine sediments at some CCS project sites. Fluid-particle interactions are solved using the lattice Boltzmann method (LBM), while the particle-particle interactions are treated by coupling with the Discrete Element method (DEM). References: Dewar, M., Wei, W., McNeil, D., Chen, B., 2013. Small-scale modelling of the physiochemical impacts of CO2leaked from sub-seabed reservoirs or pipelines within the North Sea and surrounding waters. Marine Pollution Bulletin 73(2), 504-515. Kano, Y., Sato, T., Kita, J., Hirabayashi, S., Tabeta, S., 2009. Model prediction on the rise of pCO2 in uniform flows by leakage of CO2purposefully stored under the seabed. Int. J. Greenhouse Gas Control, Vol. 3(5), 617-625. Kawada, R. 2014. A study on the

  16. Identification of Methanotrophic Lipid Biomarkers in Cold-Seep Mussel Gills: Chemical and Isotopic Analysis

    NASA Technical Reports Server (NTRS)

    Jahnke, Linda L.; Summons, Roger E.; Dowling, Lesley M.; Zahiralis, Karen D.

    1995-01-01

    A lipid analysis of the tissues of a cold-seep mytilid mussel collected from the Louisiana slope of the Gulf of Mexico was used in conjunction with a compound-specific isotope analysis to demonstrate the presence of methanotrophic symbionts in the mussel gill tissue and to demonstrate the host's dependence on bacterially synthesized metabolic intermediates. The gill tissue contained large amounts of group-specific methanotrophic biomarkers, bacteriohopanoids, 4-methylsterols, lipopolysaccharide-associated hydroxy fatty acids, and type I-specific 16:1 fatty acid isomers with bond positions at delta-8, delta-10, and delta-ll. Only small amounts of these compounds were detected in the mantle or other tissues of the host animal. A variety of cholesterol and 4-methylsterol isomers were identified as both free and steryl esters, and the sterol double bond positions suggested that the major bacterially derived gill sterol(11.0% 4(alpha)-methyl-cholesta-8(14), 24-dien-3(beta)-ol) was converted to host cholesterol (64.2% of the gill sterol was cholest-5-en-3(beta)-ol). The stable carbon isotope values for gill and mantle preparations were, respectively, -59.0 and -60.4 per thousand for total tissue, -60.6 and -62.4 per thousand for total lipids, -60.2 and -63.9 per thousand for phospholipid fatty acids, and -71.8 and -73.8 per thousand for sterols. These stable carbon isotope values revealed that the relative fractionation pattern was similar to the patterns obtained in pure culture experiments with methanotrophic bacteria further supporting the conversion of the bacterial methyl-sterol pool.

  17. Methane Seep in Shallow-Water Permeable Sediment Harbors High Diversity of Anaerobic Methanotrophic Communities, Elba, Italy

    PubMed Central

    Ruff, S. Emil; Kuhfuss, Hanna; Wegener, Gunter; Lott, Christian; Ramette, Alban; Wiedling, Johanna; Knittel, Katrin; Weber, Miriam

    2016-01-01

    The anaerobic oxidation of methane (AOM) is a key biogeochemical process regulating methane emission from marine sediments into the hydrosphere. AOM is largely mediated by consortia of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB), and has mainly been investigated in deep-sea sediments. Here we studied methane seepage at four spots located at 12 m water depth in coastal, organic carbon depleted permeable sands off the Island of Elba (Italy). We combined biogeochemical measurements, sequencing-based community analyses and in situ hybridization to investigate the microbial communities of this environment. Increased alkalinity, formation of free sulfide and nearly stoichiometric methane oxidation and sulfate reduction rates up to 200 nmol g-1 day-1 indicated the predominance of sulfate-coupled AOM. With up to 40 cm thickness the zones of AOM activity were unusually large and occurred in deeper sediment horizons (20–50 cm below seafloor) as compared to diffusion-dominated deep-sea seeps, which is likely caused by advective flow of pore water due to the shallow water depth and permeability of the sands. Hydrodynamic forces also may be responsible for the substantial phylogenetic and unprecedented morphological diversity of AOM consortia inhabiting these sands, including the clades ANME-1a/b, ANME-2a/b/c, ANME-3, and their partner bacteria SEEP-SRB1a and SEEP-SRB2. High microbial dispersal, the availability of diverse energy sources and high habitat heterogeneity might explain that the emission spots shared few microbial taxa, despite their physical proximity. Although the biogeochemistry of this shallow methane seep was very different to that of deep-sea seeps, their key functional taxa were very closely related, which supports the global dispersal of key taxa and underlines strong selection by methane as the predominant energy source. Mesophilic, methane-fueled ecosystems in shallow-water permeable sediments may comprise distinct

  18. Methane Seep in Shallow-Water Permeable Sediment Harbors High Diversity of Anaerobic Methanotrophic Communities, Elba, Italy.

    PubMed

    Ruff, S Emil; Kuhfuss, Hanna; Wegener, Gunter; Lott, Christian; Ramette, Alban; Wiedling, Johanna; Knittel, Katrin; Weber, Miriam

    2016-01-01

    The anaerobic oxidation of methane (AOM) is a key biogeochemical process regulating methane emission from marine sediments into the hydrosphere. AOM is largely mediated by consortia of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB), and has mainly been investigated in deep-sea sediments. Here we studied methane seepage at four spots located at 12 m water depth in coastal, organic carbon depleted permeable sands off the Island of Elba (Italy). We combined biogeochemical measurements, sequencing-based community analyses and in situ hybridization to investigate the microbial communities of this environment. Increased alkalinity, formation of free sulfide and nearly stoichiometric methane oxidation and sulfate reduction rates up to 200 nmol g(-1) day(-1) indicated the predominance of sulfate-coupled AOM. With up to 40 cm thickness the zones of AOM activity were unusually large and occurred in deeper sediment horizons (20-50 cm below seafloor) as compared to diffusion-dominated deep-sea seeps, which is likely caused by advective flow of pore water due to the shallow water depth and permeability of the sands. Hydrodynamic forces also may be responsible for the substantial phylogenetic and unprecedented morphological diversity of AOM consortia inhabiting these sands, including the clades ANME-1a/b, ANME-2a/b/c, ANME-3, and their partner bacteria SEEP-SRB1a and SEEP-SRB2. High microbial dispersal, the availability of diverse energy sources and high habitat heterogeneity might explain that the emission spots shared few microbial taxa, despite their physical proximity. Although the biogeochemistry of this shallow methane seep was very different to that of deep-sea seeps, their key functional taxa were very closely related, which supports the global dispersal of key taxa and underlines strong selection by methane as the predominant energy source. Mesophilic, methane-fueled ecosystems in shallow-water permeable sediments may comprise distinct

  19. Methane-derived carbonates form at the sediment-bedrock interface in a shallow marine gas seep.

    NASA Astrophysics Data System (ADS)

    Kimball, J.; Ding, H.; Valentine, D. L.

    2006-12-01

    Hydrocarbon seeps occur world-wide, and release large quantities of oil and natural gas to the ocean and atmosphere. One of the world's most prolific hydrocarbon seep fields is located just offshore from Goleta, CA, and serves as the study site for this investigation. In the course of investigating gas fluxes from a 10 m deep coastal seep, samples of seafloor bedrock were collected by scuba diving during a time of low sediment burden. These samples were found to be concretions composed primarily of carbonate-cemented sand. The delta13C values of the carbonate range from -25 to -32 per mille, and indicate a role for methane oxidation in the formation of the carbonates. Long chain fatty acids were extracted from the concretions and were quantified, identified, and analyzed for their 13C composition. Fatty acids typical of sulfate reducing bacteria were observed, and interpreted as a signature of anoxia. Further mineralogical and isotopic studies are planned. From these observations we interpret a shallow water origin for these concretions, whereby the seasonal migration of sand to the seep environment drives anoxia and anaerobic methane oxidation at the sediment-bedrock interface. The alkalinity generated from sulfate reduction causes the precipitation of methane-derived carbonate- which forms a concretion with sand.

  20. Biogeography of deep-sea wood fall, cold seep and hydrothermal vent Ostracoda (Crustacea), with the description of a new family and a taxonomic key to living Cytheroidea

    NASA Astrophysics Data System (ADS)

    Karanovic, Ivana; Brandão, Simone Nunes

    2015-01-01

    Stimulated by finding a novel cytheroid ostracod in a piece of sunken wood retrieved from the sea-bed in the Kuril-Kamchatka Trench, we have reviewed all previously published data on ostracods from similarly ephemeral deep-sea habitats (wood falls, hydrothermal vents and cold seeps). These data are placed in the context of all data on living, deep-sea ostracods from other environments. We confirm previous authors' conclusions that faunas from these ephemeral habitats are similar at the generic level, and include elements common to shallow and deep habitats. However, at the species level, endemism varies from zero at cold seeps, to 35% in wood falls and 60% at hydrothermal vents, which is an indication of the relative longevity of these habitats. Non-endemic species occur also in oligotrophic, deep-sea sediments but not in shallow environments. This is in contradiction to previous assumptions that these ephemeral faunas share more species and with shallow habitats than genera with the oligotrophic, deep-sea sediments. We agree with previous authors that the dispersal strategy of wood fall, vent and seep ostracods includes hitchhiking and we propose that it also includes the ability to survive ingestion by larger, more motile animals. The homogeneity of the faunas from ephemeral habitats collected off the American continent is in stark contrast to the highly endemic fauna found in Northwestern Pacific. This suggests that the ostracods may have biogeographical patterns similar to those previously proposed for other groups of benthos. However, any proposal for a global biogeographical scheme for ostracod distributions will have to await far more comprehensive coverage from presently unstudied regions. Finally, we describe and name a novel species of ostracod from the wood fall collected at a depth of 5229 m in the abyss east to the Kuril-Kamchatka Trench, Northwestern Pacific; erecting a new family Keysercytheridae fam. nov. and a new genus, Keysercythere gen. nov., to

  1. Spatial and temporal characterization of a cold seep-hydrate system (Woolsey Mound, deep-water Gulf of Mexico)

    NASA Astrophysics Data System (ADS)

    Simonetti, Antonello

    Cold seeps are areas where methane is transferred from the lithosphere into the hydrosphere, accounting for the major source of hydrocarbons in seawaters. Formation of gas hydrate in cold seeps modulates the global discharge of methane to the environment. However, cold seeps are dynamic settings where hydrates dissociate on short and long time-scales triggering substantial methane fluxes to the oceans. These methane vents sustain unique ecosystems at the ocean floors and contribute to ocean acidification. Also, the methane can potentially reach the sea surface and be exchanged with the atmosphere contributing to global warming. Understanding how cold seep-hydrate systems (CSHSs) operate through time and space is therefore crucial to evaluate their global impact on ocean biogeochemistry and climate. The area investigated is Woolsey Mound, a CSHS located in the Northern Gulf of Mexico. For the first part of the research, the goal was to determine the spatial distribution of subsurface gas hydrate at this site. In terms of hydrate-reservoir category, Woolsey Mound is classified as "seafloor mound" and "fractured mud". To date, these two categories are poorly constrained worldwide. This study documents a successful integration of high-resolution seismic and core data to detect the spatial distribution of hydrates in such settings. The approach adopted and the model may be applied globally for these reservoir categories. The aim of the second part was to untangle the contentious long-term (thousands to millions of years) dynamics driving methane hydrate dissociation and seepage in CSHSs. Analyses on high-resolution seismic data suggest that tectonics is the main forcing mechanism and that CSHSs may operate independently from eustatic fluctuations. This contradicts the broad consensus in the literature about methane seepage in CSHSs being systematically triggered during sea-level lowstand. The third part of the research aimed to characterize the short-term (years

  2. Morphology of First Zoeal Stage of Four Genera of Alvinocaridid Shrimps from Hydrothermal Vents and Cold Seeps: Implications for Ecology, Larval Biology and Phylogeny

    PubMed Central

    Hernández-Ávila, Iván; Cambon-Bonavita, Marie-Anne; Pradillon, Florence

    2015-01-01

    Alvinocaridid shrimps are endemic species inhabiting hydrothermal vents and/or cold seeps. Although indirect evidences (genetic and lipid markers) suggest that their larval stages disperse widely and support large scale connectivity, larval life and mechanisms underlying dispersal are unknown in alvinocaridids. Here we provide for the first time detailed descriptions of the first larval stage (zoea I) of four alvinocaridid species: Rimicaris exoculata and Mirocaris fortunata from the Mid-Atlantic Ridge, Alvinocaris muricola from the Congo Basin and Nautilocaris saintlaurentae from the Western Pacific. The larvae were obtained from onboard hatching of brooding females (either at atmospheric pressure or at habitat pressure in hyperbaric chambers) and from the water column near adult habitats, sampled with plankton pumps or sediment traps. Major characteristics of the alvinocaridid larvae include undeveloped mandible and almost complete absence of setation in the inner margin of the mouth parts and maxillipeds. Although the larvae are very similar between the four species studied, some morphological features could be used for species identification. In addition, undeveloped mouthparts and the large amount of lipid reserves strongly support the occurrence of primary lecithotrophy in the early stage of alvinocaridids. Although lecithotrophy in decapod crustaceans is usually associated with abbreviated larval development, as a mechanism of larval retention, morphological and physiological evidences suggest the occurrence of an extended and lecithotrophic larval stage in the Alvinocarididae. These traits permit the colonization of widely dispersed and fragmented environments of hydrothermal vents and cold seeps. Distribution of larval traits along the phylogenetic reconstruction of the Alvinocarididae and related families suggest that lecithotrophy/planktotrophy and extended/abbreviated development have evolved independently along related families in all potential

  3. Morphology of First Zoeal Stage of Four Genera of Alvinocaridid Shrimps from Hydrothermal Vents and Cold Seeps: Implications for Ecology, Larval Biology and Phylogeny.

    PubMed

    Hernández-Ávila, Iván; Cambon-Bonavita, Marie-Anne; Pradillon, Florence

    2015-01-01

    Alvinocaridid shrimps are endemic species inhabiting hydrothermal vents and/or cold seeps. Although indirect evidences (genetic and lipid markers) suggest that their larval stages disperse widely and support large scale connectivity, larval life and mechanisms underlying dispersal are unknown in alvinocaridids. Here we provide for the first time detailed descriptions of the first larval stage (zoea I) of four alvinocaridid species: Rimicaris exoculata and Mirocaris fortunata from the Mid-Atlantic Ridge, Alvinocaris muricola from the Congo Basin and Nautilocaris saintlaurentae from the Western Pacific. The larvae were obtained from onboard hatching of brooding females (either at atmospheric pressure or at habitat pressure in hyperbaric chambers) and from the water column near adult habitats, sampled with plankton pumps or sediment traps. Major characteristics of the alvinocaridid larvae include undeveloped mandible and almost complete absence of setation in the inner margin of the mouth parts and maxillipeds. Although the larvae are very similar between the four species studied, some morphological features could be used for species identification. In addition, undeveloped mouthparts and the large amount of lipid reserves strongly support the occurrence of primary lecithotrophy in the early stage of alvinocaridids. Although lecithotrophy in decapod crustaceans is usually associated with abbreviated larval development, as a mechanism of larval retention, morphological and physiological evidences suggest the occurrence of an extended and lecithotrophic larval stage in the Alvinocarididae. These traits permit the colonization of widely dispersed and fragmented environments of hydrothermal vents and cold seeps. Distribution of larval traits along the phylogenetic reconstruction of the Alvinocarididae and related families suggest that lecithotrophy/planktotrophy and extended/abbreviated development have evolved independently along related families in all potential

  4. Restriction to large-scale gene flow vs. regional panmixia among cold seep Escarpia spp. (Polychaeta, Siboglinidae).

    PubMed

    Cowart, Dominique A; Huang, Chunya; Arnaud-Haond, Sophie; Carney, Susan L; Fisher, Charles R; Schaeffer, Stephen W

    2013-08-01

    The history of colonization and dispersal in fauna distributed among deep-sea chemosynthetic ecosystems remains enigmatic and poorly understood because of an inability to mark and track individuals. A combination of molecular, morphological and environmental data improves understanding of spatial and temporal scales at which panmixia, disruption of gene flow or even speciation may occur. Vestimentiferan tubeworms of the genus Escarpia are important components of deep -sea cold seep ecosystems, as they provide long-term habitat for many other taxa. Three species of Escarpia, Escarpia spicata [Gulf of California (GoC)], Escarpia laminata [Gulf of Mexico (GoM)] and Escarpia southwardae (West African Cold Seeps), have been described based on morphology, but are not discriminated through the use of mitochondrial markers (cytochrome oxidase subunit 1; large ribosomal subunit rDNA, 16S; cytochrome b). Here, we also sequenced the exon-primed intron-crossing Haemoglobin subunit B2 intron and genotyped 28 microsatellites to (i) determine the level of genetic differentiation, if any, among the three geographically separated entities and (ii) identify possible population structure at the regional scale within the GoM and West Africa. Results at the global scale support the occurrence of three genetically distinct groups. At the regional scale among eight sampling sites of E. laminata (n = 129) and among three sampling sites of E. southwardae (n = 80), no population structure was detected. These findings suggest that despite the patchiness and isolation of seep habitats, connectivity is high on regional scales. PMID:23879204

  5. A molecular gut content study of Themisto abyssorum (Amphipoda) from Arctic hydrothermal vent and cold seep systems.

    PubMed

    Olsen, Bernt Rydland; Troedsson, Christofer; Hadziavdic, Kenan; Pedersen, Rolf B; Rapp, Hans Tore

    2014-08-01

    The use of DNA as a marker for prey inside the gut of predators has been instrumental in further understanding of known and unknown interactions. Molecular approaches are in particular useful in unavailable environments like the deep sea. Trophic interactions in the deep sea are difficult to observe in situ, correct deep-sea experimental laboratory conditions are difficult to obtain, animals rarely survive the sampling, or the study organisms feed during the sampling due to long hauls. Preliminary studies of vent and seep systems in the Nordic Seas have identified the temperate-cold-water pelagic amphipod Themisto abyssorum as a potentially important predator in these chemosynthetic habitats. However, the prey of this deep-sea predator is poorly known, and we applied denaturing high performance liquid chromatography (DHPLC) to investigate the predator-prey interactions of T. abyssorum in deep-water vent and seep systems. Two deep-water hydrothermally active localities (The Jan Mayen and Loki's Castle vent fields) and one cold seep locality (The Håkon Mosby mud volcano) in the Nordic Seas were sampled, genomic DNA of the stomachs of T. abyssorum was extracted, and 18S rDNA gene was amplified and used to map the stomach content. We found a wide range of organisms including micro-eukaryotes, metazoans and detritus. Themisto abyssorum specimens from Loki's Castle had the highest diversity of prey. The wide range of prey items found suggests that T. abyssorum might be involved in more than one trophic level and should be regarded as an omnivore and not a strict carnivore as have previously been suggested. PMID:24172025

  6. Anaerobic degradation of propane and butane by sulfate-reducing bacteria enriched from marine hydrocarbon cold seeps

    PubMed Central

    Jaekel, Ulrike; Musat, Niculina; Adam, Birgit; Kuypers, Marcel; Grundmann, Olav; Musat, Florin

    2013-01-01

    The short-chain, non-methane hydrocarbons propane and butane can contribute significantly to the carbon and sulfur cycles in marine environments affected by oil or natural gas seepage. In the present study, we enriched and identified novel propane and butane-degrading sulfate reducers from marine oil and gas cold seeps in the Gulf of Mexico and Hydrate Ridge. The enrichment cultures obtained were able to degrade simultaneously propane and butane, but not other gaseous alkanes. They were cold-adapted, showing highest sulfate-reduction rates between 16 and 20 °C. Analysis of 16S rRNA gene libraries, followed by whole-cell hybridizations with sequence-specific oligonucleotide probes showed that each enrichment culture was dominated by a unique phylotype affiliated with the Desulfosarcina-Desulfococcus cluster within the Deltaproteobacteria. These phylotypes formed a distinct phylogenetic cluster of propane and butane degraders, including sequences from environments associated with hydrocarbon seeps. Incubations with 13C-labeled substrates, hybridizations with sequence-specific probes and nanoSIMS analyses showed that cells of the dominant phylotypes were the first to become enriched in 13C, demonstrating that they were directly involved in hydrocarbon degradation. Furthermore, using the nanoSIMS data, carbon assimilation rates were calculated for the dominant cells in each enrichment culture. PMID:23254512

  7. Gammaproteobacterial Methanotrophs Dominate Cold Methane Seeps in Floodplains of West Siberian Rivers

    PubMed Central

    Oshkin, Igor Y.; Wegner, Carl-Eric; Lüke, Claudia; Glagolev, Mikhail V.; Filippov, Illiya V.; Pimenov, Nikolay V.; Liesack, Werner

    2014-01-01

    A complex system of muddy fluid-discharging and methane (CH4)-releasing seeps was discovered in a valley of the river Mukhrinskaya, one of the small rivers of the Irtysh Basin, West Siberia. CH4 flux from most (90%) of these gas ebullition sites did not exceed 1.45 g CH4 h−1, while some seeps emitted up to 5.54 g CH4 h−1. The δ13C value of methane released from these seeps varied between −71.1 and −71.3‰, suggesting its biogenic origin. Although the seeps were characterized by low in situ temperatures (3.5 to 5°C), relatively high rates of methane oxidation (15.5 to 15.9 nmol CH4 ml−1 day−1) were measured in mud samples. Fluorescence in situ hybridization detected 107 methanotrophic bacteria (MB) per g of mud (dry weight), which accounted for up to 20.5% of total bacterial cell counts. Most (95.8 to 99.3%) methanotroph cells were type I (gammaproteobacterial) MB. The diversity of methanotrophs in this habitat was further assessed by pyrosequencing of pmoA genes, encoding particulate methane monooxygenase. A total of 53,828 pmoA gene sequences of seep-inhabiting methanotrophs were retrieved and analyzed. Nearly all of these sequences affiliated with type I MB, including the Methylobacter-Methylovulum-Methylosoma group, lake cluster 2, and several as-yet-uncharacterized methanotroph clades. Apparently, microbial communities attenuating methane fluxes from these local but strong CH4 sources in floodplains of high-latitude rivers have a large proportion of potentially novel, psychrotolerant methanotrophs, thereby providing a challenge for future isolation studies. PMID:25063667

  8. Gammaproteobacterial methanotrophs dominate cold methane seeps in floodplains of West Siberian rivers.

    PubMed

    Oshkin, Igor Y; Wegner, Carl-Eric; Lüke, Claudia; Glagolev, Mikhail V; Filippov, Illiya V; Pimenov, Nikolay V; Liesack, Werner; Dedysh, Svetlana N

    2014-10-01

    A complex system of muddy fluid-discharging and methane (CH4)-releasing seeps was discovered in a valley of the river Mukhrinskaya, one of the small rivers of the Irtysh Basin, West Siberia. CH4 flux from most (90%) of these gas ebullition sites did not exceed 1.45 g CH4 h(-1), while some seeps emitted up to 5.54 g CH4 h(-1). The δ(13)C value of methane released from these seeps varied between -71.1 and -71.3‰, suggesting its biogenic origin. Although the seeps were characterized by low in situ temperatures (3.5 to 5°C), relatively high rates of methane oxidation (15.5 to 15.9 nmol CH4 ml(-1) day(-1)) were measured in mud samples. Fluorescence in situ hybridization detected 10(7) methanotrophic bacteria (MB) per g of mud (dry weight), which accounted for up to 20.5% of total bacterial cell counts. Most (95.8 to 99.3%) methanotroph cells were type I (gammaproteobacterial) MB. The diversity of methanotrophs in this habitat was further assessed by pyrosequencing of pmoA genes, encoding particulate methane monooxygenase. A total of 53,828 pmoA gene sequences of seep-inhabiting methanotrophs were retrieved and analyzed. Nearly all of these sequences affiliated with type I MB, including the Methylobacter-Methylovulum-Methylosoma group, lake cluster 2, and several as-yet-uncharacterized methanotroph clades. Apparently, microbial communities attenuating methane fluxes from these local but strong CH4 sources in floodplains of high-latitude rivers have a large proportion of potentially novel, psychrotolerant methanotrophs, thereby providing a challenge for future isolation studies. PMID:25063667

  9. Cold seep communities in the deep eastern Mediterranean Sea: composition, symbiosis and spatial distribution on mud volcanoes

    NASA Astrophysics Data System (ADS)

    Olu-Le Roy, Karine; Sibuet, Myriam; Fiala-Médioni, Aline; Gofas, Serge; Salas, Carmen; Mariotti, André; Foucher, Jean-Paul; Woodside, John

    2004-12-01

    Two mud volcano fields were explored during the French-Dutch MEDINAUT cruise (1998) with the submersible NAUTILE, one south of Crete along the Mediteranean Ridge at about 2000 m depth (Olimpi mud field) and the other south of Turkey between 1700 and 2000 m depth (Anaximander mud field) where high methane concentrations were measured. Chemosynthetic communities were observed and sampled on six mud volcanoes and along a fault scarp. The communities were dominated by bivalves of particularly small size, belonging to families commonly found at seeps (Mytilidae, Vesicomyidae, Thyasiridae) and to Lucinidae mostly encountered in littoral sulfide-rich sediments and at the shallowest seeps. Siboglinid polychaetes including a large vestimentiferan Lamellibrachia sp. were also associated. At least four bivalve species and one siboglinid are associated with symbiotic chemoautotrophic bacteria, as evidenced by Transmission Electronic Microscopy and isotopic ratio measurements. Among the bivalves, a mytilid harbors both methanotrophic and sulfide-oxidizing bacteria. Video spatial analysis of the community distribution on three volcanoes shows that dense bivalve shell accumulations (mainly lucinids) spread over large areas, from 10% to 38% of the explored areas (2500-15000 m 2) on the different volcanoes. Lamellibrachia sp. had different spatial distribution and variable density in the two mud volcano fields, apparently related with higher methane fluxes in the Anaximander volcanoes and maybe with the instability due to brines in the Olimpi area. The abundance and richness of the observed chemosynthetic fauna and the size of some of the species contrast with the poverty of the deep eastern Mediterranean. The presence of a specialized fauna, with some mollusk genera and species shared with other reduced environments of the Mediterranean, but not dominated by the large bivalves usually found at seeps, is discussed.

  10. Microbial Diversity in Deep-sea Methane Seep Sediments Presented by SSU rRNA Gene Tag Sequencing

    PubMed Central

    Nunoura, Takuro; Takaki, Yoshihiro; Kazama, Hiromi; Hirai, Miho; Ashi, Juichiro; Imachi, Hiroyuki; Takai, Ken

    2012-01-01

    Microbial community structures in methane seep sediments in the Nankai Trough were analyzed by tag-sequencing analysis for the small subunit (SSU) rRNA gene using a newly developed primer set. The dominant members of Archaea were Deep-sea Hydrothermal Vent Euryarchaeotic Group 6 (DHVEG 6), Marine Group I (MGI) and Deep Sea Archaeal Group (DSAG), and those in Bacteria were Alpha-, Gamma-, Delta- and Epsilonproteobacteria, Chloroflexi, Bacteroidetes, Planctomycetes and Acidobacteria. Diversity and richness were examined by 8,709 and 7,690 tag-sequences from sediments at 5 and 25 cm below the seafloor (cmbsf), respectively. The estimated diversity and richness in the methane seep sediment are as high as those in soil and deep-sea hydrothermal environments, although the tag-sequences obtained in this study were not sufficient to show whole microbial diversity in this analysis. We also compared the diversity and richness of each taxon/division between the sediments from the two depths, and found that the diversity and richness of some taxa/divisions varied significantly along with the depth. PMID:22510646

  11. Fluid channeling and their effect on the efficiency of benthic methane filter in various seep habitats and sediments

    NASA Astrophysics Data System (ADS)

    Steeb, Philip; Linke, Peter; Treude, Tina

    2014-05-01

    Marine sediments and sub-seafloor gas hydrates build one of the largest methane reservoirs on Earth. Most of the methane ascending in sediments is oxidized by anaerobic oxidation of methane (AOM) with sulfate as terminal electron acceptor, the so-called "benthic microbial methane filter". The efficiency of the benthic microbial methane filter is controlled by diffusive sulfate supply from seawater and advective methane flux from deep reservoirs. High fluid fluxes reduce the penetration depth of sulfate and limit the filter to a very narrow zone close to the sediment-water interface. However natural and catastrophic fluctuations of methane fluxes (caused e.g. by gas hydrate melting, earthquakes, slope failure) can change the fluid regime and reduce the capability of this greenhouse gas sink. A new Sediment-Flow-Through (SLOT) system was developed to incubate intact sediment cores under controlled fluid regimes. To mimic natural fluid conditions sulfate-free, methane-loaded artificial seawater medium was pumped from the bottom and sulfate-enriched seawater medium was supplied from above. Media and system were kept anoxic and seepage medium was tracked with bromide tracer. Over the entire experiment, the change of geochemical gradients inside the sediment column was monitored in monthly time intervals using porewater extraction/analyses and microsensor measurements. In addition, in- and outflow samples were analyzed for the calculation of methane turnover rates. In the above manner, sediments from different seeps (Eckernförde Bay, Costa Rica, Chile, and the Eastern Mediterranean Sea) and types (gassy sediments, gas hydrates containing sediments, mud volcanoes, sulfur bacteria mats, pogonophoran fields, clam fields) were incubated and monitored up to one year. Moderate to high advective fluid flow rates, which have been reported from natural seeps, were chosen to challenge the benthic microbial methane filter and investigate the response to pulses of methane loaded

  12. Massive barite deposits and carbonate mineralization in the Derugin Basin, Sea of Okhotsk: precipitation processes at cold seep sites

    NASA Astrophysics Data System (ADS)

    Greinert, Jens; Bollwerk, Sandra M.; Derkachev, Alexander; Bohrmann, Gerhard; Suess, Erwin

    2002-10-01

    : 9.0-17.6‰ SMOW) strongly point to biological sulfate reduction processes. The isotope ranges of both S and O can be exclusively explained as the result of a mixture of residual sulfate after a biological sulfate reduction and isotopic fractionation with 'normal' seawater sulfate. While massive barite deposits are commonly assumed to be of hydrothermal origin, the assemblage of cheomautotrophic clams, methane-derived carbonates, and non-thermally equilibrated barite sulfate strongly implies that these barites have formed at ambient bottom water temperatures and form the features of a Giant Cold Seep setting that has been active for at least 49 000 yr.

