Science.gov

Sample records for cold vacuum drying

  1. Cold vacuum drying facility design requirements

    SciTech Connect

    IRWIN, J.J.

    1999-07-01

    This document provides the detailed design requirements for the Spent Nuclear Fuel Project Cold Vacuum Drying Facility. Process, safety, and quality assurance requirements and interfaces are specified.

  2. Cold vacuum drying facility site evaluation report

    SciTech Connect

    Diebel, J.A.

    1996-03-11

    In order to transport Multi-Canister Overpacks to the Canister Storage Building they must first undergo the Cold Vacuum Drying process. This puts the design, construction and start-up of the Cold Vacuum Drying facility on the critical path of the K Basin fuel removal schedule. This schedule is driven by a Tri-Party Agreement (TPA) milestone requiring all of the spent nuclear fuel to be removed from the K Basins by December, 1999. This site evaluation is an integral part of the Cold Vacuum Drying design process and must be completed expeditiously in order to stay on track for meeting the milestone.

  3. Cold vacuum drying facility design requirements

    SciTech Connect

    Irwin, J.J.

    1997-09-24

    This release of the Design Requirements Document is a complete restructuring and rewrite to the document previously prepared and released for project W-441 to record the design basis for the design of the Cold Vacuum Drying Facility.

  4. Cold Vacuum Drying Facility hazard analysis report

    SciTech Connect

    Krahn, D.E.

    1998-02-23

    This report describes the methodology used in conducting the Cold Vacuum Drying Facility (CVDF) hazard analysis to support the CVDF phase 2 safety analysis report (SAR), and documents the results. The hazard analysis was performed in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, and implements the requirements of US Department of Energy (DOE) Order 5480.23, Nuclear Safety Analysis Reports.

  5. Project W-441, cold vacuum drying facility design requirements document

    SciTech Connect

    O`Neill, C.T.

    1997-05-08

    This document has been prepared and is being released for Project W-441 to record the design basis for the design of the Cold Vacuum Drying Facility. This document sets forth the physical design criteria, Codes and Standards, and functional requirements that were used in the design of the Cold Vacuum Drying Facility. This document contains section 3, 4, 6, and 9 of the Cold Vacuum Drying Facility Design Requirements Document. The remaining sections will be issued at a later date. The purpose of the Facility is to dry, weld, and inspect the Multi-Canister Overpacks before transport to dry storage.

  6. Cold Vacuum Drying (CVD) Facility Diesel Generator Fire Protection

    SciTech Connect

    SINGH, G.

    2000-04-25

    This Acceptance Test Procedure (ATP) has been prepared to demonstrate that the Fire Protection and Detection System installed by Project W-441 (Cold Vacuum Drying Facility and Diesel Generator Building) functions as required by project specifications.

  7. Spent nuclear fuel project cold vacuum drying facility operations manual

    SciTech Connect

    IRWIN, J.J.

    1999-05-12

    This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998) and, the HNF-SD-SNF-DRD-002, 1997, Cold Vacuum Drying Facility Design Requirements, Rev. 3a. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence, and has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  8. Cold Vacuum Drying Instrument Air System Design Description (SYS 12)

    SciTech Connect

    SHAPLEY, B.J.; TRAN, Y.S.

    2000-06-05

    This system design description (SDD) addresses the instrument air (IA) system of the spent nuclear fuel (SNF). This IA system provides instrument quality air to the Cold Vacuum Drying (CVD) Facility. The IA system is a general service system that supports the operation of the heating, ventilation, and air conditioning (HVAC) system, the process equipment skids, and process instruments in the CVD Facility. The following discussion is limited to the compressor, dryer, piping, and valving that provide the IA as shown in Drawings H-1-82222, Cold Vacuum Drying Facility Mechanical Utilities Compressed & Instrument Air P&ID, and H-1.82161, Cold Vacuum Drying Facility Process Equipment Skid P&ID MCO/Cusk Interface. Figure 1-1 shows the physical location of the 1A system in the CVD Facility.

  9. Cold Vacuum Drying (CVD) Facility Technical Safety Requirements

    SciTech Connect

    KRAHN, D.E.

    2000-08-08

    The Technical Safety Requirements (TSRs) for the Cold Vacuum Drying Facility define acceptable conditions, safe boundaries, bases thereof, and management or administrative controls required to ensure safe operation during receipt of multi-canister overpacks (MCOs) containing spent nuclear fuel. removal of free water from the MCOs using the cold vacuum drying process, and inerting and testing of the MCOs before transport to the Canister Storage Building. Controls required for public safety, significant defense in depth, significant worker safety, and for maintaining radiological and toxicological consequences below risk evaluation guidelines are included.

  10. Cold Vacuum Drying (CVD) Facility Design Basis Accident Analysis Documentation

    SciTech Connect

    PIEPHO, M.G.

    1999-10-20

    This document provides the detailed accident analysis to support HNF-3553, Annex B, Spent Nuclear Fuel Project Final Safety Analysis Report, ''Cold Vacuum Drying Facility Final Safety Analysis Report (FSAR).'' All assumptions, parameters and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the FSAR.

  11. Cold Vacuum Drying (CVD) Electrical System Design Description

    SciTech Connect

    BRISBIN, S.A.

    1999-06-17

    This document provides a technical explanation of the design and operation of the electrical system for the Cold Vacuum Drying Facility. This document identifies the requirements, and the basis for the requirements and details on how the requirements have been implemented in the design and construction of the facility. This document also provides general guidance for the surveillance, testing, and maintenance of this system.

  12. Fire Hazard Analysis for the Cold Vacuum Drying (CVD) Facility

    SciTech Connect

    JOHNSON, B.H.

    1999-08-19

    This Fire Hazard Analysis assesses the risk from fire within individual fire areas in the Cold Vacuum Drying Facility at the Hanford Site in relation to existing or proposed fire protection features to ascertain whether the objectives of DOE Order 5480.7A Fire Protection are met.

  13. Cold Vacuum Drying (CVD) Set Point Determination

    SciTech Connect

    PHILIPP, B.L.

    2000-09-04

    The Safety Class Instrumentation and Control (SCIC) system provides active detection and response to process anomalies that, if unmitigated, would result in a safety event. Specifically, actuation of the SCIC system includes two portions. The portion which isolates the MCO and initiates the safety-class helium (SCHe) purge, and the portion which detects and stops excessive heat input to the MCO annulus on high Tempered Water (TW) inlet temperature. For the MCO isolation and purge, the SCIC receives MCO pressure (both positive pressure and vacuum), helium flow rate, bay high temperature switch status, seismic trip status, and time-under-vacuum trips signals. The SCIC system will isolate the MCO and start an SCHe system purge if any of the following occur. (1) Isolation and purge from one of the SCHe ''isolation'' and ''purge'' buttons is manually initiated (administratively controlled). (2) The first vacuum cycle exceeds 8 hours at vacuum, or any subsequent vacuum cycle exceeds 4 hours at vacuum without re-pressurizing the MCO for a minimum of 4 hours. (This is referred to as the 8/4/4 requirement and provides thermal equilibrium within the MCO.) (3) MCO is below atmospheric pressure and the helium flow is below the minimum required to keep hydrogen less than 4% by volume. (When MCO pressure is below 12 torr there is insufficient hydrogen to exceed the 4% level and therefore no purge is required. A five minute time delay on low flow allows flow to be stopped in order to reach < 12 torr.) (4) The duration for the transition from above atmospheric pressure to vacuum (time to reach pressure below -11.7 psig [{approx}155 torr]) exceeds 5 minutes. (5) The duration for the transition from vacuum (below -11.1 psig [{approx}185 torr]) back to pressure [greater than 0.5 psig] exceeds 5 minutes. (6) MCO reaches a vacuum state (<0.5 psig) without an adequate, verified purge volume. (The MCO must be maintained above atmospheric pressure (approximately 0.5 psig) to prevent

  14. Cold vacuum drying facility 90% design review

    SciTech Connect

    O`Neill, C.T.

    1997-05-02

    This document contains review comment records for the CVDF 90% design review. Spent fuels retrieved from the K Basins will be dried at the CVDF. It has also been recommended that the Multi-Conister Overpacks be welded, inspected, and repaired at the CVD Facility before transport to dry storage.

  15. Cold Vacuum Drying (CVD) Set Point Determination

    SciTech Connect

    PHILIPP, B.L.

    2000-01-12

    This document provides the calculations used to determine the error of safety class signals used for the CVD process These errors are used with the Parameter limits to arrive at the initial set point. The Safety Class Instrumentation and Control (SCIC) system provides active detection and response to process anomalies that, if unmitigated would result in a safety event. Specifically actuation of the SCIC system includes two portions. The portion which isolates the MCO and initiates the safety-class helium (SCHe) purge, and the portion which detects and stops excessive heat input to the MCO on high tempered water MCO inlet temperature. For the MCO isolation and purge the SCIC receives signals from MCO pressure (both positive pressure and vacuum) helium flow rate, bay high temperature switches, seismic trips and time under vacuum trips.

  16. Cold Vacuum Drying (CVD) Facility Hazards Analysis Report

    SciTech Connect

    CROWE, R.D.

    2000-08-07

    This report describes the methodology used in conducting the Cold Vacuum Drying Facility (CVDF) Hazard Analysis to support the CVDF Final Safety Analysis Report and documents the results. The hazard analysis was performed in accordance with DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports,'' and implements the requirements of DOE Order 5480.23, ''Nuclear Safety Analysis Reports.''

  17. Cold Vacuum Drying (CVD) Electrical System Design Description

    SciTech Connect

    SINGH, G.

    2000-05-01

    This system design description (SDD) provides a technical explanation of the design and operation of the electrical system for the Cold Vacuum Drying Facility (CVDF). This SDD also identifies the requirements, and the basis for the requirements and details on how the requirements have been implemented in the design and construction of the facility. This SDD also provides general guidance for the surveillance, testing, and maintenance of this system.

  18. Gas Composition Transients in the Cold Vacuum Drying (CVD) Facility

    SciTech Connect

    PACKER, M.J.

    2000-05-10

    The purpose of this document is to evaluate selected problems involving the prediction of transient gas compositions during Cold Vacuum Drying operations. The problems were evaluated to answer specific design questions. The document is formatted as a topical report with each section representing a specific problem solution. The problem solutions are reported in the calculation format specified in HNF-1613, Rev. 0, EP 7.6.

  19. Cold Vacuum Drying (CVD) OCRWM Loop Error Determination

    SciTech Connect

    PHILIPP, B.L.

    2000-07-26

    Characterization is specifically identified by the Richland Operations Office (RL) for the Office of Civilian Radioactive Waste Management (OCRWM) of the US Department of Energy (DOE), as requiring application of the requirements in the Quality Assurance Requirements and Description (QARD) (RW-0333P DOE 1997a). Those analyses that provide information that is necessary for repository acceptance require application of the QARD. The cold vacuum drying (CVD) project identified the loops that measure, display, and record multi-canister overpack (MCO) vacuum pressure and Tempered Water (TW) temperature data as providing OCRWM data per Application of the Office of Civilian Radioactive Waste Management (OCRWM) Quality Assurance Requirements to the Hanford Spent Nuclear Fuel Project HNF-SD-SNF-RPT-007. Vacuum pressure transmitters (PT 1*08, 1*10) and TW temperature transmitters (TIT-3*05, 3*12) are used to verify drying and to determine the water content within the MCO after CVD.

  20. Cold Vacuum Drying facility design basis accident analysis documentation

    SciTech Connect

    CROWE, R.D.

    2000-08-08

    This document provides the detailed accident analysis to support HNF-3553, Annex B, Spent Nuclear Fuel Project Final Safety Analysis Report (FSAR), ''Cold Vacuum Drying Facility Final Safety Analysis Report.'' All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the FSAR. The calculations in this document address the design basis accidents (DBAs) selected for analysis in HNF-3553, ''Spent Nuclear Fuel Project Final Safety Analysis Report'', Annex B, ''Cold Vacuum Drying Facility Final Safety Analysis Report.'' The objective is to determine the quantity of radioactive particulate available for release at any point during processing at the Cold Vacuum Drying Facility (CVDF) and to use that quantity to determine the amount of radioactive material released during the DBAs. The radioactive material released is used to determine dose consequences to receptors at four locations, and the dose consequences are compared with the appropriate evaluation guidelines and release limits to ascertain the need for preventive and mitigative controls.

  1. Spent nuclear fuel project cold vacuum drying facility vacuum and purge system design description

    SciTech Connect

    IRWIN, J.J.

    1998-11-30

    This document provides the System Design Description (SDD) for the Cold Vacuum Drying Facility (CVDF) Vacuum and Purge System (VPS) . The SDD was developed in conjunction with HNF-SD-SNF-SAR-O02, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998), The HNF-SD-SNF-DRD-002, 1998, Cold Vacuum Drying Facility Design Requirements, and the CVDF Design Summary Report. The SDD contains general descriptions of the VPS equipment, the system functions, requirements and interfaces. The SDD provides references for design and fabrication details, operation sequences and maintenance. This SDD has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  2. Cold Vacuum Drying facility HVAC system design description

    SciTech Connect

    SINGH, G.

    2000-09-22

    This System Design Description (SDD) addresses the HVAC system for the CVDF. The CVDF HVAC system consists of five subsystems: (1) Administration building HVAC system; (2) Process bay recirculation HVAC system; (3) Process bay local exhaust HVAC and process vent system; (4) Process general supply/exhaust HVAC system; and (5) Reference air system. The HVAC and reference air systems interface with the following systems: the fire protection control system, Monitoring and Control System (MCS), electrical power distribution system (including standby power), compressed air system, Chilled Water (CHW) system, drainage system, and other Cold Vacuum Drying (CVD) control systems not addressed in this SDD.

  3. Thermal analysis of cold vacuum drying of spent nuclear fuel

    SciTech Connect

    Piepho, M.G.

    1998-07-20

    The thermal analysis examined transient thermal and chemical behavior of the Multi canister Overpack (MCO) container for a broad range of cases that represent the Cold Vacuum Drying (CVD) processes. The cases were defined to consider both normal and off-normal operations at the CVD Facility for an MCO with Mark IV N, Reactor spent fuel in four fuel baskets and one scrap basket. This analysis provides the basis for the MCO thermal behavior at the CVD Facility for its Phase 2 Safety Analysis Report (revision 4).

  4. Cold vacuum drying residual free water test description

    SciTech Connect

    Pajunen, A.L.

    1997-12-23

    Residual free water expected to remain in a Multi-Canister Overpack (MCO) after processing in the Cold Vacuum Drying (CVD) Facility is investigated based on three alternative models of fuel crevices. Tests and operating conditions for the CVD process are defined based on the analysis of these models. The models consider water pockets constrained by cladding defects, water constrained in a pore or crack by flow through a porous bed, and water constrained in pores by diffusion. An analysis of comparative reaction rate constraints is also presented indicating that a pressure rise test can be used to show MCO`s will be thermally stable at operating temperatures up to 75 C.

  5. Human factors engineering report for the cold vacuum drying facility

    SciTech Connect

    IMKER, F.W.

    1999-06-30

    The purpose of this report is to present the results and findings of the final Human Factors Engineering (HFE) technical analysis and evaluation of the Cold Vacuum Drying Facility (CVDF). Ergonomics issues are also addressed in this report, as appropriate. This report follows up and completes the preliminary work accomplished and reported by the Preliminary HFE Analysis report (SNF-2825, Spent Nuclear Fuel Project Cold Vacuum Drying Facility Human Factors Engineering Analysis: Results and Findings). This analysis avoids redundancy of effort except for ensuring that previously recommended HFE design changes have not affected other parts of the system. Changes in one part of the system may affect other parts of the system where those changes were not applied. The final HFE analysis and evaluation of the CVDF human-machine interactions (HMI) was expanded to include: the physical work environment, human-computer interface (HCI) including workstation and software, operator tasks, tools, maintainability, communications, staffing, training, and the overall ability of humans to accomplish their responsibilities, as appropriate. Key focal areas for this report are the process bay operations, process water conditioning (PWC) skid, tank room, and Central Control Room operations. These key areas contain the system safety-class components and are the foundation for the human factors design basis of the CVDF.

  6. Cold Vacuum Drying facility sanitary sewage collection system design description (SYS 27)

    SciTech Connect

    PITKOFF, C.C.

    1999-07-02

    This document describes the Cold Vacuum Drying Facility (CVDF) sanitary sewage collection system. The sanitary sewage collection system provides collection and storage of effluents and raw sewage from the CVDF to support the cold vacuum drying process. This system is comprised of a sanitary sewage holding tank and pipes for collection and transport of effluents to the sanitary sewage holding tank.

  7. Cold Vacuum Drying (CVD) Facility Safety Class Instrumentation & Control System Design Description

    SciTech Connect

    WHITEHURST, R.

    1999-12-01

    This document describes the Cold Vacuum Drying Facility (CVDF) Safety Class Instrumentation and Control system (SCIC). The SCIC provides safety functions and features to protect the environment, off-site and on-site personnel and equipment. The function of the SCIC is to provide automatic trip features, valve interlocks, alarms, indication and control for the cold vacuum drying process.

  8. Criticality Safety Evaluation Report for the Cold Vacuum Drying (CVD) Facilities Process Water Handling System

    SciTech Connect

    KESSLER, S.F.

    2000-08-10

    This report addresses the criticality concerns associated with process water handling in the Cold Vacuum Drying Facility. The controls and limitations on equipment design and operations to control potential criticality occurrences are identified.

  9. Criticality safety evaluation report for the cold vacuum drying facility's process water handling system

    SciTech Connect

    NELSON, J.V.

    1999-05-12

    This report addresses the criticality concerns associated with process water handling in the Cold Vacuum Drying Facility. The controls and limitations on equipment design and operations to control potential criticality occurrences are identified.

  10. Cold Vacuum Drying (CVD) Facility Vacuum Purge System Chilled Water System Design Description (SYS 47-4)

    SciTech Connect

    IRWIN, J.J.

    2000-06-13

    This system design description (SDD) addresses the Vacuum Purge System Chilled Water (VPSCHW) system. The discussion that follows is limited to the VPSCHW system and its interfaces with associated systems. The reader's attention is directed to Drawings H-1-82162, Cold Vacuum Drying Facility Process Equipment Skid P&ID Vacuum System, and H-1-82224, Cold Vacuum Drying Facility Mechanical Utilities Process Chilled Water P&ID. Figure 1-1 shows the location and equipment arrangement for the VPSCHW system. The VPSCHW system provides chilled water to the Vacuum Purge System (VPS). The chilled water provides the ability to condense water from the multi-canister overpack (MCO) outlet gases during the MCO vacuum and purge cycles. By condensing water from the MCO purge gas, the VPS can assist in drying the contents of the MCO.

  11. Spent nuclear fuel project cold vacuum drying facility process water conditioning system design description

    SciTech Connect

    IRWIN, J.J.

    1998-11-30

    This document provides the System Design Description (SDD) for the Cold Vacuum Drying Facility (CVDF) Process Water Conditioning (PWC) System. The SDD was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998), the HNF-SD-SNF-DRD-O02, 1998, Cold Vacuum Drying Facility Design Requirements, and the CVDF Design Summary Report. The SDD contains general descriptions of the PWC equipment, the system functions, requirements and interfaces. The SDD provides references for design and fabrication details, operation sequences and maintenance. This SDD has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  12. Spent nuclear fuel project cold vacuum drying facility supporting data and calculation database

    SciTech Connect

    IRWIN, J.J.

    1999-02-26

    This document provides a database of supporting calculations for the Cold Vacuum Drying Facility (CVDF). The database was developed in conjunction with HNF-SD-SNF-SAR-002, ''Safety Analysis Report for the Cold Vacuum Drying Facility'', Phase 2, ''Supporting Installation of Processing Systems'' (Garvin 1998). The HNF-SD-SNF-DRD-002, 1997, ''Cold Vacuum Drying Facility Design Requirements'', Rev. 2, and the CVDF Summary Design Report. The database contains calculation report entries for all process, safety and facility systems in the CVDF, a general CVD operations sequence and the CVDF System Design Descriptions (SDDs). This database has been developed for the SNFP CVDF Engineering Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  13. Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying (CVD) Facility Operations Manual

    SciTech Connect

    IRWIN, J.J.

    2000-02-03

    This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of the Processing Systems (Garvin 1998) and, the HNF-SD-SNF-DRD-002, 1997, Cold Vacuum Drying Facility Design Requirements, Rev. 3a. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence, and has been developed for the spent nuclear fuel project (SNFP) Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  14. Spent Nuclear Fuel (SNF) Cold Vacuum Drying (CVD) Facility Operations Manual

    SciTech Connect

    IRWIN, J.J.

    1999-07-02

    This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-553, Spent Nuclear Fuel Project Final Safety Analysis Report Annex B--Cold Vacuum Drying Facility. The HNF-SD-SNF-DRD-002, 1999, Cold Vacuum Drying Facility Design Requirements, Rev. 4, and the CVDF Final Design Report. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence and references to the CVDF System Design Descriptions (SDDs). This manual has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  15. Hanford spent nuclear fuel cold vacuum drying process equipment skid modification work plan

    SciTech Connect

    Graves, D.B.

    1998-05-04

    This document provides the work plan for modifications to be made to the first article Process Equipment Skid for the Cold Vacuum Drying (CVD) process. The primary objective is to provide engineering configuration control for any modifications made to the Process Equipment Skid during proof of performance testing at the 306E Facility. Development Control procedures will be used to complete the design drawings and Procurement Specification W-441-Pl-FA. The Process Equipment Skid is a system for removing water and drying Spent Nuclear Fuel contained in Multi-Canister Overpacks. The skid contains the Vacuum Purge System and the Tempered Water System (VPS/TWS). The first article Process Equipment Skid, and subsequent production skids, will later be installed in the Cold Vacuum Drying Facility.

  16. Cold Vacuum Drying facility potable water system design description (SYS 26)

    SciTech Connect

    PITKOFF, C.C.

    1999-07-02

    This document describes the Cold Vacuum Drying Facility (CVDF) potable water (PW) system. The PW system provides potable water to the CVDF for supply to sinks, water closets, urinals, showers, custodial service sinks, drinking fountains, the decontamination shower, supply water to the non-PW systems, and makeup water for the de-ionized water system.

  17. Cold Vacuum Drying facility condensate collection system design description (SYS 19)

    SciTech Connect

    PITKOFF, C.C.

    1999-07-06

    This document describes the Cold Vacuum Drying Facility (CVDF) condensate collection system (CCS). The function of the CCS is to collect cooling coil condensate from air-handling units in the CVDF and to isolate the condensate in collection tanks until the condensate is determined to be acceptable to drain to the effluent drain collection basin.

  18. Cold Vacuum Drying facility effluent drains system design description (SYS 18)

    SciTech Connect

    TRAN, Y.S.

    2000-05-11

    The Cold Vacuum Drying (CVD) Facility provides required process systems, supporting equipment, and facilities needed for the Spent Nuclear Fuel (SNF) mission. This system design description (SDD) addresses the effluent drain system (EFS), which supports removal of water from the process bay floors. The discussion that follows is limited to piping, valves, components, and the process bay floor drain retention basin.

  19. Preliminary safety evaluation for the spent nuclear fuel project`s cold vacuum drying system

    SciTech Connect

    Garvin, L.J., Westinghouse Hanford

    1996-07-01

    This preliminary safety evaluation (PSE) considers only the Cold Vacuum Drying System (CVDS) facility and its mission as it relates to the integrated process strategy (WHC 1995). The purpose of the PSE is to identify those CBDS design functions that may require safety- class and safety-significant accident prevention and mitigation features.

  20. Cold Vacuum Drying (CVD) Facility Safety Class Instrumentation and Control System Design Description SYS 93-2

    SciTech Connect

    WHITEHURST, R.

    1999-07-02

    This document describes the Cold Vacuum Drying Facility (CVDF) Safety Class Instrumentation and Control system (SCIC). The SCIC provides safety functions and features to protect the environment, off-site and on-site personnel and equipment. The function of the SCIC is to provide automatic trip features, valve interlocks, alarms, indication and control for the cold vacuum drying process.

  1. Cold Vacuum Drying facility crane and hoist system design description (SYS 14)

    SciTech Connect

    PITKOFF, C.C.

    1999-07-06

    This document describes the Cold Vacuum Drying Facility (CVDF) crane and hoist system. The overhead crane and hoist system is located in the process bays of the CVDF. It supports the processes required to drain the water and dry the spent nuclear fuel contained in the multi-canister overpacks after they have been removed from the K-Basins. The cranes will also be used to assist maintenance activities within the bays, as required.

  2. Cold vacuum drying proof of performance (first article testing) test results

    SciTech Connect

    MCCRACKEN, K.J.

    1999-06-23

    This report presents and details the test results of the first of a kind process referred to as Cold Vacuum Drying (CVD). The test results are compiled from several months of testing of the first process equipment skid and ancillary components to de-water and dry Multi-Canister Overpacks (MCO) filled with Spent Nuclear Fuel (SNF). The tests results provide design verifications, equipment validations, model validation data, and establish process parameters.

  3. Hanford spent nuclear fuel cold vacuum drying proof of performance test procedure

    SciTech Connect

    McCracken, K.J.

    1998-06-10

    This document provides the test procedure for cold testing of the first article skids for the Cold Vacuum Drying (CVD) process at the Facility. The primary objective of this testing is to confirm design choices and provide data for the initial start-up parameters for the process. The current scope of testing in this document includes design verification, drying cycle determination equipment performance testing of the CVD process and MCC components, heat up and cool-down cycle determination, and thermal model validation.

  4. Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying (CVD) Facility Master Equipment List

    SciTech Connect

    IRWIN, J.J.

    1999-09-21

    This document provides the master equipment list (MEL) for the Cold Vacuum Drying Facility (CVDF). The MEL was prepared to comply with DOE Standard 3024-98, Content of System Design Descriptions. The MEL was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems and the CVDF System Design Descriptions (SDD). The MEL identifies the SSCs and their safety functions, the design criteria, codes and standards, and quality assurance requirements that are required for establishing the safety design basis of the SSCs. The MEL also includes operating parameters, manufacturer information, and references the procurement specifications for the SSCs. This MEL shall be updated, expanded, and revised in accordance with future phases of the CVDF SAR, the SDD's, and CVDF operations.

  5. Thermal Analysis of Cold Vacuum Drying (CVD) of Spent Nuclear Fuel (SNF)

    SciTech Connect

    PIEPHO, M.G.

    2000-03-23

    The thermal analysis examined transient thermal and chemical behavior of the Multi-Canister Overpack (MCO) container for a broad range of cases that represent the Cold Vacuum Drying (CVD) processes. The cases were defined to consider both normal and off-normal operations at the CVD Facility for an MCO with N Reactor spent fuel. This analysis provides the basis for the MCO thermal behavior at the CVD Facility in support of the safety basis documentation.

  6. Cold Vacuum Drying facility HVAC system design description (SYS 30-1 THRU 30-5)

    SciTech Connect

    PITKOFF, C.C.

    1999-07-02

    This document describes the Cold Vacuum Drying Facility (CVDF) heating, ventilation, and air conditioning system (HVAC). The CVDF HVAC system consists of the Administrative building HVAC system, the process bay recirculation HVAC system, the process bay local HVAC and process vent system, the process general supply/exhaust HVAC system, and the Reference air system. These HVAC sub-systems support the CVDF process and provide secondary confinement of contamination and the required filtration of exhaust.

  7. Cold Vacuum Drying facility civil structural system design description (SYS 06)

    SciTech Connect

    PITKOFF, C.C.

    1999-07-06

    This document describes the Cold Vacuum Drying (CVD) Facility civil - structural system. This system consists of the facility structure, including the administrative and process areas. The system's primary purpose is to provide for a facility to house the CVD process and personnel and to provide a tertiary level of containment. The document provides a description of the facility and demonstrates how the design meets the various requirements imposed by the safety analysis report and the design requirements document.

  8. Cold Vacuum Drying facility deionized water system design description (SYS 25)

    SciTech Connect

    PITKOFF, C.C.

    1999-07-02

    This document describes the Cold Vacuum Drying Facility (CVDF) de-ionized water system. The de-ionized water system is used to provide clean, conditioned water, free from contaminants, chlorides and iron for the CVD Facility. Potable water is supplied to the deionized water system, isolated by a backflow prevention device. After the de-ionization process is complete, via a packaged de-ionization unit, de-ionized water is supplied to the process deionization unit.

  9. Cold Vacuum Drying facility fire protection system design description (SYS 24)

    SciTech Connect

    PITKOFF, C.C.

