Sample records for coli ef-tu mutants

  1. Elongation factor Tu resistant to kirromycin in an Esherichia coli mutant altered in both tuf genes

    PubMed Central

    Fischer, Eckhard; Wolf, Heinz; Hantke, Klaus; Parmeggiani, Andrea

    1977-01-01

    A mutant of Escherichia coli is described that displays kirromycin resistance in a cell-free system by virtue of an altered elongation factor Tu (EF-Tu). In poly(U)-directed poly(Phe) synthesis the kirromycin resistance of the crystallized enzyme ranged between a factor of 80 and 700, depending on temperature. Similarly, kirromycin-induced EF-Tu GTPase activity uncoupled from ribosomes and aminoacyl-tRNA required correspondingly higher concentrations of the antibiotic. Resistance of EF-Tu to kirromycin is a consequence of a modified enzyme structure as indicated by its altered fingerprint pattern. P1 transduction experiments showed that the kirromycin-resistant EF-Tu is coded by an altered tufB gene (tufB1). The known existence of two genes coding for EF-Tu would interfere with the recognition of a mutant altered in only one of those genes, if the mutation were recessive. Because kirromycin blocks EF-Tu release from the ribosome, kirromycin sensitivity is dominant, as shown by the failure of a mixed EF-Tu population to express resistance in vitro. Therefore, phenotypic expression of kirromycin resistance in vivo appears to be only possible if the EF-Tu mutant lacks an active tufA gene, a property likely to be inherited from the parental D22 strain. The observations that introduction of a tufA+ region makes the resistant strain sensitive to the antibiotic and that transduction of tufB1 into a recipient other than E. coli D22 yields kirromycin-sensitive progeny support these conclusions. Images PMID:337296

  2. Cloning and characterization of EF-Tu and EF-Ts from Pseudomonas aeruginosa.

    PubMed

    Palmer, Stephanie O; Rangel, Edna Y; Montalvo, Alberto E; Tran, Alexis T; Ferguson, Kate C; Bullard, James M

    2013-01-01

    We have cloned genes encoding elongation factors EF-Tu and EF-Ts from Pseudomonas aeruginosa and expressed and purified the proteins to greater than 95% homogeneity. Sequence analysis indicated that P. aeruginosa EF-Tu and EF-Ts are 84% and 55% identical to E. coli counterparts, respectively. P. aeruginosa EF-Tu was active when assayed in GDP exchange assays. Kinetic parameters for the interaction of EF-Tu with GDP in the absence of EF-Ts were observed to be K M = 33 μM, k cat (obs) = 0.003 s(-1), and the specificity constant k cat (obs)/K M was 0.1 × 10(-3) s(-1) μM(-1). In the presence of EF-Ts, these values were shifted to K M = 2 μM, k cat (obs) = 0.005 s(-1), and the specificity constant k(cat)(obs)/K M was 2.5 × 10(-3) s(-1) μM(-1). The equilibrium dissociation constants governing the binding of EF-Tu to GDP (K GDP) were 30-75 nM and to GTP (K GTP) were 125-200 nM. EF-Ts stimulated the exchange of GDP by EF-Tu 10-fold. P. aeruginosa EF-Tu was active in forming a ternary complex with GTP and aminoacylated tRNA and was functional in poly(U)-dependent binding of Phe-tRNA(Phe) at the A-site of P. aeruginosa ribosomes. P. aeruginosa EF-Tu was active in poly(U)-programmed polyphenylalanine protein synthesis system composed of all P. aeruginosa components.

  3. Translation elongation factor EF-Tu modulates filament formation of actin-like MreB protein in vitro.

    PubMed

    Defeu Soufo, Hervé Joël; Reimold, Christian; Breddermann, Hannes; Mannherz, Hans G; Graumann, Peter L

    2015-04-24

    EF-Tu has been shown to interact with actin-like protein MreB and to affect its localization in Escherichia coli and in Bacillus subtilis cells. We have purified YFP-MreB in an active form, which forms filaments on glass slides in vitro and was active in dynamic light-scattering assays, polymerizing in milliseconds after addition of magnesium. Purified EF-Tu enhanced the amount of MreB filaments, as seen by sedimentation assays, the speed of filament formation and the length of MreB filaments in vitro. EF-Tu had the strongest impact on MreB filaments in a 1:1 ratio, and EF-Tu co-sedimented with MreB filaments, revealing a stoichiometric interaction between both proteins. This was supported by cross-linking assays where 1:1 species were well detectable. When expressed in E. coli cells, B. subtilis MreB formed filaments and induced the formation of co-localizing B. subtilis EF-Tu structures, indicating that MreB can direct the positioning of EF-Tu structures in a heterologous cell system. Fluorescence recovery after photobleaching analysis showed that MreB filaments have a higher turnover in B. subtilis cells than in E. coli cells, indicating different filament kinetics in homologous or heterologous cell systems. The data show that MreB can direct the localization of EF-Tu in vivo, which in turn positively affects the formation and dynamics of MreB filaments. Thus, EF-Tu is a modulator of the activity of a bacterial actin-like protein. Copyright © 2015. Published by Elsevier Ltd.

  4. Interaction of apicoplast-encoded elongation factor (EF) EF-Tu with nuclear-encoded EF-Ts mediates translation in the Plasmodiumfalciparum plastid.

    PubMed

    Biswas, Subir; Lim, Erin E; Gupta, Ankit; Saqib, Uzma; Mir, Snober S; Siddiqi, Mohammad Imran; Ralph, Stuart A; Habib, Saman

    2011-03-01

    Protein translation in the plastid (apicoplast) of Plasmodium spp. is of immense interest as a target for potential anti-malarial drugs. However, the molecular data on apicoplast translation needed for optimisation and development of novel inhibitors is lacking. We report characterisation of two key translation elongation factors in Plasmodium falciparum, apicoplast-encoded elongation factor PfEF-Tu and nuclear-encoded PfEF-Ts. Recombinant PfEF-Tu hydrolysed GTP and interacted with its presumed nuclear-encoded partner PfEF-Ts. The EF-Tu inhibitor kirromycin affected PfEF-Tu activity in vitro, indicating that apicoplast EF-Tu is indeed the target of this drug. The predicted PfEF-Ts leader sequence targeted GFP to the apicoplast, confirming that PfEF-Ts functions in this organelle. Recombinant PfEF-Ts mediated nucleotide exchange on PfEF-Tu and homology modeling of the PfEF-Tu:PfEF-Ts complex revealed PfEF-Ts-induced structural alterations that would expedite GDP release from PfEF-Tu. Our results establish functional interaction between two apicoplast translation factors encoded by genes residing in different cellular compartments and highlight the significance of their sequence/structural differences from bacterial elongation factors in relation to inhibitor activity. These data provide an experimental system to study the effects of novel inhibitors targeting PfEF-Tu and PfEF-Tu.PfEF-Ts interaction. Our finding that apicoplast EF-Tu possesses chaperone-related disulphide reductase activity also provides a rationale for retention of the tufA gene on the plastid genome. Copyright © 2010 Australian Society for Parasitology Inc. All rights reserved.

  5. Assembly of Q{beta} viral RNA polymerase with host translational elongation factors EF-Tu and -Ts.

    PubMed

    Takeshita, Daijiro; Tomita, Kozo

    2010-09-07

    Replication and transcription of viral RNA genomes rely on host-donated proteins. Qbeta virus infects Escherichia coli and replicates and transcribes its own genomic RNA by Qbeta replicase. Qbeta replicase requires the virus-encoded RNA-dependent RNA polymerase (beta-subunit), and the host-donated translational elongation factors EF-Tu and -Ts, as active core subunits for its RNA polymerization activity. Here, we present the crystal structure of the core Qbeta replicase, comprising the beta-subunit, EF-Tu and -Ts. The beta-subunit has a right-handed structure, and the EF-Tu:Ts binary complex maintains the structure of the catalytic core crevasse of the beta-subunit through hydrophobic interactions, between the finger and thumb domains of the beta-subunit and domain-2 of EF-Tu and the coiled-coil motif of EF-Ts, respectively. These hydrophobic interactions are required for the expression and assembly of the Qbeta replicase complex. Thus, EF-Tu and -Ts have chaperone-like functions in the maintenance of the structure of the active Qbeta replicase. Modeling of the template RNA and the growing RNA in the catalytic site of the Qbeta replicase structure also suggests that structural changes of the RNAs and EF-Tu:Ts should accompany processive RNA polymerization and that EF-Tu:Ts in the Qbeta replicase could function to modulate the RNA folding and structure.

  6. The C-terminal Helix of Pseudomonas aeruginosa Elongation Factor Ts Tunes EF-Tu Dynamics to Modulate Nucleotide Exchange.

    PubMed

    De Laurentiis, Evelina Ines; Mercier, Evan; Wieden, Hans-Joachim

    2016-10-28

    Little is known about the conservation of critical kinetic parameters and the mechanistic strategies of elongation factor (EF) Ts-catalyzed nucleotide exchange in EF-Tu in bacteria and particularly in clinically relevant pathogens. EF-Tu from the clinically relevant pathogen Pseudomonas aeruginosa shares over 84% sequence identity with the corresponding elongation factor from Escherichia coli Interestingly, the functionally closely linked EF-Ts only shares 55% sequence identity. To identify any differences in the nucleotide binding properties, as well as in the EF-Ts-mediated nucleotide exchange reaction, we performed a comparative rapid kinetics and mutagenesis analysis of the nucleotide exchange mechanism for both the E. coli and P. aeruginosa systems, identifying helix 13 of EF-Ts as a previously unnoticed regulatory element in the nucleotide exchange mechanism with species-specific elements. Our findings support the base side-first entry of the nucleotide into the binding pocket of the EF-Tu·EF-Ts binary complex, followed by displacement of helix 13 and rapid binding of the phosphate side of the nucleotide, ultimately leading to the release of EF-Ts. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. The effects of EF-Ts and bismuth on EF-Tu in Helicobacter pylori: implications for an elegant timing for the introduction of EF-Ts in the elongation and EF-Tu as a potential drug target.

    PubMed

    Wang, Dongxian; Luo, Benping; Shan, Weiran; Hao, Mingcong; Sun, Xuesong; Ge, Ruiguang

    2013-06-01

    Helicobacter pylori is a common human pathogen responsible for various gastric diseases. Bismuth can effectively inhibit the growth of this bacterium and is commonly recommended for the treatment of the related diseases. Translation elongation factors EF-Tu and EF-Ts are two important components of the protein translation system. EF-Ts has inhibitory effects on the GTPase activity of EF-Tu and enhances GDP release, a hint that careful timing for the introduction of EF-Ts in the elongation should be accomplished to prevent the complete inhibition of the elongation process. Bismuth inhibits the chaperone activity of EF-Tu, and has opposite effects on the elongation activity: inhibitory effects on the intrinsic GTPase activity and stimulation of GDP release. The present work deepens our understanding of the bacterial elongation process as mediated by EF-Tu and EF-Ts and extends our knowledge about the inhibitory effects of bismuth-based drugs against Helicobacter pylori.

  8. Heat tolerance and expression of protein synthesis elongation factors, EF-Tu and EF-1a, in spring wheat

    USDA-ARS?s Scientific Manuscript database

    Protein elongation factors, EF-Tu and EF-1a, have been implicated in cell response to heat stress. In spring wheat, EF-Tu displays chaperone activity and reduces thermal aggregation of Rubisco activase. Similarly, in mammalian cells, EF-1a displays chaperone-like activity and regulates the expressio...

  9. Determination of the kinetics of guanine nucleotide exchange on EF-Tu and EF-Ts: continuing uncertainties.

    PubMed

    Manchester, Keith L

    2004-01-30

    An analysis is made of the rate constants for the reactions involving the interactions of EF-Tu, EF-Ts, GDP, and GTP recently derived by Gromadski et al. [Biochemistry 41 (2002) 162]. Though their measured values appear to allow a reasonable rate of nucleotide exchange sufficient to support rates of protein synthesis in vivo, their data underestimate the thermodynamic barrier involved in nucleotide exchange and therefore cannot be considered definitive. A kinetic scheme consistent with the thermodynamic barrier can be achieved by modification of various rate constants, particularly of those involving the release of EF-Ts from EF-Tu.GTP.EF-Ts, but such constants are markedly different from what are experimentally observed. It thus remains impossible at present satisfactorily to model guanine nucleotide exchange on EF-Tu, catalysed by EF-Ts by a double displacement mechanism, with experimentally derived rate constants. Metabolic control analysis has been applied to determine the degree of flux control of the different steps in the pathway.

  10. Bacterial translation elongation factor EF-Tu interacts and colocalizes with actin-like MreB protein.

    PubMed

    Defeu Soufo, Hervé Joël; Reimold, Christian; Linne, Uwe; Knust, Tobias; Gescher, Johannes; Graumann, Peter L

    2010-02-16

    We show that translation initiation factor EF-Tu plays a second important role in cell shape maintenance in the bacterium Bacillus subtilis. EF-Tu localizes in a helical pattern underneath the cell membrane and colocalizes with MreB, an actin-like cytoskeletal element setting up rod cell shape. The localization of MreB and of EF-Tu is interdependent, but in contrast to the dynamic MreB filaments, EF-Tu structures are more static and may serve as tracks for MreB filaments. In agreement with this idea, EF-Tu and MreB interact in vivo and in vitro. Lowering of the EF-Tu levels had a minor effect on translation but a strong effect on cell shape and on the localization of MreB, and blocking of the function of EF-Tu in translation did not interfere with the localization of MreB, showing that, directly or indirectly, EF-Tu affects the cytoskeletal MreB structure and thus serves two important functions in a bacterium.

  11. Elongation Factor Ts Directly Facilitates the Formation and Disassembly of the Escherichia coli Elongation Factor Tu·GTP·Aminoacyl-tRNA Ternary Complex*

    PubMed Central

    Burnett, Benjamin J.; Altman, Roger B.; Ferrao, Ryan; Alejo, Jose L.; Kaur, Navdep; Kanji, Joshua; Blanchard, Scott C.

    2013-01-01

    Aminoacyl-tRNA enters the translating ribosome in a ternary complex with elongation factor Tu (EF-Tu) and GTP. Here, we describe bulk steady state and pre-steady state fluorescence methods that enabled us to quantitatively explore the kinetic features of Escherichia coli ternary complex formation and decay. The data obtained suggest that both processes are controlled by a nucleotide-dependent, rate-determining conformational change in EF-Tu. Unexpectedly, we found that this conformational change is accelerated by elongation factor Ts (EF-Ts), the guanosine nucleotide exchange factor for EF-Tu. Notably, EF-Ts attenuates the affinity of EF-Tu for GTP and destabilizes ternary complex in the presence of non-hydrolyzable GTP analogs. These results suggest that EF-Ts serves an unanticipated role in the cell of actively regulating the abundance and stability of ternary complex in a manner that contributes to rapid and faithful protein synthesis. PMID:23539628

  12. Duplication of Drosophila melanogaster mitochondrial EF-Tu: pre-adaptation to T-arm truncation and exclusion of bulky aminoacyl residues.

    PubMed

    Sato, Aya; Suematsu, Takuma; Aihara, Koh-Ki; Kita, Kiyoshi; Suzuki, Tsutomu; Watanabe, Kimitsuna; Ohtsuki, Takashi; Watanabe, Yoh-Ichi

    2017-03-07

    Translation elongation factor Tu (EF-Tu) delivers aminoacyl-tRNA (aa-tRNA) to ribosomes in protein synthesis. EF-Tu generally recognizes aminoacyl moieties and acceptor- and T-stems of aa-tRNAs. However, nematode mitochondrial (mt) tRNAs frequently lack all or part of the T-arm that is recognized by canonical EF-Tu. We previously reported that two distinct EF-Tu species, EF-Tu1 and EF-Tu2, respectively, recognize mt tRNAs lacking T-arms and D-arms in the mitochondria of the chromadorean nematode Caenorhabditis elegans C. elegans EF-Tu2 specifically recognizes the seryl moiety of serylated D-armless tRNAs. Mitochondria of the enoplean nematode Trichinella possess three structural types of tRNAs: T-armless tRNAs, D-armless tRNAs, and cloverleaf tRNAs with a short T-arm. Trichinella mt EF-Tu1 binds to all three types and EF-Tu2 binds only to D-armless Ser-tRNAs, showing an evolutionary intermediate state from canonical EF-Tu to chromadorean nematode (e.g. C. elegans ) EF-Tu species. We report here that two EF-Tu species also participate in Drosophila melanogaster mitochondria. Both D. melanogaster EF-Tu1 and EF-Tu2 bound to cloverleaf and D-armless tRNAs. D. melanogaster EF-Tu1 has the ability to recognize T-armless tRNAs that do not evidently exist in D. melanogaster mitochondria, but do exist in related arthropod species. In addition, D. melanogaster EF-Tu2 preferentially bound to aa-tRNAs carrying small amino acids, but not to aa-tRNAs carrying bulky amino acids. These results suggest that the Drosophila mt translation system could be another intermediate state between the canonical and nematode mitochondria-type translation systems. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  13. Elongation factor Ts directly facilitates the formation and disassembly of the Escherichia coli elongation factor Tu·GTP·aminoacyl-tRNA ternary complex.

    PubMed

    Burnett, Benjamin J; Altman, Roger B; Ferrao, Ryan; Alejo, Jose L; Kaur, Navdep; Kanji, Joshua; Blanchard, Scott C

    2013-05-10

    Aminoacyl-tRNA (aa-tRNA) enters the ribosome in a ternary complex with the G-protein elongation factor Tu (EF-Tu) and GTP. EF-Tu·GTP·aa-tRNA ternary complex formation and decay rates are accelerated in the presence of the nucleotide exchange factor elongation factor Ts (EF-Ts). EF-Ts directly facilitates the formation and disassociation of ternary complex. This system demonstrates a novel function of EF-Ts. Aminoacyl-tRNA enters the translating ribosome in a ternary complex with elongation factor Tu (EF-Tu) and GTP. Here, we describe bulk steady state and pre-steady state fluorescence methods that enabled us to quantitatively explore the kinetic features of Escherichia coli ternary complex formation and decay. The data obtained suggest that both processes are controlled by a nucleotide-dependent, rate-determining conformational change in EF-Tu. Unexpectedly, we found that this conformational change is accelerated by elongation factor Ts (EF-Ts), the guanosine nucleotide exchange factor for EF-Tu. Notably, EF-Ts attenuates the affinity of EF-Tu for GTP and destabilizes ternary complex in the presence of non-hydrolyzable GTP analogs. These results suggest that EF-Ts serves an unanticipated role in the cell of actively regulating the abundance and stability of ternary complex in a manner that contributes to rapid and faithful protein synthesis.

  14. Effector region of the translation elongation factor EF-Tu.GTP complex stabilizes an orthoester acid intermediate structure of aminoacyl-tRNA in a ternary complex.

    PubMed Central

    Förster, C; Limmer, S; Zeidler, W; Sprinzl, M

    1994-01-01

    tRNA(Val) from Escherichia coli was aminoacylated with [1-13C]valine and its complex with Thermus thermophilus elongation factor EF-Tu.GTP was analyzed by 13C NMR spectroscopy. The results suggest that the aminoacyl residue of the valyl-tRNA in ternary complex with bacterial EF-Tu and GTP is not attached to tRNA by a regular ester bond to either a 2'- or 3'-hydroxyl group; instead, an intermediate orthoester acid structure with covalent linkage to both vicinal hydroxyls of the terminal adenosine-76 is formed. Mutation of arginine-59 located in the effector region of EF-Tu, a conserved residue in protein elongation factors and the alpha subunits of heterotrimeric guanine nucleotide-binding regulatory proteins (G proteins), abolishes the stabilization of the orthoester acid structure of aminoacyl-tRNA. PMID:8183898

  15. An evolutionary ‘intermediate state’ of mitochondrial translation systems found in Trichinella species of parasitic nematodes: co-evolution of tRNA and EF-Tu

    PubMed Central

    Arita, Masashi; Suematsu, Takuma; Osanai, Arihiro; Inaba, Takashi; Kamiya, Haruo; Kita, Kiyoshi; Sisido, Masahiko; Watanabe, Yoh-ichi; Ohtsuki, Takashi

    2006-01-01

    EF-Tu delivers aminoacyl-tRNAs to ribosomes in the translation system. However, unusual truncations found in some animal mitochondrial tRNAs seem to prevent recognition by a canonical EF-Tu. We showed previously that the chromadorean nematode has two distinct EF-Tus, one of which (EF-Tu1) binds only to T-armless aminoacyl-tRNAs and the other (EF-Tu2) binds to D-armless Ser-tRNAs. Neither of the EF-Tus can bind to canonical cloverleaf tRNAs. In this study, by analyzing the translation system of enoplean nematode Trichinella species, we address how EF-Tus and tRNAs have evolved from the canonical structures toward those of the chromadorean translation system. Trichinella mitochondria possess three types of tRNAs: cloverleaf tRNAs, which do not exist in chromadorean nematode mitochondria; T-armless tRNAs; and D-armless tRNAs. We found two mitochondrial EF-Tu species, EF-Tu1 and EF-Tu2, in Trichinella britovi. T.britovi EF-Tu2 could bind to only D-armless Ser-tRNA, as Caenorhabditis elegans EF-Tu2 does. In contrast to the case of C.elegans EF-Tu1, however, T.britovi EF-Tu1 bound to all three types of tRNA present in Trichinella mitochondria. These results suggest that Trichinella mitochondrial translation system, and particularly the tRNA-binding specificity of EF-Tu1, could be an intermediate state between the canonical system and the chromadorean nematode mitochondrial system. PMID:17012285

  16. Identification and cloning of two immunogenic C. perfringens proteins, elongation factor Tu (EF-Tu) and pyruvate:ferredoxin oxidoreductase (PFO) of Clostridium perfringens

    USDA-ARS?s Scientific Manuscript database

    Clostridium related poultry diseases such as necrotic enteritis (NE) and gangrenous dermatitis (GD) cause substantial economic losses on a global scale. Two antigenic C. perfringens proteins, elongation factor Tu (EF-Tu) and pyruvate:ferredoxin oxidoreductase (PFO), were identified by reaction with...

  17. Elongation Factor-Tu (EF-Tu) proteins structural stability and bioinformatics in ancestral gene reconstruction

    NASA Astrophysics Data System (ADS)

    Dehipawala, Sunil; Nguyen, A.; Tremberger, G.; Cheung, E.; Schneider, P.; Lieberman, D.; Holden, T.; Cheung, T.

    2013-09-01

    A paleo-experimental evolution report on elongation factor EF-Tu structural stability results has provided an opportunity to rewind the tape of life using the ancestral protein sequence reconstruction modeling approach; consistent with the book of life dogma in current biology and being an important component in the astrobiology community. Fractal dimension via the Higuchi fractal method and Shannon entropy of the DNA sequence classification could be used in a diagram that serves as a simple summary. Results from biomedical gene research provide examples on the diagram methodology. Comparisons between biomedical genes such as EEF2 (elongation factor 2 human, mouse, etc), WDR85 in epigenetics, HAR1 in human specificity, DLG1 in cognitive skill, and HLA-C in mosquito bite immunology with EF Tu DNA sequences have accounted for the reported circular dichroism thermo-stability data systematically; the results also infer a relatively less volatility geologic time period from 2 to 3 Gyr from adaptation viewpoint. Comparison to Thermotoga maritima MSB8 and Psychrobacter shows that Thermus thermophilus HB8 EF-Tu calibration sequence could be an outlier, consistent with free energy calculation by NUPACK. Diagram methodology allows computer simulation studies and HAR1 shows about 0.5% probability from chimp to human in terms of diagram location, and SNP simulation results such as amoebic meningoencephalitis NAF1 suggest correlation. Extensions to the studies of the translation and transcription elongation factor sequences in Megavirus Chiliensis, Megavirus Lba and Pandoravirus show that the studied Pandoravirus sequence could be an outlier with the highest fractal dimension and lowest entropy, as compared to chicken as a deviant in the DNMT3A DNA methylation gene sequences from zebrafish to human and to the less than one percent probability in computer simulation using the HAR1 0.5% probability as reference. The diagram methodology would be useful in ancestral gene

  18. How EF-Tu can contribute to efficient proofreading of aa-tRNA by the ribosome

    PubMed Central

    Noel, Jeffrey K.; Whitford, Paul C.

    2016-01-01

    It has long been recognized that the thermodynamics of mRNA–tRNA base pairing is insufficient to explain the high fidelity and efficiency of aminoacyl-tRNA (aa-tRNA) selection by the ribosome. To rationalize this apparent inconsistency, Hopfield proposed that the ribosome may improve accuracy by utilizing a multi-step kinetic proofreading mechanism. While biochemical, structural and single-molecule studies have provided a detailed characterization of aa-tRNA selection, there is a limited understanding of how the physical–chemical properties of the ribosome enable proofreading. To this end, we probe the role of EF-Tu during aa-tRNA accommodation (the proofreading step) through the use of energy landscape principles, molecular dynamics simulations and kinetic models. We find that the steric composition of EF-Tu can reduce the free-energy barrier associated with the first step of accommodation: elbow accommodation. We interpret this effect within an extended kinetic model of accommodation and show how EF-Tu can contribute to efficient and accurate proofreading. PMID:27796304

  19. Structure of the Acinetobacter baumannii dithiol oxidase DsbA bound to elongation factor EF-Tu reveals a novel protein interaction site.

    PubMed

    Premkumar, Lakshmanane; Kurth, Fabian; Duprez, Wilko; Grøftehauge, Morten K; King, Gordon J; Halili, Maria A; Heras, Begoña; Martin, Jennifer L

    2014-07-18

    The multidrug resistant bacterium Acinetobacter baumannii is a significant cause of nosocomial infection. Biofilm formation, that requires both disulfide bond forming and chaperone-usher pathways, is a major virulence trait in this bacterium. Our biochemical characterizations show that the periplasmic A. baumannii DsbA (AbDsbA) enzyme has an oxidizing redox potential and dithiol oxidase activity. We found an unexpected non-covalent interaction between AbDsbA and the highly conserved prokaryotic elongation factor, EF-Tu. EF-Tu is a cytoplasmic protein but has been localized extracellularly in many bacterial pathogens. The crystal structure of this complex revealed that the EF-Tu switch I region binds to the non-catalytic surface of AbDsbA. Although the physiological and pathological significance of a DsbA/EF-Tu association is unknown, peptides derived from the EF-Tu switch I region bound to AbDsbA with submicromolar affinity. We also identified a seven-residue DsbB-derived peptide that bound to AbDsbA with low micromolar affinity. Further characterization confirmed that the EF-Tu- and DsbB-derived peptides bind at two distinct sites. These data point to the possibility that the non-catalytic surface of DsbA is a potential substrate or regulatory protein interaction site. The two peptides identified in this work together with the newly characterized interaction site provide a novel starting point for inhibitor design targeting AbDsbA. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Structure of the Acinetobacter baumannii Dithiol Oxidase DsbA Bound to Elongation Factor EF-Tu Reveals a Novel Protein Interaction Site

    PubMed Central

    Premkumar, Lakshmanane; Kurth, Fabian; Duprez, Wilko; Grøftehauge, Morten K.; King, Gordon J.; Halili, Maria A.; Heras, Begoña; Martin, Jennifer L.

    2014-01-01

    The multidrug resistant bacterium Acinetobacter baumannii is a significant cause of nosocomial infection. Biofilm formation, that requires both disulfide bond forming and chaperone-usher pathways, is a major virulence trait in this bacterium. Our biochemical characterizations show that the periplasmic A. baumannii DsbA (AbDsbA) enzyme has an oxidizing redox potential and dithiol oxidase activity. We found an unexpected non-covalent interaction between AbDsbA and the highly conserved prokaryotic elongation factor, EF-Tu. EF-Tu is a cytoplasmic protein but has been localized extracellularly in many bacterial pathogens. The crystal structure of this complex revealed that the EF-Tu switch I region binds to the non-catalytic surface of AbDsbA. Although the physiological and pathological significance of a DsbA/EF-Tu association is unknown, peptides derived from the EF-Tu switch I region bound to AbDsbA with submicromolar affinity. We also identified a seven-residue DsbB-derived peptide that bound to AbDsbA with low micromolar affinity. Further characterization confirmed that the EF-Tu- and DsbB-derived peptides bind at two distinct sites. These data point to the possibility that the non-catalytic surface of DsbA is a potential substrate or regulatory protein interaction site. The two peptides identified in this work together with the newly characterized interaction site provide a novel starting point for inhibitor design targeting AbDsbA. PMID:24860094

  1. Arabidopsis EF-Tu receptor enhances bacterial disease resistance in transgenic wheat.

    PubMed

    Schoonbeek, Henk-Jan; Wang, Hsi-Hua; Stefanato, Francesca L; Craze, Melanie; Bowden, Sarah; Wallington, Emma; Zipfel, Cyril; Ridout, Christopher J

    2015-04-01

    Perception of pathogen (or microbe)-associated molecular patterns (PAMPs/MAMPs) by pattern recognition receptors (PRRs) is a key component of plant innate immunity. The Arabidopsis PRR EF-Tu receptor (EFR) recognizes the bacterial PAMP elongation factor Tu (EF-Tu) and its derived peptide elf18. Previous work revealed that transgenic expression of AtEFR in Solanaceae confers elf18 responsiveness and broad-spectrum bacterial disease resistance. In this study, we developed a set of bioassays to study the activation of PAMP-triggered immunity (PTI) in wheat. We generated transgenic wheat (Triticum aestivum) plants expressing AtEFR driven by the constitutive rice actin promoter and tested their response to elf18. We show that transgenic expression of AtEFR in wheat confers recognition of elf18, as measured by the induction of immune marker genes and callose deposition. When challenged with the cereal bacterial pathogen Pseudomonas syringae pv. oryzae, transgenic EFR wheat lines had reduced lesion size and bacterial multiplication. These results demonstrate that AtEFR can be transferred successfully from dicot to monocot species, further revealing that immune signalling pathways are conserved across these distant phyla. As novel PRRs are identified, their transfer between plant families represents a useful strategy for enhancing resistance to pathogens in crops. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  2. Structure of a novel antibacterial toxin that exploits elongation factor Tu to cleave specific transfer RNAs

    DOE PAGES

    Michalska, Karolina; Gucinski, Grant C.; Garza-Sanchez, Fernando; ...

    2017-08-11

    Contact-dependent growth inhibition (CDI) is a mechanism of inter-cellular competition in which Gram-negative bacteria exchange polymorphic toxins using type V secretion systems. Here, we present structures of the CDI toxin from Escherichia coli NC101 in ternary complex with its cognate immunity protein and elongation factor Tu (EF-Tu). The toxin binds exclusively to domain 2 of EF-Tu, partially overlapping the site that interacts with the 3'-end of aminoacyl-tRNA (aa-tRNA). The toxin exerts a unique ribonuclease activity that cleaves the single-stranded 3'-end from tRNAs that contain guanine discriminator nucleotides. EF-Tu is required to support this tRNase activity in vitro, suggesting the toxinmore » specifically cleaves substrate in the context of GTP·EF-Tu·aa-tRNA complexes. However, superimposition of the toxin domain onto previously solved GTP·EF-Tu·aa-tRNA structures reveals potential steric clashes with both aa-tRNA and the switch I region of EF-Tu. Further, the toxin induces conformational changes in EF-Tu, displacing a β-hairpin loop that forms a critical salt-bridge contact with the 3'-terminal adenylate of aa-tRNA. Altogether, these observations suggest that the toxin remodels GTP·EF-Tu·aa-tRNA complexes to free the 3'-end of aa-tRNA for entry into the nuclease active site.« less

  3. Structure of a novel antibacterial toxin that exploits elongation factor Tu to cleave specific transfer RNAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michalska, Karolina; Gucinski, Grant C.; Garza-Sanchez, Fernando

    Contact-dependent growth inhibition (CDI) is a mechanism of inter-cellular competition in which Gram-negative bacteria exchange polymorphic toxins using type V secretion systems. Here, we present structures of the CDI toxin from Escherichia coli NC101 in ternary complex with its cognate immunity protein and elongation factor Tu (EF-Tu). The toxin binds exclusively to domain 2 of EF-Tu, partially overlapping the site that interacts with the 3'-end of aminoacyl-tRNA (aa-tRNA). The toxin exerts a unique ribonuclease activity that cleaves the single-stranded 3'-end from tRNAs that contain guanine discriminator nucleotides. EF-Tu is required to support this tRNase activity in vitro, suggesting the toxinmore » specifically cleaves substrate in the context of GTP·EF-Tu·aa-tRNA complexes. However, superimposition of the toxin domain onto previously solved GTP·EF-Tu·aa-tRNA structures reveals potential steric clashes with both aa-tRNA and the switch I region of EF-Tu. Further, the toxin induces conformational changes in EF-Tu, displacing a β-hairpin loop that forms a critical salt-bridge contact with the 3'-terminal adenylate of aa-tRNA. Altogether, these observations suggest that the toxin remodels GTP·EF-Tu·aa-tRNA complexes to free the 3'-end of aa-tRNA for entry into the nuclease active site.« less

  4. Interaction of elongation factor Tu from Escherichia coli with aminoacyl-tRNA carrying a fluorescent reporter group on the 3' terminus.

    PubMed

    Ott, G; Faulhammer, H G; Sprinzl, M

    1989-09-15

    Transfer ribonucleic acids containing 2-thiocytidine in position 75 ([s2C]tRNAs) were prepared by incorporation of the corresponding cytidine analogue into 3'-shortened tRNA using ATP(CTP):tRNA nucleotidyltransferase. [s2C]tRNA was selectively alkylated with fluorescent N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine (1,5-I-AEDANS) on the 2-thiocytidine residue. The product [AEDANS-s2C]aminoacyl-tRNA, forms a ternary complex with Escherichia coli elongation factor Tu and GTP, leading to up to 130% fluorescence enhancement of the AEDANS chromophore. From fluorescence titration experiments, equilibrium dissociation constants of 0.24 nM, 0.22 nM and 0.60 nM were determined for yeast [AEDANS-s2C]Tyr-tRNATyr, yeast Tyr-tRNATyr, and the homologous E. coli Phe-tRNAPhe, respectively, interacting with E. coli elongation factor Tu.GTP. The measurement of the association and dissociation rates of the interaction of [AEDANS-s2C]Tyr-tRNATyr with EF-Tu.GTP and the temperature dependence of the resulting dissociation constants gave values of 55 J mol-1 K-1 for delta S degrees' and -34.7 kJ mol-1 for delta H degrees' of this reaction.

  5. Analysis of transgenic wheat (Triticum aestivum L.) harboring a maize (Zea mays L.) gene for plastid EF-Tu: segregation pattern, expression and effects of the transgene.

    PubMed

    Fu, Jianming; Ristic, Zoran

    2010-06-01

    We previously reported that transgenic wheat (Triticum aestivum L.) carrying a maize (Zea mays L.) gene (Zmeftu1) for chloroplast protein synthesis elongation factor, EF-Tu, displays reduced thermal aggregation of leaf proteins, reduced injury to photosynthetic membranes (thylakoids), and enhanced rate of CO(2) fixation following exposure to heat stress (18 h at 45 degrees C) [Fu et al. in Plant Mol Biol 68:277-288, 2008]. In the current study, we investigated the segregation pattern and expression of the transgene Zmeftu1 and determined the grain yield of transgenic plants after exposure to a brief heat stress (18 h at 45 degrees C). We also assessed thermal aggregation of soluble leaf proteins in transgenic plants, testing the hypothesis that increased levels of EF-Tu will lead to a non-specific protection of leaf proteins against thermal aggregation. The transgenic wheat displayed a single-gene pattern of segregation of Zmeftu1. Zmeftu1 was expressed, and the transgenic plants synthesized and accumulated three anti-EF-Tu cross-reacting polypeptides of similar molecular mass but different pI, suggesting the possibility of posttranslational modification of this protein. The transgenic plants also showed better grain yield after exposure to heat stress compared with their non-transgenic counterparts. Soluble leaf proteins of various molecular masses displayed lower thermal aggregation in transgenic than in non-transgenic wheat. The results suggest that overexpression of chloroplast EF-Tu can be beneficial to wheat tolerance to heat stress. Moreover, the results also support the hypothesis that EF-Tu contributes to heat tolerance by acting as a molecular chaperone and protecting heat-labile proteins from thermal aggregation in a non-specific manner.