  13. Diversity of symbioses between chemosynthetic bacteria and metazoans at the Guiness cold seep site (Gulf of Guinea, West Africa)

    PubMed Central

    Duperron, Sébastien; Rodrigues, Clara F; Léger, Nelly; Szafranski, Kamil; Decker, Carole; Olu, Karine; Gaudron, Sylvie M

    2012-01-01

    Fauna from deep-sea cold seeps worldwide is dominated by chemosymbiotic metazoans. Recently, investigation of new sites in the Gulf of Guinea yielded numerous new species for which symbiosis was strongly suspected. In this study, symbioses are characterized in five seep-specialist metazoans recently collected from the Guiness site located at ∼600 m depth. Four bivalve and one annelid species belonging to families previously documented to harbor chemosynthetic bacteria were investigated using bacterial marker gene sequencing, fluorescence in situ hybridization, and stable isotope analyses. Results support that all five species display chemosynthetic, sulfur-oxidizing γ-proteobacteria. Bacteria are abundant in the gills of bivalves, and in the trophosome of the siboglinid annelid. As observed for their relatives occurring at deeper sites, chemoautotrophy is a major source of carbon for animal nutrition. Although symbionts found in each host species are related to symbionts found in other metazoans from the same families, several incongruencies are observed among phylogenetic trees obtained from the different bacterial genes, suggesting a certain level of heterogeneity in symbiont strains present. Results provide new insights into the diversity, biogeography, and role of symbiotic bacteria in metazoans from the Gulf of Guinea, at a site located at an intermediate depth between the continental shelf and the deep sea. PMID:23233246

  14. Preservation and Significance of Vestimentiferan Tube Worms in Paleocene Cold Seep Carbonates, Panoche-Tumey Hills, California

    NASA Astrophysics Data System (ADS)

    Schwartz, H.; Hull, I.

    2005-12-01

    Vestimentiferan tube worms are the dominant chemosynthetic macroinvertebrates at many active cold seeps, but their remains are surprisingly rare in paleoseeps. A 20 km-long paleoseep system in the Panoche-Tumey Hills (PTH), northwestern San Joaquin Valley, is an exception. At this Paleocene site methane-derived carbonate masses (δ13C-depleted to -54 per mil) within the siliciclastic Moreno Formation contain abundant evidence of chemosynthetic communities, including ubiquitous microbialites and scattered remains of infaunal lucinid and nuculanid bivalves. Abundant tube structures also occur in the carbonates and though most are nondescript, a few well-preserved specimens suggest that many or all of these structures represent replaced vestimentiferan tube worm exoskeletons. Modern Vestimentifera secrete thin-walled, multi-layered tubes made of β-chitin and protein complexes which have high potential for chelation and microbe-mediated carbonate precipitation. The best-preserved PTH tubes are circular to oval in cross section, 7-10mm in diameter and multi-layered. The inner and outer layers consist of thin brownish sheaths, 0.1 to 0.5mm in diameter. The middle layer consists of isopachous radiaxial and microspar calcite cement (~2mm thick), with opposing crystal growth directions. The exterior surfaces of the outer sheaths have distinctive banding reminiscent of incremental growth lines. Less well-preserved tubes have progressively thicker and more complex cement rims and progressively less distinctive sheaths. Variable preservation may reflect degree of exposure to seep fluids, as poorly-preserved tubes are generally infilled with fluid-derived blocky calcite while well-preserved tubes are infilled with silty micrite matrix. Low δ13C values (to -20 per mil) indicate that some of the carbon and all tube-replacing cements was derived from seep fluids. In contrast to tube worm remains, suspect abiotic fluid conduits in the PTH are irregularly shaped, variable in size

  15. Integrative study of a new cold-seep mussel (Mollusca: Bivalvia) associated with chemosynthetic symbionts in the Marmara Sea

    NASA Astrophysics Data System (ADS)

    Ritt, Bénédicte; Duperron, Sébastien; Lorion, Julien; Sara Lazar, Cassandre; Sarrazin, Jozée

    2012-09-01

    Recently, small Idas-like mussels have been discovered living on carbonate crusts associated with cold-seeps in the Marmara Sea. These mussels, here referred to as Idas-like nov. sp., differ morphologically and genetically from another species identified as Idas aff. modiolaeformis, living in the same type of ecosystem in the Nile Deep-Sea Fan (eastern Mediterranean Sea). A phylogenetic analysis confirms the distinction between the two species, which belong to highly divergent lineages. Carbon stable isotope values, as well as the detection of thiotroph-related bacteria in the gill tissue, support the presence of a symbiotic, thiotroph-derived nutrition. In contrast, Idas aff. modiolaeformis displays six different types of symbionts. Finally our size-frequency data suggest that the recruitment is continuous in the examined area. The present study extends the documented distribution of symbiont-bearing mussels to the Marmara Sea, and contributes to the characterisation of biological communities in this recently explored area.

  16. Methane in shallow cold seeps at Mocha Island off central Chile

    NASA Astrophysics Data System (ADS)

    Jessen, Gerdhard L.; Pantoja, Silvio; Gutiérrez, Marcelo A.; Quiñones, Renato A.; González, Rodrigo R.; Sellanes, Javier; Kellermann, Matthias Y.; Hinrichs, Kai-Uwe

    2011-04-01

    We studied for the first time the intertidal and subtidal gas seepage system in Mocha Island off Central Chile. Four main seepage sites were investigated (of which one site included about 150 bubbling points) that release from 150 to 240 tonnes CH 4 into the atmosphere per year. The total amount of methane emitted into the atmosphere is estimated in the order of 800 tonnes per year. The gases emanated from the seeps contain 70% methane, and the stable carbon isotopic composition of methane, δ 13C-CH 4 averaged -44.4±1.4‰ which indicates a major contribution of thermogenic gas. Adjacent to one of the subtidal seeps, rocky substrates support a diverse community of microbial filaments, macroalgae, and benthic organisms. While stable carbon isotopic compositions of marine benthic organisms indicate a dominant photosynthesis-based food web, those of some hard-substrate invertebrates were in the range -48.8‰ to -36.8‰, suggesting assimilation of methane-derived carbon by some selected taxa. This work highlights the potential subsidy of the trophic web by CH 4-C, and that its emission to the atmosphere justifies the need of evaluating the use of methane to support the energy requirements of the local community.

  17. Greigite as a marker of paleo sulphate methane transition zone (SMTZ) in cold seep environment of Krishna-Godavari (KG) Basin, Bay of Bengal, India.

    NASA Astrophysics Data System (ADS)

    B, F. K.; Dewangan, P.; Usapkar, A.; Mazumdar, A.; Kocherla, M.; Tammisetti, R.; Khalap, S. T.; Satelkar, N. P.; Mehrtens, T.; Rosenauer, A.

    2014-12-01

    Rockmagnetic results and electron microscopic observations on a sediment core retrieved from a proven cold seep environment of Krishna-Godavari (KG) Basin revealed an anomalously magnetically enhanced zone (17 - 23 mbsf) below the present-day SMTZ in the KG offshore basin. This zone is characterized by higher SIRM / k, kARM / SIRM and kfd % values indicating the presence of fine grained superparamagnetic (SP) sized ferrimagnetic iron sulphides minerals such as greigite formed due to anaerobic oxidation of methane (AOM). Identification of such mineral phases and understanding the mechanism of their formation and preservation is of vital importance which could provide better understanding of the geochemical processes on the paleo - SMTZ. Magnetic concentrates extracted from this zone were characterised by transmission electron microscopy and energy dispersive X- ray spectrometry. We observed two possible occurrences of magnetic phases within this sediment depths 17 - 23 mbsf. (a) authigenically formed SP sized ferrimagnetic inclusions of magnetite, pyrite and greigite within matrix of host siliceous grain, (b) poorly crystallized fine-grained magnetite with ill defined grain boundary possibily formed extracellulary by magnetotactic bacterias through biologically-induced mineralization. High methane fluxes as observed in this basin provides suitable environment for the formation of greigite in the vicinity of SMTZ. We hypothesize that due to availability of residual iron and low supply of hydrogen sulphide caused by downwards diffusion lead to preservation of greigite. The occurence of greigite as inclusion within the host silicate matrix might explain its preservation in this zone in spite of intense pyritization. The greigite would otherwise be converted to stable-form pyrite. It is challenging to explain the origin of biologically produced magnetite within 17 - 23 mbsf as it is expected to dissolve in this zone due to intense pyritization.

  18. In situ Determination of Pore-water pH in Reducing Sediments near Methane Seeps and Vents by Laser Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Peltzer, E. T.; Walz, P. M.; Luna, M.; Zhang, X.; Brewer, P. G.

    2015-12-01

    Sediments near methane vents and seeps are often anoxic in nature due to the microbial oxidation of organic matter. When the pore-water oxygen is consumed, the microbial population resorts to using sulfate as the terminal electron receptor. For the anaerobic oxidation of methane, the net reaction is: CH4 + SO42- = HCO3- + HS- + H2O. Hydrogen sulfide produced by this reaction dissociates into bisulfide in proportion to the pore-water pH. Since the first pK of H2S is about 7 and close to the in situ pore-water pH, it satisfies the criteria for a useful pH indicating dye. Although the two forms of hydrogen sulfide are not visually discernable by the human eye, these two forms have distinct Raman spectra and thus can be easily quantified using an in situ spectrometer. The relative Raman cross-sections of the hydrogen sulfide species were determined in the laboratory across a range of relevant pH values and at the approximate salinity (ionic strength) and temperature of deep-sea pore waters. With this calibration, it is simple to compute the pore-water pH from the relative abundance of the two sulfide species: pH = pK1 + log10([HS-]/[H2S]). Pore-water profiles were investigated at several sites in the Santa Monica basin around methane mounds, gas vents and cold seeps. A titanium pore-water probe with a stainless steel frit was used to filter and collect pore-water samples at 5-10 cm intervals in the top 50-60 cm of sediment. Filtration and collection of the pore-water samples was usually accomplished in 5-10 minutes, with acquisition of the laser Raman spectra requiring only 2-4 minutes additional time. Vertical profiles of sulfate, total sulfide (H2S + HS-), methane and pH were collected simultaneously using the laser Raman spectrometer and pore-water profile sampler. Sulfate was observed to decrease from seawater concentrations to below detection limits while both methane and total sulfide increased proportionally to the sulfate loss. Once total sulfide concentrations

  19. Megafauna recovered from a cold hydrocarbon seep in the deep Alaskan Beaufort Sea, including a new species of Axinus (Thracidae: Bivalvia: Mollusca)

    NASA Astrophysics Data System (ADS)

    Powell, C. L.; Valentich-Scott, P.; Lorenson, T. D.; Edwards, B. D.

    2011-12-01

    Several specimens of a new species of Axinus and a single well-worn gastropod columella provisionally assigned to the genus Neptunea (Buccinidae: Gastropoda: Mollusca) were recently recovered from at least two cores, the longest of which is 5.72 m long, from a large seafloor mound, informally named the Canning Seafloor Mound (CSM). The CSM is located at 2,530 m water depth on the Alaskan Beaufort Sea slope north of Camden Bay and is a fluid explosion feature containing methane hydrate and methane-saturated sediments overlying a folded and faulted deep basin. Only two modern species of Axinus are currently known. Axinus grandis (Verrill & Smith, 1885) is a northern Atlantic species and the recently described species, A. cascadiensis Oliver and Holmes (2007), is only known from Baby Bare Seamount, Cascadia Basin, northeastern Pacific Ocean. Common fragments, single valves, and a single articulated specimen represent this new Axinus species. These shells were distributed over nearly the entire length of the primary core. All specimens show wear and (or) dissolution. The age of these specimens is unknown and no living representatives were encountered. The genus Axinus has a fossil record back to the early Eocene in England and the Paleocene and Eocene in Egypt. Biogeographically the genus appears to have originated in the Tethys Sea and became established in the Atlantic Ocean during the Eocene, spreading across the Arctic Ocean in the late Tertiary. With the opening of the Bering Strait in the latest Miocene or early Pliocene the genus Axinus migrated southwest into the northeast Pacific. Interestingly, hydrocarbon seep deposits are also present on the adjacent North Slope of Alaska in the Marsh Anticline at Carter Creek, Camden Bay. These rocks, the Nuwok beds, contain abundant Thracidae bivalve of the genus Thracia, but not Axinus, however the rocks also represent cold seep deposits. These rocks have been variously dated from Oligocene to Pliocene and the exact age

  20. Initial results of comparing cold-seep carbonates from mussel- and tubeworm-associated environments at Atwater Valley lease block 340, northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Feng, Dong; Roberts, Harry H.

    2010-11-01

    Chemosymbiotic macrofauna (such as mussels and tubeworms) and authigenic carbonates are typical of many hydrocarbon seeps. To address whether mussels and tubeworms could impact the sediment geochemistry of their habitat where authigenic carbonates are precipitated, a comparative study of petrographic and geochemical features of the authigenic carbonates from mussel- and tubeworm-associated environments at hydrocarbon seeps in Atwater Valley lease area block 340 (AT340) of the Gulf of Mexico was undertaken. Both mussel- and tubeworm-associated carbonates are dominated by high-magnesium calcite (HMC) and aragonite, and two tubeworm-associated carbonate samples have minor amounts of dolomite. The δ13C values of all carbonates are low, ranging from -60.8‰ to -35.5‰ PDB. Although there is much overlap, surprisingly the δ13C values of mussel-associated carbonates are generally higher than those of tubeworm-associated carbonates (-51.8‰ vs. -54.8‰ for an average of over 60 subsamples). It is suggested that (1) carbon isotopic vital effect of seep mussels and tubeworms, (2) fluid physical pumping of mussels, and (3) release of sulfate by tubeworm roots may be responsible for the relatively lower δ13C values of tubeworm-associated carbonates. It has been suggested that the heterogeneities in mineralogy and stable carbon isotope geochemistry of the seep carbonates may be attributed to the activity of macrofauna (mussels and tubeworms) and associated microbes. Our observations also suggest that at AT340 the geochemical evolution of seep macrofauna is from a mussel-dominated environment to a mixed mussel-tubeworm environment, and finally to a mostly tubeworm-dominated environment. This evolution is controlled mainly by the habitat, e.g., hydrocarbon seep flux.

  1. Impact of anaerobic oxidation of methane on the geochemical cycle of redox-sensitive elements at cold-seep sites of the northern South China Sea

    NASA Astrophysics Data System (ADS)

    Hu, Yu; Feng, Dong; Liang, Qianyong; Xia, Zhen; Chen, Linying; Chen, Duofu

    2015-12-01

    Cold hydrocarbon seepage is a frequently observed phenomenon along continental margins worldwide. However, little is known about the impact of seeping fluids on the geochemical cycle of redox-sensitive elements. Pore waters from four gravity cores (D-8, D-5, D-7, and D-F) collected from cold-seep sites of the northern South China Sea were analyzed for SO42-, Mg2+, Ca2+, Sr2+, dissolved inorganic carbon (DIC), δ13CDIC, dissolved Fe, Mn, and trace elements (e.g. Mo, U). The sulfate concentration-depth profiles, δ13CDIC values and (ΔDIC+ΔCa2++ΔMg2+)/ΔSO42- ratios suggest that organoclastic sulfate reduction (OSR) is the dominant process in D-8 core. Besides OSR, anaerobic oxidation of methane (AOM) is partially responsible for depletion of sulfate at D-5 and D-7 cores. The sulfate consumption at D-F core is predominantly caused by AOM. The depth of sulfate-methane interface (SMI) and methane diffusive flux of D-F core are calculated to be ~7 m and 0.035 mol m-2 yr-1, respectively. The relatively shallow SMI and high methane flux at D-F core suggest the activity of gas seepage in this region. The concentrations of dissolved uranium (U) were inferred to decrease significantly within the iron reduction zone. It seems that AOM has limited influence on the U geochemical cycling. In contrast, a good correlation between the consumption of sulfate and the removal of molybdenum (Mo) suggests that AOM has a significantly influence on the geochemical cycle of Mo at cold seeps. Accordingly, cold seep environments may serve as an important potential sink in the marine geochemical cycle of Mo.

  2. Ampharetidae (Annelida: Polychaeta) from cold seeps off Pakistan and hydrothermal vents off Taiwan, with the description of three new species.

    PubMed

    Reuscher, Michael G; Fiege, Dieter

    2016-01-01

    The new ampharetid species Eclysippe yonaguniensis sp. nov. and Glyphanostomum bilabiatum sp. nov. from the Yonaguni Knoll IV hydrothermal field off the coast of Taiwan and Pavelius makranensis sp. nov. from the cold seeps in the Makran accretionary prism off the coast of Pakistan are described. Amage cf. ehlersi Reuscher, Fiege & Imajima, 2015 and Anobothrus dayi Imajima, Reuscher & Fiege, 2013 are newly recorded from the Yonaguni Knoll IV hydrothermal field. PMID:27470798

  3. Synchronized dynamics of bacterial niche-specific functions during biofilm development in a cold seep brine pool.

    PubMed

    Zhang, Weipeng; Wang, Yong; Bougouffa, Salim; Tian, Renmao; Cao, Huiluo; Li, Yongxin; Cai, Lin; Wong, Yue Him; Zhang, Gen; Zhou, Guowei; Zhang, Xixiang; Bajic, Vladimir B; Al-Suwailem, Abdulaziz; Qian, Pei-Yuan

    2015-10-01

    The biology of biofilm in deep-sea environments is barely being explored. Here, biofilms were developed at the brine pool (characterized by limited carbon sources) and the normal bottom water adjacent to Thuwal cold seeps. Comparative metagenomics based on 50 Gb datasets identified polysaccharide degradation, nitrate reduction and proteolysis as enriched functional categories for brine biofilms. The genomes of two dominant species: a novel Deltaproteobacterium and a novel Epsilonproteobacterium in the brine biofilms were reconstructed. Despite rather small genome sizes, the Deltaproteobacterium possessed enhanced polysaccharide fermentation pathways, whereas the Epsilonproteobacterium was a versatile nitrogen reactor possessing nar, nap and nif gene clusters. These metabolic functions, together with specific regulatory and hypersaline-tolerant genes, made the two bacteria unique compared with their close relatives, including those from hydrothermal vents. Moreover, these functions were regulated by biofilm development, as both the abundance and the expression level of key functional genes were higher in later stage biofilms, and co-occurrences between the two dominant bacteria were demonstrated. Collectively, unique mechanisms were revealed: (i) polysaccharides fermentation, proteolysis interacted with nitrogen cycling to form a complex chain for energy generation, and (ii) remarkably exploiting and organizing niche-specific functions would be an important strategy for biofilm-dependent adaptation to the extreme conditions. PMID:26171930

  4. [Microbiological processes of the carbon and sulfur cycle in cold methane seeps in the North Atlantic].

    PubMed

    Pimenov, N V; Savvichev, A S; Rusanov, I I; Lein, A Iu; Ivanov, M V

    2000-01-01

    Functioning of microbial communities in surface sediments of the Haakon Mosby underwater mud volcano (lat. 72 degrees N) and in gas seepage fields of the Vestnesa Ridge was investigated using Mir-1 and Mir-2 deep-sea submersibles during the 40th expedition of the research vessel Academician Mstislav Keldysh. Large areas of sedimentary deposits of the Haakon Mosby mud volcano (HMMV) and pockmarks of the Vestnesa Ridge (VR) are covered with bacterial mats 0.1 to 0.5 cm thick. The microbial community making up bacterial mats of the HMMV was predominated by large filamentous bacteria with filaments measuring up to 100 microns in length and 2 to 8 microns in width. The occurrence of rosettes allowed the observed filamentous bacteria to be referred to the morphologically similar genera Leucothrix or Thiothrix. Three morphological types of filamentous bacteria were identified in bacterial mats covering VR pockmarks. Filaments of type one are morphologically similar with representatives of the genera Thioploca or Desmanthos. Type two filaments had numerous inclusions of sulfur and resembled representatives of the genus Thiothrix. The third morphological type was constituted by single filaments made up of tightly connected disk-like cells and can, apparently, be assigned to the genus Beggiatoa. The rates of methane oxidation (up to 1570 microliters C/(dm3 day)) and sulfate reduction (up to 17 mg S/(dm3 day)) measured in surface sediments of HMMV and VR were close to the maximum rates of these processes observed in badly polluted regions of the northwestern shelf of the Black Sea. High rates of microbiological processes correlated with the high number of bacteria. The rate of methane production in sediments studied was notably lower and ranged from 0.1 to 3.5 microliters CH4/(dm3 day). Large areas of the HMMV caldera were populated by pogonophoras, represented by the two species, Sclerolinum sp. and Oligobrachia sp. The mass development of Sclerolinum sp. in the HMMV caldera

  5. Novel Alkane Hydroxylase Gene (alkB) Diversity in Sediments Associated with Hydrocarbon Seeps in the Timor Sea, Australia▿

    PubMed Central

    Wasmund, Kenneth; Burns, Kathryn A.; Kurtböke, D. Ipek; Bourne, David G.

    2009-01-01

    Hydrocarbon seeps provide inputs of petroleum hydrocarbons to widespread areas of the Timor Sea. Alkanes constitute the largest proportion of chemical components found in crude oils, and therefore genes involved in the biodegradation of these compounds may act as bioindicators for this ecosystem's response to seepage. To assess alkane biodegradation potential, the diversity and distribution of alkane hydroxylase (alkB) genes in sediments of the Timor Sea were studied. Deduced AlkB protein sequences derived from clone libraries identified sequences only distantly related to previously identified AlkB sequences, suggesting that the Timor Sea maybe a rich reservoir for novel alkane hydroxylase enzymes. Most sequences clustered with AlkB sequences previously identified from marine Gammaproteobacteria though protein sequence identities averaged only 73% (with a range of 60% to 94% sequence identities). AlkB sequence diversity was lower in deep water (>400 m) samples off the continental slope than in shallow water (<100 m) samples on the continental shelf but not significantly different in response to levels of alkanes. Real-time PCR assays targeting Timor Sea alkB genes were designed and used to quantify alkB gene targets. No correlation was found between gene copy numbers and levels of hydrocarbons measured in sediments using sensitive gas chromatography-mass spectrometry techniques, probably due to the very low levels of hydrocarbons found in most sediment samples. Interestingly, however, copy numbers of alkB genes increased substantially in sediments exposed directly to active seepage even though only low or undetectable concentrations of hydrocarbons were measured in these sediments in complementary geochemical analyses due to efficient biodegradation. PMID:19820158

  6. Investigating Microbial Activity in Diazotrophic Methane Seep Sediment via Transcript Analysis and Single-Cell FISH-NanoSIMS

    NASA Astrophysics Data System (ADS)

    Dekas, A. E.; Connon, S. A.; Chadwick, G.; Orphan, V. J.

    2012-12-01

    Methane seep microbial ecosystems are phylogenetically diverse and physiologically complex, and require culture-independent techniques to accurately investigate metabolic activity. In the present study we combine an RNA analysis of four key microbial genes with FISH-NanoSIMS analysis of single cells to determine the diversity of nitrogen fixing microorganisms (diazotrophs) present at a deep-sea methane-seeping site, as well as investigate the methane-dependency of a variety of community members. Recently, methane-dependent nitrogen fixation was observed in Mound 12 Costa Rica sediments, and was spatially correlated with the abundance of aggregates of anaerobic methanotrophic archaea (ANME) and sulfate reducing bacterial symbionts (SRB). Combined with the detection of 15N uptake from 15N2 in these aggregates, this suggested that the ANME-SRB aggregates are the primary diazotrophs in seep sediment. However, the diversity of dinitrogenase reductase (nifH) sequences recovered from several deep-sea locales, including Mound 12, suggests a greater diversity of diazotrophs in marine sediment. To investigate the activity of these potential diazotrophs in Mound 12 sediment, we investigated a suite of RNA transcripts in 15N2 incubations in both the presence and absence of methane: nifH, bacterial 16S rRNA, methyl coenzyme M reductase A (mcrA), and adenosine-5'-phosposulfate reductase alpha subunit (aprA). No nifH transcripts were recovered in incubations without methane, consistent with previous measurements lacking 15N2 uptake in the same sediments. The activity of the bacterial community in general, assessed by variable transcription, was also greatly affected by the presence or absence of methane. Single-cell fluorescence in situ hybridization coupled to nanoscale secondary ion mass spectrometry (FISH-NanoSIMS) was employed to confirm diazotrophic activity (15N2 uptake) and protein synthesis (15NH4+ uptake) of particular species implicated as ecologically important by the

  7. Marine oil seeps

    SciTech Connect

    Meyer, R.F. )

    1991-03-01

    Petroleum hydrocarbons of both biogenic and thermogenic origin are common constituents of the marine water column and sediment of the continental shelves. Approximately 0.25 million metric tons of oil per year, constituting about 8% of the oil input into the sea, is derived from natural seeps, the rest being anthropogenic. Seepage has occurred world-wide for millions of years and must have been many times greater in the past, when enormous oil deposits, such as the Orinoco Oil Belt, were first exposed to erosion. Although the amount varies from site to site with time, seepage is pervasive in polar and temperate seas. Marine-seep oil is intensely weathered and thus can be distinguished chemically from recent biogenic or undegraded crude oil. The degraded oil from seeps appears to have little deleterious effect on many marine organisms, which ingest and discharge the oil mostly unmetabolized. Chemical analyses suggest that a very large oil-rich layer in the Sargasso Sea originated from a large and as yet undetected seep. Oil seeps have long been used as guides for oil exploration onshore but have been underutilized for this purpose offshore because of oil-plume drift from the site of the seep and because natural oil slicks may be masked by spilled oil. At least one marine seep, in the Santa Barbara Channel, California, is producing oil and natural gas into two hollow steel pyramids from which the oil is collected by work boats and the natural gas is transported to shore by pipeline. This facility effectively reduces atmospheric pollution, controls marine oil pollution from the largest seep in the area, provides emission credits, and yields a modest economic benefit, but the seep is not known to have been used directly in oil exploration.

  8. Molecular characterization of bacteria associated with the trophosome and the tube of Lamellibrachia sp., a siboglinid annelid from cold seeps in the eastern Mediterranean.