    1999-07-06

    This document describes the Cold Vacuum Drying Facility (CVDF) fire protection system (FPS). The FPS provides fire detection, suppression, and loss limitation for the CVDF structure, personnel, and in-process spent nuclear fuel. The system provides, along with supporting interfacing systems, detection, alarm, and activation instrumentation and controls, distributive piping system, isolation valves, and materials and controls to limit combustibles and the associated fire loadings.

  10. Cold Vacuum Drying (CVD) Facility General Service Helium System Design Description

    SciTech Connect

    FARWICK, C.C.

    1999-07-06

    This document describes the Cold Vacuum Drying Facility general service helium system (GSHe). The GSHe is a general service facility process support system, but does include safety-class systems, structures and components providing protection to the offsite public. The GSHe also performs safety-significant functions that provide protection to onsite workers. The GSHe essential function is to provide helium to support process functions during all phases of facility operations. GSHe helium is used to purge the cask and the MCO in order to maintain their internal atmospheres below hydrogen flammability concentrations. The GSHe also supplies helium to purge the PWC lines and components and the VPS vacuum pump.

  11. Cold Vacuum Drying Facility Crane and Hoist System Design Description (SYS 14)

    SciTech Connect

    TRAN, Y.S.

    2000-06-07

    This system design description (SDD) is for the Cold Vacuum Drying (CVD) Facility overhead crane and hoist system. The overhead crane and hoist system is a general service system. It is located in the process bays of the CVD Facility, supports the processes required to drain the water and dry the spent nuclear fuel (SNF) contained in the multi-canister overpacks (MCOs) after they have been removed from the K-Basins. The location of the system in the process bay is shown.

  12. Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying (CVD) Facility Operations Manual

    SciTech Connect

    IRWIN, J.J.

    2000-11-18

    The mission of the Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying Facility (CVDF) is to achieve the earliest possible removal of free water from Multi-Canister Overpacks (MCOs). The MCOs contain metallic uranium SNF that have been removed from the 100K Area fuel storage water basins (i.e., the K East and K West Basins) at the US. Department of Energy Hanford Site in Southeastern Washington state. Removal of free water is necessary to halt water-induced corrosion of exposed uranium surfaces and to allow the MCOs and their SNF payloads to be safely transported to the Hanford Site 200 East Area and stored within the SNF Project Canister Storage Building (CSB). The CVDF is located within a few hundred yards of the basins, southwest of the 165KW Power Control Building and the 105KW Reactor Building. The site area required for the facility and vehicle circulation is approximately 2 acres. Access and egress is provided by the main entrance to the 100K inner area using existing roadways. The CVDF will remove free. water from the MCOs to reduce the potential for continued fuel-water corrosion reactions. The cold vacuum drying process involves the draining of bulk water from the MCO and subsequent vacuum drying. The MCO will be evacuated to a pressure of 8 torr or less and backfilled with an inert gas (helium). The MCO will be sealed, leak tested, and then transported to the CSB within a sealed shipping cask. (The MCO remains within the same shipping Cask from the time it enters the basin to receive its SNF payload until it is removed from the Cask by the CSB MCO handling machine.) The CVDF subproject acquired the required process systems, supporting equipment, and facilities. The cold vacuum drying operations result in an MCO containing dried fuel that is prepared for shipment to the CSB by the Cask transportation system. The CVDF subproject also provides equipment to dispose of solid wastes generated by the cold vacuum drying process and transfer process water removed

  13. Spent nuclear fuel project cold vacuum drying facility safety equipment list

    SciTech Connect

    IRWIN, J.J.

    1999-02-24

    This document provides the safety equipment list (SEL) for the Cold Vacuum Drying Facility (CVDF). The SEL was prepared in accordance with the procedure for safety structures, systems, and components (SSCs) in HNF-PRO-516, ''Safety Structures, Systems, and Components,'' Revision 0 and HNF-PRO-097, Engineering Design and Evaluation, Revision 0. The SEL was developed in conjunction with HNF-SO-SNF-SAR-O02, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998). The SEL identifies the SSCs and their safety functions, the design basis accidents for which they are required to perform, the design criteria, codes and standards, and quality assurance requirements that are required for establishing the safety design basis of the SSCs. This SEL has been developed for the CVDF Phase 2 Safety Analysis Report (SAR) and shall be updated, expanded, and revised in accordance with future phases of the CVDF SAR until the CVDF final SAR is approved.

  14. Cold vacuum drying facility: Phase 1 FMEA/FMECA session report

    SciTech Connect

    Pitkoff, C.C.

    1998-04-21

    The mission of the Spent Nuclear Fuel (SNF) Project is to remove the fuel currently located in the K-Basins 100 Area to provide safe handling and interim storage of the fuel. The spent nuclear fuel will be repackaged in multi-canister overpacks, partially dried in the Cold Vacuum Drying Facility (CVDF), and then transported to the Canister Storage Building (CSB) for further processing and interim storage. The CVDF, a subproject to the SNF Project, will be constructed in the 100K area. The CVDF will remove free water and vacuum dry the spent nuclear fuel, making it safer to transport and store at the CSB. At present, the CVDF is approximately 90% complete with definitive design. Part of the design process is to conduct Failure Modes, Effects, and Criticality Analysis (FMECA). A four-day FMECA session was conducted August 18 through 21, 1997. The purpose of the session was to analyze 16 subsystems and operating modes to determine consequences of normal, upset, emergency, and faulted conditions with respect to production and worker safety. During this process, acceptable and unacceptable risks, needed design or requirement changes, action items, issues/concerns, and enabling assumptions were identified and recorded. Additionally, a path forward consisting of recommended actions would be developed to resolve any unacceptable risks. The team consisted of project management, engineering, design authority, design agent, safety, operations, and startup personnel. The report summarizes potential problems with the designs, design requirements documentation, and other baseline documentation.

  15. Spent nuclear fuel project cold vacuum drying facility tempered water and tempered water cooling system design description

    SciTech Connect

    IRWIN, J.J.

    1998-11-30

    This document provides the System Design Description (SDD) for the Cold Vacuum Drying Facility (CVDF) Tempered Water (TW) and Tempered Water Cooling (TWC) System . The SDD was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998), The HNF-SD-SNF-DRD-O02, 1998, Cold Vacuum Drying Facility Design Requirements, and the CVDF Design Summary Report. The SDD contains general descriptions of the TW and TWC equipment, the system functions, requirements and interfaces. The SDD provides references for design and fabrication details, operation sequences and maintenance. This SOD has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  16. Cold Vacuum Drying (CVD) Facility General Service Helium System Design Description

    SciTech Connect

    SHAPLEY, B.J.

    2000-04-20

    The purpose of this System Design Description (SDD) is to describe the characteristics of the Cold Vacuum Drying (CVD) Facility general service helium system. The general service helium system is a general service facility process support system, but does include safety-class structures, systems and components (SSCs) providing protection to the offsite public. The general service helium system also performs safety-significant functions that provide protection to onsite workers. The general helium system essential function is to provide helium (He) to support process functions during all phases of facility operations. General service helium is used to purge the cask and the MCO in order to maintain their internal atmospheres below hydrogen flammability concentrations. The general service helium system also supplies helium to purge the process water conditioning (PWC) lines and components and the vacuum purge system (VPS) vacuum pump. The general service helium system, if available following an Safety Class Instrument and Control System (SCIC) Isolation and Purge (IS0 and PURGE) Trip, can provide an alternate general service helium system source to supply the Safety-Class Helium (SCHe) System.

  17. Cold Vacuum Drying facility personnel monitoring system design description (SYS 12)

    SciTech Connect

    PITKOFF, C.C.

    1999-07-06

    This document describes the Cold Vacuum Drying Facility (CVDF) instrument air (IA) system that provides instrument quality air to the CVDF. The IA system provides the instrument quality air used in the process, HVAC, and HVAC instruments. The IA system provides the process skids with air to aid in the purging of the annulus of the transport cask. The IA system provides air for the solenoid-operated valves and damper position controls for isolation, volume, and backdraft in the HVAC system. The IA system provides air for monitoring and control of the HVAC system, process instruments, gas-operated valves, and solenoid-operated instruments. The IA system also delivers air for operating hand tools in each of the process bays.

  18. SLUDGE TREATMENT PROJECT KOP DISPOSITION - THERMAL AND GAS ANALYSIS FOR THE COLD VACUUM DRYING FACILITY

    SciTech Connect

    SWENSON JA; CROWE RD; APTHORPE R; PLYS MG

    2010-03-09

    The purpose of this document is to present conceptual design phase thermal process calculations that support the process design and process safety basis for the cold vacuum drying of K Basin KOP material. This document is intended to demonstrate that the conceptual approach: (1) Represents a workable process design that is suitable for development in preliminary design; and (2) Will support formal safety documentation to be prepared during the definitive design phase to establish an acceptable safety basis. The Sludge Treatment Project (STP) is responsible for the disposition of Knock Out Pot (KOP) sludge within the 105-K West (KW) Basin. KOP sludge consists of size segregated material (primarily canister particulate) from the fuel and scrap cleaning process used in the Spent Nuclear Fuel process at K Basin. The KOP sludge will be pre-treated to remove fines and some of the constituents containing chemically bound water, after which it is referred to as KOP material. The KOP material will then be loaded into a Multi-Canister Overpack (MCO), dried at the Cold Vacuum Drying Facility (CVDF) and stored in the Canister Storage Building (CSB). This process is patterned after the successful drying of 2100 metric tons of spent fuel, and uses the same facilities and much of the same equipment that was used for drying fuel and scrap. Table ES-l present similarities and differences between KOP material and fuel and between MCOs loaded with these materials. The potential content of bound water bearing constituents limits the mass ofKOP material in an MCO load to a fraction of that in an MCO containing fuel and scrap; however, the small particle size of the KOP material causes the surface area to be significantly higher. This relatively large reactive surface area represents an input to the KOP thermal calculations that is significantly different from the calculations for fuel MCOs. The conceptual design provides for a copper insert block that limits the volume available to

  19. Spent nuclear fuel project, Cold Vacuum Drying Facility human factors engineering (HFE) analysis: Results and findings

    SciTech Connect

    Garvin, L.J.

    1998-07-17

    This report presents the background, methodology, and findings of a human factors engineering (HFE) analysis performed in May, 1998, of the Spent Nuclear Fuels (SNF) Project Cold Vacuum Drying Facility (CVDF), to support its Preliminary Safety Analysis Report (PSAR), in responding to the requirements of Department of Energy (DOE) Order 5480.23 (DOE 1992a) and drafted to DOE-STD-3009-94 format. This HFE analysis focused on general environment, physical and computer workstations, and handling devices involved in or directly supporting the technical operations of the facility. This report makes no attempt to interpret or evaluate the safety significance of the HFE analysis findings. The HFE findings presented in this report, along with the results of the CVDF PSAR Chapter 3, Hazards and Accident Analyses, provide the technical basis for preparing the CVDF PSAR Chapter 13, Human Factors Engineering, including interpretation and disposition of findings. The findings presented in this report allow the PSAR Chapter 13 to fully respond to HFE requirements established in DOE Order 5480.23. DOE 5480.23, Nuclear Safety Analysis Reports, Section 8b(3)(n) and Attachment 1, Section-M, require that HFE be analyzed in the PSAR for the adequacy of the current design and planned construction for internal and external communications, operational aids, instrumentation and controls, environmental factors such as heat, light, and noise and that an assessment of human performance under abnormal and emergency conditions be performed (DOE 1992a).

  20. Cold cathode vacuum gauging system

    DOEpatents

    Denny, Edward C.

    2004-03-09

    A vacuum gauging system of the cold cathode type is provided for measuring the pressure of a plurality of separate vacuum systems, such as in a gas centrifuge cascade. Each casing is fitted with a gauge tube assembly which communicates with the vacuum system in the centrifuge casing. Each gauge tube contains an anode which may be in the form of a slender rod or wire hoop and a cathode which may be formed by the wall of the gauge tube. The tube is provided with an insulated high voltage connector to the anode which has a terminal for external connection outside the vacuum casing. The tube extends from the casing so that a portable magnet assembly may be inserted about the tube to provide a magnetic field in the area between the anode and cathode necessary for pressure measurements in a cold cathode-type vacuum gauge arrangement. The portable magnetic assembly is provided with a connector which engages the external high voltage terminal for providing power to the anode within in the gauge tube. Measurement is made in the same manner as the prior cold cathode gauges in that the current through the anode to the cathode is measured as an indication of the pressure. By providing the portable magnetic assembly, a considerable savings in cost, installation, and maintenance of vacuum gauges for pressure measurement in a gas centrifuge cascade is realizable.

  1. Cold cathode vacuum discharge tube

    DOEpatents

    Boettcher, Gordon E.

    1998-01-01

    A cold cathode vacuum discharge tube, and method for making same, with an interior surface of the trigger probe coated with carbon deposited by carbon vapor deposition (CVD) or diamond-like carbon (DLC) deposition. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging.

  2. Drying leather with vacuum and toggling sequentially

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated a drying method that will enable leather to be dried under vacuum and stretch sequentially to improve area yield. Vacuum drying offers fast speed at a low temperature, which would be advantageous to heat-vulnerable chrome-free leather. Adding a toggle action after vacuum drying cou...

  3. Cold cathode vacuum discharge tube

    DOEpatents

    Boettcher, G.E.

    1998-03-10

    A cold cathode vacuum discharge tube, and method for making same, are disclosed with an interior surface of the trigger probe coated with carbon deposited by carbon vapor deposition (CVD) or diamond-like carbon (DLC) deposition. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging. 15 figs.

  4. Cold cathode vacuum discharge tube

    DOEpatents

    Boettcher, G.E.

    1998-04-14

    A cold cathode vacuum discharge tube, and method for making same, with an interior surface of the trigger probe coated with carbon deposited by chemical vapor deposition (CVD) or diamond-like carbon (DLC) deposition are disclosed. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging. 14 figs.

  5. State of Washington Department of Health Radioactive air emissions notice of construction phase 1 for spent nuclear fuel project - cold vacuum drying facility, project W-441

    SciTech Connect

    Turnbaugh, J.E.

    1996-08-15

    This notice of construction (NOC) provides information regarding the source and the estimated annual possession quantity resulting from operation of the Cold Vacuum Drying Facility (CVDF). Additional details on emissions generated by the operation of the CVDF will be discussed again in the Phase 11 NOC. This document serves as a NOC pursuant to the requirements of WAC 246-247-060 for the completion of Phase I NOC, defined as the pouring of concrete for the foundation flooring, construction of external walls, and construction of the building excluding the installation of CVDF process equipment. A Phase 11 NOC will be submitted for approval prior to installing and is defined as the completion of the CVDF, which consisted installation of process equipment, air emissions control, and emission monitoring equipment. About 80 percent of the U.S. Department of Energy`s spent nuclear fuel (SNF) inventory is stored under water in the Hanford Site K Basins. Spent nuclear fuel in the K West Basin is contained in closed canisters while the SNF in the K East Basin is in open canisters, which allow free release of corrosion products to the K East Basin water.

  6. Composite drying with simultaneous vacuum and toggling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drying is an important mechanical operation in the leather making process. Leather acquires its final texture, consistency and flexibility in the drying operation. Vacuum drying offers fast water removal at a low temperature, which is particularly advantageous to heat-vulnerable chrome-free leathe...

  7. Wet/Dry Vacuum Cleaner

    NASA Technical Reports Server (NTRS)

    Reimers, Harold; Andampour, Jay; Kunitser, Craig; Thomas, Ike

    1995-01-01

    Vacuum cleaner collects and retains dust, wet debris, and liquids. Designed for housekeeping on Space Station Freedom, it functions equally well in normal Earth Gravity or in microgravity. Generates acoustic noise at comfortably low levels and includes circuitry that reduces electromagnetic interference to other electronic equipment. Draws materials into bag made of hydrophobic sheet with layers of hydrophilic super-absorbing pads at downstream end material. Hydrophilic material can gel many times its own weight of liquid. Blower also provides secondary airflow to cool its electronic components.

  8. Evaluation of Dry, Rough Vacuum Pumps

    NASA Technical Reports Server (NTRS)

    Hunter, Brian

    2006-01-01

    This document provides information on the testing and evaluation of thirteen dry rough vacuum pumps of various designs and from various manufacturers. Several types of rough vacuum pumps were evaluated, including scroll, roots, and diaphragm pumps. Tests included long term testing, speed curve generation, voltage variance, vibrations emissions and susceptibility, electromagnetic interference emissions and susceptibility, static leak rate, exhaust restriction, response/recovery time tests, and a contamination analysis for scroll pumps. Parameters were found for operation with helium, which often is not provided from the manufacturer

  9. Microwave-vacuum drying system (MIVAC). Progress report No. 3

    SciTech Connect

    Wear, F C

    1980-01-01

    Progress in developing a microwave vacuum system (MIVAC) for drying grain at a facility capable of handling up to 400 bushels/h and of storing up to 1000 bushels each of wet and dry grain is reported. The design of a prototype 48 kW drying system is described. (LCL)

  10. Composite Drying with Simultaneous Vacuum and Toggling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drying is one of key steps to govern the physical properties of leather and it is where leather acquires its final texture, consistency and flexibility. Recently we have been working diligently to improve chrome-free leather by optimizing its drying process. We developed a drying method using a co...

  11. Composite drying with simultaneous vacuum and toggling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drying is one of key steps to govern the physical properties of leather and it is where leather acquires its final texture, consistency and flexibility. Recently we have been working diligently to improve chrome-free leather by optimizing its drying process. We developed a drying method using a co...

  12. Is Cold Dark Matter a Vacuum Effect?

    NASA Astrophysics Data System (ADS)

    Houlden, Michael A.

    Current theories about the Universe based on an FLRW model conclude that it is composed of ~4% normal matter, ~28 % dark matter and ~68% Dark Energy which is responsible for the well-established accelerated expansion: this model works extremely well. As the Universe expands the density of normal and dark matter decreases while the proportion of Dark Energy increases. This model assumes that the amount of dark matter, whose nature at present is totally unknown, has remained constant. This is a natural assumption if dark matter is a particle of some kind - WIMP, sterile neutrino, lightest supersysmmetric particle or axion, etc. - that must have emerged from the early high temperature phase of the Big Bang. This paper proposes that dark matter is not a particle such as these but a vacuum effect, and that the proportion of dark matter in the Universe is actually increasing with time. The idea that led to this suggestion was that a quantum process (possibly the Higgs mechanism) might operate in the nilpotent vacuum that Rowlands postulates is a dual space to the real space where Standard Model fundamental fermions (and we) reside. This could produce a vacuum quantum state that has mass, which interacts gravitationally, and such states would be `dark matter'. It is proposed that the rate of production of dark matter by this process might depend on local circumstances, such as the density of dark matter and/or normal matter. This proposal makes the testable prediction that the ratio of baryonic to dark matter varies with redshift and offers an explanation, within the framework of Rowlands' ideas, of the coincidence problem - why has cosmic acceleration started in the recent epoch at redshift z ~0.55 when the Dark Energy density first became equal to the matter density?. This process also offers a potential solution to the `missing baryon' problem.

  13. Cold Vacuum Dryer (CVD) Facility Security System Design Description (SYS 54)

    SciTech Connect

    WHITEHURST, R.

    2000-09-11

    This system design description (SDD) addresses the Cold Vacuum Drying (CVD) Facility security system. The system's primary purpose is to provide reasonable assurance that breaches of security boundaries are detected and assessment information is provided to protective force personnel. In addition, the system is utilized by Operations to support reduced personnel radiation goals and to provide reasonable assurance that only authorized personnel are allowed to enter designated security areas.

  14. Mathematical modeling on vacuum drying of Zizyphus jujuba Miller slices.

    PubMed

    Lee, Jun Ho; Zuo, Li

    2013-02-01

    The thin-layer vacuum drying behavior of Zizyphus jujuba Miller slices was experimentally investigated at the temperature of 50, 60, and 70 °C and the mathematical models were used to fit the thin-layer vacuum drying of Z. jujuba slices. The increase in drying air temperature resulted in a decrease in drying time. The drying rate was found to increase with temperature, thereby reducing the total drying time. It was found that Z. jujuba slices with thickness of 4 mm would be dried up to 0.08 kg water/kg dry matter in the range of 180-600 min in the vacuum dryer at the studied temperature range from 70 to 50 °C. The Midilli et al. model was selected as the most appropriate model to describe the thin-layer drying of Z. jujuba slices. The diffusivity coefficient increased linearly over the temperature range from 1.47 × 10(-10) to 3.27 × 10(-10) m(2)/s, as obtained using Fick's second law. The temperature dependence of the effective diffusivity coefficient followed an Arrhenius-type relationship. The activation energy for the moisture diffusion was determined to be 36.76 kJ/mol. PMID:24425895

  15. Freeze-drying using vacuum-induced surface freezing.

    PubMed

    Kramer, Martin; Sennhenn, Bernd; Lee, Geoffrey

    2002-02-01

    A method of freezing during freeze-drying, which avoids undercooling of a solution and allows growth of large, dendritic ice crystals, was investigated. Aqueous solutions of mannitol, sucrose, or glycine were placed under a chamber vacuum of approximately 1 mbar at a shelf temperature of +10 degrees C. Under these conditions, the solutions exhibit surface freezing to form an ice layer of approximately 1-3 mm thickness. On releasing the vacuum and lowering the shelf temperature to below the freezing point of the ice in the solution, crystal growth occurs to yield large, chimney-like ice crystals. The duration of primary drying of a frozen cake--as measured by using inverse comparative pressure measurement--was up to 20% shorter than when using a "moderate" freezing procedure (2 K shelf temperature per min). With mannitol, however, the residual moisture content of the final dried product was higher than with moderate freezing, and with sucrose and glycine there was no difference. These findings are related to the structures of the dried cakes formed during freezing, as examined by light microscopy and wide-angle X-ray diffraction. The introduction of an annealing step (4 h at a shelf temperature slightly above the onset melting point of the ice in the frozen cake) combined with the vacuum-induced surface freezing procedure maintains the rapid primary drying and produces a low residual moisture (0.2%) for the freeze-dried mannitol solution. PMID:11835203

  16. Combined infrared-vacuum drying of pumpkin slices.

    PubMed

    Ghaboos, Seyyed Hossein Hosseini; Ardabili, Seyed Mahdi Seyedain; Kashaninejad, Mahdi; Asadi, Gholamhassan; Aalami, Mehran

    2016-05-01

    Infrared-vacuum dehydration characteristics of pumpkin (Cucurbita moschata) were evaluated in a combined dryer system. The effects of drying parameters, infrared radiation power (204-272 W), system pressure (5-15 kPa), slice thickness (5 and 7 mm) and time (0-220 min) on the drying kinetics and characteristics of pumpkin slices were investigated. The vacuum pressure, lamp power and slice had significant effect on the drying kinetics and various qualities of the dried pumpkin. Moisture ratios were fitted to 10 different mathematical equations using nonlinear regression analysis. The quadratic equation satisfactorily described the drying behavior of pumpkin slices with the highest r value and the lowest SE values. The effective moisture diffusivity increased with power and ranged between 0.71 and 2.86 × 10(-9) m(2)/s. With increasing in infrared radiation power from 204 to 272 W, β-carotene content of dried pumpkins decreased from 30.04 to 24.55 mg/100 g. The rise in infrared power has a negative effect on the color changes (ΔE). The optimum condition was determined as power, 238W, pressure, 5 kPa and slice thickness, 5mm. These conditions resulted into dried pumpkin slices with maximum B-carotene retention. PMID:27407204

  17. Overview of High Power Vacuum Dry RF Load Designs

    SciTech Connect

    Krasnykh, Anatoly

    2015-08-27

    A specific feature of RF linacs based on the pulsed traveling wave (TW) mode of operation is that only a portion of the RF energy is used for the beam acceleration. The residual RF energy has to be terminated into an RF load. Higher accelerating gradients require higher RF sources and RF loads, which can stably terminate the residual RF power. RF feeders (from the RF source though the accelerating section to the load) are vacuumed to transmit multi-megawatt high power RF. This overview will outline vacuumed RF loads only. A common method to terminate multi-MW RF power is to use circulated water (or other liquid) as an absorbing medium. A solid dielectric interface (a high quality ceramic) is required to separate vacuum and liquid RF absorber mediums. Using such RF load approaches in TW linacs is troubling because there is a fragile ceramic window barrier and a failure could become catastrophic for linac vacuum and RF systems. Traditional loads comprising of a ceramic disk have limited peak and average power handling capability and are therefore not suitable for high gradient TW linacs. This overview will focus on ''vacuum dry'' or ''all-metal'' loads that do not employ any dielectric interface between vacuum and absorber. The first prototype is an original design of RF loads for the Stanford Two-Mile Accelerator.

  18. Young's Moduli of Cold and Vacuum Plasma Sprayed Metallic Coatings

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Pawlik, R.; Loewenthal, W.

    2009-01-01

    Monolithic metallic copper alloy and NiCrAlY coatings were fabricated by either the cold spray (CS) or the vacuum plasma spray (VPS) deposition processes. Dynamic elastic modulus property measurements were conducted on these monolithic coating specimens between 300 K and 1273 K using the impulse excitation technique. The Young's moduli decreased almost linearly with increasing temperature at all temperatures except in the case of the CS Cu-23%Cr-5%Al and VPS NiCrAlY, where deviations from linearity were observed above a critical temperature. It was observed that the Young's moduli for VPS Cu-8%Cr were larger than literature data compiled for Cu. The addition of 1%Al to Cu- 8%Cr significantly increased its Young's modulus by 12 to 17% presumably due to a solid solution effect. Comparisons of the Young s moduli data between two different measurements on the same CS Cu- 23%Cr-5%Al specimen revealed that the values measured in the first run were about 10% higher than those in the second run. It is suggested that this observation is due to annealing of the initial cold work microstructure resulting form the cold spray deposition process.

  19. Drying Chrome-free Leather using a Combination of Vacuum and Toggling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drying, by which leather acquires its final texture, consistency and flexibility, is one of the most important operations in leather manufacturing. The objective for this research is to obtain an improved drying method, merging toggling and vacuum drying together. This is because vacuum drying off...

  20. Drying Chrome-free Leather Using a Combination of Vacuum and Toggling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drying, by which leather acquires its final texture, consistency and flexibility, is one of the most important operations in leather manufacturing. The objective for this research is to obtain an improved drying method, merging toggling and vacuum drying together. This is because vacuum drying offe...

  1. Vacuum Drying of Actual Transuranic Waste from Hanford Tanks

    SciTech Connect

    Tingey, Joel M.

    2004-05-20

    Composites of sludge from Tanks 241-B-203, 241-T-203, 241 T 204, and 241-T-110 at the Hanford Site were prepared at the Hanford 222-S Laboratory from core samples retrieved from these tanks. These tank composites may not be representative of the entire contents of the tank but provide some indication of the properties of the waste within these underground storage tanks. The composite samples were diluted with water at the Radiochemical Processing Laboratory at Pacific Northwest National Laboratory to represent the slurries that are expected to be received from tank retrieval operations and processed to produce a final waste stream. The dilutions were vacuum dried at 60 C and 26 in. of mercury ({approx} 100 torr). Semi-quantitative measurements of stickiness and cohesive strength were made on these dilutions as a function of drying time. Mass loss as a function of drying time and total solids concentration of the initial dilution and at the conclusion of drying were also measured. Visual observations of the sludge were recorded throughout the drying process.

  2. Cold-Cathodes for Sensors and Vacuum Microelectronics

    SciTech Connect

    Siegal, M.P.; Sullivan, J.P.; Tallant, D.R.; Simpson, R.L.; DiNardo, N.J.; Mercer, T.W.; Martinez-Miranda, L.J.

    1998-05-01

    The aim of this laboratory-directed research and development project was to study amorphous carbon (a-C) thin films for eventual cold-cathode electron emitter applications. The development of robust, cold-cathode emitters are likely to have significant implications for modern technology and possibly launch a new industry: vacuum micro-electronics (VME). The potential impact of VME on Sandia`s National Security missions, such as defense against military threats and economic challenges, is profound. VME enables new microsensors and intrinsically radiation-hard electronics compatible with MOSFET and IMEM technologies. Furthermore, VME is expected to result in a breakthrough technology for the development of high-visibility, low-power flat-panel displays. This work covers four important research areas. First, the authors studied the nature of the C-C bonding structures within these a-C thin films. Second, they determined the changes in the film structures resulting from thermal annealing to simulate the effects of device processing on a-C properties. Third, they performed detailed electrical transport measurements as a function of annealing temperature to correlate changes in transport properties with structural changes and to propose a model for transport in these a-C materials with implications on the nature of electron emission. Finally, they used scanning atom probes to determine important aspects on the nature of emission in a-C.