  6. Heterologous expression of a plastid EF-Tu reduces protein thermal aggregation and enhances CO2 fixation in wheat (Triticum aestivum) following heat stress.

    PubMed

    Fu, Jianming; Momcilović, Ivana; Clemente, Thomas E; Nersesian, Natalya; Trick, Harold N; Ristic, Zoran

    2008-10-01

    Heat stress is a major constraint to wheat production and negatively impacts grain quality, causing tremendous economic losses, and may become a more troublesome factor due to global warming. At the cellular level, heat stress causes denaturation and aggregation of proteins and injury to membranes leading to alterations in metabolic fluxes. Protein aggregation is irreversible, and protection of proteins from thermal aggregation is a strategy a cell uses to tolerate heat stress. Here we report on the development of transgenic wheat (Triticum aestivum) events, expressing a maize gene coding for plastidal protein synthesis elongation factor (EF-Tu), which, compared to non-transgenic plants, display reduced thermal aggregation of leaf proteins, reduced heat injury to photosynthetic membranes (thylakoids), and enhanced rate of CO(2) fixation after exposure to heat stress. The results support the concept that EF-Tu ameliorates negative effects of heat stress by acting as a molecular chaperone. This is the first demonstration of the introduction of a plastidal EF-Tu in plants that leads to protection against heat injury and enhanced photosynthesis after heat stress. This is also the first demonstration that a gene other than HSP gene can be used for improvement of heat tolerance and that the improvement is possible in a species that has a complex genome, hexaploid wheat. The results strongly suggest that heat tolerance of wheat, and possibly other crop plants, can be improved by modulating expression of plastidal EF-Tu and/or by selection of genotypes with increased endogenous levels of this protein.

  7. Expression of the mucus adhesion genes Mub and MapA, adhesion-like factor EF-Tu and bacteriocin gene plaA of Lactobacillus plantarum 423, monitored with real-time PCR.

    PubMed

    Ramiah, K; van Reenen, C A; Dicks, L M T

    2007-05-30

    Expression of the mucus adhesion genes Mub and MapA, adhesion-like factor EF-Tu and bacteriocin gene plaA by Lactobacillus plantarum 423, grown in the presence of bile, pancreatin and at low pH, was studied by real-time PCR. Mub, MapA and EF-Tu were up-regulated in the presence of mucus, proportional to increasing concentrations. Expression of MapA was up-regulated in the presence of 3.0 g/l bile and 3.0 g/l pancreatin at pH 6.5. Similar results were recorded in the presence of 10.0 g/l bile and 10.0 g/l pancreatin at pH 6.5. Expression of Mub was down-regulated in the presence of bile and pancreatin, whilst the expression of EF-Tu and plaA remained unchanged. Expression of Mub and MapA remained unchanged at pH 4.0, whilst expression of EF-Tu and plaA were up-regulated. Expression of MapA was down-regulated in the presence of 1.0 g/l l-cysteine HCl, suggesting that the gene is regulated by transcription attenuation that involves cysteine.

  8. Genetic and biochemical characterization of periplasmic-leaky mutants of Escherichia coli K-12.

    PubMed Central

    Lazzaroni, J C; Portalier, R C

    1981-01-01

    Periplasmic-leaky mutants of Escherichia coli K-12 were isolated after nitrosoguanidine-induced mutagenesis. They released periplasmic enzymes into the extracellular medium. Excretion of alkaline phosphatase, which started immediately in the early exponential phase of growth, could reach up to 90% of the total enzyme production in the stationary phase. Leaky mutants were sensitive to ethylenediaminetetraacetic acid, cholic acid, and the antibiotics rifampin, chloramphenicol, mitomycin C, and ampicillin. Furthermore, they were resistant to colicin E1 and partially resistant to phage TuLa. Their genetic characterization showed that the lky mutations mapped between the suc and gal markers, near or in the tolPAB locus. A biochemical analysis of cell envelope components showed that periplasmic-leaky mutants contained reduced amounts of major outer membrane protein OmpF and increased amounts of a 16,000-dalton outer membrane protein. Images PMID:7009581

  9. Kirromycin, an Inhibitor of Protein Biosynthesis that Acts on Elongation Factor Tu

    PubMed Central

    Wolf, Heinz; Chinali, Gianni; Parmeggiani, Andrea

    1974-01-01

    Kirromycin, a new inhibitor of protein synthesis, is shown to interfere with the peptide transfer reaction by acting on elongation factor Tu (EF-Tu). All the reactions associated with this elongation factor are affected. Formation of the EF-Tu·GTP complex is strongly stimulated. Peptide bond formation is prevented only when Phe-tRNAPhe is bound enzymatically to ribosomes, presumably because GTP hydrolysis associated with enzymatic binding of Phe-tRNAPhe is not followed by release of EF-Tu·GDP from the ribosome. This antibiotic also enables EF-Tu to catalyze the binding of Phe-tRNAPhe to the poly(U)·ribosome complex even in the absence of GTP. EF-Tu activity in the GTPase reaction is dramatically affected by kirromycin: GTP hydrolysis, which normally requires ribosomes and aminoacyl-tRNA, takes place with the elongation factor alone. This GTPase shows the same Km for GTP as the one dependent on Phe-tRNAPhe and ribosomes in the absence of the antibiotic. Ribosomes and Phe-tRNAPhe, but not tRNAPhe or Ac-Phe-tRNAPhe, stimulate the kirromycin-induced EF-Tu GTPase. These results indicate that the catalytic center of EF-Tu GTPase that is dependent upon aminoacyl-tRNA and ribosomes is primarily located on the elongation factor. In conclusion, kirromycin can substitute for GTP, aminoacyl-tRNA, or ribosomes in various reactions involving EF-Tu, apparently by affecting the allosteric controls between the sites on the EF-Tu molecule interacting with these components. PMID:4373734

  10. Structural outline of the detailed mechanism for elongation factor Ts-mediated guanine nucleotide exchange on elongation factor Tu.

    PubMed

    Thirup, Søren S; Van, Lan Bich; Nielsen, Tine K; Knudsen, Charlotte R

    2015-07-01

    Translation elongation factor EF-Tu belongs to the superfamily of guanine-nucleotide binding proteins, which play key cellular roles as regulatory switches. All G-proteins require activation via exchange of GDP for GTP to carry out their respective tasks. Often, guanine-nucleotide exchange factors are essential to this process. During translation, EF-Tu:GTP transports aminoacylated tRNA to the ribosome. GTP is hydrolyzed during this process, and subsequent reactivation of EF-Tu is catalyzed by EF-Ts. The reaction path of guanine-nucleotide exchange is structurally poorly defined for EF-Tu and EF-Ts. We have determined the crystal structures of the following reaction intermediates: two structures of EF-Tu:GDP:EF-Ts (2.2 and 1.8Å resolution), EF-Tu:PO4:EF-Ts (1.9Å resolution), EF-Tu:GDPNP:EF-Ts (2.2Å resolution) and EF-Tu:GDPNP:pulvomycin:Mg(2+):EF-Ts (3.5Å resolution). These structures provide snapshots throughout the entire exchange reaction and suggest a mechanism for the release of EF-Tu in its GTP conformation. An inferred sequence of events during the exchange reaction is presented. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  11. The SOS response is permitted in Escherichia coli strains deficient in the expression of the mazEF pathway.

    PubMed

    Kalderon, Ziva; Kumar, Sathish; Engelberg-Kulka, Hanna

    2014-01-01

    The Escherichia coli (E. coli) SOS response is the largest, most complex, and best characterized bacterial network induced by DNA damage. It is controlled by a complex network involving the RecA and LexA proteins. We have previously shown that the SOS response to DNA damage is inhibited by various elements involved in the expression of the E. coli toxin-antitoxin mazEF pathway. Since the mazEF module is present on the chromosomes of most E. coli strains, here we asked: Why is the SOS response found in so many E. coli strains? Is the mazEF module present but inactive in those strains? We examined three E. coli strains used for studies of the SOS response, strains AB1932, BW25113, and MG1655. We found that each of these strains is either missing or inhibiting one of several elements involved in the expression of the mazEF-mediated death pathway. Thus, the SOS response only takes place in E. coli cells in which one or more elements of the E. coli toxin-antitoxin module mazEF or its downstream pathway is not functioning.

  12. The SOS Response is Permitted in Escherichia coli Strains Deficient in the Expression of the mazEF Pathway

    PubMed Central

    Kalderon, Ziva; Kumar, Sathish; Engelberg-Kulka, Hanna

    2014-01-01

    The Escherichia coli (E. coli) SOS response is the largest, most complex, and best characterized bacterial network induced by DNA damage. It is controlled by a complex network involving the RecA and LexA proteins. We have previously shown that the SOS response to DNA damage is inhibited by various elements involved in the expression of the E. coli toxin-antitoxin mazEF pathway. Since the mazEF module is present on the chromosomes of most E. coli strains, here we asked: Why is the SOS response found in so many E. coli strains? Is the mazEF module present but inactive in those strains? We examined three E. coli strains used for studies of the SOS response, strains AB1932, BW25113, and MG1655. We found that each of these strains is either missing or inhibiting one of several elements involved in the expression of the mazEF-mediated death pathway. Thus, the SOS response only takes place in E. coli cells in which one or more elements of the E. coli toxin-antitoxin module mazEF or its downstream pathway is not functioning. PMID:25470502

  13. The Conformational Change in Elongation Factor Tu Involves Separation of Its Domains

    DOE PAGES

    Lai, Jonathan; Ghaemi, Zhaleh; Luthey-Schulten, Zaida

    2017-10-18

    Elongation factor Tu (EF-Tu) is a highly conserved GTPase that is responsible for supplying the aminoacylated tRNA to the ribosome. Upon binding to the ribosome, EF-Tu undergoes GTP hydrolysis, which drives a major conformational change, triggering the release of aminoacylated tRNA to the ribosome. Using a combination of molecular simulation techniques, we studied the transition between the pre- and post-hydrolysis structures through two distinct pathways. Here, we show that the transition free energy is minimal along a non-intuitive pathway that involves “separation” of the GTP binding domain (domain 1) from the OB folds (domains 2 and 3), followed by domainmore » 1 rotation, and, eventually, locking the EF-Tu conformation in the post-hydrolysis state. The domain separation also leads to a slight extension of the linker connecting domain 1 to domain 2. Using docking tools and correlation-based analysis, we identified and characterized the EF-Tu conformations that release the tRNA. These calculations suggest that EF-Tu can release the tRNA before the domains separate and after domain 1 rotates by 25°. Lastly, we also examined the EF-Tu conformations in the context of the ribosome. Given the high degrees of sequence similarity with other translational GTPases, we predict a similar separation mechanism is followed.« less

  14. The Conformational Change in Elongation Factor Tu Involves Separation of Its Domains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Jonathan; Ghaemi, Zhaleh; Luthey-Schulten, Zaida

    Elongation factor Tu (EF-Tu) is a highly conserved GTPase that is responsible for supplying the aminoacylated tRNA to the ribosome. Upon binding to the ribosome, EF-Tu undergoes GTP hydrolysis, which drives a major conformational change, triggering the release of aminoacylated tRNA to the ribosome. Using a combination of molecular simulation techniques, we studied the transition between the pre- and post-hydrolysis structures through two distinct pathways. Here, we show that the transition free energy is minimal along a non-intuitive pathway that involves “separation” of the GTP binding domain (domain 1) from the OB folds (domains 2 and 3), followed by domainmore » 1 rotation, and, eventually, locking the EF-Tu conformation in the post-hydrolysis state. The domain separation also leads to a slight extension of the linker connecting domain 1 to domain 2. Using docking tools and correlation-based analysis, we identified and characterized the EF-Tu conformations that release the tRNA. These calculations suggest that EF-Tu can release the tRNA before the domains separate and after domain 1 rotates by 25°. Lastly, we also examined the EF-Tu conformations in the context of the ribosome. Given the high degrees of sequence similarity with other translational GTPases, we predict a similar separation mechanism is followed.« less

  15. Studies of elongation factor Tu in Streptococcus faecium (ATCC 9790)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourbeau, P.P.

    1986-01-01

    It has been known for over twenty years that elongation factor Tu (Ef-Tu) is one of the proteins involved in protein synthesis in bacteria. Several years ago, it was proposed that Ef-Tu may, in addition, have other structural functions in bacterial. The author's research has examined the function of Ef-Tu in Streptococcus faecium. Using an antibiotic kirromycin, which specifically inhibits Ef-Tu function, the effects upon a number of cellular parameters were determined. Inhibition of both protein and RNA synthesis was found to be similar to the effect of chloramphenicol. Using the residual division technique for the determination of cell cyclemore » events with both heterogeneous and sucrose gradient fractionated cell populations, a kirromycin sensitive event was detected between 8 min. (Td = 30 min.) and 19 min. (Td = 175 min.) later in the cell cycle than the chloramphenical sensitive event. This suggests that kirromycin is inhibiting a terminal cell cycle event which is in addition to the inhibition of protein synthesis. Purification of Ef-Tu was performed using two different methods: ion exchange and molecular exclusion chromatography; and GDP affinity chromatography. Various schemes were employed to try and obtain optimum cellular fractionation, allowing for both proper separation of ribosomes from the other cellular fractions and retention of enzymatic activity by Ef-Tu as determined by a /sup 3/H-GDP binding assay. Analysis of the cell cycle of S. faecium using the residual division technique was also performed. In addition, certain cell wall antibiotics were used to determine if other cell cycle events could be determined using the residual division technique.« less

  16. Direct evidence of an elongation factor-Tu/Ts·GTP·Aminoacyl-tRNA quaternary complex.

    PubMed

    Burnett, Benjamin J; Altman, Roger B; Ferguson, Angelica; Wasserman, Michael R; Zhou, Zhou; Blanchard, Scott C

    2014-08-22

    During protein synthesis, elongation factor-Tu (EF-Tu) bound to GTP chaperones the entry of aminoacyl-tRNA (aa-tRNA) into actively translating ribosomes. In so doing, EF-Tu increases the rate and fidelity of the translation mechanism. Recent evidence suggests that EF-Ts, the guanosine nucleotide exchange factor for EF-Tu, directly accelerates both the formation and dissociation of the EF-Tu-GTP-Phe-tRNA(Phe) ternary complex (Burnett, B. J., Altman, R. B., Ferrao, R., Alejo, J. L., Kaur, N., Kanji, J., and Blanchard, S. C. (2013) J. Biol. Chem. 288, 13917-13928). A central feature of this model is the existence of a quaternary complex of EF-Tu/Ts·GTP·aa-tRNA(aa). Here, through comparative investigations of phenylalanyl, methionyl, and arginyl ternary complexes, and the development of a strategy to monitor their formation and decay using fluorescence resonance energy transfer, we reveal the generality of this newly described EF-Ts function and the first direct evidence of the transient quaternary complex species. These findings suggest that EF-Ts may regulate ternary complex abundance in the cell through mechanisms that are distinct from its guanosine nucleotide exchange factor functions. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Hsp33 confers bleach resistance by protecting elongation factor Tu against oxidative degradation in Vibrio cholerae

    PubMed Central

    Wholey, Wei-Yun; Jakob, Ursula

    2012-01-01

    Summary The redox-regulated chaperone Hsp33 protects bacteria specifically against stress conditions that cause oxidative protein unfolding, such as treatment with bleach or exposure to peroxide at elevated temperatures. To gain insight into the mechanism by which expression of Hsp33 confers resistance to oxidative protein unfolding conditions, we made use of V. cholerae strain O395 lacking the Hsp33 gene hslO. We found that this strain, which is exquisitely bleach-sensitive, displays a temperature-sensitive (ts) phenotype during aerobic growth, implying that V. cholerae suffers from oxidative heat stress when cultivated at 43°C. We utilized this phenotype to select for E. coli genes that rescue the ts phenotype of V. cholerae ΔhslO when overexpressed. We discovered that expression of a single protein, the elongation factor EF-Tu, was sufficient to rescue both the ts and bleach-sensitive phenotypes of V. cholerae ΔhslO. In vivo studies revealed that V. cholerae EF-Tu is highly sensitive to oxidative protein degradation in the absence of Hsp33, indicating that EF-Tu is a vital chaperone substrate of Hsp33 in V. cholerae. These results suggest an “essential client protein” model for Hsp33’s chaperone action in Vibrio in which stabilization of a single oxidative stress-sensitive protein is sufficient to enhance the oxidative stress resistance of the whole organism. PMID:22296329

  18. Interaction of Leptospira Elongation Factor Tu with Plasminogen and Complement Factor H: A Metabolic Leptospiral Protein with Moonlighting Activities

    PubMed Central

    Abe, Cecília M.; Monaris, Denize; Morais, Zenaide M.; Souza, Gisele O.; Vasconcellos, Sílvio A.; Isaac, Lourdes; Abreu, Patrícia A. E.; Barbosa, Angela S.

    2013-01-01

    The elongation factor Tu (EF-Tu), an abundant bacterial protein involved in protein synthesis, has been shown to display moonlighting activities. Known to perform more than one function at different times or in different places, it is found in several subcellular locations in a single organism, and may serve as a virulence factor in a range of important human pathogens. Here we demonstrate that Leptospira EF-Tu is surface-exposed and performs additional roles as a cell-surface receptor for host plasma proteins. It binds plasminogen in a dose-dependent manner, and lysine residues are critical for this interaction. Bound plasminogen is converted to active plasmin, which, in turn, is able to cleave the natural substrates C3b and fibrinogen. Leptospira EF-Tu also acquires the complement regulator Factor H (FH). FH bound to immobilized EF-Tu displays cofactor activity, mediating C3b degradation by Factor I (FI). In this manner, EF-Tu may contribute to leptospiral tissue invasion and complement inactivation. To our knowledge, this is the first description of a leptospiral protein exhibiting moonlighting activities. PMID:24312361

  19. Modulation of Global Transcriptional Regulatory Networks as a Strategy for Increasing Kanamycin Resistance of the Translational Elongation Factor-G Mutants in Escherichia coli

    PubMed Central

    Mogre, Aalap; Veetil, Reshma T.; Seshasayee, Aswin Sai Narain

    2017-01-01

    Evolve and resequence experiments have provided us a tool to understand bacterial adaptation to antibiotics. In our previous work, we used short-term evolution to isolate mutants resistant to the ribosome targeting antibiotic kanamycin, and reported that Escherichia coli develops low cost resistance to kanamycin via different point mutations in the translation Elongation Factor-G (EF-G). Furthermore, we had shown that the resistance of EF-G mutants could be increased by second site mutations in the genes rpoD/cpxA/topA/cyaA. Mutations in three of these genes had been discovered in earlier screens for aminoglycoside resistance. In this work, we expand our understanding of these second site mutations, the goal being to understand how these mutations affect the activities of the mutated gene products to confer resistance. We show that the mutation in cpxA most likely results in an active Cpx stress response. Further evolution of an EF-G mutant in a higher concentration of kanamycin than what was used in our previous experiments identified the cpxA locus as a primary target for a significant increase in resistance. The mutation in cyaA results in a loss of catalytic activity and probably results in resistance via altered CRP function. Despite a reduction in cAMP levels, the CyaAN600Y mutant has a transcriptome indicative of increased CRP activity, pointing to an unknown role for CyaA and / or cAMP in gene expression. From the transcriptomes of double and single mutants, we describe the epistasis between the mutation in EF-G and these second site mutations. We show that the large scale transcriptomic changes in the topoisomerase I (FusAA608E-TopAS180L) mutant likely result from increased negative supercoiling in the cell. Finally, genes with known roles in aminoglycoside resistance were present among the misregulated genes in the mutants. PMID:29046437

  20. Antibacterial activity of synthetic curcumin derivatives: 3,5-bis(benzylidene)-4-piperidone (EF24) and EF24-dimer linked via diethylenetriaminepentacetic acid (EF2DTPA).

    PubMed

    Vilekar, Prachi; King, Catherine; Lagisetty, Pallavi; Awasthi, Vibhudutta; Awasthi, Shanjana

    2014-04-01

    Curcumin is well known for its antimicrobial and anti-inflammatory properties. However, since systemic absorption and bioavailability of curcumin from gastrointestinal tract is considerably poor, synthetic curcuminoids are being developed as better alternatives. Two curcumin derivatives: 3,5-bis(benzylidene)-4-piperidone (EF24) and EF24-dimer linked via diethylenetriaminepentacetic acid (EF2DTPA), were included in this study. We investigated the antibacterial activity of EF24 and EF2DTPA against Gram-negative (Escherichia coli) and Gram-positive (Enterococcus faecalis, Staphylococcus aureus) bacteria. We also studied the effects of EF24 and EF2DTPA on uptake and localization of pHrodo-labeled E. coli in the acidic compartments (phagolysosomes) of dendritic cells (DCs) under in vitro conditions. Our results demonstrate that treatment with EF24 and EF2DTPA directly suppresses the bacterial growth. However, these compounds do not affect the bacterial uptake or localization in the DCs.

  1. Atypical archaeal tRNA pyrrolysine transcript behaves towards EF-Tu as a typical elongator tRNA

    PubMed Central

    Théobald-Dietrich, Anne; Frugier, Magali; Giegé, Richard; Rudinger-Thirion, Joëlle

    2004-01-01

    The newly discovered tRNAPyl is involved in specific incorporation of pyrrolysine in the active site of methylamine methyltransferases in the archaeon Methanosarcina barkeri. In solution probing experiments, a transcript derived from tRNAPyl displays a secondary fold slightly different from the canonical cloverleaf and interestingly similar to that of bovine mitochondrial tRNASer(uga). Aminoacylation of tRNAPyl transcript by a typical class II synthetase, LysRS from yeast, was possible when its amber anticodon CUA was mutated into a lysine UUU anticodon. Hydrolysis protection assays show that lysylated tRNAPyl can be recognized by bacterial elongation factor. This indicates that no antideterminant sequence is present in the body of the tRNAPyl transcript to prevent it from interacting with EF-Tu, in contrast with the otherwise functionally similar tRNASec that mediates selenocysteine incorporation. PMID:14872064

  2. Characterization of Escherichia coli d-Cycloserine Transport and Resistant Mutants

    PubMed Central

    Baisa, Gary; Stabo, Nicholas J.

    2013-01-01

    d-Cycloserine (DCS) is a broad-spectrum antibiotic that inhibits d-alanine ligase and alanine racemase activity. When Escherichia coli K-12 or CFT073 is grown in minimal glucose or glycerol medium, CycA transports DCS into the cell. E. coli K-12 cycA and CFT073 cycA mutant strains display increased DCS resistance when grown in minimal medium. However, the cycA mutants exhibit no change in DCS sensitivity compared to their parental strains when grown in LB (CFT073 and K-12) or human urine (CFT073 only). These data suggest that cycA does not participate in DCS sensitivity when strains are grown in a non-minimal medium. The small RNA GvcB acts as a negative regulator of E. coli K-12 cycA expression when grown in LB. Three E. coli K-12 gcvB mutant strains failed to demonstrate a change in DCS sensitivity when grown in LB. This further suggests a limited role for cycA in DCS sensitivity. To aid in the identification of E. coli genes involved in DCS sensitivity when grown on complex media, the Keio K-12 mutant collection was screened for DCS-resistant strains. dadA, pnp, ubiE, ubiF, ubiG, ubiH, and ubiX mutant strains showed elevated DCS resistance. The phenotypes associated with these mutants were used to further define three previously characterized E. coli DCS-resistant strains (χ316, χ444, and χ453) isolated by Curtiss and colleagues (R. Curtiss, III, L. J. Charamella, C. M. Berg, and P. E. Harris, J. Bacteriol. 90:1238–1250, 1965). A dadA mutation was identified in both χ444 and χ453. In addition, results are presented that indicate for the first time that DCS can antagonize d-amino acid dehydrogenase (DadA) activity. PMID:23316042

  3. Super-resolution imaging and tracking of protein-protein interactions in sub-diffraction cellular space

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Xing, Dong; Su, Qian Peter; Zhu, Yun; Zhang, Jiamei; Kong, Xinyu; Xue, Boxin; Wang, Sheng; Sun, Hao; Tao, Yile; Sun, Yujie

    2014-07-01

    Imaging the location and dynamics of individual interacting protein pairs is essential but often difficult because of the fluorescent background from other paired and non-paired molecules, particularly in the sub-diffraction cellular space. Here we develop a new method combining bimolecular fluorescence complementation and photoactivated localization microscopy for super-resolution imaging and single-molecule tracking of specific protein-protein interactions. The method is used to study the interaction of two abundant proteins, MreB and EF-Tu, in Escherichia coli cells. The super-resolution imaging shows interesting distribution and domain sizes of interacting MreB-EF-Tu pairs as a subpopulation of total EF-Tu. The single-molecule tracking of MreB, EF-Tu and MreB-EF-Tu pairs reveals intriguing localization-dependent heterogonous dynamics and provides valuable insights to understanding the roles of MreB-EF-Tu interactions.

  4. Super-resolution imaging and tracking of protein–protein interactions in sub-diffraction cellular space

    PubMed Central

    Liu, Zhen; Xing, Dong; Su, Qian Peter; Zhu, Yun; Zhang, Jiamei; Kong, Xinyu; Xue, Boxin; Wang, Sheng; Sun, Hao; Tao, Yile; Sun, Yujie

    2014-01-01

    Imaging the location and dynamics of individual interacting protein pairs is essential but often difficult because of the fluorescent background from other paired and non-paired molecules, particularly in the sub-diffraction cellular space. Here we develop a new method combining bimolecular fluorescence complementation and photoactivated localization microscopy for super-resolution imaging and single-molecule tracking of specific protein–protein interactions. The method is used to study the interaction of two abundant proteins, MreB and EF-Tu, in Escherichia coli cells. The super-resolution imaging shows interesting distribution and domain sizes of interacting MreB–EF-Tu pairs as a subpopulation of total EF-Tu. The single-molecule tracking of MreB, EF-Tu and MreB–EF-Tu pairs reveals intriguing localization-dependent heterogonous dynamics and provides valuable insights to understanding the roles of MreB–EF-Tu interactions. PMID:25030837

  5. Kasugamycin-dependent mutants of Escherichia coli.

    PubMed Central

    Dabbs, E R

    1978-01-01

    Kasugamycin-dependent mutants have been isolated from Escherichia coli B. They were obtained through mutagenesis with ethyl methane sulfonate or nitrosoguanidine in conjunction with an antibiotic underlay technique. In the case of nitrosoguanidine, dependent mutants were obtained at a frequency of about 3% of survivors growing up in the selection. In the case of ethyl methane sulfonate, the corresponding value was 1%. Nineteen mutants showing a kasugamycin-dependent phenotype were studied. In terms of response to various temperatures and antibiotic concentrations, they were very heterogeneous, although most fell into two general classes. Genetic analysis indicated that in at least some cases, the kasugamycin-dependent phenotype was the product of two mutations. Two-dimensional gel electropherograms revealed alterations in the ribosomal proteins of seven mutants. One mutant had an alteration in protein S13, and one had an alteration in protein L14. Three showed changes in protein S9. Each of two mutants had changes in two proteins, S18 and L11. Three of these mutants additionally had protein S18 occurring in a partly altered, partly unaltered form. Images PMID:363701

  6. Application of Reverse Transcriptase -PCR (RT-PCR) for rapid detection of viable Escherichia coli in drinking water samples.

    PubMed

    Molaee, Neda; Abtahi, Hamid; Ghannadzadeh, Mohammad Javad; Karimi, Masoude; Ghaznavi-Rad, Ehsanollah

    2015-01-01

    Polymerase chain reaction (PCR) is preferred to other methods for detecting Escherichia coli (E. coli) in water in terms of speed, accuracy and efficiency. False positive result is considered as the major disadvantages of PCR. For this reason, reverse transcriptase-polymerase chain reaction (RT-PCR) can be used to solve this problem. The aim of present study was to determine the efficiency of RT-PCR for rapid detection of viable Escherichia coli in drinking water samples and enhance its sensitivity through application of different filter membranes. Specific primers were designed for 16S rRNA and elongation Factor II genes. Different concentrations of bacteria were passed through FHLP and HAWP filters. Then, RT-PCR was performed using 16srRNA and EF -Tu primers. Contamination of 10 wells was determined by RT-PCR in Arak city. To evaluate RT-PCR efficiency, the results were compared with most probable number (MPN) method. RT-PCR is able to detect bacteria in different concentrations. Application of EF II primers reduced false positive results compared to 16S rRNA primers. The FHLP hydrophobic filters have higher ability to absorb bacteria compared with HAWB hydrophilic filters. So the use of hydrophobic filters will increase the sensitivity of RT-PCR. RT-PCR shows a higher sensitivity compared to conventional water contamination detection method. Unlike PCR, RT-PCR does not lead to false positive results. The use of EF-Tu primers can reduce the incidence of false positive results. Furthermore, hydrophobic filters have a higher ability to absorb bacteria compared to hydrophilic filters.

  7. Escherichia coli gamma-glutamyltranspeptidase mutants deficient in processing to subunits.

    PubMed

    Hashimoto, W; Suzuki, H; Nohara, S; Kumagai, H

    1992-11-30

    Arginyl residues 513 and 571 of Escherichia coli K-12 gamma-glutamyl-transpeptidase (EC 2.3.2.2) were substituted with alanyl and glycyl residues, respectively, by oligonucleotide-directed in vitro mutagenesis. Both mutants were devoid of the enzymatic activity. On Western blot analysis, we found that both mutants accumulated a gamma-glutamyltranspeptidase precursor which was not processed into large and small subunits in the periplasmic space of Escherichia coli.

  8. Chronic ethanol feeding causes depression of mitochondrial elongation factor Tu in the rat liver: implications for the mitochondrial ribosome.

    PubMed

    Weiser, Brian; Gonye, Gregory; Sykora, Peter; Crumm, Sara; Cahill, Alan

    2011-05-01

    Chronic ethanol feeding is known to negatively impact hepatic energy metabolism. Previous studies have indicated that the underlying lesion responsible for this may lie at the level of the mitoribosome. The aim of this study was to characterize the structure of the hepatic mitoribosome in alcoholic male rats and their isocalorically paired controls. Our experiments revealed that chronic ethanol feeding resulted in a significant depletion of both structural (death-associated protein 3) and functional [elongation factor thermo unstable (EF-Tu)] mitoribosomal proteins. In addition, significant increases were found in nucleotide elongation factor thermo stable (EF-Ts) and structural mitochondrial ribosomal protein L12 (MRPL12). The increase in MRPL12 was found to correlate with an increase in the levels of the 39S large mitoribosomal subunit. These changes were accompanied by decreased levels of nuclear- and mitochondrially encoded respiratory subunits, decreased amounts of intact respiratory complexes, decreased hepatic ATP levels, and depressed mitochondrial translation. Mathematical modeling of ethanol-mediated changes in EF-Tu and EF-Ts using prederived kinetic data predicted that the ethanol-mediated decrease in EF-Tu levels could completely account for the impaired mitochondrial protein synthesis. In conclusion, chronic ethanol feeding results in a depletion of mitochondrial EF-Tu levels within the liver that is mathematically predicted to be responsible for the impaired mitochondrial protein synthesis seen in alcoholic animals.

  9. Two programmed cell death systems in Escherichia coli: an apoptotic-like death is inhibited by the mazEF-mediated death pathway.

    PubMed

    Erental, Ariel; Sharon, Idith; Engelberg-Kulka, Hanna

    2012-01-01

    In eukaryotes, the classical form of programmed cell death (PCD) is apoptosis, which has as its specific characteristics DNA fragmentation and membrane depolarization. In Escherichia coli a different PCD system has been reported. It is mediated by the toxin-antitoxin system module mazEF. The E. coli mazEF module is one of the most thoroughly studied toxin-antitoxin systems. mazF encodes a stable toxin, MazF, and mazE encodes a labile antitoxin, MazE, which prevents the lethal effect of MazF. mazEF-mediated cell death is a population phenomenon requiring the quorum-sensing pentapeptide NNWNN designated Extracellular Death Factor (EDF). mazEF is triggered by several stressful conditions, including severe damage to the DNA. Here, using confocal microscopy and FACS analysis, we show that under conditions of severe DNA damage, the triggered mazEF-mediated cell death pathway leads to the inhibition of a second cell death pathway. The latter is an apoptotic-like death (ALD); ALD is mediated by recA and lexA. The mazEF-mediated pathway reduces recA mRNA levels. Based on these results, we offer a molecular model for the maintenance of an altruistic characteristic in cell populations. In our model, the ALD pathway is inhibited by the altruistic EDF-mazEF-mediated death pathway.

  10. Genetic studies on a nitrogen-fixing cyanobacterium. [Anabaena; Escherichi coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolk, C.P.; Cardemil, L.; Elhai, J.

    1987-04-01

    Mutants of Anabaena PCC7120 capable of aerobic growth with NO/sub 3//sup -/ but not N/sub 2/, and capable of microaerobic reduction of C/sub 2/H/sub 2/, were isolated by penicillin enrichment after UV irradiation. Heterocysts of two mutants lack the principal envelope glycolipid, those of EF116 have a non-cohesive envelope polysaccharide, and those of other strains have other defects. A Nm/sup r/ cosmid library of DNA from wild type Anabaena PCC7120 was established in Escherichia coli bearing the Ap helper plasmid pDS4101. A conjugative plasmid was introduced, and the bacteria replicated to lawns of individual mutant strains of Anabaena. After onemore » day of non-selective growth, selection was applied for Nm/sup r/ and nitrogen fixation. Overlapping cosmids complementing EF116 and one complementing another mutant have been mapped. The complementing genes are thought to act early in differentiation. Inclusion, in an E. coli donor of an appropriate methylase gene enhanced, by a factor of 10/sup 2/ to 10/sup 3/, transfer to Anabaena PCC7120 of a plasmid containing numerous sites for the Anabaena restriction endonuclease, AvaII.« less

  11. Ethanol production using engineered mutant E. coli

    DOEpatents

    Ingram, Lonnie O.; Clark, David P.

    1991-01-01

    The subject invention concerns novel means and materials for producing ethanol as a fermentation product. Mutant E. coli are transformed with a gene coding for pyruvate decarboxylase activity. The resulting system is capable of producing relatively large amounts of ethanol from a variety of biomass sources.

  12. Importance of individual amino acids in the Switch I region in eEF2 studied by functional complementation in S. cerevisiae.

    PubMed

    Bartish, Galyna; Nygård, Odd

    2008-05-01

    Elongation factor 2 (eEF2) is a member of the G-protein super family. G-proteins undergo conformational changes associated with binding of the guanosine nucleotide and hydrolysis of the bound GTP. These structural rearrangements affects the Switch I region (also known as the Effector loop). We have studied the role of individual amino acids in the Switch I region (amino acids 25-73) of S. cerevisiae eEF2 using functional complementation in yeast. 21 point mutations in the Switch I region were created by site-directed mutagenesis. Mutants K49R, E52Q, A53G, F55Y, K60R, Q63A, T68S, I69M and A73G were functional while mutants R54H, F55N, D57A, D57E, D57S, R59K, R59M, Q63E, R65A, R65N, T68A and T68M were inactive. Expression of mutants K49R, A53G, Q63A, I69M and A73G was associated with markedly decreased growth rates and yeast cells expressing mutants A53G and I69M became temperature sensitive. The functional capacity of eEF2 in which the major part Switch I (amino acids T56 to I69) was converted into the homologous sequence found in EF-G from E. coli was also studied. This protein chimera could functionally replace yeast eEF2 in vivo. Yeast cells expressing this mutant grew extremely slowly, showed increased cell death and became temperature sensitive. The ability of the mutant to replace authentic eEF2 in vivo indicates that the structural rearrangement of Switch I necessary for eEF2 function is similar in eukaryotes and bacteria. The effect of two point mutations in the P-loop was also studied. Mutant A25G but not A25V could functionally replace yeast eEF2 even if cells expressing the mutant grew slowly. The A25G mutation converted the consensus sequences AXXXXGK[T/S] in eEF2 to the corresponding motif GXXXXGK[T/S] found in all other G-proteins, suggesting that the alanine found in the P-loop of peptidyltranslocases are not essential for function.