    PubMed

    Duperron, Sébastien; de Beer, Dirk; Zbinden, Magali; Boetius, Antje; Schipani, Vanessa; Kahil, Nacera; Gaill, Françoise

    2009-09-01

    Specimens of Lamellibrachia (Annelida: Siboglinidae) were recently discovered at cold seeps in the eastern Mediterranean. In this study, we have investigated the phylogeny and function of intracellular bacterial symbionts inhabiting the trophosome of specimens of Lamellibrachia sp. from the Amon mud volcano, as well as the bacterial assemblages associated with their tube. The dominant intracellular symbiont of Lamellibrachia sp. is a gammaproteobacterium closely related to other sulfide-oxidizing tubeworm symbionts. In vivo uptake experiments show that the tubeworm relies on sulfide for its metabolism, and does not utilize methane. Bacterial communities associated with the tube form biofilms and occur from the anterior to the posterior end of the tube. The diversity of 16S rRNA gene phylotypes includes representatives from the same divisions previously identified from the tube of the vent species Riftia pachyptila, and others commonly found at seeps and vents. PMID:19583785

  9. Methane sources feeding cold seeps on the shelf and upper continental slope off central Oregon, USA

    NASA Astrophysics Data System (ADS)

    Torres, Marta E.; Embley, Robert W.; Merle, Susan G.; TréHu, Anne M.; Collier, Robert W.; Suess, Erwin; Heeschen, Katja U.

    2009-11-01

    We report on a bathymetric mapping and remotely operated vehicle surveys along the 100-600 m region offshore Oregon from 43°50'N to 44°18'N. We interpret our results in light of available geophysical data, published geotectonic models, and analogous observations of fluid venting and carbonate deposition from 44°30'N to 45°00'N. The methane seepage is defined by juxtaposition of a young prism, where methane is generated by bacterial activity and its release is modulated by gas hydrate dynamics, against older sequences that serve as a source of thermogenic hydrocarbons that vent in the shelf. We hypothesize that collision of a buried ridge with the Siletz Terrane results in uplift of gas hydrate bearing sediments in the oncoming plate and that the resulting decrease in pressure leads to gas hydrate dissociation and methane exolution, which, in turn, may facilitate slope failure. Oxidation of the released methane results in precipitation of carbonates that are imaged as high backscatter along a 550 ± 60 m benthic corridor.

  10. From wetlands to sauropods (?) and cold seeps: New perspectives on methane cycling in the Phanerozoic (Invited)

    NASA Astrophysics Data System (ADS)

    Tripati, A.; Beerling, D.; Bristow, T.; Campbell, K.; Catling, D. C.; Reinhard, C.; Rohrssen, M.; Sample, J. C.

    2013-12-01

    The role of methane in Phanerozoic climate change is a topic of debate. Methane has been implicated as a contributory climate forcing agent to sustained warm climates during the Permo-Carboniferous, the Mesozoic, and the Paleogene. It also has been discussed as a driver of transient warming events including rapid deglaciation marking the end of a hypothesized ';snowball' type glacial era in the run up to the Phanerozoic, the end-Ordovician glaciation, the Permo-Triassic boundary, and the Paleocene-Eocene Thermal Maximum. Here we review evidence for methane's role in Phanerozoic global climate change and present new carbon budget calculations for the Ordovician and Permo-Triassic. In addition, we will highlight some new perspectives on methane cycling, ranging from the possible significance of seawater sulfate concentrations in modulating oceanic anaerobic methane oxidation, methane emissions from the guts of sauropods and ruminants, to the decomposition of methane hydrates at active continental margins triggered by deep fluid flow in accretionary prism sediments during great earthquakes.

  11. Geologic Significance of Newly Discovered Methane Seeps on the Northern US Atlantic Margin

    NASA Astrophysics Data System (ADS)

    Skarke, A. D.; Ruppel, C. D.; Kodis, M.; Lobecker, E.; Malik, M.

    2013-12-01

    Analysis of multibeam water column backscatter data collected by NOAA Ship Okeanos Explorer in 2011, 2012, and 2013 has revealed the presence of several hundred methane gas plumes on the US Atlantic margin between Cape Hatteras and Cape Cod (see abstract by Kodis et al., 'US Atlantic Margin Methane Plumes Identified From Water Column Backscatter Data Acquired by NOAA Ship Okeanos Explorer'). Acoustic imagery indicates that these vertically elongate methane plumes extend hundreds of meters above the seafloor and are often deflected by ocean currents. Visual and acoustic observation of the base of select plumes by the NOAA remotely operated vehicle (ROV) Deep Discoverer in 2013 confirmed that they are generated by emission of gas bubbles at seafloor seeps. Prior to this discovery, the only observed cold seeps on the central and northern extents of the US Atlantic margin were at shallow water depths in Baltimore Canyon, and no deepwater (>1000 m) seeps were known to exist. The new seeps are observed at depths ranging from 100 m on the Nantucket Shelf to 1400 m in the vicinity of Norfolk, Baltimore, and Veatch Canyons. The seeps occur in isolation as well as in clusters, and particularly high seep concentrations are observed in the upper portions of Hudson Canyon. Along-margin seep distribution is not uniform and higher overall seep concentrations are observed north of Veatch Canyon and south of Wilmington Canyon, with substantially fewer seep occurrences on the intervening part of the Mid-Atlantic Bight. Lithology (e.g., coarse-grained vs. fine-grained sediment), underlying geology, and shelf-slope morphology appear to be correlated with the spatial distribution of cold seeps along the margin. Numerous shallow water (~500 m) seep locations are roughly coincident with seafloor pockmark features identified by D. Brothers (personal communication) and are proximal to the upslope extent of the gas hydrate stability zone (GHSZ). Multiple deepwater seep locations are

  12. Microbial Communities of Deep-Sea Methane Seeps at Hikurangi Continental Margin (New Zealand)

    PubMed Central

    Ruff, S. Emil; Arnds, Julia; Knittel, Katrin; Amann, Rudolf; Wegener, Gunter; Ramette, Alban; Boetius, Antje

    2013-01-01

    The methane-emitting cold seeps of Hikurangi margin (New Zealand) are among the few deep-sea chemosynthetic ecosystems of the Southern Hemisphere known to date. Here we compared the biogeochemistry and microbial communities of a variety of Hikurangi cold seep ecosystems. These included highly reduced seep habitats dominated by bacterial mats, partially oxidized habitats populated by heterotrophic ampharetid polychaetes and deeply oxidized habitats dominated by chemosynthetic frenulate tubeworms. The ampharetid habitats were characterized by a thick oxic sediment layer that hosted a diverse and biomass-rich community of aerobic methanotrophic Gammaproteobacteria. These bacteria consumed up to 25% of the emanating methane and clustered within three deep-branching groups named Marine Methylotrophic Group (MMG) 1-3. MMG1 and MMG2 methylotrophs belong to the order Methylococcales, whereas MMG3 methylotrophs are related to the Methylophaga. Organisms of the groups MMG1 and MMG3 are close relatives of chemosynthetic endosymbionts of marine invertebrates. The anoxic sediment layers of all investigated seeps were dominated by anaerobic methanotrophic archaea (ANME) of the ANME-2 clade and sulfate-reducing Deltaproteobacteria. Microbial community analysis using Automated Ribosomal Intergenic Spacer Analysis (ARISA) showed that the different seep habitats hosted distinct microbial communities, which were strongly influenced by the seep-associated fauna and the geographic location. Despite outstanding features of Hikurangi seep communities, the organisms responsible for key ecosystem functions were similar to those found at seeps worldwide. This suggests that similar types of biogeochemical settings select for similar community composition regardless of geographic distance. Because ampharetid polychaetes are widespread at cold seeps the role of aerobic methanotrophy may have been underestimated in seafloor methane budgets. PMID:24098632

  13. Microbial communities of deep-sea methane seeps at Hikurangi continental margin (New Zealand).

    PubMed

    Ruff, S Emil; Arnds, Julia; Knittel, Katrin; Amann, Rudolf; Wegener, Gunter; Ramette, Alban; Boetius, Antje

    2013-01-01

    The methane-emitting cold seeps of Hikurangi margin (New Zealand) are among the few deep-sea chemosynthetic ecosystems of the Southern Hemisphere known to date. Here we compared the biogeochemistry and microbial communities of a variety of Hikurangi cold seep ecosystems. These included highly reduced seep habitats dominated by bacterial mats, partially oxidized habitats populated by heterotrophic ampharetid polychaetes and deeply oxidized habitats dominated by chemosynthetic frenulate tubeworms. The ampharetid habitats were characterized by a thick oxic sediment layer that hosted a diverse and biomass-rich community of aerobic methanotrophic Gammaproteobacteria. These bacteria consumed up to 25% of the emanating methane and clustered within three deep-branching groups named Marine Methylotrophic Group (MMG) 1-3. MMG1 and MMG2 methylotrophs belong to the order Methylococcales, whereas MMG3 methylotrophs are related to the Methylophaga. Organisms of the groups MMG1 and MMG3 are close relatives of chemosynthetic endosymbionts of marine invertebrates. The anoxic sediment layers of all investigated seeps were dominated by anaerobic methanotrophic archaea (ANME) of the ANME-2 clade and sulfate-reducing Deltaproteobacteria. Microbial community analysis using Automated Ribosomal Intergenic Spacer Analysis (ARISA) showed that the different seep habitats hosted distinct microbial communities, which were strongly influenced by the seep-associated fauna and the geographic location. Despite outstanding features of Hikurangi seep communities, the organisms responsible for key ecosystem functions were similar to those found at seeps worldwide. This suggests that similar types of biogeochemical settings select for similar community composition regardless of geographic distance. Because ampharetid polychaetes are widespread at cold seeps the role of aerobic methanotrophy may have been underestimated in seafloor methane budgets. PMID:24098632

  14. The effect of pulse venting on anaerobic oxidation of methane and pyrite formation in the cold seep environment, offshore SW Taiwan

    NASA Astrophysics Data System (ADS)

    Cheng, Wan-Yen; Lin, Saulwood; Tseng, Yi-Ting; Chen, NeiChen; Hsieh, I.-Chih

    2016-04-01

    AOM (Anaerobic oxidation of methane) is a key process in seep environment. Sulfate was consumed during oxidation of methane or organic matter with pyrite as a major end product in the anoxic marine environment. Typical changes observed in the pore water include an increase of methane with depth beneath the SMTZ (sulfate methane transition zone), as a result of diffusion and/or advection, and appearances of a dissolved sulfide maximum underneath a dissolved iron peak with depth. A number of other related biogeochemical processes and end products may register their respective changes in sediments as a result of AOM and related reactions. However, flux, time and duration of gas migration may have changed by either long term processes, e.g., tectonic activities and/or climatic induced sea level changes, or short term, e.g., tidal variations. There is relatively little study addressing termination of gas migrations and subsequent changes in the seep environments. In this study, we will present our study on a seep environment where pulses of gas migration may have occurred with a number of chemical anomalies in sediments. We have collected pore water and sediments for their chemical compositions of sulfate, dissolved sulfide, chloride, organic carbon, carbonate carbon and pyrite as well as echo sounding for flares, and towcam for sea surface topography and benthic community. Our results show that methane gas may have migrated in sediments in carrying out AOM reaction and pyrite formation, however, gas migration may have been relatively short and in pulses. Pulses of gas migration resulted in little or even no sulfate reduction in pore water, but with appearance of dissolved sulfide as well as very high concentrations of pyrite in sediments. Flares were observed but not constantly at the site where chemical anomalies were observed. Pulses of gas migration may come from solid gas hydrate formation and dissociation as evidence from pore water chloride enrichment and

  15. The use of multibeam backscatter and bathymetry as a means of identifying faunal assemblages in a deep-sea cold seep

    NASA Astrophysics Data System (ADS)

    Sen, Arunima; Ondréas, Hélène; Gaillot, Arnaud; Marcon, Yann; Augustin, Jean-Marie; Olu, Karine

    2016-04-01

    Deep-sea ecosystems have attracted considerable commercial interest in recent years because of their potential to sustain a diverse range of mankind's industrial needs. If these systems are to be preserved or exploited in a sustainable manner, mapping habitats and species distributions is critical. As biodiversity at cold-seeps or other deep-sea ecosystems is driven by habitat heterogeneity, imagery is the obvious choice for characterizing these systems and has indeed proven extremely valuable towards mapping biogenic habitats formed by dense aggregations of large sized species, such as coral reefs, tubeworm bushes or bivalve beds. However, the acquisition of detailed images with resolution sufficient for reliable identification is extremely time consuming, labor intensive and highly susceptible to logistical issues. We developed a novel method for quickly mapping cold seep fauna and habitats over large areas, at the scale of squares of kilometers. Our method uses multibeam echosounder bathymetry and acoustic backscatter data, both segmented and reclassified based on topographical features and then combined to obtain a raster containing unique values incorporating both backscatter and bathymetry data. Two datasets, obtained from 30 m and 8 m above the seafloor were used and the results from the two datasets were compared. The method was applied to a cold seep community located in a pockmark in the deep Congo channel and we were able to ground truth the accuracy of our method against images of the area. The two datasets, obtained from different altitudes gave varying results: the 8 m altitude dataset reliably predicted tubeworms and carbonate rock, while the 30 m altitude dataset predicted tubeworms and vesicomyid clams. The 30 m dataset was more accurate than the 8 m altitude dataset in predicting distributions of tubeworms. Overall, all the predictions were quite accurate, with at least 90% of predictions being within 5 m of real distributions.

  16. Chemosynthetic trophic support for the benthic community at an intertidal cold seep site at Mocha Island off central Chile

    NASA Astrophysics Data System (ADS)

    Sellanes, Javier; Zapata-Hernández, Germán; Pantoja, Silvio; Jessen, Gerdhard L.

    2011-12-01

    We analyzed C and N stable isotope ratios of benthic fauna and their potential food sources at an intertidal methane seep site and a control site without emanation at Mocha Island (central Chile). The objective was to trace the origin of the main food sources used by the local heterotrophic fauna, based on the hypothesis that chemosynthetic production could be partially fueling the local food web at the seep site. Food sources sampled at both sites included macroalgae, particulate organic matter and bacteria-like filaments found growing over the red algae Gelidium lingulatum within the areas of active methane release. At the control site, located 11 km away from the gas emanation, fauna exhibited moderate δ 13C values ranging from -16.2‰ (in a nereid polychaete) to -14.8‰ (in a cirolanid isopod), which were consistent with those of the potential photosynthetic food sources sampled at this site (-20.2 to -16.5‰). δ 13C values of the photosynthetic food sources at the seep site similarly ranged between -25.4 and -17.9‰. However, a portion of the animals at this site were consistently more 13C-depleted, with δ 13C values close to that of the seeping methane (-43.8‰) and the bacteria-like filaments (-39.2 ± 2.5‰) also collected at this site. Specific examples were the Marphysa sp. polychaetes (δ 13C = -44.7 ± 0.6‰), the Schistomeringos sp. dorvilleid polychaetes (δ 13C = -42.9‰), and the tanaid crustacean Zeuxo marmoratus (δ 13C = -37.3 ± 0.2‰). The significantly higher δ 13C values of the herbivorous gastropod Tegula atra at the seep site (-29.3 ± 3.1‰) than at the control site (-12.6 ± 0.3‰) also indicated differences among sites of the preferred carbon sources of this species. Mixing model estimates indicate that at the seep site bacteria-like filaments could be contributing up to ˜60% of the assimilated diet of selected invertebrates. Furthermore, several indicators of trophic structure, based in isotopic niche metrics, indicate a

  17. A Long-Term Cultivation of an Anaerobic Methane-Oxidizing Microbial Community from Deep-Sea Methane-Seep Sediment Using a Continuous-Flow Bioreactor

    PubMed Central

    Aoki, Masataka; Ehara, Masayuki; Saito, Yumi; Yoshioka, Hideyoshi; Miyazaki, Masayuki; Saito, Yayoi; Miyashita, Ai; Kawakami, Shuji; Yamaguchi, Takashi; Ohashi, Akiyoshi; Nunoura, Takuro; Takai, Ken; Imachi, Hiroyuki

    2014-01-01

    Anaerobic oxidation of methane (AOM) in marine sediments is an important global methane sink, but the physiological characteristics of AOM-associated microorganisms remain poorly understood. Here we report the cultivation of an AOM microbial community from deep-sea methane-seep sediment using a continuous-flow bioreactor with polyurethane sponges, called the down-flow hanging sponge (DHS) bioreactor. We anaerobically incubated deep-sea methane-seep sediment collected from the Nankai Trough, Japan, for 2,013 days in the bioreactor at 10°C. Following incubation, an active AOM activity was confirmed by a tracer experiment using 13C-labeled methane. Phylogenetic analyses demonstrated that phylogenetically diverse Archaea and Bacteria grew in the bioreactor. After 2,013 days of incubation, the predominant archaeal components were anaerobic methanotroph (ANME)-2a, Deep-Sea Archaeal Group, and Marine Benthic Group-D, and Gammaproteobacteria was the dominant bacterial lineage. Fluorescence in situ hybridization analysis showed that ANME-1 and -2a, and most ANME-2c cells occurred without close physical interaction with potential bacterial partners. Our data demonstrate that the DHS bioreactor system is a useful system for cultivating fastidious methane-seep-associated sedimentary microorganisms. PMID:25141130

  18. Large Vesicomyidae (Mollusca: Bivalvia) from cold seeps in the Gulf of Guinea off the coasts of Gabon, Congo and northern Angola

    NASA Astrophysics Data System (ADS)

    von Cosel, Rudo; Olu, Karine

    2009-12-01

    Two new genera and three new species of large Vesicomyidae are described from cold-seep sites on pockmarks and other sulfide-rich environments in the Gulf of Guinea (tropical east Atlantic) off Gabon, Congo (Brazzaville) and northern Angola, from 500 to 4000 m depth: " Calyptogena" (s.l.) regab n. sp., Wareniconcha (n.g.) guineensis (Thiele and Jaeckel 1931), Elenaconcha guiness n.g. n. sp., and Isorropodon atalantae n. sp. For two other species already taken by the R/V Valdivia in 1898, Calyptogena valdiviae (Thiele and Jaeckel 1931) and Isorropodon striatum (Thiele and Jaeckel 1931) new localities were discovered, and the species are rediscussed. E. guiness n.g. n.sp. is also recorded from off Banc d'Arguin, Mauritania, collected by commercial fishing vessels. The vesicomyid species here treated were encountered in different depth ranges along the Gabon-Congo-Angola margin, between 500 and 4000 m depth, and it was found that, in comparison with the dredge samples taken by the Valdivia expedition off southern Cameroon and off Rio de Oro (both at 2500 m), the same species occur in other depth ranges, in some cases with a vertical difference of more than 1000 m. .That means that the species are not confined to a given depth thought being typical for them and that the characteristics of the biotope are likely to play a major role in the distribution of the vesicomyids associated to cold seeps or other reduced environments along the West African margin.

  19. Planktonic and sediment-associated aerobic methanotrophs in two seep systems along the North American margin.

    PubMed

    Tavormina, Patricia L; Ussler, William; Orphan, Victoria J

    2008-07-01

    Methane vents are of significant geochemical and ecological importance. Notable progress has been made toward understanding anaerobic methane oxidation in marine sediments; however, the diversity and distribution of aerobic methanotrophs in the water column are poorly characterized. Both environments play an essential role in regulating methane release from the oceans to the atmosphere. In this study, the diversity of particulate methane monooxygenase (pmoA) and 16S rRNA genes from two methane vent environments along the California continental margin was characterized. The pmoA phylotypes recovered from methane-rich sediments and the overlying water column differed. Sediments harbored the greatest number of unique pmoA phylotypes broadly affiliated with the Methylococcaceae family, whereas planktonic pmoA phylotypes formed three clades that were distinct from the sediment-hosted methanotrophs and distantly related to established methanotrophic clades. Water column-associated phylotypes were highly similar between field sites, suggesting that planktonic methanotroph diversity is controlled primarily by environmental factors rather than geographical proximity. Analysis of 16S rRNA genes from methane-rich waters did not readily recover known methanotrophic lineages, with only a few phylotypes demonstrating distant relatedness to Methylococcus. The development of new pmo primers increased the recovery of monooxygenase genes from the water column and led to the discovery of a highly diverged monooxygenase sequence which is phylogenetically intermediate to Amo and pMMO. This sequence potentiates insight into the amo/pmo superfamily. Together, these findings lend perspective into the diversity and segregation of aerobic methanotrophs within different methane-rich habitats in the marine environment. PMID:18487407

  20. Authigenic carbonate formation at hydrocarbon seeps in continental margin sediments: A comparative study

    USGS Publications Warehouse

    Naehr, T.H.; Eichhubl, P.; Orphan, V.J.; Hovland, M.; Paull, C.K.; Ussler, W., III; Lorenson, T.D.; Greene, H. Gary

    2007-01-01

    Authigenic carbonates from five continental margin locations, the Eel River Basin, Monterey Bay, Santa Barbara Basin, the Sea of Okhotsk, and the North Sea, exhibit a wide range of mineralogical and stable isotopic compositions. These precipitates include aragonite, low- and high-Mg calcite, and dolomite. The carbon isotopic composition of carbonates varies widely, ranging from -60??? to +26???, indicating complex carbon sources that include 13C-depleted microbial and thermogenic methane and residual, 13C-enriched, bicarbonate. A similarly large variability of ??18O values (-5.5??? to +8.9???) demonstrates the geochemical complexity of these sites, with some samples pointing toward an 18O-enriched oxygen source possibly related to advection of 18O-enriched formation water or to the decomposition of gas hydrate. Samples depleted in 18O are consistent with formation deeper in the sediment or mixing of pore fluids with meteoric water during carbonate precipitation. A wide range of isotopic and mineralogical variation in authigenic carbonate composition within individual study areas but common trends across multiple geographic areas suggest that these parameters alone are not indicative for certain tectonic or geochemical settings. Rather, the observed variations probably reflect local controls on the flux of carbon and other reduced ions, such as faults, fluid conduits, the presence or absence of gas hydrate in the sediment, and the temporal evolution of the local carbon reservoir. Areas with seafloor carbonates that indicate formation at greater depth below the sediment-water interface must have undergone uplift and erosion in the past or are still being uplifted. Consequently, the occurrence of carbonate slabs on the seafloor in areas of active hydrocarbon seepage is commonly an indicator of exhumation following carbonate precipitation in the shallow subsurface. Therefore, careful petrographic and geochemical analyses are critical components necessary for the

  1. Colonization of plant substrates at hydrothermal vents and cold seeps in the northeast Atlantic and Mediterranean and occurrence of symbiont-related bacteria.

    PubMed

    Szafranski, Kamil M; Deschamps, Philippe; Cunha, Marina R; Gaudron, Sylvie M; Duperron, Sébastien

    2015-01-01

    Reducing conditions with elevated sulfide and methane concentrations in ecosystems such as hydrothermal vents, cold seeps or organic falls, are suitable for chemosynthetic primary production. Understanding processes driving bacterial diversity, colonization and dispersal is of prime importance for deep-sea microbial ecology. This study provides a detailed characterization of bacterial assemblages colonizing plant-derived substrates using a standardized approach over a geographic area spanning the North-East Atlantic and Mediterranean. Wood and alfalfa substrates in colonization devices were deployed for different periods at 8 deep-sea chemosynthesis-based sites in four distinct geographic areas. Pyrosequencing of a fragment of the 16S rRNA-encoding gene was used to describe bacterial communities. Colonization occurred within the first 14 days. The diversity was higher in samples deployed for more than 289 days. After 289 days, no relation was observed between community richness and deployment duration, suggesting that diversity may have reached saturation sometime in between. Communities in long-term deployments were different, and their composition was mainly influenced by the geographical location where devices were deployed. Numerous sequences related to horizontally-transmitted chemosynthetic symbionts of metazoans were identified. Their potential status as free-living forms of these symbionts was evaluated based on sequence similarity with demonstrated symbionts. Results suggest that some free-living forms of metazoan symbionts or their close relatives, such as Epsilonproteobacteria associated with the shrimp Rimicaris exoculata, are efficient colonizers of plant substrates at vents and seeps. PMID:25774156

  2. Colonization of plant substrates at hydrothermal vents and cold seeps in the northeast Atlantic and Mediterranean and occurrence of symbiont-related bacteria

    PubMed Central

    Szafranski, Kamil M.; Deschamps, Philippe; Cunha, Marina R.; Gaudron, Sylvie M.; Duperron, Sébastien

    2015-01-01

    Reducing conditions with elevated sulfide and methane concentrations in ecosystems such as hydrothermal vents, cold seeps or organic falls, are suitable for chemosynthetic primary production. Understanding processes driving bacterial diversity, colonization and dispersal is of prime importance for deep-sea microbial ecology. This study provides a detailed characterization of bacterial assemblages colonizing plant-derived substrates using a standardized approach over a geographic area spanning the North-East Atlantic and Mediterranean. Wood and alfalfa substrates in colonization devices were deployed for different periods at 8 deep-sea chemosynthesis-based sites in four distinct geographic areas. Pyrosequencing of a fragment of the 16S rRNA-encoding gene was used to describe bacterial communities. Colonization occurred within the first 14 days. The diversity was higher in samples deployed for more than 289 days. After 289 days, no relation was observed between community richness and deployment duration, suggesting that diversity may have reached saturation sometime in between. Communities in long-term deployments were different, and their composition was mainly influenced by the geographical location where devices were deployed. Numerous sequences related to horizontally-transmitted chemosynthetic symbionts of metazoans were identified. Their potential status as free-living forms of these symbionts was evaluated based on sequence similarity with demonstrated symbionts. Results suggest that some free-living forms of metazoan symbionts or their close relatives, such as Epsilonproteobacteria associated with the shrimp Rimicaris exoculata, are efficient colonizers of plant substrates at vents and seeps. PMID:25774156

  3. Cold seep biogenic carbonate crust in the Levantine basin is inhabited by burrowing Phascolosoma aff. turnerae, a sipunculan worm hosting a distinctive microbiota

    NASA Astrophysics Data System (ADS)

    Rubin-Blum, Maxim; Shemesh, Eli; Goodman-Tchernov, Beverly; Coleman, Dwight F.; Ben-Avraham, Zvi; Tchernov, Dan

    2014-08-01

    Biogenic calcium carbonate crusts represent a cryptic habitat that is often associated with hydrocarbon seeps. Most biological observations of these crusts concern the external surfaces and the fauna inhabiting their inner cavities are generally neglected. Exposed carbonates in areas of active seepage at the 1100-m-deep base of the Palmachim slumping feature in the Levantine basin are intensively burrowed by metazoans, especially by sipunculans (peanut worms), identified by genetic and morphological markers as a potentially novel Phascolosoma sp., closely related to Phascolosoma turnerae (Rice, 1985) and named here P. aff. turnerae. Bacterial 16S-based tag encoded FLX amplicon pyrosequencing (bTEFAP) was utilized to analyze the bacterial community associated with P. aff. turnerae. We compared the bacterial community structure in P. aff. turnerae to the bacterial community structure associated with the sediment-water interface in adjacent gas seeps and in biofilm covering the carbonate crust hosting the sipunculan. A distinctive microbiota, capable of chemosynthesis and sulfide detoxification, was found in association with P. aff. turnerae.

  4. Microbial diversity in sediments associated with a shallow methane seep in the tropical Timor Sea of Australia reveals a novel aerobic methanotroph diversity.

    PubMed

    Wasmund, Kenneth; Kurtböke, D Ipek; Burns, Kathryn A; Bourne, David G

    2009-05-01

    This study examined the diversity of Bacteria, Archaea and in particular aerobic methanotrophs associated with a shallow (84 m) methane seep in the tropical Timor Sea, Australia. Seepage of thermogenic methane was associated with a large carbonate hardground covered in coarse carbonate-rich sediments and various benthic organisms such as solitary corals. The diversity of Bacteria and Archaea was studied by analysis of cloned 16S rRNA genes, while aerobic methanotrophic bacteria were quantified using real-time PCR targeting the alpha-subunit of particulate methane monooxygenase (pmoA) genes and diversity was studied by analysis of cloned pmoA genes. Phylogenetic analysis of bacterial and archaeal 16S rRNA genes revealed diverse and mostly novel phylotypes related to sequences previously recovered from marine sediments. A small number of bacterial 16S rRNA gene sequences were related to aerobic methanotrophs distantly related to the genera Methylococcus and Methylocaldum. Real-time PCR targeting pmoA genes showed that the highest numbers of methanotrophs were present in surface sediments associated with the seep area. Phylogenetic analysis of pmoA sequences revealed that all phylotypes were novel and fell into two large clusters comprised of only marine sequences distantly related to the genera Methylococcus and Methylocaldum that were clearly divergent from terrestrial phylotypes. This study provides evidence for the existence of a novel microbial diversity and diverse aerobic methanotrophs that appear to constitute marine specialized lineages. PMID:19573197

  5. Lucinoma kazani n. sp. (Mollusca: Bivalvia): evidence of a living benthic community associated with a cold seep in the Eastern Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Salas, C.; Woodside, J.