  3. Advanced development receiver thermal vacuum tests with cold wall

    NASA Technical Reports Server (NTRS)

    Sedgwick, Leigh M.

    1991-01-01

    The first ever testing of a full size solar dynamic heat receiver using high temperature thermal energy storage was completed. The heat receiver was designed to meet the requirements for operation on the Space Station Freedom. The purpose of the test program was to quantify the receiver thermodynamic performance, its operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber with liquid nitrogen cold shrouds and an aperture cold plate to partially simulate a low Earth orbit environment. The cavity of the receiver was heated by an infrared quartz lamp heater with 30 independently controllable zones to produce flux distributions typical of candidate concentrators. A closed Brayton cycle engine simulator conditioned a helium xenon gas mixture to specific interface conditions to simulate various operational modes of the solar dynamic power module. Inlet gas temperature, pressure, and flow rate were independently varied. A total of 58 simulated orbital cycles were completed during the test conduct period. The test hardware, execution of testing, test data, and post test inspections are described.

  4. Turmeric (Curcuma longa L.) drying: an optimization approach using microwave-vacuum drying.

    PubMed

    Hirun, Sathira; Utama-Ang, Niramon; Roach, Paul D

    2014-09-01

    This study investigated the effect of microwave power (2,400-4,000 W) and drying times (10-30 min) on the quality of dried turmeric in terms of colour (L, a*, b*), moisture content, water activity (aw), ash, antioxidant activity (2,2-dipheneyl-1-picrylhydrazyl; DPPH), total phenolic and curcuminoids content. In addition, Response Surface Methodology (RSM) was implemented to optimize the drying conditions for turmeric. A range of quality parameters, microwave power (W) and time (min) were fitted to quadratic models using a central composite design. The Analysis of Variance (ANOVA) statistic results suggested that the optimal qualities (i.e., aw, value, moisture content, phenolic content, curcuminoid content and EC50 and L value) of dried turmeric were achieved at high vacuum-microwave power (3,500-4,000 W) and long duration (27-30 min). The improvement in the quality of dried turmeric microwave-vacuum drying in these conditions was illustrated through the enzymatic browning reaction via inhibition of polyphenol oxidase which suppressed the formation of the brown pigments and increased the phenol substrates. PMID:25190873

  5. Vacuum contact drying kinetics of Jack pine wood and its influence on mechanical properties: industrial applications

    NASA Astrophysics Data System (ADS)

    Ouertani, Sahbi; Koubaa, Ahmed; Azzouz, Soufien; Hassini, Lamine; Dhib, Kamel Ben; Belghith, Ali

    2014-12-01

    Wood can be dried rapidly using combined contact heating and low vacuum. However, the impact on Jack pine wood drying and its mechanical strength remains unclear. The aim of this paper was to determine the kinetics of vacuum contact drying of Jack pine (Pinus banksiana) wood boards (dimensions 50 × 100 × 2480 mm3) under various drying temperatures and vacuum pressures at a pilot scale. Drying temperatures and vacuum pressures ranged from 65 to 95 °C and from 169.32 to 507.96 mbar, respectively. Dried samples were subjected to flexural loading to determine mechanical strength. Results indicated that drying time decreased with higher drying temperature and vacuum pressure, where as decreased vacuum pressure increased the temperature of wood samples at a constant drying temperature. Results also indicated that the mechanical properties of dried samples were affected by drying temperature, vacuum pressure, and lumber grade. Mechanical test results were then compared to those for a conventional drying process, revealing that vacuum contact drying do not have a negative impact on the wood mechanical properties.

  6. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives.

    PubMed

    Purtov, Julia; Frensemeier, Mareike; Kroner, Elmar

    2015-11-01

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm(2) provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects. PMID:26457864

  7. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives

    PubMed Central

    2015-01-01

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm2 provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects. PMID:26457864

  8. A novel dehydration technique for carrot slices implementing ultrasound and vacuum drying methods.

    PubMed

    Chen, Zhi-Gang; Guo, Xiao-Yu; Wu, Tao

    2016-05-01

    A novel drying technique using a combination of ultrasound and vacuum dehydration was developed to shorten the drying time and improve the quality of carrot slices. Carrot slices were dried with ultrasonic vacuum (USV) drying and vacuum drying at 65 °C and 75 °C. The drying rate was significantly influenced by the drying techniques and temperatures. Compared with vacuum drying, USV drying resulted in a 41-53% decrease in the drying time. The drying time for the USV and vacuum drying techniques at 75 °C was determined to be 140 and 340 min for carrot slices, respectively. The rehydration potential, nutritional value (retention of β-carotene and ascorbic acid), color, and textural properties of USV-dried carrot slices are predominately better compared to vacuum-dried carrot slices. Moreover, lower energy consumption was used in the USV technique. The drying data (time versus moisture ratio) were successfully fitted to Wang and Singh model. PMID:26703199

  9. Cold Vacuum Dryer (CVD) Facility Fire Protection System Design Description (SYS 24)

    SciTech Connect

    SINGH, G.

    2000-10-17

    This system design description (SDD) addresses the Cold Vacuum Drying (CVD) Facility fire protection system (FPS). The primary features of the FPS for the CVD are a fire alarm and detection system, automatic sprinklers, and fire hydrants. The FPS also includes fire extinguishers located throughout the facility and fire hydrants to assist in manual firefighting efforts. In addition, a fire barrier separates the operations support (administrative) area from the process bays and process bay support areas. Administrative controls to limit combustible materials have been established and are a part of the overall fire protection program. The FPS is augmented by assistance from the Hanford Fire Department (HED) and by interface systems including service water, electrical power, drains, instrumentation and controls. This SDD, when used in conjunction with the other elements of the definitive design package, provides a complete picture of the FPS for the CVD Facility.

  10. Growth control of Listeria innocua 2030c on vacuum-packaged cold-smoked salmon by lactic acid bacteria.

    PubMed

    Tomé, Elisabetta; Gibbs, Paul A; Teixeira, Paula C

    2008-02-10

    Five bacteriocin-producing lactic acid bacteria (LAB): Enterococcus faecium ET05, Lactobacillus curvatus ET06, L. curvatus ET30, L. deldrueckii ET32 and Pediococcus acidilactici ET34, selected by their capacity for growth and producing inhibition in vitro at high salt-on-water content, low temperature and anaerobic atmosphere, conditions simulating cold-smoked fish, were inoculated onto salmon fillets, in co-culture with Listeria innocua 2030c, and cold-smoked processed (dry salted for 6 h; drying for 6 h; smoke for 2 h). The finished product was then packed under vacuum and stored at 5 degrees C. Enumeration of LAB and L. innocua was performed during storage. Results showed that strain E. faecium ET05 was the best biopreservative candidate for controlling L. innocua growth in vacuum-packaged cold-smoked salmon (CSS) processed under the salting/drying/smoking parameters referred above. L. curvatus ET30 and L. delbrueckii ET32 also showed a good biopreservation potential for CSS although they were less effective than the former. L. curvatus ET06 and P. acidilactici ET34 showed a bacteriostatic mode of action against the target bacteria in vitro as well as when inoculated into the salmon fillets. This study describes a potential application of five different LAB in the biopreservation of Listeria in CSS. PMID:18068846

  11. Cold Vacuum Drying (CVD) Electrical Equipment Hydrogen Hazard Protection

    SciTech Connect

    PHILIPP, B.L.

    2000-01-20

    This document explains that with the use of a helium purge and adequate control, the systems attached to the MCO in the CVDF are not in a flammable environment. Effective safeguards against ventilation failure are provided which reduces the flammability hazard classification within the protected enclosure to Unclassified. Intrinsically safe components are not required for this system.

  12. Development of a compact freeze vacuum drying for jelly fish (Schypomedusae)

    NASA Astrophysics Data System (ADS)

    Alhamid, M. Idrus; Yulianto, M.; Nasruddin

    2012-06-01

    A new design of a freeze vacuum drying with internal cooling and heater from condenser's heat loss was built and tested. The dryer was used to dry jelly fish (schypomedusae), to study the effect of drying parameters such as the temperature within the drying chamber on mass losses (evaporation) during the freezing stage and the moisture ratio at the end of the drying process. The midili thin layer mathematical drying model was used to estimate and predict the moisture ratio curve based on different drying chamber temperatures. This experiment shows that decreasing the drying chamber temperature with constant pressure results in less mass loss during the freezing stage Drying time was reduced with an increase in drying temperature. Decreasing the drying chamber temperature results in lower pressure saturation of the material has no effect of drying chamber pressure on mass transfer.

  13. Preparation of High-Grade Powders from Tomato Paste Using a Vacuum Foam Drying Method.

    PubMed

    Sramek, Martin; Schweiggert, Ralf Martin; van Kampen, Andreas; Carle, Reinhold; Kohlus, Reinhard

    2015-08-01

    We present a rapid and gentle drying method for the production of high-grade tomato powders from double concentrated tomato paste, comparing results with powders obtained by foam mat air drying and freeze dried powders. The principle of this method consists of drying tomato paste in foamed state at low temperatures in vacuum. The formulations were dried at temperatures of 50, 60, and 70 °C and vacuum of 200 mbar. Foam stability was affected by low serum viscosity and the presence of solid particles in tomato paste. Consequently, serum viscosity was increased by maltodextrin addition, yielding optimum stability at tomato paste:maltodextrin ratio of 2.4:1 (w/w) in dry matter. Material foamability was improved by addition of 0.5% (w/w, fresh weight) egg white. Because of solid particles in tomato paste, foam air filling had to be limited to critical air volume fraction of Φ = 0.7. The paste was first pre-foamed to Φ = 0.2 and subsequently expanded in vacuo. After drying to a moisture content of 5.6% to 7.5% wet base (w.b.), the materials obtained were in glassy state. Qualities of the resulting powders were compared with those produced by freeze and air drying. Total color changes were the least after vacuum drying, whereas air drying resulted in noticeable color changes. Vacuum foam drying at 50 °C led to insignificant carotenoid losses, being equivalent to the time-consuming freeze drying method. In contrast, air drying caused lycopene and β-carotene losses of 18% to 33% and 14% to 19% respectively. Thus, vacuum foam drying enables production of high-grade tomato powders being qualitatively similar to powders obtained by freeze drying. PMID:26189747

  14. 46 CFR 148.245 - Direct reduced iron (DRI); lumps, pellets, and cold-molded briquettes.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... resistant to fire and passage of water. (c) DRI lumps, pellets, or cold-molded briquettes that are wet, or... cold-molded briquettes in bulk must ensure that an inert atmosphere of less than 5 percent oxygen and...

  15. Effect of far-infrared radiation assisted microwave-vacuum drying on drying characteristics and quality of red chilli.

    PubMed

    Saengrayap, Rattapon; Tansakul, Ampawan; Mittal, Gauri S

    2015-05-01

    Fresh red chilli (Capsicum frutescens L.) was dried using microwave-vacuum drying (MVD) and the far-infrared radiation assisted microwave-vacuum drying (FIR-MVD) method. The MVD was operated using the microwave power of 100, 200 and 300 W under absolute pressure of 21.33, 28.00 and 34.66 kPa. In terms of FIR-MVD, far-infrared power was applied at 100, 200 and 300 W. The effect of drying conditions, i.e., microwave power, absolute pressure and FIR power, on drying characteristics and qualities of dried product were investigated. It was observed that an increase in microwave power and FIR power with a decrease in absolute pressure could accelerate the drying rate. It was also found that FIR-MVD method required shorter drying time than MVD. Moreover, qualities, i.e., color changes, texture, rehydration ability and shrinkage, of FIR-MVD chilli were found to be better than those of MVD. Consequently, the optimum drying condition of FIR-MVD within this study was microwave power of 300 W under absolute pressure of 21.33 kPa with FIR power of 300 W. PMID:25892759

  16. Improvement of Dry Etching Resistance of Cyclized Polybutadiene Negative Resist by Vacuum Baking

    NASA Astrophysics Data System (ADS)

    Shimizu, Toshio; Cornu, Vanessa

    1992-12-01

    The dry etching resistance of cyclized polybutadiene negative resist, baked both in air and in vacuum, was investigated. After postbaking in air at above 160°C, the resist etching rate sharply rises. It was clarified by differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FT-IR, RAS method) and X-ray photoelectron spectroscopy (XPS) that the resist oxidation decreases dry etching resistance. On the other hand, the highest resistance was obtained by baking the resist in vacuum at 200°C. The postbaking technique was confirmed as a method for increasing-dry etching resistance.

  17. Near infrared photography with a vacuum-cold camera. [Orion nebula observation

    NASA Technical Reports Server (NTRS)

    Rossano, G. S.; Russell, R. W.; Cornett, R. H.

    1980-01-01

    Sensitized cooled plates have been obtained of the Orion nebula region and of Sh2-149 in the wavelength ranges 8000 A-9000 A and 9,000 A-11,000 A with a recently designed and constructed vacuum-cold camera. Sensitization procedures are described and the camera design is presented.

  18. CGH Figure Testing of Aspherical Mirrors in Cold Vacuums

    NASA Technical Reports Server (NTRS)

    Chambers, Victor John; Ohl, Raymond G.; Mink, Ronald G.; Arnold, Steven

    2009-01-01

    An established method of room-temperature interferometric null testing of mirrors having simple shapes (e.g., flat, spherical, or spheroidal) has been augmented to enable measurement of errors in the surface figures of off-axis, non-axisymmetric, aspherical mirrors when the mirrors are located inside cryogenic vacuum chambers. The established method involves the use of a computer-generated hologram (CGH), functionally equivalent to a traditional null lens, to modify the laser beam of an imaging interferometer to obtain a reference wavefront that matches the ideal surface figure of a mirror under test. The CGH is inserted at the appropriate position and orientation in the optical path of the imaging interferometer, which, in turn, is appropriately positioned and oriented with respect to the mirror under test. Deviations of the surface figure of the mirror from the ideal surface figure manifest themselves as interference fringes. Interferograms are recorded and analyzed to deduce figure errors.

  19. Non-enzymatic browning and flavour kinetics of vacuum dried onion slices

    NASA Astrophysics Data System (ADS)

    Mitra, Jayeeta; Shrivastava, Shanker L.; Rao, Pavuluri S.

    2015-01-01

    Onion slices were dehydrated under vacuum to produce good quality dried ready-to-use onion slices. Colour development due to non-enzymatic browning and flavour loss in terms of thiosulphinate concentration was determined, along with moisture content and rehydration ratio. Kinetics of non-enzymatic browning and thiosulphinate loss during drying was analysed. Colour change due to non-enzymatic browning was found to be much lower in the case of vacuum dried onion, and improved flavour retention was observed as compared to hot air dried onion slices. The optical index values for non-enzymatic browning varied from 18.41 to 38.68 for untreated onion slices and from 16.73 to 36.51 for treated slices, whereas thiosulphinate concentration in the case of untreated onion slices was within the range of 2.96-3.92 μmol g-1 for dried sample and 3.71-4.43 μmol g-1 for the treated onion slices. Rehydration ratio was also increased, which may be attributed to a better porous structure attained due to vacuum drying. The treatment applied was found very suitable in controlling non-enzymatic browning and flavour loss during drying, besides increasing rehydration ratio. Hence, high quality dried ready- to-use onion slices were prepared.

  20. Methods for batch fabrication of cold cathode vacuum switch tubes

    DOEpatents

    Walker, Charles A.; Trowbridge, Frank R.

    2011-05-10

    Methods are disclosed for batch fabrication of vacuum switch tubes that reduce manufacturing costs and improve tube to tube uniformity. The disclosed methods comprise creating a stacked assembly of layers containing a plurality of adjacently spaced switch tube sub-assemblies aligned and registered through common layers. The layers include trigger electrode layer, cathode layer including a metallic support/contact with graphite cathode inserts, trigger probe sub-assembly layer, ceramic (e.g. tube body) insulator layer, and metallic anode sub-assembly layer. Braze alloy layers are incorporated into the stacked assembly of layers, and can include active metal braze alloys or direct braze alloys, to eliminate costs associated with traditional metallization of the ceramic insulator layers. The entire stacked assembly is then heated to braze/join/bond the stack-up into a cohesive body, after which individual switch tubes are singulated by methods such as sawing. The inventive methods provide for simultaneously fabricating a plurality of devices as opposed to traditional methods that rely on skilled craftsman to essentially hand build individual devices.

  1. Microwave application on air drying of apple (var. Granny Smith). The influence of vacuum impregnation pretreatment

    NASA Astrophysics Data System (ADS)

    Martin Esparza, Maria Eugenia

    Combined hot air-microwave drying has been studied on apple (var. Granny Smith), with and without vacuum impregnation (VI) pretreatment with isotonic solution, respect to kinetics, microstructural and final quality items. In order to reach this objective, a drier has been designed and built, that allows to control and to register all the variables which take place during the drying process. Thermal and dielectric properties, that are very important characteristics when studying heat and mass transfer phenomena that occur during the combined drying process, have been related to temperature and/or moisture content throughout empirical equations. It could be observed that all these properties decreased with product moisture content. Respect to dielectric properties, a relationship among water binding forms to food structure and water molecules relaxation frequency has been found. On the other hand, the effect of drying treatment conditions (air rate, drying temperature, sample thickness and incident microwave power) on the drying rate, from an empirical model based on diffusional mechanisms with two kinetic parameters (k1 and k2), both function of the incident microwave power, has been studied. Microwave application to air drying implied a notable decrease on drying time, the higher the applied power the higher the reduction. Microstructural study by Cryo-Sem revealed fast water vaporization taking place when microwaves are applied. Vacuum impregnation did not implied an additional advantage for combined drying as drying rate was similar to that of NIV samples. Finally, it has been studied the influence of process conditions on the color and mechanical properties of the dried product (IV and NIV). Vacuum impregnation implied an increase on the fracture resistance and less purity and tone angle. Microwave application induced product browning with respect to air drying (tone decreased and purity increased).

  2. Modeling and optimization of red currants vacuum drying process by response surface methodology (RSM).

    PubMed

    Šumić, Zdravko; Vakula, Anita; Tepić, Aleksandra; Čakarević, Jelena; Vitas, Jasmina; Pavlić, Branimir

    2016-07-15

    Fresh red currants were dried by vacuum drying process under different drying conditions. Box-Behnken experimental design with response surface methodology was used for optimization of drying process in terms of physical (moisture content, water activity, total color change, firmness and rehydratation power) and chemical (total phenols, total flavonoids, monomeric anthocyanins and ascorbic acid content and antioxidant activity) properties of dried samples. Temperature (48-78 °C), pressure (30-330 mbar) and drying time (8-16 h) were investigated as independent variables. Experimental results were fitted to a second-order polynomial model where regression analysis and analysis of variance were used to determine model fitness and optimal drying conditions. The optimal conditions of simultaneously optimized responses were temperature of 70.2 °C, pressure of 39 mbar and drying time of 8 h. It could be concluded that vacuum drying provides samples with good physico-chemical properties, similar to lyophilized sample and better than conventionally dried sample. PMID:26948639

  3. Assessment of vacuum-dried peppermint (Mentha piperita L.) as a source of natural antioxidants.

    PubMed

    Uribe, Elsa; Marín, Daniela; Vega-Gálvez, Antonio; Quispe-Fuentes, Issis; Rodríguez, Angela

    2016-01-01

    The purpose of this study was to investigate the effect of temperature in the vacuum drying process of Mentha piperita L. (50 to 90 °C). Generally, drying processes affect the quality of product, however, vacuum drying works under sub-atmospheric pressures. In order to investigate how temperature affects this herb, as to color, chlorophyll, total phenolic (TPC), total flavonoid (TFC) contents, antioxidant activity by DPPH and ORAC methods. Mineral, vitamin C and sugar contents were also evaluated. A slight change in color and chlorophyll content was observed in the samples. The highest values for TPC, TFC and antioxidant activity methods were obtained at 50 and 70 °C however, a decrease in the vitamin C content was observed. Minerals such as K, Ca, Mg and Na were found. Sucrose showed the highest sugar content. This work suggests that M. piperita L. can be used as a natural antioxidant, whether fresh or dried. PMID:26213010

  4. Intravertebral vacuum cleft sign: a cause of vertebral cold defect on bone scan.

    PubMed

    Kim, Heeyoung; Jun, Sungmin; Park, Se Kyoung; Kim, Geun-Tae; Park, Seol Hoon

    2016-05-01

    A 67-year-old female presented with an acute compression fracture with an intravertebral vacuum cleft (IVC) sign of the T12 vertebra. Her bone scan demonstrated a cold defect of the fractured vertebra. Although the IVC sign is related to vertebral osteonecrosis, to the best of our knowledge, a cold defect on a bone scan has not been reported in an acute compression fracture with an IVC sign. In this case review, various imaging findings of osteonecrotic compression fractures are discussed along with a review of the current literature. PMID:26758604

  5. Microwave-Osmotic/Microwave-Vacuum Drying of Whole Cranberries: Comparison with Other Methods.

    PubMed

    Wray, Derek; Ramaswamy, Hosahalli S

    2015-12-01

    A novel drying method for frozen-thawed whole cranberries was developed by combining microwave osmotic dehydration under continuous flow medium spray (MWODS) conditions with microwave vacuum finish-drying. A central composite rotatable design was used to vary temperature (33 to 67 °C), osmotic solution concentration (33 to 67 °B), contact time (5 to 55 min), and flow rate (2.1 to 4.1 L/min) in order to the determine the effects of MWODS input parameters on quality of the dried berry. Quality indices monitored included colorimetric and textural data in addition to anthocyanin retention and cellular structure. Overall it was found that the MWODS-MWV process was able to produce dried cranberries with quality comparable to freeze dried samples in much shorter time. Additionally, cranberries dried via the novel process exhibited much higher quality than those dried via either vacuum or convective air drying in terms of color, anthocyanin content, and cellular structure. PMID:26565564

  6. Indium gallium nitride/gallium nitride vacuum microelectronic cold cathodes: Piezoelectric surface barrier lowering

    NASA Astrophysics Data System (ADS)

    Underwood, Robert Douglas

    Vacuum microelectronic devices are electronic devices fabricated using microelectronic processing and using vacuum as a transport medium. The electron velocity in vacuum can be larger than in solid state, which allows higher frequency operation of vacuum devices compared to solid-state devices. The effectiveness of vacuum microelectronic devices relies on the realization of an efficient source of electrons supplied to the vacuum. Cold cathodes do not rely on thermal energy for the emission of electrons into vacuum. Cold cathodes based on field emission are the most common types of vacuum microelectronic cold cathode because they have a very high efficiency and high current density electron emission. Materials used to fabricate field emitters must have the properties of high electron concentration, low surface reactivity, resistance to sputtering by ions, high thermal conductivity, and a method of fabrication of uniform arrays of field emitters. The III--V nitride semiconductors possess these material properties and uniform arrays of GaN field emitter pyramids have been produced by selective area, self-limited metalorganic chemical vapor deposition. The first GaN field emitter arrays were fabricated and measured. Emission currents as large as 82 muA at 1100 V from 245,000 pyramids have been realized using an external anode, separated by 0.25 mm, to apply voltage bias. The operation voltage was reduced by the development of an integrated anode structure. The anode-cathode separation achievable with the integrated anode was in the range of 0.5--2.4 m. The turn-on voltages of these devices were reduced to the range of 175--435 V. The operation voltage of field emitter cathodes is related to the surface energy barrier, which for n-type semiconductors is the electron affinity. A new method to reduce the effective electron affinity using a piezoelectric dipole in an InGaN/GaN heterostructure has been proposed and tested. The piezoelectric field produced in the strained In

  7. W(310) cold-field emission characteristics reflecting the vacuum states of an extreme high vacuum electron gun

    SciTech Connect

    Cho, Boklae; Shigeru, Kokubo; Oshima, Chuhei

    2013-01-15

    An extremely high vacuum cold-field electron emission (CFE) gun operating at pressures ranging from {approx}10{sup -8} Pa to {approx}10{sup -10} Pa was constructed. Only the CFE current emitting from W(310) surfaces revealed the existence of a 'stable region' with high current angular density just after tip flash heating. In the 'stable region,' the CFE current was damped very slowly. The presence of non-hydrogen gas eliminated this region from the plot. Improvement of the vacuum prolonged the 90% damping time of the CFE current from {approx}10 min to 800 min. The current angular density I{sup Prime} of CFE current was 60 and 250 {mu}A/sr in the 'stable region' for total CFE currents of 10 and 50 {mu}A, respectively. These results were about three times larger than I{sup Prime} when measured after the complete damping of the CFE current. The CFE gun generated bright scanning transmission electron microscopy images of a carbon nanotube at 30 kV.

  8. Ultrasonic Spray Drying vs High Vacuum and Microwaves Technology for Blueberries

    NASA Astrophysics Data System (ADS)

    Candia-Muñoz, N.; Ramirez-Bunster, M.; Vargas-Hernández, Y.; Gaete-Garretón, L.

    Interest in high quality foods: good taste and a high content of nutrients with healthy beneficial effects are increasing. Fruits have good properties but, they are lost because the oxidation process, additionally, for different reasons a 40% of harvested fruit are lost. To conserve the fruit properties an ultrasonic assisted spray dryer was developed and tested, comparing its results with microwave-vacuum drying technology. Results did shown taste, color, smell, particle shape and size distribution better than the conventional one. The antioxidants conservation were quite good except in the anthocyanins, in which the microwave and vacuum technology shown best results.

  9. Development of a two-color projection system for the KHILS Vacuum Cold Chamber (KVACC)

    NASA Astrophysics Data System (ADS)

    Flynn, David S.; Marlow, Steven A.; Kircher, James R.; Glattke, Eric W.; Murrer, Robert Lee; Weir, John S.

    2000-07-01

    The KHILS Vacuum Cold Chamber (KVACC) was developed to provide the capability of performing hardware-in-the-loop testing of infrared seekers requiring scenes involving cold backgrounds. Being able to project cold backgrounds enables the projector to simulate high-altitude exoatmospheric engagements. Previous tests with the KVACC projection system have used only one resistive-array projection device. In order to realistically stimulate a 2-color seeker, it is necessary to project in two, independently controlled IR bands. Missile interceptors commonly use two or more colors; thus, a 2-color projection capability has been developed for the KVACC system. The 2- color projection capability is being accomplished by optically combining two Phase 3 WISP arrays with a dichroic beam combiner. Both WISP arrays are cooled to user-selected temperatures ranging from ambient temperature to below 150 K. In order to test the projection system, a special-purpose camera has also been developed. The camera is designed to operate inside the vacuum chamber. It has a cooled, all- reflective broadband optical system to enable the measurement of low radiance levels in the 3 - 12 micrometer spectrum. Camera upgrades later this year will allow measurements in two independent wavebands. Both the camera and the projector will be described in this paper.

  10. Effects of Drying Temperature on Barrier and Mechanical Properties of Cold-Water Fish Gelatin Films

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fish gelatin films made from Alaska pollock (Theragra chalcogramma) and Alaska pink salmon (Oncorhynchus gorbuscha) were dried at 4C, 23C, 40C, and 60C. The tensile, thermal, thermal stability, water sorption, and water vapor permeability properties were examined for cold-cast gelatin films (dried b...

  11. 46 CFR 148.245 - Direct reduced iron (DRI); lumps, pellets, and cold-molded briquettes.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Direct reduced iron (DRI); lumps, pellets, and cold-molded briquettes. 148.245 Section 148.245 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Requirements for Certain Materials § 148.245 Direct reduced iron (DRI); lumps, pellets, and...

  12. 46 CFR 148.245 - Direct reduced iron (DRI); lumps, pellets, and cold-molded briquettes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Direct reduced iron (DRI); lumps, pellets, and cold-molded briquettes. 148.245 Section 148.245 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Requirements for Certain Materials § 148.245 Direct reduced iron (DRI); lumps, pellets, and...

  13. 46 CFR 148.245 - Direct reduced iron (DRI); lumps, pellets, and cold-molded briquettes.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Direct reduced iron (DRI); lumps, pellets, and cold-molded briquettes. 148.245 Section 148.245 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Requirements for Certain Materials § 148.245 Direct reduced iron (DRI); lumps, pellets, and...

  14. Rheological properties of suspensions containing cross-linked starch nanoparticles prepared by spray and vacuum freeze drying methods.