  13. Phosphorylation decelerates conformational dynamics in bacterial translation elongation factors

    PubMed Central

    Talavera, Ariel; Hendrix, Jelle; Versées, Wim; Jurėnas, Dukas; Van Nerom, Katleen; Vandenberk, Niels; Singh, Ranjan Kumar; Konijnenberg, Albert; De Gieter, Steven; Castro-Roa, Daniel; Barth, Anders; De Greve, Henri; Sobott, Frank; Hofkens, Johan; Zenkin, Nikolay; Loris, Remy; Garcia-Pino, Abel

    2018-01-01

    Bacterial protein synthesis is intricately connected to metabolic rate. One of the ways in which bacteria respond to environmental stress is through posttranslational modifications of translation factors. Translation elongation factor Tu (EF-Tu) is methylated and phosphorylated in response to nutrient starvation upon entering stationary phase, and its phosphorylation is a crucial step in the pathway toward sporulation. We analyze how phosphorylation leads to inactivation of Escherichia coli EF-Tu. We provide structural and biophysical evidence that phosphorylation of EF-Tu at T382 acts as an efficient switch that turns off protein synthesis by decoupling nucleotide binding from the EF-Tu conformational cycle. Direct modifications of the EF-Tu switch I region or modifications in other regions stabilizing the β-hairpin state of switch I result in an effective allosteric trap that restricts the normal dynamics of EF-Tu and enables the evasion of the control exerted by nucleotides on G proteins. These results highlight stabilization of a phosphorylation-induced conformational trap as an essential mechanism for phosphoregulation of bacterial translation and metabolism. We propose that this mechanism may lead to the multisite phosphorylation state observed during dormancy and stationary phase. PMID:29546243

  14. Synthetic curcumin analog EF31 inhibits the growth of head and neck squamous cell carcinoma xenografts

    PubMed Central

    Zhu, Shijun; Moore, Terry W.; Lin, Xiaoqian; Morii, Nao; Mancini, Alessandra; Howard, Randy B.; Culver, Deborah; Arrendale, Richard F.; Reddy, Prabhakar; Evers, Taylor J.; Zhang, Hongzheng; Sica, Gabriel; Chen, Zhuo G.; Sun, Aiming; Fu, Haian; Khuri, Fadlo R.; Shin, Dong M.; Snyder, James P.; Shoji, Mamoru

    2013-01-01

    Objectives are to examine the efficacy of new synthetic curcumin analogs EF31 in head and neck squamous cell carcinoma in vitro and in vivo, and study their pharmacokinetic and toxicologic effects in vivo. The synthesis of EF31 was described for the first time. Solubility of EF24, EF31 was compared using nephelometric analysis. Human head and neck squamous cell carcinoma Tu212 xenograft tumors were established in athymic nude mice and treated with EF31 i.p. once daily five days a week for about 5 – 6 weeks. The long term effect of EF31 on the NF-κB signaling system in the tumors was examined by Western blot analysis. EF31 at 25 mg/kg, i.p. inhibited tumor growth almost completely. Solubility of EF24 and EF31 are <10, 13 μg/mL or <32, 47 μM, respectively. The serum chemistry profiles of treated mice were within the limits of normal, it revealed a linear increase of Cmax. EF31 decreased the level of phosphorylation of NF-κB p65. In conclusion, the novel synthetic curcumin analogs EF31 is efficacious in inhibiting the growth of Tu212 xenograft tumors and may be useful for treating head and neck squamous cell carcinoma. The long term EF31 treatment inhibited NF-kB p65 phosphorylation in xenografts, implicating downregulation of cancer promoting transcription factors such as angiogenesis and metastasis. PMID:22532032

  15. Synthetic curcumin analog EF31 inhibits the growth of head and neck squamous cell carcinoma xenografts.

    PubMed

    Zhu, Shijun; Moore, Terry W; Lin, Xiaoqian; Morii, Nao; Mancini, Alessandra; Howard, Randy B; Culver, Deborah; Arrendale, Richard F; Reddy, Prabhakar; Evers, Taylor J; Zhang, Hongzheng; Sica, Gabriel; Chen, Zhuo G; Sun, Aiming; Fu, Haian; Khuri, Fadlo R; Shin, Dong M; Snyder, James P; Shoji, Mamoru

    2012-06-01

    Objectives are to examine the efficacy, pharmacokinetics, and toxicology of a synthetic curcumin analog EF31 in head and neck squamous cell carcinoma. The synthesis of EF31 was described for the first time. Solubility of EF24 and EF31 was compared using nephelometric analysis. Human head and neck squamous cell carcinoma Tu212 xenograft tumors were established in athymic nude mice and treated with EF31 i.p. once daily five days a week for about 5-6 weeks. The long term effect of EF31 on the NF-κB signaling system in the tumors was examined by Western blot analysis. EF31 at 25 mg kg(-1), i.p. inhibited tumor growth almost completely. Solubilities of EF24 and EF31 are <10 and 13 μg mL(-1) or <32 and 47 μM, respectively. The serum chemistry profiles of treated mice were within the limits of normal, they revealed a linear increase of C(max). EF31 decreased the level of phosphorylation of NF-κB p65. In conclusion, the novel synthetic curcumin analog EF31 is efficacious in inhibiting the growth of Tu212 xenograft tumors and may be useful for treating head and neck squamous cell carcinoma. The long term EF31 treatment inhibited NF-κB p65 phosphorylation in xenografts, implicating downregulation of cancer promoting transcription factors such as angiogenesis and metastasis.

  16. Purification and properties of the heterogeneous subunits of elongation factor EF-1 from Guerin epithelioma cells.

    PubMed

    Marcinkiewicz, C; Gajko, A; Gałasiński, W

    1991-01-01

    Elongation factor EF-1 from Guerin epithelioma was separated into two subunit forms EF-1A and EF-1B by chromatography in the presence of 25% glycerol, successively on CM-Sephadex and DEAE-Sephadex. It was shown that EF-1A is a thermolabile, single polypeptide which catalyses the binding of aminoacyl-tRNA to ribosomes, similarly as eukaryotic EF-1 alpha or prokaryotic EF-Tu. EF-1B was characterized as a complex composed of at least two polypeptides. One of them is EF-1A, the other EF-1C, which stimulates EF-1A activity and protects this elongation factor from thermal inactivation.

  17. MazEF toxin-antitoxin proteins alter Escherichia coli cell morphology and infrastructure during persister formation and regrowth.

    PubMed

    Cho, Junho; Carr, Anita Nicole; Whitworth, Lisa; Johnson, Brent; Wilson, Kevin Scott

    2017-03-01

    When exposed to antibiotics, many bacteria respond by activating intracellular 'toxin' proteins, which arrest cell growth and induce formation of persister cells that survive antibiotics. After antibiotics are removed, persisters can regrow by synthesizing 'antitoxin' proteins that sequester toxin proteins. In Escherichia coli, MazE antitoxin sequesters the activity of MazF toxin, which extensively cleaves cellular RNAs. Although the functions of MazEF proteins are well characterized, there is surprisingly little known about their effects on cell structure. Here, using a combination of microscopy techniques, we visualized the effects of MazEF and three bactericidal antibiotics on E. coli cell morphology and infrastructure. When ectopically expressed in E. coli, MazF temporarily stalled cell growth and induced persister formation, but only mildly elevated DNA mutagenesis. Viewed by electron microscopy, MazF-expressing persister cells were arrested in cell growth and division. Their chromosomal DNAs were compacted into thread-like structures. Their ribosomes were excluded from their nucleoids. After exposure to ciprofloxacin, persister regrowth was activated by MazE. Cell division remained inhibited while cells became extraordinarily elongated, then divided multiple times during stationary growth phase. This extreme filamentation during persister regrowth was unique to ciprofloxacin-treated persisters, likely caused by inhibition of cell division during regrowth, and was not observed with kanamycin-treated persisters.

  18. Purification and Characterization of Tagless Recombinant Human Elongation Factor 2 Kinase (eEF-2K) Expressed in Escherichia coli

    PubMed Central

    Abramczyk, Olga; Tavares, Clint D. J.; Devkota, Ashwini K.; Ryazanov, Alexey G.; Turk, Benjamin E.; Riggs, Austen F.; Ozpolat, Bulent; Dalby, Kevin N.

    2012-01-01

    The eukaryotic elongation factor 2 kinase (eEF-2K) modulates the rate of protein synthesis by impeding the elongation phase of translation by inactivating the eukaryotic elongation factor 2 (eEF-2) via phosphorylation. eEF-2K is known to be activated by calcium and calmodulin, whereas the mTOR and MAPK pathways are suggested to negatively regulate kinase activity. Despite its pivotal role in translation regulation and potential role in tumor survival, the structure, function and regulation of eEF-2K have not been described in detail. This deficiency may result from the difficulty of obtaining the recombinant kinase in a form suitable for biochemical analysis. Here we report the purification and characterization of recombinant human eEF-2K expressed in the Escherichia coli strain Rosetta-gami 2(DE3). Successive chromatography steps utilizing Ni-NTA affinity, anion-exchange and gel filtration columns accomplished purification. Cleavage of the thioredoxin-His6-tag from the N-terminus of the expressed kinase with TEV protease yielded 9 mg of recombinant (G-D-I)-eEF-2K per liter of culture. Light scattering shows that eEF-2K is a monomer of ~ 85 kDa. In vitro kinetic analysis confirmed that recombinant human eEF-2K is able to phosphorylate wheat germ eEF-2 with kinetic parameters comparable to the mammalian enzyme. PMID:21605678

  19. Mammalian translation elongation factor eEF1A2: X-ray structure and new features of GDP/GTP exchange mechanism in higher eukaryotes

    PubMed Central

    Crepin, Thibaut; Shalak, Vyacheslav F.; Yaremchuk, Anna D.; Vlasenko, Dmytro O.; McCarthy, Andrew; Negrutskii, Boris S.; Tukalo, Michail A.; El'skaya, Anna V.

    2014-01-01

    Eukaryotic elongation factor eEF1A transits between the GTP- and GDP-bound conformations during the ribosomal polypeptide chain elongation. eEF1A*GTP establishes a complex with the aminoacyl-tRNA in the A site of the 80S ribosome. Correct codon–anticodon recognition triggers GTP hydrolysis, with subsequent dissociation of eEF1A*GDP from the ribosome. The structures of both the ‘GTP’- and ‘GDP’-bound conformations of eEF1A are unknown. Thus, the eEF1A-related ribosomal mechanisms were anticipated only by analogy with the bacterial homolog EF-Tu. Here, we report the first crystal structure of the mammalian eEF1A2*GDP complex which indicates major differences in the organization of the nucleotide-binding domain and intramolecular movements of eEF1A compared to EF-Tu. Our results explain the nucleotide exchange mechanism in the mammalian eEF1A and suggest that the first step of eEF1A*GDP dissociation from the 80S ribosome is the rotation of the nucleotide-binding domain observed after GTP hydrolysis. PMID:25326326

  20. Isolation of Escherichia coli mutants with an adenosine triphosphatase insensitive to aurovertin.

    PubMed Central

    Satre, M; Klein, G; Vignais, P V

    1978-01-01

    Energy-transducing adenosine triphosphatase (ATPase) from Escherichia coli is inhibited by aurovertin. Aurovertin-resistant mutants were generated by nitrosoguanidine mutagenesis of E. coli AN180, whose growth on a nonfermentable carbon source was blocked by aurovertin. The ATPase activity of cell extracts from 15 different mutants (designated MA1, MA2, MA3, etc.) was found to be at least 20 times less sensitive to aurovertin than that from the parent strain. The aurovertin-resistant mutants did not show cross-resistance towards a number of ATPase inhibitors including azide, dicyclohexylcarbodiimide, quercetin, 7-chloro-4-nitrobenzofurazan, and N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline. Aurovertin inhibited the energization brought about by addition of ATP to E. coli AN180 membrane vesicles; it was without effect on MA1 and MA2 membrane vesicles energized by ATP. The mutation in MA1, like other mutations of the ATPase complex, maps in the unc region of the bacterial chromosome. PMID:148459

  1. Escherichia coli mutants impaired in maltodextrin transport.

    PubMed

    Wandersman, C; Schwartz, M; Ferenci, T

    1979-10-01

    Wild-type Escherichia coli K-12 was found to grow equally well on maltose and on maltodextrins containing up to seven glucose residues. Three classes of mutants unable to grow on maltodextrins, but still able to grow on maltose, were investigated in detail. The first class, already known, was composed of phage lambda-resistant mutants, which lack the outer membrane protein coded by gene lamB. These mutants grow on maltose and maltotriose but not at all on maltotetraose and longer maltodextrins which cannot cross the outer membrane. A second class of mutants were affected in malE, the structural gene of the periplasmic maltose binding protein. The maltose binding proteins isolated from the new mutants were altered in their substrate binding properties, but not in a way that could account for the mutant phenotypes. Rather, the results of growth experiments and transport studies suggest that these malE mutants are impaired in their ability to transport maltodextrins across the outer membrane. This implies that the maltose binding protein (in wild-type strains) cooperates with the lambda receptor in permeation through the outer membrane. The last class of mutants described in this paper were affected in malG, or perhaps in an as yet undetected gene close to malG. They were defective in the transfer of maltodextrins from the periplasmic space to the cytoplasm but only slightly affected in the transport of maltose.

  2. Identification and cloning of two immunogenic Clostridium perfringens proteins, elongation factor Tu and pyruvate:ferredoxin oxidoreductase of C. perfringens

    USDA-ARS?s Scientific Manuscript database

    Clostridium-related poultry diseases such as necrotic enteritis (NE) and gangrenous dermatitis (GD) cause substantial economic losses on a global scale. Two antigenic Clostridium perfringens proteins, elongation factor Tu (EF-Tu) and pyruvate:ferredoxin oxidoreductase (PFO), were identified by react...

  3. Mammalian translation elongation factor eEF1A2: X-ray structure and new features of GDP/GTP exchange mechanism in higher eukaryotes.

    PubMed

    Crepin, Thibaut; Shalak, Vyacheslav F; Yaremchuk, Anna D; Vlasenko, Dmytro O; McCarthy, Andrew; Negrutskii, Boris S; Tukalo, Michail A; El'skaya, Anna V

    2014-11-10

    Eukaryotic elongation factor eEF1A transits between the GTP- and GDP-bound conformations during the ribosomal polypeptide chain elongation. eEF1A*GTP establishes a complex with the aminoacyl-tRNA in the A site of the 80S ribosome. Correct codon-anticodon recognition triggers GTP hydrolysis, with subsequent dissociation of eEF1A*GDP from the ribosome. The structures of both the 'GTP'- and 'GDP'-bound conformations of eEF1A are unknown. Thus, the eEF1A-related ribosomal mechanisms were anticipated only by analogy with the bacterial homolog EF-Tu. Here, we report the first crystal structure of the mammalian eEF1A2*GDP complex which indicates major differences in the organization of the nucleotide-binding domain and intramolecular movements of eEF1A compared to EF-Tu. Our results explain the nucleotide exchange mechanism in the mammalian eEF1A and suggest that the first step of eEF1A*GDP dissociation from the 80S ribosome is the rotation of the nucleotide-binding domain observed after GTP hydrolysis. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Mutant E. coli strain with increased succinic acid production

    DOEpatents

    Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy

    1998-01-01

    A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which as been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria.

  5. Mutant E. coli strain with increased succinic acid production

    DOEpatents

    Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy

    2001-09-25

    A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which has been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria.

  6. Mutant E. coli strain with increased succinic acid production

    DOEpatents

    Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy

    2002-01-01

    A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which has been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria.

  7. Persistence of Escherichia coli O157:H7 and Its Mutants in Soils

    PubMed Central

    Ma, Jincai; Ibekwe, A. Mark; Yi, Xuan; Wang, Haizhen; Yamazaki, Akihiro; Crowley, David E.; Yang, Ching-Hong

    2011-01-01

    The persistence of Shiga toxin-producing E. coli O157:H7 in the environment poses a serious threat to public health. However, the role of Shiga toxins and other virulence factors in the survival of E. coli O157:H7 is poorly defined. The aim of this study was to determine if the virulence factors, stx 1, stx 2, stx 1–2, and eae in E. coli O157:H7 EDL933 play any significant role in the growth of this pathogen in rich media and in soils. Isogenic deletion mutants that were missing one of four virulence factors, stx 1, stx 2, stx 1–2, and eae in E. coli O157:H7 EDL933 were constructed, and their growth in rich media and survival in soils with distinct texture and chemistry were characterized. The survival data were successfully analyzed using Double Weibull model, and the modeling parameters of the mutant strains were not significantly different from those of the wild type. The calculated Td (time needed to reach the detection limit, 100 CFU/g soil) for loamy sand, sandy loam, and silty clay was 32, 80, and 110 days, respectively. It was also found that Td was positively correlated with soil structure (e.g. clay content), and soil chemistry (e.g. total nitrogen, total carbon, and water extractable organic carbon). The results of this study showed that the possession of Shiga toxins and intimin in E. coli O157:H7 might not play any important role in its survival in soils. The double deletion mutant of E. coli O157:H7 (stx 1 − stx 2 −) may be a good substitute to use for the investigation of transport, fate, and survival of E. coli O157:H7 in the environment where the use of pathogenic strains are prohibited by law since the mutants showed the same characteristics in both culture media and environmental samples. PMID:21826238

  8. Mutant E. coli strain with increased succinic acid production

    DOEpatents

    Donnelly, M.; Millard, C.S.; Stols, L.

    1998-06-23

    A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which as been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria. 2 figs.

  9. Gallibacterium elongation factor-Tu possesses amyloid-like protein characteristics, participates in cell adhesion, and is present in biofilms.

    PubMed

    López-Ochoa, Jaqueline; Montes-García, J Fernando; Vázquez, Candelario; Sánchez-Alonso, Patricia; Pérez-Márquez, Victor M; Blackall, Patrick J; Vaca, Sergio; Negrete-Abascal, Erasmo

    2017-09-01

    Gallibacterium, which is a bacterial pathogen in chickens, can form biofilms. Amyloid proteins present in biofilms bind Congo red dye. The aim of this study was to characterize the cell-surface amyloid-like protein expressed in biofilms formed by Gallibacterium strains and determine the relationship between this protein and curli, which is an amyloid protein that is commonly expressed by members of the Enterobacteriaceae family. The presence of amyloid-like proteins in outer membrane protein samples from three strains of G. anatis and one strain of Gallibacterium genomospecies 2 was evaluated. A protein identified as elongation factor-Tu (EF-Tu) by mass spectrometric analysis and in silico analysis was obtained from the G. anatis strain F149 T . This protein bound Congo red dye, cross-reacted with anti-curli polyclonal serum, exhibited polymerizing properties and was present in biofilms. This protein also reacted with pooled serum from chickens that were experimentally infected with G. anatis, indicating the in vivo immunogenicity of this protein. The recombinant EF-Tu purified protein, which was prepared from G. anatis 12656-12, polymerizes under in vitro conditions, forms filaments and interacts with fibronectin and fibrinogen, all of which suggest that this protein functions as an adhesin. In summary, EF-Tu from G. anatis presents amyloid characteristics, is present in biofilms and could be relevant for the pathogenesis of G. anatis.

  10. Study the Expression of ompf Gene in Esherichia coli Mutants.

    PubMed

    Jaktaji, R Pourahmad; Heidari, F

    2013-09-01

    The outer membrane porin proteins are the major factors in controlling the permeability of cell membrane. OmpF is an example of porin proteins in Esherichia coli. In normal growth condition a large amount of this protein is synthesised, but under stress condition, such as the presence of antibiotics in environment its expression is decreased inhibiting the entrance of antibiotics into cell. The expression of ompF is inhibited by antisense RNA transcribed from micF. In normal condition the expression of micF is low, but in the presence of antibiotics its expression is increased and causes multiple resistances to irrelevant antibiotics. The aims of this research were to study first, the intactness of micF and then quantify the expression of ompF in ciprofloxacin and tetracycline resistant mutants of E. coli. For this purpose the 5' end of micF was amplified and then sequenced. None of these mutants except one and its clone has a mutation in this gene. Then the relative expression of ompF in these mutants was quantified by real time PCR. There was no significant difference between ompF transcription of mutants and wild type strain. Based on this study and previous study it is concluded that low to intermediate levels of resistance to ciprofloxacin and tetracycline does not decrease ompF transcription.

  11. Study the Expression of ompf Gene in Esherichia coli Mutants

    PubMed Central

    Jaktaji, R. Pourahmad; Heidari, F.

    2013-01-01

    The outer membrane porin proteins are the major factors in controlling the permeability of cell membrane. OmpF is an example of porin proteins in Esherichia coli. In normal growth condition a large amount of this protein is synthesised, but under stress condition, such as the presence of antibiotics in environment its expression is decreased inhibiting the entrance of antibiotics into cell. The expression of ompF is inhibited by antisense RNA transcribed from micF. In normal condition the expression of micF is low, but in the presence of antibiotics its expression is increased and causes multiple resistances to irrelevant antibiotics. The aims of this research were to study first, the intactness of micF and then quantify the expression of ompF in ciprofloxacin and tetracycline resistant mutants of E. coli. For this purpose the 5’ end of micF was amplified and then sequenced. None of these mutants except one and its clone has a mutation in this gene. Then the relative expression of ompF in these mutants was quantified by real time PCR. There was no significant difference between ompF transcription of mutants and wild type strain. Based on this study and previous study it is concluded that low to intermediate levels of resistance to ciprofloxacin and tetracycline does not decrease ompF transcription. PMID:24403654

  12. Cell envelopes of chemotaxis mutants of Escherichia coli rotate their flagella counterclockwise.

    PubMed Central

    Szupica, C J; Adler, J

    1985-01-01

    Flagella rotated exclusively counterclockwise in Escherichia coli cell envelopes prepared from wild-type cells, whose flagella rotated both clockwise and counterclockwise, from mutants rotating their flagella counterclockwise only, and even from mutants rotating their flagella primarily clockwise. Some factor needed for clockwise flagellar rotation appeared to be missing or defective in the cell envelopes. PMID:3884599

  13. Examining Escherichia coli glycolytic pathways, catabolite repression, and metabolite channeling using Δpfk mutants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollinshead, Whitney D.; Rodriguez, Sarah; Martin, Hector Garcia

    Background: Glycolysis breakdowns glucose into essential building blocks and ATP/NAD(P)H for the cell, occupying a central role in its growth and bio-production. Among glycolytic pathways, the Entner Doudoroff pathway (EDP) is a more thermodynamically favorable pathway with fewer enzymatic steps than either the Embden-Meyerhof-Parnas pathway (EMPP) or the oxidative pentose phosphate pathway (OPPP). However, Escherichia coli do not use their native EDP for glucose metabolism. Results: Overexpression of edd and eda in E. coli to enhance EDP activity resulted in only a small shift in the flux directed through the EDP (~20 % of glycolysis flux). Disrupting the EMPP bymore » phosphofructokinase I (pfkA) knockout increased flux through OPPP (~60 % of glycolysis flux) and the native EDP (~14 % of glycolysis flux), while overexpressing edd and eda in this ΔpfkA mutant directed ~70 % of glycolytic flux through the EDP. The downregulation of EMPP via the pfkA deletion significantly decreased the growth rate, while EDP overexpression in the ΔpfkA mutant failed to improve its growth rates due to metabolic burden. However, the reorganization of E. coli glycolytic strategies did reduce glucose catabolite repression. The ΔpfkA mutant in glucose medium was able to cometabolize acetate via the citric acid cycle and gluconeogenesis, while EDP overexpression in the ΔpfkA mutant repressed acetate flux toward gluconeogenesis. Moreover, 13C-pulse experiments in the ΔpfkA mutants showed unsequential labeling dynamics in glycolysis intermediates, possibly suggesting metabolite channeling (metabolites in glycolysis are pass from enzyme to enzyme without fully equilibrating within the cytosol medium). Conclusions: We engineered E. coli to redistribute its native glycolytic flux. The replacement of EMPP by EDP did not improve E. coli glucose utilization or biomass growth, but alleviated catabolite repression. More importantly, our results supported the hypothesis of channeling in the

  14. Examining Escherichia coli glycolytic pathways, catabolite repression, and metabolite channeling using Δpfk mutants

    DOE PAGES

    Hollinshead, Whitney D.; Rodriguez, Sarah; Martin, Hector Garcia; ...

    2016-10-10

    Background: Glycolysis breakdowns glucose into essential building blocks and ATP/NAD(P)H for the cell, occupying a central role in its growth and bio-production. Among glycolytic pathways, the Entner Doudoroff pathway (EDP) is a more thermodynamically favorable pathway with fewer enzymatic steps than either the Embden-Meyerhof-Parnas pathway (EMPP) or the oxidative pentose phosphate pathway (OPPP). However, Escherichia coli do not use their native EDP for glucose metabolism. Results: Overexpression of edd and eda in E. coli to enhance EDP activity resulted in only a small shift in the flux directed through the EDP (~20 % of glycolysis flux). Disrupting the EMPP bymore » phosphofructokinase I (pfkA) knockout increased flux through OPPP (~60 % of glycolysis flux) and the native EDP (~14 % of glycolysis flux), while overexpressing edd and eda in this ΔpfkA mutant directed ~70 % of glycolytic flux through the EDP. The downregulation of EMPP via the pfkA deletion significantly decreased the growth rate, while EDP overexpression in the ΔpfkA mutant failed to improve its growth rates due to metabolic burden. However, the reorganization of E. coli glycolytic strategies did reduce glucose catabolite repression. The ΔpfkA mutant in glucose medium was able to cometabolize acetate via the citric acid cycle and gluconeogenesis, while EDP overexpression in the ΔpfkA mutant repressed acetate flux toward gluconeogenesis. Moreover, 13C-pulse experiments in the ΔpfkA mutants showed unsequential labeling dynamics in glycolysis intermediates, possibly suggesting metabolite channeling (metabolites in glycolysis are pass from enzyme to enzyme without fully equilibrating within the cytosol medium). Conclusions: We engineered E. coli to redistribute its native glycolytic flux. The replacement of EMPP by EDP did not improve E. coli glucose utilization or biomass growth, but alleviated catabolite repression. More importantly, our results supported the hypothesis of channeling in the

  15. In vitro bactericidal activity of enrofloxacin against gyrA mutant and qnr-containing Escherichia coli isolates from animals.

    PubMed

    Cengiz, M; Sahinturk, P; Sonal, S; Buyukcangaz, E; Sen, A; Arslan, E

    2013-05-04

    The objective of this work was to investigate the bactericidal activity of enrofloxacin against gyrA mutant and qnr-containing Escherichia coli isolates from animals. The minimum inhibitory concentrations (MICs) of gyrA mutant and qnr-containing E coli isolates ranged from 1 µg/ml to 32 µg/ml for enrofloxacin. Time-kill experiments were performed using selected E coli isolates. For the time-kill experiments, the colony counts were determined by plating each diluted sample onto plate count agar and an integrated pharmacokinetic/pharmacodynamics area measure (log ratio area) was applied to the colony-forming units (cfu) data. In general, enrofloxacin exhibited bactericidal activity against all the gyrA mutant E coli isolates at all concentrations greater than four times the MIC. However, the bactericidal activity of enrofloxacin for all the qnr-containing E coli isolates was less dependent on concentration. The results of the present study indicated that the genetic mechanism of resistance might account for the different bactericidal activities of enrofloxacin observed for the gyrA mutant and the qnr-containing E coli isolates. Therefore, in addition to MIC assays, genetic mechanism-based pharmacodynamic models should be used to provide accurate predictions of the effects of drugs on resistant bacteria.

  16. [Construction and characterization of a gspL mutant of avian pathogenic Escherichia coli].

    PubMed

    Fan, Guobo; Han, Yue; Zhang, Yuxi; Han, Xiangan; Wang, Shaohui; Bai, Hao; Meng, Qingmei; Qi, Kezong; Ding, Chan; Yu, Shengqing

    2015-01-04

    To study the role of gspL gene in avian pathogenic Escherichia coli. The gspL mutant of Avian pathogenic Escherichia coli (APEC) was constructed by homologous recombination assay. The growth characteristics, the ability of adhesion and invasion to DF1 cells, the virulence genes transcription level and median lethal dose (LD50) were analyzed between the gspL mutant strain and the wild strain. Compared with the wild strain, the mutant strain had no significant difference in the growth status. However, its ability of adhesion and invasion was significantly lower. The transcription of genes pfs, fyuA, iss and vat increased obviously, the tsh decreased and the transcription level of luxS, ibeA, stx2f and ompA had no significant change. LD50 showed that the gspL mutant strain had 12-fold increase in virulence. The deletion of gspL gene could abate the ability of adhesion and invasion, regulate and control some virulence gene transcription level, enhance the virulence of APEC. The results show that the gspL gene play roles in pathogenicity of APEC.

  17. Sucralose Increases Antimicrobial Resistance and Stimulates Recovery of Escherichia coli Mutants.

    PubMed

    Qu, Yilin; Li, Rongyan; Jiang, Mingshan; Wang, Xiuhong

    2017-07-01

    Because of heavy use of antimicrobials, antimicrobial resistance in bacteria has become of great concern. The effect of some widely used food additives such as sucralose on bacteria in the gut and the environment has also drawn increasing attention. In this study, we investigated the interaction between antimicrobials and sucralose impacting antimicrobial resistance and mutation of Escherichia coli (E. coli). To examine antimicrobial resistance and mutation frequency, different subinhibitory concentrations of sucralose were added to cultures of E.coli BW25113 that were then treated with antimicrobials, oxolinic acid, or moxifloxacin. Then the E.coli were assayed for bacterial survival and recovery of mutants resistant to an unrelated antimicrobial, rifampicin. Pre-treatment of E.coli BW25113 with 1/2 minimal inhibitory concentration (MIC) of sucralose increased the survival rate in oxolinic acid or moxifloxacin. A 1/3 MIC of sucralose increased rifampicin-resistant mutation rate of E.coli BW25113 after 72 h, while rifampicin-resistant mutation rate was increased when co-treated with 1/8 MIC, 1/4 MIC, 1/3 MIC sucralose, and oxolinic acid after 24 h. Sucralose can increase the antimicrobial resistance and mutation frequency of E.coli to some antimicrobials.

  18. Improved penicillin amidase production using a genetically engineered mutant of escherichia coli ATCC 11105

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robas, N.; Zouheiry, H.; Branlant, G.

    Penicillin G amidase (PGA) is a key enzyme for the industrial production of penicillin G derivatives used in therapeutics. Escherichia coli ATCC 11105 is the more commonly used strain for PGA production. To improve enzyme yield, the authors constructed various recombinant E. coli HB 101 and ATCC 11105 strains. For each strain, PGA production was determined for various concentrations of glucose and phenylacetic acid (PAA) in the medium. The E. coli strain, G271, was identified as the best performer (800 U NIPAB/L). This strain was obtained as follows: an E. coli ATCC 11105 mutant (E. coli G133) was first selectedmore » based on a low negative effect of glucose on PGA production. This mutant was then transformed with a pBR322 derivative containing the PGA gene. Various experiments were made to try to understand the reason for the high productivity of E. coli G271. The host strain, E. coli G133, was found to be mutated in one (or more) gene(s) whose product(s) act(s) in trans on the PGA gene expression. Its growth is not inhibited by high glucose concentration in the medium. Interestingly, whereas glucose still exerts some negative effect on the PGA production by E. coli G133, PGA production by its transformant (E. coli G271) is stimulated by glucose. The reason for this stimulation is discussed. Transformation of E. coli G133 with a pBR322 derivative containing the HindIII fragment of the PGA gene, showed that the performance of E. coli G271 depends both upon the host strain properties and the plasmid structure. Study of the production by the less efficient E. coli HB101 derivatives brought some light on the mechanism of regulation of the PGA gene.« less

  19. The streptomycin-treated mouse intestine selects Escherichia coli envZ missense mutants that interact with dense and diverse intestinal microbiota.

    PubMed

    Leatham-Jensen, Mary P; Frimodt-Møller, Jakob; Adediran, Jimmy; Mokszycki, Matthew E; Banner, Megan E; Caughron, Joyce E; Krogfelt, Karen A; Conway, Tyrrell; Cohen, Paul S

    2012-05-01

    Previously, we reported that the streptomycin-treated mouse intestine selected nonmotile Escherichia coli MG1655 flhDC deletion mutants of E. coli MG1655 with improved colonizing ability that grow 15% faster in vitro in mouse cecal mucus and 15 to 30% faster on sugars present in mucus (M. P. Leatham et al., Infect. Immun. 73:8039-8049, 2005). Here, we report that the 10 to 20% remaining motile E. coli MG1655 are envZ missense mutants that are also better colonizers of the mouse intestine than E. coli MG1655. One of the flhDC mutants, E. coli MG1655 ΔflhD, and one of the envZ missense mutants, E. coli MG1655 mot-1, were studied further. E. coli MG1655 mot-1 is more resistant to bile salts and colicin V than E. coli MG1655 ΔflhD and grows ca. 15% slower in vitro in mouse cecal mucus and on several sugars present in mucus compared to E. coli MG1655 ΔflhD but grows 30% faster on galactose. Moreover, E. coli MG1655 mot-1 and E. coli MG1655 ΔflhD appear to colonize equally well in one intestinal niche, but E. coli MG1655 mot-1 appears to use galactose to colonize a second, smaller intestinal niche either not colonized or colonized poorly by E. coli MG1655 ΔflhD. Evidence is also presented that E. coli MG1655 is a minority member of mixed bacterial biofilms in the mucus layer of the streptomycin-treated mouse intestine. We offer a hypothesis, which we call the "Restaurant" hypothesis, that explains how nutrient acquisition in different biofilms comprised of different anaerobes can account for our results.

  20. RESISTANCE AND CROSS-RESISTANCE OF ESCHERICHIA COLI S MUTANTS TO THE RADIOMIMETIC AGENT PROFLAVINE

    PubMed Central

    Woody-Karrer, Pearl; Greenberg, Joseph

    1964-01-01

    Woody-Karrer, Pearl (Palo Alto Medical Research Foundation, Palo Alto, Calif.), and Joseph Greenberg. Resistance and cross-resistance of Escherichia coli S mutants to the radiomimetic agent proflavine. J. Bacteriol. 87:536–542. 1964.—All 50 of the first-step mutants of Escherichia coli S selected for resistance to proflavine were resistant to ultraviolet light and each of five different radiomimetic chemicals. The mutants were classified into eight types on the basis of their relative resistance to six different radiomimetic drugs and on the basis of the shape of their ultraviolet survival curves. Three of these types are identical to types previously isolated with other radiomimetic drugs; five of the types are new. A high proportion of the clones surviving proflavine treatment were phenotypically but not genetically resistant, and no strains were isolated which were resistant to proflavine but were not resistant to radiation. PMID:14129667

  1. Lactose carrier mutants of Escherichia coli with changes in sugar recognition (lactose versus melibiose).

    PubMed

    Varela, M F; Brooker, R J; Wilson, T H

    1997-09-01

    The purpose of this research was to identify amino acid residues that mediate substrate recognition in the lactose carrier of Escherichia coli. The lactose carrier transports the alpha-galactoside sugar melibiose as well as the beta-galactoside sugar lactose. Mutants from cells containing the lac genes on an F factor were selected by the ability to grow on succinate in the presence of the toxic galactoside beta-thio-o-nitrophenylgalactoside. Mutants that grew on melibiose minimal plates but failed to grow on lactose minimal plates were picked. In sugar transport assays, mutant cells showed the striking result of having low levels of lactose downhill transport but high levels of melibiose downhill transport. Accumulation (uphill) of melibiose was completely defective in all of the mutants. Kinetic analysis of melibiose transport in the mutants showed either no change or a greater than normal apparent affinity for melibiose. PCR was used to amplify the lacY DNA of each mutant, which was then sequenced by the Sanger method. The following six mutations were found in the lacY structural genes of individual mutants: Tyr-26-->Asp, Phe-27-->Tyr, Phe-29-->Leu, Asp-240-->Val, Leu-321-->Gln, and His-322-->Tyr. We conclude from these experiments that Tyr-26, Phe-27, Phe-29 (helix 1), Asp-240 (helix 7), Leu-321, and His-322 (helix 10) either directly or indirectly mediate sugar recognition in the lactose carrier of E. coli.