    2002-06-01

    Lucinoma kazani, a new deep-water species of Lucinidae from the Eastern Mediterranean Basin, is described and illustrated. The material was collected in the Anaximander Mountains, between Rhodes and Cyprus, Eastern Mediterranean. The first living specimens were collected during the Dutch ANAXIPROBE project in the Kazan volcano, at a depth of 1709 m. Later, during the MEDINAUT programme, both living specimens and shells were collected from several mud volcanoes at different depths in the Anaximander Mountains. This bivalve holds symbionts in the ctenidia, as do all previously studied Lucinidae. The type of habitat of this new species is gas-saturated mud, with high levels of methane, which diffuses upwards into a low-oxygen deep-water. Therefore, we consider this as evidence of a living cold seep community in the Eastern Mediterranean Sea.

  6. Use of 16S rRNA gene based clone libraries to assess microbial communities potentially involved in anaerobic methane oxidation in a Mediterranean cold seep.

    PubMed

    Heijs, Sander K; Haese, Ralf R; van der Wielen, Paul W J J; Forney, Larry J; van Elsas, Jan Dirk

    2007-04-01

    This study provides data on the diversities of bacterial and archaeal communities in an active methane seep at the Kazan mud volcano in the deep Eastern Mediterranean sea. Layers of varying depths in the Kazan sediments were investigated in terms of (1) chemical parameters and (2) DNA-based microbial population structures. The latter was accomplished by analyzing the sequences of directly amplified 16S rRNA genes, resulting in the phylogenetic analysis of the prokaryotic communities. Sequences of organisms potentially associated with processes such as anaerobic methane oxidation and sulfate reduction were thus identified. Overall, the sediment layers revealed the presence of sequences of quite diverse bacterial and archaeal communities, which varied considerably with depth. Dominant types revealed in these communities are known as key organisms involved in the following processes: (1) anaerobic methane oxidation and sulfate reduction, (2) sulfide oxidation, and (3) a range of (aerobic) heterotrophic processes. In the communities in the lowest sediment layer sampled (22-34 cm), sulfate-reducing bacteria and archaea of the ANME-2 cluster (likely involved in anaerobic methane oxidation) were prevalent, whereas heterotrophic organisms abounded in the top sediment layer (0-6 cm). Communities in the middle layer (6-22 cm) contained organisms that could be linked to either of the aforementioned processes. We discuss how these phylogeny (sequence)-based findings can support the ongoing molecular work aimed at unraveling both the functioning and the functional diversities of the communities under study. PMID:17431711

  7. Methane release from sediment seeps to the atmosphere is counteracted by highly active Methylococcaceae in the water column of deep oligotrophic Lake Constance.

    PubMed

    Bornemann, Maren; Bussmann, Ingeborg; Tichy, Lucas; Deutzmann, Jörg; Schink, Bernhard; Pester, Michael

    2016-08-01

    Methane emissions from freshwater environments contribute substantially to global warming but are under strong control of aerobic methane-oxidizing bacteria. Recently discovered methane seeps (pockmarks) in freshwater lake sediments have the potential to bypass this control by their strong outgassing activity. Whether this is counteracted by pelagic methanotrophs is not well understood yet. We used a (3)H-CH4-radiotracer technique and pmoA-based molecular approaches to assess the activity, abundance and community structure of pelagic methanotrophs above active pockmarks in deep oligotrophic Lake Constance. Above profundal pockmarks, methane oxidation rates (up to 458 nmol CH4 l(-1) d(-1)) exceeded those of the surrounding water column by two orders of magnitude and coincided with maximum methanotroph abundances of 0.6% of the microbial community. Phylogenetic analysis indicated a dominance of members of the Methylococcaceae in the water column of both, pockmark and reference sites, with most of the retrieved sequences being associated with a water-column specific clade. Communities at pockmark and reference locations also differed in parts, which was likely caused by entrainment of sediment-hosted methanotrophs at pockmark sites. Our results show that the release of seep-derived methane to the atmosphere is counteracted by a distinct methanotrophic community with a pronounced activity throughout bottom waters. PMID:27267930

  8. The Role of SRB on the Formation of Protodolomite and Monohydrocalcite: Insights from Cold Seep Simulation Experiment

    NASA Astrophysics Data System (ADS)

    Han, X.; Geesey, G.; Chen, X.

    2011-12-01

    Authigenic carbonates are very common at hydrocarbon seep sites on continental margin worldwide. Carbonate chimneys from the seep sites of the northeastern slope of the South China Sea are dominated by high-Mg calcite (HMC), with minor proto-dolomite, low-Mg calcite (LMC) and pyrite. HMC usually contains Mg less than 20 mol%, however, some of our samples contain HMC with Mg contents varied from 5-38mol%. The extreme high-Mg calcite approaches protodolomite composition; however, it still retains the structure of calcite. It has been known that the processes of anaerobic oxidation of methane (AOM) by consortia of archaea and sulfate reducing bacteria (SRB) are responsible for the precipitation of carbonates. To understand the formation mechanism of the unusual extreme high-Mg calcite as well as protodolomite in modern marine environment, we designed a set of mineral precipitation experiments simulating the pore water of the sulfate-methane transition zone of the seep sites of the South China Sea. The artificial pore water was enriched with formate, ammonia nitrogen and phosphate to achieve a C: N: P ratio of 106:12:1. Autoclave-sterilized nutrient enriched artificial pore water medium was inoculated with the SRB Desulfovibrio desulfuricans strain G-20 and incubated anaerobically at 25°C for 10 months. The precipitates that formed after incubation were analyzed using XRD, SEM and EDX and the concentration of key elements in the aqueous phase was determined using ICP-AES. Our results show that in the presence of SRBs, the pH of medium increased from 7.5 to 8.3 resulting in the precipitation of a mineral phase dominated by rhombohedra monohydrocalcite aggregates. In addition, spherical carbonate precipitates with Mg:Ca ratios varying from 0.16 to 0.98 suggest the presence of HMC and protodolomite. In the absence of SRB, the pH of the medium exhibited no significant change during incubation and only a small amount of aragonite and silica was produced: no

  9. High Diversity of Anaerobic Alkane-Degrading Microbial Communities in Marine Seep Sediments Based on (1-methylalkyl)succinate Synthase Genes

    PubMed Central

    Stagars, Marion H.; Ruff, S. Emil; Amann, Rudolf; Knittel, Katrin

    2016-01-01

    Alkanes comprise a substantial fraction of crude oil and are prevalent at marine seeps. These environments are typically anoxic and host diverse microbial communities that grow on alkanes. The most widely distributed mechanism of anaerobic alkane activation is the addition of alkanes to fumarate by (1-methylalkyl)succinate synthase (Mas). Here we studied the diversity of MasD, the catalytic subunit of the enzyme, in 12 marine sediments sampled at seven seeps. We aimed to identify cosmopolitan species as well as to identify factors structuring the alkane-degrading community. Using next generation sequencing we obtained a total of 420 MasD species-level operational taxonomic units (OTU0.96) at 96% amino acid identity. Diversity analysis shows a high richness and evenness of alkane-degrading bacteria. Sites with similar hydrocarbon composition harbored similar alkane-degrading communities based on MasD genes; the MasD community structure is clearly driven by the hydrocarbon source available at the various seeps. Two of the detected OTU0.96 were cosmopolitan and abundant while 75% were locally restricted, suggesting the presence of few abundant and globally distributed alkane degraders as well as specialized variants that have developed under specific conditions at the diverse seep environments. Of the three MasD clades identified, the most diverse was affiliated with Deltaproteobacteria. A second clade was affiliated with both Deltaproteobacteria and Firmicutes likely indicating lateral gene transfer events. The third clade was only distantly related to known alkane-degrading organisms and comprises new divergent lineages of MasD homologs, which might belong to an overlooked phylum of alkane-degrading bacteria. In addition, masD geneFISH allowed for the in situ identification and quantification of the target guild in alkane-degrading enrichment cultures. Altogether, these findings suggest an unexpectedly high number of yet unknown groups of anaerobic alkane degraders

  10. Transcription, Signaling Receptor Activity, Oxidative Phosphorylation, and Fatty Acid Metabolism Mediate the Presence of Closely Related Species in Distinct Intertidal and Cold-Seep Habitats.

    PubMed

    Van Campenhout, Jelle; Vanreusel, Ann; Van Belleghem, Steven; Derycke, Sofie

    2016-01-01

    Bathyal cold seeps are isolated extreme deep-sea environments characterized by low species diversity while biomass can be high. The Håkon Mosby mud volcano (Barents Sea, 1,280 m) is a rather stable chemosynthetic driven habitat characterized by prominent surface bacterial mats with high sulfide concentrations and low oxygen levels. Here, the nematode Halomonhystera hermesi thrives in high abundances (11,000 individuals 10 cm(-2)). Halomonhystera hermesi is a member of the intertidal Halomonhystera disjuncta species complex that includes five cryptic species (GD1-5). GD1-5's common habitat is characterized by strong environmental fluctuations. Here, we compared the transcriptomes of H. hermesi and GD1, H. hermesi's closest relative. Genes encoding proteins involved in oxidative phosphorylation are more strongly expressed in H. hermesi than in GD1, and many genes were only observed in H. hermesi while being completely absent in GD1. Both observations could in part be attributed to high sulfide concentrations and low oxygen levels. Additionally, fatty acid elongation was also prominent in H. hermesi confirming the importance of highly unsaturated fatty acids in this species. Significant higher amounts of transcription factors and genes involved in signaling receptor activity were observed in GD1 (many of which were completely absent in H. hermesi), allowing fast signaling and transcriptional reprogramming which can mediate survival in dynamic intertidal environments. GC content was approximately 8% higher in H. hermesi coding unigenes resulting in differential codon usage between both species and a higher proportion of amino acids with GC-rich codons in H. hermesi. In general our results showed that most pathways were active in both environments and that only three genes are under natural selection. This indicates that also plasticity should be taken in consideration in the evolutionary history of Halomonhystera species. Such plasticity, as well as possible

  11. Development and field application of a 6-bottle serial gas-tight fluid sampler for collecting seafloor cold seep and hydrothermal vent fluids with autonomous operation capability

    NASA Astrophysics Data System (ADS)

    Wu, S.; Ding, K.; Yang, C.; Seyfried, W. E., Jr.; Tan, C.; Schaen, A. T.; Luhmann, A. J.

    2014-12-01

    A 6-bottle serial gas-tight sampler (so-called "six-shooter") was developed for application with deep-sea vent fluids. The new device is composed of a custom-made 6-channel valve manifold and six sampling bottles which are circularly distributed around the valve manifold. Each valve channel consists of a high-pressure titanium cartridge valve and a motor-driven actuator. A sampling snorkel is connected to the inlet of the manifold that delivers the incoming fluid to different bottles. Each sampling bottle has a 160 ml-volume chamber and an accumulator chamber inside where compressed nitrogen is used to maintain the sample at near in-situ pressure. An electronics chamber that is located at the center of the sampler is used to carry out all sampling operations, autonomously, if desired. The sampler is of a compact circular configuration with a diameter of 26 cm and a length of 54 cm. During the SVC cruise AT 26-12, the sampler was deployed by DSV2 Alvin at a cold seep site MC036 with a depth of 1090 m in the Gulf of Mexico. The sampler collected fluid samples automatically following the tidal cycle to monitor the potential impact of the tide cycle on the fluid chemistry of cold seep in a period of two day. During the cruise AT 26-17, the sampler was used with newly upgraded DSV2 Alvin three times at the hydrothermal vent sites along Axial Seamount and Main Endeavor Field on Juan de Fuca Ridge. During a 4-day deployment at Anemone diffuse site (Axial Caldera), the sampler was set to work in an autonomous mode to collect fluid samples according to the preset interval. During other dives, the sampler was manually controlled via ICL (Inductively Coupled Link) communication through the hull. Gas-tight fluid samples were collected from different hydrothermal vents with temperatures between 267 ℃ and 335 ℃ at the depth up to 2200 m. The field results indicate unique advantages of the design. It can be deployed in extended time period with remote operation or working

  12. Transcription, Signaling Receptor Activity, Oxidative Phosphorylation, and Fatty Acid Metabolism Mediate the Presence of Closely Related Species in Distinct Intertidal and Cold-Seep Habitats

    PubMed Central

    Van Campenhout, Jelle; Vanreusel, Ann; Van Belleghem, Steven; Derycke, Sofie

    2016-01-01

    Bathyal cold seeps are isolated extreme deep-sea environments characterized by low species diversity while biomass can be high. The Håkon Mosby mud volcano (Barents Sea, 1,280 m) is a rather stable chemosynthetic driven habitat characterized by prominent surface bacterial mats with high sulfide concentrations and low oxygen levels. Here, the nematode Halomonhystera hermesi thrives in high abundances (11,000 individuals 10 cm−2). Halomonhystera hermesi is a member of the intertidal Halomonhystera disjuncta species complex that includes five cryptic species (GD1-5). GD1-5’s common habitat is characterized by strong environmental fluctuations. Here, we compared the transcriptomes of H. hermesi and GD1, H. hermesi’s closest relative. Genes encoding proteins involved in oxidative phosphorylation are more strongly expressed in H. hermesi than in GD1, and many genes were only observed in H. hermesi while being completely absent in GD1. Both observations could in part be attributed to high sulfide concentrations and low oxygen levels. Additionally, fatty acid elongation was also prominent in H. hermesi confirming the importance of highly unsaturated fatty acids in this species. Significant higher amounts of transcription factors and genes involved in signaling receptor activity were observed in GD1 (many of which were completely absent in H. hermesi), allowing fast signaling and transcriptional reprogramming which can mediate survival in dynamic intertidal environments. GC content was approximately 8% higher in H. hermesi coding unigenes resulting in differential codon usage between both species and a higher proportion of amino acids with GC-rich codons in H. hermesi. In general our results showed that most pathways were active in both environments and that only three genes are under natural selection. This indicates that also plasticity should be taken in consideration in the evolutionary history of Halomonhystera species. Such plasticity, as well as possible

  13. Monitoring of Sedimentary Fluxes in Cold Environments: The SEDIBUD (Sediment Budgets in Cold Environments) Programme

    NASA Astrophysics Data System (ADS)

    Beylich, Achim A.

    2014-05-01

    Projected climate change in cold regions is expected to alter melt season duration and intensity, along with the number of extreme rainfall events, total annual precipitation and the balance between snowfall and rainfall. Similarly, changes to the thermal balance are expected to reduce the extent of permafrost and seasonal ground frost and increase active layer depths. These effects will undoubtedly change surface environments in cold regions and alter the fluxes of sediments, nutrients and solutes, but the absence of quantitative data and coordinated geomorphic process monitoring and analysis to understand the sensitivity of the Earth surface environment is acute in cold climate environments. The International Association of Geomorphologists` (I.A.G. / A.I.G.) SEDIBUD (Sediment Budgets in Cold Environments) Program (2005 - 2017) is addressing this existing key knowledge gap. The central research question of this global group of scientists is to: Assess and model the contemporary sedimentary fluxes in cold climates, with emphasis on both particulate and dissolved components. Research carried out at each of the ca. 50 defined SEDIBUD key test sites varies by program, logistics and available resources, but typically represent interdisciplinary collaborations of geomorphologists, hydrologists, ecologists, permafrost scientists and glaciologists. SEDIBUD has developed manuals and protocols (SEDIFLUX Manual) with a key set of primary surface process monitoring and research data requirements to incorporate results from these diverse projects and allow coordinated quantitative analysis across the program. Defined SEDIBUD key tasks for the coming years include (i) The continued generation and compilation of comparable longer-term datasets on contemporary sedimentary fluxes and sediment yields from SEDIBUD key test sites worldwide, (ii) The continued extension of the SEDIBUD metadata database with these datasets, (iii) The testing of defined SEDIBUD hypotheses (available

  14. Authigenic carbonates from an active cold seep of the northern South China Sea: New insights into fluid sources and past seepage activity

    NASA Astrophysics Data System (ADS)

    Feng, Dong; Chen, Duofu

    2015-12-01

    Site F (also named Formosa ridge) represents the most vigorous cold seep on the northern South China Sea continental slope. In order to constrain the fluid sources and intensities of seepage, we investigated the petrography, mineralogy, stable carbon and oxygen isotopic compositions, element geochemistry and radiocarbon dating of authigenic carbonate rocks retrieved from the seafloor. Carbonate rocks mainly occurred as crusts, nodules, and nodular masses incorporated in carbonate breccias. The carbonates were comprised mainly of high-Mg calcite and aragonite. The δ13C of authigenic carbonate varied from -55.3‰ to -34.3‰ (mean: -48.5‰; n=47) vs. V-PDB, suggesting biogenic methane is the dominant carbon source fuelling the system. The δ18OCarbonate values were from +3.6‰ to +4.8‰ (mean: +3.9‰; n=47). The observed 18O-enrichement in relation to calculated equilibrium values in the carbonates probably reflects dissolution of gas hydrates. Combination of seafloor observations and the obtained AMS 14C ages suggest that (1) initiation of methane seepage from at least 10.6 ka ago; (2) environmental conditions may have been favorable for enhanced fluid seepage around 6 ka BP and (3) relatively low intensity of seepage from 2 ka BP till today.

  15. Submeter Mapping Of Methane Seeps By ROV Observations And Measurements At The Hikurangi Margin, New Zeeland

    NASA Astrophysics Data System (ADS)

    Naudts, L.; Greinert, J.; Poort, J.; Belza, J.; Vangampelaere, E.; Boone, D.; Linke, P.; Henriet, J.; de Batist, M.

    2008-12-01

    During R.V. Sonne cruise SO191-3, part of the "New (Zealand Cold) Vents" expedition, RCMG deployed their CHEROKEE ROV "Genesis" on the Hikurangi Margin. This accretionary margin, on the east coast of New Zealand, is related to the subduction of the Pacific Plate under the Australian Plate. Several cold seep locations as well as an extensive BSR, indicating the presence of gas hydrates, have been found at this margin. The aims of the ROV-work were to precisely localize active methane seeps, to conduct detailed visual observations of the seep structures and activity, and to perform measurements of physical properties and collect samples at and around the seep locations. The ROV allowed first ever visual observations of bubble- releasing seeps at the Hikurangi Margin. Seeps were observed at Faure Site and LM-3 in the Rock Garden area, at a flat to moderately undulating sea floor where soft sediments alternate with carbonate platforms. Bubble-releasing activity was very variable in time, with periods of almost non-activity (5 bubbles/second) alternating with periods of violent outbursts (190 bubbles/second). Bubbles sizes ranged from less than 5 mm to more than 20 mm. At Faure Site, bubble release was monitored over a period of 20 minutes, resulting in the observation of 6 outbursts, each lasting 1 minute at a 3 minute interval. These violent outbursts were accompanied by the displacement and resuspension of sediment grains and the formation of small depressions showing what is possibly an initial stage of pockmark formation. At the LM-3 site only some small bubbling seeps were observed near a large carbonate platform covered by Bathymodiolus mussels, Calyptogena shells and tube worms. Sediment-temperature measurements, in both areas, were largely comparable with the bottom-water temperature except at LM-3, at a site densely populated by polychaetes, where anomalous low sediment-temperature was measured. Overall, both seep areas are very confined in space and bottom

  16. A unique Fe-rich carbonate chimney associated with cold seeps in the Northern Okinawa Trough, East China Sea

    NASA Astrophysics Data System (ADS)

    Sun, Zhilei; Wei, Helong; Zhang, Xunhua; Shang, Luning; Yin, Xijie; Sun, Yunbao; Xu, Lei; Huang, Wei; Zhang, Xianrong

    2015-01-01

    The East China Sea is an important marginal sea of the Western Pacific Ocean, from which natural gas hydrate sample has not been acquired so far. Recently, copious carbonate chimneys have been discovered in turbidite deposits in the olistostrome zone located on the west slope of the northern section of Okinawa Trough. Here, the petrology, geochemistry and chronology of an iron-rich carbonate chimney were characterized, confirming a close relationship between its formation and the dissociation of natural gas hydrate beneath the chimney in OT. A distinctive relationship has been observed between goethite and total carbonate contents along with a negative correlation between Fe and Ca contents. Conversely, abundant Fe accumulated on carbonate substrate by mineralized microorganisms. The δ13C values of the chimney wall were from -27.56 to -43.66‰ (average: -37.18‰, V-PDB), implying anaerobic oxidation of methane (AOM) as a predominant controlling factor on carbonate precipitation. As no pyrite and organic residues were identified in the iron-rich chimney, it was assumed that AOM was coupled to the iron reduction reaction at least to some extent during the chimney growth owing to the local deficiency of sulfate supply. The δ56Fe values of bulk chimney wall (ranging from -0.316‰ to -0.023‰, average -0.134‰) suggest mass and isotope exchanges between the chimney and ambient environment during its growth history, whereas the enrichment of δ18O of the carbonate implies these carbonate sourcing from hydrate dissociation underlying our sampling site. This assumption has been supported by a distinct bottom simulation reflector (BSR) and a well-developed fault system beneath the sampling site. This is the first report of cold seepage inside the OT and the identified iron-dependent AOM has shed a new light to the Carbon cycle related to the marine methane oxidation, particularly before the Great Oxidation Event ~2.45 Ga ago.

  17. Microbial methane turnover at Marmara Sea cold seeps: a combined 16S rRNA and lipid biomarker investigation.

    PubMed

    Chevalier, N; Bouloubassi, I; Birgel, D; Taphanel, M-H; López-García, P

    2013-01-01

    Lipid biomarkers and their stable carbon isotopic composition, as well as 16S rRNA gene sequences, were investigated in sediment cores from active seepage zones in the Sea of Marmara (Turkey) located on the active North Anatolian Fault, to assess processes associated with methane turnover by indigenous microbial communities. Diagnostic (13) C-depleted archaeal lipids of anaerobic methane oxidizers were only found in one core from the South of Çinarcik Basin and consist mainly of archaeol, sn-2 hydroxyarchaeol and various unsaturated pentamethylicosenes. Concurrently, abundant fatty acids (FAs) and a substantial amount of monoalkylglycerolethers (MAGEs), assigned to sulphate-reducing bacteria, were detected with strong (13) C-depletions. Both microbial lipids and their δ(13) C values suggest that anaerobic oxidation of methane with sulphate reduction (AOM/SR) occurs, specially in the 10- to 12-cm depth interval. Lipid biomarker results accompanied by 16S rRNA-based microbial diversity analyses showed that ANME-2 (ANME-2a and -2c) archaea and Desulfosarcina/Desulfococcus and Desulfobulbus deltaproteobacterial clades are the major AOM assemblages, which indicate a shallow AOM community at high methane flux. Apart from the typical AOM lipid biomarker pattern, a (13) C-depleted diunsaturated hydrocarbon, identified as 7,14-tricosadiene, occurred in the inferred maximum AOM interval at 10-12 cm depth. Its isotopic fingerprint implies that its microbial precursor occurs in close association with the AOM communities. Interestingly, the presence of 7,14-tricosadiene coincides with the presence of the so-far uncultured bacterial Candidate Division JS1, often detected in AOM areas. We propose the hypothesis that the JS1 bacterial group could be the potential source of (13) C-depleted tricosadiene. Future testing of this hypothesis is essential to fully determine the role of this bacterial group in AOM. PMID:23205581

  18. Chemistry and mineralogy of pyrite-enriched sediments at a passive margin sulfide brine seep: abyssal Gulf of Mexico

    USGS Publications Warehouse

    Commeau, R.F.; Paull, C.K.; Commeau, J.A.; Poppe, L.J.

    1987-01-01

    Pyrite is rapidly accumulating at the contact between the Cretaceous limestones of the Florida Platform and the hemipelagic sediments of the abyssal Gulf of Mexico. Sediments sampled with the submersible "Alvin" in 3266 m of water are associated with a dense community of organisms that depend on chemosynthetic primary production as a food source. Analysis of the chemistry, mineralogy, and textural composition of these sediments indicate that iron sulfide mineralization is occurring at the seafloor within an anoxic micro-habitat sustained by the advection of hydrogen sulfide-charged saline brines from the adjacent platform. The chemosynthetic bacteria that directly overlie the sediments oxidize hydrogen sulfide for energy and provide elemental sulfur that reacts with iron monosulfide to form some of the pyrite. The sediments are mixtures of pyrite (??? 30 wt.%), BaSr sulfates (??? 4 wt.%), clays, and locally derived biogenic carbonates and are progressively being cemented by iron sulfides. Oxidation of hydrogen sulfide produces locally acidic conditions that corrode the adjacent limestones. Potential sources of S, H2S, Fe, Ba, and Sr are discussed. ?? 1987.

  19. Changing composition of microbial communities indicates seepage fluid difference of the Thuwal Seeps in the Red Sea.

    PubMed

    Yang, Bo; Zhang, Weipeng; Tian, Renmao; Wang, Yong; Qian, Pei-Yuan

    2015-08-01

    Cold seeps are unique ecosystems that are generally characterized by high salinity and reducing solutions. Seepage fluid, the major water influx of this system, contains hypersaline water, sediment pore water, and other components. The Thuwal cold seeps were recently discovered on the continental margin of the Red Sea. Using 16S rRNA gene pyro-sequencing technology, microbial communities were investigated by comparing samples collected in 2011 and 2013. The results revealed differences in the microbial communities between the two sampling times. In particular, a significantly higher abundance of Marine Group I (MGI) Thaumarchaeota was coupled with lower salinity in 2013. In the brine pool, the dominance of Desulfobacterales in 2011 was supplanted by MGI Thaumarchaeota in 2013, perhaps due to a reduced supply of hydrogen sulfide from the seepage fluid. Collectively, this study revealed a difference in water components in this ecosystem between two sampling times. The results indicated that the seawater in this cold seep displayed a greater number of characteristics of normal seawater in 2013 than in 2011, which might represent the dominant driving force for changes in microbial community structures. This is the first study to provide a temporal comparison of the microbial biodiversity of a cold seep ecosystem in the Red Sea. PMID:26059861

  20. Unusual novel n-4 polyunsaturated fatty acids in cold-seep mussels (Bathymodiolus japonicus and Bathymodiolus platifrons), originating from symbiotic methanotrophic bacteria.

    PubMed

    Saito, Hiroaki

    2008-07-25

    Novel fatty acids originated from the two cold-seep mussels Bathymodiolus japonicus and Bathymodiolus platifrons, which host methane-oxidizing bacteria, were determined by using gas chromatography-mass spectrometry analysis of the 4,4-dimethyloxazoline derivatives. The major polyunsaturated fatty acids (PUFAs) in the two mussels belong to unusual n-4 and n-7 methylene interrupted PUFAs, such as 18:3 n-7,10,13 (Delta5,8,11-18:3), 18:4 n-4,7,10,13 (Delta5,8,11,14-18:4), 20:3n-7,10,13 (Delta7,10,13-20:3), 20:4n-4,7,10,13 (Delta7,10,13,16-20:4), and 21:4n-7,10,13,16 (Delta5,8,11,14-20:4). The similarity of fatty acids in the two Bathymodiolus species produced by the symbiotic bacteria, indicate occurrence of highly homologous mussel symbionts. In contrast to the lipids of shallow-water mussel Mytilus galloprovincialis, which contains photosynthetic n-3 PUFAs, the two Bathymodiolus mussels were lacking in docosahexaenoic acid and icosapentaenoic acid even though they are marine animals. These findings suggest the Bathymodiolus species survive independently of photosynthetic products, similar to the Calyptogena clams, which house sulfur-oxidizing bacteria and whose lipid contains n-4 non-methylene interrupted PUFAs (20:3n-4,7,15 (Delta5,13,16-20:3), 20:4n-1,4,7,15 (Delta5,13,16,19-20:4), and 21:3n-4,7,16 (Delta5,14,17-20:3)). The similarity in n-4 fatty acids between the mussels and the clam suggests that these bivalves depend on analogous n-4 family PUFAs and that the n-4 PUFA family is a characteristic of all vent bivalves depending on geothermal energy. The differences of the n-4 PUFAs between the mussels and the clam suggest a generic specificity of symbiotic bacteria and differences in lipid physiology between thiotrophic and methanotrophic symbionts. Such a highly diversified variety of n-4 family PUFAs in the mussels and the clam under different environments presumably increase the great potential of the chemosynthetic bacteria. PMID:18571657

  1. A recent investigation of gas hydrate as a factor in northern Cascadia accretionary margin frontal ridge slope failures and cold seep biogeochemistry

    NASA Astrophysics Data System (ADS)

    Haacke, R.; Riedel, M.; Pohlman, J.; Rose, K.; Lapham, L.; Hamilton, T. S.; Enkin, R.; Spence, G.; Hyndman, R.