    PubMed

    Shi, Ai-min; Li, Dong; Wang, Li-jun; Adhikari, Benu

    2012-11-01

    The rheological behavior of suspensions containing vacuum freeze dried and spray dried starch nanoparticles was investigated to explore the effect of these two drying methods in producing starch nanoparticles which were synthesized using high pressure homogenization and mini-emulsion cross-linking technique. Suspensions containing 10% (w/w) spray dried and vacuum freeze dried nanoparticles were prepared. The continuous shear viscosity tests, temperature sweep tests, the frequency sweep and creep-recovery tests were carried out, respectively. The suspensions containing vacuum freeze dried nanoparticles showed higher apparent viscosity within shear rate range (0.1-100 s(-1)) and temperature range (25-90 °C). The suspensions containing vacuum freeze dried nanoparticles were found to have more shear thinning and less thixotropic behavior compared to those containing spray dried nanoparticles. In addition, the suspensions containing vacuum freeze dried particles had stronger elastic structure. However, the suspensions containing spray dried nanoparticles had more stiffness and greater tendency to recover from the deformation. PMID:22944440

  15. A New Freezing Method Using Pre-Dehydration by Microwave-Vacuum Drying

    NASA Astrophysics Data System (ADS)

    Tsuruta, Takaharu; Hamidi, Nurkholis

    Partial dehydration by microwave-vacuum drying has been applied to tuna and strawberry in order to reduce cell-damages caused by the formation of large ice-crystals during freezing. The samples were subjected to microwave vacuum drying at pressure of 5 kPa and temperature less than 27°C to remove small amount of water prior to freezing. The tuna were cooled by using the freezing chamber at temperature -50°C or -150°C, while the strawberries were frozen at temperature -30°C or -80°C, respectively. The temperature transients in tuna showed that removing some water before freezing made the freezing time shorter. The observations of ice crystal clearly indicated that rapid cooling and pre-dehydration prior to freezing were effective in minimizing the size of ice crystal. It is also understood that the formation of large ice crystals has a close relation to the cell damages. After thawing, the observation of microstructure was done on the tuna and strawberry halves. The pre-dehydrated samples showed a better structure than the un-dehydrated one. It is concluded that the pre-dehydration by microwave-vacuum drying is one promising method for the cryo-preservation of foods.

  16. Microbial transglutaminase for cold-set binding of unsalted/salted pork models and restructured dry ham.

    PubMed

    Romero de Avila, M D; Ordóñez, J A; de la Hoz, L; Herrero, A M; Cambero, M I

    2010-04-01

    The viability of using microbial transglutaminase (MTGase) as a cold-set binder for restructuring and manufacturing deboned dry ham (RDH) was evaluated. The influence of meat pre-treatment, preparation of the MTGase, packing system and set temperature on the binding rate and force was tested using pork models and deboned legs. The best binding parameters were obtained when meat surfaces were evenly distributed with salts (NaCl, KNO(3), NaNO(2)) and then washed with a saline solution (W), afterwards powder (P) or liquid (L) MTGase was applied, and simultaneous salting and vacuum packing (S) set at 7 degrees C were performed. The RDH manufactured following these procedures (WPS and WLS) was stable during drying and could resist the handling and production process. Binding force increased (p<0.05) during 8 weeks of drying. Scanning electron microscopy analysis showed an increase of cross-links during the drying period of RDH related to the increase in binding force. PMID:20374852

  17. Changes in non-volatile taste components of button mushroom (Agaricus bisporus) during different stages of freeze drying and freeze drying combined with microwave vacuum drying.

    PubMed

    Pei, Fei; Shi, Ying; Gao, Xingyang; Wu, Fangning; Mariga, Alfred Mugambi; Yang, Wenjian; Zhao, Liyan; An, Xinxin; Xin, Zhihong; Yang, Fangmei; Hu, Qiuhui

    2014-12-15

    Button mushroom slices were dehydrated using freeze drying (FD) or FD combined with microwave vacuum drying (FMVD), and the non-volatile component profiles were studied. The results showed that the level of non-volatile components in button mushroom firstly increased during sublimation of FD/FMVD process and then fell during desorption in FD process and MVD in FMVD process. Compared to FD products, the contents of soluble sugars and polyols in FMVD products were relatively low, whereas the contents of total free amino acids were significantly higher, close to the level of fresh mushroom. However, there was no significant difference in the contents of 5'-nucleotides and organic acids between FD and FMVD products. The equivalent umami concentration (EUC) values for FD and FMVD products did not differ from fresh, indicating that both drying methods could effectively preserve MSG (monosodium glutamate)-like components in button mushroom. PMID:25038710

  18. Comparison of three-dimensional printing and vacuum freeze-dried techniques for fabricating composite scaffolds.

    PubMed

    Sun, Kai; Li, Ruixin; Jiang, Wenxue; Sun, Yufu; Li, Hui

    2016-09-01

    In this study, the performances of different preparation methods of the scaffolds were analyzed for chondrocyte tissue engineering. Silk fibroin/collagen (SF/C) was fabricated using a vacuum freeze-dried technique and by 3D printing. The porosity, water absorption expansion rates, mechanical properties, and pore sizes of the resulting materials were evaluated. The proliferation and metabolism of the cells was detected at different time points using an MTT assay. Cell morphologies and distributions were observed by histological analysis and scanning electron microscopy (SEM). The porosity, water absorption expansion rate, and Young's modulus of the material obtained via 3D printing were significantly higher than those obtained by the freeze-dried method, while the pore size did not differ significantly between the two methods. MTT assay results showed that the metabolism of cells seeded on the 3D printed scaffolds was more viable than the metabolism on the freeze-dried material. H&E staining of the scaffolds revealed that the number of cells in the 3D printed scaffold was higher in comparison to a similar measurement on the freeze-dried material. Consequently, stem cells grew well inside the 3D printed scaffolds, as measured by SEM, while the internal structure of the freeze-dried scaffold was disordered. Compared with the freeze-dried technique, the 3D printed scaffold exhibited better overall performance and was more suitable for cartilage tissue engineering. PMID:27404126

  19. Critically safe volume vacuum pickup for use in wet or dry cleanup of radioactive enclosures

    DOEpatents

    Zeren, Joseph D.

    1993-12-28

    A physical compact vacuum pickup device of critically safe volume and geometric shape is provided for use in radioactive enclosures, such as a small glove box, to facilitate manual cleanup of either wet or dry radioactive material. The device is constructed and arranged so as to remain safe when filled to capacity with plutonium-239 oxide. Two fine mesh filter bags are supported on the exterior of a rigid fine mesh stainless steel cup. This assembly is sealed within, and spaced from, the interior walls of a stainless steel canister. An air inlet communicates with the interior of the canister. A modified conventional vacuum head is physically connected to, and associated with, the interior of the mesh cup. The volume of the canister, as defined by the space between the mesh cup and the interior walls of the canister, forms a critically safe volume and geometric shape for dry radioactive particles that are gathered within the canister. A critically safe liquid volume is maintained by operation of a suction terminating float valve, and/or by operation of redundant vacuum check/liquid drain valves and placement of the air inlet.

  20. Critically safe volume vacuum pickup for use in wet or dry cleanup of radioactive enclosures

    DOEpatents

    Zeren, J.D.

    1993-12-28

    A physical compact vacuum pickup device of critically safe volume and geometric shape is provided for use in radioactive enclosures, such as a small glove box, to facilitate manual cleanup of either wet or dry radioactive material. The device is constructed and arranged so as to remain safe when filled to capacity with plutonium-239 oxide. Two fine mesh filter bags are supported on the exterior of a rigid fine mesh stainless steel cup. This assembly is sealed within, and spaced from, the interior walls of a stainless steel canister. An air inlet communicates with the interior of the canister. A modified conventional vacuum head is physically connected to, and associated with, the interior of the mesh cup. The volume of the canister, as defined by the space between the mesh cup and the interior walls of the canister, forms a critically safe volume and geometric shape for dry radioactive particles that are gathered within the canister. A critically safe liquid volume is maintained by operation of a suction terminating float valve, and/or by operation of redundant vacuum check/liquid drain valves and placement of the air inlet. 5 figures.

  1. Relevance of nanocomposite packaging on the stability of vacuum-packed dry cured ham.

    PubMed

    Lloret, Elsa; Fernandez, Avelina; Trbojevich, Raul; Arnau, Jacint; Picouet, Pierre A

    2016-08-01

    In this study effects of a novel high barrier multilayer polyamide film containing dispersed nanoclays (PAN) on the stability of vacuum packed dry-cured ham were investigated during 90days refrigerated storage in comparison with non-modified multilayer polyamide (PA) and a commercial high barrier film. Characteristic bands of the mineral in FT-IR spectra confirmed the presence of nanoclays in PAN, enhancing oxygen transmission barrier properties and UV protection. Packaging in PAN films did not originate significant changes on colour or lipid oxidation during prolonged storage of vacuum-packed dry-cured ham. Larger oxygen transmission rates in PA films caused changes in CIE b* during refrigerated storage. Ham quality was not affected by light exposition during 90days and only curing had a significant benefit on colour and TBARS, being cured samples more stable during storage in all the packages used. Packaging of dry-cured ham in PAN was equivalent to commercial high barrier films. PMID:26998947

  2. Dry Oxidation and Vacuum Annealing Treatments for Tuning the Wetting Properties of Carbon Nanotube Arrays

    PubMed Central

    Aria, Adrianus Indrat; Gharib, Morteza

    2013-01-01

    In this article, we describe a simple method to reversibly tune the wetting properties of vertically aligned carbon nanotube (CNT) arrays. Here, CNT arrays are defined as densely packed multi-walled carbon nanotubes oriented perpendicular to the growth substrate as a result of a growth process by the standard thermal chemical vapor deposition (CVD) technique.1,2 These CNT arrays are then exposed to vacuum annealing treatment to make them more hydrophobic or to dry oxidation treatment to render them more hydrophilic. The hydrophobic CNT arrays can be turned hydrophilic by exposing them to dry oxidation treatment, while the hydrophilic CNT arrays can be turned hydrophobic by exposing them to vacuum annealing treatment. Using a combination of both treatments, CNT arrays can be repeatedly switched between hydrophilic and hydrophobic.2 Therefore, such combination show a very high potential in many industrial and consumer applications, including drug delivery system and high power density supercapacitors.3-5 The key to vary the wettability of CNT arrays is to control the surface concentration of oxygen adsorbates. Basically oxygen adsorbates can be introduced by exposing the CNT arrays to any oxidation treatment. Here we use dry oxidation treatments, such as oxygen plasma and UV/ozone, to functionalize the surface of CNT with oxygenated functional groups. These oxygenated functional groups allow hydrogen bond between the surface of CNT and water molecules to form, rendering the CNT hydrophilic. To turn them hydrophobic, adsorbed oxygen must be removed from the surface of CNT. Here we employ vacuum annealing treatment to induce oxygen desorption process. CNT arrays with extremely low surface concentration of oxygen adsorbates exhibit a superhydrophobic behavior. PMID:23629482

  3. Calculation of the process of vacuum drying of a metal-concrete container with spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Karyakin, Yu. E.; Lavrent'ev, S. A.; Pavlyukevich, N. V.; Pletnev, A. A.; Fedorovich, E. D.

    2012-01-01

    An algorithm and results of calculation of the process of vacuum drying of a metal-concrete container intended for long-term "dry" storage of spent nuclear fuel are presented. A calculated substantiation of the initial amount of moisture in the container is given.

  4. Calculation methodology of the heat pump in the process of oscillating vacuum-conductive drying of lumber

    NASA Astrophysics Data System (ADS)

    Safin, R. R.; Khasanshin, R. R.; Shaikhutdinova, A. R.; Khakimzyanov, I. F.

    2016-04-01

    The oscillating technologies consisting in alternating of the stage of heating of the material and vacuumization are the most advanced in the process of wood drying. In this regard, the article examines the energy-saving technology of the oscillating vacuum-conductive drying of lumber, during which the thermal energy of the moisture evaporated from the material under vacuum in one chamber by using the heat pump is transferred to the heating of the material in the other chamber. The authors develop the method of calculating the rate of removal of moisture from the heated material at the stage of vacuumization depending on the depth of vacuum, temperature, humidity and thickness of the material, which is the initial condition for calculating the heat pump.

  5. Nanostructural Characteristics of Vacuum Cold-Sprayed Hydroxyapatite/Graphene-Nanosheet Coatings for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Huang, Jing; Li, Hua

    2014-10-01

    Development of novel biocompatible nanomaterials has provided insights into their potential biomedical applications. Bulk fabrication of the nanomaterials in the form of coatings remains challenging. Here, we report hydroxyapatite (HA)/graphene-nanosheet (GN) composite coatings deposited by vacuum cold spray (VCS). Significant shape changes of HA nanograins during the coating deposition were revealed. The nanostructural features of HA together with curvature alternation of GN gave rise to dense structures. Based on the microstructural characterization, a structure model was proposed to elucidate the nanostructural characteristics of the HA-GN nanocomposites. Results also showed that addition of GN significantly enhanced fracture toughness and elastic modulus of the HA-based coatings, which is presumably accounted for by crack bridging offered by GN in the composites. The VCS HA-GN coatings show potential for biomedical applications for the repair or replacement of hard tissues.

  6. Carbon Nanotube Bundle Array Cold Cathodes for THz Vacuum Tube Sources

    NASA Astrophysics Data System (ADS)

    Manohara, Harish M.; Toda, Risaku; Lin, Robert H.; Liao, Anna; Bronikowski, Michael J.; Siegel, Peter H.

    2009-12-01

    We present high performance cold cathodes composed of arrays of carbon nanotube bundles that routinely produce > 15 A/cm2 at applied fields of 5 to 8 V/µm without any beam focusing. They have exhibited robust operation in poor vacuums of 10-6 to 10-4 Torr- a typically achievable range inside hermetically sealed microcavities. A new double-SOI process was developed to monolithically integrate a gate and additional beam tailoring electrodes. The ability to design the electrodes for specific requirements makes carbon nanotube field emission sources extremely flexible. The lifetime of these cathodes is found to be affected by two effects: a gradual decay of emission due to anode sputtering, and catastrophic failure because of dislodging of CNT bundles at high fields ( > 10 V/µm).

  7. On the measurement the neutron lifetime using ultra-cold neutrons in a vacuum quadrupole trap

    SciTech Connect

    Bowman, J. D.; Penttila, S. I.

    2004-01-01

    We present a conceptual design for an experiment to measure the neutron lifetime ({approx}882 s) with an accuracy of 10{sup -4}. The lifetime will be measured by observing the decay rate of a sample of UCNs confined in vacuum in a magnetic trap. The UCN collaboration at LANL has developed a prototype ultra-cold neutron UCN source that is expected to produce a bottled UCN density of more than 100 UCN/cm{sup 3}. The availability of such an intense source makes it possible to approach the measurement of the neutron lifetime in a new way. We argue below that it is possible to measure the neutron lifetime to 10{sup -4} in a vacuum magnetic trap. The measurement involves no new technology beyond the expected UCN density. If even higher densities are available, the experiment can be made better and/or less expensive. We present the design and methodology for the measurement. The slow loss of neutrons that have stable orbits, but are not energetically trapped would produce a systematic error in the measurement. We discuss a new approach, chaotic cleaning, to the elimination of quasi-neutrons from the trap by breaking the rotational symmetry of the quadrupole trap. The neutron orbits take on a chaotic character and mode mixing causes the neutrons on the quasi-bound orbits to leave the trap.

  8. Qualitative effects of fresh and dried plum ingredients on vacuum-packaged, sliced hams.

    PubMed

    Nuñez de Gonzalez, M T; Hafley, B S; Boleman, R M; Miller, R M; Rhee, K S; Keeton, J T

    2009-09-01

    Boneless ham muscles (Semimembranosus+Adductor) were injected (20% w/w) with a curing brine containing no plum ingredient (control), fresh plum juice concentrate (FP), dried plum juice concentrate (DP), or spray dried plum powder (PP) at 2.5% or 5%. Hams were cooked, vacuum-packaged, stored at<4°C and evaluated at 2-week intervals over 10 week. Evaluations were performed on sliced product to determine cook loss, vacuum-package purge, Allo-Kramer shear force, 2-thiobarbituric acid-reactive substances (TBARS), proximate analysis, objective color, sensory panel color and sensory attributes. FP, DP and 2.5% PP increased (P<0.05) cook loss by 2% to 7% depending on treatment and level, but the highest cook loss (17.7%) was observed in hams with 5% PP. Shear force values increased as the level of plum ingredient increased (P<0.05) from 2.5% to 5%, and the highest shear values were observed in hams containing 5% FP. There were no differences (P>0.05) in lipid oxidation among treatments as determined by TBARS and sensory evaluation. FP and PP ham color was similar to the control, but DP had a more intense atypical color of cured ham. Minimal changes in physical, chemical and sensory properties were observed during storage of all treatments. PMID:20416628

  9. Argon used as dry suit insulation gas for cold-water diving

    PubMed Central

    2013-01-01

    Background Cold-water diving requires good thermal insulation because hypothermia is a serious risk. Water conducts heat more efficiently compared to air. To stay warm during a dive, the choice of thermal protection should be based on physical activity, the temperature of the water, and the duration of exposure. A dry suit, a diving suit filled with gas, is the most common diving suit in cold water. Air is the traditional dry suit inflation gas, whereas the thermal conductivity of argon is approximately 32% lower compared to that of air. This study evaluates the benefits of argon, compared to air, as a thermal insulation gas for a dry suit during a 1-h cold-water dive by divers of the Royal Netherlands Navy. Methods Seven male Special Forces divers made (in total) 19 dives in a diving basin with water at 13°C at a depth of 3 m for 1 h in upright position. A rubber dry suit and woollen undergarment were used with either argon (n = 13) or air (n = 6) (blinded to the divers) as suit inflation gas. Core temperature was measured with a radio pill during the dive. Before, halfway, and after the dive, subjective thermal comfort was recorded using a thermal comfort score. Results No diver had to abort the test due to cold. No differences in core temperature and thermal comfort score were found between the two groups. Core temperature remained unchanged during the dives. Thermal comfort score showed a significant decrease in both groups after a 60-min dive compared to baseline. Conclusions In these tests the combination of the dry suit and undergarment was sufficient to maintain core temperature and thermal comfort for a dive of 1 h in water at 13°C. The use of argon as a suit inflation gas had no added value for thermal insulation compared to air for these dives. PMID:24438580

  10. Method for calculating the duration of vacuum drying of a metal-concrete container for spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Karyakin, Yu. E.; Nekhozhin, M. A.; Pletnev, A. A.

    2013-07-01

    A method for calculating the quantity of moisture in a metal-concrete container in the process of its charging with spent nuclear fuel is proposed. A computing method and results obtained by it for conservative estimation of the time of vacuum drying of a container charged with spent nuclear fuel by technologies with quantization and without quantization of the lower fuel element cluster are presented. It has been shown that the absence of quantization in loading spent fuel increases several times the time of vacuum drying of the metal-concrete container.

  11. Improvement of Freezing Quality of Food by Pre-dehydration with Microwave-Vacuum Drying

    NASA Astrophysics Data System (ADS)

    Hamidi, Nurkholis; Tsuruta, Takaharu

    Partial dehydration by microwave vacuum drying has been applied to tuna, oyster and mackerel prior to freezing in order to reduce quality damages due to freezing and thawing. Samples were dehydrated at pressure of 4kPa and temperature lower than 25°C. Two cooling conditions were tested in the experiment by using the freezing chamber of temperatures -20°C and -80°C. The experimental results showed that decreasing the water content in tuna could lower the freezing point temperature and made the freezing time shorter. It was also found that removing some water was effective to reduce the size of ice crystal and the drip loss in mackerel. After thawing, the pre-dehydrated mackerel showed better microstructure than that frozen without pre-treatment. Furthermore, the sensory tests have been done by a group of panelist for the evaluation on aroma, flavor, and general acceptability of mackerels.

  12. Freeze-drying process monitoring using a cold plasma ionization device.

    PubMed

    Mayeresse, Y; Veillon, R; Sibille, P H; Nomine, C

    2007-01-01

    A cold plasma ionization device has been designed to monitor freeze-drying processes in situ by monitoring lyophilization chamber moisture content. This plasma device, which consists of a probe that can be mounted directly on the lyophilization chamber, depends upon the ionization of nitrogen and water molecules using a radiofrequency generator and spectrometric signal collection. The study performed on this probe shows that it is steam sterilizable, simple to integrate, reproducible, and sensitive. The limitations include suitable positioning in the lyophilization chamber, calibration, and signal integration. Sensitivity was evaluated in relation to the quantity of vials and the probe positioning, and correlation with existing methods, such as microbalance, was established. These tests verified signal reproducibility through three freeze-drying cycles. Scaling-up studies demonstrated a similar product signature for the same product using pilot-scale and larger-scale equipment. On an industrial scale, the method efficiently monitored the freeze-drying cycle, but in a larger industrial freeze-dryer the signal was slightly modified. This was mainly due to the positioning of the plasma device, in relation to the vapor flow pathway, which is not necessarily homogeneous within the freeze-drying chamber. The plasma tool is a relevant method for monitoring freeze-drying processes and may in the future allow the verification of current thermodynamic freeze-drying models. This plasma technique may ultimately represent a process analytical technology (PAT) approach for the freeze-drying process. PMID:17722483

  13. Abnormal activity of corneal cold thermoreceptors underlies the unpleasant sensations in dry eye disease.

    PubMed

    Kovács, Illés; Luna, Carolina; Quirce, Susana; Mizerska, Kamila; Callejo, Gerard; Riestra, Ana; Fernández-Sánchez, Laura; Meseguer, Victor M; Cuenca, Nicolás; Merayo-Lloves, Jesús; Acosta, M Carmen; Gasull, Xavier; Belmonte, Carlos; Gallar, Juana

    2016-02-01

    Dry eye disease (DED) affects >10% of the population worldwide, and it provokes an unpleasant sensation of ocular dryness, whose underlying neural mechanisms remain unknown. Removal of the main lachrymal gland in guinea pigs caused long-term reduction of basal tearing accompanied by changes in the architecture and density of subbasal corneal nerves and epithelial terminals. After 4 weeks, ongoing impulse activity and responses to cooling of corneal cold thermoreceptor endings were enhanced. Menthol (200 μM) first excited and then inactivated this augmented spontaneous and cold-evoked activity. Comparatively, corneal polymodal nociceptors of tear-deficient eyes remained silent and exhibited only a mild sensitization to acidic stimulation, whereas mechanonociceptors were not affected. Dryness-induced changes in peripheral cold thermoreceptor responsiveness developed in parallel with a progressive excitability enhancement of corneal cold trigeminal ganglion neurons, primarily due to an increase of sodium currents and a decrease of potassium currents. In corneal polymodal nociceptor neurons, sodium currents were enhanced whereas potassium currents remain unaltered. In healthy humans, exposure of the eye surface to menthol vapors or to cold air currents evoked unpleasant sensations accompanied by increased blinking frequency that we attributed to cold thermoreceptor stimulation. Notably, stimulation with menthol reduced the ongoing background discomfort of patients with DED, conceivably due to use-dependent inactivation of cold thermoreceptors. Together, these data indicate that cold thermoreceptors contribute importantly to the detection and signaling of ocular surface wetness, and develop under chronic eye dryness conditions an injury-evoked neuropathic firing that seems to underlie the unpleasant sensations experienced by patients with DED. PMID:26675826

  14. Abnormal activity of corneal cold thermoreceptors underlies the unpleasant sensations in dry eye disease

    PubMed Central

    Kovács, Illés; Luna, Carolina; Quirce, Susana; Mizerska, Kamila; Callejo, Gerard; Riestra, Ana; Fernández-Sánchez, Laura; Meseguer, Victor M.; Cuenca, Nicolás; Merayo-Lloves, Jesús; Acosta, M. Carmen; Gasull, Xavier; Belmonte, Carlos; Gallar, Juana

    2015-01-01

    Abstract Dry eye disease (DED) affects >10% of the population worldwide, and it provokes an unpleasant sensation of ocular dryness, whose underlying neural mechanisms remain unknown. Removal of the main lachrymal gland in guinea pigs caused long-term reduction of basal tearing accompanied by changes in the architecture and density of subbasal corneal nerves and epithelial terminals. After 4 weeks, ongoing impulse activity and responses to cooling of corneal cold thermoreceptor endings were enhanced. Menthol (200 μM) first excited and then inactivated this augmented spontaneous and cold-evoked activity. Comparatively, corneal polymodal nociceptors of tear-deficient eyes remained silent and exhibited only a mild sensitization to acidic stimulation, whereas mechanonociceptors were not affected. Dryness-induced changes in peripheral cold thermoreceptor responsiveness developed in parallel with a progressive excitability enhancement of corneal cold trigeminal ganglion neurons, primarily due to an increase of sodium currents and a decrease of potassium currents. In corneal polymodal nociceptor neurons, sodium currents were enhanced whereas potassium currents remain unaltered. In healthy humans, exposure of the eye surface to menthol vapors or to cold air currents evoked unpleasant sensations accompanied by increased blinking frequency that we attributed to cold thermoreceptor stimulation. Notably, stimulation with menthol reduced the ongoing background discomfort of patients with DED, conceivably due to use-dependent inactivation of cold thermoreceptors. Together, these data indicate that cold thermoreceptors contribute importantly to the detection and signaling of ocular surface wetness, and develop under chronic eye dryness conditions an injury-evoked neuropathic firing that seems to underlie the unpleasant sensations experienced by patients with DED. PMID:26675826

  15. Effect of drying methods with the application of vacuum microwaves on the bioactive compounds, color, and antioxidant activity of strawberry fruits.

    PubMed

    Wojdyło, Aneta; Figiel, Adam; Oszmiański, Jan

    2009-02-25

    The objective of this study was to evaluate the application of vacuum-microwave drying (240, 360, and 480 W) in the production process of dehydrated strawberry and to compare and contrast the quality of these dehydrated strawberries in terms of their polyphenol compounds, concentration of some heat liable components, and color to that of freeze-dried, convective, and vacuum-dried strawberry. Thus, the effect of vacuum-microwave drying and other drying methods on the antioxidant activity of berries was evaluated. Whole fresh and dried fruits were assessed for phenolics (anthocyanins, flavanols, hydroxycinnamic acids, and flavonols), ascorbic acid, and antioxidant activity (all parameters were calculated on a dry matter basis). Analysis of data shows that ellagic acid and flavanol changes were affected by drying techniques and cultivar. Drying destroyed anthocyanins, flavanols, and ascorbic acid, and there was a significant decrease in antioxidant activity. The most striking result was that conventional and vacuum drying decreased antioxidant activity in both cultivars, whereas contradictory results were found for vacuum-microwave processed strawberry. This study has demonstrated that vacuum-microwave drying, especially at 240 W, can produce high-quality products, with the additional advantage of reduced processing times, compared to other processes such as freeze-drying. PMID:19170638

  16. Microwelding (or cold-welding) of various metallic materials under the ultra-vacuum LDEF experiment AO 138-10

    NASA Technical Reports Server (NTRS)

    Assie, Jean-Pierre; Conde, Eric

    1992-01-01

    The FRECOPA experimentation, as part of the Long Duration Exposure Facility (LDEF) mission, of mechanical and electrical parts of spacecraft in space ultra-vacuum has demonstrated freedom from any cold welding including microweld effects. This, as theorized, is due to integrity in space of the earthly grown oxygen layer. A further experimentation, a dynamic one this time, could provide a wealth of scientific data, yielding reliable material selecting criteria.

  17. Cold vacuum chamber for diagnostics: Analysis of the measurements at the Diamond Light Source and impedance bench measurements

    NASA Astrophysics Data System (ADS)

    Voutta, R.; Gerstl, S.; Casalbuoni, S.; Grau, A. W.; Holubek, T.; Saez de Jauregui, D.; Bartolini, R.; Cox, M. P.; Longhi, E. C.; Rehm, G.; Schouten, J. C.; Walker, R. P.; Migliorati, M.; Spataro, B.

    2016-05-01

    The beam heat load is an important input parameter needed for the cryogenic design of superconducting insertion devices. Theoretical models taking into account the different heating mechanisms of an electron beam to a cold bore predict smaller values than the ones measured with several superconducting insertion devices installed in different electron storage rings. In order to measure and possibly understand the beam heat load to a cold bore, a cold vacuum chamber for diagnostics (COLDDIAG) has been built. COLDDIAG is equipped with temperature sensors, pressure gauges, mass spectrometers as well as retarding field analyzers which allow to measure the beam heat load, total pressure, and gas content as well as the flux of particles hitting the chamber walls. COLDDIAG was installed in a straight section of the Diamond Light Source (DLS). In a previous paper the experimental equipment as well as the installation of COLDDIAG in the DLS are described [S. Gerstl et al., Phys. Rev. ST Accel. Beams 17, 103201 (2014)]. In this paper we present an overview of all the measurements performed with COLDDIAG at the DLS and their detailed analysis, as well as impedance bench measurements of the cold beam vacuum chamber performed at the Karlsruhe Institute of Technology after removal from the DLS. Relevant conclusions for the cryogenic design of superconducting insertion devices are drawn from the obtained results.