  2. Overexpression of SOS genes in ciprofloxacin resistant Escherichia coli mutants.

    PubMed

    Pourahmad Jaktaji, Razieh; Pasand, Shirin

    2016-01-15

    Fluoroquinolones are important antibiotics for the treatment of urinary tract infections caused by Escherichia coli. Mutational studies have shown that ciprofloxacin, a member of fluoroquinolones induces SOS response and mutagenesis in pathogenic bacteria which in turn develop antibiotic resistance. However, inhibition of SOS response can increase recombination activity which in turn leads to genetic variation. The aim of this study was to measure 5 SOS genes expressions in nine E. coli mutants with different MICs for ciprofloxacin following exposure to ciprofloxacin. Gene expression was assessed by quantitative real time PCR. Gene alteration assessment was conducted by PCR amplification and DNA sequencing. Results showed that the expression of recA was increased in 5 mutants. This overexpression is not related to gene alteration, and enhances the expression of polB and umuCD genes encoding nonmutagenic and mutagenic polymerases, respectively. The direct relationship between the level of SOS expression and the level of resistance to ciprofloxacin was also indicated. It was concluded that novel therapeutic strategy that inhibits RecA activity would enhance the efficiency of common antibiotics against pathogenic bacteria. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Elongation factor P is dispensable in Escherichia coli and Pseudomonas aeruginosa.

    PubMed

    Balibar, Carl J; Iwanowicz, Dorothy; Dean, Charles R

    2013-09-01

    Elongation factor P (EF-P) is a highly conserved ribosomal initiation factor responsible for stimulating formation of the first peptide bond. Its essentiality has been debated and may differ depending on the organism. Here, we demonstrate that EF-P is dispensable in Escherichia coli and Pseudomonas aeruginosa under laboratory growth conditions. Although knockouts are viable, growth rates are diminished compared with wild-type strains. Despite this cost in fitness, these mutants are not more susceptible to a wide range of antibiotics; including ribosome targeting antibiotics, such as lincomycin, chloramphenicol, and streptomycin, which have been shown previously to disrupt EF-P function in vitro. In Pseudomonas, knockout of efp leads to an upregulation of mexX, a phenotype previously observed with other genetic lesions affecting ribosome function and that can be induced by the treatment with antibiotics affecting protein synthesis.

  4. Characterization of Escherichia coli Type 1 Pilus Mutants with Altered Binding Specificities

    PubMed Central

    Harris, Sandra L.; Spears, Patricia A.; Havell, Edward A.; Hamrick, Terri S.; Horton, John R.; Orndorff, Paul E.

    2001-01-01

    PCR mutagenesis and a unique enrichment scheme were used to obtain two mutants, each with a single lesion in fimH, the chromosomal gene that encodes the adhesin protein (FimH) of Escherichia coli type 1 pili. These mutants were noteworthy in part because both were altered in the normal range of cell types bound by FimH. One mutation altered an amino acid at a site previously shown to be involved in temperature-dependent binding, and the other altered an amino acid lining the predicted FimH binding pocket. PMID:11395476

  5. Physiology and pathogenicity of cpdB deleted mutant of avian pathogenic Escherichia coli.

    PubMed

    Liu, Huifang; Chen, Liping; Si, Wei; Wang, Chunlai; Zhu, Fangna; Li, Guangxing; Liu, Siguo

    2017-04-01

    Avian colibacillosis is one of the most common infectious diseases caused partially or entirely by avian pathogenic Escherichia coli (APEC) in birds. In addition to spontaneous infection, APEC can also cause secondary infections that result in greater severity of illness and greater losses to the poultry industry. In order to assess the role of 2', 3'-cyclic phosphodiesterase (cpdB) in APEC on disease physiology and pathogenicity, an avian pathogenic Escherichia coli-34 (APEC-34) cpdB mutant was obtained using the Red system. The cpdB mutant grew at a slower rate than the natural strain APEC-34. Scanning electron microscopy (SEM) indicated that the bacteria of the cpdB mutant were significantly longer than the bacteria observed in the natural strain (P<0.01), and that the width of the cpdB mutant was significantly smaller than its natural counterpart (P<0.01). In order to evaluate the role of cpdB in APEC in the colonization of internal organs (lung, liver and spleen) in poultry, seven-day-old SPF chicks were infected with 10 9 CFU/chick of the cpdB mutant or the natural strain. No colonizations of cpdB mutants were observed in the internal organs 10days following the infection, though numerous natural strains were observed at 20days following infection. Additionally, the relative expression of division protein ftsZ, outer membrane protein A ompA, ferric uptake regulator fur and tryptophanase tnaA genes in the mutant strain were all significantly lower than in the natural strain (P<0.05 or P<0.01). These results suggested that cpdB is involved in the long-term colonization of APEC in the internal organs of the test subjects. The deletion of the cpdB gene also significantly affected the APEC growth and morphology. Copyright © 2016. Published by Elsevier Ltd.

  6. An Escherichia coli Nissle 1917 Missense Mutant Colonizes the Streptomycin-Treated Mouse Intestine Better than the Wild Type but Is Not a Better Probiotic

    PubMed Central

    Adediran, Jimmy; Leatham-Jensen, Mary P.; Mokszycki, Matthew E.; Frimodt-Møller, Jakob; Krogfelt, Karen A.; Kazmierczak, Krystyna; Kenney, Linda J.; Conway, Tyrrell

    2014-01-01

    Previously we reported that the streptomycin-treated mouse intestine selected for two different Escherichia coli MG1655 mutants with improved colonizing ability: nonmotile E. coli MG1655 flhDC deletion mutants that grew 15% faster in vitro in mouse cecal mucus and motile E. coli MG1655 envZ missense mutants that grew slower in vitro in mouse cecal mucus yet were able to cocolonize with the faster-growing flhDC mutants. The E. coli MG1655 envZ gene encodes a histidine kinase that is a member of the envZ-ompR two-component signal transduction system, which regulates outer membrane protein profiles. In the present investigation, the envZP41L gene was transferred from the intestinally selected E. coli MG1655 mutant to E. coli Nissle 1917, a human probiotic strain used to treat gastrointestinal infections. Both the E. coli MG1655 and E. coli Nissle 1917 strains containing envZP41L produced more phosphorylated OmpR than their parents. The E. coli Nissle 1917 strain containing envZP41L also became more resistant to bile salts and colicin V and grew 50% slower in vitro in mucus and 15% to 30% slower on several sugars present in mucus, yet it was a 10-fold better colonizer than E. coli Nissle 1917. However, E. coli Nissle 1917 envZP41L was not better at preventing colonization by enterohemorrhagic E. coli EDL933. The data can be explained according to our “restaurant” hypothesis for commensal E. coli strains, i.e., that they colonize the intestine as sessile members of mixed biofilms, obtaining the sugars they need for growth locally, but compete for sugars with invading E. coli pathogens planktonically. PMID:24478082

  7. Isolation and characterization of mutants with lesions affecting pellicle formation and erythrocyte agglutination by type 1 piliated Escherichia coli.

    PubMed Central

    Harris, S L; Elliott, D A; Blake, M C; Must, L M; Messenger, M; Orndorff, P E

    1990-01-01

    The product of the pilE (also called fimH) gene is a minor component of type 1 pili in Escherichia coli. Mutants that have insertions in the pilE gene are fully piliated but unable to bind to and agglutinate guinea pig erythrocytes, a characteristic of wild-type type 1 piliated E. coli. In this paper we describe the isolation of 48 mutants with point lesions that map to the pilE gene. Such mutants were isolated by using mutT mutagenesis and an enrichment procedure devised to favor the growth of individuals that could form a pellicle in static broth containing alpha-methylmannoside, an inhibitor of erythrocyte binding and pellicle formation. Results indicated that the enrichment favored mutants expressing pilE gene products that were defective in mediating erythrocyte binding. Characterization of 12 of the mutants in greater detail revealed that certain lesions affected pilus number and length. In addition, a mutant that was temperature sensitive for erythrocyte binding was isolated and used to provide evidence that pellicle formation relies on the intercellular interaction of pilE gene products. Our results suggest a molecular explanation for the old and paradoxical observations connecting pellicle formation and erythrocyte agglutination by type 1 piliated E. coli. Images PMID:1977736

  8. Phage-Encoded Colanic Acid-Degrading Enzyme Permits Lytic Phage Infection of a Capsule-Forming Resistant Mutant Escherichia coli Strain

    PubMed Central

    Kim, Min Soo; Kim, Young Deuk; Hong, Sung Sik; Park, Kwangseo; Ko, Kwan Soo

    2014-01-01

    In this study, we isolated a bacteriophage T7-resistant mutant strain of Escherichia coli (named S3) and then proceeded to characterize it. The mutant bacterial colonies appeared to be mucoid. Microarray analysis revealed that genes related to colanic acid production were upregulated in the mutant. Increases in colanic acid production by the mutant bacteria were observed when l-fucose was measured biochemically, and protective capsule formation was observed under an electron microscope. We found a point mutation in the lon gene promoter in S3, the mutant bacterium. Overproduction of colanic acid was observed in some phage-resistant mutant bacteria after infection with other bacteriophages, T4 and lambda. Colanic acid overproduction was also observed in clinical isolates of E. coli upon phage infection. The overproduction of colanic acid resulted in the inhibition of bacteriophage adsorption to the host. Biofilm formation initially decreased shortly after infection but eventually increased after 48 h of incubation due to the emergence of the mutant bacteria. Bacteriophage PBECO4 was shown to infect the colanic acid-overproducing mutant strains of E. coli. We confirmed that the gene product of open reading frame 547 (ORF547) of PBECO4 harbored colanic acid-degrading enzymatic (CAE) activity. Treatment of the T7-resistant bacteria with both T7 and PBECO4 or its purified enzyme (CAE) led to successful T7 infection. Biofilm formation decreased with the mixed infection, too. This procedure, using a phage cocktail different from those exploiting solely receptor differences, represents a novel strategy for overcoming phage resistance in mutant bacteria. PMID:25416767

  9. Modes of overinitiation, dnaA gene expression, and inhibition of cell division in a novel cold-sensitive hda mutant of Escherichia coli.

    PubMed

    Fujimitsu, Kazuyuki; Su'etsugu, Masayuki; Yamaguchi, Yoko; Mazda, Kensaku; Fu, Nisi; Kawakami, Hironori; Katayama, Tsutomu

    2008-08-01

    The chromosomal replication cycle is strictly coordinated with cell cycle progression in Escherichia coli. ATP-DnaA initiates replication, leading to loading of the DNA polymerase III holoenzyme. The DNA-loaded form of the beta clamp subunit of the polymerase binds the Hda protein, which promotes ATP-DnaA hydrolysis, yielding inactive ADP-DnaA. This regulation is required to repress overinitiation. In this study, we have isolated a novel cold-sensitive hda mutant, the hda-185 mutant. The hda-185 mutant caused overinitiation of chromosomal replication at 25 degrees C, which most likely led to blockage of replication fork progress. Consistently, the inhibition of colony formation at 25 degrees C was suppressed by disruption of the diaA gene, an initiation stimulator. Disruption of the seqA gene, an initiation inhibitor, showed synthetic lethality with hda-185 even at 42 degrees C. The cellular ATP-DnaA level was increased in an hda-185-dependent manner. The cellular concentrations of DnaA protein and dnaA mRNA were comparable at 25 degrees C to those in a wild-type hda strain. We also found that multiple copies of the ribonucleotide reductase genes (nrdAB or nrdEF) or dnaB gene repressed overinitiation. The cellular levels of dATP and dCTP were elevated in cells bearing multiple copies of nrdAB. The catalytic site within NrdA was required for multicopy suppression, suggesting the importance of an active form of NrdA or elevated levels of deoxyribonucleotides in inhibition of overinitiation in the hda-185 cells. Cell division in the hda-185 mutant was inhibited at 25 degrees C in a LexA regulon-independent manner, suggesting that overinitiation in the hda-185 mutant induced a unique division inhibition pathway.

  10. Furfural and hydroxymethylfurfural tolerance in Escherichia coli ΔacrR regulatory mutants.

    PubMed

    Luhe, Annette Lin; Lim, Chan Yuen; Gerken, Henri; Wu, Jinchuan; Zhao, Hua

    2015-01-01

    The presence of the highly toxic furfural and hydroxymethylfurfural (HMF) in the hydrolysate of lignocellulosic biomass prompted the investigation of the Escherichia coli ΔacrR regulatory mutant for higher tolerance to these compounds, to facilitate the production of biofuels and biochemicals, and further biocatalytic conversions. In comparison with the parental strain, the regulatory mutant with the upregulated efflux pump AcrAB-TolC produced moderately better growth and higher tolerance to concentrations of furfural and HMF between 1 and 2 g L(-1) . © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  11. Escherichia coli mutant with altered respiratory control of the frd operon.

    PubMed Central

    Iuchi, S; Kuritzkes, D R; Lin, E C

    1985-01-01

    In wild-type Escherichia coli, fumarate reductase encoded by the frd operon is inducible by its substrate in the absence of molecular oxygen and nitrate. Synthesis of this enzyme under permissive conditions requires the fnr+ gene product, which is believed to be a pleiotropic regulatory protein that activates transcription. A spontaneous mutant was isolated in which the expression of the frd operon no longer depended on the presence of fumarate or the fnr+ gene product. Aerobic repression of the operon was abolished, but nitrate repression remained intact. Transductional analysis showed that the mutation was closely linked to the frd locus. The mutant phenotype strongly suggests that repression by molecular oxygen and nitrate is mediated by different mechanisms. PMID:3882660

  12. Alteration in levels of unsaturated fatty acids in mutants of Escherichia coli defective in DNA replication.

    PubMed

    Suzuki, E; Kondo, T; Makise, M; Mima, S; Sakamoto, K; Tsuchiya, T; Mizushima, T

    1998-07-01

    We previously reported that mutations in the dnaA gene which encodes the initiator of chromosomal DNA replication in Escherichia coli caused an alteration in the levels of unsaturated fatty acids of phospholipids in membranes. In this study, we examined fatty acid compositions in other mutants which are defective in DNA replication. As in the case of temperature-sensitive dnaA mutants, temperature-sensitive dnaC and dnaE mutants, which have defects in initiation and elongation, respectively, of DNA replication showed a lower level of unsaturation of fatty acids (ratio of unsaturated to saturated fatty acids) compared with the wild-type strain, especially at high temperatures. On the other hand, temperature-sensitive mutants defective in cellular processes other than DNA replication, such as RNA synthesis and cell division, did not show a lower level of unsaturation of fatty acids compared with the wild-type strain. These results suggest that the inhibition of DNA replication causes a lower level of unsaturation of fatty acids in Escherichia coli cells.

  13. Conversion of commensal Escherichia coli K-12 to an invasive form via expression of a mutant histone-like protein.

    PubMed

    Koli, Preeti; Sudan, Sudhanshu; Fitzgerald, David; Adhya, Sankar; Kar, Sudeshna

    2011-01-01

    The HUα(E38K, V42L) mutant of the bacterial histone-like protein HU causes a major change in the transcription profile of the commensal organism Escherichia coli K-12 (Kar S, Edgar R, Adhya S, Proc. Natl. Acad. Sci. U. S. A. 102:16397-16402, 2005). Among the upregulated genes are several related to pathogenic interactions with mammalian cells, as evidenced by the expression of curli fibers, Ivy, and hemolysin E. When E. coli K-12/ HUα(E38K, V42L) was added to Int-407 cells, there was host cell invasion, phagosomal disruption, and intracellular replication. The invasive trait was also retained in a murine ileal loop model and intestinal explant assays. In addition to invasion, the internalized bacteria caused a novel subversion of host cell apoptosis through modification and regulation of the BH3-only proteins Bim(EL) and Puma. Changes in the transcription profile were attributed to positive supercoiling of DNA leading to the altered availability of relevant promoters. Using the E. coli K-12/HUα(E38K, V42L) variant as a model, we propose that traditional commensal E. coli can adopt an invasive lifestyle through reprogramming its cellular transcription, without gross genetic changes. Escherichia coli K-12 is well established as a benign laboratory strain and a human intestinal commensal. Recent evidences, however, indicate that the typical noninvasive nature of resident E. coli can be reversed under specific circumstances even in the absence of any major genomic flux. We previously engineered an E. coli strain with a mutant histone-like protein, HU, which exhibited significant changes in nucleoid organization and global transcription. Here we showed that the changes induced by the mutant HU have critical functional consequences: from a strict extracellular existence, the mutant E. coli adopts an almost obligate intracellular lifestyle. The internalized E. coli exhibits many of the prototypical characteristics of traditional intracellular bacteria, like phagosomal

  14. Slow Joining of Newly Replicated DNA Chains in DNA Polymerase I-Deficient Escherichia coli Mutants*

    PubMed Central

    Okazaki, Reiji; Arisawa, Mikio; Sugino, Akio

    1971-01-01

    In Escherichia coli mutants deficient in DNA polymerase I, newly replicated short DNA is joined at about 10% of the rate in the wild-type strains. It is postulated that DNA polymerase I normally functions in filling gaps between the nascent short segments synthesized by the replication complex. Possible implications of the finding are discussed in relation to other abnormal properties of these mutants. PMID:4943548

  15. UDP-N-Acetylmuramic Acid l-Alanine Ligase (MurC) Inhibition in a tolC Mutant Escherichia coli Strain Leads to Cell Death

    PubMed Central

    Humnabadkar, Vaishali; Prabhakar, K. R.; Narayan, Ashwini; Sharma, Sreevalli; Guptha, Supreeth; Manjrekar, Praveena; Chinnapattu, Murugan; Ramachandran, Vasanthi; Hameed, Shahul P.; Ravishankar, Sudha

    2014-01-01

    The Mur ligases play an essential role in the biosynthesis of bacterial peptidoglycan and hence are attractive antibacterial targets. A screen of the AstraZeneca compound library led to the identification of compound A, a pyrazolopyrimidine, as a potent inhibitor of Escherichia coli and Pseudomonas aeruginosa MurC. However, cellular activity against E. coli or P. aeruginosa was not observed. Compound A was active against efflux pump mutants of both strains. Experiments using an E. coli tolC mutant revealed accumulation of the MurC substrate and a decrease in the level of product upon treatment with compound A, indicating inhibition of MurC enzyme in these cells. Such a modulation was not observed in the E. coli wild-type cells. Further, overexpression of MurC in the E. coli tolC mutant led to an increase in the compound A MIC by ≥16-fold, establishing a correlation between MurC inhibition and cellular activity. In addition, estimation of the intracellular compound A level showed an accumulation of the compound over time in the tolC mutant strain. A significant compound A level was not detected in the wild-type E. coli strain even upon treatment with high concentrations of the compound. Therefore, the lack of MIC and absence of MurC inhibition in wild-type E. coli were possibly due to suboptimal compound concentration as a consequence of a high efflux level and/or poor permeativity of compound A. PMID:25114134

  16. Evaluation of hha and hha sepB mutant strains of Escherichia coli O157:H7 as bacterins for reducing E. coli O157:H7 shedding in cattle.

    PubMed

    Sharma, Vijay K; Dean-Nystrom, Evelyn A; Casey, Thomas A

    2011-07-12

    Escherichia coli O157:H7 colonizes cattle intestines by using the locus of enterocyte effacement (LEE)-encoded proteins. The induction of systemic immune response against LEE-encoded proteins, therefore, will prove effective in reducing E. coli O157:H7 colonization in cattle. The previous studies have demonstrated that a hha (encodes for a hemolysin expression modulating protein) deletion enhances expression of LEE-encoded proteins and a sepB (encodes an ATPase required for the secretion of LEE-encoded proteins) deletion results in intracellular accumulation of LEE proteins. In this study, we demonstrate the efficacy of the hha and hha sepB deletion mutants as bacterins for reducing fecal shedding of E. coli O157:H7 in experimentally inoculated weaned calves. The weaned calves were injected intramuscularly with the bacterins containing 10(9) heat-killed cells of the hha(+) wild-type or hha or hha sepB isogenic mutants, and boosted with the same doses 2- and 4-weeks later. The evaluation of the immune response two weeks after the last booster immunization revealed that the calves vaccinated with the hha mutant bacterin had higher antibody titers against LEE proteins compared to the titers for these antibodies in the calves vaccinated with the hha sepB mutant or hha(+) wild-type bacterins. Following oral inoculations with 10(10) CFU of the wild-type E. coli O157:H7, the greater numbers of calves in the group vaccinated with the hha or hha sepB mutant bacterins stopped shedding the inoculum strain within a few days after the inoculations compared to the group of calves vaccinated with the hha(+) wild-type bacterin or PBS sham vaccine. Thus, the use of bacterins prepared from the hha and hha sepB mutants for reducing colonization of E. coli O157:H7 in cattle could represent a potentially important pre-harvest strategy to enhance post-harvest safety of bovine food products, water and produce. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. In vivo evaluation of mutant selection window of cefquinome against Escherichia coli in piglet tissue-cage model.

    PubMed

    Zhang, Bingxu; Gu, Xiaoyan; Li, Yafei; Li, Xiaohong; Gu, Mengxiao; Zhang, Nan; Shen, Xiangguang; Ding, Huanzhong

    2014-12-16

    The resistance of cephalosporins is significantly serious in veterinary clinic. In order to inhibit the bacterial resistance production, the mutant selection window (MSW) hypothesis with Escherichia coli (E. coli) ATCC 25922 exposed to cefquinome in an animal tissue-cage model was investigated. Localized infection with E. coli was established in piglets, and the infected animals were administrated intramuscularly with various doses and intervals of cefquinome to provide antibiotic concentrations below the MIC99, between the MIC99 and the mutant prevention concentration (MPC), and above the MPC. E. coli lost susceptibility when drug concentrations fluctuated between the lower and upper boundaries of the window, which defined in vitro as the MIC99 (0.06 μg/mL) and the MPC (0.16 μg/mL) respectively. For PK/PD parameters, there were no mutant selection enrichment when T>MIC99 was ≤ 25% or T>MPC was ≥ 50% of administration interval. When T>MIC99 was > 25% and T>MPC was <50% of administration interval, resistance selection was observed. When AUC24 h/MIC99 and AUC24 h/MPC were considered, the mutant selection window extended from 32.84 h to 125.64 h and from 12.83 h to 49.09 h, respectively. These findings demonstrate that the MSW exists in vivo for time-dependent antimicrobial agents, and its boundaries fit well with those determined in vitro. Maintenance of antimicrobial concentrations above the MPC for > 50% of administration interval is a straightforward way to restrict the acquisition of resistance in this tissue cage model. This situation was achieved with daily intramuscular doses of 1 mg cefquinome/kg body weight.

  18. Mutant DnaAs of Escherichia coli that are refractory to negative control

    PubMed Central

    Chodavarapu, Sundari; Felczak, Magdalena M.; Simmons, Lyle A.; Murillo, Alec; Kaguni, Jon M.

    2013-01-01

    DnaA is the initiator of DNA replication in bacteria. A mutant DnaA named DnaAcos is unusual because it is refractory to negative regulation. We developed a genetic method to isolate other mutant DnaAs that circumvent regulation to extend our understanding of mechanisms that control replication initiation. Like DnaAcos, one mutant bearing a tyrosine substitution for histidine 202 (H202Y) withstands the regulation exerted by datA, hda and dnaN (β clamp), and both DnaAcos and H202Y resist inhibition by the Hda-β clamp complex in vitro. Other mutant DnaAs carrying G79D, E244K, V303M or E445K substitutions are either only partially sensitive or refractory to inhibition by the Hda-β clamp complex in vitro but are responsive to hda expression in vivo. All mutant DnaAs remain able to interact directly with Hda. Of interest, both DnaAcos and DnaAE244K bind more avidly to Hda. These mutants, by sequestrating Hda, may limit its availability to regulate other DnaA molecules, which remain active to induce extra rounds of DNA replication. Other evidence suggests that a mutant bearing a V292M substitution hyperinitiates by escaping the effect of an unknown regulatory factor. Together, our results provide new insight into the mechanisms that regulate replication initiation in Escherichia coli. PMID:23990329

  19. Mutant DnaAs of Escherichia coli that are refractory to negative control.

    PubMed

    Chodavarapu, Sundari; Felczak, Magdalena M; Simmons, Lyle A; Murillo, Alec; Kaguni, Jon M

    2013-12-01

    DnaA is the initiator of DNA replication in bacteria. A mutant DnaA named DnaAcos is unusual because it is refractory to negative regulation. We developed a genetic method to isolate other mutant DnaAs that circumvent regulation to extend our understanding of mechanisms that control replication initiation. Like DnaAcos, one mutant bearing a tyrosine substitution for histidine 202 (H202Y) withstands the regulation exerted by datA, hda and dnaN (β clamp), and both DnaAcos and H202Y resist inhibition by the Hda-β clamp complex in vitro. Other mutant DnaAs carrying G79D, E244K, V303M or E445K substitutions are either only partially sensitive or refractory to inhibition by the Hda-β clamp complex in vitro but are responsive to hda expression in vivo. All mutant DnaAs remain able to interact directly with Hda. Of interest, both DnaAcos and DnaAE244K bind more avidly to Hda. These mutants, by sequestrating Hda, may limit its availability to regulate other DnaA molecules, which remain active to induce extra rounds of DNA replication. Other evidence suggests that a mutant bearing a V292M substitution hyperinitiates by escaping the effect of an unknown regulatory factor. Together, our results provide new insight into the mechanisms that regulate replication initiation in Escherichia coli.

  20. An Erwinia amylovora yjeK mutant exhibits reduced virulence, increased chemical sensitivity and numerous environmentally dependent proteomic alterations.

    PubMed

    Klee, Sara M; Mostafa, Islam; Chen, Sixue; Dufresne, Craig; Lehman, Brian L; Sinn, Judith P; Peter, Kari A; McNellis, Timothy W

    2018-07-01

    The Gram-negative bacterium Erwinia amylovora causes fire blight, an economically important disease of apples and pears. Elongation factor P (EF-P) is a highly conserved protein that stimulates the formation of the first peptide bond of certain proteins and facilitates the translation of certain proteins, including those with polyproline motifs. YjeK and YjeA are two enzymes involved in the essential post-translational β-lysylation of EF-P at a conserved lysine residue, K34. EF-P, YjeA and YjeK have been shown to be essential for the full virulence of Escherichia coli, Salmonella species and Agrobacterium tumefaciens, with efp, yjeA and yjeK mutants having highly similar phenotypes. Here, we identified an E. amylovora yjeK::Tn5 transposon mutant with decreased virulence in apple fruit and trees. The yjeK::Tn5 mutant also showed pleiotropic phenotypes, including reduced growth in rich medium, lower extracellular polysaccharide production, reduced swimming motility and increased chemical sensitivity compared with the wild-type, whilst maintaining wild-type level growth in minimal medium. All yjeK::Tn5 mutant phenotypes were complemented in trans with a plasmid bearing a wild-type copy of yjeK. Comprehensive, quantitative proteomics analyses revealed numerous, environmentally dependent changes in the prevalence of a wide range of proteins, in higher abundance and lower abundance, in yjeK::Tn5 compared with the wild-type, and many of these alterations could be linked to yjeK::Tn5 mutant phenotypes. The environmental dependence of the yjeK::Tn5 mutant proteomic alterations suggests that YjeK could be required for aspects of the environmentally dependent regulation of protein translation. YjeK activity may be critical to overcoming stress, including the challenging host environment faced by invading pathogenic bacteria. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  1. UDP-N-acetylmuramic acid l-alanine ligase (MurC) inhibition in a tolC mutant Escherichia coli strain leads to cell death.

    PubMed

    Humnabadkar, Vaishali; Prabhakar, K R; Narayan, Ashwini; Sharma, Sreevalli; Guptha, Supreeth; Manjrekar, Praveena; Chinnapattu, Murugan; Ramachandran, Vasanthi; Hameed, Shahul P; Ravishankar, Sudha; Chatterji, Monalisa

    2014-10-01

    The Mur ligases play an essential role in the biosynthesis of bacterial peptidoglycan and hence are attractive antibacterial targets. A screen of the AstraZeneca compound library led to the identification of compound A, a pyrazolopyrimidine, as a potent inhibitor of Escherichia coli and Pseudomonas aeruginosa MurC. However, cellular activity against E. coli or P. aeruginosa was not observed. Compound A was active against efflux pump mutants of both strains. Experiments using an E. coli tolC mutant revealed accumulation of the MurC substrate and a decrease in the level of product upon treatment with compound A ,: indicating inhibition of MurC enzyme in these cells. Such a modulation was not observed in the E. coli wild-type cells. Further, overexpression of MurC in the E. coli tolC mutant led to an increase in the compound A MIC by ≥16-fold, establishing a correlation between MurC inhibition and cellular activity. In addition, estimation of the intracellular compound A level showed an accumulation of the compound over time in the tolC mutant strain. A significant compound A level was not detected in the wild-type E. coli strain even upon treatment with high concentrations of the compound. Therefore, the lack of MIC and absence of MurC inhibition in wild-type E. coli were possibly due to suboptimal compound concentration as a consequence of a high efflux level and/or poor permeativity of compound A. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  2. Testing the mutant selection window hypothesis with Escherichia coli exposed to levofloxacin in a rabbit tissue cage infection model.

    PubMed

    Ni, W; Song, X; Cui, J

    2014-03-01

    The purpose of this study was to test the mutant selection window (MSW) hypothesis with Escherichia coli exposed to levofloxacin in a rabbit model and to compare in vivo and in vitro exposure thresholds that restrict the selection of fluoroquinolone-resistant mutants. Local infection with E. coli was established in rabbits, and the infected animals were treated orally with various doses of levofloxacin once a day for five consecutive days. Changes in levofloxacin concentration and levofloxacin susceptibility were monitored at the site of infection. The MICs of E. coli increased when levofloxacin concentrations at the site of infection fluctuated between the lower and upper boundaries of the MSW, defined in vitro as the minimum inhibitory concentration (MIC99) and the mutant prevention concentration (MPC), respectively. The pharmacodynamic thresholds at which resistant mutants are not selected in vivo was estimated as AUC24/MPC > 20 h or AUC24/MIC > 60 h, where AUC24 is the area under the drug concentration time curve in a 24-h interval. Our finding demonstrated that the MSW existed in vivo. The AUC24/MPC ratio that prevented resistant mutants from being selected estimated in vivo is consistent with that observed in vitro, indicating it might be a reliable index for guiding the optimization of antimicrobial treatment regimens for suppression of the selection of antimicrobial resistance.

  3. Mutants of the lactose carrier of Escherichia coli which show altered sugar recognition plus a severe defect in sugar accumulation.

    PubMed

    Varela, M F; Wilson, T H; Rodon-Rivera, V; Shepherd, S; Dehne, T A; Rector, A C

    2000-04-01

    Lactose and melibiose are actively accumulated by the wild-type Escherichia coli lactose carrier, which is an integral membrane protein energized by the proton motive force. Mutants of the E. coli lactose carrier were isolated by their ability to grow on minimal plates with succinate plus IPTG in the presence of the toxic lactose analog beta-thio-o-nitrophenylgalactoside (TONPG). TONPG-resistant mutants were streaked on melibiose MacConkey indicator plates, and red clones were picked. These melibiose positive mutants were then streaked on lactose MacConkey plates, and white clones were picked. Transport assays indicated that the mutants had altered sugar recognition and a defect in sugar accumulation. The mutants had a poor apparent K(m) for both lactose and melibiose in transport. One mutant had almost no ability to take up lactose, but melibiose downhill transport was 58% (V(max)) of normal. All of the mutants accumulated methyl-alpha-d-galactopyranoside (TMG) to only 8% or less of normal, and two failed to accumulate. Immunoblot analysis of the mutant lactose carrier proteins indicated that loss of sugar transport activity was not due to loss of expression in the membrane. Nucleotide sequencing of the lacY gene from the mutants revealed changes in the following amino acids of the lactose carrier: M23I, W151L, G257D, A295D and G377V. Two of the mutants (G257D and G377V) are novel in that they represent the first amino acids in periplasmic loops to be implicated with changes in sugar recognition. We conclude that the amino acids M23, W151, G257, A295 and G377 of the E. coli lactose carrier play either a direct or an indirect role in sugar recognition and accumulation.

  4. Polymorphic Variation in Susceptibility and Metabolism of Triclosan-Resistant Mutants of Escherichia coli and Klebsiella pneumoniae Clinical Strains Obtained after Exposure to Biocides and Antibiotics

    PubMed Central

    Curiao, Tânia; Marchi, Emmanuela; Viti, Carlo; Oggioni, Marco R.; Baquero, Fernando; Martinez, José Luis

    2015-01-01

    Exposure to biocides may result in cross-resistance to other antimicrobials. Changes in biocide and antibiotic susceptibilities, metabolism, and fitness costs were studied here in biocide-selected Escherichia coli and Klebsiella pneumoniae mutants. E. coli and K. pneumoniae mutants with various degrees of triclosan susceptibility were obtained after exposure to triclosan (TRI), benzalkonium chloride (BKC), chlorhexidine (CHX) or sodium hypochlorite (SHC), and ampicillin or ciprofloxacin. Alterations in antimicrobial susceptibility and metabolism in mutants were tested using Phenotype MicroArrays. The expression of AcrAB pump and global regulators (SoxR, MarA, and RamA) was measured by quantitative reverse transcription-PCR (qRT-PCR), and the central part of the fabI gene was sequenced. The fitness costs of resistance were assessed by a comparison of relative growth rates. Triclosan-resistant (TRIr) and triclosan-hypersusceptible (TRIhs) mutants of E. coli and K. pneumoniae were obtained after selection with biocides and/or antibiotics. E. coli TRIr mutants, including those with mutations in the fabI gene or in the expression of acrB, acrF, and marA, exhibited changes in susceptibility to TRI, CHX, and antibiotics. TRIr mutants for which the TRI MIC was high presented improved metabolism of carboxylic acids, amino acids, and carbohydrates. In TRIr mutants, resistance to one antimicrobial provoked hypersusceptibility to another one(s). TRIr mutants had fitness costs, particularly marA-overexpressing (E. coli) or ramA-overexpressing (K. pneumoniae) mutants. TRI, BKC, and CIP exposure frequently yielded TRIr mutants exhibiting alterations in AraC-like global regulators (MarA, SoxR, and RamA), AcrAB-TolC, and/or FabI, and influencing antimicrobial susceptibility, fitness, and metabolism. These various phenotypes suggest a trade-off of different selective processes shaping the evolution toward antibiotic/biocide resistance and influencing other adaptive traits. PMID

  5. Interaction of metronidazole with DNA repair mutants of Escherichia coli.

    PubMed

    Yeung, T C; Beaulieu, B B; McLafferty, M A; Goldman, P

    1984-01-01

    It has been proposed that one of metronidazole's partially reduced intermediates interacts either with DNA to exert a bactericidal effect or with water to form acetamide. To test this hypothesis we have examined the effect of metronidazole on several mutants of Escherichia coli that are defective in DNA repair. UV-susceptible RecA- and UvrB- point mutants have an increased susceptibility to metronidazole as manifested by both a decreased minimal inhibitory concentration and a greater bactericidal response to metronidazole in resting cultures. By these criteria, however, we find that UvrB- deletion mutants, which lack the ability to reduce nitrate and chlorate, are no more susceptible to metronidazole than is the wild type. We find, however, that these deletion mutants also lack the ability to reduce metronidazole and thus possibly to form its reactive species. When metronidazole's bactericidal effect is expressed in terms of the concurrent accumulation of acetamide derived from metronidazole, then all RecA- and UvrB- mutants are killed more efficiently than their wild types. The data are consistent, therefore, with metronidazole's lethal effect being mediated by a partially reduced intermediate on the metabolic pathway between metronidazole and acetamide. Defects in other aspects of the DNA repair system do not confer this increased susceptibility to the proposed intermediate. A Tag- mutant, for example, which is defective in 3-methyl-adenine-DNA glycosylase, does not have this increased susceptibility to the presumed precursor of acetamide. Thus, these results provide further support for the hypothesis that the bactericidal effect of metronidazole is mediated by a partially reduced intermediate in the metabolic conversion of metronidazole to acetamide and suggest that this intermediate interacts with DNA to produce a lesion similar to that caused by UV light.