    2008-12-01

    In August 2008, a research expedition was conducted on the n. Cascadia margin by the Geological Survey of Canada (GSC) as part of the Earth Science Sector, Natural Gas Hydrate Program, Natural Resources Canada (NRCan). This collaboration included researchers from several universities as well as Canadian and U.S. government agencies. The primary objective was to determine the impact of gas hydrate on slope stability along the frontal ridges of the N. Cascadia accretionary wedge. Multibeam bathymetry data indicate numerous slope collapse features along the frontal ridges. To constrain the cause and timing of the collapse features, sedimentological, physical property and geochemical studies were conducted at several slump areas. Four cores were collected from within the headwall, apron and sole of the slumped material of 'Lopez Slide', a failure area detected prior to IODP Expedition 311. Directly south of Lopez Slide at a slump feature named 'Slipstream Slide', a 5-core transect extended from the headwall scarp to the toe of the slide deposits. Slipstream Slide is a series of en echelon box-like slump blocks bounded by transverse faults that cross-cut that frontal ridge. One additional core from a slump-feature further south (Chunk Slide) was also recovered. Onboard analyses suggest that the slump occurrences are not related to the last mega-thrust earthquake that occurred at the N. Cascadia subduction zone in January 1700. However, the slumps could have been triggered by earlier such earthquakes. Further analyses and age determinations are underway to confirm the linkages between slumps and the mega-thrust earthquake cycle and other possible trigger mechanisms such as eustatic sea level changes. The secondary objective of the expedition was a multidisciplinary program that included microbiological, geochemical, geophysical and sedimentological studies designed to advance our understanding of the environmental factors that control methane fluxes and oxidation at cold

  2. Molecular characterization of potential nitrogen fixation by anaerobic methane-oxidizing archaea in the methane seep sediments at the number 8 Kumano Knoll in the Kumano Basin, offshore of Japan.

    PubMed

    Miyazaki, Junichi; Higa, Ryosaku; Toki, Tomohiro; Ashi, Juichiro; Tsunogai, Urumu; Nunoura, Takuro; Imachi, Hiroyuki; Takai, Ken

    2009-11-01

    The potential for microbial nitrogen fixation in the anoxic methane seep sediments in a mud volcano, the number 8 Kumano Knoll, was characterized by molecular phylogenetic analyses. A total of 111 of the nifH (a gene coding a nitrogen fixation enzyme, Fe protein) clones were obtained from different depths of the core sediments, and the phylogenetic analysis of the clones indicated the genetic diversity of nifH genes. The predominant group detected (methane seep group 2), representing 74% of clonal abundance, was phylogenetically related to the nifH sequences obtained from the Methanosarcina species but was most closely related to the nifH sequences potentially derived from the anoxic methanotrophic archaea (ANME-2 archaea). The recovery of the nif gene clusters including the nifH sequences of the methane seep group 2 and the subsequent reverse transcription-PCR detection of the nifD and nifH genes strongly suggested that the genetic components of the gene clusters would be operative for the in situ assimilation of molecular nitrogen (N(2)) by the host microorganisms. DNA-based quantitative PCR of the archaeal 16S rRNA gene, the group-specific mcrA (a gene encoding the methyl-coenzyme M reductase alpha subunit) gene, and the nifD and nifH genes demonstrated the similar distribution patterns of the archaeal 16S rRNA gene, the mcrA groups c-d and e, and the nifD and nifH genes through the core sediments. These results supported the idea that the anoxic methanotrophic archaea ANME-2c could be the microorganisms hosting the nif gene clusters and could play an important role in not only the in situ carbon (methane) cycle but also the nitrogen cycle in subseafloor sediments. PMID:19783748

  3. Vesicomyid Clams Alter Biogeochemical Processes at Pacific Methane Seeps

    NASA Astrophysics Data System (ADS)

    Bertics, V. J.; Treude, T.; Ziebis, W.

    2007-12-01

    There exists a close relationship between fluid flow, biogeochemistry, and biota in seep sediments. Upwelling of methane and sulfide-rich fluids supports abundant macrofauna species harboring thiotrophic or methanotrophic symbionts. Variations in fluid flow, thus supply of methane and sulfide, are considered key factors controlling benthic communities. Vesicomyid clams harbor thiotrophic symbionts in their gills, which are supplied with oxygen from the surrounding water and hydrogen sulfide from the sediment. The clams are capable of extending their foot into the sediment to tap sulfide sources in deeper layers, consequently affecting water-sediment solute exchange. Because seep fluids are generally depleted in sulfate compared to seawater, this bioturbation activity may enhance the supply of sulfate to otherwise sulfate-limited sediments, thus boosting microbial activity of sulfate reduction (SR) coupled to anaerobic oxidation of methane (AOM). The goal of this study was to investigate the activity of three species of vesicomyid clams ( Calyptogena pacifica, C. kilmeri, C. gigas) from three methane seep habitats (Eel River Basin, Hydrate Ridge, Monterey Bay Canyon) and to evaluate its effect on biogeochemical processes. Sediment cores and clams were collected using the submersible Alvin or the ROV Jason, during three cruises with the R/V Atlantis in July and October 2006 and July 2007 (AT 15-7, AT 15-11, and AT 15-20). We performed high-resolution measurements of geochemical gradients in intact sediment cores using microsensors (O2, H2S, pH, redox potential). The cores were then sliced (1 cm intervals) for detailed chemical and microbiological analyses. Parallel cores were used to determine microbial activity (AOM, SR) with radioactive tracers. For detailed laboratory investigations, clams were kept in narrow aquaria (15 cm x 20 cm x 5 cm) in the ship's cold room. The front of the aquaria was perforated with holes at 1 cm resolution. These silicone-filled holes

  4. Multiscale Image of a Seep Structure - Takahe, Offshore New Zealand

    NASA Astrophysics Data System (ADS)

    Koch, S.; Dumke, I.; Bialas, J.; Crutchley, G.; Greinert, J.; Klaschen, D.; Klaucke, I.; Papenberg, C.

    2012-04-01

    We present a multi-scale geophysical study of a methane seep site "Takahe" on the southern Hikurangi Margin offshore New Zealand's North Island. Seismic, Parasound, sidescan sonar and subbottom profiler data were combined to image the spatial structure of the seep and its expression at the seafloor. The data were acquired in March of 2011 during the cruise SO214 with the German research vessel R/V Sonne. The aim of the project was to investigate cold seep structures within the gas hydrate stability zone (GHSZ). 2.5D seismic reflection data reveal the sub-seafloor structure of gas migration pathways beneath Takahe, which can be traced to a source that is at least as deep as the base of the GHSZ. The structure can be divided into three parts: i) a broad feeding base that narrows into an inverted bathtub-shaped funnel, ii) a narrow, vertical conduit extending upwards from the funnel to approximately 50 m beneath the seafloor and iii) a second bathtub-shaped expression fanning out from the top of the narrow conduit to the seafloor. Multiple Parasound transects acquired over Takahe reveal the shallow structure of the upper 50 m of the gas conduit in very high detail. The conduit penetrates a strong reflection representing an unconformity between less-consolidated sediments above and well-indurated "hard" sediments below. Shallow amplitude anomalies within the conduit are interpreted as free gas close to the seafloor. The high-frequency component of the Parasound system was used to image numerous flares in the water column, revealing that gas is actively venting from the seafloor at this site. Active venting is also suggested by several flares imaged in the water-column of the unprocessed sidescan sonar data. Takahe site is marked by slightly elevated backscatter over a 0.059 km2 large, oval-shaped area. Authigenic carbonates are not present on the seafloor, which distinguishes Takahe from the majority of seeps on Opouawe Bank. Takahe possibly is a relatively young seep

  5. Influence of foundation species, depth, and location on diversity and community composition at Gulf of Mexico lower-slope cold seeps

    NASA Astrophysics Data System (ADS)

    Cordes, Erik E.; Becker, Erin L.; Hourdez, Stephane; Fisher, Charles R.

    2010-11-01

    Efforts to understand and preserve the seep communities of the deep Gulf of Mexico (GOM) begin with a comprehensive survey of the biodiversity of these communities. Previous studies have provided a conceptual model of the physiology, population, and community ecology of upper continental slope seeps. However, seeps at water depths below 1000 m in the Gulf of Mexico remain relatively unknown. In this study, data from 47 samples of tubeworm- and mussel-associated communities at depths of 1005-2750 m are examined. Other than tubeworms and mussels, 66 taxa of macro- and megafauna were collected, 43 of which appear to be restricted to water depths of over 1000 m, and 39 that have not been reported previously from the Gulf of Mexico. Diversity in mussel beds was highest at mid-slope depths, but tubeworm-associated communities did not show clear bathymetric trends in diversity. Diversity was higher in tubeworm aggregations at the alpha level (per sample), but higher in mussel beds at the beta level (species turnover among collections). Although both community types were often numerically dominated by the endemic shrimp Alvinocaris muricola, broad differences in the communities hosted by tubeworm aggregations and mussel beds were apparent. The most important factors explaining community similarity within community type were the depth, relative abundance of different mussel species in a bed, and the average size of tubeworms in an aggregation. The high proportion of deep-seep species that were found for the first time in the Gulf of Mexico emphasizes the importance of conservation efforts for these patchy communities.

  6. Environmental effects of submarine seeping natural gas

    NASA Astrophysics Data System (ADS)

    Dando, P. R.; Hovland, M.

    1992-10-01

    It is suspected that most shallow reservoirs of natural gas vent to the surface to some degree. This seeping may be through diffusion of dissolved gas or by a flow of gas bubbles which entrain interstitial water during the rise through the sediments to the surface. Methane bubbles dissolved other gases, notably hydrogen sulphide and carbon dioxide, during their ascent. Under suitable temperature-pressure conditions gas hydrates may be formed close to or at the seabed Black suphide-rich sediments and mats of sulphur oxidizing bacteria are frequently observed close to the sediments surface at seep sites, including a sharp oxic/anoxic boundary. Animal species associated with these gas seeps include both species which obtain nutrition from symbiotic methane-oxidizing bacteria and species with symbolic sulphur-oxidizing bacteria. It is suspected that at some microseepage an enhanced biomass of meiofauna and macrofauna is supported by a food chain based on free-living and symbiotic sulphur-oxidizing and methane-oxidizing bacteria. The most common seep-related features of sea floor topography are local depressions including pockmark craters. Winnowing of the sediment during their creation leads to an accumulation of larger detritis in the depressions. Where the deprssions overlies salt diapirs they may be filled with hypersaline solutions. In some areas dome-shaped features are associated with seepage and these may be colonized by coral reefs. Other reefs, "hard-grounds", columnar and disc-shaped protrusions, all formed of carbonate-cemented sediments, are common on the sea floor in seep areas. Much of the carbonate appears to be derived from carbon dioxide formed as a result of methane oxidation. The resulting hard-bottoms on the sea floor are often colonized by species not found on the neighboring soft-bottoms. As a result seep areas may be characterized by the presence of a rich epifauna.

  7. Methane seep carbonates yield clumped isotope signatures out of equilibrium with formation temperatures

    NASA Astrophysics Data System (ADS)

    Loyd, S. J.; Sample, J.; Tripati, R. E.; Defliese, W. F.; Brooks, K.; Hovland, M.; Torres, M.; Marlow, J.; Hancock, L. G.; Martin, R.; Lyons, T.; Tripati, A. E.

    2016-07-01

    Methane cold seep systems typically exhibit extensive buildups of authigenic carbonate minerals, resulting from local increases in alkalinity driven by methane oxidation. Here, we demonstrate that modern seep authigenic carbonates exhibit anomalously low clumped isotope values (Δ47), as much as ~0.2‰ lower than expected values. In modern seeps, this range of disequilibrium translates into apparent temperatures that are always warmer than ambient temperatures, by up to 50 °C. We examine various mechanisms that may induce disequilibrium behaviour in modern seep carbonates, and suggest that the observed values result from several factors including kinetic isotopic effects during methane oxidation, mixing of inorganic carbon pools, pH effects and rapid precipitation. Ancient seep carbonates studied here also exhibit potential disequilibrium signals. Ultimately, these findings indicate the predominance of disequilibrium clumped isotope behaviour in modern cold seep carbonates that must be considered when characterizing environmental conditions in both modern and ancient cold seep settings.

  8. Methane seep carbonates yield clumped isotope signatures out of equilibrium with formation temperatures.

    PubMed

    Loyd, S J; Sample, J; Tripati, R E; Defliese, W F; Brooks, K; Hovland, M; Torres, M; Marlow, J; Hancock, L G; Martin, R; Lyons, T; Tripati, A E

    2016-01-01

    Methane cold seep systems typically exhibit extensive buildups of authigenic carbonate minerals, resulting from local increases in alkalinity driven by methane oxidation. Here, we demonstrate that modern seep authigenic carbonates exhibit anomalously low clumped isotope values (Δ47), as much as ∼0.2‰ lower than expected values. In modern seeps, this range of disequilibrium translates into apparent temperatures that are always warmer than ambient temperatures, by up to 50 °C. We examine various mechanisms that may induce disequilibrium behaviour in modern seep carbonates, and suggest that the observed values result from several factors including kinetic isotopic effects during methane oxidation, mixing of inorganic carbon pools, pH effects and rapid precipitation. Ancient seep carbonates studied here also exhibit potential disequilibrium signals. Ultimately, these findings indicate the predominance of disequilibrium clumped isotope behaviour in modern cold seep carbonates that must be considered when characterizing environmental conditions in both modern and ancient cold seep settings. PMID:27447820

  9. Methane seep carbonates yield clumped isotope signatures out of equilibrium with formation temperatures

    PubMed Central

    Loyd, S. J.; Sample, J.; Tripati, R. E.; Defliese, W. F.; Brooks, K.; Hovland, M.; Torres, M.; Marlow, J.; Hancock, L. G.; Martin, R.; Lyons, T.; Tripati, A. E.

    2016-01-01

    Methane cold seep systems typically exhibit extensive buildups of authigenic carbonate minerals, resulting from local increases in alkalinity driven by methane oxidation. Here, we demonstrate that modern seep authigenic carbonates exhibit anomalously low clumped isotope values (Δ47), as much as ∼0.2‰ lower than expected values. In modern seeps, this range of disequilibrium translates into apparent temperatures that are always warmer than ambient temperatures, by up to 50 °C. We examine various mechanisms that may induce disequilibrium behaviour in modern seep carbonates, and suggest that the observed values result from several factors including kinetic isotopic effects during methane oxidation, mixing of inorganic carbon pools, pH effects and rapid precipitation. Ancient seep carbonates studied here also exhibit potential disequilibrium signals. Ultimately, these findings indicate the predominance of disequilibrium clumped isotope behaviour in modern cold seep carbonates that must be considered when characterizing environmental conditions in both modern and ancient cold seep settings. PMID:27447820

  10. Global dispersion and local diversification of the methane seep microbiome

    PubMed Central

    Ruff, S. Emil; Biddle, Jennifer F.; Teske, Andreas P.; Knittel, Katrin; Boetius, Antje

    2015-01-01

    Methane seeps are widespread seafloor ecosystems shaped by the emission of gas from seabed reservoirs. The microorganisms inhabiting methane seeps transform the chemical energy in methane to products that sustain rich benthic communities around the gas leaks. Despite the biogeochemical relevance of microbial methane removal at seeps, the global diversity and dispersion of seep microbiota remain unknown. Here we determined the microbial diversity and community structure of 23 globally distributed methane seeps and compared these to the microbial communities of 54 other seafloor ecosystems, including sulfate–methane transition zones, hydrothermal vents, coastal sediments, and deep-sea surface and subsurface sediments. We found that methane seep communities show moderate levels of microbial richness compared with other seafloor ecosystems and harbor distinct bacterial and archaeal taxa with cosmopolitan distribution and key biogeochemical functions. The high relative sequence abundance of ANME (anaerobic methanotrophic archaea), as well as aerobic Methylococcales, sulfate-reducing Desulfobacterales, and sulfide-oxidizing Thiotrichales, matches the most favorable microbial metabolisms at methane seeps in terms of substrate supply and distinguishes the seep microbiome from other seafloor microbiomes. The key functional taxa varied in relative sequence abundance between different seeps due to the environmental factors, sediment depth and seafloor temperature. The degree of endemism of the methane seep microbiome suggests a high local diversification in these heterogeneous but long-lived ecosystems. Our results indicate that the seep microbiome is structured according to metacommunity processes and that few cosmopolitan microbial taxa mediate the bulk of methane oxidation, with global relevance to methane emission in the ocean. PMID:25775520

  11. Anaerobic oxidation of methane in the Concepción Methane Seep Area, Chilean continental margin

    NASA Astrophysics Data System (ADS)

    Steeb, P.; Linke, P.; Scholz, F.; Schmidt, M.; Liebetrau, V.; Treude, T.

    2012-04-01

    Within subduction zones of active continental margins, large amounts of methane can be mobilized by dewatering processes and transported to the seafloor along migration pathways. A recently discovered seep area located off Concepción (Chile) at water depth between 600 to 1100 mbsl is characterized by active methane vent sites as well as massive carbonates boulders and plates which probably are related to methane seepage in the past. During the SO210 research expedition "Chiflux" (Sept-Oct 2010), sediment from the Concepción Methane Seep Area (CSMA) at the fore arc of the Chilean margin was sampled to study microbial activity related to methane seepage. We sampled surface sediments (0-30cm) from sulfur bacteria mats, as well as clam, pogonophoran, and tubeworm fields with push cores and a TV-guided multicorer system. Anaerobic oxidation of methane (AOM) and sulfate reduction rates were determined using ex-situ radioisotope tracer techniques. Additionally, porewater chemistry of retrieved cores as well as isotopic composition and age record of surrounding authigenic carbonates were analyzed. The shallowest sulfate-methane-transition zone (SMTZ) was identified at 4 cm sediment depth hinting to locally strong fluid fluxes. However, a lack of Cl- anomalies in porewater profiles indicates a shallow source of these fluids, which is supported by the biogenic origin of the methane (δ13C -70‰ PDB). Sulfide and alkalinity was relatively high (up to 20 mM and 40 mEq, respectively). Rates of AOM and sulfate reduction within this area reached magnitudes typical for seeps with variation between different habitat types, indicating a diverse methane supply, which is affecting the depths of the SMTZ. Rates were highest at sulfur a bacteria mats (20 mmol m-2 d-1) followed by a large field of dead clams, a pogonophoran field, a black sediment spot, and a carbonate rich clam field. Lowest rates (0.2 mmol m-2 d-1) were measured in close vicinity to these hot spots. Abundant massive

  12. Actinobacterial Diversity in the Sediments of Five Cold Springs on the Qinghai-Tibet Plateau

    PubMed Central

    Yang, Jian; Li, Xiaoyan; Huang, Liuqin; Jiang, Hongchen

    2015-01-01

    The actinobacterial diversity was investigated in the sediments of five cold springs in Wuli region on the Qinghai-Tibet Plateau using 16S rRNA gene phylogenetic analysis. The actinobacterial communities of the studied cold springs were diverse and the obtained actinobacterial operational taxonomic units were classified into 12 actinobacterial orders (e.g., Acidimicrobiales, Corynebacteriales, Gaiellales, Geodermatophilales, Jiangellales, Kineosporiales, Micromonosporales, Micrococcales, Nakamurellales, Propionibacteriales, Pseudonocardiales, Streptomycetales) and unclassified Actinobacteria. The actinobacterial composition varied among the investigated cold springs and were significantly correlated (r = 0.748, P = 0.021) to environmental variables. The actinobacterial communities in the cold springs were more diverse than other cold habitats on the Tibetan Plateau, and their compositions showed unique geographical distribution characteristics. Statistical analyses showed that biogeographical isolation and unique environmental conditions might be major factors influencing actinobacterial distribution among the investigated cold springs. PMID:26648925

  13. Tracking California seafloor seeps with bathymetry, backscatter and ROVs

    NASA Astrophysics Data System (ADS)

    Orange, Daniel L.; Yun, Janet; Maher, Norman; Barry, James; Greene, Gary

    2002-11-01

    The California (USA) margin includes two different tectonic regimes: subduction north of the Mendocino Triple Junction and translation south. Both margins include seeps, and their distribution can be inferred using seafloor bathymetry and backscatter as well as subsurface seismic data. Anomalous bathymetric and backscatter features related to fluid expulsion include headless submarine canyons, fault zones, anticlines, pockmarks, and mud volcanoes. Anomalous backscatter may be caused by authigenic carbonate (related to the bacterial oxidation of methane) or cold seep clams—both have an impedance and roughness that may be higher than the surrounding seafloor. Remote-operated vehicle (ROV) dives to such suspect seep sites document the presence of extensive authigenic carbonate, areally restricted cold seep communities, carpets of chemoautotrophic bacteria, and bubbling gas. Our operations in the Monterey Bay, on the translational California margin, and the Eel River basin, on the convergent margin, indicate that bathymetric and backscatter maps of the seafloor, if sufficiently high resolution, can be used to map seep sites, and that the distribution of such seeps can be used to constrain subsurface conduits of fluid flow. ROVs, due to their combination of visualization, propulsion, manipulation, sonar, and navigation, provide an excellent platform for ground-truthing, mapping, and sampling seafloor seeps.

  14. Sedimentation patterns on a cold-water coral mound off Mauritania

    NASA Astrophysics Data System (ADS)

    Eisele, Markus; Frank, Norbert; Wienberg, Claudia; Titschack, Jürgen; Mienis, Furu; Beuck, Lydia; Tisnerat-Laborde, Nadine; Hebbeln, Dierk

    2014-01-01

    An unconformity-bound glacial sequence (135 cm thick) of a coral-bearing sediment core collected from the flank of a cold-water coral mound in the Banda Mound Province off Mauritania was analysed. In order to study the relation between coral framework growth and its filling by hemipelagic sediments, U-series dates obtained from the cold-water coral species Lophelia pertusa were compared to 14C dates of planktonic foraminifera of the surrounding matrix sediments. The coral ages, ranging from 45.1 to 32.3 ka BP, exhibit no clear depositional trend, while on the other hand the 14C dates of the matrix sediment provide ages within a much narrower time window of <3000 yrs (34.6-31.8 cal ka BP), corresponding to the latest phase of the coral growth period. In addition, high-resolution computer tomography data revealed a subdivision of the investigated sediment package into three distinct parts, defined by the portion and fragmentation of corals and associated macrofauna as well as in the density of the matrix sediments. Grain size spectra obtained on the matrix sediments show a homogeneous pattern throughout the core sediment package, with minor variations. These features are interpreted as indicators of redeposition. Based on the observed structures and the dating results, the sediments were interpreted as deposits of a mass wasting event, namely a debris flow. During this event, the sediment unit must have been entirely mixed; resulting in averaging of the foraminifera ages from the whole unit and giving randomly distributed coral ages. In this context, for the first time mass wasting is proposed to be a substantial process of mound progradation by exporting material from the mound top to the flanks. Hence, it may not only be an erosional feature but also widening the base of the mound, thus allowing further vertical mound growth.

  15. Cenozoic Methane-Seep Faunas of the Caribbean Region.

    PubMed

    Kiel, Steffen; Hansen, Bent T

    2015-01-01

    We report new examples of Cenozoic cold-seep communities from Colombia, Cuba, the Dominican Republic, Trinidad, and Venezuela, and attempt to improve the stratigraphic dating of Cenozoic Caribbean seep communities using strontium isotope stratigraphy. Two seep faunas are distinguished in Barbados: the late Eocene mudstone-hosted 'Joes River fauna' consists mainly of large lucinid bivalves and tall abyssochrysoid gastropods, and the early Miocene carbonate-hosted 'Bath Cliffs fauna' containing the vesicomyid Pleurophopsis, the mytilid Bathymodiolus and small gastropods. Two new Oligocene seep communities from the Sinú River basin in Colombia consist of lucinid bivalves including Elongatolucina, thyasirid and solemyid bivalves, and Pleurophopsis. A new early Miocene seep community from Cuba includes Pleurophopsis and the large lucinid Meganodontia. Strontium isotope stratigraphy suggests an Eocene age for the Cuban Elmira asphalt mine seep community, making it the oldest in the Caribbean region. A new basal Pliocene seep fauna from the Dominican Republic is characterized by the large lucinid Anodontia (Pegophysema). In Trinidad we distinguish two types of seep faunas: the mudstone-hosted Godineau River fauna consisting mainly of lucinid bivalves, and the limestone-hosted Freeman's Bay fauna consisting chiefly of Pleurophopsis, Bathymodiolus, and small gastropods; they are all dated as late Miocene. Four new seep communities of Oligocene to Miocene age are reported from Venezuela. They consist mainly of large globular lucinid bivalves including Meganodontia, and moderately sized vesicomyid bivalves. After the late Miocene many large and typical 'Cenozoic' lucinid genera disappeared from the Caribbean seeps and are today known only from the central Indo-Pacific Ocean. We speculate that the increasingly oligotrophic conditions in the Caribbean Sea after the closure of the Isthmus of Panama in the Pliocene may have been unfavorable for such large lucinids because they

  16. Cenozoic Methane-Seep Faunas of the Caribbean Region

    PubMed Central

    Kiel, Steffen; Hansen, Bent T.

    2015-01-01

    We report new examples of Cenozoic cold-seep communities from Colombia, Cuba, the Dominican Republic, Trinidad, and Venezuela, and attempt to improve the stratigraphic dating of Cenozoic Caribbean seep communities using strontium isotope stratigraphy. Two seep faunas are distinguished in Barbados: the late Eocene mudstone-hosted ‘Joes River fauna’ consists mainly of large lucinid bivalves and tall abyssochrysoid gastropods, and the early Miocene carbonate-hosted ‘Bath Cliffs fauna’ containing the vesicomyid Pleurophopsis, the mytilid Bathymodiolus and small gastropods. Two new Oligocene seep communities from the Sinú River basin in Colombia consist of lucinid bivalves including Elongatolucina, thyasirid and solemyid bivalves, and Pleurophopsis. A new early Miocene seep community from Cuba includes Pleurophopsis and the large lucinid Meganodontia. Strontium isotope stratigraphy suggests an Eocene age for the Cuban Elmira asphalt mine seep community, making it the oldest in the Caribbean region. A new basal Pliocene seep fauna from the Dominican Republic is characterized by the large lucinid Anodontia (Pegophysema). In Trinidad we distinguish two types of seep faunas: the mudstone-hosted Godineau River fauna consisting mainly of lucinid bivalves, and the limestone-hosted Freeman’s Bay fauna consisting chiefly of Pleurophopsis, Bathymodiolus, and small gastropods; they are all dated as late Miocene. Four new seep communities of Oligocene to Miocene age are reported from Venezuela. They consist mainly of large globular lucinid bivalves including Meganodontia, and moderately sized vesicomyid bivalves. After the late Miocene many large and typical ‘Cenozoic’ lucinid genera disappeared from the Caribbean seeps and are today known only from the central Indo-Pacific Ocean. We speculate that the increasingly oligotrophic conditions in the Caribbean Sea after the closure of the Isthmus of Panama in the Pliocene may have been unfavorable for such large lucinids

  17. Thermally Released Arsenic in Porewater from Sediments in the Cold Lake Area of Alberta, Canada.

    PubMed

    Javed, Muhammad Babar; Siddique, Tariq

    2016-03-01

    Elevated arsenic (As) in aquifers in close proximity to in situ oil sands extraction in the Cold Lake area, Alberta, Canada is attributed to high temperature steam (~200 °C) injected into oil sands deposits to liquefy bitumen. Heat propagated from hot injection wells alters physicochemical properties of the surrounding sediments and associated porewater. Seven sediments from four different cores drilled up to ~300 m depth collected from different locations in the area were used to study the thermal effect (~200 °C) on As distribution in the sediments and its release into porewater. Sediments were moistened with synthetic aquifer or deionized water according to the moisture regimes present in aquitard, aquifer and fractured zones. Heat application greatly released As in the porewater (500-5200 and 1200-6600 μg L(-1)) from aquifer and fractured sediments, respectively. Mass balance of As chemical fractionation showed that ~89-100% of As in porewater was released from exchangeable and specifically adsorbed As in the sediments. Heat application also altered As distribution in the sediments releasing As from exchange surfaces and amorphous Fe oxides to soluble As fraction. The results provide great insight into As release mechanisms warranting development of strategies to mitigate groundwater As contamination during industrial operation. PMID:26839972

  18. SHEEP CREEK SEEP CHARACTERIZATION

    EPA Science Inventory

    The materials presented represent an assessment of site conditions related to the LaCrone property seep, located in the NW 1/4 of Section 34, Township 7E, Range 2N, near Harden City, OK. The primary objective of the study was to identify possible source(s) for the saline water, ...