  18. Cold, dry air is associated with influenza and pneumonia mortality in Auckland, New Zealand.

    PubMed

    Davis, Robert E; Dougherty, Erin; McArthur, Colin; Huang, Qiu Sue; Baker, Michael G

    2016-07-01

    The relationship between weather and influenza and pneumonia mortality was examined retrospectively using daily data from 1980 to 2009 in Auckland, New Zealand, a humid, subtropical location. Mortality events, defined when mortality exceeded 0·95 standard deviation above the mean, followed periods of anomalously cold air (ta.m. = -4·1, P < 0·01; tp.m. = -4·2, P < 0·01) and/or anomalously dry air (ta.m. = -4·1, P < 0·01; tp.m. = -3·8, P < 0·01) by up to 19 days. These results suggest that respiratory infection is enhanced during unusually cold conditions and during conditions with unusually low humidity, even in a subtropical location where humidity is typically high. PMID:26681638

  19. Moisture Sorption and Thermodynamic Properties of Vacuum-Dried Capsosiphon fulvescens Powder

    PubMed Central

    Zuo, Li; Rhim, Jong-Whan; Lee, Jun Ho

    2015-01-01

    The moisture sorption isotherms of vacuum-dried edible green alga (Capsosiphon fulvescens) powders were determined at 25, 35, and 45°C and water activity (aw) in the range of 0.11~0.94. An inversion effect of temperature was found at high water activity (>0.75). Various mathematical models were fitted to the experimental data, and Brunauer, Emmett, and Teller model was found to be the most suitable model describing the relationship between equilibrium moisture content and water activity (<0.45). Henderson model could also provide excellent agreement between the experimental and predicted values despite of the intersection point. Net isosteric heat of adsorption decreased from 15.77 to 9.08 kJ/mol with an increase in equilibrium moisture content from 0.055 to 0.090 kg H2O/kg solids. The isokinetic temperature (Tβ) was 434.79 K, at which all the adsorption reactions took place at the same rate. The enthalpy-entropy compensation suggested that the mechanism of the adsorption process was shown to be enthalpy-driven. PMID:26451360

  20. Moisture Sorption and Thermodynamic Properties of Vacuum-Dried Capsosiphon fulvescens Powder.

    PubMed

    Zuo, Li; Rhim, Jong-Whan; Lee, Jun Ho

    2015-09-01

    The moisture sorption isotherms of vacuum-dried edible green alga (Capsosiphon fulvescens) powders were determined at 25, 35, and 45°C and water activity (a w) in the range of 0.11~0.94. An inversion effect of temperature was found at high water activity (>0.75). Various mathematical models were fitted to the experimental data, and Brunauer, Emmett, and Teller model was found to be the most suitable model describing the relationship between equilibrium moisture content and water activity (<0.45). Henderson model could also provide excellent agreement between the experimental and predicted values despite of the intersection point. Net isosteric heat of adsorption decreased from 15.77 to 9.08 kJ/mol with an increase in equilibrium moisture content from 0.055 to 0.090 kg H2O/kg solids. The isokinetic temperature (T β) was 434.79 K, at which all the adsorption reactions took place at the same rate. The enthalpy-entropy compensation suggested that the mechanism of the adsorption process was shown to be enthalpy-driven. PMID:26451360

  1. Vis-NIR hyperspectral imaging in visualizing moisture distribution of mango slices during microwave-vacuum drying.

    PubMed

    Pu, Yuan-Yuan; Sun, Da-Wen

    2015-12-01

    Mango slices were dried by microwave-vacuum drying using a domestic microwave oven equipped with a vacuum desiccator inside. Two lab-scale hyperspectral imaging (HSI) systems were employed for moisture prediction. The Page and the Two-term thin-layer drying models were suitable to describe the current drying process with a fitting goodness of R(2)=0.978. Partial least square (PLS) was applied to correlate the mean spectrum of each slice and reference moisture content. With three waveband selection strategies, optimal wavebands corresponding to moisture prediction were identified. The best model RC-PLS-2 (Rp(2)=0.972 and RMSEP=4.611%) was implemented into the moisture visualization procedure. Moisture distribution map clearly showed that the moisture content in the central part of the mango slices was lower than that of other parts. The present study demonstrated that hyperspectral imaging was a useful tool for non-destructively and rapidly measuring and visualizing the moisture content during drying process. PMID:26041192

  2. Microstructure, microhardness and dry friction behavior of cold-sprayed tin bronze coatings

    NASA Astrophysics Data System (ADS)

    Guo, Xueping; Zhang, Ga; Li, Wen-Ya; Dembinski, Lucas; Gao, Yang; Liao, Hanlin; Coddet, Christian

    2007-12-01

    In this paper, two types of tin bronze coatings (Cu-6 wt.% Sn and Cu-8 wt.% Sn) were prepared by cold spray process. The as-sprayed coatings were subjected to a vacuum heat treatment at 600 °C for 3 h. The coating microstructure, microhardness and tribological performance were characterized. The effects of the tin content and the vacuum heat treatment on the microstructure, microhardness and tribological behavior of the coatings were investigated. It is found that the as-sprayed CuSn6 (As6) and CuSn8 (As8) coatings exhibit practically an identical porosity. Meanwhile, As8 presents a higher microhardness than As6. In addition, the increase of the tin content in the powder feedstock leads to a lower wear rate. After a heat treatment, coating porosities are significantly reduced. However, the coating hardness is significantly decreased and the coating presents a much decreased wear resistance. For the as-sprayed coatings, such factors as ploughing and particle delamination could determine the sliding process. The heat treatment results in a distinct modification of the tribological behavior. For the annealed coatings, the adhesion, between the coating and the counterpart, could play a dominant role in the sliding process.

  3. The influence of mid-latitude storm tracks on hot, cold, dry and wet extremes.

    PubMed

    Lehmann, Jascha; Coumou, Dim

    2015-01-01

    Changes in mid-latitude circulation can strongly affect the number and intensity of extreme weather events. In particular, high-amplitude quasi-stationary planetary waves have been linked to prolonged weather extremes at the surface. In contrast, analyses of fast-traveling synoptic-scale waves and their direct influence on heat and cold extremes are scarce though changes in such waves have been detected and are projected for the 21st century. Here we apply regression analyses of synoptic activity with surface temperature and precipitation in monthly gridded observational data. We show that over large parts of mid-latitude continental regions, summer heat extremes are associated with low storm track activity. In winter, the occurrence of cold spells is related to low storm track activity over parts of eastern North America, Europe, and central- to eastern Asia. Storm tracks thus have a moderating effect on continental temperatures. Pronounced storm track activity favors monthly rainfall extremes throughout the year, whereas dry spells are associated with a lack thereof. Trend analyses reveal significant regional changes in recent decades favoring the occurrence of cold spells in the eastern US, droughts in California and heat extremes over Eurasia. PMID:26657163

  4. The influence of mid-latitude storm tracks on hot, cold, dry and wet extremes

    NASA Astrophysics Data System (ADS)

    Lehmann, Jascha; Coumou, Dim

    2015-12-01

    Changes in mid-latitude circulation can strongly affect the number and intensity of extreme weather events. In particular, high-amplitude quasi-stationary planetary waves have been linked to prolonged weather extremes at the surface. In contrast, analyses of fast-traveling synoptic-scale waves and their direct influence on heat and cold extremes are scarce though changes in such waves have been detected and are projected for the 21st century. Here we apply regression analyses of synoptic activity with surface temperature and precipitation in monthly gridded observational data. We show that over large parts of mid-latitude continental regions, summer heat extremes are associated with low storm track activity. In winter, the occurrence of cold spells is related to low storm track activity over parts of eastern North America, Europe, and central- to eastern Asia. Storm tracks thus have a moderating effect on continental temperatures. Pronounced storm track activity favors monthly rainfall extremes throughout the year, whereas dry spells are associated with a lack thereof. Trend analyses reveal significant regional changes in recent decades favoring the occurrence of cold spells in the eastern US, droughts in California and heat extremes over Eurasia.

  5. The influence of mid-latitude storm tracks on hot, cold, dry and wet extremes

    PubMed Central

    Lehmann, Jascha; Coumou, Dim

    2015-01-01

    Changes in mid-latitude circulation can strongly affect the number and intensity of extreme weather events. In particular, high-amplitude quasi-stationary planetary waves have been linked to prolonged weather extremes at the surface. In contrast, analyses of fast-traveling synoptic-scale waves and their direct influence on heat and cold extremes are scarce though changes in such waves have been detected and are projected for the 21st century. Here we apply regression analyses of synoptic activity with surface temperature and precipitation in monthly gridded observational data. We show that over large parts of mid-latitude continental regions, summer heat extremes are associated with low storm track activity. In winter, the occurrence of cold spells is related to low storm track activity over parts of eastern North America, Europe, and central- to eastern Asia. Storm tracks thus have a moderating effect on continental temperatures. Pronounced storm track activity favors monthly rainfall extremes throughout the year, whereas dry spells are associated with a lack thereof. Trend analyses reveal significant regional changes in recent decades favoring the occurrence of cold spells in the eastern US, droughts in California and heat extremes over Eurasia. PMID:26657163

  6. Quality assessment of microwave-vacuum dried material with the use of computer image analysis and neural model

    NASA Astrophysics Data System (ADS)

    Koszela, K.; OtrzÄ sek, J.; Zaborowicz, M.; Boniecki, P.; Mueller, W.; Raba, B.; Lewicki, A.; Przybył, K.

    2014-04-01

    The farming area for vegetables in Poland is constantly changed and modified. Each year the cultivation structure of particular vegetables is different. However, it is the cultivation of carrots that plays a significant role among vegetables. According to the Main Statistical Office (GUS), in 2012 carrot held second position among the cultivated root vegetables, and it was estimated at 835 thousand tons. In the world we are perceived as the leading producer of carrot, due to the fourth place in the ranking of global producers. Poland is the largest producer of this vegetable in the EU [1]. It is also noteworthy, that the demand for dried vegetables is still increasing. This tendency affects the development of drying industry in our country, contributing to utilization of the product surplus. Dried vegetables are used increasingly often in various sectors of food products industry, due to high nutrition value, as well as to changing alimentary preferences of consumers [2-3]. Dried carrot plays a crucial role among dried vegetables, because of its wide scope of use and high nutrition value. It contains a lot of carotene and sugar present in the form of crystals. Carrot also undergoes many different drying processes, which makes it difficult to perform a reliable quality assessment and classification of this dried material. One of many qualitative properties of dried carrot, having important influence on a positive or negative result of the quality assessment, is color and shape. The aim of the research project was to develop a method for the analysis of microwave-vacuum dried carrot images, and its application for the classification of individual fractions in the sample studied for quality assessment. During the research digital photographs of dried carrot were taken, which constituted the basis for assessment performed by a dedicated computer programme developed as a part of the research. Consequently, using a neural model, the dried material was classified [4-6].

  7. Cold Vacuum Drying (CVD) Facility Electrical System Captor and Dapper Study

    SciTech Connect

    SINGH, G.

    2000-11-20

    The objective of this report is to Validate and as-build the Load and Fault hand calculations performed by Meier Associates. Perform a protective device coordination study, not performed by Meier's, and furnish any recommendations, including recommended device settings. Perform Transient Motor Starting (TMS) analysis for the chillers and also the motors on the standby generator system. Indicate any design problems or NEC Code Violations, if found.

  8. Fire Hazard Analysis for the Cold Vacuum Drying facility (CVD) Facility

    SciTech Connect

    SINGH, G.

    2000-09-06

    The CVDF is a nonreactor nuclear facility that will process the Spent Nuclear Fuels (SNF) presently stored in the 105-KE and 105-KW SNF storage basins. Multi-canister overpacks (MCOs) will be loaded (filled) with K Basin fuel transported to the CVDF. The MCOs will be processed at the CVDF to remove free water from the fuel cells (packages). Following processing at the CVDF, the MCOs will be transported to the CSB for interim storage until a long-term storage solution can be implemented. This operation is expected to start in November 2000. A Fire Hazard Analysis (FHA) is required for all new facilities and all nonreactor nuclear facilities, in accordance with U.S. Department of Energy (DOE) Order 5480.7A, Fire Protection. This FHA has been prepared in accordance with DOE 5480.7A and HNF-PRO-350, Fire Hazard Analysis Requirements. Additionally, requirements or criteria contained in DOE, Richland Operations Office (RL) RL Implementing Directive (RLID) 5480.7, Fire Protection, or other DOE documentation are cited, as applicable. This FHA comprehensively assesses the risk of fire at the CVDF to ascertain whether the specific objectives of DOE 5480.7A are met. These specific fire protection objectives are: (1) Minimize the potential for the occurrence of a fire. (2) Ensure that fire does not cause an onsite or offsite release of radiological and other hazardous material that will threaten the public health and safety or the environment. (3) Establish requirements that will provide an acceptable degree of life safety to DOE and contractor personnel and ensure that there are no undue hazards to the public from fire and its effects in DOE facilities. (4) Ensure that vital DOE programs will not suffer unacceptable delays as a result of fire and related perils. (5) Ensure that property damage from fire and related perils does not exceed an acceptable level. (6) Ensure that process control and safety systems are not damaged by fire or related perils. This FHA is based on the facility as constructed and with planned operation at the time of document preparation. Changes in facility planned and actual operation require that the identified fire risks associated with the CVDF be re-evaluated. Consequently, formal documentation and future revision of this FHA may be required.

  9. Vacuum ultraviolet and infrared spectra of condensed methyl acetate on cold astrochemical dust analogs

    SciTech Connect

    Sivaraman, B.; Nair, B. G.; Mason, N. J.; Lo, J.-I.; Cheng, B.-M.; Kundu, S.; Davis, D.; Prabhudesai, V.; Krishnakumar, E.; Raja Sekhar, B. N.

    2013-12-01

    Following the recent report of the first identification of methyl acetate (CH{sub 3}COOCH{sub 3}) in the interstellar medium (ISM), we have carried out vacuum ultraviolet (VUV) and infrared (IR) spectroscopy studies on methyl acetate from 10 K until sublimation in an ultrahigh vacuum chamber simulating astrochemical conditions. We present the first VUV and IR spectra of methyl acetate relevant to ISM conditions. Spectral signatures clearly showed molecular reorientation to have started in the ice by annealing the amorphous ice formed at 10 K. An irreversible phase change from amorphous to crystalline methyl acetate ice was found to occur between 110 K and 120 K.

  10. Survival of experimentally induced Toxoplasma gondii tissue cysts in vacuum packed goat meat and dry fermented goat meat sausages.

    PubMed

    Neumayerová, Helena; Juránková, Jana; Saláková, Alena; Gallas, Leo; Kovařčík, Kamil; Koudela, Břetislav

    2014-05-01

    Ingestion of raw or undercooked meat is a potential source of human toxoplasmosis. The aim of this study was to determine the viability of Toxoplasma gondii cysts in vacuum packed (VP) goat meat and in dry fermented sausages (DFS), and evaluate certain physical and chemical parameters, like water activity (aw), pH value, content of salt, dry matter and fat. A portion of muscle tissue from experimentally infected animals was used for production of VP meat with or without addition of 2.5% curing salt, and stored at 4 °C or at -20 °C. Results of bioassay showed that, samples of vacuum packed Toxoplasma positive meat without salt addition were alive after six weeks at 4 °C. Incubation at -20 °C supported the viability after 3 h, but not after 4 h. After 7 days in 2.5% of curing salt, samples of T. gondii VP goat meat were still viable, but not after 14 days at 4 °C. All the DFS samples were not positive for infective cysts which mean that, they do not pose a risk of T. gondii transmission. These data suggest that vacuum packaging increases the survival of T. gondii cysts. PMID:24387851

  11. Report on UQ and PCMM Analysis of Vacuum Drying for UFD S&T Gaps

    SciTech Connect

    M. Fluss

    2015-08-31

    This report discusses two phenomena that could affect the safety, licensing, transportation, storage, and disposition of the spent fuel storage casks and their contents (radial hydriding during drying and water retention after drying) associated with the drying of canisters for dry spent fuel storage. The report discusses modeling frameworks and evaluations that are, or have been, developed as a means to better understand these phenomena. Where applicable, the report also discusses data needs and procedures for monitoring or evaluating the condition of storage containers during and after drying. A recommendation for the manufacturing of a fully passivated fuel rod, resistant to oxidation and hydriding is outlined.

  12. Spacecraft attitude impacts on COLD-SAT non-vacuum jacketed LH2 supply tank thermal performance

    NASA Technical Reports Server (NTRS)

    Arif, Hugh

    1990-01-01

    The Cryogenic On-Orbit Liquid Depot - Storage, Acquisition and Transfer (COLD-SAT) spacecraft will be launched into low earth orbit to perform fluid management experiments on the behavior of subcritical liquid hydrogen (LH2). For determining the optimum on-orbit attitude for the COLD-SAT satellite, a comparative analytical study was performed to determine the thermal impacts of spacecraft attitude on the performance of the COLD-SAT non-vacuum jacketed LH2 supply tank. Tank thermal performance was quantified by total conductive and radiative heat leakage into the pressure vessel due to the absorbed solar, earth albedo and infra-red on-orbit fluxes, and also by the uniformity of the variation of this leakage on the vessel surface area. Geometric and thermal analysis math models were developed for the spacecraft and the tank as part of this analysis, based on their individual thermal/structural designs. Two quasi-inertial spacecraft attitudes were investigated and their effects on the tank performance compared. The results are one of the criteria by which the spacecraft orientation in orbit was selected for the in-house NASA Lewis Research Center design.

  13. Spacecraft attitude impacts on COLD-SAT non-vacuum jacketed LH2 supply tank thermal performance

    NASA Technical Reports Server (NTRS)

    Arif, Hugh

    1990-01-01

    The Cryogenic On-Orbit Liquid Depot - Storage, Acquisition and Transfer (COLD-SAT) spacecraft will be launched into low earth orbit to perform fluid management experiments on the behavior of subcritical liquid hydrogen (LH2). For determining the optimum on-orbit attitude for the COLD-SAT satellite, a comparative analytical study was performed to determine the thermal impacts of spacecraft attitude on the performance of the COLD-SAT non-vacuum jacketed LH2 supply tank. Tank thermal performance was quantitied by total conductive and radiative heat leakage into the pressure vessel due to the absorbed solar, earth albedo and infra-red on-orbit fluxes, and also by the uniformity of the variation of this leakage on the vessel surface area. Geometric and thermal analysis math models were developed for the spacecraft and the tank as part of this analysis, based on their individual thermal/structural designs. Two quasi-inertial spacecraft attitudes were investigated and their effects on the tank performance compared. The results are one of the criteria by which the spacecraft orientation in orbit was selected for the in-house NASA Lewis Research Center design.

  14. Effect of Microstructure on the Electrical Properties of Nano-Structured TiN Coatings Deposited by Vacuum Cold Spray

    NASA Astrophysics Data System (ADS)

    Wang, Y.-Y.; Liu, Y.; Yang, G.-J.; Feng, J.-J.; Kusumoto, K.

    2010-12-01

    TiN coatings on Al2O3 substrates were fabricated by vacuum cold spray (VCS) process using ultrafine starting ceramic powders of 20 nm in size at room temperature (RT). Microstructure analysis of the samples was carried out by scanning electron microscopy, transmission electron microscopy, and x-ray diffraction. Sheet resistance of the VCS TiN coatings was measured with a four-point probe. The effects of microstructure on the electrical properties of the coatings were investigated. It was found that the sheet resistance and electrical resistivity of TiN coatings were significantly associating with the spray distance, nozzle traversal speed, and deposition chamber pressure. A minimum sheet resistance of 127 Ω was achieved. The microstructural changes can be correlated to the electrical resistivity of TiN coatings.

  15. Critically safe vacuum pickup for use in wet or dry cleanup of radioactive materials

    DOEpatents

    Zeren, Joseph D.

    1994-01-01

    A vacuum pickup of critically safe quantity and geometric shape is used in cleanup of radioactive materials. Collected radioactive material is accumulated in four vertical, parallel, equally spaced canisters arranged in a cylinder configuration. Each canister contains a filter bag. An upper intake manifold includes four 90 degree spaced, downward facing nipples. Each nipple communicates with the top of a canister. The bottom of each canister communicates with an exhaust manifold comprising four radially extending tubes that meet at the bottom of a centrally located vertical cylinder. The top of the central cylinder terminates at a motor/fan power head. A removable HEPA filter is located intermediate the top of the central cylinder and the power head. Four horizontal bypass tubes connect the top of the central cylinder to the top of each of the canisters. Air enters the vacuum cleaner via a hose connected to the intake manifold. Air then travels down the canisters, where particulate material is accumulated in generally equal quantities in each filter bag. Four air paths of bag filtered air then pass radially inward to the bottom of the central cylinder. Air moves up the central cylinder, through the HEPA filter, through a vacuum fan compartment, and exits the vacuum cleaner. A float air flow valve is mounted at the top of the central cylinder. When liquid accumulates to a given level within the central cylinder, the four bypass tubes, and the four canisters, suction is terminated by operation of the float valve.

  16. Effects of age and season on haematological parameters of donkeys during the rainy and cold-dry seasons

    NASA Astrophysics Data System (ADS)

    Zakari, Friday Ocheja; Ayo, Joseph Olusegun; Rekwot, Peter Ibrahim; Kawu, Mohammed Umar

    2015-12-01

    The aim of the study was to investigate the effects of age and season on haematological parameters of donkeys at rest during the rainy and cold-dry seasons. Thirty healthy donkeys divided into three groups based on their age served as the subjects. During each season, blood sample was collected from each donkey thrice, 2 weeks apart, for haematological analysis, and the dry-bulb temperature (DBT), relative humidity (RH) and temperature-humidity index (THI) were obtained thrice each day during the experimental period using standard procedures. During the rainy season, the mean DBT (33.05 ± 0.49 °C), RH (73.63 ± 1.09 %) and THI (84.39 ± 0.71) were higher ( P < 0.0001) than the corresponding values of 24.00 ± 0.44 °C, 36.80 ± 0.92 % and 64.80 ± 0.62, during the cold-dry season. Packed cell volume (PCV), erythrocyte count [red blood cell (RBC)], haemoglobin concentration (Hb), mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH), platelet count (PLT), leucocyte count [white blood cell (WBC)], lymphocyte count (LYM) and neutrophil/lymphocyte ratio (N/L) were higher ( P < 0.05) in adults than foals during the rainy season. The MCV, MCH, WBC, NEU, LYM and PLT of adult and yearling donkeys were higher ( P < 0.05) during the rainy than the cold-dry season. The PCV, RBC, Hb, MCV, MCH, and NEU of foals were higher in the rainy than the cold-dry season. The N/L of adult and foal donkeys were higher ( P < 0.05) in the rainy than in the cold-dry season. In conclusion, PCV, RBC, Hb and LYM were considerably higher in foals than yearlings or adults during the rainy season, while erythrocytic indices and platelet counts were higher in adults or yearlings than in foals in both seasons. Erythrocytic indices, PLT and N/L were higher in the rainy than the cold-dry season in adults, yearlings and foals.

  17. Programmed automation of modulator cold jet flow for comprehensive two-dimensional gas chromatographic analysis of vacuum gas oils.

    PubMed

    Rathbun, Wayne

    2007-01-01

    A method is described for automating the regulation of cold jet flow of a comprehensive two-dimensional gas chromatograph (GCxGC) configured with flame ionization detection. This new capability enables the routine automated separation, identification, and quantitation of hydrocarbon types in petroleum fractions extending into the vacuum gas oil (VGO) range (IBP-540 degrees C). Chromatographic data acquisition software is programmed to precisely change the rate of flow from the cold jet of a nitrogen cooled loop modulator of a GCxGC instrument during sample analysis. This provides for the proper modulation of sample compounds across a wider boiling range. The boiling point distribution of the GCxGC separation is shown to be consistent with high temperature simulated distillation results indicating recovery of higher boiling semi-volatile VGO sample components. GCxGC configured with time-of-flight mass spectrometry is used to determine the molecular identity of individual sample components and boundaries of different molecular types. PMID:18078570

  18. Potential Groundwater Recharge from the Infiltration of Surface Runoff in Cold and Dry Creeks, Phase 2

    SciTech Connect

    Waichler, Scott R.

    2005-12-13

    Runoff from Cold and Dry Creeks may provide an important source of groundwater recharge on the Hanford Site. This report presents estimates of total volume and distribution of such recharge from extreme precipitation events. Estimates were derived using a simple approach that combined the Soil Conservation Service curve number runoff method and an exponential-decay channel infiltration model. Fifteen-minute streamflow data from four gaging stations, and hourly precipitation data from one climate station, were used to compute curve numbers and calibrate the infiltration model. All data were from several storms occurring during January 1995. Design storm precipitation depths ranging from 1.6 to 2.7 inches were applied with computed curve numbers to produce total runoff/recharge of 7,700 to 15,900 ac-ft, or approximately 10 times the average annual rate from this recharge source as determined in a previous study. Approximately two-thirds of the simulated recharge occurred in the lower stream reaches contained in the broad alluvial valley that parallels State Highway 240 near the Hanford 200 Area.

  19. Evidence of Dry and Cold Climatic Conditions at Glacial Times in Tropical Southeastern Brazil

    NASA Astrophysics Data System (ADS)

    Behling, Hermann; Lichte, Martin

    1997-11-01

    Last-glacial paleoenvironments have been reconstructed from a pollen and charcoal record analyzed in organic sediments and dated between ca. 18,000 and >48,000 14C yr B.P. The site is located near the village Catas Altas in the lower highland region of southeastern Brazil. The last-glacial landscape was covered by extensive areas of subtropical grasslands and small areas of gallery forests along the rivers, where tropical semideciduous forests and cerrado ecosystems exist today. The subtropical gallery forests were composed of Araucariaforest trees such as Araucaria angustifolia, Podocarpus, Drimys, Ilex,and Symplocos.Paleofires were frequent. The record indicates that subtropical grassland vegetation, which today is found in patches on the highlands in southern Brazil (especially in the state of Santa Catarina), expanded from southern Brazil to southeastern Brazil, over a distance of more than 750 km, from latitudes of about 28° S to at least 20° S. The completely different last-glacial environment, in comparison to the present-day environment, reflects a dry and cold climate with strong frosts during the winter months. Temperatures of 5°-7°C below those of the present are inferred for the last glaciation.

  20. Evaluation of HEPA vacuum cleaning and dry steam cleaning in reducing levels of polycyclic aromatic hydrocarbons and house dust mite allergens in carpets

    PubMed Central

    Yu, Chang Ho; Yiin, Lih-Ming; Fan, Zhi-Hua (Tina); Rhoads, George G.

    2014-01-01

    Dry steam cleaning, which has gained recent attention as an effective method to reduce house dust mite (HDM) allergen concentration and loading in carpets, was evaluated in this study for its efficacy in lowering levels of polycyclic aromatic hydrocarbons (PAHs) as well as HDM allergens. Fifty urban homes with wail-to-wall carpets, mostly low-income and with known lead contamination, were studied in 2003 and 2004. Two carpet-cleaning interventions were compared: Repeated HEPA (High Efficiency Particulate Air filtered) vacuuming alone and repeated HEPA vacuuming supplemented with dry steam cleaning. Vacuum samples were collected to measure carpet loading of dust and contaminants immediately before and after cleaning. Paired comparisons were conducted to evaluate the effectiveness of the cleaning protocols in reducing the levels of PAHs and HDM allergens in carpets. The results indicated that both cleaning methods substantially reduced the loading of PAHs and HDM allergens as well as dust in carpets (p < 0.0001). The reductions in loading of dust (64.4%), PAHs (69.1%), and HDM allergens (85.5%), by dry steam cleaning plus repetitive HEPA vacuuming were larger than the reductions by regular HEPA vacuuming alone: dust (55.5%), PAHs (58.6%), and HDM allergens (80.8%), although the difference was statistically significant only for dust and PAHs. We conclude that intensive HEPA vacuum cleaning substantially reduced the loading of PAHs and HDM allergens in carpets in these urban homes and that dry steam cleaning added modestly to cleaning effectiveness. PMID:19137159

  1. Evaluation of HEPA vacuum cleaning and dry steam cleaning in reducing levels of polycyclic aromatic hydrocarbons and house dust mite allergens in carpets.