  6. Interaction of metronidazole with DNA repair mutants of Escherichia coli.

    PubMed Central

    Yeung, T C; Beaulieu, B B; McLafferty, M A; Goldman, P

    1984-01-01

    It has been proposed that one of metronidazole's partially reduced intermediates interacts either with DNA to exert a bactericidal effect or with water to form acetamide. To test this hypothesis we have examined the effect of metronidazole on several mutants of Escherichia coli that are defective in DNA repair. UV-susceptible RecA- and UvrB- point mutants have an increased susceptibility to metronidazole as manifested by both a decreased minimal inhibitory concentration and a greater bactericidal response to metronidazole in resting cultures. By these criteria, however, we find that UvrB- deletion mutants, which lack the ability to reduce nitrate and chlorate, are no more susceptible to metronidazole than is the wild type. We find, however, that these deletion mutants also lack the ability to reduce metronidazole and thus possibly to form its reactive species. When metronidazole's bactericidal effect is expressed in terms of the concurrent accumulation of acetamide derived from metronidazole, then all RecA- and UvrB- mutants are killed more efficiently than their wild types. The data are consistent, therefore, with metronidazole's lethal effect being mediated by a partially reduced intermediate on the metabolic pathway between metronidazole and acetamide. Defects in other aspects of the DNA repair system do not confer this increased susceptibility to the proposed intermediate. A Tag- mutant, for example, which is defective in 3-methyl-adenine-DNA glycosylase, does not have this increased susceptibility to the presumed precursor of acetamide. Thus, these results provide further support for the hypothesis that the bactericidal effect of metronidazole is mediated by a partially reduced intermediate in the metabolic conversion of metronidazole to acetamide and suggest that this intermediate interacts with DNA to produce a lesion similar to that caused by UV light. PMID:6367636

  7. Comparative production of 6-aminopenicillanic acid by different E. coli strains and their acridine orange (AO) induced mutants.

    PubMed

    Arshad, Rubina; Farooq, Shafqat; Ali, Syed Shahid

    2007-11-01

    The present study was conducted to see the difference in production of 6-APA I) between wild strains of E. coli collected from local environment and their acridine orange (AO) induced mutants and ii) between mutants and E. coli strains (ATCC 11105 and ATCC 9637) of American Type Culture Collection (ATCC) used commercially for enzymatic production of 6-APA. The optimum conditions for bioconversion were standardized and 6-APA was obtained in crystalline form. Relative PGA activity of local and foreign E. coli strains varied significantly with the highest being 12.7 in mutant strain (BDCS-N-M36) and the lowest 4.3 mg 6-APA h(-1) mg(-1) wet cells in foreign strain (ATCC 11105). The enzyme activity exhibited by mutant strain (BDCS-N-M36) was also two folds higher compared to that in wild parent BDCS-N-W50 (6.3 mg 6-APA h(-1) mg(-1) wet cells). The overall production of 6-APA and conversion ratios ranged between 0.25-0.41 g of 6-APA per 0.5 g of penicillin G and 51-83%, respectively. Maximum conversion ratio (83%) was achieved by using crude cells of mutant strain (BDCS-N-M36) which is the highest value ever reported by crude cells on a shake-flask scale whereas reported 6-APA production by immobilized cells is 60-90% in batch and continuous systems. Results are being discussed with reference to importance of local bacterial strains and their significance for industrially important enzymes.

  8. Novel Escherichia coli umuD′ Mutants: Structure-Function Insights into SOS Mutagenesis

    PubMed Central

    McLenigan, Mary; Peat, Thomas S.; Frank, Ekaterina G.; McDonald, John P.; Gonzalez, Martín; Levine, Arthur S.; Hendrickson, Wayne A.; Woodgate, Roger

    1998-01-01

    Although it has been 10 years since the discovery that the Escherichia coli UmuD protein undergoes a RecA-mediated cleavage reaction to generate mutagenically active UmuD′, the function of UmuD′ has yet to be determined. In an attempt to elucidate the role of UmuD′ in SOS mutagenesis, we have utilized a colorimetric papillation assay to screen for mutants of a hydroxylamine-treated, low-copy-number umuD′ plasmid that are unable to promote SOS-dependent spontaneous mutagenesis. Using such an approach, we have identified 14 independent umuD′ mutants. Analysis of these mutants revealed that two resulted from promoter changes which reduced the expression of wild-type UmuD′, three were nonsense mutations that resulted in a truncated UmuD′ protein, and the remaining nine were missense alterations. In addition to the hydroxylamine-generated mutants, we have subcloned the mutations found in three chromosomal umuD1, umuD44, and umuD77 alleles into umuD′. All 17 umuD′ mutants resulted in lower levels of SOS-dependent spontaneous mutagenesis but varied in the extent to which they promoted methyl methanesulfonate-induced mutagenesis. We have attempted to correlate these phenotypes with the potential effect of each mutation on the recently described structure of UmuD′. PMID:9721309

  9. Polymorphic variation in susceptibility and metabolism of triclosan-resistant mutants of Escherichia coli and Klebsiella pneumoniae clinical strains obtained after exposure to biocides and antibiotics.

    PubMed

    Curiao, Tânia; Marchi, Emmanuela; Viti, Carlo; Oggioni, Marco R; Baquero, Fernando; Martinez, José Luis; Coque, Teresa M

    2015-01-01

    Exposure to biocides may result in cross-resistance to other antimicrobials. Changes in biocide and antibiotic susceptibilities, metabolism, and fitness costs were studied here in biocide-selected Escherichia coli and Klebsiella pneumoniae mutants. E. coli and K. pneumoniae mutants with various degrees of triclosan susceptibility were obtained after exposure to triclosan (TRI), benzalkonium chloride (BKC), chlorhexidine (CHX) or sodium hypochlorite (SHC), and ampicillin or ciprofloxacin. Alterations in antimicrobial susceptibility and metabolism in mutants were tested using Phenotype MicroArrays. The expression of AcrAB pump and global regulators (SoxR, MarA, and RamA) was measured by quantitative reverse transcription-PCR (qRT-PCR), and the central part of the fabI gene was sequenced. The fitness costs of resistance were assessed by a comparison of relative growth rates. Triclosan-resistant (TRI(r)) and triclosan-hypersusceptible (TRI(hs)) mutants of E. coli and K. pneumoniae were obtained after selection with biocides and/or antibiotics. E. coli TRI(r) mutants, including those with mutations in the fabI gene or in the expression of acrB, acrF, and marA, exhibited changes in susceptibility to TRI, CHX, and antibiotics. TRI(r) mutants for which the TRI MIC was high presented improved metabolism of carboxylic acids, amino acids, and carbohydrates. In TRI(r) mutants, resistance to one antimicrobial provoked hypersusceptibility to another one(s). TRI(r) mutants had fitness costs, particularly marA-overexpressing (E. coli) or ramA-overexpressing (K. pneumoniae) mutants. TRI, BKC, and CIP exposure frequently yielded TRI(r) mutants exhibiting alterations in AraC-like global regulators (MarA, SoxR, and RamA), AcrAB-TolC, and/or FabI, and influencing antimicrobial susceptibility, fitness, and metabolism. These various phenotypes suggest a trade-off of different selective processes shaping the evolution toward antibiotic/biocide resistance and influencing other adaptive

  10. Genetic manipulation of membrane phospholipid composition in Escherichia coli: pgsA mutants defective in phosphatidylglycerol synthesis.

    PubMed Central

    Miyazaki, C; Kuroda, M; Ohta, A; Shibuya, I

    1985-01-01

    Unique mutants of Escherichia coli K-12, defective in phosphatidylglycerol synthesis, have been isolated from a temperature-sensitive strain incubated at its nonpermissive temperature. The parent strain had excess phosphatidylglycerol by harboring both the pss-1 allele [coding for a temperature-sensitive phosphatidylserine synthase (EC 2.7.8.8)] and the cls- allele (responsible for a defective cardiolipin synthase). The newly acquired mutations caused better growth at higher temperatures. One of the mutations (pgsA3) has been identified in the structural gene for phosphatidylglycerophosphate synthase [glycerophosphate phosphatidyltransferase (EC 2.7.8.5)]. Phospholipid compositions of these mutants were remarkable; phosphatidylethanolamine was the sole major lipid. In media with low osmotic pressures, these cells grew more slowly than the wild-type cells. They grew normally without recovering from the phospholipid abnormality in media appropriately supplemented with sucrose and MgCl2. Formation of cardiolipin and phosphoglycerol derivatives of membrane-derived oligosaccharides was reduced in a pgsA3 mutant. E. coli strains having the pgsA3, pss-1, and cls- mutations, either individually or in combination, constitute an empirical system in which the molar ratio of three major membrane phospholipids can be variously altered. Images PMID:2999767

  11. Improvement of constraint-based flux estimation during L-phenylalanine production with Escherichia coli using targeted knock-out mutants.

    PubMed

    Weiner, Michael; Tröndle, Julia; Albermann, Christoph; Sprenger, Georg A; Weuster-Botz, Dirk

    2014-07-01

    Fed-batch production of the aromatic amino acid L-phenylalanine was studied with recombinant Escherichia coli strains on a 15 L-scale using glycerol as carbon source. Flux Variability Analysis (FVA) was applied for intracellular flux estimation to obtain an insight into intracellular flux distribution during L-phenylalanine production. Variability analysis revealed great flux uncertainties in the central carbon metabolism, especially concerning malate consumption. Due to these results two recombinant strains were genetically engineered differing in the ability of malate degradation and anaplerotic reactions (E. coli FUS4.11 ΔmaeA pF81kan and E. coli FUS4.11 ΔmaeA ΔmaeB pF81kan). Applying these malic enzyme knock-out mutants in the standardized L-phenylalanine production process resulted in almost identical process performances (e.g., L-phenylalanine concentration, production rate and byproduct formation). This clearly highlighted great redundancies in central metabolism in E. coli. Uncertainties of intracellular flux estimations by constraint-based analyses during fed-batch production of L-phenylalanine were drastically reduced by application of the malic enzyme knock-out mutants. © 2014 Wiley Periodicals, Inc.

  12. Structural basis for the binding of didemnins to human elongation factor eEF1A and rationale for the potent antitumor activity of these marine natural products.

    PubMed

    Marco, Esther; Martín-Santamaría, Sonsoles; Cuevas, Carmen; Gago, Federico

    2004-08-26

    Didemnins and tamandarins are closely related marine natural products with potent inhibitory effects on protein synthesis and cell viability. On the basis of available biochemical and structural evidence and results from molecular dynamics simulations, a model is proposed that accounts for the strong and selective binding of these compounds to human elongation factor eEF1A in the presence of GTP. We suggest that the p-methoxyphenyl ring of these cyclic depsipeptides is inserted into the same pocket in eEF1A that normally lodges either the 3' terminal adenine of aminoacylated tRNA, as inferred from two prokaryotic EF-Tu.GTP.tRNA complexes, or the aromatic side chain of Phe/Tyr-163 from the nucleotide exchange factor eEF1Balpha, as observed in several X-ray crystal structures of a yeast eEF1A:eEF1Balpha complex. This pocket, which has a strong hydrophobic character, is formed by two protruding loops on the surface of eEF1A domain 2. Further stabilization of the bound depsipeptide is brought about by additional crucial interactions involving eEF1A domain 1 in such a way that the molecule fits snugly at the interface between these two domains. In the GDP-bound form of eEF1A, this binding site exists only as two separate halves, which accounts for the much greater affinity of didemnins for the GTP-bound form of this elongation factor. This binding mode is entirely different from those seen in the complexes of the homologous prokaryotic EF-Tu with kirromycin-type antibiotics or the cyclic thiazolyl peptide antibiotic GE2270A. Interestingly, the set of interactions used by didemnins to bind to eEF1A is also distinct from that used by eEF1Balpha or eEF1Bbeta, thus establishing a competition for binding to a common site that goes beyond simple molecular mimicry. The model presented here is consistent with both available biochemical evidence and known structure-activity relationships for these two classes of natural compounds and synthetic analogues and provides fertile

  13. Genetic analysis of the Rhizobium meliloti bacA gene: functional interchangeability with the Escherichia coli sbmA gene and phenotypes of mutants.

    PubMed Central

    Ichige, A; Walker, G C

    1997-01-01

    The Rhizobium meliloti bacA gene encodes a function that is essential for bacterial differentiation into bacteroids within plant cells in the symbiosis between R. meliloti and alfalfa. An Escherichia coli homolog of BacA, SbmA, is implicated in the uptake of microcin B17, microcin J25 (formerly microcin 25), and bleomycin. When expressed in E. coli with the lacZ promoter, the R. meliloti bacA gene was found to suppress all the known defects of E. coli sbmA mutants, namely, increased resistance to microcin B17, microcin J25, and bleomycin, demonstrating the functional similarity between the two proteins. The R. meliloti bacA386::Tn(pho)A mutant, as well as a newly constructed bacA deletion mutant, was found to show increased resistance to bleomycin. However, it also showed increased resistance to certain aminoglycosides and increased sensitivity to ethanol and detergents, suggesting that the loss of bacA function causes some defect in membrane integrity. The E. coli sbmA gene suppressed all these bacA mutant phenotypes as well as the Fix- phenotype when placed under control of the bacA promoter. Taken together, these results strongly suggest that the BacA and SbmA proteins are functionally similar and thus provide support for our previous hypothesis that BacA may be required for uptake of some compound that plays an important role in bacteroid development. However, the additional phenotypes of bacA mutants identified in this study suggest the alternative possibility that BacA may be needed for membrane integrity, which is likely to be critically important during the early stages of bacterial differentiation within plant cells. PMID:8982000

  14. RESISTANCE AND CROSS-RESISTANCE OF ESCHERICHIA COLI S MUTANTS TO THE RADIOMIMETIC AGENT PROFLAVINE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woody-Karrer, P.; Greenberg, J.

    1964-03-01

    All 50 of the first-step mutants of Escherichia coli S selected for resistance to proflavine were resistant to uv light and each of five different radiomimetic chemicals. The mutants were classified into eight types on the basis of their relative resistance to six different radiomimetic drugs and on the basis of the shape of their uv survival curves. Three of these types are identical to types previously isolated with other radiomimetic drugs; five of the types are new. A high proportion of the clones surviving proflavine treatment were phenotypically but not genetically resistant, and no strains were isolated which weremore » resistant to proflavine but were not resistant to radiation. (auth)« less

  15. SeqTU: A web server for identification of bacterial transcription units

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xin; Chou, Wen -Chi; Ma, Qin

    A transcription unit (TU) consists of K ≥ 1 consecutive genes on the same strand of a bacterial genome that are transcribed into a single mRNA molecule under certain conditions. Their identification is an essential step in elucidation of transcriptional regulatory networks. We have recently developed a machine-learning method to accurately identify TUs from RNA-seq data, based on two features of the assembled RNA reads: the continuity and stability of RNA-seq coverage across a genomic region. While good performance was achieved by the method on Escherichia coli and Clostridium thermocellum, substantial work is needed to make the program generally applicablemore » to all bacteria, knowing that the program requires organism specific information. A web server, named SeqTU, was developed to automatically identify TUs with given RNA-seq data of any bacterium using a machine-learning approach. The server consists of a number of utility tools, in addition to TU identification, such as data preparation, data quality check and RNA-read mapping. SeqTU provides a user-friendly interface and automated prediction of TUs from given RNA-seq data. Furthermore, the predicted TUs are displayed intuitively using HTML format along with a graphic visualization of the prediction.« less

  16. SeqTU: A web server for identification of bacterial transcription units

    DOE PAGES

    Chen, Xin; Chou, Wen -Chi; Ma, Qin; ...

    2017-03-07

    A transcription unit (TU) consists of K ≥ 1 consecutive genes on the same strand of a bacterial genome that are transcribed into a single mRNA molecule under certain conditions. Their identification is an essential step in elucidation of transcriptional regulatory networks. We have recently developed a machine-learning method to accurately identify TUs from RNA-seq data, based on two features of the assembled RNA reads: the continuity and stability of RNA-seq coverage across a genomic region. While good performance was achieved by the method on Escherichia coli and Clostridium thermocellum, substantial work is needed to make the program generally applicablemore » to all bacteria, knowing that the program requires organism specific information. A web server, named SeqTU, was developed to automatically identify TUs with given RNA-seq data of any bacterium using a machine-learning approach. The server consists of a number of utility tools, in addition to TU identification, such as data preparation, data quality check and RNA-read mapping. SeqTU provides a user-friendly interface and automated prediction of TUs from given RNA-seq data. Furthermore, the predicted TUs are displayed intuitively using HTML format along with a graphic visualization of the prediction.« less

  17. Molecular insight into γ-γ tubulin lateral interactions within the γ-tubulin ring complex (γ-TuRC)

    NASA Astrophysics Data System (ADS)

    Suri, Charu; Hendrickson, Triscia W.; Joshi, Harish C.; Naik, Pradeep Kumar

    2014-09-01

    γ-tubulin is essential for the nucleation and organization of mitotic microtubules in dividing cells. It is localized at the microtubule organizing centers and mitotic spindle fibres. The most well accepted hypothesis for the initiation of microtubule polymerization is that α/β-tubulin dimers add onto a γ-tubulin ring complex (γTuRC), in which adjacent γ-tubulin subunits bind to the underlying non-tubulin components of the γTuRC. This template thus determines the resulting microtubule lattice. In this study we use molecular modelling and molecular dynamics simulations, combined with computational MM-PBSA/MM-GBSA methods, to determine the extent of the lateral atomic interaction between two adjacent γ-tubulins within the γTuRC. To do this we simulated a γ-γ homodimer for 10 ns and calculated the ensemble average of binding free energies of -107.76 kcal/mol by the MM-PBSA method and of -87.12 kcal/mol by the MM-GBSA method. These highly favourable binding free energy values imply robust lateral interactions between adjacent γ-tubulin subunits in addition to their end-interactions longitudinally with other proteins of γTuRC. Although the functional reconstitution of γ-TuRC subunits and their stepwise in vitro assembly from purified components is not yet feasible, we nevertheless wanted to recognize hotspot amino acids responsible for key γ-γ interactions. Our free energy decomposition data from converting a compendium of amino acid residues identified an array of hotspot amino acids. A subset of such mutants can be expressed in vivo in living yeast. Because γTuRC is important for the growth of yeast, we could test whether this subset of the hotspot mutations support growth of yeast. Consistent with our model, γ-tubulin mutants that fall into our identified hotspot do not support yeast growth.

  18. Partial complementation of the UV sensitivity of E. coli and yeast excision repair mutants by the cloned denV gene of bacteriophage T4.

    PubMed

    Chenevert, J M; Naumovski, L; Schultz, R A; Friedberg, E C

    1986-04-01

    The denV gene of bacteriophage T4 was reconstituted from two overlapping DNA fragments cloned in M13 vectors. The coding region of the intact gene was tailored into a series of plasmid vectors containing different promoters suitable for expression of the gene in E. coli and in yeast. Induction of the TAC promoter with IPTG resulted in overexpression of the gene, which was lethal to E. coli. Expression of the TACdenV gene in the absence of IPTG, or the use of the yeast GAL1 or ADH promoters resulted in partial complementation of the UV sensitivity of uvrA, uvrB, uvrC and recA mutants of E. coli and rad1, rad2, rad3, rad4 and rad10 mutants of S. cerevisiae. The extent of denV-mediated reactivation of excision-defective mutants was approximately equal to that of photoreactivation of such strains. Excision proficient E. coli cells transformed with a plasmid containing the denV gene were slightly more resistant to ultraviolet (UV) radiation than control cells without the denV gene. On the other hand, excision proficient yeast cells were slightly more sensitive to killing by UV radiation following transformation with a plasmid containing the denV gene. This effect was more pronounced in yeast mutants of the RAD52 epistasis group.

  19. Characterization of Escherichia coli men Mutants Defective in Conversion of o-Succinylbenzoate to 1,4-Dihydroxy-2-Naphthoate

    PubMed Central

    Shaw, Duncan J.; Guest, John R.; Meganathan, Rangaswamy; Bentley, Ronald

    1982-01-01

    Four independent menaquinone (vitamin K2)-deficient mutants of Escherichia coli, blocked in the conversion of o-succinylbenzoate (OSB) to 1,4-dihydroxy-2-naphthoate (DHNA), were found to represent two distinct classes. Enzymatic complementation was observed when a cell-free extract of one mutant was mixed with extracts of any of the remaining three mutants. The missing enzymes in the two classes were identified by in vitro complementation with preparations of OSB-coenzyme A (CoA) synthetase or DHNA synthase isolated from Mycobacterium phlei. Mutants lacking DHNA synthase (and therefore complementing with M. phlei DHNA synthase) were designated menB, and the mutant lacking OSB-CoA synthetase (and therefore complementing with M. phlei OSB-CoA synthetase) was designated menE. The menB mutants produced only the spirodilactone form of OSB when extracts were incubated with [2,3-14C2]OSB, ATP, and CoA; the OSB was unchanged on incubation with an extract from the menE mutant under these conditions. Experiments with strains lysogenized by a λ men transducing phage (λG68) and transduction studies with phage P1 indicated that the menB and menE genes form part of a cluster of four genes, controlling the early steps in menaquinone biosynthesis, located at 48.5 min in the E. coli linkage map. Evidence was obtained for the clockwise gene order gyrA....menC- 0000100000 0000110000 0011111000 0000111000 0011111000 0001110000 0000110101 0001111111 0001100000 0000100000 0001101100 0011111000 0011000000 0011000000 0111000111 0111101110 -B-D, where the asterisk denotes the uncertain position of menE relative to menC and menB. The transducing phage (λG68) contained functional menB, menC, and menE genes, but only part of the menD gene, and it was designated λ menCB(D). PMID:6754698

  20. Recombinant levels of Escherichia coli K-12 mutants deficient in various replication, recombination, or repair genes.

    PubMed Central

    Zieg, J; Maples, V F; Kushner, S R

    1978-01-01

    Escherichia coli strains containing mutations in lexA, rep, uvrA, uvrD, uvrE, lig, polA, dam, or xthA were constructed and tested for conjugation and transduction proficiencies and ability to form Lac+ recombinants in an assay system utilizing a nontandem duplication of two partially deleted lactose operons (lacMS286phi80dIIlacBK1). lexA and rep mutants were as deficient (20% of wild type) as recB and recC strains in their ability to produce Lac+ progeny. All the other strains exhibited increased frequencies of Lac+ recombinant formation, compared with wild type, ranging from 2- to 13-fold. Some strains showed markedly increased conjugation proficiency (dam uvrD) compared to wild type, while others appeared deficient (polA107). Some differences in transduction proficiency were also observed. Analysis of the Lac+ recombinants formed by the various mutants indicated that they were identical to the recombinants formed by a wild-type strain. The results indicate that genetic recombination in E. coli is a highly regulated process involving multiple gene products. PMID:350859

  1. Alteration in the contents of unsaturated fatty acids in dnaA mutants of Escherichia coli.

    PubMed

    Suzuki, E; Kondo, T; Makise, M; Mima, S; Sakamoto, K; Tsuchiya, T; Mizushima, T

    1998-04-01

    DnaA protein, the initiator of chromosomal DNA replication in Escherichia coli, has a high affinity for acidic phospholipids containing unsaturated fatty acids. We have examined here the fatty acid composition of phospholipids in dnaA mutants. A temperature-sensitive dnaA46 mutant showed a lower level of unsaturation of fatty acids (ratio of unsaturated to saturated fatty acids) at 42 degrees C (non-permissive temperature) and at 37 degrees C (semi-permissive temperature), but not at 28 degrees C (permissive temperature), compared with the wild-type strain. Plasmid complementation analysis revealed that the dnaA46 mutation is responsible for the phenotype. Other temperature-sensitive dnaA mutants showed similar results. On the other hand, a cold-sensitive dnaAcos mutant, in which over-initiation of DNA replication occurs at low temperature (28 degrees C), showed a higher level of unsaturation of fatty acids at 28 degrees C. Based on these observations, we discuss the role of phospholipids in the regulation of the activity of DnaA protein.

  2. Genome-wide haploinsufficiency screen reveals a novel role for γ-TuSC in spindle organization and genome stability

    PubMed Central

    Choy, John S.; O'Toole, Eileen; Schuster, Breanna M.; Crisp, Matthew J.; Karpova, Tatiana S.; McNally, James G.; Winey, Mark; Gardner, Melissa K.; Basrai, Munira A.

    2013-01-01

    How subunit dosage contributes to the assembly and function of multimeric complexes is an important question with implications in understanding biochemical, evolutionary, and disease mechanisms. Toward identifying pathways that are susceptible to decreased gene dosage, we performed a genome-wide screen for haploinsufficient (HI) genes that guard against genome instability in Saccharomyces cerevisiae. This led to the identification of all three genes (SPC97, SPC98, and TUB4) encoding the evolutionarily conserved γ-tubulin small complex (γ-TuSC), which nucleates microtubule assembly. We found that hemizygous γ-TuSC mutants exhibit higher rates of chromosome loss and increases in anaphase spindle length and elongation velocities. Fluorescence microscopy, fluorescence recovery after photobleaching, electron tomography, and model convolution simulation of spc98/+ mutants revealed improper regulation of interpolar (iMT) and kinetochore (kMT) microtubules in anaphase. The underlying cause is likely due to reduced levels of Tub4, as overexpression of TUB4 suppressed the spindle and chromosome segregation defects in spc98/+ mutants. We propose that γ-TuSC is crucial for balanced assembly between iMTs and kMTs for spindle organization and accurate chromosome segregation. Taken together, the results show how gene dosage studies provide critical insights into the assembly and function of multisubunit complexes that may not be revealed by using traditional studies with haploid gene deletion or conditional alleles. PMID:23825022

  3. Genome-wide haploinsufficiency screen reveals a novel role for γ-TuSC in spindle organization and genome stability.

    PubMed

    Choy, John S; O'Toole, Eileen; Schuster, Breanna M; Crisp, Matthew J; Karpova, Tatiana S; McNally, James G; Winey, Mark; Gardner, Melissa K; Basrai, Munira A

    2013-09-01

    How subunit dosage contributes to the assembly and function of multimeric complexes is an important question with implications in understanding biochemical, evolutionary, and disease mechanisms. Toward identifying pathways that are susceptible to decreased gene dosage, we performed a genome-wide screen for haploinsufficient (HI) genes that guard against genome instability in Saccharomyces cerevisiae. This led to the identification of all three genes (SPC97, SPC98, and TUB4) encoding the evolutionarily conserved γ-tubulin small complex (γ-TuSC), which nucleates microtubule assembly. We found that hemizygous γ-TuSC mutants exhibit higher rates of chromosome loss and increases in anaphase spindle length and elongation velocities. Fluorescence microscopy, fluorescence recovery after photobleaching, electron tomography, and model convolution simulation of spc98/+ mutants revealed improper regulation of interpolar (iMT) and kinetochore (kMT) microtubules in anaphase. The underlying cause is likely due to reduced levels of Tub4, as overexpression of TUB4 suppressed the spindle and chromosome segregation defects in spc98/+ mutants. We propose that γ-TuSC is crucial for balanced assembly between iMTs and kMTs for spindle organization and accurate chromosome segregation. Taken together, the results show how gene dosage studies provide critical insights into the assembly and function of multisubunit complexes that may not be revealed by using traditional studies with haploid gene deletion or conditional alleles.

  4. [Beta-lactamase synthesis and excretion in a non-leaky wild strain and a leaky mutant of Escherichia coli K-12].

    PubMed

    Fognini-Lefebvre, N; Portalier, R

    1983-01-17

    After transformation of Escherichia coli strains with plasmid pBR 322 and growth in rich L medium, the total amount of beta-lactamase produced, strongly decreased when the temperature was raised from 30 to 42 degrees C, but increased after addition of ampicillin or tetracycline to the medium. beta-lactamase was synthesized and exported into the periplasmic space of wild-type strain, but was not significantly released into the extracellular medium, after growth at low temperature. We have identified an E. coli mutant which excreted up to 90% of total amount of beta-lactamase activity, any temperature. This mutant has been used as an indicator strain, for the development of an in situ test allowing the detection of beta-lactamase excretion.

  5. RpoH2 sigma factor controls the photooxidative stress response in a non-photosynthetic rhizobacterium, Azospirillum brasilense Sp7.

    PubMed

    Kumar, Santosh; Rai, Ashutosh Kumar; Mishra, Mukti Nath; Shukla, Mansi; Singh, Pradhyumna Kumar; Tripathi, Anil Kumar

    2012-12-01

    Bacteria belonging to the Alphaproteobacteria normally harbour multiple copies of the heat shock sigma factor (known as σ(32), σ(H) or RpoH). Azospirillum brasilense, a non-photosynthetic rhizobacterium, harbours five copies of rpoH genes, one of which is an rpoH2 homologue. The genes around the rpoH2 locus in A. brasilense show synteny with that found in rhizobia. The rpoH2 of A. brasilense was able to complement the temperature-sensitive phenotype of the Escherichia coli rpoH mutant. Inactivation of rpoH2 in A. brasilense results in increased sensitivity to methylene blue and to triphenyl tetrazolium chloride (TTC). Exposure of A. brasilense to TTC and the singlet oxygen-generating agent methylene blue induced several-fold higher expression of rpoH2. Comparison of the proteome of A. brasilense with its rpoH2 deletion mutant and with an A. brasilense strain overexpressing rpoH2 revealed chaperone GroEL, elongation factors (Ef-Tu and EF-G), peptidyl prolyl isomerase, and peptide methionine sulfoxide reductase as the major proteins whose expression was controlled by RpoH2. Here, we show that the RpoH2 sigma factor-controlled photooxidative stress response in A. brasilense is similar to that in the photosynthetic bacterium Rhodobacter sphaeroides, but that RpoH2 is not involved in the detoxification of methylglyoxal in A. brasilense.

  6. Diminished but Not Abolished Effect of Two His351 Mutants of Anthrax Edema Factor in a Murine Model

    PubMed Central

    Zhao, Taoran; Zhao, Xinghui; Liu, Ju; Meng, Yingying; Feng, Yingying; Fang, Ting; Zhang, Jinlong; Yang, Xiuxu; Li, Jianmin; Xu, Junjie; Chen, Wei

    2016-01-01

    Edema toxin (ET), which is composed of a potent adenylate cyclase (AC), edema factor (EF), and protective antigen (PA), is one of the major toxicity factors of Bacillus anthracis. In this study, we introduced mutations in full-length EF to generate alanine EF(H351A) and arginine EF(H351R) variants. In vitro activity analysis displayed that the adenylyl cyclase activity of both the mutants was significantly diminished compared with the wild-type EF. When the native and mutant toxins were administered subcutaneously in a mouse footpad edema model, severe acute swelling was evoked by wild-type ET, while the symptoms induced by mutant toxins were very minor. Systemic administration of these EF variants caused non-lethal hepatotoxicity. In addition, EF(H351R) exhibited slightly higher activity in causing more severe edema than EF(H351A). Our findings demonstrate that the toxicity of ET is not abolished by substitution of EF residue His351 by alanine or arginine. These results also indicate the potential of the mouse footpad edema model as a sensitive method for evaluating both ET toxicity and the efficacy of candidate therapeutic agents. PMID:26848687

  7. Properties of uvrE mutants of Escherichia coli K12. Part 2. Construction and properties of pol and rec derivatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattern, I.E.; Houtman, P.C.

    1974-01-01

    Viability and sensitivity to ultraviolet radiation and x-rays as well as frequency of spontaneous mutations was investigated for some double mutant strains of Escherichia coli and compared with parent strains. (GRA)

  8. Identification and characterization of Escherichia coli RS218-derived islands in the pathogenesis of E. coli meningitis.

    PubMed

    Xie, Yi; Kolisnychenko, Vitaliy; Paul-Satyaseela, Maneesh; Elliott, Simon; Parthasarathy, Geetha; Yao, Yufeng; Plunkett, Guy; Blattner, Frederick R; Kim, Kwang Sik

    2006-08-01

    Escherichia coli K1 is the most common gram-negative bacterium causing neonatal meningitis, but the mechanisms by which E. coli K1 causes meningitis are not clear. We identified 22 E. coli RS218-derived genomic islands (RDIs), using a comparative genome analysis of meningitis-causing E. coli K1 strain RS218 (O18:K1:H7) and laboratory K-12 strain MG1655. Series of RDI deletion mutants were constructed and examined for phenotypes relevant to E. coli K1 meningitis. We identified 9 RDI deletion mutants (RDI 1, 4, 7, 12, 13, 16, 20, 21, and 22) that exhibited defects in meningitis development. RDI 16 and 21 mutants had profound defects in the induction of a high level of bacteremia in neonatal rats, and RDI 4 mutants exhibited a moderate defect in the induction of bacteremia. RDI 1 and 22 mutants showed defects in the ability to invade human brain microvascular endothelial cells (HBMECs), and RDI 12 mutants were defective in the ability to bind to HBMECs. RDI 13 and 20 mutants were defective in the ability to both bind to and invade HBMECs. RDI 7 mutants were defective in the induction of bacteremia and in the ability to both bind to and invade HBMECs. These results provide a framework for the future discovery and analysis of bacteremia and meningitis caused by E. coli K1 strain RS218.

  9. Microdosimetric considerations of effects of heavy ions on E. coli K-12 mutants.

    PubMed

    Takahashi, T; Yatagai, F; Izumo, K

    1992-01-01

    The inactivation cross sections of E. coli K-12 recombination-deficient mutants, JC1553 (recA) and AB2470 (recB), for several MeV/u alpha-particles and N ions have been successfully analyzed by Katz's target theory in which radiosensitivity parameter E0 is assumed to be LET independent and equal to D37 for gamma-rays. For E. coli K-12 wild type, AB1157 (rec+, uvr+), however, it is impossible to interpret the inactivation cross section data by an LET-independent E0-value. In the latter case, as in the case of B. subtilis spore, it is necessary to assume that the radiosensitivity of the target for the core of a heavy ion is higher than that for delta-electrons. As well as Waligorski, Hamm and Katz's dose, the dose around the trajectory of an ion based on Tabata and Ito's energy deposition algorithm for electrons has been used in the course of analysis.