  19. Microbial characterization of a subzero, hypersaline methane seep in the Canadian High Arctic.

    PubMed

    Niederberger, Thomas D; Perreault, Nancy N; Tille, Stephanie; Lollar, Barbara Sherwood; Lacrampe-Couloume, Georges; Andersen, Dale; Greer, Charles W; Pollard, Wayne; Whyte, Lyle G

    2010-10-01

    We report the first microbiological characterization of a terrestrial methane seep in a cryo-environment in the form of an Arctic hypersaline (∼24% salinity), subzero (-5 °C), perennial spring, arising through thick permafrost in an area with an average annual air temperature of -15 °C. Bacterial and archaeal 16S rRNA gene clone libraries indicated a relatively low diversity of phylotypes within the spring sediment (Shannon index values of 1.65 and 1.39, respectively). Bacterial phylotypes were related to microorganisms such as Loktanella, Gillisia, Halomonas and Marinobacter spp. previously recovered from cold, saline habitats. A proportion of the bacterial phylotypes were cultured, including Marinobacter and Halomonas, with all isolates capable of growth at the in situ temperature (-5 °C). Archaeal phylotypes were related to signatures from hypersaline deep-sea methane-seep sediments and were dominated by the anaerobic methane group 1a (ANME-1a) clade of anaerobic methane oxidizing archaea. CARD-FISH analyses indicated that cells within the spring sediment consisted of ∼84.0% bacterial and 3.8% archaeal cells with ANME-1 cells accounting for most of the archaeal cells. The major gas discharging from the spring was methane (∼50%) with the low CH(4)/C(2+) ratio and hydrogen and carbon isotope signatures consistent with a thermogenic origin of the methane. Overall, this hypersaline, subzero environment supports a viable microbial community capable of activity at in situ temperature and where methane may behave as an energy and carbon source for sustaining anaerobic oxidation of methane-based microbial metabolism. This site also provides a model of how a methane seep can form in a cryo-environment as well as a mechanism for the hypothesized Martian methane plumes. PMID:20445635

  20. Abyssal seep site cementation

    SciTech Connect

    Neumann, A.C.; Paull, C.K.; Commeau, R.; Commeau, J.

    1988-01-01

    The deepest submarine cements known so far occur along the 3,300-m deep base of the Florida escarpment and are associated with methane-bearing brine seeps, which emanate there. These deep Holocene carbonates, which occur as surficial and buried crusts, burrow fillings, and friable horizons, were sampled via ALVIN. The carbonates form irregular halos extending up to 20 m from seeps colonized by chemosynthetic fauna. Mussels, gastropods, and clams, the carbonate components of the community, produce a shell hash that is locally cemented by coarsely crystalline low-Mg calcite. Halos of palisade calcite are reminiscent of ancient examples of marine cements. Also present are carbonate hemipelagics cemented by micrite into crusts and burrow fillings. The degree of cementation varies from pervasive to light. Slabs of cemented crust up to 30 cm thick contrast with typical shallow crusts and exhibit irregular tops and smooth bottoms indicating different chemical gradients and pathways.

  1. Multifrequency geoacoustic imaging of fluid escape structures offshore Costa Rica: Implications for the quantification of seep processes

    NASA Astrophysics Data System (ADS)

    Klaucke, Ingo; Masson, Douglas G.; Petersen, C. JöRg; Weinrebe, Wilhelm; Ranero, CéSar R.

    2008-04-01

    Quantification of fluid fluxes from cold seeps depends on accurate estimates of the spatial validity of flux measurements. These estimates are strongly influenced by the choice of geoacoustic mapping tools. Multibeam bathymetry, side-scan sonar, and Chirp subbottom profiler data of several mound-shaped cold seeps offshore central Costa Rica show great variety in morphology and structure although the features are only a few kilometers apart. Mound 11 (a 35 m high and 1000 m in diameter structure), situated in the SE of the study area, has an irregular morphology but a smooth surface on side-scan sonar data, while mound 12 (30 m high, 600 m across) is a cone of more regular outline but with a rough surface, and mound Grillo (5 m high, 500 m across) shows the same rough surface as mound 12 but without relief. Video observations and sediment cores indicate that the structures are formed by the precipitation of authigenic carbonates and indications for extensive mud extrusion are absent, except for one possible mudflow at mound 11. Different sonar frequencies result in variable estimates of the extent of these mounds with low frequencies suggesting much wider cold seeps, consequently overestimating fluid fluxes. The absence of mud volcanism compared to accretionary prisms where mud volcanism occurs is related to different tectonic styles: strong sediment overpressure and thrust faulting in typical accretionary prisms can generate mud volcanism, while subduction erosion and normal faulting (extension) of the overriding plate at the Costa Rican margin result in fluid venting driven by only slight fluid overpressures.

  2. Does the "sleeping Dragon" Really Sleep?: the Case for Continuous Long-Term Monitoring at a Gulf of Mexico Cold Seep Site

    NASA Astrophysics Data System (ADS)

    Wilson, R. M.; Lapham, L.; Farr, N.; Lutken, C.; MacDonald, I. R.; Macelloni, L.; Riedel, M.; Sleeper, K.; Chanton, J.

    2011-12-01

    Continuous porewater monitoring indicates that the methane flux away from exposed hydrate mounds can vary considerably over time. Recently, we retrieved a Pore Fluid Array instrument pack from a hydrate outcrop adjacent to a NEPTUNE Canada observatory node. The sampler was designed to continuously collect and store sediment pore fluids over the course of 9 months. On analysis, we observed a 35mM variation in methane concentrations corresponding with an abrupt shift in current direction at the site. Video and resistivity data have led to previous speculation that hydrate growth and dissolution/dissociation may be seasonally variable. Cumulatively, these findings suggest that the persistence of hydrate outcrops may be extremely dynamic, driven by fluctuations in physical conditions on short time scales. Short-term monitoring in the Gulf of Mexico within Mississippi Canyon lease block 118 (MC118), a known hydrate-bearing site, indicates that physical conditions even at these depths (~540-890m) may be highly variable. Pressure can vary within hours, and recorded temperature changes of ~1.5°C have been associated with passing storms. Moreover, increased particle abundance was observed at the site in 2007 suggesting that organic matter flux to the sediments may vary on the scale of months to years. These inputs have the potential to alter the chemical environment surrounding the hydrate, thereby affecting dissolution rates. Continuous, long-term observations of physical conditions at MC118 could provide information about the potential for natural perturbations to impact hydrate dynamics on the scale of weeks or even days necessary for assessing the long-term persistence of hydrate outcrops. Sleeping Dragon is a massive hydrate outcrop at MC118 that has been monitored since 2006. Three years ago, researchers returning to the site found it visibly diminished relative to previous observations. This apparent shift toward net dissolution of the mound may have been

  3. Methane emission and consumption at a North Sea gas seep (Tommeliten area)

    NASA Astrophysics Data System (ADS)

    Niemann, H.; Elvert, M.; Hovland, M.; Orcutt, B.; Judd, A.; Suck, I.; Gutt, J.; Joye, S.; Damm, E.; Finster, K.; Boetius, A.

    2005-11-01

    The North Sea hosts large coal, oil and gas reservoirs of commercial value. Natural leakage pathways of subsurface gas to the hydrosphere have been recognized during geological surveys (Hovland and Judd, 1988). The Tommeliten seepage area is part of the Greater Ekofisk area, which is situated above the Tommeliten Delta salt diapir in the central North Sea. In this study, we report of an active seep site (56°29.90'N, 2°59.80'E) located in the Tommeliten area, Norwegian Block 1/9, at 75 m water depth. Here, cracks in a buried marl horizon allow methane to migrate into overlying clay-silt and sandy sediments. Hydroacoustic sediment echosounding showed several venting spots coinciding with the apex of marl domes where methane is released into the water column and potentially to the atmosphere during deep mixing situations. In the vicinity of the gas seeps, sea floor observations showed small mats of giant sulphide-oxidizing bacteria above patches of black sediments and carbonate crusts, which are exposed 10 to 50 cm above seafloor forming small reefs. These Methane-Derived Authigenic Carbonates (MDACs) contain 13C-depleted, archaeal lipids indicating previous gas seepage and AOM activity. High amounts of sn2-hydroxyarchaeol relative to archaeol and low abundances of biphytanes in the crusts give evidence that ANaerobic MEthane-oxidising archaea (ANME) of the phylogenetic cluster ANME-2 were the potential mediators of Anaerobic Oxidation of Methane (AOM) at the time of carbonate formation. Small pieces of MDACs were also found subsurface at about 1.7 m sediment depth, associated with the Sulphate-Methane Transition Zone (SMTZ). The SMTZ of Tommeliten is characterized by elevated AOM and Sulphate Reduction (SR) rates, increased concentrations of 13C-depleted tetraether derived biphytanes, and specific bacterial Fatty Acids (FA). Further biomarker and 16S rDNA based analyses give evidence that AOM at the Tommeliten SMTZ is mediated by archaea belonging to the ANME-1b

  4. Ubiquitous Presence and Novel Diversity of Anaerobic Alkane Degraders in Cold Marine Sediments.

    PubMed

    Gittel, Antje; Donhauser, Johanna; Røy, Hans; Girguis, Peter R; Jørgensen, Bo B; Kjeldsen, Kasper U

    2015-01-01

    Alkanes are major constituents of crude oil and are released to the marine environment by natural seepage and from anthropogenic sources. Due to their chemical inertness, their removal from anoxic marine sediments is primarily controlled by the activity of anaerobic alkane-degrading microorganisms. To facilitate comprehensive cultivation-independent surveys of the diversity and distribution of anaerobic alkane degraders, we designed novel PCR primers that cover all known diversity of the 1-methylalkyl succinate synthase gene (masD/assA), which catalyzes the initial activation of alkanes. We studied masD/assA gene diversity in pristine and seepage-impacted Danish coastal sediments, as well as in sediments and alkane-degrading enrichment cultures from the Middle Valley (MV) hydrothermal vent system in the Pacific Northwest. MasD/assA genes were ubiquitously present, and the primers captured the diversity of both known and previously undiscovered masD/assA gene diversity. Seepage sediments were dominated by a single masD/assA gene cluster, which is presumably indicative of a substrate-adapted community, while pristine sediments harbored a diverse range of masD/assA phylotypes including those present in seepage sediments. This rare biosphere of anaerobic alkane degraders will likely increase in abundance in the event of seepage or accidental oil spillage. Nanomolar concentrations of short-chain alkanes (SCA) were detected in pristine and seepage sediments. Interestingly, anaerobic alkane degraders closely related to strain BuS5, the only SCA degrader in pure culture, were found in mesophilic MV enrichments, but not in cold sediments from Danish waters. We propose that the new masD/assA gene lineages in these sediments represent novel phylotypes that are either fueled by naturally occurring low levels of SCA or that metabolize medium- to long-chain alkanes. Our study highlights that masD/assA genes are a relevant diagnostic marker to identify seepage and microseepage, e

  5. Ubiquitous Presence and Novel Diversity of Anaerobic Alkane Degraders in Cold Marine Sediments

    PubMed Central

    Gittel, Antje; Donhauser, Johanna; Røy, Hans; Girguis, Peter R.; Jørgensen, Bo B.; Kjeldsen, Kasper U.

    2015-01-01

    Alkanes are major constituents of crude oil and are released to the marine environment by natural seepage and from anthropogenic sources. Due to their chemical inertness, their removal from anoxic marine sediments is primarily controlled by the activity of anaerobic alkane-degrading microorganisms. To facilitate comprehensive cultivation-independent surveys of the diversity and distribution of anaerobic alkane degraders, we designed novel PCR primers that cover all known diversity of the 1-methylalkyl succinate synthase gene (masD/assA), which catalyzes the initial activation of alkanes. We studied masD/assA gene diversity in pristine and seepage-impacted Danish coastal sediments, as well as in sediments and alkane-degrading enrichment cultures from the Middle Valley (MV) hydrothermal vent system in the Pacific Northwest. MasD/assA genes were ubiquitously present, and the primers captured the diversity of both known and previously undiscovered masD/assA gene diversity. Seepage sediments were dominated by a single masD/assA gene cluster, which is presumably indicative of a substrate-adapted community, while pristine sediments harbored a diverse range of masD/assA phylotypes including those present in seepage sediments. This rare biosphere of anaerobic alkane degraders will likely increase in abundance in the event of seepage or accidental oil spillage. Nanomolar concentrations of short-chain alkanes (SCA) were detected in pristine and seepage sediments. Interestingly, anaerobic alkane degraders closely related to strain BuS5, the only SCA degrader in pure culture, were found in mesophilic MV enrichments, but not in cold sediments from Danish waters. We propose that the new masD/assA gene lineages in these sediments represent novel phylotypes that are either fueled by naturally occurring low levels of SCA or that metabolize medium- to long-chain alkanes. Our study highlights that masD/assA genes are a relevant diagnostic marker to identify seepage and microseepage, e

  6. Low viral predation pressure in cold hypersaline Arctic sediments and limits on lytic replication.

    PubMed

    Colangelo-Lillis, Jesse; Wing, Boswell A; Whyte, Lyle G

    2016-04-01

    Viruses are ubiquitous drivers of microbial ecology and evolution and contribute to biogeochemical cycling. Attention to these attributes has been more substantial for marine viruses than viruses of other environments. Microscopy-based investigation of the viral communities from two cold, hypersaline Arctic springs was undertaken to explore the effects of these conditions on microbe-viral ecology. Sediments and water samples were collected along transects from each spring, from anoxic spring outlets through oxygenated downstream channels. Viral abundance, virus-microbe ratios and modelled virus-microbe contact rates were lower than comparable aqueous and sedimentary environments and most similar to deep subsurface sediments. No individual cell from either spring was visibly infected. Viruses in these springs appear to play a smaller role in controlling microbial populations through lytic activity than in marine water column or surface sedimentary environments. Relief from viral predation indicates the microbial communities are primarily controlled by nutrient limitation. The similarity of these springs to deep subsurface sediments suggests a biogeographic divide in viral replication strategy in marine sediments. PMID:26743115

  7. Methane Seep Carbonates Host Distinct, Diverse, and Dynamic Microbial Assemblages

    PubMed Central

    Pasulka, Alexis L.; Marlow, Jeffrey J.; Grupe, Benjamin M.; Levin, Lisa A.

    2015-01-01

    ABSTRACT Marine methane seeps are globally distributed geologic features in which reduced fluids, including methane, are advected upward from the subsurface. As a result of alkalinity generation during sulfate-coupled methane oxidation, authigenic carbonates form slabs, nodules, and extensive pavements. These carbonates shape the landscape within methane seeps, persist long after methane flux is diminished, and in some cases are incorporated into the geologic record. In this study, microbial assemblages from 134 native and experimental samples across 5,500 km, representing a range of habitat substrates (carbonate nodules and slabs, sediment, bottom water, and wood) and seepage conditions (active and low activity), were analyzed to address two fundamental questions of seep microbial ecology: (i) whether carbonates host distinct microbial assemblages and (ii) how sensitive microbial assemblages are to habitat substrate type and temporal shifts in methane seepage flux. Through massively parallel 16S rRNA gene sequencing and statistical analysis, native carbonates are shown to be reservoirs of distinct and highly diverse seep microbial assemblages. Unique coupled transplantation and colonization experiments on the seafloor demonstrated that carbonate-associated microbial assemblages are resilient to seep quiescence and reactive to seep activation over 13 months. Various rates of response to simulated seep quiescence and activation are observed among similar phylogenies (e.g., Chloroflexi operational taxonomic units) and similar metabolisms (e.g., putative S oxidizers), demonstrating the wide range of microbial sensitivity to changes in seepage flux. These results imply that carbonates do not passively record a time-integrated history of seep microorganisms but rather host distinct, diverse, and dynamic microbial assemblages. PMID:26695630

  8. Rare earth elements of seep carbonates: Indication for redox variations and microbiological processes at modern seep sites

    NASA Astrophysics Data System (ADS)

    Feng, Dong; Lin, Zhijia; Bian, Youyan; Chen, Duofu; Peckmann, Jörn; Bohrmann, Gerhard; Roberts, Harry H.

    2013-03-01

    At marine seeps, methane is microbially oxidized resulting in the precipitation of carbonates close to the seafloor. Methane oxidation leads to sulfate depletion in sediment pore water, which induces a change in redox conditions. Rare earth element (REE) patterns of authigenic carbonate phases collected from modern seeps of the Gulf of Mexico, the Black Sea, and the Congo Fan were analyzed. Different carbonate minerals including aragonite and calcite with different crystal habits have been selected for analysis. Total REE content (ΣREE) of seep carbonates varies widely, from 0.1 ppm to 42.5 ppm, but a common trend is that the ΣREE in microcrystalline phases is higher than that of the associated later phases including micospar, sparite and blocky cement, suggesting that ΣREE may be a function of diagenesis. The shale-normalized REE patterns of the seep carbonates often show different Ce anomalies even in samples from a specific site, suggesting that the formation conditions of seep carbonates are variable and complex. Overall, our results show that apart from anoxic, oxic conditions are at least temporarily common in seep environments.

  9. Insights into the activity, formation and origin of seep systems on the seafloor in the SW Barents Sea

    NASA Astrophysics Data System (ADS)

    Mangelsdorf, Kai; Nickel, Julia C.; di Primio, Rolando; Kallmeyer, Jens; Horsfield, Brian; Stoddart, Daniel; Brunstad, Harald

    2014-05-01

    The southwestern Loppa High region, being part of the Barents Sea located in the north of Norway, is a promising area for oil and gas exploration since hydrocarbon discoveries have been made in this area in recent time. Additionally, surface features for hydrocarbon seepage, so called "cold seeps" have been detected on the seafloor, comprising extensive pockmark fields, carbonate crusts bearing areas and fault related gas flares. Leaking hydrocarbons are of specific interest since they are potential indicators for hydrocarbon reservoirs in the subsurface and the emitting hydrocarbons such as the greenhouse gas methane can have significant impact on the evolution of global warming when reaching the atmosphere. In this study cold seep systems like huge pockmark areas and carbonate crust sites from the SW Loppa High region were examined in detail, in order to determine the activity, formation and spatial distribution of the different seepage structures as well as the origin and timing of the seeping hydrocarbon fluids. The sample material comprising sediment cores from pockmarks, reference sites and carbonate crust areas as well as carbonate crust samples have been analyzed applying a combined biogeochemical and microbiological approach. In the carbonate crust area diagnostic biomarkers for the anaerobic oxidation of methane (AOM) were detected in the sediments as well as in the corresponding carbonate crusts. Their depth profiles show a distinct interval of higher concentrations, which points towards a shallow AOM zone in the investigated core. The biomarkers were also characterized by very negative carbon isotope signatures, indicating the involvement of the source microorganisms in the process of AOM. These data and active gas bubbling during sampling indicate the presence of methane at the carbonate crust site. In contrast in the pockmark areas active release of gas from the sediment could not be observed, neither in the gas measurement nor in the biogeochemical

  10. Phosphogenesis at a Cretaceous methane seep from New Zealand

    NASA Astrophysics Data System (ADS)

    Zwicker, Jennifer; Steindl, Florian; Smrzka, Daniel; Böttcher, Michael; Gier, Susanne; Kiel, Steffen; Peckmann, Jörn

    2016-04-01

    Phosphate-rich deposits have been a topic of intense research for decades. The process of phosphogenesis is mainly observed in marine sediments of coastal upwelling zones, where organic matter delivers sufficient phosphorus (P) to enable the formation of phosphorites. As P may be cycled within marine sediments on short timescales, only specific geochemical conditions allow for the precipitation and preservation of phosphate minerals. The processes that enable phosphogenesis are still a matter of debate, and not all mechanisms involved are fully understood. We expand the scope of known phosphorous-rich deposits further, with evidence of phosphogenesis at methane seeps. Cretaceous methane-seep limestones from Waipiro Bay, New Zealand, exhibit (1) a matrix composed of cryptocrystalline fluorapatite in between micritic spheroids and coated calcite grains, and (2) phosphatic spheroids within a micritic matrix. Due to the abundant spherical morphologies of phosphate and carbonate grains, and the exceptionally well preserved phosphate matrix, we suggest that their formation was associated with microbial activity. Methane seeps provide ideal conditions for chemosynthetic communities to thrive, and for the growth of bacterial mats at the sediment water interface. To understand these unique deposits, we derive a formation scenario for apatite and spheroidal carbonate, using detailed petrographical observations, X-ray diffraction, scanning electron microscopy, and electron microprobe analyses. Furthermore, it is shown that phase-specific stable carbon and oxygen isotopes confirm that both phosphate and carbonate formation occurred at a methane seep.

  11. Remote detection of hydrocarbon seeps

    SciTech Connect

    Barringer, A. R.

    1985-05-14

    A method of detecting hydrocarbon seeps in a sea or in earth is disclosed. The method involves interrogating aerosols formed above the sea or earth surface with an intense beam of primary light radiation generated aboard an aircraft or other vehicle. The spectral composition of the beam is selected to induce secondary light radiation in certain hydrocarbon materials contained in aerosols generated by hydrocarbon seeps rising to the sea or earth surface. The secondary light radiation is detected aboard the aircraft and subjected to spectral analysis to determine whether the composition of the aerosols is characteristic of aerosols generated by hydrocarbon seeps. Apparatus for implementing the method is also disclosed.

  12. Control of Quaternary sea-level changes on gas seeps

    NASA Astrophysics Data System (ADS)

    Riboulot, Vincent; Thomas, Yannick; Berné, Serge; Jouet, Gwénaël.; Cattaneo, Antonio

    2014-07-01

    Gas seeping to the seafloor through structures such as pockmarks may contribute significantly to the enrichment of atmospheric greenhouse gases and global warming. Gas seeps in the Gulf of Lions, Western Mediterranean, are cyclical, and pockmark "life" is governed both by sediment accumulation on the continental margin and Quaternary climate changes. Three-dimensional seismic data, correlated to multi-proxy analysis of a deep borehole, have shown that these pockmarks are associated with oblique chimneys. The prograding chimney geometry demonstrates the syn-sedimentary and long-lasting functioning of the gas seeps. Gas chimneys have reworked chronologically constrained stratigraphic units and have functioned episodically, with maximum activity around sea level lowstands. Therefore, we argue that one of the main driving mechanisms responsible for their formation is the variation in hydrostatic pressure driven by relative sea level changes.

  13. Important geological and biological impacts of natural hydrocarbon seeps: Northern Gulf of Mexico continental slope

    SciTech Connect

    Roberts, H.H. )

    1993-11-01

    Large volumes of siliciclastic sediments, input especially during periods of lowered sea level, and compensating salt tectonics have produced a continental slope that is arguably the most complex in today's oceans. Faults associated with deformation of salt and shale provide the primary migration routes for hydrocarbon gases, crude oil, brines, and formation fluids to the modern sea floor. Since the mid 1980s, it has become increasingly clearer that this process has an extremely important impact on the geomorphology, sedimentology, and biology of the modern continental slope. Hydrocarbon source, flux rate, and water depth are important determinants of sea-floor response. Under rapid flux conditions mud volcanoes (to 1 km wide and 50 m high) result, and hydrate hills (rich with authigenic carbonates), carbonate lithoherms, and isolated communities of chemosymbiotic organisms with associated hardgrounds represent much slower flux responses. In numerous moderate- to low-flux cases, cold seep products function to support islands of productivity for communities of chemosymbiotic organisms that contribute both directly (shell material) and through chemical byproducts to the production of massive volumes of calcium-magnesium carbonate in the form of hardgrounds, stacked slabs, and discrete moundlike buildups (commonly >20m). Seep-related carbonates of the Gulf of Mexico continental slope, as well those formed through degassing of accretionary prisms along active margins, are now thought to create hardgrounds and discrete buildups that are excellent analogs for many problematic carbonate buildups in ancient deep-water siliciclastic rocks.

  14. The SEDIBUD (Sediment Budgets in Cold Environments) Programme: Current activities and future key tasks

    NASA Astrophysics Data System (ADS)

    Beylich, A. A.; Lamoureux, S. F.; Decaulne, A.

    2012-04-01

    Projected climate change in cold regions is expected to alter melt season duration and intensity, along with the number of extreme rainfall events, total annual precipitation and the balance between snowfall and rainfall. Similarly, changes to the thermal balance are expected to reduce the extent of permafrost and seasonal ground frost and increase active layer depths. These effects will undoubtedly change surface environments in cold regions and alter the fluxes of sediments, nutrients and solutes, but the absence of quantitative data and coordinated process monitoring and analysis to understand the sensitivity of the Earth surface environment is acute in cold climate environments. The International Association of Geomorphologists (I.A.G./A.I.G.)SEDIBUD (Sediment Budgets in Cold Environments) Programme was formed in 2005 to address this existing key knowledge gap. SEDIBUD currently has about 400 members worldwide and the Steering Committee of this international programme is composed of ten scientists from eight different countries: Achim A. Beylich (Chair) (Norway), Armelle Decaulne (Secretary) (France), John C. Dixon (USA), Scott F. Lamoureux (Vice-Chair) (Canada), John F. Orwin (Canada), Jan-Christoph Otto (Austria), Irina Overeem (USA), Thorsteinn Saemundsson (Iceland), Jeff Warburton (UK), Zbigniew Zwolinski (Poland). The central research question of this global group of scientists is to: Assess and model the contemporary sedimentary fluxes in cold climates, with emphasis on both particulate and dissolved components. Initially formed as European Science Foundation (ESF) Network SEDIFLUX (2004-2006), SEDIBUD has further expanded to a global group of researchers with field research sites located in polar and alpine regions in the northern and southern hemisphere. Research carried out at each of the close to 50 defined SEDIBUD key test sites varies by programme, logistics and available resources, but typically represent interdisciplinary collaborations of

  15. Interactions between sediment chemistry and frenulate pogonophores (Annelida) in the north-east Atlantic

    NASA Astrophysics Data System (ADS)

    Dando, P. R.; Southward, A. J.; Southward, E. C.; Lamont, P.; Harvey, R.

    2008-08-01

    The small frenulate pogonophores (Annelida: Pogonophora a.k.a. Siboglinidae) typically inhabit muddy sediments on the continental slope, although a few species occur near hydrothermal vents and cold seeps. We present data on the distribution and habitat characteristics of several species on the European continental shelf and slope from 48°N to 75°N and show how the animals interact with the chemistry of the sediments. The environments inhabited include: shallow (30 m), organic-rich, fjord sediments; slope sediments (1000-2200 m) and methane seeps at 330 m depth. All the species studied obtain nutrition from endosymbiotic bacteria. They take up reduced sulphur species, or in one case, methane, through the posterior parts of their tubes buried in the anoxic sediment. We conclude that most species undertake sulphide 'mining', a mechanism previously demonstrated in the bivalves Lucinoma borealis and Thyasira sarsi. These pogonophores participate in the sulphur cycle and effectively lower the sulphide content of the sediments. Our results show that the abundance of frenulate pogonophores increases with increasing sedimentation and with decreasing abundance of other benthos, particularly bioturbating organisms. The maximum sustainable carrying capacity of non-seep sediments for frenulate pogonophores is limited by the rate of sulphate reduction.

  16. Estimation of past intermittent methane seep activity using radiocarbon dating of Calyptogena shells in the eastern Nankai subduction zone

    NASA Astrophysics Data System (ADS)

    Yagasaki, K.; Ashi, J.; Yokoyama, Y.; Miyairi, Y.; Kuramoto, S.