    PubMed

    Yu, Chang Ho; Yiin, Lih-Ming; Tina Fan, Zhi-Hua; Rhoads, George G

    2009-01-01

    Dry steam cleaning, which has gained recent attention as an effective method to reduce house dust mite (HDM) allergen concentration and loading in carpets, was evaluated in this study for its efficacy in lowering levels of polycyclic aromatic hydrocarbons (PAHs) as well as HDM allergens. Fifty urban homes with wall-to-wall carpets, mostly low-income and with known lead contamination, were studied in 2003 and 2004. Two carpet-cleaning interventions were compared: Repeated HEPA (High Efficiency Particulate Air filtered) vacuuming alone and repeated HEPA vacuuming supplemented with dry steam cleaning. Vacuum samples were collected to measure carpet loading of dust and contaminants immediately before and after cleaning. Paired comparisons were conducted to evaluate the effectiveness of the cleaning protocols in reducing the levels of PAHs and HDM allergens in carpets. The results indicated that both cleaning methods substantially reduced the loading of PAHs and HDM allergens as well as dust in carpets (p < 0.0001). The reductions in loading of dust (64.4%), PAHs (69.1%), and HDM allergens (85.5%), by dry steam cleaning plus repetitive HEPA vacuuming were larger than the reductions by regular HEPA vacuuming alone: dust (55.5%), PAHs (58.6%), and HDM allergens (80.8%), although the difference was statistically significant only for dust and PAHs. We conclude that intensive HEPA vacuum cleaning substantially reduced the loading of PAHs and HDM allergens in carpets in these urban homes and that dry steam cleaning added modestly to cleaning effectiveness. PMID:19137159

  2. Mechanical properties and area retention of leather dried with biaxial stretching under vacuum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The conversion of animal hides to leather involves many complicated chemical and mechanical operations. Drying is one of the mechanical operations, and plays a key role in determining the physical properties of leather. It is where leather acquires its final texture, consistency and flexibility. ...

  3. Spent Nuclear Fuel Dry Transfer System Cold Demonstration Project Final Report

    SciTech Connect

    Christensen, Max R; McKinnon, M. A.

    1999-12-01

    The spent nuclear fuel dry transfer system (DTS) provides an interface between large and small casks and between storage-only and transportation casks. It permits decommissioning of reactor pools after shutdown and allows the use of large storage-only casks for temporary onsite storage of spent nuclear fuel irrespective of reactor or fuel handling limitations at a reactor site. A cold demonstration of the DTS prototype was initiated in August 1996 at the Idaho National Engineering and Environmental Laboratory (INEEL). The major components demonstrated included the fuel assembly handling subsystem, the shield plug/lid handling subsystem, the cask interface subsystem, the demonstration control subsystem, a support frame, and a closed circuit television and lighting system. The demonstration included a complete series of DTS operations from source cask receipt and opening through fuel transfer and closure of the receiving cask. The demonstration included both normal operations and recovery from off-normal events. It was designed to challenge the system to determine whether there were any activities that could be made to jeopardize the activities of another function or its safety. All known interlocks were challenged. The equipment ran smoothly and functioned as designed. A few "bugs" were corrected. Prior to completion of the demonstration testing, a number of DTS prototype systems were modified to apply lessons learned to date. Additional testing was performed to validate the modifications. In general, all the equipment worked exceptionally well. The demonstration also helped confirm cost estimates that had been made at several points in the development of the system.

  4. Fractionation of outdated freeze-dried plasma: a comparative study of cold- and heat-ethanol fractionation procedures.

    PubMed

    Schneider, W; Wolter, D; Shapiro, M; McCarty, L

    1979-01-01

    In a comparative study a total volume of 1435 kg outdated freeze-dried plasma, equivalent to approx. 200,000 kg liquid plasma, was fractionated into albumin (20%): about 30% of the total plasma volume was fractionated following the cold-ethanol procedure and about 70% following the heat-ethanol method. Average albumin recovery following cold-ethanol preparation was 47% of the albumin originally present in the freeze-dried plasma (= 50% of total protein); following heat-ethanol fractionation, 71%. Gelfiltration of heat-ethanol albumin showed a main peak (= 93%) representing albumin monomers and one slightly faster component (= 7%) representing albumin dimers. Gelfiltration of cold-ethanol isolated albumin on the other hand showed four peaks: albumin monomers (= 60%), albumin dimers (= 15%), and two other peaks representing higher molecular weight molecules (= 25%). Hemoglobin present in the reconstituted plasma was reduced about five-fold in the cold-ethanol product and about ten-fold in the heat-ethanol albumin. Stability tests of both products did not differ from equivalent products isolated from normal human plasma. Besides albumin, immunoglobulins may be isolated as Cohn fraction II-III prior to the heating procedure without significant albumin loss. PMID:88384

  5. The Hanford spent nuclear metal fuel multi-canister overpack and vacuum drying {ampersand} hot conditioning process

    SciTech Connect

    Irwin, J.J.

    1996-05-15

    Nuclear production reactors operated at the U.S. Department of Energy`s Hanford Site from 1944 until 1988 to produce plutonium. Most of the irradiated fuel from these reactors was processed onsite to separate and recover the plutonium. When the processing facilities were closed in 1992, about 1,900 metric tons of unprocessed irradiated fuel remained in storage. Additional fuel was irradiated for research purposes or was shipped to the Hanford Site from offsite reactor facilities for storage or recovery of nuclear materials. The fuel inventory now in storage at the Hanford Site is predominantly N Reactor irradiated fuel, a metallic uranium alloy that is coextruded into zircaloy-2 cladding. The Spent Nuclear Fuel Project has rommitted to an accelerated schedule for removing spent nuclear fuel from the Hanford Site K Basins to a new interim storage facility in the 200 Area. Under the current proposed accelerated schedule, retrieval of spent nuclear fuel stored in the K East and West Basins must begin by December 1997 and be completed by December 1999. A key part of this action is retrieving fuel canisters from the water-filled K Basin storage pools and transferring them into multi@ister overpacks (MCOS) that will be used to handle and process the fuel, then store it after conditioning. The Westinghouse Hanford Company has developed an integrated process to deal with the K Basin spent fuel inventory. The process consists of cleaning the fuel, packaging it into MCOS, vacuum drying it at the K Basins, then transporting it to the Canister Storage Building (CSB) for staging, hot conditioning, and interim storage. This presentation dekribes the MCO function, design, and life-cycle, including an overview of the vacuum drying and hot conditioning processes.

  6. Effect of Modified Atmosphere Packaging and Vacuum Packaging on Quality Characteristics of Low Grade Beef during Cold Storage.

    PubMed

    Hur, S J; Jin, S K; Park, J H; Jung, S W; Lyu, H J

    2013-12-01

    Many studies have been carried out with respect to packaging methods and temperature conditions of beef. However, the effects of packaging methods and temperature conditions on the quality characteristics have not been extensively studied in low-grade beef. Low-grade beef samples were divided into 3 groups (C: ziplock bag packaging, T1: vacuum packaging, and T2: modified atmosphere packaging (MAP), CO2/N2 = 3:7) and samples were stored at 4°C for 21 days. The water-holding capacity (WHC) was significantly lower in T1 than in the other samples up to 14 days of storage. The thiobarbituric acid reactive substances and volatile basic nitrogen values were significantly lower in T1 and T2 than in C after 7 to 14 days of storage. The total bacterial counts were significantly lower in T1 and T2 than in C after 14 days of storage. In a sensory evaluation, tenderness and overall acceptability were significantly higher in T1 and T2 than in C at the end of the storage period (21 days). We propose that the MAP method can improve beef quality characteristics of low-grade beef during cold storage. However, the beneficial effects did not outweigh the cost increase to implement MAP. PMID:25049769

  7. Effect of Modified Atmosphere Packaging and Vacuum Packaging on Quality Characteristics of Low Grade Beef during Cold Storage

    PubMed Central

    Hur, S. J.; Jin, S. K.; Park, J. H.; Jung, S. W.; Lyu, H. J.

    2013-01-01

    Many studies have been carried out with respect to packaging methods and temperature conditions of beef. However, the effects of packaging methods and temperature conditions on the quality characteristics have not been extensively studied in low-grade beef. Low-grade beef samples were divided into 3 groups (C: ziplock bag packaging, T1: vacuum packaging, and T2: modified atmosphere packaging (MAP), CO2/N2 = 3:7) and samples were stored at 4°C for 21 days. The water-holding capacity (WHC) was significantly lower in T1 than in the other samples up to 14 days of storage. The thiobarbituric acid reactive substances and volatile basic nitrogen values were significantly lower in T1 and T2 than in C after 7 to 14 days of storage. The total bacterial counts were significantly lower in T1 and T2 than in C after 14 days of storage. In a sensory evaluation, tenderness and overall acceptability were significantly higher in T1 and T2 than in C at the end of the storage period (21 days). We propose that the MAP method can improve beef quality characteristics of low-grade beef during cold storage. However, the beneficial effects did not outweigh the cost increase to implement MAP. PMID:25049769

  8. Evaluation of the high pressure oxidizer turbopump (HPOTP) vacuum drying procedures

    NASA Technical Reports Server (NTRS)

    Fears, S. D.

    1991-01-01

    Tests carried out on the HPOTP to determine the effects of surface finish on the rate at which water vapor could be removed from the bearing/spacer cavity are described. Data from these tests are used to evaluate the effects of a lower drying temperature on the flow rate of water vapor from the bearing/spacer cavity as well. It was found that, if the normality nut is torqued, there is no evidence of moisture entering the bearing/spacer cavity from external sources.

  9. State of Washington Department of Ecology criteria pollutants and toxic air polluntants phase II notice of construction for the Hanford Site spent nuclear fuel project--cold vacuum dryingfacility, Project W-441

    SciTech Connect

    Jansky, M.T., Westinghouse Hanford

    1997-01-24

    This Phase 11 notice of construction (NOC) provides the additional information committed to in the Phase I NOC submittal (DOE/RL-96- 55) regarding the air toxic and criteria pollutants that could potentially be emitted during operation of the Cold Vacuum Drying Facility (CVDF). This Phase 11 NOC is being submitted to ensure the CVDF is in full compliance with Washington Administrative Code (WAC) 173-460-040(8), `Commencement of Construction`. The Phase I NOC (approved September 30, 1996) was defined as constructing the substructure, including but not limited to, pouring the concrete for the floor, and construction of the exterior. This Phase 11 NOC is being submitted for approval before installation and operation of the process equipment that will generate any potential air emissions at the CVDF, and installation and operation of the emissions control equipment.

  10. Microwave-vacuum drying system (MIVAC). Final progress report No. 6

    SciTech Connect

    Gardner, D.R.

    1980-05-12

    Testing of the MIVAC dryer commenced late in the 1978 harvest season. In order to more fully evaluate the MIVAC dryer, McDonnell Douglas requested an extension to the existing contract to cover testing of the MIVAC dryer throughout the 1979 harvest season. This report covers the tests conducted to fulfill the extended contract during the extension period, February 1979 through January 1980. During this period, the Tifton MIVAC dryer was evaluated by drying a wide variety of products, including corn, peanuts, rice, pine seed, grain sorghum, soybeans, rye, and sunflower seeds. In addition, a memorandum discussing the microwave safety of the Tifton MIVAC dryer was prepared, and polypropylene domes were tested and judged satisfactory to replace the Teflon disc microwave windows used in the original dryer configuration.

  11. FY 1999 Progress Report on: Potential Groundwater Recharge from the Infiltration of Surface Runoff in Cold and Dry Creeks

    SciTech Connect

    Wigmosta, Mark S.; Guensch, Gregory R.

    2006-12-31

    The volume of water available for groundwater recharge through the infiltration of surface runoff in Cold and Dry Creeks was estimated for a 100-year storm and the Probable Maximum Precipitation (PMP) of Skaggs and Walters (1981). A 100-year, 7-day design storm was developed from 40 years of precipitation data measured at the Hanford Meteorological Station (HMS). Runoff measured in Upper Cold Creek was used with HMS precipitation data to calculate curve numbers for the Soil Conservation Service rainfall-runoff model. The estimated water available for recharge from surface runoff produced by the 100-year storm is 3-6 times the annual recharge rate from direct infiltration of precipitation over the Hanford Site. Potential recharge from the PMP is 7-11 times the annual volume of direct recharge.

  12. Detecting life traces in extreme cold and dry conditions on earth: possible analogues of life on Mars

    NASA Astrophysics Data System (ADS)

    Wierzchos, J.; de Los Rios, A.; Ascaso, C.

    2004-03-01

    Microbial life in the harsh conditions of Antarctica's cold desert may be considered an analogue of potential life of early Mars. The microbial ecology of these lithobiontic, extremophile microorganism communities could provide clues to the challenging question of how life (if ever present) became extinct on Mars. Application of the SEM-BSE plus EDS technique has allowed us to demonstrate the presence of microbial fossils and biomarkers within Antarctic sandstone rocks collected from Ross Desert for the first time. There is an obvious need for extensive further work on live, dead, mummified and mineralized lithobiontic Antarctic microorganisms. The in situ examination of the interior of Antarctic rocks might represent the best option available to improve our knowledge on these extreme cold and dry microbial habitats and it is foreseen that this type of work will have applications in future astrobiological investigations performed on geological material obtained from Mars.

  13. Transcriptomic Analysis of the Adaptation of Listeria monocytogenes to Growth on Vacuum-Packed Cold Smoked Salmon.

    PubMed

    Tang, Silin; Orsi, Renato H; den Bakker, Henk C; Wiedmann, Martin; Boor, Kathryn J; Bergholz, Teresa M

    2015-10-01

    The foodborne pathogen Listeria monocytogenes is able to survive and grow in ready-to-eat foods, in which it is likely to experience a number of environmental stresses due to refrigerated storage and the physicochemical properties of the food. Little is known about the specific molecular mechanisms underlying survival and growth of L. monocytogenes under different complex conditions on/in specific food matrices. Transcriptome sequencing (RNA-seq) was used to understand the transcriptional landscape of L. monocytogenes strain H7858 grown on cold smoked salmon (CSS; water phase salt, 4.65%; pH 6.1) relative to that in modified brain heart infusion broth (MBHIB; water phase salt, 4.65%; pH 6.1) at 7°C. Significant differential transcription of 149 genes was observed (false-discovery rate [FDR], <0.05; fold change, ≥2.5), and 88 and 61 genes were up- and downregulated, respectively, in H7858 grown on CSS relative to the genes in H7858 grown in MBHIB. In spite of these differences in transcriptomes under these two conditions, growth parameters for L. monocytogenes were not significantly different between CSS and MBHIB, indicating that the transcriptomic differences reflect how L. monocytogenes is able to facilitate growth under these different conditions. Differential expression analysis and Gene Ontology enrichment analysis indicated that genes encoding proteins involved in cobalamin biosynthesis as well as ethanolamine and 1,2-propanediol utilization have significantly higher transcript levels in H7858 grown on CSS than in that grown in MBHIB. Our data identify specific transcriptional profiles of L. monocytogenes growing on vacuum-packaged CSS, which may provide targets for the development of novel and improved strategies to control L. monocytogenes growth on this ready-to-eat food. PMID:26209664

  14. Transcriptomic Analysis of the Adaptation of Listeria monocytogenes to Growth on Vacuum-Packed Cold Smoked Salmon

    PubMed Central

    Tang, Silin; Orsi, Renato H.; den Bakker, Henk C.; Wiedmann, Martin; Boor, Kathryn J.

    2015-01-01

    The foodborne pathogen Listeria monocytogenes is able to survive and grow in ready-to-eat foods, in which it is likely to experience a number of environmental stresses due to refrigerated storage and the physicochemical properties of the food. Little is known about the specific molecular mechanisms underlying survival and growth of L. monocytogenes under different complex conditions on/in specific food matrices. Transcriptome sequencing (RNA-seq) was used to understand the transcriptional landscape of L. monocytogenes strain H7858 grown on cold smoked salmon (CSS; water phase salt, 4.65%; pH 6.1) relative to that in modified brain heart infusion broth (MBHIB; water phase salt, 4.65%; pH 6.1) at 7°C. Significant differential transcription of 149 genes was observed (false-discovery rate [FDR], <0.05; fold change, ≥2.5), and 88 and 61 genes were up- and downregulated, respectively, in H7858 grown on CSS relative to the genes in H7858 grown in MBHIB. In spite of these differences in transcriptomes under these two conditions, growth parameters for L. monocytogenes were not significantly different between CSS and MBHIB, indicating that the transcriptomic differences reflect how L. monocytogenes is able to facilitate growth under these different conditions. Differential expression analysis and Gene Ontology enrichment analysis indicated that genes encoding proteins involved in cobalamin biosynthesis as well as ethanolamine and 1,2-propanediol utilization have significantly higher transcript levels in H7858 grown on CSS than in that grown in MBHIB. Our data identify specific transcriptional profiles of L. monocytogenes growing on vacuum-packaged CSS, which may provide targets for the development of novel and improved strategies to control L. monocytogenes growth on this ready-to-eat food. PMID:26209664

  15. Assessment of long-term monthly and seasonal trends of warm (cold), wet (dry) spells in Kansas, USA

    NASA Astrophysics Data System (ADS)

    Dokoohaki, H.; Anandhi, A.

    2013-12-01

    A few recent studies have focused on trends in rainfall, temperature, and frost indicators at different temporal scales using centennial weather station data in Kansas; our study supplements this work by assessing the changes in spell indicators in Kansas. These indicators provide the duration between temperature-based (warm and cold) and precipitation-based (wet and dry) spells. For wet (dry) spell calculations, a wet day is defined as a day with precipitation ≥1 mm, and a dry day is defined as one with precipitation ≤1 mm. For warm (cold) spell calculations, a warm day is defined as a day with maximum temperature >90th percentile of daily maximum temperature, and a cold day is defined as a day with minimum temperature <10th percentile of daily minimum temperature. The percentiles are calculated for 1971-2000, and four spell indicators are calculated: Average Wet Spell Length (AWSL), Dry Spell Length (ADSL), Average Warm Spell Days (AWSD) and Average Cold Spell Days (ACSD) are calculated. Data were provided from 23 centennial weather stations across Kansas, and all calculations were done for four time periods (through 1919, 1920-1949, 1950-1979, and 1980-2009). The definitions and software provided by Expert Team on Climate Change Detection and Indices (ETCCDI) were adapted for application to Kansas. The long- and short-term trends in these indices were analyzed at monthly and seasonal timescales. Monthly results indicate that ADSL is decreasing and AWSL is increasing throughout the state. AWSD and ACSD both showed an overall decreasing trend, but AWSD trends were variable during the beginning of the Industrial Revolution. Results of seasonal analysis revealed that the fall season recorded the greatest increasing trend for ACSD and the greatest decreasing trend for AWSD across the whole state and during all time periods. Similarly, the greatest increasing and decreasing trends occurred in winter for AWSL and ADSL, respectively. These variations can be

  16. Cold and dry processes in the Martian Arctic: Geomorphic observations at the Phoenix landing site and comparisons with terrestrial cold desert landforms

    NASA Astrophysics Data System (ADS)

    Levy, Joseph S.; Head, James W.; Marchant, David R.

    2009-11-01

    We analyze Surface Stereo Imager observations of rocks, sediments, and permafrost-related landforms in the vicinity of the Phoenix lander, comparing the imaged features to analogous examples of physical weathering and periglacial processes observed in the Antarctic Dry Valleys. Observations at the Phoenix landing site of pitted rocks, “puzzle rocks” undergoing in-situ breakdown, perched clasts, and thermal contraction crack polygon morphologies strikingly similar to terrestrial sublimation polygons, all strongly suggest that stable (non-churning) permafrost processes dominate the Phoenix landing site. Morphological evidence suggests that cold-desert processes, in the absence of wet active-layer cryoturbation, and largely driven by sublimation of buried ice (either pore ice, excess ice, or both) are shaping the landscape.

  17. Physicochemical characterization of nopal pads (Opuntia ficus indica) and dry vacuum nopal powders as a function of the maturation.

    PubMed

    Rodríguez-Garcia, M E; de Lira, C; Hernández-Becerra, E; Cornejo-Villegas, M A; Palacios-Fonseca, A J; Rojas-Molina, I; Reynoso, R; Quintero, L C; Del-Real, A; Zepeda, T A; Muñoz-Torres, C

    2007-09-01

    This paper presents the physicochemical and nutrimental characterization of fresh nopal (Opuntia ficus indica, Redonda variety) and nopal powder produced at different stages of development. Nopal powder was obtained by dry vacuum technique using 10(2) Torr and low temperature (40 degrees C). The results showed that the nutrimental and mineral composition of nopal changes as a function of the maturation as follow: The ash content increases from 18.41 for nopalitos (60 g of weight) to 23.24% (nopal pads 200 g); calcium content increases from 1.52 to 3.72%, while phosphorous exhibits an opposite trend: 0.43 to 0.27%, respectively. Calcium oxalate was determined by X-ray diffraction and SEM microscopy and quantified by using atomic absorption spectroscopy. Calcium oxalate decreases from 7.95 to 3.47 mg/g and the Ca/P ratio varies from 3.6 to 11. The soluble fibre decreases from 25.22 to 14.91%, while insoluble fibre increases from 29.87 to 41.65%. These results suggest that nopal could be an important source of minerals within the diets of people in Mexico and the rest of Latin America. PMID:17674207

  18. The effect of preparation under vacuum and microwave drying on the mechanical properties of porcelain ceramic foam via polymeric sponge method

    NASA Astrophysics Data System (ADS)

    Shahatha, S. H.; Mohammed, M. A.

    2016-04-01

    In this paper was demonstrated the effect of preparation condition under vacuum and microwave drying on the mechanical properties of porcelain ceramic foam. The study was based on five different polymeric foam templates with thickness ranging from 0.5 to 4 cm. The templates were impregnated in ceramic slurry with solid loading ranging from 35 to 55 wt. % under vacuum pressure 10-1 Torr and then sintered to 1250°C. Effects of polymeric foam template thickness and solid loading quantity were evaluated based on porosity, density and mechanical properties (compressive and flexural strengths) of the ceramic foam.

  19. Antarctic Dry Valley Sediments as Analogs for Microbial Systems in a Cold Mars-Like Environment

    NASA Astrophysics Data System (ADS)

    Bishop, J. L.; Englert, P.

    2016-05-01

    Investigations of surface and lake bottom sediments in the Antarctic Dry Valleys have revealed microbial life nearly everywhere and some evidence for clays, carbonates, sulfates and other minerals associated with microbes in the sediments.

  20. [Safe wintering and economic and ecological benefit of winter rapeseed in dry and cold areas of northern China].

    PubMed

    Liu, Hai-qing; Sun, Wan-cang; Liu, Zi-gang; Wang, Zhi-jiang; Fang, Yuan; Wu, Jun-yan; Li, Xue-cai; Fang, Yan

    2015-10-01

    The purpose of this study was to realize the security of safe wintering of winter rapeseed in dry and cold regions of northern China. Experiments were conducted with 18 winter rapeseed (Brassica campestris) varieties at 57 sites from 2008 to 2013 to statistically analyze the wintering rate variation of different varieties in dry and cold regions of northern China. The results showed that, the wintering rate varied from 70% to 90% during the study period in different regions, which had no significant difference between different years and varieties, and had high stability and remarkable economic benefit. With Tianshui as a starting point of winter rapeseed planting, the wintering-safe regions included all Gansu Province , the south of Lasa and Linzhi of Xizang, the east of Minhe of Qinghai, up to Urumqi and Baicheng, and the south of Aletai, Tacheng, the east of Kashi of Xinjiang, it also included the regions along Yellow River eastward to Ningxia, the south of Linhe of Inner Mongolia, the north of Shaanxi, the vicinage of Qixian in Shanxi, Daming in Hebei, Tianjin, Beijing, the north of Weifang of Shandong, the south of Huludao of Liaoning and Yanbian of Jilin. Longyou 6, Longyou 7, Longyou 8 and Longyou 9 were the wintering-safe B. rapa varieties. PMID:26995911

  1. Nearing the cold-arid limits of microbial life in permafrost of an upper dry valley, Antarctica.

    PubMed

    Goordial, Jacqueline; Davila, Alfonso; Lacelle, Denis; Pollard, Wayne; Marinova, Margarita M; Greer, Charles W; DiRuggiero, Jocelyn; McKay, Christopher P; Whyte, Lyle G

    2016-07-01

    Some of the coldest and driest permafrost soils on Earth are located in the high-elevation McMurdo Dry Valleys (MDVs) of Antarctica, but little is known about the permafrost microbial communities other than that microorganisms are present in these valleys. Here, we describe the microbiology and habitable conditions of highly unique dry and ice-cemented permafrost in University Valley, one of the coldest and driest regions in the MDVs (1700 m above sea level; mean temperature -23 °C; no degree days above freezing), where the ice in permafrost originates from vapour deposition rather than liquid water. We found that culturable and total microbial biomass in University Valley was extremely low, and microbial activity under ambient conditions was undetectable. Our results contrast with reports from the lower-elevation Dry Valleys and Arctic permafrost soils where active microbial populations are found, suggesting that the combination of severe cold, aridity, oligotrophy of University Valley permafrost soils severely limit microbial activity and survival. PMID:27323892

  2. Nearing the cold-arid limits of microbial life in permafrost of an upper dry valley, Antarctica

    PubMed Central

    Goordial, Jacqueline; Davila, Alfonso; Lacelle, Denis; Pollard, Wayne; Marinova, Margarita M; Greer, Charles W; DiRuggiero, Jocelyn; McKay, Christopher P; Whyte, Lyle G

    2016-01-01

    Some of the coldest and driest permafrost soils on Earth are located in the high-elevation McMurdo Dry Valleys (MDVs) of Antarctica, but little is known about the permafrost microbial communities other than that microorganisms are present in these valleys. Here, we describe the microbiology and habitable conditions of highly unique dry and ice-cemented permafrost in University Valley, one of the coldest and driest regions in the MDVs (1700 m above sea level; mean temperature −23 °C; no degree days above freezing), where the ice in permafrost originates from vapour deposition rather than liquid water. We found that culturable and total microbial biomass in University Valley was extremely low, and microbial activity under ambient conditions was undetectable. Our results contrast with reports from the lower-elevation Dry Valleys and Arctic permafrost soils where active microbial populations are found, suggesting that the combination of severe cold, aridity, oligotrophy of University Valley permafrost soils severely limit microbial activity and survival. PMID:27323892

  3. Vacuum Drying Technique

    NASA Technical Reports Server (NTRS)

    1979-01-01

    At Valley Forge, Pennsylvania, General Electric Company's Space Division has a large environmental chamber for simulating the conditions under which an orbiting spacecraft operates. Normally it is used to test company-built space systems, such as NASA's Landsat and Nimbus satellites. It is also being used in a novel spinoff application-restoring water-damaged books and other paper products and textiles.

  4. The Next Generation of Cold Immersion Dry Suit Design Evolution for Hypothermia Prevention

    NASA Technical Reports Server (NTRS)

    Galofaro, Joel

    2013-01-01

    This new utility patent is an active design that relies on the lung's role as an organic heat exchanger for providing deep body core heating of air. It is based on the fact that the greatest heat loss mechanism for an insulated human body immersed in a cold water environment is due to heat loss through respiration. This innovation successfully merges two existing technologies (cold immersion suit and existing valve technologies) to produce a new product that helps prevent against the onset of hypothermia at sea. During normal operations, a human maintains an approximate body temperature of [98.6 F (37 C)]. A mechanism was developed to recover the warm temperature from the body and reticulate it in a survival suit. The primary intention is to develop an encompassing systems design that can both easily and cost effectively be integrated in all existing currently manufactured cold water survival suits, and as such, it should be noted that the cold water immersion suit is only used as a framework or tool for laying out the required design elements. At the heart of the suit is the Warm Air Recovery (WAR) system, which relies on a single, large Main Purge Valve (MPV) and secondary Purge Valves (PV) to operate. The main purge valve has a thin membrane, which is normally closed, and acts as a one-way check valve. When warm air is expelled from the lungs, it causes the main purge valve to open. Air forced from the MPV is dumped directly into the suit, thereby providing warmth to the torso, legs, and arms. A slight positive over-pressure in the suit causes warm waste air (or water if the suit is punctured) to be safely vented into the sea through large PVs located at the bottom of each arm and leg. The secondary purge valves act to prevent the buildup of large concentrations of CO2 gas and help guard against asphyxia. It is noted that the MPV causes the inhalation and exhalation cycles to be completely isolated from one another in the current suit design.

  5. The RHIC vacuum systems

    NASA Astrophysics Data System (ADS)

    Burns, R.; Hseuh, H. C.; Lee, R. C.; McIntyre, G.; Pate, D.; Smart, L.; Sondericker, J.; Weiss, D.; Welch, K.