  10. Membrane cytochromes of Escherichia coli chl mutants.

    PubMed Central

    Hackett, N R; Bragg, P D

    1983-01-01

    The cytochromes present in the membranes of Escherichia coli cells having defects in the formate dehydrogenase-nitrate reductase system have been analyzed by spectroscopic, redox titration, and enzyme fractionation techniques. Four phenotypic classes differing in cytochrome composition were recognized. Class I is represented by strains with defects in the synthesis or insertion of molybdenum cofactor. Cytochromes of the formate dehydrogenase-nitrate reductase pathway are present. Class II strains map in the chlC-chlI region. The cytochrome associated with nitrate reductase (cytochrome bnr) is absent in these strains, whereas that associated with formate dehydrogenase (cytochrome bfdh) is the major cytochrome in the membranes. Class III strains lack both cytochromes bfdh and bnr but overproduce cytochrome d of the aerobic pathway even under anaerobic conditions in the presence of nitrate. Class III strains have defects in the regulation of cytochrome synthesis. An fdhA mutant produced cytochrome bnr but lacked cytochrome bfdh. These results support the view that chlI (narI) is the structural gene for cytochrome bnr and that chlC (narG) and chlI(narI) are in the same operon, and they provide evidence of the complexity of the regulation of cytochrome synthesis. PMID:6302081

  11. Structural variability of E. coli thioredoxin captured in the crystal structures of single-point mutants

    PubMed Central

    Noguera, Martín E.; Vazquez, Diego S.; Ferrer-Sueta, Gerardo; Agudelo, William A.; Howard, Eduardo; Rasia, Rodolfo M.; Manta, Bruno; Cousido-Siah, Alexandra; Mitschler, André; Podjarny, Alberto; Santos, Javier

    2017-01-01

    Thioredoxin is a ubiquitous small protein that catalyzes redox reactions of protein thiols. Additionally, thioredoxin from E. coli (EcTRX) is a widely-used model for structure-function studies. In a previous paper, we characterized several single-point mutants of the C-terminal helix (CTH) that alter global stability of EcTRX. However, spectroscopic signatures and enzymatic activity for some of these mutants were found essentially unaffected. A comprehensive structural characterization at the atomic level of these near-invariant mutants can provide detailed information about structural variability of EcTRX. We address this point through the determination of the crystal structures of four point-mutants, whose mutations occurs within or near the CTH, namely L94A, E101G, N106A and L107A. These structures are mostly unaffected compared with the wild-type variant. Notably, the E101G mutant presents a large region with two alternative traces for the backbone of the same chain. It represents a significant shift in backbone positions. Enzymatic activity measurements and conformational dynamics studies monitored by NMR and molecular dynamic simulations show that E101G mutation results in a small effect in the structural features of the protein. We hypothesize that these alternative conformations represent samples of the native-state ensemble of EcTRX, specifically the magnitude and location of conformational heterogeneity. PMID:28181556

  12. Structural variability of E. coli thioredoxin captured in the crystal structures of single-point mutants

    NASA Astrophysics Data System (ADS)

    Noguera, Martín E.; Vazquez, Diego S.; Ferrer-Sueta, Gerardo; Agudelo, William A.; Howard, Eduardo; Rasia, Rodolfo M.; Manta, Bruno; Cousido-Siah, Alexandra; Mitschler, André; Podjarny, Alberto; Santos, Javier

    2017-02-01

    Thioredoxin is a ubiquitous small protein that catalyzes redox reactions of protein thiols. Additionally, thioredoxin from E. coli (EcTRX) is a widely-used model for structure-function studies. In a previous paper, we characterized several single-point mutants of the C-terminal helix (CTH) that alter global stability of EcTRX. However, spectroscopic signatures and enzymatic activity for some of these mutants were found essentially unaffected. A comprehensive structural characterization at the atomic level of these near-invariant mutants can provide detailed information about structural variability of EcTRX. We address this point through the determination of the crystal structures of four point-mutants, whose mutations occurs within or near the CTH, namely L94A, E101G, N106A and L107A. These structures are mostly unaffected compared with the wild-type variant. Notably, the E101G mutant presents a large region with two alternative traces for the backbone of the same chain. It represents a significant shift in backbone positions. Enzymatic activity measurements and conformational dynamics studies monitored by NMR and molecular dynamic simulations show that E101G mutation results in a small effect in the structural features of the protein. We hypothesize that these alternative conformations represent samples of the native-state ensemble of EcTRX, specifically the magnitude and location of conformational heterogeneity.

  13. Polynucleotide phosphorylase has an impact on cell biology of Campylobacter jejuni

    PubMed Central

    Haddad, Nabila; Tresse, Odile; Rivoal, Katell; Chevret, Didier; Nonglaton, Quentin; Burns, Christopher M.; Prévost, Hervé; Cappelier, Jean M.

    2012-01-01

    Polynucleotide phosphorylase (PNPase), encoded by the pnp gene, is known to degrade mRNA, mediating post-transcriptional regulation and may affect cellular functions. The role of PNPase is pleiotropic. As orthologs of the two major ribonucleases (RNase E and RNase II) of Escherichia coli are missing in the Campylobacter jejuni genome, in the current study the focus has been on the C. jejuni ortholog of PNPase. The effect of PNPase mutation on C. jejuni phenotypes and proteome was investigated. The inactivation of the pnp gene reduced significantly the ability of C. jejuni to adhere and to invade Ht-29 cells. Moreover, the pnp mutant strain exhibited a decrease in C. jejuni swimming ability and chick colonization. To explain effects of PNPase on C. jejuni 81-176 phenotype, the proteome of the pnp mutant and parental strains were compared. Overall, little variation in protein production was observed. Despite the predicted role of PNPase in mRNA regulation, the pnp mutation did not induce profound proteomic changes suggesting that other ribonucleases in C. jejuni might ensure this biological function in the absence of PNPase. Nevertheless, synthesis of proteins which are involved in virulence (LuxS, PEB3), motility (N-acetylneuraminic acid synthetase), stress-response (KatA, DnaK, Hsp90), and translation system (EF-Tu, EF-G) were modified in the pnp mutant strain suggesting a more specific role of PNPase in C. jejuni. In conclusion, PNPase deficiency induces limited but important consequences on C. jejuni biology that could explain swimming limitation, chick colonization delay, and the decrease of cell adhesion/invasion ability. PMID:22919622

  14. Escherichia coli ArgR mutants defective in cer/Xer recombination, but not in DNA binding.

    PubMed

    Sénéchal, Hélène; Delesques, Jérémy; Szatmari, George

    2010-04-01

    The Escherichia coli arginine repressor (ArgR) is an L-arginine-dependent DNA-binding protein that controls the expression of the arginine biosynthetic genes and is required as an accessory factor for Xer site-specific recombination at cer and related recombination sites in plasmids. We used the technique of pentapeptide scanning mutagenesis to isolate a series of ArgR mutants that were considerably reduced in cer recombination, but were still able to repress an argA::lacZ fusion. DNA sequence analysis showed that all of the mutants mapped to the same nucleotide, resulting in a five amino acid insertion between residues 149 and 150 of ArgR, corresponding to the end of the alpha6 helix. A truncated ArgR containing a stop codon at residue 150 displayed the same phenotype as the protein with the five amino acid insertion, and both mutants displayed sequence-specific DNA-binding activity that was L-arginine dependent. These results show that the C-terminus of ArgR is more important in cer/Xer site-specific recombination than in DNA binding.

  15. Predicting mutant selection in competition experiments with ciprofloxacin-exposed Escherichia coli.

    PubMed

    Khan, David D; Lagerbäck, Pernilla; Malmberg, Christer; Kristoffersson, Anders N; Wistrand-Yuen, Erik; Sha, Cao; Cars, Otto; Andersson, Dan I; Hughes, Diarmaid; Nielsen, Elisabet I; Friberg, Lena E

    2018-03-01

    Predicting competition between antibiotic-susceptible wild-type (WT) and less susceptible mutant (MT) bacteria is valuable for understanding how drug concentrations influence the emergence of resistance. Pharmacokinetic/pharmacodynamic (PK/PD) models predicting the rate and extent of takeover of resistant bacteria during different antibiotic pressures can thus be a valuable tool in improving treatment regimens. The aim of this study was to evaluate a previously developed mechanism-based PK/PD model for its ability to predict in vitro mixed-population experiments with competition between Escherichia coli (E. coli) WT and three well-defined E. coli resistant MTs when exposed to ciprofloxacin. Model predictions for each bacterial strain and ciprofloxacin concentration were made for in vitro static and dynamic time-kill experiments measuring CFU (colony forming units)/mL up to 24 h with concentrations close to or below the minimum inhibitory concentration (MIC), as well as for serial passage experiments with concentrations well below the MIC measuring ratios between the two strains with flow cytometry. The model was found to reasonably well predict the initial bacterial growth and killing of most static and dynamic time-kill competition experiments without need for parameter re-estimation. With parameter re-estimation of growth rates, an adequate fit was also obtained for the 6-day serial passage competition experiments. No bacterial interaction in growth was observed. This study demonstrates the predictive capacity of a PK/PD model and further supports the application of PK/PD modelling for prediction of bacterial kill in different settings, including resistance selection. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  16. Identification of a new EF-hand superfamily member from Trypanosoma brucei

    NASA Technical Reports Server (NTRS)

    Wong, S.; Kretsinger, R. H.; Campbell, D. A.

    1992-01-01

    We identified several open reading frames between the regions encoding calmodulin and ubiquitin-EP52/1 in the genome of Trypanosoma brucei. One of these, EFH5, encodes a protein 192 amino acids long. The EFH5 transcript is present in poly(A)+ mRNA and is present at similar levels in the mammalian bloodstream form and the insect procyclic form. EFH5 contains four EF-hand homolog domains, two of which are inferred to bind Ca2+ ions. We expressed EFH5 as a fusion protein in Escherichia coli and demonstrated calcium-binding activity of the fusion protein using the 45Ca-overlay technique. The function of EFH5 remains unknown; however, as the fourth EF-hand homolog identified in trypanosomes, it attests to the broad range of functions assumed by calcium functioning as a second messenger. EFH5, which is most closely related to LAV1-2 from Physarum, represents a distinct subfamily among the EF-hand-containing proteins.

  17. Fluctuations between multiple EF-G-induced chimeric tRNA states during translocation on the ribosome

    NASA Astrophysics Data System (ADS)

    Adio, Sarah; Senyushkina, Tamara; Peske, Frank; Fischer, Niels; Wintermeyer, Wolfgang; Rodnina, Marina V.

    2015-06-01

    The coupled translocation of transfer RNA and messenger RNA through the ribosome entails large-scale structural rearrangements, including step-wise movements of the tRNAs. Recent structural work has visualized intermediates of translocation induced by elongation factor G (EF-G) with tRNAs trapped in chimeric states with respect to 30S and 50S ribosomal subunits. The functional role of the chimeric states is not known. Here we follow the formation of translocation intermediates by single-molecule fluorescence resonance energy transfer. Using EF-G mutants, a non-hydrolysable GTP analogue, and fusidic acid, we interfere with either translocation or EF-G release from the ribosome and identify several rapidly interconverting chimeric tRNA states on the reaction pathway. EF-G engagement prevents backward transitions early in translocation and increases the fraction of ribosomes that rapidly fluctuate between hybrid, chimeric and posttranslocation states. Thus, the engagement of EF-G alters the energetics of translocation towards a flat energy landscape, thereby promoting forward tRNA movement.

  18. Enzymatic analysis of a thermostabilized mutant of an Escherichia coli hygromycin B phosphotransferase.

    PubMed

    Nakamura, Akira; Takakura, Yasuaki; Sugimoto, Naohisa; Takaya, Naoki; Shiraki, Kentaro; Hoshino, Takayuki

    2008-09-01

    An Escherichia coli hygromycin B phosphotransferase (HPH) and its thermostabilized mutant protein, HPH5, containing five amino acid substitutions, D20G, A118V, S225P, Q226L, and T246A (Nakamura et al., J. Biosci. Bioeng., 100, 158-163 (2005)), obtained by an in vivo directed evolution procedure in Thermus thermophilus, were produced and purified from E. coli recombinants, and enzymatic comparisons were performed. The optimum temperatures for enzyme activity were 50 and 55 degrees C for HPH and HPH5 respectively, but the thermal stability of the enzyme activity and the temperature for protein denaturation of HPH5 increased, from 36 and 37.2 degrees C of HPH to 53 and 58.8 degrees C respectively. Specific activities and steady-state kinetics measured at 25 degrees C showed only slight differences between the two enzymes. From these results we concluded that HPH5 was thermostabilized at the protein level, and that the mutations introduced did not affect its enzyme activity, at least under the assay conditions.

  19. Need for Different Cutoff Values for Reading Mantoux Test with 2TU and 5TU PPD.

    PubMed

    Ramaraj, Savitha M; Nagendra, K; Gopal, Girish; Majgi, Sumanth Mallikarjuna

    2017-09-01

    To compare the tuberculin reaction of 2 tuberculin unit (TU) with 5TU purified protein derivative (PPD) (both calibrated against RT 23) in healthy children. This was a cross sectional study done in the pediatric outpatient department of a tertiary care teaching hospital. Seventy healthy siblings of the children attending pediatric outpatient department in the age group of 1 to 12 y were enrolled. The exclusion criteria included previously diagnosed tuberculosis patients, malnutrition diagnosed according to the WHO classification, history of drug intake like steroids, recent history of measles, any skin lesions over forearm, history of fever, contact with tuberculosis and previous mantoux testing. The study was conducted wherein each child was subjected to simultaneous testing with 2TU and 5TU by standard technique. The reactions to both the tests was read at 48-72 h. Children with induration ≥10 mm were evaluated for tuberculosis by taking chest x-ray, gastric lavage or sputum smear examination for acid fast bacilli (AFB). Considering ≥10 mm induration as positive, subjects positive with 5TU were 7 (10%) and 2TU was 1(p value = 0.031); thus, there is no agreement between the two methods (McNemar's test). Comparing the mean diameter of induration of 2TU and 5TU (p < 0.001, Wilcoxon test), signified no agreement between the two strengths. Bland-Altman plot and kappa statistic showed no agreement between the two strengths. Cutaneous hypersensitivity to 2TU PPD is not comparable to that of 5TU PPD.

  20. Molybdenum cofactor in chlorate-resistant and nitrate reductase-deficient insertion mutants of Escherichia coli.

    PubMed Central

    Miller, J B; Amy, N K

    1983-01-01

    We examined molybdenum cofactor activity in chlorate-resistant (chl) and nitrate reductase-deficient (nar) insertion mutants and wild-type strains of Escherichia coli K-12. The bacterial molybdenum cofactor was assayed by its ability to restore activity to the cofactor-deficient nitrate reductase found in the nit-1 strain of Neurospora crassa. In the wild-type E. coli strains, molybdenum cofactor was synthesized constitutively and found in both cytoplasmic and membrane fractions. Cofactor was found in two forms: the demolybdo form required additional molybdate in the assay mix for detection, whereas the molybdenum-containing form was active without additional molybdate. The chlA and chlE mutants had no detectable cofactor. The chlB and the narG, narI, narK, and narL (previously designated chlC) strains had cofactor levels similar to those of the wild-type strains, except the chlB strains had two to threefold more membrane-bound cofactor. Cofactor levels in the chlD and chlG strains were sensitive to molybdate. When grown in 1 microM molybdate, the chlD strains had only 15 to 20% of the wild-type levels of the demolybdo and molybdenum-containing forms of the cofactor. In contrast, the chlG strains had near wild-type levels of demolybdo cofactor when grown in 1 microM molybdate, but none of the molybdenum-containing form of the cofactor. Near wild-type levels of both forms of the cofactor were restored to the chlD and chlG strains by growth in 1 mM molybdate. PMID:6307982

  1. Expression of acrA and acrB Genes in Esherichia coli Mutants with or without marR or acrR Mutations

    PubMed Central

    Pourahmad Jaktaji, Razieh; Jazayeri, Nasim

    2013-01-01

    Objective(s): The major antibiotic efflux pump of Esherichia coli is AcrAB-TolC. The first part of the pump, AcrAB, is encoded by acrAB operon. The expression of this operon can be kept elevated by overexpression of an activator, MarA following inactivation of MarR and AcrR repressors due to mutation in encoding genes, marR and acrR, respectively. The aims of this research were to use E. coli mutants with or without mutation in marR to search for the presence of possible mutation in acrR and to quantify the expression of acrAB. Materials and Methods: The DNA binding region of acrR gene in these mutants were amplified by PCR and sequenced. The relative expression of acrA and acrB were determined by real time PCR. Results: Results showed that W26 and C14 had the same mutation in acrR, but none of the mutants overexpressed acrA and acrB in comparison with wild type strain. Conclusions: The effect of marR or acrR mutation on acrAB overexpression is dependent on levels of resistance to tetracycline and ciprofloxacin. PMID:24570831

  2. Expression of acrA and acrB Genes in Esherichia coli Mutants with or without marR or acrR Mutations.

    PubMed

    Pourahmad Jaktaji, Razieh; Jazayeri, Nasim

    2013-12-01

    The major antibiotic efflux pump of Esherichia coli is AcrAB-TolC. The first part of the pump, AcrAB, is encoded by acrAB operon. The expression of this operon can be kept elevated by overexpression of an activator, MarA following inactivation of MarR and AcrR repressors due to mutation in encoding genes, marR and acrR, respectively. The aims of this research were to use E. coli mutants with or without mutation in marR to search for the presence of possible mutation in acrR and to quantify the expression of acrAB. The DNA binding region of acrR gene in these mutants were amplified by PCR and sequenced. The relative expression of acrA and acrB were determined by real time PCR. RESULTS showed that W26 and C14 had the same mutation in acrR, but none of the mutants overexpressed acrA and acrB in comparison with wild type strain. The effect of marR or acrR mutation on acrAB overexpression is dependent on levels of resistance to tetracycline and ciprofloxacin.

  3. Study the Expression of marA Gene in Ciprofloxacin and Tetracycline Resistant Mutants of Esherichia coli

    PubMed Central

    Pourahmad Jaktaji, Razieh; Ebadi, Rayhaneh

    2013-01-01

    MarA activates two membrane dependent mechanisms of resistance to different antibiotics, such as ciprofloxacin and tetracycline, including promotion of outflux and inhibition of influx of antibiotics. Thus, MarA causes multiple antibiotic resistance phenotype. The activation of these mechanisms needs overexpression of marA. This could happen through mutation in marR. Thus, the aim of this study was to measure marA expression in ciprofloxacin resistant E. coli gyrA mutants and clones with or without marR mutation. For this purpose, real time PCR was used to measure relative expression of marA in above mutants and clones. Results showed that two clones, C14 and C17 overexpressed marA. It is concluded that the level of marA expression is important for activation of above mechanisms. PMID:24523773

  4. Study the Expression of marA Gene in Ciprofloxacin and Tetracycline Resistant Mutants of Esherichia coli.

    PubMed

    Pourahmad Jaktaji, Razieh; Ebadi, Rayhaneh

    2013-01-01

    MarA activates two membrane dependent mechanisms of resistance to different antibiotics, such as ciprofloxacin and tetracycline, including promotion of outflux and inhibition of influx of antibiotics. Thus, MarA causes multiple antibiotic resistance phenotype. The activation of these mechanisms needs overexpression of marA. This could happen through mutation in marR. Thus, the aim of this study was to measure marA expression in ciprofloxacin resistant E. coli gyrA mutants and clones with or without marR mutation. For this purpose, real time PCR was used to measure relative expression of marA in above mutants and clones. Results showed that two clones, C14 and C17 overexpressed marA. It is concluded that the level of marA expression is important for activation of above mechanisms.

  5. Ensemble cryo-EM elucidates the mechanism of translation fidelity

    PubMed Central

    Loveland, Anna B.; Demo, Gabriel; Grigorieff, Nikolaus; Korostelev, Andrei A.

    2017-01-01

    SUMMARY Faithful gene translation depends on accurate decoding, whose structural mechanism remains a matter of debate. Ribosomes decode mRNA codons by selecting cognate aminoacyl-tRNAs delivered by EF-Tu. We present high-resolution structural ensembles of ribosomes with cognate or near-cognate aminoacyl-tRNAs delivered by EF-Tu. Both cognate and near-cognate tRNA anticodons explore the A site of an open 30S subunit, while inactive EF-Tu is separated from the 50S subunit. A transient conformation of decoding-center nucleotide G530 stabilizes the cognate codon-anticodon helix, initiating step-wise “latching” of the decoding center. The resulting 30S domain closure docks EF-Tu at the sarcin-ricin loop of the 50S subunit, activating EF-Tu for GTP hydrolysis and ensuing aminoacyl-tRNA accommodation. By contrast, near-cognate complexes fail to induce the G530 latch, thus favoring open 30S pre-accommodation intermediates with inactive EF-Tu. This work unveils long-sought structural differences between the pre-accommodation of cognate and near-cognate tRNA that elucidate the mechanism of accurate decoding. PMID:28538735

  6. Cadmium resistance mechanism in Escherichia coli P4 and its potential use to bioremediate environmental cadmium.

    PubMed

    Khan, Zaman; Nisar, Muhammad Atif; Hussain, Syed Zajif; Arshad, Muhammad Nauman; Rehman, Abdul

    2015-12-01

    A cadmium-resistant bacterium was isolated from industrial wastewater and identified as Escherichia coli (dubbed as P4) on the basis of morphological, biochemical tests and 16S rRNA ribotyping. It showed optimum growth at 30 °C and pH 7. E. coli P4 found to resist Cd(+2) (10.6 mM) as well as Zn(+2) (4.4 mM), Pb(+2) (17 mM), Cu(+2) (3.5 mM), Cr(+6) (4.4 mM), As(+2) (10.6 mM), and Hg(+2) (0.53 mM). It could remove 18.8, 37, and 56 % Cd(+2) from aqueous medium after 48, 96, and 144 h, respectively. Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), and Energy-dispersive X-ray (EDX) analysis also confirmed the biosorption of Cd(+2) by E. coli P4. However, temperature and pH were found to be the most critical factors in biosorption of Cd(+2) by E. coli P4. Cd(+2) stress altered E. coli P4 cell physiology analyzed by measuring glutathione (GSH) and non-protein thiol (cysteine) levels which were increased up to 130 and 48 %, respectively. Quantitative real-time polymerase chain reaction (qRT-PCR) showed alteration in the expression levels of ftsZ, mutS, clpB, ef-tu, and dnaK genes in the presence of Cd(+2). Total protein profiles of E. coli P4 in the absence and presence of Cd(+2) were compared by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), which showed remarkable difference in the banding pattern. czcB gene, a component of czcCBA operon, was amplified from genomic DNA which suggested the chromosomal-borne Cd(+2) resistance in E. coli P4. Furthermore, it harbors smtAB gene which plays a significant role in Cd(+2) resistance.

  7. A novel fermentation pathway in an Escherichia coli mutant producing succinic acid, acetic acid, and ethanol.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donnelly, M. I.; Millard, C. S.; Clark, D. P.

    1998-04-01

    Escherichia coli strain NZN111, which is unable to grow fermentatively because of insertional inactivation of the genes encoding pyruvate: formate lyase and the fermentative lactate dehydrogenase, gave rise spontaneously to a chromosomal mutation that restored its ability to ferment glucose. The mutant strain, named AFP111, fermented glucose more slowly than did its wild-type ancestor, strain W1485, and generated a very different spectrum of products. AFP111 produced succinic acid, acetic acid, and ethanol in proportions of approx 2:1:1. Calculations of carbon and electron balances accounted fully for the observed products; 1 mol of glucose was converted to 1 mol of succinicmore » acid and 0.5 mol each of acetic acid and ethanol. The data support the emergence in E.coli of a novel succinic acid:acetic acid:ethanol fermentation pathway.« less

  8. Generation and characterization of functional mutants in the translation initiation factor IF1 of Escherichia coli.

    PubMed

    Croitoru, Victor; Bucheli-Witschel, Margarete; Hägg, Peter; Abdulkarim, Farhad; Isaksson, Leif A

    2004-02-01

    Three protein factors IF1, IF2 and IF3 are involved in the initiation of translation in prokaryotes. No clear function has been assigned to the smallest of these three factors, IF1. Therefore, to investigate the role of this protein in the initiation process in Escherichia coli we have mutated the corresponding gene infA. Because IF1 is essential for cell viability and no mutant selection has so far been described, the infA gene in a plasmid was mutated by site-directed mutagenesis in a strain with a chromosomal infA+ gene, followed by deletion of this infA+ gene. Using this approach, the six arginine residues of IF1 were altered to leucine or aspartate. Another set of plasmid-encoded IF1 mutants with a cold-sensitive phenotype was collected using localized random mutagenesis. All mutants with a mutated infA gene on a plasmid and a deletion of the chromosomal infA copy were viable, except for an R65D alteration. Differences in growth phenotypes of the mutants were observed in both minimal and rich media. Some of the mutated infA genes were successfully recombined into the chromosome thereby replacing the wild-type infA+ allele. Several of these recombinants showed reduced growth rate and a partial cold-sensitive phenotype. This paper presents a collection of IF1 mutants designed for in vivo and in vitro studies on the function of IF1.

  9. Genetic Characterization of Escherichia coli Type 1 Pilus Adhesin Mutants and Identification of a Novel Binding Phenotype

    PubMed Central

    Hamrick, Terri S.; Harris, Sandra L.; Spears, Patricia A.; Havell, Edward A.; Horton, John R.; Russell, Perry W.; Orndorff, Paul E.

    2000-01-01

    Five Escherichia coli type 1 pilus mutants that had point mutations in fimH, the gene encoding the type 1 pilus adhesin FimH, were characterized. FimH is a minor component of type 1 pili that is required for the pili to bind and agglutinate guinea pig erythrocytes in a mannose-inhibitable manner. Point mutations were located by DNA sequencing and deletion mapping. All mutations mapped within the signal sequence or in the first 28% of the predicted mature protein. All mutations were missense mutations except for one, a frameshift lesion that was predicted to cause the loss of approximately 60% of the mature FimH protein. Bacterial agglutination tests with polyclonal antiserum raised to a LacZ-FimH fusion protein failed to confirm that parental amounts of FimH cross-reacting material were expressed in four of the five mutants. The remaining mutant, a temperature-sensitive (ts) fimH mutant that agglutinated guinea pig erythrocytes after growth at 31°C but not at 42°C, reacted with antiserum at both temperatures in a manner similar to the parent. Consequently, this mutant was chosen for further study. Temperature shift experiments revealed that new FimH biosynthesis was required for the phenotypic change. Guinea pig erythrocyte and mouse macrophage binding experiments using the ts mutant grown at the restrictive and permissive temperatures revealed that whereas erythrocyte binding was reduced to a level comparable to that of a fimH insertion mutant at the restrictive temperature, mouse peritoneal macrophages were bound with parental efficiency at both the permissive and restrictive temperatures. Also, macrophage binding by the ts mutant was insensitive to mannose inhibition after growth at 42°C but sensitive after growth at 31°C. The ts mutant thus binds macrophages with one receptor specificity at 31°C and another at 42°C. PMID:10869080

  10. Fluorescent Trimethoprim Conjugate Probes To Assess Drug Accumulation in Wild Type and Mutant Escherichia coli

    PubMed Central

    2016-01-01

    Reduced susceptibility to antimicrobials in Gram-negative bacteria may result from multiple resistance mechanisms, including increased efflux pump activity or reduced porin protein expression. Up-regulation of the efflux pump system is closely associated with multidrug resistance (MDR). To help investigate the role of efflux pumps on compound accumulation, a fluorescence-based assay was developed using fluorescent derivatives of trimethoprim (TMP), a broad-spectrum synthetic antibiotic that inhibits an intracellular target, dihydrofolate reductase (DHFR). Novel fluorescent TMP probes inhibited eDHFR activity with comparable potency to TMP, but did not kill or inhibit growth of wild type Escherichia coli. However, bactericidal activity was observed against an efflux pump deficient E. coli mutant strain (ΔtolC). A simple and quick fluorescence assay was developed to measure cellular accumulation of the TMP probe using either fluorescence spectroscopy or flow cytometry, with validation by LC-MS/MS. This fluorescence assay may provide a simple method to assess efflux pump activity with standard laboratory equipment. PMID:27737551

  11. Transgenic Brassica rapa plants over-expressing eIF(iso)4E variants show broad-spectrum Turnip mosaic virus (TuMV) resistance.

    PubMed

    Kim, Jinhee; Kang, Won-Hee; Hwang, Jeena; Yang, Hee-Bum; Dosun, Kim; Oh, Chang-Sik; Kang, Byoung-Cheorl

    2014-08-01

    The protein-protein interaction between VPg (viral protein genome-linked) of potyviruses and eIF4E (eukaryotic initiation factor 4E) or eIF(iso)4E of their host plants is a critical step in determining viral virulence. In this study, we evaluated the approach of engineering broad-spectrum resistance in Chinese cabbage (Brassica rapa) to Turnip mosaic virus (TuMV), which is one of the most important potyviruses, by a systematic knowledge-based approach to interrupt the interaction between TuMV VPg and B. rapa eIF(iso)4E. The seven amino acids in the cap-binding pocket of eIF(iso)4E were selected on the basis of other previous results and comparison of protein models of cap-binding pockets, and mutated. Yeast two-hybrid assay and co-immunoprecipitation analysis demonstrated that W95L, K150L and W95L/K150E amino acid mutations of B. rapa eIF(iso)4E interrupted its interaction with TuMV VPg. All eIF(iso)4E mutants were able to complement an eIF4E-knockout yeast strain, indicating that the mutated eIF(iso)4E proteins retained their function as a translational initiation factor. To determine whether these mutations could confer resistance, eIF(iso)4E W95L, W95L/K150E and eIF(iso)4E wild-type were over-expressed in a susceptible Chinese cabbage cultivar. Evaluation of the TuMV resistance of T1 and T2 transformants demonstrated that the over-expression of the eIF(iso)4E mutant forms can confer resistance to multiple TuMV strains. These data demonstrate the utility of knowledge-based approaches for the engineering of broad-spectrum resistance in Chinese cabbage. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  12. Isolation of Escherichia coli mutants defective in enzymes of membrane lipid synthesis.

    PubMed Central

    Raetz, C R

    1975-01-01

    A new method has been developed which permits the rapid screening of E. coli colonies for mutants with defective enzymes of phospholipid metabolism. In this procedure, a disc of filter paper is pressed down on an agar plate containing several hundred colonies of mutagen-treated cells, after which the paper is lifted off. In the process the colonies are transferred to the paper, giving rise to a replica print of the master plate. The few cells from each colony left on the master keep growing in the original pattern. The pattern of colonies is also retained on the filter paper, even after the cells are rendered permeable with lysozyme and EDTA. Colonies treated in this manner remain absorbed to the paper, where they can convert sn-(U-14-C)glycero-3-P to phosphatidyl(U-14-C)glycerophosphate, dependent on added CDP-diglyceride. Unrelated reactions of sn-(U-14-C)glycero-3-P that may obscure the synthesis of phosphatidyl-glycerophosphate are inhibited by the addition of reagents poisoning energy generation. The radioactive phospholipid that forms around each colony on the paper is precipitated in situ with trichloroacetic acid, and unreacted sn-(U-14-C)glycero-3-P is washed away. After autoradiography, the colonies on the filter paper are stained with Coomassie blue. When the autoradiogram is superimposed on the strained paper, mutants are identified as blue colonies lacking a black halo. With this method, 20,000 colonies were screened in several days. Four mutants were identified with low levels of CDP-diglyceride:snglycero-3-P phosphatidyl transferase (EC 2.7.8.5, GLYCEROL-PHOSPHATE PHOSPHATIDYLTRANSFERASE, PHOSPHATIDYLGLYCEROPHOSPHATE SYNTHETASE) IN EXTRACTS. With a similar assay, 10,000 additional colonies were screened for mutants with altered CDP-diglyceride:L-serine O-phosphatidyltransferase (EC 2.7.8.8, phosphatidylserine synthetase), and four strains were found in which the enzyme is thermolabile. The screening technique described here is termed replica printing

  13. Characterization of an Escherichia coli mutant (radB101) sensitive to. gamma. and uv radiation, and methyl methanesulfonate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sargentini, N.J.; Smith, K.C.

    1983-03-01

    After N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis of Escherichia coli K-12 (xthA14), an X-ray-sensitive mutant was isolated. This sensitivity is due to a mutation, radB101, which is located at 56.5 min on the E.coli K-12 linkage map. The radB101 mutation sensitized wild-type cells to ..gamma.. and uv radiation, and to methyl methanesulfonate. When known DNA repair-deficient mutants were ranked for their ..gamma..-radiation sensitivity relative to their uv-radiation sensitivity, their order was (starting with the most selectively ..gamma..-radiation-sensitive strain): recB21, radB101, wild type, polA1, recF143, lexA101, recA56, uvrD3, and uvrA6. The radB mutant was normal for ..gamma..- and uv-radiation mutagenesis, it showed only a slightmore » enhancement of ..gamma..- and uv-radiation-induced DNA degradation, and it was approx. 60% deficient in recombination ability. The radB gene is suggested to play a role in the recA gene-dependent (Type III) repair of DNA single-strand breaks after ..gamma.. irradiation and in postreplication repair after uv irradiation for the following reasons: the radB strain was normal for the host-cell reactivation of ..gamma..- and uv-irradiated bacteriophage lambda; the radB mutation did not sensitize a recA strain, but did sensitize a polA strain to ..gamma.. and uv radiation; the radB mutation sensitized a uvrB strain to uv radiation.« less

  14. Multiplex growth rate phenotyping of synthetic mutants in selection to engineer glucose and xylose co-utilization in Escherichia coli.

    PubMed

    Groot, Joost; Cepress-Mclean, Sidney C; Robbins-Pianka, Adam; Knight, Rob; Gill, Ryan T

    2017-04-01

    Engineering the simultaneous consumption of glucose and xylose sugars is critical to enable the sustainable production of biofuels from lignocellulosic biomass. In most major industrial microorganisms glucose completely inhibits the uptake of xylose, limiting efficient sugar mixture conversion. In E. coli removal of the major glucose transporter PTS allows for glucose and xylose co-consumption but only after prolonged adaptation, which is an effective process but hard to control and prone to co-evolving undesired traits. Here we synthetically engineer mutants to target sugar co-consumption properties; we subject a PTS - mutant to a short adaptive step and subsequently either delete or overexpress key genes previously suggested to affect sugar consumption. Screening the co-consumption properties of these mutants individually is very laborious. We show we can evaluate sugar co-consumption properties in parallel by culturing the mutants in selection and applying a novel approach that computes mutant growth rates in selection using chromosomal barcode counts obtained from Next-Generation Sequencing. We validate this multiplex growth rate phenotyping approach with individual mutant pure cultures, identify new instances of mutants cross-feeding on metabolic byproducts, and, importantly, find that the rates of glucose and xylose co-consumption can be tuned by altering glucokinase expression in our PTS - background. Biotechnol. Bioeng. 2017;114: 885-893. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. [Selection of acetate-tolerant mutants from Escherichia coli DH5alpha and the metabolic properties of mutant DA19].

    PubMed

    Zhu, Caiqing; Ye, Qin

    2003-08-01

    Esherichia coli DH5alpha is one of the widely used host strains in genetic engineering. However, foreign gene expression level in this strain is seriously inhibited due to its great sensitivity to the accumulated metabolite, acetate. This study aimed at improving the tolerance of this strain against acetate. Cells of E. coli DH5alpha were irradiated with 60Co, and subsequently continuous culture of the irradiated cells was conducted with gradual increase in the dilution rate and the selective pressure, acetate concentration in the medium. The mutants were picked up on MA plates which contained 5g/L sodium acetate. 5 strains with great improvement in acetate tolerance were obtained, among which DA19 was the best. In cultivation of DA19 in complex media YPS and YPS2G, the cell density, maximum specific growth rate and acetate produced were respectively 1.17 and 1.05, 1.08 and 1.27, and 0.06 and 0.59 times of those of DH5alpha. In a chemically defined medium, the cell density of DA19 was 3.4-fold of that of DH5alpha. The cell density of DA19 in a medium containing 10g/L sodium acetate was comparable to that of DH5alpha in the same medium without the addition of acetate.

  16. Phenotypic Restoration by Molybdate of Nitrate Reductase Activity in chlD Mutants of Escherichia coli

    PubMed Central

    Glaser, J. H.; DeMoss, J. A.

    1971-01-01

    ChlD mutants of Escherichia coli are pleiotropic, lacking formate-nitrate reductase activity as well as formate-hydrogenlyase activity. Whole-chain formate-nitrate reductase activity, assayed with formate as the electron donor and measuring the amount of nitrite produced, was restored to wild-type levels in the mutants by addition of 10−4m molybdate to the growth medium. Under these conditions, the activity of each of the components of the membrane-bound nitrate reductase chain increased after molybdate supplementation. In the absence of nitrate, the activities of the formate-hydrogenlyase system were also restored by molybdate. Strains deleted for the chlD gene responded in a similar way to molybdate supplementation. The concentration of molybdenum in the chlD mutant cells did not differ significantly from that in the wild-type cells at either low or high concentrations of molybdate in the medium. However, the distribution of molybdenum between the soluble protein and membrane fractions differed significantly from wild type. We conclude that the chlD gene product cannot be a structural component of the formate-hydrogenlyase pathway or the formate-nitrate reductase pathway, but that it must have an indirect role in processing molybdate to a form necessary for both electron transport systems. PMID:4942767

  17. Drivers and Blockers: Embedding Education for Sustainability (EfS) in Primary Teacher Education

    ERIC Educational Resources Information Center

    Wilson, Sue

    2012-01-01

    The growing emphasis on sustainability in school curricula in Australia reflects international trends in education. Teacher education is a vital strategy for the incorporation of Education for Sustainability (EfS) in school curricula. Research to identify drivers and barriers to embedding EfS across a primary teacher education program in an…

  18. Problem-Solving Test: Tryptophan Operon Mutants

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2010-01-01

    This paper presents a problem-solving test that deals with the regulation of the "trp" operon of "Escherichia coli." Two mutants of this operon are described: in mutant A, the operator region of the operon carries a point mutation so that it is unable to carry out its function; mutant B expresses a "trp" repressor protein unable to bind…

  19. Selective targeting of mutant adenomatous polyposis coli (APC) in colorectal cancer.

    PubMed

    Zhang, Lu; Theodoropoulos, Panayotis C; Eskiocak, Ugur; Wang, Wentian; Moon, Young-Ah; Posner, Bruce; Williams, Noelle S; Wright, Woodring E; Kim, Sang Bum; Nijhawan, Deepak; De Brabander, Jef K; Shay, Jerry W

    2016-10-19

    Mutations in the adenomatous polyposis coli (APC) gene are common in colorectal cancer (CRC), and more than 90% of those mutations generate stable truncated gene products. We describe a chemical screen using normal human colonic epithelial cells (HCECs) and a series of oncogenically progressed HCECs containing a truncated APC protein. With this screen, we identified a small molecule, TASIN-1 (truncated APC selective inhibitor-1), that specifically kills cells with APC truncations but spares normal and cancer cells with wild-type APC. TASIN-1 exerts its cytotoxic effects through inhibition of cholesterol biosynthesis. In vivo administration of TASIN-1 inhibits tumor growth of CRC cells with truncated APC but not APC wild-type CRC cells in xenograft models and in a genetically engineered CRC mouse model with minimal toxicity. TASIN-1 represents a potential therapeutic strategy for prevention and intervention in CRC with mutant APC. Copyright © 2016, American Association for the Advancement of Science.