    2013-12-01

    Radioisotope carbon dating samples from the deep ocean has always been a difficult phenomenon due to the carbon offset present. This research presents a way of utilizing such method to date shell samples in order to study past fault activities. The research presented will be based on the preliminary data collected thus far. The Nankai and the Tokai regions are common areas for cold seeps, where seepage of hydrogen sulfide and methane rich fluid occurs. These various substances encourage the growth of Calyptogena colonies to flourish at these sites. Cold seeps generally occur at tectonically active continental margins and are mostly ephemeral. This suggests that the cold seep events are possibly influenced by the tectonic activity during the plate divergence. In 1997, a submersible dive by Shinkai 2000 discovered an unusually large Calyptogena colony ranging over 200 m2 off Daini Tenryu Knoll. Majority of the shells were fossilized with few live shells remaining. It is assumed that past tectonic events in the region may have caused a high flux of methane fluid or gas to be released, making it possible to support such a vast scale colony to survive until their eventual death. Previous attempt to reconstruct the cold seep activity history through amino acid racemisation dating revealed two different age grouped shells. Further data using a different method is required to prove its reliability, as acid racemization dating technique can easily be affected by seawater temperature changes and microbial activity. This consequently alters the protein structure of the sample and its overall age. As 14C radioisotope dating is not affected by temperature change, it will provide additional information to the accuracy of the acid racemisation dating of the shell. However, the possibility of contamination is likely due to the shells incorporating older carbon from the sediments during their early stages of growth. The old carbon value can be calculated by subtracting the formerly

  17. Thermophilic nitrate-reducing microorganisms prevent sulfate reduction in cold marine sediments incubated at high temperature

    NASA Astrophysics Data System (ADS)

    Nepomnyashchaya, Yana; Rezende, Julia; Hubert, Casey

    2014-05-01

    Hydrogen sulphide produced during metabolism of sulphate-reducing microorganisms (SRM) is toxic, corrosive and causes detrimental oil reservoir souring. During secondary oil recovery, injecting oil reservoirs with seawater that is rich in sulphate and that also cools high temperature formations provides favourable growth conditions for SRM. Nitrate addition can prevent metabolism of SRM by stimulating nitrate-reducing microorganisms (NRM). The investigations of thermophilic NRM are needed to develop mechanisms to control the metabolism of SRM in high temperature oil field ecosystems. We therefore established a model system consisting of enrichment cultures of cold surface marine sediments from the Baltic Sea (Aarhus Bay) that were incubated at 60°C. Enrichments contained 25 mM nitrate and 40 mM sulphate as potential electron acceptors, and a mixture of the organic substrates acetate, lactate, propionate, butyrate (5 mM each) and yeast extract (0.01%) as potential carbon sources and electron donors. Slurries were incubated at 60°C both with and without initial pasteurization at 80°C for 2 hours. In the enrichments containing both nitrate and sulphate, the concentration of nitrate decreased indicating metabolic activity of NRM. After a four-hour lag phase the rate of nitrate reduction increased and the concentration of nitrate dropped to zero after 10 hours of incubation. The concentration of nitrite increased as the reduction of nitrate progressed and reached 16.3 mM after 12 hours, before being consumed and falling to 4.4 mM after 19-day of incubation. No evidence for sulphate reduction was observed in these cultures during the 19-day incubation period. In contrast, the concentration of sulphate decreased up to 50% after one week incubation in controls containing only sulphate but no nitrate. Similar sulfate reduction rates were seen in the pasteurized controls suggesting the presence of heat resistant SRM, whereas nitrate reduction rates were lower in the

  18. Constraining silica diagenesis in methane-seep deposits

    NASA Astrophysics Data System (ADS)

    Smrzka, Daniel; Kraemer, Stephan; Zwicker, Jennifer; Birgel, Daniel; Fischer, David; Kasten, Sabine; Goedert, James; Peckmann, Jörn

    2015-04-01

    Silicified fossils and silicified early diagenetic carbonate minerals as well as authigenic silica phases are common in ancient seep limestones. Silicification of calcareous fossils facilitates the preservation of even fine details and is therefore of great interest to paleontologists, permitting a reliable taxonomic identification of the chemosynthesis-based taxa that lived at ancient hydrocarbon seeps. Four methane-seep limestones of Paleozoic, Mesozoic, and Cenozoic age with abundant silica phases are compared in this study; one, an Eocene seep deposit on the north shore of the Columbia River at Knappton, western Washington State, USA, is described for the first time. Its lithology and fabrics, negative δ13Ccarbonate values as low as -27.6‰, and 13C-depleted biomarkers of archaea involved in the anaerobic oxidation of methane (AOM) reveal that the carbonate rock formed at a methane seep. The background sediments of the studied Phanerozoic seep limestones contain abundant siliceous microfossils, radiolarian tests in case of the Late Carboniferous Dwyka Group deposits from Namibia and the Late Triassic Graylock Butte deposits from eastern Oregon (USA), diatom frustules in case of the Eocene Knappton limestone and an Oligocene seep deposit from the Lincoln Creek Formation (western Washington State, USA). These microfossils are regarded as the source of dissolved silica, causing silicification and silica precipitation. All seep limestones used in this study are characterized by very similar paragenetic sequences. Silicified fossils include brachiopods and worm tubes, silica cements include microquartz, fibrous microcrystalline silica, and megaquartz. The silica cements formed after the AOM-derived cements ceased to precipitate but before equant calcite spar formed. Numerical experiments using the computer code PHREEQC were conducted to test the hypothesis that (1) AOM increases the pH of pore waters and that (2) this pH increase subsequently mobilizes biogenic

  19. SEEP II, Shelf Edge Exchange Processes-II: Chlorophyll a fluorescence, temperature, and beam attenuation measurements from moored fluorometers

    SciTech Connect

    Medeiros, W.H.; Wirick, C.D.

    1992-02-01

    The Shelf Edge Exchange Processes (SEEP) program sponsored by the United States Department of Energy is a multi-institutional effort designed to investigate the flux of suspended material from the continental shelf to the waters of the upper slope, and then possibly into the slope sediments. The first SEEP experiment (SEEP I) was across the outer continental shelf of New England during 1983--1984 and consisted of a series of nine cruises and a mooring array. The second experiment (SEEP II) focused specifically of the shelf/slope frontal region of the mid-Atlantic Bight off the Delmarva peninsula. This report presents data collected during SEEP II. The SEEP II experiment consisted of a series of ten cruises and mooring arrays as well as over-flights by NASA aircraft. The cruises were consecutively designated SEEP2-01 to SEEP2-10. Hydrographic data were collected on all cruises except SEEP2-04 and SEEP2-07 during which benthic processes were investigated. Mooring arrays were deployed during three cruises in the Spring, Summer and Winter of 1988. Brookhaven National Laboratory deployed sixteen fluorometer instrument packages on their moorings with sensors to measure: the in vivo fluorescence of phytoplankton, temperature, subsurface light, dissolved oxygen, and water transparency. Data from the fluorometer, temperature, and transmissometer sensors are reported herein.

  20. Active seepage and water infiltration in Lake Baikal sediments: new thermal data from TTR-Baikal 2014 (Class@Baikal)

    NASA Astrophysics Data System (ADS)

    Poort, Jeffrey; Khlystov, Oleg M.; Akhmanov, Grigorii G.; Khabuev, Andrei V.; Belousov, Oleg V.

    2015-04-01

    New thermal data from the sediments of Lake Baikal were collected in July 2014 during the first Training-Through-Research cruise on Lake Baikal (Class@Baikal) organized by MGU and LIN. TTR-Baikal is a comprehensive multidisciplinary program to train students on the field on pertinent scientific topics. The cruise program focused on seafloor sampling, acoustic investigations and heat flow measurements of gas seeps, flares, mud volcanoes, slumps and debris flows, canyons and channels in the coastal proximity. The thermal data were acquired using autonomous temperature sensors on a 3 meter long gravity corer that allowed analysis at the same spot of sediments, pore fluids, hydrates and microbiology. A total of eight thermal measurements were performed in five structures located on the lake floor of the Central Baikal Basin at 333-1530 meter water depths: 3 mud volcanoes (Novosibirsk, Unshuy and Krest), 1 seep site (Seep 13), and one fault outcrop in the Selenga transfer zone. All studied structures show signals of active seepage, water infiltration and/or hydrate dynamics. The strongest thermal gradient has been measured in Seep 13, suggesting a strong upflow of warm fluids similar to the Gorevoy Utes seep. At the three mud volcanoes, hydrate presence have been evidenced and both enhanced and reduced thermal gradients have been observed. This is similar to the hydrate-bearing K-2 mud volcano in Baikal (Poort et al., 2012). A strongly reduced thermal gradient was observed in the Krest mud volcano where the presence of oxidized channels at 30-40 cm under the sediment surface indicate an infiltration of cold lake water. The water infiltration process at hydrate bearing seep sites will be discussed and compared with other seep areas in the world.

  1. Microbial Communities in Methane- and Short Chain Alkane-Rich Hydrothermal Sediments of Guaymas Basin.

    PubMed

    Dowell, Frederick; Cardman, Zena; Dasarathy, Srishti; Kellermann, Matthias Y; Lipp, Julius S; Ruff, S Emil; Biddle, Jennifer F; McKay, Luke J; MacGregor, Barbara J; Lloyd, Karen G; Albert, Daniel B; Mendlovitz, Howard; Hinrichs, Kai-Uwe; Teske, Andreas

    2016-01-01

    The hydrothermal sediments of Guaymas Basin, an active spreading center in the Gulf of California (Mexico), are rich in porewater methane, short-chain alkanes, sulfate and sulfide, and provide a model system to explore habitat preferences of microorganisms, including sulfate-dependent, methane- and short chain alkane-oxidizing microbial communities. In this study, hot sediments (above 60°C) covered with sulfur-oxidizing microbial mats surrounding a hydrothermal mound (termed "Mat Mound") were characterized by porewater geochemistry of methane, C2-C6 short-chain alkanes, sulfate, sulfide, sulfate reduction rate measurements, in situ temperature gradients, bacterial and archaeal 16S rRNA gene clone libraries and V6 tag pyrosequencing. The most abundantly detected groups in the Mat mound sediments include anaerobic methane-oxidizing archaea of the ANME-1 lineage and its sister clade ANME-1Guaymas, the uncultured bacterial groups SEEP-SRB2 within the Deltaproteobacteria and the separately branching HotSeep-1 Group; these uncultured bacteria are candidates for sulfate-reducing alkane oxidation and for sulfate-reducing syntrophy with ANME archaea. The archaeal dataset indicates distinct habitat preferences for ANME-1, ANME-1-Guaymas, and ANME-2 archaea in Guaymas Basin hydrothermal sediments. The bacterial groups SEEP-SRB2 and HotSeep-1 co-occur with ANME-1 and ANME-1Guaymas in hydrothermally active sediments underneath microbial mats in Guaymas Basin. We propose the working hypothesis that this mixed bacterial and archaeal community catalyzes the oxidation of both methane and short-chain alkanes, and constitutes a microbial community signature that is characteristic for hydrothermal and/or cold seep sediments containing both substrates. PMID:26858698

  2. Microbial Communities in Methane- and Short Chain Alkane-Rich Hydrothermal Sediments of Guaymas Basin

    PubMed Central

    Dowell, Frederick; Cardman, Zena; Dasarathy, Srishti; Kellermann, Matthias Y.; Lipp, Julius S.; Ruff, S. Emil; Biddle, Jennifer F.; McKay, Luke J.; MacGregor, Barbara J.; Lloyd, Karen G.; Albert, Daniel B.; Mendlovitz, Howard; Hinrichs, Kai-Uwe; Teske, Andreas

    2016-01-01

    The hydrothermal sediments of Guaymas Basin, an active spreading center in the Gulf of California (Mexico), are rich in porewater methane, short-chain alkanes, sulfate and sulfide, and provide a model system to explore habitat preferences of microorganisms, including sulfate-dependent, methane- and short chain alkane-oxidizing microbial communities. In this study, hot sediments (above 60°C) covered with sulfur-oxidizing microbial mats surrounding a hydrothermal mound (termed “Mat Mound”) were characterized by porewater geochemistry of methane, C2–C6 short-chain alkanes, sulfate, sulfide, sulfate reduction rate measurements, in situ temperature gradients, bacterial and archaeal 16S rRNA gene clone libraries and V6 tag pyrosequencing. The most abundantly detected groups in the Mat mound sediments include anaerobic methane-oxidizing archaea of the ANME-1 lineage and its sister clade ANME-1Guaymas, the uncultured bacterial groups SEEP-SRB2 within the Deltaproteobacteria and the separately branching HotSeep-1 Group; these uncultured bacteria are candidates for sulfate-reducing alkane oxidation and for sulfate-reducing syntrophy with ANME archaea. The archaeal dataset indicates distinct habitat preferences for ANME-1, ANME-1-Guaymas, and ANME-2 archaea in Guaymas Basin hydrothermal sediments. The bacterial groups SEEP-SRB2 and HotSeep-1 co-occur with ANME-1 and ANME-1Guaymas in hydrothermally active sediments underneath microbial mats in Guaymas Basin. We propose the working hypothesis that this mixed bacterial and archaeal community catalyzes the oxidation of both methane and short-chain alkanes, and constitutes a microbial community signature that is characteristic for hydrothermal and/or cold seep sediments containing both substrates. PMID:26858698

  3. Resistivity structure of the Del Mar methane seep.

    NASA Astrophysics Data System (ADS)

    Kannberg, P. K.; Constable, S.

    2015-12-01

    In March of 2015 we mapped the resistivity structure of the Del Mar methane seep in the inner California borderlands using a deep towed electromagnetic (EM) source and receiver array. Located in the San Diego trough at a depth of 1km, the seep site is on the flank of a mound associated with a transpressive step in the San Diego trough fault. The seep site has previously been associated with seafloor pockmarks, acoustic wipeouts, chemosynthetic communities, and active methane bubble venting. Controlled source electromagnetic (CSEM) surveys are performed by deep-towing an EM source that is transmitting a known signal; this signal is detected by towed receivers. This transmitted signal is altered by the electrical properties of the surrounding environment. Compared to seismic methods, EM methods are largely insensitive to free gas, making it an especially useful tool for detecting electrically resistive methane hydrate in areas of active gas venting. We used a 50m dipole transmitting 100A, with 3-axis electric field receivers spaced at 130m, 230m, 330m, and 430m behind the transmitter dipole center. The receiver data are inverted using MARE2DEM, a finite element 2D inversion routine. The inversion results show the background resistivity of the trough sediments to be about 1-2 ohmm, and are largely featureless outside of the seep site. However at the seep site we see a decanter-shaped 100 ohmm resistor whose base is 100m below the seafloor, and 1km wide at its widest. This feature narrows at the top to form a pipe structure about 200m wide that extends to the seafloor. These resistive structures are interpreted to be methane hydrate resulting from methane rich fluid flow along faults associated with the transpressional system that brackets the seep site.

  4. Significance of aragonite cements around Cretaceous marine methane seeps

    SciTech Connect

    Savard, M.M.; Beauchamp, B.; Veizer, J.

    1996-05-01

    Detailed petrography and geochemistry of carbonate precipitates in Cretaceous cold seep mounds from the Canadian Arctic show spectacular early diagenetic products: some still-preserved splays and isopachous layers of fine, acicular aragonite, and large botryoids and crusts of low-magnesium calcite showing unusual entanglement of former fibrous calcite and aragonite. The latter mineralogy is suggested by clear, flat-terminated cathodoluminescence patterns interpreted as ancient crystal growth steps, and the former by rhombohedral terminations. The early cement phases very likely precipitated in cold Arctic water dominated by bicarbonates derived from bacterially oxidized methane: these cements have {delta}{sup 13}C values around {minus}44.0% and {delta}{sup 18}O values of 1.8 to 0.1% PDB. Coexistence of calcite and aragonite early cements in the Cretaceous seep mounds is unusual, because precipitation occurred in high-latitude, cold-water settings, and during a so-called calcite sea mode. As in modern marine hydrocarbon seeps, the chemistry of the Cretaceous system was apparently controlled by chemosynthetic bacterial activity, resulting in high a{sub HCO{sub 3}{sup {minus}}} that promoted precipitation of carbonates. The authors suggest that, locally, fluctuations in a{sub HCO{sub 3}{sup {minus}}}/a{sub SO{sub 4}{sup 2{minus}}} resulted in oscillating aragonite or calcite supersaturation, and hence, controlled the mineralogy of the early precipitates.

  5. Carbonate-cemented hardgrounds: a subtle indicator for seep activity offshore Humboldt Bay

    NASA Astrophysics Data System (ADS)

    Shapiro, R. S.; Bazard, D.

    2007-12-01

    Active hydrocarbon seeps are common in the accretionary prism of the Cascadia subduction zone. In Humboldt County, California, the prism is exposed at the surface as a series of fault-propagated anticlines trending NW-SE. Offshore of the town of Samoa, a northwest-plunging anticline is breached at approximately 40 meters water depth, allowing hydrocarbons to seep out to the seafloor (40.8° N, 124.25° W). The assumed microbial activity at the seep leads to the production of interstitial carbonate cements forming hardgrounds. Cementation is pervasive and blocks eroded from the seep area of the seabed are transported onshore during storm events. Blocks collected from the beach range from 3--40 centimeters across. The sediments of the blocks are palimpsest transgressive deposits composed mostly of immature fine sand, but ranging from very fine to rounded gravels 4 cm diameter. Cementation is not dependent on grain size as all of the sediment sizes are cemented. In rare void spaces, a concentric banding of cements is obvious. The interstitial cements preserve original sedimentary structures including graded beds and high-angle cross-beds. Centimeter-scale subspherical concretions occur on the undersides of some blocks. There is no disruption of bedding in contrast to other seeps where the expulsion of gas can create pockmarks, brecciation, and other disturbances. Unlike the better studied seeps farther south in the Eel River basin, the Samoa seeps do not seem to host a rich chemosynthetic fauna. Whole and (mostly) fragmented shells preserved by the cemented sands represent a typical benthic inner shelf community including Dendraster, Macoma, and Olivella. Burrows preserved in the sands are largely horizontal and 1--2 mm diameter. Seep carbonate-cemented hardgrounds are less well studied then the more obvious meter-scale 'chemoherm' deposits. However, they may be more prevalent in the rock record and provide a new proxy for locating ancient seeps and hydrocarbon

  6. SeepC: Preliminary Characterization of Atlantic Margin Seep Ecosystems from Norfolk Canyon to New England Seep Sites.

    NASA Astrophysics Data System (ADS)

    Turner, P. J.; Ball, B.; Cole, E.; LaBella, A.; Wagner, J.; Van Dover, C. L.; Skarke, A. D.; Ruppel, C. D.

    2015-12-01

    Since 2013, more than 500 seep sites have been located along the continental margin of the eastern US using acoustic signals of gas plumes in the water column. During a July 2015 R/V Atlantis expedition, scientists used the submersible Alvin to explore seep sites at depths of 300 to 1500 m. Study sites ranged from Norfolk Canyon north to New England Seep 2 and included Baltimore, Veatch, and Shallop Canyon sites, as well as new unnamed sites between Norfolk and Baltimore Canyons. Mussels dominated the seep sites (cf ''Bathymodiolus'' childressi) but only small populations (<10s of individuals) were observed at seep sites associated with Shallop Canyon. B. heckerae, the dominant mussel at the Blake Ridge and Cape Fear seep sites (sites associated with salt diapirs off the Carolinas), appear to be present at only one of the Atlantic Margin seeps. At the Norfolk Canyon site, dead B. heckerae shells were observed and live individuals may be within the explored area. The abundant vesicomyid clam of Blake Ridge and Cape Fear sites was absent at the continental margin seeps. Apart from B. childressi, the most conspicuous megafaunal invertebrate species at the newly explored seeps was the red crab, Chaceon sp. and the rock crab, Cancer sp. These crabs are not seep endemic but they were especially abundant at the seeps and were observed to feed and mate on the seep grounds. Molecular tools will be used to explore the genetic structure of mussel populations from Norfolk to New England seeps, and stable isotope methods will be used to test for differences among sites in the source of carbon used by mussels. Alvin video transects and photo-mosaics will be used to collect data on macrofauna associated with seeps and to test the hypothesis that shallow seeps (300-500m) support more diverse assemblages than deep sites (1000-1500m).

  7. New gastropods from deep-sea hydrocarbon seeps off West Africa

    NASA Astrophysics Data System (ADS)

    Warén, Anders; Bouchet, Philippe

    2009-12-01

    Thirteen new species of gastropods are described from the Zairov 1-2 and Biozaire 1-3 cruises to the methane seeps off the Congo River: Patellogastropoda: Paralepetopsis sasakii sp. nov. (Neolepetopsidae); Cocculiniformia: Pyropelta oluae sp. nov. and P. sibuetae sp. nov. (Pyropeltidae); Tentaoculus granulatus sp. nov. (Pseudococculinidae); Neomphalina: Leptogyra costellata sp. nov. (Family uncertain); Vetigastropoda: Puncturella similis sp. nov. (Fissurellidae); Lepetodrilus shannonae sp. nov. (Lepetodrilidae); Caenogastropoda: Provanna reticulata sp. nov. and P. chevalieri sp. nov., Cordesia provannoides gen. et sp. nov. (Provannidae); Phymorhynchus coseli sp. nov. and P. cingulata sp. nov. (Conidae); Heterobranchia: Hyalogyrina rissoella sp. nov. (Hyalogyrinidae). All species except T. granulatus (from a settlement trap) belong to groups known from cold seeps and the entire seep fauna here is new to science. Biogeographical affinity of this gastropod fauna is to the West Atlantic seeps, not to the Mediterranean seeps or Mid-Atlantic vents. Fragments of the autecology of the species are presented. The evolution of the seep gastropod fauna is briefly discussed and a continuous immigration of taxa is supported. The oldest verified occurrences of modern taxa in the seeps date back to Cenomanian (Cretaceous) time, while some taxa seem not to appear until very late Tertiary.

  8. Cloning and characterization of a new cold-active lipase from a deep-sea sediment metagenome.

    PubMed

    Jeon, Jeong Ho; Kim, Jun-Tae; Kim, Yun Jae; Kim, Hyung-Kwoun; Lee, Hyun Sook; Kang, Sung Gyun; Kim, Sang-Jin; Lee, Jung-Hyun

    2009-01-01

    To search for new cold-active lipases, a metagenomic library was constructed using cold-sea sediment samples at Edison Seamount and was screened for lipolytic activities by plating on a tricaprylin medium. Subsequently, a fosmid clone was selected, and the whole sequence of 36 kb insert of the fosmid clone was determined by shotgun sequencing. The sequence analysis revealed the presence of 25 open reading frames (ORF), and ORF20 (EML1) showed similarities to lipases. Phylogenetic analysis of EML1 suggested that the protein belonged to a new family of esterase/lipase together with LipG. The EML1 gene was expressed in Escherichia coli, and purified by metal-chelating chromatography. The optimum activity of the purified EML1 (rEML1) occurred at pH 8.0 and 25 degrees C, respectively, and rEML1 displayed more than 50% activity at 5 degrees C. The activation energy for the hydrolysis of olive oil was determined to be 3.28 kcal/mol, indicating that EML1 is a cold-active lipase. rEML1 preferentially hydrolyzed triacylglycerols acyl-group chains with long chain lengths of > or = 8 carbon atoms and displayed hydrolyzing activities toward various natural oil substrates. rEML1 was resistant to various detergents such as Triton X-100 and Tween 80. This study represents an example which developed a new cold-active lipase from a deep-sea sediment metagenome. PMID:18773201

  9. Antarctic Dry Valley Sediments as Analogs for Microbial Systems in a Cold Mars-Like Environment

    NASA Astrophysics Data System (ADS)

    Bishop, J. L.; Englert, P.

    2016-05-01

    Investigations of surface and lake bottom sediments in the Antarctic Dry Valleys have revealed microbial life nearly everywhere and some evidence for clays, carbonates, sulfates and other minerals associated with microbes in the sediments.

  10. Bacterioplankton growth and production at the Louisiana hydrocarbon seeps

    NASA Astrophysics Data System (ADS)

    Larock, P. A.; Hyun, J.-H.; Bennison, B. W.

    1994-06-01

    The growth rate and potential production of bacterioplankton in cold hydrocarbon seeps located along the Louisiana coast were determined using a pulse-labeling technique. Surprisingly, community doubling times are on the order of 1.1 h, which compares to laboratory-grown cultures. We also found that there are differences in growth rates on relatively small geographic scales, suggesting the influence of site-specific geological features (e.g., gas hydrate mounds). Proceeding downslope to deeper waters, methane-oxidizing bacteria appeared to play a more significant role in community productivity. These preliminary experiments indicated, quite unexpectedly, that water column microbes are growing at a more rapid rate than in any other marine system so far studied and that methane may serve as a primary nutrient (carbon) source in these seep-associated microbial assemblages.

  11. Hydrocarbon seep-carbonates of a Miocene forearc (East Coast Basin), North Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Campbell, Kathleen A.; Francis, David A.; Collins, Mike; Gregory, Murray R.; Nelson, Campbell S.; Greinert, Jens; Aharon, Paul

    2008-02-01

    An ancient hydrocarbon seep province of 14 isolated, authigenic carbonate deposits has been identified in fine-grained, deep-marine siliciclastic strata of the Miocene East Coast Basin, North Island, New Zealand. These forearc sediments have been uplifted and complexly deformed into accretionary ridges, adjacent to the still-active Hikurangi convergent margin. Older active and passive margin strata (mid-Cretaceous to Oligocene in age) underlie the Neogene sequence, and contain oil- and gas-prone source rocks. Older Mesozoic meta-sedimentary rocks constitute the backstop against which the current phase of subduction-related sedimentation has accumulated (~ 24 Ma-present). The seep-carbonates (up to 10 m thick, 200 m across) archive methane signatures in their depleted carbon isotopes (to δ13C -51.7‰ PDB), and contain chemosynthesis-based paleocommunities (e.g. worm tubes, bathymodioline mussels, and vesicomyid, lucinid and thyasirid bivalves) typical of other Cenozoic and modern seeps. Northern and southern sites are geographically separated, and exhibit distinct lithological and faunal differences. Structural settings are variable. Seep-associated lithologies also are varied, and suggest carbonate development in sub-seafloor, seafloor and physically reworked (diapiric expansion, gas explosion, gravity slide or debris flow) settings, similar to Italian Apennine seep deposits of overlapping ages. Peculiar attributes of the New Zealand Miocene seep deposits are several, including digitate thrombolites of clotted microbial micrite encased in thick, isopachous horizons and botryoids of aragonite. Seep plumbing features are also well-exposed at some sites, displaying probable gas-explosion breccias filled with aragonite, tubular concretions (fluid conduits), and carbonate-cemented, thin sandstone beds and burrows within otherwise impermeable mudstones. A few seeps were large enough to develop talus-debris piles on their flanks, which were populated by lucinid bivalves

  12. Evidences of the Presence of Methane Seeps in the Colombian Caribbean Sea

    NASA Astrophysics Data System (ADS)

    Gracia, Adriana; Rangel-Buitrago, Nelson; Sellanes, Javier

    2010-05-01

    For the first time in the southern Caribbean Sea Margin of Colombia (between 450 - 700 m deep) we confirm the presence of methane seep communities near the deltas of the Magdalena and Sinu rivers. Some evidences of the occurrence of those communities include: i) bivalves constituents of marine chemosynthesis-based communities, which are indicators of reducing environments as vesicomyid and lucinid bivalves (Vesicomya caribbea, Calyptogena ponderosa, Ectenagena modioliforma, Lucinoma spp. and Graecina colombiensis), together with the rare solemyid clam Acharax caribbaea, ii) other seep-associated fauna such as the trochid snail Cataegis meroglypta, iii) the first report of vestimentiferan tubeworms for the area and, iv) the presence of authigenic carbonates; these constructions form hard substrates colonized by sessile fauna. Additionally, more than 20 species of benthic non-seep fauna were found associated in the area. The collected fauna exhibits an elevated taxonomic similarity to other modern and fossil seep communities from the Caribbean (Barbados Prism, Gulf of Mexico, Cenozoic seep taxa from Barbados, Trinidad and Venezuela). The presence of these chemosymbiotic species seems to be related to mud diapirism activity in the South West of the Colombian coast, this geologic characteristic indicates tectonic and depositional processes associated with the aforementioned deltas. Further research is necessary to establish biological and geological interactions, geochemical and geophysical controls, and organization of cold seeps communities in this unexplored area of the Caribbean. Keywords: Methane, Chemosynthesis-based communities,Bivalves, Mud diapirs, Colombian Caribbean Sea

  13. Shelf Edge Exchange Processes, II: SEEP2-08, R/V ENDEAVOR cruise 188

    SciTech Connect

    Wilson, C.; Behrens, W.J.; Flagg, C.N.; Wallace, D.W.R.; Wilke, R.J.; Wyman, K.D.

    1989-12-01

    The Shelf Edge Exchange Processes (SEEP) program sponsored by the United States Department of Energy is a multi-institutional effort designed to investigate the flux of suspended material from the continental shelf to the waters of the upper slope, and then possibly into the slope sediments. Phase I of SEEP consisted of a series of nine cruises and a mooring array across the outer continental shelf of New England during 1983--1984 (Behrens and Flagg, 1986). Phase II focused specifically on the shelf/slope frontal region of the mid-Atlantic bight off the Delmarva Peninsula. This project consisted of a series of ten cruises, a mooring array, and a series of over-flights by NASA aircraft. Hydrographic data were collected on eight of the cruises, six of which were primarily mooring deployment or recovery cruises. The cruises were consecutively designated SEEP2-01 to SEEP2-10. Two cruises (SEEP2-04 and SEEP2-07) were dedicated to investigating benthic processes and hydrographic data were not collected.