    2003-03-01

    There are three vacuum systems in RHIC: the insulating vacuum vessels housing the superconducting magnets, the cold beam tubes surrounded by the superconducting magnets, and the warm beam tube sections at the insertion regions and the experimental regions. These systems have a cumulative length over 10 km and a total volume over 3000 m 3. Conventional ultrahigh vacuum technology was used in the design and construction of the cold and warm beam vacuum systems with great success. The long and large insulating vacuum volumes without vacuum barriers require careful management of the welding and leak checking of the numerous helium line joints. There are about 1500 vacuum gauges and pumps serial-linked to eight PLCs distributed around RHIC, which allow the monitoring and control of these devices through Ethernet networks to remote control consoles. With the exception of helium leaks through the cryogenic valve boxes into the insulating vacuum volumes, the RHIC vacuum systems have performed well beyond expectations.

  6. Cold adaptive traits revealed by comparative genomic analysis of the eurypsychrophile Rhodococcus sp. JG3 isolated from high elevation McMurdo Dry Valley permafrost, Antarctica.

    PubMed

    Goordial, Jacqueline; Raymond-Bouchard, Isabelle; Zolotarov, Yevgen; de Bethencourt, Luis; Ronholm, Jennifer; Shapiro, Nicole; Woyke, Tanja; Stromvik, Martina; Greer, Charles W; Bakermans, Corien; Whyte, Lyle

    2016-02-01

    The permafrost soils of the high elevation McMurdo Dry Valleys are the most cold, desiccating and oligotrophic on Earth. Rhodococcus sp. JG3 is one of very few bacterial isolates from Antarctic Dry Valley permafrost, and displays subzero growth down to -5°C. To understand how Rhodococcus sp. JG3 is able to survive extreme permafrost conditions and be metabolically active at subzero temperatures, we sequenced its genome and compared it to the genomes of 14 mesophilic rhodococci. Rhodococcus sp. JG3 possessed a higher copy number of genes for general stress response, UV protection and protection from cold shock, osmotic stress and oxidative stress. We characterized genome wide molecular adaptations to cold, and identified genes that had amino acid compositions favourable for increased flexibility and functionality at low temperatures. Rhodococcus sp. JG3 possesses multiple complimentary strategies which may enable its survival in some of the harshest permafrost on Earth. PMID:26637477

  7. Vacuum mechatronics

    NASA Technical Reports Server (NTRS)

    Hackwood, Susan; Belinski, Steven E.; Beni, Gerardo

    1989-01-01

    The discipline of vacuum mechatronics is defined as the design and development of vacuum-compatible computer-controlled mechanisms for manipulating, sensing and testing in a vacuum environment. The importance of vacuum mechatronics is growing with an increased application of vacuum in space studies and in manufacturing for material processing, medicine, microelectronics, emission studies, lyophylisation, freeze drying and packaging. The quickly developing field of vacuum mechatronics will also be the driving force for the realization of an advanced era of totally enclosed clean manufacturing cells. High technology manufacturing has increasingly demanding requirements for precision manipulation, in situ process monitoring and contamination-free environments. To remove the contamination problems associated with human workers, the tendency in many manufacturing processes is to move towards total automation. This will become a requirement in the near future for e.g., microelectronics manufacturing. Automation in ultra-clean manufacturing environments is evolving into the concept of self-contained and fully enclosed manufacturing. A Self Contained Automated Robotic Factory (SCARF) is being developed as a flexible research facility for totally enclosed manufacturing. The construction and successful operation of a SCARF will provide a novel, flexible, self-contained, clean, vacuum manufacturing environment. SCARF also requires very high reliability and intelligent control. The trends in vacuum mechatronics and some of the key research issues are reviewed.

  8. Thick, Cold and Dry Roots: the Key to Longevity of Continental Arc Lithosphere?

    NASA Astrophysics Data System (ADS)

    Chin, E. J.; Soustelle, V.; Hirth, G.; Saal, A. E.; Kruckenberg, S. C.; Eiler, J. M.

    2015-12-01

    In contrast to the continuity of mid-ocean ridge magmatism, arc volcanism is episodic, characterized by flareups lasting 10 - 50 My which, for reasons that remain unclear, end abruptly in <10 My. Key to understanding the origins of episodic arc behavior lie in constraining the roles of subducting vs. overriding lithosphere. Here, we show that upper mantle xenoliths from the Sierra Nevada arc, CA, USA represent mantle wedge residues that were thickened and rapidly cooled at ~3 GPa and 750 C, presumably at the slab-mantle interface. Pervasive melt infiltration from wedge-derived basalts transformed the depleted residues into refertilized lherzolite. Olivine crystal-preferred orientations (CPO) are weak and show predominantly axial-(010) and one lherzolite with B-type CPO. Measured water contents by SIMS in olivine and pyroxene are low, 5 - 9 ppm and 30 - 500 ppm, respectively. Assuming olivine lost water during eruption, recalculated olivine water in equilibrium with pyroxene does not exceed 35 ppm, resulting in reconstructed bulk rock water content similar to the MORB source. Extrapolation of experimental olivine water solubility to the xenoliths' final PT conditions ranges from 30 to 270 ppm, indicating that the peridotites are water-undersaturated. Such low water contents are not sufficient to produce axial-(010) and B-type CPO. Instead, we propose that the observed CPO was inherited from the prior melt infiltration event, which deformed the peridotites via grain-size sensitive, diffusion creep (e.g., grain boundary sliding). Therefore, water played little role in deformation of arc mantle. Low water contents in thick, cold arc roots result in very high viscosities which preclude significant deformation at final PT. In the Sierran case, rapid cooling also helped to freeze in geochemical and microstructural evidence of earlier melt-assisted deformation, and allowed the preservation of arc mantle lithosphere for ~80 My after it was formed. Only when the Farallon

  9. Absolute atomic oxygen and nitrogen densities in radio-frequency driven atmospheric pressure cold plasmas: Synchrotron vacuum ultra-violet high-resolution Fourier-transform absorption measurements

    SciTech Connect

    Niemi, K.; O'Connell, D.; Gans, T.; Oliveira, N. de; Joyeux, D.; Nahon, L.; Booth, J. P.

    2013-07-15

    Reactive atomic species play a key role in emerging cold atmospheric pressure plasma applications, in particular, in plasma medicine. Absolute densities of atomic oxygen and atomic nitrogen were measured in a radio-frequency driven non-equilibrium plasma operated at atmospheric pressure using vacuum ultra-violet (VUV) absorption spectroscopy. The experiment was conducted on the DESIRS synchrotron beamline using a unique VUV Fourier-transform spectrometer. Measurements were carried out in plasmas operated in helium with air-like N{sub 2}/O{sub 2} (4:1) admixtures. A maximum in the O-atom concentration of (9.1 {+-} 0.7) Multiplication-Sign 10{sup 20} m{sup -3} was found at admixtures of 0.35 vol. %, while the N-atom concentration exhibits a maximum of (5.7 {+-} 0.4) Multiplication-Sign 10{sup 19} m{sup -3} at 0.1 vol. %.

  10. Direct growth of Ge1-xSnx films on Si using a cold-wall ultra-high-vacuum chemical-vapor-deposition system

    NASA Astrophysics Data System (ADS)

    Mosleh, Aboozar; Alher, Murtadha; Cousar, Larry; Du, Wei; Ghetmiri, Seyed Amir; Pham, Thach; Grant, Joshua; Sun, Greg; Soref, Richard; Li, Baohua; Naseem, Hameed; Yu, Shui-Qing

    2015-04-01

    Germanium tin alloys were grown directly on Si substrate at low temperatures using a cold-wall ultra-high vacuum chemical vapor deposition system. Epitaxial growth was achieved by adopting commercial gas precursors of germane and stannic chloride without any carrier gases. The X-ray diffraction analysis showed the incorporation of Sn and that the Ge1-xSnx films are fully epitaxial and strain relaxed. Tin incorporation in the Ge matrix was found to vary from 1% to 7%. The scanning electron microscopy images and energy dispersive X-ray spectra maps show uniform Sn incorporation and continuous film growth. Investigation of deposition parameters shows that at high flow rates of stannic chloride the films were etched due to the production of HCl. The photoluminescence study shows the reduction of bandgap from 0.8 eV to 0.55 eV as a result of Sn incorporation.

  11. Protozoans bacterivory in a subtropical environment during a dry/cold and a rainy/warm season.

    PubMed

    Hisatugo, Karina F; Mansano, Adrislaine S; Seleghim, Mirna H R

    2014-01-01

    In aquatic ecosystems, bacteria are controlled by several organisms in the food chain, such as protozoa, that use them as food source. This study aimed to quantify the ingestion and clearance rates of bacteria by ciliates and heterotrophic nanoflagellates (HNF) in a subtropical freshwater reservoir (Monjolinho reservoir - São Carlos - Brazil) during one year period, in order to verify their importance as consumers and controllers of bacteria in two seasons, a dry/cold and a rainy/warm one. For this purpose, in situ bacterivory experiments were carried out bimonthly using fluorescently labeled bacteria with 5-(4,6 diclorotriazin-2yl) aminofluorescein (DTAF). Although ciliates have shown the highest individual ingestion and clearance rates, bacterivory was dominated by HNF, who showed higher population ingestion rates (mean of 9,140 bacteria h(-1) mL(-1)) when compared to ciliates (mean of 492 bacteria h(-1) mL(-1)). The greater predation impact on bacterial communities was caused mainly by the small HNF (< 5 μm) population, especially in the rainy season, probably due to the abundances of these organisms, the precipitation, trophic index state and water temperature that were higher in this period. Thus, the protozoan densities together with environmental variables were extremely relevant in determining the seasonal pattern of bacterivory in Monjolinho reservoir. PMID:24948925

  12. Proteomics of hot-wet and cold-dry temperaments proposed in Iranian traditional medicine: a Network-based Study

    PubMed Central

    Rezadoost, Hassan; Karimi, Mehrdad; Jafari, Mohieddin

    2016-01-01

    Lack of molecular biology evidence has led clinical success of alternative and complementary medicine (CAM) to be marginalized. In turn, a large portion of life Science researchers could not communicate and help to develop therapeutic potential laid in these therapeutic approaches. In this study, we began to quantify descriptive classification theory in one of the CAM branches i.e. Iranian traditional medicine (ITM). Using proteomic tools and network analysis, the expressed proteins and their relationships were studied in mitochondrial lysate isolated from PBMCs from two different temperaments i.e. Hot-wet (HW) and Cold-dry (CD). The 82% of the identified proteins are over- or under-represented in distinct temperaments. Also, our result showed the different protein-protein interaction networks (PPIN) represented in these two temperaments using centrality and module finding analysis. Following the gene ontology and pathway enrichment analysis, we have found enriched biological terms in each group which are in conformity with the physiologically known evidence in ITM. In conclusion, we argued that the network biology which naturally consider life at the system level along with the different omics data will pave the way toward explicit delineation of the CAM activities. PMID:27452083

  13. Proteomics of hot-wet and cold-dry temperaments proposed in Iranian traditional medicine: a Network-based Study.

    PubMed

    Rezadoost, Hassan; Karimi, Mehrdad; Jafari, Mohieddin

    2016-01-01

    Lack of molecular biology evidence has led clinical success of alternative and complementary medicine (CAM) to be marginalized. In turn, a large portion of life Science researchers could not communicate and help to develop therapeutic potential laid in these therapeutic approaches. In this study, we began to quantify descriptive classification theory in one of the CAM branches i.e. Iranian traditional medicine (ITM). Using proteomic tools and network analysis, the expressed proteins and their relationships were studied in mitochondrial lysate isolated from PBMCs from two different temperaments i.e. Hot-wet (HW) and Cold-dry (CD). The 82% of the identified proteins are over- or under-represented in distinct temperaments. Also, our result showed the different protein-protein interaction networks (PPIN) represented in these two temperaments using centrality and module finding analysis. Following the gene ontology and pathway enrichment analysis, we have found enriched biological terms in each group which are in conformity with the physiologically known evidence in ITM. In conclusion, we argued that the network biology which naturally consider life at the system level along with the different omics data will pave the way toward explicit delineation of the CAM activities. PMID:27452083

  14. COLD TRAP

    DOEpatents

    Milleron, N.

    1963-03-12

    An improved linear-flow cold trap is designed for highvacuum applications such as mitigating back migration of diffusion pump oil moiecules. A central pot of liquid nitrogen is nested within and supported by a surrounding, vertical, helical coil of metai sheet, all enveloped by a larger, upright, cylindrical, vacuum vessel. The vertical interstices between successive turns of the coil afford lineal, axial, high-vacuum passages between open mouths at top and bottom of said vessel, while the coil, being cold by virtue of thermal contact of its innermost turn with the nitrogen pot, affords expansive proximate condensation surfaces. (AEC)

  15. Meat Processing Plant Microbiome and Contamination Patterns of Cold-Tolerant Bacteria Causing Food Safety and Spoilage Risks in the Manufacture of Vacuum-Packaged Cooked Sausages

    PubMed Central

    Rahkila, Riitta; Ali, Javeria; Rousu, Juho; Björkroth, K. Johanna

    2015-01-01

    Refrigerated food processing facilities are specific man-made niches likely to harbor cold-tolerant bacteria. To characterize this type of microbiota and study the link between processing plant and product microbiomes, we followed and compared microbiota associated with the raw materials and processing stages of a vacuum-packaged, cooked sausage product affected by a prolonged quality fluctuation with occasional spoilage manifestations during shelf life. A total of 195 samples were subjected to culturing and amplicon sequence analyses. Abundant mesophilic psychrotrophs were detected within the microbiomes throughout the different compartments of the production plant environment. However, each of the main genera of food safety and quality interest, e.g., Leuconostoc, Brochothrix, and Yersinia, had their own characteristic patterns of contamination. Bacteria from the genus Leuconostoc, commonly causing spoilage of cold-stored, modified-atmosphere-packaged foods, were detected in high abundance (up to >98%) in the sausages studied. The same operational taxonomic units (OTUs) were, however, detected in lower abundances in raw meat and emulsion (average relative abundance of 2% ± 5%), as well as on the processing plant surfaces (<4%). A completely different abundance profile was found for OTUs phylogenetically close to the species Yersinia pseudotuberculosis. These OTUs were detected in high abundance (up to 28%) on the processing plant surfaces but to a lesser extent (<1%) in raw meat, sausage emulsion, and sausages. The fact that Yersinia-like OTUs were found on the surfaces of a high-hygiene packaging compartment raises food safety concerns related to their resilient existence on surfaces. PMID:26231646

  16. Meat Processing Plant Microbiome and Contamination Patterns of Cold-Tolerant Bacteria Causing Food Safety and Spoilage Risks in the Manufacture of Vacuum-Packaged Cooked Sausages.

    PubMed

    Hultman, Jenni; Rahkila, Riitta; Ali, Javeria; Rousu, Juho; Björkroth, K Johanna

    2015-10-01

    Refrigerated food processing facilities are specific man-made niches likely to harbor cold-tolerant bacteria. To characterize this type of microbiota and study the link between processing plant and product microbiomes, we followed and compared microbiota associated with the raw materials and processing stages of a vacuum-packaged, cooked sausage product affected by a prolonged quality fluctuation with occasional spoilage manifestations during shelf life. A total of 195 samples were subjected to culturing and amplicon sequence analyses. Abundant mesophilic psychrotrophs were detected within the microbiomes throughout the different compartments of the production plant environment. However, each of the main genera of food safety and quality interest, e.g., Leuconostoc, Brochothrix, and Yersinia, had their own characteristic patterns of contamination. Bacteria from the genus Leuconostoc, commonly causing spoilage of cold-stored, modified-atmosphere-packaged foods, were detected in high abundance (up to >98%) in the sausages studied. The same operational taxonomic units (OTUs) were, however, detected in lower abundances in raw meat and emulsion (average relative abundance of 2%±5%), as well as on the processing plant surfaces (<4%). A completely different abundance profile was found for OTUs phylogenetically close to the species Yersinia pseudotuberculosis. These OTUs were detected in high abundance (up to 28%) on the processing plant surfaces but to a lesser extent (<1%) in raw meat, sausage emulsion, and sausages. The fact that Yersinia-like OTUs were found on the surfaces of a high-hygiene packaging compartment raises food safety concerns related to their resilient existence on surfaces. PMID:26231646

  17. Effect of intramuscular fat content and serving temperature on temporal sensory perception of sliced and vacuum packaged dry-cured ham.

    PubMed

    Fuentes, Verónica; Ventanas, Jesús; Morcuende, David; Ventanas, Sonia

    2013-03-01

    The present study aimed to evaluate the influence of three serving temperatures (7 °C, 16 °C and 20 °C) and two different ham sections varying in the intramuscular fat (IMF) content on the sensory characteristics of sliced and vacuum-packaged Iberian dry-cured hams using the time-intensity (TI) method. Preceding the TI study, appearance and odour of dry-cured hams were evaluated using a descriptive profile. Fluidity and brightness of the external fat, brightness of lean and all odour attributes increased as serving temperature increased whereas the hardness of external fat decreased with temperature. Oral temperature would have disguised the effect of serving temperature over time as a consequence of a possible balance between both temperatures during samples' consumption. TI revealed that the effect of serving temperature on flavour and texture perception was more noticeable along the first seconds of chewing. Odour intensities increased with the IMF content and temporal perception of hardness, saltiness and rancid flavour were also significantly influenced by the IMF content. PMID:23273473

  18. A warm and wet Little Climatic Optimum and a cold and dry Little Ice Age in the southern Rocky Mountains, USA

    SciTech Connect

    Petersen, K.L.

    1992-05-01

    In the next century, increases in atmospheric trace gas concentration could warm the global average temperature beyond what it has ranged during the past century. Examination of larger-than-historic climatic changes that have occurred in the past in specific regions provides realistic context for evaluating such potential future changes. This paper has contrasted the climatic manifestation of the Little Climatic Optimum or Medieval Warm Period (AD 900--1300) with that of the Little Ice Age (AD 1300--1850) in the northern Colorado Plateau region of the southwestern USA. The zenith of the Anasazi occupation coincides with the former and their demise coincides with the latter, when conditions became too cold and especially dry (in the summer) to support upland dry farming. During the height of the Little Climatic Optimum the region was characterized by a relatively long growing season and greater winter and summer precipitation than that of today. This resulted in a relatively rapid development of a potential dry-farming belt that was twice as wide as the present and areas that cannot be dry farmed today were routinely farmed by the Anasazi. Such conditions would be beneficial to dry farmers in the Four Corners region if those conditions were repeated in the near future.

  19. On-line monitoring of vacuum drying of theophylline using NIR spectroscopy: solid-state transitions, water content and semi-empirical modeling.

    PubMed

    Amira, Touil; Roman, Peczalski; Fethi, Zagrouba

    2016-11-01

    The aim of this work was to monitor in-line and at a real time, the solid-state forms during pharmaceuticals manufacturing. It concerns the dehydration behavior and the solid-state transitions of theophylline in an agitated vacuum contact dryer. First, a near infrared spectroscopy (NIRS) method was performed using a reflectance diffuse probe to measure the in-line and in-situ exact composition of the mixture of different forms of theophylline and water content during drying. A multivariate modeling has been investigated to build a robust model which can predict four components at the same time during drying process. The XRPD analysis was used as a reference method in the process of calibration of NIRS. The indicators of the accuracy in quantitative spectral analysis confirm the robustness of the model and the efficiency of the method of calibration. Second, the kinetics of solid state transformations were investigated. It was shown that the dehydration advanced first by the formation of the metastable anhydrate and after a lag time of the stable one. Once the stable form appeared, formation of the metastable form came to an end. The temperature was found out to be the main factor controlling the overall process rate but also the final contents of the stable and metastable anhydrates for the considered dryer and operating conditions range. Finally, a semi-empirical drying model was proposed and significant quantitative differences were found, particularly at the product temperature which was probably caused by the excessive simplicity of the model. PMID:27094058

  20. The influence of sorghum grain decortication on bioethanol production and quality of the distillers' dried grains with solubles using cold and conventional warm starch processing.

    PubMed

    Nkomba, Edouard Y; van Rensburg, Eugéne; Chimphango, Annie F A; Görgens, Johann F

    2016-03-01

    Very high gravity hydrolysis-fermentation of whole and decorticated sorghum grains were compared using conventional and cold hydrolysis methods to assess the extent by which decortication could minimize enzymes dosages and affect the quality of the distillers' dried grains with solubles (DDGS). All processing configurations achieved ethanol concentrations between 126 and 132 g/L (16.0-16.7%v/v), although decortication resulted in a decreased ethanol yield. Decortication resulted in a decreased volumetric productivity during warm processing from 1.55 to 1.25 g L(-1)h(-1), whereas the required enzyme dosage for cold processing was decreased from 250 to 221 μl/100 gstarch. Cold processing decreased the average acid detergent fibre (ADF) from 35.59% to 29.32% and neutral detergent fibre (NDF) from 44.04% to 32.28% in the DDGS compared to the conventional (warm) processing. Due to lower enzyme requirements, the use of decorticated grains combined with cold processing presents a favourable process configuration and source of DDGS for non-ruminants. PMID:26724549

  1. Astronaut Story Musgrave in EMU in thermal vacuum chamber

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronaut F. Story Musgrave, wearing a training version of the extravehicular activity unit (EMU), particpates in a dry run for tests in thermal vacuum chamber. The test, conducted in Chamber B ofthe Space Environment and Simulation Laboratory at JSC, verified that the tools being designed for the mission will work in the cold vacuum of space. Others pictured, from the left, are Andrea Tullar and Donna Fender, test directors; Leonard S. Nicholson, acting Director of engineering; and Astronauts Thomas D. Akers and Kathryn C. Thornton, STS-61 mission specialists, along with Musgrave.

  2. Dry socket

    MedlinePlus

    ... care for the dry socket at home: Take pain medicine and antibiotics as directed Apply a cold pack to the outside of your jaw Carefully rinse the dry socket as directed by your dentist If taking antibiotics, avoid smoking or using tobacco and alcohol

  3. Quality of osmotically pre-treated and vacuum dried pineapple cubes on storage as influenced by type of solutes and packaging materials.

    PubMed

    Paul, Prodyut Kumar; Ghosh, Swapan Kumar; Singh, Dhananjay Kumar; Bhowmick, Nilesh

    2014-08-01

    The quality and stability of osmotically pre-treated and subsequently vacuum dried pineapple cubes using three different solutes and packed in three different types of packaging materials on storage was evaluated. The experiment was laid out in completely randomized block design with two factors and three replications for each treatment. Treatment combinations were considered as one factor and storage interval as another factor. Pineapple cubes stored in glass bottle showed very little percentage variation in moisture content due to its high moisture barrier properties. In all treatment combination, acidity values were invariably found to increase as the storage progressed. For all three different osmotic treatments, HDPE pouch packet always showed highest acidity followed by PVDC pouch. Again among three solutes under consideration, invert sugar recorded a rapid increase in acidity than other solutes. In pineapple cubes osmotically treated with sucrose solution, the rates of decrease of total sugar content were lower than that of invert sugar and sorbitol treated pineapple cubes. The percentage decrease of total sugar content was highest when the osmotically dehydrated pineapple cubes were packed in HDPE pouch and it was least in glass bottles. There was a gradual decrease in ascorbic acid content with the extension of storage period and this decrease was statistically significant at all storage intervals up to six-month. Lowest value of ascorbic acid content (15.210 mg per 100 g initial solid) was recorded in invert sugar treated pineapple cube packed in HDPE pouch after 6 months of storage. PMID:25114348

  4. Damage Escape and Repair in Dried Chroococcidiopsis spp. from Hot and Cold Deserts Exposed to Simulated Space and Martian Conditions

    NASA Astrophysics Data System (ADS)

    Billi, Daniela; Viaggiu, Emanuela; Cockell, Charles S.; Rabbow, Elke; Horneck, Gerda; Onofri, Silvano

    2011-01-01

    The cyanobacterium Chroococcidiopsis, overlain by 3mm of Antarctic sandstone, was exposed as dried multilayers to simulated space and martian conditions. Ground-based experiments were conducted in the context of Lichens and Fungi Experiments (EXPOSE-E mission, European Space Agency), which were performed to evaluate, after 1.5 years on the International Space Station, the survival of cyanobacteria (Chroococcidiopsis), lichens, and fungi colonized on Antarctic rock. The survival potential and the role played by protection and repair mechanisms in the response of dried Chroococcidiopsis cells to ground-based experiments were both investigated. Different methods were employed, including evaluation of the colony-forming ability, single-cell analysis of subcellular integrities based on membrane integrity molecular and redox probes, evaluation of the photosynthetic pigment autofluorescence, and assessment of the genomic DNA integrity with a PCR-based assay. Desiccation survivors of strain CCMEE 123 (coastal desert, Chile) were better suited than CCMEE 134 (Beacon Valley, Antarctica) to withstand cellular damage imposed by simulated space and martian conditions. Exposed dried cells of strain CCMEE 123 formed colonies, maintained subcellular integrities, and, depending on the exposure conditions, also escaped DNA damage or repaired the induced damage upon rewetting.

  5. Damage escape and repair in dried Chroococcidiopsis spp. from hot and cold deserts exposed to simulated space and martian conditions.

    PubMed

    Billi, Daniela; Viaggiu, Emanuela; Cockell, Charles S; Rabbow, Elke; Horneck, Gerda; Onofri, Silvano

    2011-01-01

    The cyanobacterium Chroococcidiopsis, overlain by 3 mm of Antarctic sandstone, was exposed as dried multilayers to simulated space and martian conditions. Ground-based experiments were conducted in the context of Lichens and Fungi Experiments (EXPOSE-E mission, European Space Agency), which were performed to evaluate, after 1.5 years on the International Space Station, the survival of cyanobacteria (Chroococcidiopsis), lichens, and fungi colonized on Antarctic rock. The survival potential and the role played by protection and repair mechanisms in the response of dried Chroococcidiopsis cells to ground-based experiments were both investigated. Different methods were employed, including evaluation of the colony-forming ability, single-cell analysis of subcellular integrities based on membrane integrity molecular and redox probes, evaluation of the photosynthetic pigment autofluorescence, and assessment of the genomic DNA integrity with a PCR-based assay. Desiccation survivors of strain CCMEE 123 (coastal desert, Chile) were better suited than CCMEE 134 (Beacon Valley, Antarctica) to withstand cellular damage imposed by simulated space and martian conditions. Exposed dried cells of strain CCMEE 123 formed colonies, maintained subcellular integrities, and, depending on the exposure conditions, also escaped DNA damage or repaired the induced damage upon rewetting. PMID:21294638

  6. A model for co-isotopic signatures of evolving ground ice in the cold dry environments of Earth and Mars

    NASA Astrophysics Data System (ADS)

    Fisher, David Andrew; Lacelle, Denis

    2014-11-01

    The basics of the model (REGO) are summarized including diffusive water vapor transport, ice content, adsorption and the isotopic ratios of the various water species. Inclusion of a temperature and stress-strain solution is also described as are the effects of cracking when the tensile breaking strengths are exceeded. Cracking is viewed as a multi-scale phenomena, whereby the larger cracks are produced by chaining together smaller ones. After some validation, the model is applied to the upper University Valley (Antarctic Dry Valleys) data and to the Phoenix landing site at lat. 69N on Mars. For the University Valley, the model when forced by measured diurnal temperature cycles and known relative humidity reproduces some of the complex the ice content and isotope structure found in the upper University Valley ground ice cores. The model takes a few hundred years to fill the pores just under the ice table. The excess ice observed in the University Valley cores can be produced by thermal cracking combined with the diurnal temperature cycle. Time taken to achieve the observed excess ice content is of order 104 years. There is limited subsurface data for the Phoenix site, but there are measured ice table depths, surface thermal properties and Met variables. There is enough to do diurnal and seasonal runs of the REGO model. As with the University Valley, the upper few tens of centimeters icing are controlled by the diurnal temperatures, largely in the warmer part of the year. The observed ubiquitous pore full ice right at the ice table could be produced from a dry soil in about 103 a and the nearly pure ice patches could be produced by the cracking-diffusion mechanism in about million years, if shear stresses are included. Emplacement of ice down to ∼10 m is possible using the seasonal temperature cycle and cracking. Excess ice in the upper meter could produced by the model in about 6 × 106 a if the temperature at the Phoenix site was 10-20 deg warmer.

  7. Purifying Aluminum by Vacuum Distillation

    NASA Technical Reports Server (NTRS)

    Du Fresne, E. R.