  20. Mutants of Escherichia coli defective in membrane phospholipid synthesis: macromolecular synthesis in an sn-glycerol 3-phosphate acyltransferase Km mutant.

    PubMed

    Bell, R M

    1974-03-01

    sn-Glycerol 3-phosphate (G3P) auxotrophs of Escherichia coli have been selected from a strain which cannot aerobically catabolize G3P. The auxotrophy resulted from loss of the biosynthetic G3P dehydrogenase (EC 1.1.1.8) or from a defective membranous G3P acyltransferase. The apparent K(m) of the acyltransferase for G3P was 11- to 14-fold higher (from about 90 mum to 1,000 to 1,250 mum) in membrane preparations from the mutants than those of the parent. All extracts prepared from revertants of the G3P dehydrogenase mutants showed G3P dehydrogenase activity, but most contained less than 10% of the wild-type level. Membrane preparations from revertants of the acyltransferase mutants had apparent K(m)'s for G3P similar to that of the parent. Strains have been derived in which the G3P requirement can be satisfied with glycerol in the presence of glucose, presumably because the glycerol kinase was desensitized to inhibition by fructose 1,6-diphosphate. Investigations on the growth and macromolecular synthesis in a G3P acyltransferase K(m) mutant revealed that upon glycerol deprivation, net phospholipid synthesis stopped immediately; growth continued for about one doubling; net ribonucleic acid (RNA), deoxyribonucleic acid (DNA), and protein nearly doubled paralleling the growth curve; the rate of phospholipid synthesis assessed by labeling cells with (32)P-phosphate, (14)C-acetate, or (3)H-serine was reduced greater than 90%; the rates of RNA and DNA synthesis increased as the cells grew and then decreased as the cells stopped growing; the rate of protein synthesis showed no increase and declined more slowly than the rates of RNA and DNA synthesis when the cells stopped growing. The cells retained and gained in the capacity to synthesize phospholipids upon glycerol deprivation. These data indicate that net phospholipid synthesis is not required for continued macromolecular synthesis for about one doubling, and that the rates of these processes are not coupled during this

  1. Education for Sustainability (EfS): Practice and Practice Architectures

    ERIC Educational Resources Information Center

    Kemmis, Stephen; Mutton, Rebecca

    2012-01-01

    This paper reports some findings from an investigation of educational practice in ten (formal and informal) education for sustainability (EfS) initiatives, to characterise exemplary practice in school and community education for sustainability, considered crucial to Australia's future. The study focused on rural/regional Australia, specifically…

  2. Characterization of mutant histidine-containing proteins of the phosphoenolpyruvate:sugar phosphotransferase system of Escherichia coli and Salmonella typhimurium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waygood, E.B.; Reiche, B.; Hengstenberg, W.

    1987-06-01

    Histidine-containing phosphocarrier protein (HPr) is common to all of the phosphoenolpyruvate:sugar phosphotransferase systems (PTS) in Escherichia coli and Salmonella typhimurium, except the fructose-specific PTS. Strains which lack HPr activity (ptsH) have been characterized in the past, and it has proved difficult to delineate between tight and leaky mutants. In this study four different parameters of ptsH strains were measured: in vitro sugar phosphorylation activity of the mutant HPr; detection of /sup 32/P-labeled P-HPr; ability of monoclonal antibodies to bind mutant HPr; and sensitivity of ptsH strains to fosfomycin. Tight ptsH strains could be defined; they were fosfomycin resistant and producedmore » no HPr protein or completely inactive mutant HPr. All leaky ptsH strains were fosfomycin sensitive, Usually produced normal amounts of mutant HPr protein, and had low but measurable activity, and HPr was detectable as a phosphoprotein. This indicates that the regulatory functions of the PTS require a very low level of HPr activity (about 1%). The antibodies used to detect mutant HPr in crude extracts were two monoclonal immunoglobulin G antibodies Jel42 and Jel44. Both antibodies, which have different pIs, inhibited PTS sugar phosphorylation assays, but the antibody-JPr complex could still be phosphorylated by enzyme I. Preliminary evidence suggests that the antibodies bind to two different epitopes which are in part located in a ..beta..-sheet structure.« less

  3. Heart Failure with Recovered EF and Heart Failure with Mid-Range EF: Current Recommendations and Controversies.

    PubMed

    Unkovic, Peter; Basuray, Anupam

    2018-04-03

    This review explores key features and potential management controversies in two emerging populations in heart failure: heart failure with recovered ejection fraction (HF-recovered EF) and heart failure with mid-range ejection fraction (HFmrEF). While HF-recovered EF patients have better outcomes than heart failure with reduced ejection fraction (HFrEF), they continue to have symptoms, persistent biomarker elevations, and abnormal outcomes suggesting a continued disease process. HFmrEF patients appear to have features of HFrEF and heart failure with preserved ejection fraction (HFpEF), but have a high prevalence of ischemic heart disease and may represent a transitory phase between the HFrEF and HFpEF. Management strategies have insufficient data to warrant standardization at this time. HF-recovered EF and HFmrEF represent new populations with unmet needs and expose the pitfalls of an EF basis for heart failure classification.

  4. [Expression in E.coli and bioactivity assay of Micrococcus luteus resuscitation promoting factor domain and its mutants].

    PubMed

    Yue, Chen-Li; Shi, Jie-Ran; Shi, Chang-Hong; Zhang, Hai; Zhao, Lei; Zhang, Ting-Fen; Zhao, Yong; Xi, Li

    2008-10-01

    To express Micrococcus luteus resuscitation promoting factor (Rpf) domain and its mutants in prokaryotic cells, and to investigate their bioactivity. The gene of Rpf domain and its mutants (E54K, E54A) were amplified by polymerase chain reaction (PCR) from the genome of Micrococcus luteus and cloned into pMD18-T vector. After sequenced, the Rpf domain and its mutant gene were subcloned into expression vector PGEX-4T-1, and transfected into E. coli DH5alpha. The expressed product was purified by affinity chromatography using GST Fusion Protein Purification bead. The aim proteins were identified by SDS-PAGE analysis and by Western blot with monoclonal antibodies against Rpf domain (mAb). The bioactivity of the proteins was analyzed by stimulating the resuscitation of Mycobacterium smegmatis. The sequences of the PCR products were identical to those of the Rpf domain and its mutant gene in GenBank. The relative molecular mass identified by SDS-PAGE analysis was consistent with that had been reported, which was also confirmed by Western blot analysis that there were specific bindings at 32 000 with Rpf domain mAb. The purified GST-Rpf domain could stimulate resuscitation of Mycobacterium smegmatis. Replacements E54A and especially E54K resulted in inhibition of Rpf resuscitation activity. Rpf domain and two kinds of its mutant protein were obtained, and its effects on the resuscitation of dormant Mycobacterium smegmatis were clarified.

  5. Proteomic analysis of beryllium-induced genotoxicity in an Escherichia coli mutant model system.

    PubMed

    Taylor-McCabe, Kirsten J; Wang, Zaolin; Sauer, Nancy N; Marrone, Babetta L

    2006-03-01

    Beryllium is the second lightest metal, has a high melting point and high strength-to-weight ratio, and is chemically stable. These unique chemical characteristics make beryllium metal an ideal choice as a component material for a wide variety of applications in aerospace, defense, nuclear weapons, and industry. However, inhalation of beryllium dust or fumes induces significant health effects, including chronic beryllium disease and lung cancer. In this study, the mutagenicity of beryllium sulfate (BeSO(4)) and the comutagenicity of beryllium with a known mutagen 1-methyl-3-nitro-1-nitrosoguanidine (MNNG) were evaluated using a forward mutant detection system developed in Escherichia coli. In this system, BeSO(4) was shown to be weakly mutagenic alone and significantly enhanced the mutagenicity of MNNG up to 3.5-fold over MNNG alone. Based on these results a proteomic study was conducted to identify the proteins regulated by BeSO(4). Using the techniques of 2-DE and oMALDI-TOF MS, we successfully identified 32 proteins being differentially regulated by beryllium and/or MNNG in the E. coli test system. This is the first study to describe the proteins regulated by beryllium in vitro, and the results suggest several potential pathways for the focus of further research into the mechanisms underlying beryllium-induced genotoxicity.

  6. Determining the Extremes of the Cellular NAD(H) Level by Using an Escherichia coli NAD+-Auxotrophic Mutant

    PubMed Central

    Zhou, Yongjin; Wang, Lei; Yang, Fan; Lin, Xinping; Zhang, Sufang; Zhao, Zongbao K.

    2011-01-01

    NAD (NAD+) and its reduced form (NADH) are omnipresent cofactors in biological systems. However, it is difficult to determine the extremes of the cellular NAD(H) level in live cells because the NAD+ level is tightly controlled by a biosynthesis regulation mechanism. Here, we developed a strategy to determine the extreme NAD(H) levels in Escherichia coli cells that were genetically engineered to be NAD+ auxotrophic. First, we expressed the ntt4 gene encoding the NAD(H) transporter in the E. coli mutant YJE001, which had a deletion of the nadC gene responsible for NAD+ de novo biosynthesis, and we showed NTT4 conferred on the mutant strain better growth in the presence of exogenous NAD+. We then constructed the NAD+-auxotrophic mutant YJE003 by disrupting the essential gene nadE, which is responsible for the last step of NAD+ biosynthesis in cells harboring the ntt4 gene. The minimal NAD+ level was determined in M9 medium in proliferating YJE003 cells that were preloaded with NAD+, while the maximal NAD(H) level was determined by exposing the cells to high concentrations of exogenous NAD(H). Compared with supplementation of NADH, cells grew faster and had a higher intracellular NAD(H) level when NAD+ was fed. The intracellular NAD(H) level increased with the increase of exogenous NAD+ concentration, until it reached a plateau. Thus, a minimal NAD(H) level of 0.039 mM and a maximum of 8.49 mM were determined, which were 0.044× and 9.6× those of wild-type cells, respectively. Finally, the potential application of this strategy in biotechnology is briefly discussed. PMID:21742902

  7. HFpEF and HFrEF Display Different Phenotypes as Assessed by IGF-1 and IGFBP-1.

    PubMed

    Faxén, Ulrika Ljung; Hage, Camilla; Benson, Lina; Zabarovskaja, Stanislava; Andreasson, Anna; Donal, Erwan; Daubert, Jean-Claude; Linde, Cecilia; Brismar, Kerstin; Lund, Lars H

    2017-04-01

    Anabolic drive is impaired in heart failure with reduced ejection fraction (HFrEF) but insufficiently studied in heart failure with preserved ejection fraction (HFpEF). Insulin-like growth factor 1 (IGF-1) mediates growth hormone effects and IGF binding protein 1 (IGFBP-1) regulates IGF-1 activity. We tested the hypothesis that HFpEF and HFrEF are similar with regard to IGF-1 and IGFBP-1. In patients with HFpEF (n = 79), HFrEF (n = 85), and controls (n = 136), we analyzed serum IGF-1 and IGFBP-1 concentrations, correlations, and associations with outcome. Age-standardized scores of IGF-1 were higher in HFpEF, median arbitrary units (interquartile range); 1.21 (0.57-1.96) vs HFrEF, 0.09 (-1.40-1.62), and controls, 0.22 (-0.47-0.96), P overall <.001. IGFBP-1 was increased in HFpEF, 48 (28-79), and HFrEF, 65 (29-101), vs controls, 27(14-35) µg/L, P overall <.001. These patterns persisted after adjusting for metabolic and HF severity confounders. IGF-1 was associated with outcomes in HFrEF, hazard ratio per natural logarithmic increase in IGF-1 SD score 0.51 (95% confidence interval 0.32-0.82, P = .005), but not significantly in HFpEF. IGFBP-1 was not associated with outcomes in either HFpEF nor HFrEF. HFpEF and HFrEF phenotypes were similar with regard to increased IGFBP-1 concentrations but differed regarding IGF-1 levels and prognostic role. HFrEF and HFpEF may display different impairment in anabolic drive. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Altered Regulation of Escherichia coli Biotin Biosynthesis in BirA Superrepressor Mutant Strains

    PubMed Central

    Chakravartty, Vandana

    2012-01-01

    Transcription of the Escherichia coli biotin (bio) operon is directly regulated by the biotin protein ligase BirA, the enzyme that covalently attaches biotin to its cognate acceptor proteins. Binding of BirA to the bio operator requires dimerization of the protein, which is triggered by BirA-catalyzed synthesis of biotinoyl-adenylate (biotinoyl-5′-AMP), the obligatory intermediate of the ligation reaction. Although several aspects of this regulatory system are well understood, no BirA superrepressor mutant strains had been isolated. Such superrepressor BirA proteins would repress the biotin operon transcription in vivo at biotin concentrations well below those needed for repression by wild-type BirA. We isolated mutant strains having this phenotype by a combined selection-screening approach and resolved multiple mutations to give several birA superrepressor alleles, each having a single mutation, all of which showed repression dominant over that of the wild-type allele. All of these mutant strains repressed bio operon transcription in vivo at biotin concentrations that gave derepression of the wild-type strain and retained sufficient ligation activity for growth when overexpressed. All of the strains except that encoding G154D BirA showed derepression of bio operon transcription upon overproduction of a biotin-accepting protein. In BirA, G154D was a lethal mutation in single copy, and the purified protein was unable to transfer biotin from enzyme-bound biotinoyl-adenylate either to the natural acceptor protein or to a biotin-accepting peptide sequence. Consistent with the transcriptional repression data, each of the purified mutant proteins showed increased affinity for the biotin operator DNA in electrophoretic mobility shift assays. Surprisingly, although most of the mutations were located in the catalytic domain, all of those tested, except G154D BirA, had normal ligase activity. Most of the mutations that gave superrepressor phenotypes altered residues

  9. The real factor for polypeptide elongation in Dictyostelium cells is EF-2B, not EF-2A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshino, Tomoko; Maeda, Yasuo; Amagai, Aiko

    2007-08-03

    Polypeptide elongation factor 2 (EF-2) plays an essential role in protein synthesis and is believed to be indispensable for cell proliferation. Recently, it has been demonstrated that there are two kinds of EF-2 (EF-2A and EF-2B with 76.6% of sequence identity at the amino acid level) in Dictyostelium discoideum. Although the knockout of EF-2A slightly impaired cytokinesis, EF-2A null cells exhibited almost normal protein synthesis and cell growth, suggesting that there is another molecule capable of compensating for EF-2 function. Since EF-2B is the most likely candidate, we examined its function using ef-2b knockdown cells prepared by the RNAi method.more » Our results strongly suggest that EF-2B is required for protein synthesis and cell proliferation, functioning as the real EF-2. Interestingly, the expressions of ef-2a and ef-2b mRNAs during development are reversely regulated, and the ef-2b expression is greatly augmented in ef-2a null cells.« less

  10. Dialogue between E. coli free radical pathways and the mitochondria of C. elegans.

    PubMed

    Govindan, J Amaranath; Jayamani, Elamparithi; Zhang, Xinrui; Mylonakis, Eleftherios; Ruvkun, Gary

    2015-10-06

    The microbial world presents a complex palette of opportunities and dangers to animals, which have developed surveillance and response strategies to hints of microbial intent. We show here that the mitochondrial homeostatic response pathway of the nematode Caenorhabditis elegans responds to Escherichia coli mutations that activate free radical detoxification pathways. Activation of C. elegans mitochondrial responses could be suppressed by additional mutations in E. coli, suggesting that C. elegans responds to products of E. coli to anticipate challenges to its mitochondrion. Out of 50 C. elegans gene inactivations known to mediate mitochondrial defense, we found that 7 genes were required for C. elegans response to a free radical producing E. coli mutant, including the bZip transcription factor atfs-1 (activating transcription factor associated with stress). An atfs-1 loss-of-function mutant was partially resistant to the effects of free radical-producing E. coli mutant, but a constitutively active atfs-1 mutant growing on wild-type E. coli inappropriately activated the pattern of mitochondrial responses normally induced by an E. coli free radical pathway mutant. Carbonylated proteins from free radical-producing E. coli mutant may directly activate the ATFS-1/bZIP transcription factor to induce mitochondrial stress response: feeding C. elegans with H2O2-treated E. coli induces the mitochondrial unfolded protein response, and inhibition of a gut peptide transporter partially suppressed C. elegans response to free radical damaged E. coli.

  11. Purification, characterization, and sequencing of novel antimicrobial peptides, Tu-AMP 1 and Tu-AMP 2, from bulbs of tulip (Tulipa gesneriana L.).

    PubMed

    Fujimura, Masatoshi; Ideguchi, Mineo; Minami, Yuji; Watanabe, Keiichi; Tadera, Kenjiro

    2004-03-01

    Novel antimicrobial peptides (AMP), designated Tu-AMP 1 and Tu-AMP 2, were purified from the bulbs of tulip (Tulipa gesneriana L.) by chitin affinity chromatography and reverse-phase high-performance liquid chromatography (HPLC). They bind to chitin in a reversible way. They were basic peptides having isoelectric points of over 12. Tu-AMP 1 and Tu-AMP 2 had molecular masses of 4,988 Da and 5,006 Da on MALDI-TOF MS analysis, and their extinction coefficients of 1% aqueous solutions at 280 nm were 3.3 and 3.4, respectively. Half of all amino acid residues of Tu-AMP 1 and Tu-AMP 2 were occupied by cysteine, arginine, lysine, and proline. The concentrations of peptides required for 50% inhibition (IC(50)) of the growth of plant pathogenic bacteria and fungi were 2 to 20 microg/ml. The structural characteristics of Tu-AMP 1 and Tu-AMP 2 indicated that they were novel thionin-like antimicrobial peptides, though Tu-AMP 2 was a heterodimer composes of two short peptides joined with disulfide bonds.

  12. Phosphoribosyl diphosphate synthetase-independent NAD de novo synthesis in Escherichia coli: a new phenotype of phosphate regulon mutants.

    PubMed Central

    Hove-Jensen, B

    1996-01-01

    Phosphoribosyl diphosphate-lacking (delta prs) mutant strains of Escherichia coli require NAD, guanosine, uridine, histidine, and tryptophan for growth. NAD is required by phosphoribosyl diphosphate-lacking mutants because of lack of one of the substrates for the quinolinate phosphoribosyltransferase reaction, an enzyme of the NAD de novo pathway. Several NAD-independent mutants of a host from which prs had been deleted were isolated; all of them were shown to have lesions in the pstSCAB-phoU operon, in which mutations lead to derepression of the Pho regulon. In addition NAD-independent growth was dependent on a functional quinolinate phosphoribosyltransferase. The prs suppressor mutations led to the synthesis of a new phosphoryl compound that may act as a precursor for a new NAD biosynthetic pathway. This compound may be synthesized by the product of an unknown phosphate starvation-inducible gene of the Pho regulon because the ability of pst or phoU mutations to suppress the NAD requirement requires PhoB, the transcriptional activator of the Pho regulon. PMID:8550505

  13. Viability, biofilm formation, and MazEF expression in drug-sensitive and drug-resistant Mycobacterium tuberculosis strains circulating in Xinjiang, China.

    PubMed

    Zhao, Ji-Li; Liu, Wei; Xie, Wan-Ying; Cao, Xu-Dong; Yuan, Li

    2018-01-01

    Tuberculosis (TB) caused by Mycobacterium tuberculosis (MTB) is one of the most common chronic infectious amphixenotic diseases worldwide. Prevention and control of TB are greatly difficult, due to the increase in drug-resistant TB, particularly multidrug-resistant TB. We speculated that there were some differences between drug-sensitive and drug-resistant MTB strains and that mazEF 3,6,9 toxin-antitoxin systems (TASs) were involved in MTB viability. This study aimed to investigate differences in viability, biofilm formation, and MazEF expression between drug-sensitive and drug-resistant MTB strains circulating in Xinjiang, China, and whether mazEF 3,6,9 TASs contribute to MTB viability under stress conditions. Growth profiles and biofilm-formation abilities of drug-sensitive, drug-resistant MTB strains and the control strain H37Rv were monitored. Using molecular biology experiments, the mRNA expression of the mazF 3, 6, and 9 toxin genes, the mazE 3, 6, and 9 antitoxin genes, and expression of the MazF9 protein were detected in the different MTB strains, H37RvΔ mazEF 3,6,9 mutants from the H37Rv parent strain were generated, and mutant viability was tested. Ex vivo culture analyses demonstrated that drug-resistant MTB strains exhibit higher survival rates than drug-sensitive strains and the control strain H37Rv. However, there was no statistical difference in biofilm-formation ability in the drug-sensitive, drug-resistant, and H37Rv strains. mazE 3,6 mRNA-expression levels were relatively reduced in the drug-sensitive and drug-resistant strains compared to H37Rv. Conversely, mazE 3,9 expression was increased in drug-sensitive strains compared to drug-resistant strains. Furthermore, compared with the H37Rv strain, mazF 3,6 expression was increased in drug-resistant strains, mazF 9 expression was increased in drug-sensitive strains, and mazF 9 exhibited reduced expression in drug-resistant strains compared with drug-sensitive strains. Protein expression of mazF9

  14. Does Executive Functioning (EF) Predict Depression in Clinic-Referred Adults?: EF Tests vs. Rating Scales

    PubMed Central

    Knouse, Laura E.; Barkley, Russell A.; Murphy, Kevin R.

    2012-01-01

    Background Deficits in executive functioning (EF) are implicated in neurobiological and cognitive-processing theories of depression. EF deficits are also associated with Attention-deficit/hyperactivity disorder (ADHD) in adults, who are also at increased risk for depressive disorders. Given debate about the ecological validity of laboratory measures of EF, we investigated the relationship between depression diagnoses and symptoms and EF as measured by both rating scales and tests in a sample of adults referred for evaluation of adult ADHD. Method Data from two groups of adults recruited from an ADHD specialty clinic were analyzed together: Adults diagnosed with ADHD (N=146) and a clinical control group of adults referred for adult ADHD assessment but not diagnosed with the disorder ADHD (N=97). EF was assessed using a rating scale of EF deficits in daily life and a battery of tests tapping various EF constructs. Depression was assessed using current and lifetime SCID diagnoses (major depression, dysthymia) and self-report symptom ratings. Results EF as assessed via rating scale predicted depression across measures even when controlling for current anxiety and impairment. Self-Management to Time and Self-Organization and Problem-Solving showed the most robust relationships. EF tests were weakly and inconsistently related to depression measures. Limitations Prospective studies are needed to rigorously evaluate EF problems as true risk factors for depressive onset. Conclusions EF problems in everyday life were important predictors of depression. Researchers and clinicians should consistently assess for the ADHD-depression comorbidity. Clinicians should consider incorporating strategies to address EF deficits when treating people with depression. PMID:22858220

  15. Heterologous Expression of Der Homologs in an Escherichia coli der Mutant and Their Functional Complementation

    PubMed Central

    Choi, Eunsil; Kang, Nalae; Jeon, Young; Pai, Hyun-Sook

    2016-01-01

    clarified. In this study, we used five Der homologs from gammaproteobacteria, pathogenic bacteria, and an extremophile to elucidate their conserved function in 50S ribosomal subunit biogenesis. Among them, Klebsiella pneumoniae and Salmonella enterica serovar Typhimurium Der homologs implicated the participation of Der in ribosome assembly in E. coli. Our results show that the linker and C-terminal regions of Der homologs are correlated with its functional complementation in E. coli der mutants, suggesting that they are involved in species-specific recognition or interaction with 50S ribosomal subunits. PMID:27297882

  16. Multi-level evaluation of Escherichia coli polyphosphate related mutants using global transcriptomic, proteomic and phenomic analyses.

    PubMed

    Varas, Macarena; Valdivieso, Camilo; Mauriaca, Cecilia; Ortíz-Severín, Javiera; Paradela, Alberto; Poblete-Castro, Ignacio; Cabrera, Ricardo; Chávez, Francisco P

    2017-04-01

    Polyphosphate (polyP) is a linear biopolymer found in all living cells. In bacteria, mutants lacking polyphosphate kinase 1 (PPK1), the enzyme responsible for synthesis of most polyP, have many structural and functional defects. However, little is known about the causes of these pleiotropic alterations. The link between ppk1 deletion and those numerous phenotypes observed can be the result of complex molecular interactions that can be elucidated via a systems biology approach. By integrating different omics levels (transcriptome, proteome and phenome), we described the functioning of various metabolic pathways among Escherichia coli polyphosphate mutant strains (Δppk1, Δppx, and ΔpolyP). Bioinformatic analyses reveal the complex metabolic and regulatory bases of the phenotypes unique to polyP mutants. Our results suggest that during polyP deficiency (Δppk1 mutant), metabolic pathways needed for energy supply are up-regulated, including fermentation, aerobic and anaerobic respiration. Transcriptomic and q-proteomic contrasting changes between Δppk1 and Δppx mutant strains were observed in those central metabolic pathways and confirmed by using Phenotypic microarrays. In addition, our results suggest a regulatory connection between polyP, second messenger metabolism, alternative Sigma/Anti-Sigma factors and type-II toxin-antitoxin (TA) systems. We suggest a broader role for polyP via regulation of ATP-dependent proteolysis of type II toxin-antitoxin system and alternative Sigma/Anti-Sigma factors, that could explain the multiple structural and functional deficiencies described due to alteration of polyP metabolism. Understanding the interplay of polyP in bacterial metabolism using a systems biology approach can help to improve design of novel antimicrobials toward pathogens. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Isolation of temperature-sensitive mutants of 16 S rRNA in Escherichia coli.

    PubMed

    Triman, K; Becker, E; Dammel, C; Katz, J; Mori, H; Douthwaite, S; Yapijakis, C; Yoast, S; Noller, H F

    1989-10-20

    Temperature-sensitive mutants have been isolated following hydroxylamine mutagenesis of a plasmid containing Escherichia coli rRNA genes carrying selectable markers for spectinomycin resistance (U1192 in 16 S rRNA) and erythromycin resistance (G2058 in 23 S rRNA). These antibiotic resistance alleles, originally identified by Morgan and co-workers, enable us to follow expression of cloned rRNA genes in vivo. Recessive mutations causing the loss of expression of the cloned 16 S rRNA gene were identified by the loss of the ability of cells to survive on media containing spectinomycin. The mutations were localized by in vitro restriction fragment replacement followed by in vivo marker rescue and were identified by DNA sequence analysis. We report here seven single-base alterations in 16 S rRNA (A146, U153, A350, A359, A538, A1292 and U1293), five of which produce temperature-sensitive spectinomycin resistance and two that produce unconditional loss of resistance. In each case, loss of ribosomal function can be accounted for by disruption of base-pairing in the secondary structure of 16 S rRNA. For the temperature-sensitive mutants, there is a lag period of about two generations between a shift to the restrictive temperature and cessation of growth, implying that the structural defects cause impairment of ribosome assembly.

  18. Properties of uvrE mutants of Escherichia coli K12. Part 1. Effects of uv irradiation on DNA metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vansluis, C.A.; Mattern, I.E.; Paterson, M.C.

    1974-01-01

    Escherichia coli K12 uvrE is a mutator strain which is highly sensitive to ultraviolet radiation. In an attempt to determine the underlying molecular basis for the UV sensitivity, a mutant and an isogenic wild type strain were compared with regard to several metabolic responses to 254 nm radiation. The introduction of single strand breaks into intracellular DNA after irradiation is normal; however, the rate of excision of pyrimidine dimers as well as of DNA degradation and final rejoining of the strand breaks is lower in the mutant as compared to the repair proficient strain. These data suggest that the uvrEmore » gene product may be involved in a reaction between the incision and excision steps in the excision repair process. (Author) (GRA)« less

  19. Novel Escherichia coli RF1 mutants with decreased translation termination activity and increased sensitivity to the cytotoxic effect of the bacterial toxins Kid and RelE.

    PubMed

    Diago-Navarro, Elizabeth; Mora, Liliana; Buckingham, Richard H; Díaz-Orejas, Ramón; Lemonnier, Marc

    2009-01-01

    Novel mutations in prfA, the gene for the polypeptide release factor RF1 of Escherichia coli, were isolated using a positive genetic screen based on the parD (kis, kid) toxin-antitoxin system. This original approach allowed the direct selection of mutants with altered translational termination efficiency at UAG codons. The isolated prfA mutants displayed a approximately 10-fold decrease in UAG termination efficiency with no significant changes in RF1 stability in vivo. All three mutations, G121S, G301S and R303H, were situated close to the nonsense codon recognition site in RF1:ribosome complexes. The prfA mutants displayed increased sensitivity to the RelE toxin encoded by the relBE system of E. coli, thus providing in vivo support for the functional interaction between RF1 and RelE. The prfA mutants also showed increased sensitivity to the Kid toxin. Since this toxin can cleave RNA in a ribosome-independent manner, this result was not anticipated and provided first evidence for the involvement of RF1 in the pathway of Kid toxicity. The sensitivity of the prfA mutants to RelE and Kid was restored to normal levels upon overproduction of the wild-type RF1 protein. We discuss these results and their utility for the design of novel antibacterial strategies in the light of the recently reported structure of ribosome-bound RF1.

  20. Novel Escherichia coli RF1 mutants with decreased translation termination activity and increased sensitivity to the cytotoxic effect of the bacterial toxins Kid and RelE

    PubMed Central

    Diago-Navarro, Elizabeth; Mora, Liliana; Buckingham, Richard H; Díaz-Orejas, Ramón; Lemonnier, Marc

    2008-01-01

    Novel mutations in prfA, the gene for the polypeptide release factor RF1 of Escherichia coli, were isolated using a positive genetic screen based on the parD (kis, kid) toxin–antitoxin system. This original approach allowed the direct selection of mutants with altered translational termination efficiency at UAG codons. The isolated prfA mutants displayed a ∼10-fold decrease in UAG termination efficiency with no significant changes in RF1 stability in vivo. All three mutations, G121S, G301S and R303H, were situated close to the nonsense codon recognition site in RF1:ribosome complexes. The prfA mutants displayed increased sensitivity to the RelE toxin encoded by the relBE system of E. coli, thus providing in vivo support for the functional interaction between RF1 and RelE. The prfA mutants also showed increased sensitivity to the Kid toxin. Since this toxin can cleave RNA in a ribosome-independent manner, this result was not anticipated and provided first evidence for the involvement of RF1 in the pathway of Kid toxicity. The sensitivity of the prfA mutants to RelE and Kid was restored to normal levels upon overproduction of the wild-type RF1 protein. We discuss these results and their utility for the design of novel antibacterial strategies in the light of the recently reported structure of ribosome-bound RF1. PMID:19019162

  1. Tuberculate fruit gene Tu encodes a C2 H2 zinc finger protein that is required for the warty fruit phenotype in cucumber (Cucumis sativus L.).

    PubMed

    Yang, Xuqin; Zhang, Weiwei; He, Huanle; Nie, Jingtao; Bie, Beibei; Zhao, Junlong; Ren, Guoliang; Li, Yue; Zhang, Dabing; Pan, Junsong; Cai, Run

    2014-06-01

    Cucumber fruits that have tubercules and spines (trichomes) are known to possess a warty (Wty) phenotype. In this study, the tuberculate fruit gene Tu was identified by map-based cloning, and was found to encode a transcription factor (TF) with a single C2 H2 zinc finger domain. Tu was identified in all 38 Wty lines examined, and was completely absent from all 56 non-warty (nWty) lines. Cucumber plants transgenic for Tu (TCP) revealed that Tu was required for the Wty fruit phenotype. Subcellular localization showed that the fusion protein GFP-Tu was localized mainly to the nucleus. Based on analyses of semi-quantitative and quantitative reverse transcription polymerase chain reaction (RT-PCR), and mRNA in situ hybridization, we found that Tu was expressed specifically in fruit spine cells during development of fruit tubercules. Moreover, cytokinin (CTK) content measurements and cytological observations in Wty and nWty fruits revealed that the Wty fruit phenotype correlated with high endogenous CTK concentrations. As a result of further analyses on the transcriptomic profile of the nWty fruit epidermis and TCP fruit warts, expression of CTK-associated genes, and hormone content in nWty fruit epidermis, Wty fruit warts and epidermis, and TCP fruit warts and epidermis, we found that Tu probably promoted CTK biosynthesis in fruit warts. Here we show that Tu could not be expressed in the glabrous and tubercule-free mutant line gl that contained Tu, this result that futher confirmed the epistatic effect of the trichome (spine) gene Gl over Tu. Taken together, these data led us to propose a genetic pathway for the Wty fruit trait that could guide future mechanistic studies. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  2. Giant Cells of Escherichia coli

    PubMed Central

    Adler, Howard I.; Terry, Claude E.; Hardigree, Alice A.

    1968-01-01

    A mutant strain of Escherichia coli K-12 produced amorphous cells when grown in a variety of media. The lon− allele, known to increase the radiation sensitivity of the cytokinesis mechanism, was introduced into the mutant by means of conjugation. Cells of this recombinant strain grew, after exposure to radiation, into giant amorphous cells, approximately 500 to 1,000 times the volume of a normal E. coli cell. These giant cells are analogous to the filaments formed after the irradiation of lon− rod-shaped cells. Images PMID:4866096

  3. Escherichia coli pleiotropic mutant that reduces amounts of several periplasmic and outer membrane proteins.

    PubMed

    Wanner, B L; Sarthy, A; Beckwith, J

    1979-10-01

    We have isolated a mutant of Escherichia coli K-12 that is reduced from 6- to 10-fold in the amount of alkaline phosphatase found in the periplasmic space. The reduced synthesis is not due to effects at the level of transcription regulation of the phoA gene, the structural gene for the enzyme. In addition, the mutation (termed perA) responsible for this phenotype results in reduced amounts of possibly six or more other periplasmic proteins and at least three outer membrane proteins. One of the outer membrane proteins affected is protein IA (D. L. Diedrich, A. O. Summers, and C. A. Schnaitman, J. Bacteriol. 131:598-607, 1977). Although other possibilities exist, one explanation for the phenotype of the perA mutation is that it affects the cell's secretory apparatus.

  4. Cytotoxic Effect Associated with Overexpression of QNR Proteins in Escherichia coli.

    PubMed

    Machuca, Jesús; Diaz de Alba, Paula; Recacha, Esther; Pascual, Álvaro; Rodriguez-Martinez, José Manuel

    2017-10-01

    The objective was to evaluate the cytotoxic effect associated with overexpression of multiple Qnr-like plasmid-mediated quinolone resistance (PMQR) mechanisms in Escherichia coli. Coding regions of different PMQR genes (qnrA1, qnrB1, qnrC, qnrD1, qnrS1, and qepA2) and efsqnr were cloned into pET29a(+) vector and overexpressed in E. coli BL21. E. coli BL21 with and without an empty pET29a(+) vector were used as controls. The cytotoxic effect associated with PMQR mechanism overexpression was determined by transmission electron microscopy and viability assays. Overexpressed qnr genes produced loss of bacterial viability in the range of 77-97% compared with the controls, comparable with loss of viability associated with EfsQnr overexpression (97%). No loss of viability was observed in E. coli overexpressing QepA2. In transmission electron microscopy assays, signs of cytotoxicity were observed in E. coli cells overexpressing EfsQnr and Qnr proteins (30-45% of the bacterial population showed morphological changes). Morphological changes were observed in less than 5% of bacterial populations from the control strains and E. coli overexpressing QepA2. Overexpression of qnr genes produces a cytotoxic cellular and structural effect in E. coli, the magnitude of which varies depending on the family of Qnr proteins.