  14. Association of oil seeps and chemosynthetic communities with oil discoveries, upper continental slope, Gulf of Mexico

    SciTech Connect

    Sassen, R.; Brooks, J.M.; MacDonald, I.R.; Kennicutt, M.C. II; Guinasso, N.L. Jr. )

    1993-09-01

    A belt of sea-floor oil seeps and chemosynthetic communities has been mapped across the upper continental slope, offshore Louisiana, at depths ranging from 2000 to 1000 m. Visibly oil-stained sediments and thelmogenic gas hydrates have been recovered using piston cores and research submarines. Biomarker fingerprinting of seep oils suggests an origin from deeply buried Cretaceous or Jurassic source rocks characterized by marine kerogen. The abundance of seeps provides a unique opportunity to define their relationship to oil discoveries including Auger, Cooper, Jolliet, Marquette, Vancouver, Popeye, and Mars. Seeps are preferentially distributed over shallow salt ridges that rim intrasalt basin cooking pots, over salt diapirs, and along shallow fault traces near discoveries. Diagnostic seep-related features on the sea floor include gas hydrate mounds and outcrops, pockmarks and craters, mud volcanoes, and carbonate buildups. Many of the 50 chemosynthetic communities including tube worms, mussels, or clams thus far documented in the gulf occur near discoveries. Recent imagery from orbital platforms, including the space shuttle, shows that natural oil slicks are common on the sea surface in this area. Additional mapping of seep distributions should contribute to better defining of the limits of the deep Gulf play fairway.

  15. Cryptic species of Archinome (Annelida: Amphinomida) from vents and seeps

    PubMed Central

    Borda, Elizabeth; Kudenov, Jerry D.; Chevaldonné, Pierre; Blake, James A.; Desbruyères, Daniel; Fabri, Marie-Claire; Hourdez, Stéphane; Pleijel, Fredrik; Shank, Timothy M.; Wilson, Nerida G.; Schulze, Anja; Rouse, Greg W.

    2013-01-01

    Since its description from the Galapagos Rift in the mid-1980s, Archinome rosacea has been recorded at hydrothermal vents in the Pacific, Atlantic and Indian Oceans. Only recently was a second species described from the Pacific Antarctic Ridge. We inferred the identities and evolutionary relationships of Archinome representatives sampled from across the hydrothermal vent range of the genus, which is now extended to cold methane seeps. Species delimitation using mitochondrial cytochrome c oxidase subunit I (COI) recovered up to six lineages, whereas concatenated datasets (COI, 16S, 28S and ITS1) supported only four or five of these as clades. Morphological approaches alone were inconclusive to verify the identities of species owing to the lack of discrete diagnostic characters. We recognize five Archinome species, with three that are new to science. The new species, designated based on molecular evidence alone, include: Archinome levinae n. sp., which occurs at both vents and seeps in the east Pacific, Archinome tethyana n. sp., which inhabits Atlantic vents and Archinome jasoni n. sp., also present in the Atlantic, and whose distribution extends to the Indian and southwest Pacific Oceans. Biogeographic connections between vents and seeps are highlighted, as are potential evolutionary links among populations from vent fields located in the east Pacific and Atlantic Oceans, and Atlantic and Indian Oceans; the latter presented for the first time. PMID:24026823

  16. Gas flux and carbonate occurrence at a shallow seep of thermogenic natural gas

    NASA Astrophysics Data System (ADS)

    Kinnaman, Franklin S.; Kimball, Justine B.; Busso, Luis; Birgel, Daniel; Ding, Haibing; Hinrichs, Kai-Uwe; Valentine, David L.

    2010-06-01

    The Coal Oil Point seep field located offshore Santa Barbara, CA, consists of dozens of named seeps, including a peripheral ˜200 m2 area known as Brian Seep, located in 10 m water depth. A single comprehensive survey of gas flux at Brian Seep yielded a methane release rate of ˜450 moles of CH4 per day, originating from 68 persistent gas vents and 23 intermittent vents, with gas flux among persistent vents displaying a log normal frequency distribution. A subsequent series of 33 repeat surveys conducted over a period of 6 months tracked eight persistent vents, and revealed substantial temporal variability in gas venting, with flux from each individual vent varying by more than a factor of 4. During wintertime surveys sediment was largely absent from the site, and carbonate concretions were exposed at the seafloor. The presence of the carbonates was unexpected, as the thermogenic seep gas contains 6.7% CO2, which should act to dissolve carbonates. The average δ13C of the carbonates was -29.2 ± 2.8‰ VPDB, compared to a range of -1.0 to +7.8‰ for CO2 in the seep gas, indicating that CO2 from the seep gas is quantitatively not as important as 13C-depleted bicarbonate derived from methane oxidation. Methane, with a δ13C of approximately -43‰, is oxidized and the resulting inorganic carbon precipitates as high-magnesium calcite and other carbonate minerals. This finding is supported by 13C-depleted biomarkers typically associated with anaerobic methanotrophic archaea and their bacterial syntrophic partners in the carbonates (lipid biomarker δ13C ranged from -84 to -25‰). The inconsistency in δ13C between the carbonates and the seeping CO2 was resolved by discovering pockets of gas trapped near the base of the sediment column with δ13C-CO2 values ranging from -26.9 to -11.6‰. A mechanism of carbonate formation is proposed in which carbonates form near the sediment-bedrock interface during times of sufficient sediment coverage, in which anaerobic oxidation

  17. Larvae from deep-sea methane seeps disperse in surface waters

    PubMed Central

    Arellano, Shawn M.; Van Gaest, Ahna L.; Johnson, Shannon B.; Vrijenhoek, Robert C.; Young, Craig M.

    2014-01-01

    Many species endemic to deep-sea methane seeps have broad geographical distributions, suggesting that they produce larvae with at least episodic long-distance dispersal. Cold-seep communities on both sides of the Atlantic share species or species complexes, yet larval dispersal across the Atlantic is expected to take prohibitively long at adult depths. Here, we provide direct evidence that the long-lived larvae of two cold-seep molluscs migrate hundreds of metres above the ocean floor, allowing them to take advantage of faster surface currents that may facilitate long-distance dispersal. We collected larvae of the ubiquitous seep mussel “Bathymodiolus” childressi and an associated gastropod, Bathynerita naticoidea, using remote-control plankton nets towed in the euphotic zone of the Gulf of Mexico. The timing of collections suggested that the larvae might disperse in the water column for more than a year, where they feed and grow to more than triple their original sizes. Ontogenetic vertical migration during a long larval life suggests teleplanic dispersal, a plausible explanation for the amphi-Atlantic distribution of “B.” mauritanicus and the broad western Atlantic distribution of B. naticoidea. These are the first empirical data to demonstrate a biological mechanism that might explain the genetic similarities between eastern and western Atlantic seep fauna. PMID:24827437

  18. Iron oxides stimulate sulfate-driven anaerobic methane oxidation in seeps

    PubMed Central

    Sivan, Orit; Antler, Gilad; Turchyn, Alexandra V.; Marlow, Jeffrey J.; Orphan, Victoria J.

    2014-01-01

    Seep sediments are dominated by intensive microbial sulfate reduction coupled to the anaerobic oxidation of methane (AOM). Through geochemical measurements of incubation experiments with methane seep sediments collected from Hydrate Ridge, we provide insight into the role of iron oxides in sulfate-driven AOM. Seep sediments incubated with 13C-labeled methane showed co-occurring sulfate reduction, AOM, and methanogenesis. The isotope fractionation factors for sulfur and oxygen isotopes in sulfate were about 40‰ and 22‰, respectively, reinforcing the difference between microbial sulfate reduction in methane seeps versus other sedimentary environments (for example, sulfur isotope fractionation above 60‰ in sulfate reduction coupled to organic carbon oxidation or in diffusive sedimentary sulfate–methane transition zone). The addition of hematite to these microcosm experiments resulted in significant microbial iron reduction as well as enhancing sulfate-driven AOM. The magnitude of the isotope fractionation of sulfur and oxygen isotopes in sulfate from these incubations was lowered by about 50%, indicating the involvement of iron oxides during sulfate reduction in methane seeps. The similar relative change between the oxygen versus sulfur isotopes of sulfate in all experiments (with and without hematite addition) suggests that oxidized forms of iron, naturally present in the sediment incubations, were involved in sulfate reduction, with hematite addition increasing the sulfate recycling or the activity of sulfur-cycling microorganisms by about 40%. These results highlight a role for natural iron oxides during bacterial sulfate reduction in methane seeps not only as nutrient but also as stimulator of sulfur recycling. PMID:25246590

  19. Analysis of past recurrent methane seep activity using radiocarbon dating of Calyptogena spp. shells in the eastern Nankai subduction zone, Japan

    NASA Astrophysics Data System (ADS)

    Yagasaki, Kazuhiro; Ashi, Juichiro; Yokoyama, Yusuke; Miyairi, Yosuke; Kuramoto, Shin'ichi

    2016-04-01

    Fault activity around subduction zones have been widely studied and monitored through drilling of oceanic plates, studying piston cores, use of monitoring equipment or through visual analysis using submersible vehicles. Yet the understanding of how small scale faults near shallow regions of the seabed behave in relation to cold seep vent activity is still vague, especially determining when they were active in the past. In tectonically active margins such as the Nankai and Tokai regions off Japan, dense methane hydrate reservoirs have been identified. Cold seeps releasing methane rich hydrocarbon fluids are common here, supporting a wide variety of biological species that hold a symbiotic relationship with the chemosynthetic bacteria. In 1998 a large dead Calyptogena spp. bivalve colony (over 400m2 in size) was discovered off Tokai, Japan. It is unusual for a bivalve colony this size to mostly be dead, raising questions as to what caused their death. In this study we document the radiocarbon 14C age of these bivalve shells to attempt analysing the possible methane seep bahaviour in the past. The measured 14C age ranged in three age groups of 1396±36-1448±34, 1912±31-1938±35 and 5975±34. The 14C age of shells that were alive upon collection and the dissolved inorganic carbon (DIC) in seawater show little difference (˜100 14C age) indicating that shells are not heavily affected by the dead carbon effect from cold seeps that is of biogenic or thermogenic origin, which can make the age to become considerably older than the actual age. Thus the novel calibration model used was based on the seawater DIC collected above the Calyptogena spp. colony site (1133±31), which resulted in the dead shells to be clustered around 1900 Cal AD. This proves to be interesting as the predicted epicenter of the Ansei-Tokai earthquake (M 8.4) in 1854 is extremely close to the bibalve colony site. Using geological data obtained using visual analysis and sub-seafloor structural

  20. Using mobile, internet connected deep sea crawlers for spatial and temporal analysis of cold seep ecosystems and the collection of real-time classroom data for extreme environment education.

    NASA Astrophysics Data System (ADS)

    Purser, Autun; Kwasnitschka, Tom; Duda, Alexander; Schwendner, Jakob; Bamberg, Marlene; Sohl, Frank; Doya, Carol; Aguzzi, Jacopo; Best, Mairi; Llovet, Neus Campanya I.; Scherwath, Martin; Thomsen, Laurenz

    2015-04-01

    Cabled internet and power connectivity with the deep sea allow instruments to operate in the deep sea at higher temporal resolutions than was possible historically, with the reliance on battery life and data storage capacities. In addition to the increase in sensor temporal frequency, cabled infrastructures now allow remote access to and control of mobile platforms on the seafloor. Jacobs University Bremen, in combination with collaborators from the Robotic Exploration of Extreme Environments (ROBEX) project, CSIC Barcelona and Ocean Networks Canada have been operating tracked deep sea crawler vehicles at ~890 m depth at the dynamic Barkley Canyon methane seep site, Pacific Canada during the last ~4 years. The vehicle has been able to explore an area of ~50 m radius, allowing repeated visits to numerous microhabitats. Mounting a range of sensors, including temperature, pressure, conductivity, fluorescence, turbidity, flow and methane concentration sensors, as well as various camera systems a large dataset has been compiled. Several methane pockmarks are present in the survey area, and geological, biological and oceanographic changes have been monitored over a range of timescales. Several publications have been produced, and in this presentation we introduce further data currently under analysis. Cabled internet connectivity further allows mobile platforms to be used directly in education. As part of the ROBEX project, researchers and students from both terrestrial and planetary sciences are using the crawler in an ongoing study project. Students are introduced to statistical methods from both fields during the course and in later stages they can plan their own research using the in-situ crawler, and follow the progress of their investigations live, then analyse the collected data using the techniques introduced during the course. Cabled infrastructures offer a unique facility for spatial investigation of extreme ecosystems over time, and for the 'hands on

  1. BET surface area distributions in polar stream sediments: Implications for silicate weathering in a cold-arid environment

    USGS Publications Warehouse

    Marra, Kristen R.; Elwood Madden, Megan E; Soreghan, Gerilyn S.; Hall, Brenda L

    2014-01-01

    BET surface area values are critical for quantifying the amount of potentially reactive sediments available for chemical weathering and ultimately, prediction of silicate weathering fluxes. BET surface area values of fine-grained (<62.5 μm) sediment from the hyporheic zone of polar glacial streams in the McMurdo Dry Valleys, Antarctica (Wright and Taylor Valleys) exhibit a wide range (2.5–70.6 m2/g) of surface area values. Samples from one (Delta Stream, Taylor Valley) of the four sampled stream transects exhibit high values (up to 70.6 m2/g), which greatly exceed surface area values from three temperate proglacial streams (0.3–12.1 m2/g). Only Clark stream in Wright Valley exhibits a robust trend with distance, wherein surface area systematically decreases (and particle size increases) in the mud fraction downstream, interpreted to reflect rapid dissolution processes in the weathering environment. The remaining transects exhibit a range in variability in surface area distributions along the length of the channel, likely related to variations in eolian input to exposed channel beds, adjacent snow drifts, and to glacier surfaces, where dust is trapped and subsequently liberated during summer melting. Additionally, variations in stream discharge rate, which mobilizes sediment in pulses and influences water:rock ratios, the origin and nature of the underlying drift material, and the contribution of organic acids may play significant roles in the production and mobilization of high-surface area sediment. This study highlights the presence of sediments with high surface area in cold-based glacier systems, which influences models of chemical denudation rates and the impact of glacial systems on the global carbon cycle.

  2. Ecology of Two Terrestrial Serpentinizing Fluid Seeps Offers a Glimpse of the Deep Biosphere

    NASA Astrophysics Data System (ADS)

    Woycheese, K. M.; Meyer-Dombard, D. R.; Cardace, D.; Gulecal, Y.; Arcilla, C. A.

    2013-12-01

    Terrestrial serpentinizing fluid seeps provide convenient access to the deep subsurface biosphere community. Serpentinization--the hydrous alteration of ultramafics--produces hydrogen and possibly methane gas. Chemotrophic microbes utilize these compounds, and may form the base of the deep subsurface trophic web. Here, the geochemical environment of two terrestrial serpentinizing fluid seeps was characterized and community composition was determined. The first site is Yanartas in the Tekirova ophiolite complex (Turkey). Yanartas hosts gas and fluid seeps, the latter of which may be ephemeral. The second site is Manleluag Spring in the Zambales ophiolite range (the Philippines). In Manleluag, the fluid seeps result in the formation of large carbonate terraces. Illumina MiSeq sequencing of the small-subunit rDNA (universal primers) from Yanartas and Manleluag indicates distinct microbial communities, with some shared taxa. Methanogenic archaeal taxa were present in sediments collected from both seeps. The most dominant taxa were the Methanobacteria, with Manleluag sediments having a ten-fold higher abundance than Yanartas. The nitrifying archaea, Thaumarchaeota, were also found at both sites. Bacterial populations at both locations are diverse and primarily composed of heterotrophic taxa. At Yanartas, Alpha- and Betaproteobacteria taxa are dominant (~60% total), while at Manleluag these taxa are only 10-20% of the total reads. Clostridia and Bacteriodetes comprise nearly 35% of the sequence data at the source seep in Manleluag; at Yanartas these taxa make up ~10% of sequence data. Down an outflow channel at Manleluag, the population shifted to Thermales and Hydrogenophilales (~50% of sequence data). At Yanartas Alpha- and Betaproteobacterial taxa continued to dominate downstream, but in one outflow channel an orange, mineralized biofilm is evident. This pigmentation may result from the carotenoid-producing Rhodobacteraceae, which were only found in the orange

  3. Methane and sulfur cycling in terrestrial hydrocarbon seeps

    NASA Astrophysics Data System (ADS)

    Lin, L.; Wang, P.; Cheng, T.; Ling, Y.; Sun, C.; Chen, Y.; Wang, C.; Wu, J.; Chu, P.

    2009-12-01

    Hydrocarbon seeps are ubiquitous in marine and terrestrial environments where gaseous fluids with unconsolidated, fine-grained sediments ascend along fractures prior to being discharged on seafloor or land surface. Complex geological and microbial processes are involved in the sequestration of photosynthetically produced organic carbon into deep subsurface environments and cycling of methane and carbon dioxide back to atmosphere. Extensive studies conducted on marine settings indicate that geochemical stratification in sediment porewater is dynamically regulated by various microbial processes. Whether the experience accumulated over the decadal observation on marine settings could be applied to shallow and deep biosphere beneath terrestrial hydrocarbon seeps remains poorly constrained. To address the issue about how carbon and sulfur compounds were cycled in terrestrial hydrocarbon seeps, this presentation summarized the results obtained from samples collected in two sites (one at 60C and the other at 27C) of southwestern Taiwan. These sites characterized by continuously voluminous discharge of hydrocarbons were considered as the model analogs that would provide better constraints on microbial processes at ambient and high temperatures in seep-related subsurface environments. Our findings indicated that sulfate reduction and methanogenesis were active at temperatures up to 80C. Sulfate reducing and fermentative populations shifted substantially upon incubations at different temperatures, suggesting that degradation of organic carbon could only proceed with collaborative interactions among metabolisms. The proliferation of mesophilic sulfate reduction in sulfate-deprived terrestrial environments appears to be best facilitated by atmospheric oxidation of pyrite inherited in sediments. Sulfate produced in surface environments migrated downward to fuel sulfate reduction coupled to anaerobic methane oxidation near the sulfate-to-methane transition. Of various

  4. The I.A.G. / A.I.G. SEDIBUD (Sediment Budgets in Cold Environments) Programme: Current and future activities

    NASA Astrophysics Data System (ADS)

    Beylich, Achim A.; Lamoureux, Scott; Decaulne, Armelle

    2013-04-01

    Projected climate change in cold regions is expected to alter melt season duration and intensity, along with the number of extreme rainfall events, total annual precipitation and the balance between snowfall and rainfall. Similarly, changes to the thermal balance are expected to reduce the extent of permafrost and seasonal ground frost and increase active layer depths. These effects will undoubtedly change surface environments in cold regions and alter the fluxes of sediments, nutrients and solutes, but the absence of quantitative data and coordinated geomorphic process monitoring and analysis to understand the sensitivity of the Earth surface environment is acute in cold climate environments. The International Association of Geomorphologists (I.A.G. / A.I.G. ) SEDIBUD (Sediment Budgets in Cold Environments) Programme was formed in 2005 to address this existing key knowledge gap. SEDIBUD currently has about 400 members worldwide and the Steering Committee of this international programme is composed of ten scientists from eight different countries: Achim A. Beylich (Chair) (Norway), Armelle Decaulne (Secretary) (France), John C. Dixon (USA), Scott F. Lamoureux (Vice-Chair) (Canada), John F. Orwin (Canada), Jan-Christoph Otto (Austria), Irina Overeem (USA), Thorsteinn Sæmundsson (Iceland), Jeff Warburton (UK) and Zbigniew Zwolinski (Poland). The central research question of this global group of scientists is to: Assess and model the contemporary sedimentary fluxes in cold climates, with emphasis on both particulate and dissolved components. Initially formed as European Science Foundation (ESF) Network SEDIFLUX (Sedimentary Source-to-Sink Fluxes in Cold Environments) (2004 - ), SEDIBUD has further expanded to a global group of researchers with field research sites located in polar and alpine regions in the northern and southern hemisphere. Research carried out at each of the close to 50 defined SEDIBUD key test sites varies by programme, logistics and available

  5. Shelf edge exchange processes-II SEEP2-06, R/V Endeavor cruise 186

    SciTech Connect

    Wilson, C.; Behrens, W.J.; Flagg, C.N.; Wallace, D.W.R.; Wilke, R.J.; Wyman, K.D.

    1989-12-01

    The Shelf Edge Exchange Processes (SEEP) program sponsored by the United States Department of Energy is a multi-institutional effort designed to investigate the flux of suspended material from the continental shelf to the waters of the upper slope, and then possibly into the slope sediments. Phase I of SEEP consisted of a series of nine cruises and a mooring array across the outer continental shelf of New England during 1983--1984. Phase II focused specifically on the shelf/slope frontal region of the mid-Atlantic bight off the Delmarva Peninsula. Hydrographic data were collected on eight of the six cruises.

  6. Tectono-Stratigraphy of the Seeps on the Guaymas Basin at the Sonora Margin, Gulf of California, Mexico

    NASA Astrophysics Data System (ADS)

    Figueroa Albornoz, L. J.; Mortera-Gutierrez, C. A.; Bandy, W. L.; Escobar-Briones, E. G.; Godfroy, A.; Fouquet, Y.

    2013-05-01

    Recently several hydrothermal and gas seeps systems has been located precisely at the Sonora margin within the Guaymas Basin (GB), Gulf of California. Since late 1970's , several marine studies had reported two main hydrothermal systems in the Guaymas Rift (one at the Northern Rift, and other at the Southern Rift) and a cold seeps system at the Satellite Basin in the Sonora-margin lower edge. During the campaign BIG10, onboard the IFREMER vessel, NO L'Atalante, the EM122 echo-sounder log more than 30,000 water column acoustic images, which allows us to create a data base of the bubble plumes active systems on the northern part of the GB and the Sonora Margin. These plumes are the expression on the water column of an active seeps site during the cruise time. These images document the presence of the cold seep activity around the scarp of the Guaymas Transform Fault (GTF), and within the Satellite Basin. Few active plumes are first located off-axis, on both sides of the Northern Rift. Although it is not observed any plume within NR. Sub-bottom profiles and bathymetric data logged during the campaign GUAYRIV10, onboard the UNAM vessel, BO EL PUMA, are analyzed to determine the shallow tectonic-stratigraphy of GB near the Sonora Margin. We analyze 17 high-resolution seismic profiles (13 with NE-SW strike and 3 with NW-SE strike). From this data set, the continental shelf stratigraphy at the Sonora Margin tilts toward the slope, showing 3 low angle unconformities due to tectonics and slope angle changes. The strata slope changes angle up to 60°. However, the constant trans-tension shear along the GTF causes gravitation instability on the slope, generating a few submarine landslides close to the Northern Rift, and the rotation of blocks, tilting toward the shelf. To the north, the GTF splits in two fault escarpments, forming a narrow pull-apart basin, known as Satellite Basin. The submarine canyon from the Sonora River flows through the Satellite Basin into the GB

  7. Dimorphism in methane seep-dwelling ecotypes of the largest known bacteria

    PubMed Central

    Bailey, Jake V; Salman, Verena; Rouse, Gregory W; Schulz-Vogt, Heide N; Levin, Lisa A; Orphan, Victoria J

    2011-01-01

    We present evidence for a dimorphic life cycle in the vacuolate sulfide-oxidizing bacteria that appears to involve the attachment of a spherical Thiomargarita-like cell to the exteriors of invertebrate integuments and other benthic substrates at methane seeps. The attached cell elongates to produce a stalk-like form before budding off spherical daughter cells resembling free-living Thiomargarita that are abundant in surrounding sulfidic seep sediments. The relationship between the attached parent cell and free-living daughter cell is reminiscent of the dimorphic life modes of the prosthecate Alphaproteobacteria, but on a grand scale, with individual elongate cells reaching nearly a millimeter in length. Abundant growth of attached Thiomargarita-like bacteria on the integuments of gastropods and other seep fauna provides not only a novel ecological niche for these giant bacteria, but also for animals that may benefit from epibiont colonization. PMID:21697959

  8. Transport and transfer rates in the waters of the continental shelf and slope: SEEP

    SciTech Connect

    Biscaye, P.E.; Anderson, R.F.

    1990-12-01

    At this writing we are in the midst of the first year of the present funding period. This period was approved as a three year grant, but, with the planned restructuring of the DOE regional programs, it will undoubtedly be less than that. With the exception of some relatively minor participation in connection with the French ECOMARGE programme and finishing of some work on SEEP-1 samples, all of our efforts in the current year have been in the preparation and analysis of samples and data obtained during the SEEP-2 field experiment in 1988--1989. We review briefly the progress on these sediment trap samples and transmissometer data at present and the status anticipated at the end of the current funding year with respect to the several kinds of analyses planned for them. We also briefly review the status of the last of the work on SEEP-1 samples and data, and of our participation in other collaborative projects. 14 refs.

  9. Warm Times and Cold Times During the Last 2000 Years Reconstructed from Icelandic Lake and Marine Sediments

    NASA Astrophysics Data System (ADS)

    Geirsdottir, A.; Miller, G. H.; Flowers, G. E.; Olafsdottir, S.; Olafsdottir, K. B.; Axford, Y.

    2007-12-01

    Holocene lacustrine records and their synchronization with available marine records from around Iceland provide compelling evidence for the alternating influences of the warm Irminger Current, and the cold East Greenland Current during Holocene times. Here we present data for the past 2000 years from two lakes in Iceland; Haukadalsvatn, a non-glacial lake in northwest Iceland; and Hvitarvatn, a glacial lake east of Langjokull glacier in Central Iceland. Physical and chemical proxies (magnetic susceptibility, TOC, biogenic silica, sedimentation rate, ice rafted debris) in the lake sediments were analyzed at subdecadal resolution. Overall, the interval from 2000 to 800 BP is characterized by a covariant pattern of biogenic silica and TOC, indicating relatively stable climate. A moderate Medieval Warm Period shows up in our records between 1200 and 800 BP. About 800 BP, a sharp increase in TOC coincides with a decline in biogenic silica. This decoupled pattern between the two proxies intensifies after 600 BP, ending about 100 BP. The δ13C of total organic carbon in Haukadalsvatn sediments during this interval (800 to 100 BP) indicates that carbon in the lake sediments was dominantly from terrestrial sources, most likely brought into the lake by soil erosion during storm events. The timing of most intense soil erosion coincides with historically documented sea-ice intensity off the coast of Iceland during this time. The ice rafted debris record from Hvitarvatn indicates that the height of the Little Ice Age (LIA) was between 1750 - 1850 AD. Glacier simulations constrained by our proxies from Hvitarvatn suggest Langjokull attained its maximum LIA volume around 1840 AD with a second advance around 1890 AD; the magnitude of glacier advance suggests summer temperature depression 1-2°C lower than present. The two outlet glaciers terminating in Hvitarvatn, Nordurjokull and Sudurjokull, advanced slowly into the lake, occupying their maximum lake area (4-6 km2) in the late

  10. Mineralization of vestimentiferan tubes at methane seeps on the Congo deep-sea fan

    NASA Astrophysics Data System (ADS)

    Haas, Antonie; Little, Crispin T. S.; Sahling, Heiko; Bohrmann, Gerhard; Himmler, Tobias; Peckmann, Jörn

    2009-02-01

    Vestimentiferan tube worms are prominent members of modern methane seep communities and are totally reliant as adults on symbiotic sulphide-oxidizing bacteria for their nutrition. The sulphide is produced in the sediment by a biochemical reaction called the anaerobic oxidation of methane (AOM). A well-studied species from the Gulf of Mexico shows that seep vestimentiferans 'mine' sulphide from the sediment using root-like, thin walled, permeable posterior tube extensions, which can also be used to pump sulphate and possibly hydrogen ions from the soft tissue back into the sediment to increase the local rate of AOM. The 'root-balls' of exhumed seep vestimentiferans are intimately associated with carbonate nodules, which are a result of AOM. We have studied vestimentiferan specimens and associated carbonates from seeps at the Kouilou pockmark field on the Congo deep-sea fan and find that some of the posterior 'root' tubes of living specimens are enclosed with carbonate indurated sediment and other, empty examples are partially or completely replaced by the carbonate mineral aragonite. This replacement occurs from the outside of the tube wall inwards and leaves fine-scale relict textures of the original organic tube wall. The process of mineralization is unknown, but is likely a result of post-mortem microbial decay of the tube wall proteins by microorganisms or the precipitation from locally high flux of AOM derived carbonate ions. The aragonite-replaced tubes from the Kouilou pockmarks show similar features to carbonate tubes in ancient seep deposits and make it more likely that many of these fossil tubes are those of vestimentiferans. These observations have implications for the supposed origination of this group, based on molecular divergence estimates.