    1985-01-01

    Proposed method for purifying aluminum employs one-step vacuum distillation. Raw material for process impure aluminum produced in electrolysis of aluminum ore. Impure metal melted in vacuum. Since aluminum has much higher vapor pressure than other constituents, boils off and condenses on nearby cold surfaces in proportions much greater than those of other constituents.

  8. Langmuir vacuum and superconductivity

    SciTech Connect

    Veklenko, B. A.

    2012-06-15

    It is shown that, in the 'jelly' model of cold electron-ion plasma, the interaction between electrons and the quantum electromagnetic vacuum of Langmuir waves involves plasma superconductivity with an energy gap proportional to the energy of the Langmuir quantum.

  9. Langmuir vacuum and superconductivity

    NASA Astrophysics Data System (ADS)

    Veklenko, B. A.

    2012-06-01

    It is shown that, in the "jelly" model of cold electron-ion plasma, the interaction between electrons and the quantum electromagnetic vacuum of Langmuir waves involves plasma superconductivity with an energy gap proportional to the energy of the Langmuir quantum.

  10. Elastic vacuum seal for cryogenic temperatures

    SciTech Connect

    Kolenko, E.A.

    1988-06-01

    Cold-hardened silicone rubber is proposed as a vacuum seal in units that contain materials with vastly different expansion coefficients and which operate at cryogenic temperatures. The cold vulcanization process and the polymerization catalyst used to accelerate and stabilize the process are described. Test results obtained for vacuum tightness in liquid nitrogen are assessed.

  11. Analytical and sensory characterization of the aroma of "Langhe D.O.C. Nebbiolo" wines: influence of the prefermentative cold maceration with dry ice.

    PubMed

    Petrozziello, Maurizio; Guaita, Massimo; Motta, Silvia; Panero, Loretta; Bosso, Antonella

    2011-05-01

    The present work concerns the determination of the volatile compounds, as well as the description of the olfactory characteristics, of "Langhe DOC Nebbiolo" wines produced through the prefermentative cold maceration with dry ice, on full scale (30 quintals) in private cellars. The free volatile compounds and those obtained by enzymatic and chemical hydrolysis of the glycosilated precursors were analyzed by gas chromatography-mass spectrometry. Among free volatile compounds, a loss of alcohols with 6 carbon atoms in the cryo-macerated trials was observed. The cryo-maceration technique, when correctly applied, increased the floral and fruity notes (blackberry, cherry, and plum). This increase is related to the extraction of polyphenolic compounds (maceration effect), but no volatile compounds, neither in free form, nor produced by enzymatic hydrolysis of the glycosilated precursors, can discriminate the wines according to their content of polyphenols. Only some compounds produced by chemical hydrolysis of the precursors can discriminate the wines (statistically significant differences): 3-hydroxy-β-damascone, methylvanillate, and blumenol C. These compounds, however, form during aging and do not have any influence on young wines aroma. PMID:22417331

  12. Vacuum Freeze-Drying, a Method Used To Salvage Water-Damaged Archival and Library Materials: A RAMP Study with Guidelines.

    ERIC Educational Resources Information Center

    McCleary, John M.

    This Records and Archives Management Programme (RAMP) study covers the conservation of archival documents and the application of freeze-drying to the salvage of documents damaged by flood. Following an introductory discussion of the hazards of water, the study presents a broad summary of data on freeze-drying, including the behavior of…

  13. Vacuum force

    NASA Astrophysics Data System (ADS)

    Han, Yongquan

    2015-03-01

    To study on vacuum force, we must clear what is vacuum, vacuum is a space do not have any air and also ray. There is not exist an absolute the vacuum of space. The vacuum of space is relative, so that the vacuum force is relative. There is a certain that vacuum vacuum space exists. In fact, the vacuum space is relative, if the two spaces compared to the existence of relative vacuum, there must exist a vacuum force, and the direction of the vacuum force point to the vacuum region. Any object rotates and radiates. Rotate bend radiate- centripetal, gravity produced, relative gravity; non gravity is the vacuum force. Gravity is centripetal, is a trend that the objects who attracted wants to Centripetal, or have been do Centripetal movement. Any object moves, so gravity makes the object curve movement, that is to say, the radiation range curve movement must be in the gravitational objects, gravity must be existed in non vacuum region, and make the object who is in the region of do curve movement (for example: The earth moves around the sun), or final attracted in the form gravitational objects, and keep relatively static with attract object. (for example: objects on the earth moves but can't reach the first cosmic speed).

  14. Additional guidance for including nuclear safety equivalency in the Canister Storage Building and Cold Vacuum Drying Facility final safety analysis report

    SciTech Connect

    Garvin, L.J.

    1997-05-20

    This document provides guidance for the production of safety analysis reports that must meet both DOE Order 5480.23 and STD 3009, and be in compliance with the DOE regulatory policy that imposes certain NRC requirements.

  15. Alkali vapor pressure modulation on the 100 ms scale in a single-cell vacuum system for cold atom experiments

    SciTech Connect

    Dugrain, Vincent; Reichel, Jakob; Rosenbusch, Peter

    2014-08-15

    We describe and characterize a device for alkali vapor pressure modulation on the 100 ms timescale in a single-cell cold atom experiment. Its mechanism is based on optimized heat conduction between a current-modulated alkali dispenser and a heat sink at room temperature. We have studied both the short-term behavior during individual pulses and the long-term pressure evolution in the cell. The device combines fast trap loading and relatively long trap lifetime, enabling high repetition rates in a very simple setup. These features make it particularly suitable for portable atomic sensors.

  16. The LHC Vacuum System

    NASA Astrophysics Data System (ADS)

    Gröbner, O.

    1997-05-01

    The Large Hadron Collider (LHC) at CERN, involves two proton storage rings with colliding beams of 7 TeV. The machine will be housed in the existing LEP tunnel and requires 16 m long superconducting bending magnets. The vacuum chamber will be the inner wall of the cryostat and hence at the temperature of the magnet cold bore, i.e. at 1.9 K and therefore a very good cryo-pump. To reduce the cryogenic power consumption, the heat load from synchrotron radiation and from the image currents in the vacuum chamber will be absorbed on a 'beam screen', which operates between 5 and 20 K, inserted in the magnet cold bore. The design pressure necessary for operation must provide a lifetime of many days and a stringent requirement comes from the power deposition in the superconducting magnet coils due to protons scattered on the residual gas which could lead to a magnet quench. Cryo-pumping of gas on the cold surfaces provides the necessary low gas densities but it must be ensured that the vapour pressure of cryo-sorbed molecules, of which H2 and He would be the most critical species, remains within acceptable limits. The room temperature sections of the LHC, specifically in the experiments, the vacuum must be stable against ion induced desorption and ISR-type 'pressure bumps'.

  17. Feasibility of NIR interactance hyperspectral imaging for on-line measurement of crude composition in vacuum packed dry-cured ham slices.

    PubMed

    Gou, P; Santos-Garcés, E; Høy, M; Wold, J P; Liland, K H; Fulladosa, E

    2013-10-01

    There is a growing market for packaged slices of dry-cured ham. The heterogeneity of the composition of slices between packages is an important drawback when aiming to offer consumers a product with a known and constant composition which fits individual consumer expectations. The aim of this work was to test the feasibility of NIR interactance imaging for on-line analysis of water, fat and salt and their spatial distribution in dry-cured ham slices. PLSR models for predicting water, fat and salt contents with NIR spectra were developed with a calibration set of samples (n=82). The models were validated with an external validation set (n=42). The predictive models were accurate enough for screening purposes. The errors of prediction were 1.34%, 1.36% and 0.71% for water, fat and salt, respectively. The spatial distribution of these components within the slice was also obtained. PMID:23747619

  18. Space Technology for Crop Drying

    NASA Technical Reports Server (NTRS)

    1980-01-01

    McDonnell Douglas came up with a new method of drying agricultural crops derived from vacuum chamber technology called MIVAC, a compression of microwave vacuum drying system. A distant cousin of the home microwave oven, MIVAC dries by means of electrically- generated microwaves introduced to a crop-containing vacuum chamber. Microwaves remove moisture quickly and the very low pressure atmosphere in the chamber permits effective drying at much lower than customary temperatures. Thus energy demand is doubly reduced by lower heat requirement and by the shorter time electric power is needed.

  19. SSC dipole vacuum vessel support placement analysis

    SciTech Connect

    Nicol, T.H.

    1987-08-01

    Early (superconducting super collider) SSC dipole model magnets were supported at five points along their length by feet welded to the vacuum vessel. The cold mass was supported at the same five points. The number of supports was determined such that the maximum cold mass deflection between supports was limited to 0.010 inches as specified in the first version of the SSC Design Criteria. The spacing between supports was determined to minimize the sag of the cold mass, given five supports. This paper analyzes the deflection of the cold mass and vacuum vessel as a result of these supports. 4 refs. (LSP)

  20. Freeze drying method

    DOEpatents

    Coppa, Nicholas V.; Stewart, Paul; Renzi, Ernesto

    1999-01-01

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.

  1. Freeze drying apparatus

    DOEpatents

    Coppa, Nicholas V.; Stewart, Paul; Renzi, Ernesto

    2001-01-01

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.

  2. VACUUM TRAP

    DOEpatents

    Gordon, H.S.

    1959-09-15

    An improved adsorption vacuum trap for use in vacuum systems was designed. The distinguishing feature is the placement of a plurality of torsionally deformed metallic fins within a vacuum jacket extending from the walls to the central axis so that substantially all gas molecules pass through the jacket will impinge upon the fin surfaces. T fins are heated by direct metallic conduction, thereby ol taining a uniform temperature at the adeorbing surfaces so that essentially all of the condensible impurities from the evacuating gas are removed from the vacuum system.

  3. ISABELLE vacuum systems

    SciTech Connect

    Halama, H J

    1980-01-01

    The Intersecting Storage Accelerator (ISABELLE) consists of two rings having a circumference of 3.8 km each. In these rings superconducting magnets, held at 4 K, bend and focus the proton beam which is accelerated up to 400 GeV. Due to very different pressure requirements, ISABELLE has two completely independent vacuum systems. One, which operates at 1 x 10/sup -11/ Torr, provides a very clean environment for the circulating proton beam. Here only ion and titanium sublimation pumps are used to provide the vacuum. The other system maintains superconducting magnet vessels at a pressure below 1 x 10/sup -4/ Torr, since at this pressure the gas conduction becomes negligible. In this so-called insulating vacuum system, turbomolecular pumps pump the inadvertent small helium leaks. Other gases are cryocondensed on the cold surfaces of the cryogenic system. The basic element of ISABELLE known as Full Cell containing 45 meters of beam tube, 8 pumping stations, 8 superconducting magnets and complete instrumentation has been constructed, leak checked and tested. All design parameters have been achieved in both vacuum systems. The two vacuum systems are described with particular emphasis on the influence of superconducting magnets in the selection of materials and UHV components.

  4. Effects of dry, vacuum, and special bag aging; USDA quality grade; and end-point temperature on yields and eating quality of beef Longissimus lumborum steaks.

    PubMed

    Dikeman, Michael E; Obuz, Ersel; Gök, Veli; Akkaya, Levent; Stroda, Sally

    2013-06-01

    This study evaluated the effects of three aging methods: (dry (D), wet (W), and special bag (SB)); two quality grades [USDA Choice((≥Small(50) marbling) and Select); and two cooked end-point temperatures (62.8 °C and 71.1 °C) on physico-chemical traits of instrumental tenderness, color, and sensory properties of Longissimus lumborum beef muscle. Dry-aged loins had higher (P<0.0001) weight loss than W or SB aged loins. However, D and SB aged loins had similar (P>0.05) combined losses. W aged loins had higher (P<0.01) L* values than D or SB aged loins. Warner-Bratzler shear force of steaks was not affected (P>0.05) by aging method or quality grade but increased (P<0.0001) as end-point temperature increased. Sensory panel evaluation also showed no effect (P>0.05) of aging method or quality grade on myofibrillar tenderness, juiciness, connective tissue amount, overall tenderness or off flavor intensity. Steaks cooked to 62.8 °C were juicier (P<0.05) than those cooked to 71.1 °C. Neither D nor SB aging had advantages over W aging. PMID:23501255

  5. Vacuum Technology

    SciTech Connect

    Biltoft, P J

    2004-10-15

    The environmental condition called vacuum is created any time the pressure of a gas is reduced compared to atmospheric pressure. On earth we typically create a vacuum by connecting a pump capable of moving gas to a relatively leak free vessel. Through operation of the gas pump the number of gas molecules per unit volume is decreased within the vessel. As soon as one creates a vacuum natural forces (in this case entropy) work to restore equilibrium pressure; the practical effect of this is that gas molecules attempt to enter the evacuated space by any means possible. It is useful to think of vacuum in terms of a gas at a pressure below atmospheric pressure. In even the best vacuum vessels ever created there are approximately 3,500,000 molecules of gas per cubic meter of volume remaining inside the vessel. The lowest pressure environment known is in interstellar space where there are approximately four molecules of gas per cubic meter. Researchers are currently developing vacuum technology components (pumps, gauges, valves, etc.) using micro electro mechanical systems (MEMS) technology. Miniature vacuum components and systems will open the possibility for significant savings in energy cost and will open the doors to advances in electronics, manufacturing and semiconductor fabrication. In conclusion, an understanding of the basic principles of vacuum technology as presented in this summary is essential for the successful execution of all projects that involve vacuum technology. Using the principles described above, a practitioner of vacuum technology can design a vacuum system that will achieve the project requirements.

  6. Potential antimicrobials to control Listeria monocytogenes in vacuum-packaged cold-smoked salmon pâté and fillets.

    PubMed

    Neetoo, Hudaa; Ye, Mu; Chen, Haiqiang

    2008-04-30

    In the wake of recent outbreaks associated with Listeria monocytogenes in ready-to-eat foods and an increasing desire for minimally processed foods, there has been a burgeoning interest in the use of natural antimicrobials by the food industry to control this pathogen. The minimum inhibitory concentrations (MICs) of nisin and salts of organic acids (sodium lactate (SL), sodium diacetate (SD), sodium benzoate (SB), and potassium sorbate (PS)) against twelve strains of L. monocytogenes in a TSBYE broth medium at 35 degrees C were determined. The MICs were strain-dependent and fell in the range of 0.00048-0.00190% for nisin, 4.60-5.60% for SL, 0.11-0.22% for SD, 0.25-0.50% for SB and 0.38-0.75% for PS, respectively. The two most antimicrobial-resistant strains were used as a cocktail in the following experiments to represent a worst case scenario. The five antimicrobials alone and in binary combinations were screened for their efficacy against the two-strain cocktail in TSBYE at sub-MIC and sub-legal levels at 35 degrees C. Seven effective antimicrobial treatments were then selected and evaluated for their long-term antilisterial effectiveness in cold-smoked salmon pâté and fillets during refrigerated storage (4 degrees C) of 3 and 6 weeks, respectively. The two most effective antimicrobial formulations for smoked salmon pâté, 0.25% SD and 2.4% SL/0.125% SD, were able to inhibit the growth of L. monocytogenes during the 3 weeks of storage. Surface application of 2.4% SL/0.125% SD was the most effective treatment for smoked salmon fillets which inhibited the growth of L. monocytogenes for 4 weeks. These antimicrobial treatments could be used by the smoked salmon industry in the U.S. and Europe in their efforts to control L. monocytogenes as they are effective against even the most antimicrobial-resistant strains tested in this study. PMID:18308410

  7. Vacuum Virtues

    ERIC Educational Resources Information Center

    Rathey, Allen

    2007-01-01

    Upright vacuums, like cars, vary in quality, features and performance. Like automobiles, some uprights are reliable, others may be problematic, and some become a problem as a result of neglect or improper use. So, how do education institutions make an informed choice and, having done so, ensure that an upright vacuum goes the distance? In this…

  8. 7 CFR 58.230 - Heavy duty vacuum cleaners.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Heavy duty vacuum cleaners. 58.230 Section 58.230....230 Heavy duty vacuum cleaners. Each plant handling dry milk products shall be equipped with a heavy duty industrial vacuum cleaner. The vacuum cleaner shall be of a type that has a collector...

  9. 7 CFR 58.230 - Heavy duty vacuum cleaners.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Heavy duty vacuum cleaners. 58.230 Section 58.230....230 Heavy duty vacuum cleaners. Each plant handling dry milk products shall be equipped with a heavy duty industrial vacuum cleaner. The vacuum cleaner shall be of a type that has a collector...

  10. 7 CFR 58.230 - Heavy duty vacuum cleaners.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Heavy duty vacuum cleaners. 58.230 Section 58.230....230 Heavy duty vacuum cleaners. Each plant handling dry milk products shall be equipped with a heavy duty industrial vacuum cleaner. The vacuum cleaner shall be of a type that has a collector...

  11. 7 CFR 58.230 - Heavy duty vacuum cleaners.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Heavy duty vacuum cleaners. 58.230 Section 58.230....230 Heavy duty vacuum cleaners. Each plant handling dry milk products shall be equipped with a heavy duty industrial vacuum cleaner. The vacuum cleaner shall be of a type that has a collector...

  12. 7 CFR 58.230 - Heavy duty vacuum cleaners.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Heavy duty vacuum cleaners. 58.230 Section 58.230....230 Heavy duty vacuum cleaners. Each plant handling dry milk products shall be equipped with a heavy duty industrial vacuum cleaner. The vacuum cleaner shall be of a type that has a collector...

  13. Drying damaged K West fuel elements (Summary of whole element furnace runs 1 through 8)

    SciTech Connect

    LAWRENCE, L.A.

    1998-10-13

    N Reactor fuel elements stored in the Hanford K Basins were subjected to high temperatures and vacuum conditions to remove water. Results of the first series of whole element furnace tests i.e., Runs 1 through 8 were collected in this summary report. The report focuses on the six tests with breached fuel from the K West Basin which ranged from a simple fracture at the approximate mid-point to severe damage with cladding breaches at the top and bottom ends with axial breaches and fuel loss. Results of the tests are summarized and compared for moisture released during cold vacuum drying, moisture remaining after drying, effects of drying on the fuel element condition, and hydrogen and fission product release.

  14. Cold Sores

    MedlinePlus

    ... delivered directly to your desktop! more... What Are Cold Sores? Article Chapters What Are Cold Sores? Cold ... January 2012 Previous Next Related Articles: Canker and Cold Sores Aloe Vera May Help Relieve Mouth Sores ...

  15. R&D ERL: Vacuum

    SciTech Connect

    Mapes, M.; Smart, L.; Weiss, D.; Steszyn, A.; Todd, R.

    2010-01-01

    cryostat vacuum thermally insulating the SRF cavities need only reduce the convective heat load such that heat loss is primarily radiation through several layers of multi-layer insulation and conductive end-losses which are contained by 5{sup o}K thermal transitions. Prior to cool down rough vacuum {approx}10{sup -5} torr range is established and maintained by a dedicated turbomolecular pump station. Cryopumping by the cold mass and heat shields reduces the insulating vacuum to 10{sup -7} torr range after cool down.

  16. Dry Mouth

    MedlinePlus

    ... of this page please turn Javascript on. Dry Mouth What Is Dry Mouth? Dry mouth is the feeling that there is ... when a person has dry mouth. How Dry Mouth Feels Dry mouth can be uncomfortable. Some people ...

  17. Common cold

    MedlinePlus

    ... are the most common reason that children miss school and parents miss work. Parents often get colds ... other children. A cold can spread quickly through schools or daycares. Colds can occur at any time ...

  18. Common Cold

    MedlinePlus

    ... coughing - everyone knows the symptoms of the common cold. It is probably the most common illness. In ... people in the United States suffer 1 billion colds. You can get a cold by touching your ...

  19. Cold Stress

    MedlinePlus

    ... be at risk of cold stress. Extreme cold weather is a dangerous situation that can bring on ... the country. In regions relatively unaccustomed to winter weather, near freezing temperatures are considered factors for cold ...

  20. Cold intolerance

    MedlinePlus

    ... intolerance is an abnormal sensitivity to a cold environment or cold temperatures. ... can be a symptom of a problem with metabolism. Some people (often very thin women) do not tolerate cold environments because they have very little body fat and ...

  1. Cold pool dissipation

    NASA Astrophysics Data System (ADS)

    Grant, Leah D.; Heever, Susan C.

    2016-02-01

    The mechanisms by which sensible heat fluxes (SHFs) alter cold pool characteristics and dissipation rates are investigated in this study using idealized two-dimensional numerical simulations and an environment representative of daytime, dry, continental conditions. Simulations are performed with no SHFs, SHFs calculated using a bulk formula, and constant SHFs for model resolutions with horizontal (vertical) grid spacings ranging from 50 m (25 m) to 400 m (200 m). In the highest resolution simulations, turbulent entrainment of environmental air into the cold pool is an important mechanism for dissipation in the absence of SHFs. Including SHFs enhances cold pool dissipation rates, but the processes responsible for the enhanced dissipation differ depending on the SHF formulation. The bulk SHFs increase the near-surface cold pool temperatures, but their effects on the overall cold pool characteristics are small, while the constant SHFs influence the near-surface environmental stability and the turbulent entrainment rates into the cold pool. The changes to the entrainment rates are found to be the most significant of the SHF effects on cold pool dissipation. SHFs may also influence the timing of cold pool-induced convective initiation by altering the environmental stability and the cold pool intensity. As the model resolution is coarsened, cold pool dissipation is found to be less sensitive to SHFs. Furthermore, the coarser resolution simulations not only poorly but sometimes wrongly represent the SHF impacts on the cold pools. Recommendations are made regarding simulating the interaction of cold pools with convection and the land surface in cloud-resolving models.

  2. Development of a high vacuum sample preparation system for helium mass spectrometer

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Das, N. K.; Mallik, C.; Bhandari, R. K.

    2012-11-01

    A high vacuum sample preparation system for the 3He/4He ratio mass spectrometer (Helix SFT) has been developed to remove all the gaseous constituents excluding helium from the field gases. The sample preparation system comprises of turbo molecular pump, ion pump, zirconium getter, pipettes and vacuum gauges with controller. All these are fitted with cylindrical SS chamber using all metal valves. The field samples are initially treated with activated charcoal trap immersed in liquid nitrogen to cutoff major impurities and moisture present in the sample gas. A sample of 5 ml is collected out of this stage at a pressure of 10-2 mbar. This sample is subsequently purified at a reduced pressure of 10-7 mbar before it is injected into the ion source of the mass spectrometer. The sample pressure was maintained below 10-7 mbar with turbo molecular vacuum pumps and ion pumps. The sample gas passes through several getter elements and a cold finger with the help of manual high vacuum valves before it is fed to the mass spectrometer. Thus the high vacuum sample preparation system introduces completely clean, dry and refined helium sample to the mass spectrometer for best possible analysis of isotopic ratio of helium.

  3. Common Cold

    MedlinePlus

    ... News & Events Volunteer NIAID > Health & Research Topics > Common Cold Skip Website Tools Website Tools Print this page ... Help people who are suffering from the common cold by volunteering for NIAID clinical studies on ClinicalTrials. ...

  4. Drying kinetics and physico-chemical characteristics of Osmo- dehydrated Mango, Guava and Aonla under different drying conditions.

    PubMed

    Kumar, P Suresh; Sagar, V R

    2014-08-01

    Mango (Mangiferra indica L), guava (Psiduim guajava L.) slices and aonla (Emblica officinalis L) segments were osmo-dried under four different dying conditions viz., cabinet drier (CD), vacuum oven drier (VOD), low temperature drier (LTD) and solar drier (SD) to evaluate the best drying condition for the fruits. It was found that vacuum oven drying was superior to other mode of drying as it holds maximum nutrients like acidity, ascorbic acid, sugar and water removal and moisture ratio of products. It was found through regression analysis that drying ratio and rehydration ratio was also superior in vacuum drying followed by cabinet drying. In addition, descriptive analysis on sensory score was also found best with vacuum drying while the Non-enzymatic browning (NEB), which is undesirable character on dried product, was more with solar drier. PMID:25114345

  5. Vacuum phenomenon.

    PubMed

    Yanagawa, Youichi; Ohsaka, Hiromichi; Jitsuiki, Kei; Yoshizawa, Toshihiko; Takeuchi, Ikuto; Omori, Kazuhiko; Oode, Yasumasa; Ishikawa, Kouhei

    2016-08-01

    This article describes the theory of the formation of the vacuum phenomenon (VP), the detection of the VP, the different medical causes, the different locations of the presentation of the VP, and the differential diagnoses. In the human body, the cavitation effect is recognized on radiological studies; it is called the VP. The mechanism responsible for the formation of the VP is as follows: if an enclosed tissue space is allowed to expand as a rebound phenomenon after an external impact, the volume within the enclosed space will increase. In the setting of expanding volume, the pressure within the space will decrease. The solubility of the gas in the enclosed space will decrease as the pressure of the space decreases. Decreased solubility allows a gas to leave a solution. Clinically, the pathologies associated with the VP have been reported to mainly include the normal joint motion, degeneration of the intervertebral discs or joints, and trauma. The frequent use of CT for trauma patients and the high spatial resolution of CT images might produce the greatest number of chances to detect the VP in trauma patients. The VP is observed at locations that experience a traumatic impact; thus, an analysis of the VP may be useful for elucidating the mechanism of an injury. When the VP is located in the abdomen, it is important to include perforation of the digestive tract in the differential diagnosis. The presence of the VP in trauma patients does not itself influence the final outcome. PMID:27147527

  6. Vacuum-insulated catalytic converter

    DOEpatents

    Benson, David K.

    2001-01-01

    A catalytic converter has an inner canister that contains catalyst-coated substrates and an outer canister that encloses an annular, variable vacuum insulation chamber surrounding the inner canister. An annular tank containing phase-change material for heat storage and release is positioned in the variable vacuum insulation chamber a distance spaced part from the inner canister. A reversible hydrogen getter in the variable vacuum insulation chamber, preferably on a surface of the heat storage tank, releases hydrogen into the variable vacuum insulation chamber to conduct heat when the phase-change material is hot and absorbs the hydrogen to limit heat transfer to radiation when the phase-change material is cool. A porous zeolite trap in the inner canister absorbs and retains hydrocarbons from the exhaust gases when the catalyst-coated substrates and zeolite trap are cold and releases the hydrocarbons for reaction on the catalyst-coated substrate when the zeolite trap and catalyst-coated substrate get hot.

  7. Dry hair

    MedlinePlus

    ... or using harsh soaps or alcohols Excessive blow-drying Dry air Menkes kinky hair syndrome Malnutrition Underactive ... or twice a week Add conditioners Avoid blow drying and harsh styling products

  8. Dry hair

    MedlinePlus

    Some causes of dry hair are: Anorexia nervosa Excessive hair washing, or using harsh soaps or alcohols Excessive blow-drying Dry air Menkes kinky hair syndrome Malnutrition Underactive parathyroid ( ...

  9. Effects of different drying methods on the product quality and volatile compounds of whole shiitake mushrooms.

    PubMed

    Tian, Yuting; Zhao, Yingting; Huang, Jijun; Zeng, Hongliang; Zheng, Baodong

    2016-04-15

    Various drying methods play important roles in the preservation of foods. However, how the different drying methods affect the quality of some foods is not clear. This paper evaluates the effects of hot air, vacuum, microwave, and microwave vacuum drying techniques on important qualities and volatile compounds of whole shiitake (Lentinus edodes) mushrooms. These four drying methods resulted in a significantly (p<0.05) increase in the content of total free amino acids and the relative content of sulfur compounds of dried products. Microwave vacuum drying helped to maintain larger amounts of taste-active amino acids, and improved nutrient retention and color attributes. Furthermore, the uniform honeycomb network created by microwave vacuum drying along with a less collapsed structure of dried samples can be used to explain the observed high rehydration ratio. Therefore, microwave vacuum drying should be a potential method for obtaining high-quality dried mushrooms. PMID:26617008

  10. PLASMA WINDOW FOR VACUUM - ATMOSPHERE INTERFACE AND FOCUSING LENS OF SOURCES FOR NON-VACUUM MATERIAL MODIFICATION.

    SciTech Connect

    HERSHCOVITCH,A.

    1997-09-07

    Material modifications by ion implantation, dry etching, and micro-fabrication are widely used technologies, all of which are performed in vacuum, since ion beams at energies used in these applications are completely attenuated by foils or by long differentially pumped sections, which ate currently used to interface between vacuum and atmosphere. A novel plasma window, which utilizes a short arc for vacuum-atmosphere interface has been developed. This window provides for sufficient vacuum atmosphere separation, as well as for ion beam propagation through it, thus facilitating non-vacuum ion material modification.