  5. Catabolic regulation analysis of Escherichia coli and its crp, mlc, mgsA, pgi and ptsG mutants

    PubMed Central

    2011-01-01

    Background Most bacteria can use various compounds as carbon sources. These carbon sources can be either co-metabolized or sequentially metabolized, where the latter phenomenon typically occurs as catabolite repression. From the practical application point of view of utilizing lignocellulose for the production of biofuels etc., it is strongly desirable to ferment all sugars obtained by hydrolysis from lignocellulosic materials, where simultaneous consumption of sugars would benefit the formation of bioproducts. However, most organisms consume glucose prior to consumption of other carbon sources, and exhibit diauxic growth. It has been shown by fermentation experiments that simultaneous consumption of sugars can be attained by ptsG, mgsA mutants etc., but its mechanism has not been well understood. It is strongly desirable to understand the mechanism of metabolic regulation for catabolite regulation to improve the performance of fermentation. Results In order to make clear the catabolic regulation mechanism, several continuous cultures were conducted at different dilution rates of 0.2, 0.4, 0.6 and 0.7 h-1 using wild type Escherichia coli. The result indicates that the transcript levels of global regulators such as crp, cra, mlc and rpoS decreased, while those of fadR, iclR, soxR/S increased as the dilution rate increased. These affected the metabolic pathway genes, which in turn affected fermentation result where the specific glucose uptake rate, the specific acetate formation rate, and the specific CO2 evolution rate (CER) were increased as the dilution rate was increased. This was confirmed by the 13C-flux analysis. In order to make clear the catabolite regulation, the effect of crp gene knockout (Δcrp) and crp enhancement (crp+) as well as mlc, mgsA, pgi and ptsG gene knockout on the metabolism was then investigated by the continuous culture at the dilution rate of 0.2 h-1 and by some batch cultures. In the case of Δcrp (and also Δmlc) mutant, TCA cycle and

  6. Blocking by the carcinogen, L-ethionine, of SOS functions in a tif-1 mutant of Escherichia coli B/r.

    PubMed

    Wiesner, R; Troll, W

    1981-11-01

    In Escherichia coli, DNA damage by carcinogenic agents results in the coordinate expression of a diversity of functions (SOS functions), many of which are thermally inducible without any damage to DNA in a tif-1 mutant. These include prophage induction, filamentous growth, and an error-prone DNA repair activity, which is responsible for ultraviolet-induced mutagenesis. Ethionine causes hepatic carcinoma in rats after prolonged feeding but is not a mutagen in the Ames test. The present study shows that 10 mM ethionine prevents the thermal induction of lambda-prophage in a tif-1 derivative of E. coli. The enhancement of mutation, which normally occurs at high temperature after a low dose of ultraviolet light, is also blocked by ethionine. Ethionine does not block, to any appreciable extent, the incorporation of radioactive precursors into RNA, DNA, or protein.

  7. Differential requirements of two recA mutants for constitutive SOS expression in Escherichia coli K-12.

    PubMed

    Long, Jarukit Edward; Renzette, Nicholas; Centore, Richard C; Sandler, Steven J

    2008-01-01

    Repairing DNA damage begins with its detection and is often followed by elicitation of a cellular response. In E. coli, RecA polymerizes on ssDNA produced after DNA damage and induces the SOS Response. The RecA-DNA filament is an allosteric effector of LexA auto-proteolysis. LexA is the repressor of the SOS Response. Not all RecA-DNA filaments, however, lead to an SOS Response. Certain recA mutants express the SOS Response (recA(C)) in the absence of external DNA damage in log phase cells. Genetic analysis of two recA(C) mutants was used to determine the mechanism of constitutive SOS (SOS(C)) expression in a population of log phase cells using fluorescence of single cells carrying an SOS reporter system (sulAp-gfp). SOS(C) expression in recA4142 mutants was dependent on its initial level of transcription, recBCD, recFOR, recX, dinI, xthA and the type of medium in which the cells were grown. SOS(C) expression in recA730 mutants was affected by none of the mutations or conditions tested above. It is concluded that not all recA(C) alleles cause SOS(C) expression by the same mechanism. It is hypothesized that RecA4142 is loaded on to a double-strand end of DNA and that the RecA filament is stabilized by the presence of DinI and destabilized by RecX. RecFOR regulate the activity of RecX to destabilize the RecA filament. RecA730 causes SOS(C) expression by binding to ssDNA in a mechanism yet to be determined.

  8. A paired comparison of tuberculin skin test results in health care workers using 5 TU and 10 TU tuberculin

    PubMed Central

    Stuart, R.; Bennett, N.; Forbes, A.; Grayson, M

    2000-01-01

    BACKGROUND—Historically, 10 TU has been employed in Australia and the United Kingdom to perform the tuberculin skin test (TST). However, this makes it difficult to compare the rates of TST positivity with other countries such as the USA who use 5 TU. To assess the impact of the dose of tuberculin on the TST a comparison was made of TST responses in health care workers given a TST with both 5 and 10 TU.
METHODS—Two TSTs were performed simultaneously in each health care worker using 5 and 10 TU. Each dose was randomly assigned in a blinded manner to the right or left forearm and read at 48-72 hours by a single nurse who was blinded to the assignment of the 5 and 10 TU doses.
RESULTS—A total of 128 health care workers were enrolled, 119 (93%) of whom had a past history of BCG vaccination. The overall mean difference in paired reaction sizes for the two doses was 1.5 mm with 95% limits of agreement of -3.6 to 6.5 mm.
CONCLUSION—A slightly larger TST reading was seen with 10 TU than with 5 TU. The mean difference of 1.5 mm between the two doses should be considered when comparing rates of TST positivity between countries who use different doses of tuberculin to perform the tuberculin skin test.

 PMID:10899248

  9. Detection of Iss and Bor on the surface of Escherichia coli.

    PubMed

    Lynne, A M; Skyberg, J A; Logue, C M; Nolan, L K

    2007-03-01

    To confirm the presence of Iss and Bor on the outer membrane of Escherichia coli using Western blots of outer membrane protein (OMP) preparations and fluorescence microscopy, and explore the use of fluorescence microscopy for the detection of avian pathogenic E. coli (APEC) and diagnosis of avian colibacillosis. Knockout mutants of iss and bor were created using a one-step recombination of target genes with PCR-generated antibiotic resistance cassettes. Anti-Iss monoclonal antibodies (Mabs) that cross-react with Bor protein were used to study the mutants relative to the wild-type organism. These Mabs were used as reagents to study OMP preparations of the mutants with Western blotting and intact E. coli cells with fluorescence microscopy. Iss and Bor were detected in Western blots of OMP preparations of the wild type. Also, Iss was detected on Deltabor mutants, and Bor was detected on Deltaiss mutants. Iss and Bor were also detected on the surface of the intact, wild-type cells and mutants using fluorescence microscopy. These results demonstrate that Bor and Iss are exposed on E. coli's outer membrane where they may be recognized by the host's immune system. To our knowledge, this is the first report confirming Iss' location in the outer membrane of an E. coli isolate. Such surface exposure has implications for the use of these Mabs for APEC detection and colibacillosis control.

  10. Correlation of Resistance to Proflavine and Penicillin in Escherichia coli

    PubMed Central

    McKellar, Robin C.; McKenzie, Colin N.; Kushner, Donn J.

    1976-01-01

    A number of proflavine (PF)-resistant mutants of Escherichia coli B were also resistant to penicillin and cephalothin. Mutants resistant to 1.0 mM PF were 10 times more penicillin resistant than were the PF-susceptible, wild-type cells. Single-step mutants selected for resistance to either PF or penicillin were also resistant to the other drug. None of the resistant mutants tested possessed β-lactamase activity. These results suggest that resistance to PF and penicillin in E. coli B may be due to permeability changes in the cell envelope. PMID:791110

  11. Quinolone-resistant gyrase mutants demonstrate decreased susceptibility to triclosan.

    PubMed

    Webber, Mark A; Buckner, Michelle M C; Redgrave, Liam S; Ifill, Gyles; Mitchenall, Lesley A; Webb, Carly; Iddles, Robyn; Maxwell, Anthony; Piddock, Laura J V

    2017-10-01

    Cross-resistance between antibiotics and biocides is a potentially important driver of MDR. A relationship between susceptibility of Salmonella to quinolones and triclosan has been observed. This study aimed to: (i) investigate the mechanism underpinning this; (ii) determine whether the phenotype is conserved in Escherichia coli; and (iii) evaluate the potential for triclosan to select for quinolone resistance. WT E. coli, Salmonella enterica serovar Typhimurium and gyrA mutants were used. These were characterized by determining antimicrobial susceptibility, DNA gyrase activity and sensitivity to inhibition. Expression of stress response pathways (SOS, RpoS, RpoN and RpoH) was measured, as was the fitness of mutants. The potential for triclosan to select for quinolone resistance was determined. All gyrase mutants showed increased triclosan MICs and altered supercoiling activity. There was no evidence for direct interaction between triclosan and gyrase. Identical substitutions in GyrA had different impacts on supercoiling in the two species. For both, there was a correlation between altered supercoiling and expression of stress responses. This was more marked in E. coli, where an Asp87Gly GyrA mutant demonstrated greatly increased fitness in the presence of triclosan. Exposure of parental strains to low concentrations of triclosan did not select for quinolone resistance. Our data suggest gyrA mutants are less susceptible to triclosan due to up-regulation of stress responses. The impact of gyrA mutation differs between E. coli and Salmonella. The impacts of gyrA mutation beyond quinolone resistance have implications for the fitness and selection of gyrA mutants in the presence of non-quinolone antimicrobials. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. A genome-scale Escherichia coli kinetic metabolic model k-ecoli457 satisfying flux data for multiple mutant strains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khodayari, Ali; Maranas, Costas D.

    Kinetic models of metabolism at a genome scale that faithfully recapitulate the effect of multiple genetic interventions would be transformative in our ability to reliably design novel overproducing microbial strains. Here, we introduce k-ecoli457, a genome-scale kinetic model of Escherichia coli metabolism that satisfies fluxomic data for wild-type and 25 mutant strains under different substrates and growth conditions. The k-ecoli457 model contains 457 model reactions, 337 metabolites and 295 substrate-level regulatory interactions. Parameterization is carried out using a genetic algorithm by simultaneously imposing all available fluxomic data (about 30 measured fluxes per mutant). Furthermore, the Pearson correlation coefficient between experimentalmore » data and predicted product yields for 320 engineered strains spanning 24 product metabolites is 0.84. This is substantially higher than that using flux balance analysis, minimization of metabolic adjustment or maximization of product yield exhibiting systematic errors with correlation coefficients of, respectively, 0.18, 0.37 and 0.47.« less

  13. A genome-scale Escherichia coli kinetic metabolic model k-ecoli457 satisfying flux data for multiple mutant strains

    DOE PAGES

    Khodayari, Ali; Maranas, Costas D.

    2016-12-20

    Kinetic models of metabolism at a genome scale that faithfully recapitulate the effect of multiple genetic interventions would be transformative in our ability to reliably design novel overproducing microbial strains. Here, we introduce k-ecoli457, a genome-scale kinetic model of Escherichia coli metabolism that satisfies fluxomic data for wild-type and 25 mutant strains under different substrates and growth conditions. The k-ecoli457 model contains 457 model reactions, 337 metabolites and 295 substrate-level regulatory interactions. Parameterization is carried out using a genetic algorithm by simultaneously imposing all available fluxomic data (about 30 measured fluxes per mutant). Furthermore, the Pearson correlation coefficient between experimentalmore » data and predicted product yields for 320 engineered strains spanning 24 product metabolites is 0.84. This is substantially higher than that using flux balance analysis, minimization of metabolic adjustment or maximization of product yield exhibiting systematic errors with correlation coefficients of, respectively, 0.18, 0.37 and 0.47.« less

  14. The growth of Staphylococcus aureus and Escherichia coli in low-direct current electric fields.

    PubMed

    Zituni, Dunya; Schütt-Gerowitt, Heidi; Kopp, Marion; Krönke, Martin; Addicks, Klaus; Hoffmann, Christian; Hellmich, Martin; Faber, Franz; Niedermeier, Wilhelm

    2014-03-01

    Electrical potentials up to 800 mV can be observed between different metallic dental restorations. These potentials produce fields in the mouth that may interfere with microbial communities. The present study focuses on the impact of different electric field strengths (EFS) on the growth of Staphylococcus aureus (ATCC 25923) and Escherichia coli (ATCC 25922) in vitro. Cultures of S. aureus and E. coli in fluid and gel medium were exposed to different EFS. Effects were determined by calculation of viable counts and measurement of inhibition zones. In gel medium, anodic inhibition zones for S. aureus were larger than those for E. coli at all field strength levels. In fluid medium, the maximum decrease in the viable count of S. aureus cells was at 10 V⋅m(-1). Field-treated S. aureus cells presented ruptured cell walls and disintegrated cytoplasm. Conclusively, S. aureus is more sensitive to increasing electric field strength than E. coli.

  15. An active site mutant of Escherichia coli cyclopropane fatty acid synthase forms new non-natural fatty acids providing insights on the mechanism of the enzymatic reaction.

    PubMed

    E, Guangqi; Drujon, Thierry; Correia, Isabelle; Ploux, Olivier; Guianvarc'h, Dominique

    2013-12-01

    We have produced and purified an active site mutant of the Escherichia coli cyclopropane fatty acid synthase (CFAS) by replacing the strictly conserved G236 within cyclopropane synthases, by a glutamate residue, which corresponds to E146 of the homologous mycolic acid methyltransferase, Hma, producing hydroxymethyl mycolic acids. The G236E CFAS mutant had less than 1% of the in vitro activity of the wild type enzyme. We expressed the G236E CFAS mutant in an E. coli (DE3) strain in which the chromosomal cfa gene had been deleted. After extraction of phospholipids and conversion into the corresponding fatty acid methyl esters (FAMEs), we observed the formation of cyclopropanated FAMEs suggesting that the mutant retained some of the normal activity in vivo. However, we also observed the formation of new C17 methyl-branched unsaturated FAMEs whose structures were determined using GC/MS and NMR analyses. The double bond was located at different positions 8, 9 or 10, and the methyl group at position 10 or 9. Thus, this new FAMEs are likely arising from a 16:1 acyl chain of a phospholipid that had been transformed by the G236E CFAS mutant in vivo. The reaction catalyzed by this G236E CFAS mutant thus starts by the methylation of the unsaturated acyl chain at position 10 or 9 yielding a carbocation at position 9 or 10 respectively. It follows then two competing steps, a normal cyclopropanation or hydride shift/elimination events giving different combinations of alkenes. This study not only provides further evidence that cyclopropane synthases (CSs) form a carbocationic intermediate but also opens the way to CSs engineering for the synthesis of non-natural fatty acids. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  16. Assessing stress responses to atmospheric cold plasma exposure using Escherichia coli knock-out mutants.

    PubMed

    Han, L; Boehm, D; Patil, S; Cullen, P J; Bourke, P

    2016-08-01

    This study investigated the effect of atmospheric cold plasma (ACP) exposure-induced stress on microbial inactivation patterns and the regulation of genes involved in the microbial stress response in conjunction with key processing parameters of exposure time and post-treatment storage time. Cell suspensions of Escherichia coli BW 25113 and its isogenic knock-out mutants in rpoS, soxR, soxS, oxyR and dnaK genes were treated with high-voltage ACP in a sealed package for 1, 3 and 5 min followed by 0-, 1- and 24-h post-treatment storage. Reactive oxygen species (ROS) densities and colony formation were determined. ΔrpoS strain showed higher microbial reduction and greater cell permeability than other mutants, while ΔoxyR only showed this effect after 5 min of treatment. With increased post-treatment storage time, ΔsoxS and ΔsoxR had increased sensitivity and resistance respectively. ΔdnaK cell suspensions had much higher ROS than other strains and showed increased sensitivity with 24 h post-treatment storage. RpoS and oxyR genes have both short-term and long-term regulatory effects under plasma stress. However, knocking out dnaK gene had an immediate response on ROS scavenging and long-term repairing mechanisms. ΔsoxR and ΔsoxS had different responses to ACP treatment with the increase in post-treatment time in relation to clearance of reactive species implying the different characteristics and functions as subunits. By comparing the response of mutants under ACP exposure to key processing parameters, the mechanism of microbial inactivation was partly revealed with respect to cellular regulation and repairing genes. © 2016 The Society for Applied Microbiology.

  17. The γ-subunit rotation and torque generation in F1-ATPase from wild-type or uncoupled mutant Escherichia coli

    PubMed Central

    Omote, Hiroshi; Sambonmatsu, Noriko; Saito, Kiwamu; Sambongi, Yoshihiro; Iwamoto-Kihara, Atsuko; Yanagida, Toshio; Wada, Yoh; Futai, Masamitsu

    1999-01-01

    The rotation of the γ-subunit has been included in the binding-change mechanism of ATP synthesis/hydrolysis by the proton ATP synthase (FOF1). The Escherichia coli ATP synthase was engineered for rotation studies such that its ATP hydrolysis and synthesis activity is similar to that of wild type. A fluorescently labeled actin filament connected to the γ-subunit of the F1 sector rotated on addition of ATP. This progress enabled us to analyze the γM23K (the γ-subunit Met-23 replaced by Lys) mutant, which is defective in energy coupling between catalysis and proton translocation. We found that the F1 sector produced essentially the same frictional torque, regardless of the mutation. These results suggest that the γM23K mutant is defective in the transformation of the mechanical work into proton translocation or vice versa. PMID:10393898

  18. A mutant phosphofructokinase produces a futile cycle during gluconeogenesis in Escherichia coli.

    PubMed

    Torres, J C; Guixé, V; Babul, J

    1997-11-01

    Strains of Escherichia coli bearing different forms of phosphofructokinase were used to assess the occurrence of futile cycling in cell resuspensions supplied with glycerol as gluconeogenic carbon source. A model was used to simulate results of different kinds of experiments for different levels of futile cycle. The main predictions of the model were experimentally confirmed in a strain with a mutant phosphofructokinase-2 (phosphofructokinase-2*) which is not inhibited by MgATP. The intracellular fructose 1, 6-bisphosphate concentration reaches significantly higher levels in the mutant-bearing strain than in strains with either phosphofructokinase-1 or -2. Also, this strain showed a higher rate and level of in vivo radioactive labelling of fructose 1, 6-bisphosphate, from a trace of [U-14C]glucose supplied during gluconeogenesis, indicating higher kinase activity in these conditions. Cell resuspensions of the mutant-bearing strain produced higher levels of radioactively labelled CO2 when supplied with [U-14C]glycerol as the only carbon source. Simultaneously, fewer glycerol carbons were incorporated into HClO4-insoluble macromolecules. Finally, radioactive CO2 output was measured in resuspensions supplied with glycerol as the major carbon source with traces of either [1-14C]glucose or [6-14C]glucose. It was found that, whereas in the strains with either of the wild-type phosphofructokinase isoenzymes, radioactive CO2 output from [1-14C]glucose was higher than with [6-14C]glucose, the reverse is found for the strain with phosphofructokinase-2*. This result also agrees with the corresponding prediction of the model. Using the radioactivity flux rates predicted by the model, an explanation linking the futile cycle to the differential labelling of CO2 is advanced. Finally, on the basis of these results it is proposed that strains bearing phosphofructokinase-2* sustain higher rates of futile cycling during gluconeogenesis than strains bearing either of the wild

  19. cDNA cloning of Brassica napus malonyl-CoA:ACP transacylase (MCAT) (fab D) and complementation of an E. coli MCAT mutant.

    PubMed

    Simon, J W; Slabas, A R

    1998-09-18

    The GenBank database was searched using the E. coli malonyl CoA:ACP transacylase (MCAT) sequence, for plant protein/cDNA sequences corresponding to MCAT, a component of plant fatty acid synthetase (FAS), for which the plant cDNA has not been isolated. A 272-bp Zea mays EST sequence (GenBank accession number: AA030706) was identified which has strong homology to the E. coli MCAT. A PCR derived cDNA probe from Zea mays was used to screen a Brassica napus (rape) cDNA library. This resulted in the isolation of a 1200-bp cDNA clone which encodes an open reading frame corresponding to a protein of 351 amino acids. The protein shows 47% homology to the E. coli MCAT amino acid sequence in the coding region for the mature protein. Expression of a plasmid (pMCATrap2) containing the plant cDNA sequence in Fab D89, an E. coli mutant, in MCAT activity restores growth demonstrating functional complementation and direct function of the cloned cDNA. This is the first functional evidence supporting the identification of a plant cDNA for MCAT.

  20. Organization of K88ac-encoded polypeptides in the Escherichia coli cell envelope: use of minicells and outer membrane protein mutants for studying assembly of pili.

    PubMed

    Dougan, G; Dowd, G; Kehoe, M

    1983-01-01

    Escherichia coli K-12 minicells, harboring recombinant plasmids encoding polypeptides involved in the expression of K88ac adhesion pili on the bacterial cell surface, were labeled with [35S]methionine and fractionated by a variety of techniques. A 70,000-dalton polypeptide, the product of the K88ac adhesion cistron adhA, was primarily located in the outer membrane of minicells, although it was less clearly associated with this membrane than the classical outer membrane proteins OmpA and matrix protein. Two polypeptides of molecular weights 26,000 and 17,000 (the products of adhB and adhC, respectively) were located in significant amounts in the periplasmic space. The 29,000-dalton polypeptide was shown to be processed in E. coli minicells. The 23.500-dalton K88ac pilus subunit (the product of adhD) was detected in both inner and outer membrane fractions. E. coli mutants defective in the synthesis of murein lipoprotein or the major outer membrane polypeptide OmpA were found to express normal amounts of K88ac antigen on the cell surface, whereas expression of the K88ac antigen was greatly reduced in perA mutants. The possible functions of the adh cistron products are discussed.

  1. The Influence of the Toxin/Antitoxin mazEF on Growth and Survival of Listeria monocytogenes under Stress.

    PubMed

    Curtis, Thomas D; Takeuchi, Ippei; Gram, Lone; Knudsen, Gitte M

    2017-01-13

    A major factor in the resilience of Listeria monocytogenes is the alternative sigma factor B (σ B ). Type II Toxin/Antitoxin (TA) systems are also known to have a role in the bacterial stress response upon activation via the ClpP or Lon proteases. Directly upstream of the σ B operon in L. monocytogenes is the TA system mazEF , which can cleave mRNA at UACMU sites. In this study, we showed that the mazEF TA locus does not affect the level of persister formation during treatment with antibiotics in lethal doses, but exerts different effects according to the sub-inhibitory stress added. Growth of a Δ mazEF mutant was enhanced relative to the wildtype in the presence of sub-inhibitory norfloxacin and at 42 °C, but was decreased when challenged with ampicillin and gentamicin. In contrast to studies in Staphylococcus aureus , we found that the mazEF locus did not affect transcription of genes within the σ B operon, but MazEF effected the expression of the σ B -dependent genes opuCA and lmo0880 , with a 0.22 and 0.05 fold change, respectively, compared to the wildtype under sub-inhibitory norfloxacin conditions. How exactly this system operates remains an open question, however, our data indicates it is not analogous to the system of S. aureus , suggesting a novel mode of action for MazEF in L. monocytogenes.

  2. Rapid Evolution of Citrate Utilization by Escherichia coli by Direct Selection Requires citT and dctA

    PubMed Central

    Van Hofwegen, Dustin J.; Hovde, Carolyn J.

    2016-01-01

    ABSTRACT The isolation of aerobic citrate-utilizing Escherichia coli (Cit+) in long-term evolution experiments (LTEE) has been termed a rare, innovative, presumptive speciation event. We hypothesized that direct selection would rapidly yield the same class of E. coli Cit+ mutants and follow the same genetic trajectory: potentiation, actualization, and refinement. This hypothesis was tested with wild-type E. coli strain B and with K-12 and three K-12 derivatives: an E. coli ΔrpoS::kan mutant (impaired for stationary-phase survival), an E. coli ΔcitT::kan mutant (deleted for the anaerobic citrate/succinate antiporter), and an E. coli ΔdctA::kan mutant (deleted for the aerobic succinate transporter). E. coli underwent adaptation to aerobic citrate metabolism that was readily and repeatedly achieved using minimal medium supplemented with citrate (M9C), M9C with 0.005% glycerol, or M9C with 0.0025% glucose. Forty-six independent E. coli Cit+ mutants were isolated from all E. coli derivatives except the E. coli ΔcitT::kan mutant. Potentiation/actualization mutations occurred within as few as 12 generations, and refinement mutations occurred within 100 generations. Citrate utilization was confirmed using Simmons, Christensen, and LeMaster Richards citrate media and quantified by mass spectrometry. E. coli Cit+ mutants grew in clumps and in long incompletely divided chains, a phenotype that was reversible in rich media. Genomic DNA sequencing of four E. coli Cit+ mutants revealed the required sequence of mutational events leading to a refined Cit+ mutant. These events showed amplified citT and dctA loci followed by DNA rearrangements consistent with promoter capture events for citT. These mutations were equivalent to the amplification and promoter capture CitT-activating mutations identified in the LTEE. IMPORTANCE E. coli cannot use citrate aerobically. Long-term evolution experiments (LTEE) performed by Blount et al. (Z. D. Blount, J. E. Barrick, C. J. Davidson, and

  3. Heterologous expression of the human Phosphoenol Pyruvate Carboxykinase (hPEPCK-M) improves hydrogen and ethanol synthesis in the Escherichia coli dcuD mutant when grown in a glycerol-based medium.

    PubMed

    Valle, Antonio; Cabrera, Gema; Cantero, Domingo; Bolivar, Jorge

    2017-03-25

    The production of biodiesel has emerged as an alternative to fossil fuels. However, this industry generates glycerol as a by-product in such large quantities that it has become an environmental problem. The biotransformation of this excess glycerol into other renewable bio-energy sources, like H 2 and ethanol, by microorganisms such as Escherichia coli is an interesting possibility that warrants investigation. In this work we hypothesized that the conversion of oxaloacetate (OAA) to phosphoenolpyruvate (PEP) could be improved by a controlled expression of the human mitochondrial GTP-dependent PEP carboxykinase. This heterologous expression was tested in several E. coli mutant backgrounds with increased availability of C4 intermediates. It was found that this metabolic rewiring improved the synthesis of the target products in several mutants, with the dcuD mutant being the most suitable background for hydrogen and ethanol specific productions and glycerol consumption. These factors increased by 2.46, 1.73 and 1.95 times, respectively, when compared to those obtained for the wild-type strain. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Impairment in Occupational Functioning and Adult ADHD: The Predictive Utility of Executive Function (EF) Ratings Versus EF Tests

    PubMed Central

    Barkley, Russell A.; Murphy, Kevin R.

    2010-01-01

    Attention deficit hyperactivity disorder (ADHD) is associated with deficits in executive functioning (EF). ADHD in adults is also associated with impairments in major life activities, particularly occupational functioning. We investigated the extent to which EF deficits assessed by both tests and self-ratings contributed to the degree of impairment in 11 measures involving self-reported occupational problems, employer reported workplace adjustment, and clinician rated occupational adjustment. Three groups of adults were recruited as a function of their severity of ADHD: ADHD diagnosis (n = 146), clinical controls self-referring for ADHD but not diagnosed with it (n = 97), and community controls (n = 109). Groups were combined and regression analyses revealed that self-ratings of EF were significantly predictive of impairments in all 11 measures of occupational adjustment. Although several tests of EF also did so, they contributed substantially less than did the EF ratings, particularly when analyzed jointly with the ratings. We conclude that EF deficits contribute to the impairments in occupational functioning that occur in conjunction with adult ADHD. Ratings of EF in daily life contribute more to such impairments than do EF tests, perhaps because, as we hypothesize, each assesses a different level in the hierarchical organization of EF as a meta-construct. PMID:20197297

  5. Draft Whole-Genome Sequences of Escherichia fergusonii Strains Isolated from Beef Trim (GTA-EF02), Ground Beef (GTA-EF03), and Chopped Kale (GTA-EF04).

    PubMed

    Manninger, Paul; Koziol, Adam; Carrillo, Catherine D

    2016-04-14

    Escherichia fergusoniiis a Gram-negative, rod-shaped, non-spore-forming member of theEnterobacteriaceaefamily and is a bacterium with both biotechnological applications and implication in human clinical disease. Here, we report the draft genome sequences of three isolates ofE. fergusoniifrom beef trim (GTA-EF02), ground beef (GTA-EF03), and chopped kale (GTA-EF04). Copyright © 2016 Manninger et al.

  6. 40 CFR 264.553 - Temporary Units (TU).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Temporary Units (TU). 264.553 Section 264.553 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED... Provisions for Cleanup § 264.553 Temporary Units (TU). (a) For temporary tanks and container storage areas...

  7. 40 CFR 264.553 - Temporary Units (TU).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Temporary Units (TU). 264.553 Section 264.553 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED... Provisions for Cleanup § 264.553 Temporary Units (TU). (a) For temporary tanks and container storage areas...

  8. Expression of non-toxic mutant of Escherichia coli heat-labile enterotoxin in tobacco chloroplasts.

    PubMed

    Kang, Tae-Jin; Han, So-Chon; Kim, Mi-Young; Kim, Young-Sook; Yang, Moon-Sik

    2004-11-01

    Chloroplast transformation systems offer unique advantages in biotechnology, including high level of foreign gene expression, maternal inheritance, and polycistronic expression. We studied chloroplast expression of LTK63 (change Ser-->Lys at position 63 in the A subunit) which is the mutant of Escherichia coli heat-labile toxin. LTK63 is devoid of any toxic activity, but still retains its mucosal adjuvanticity. The LTK63 was cloned into chloroplast targeting vector and transformed to tobacco chloroplasts by particle bombardment. PCR and Southern blot analyses confirmed stable homologous recombination of the LTK63 gene into the chloroplast genome. The amount of LTK63 protein detected in tobacco chloroplasts was approximately 3.7% of the total soluble protein. The GM1-ganglioside binding assay confirmed that chloroplast-synthesized LTB of LTK63 binds to the intestinal membrane GM1-ganglioside receptor. Thus, the expression of LTK63 in chloroplasts provides a potential route toward the development of a plant-based edible vaccine for high expression system and environmentally friendly approach.

  9. Replacement of Lipopolysaccharide with Free Lipid A Molecules in Escherichia coli Mutants Lacking All Core Sugars

    PubMed Central

    Reynolds, C. Michael; Raetz, Christian R. H.

    2009-01-01

    Escherichia coli mutants deficient in 2-keto-3-deoxy-d-manno-octulosonic acid (Kdo) biosynthesis are conditionally lethal, but their phenotypes are bypassed by certain suppressor mutations or by over-expression of MsbA, the inner membrane flippase for core-lipid A. These strains grow on broth with the tetra-acylated precursor lipid IVA replacing lipopolysaccharide (Meredith, T. C. et al. ACS Chem. Biol. 1, 33–42, 2006). Deletion of kdtA, which encodes the Kdo transferase, is possible under these conditions. We now show that lipid IVA reaches the outer surface of the outer membrane in these strains, as judged by its accessibility to the lipase PagL. On the assumption that MsbA is optimized to transport penta- or hexa-acylated lipid A, we over-expressed the lauroyl or the myristoyl transferase of lipid A biosynthesis, encoded by lpxL and lpxM respectively, and demonstrated that kdtA deletion mutants were also viable in this setting. Although E. coli LpxL is stimulated by the presence of the Kdo-disaccharide in its acceptor substrate, LpxL does slowly acylate lipid IVA. Over-expression of LpxL from a plasmid suppressed the lethality of kdtA deletions on nutrient broth at 30 or 37 °C without the need for MsbA over-production. These strains accumulated penta- and hexa-acylated free lipid A containing a secondary laurate chain, or a laurate and a myristate chain, respectively. Deletion of kdtA in strains over-expressing LpxM accumulated penta-acylated lipid A with a secondary myristate moiety. None of the strains lacking kdtA grew in the presence of bile salts at any temperature or on nutrient broth at 42 °C. Our findings show that the main function of Kdo is to provide the right substrates for the acyltransferases LpxL and LpxM, resulting in the synthesis of penta- and hexa-acylated lipid A, which is optimal for the MsbA flippase. PMID:19754149

  10. Antimicrobial properties and mechanism of volatile isoamyl acetate, a main flavour component of Japanese sake (Ginjo-shu).

    PubMed

    Ando, H; Kurata, A; Kishimoto, N

    2015-04-01

    To evaluate the antimicrobial properties of the main Ginjo-flavour components of sake, volatile isoamyl acetate and isoamyl alcohol. Volatile isoamyl acetate and isoamyl alcohol both inhibited growth of the five yeast and 10 bacterial test strains. The minimum inhibitory dose and minimum bactericidal (fungicidal) dose of isoamyl acetate were higher than those of isoamyl alcohol. Escherichia coli and Acetobacter aceti were markedly sensitive to isoamyl acetate and isoamyl alcohol. In E. coli exposed to isoamyl acetate for 5 h, changes in expression were noted in proteins involved in sugar metabolism (MalE, MglB, TalB and PtsI), tricarboxylic acid cycle (AceA, Pfl and AcnB) and protein synthesis (EF-Tu, EF-G, and GlyS). Expression of acid and alcohol stress-response proteins was altered in E. coli exposed to isoamyl acetate. Esterase activity was detected in E. coli, suggesting that isoamyl acetate was hydrolyzed to acetic acid and isoamyl alcohol. Acetic acid and isoamyl alcohol damaged E. coli cell membranes and inactivated membrane proteins, impairing respiration. Volatile isoamyl acetate and isoamyl alcohol were effective in inactivating various micro-organisms, and antimicrobial mechanism of volatile isoamyl acetate against E. coli was clarified based on proteome analysis. To the best of our knowledge, this is the first report to examine the antimicrobial mechanism of volatile organic compound using proteome analysis combining two-dimensional difference gel electrophoresis with peptide mass fingerprinting. © 2015 The Society for Applied Microbiology.

  11. Linking EfS and Biodiversity? A UK-wide Survey of the Status of Education within Local Biodiversity Action Plans.

    ERIC Educational Resources Information Center

    Young, Jennifer

    2001-01-01

    Explores potential for developing education for sustainability (EfS) through biodiversity planning in the UK based on a survey conducted in April 1999. Concludes that biodiversity practitioners have the tools to deliver EfS through implementation of local biodiversity action plans (LBAPs), the concept allowing close links to Local Agenda 21,…

  12. Myostatin inhibits eEF2K-eEF2 by regulating AMPK to suppress protein synthesis.

    PubMed

    Deng, Zhao; Luo, Pei; Lai, Wen; Song, Tongxing; Peng, Jian; Wei, Hong-Kui

    2017-12-09

    Growth of skeletal muscle is dependent on the protein synthesis, and the rate of protein synthesis is mainly regulated in the stage of translation initiation and elongation. Myostatin, a member of the transforming growth factor-β (TGF-β) superfamily, is a negative regulator of protein synthesis. C2C12 myotubes was incubated with 0, 0.01, 0.1, 1, 2, 3 μg/mL myostatin recombinant protein, and then we detected the rates of protein synthesis by the method of SUnSET. We found that high concentrations of myostatin (2 and 3 μg/mL) inhibited protein synthesis by blocking mTOR and eEF2K-eEF2 pathway, while low concentration of myostatin (0.01, 0.1 and 1 μg/mL) regulated eEF2K-eEF2 pathway activity to block protein synthesis without affected mTOR pathway, and myostatin inhibited eEF2K-eEF2 pathway through regulating AMPK pathway to suppress protein synthesis. It provided a new mechanism for myostatin regulating protein synthesis and treating muscle atrophy. Copyright © 2017. Published by Elsevier Inc.

  13. Isolation of ntrA-like mutants of Azotobacter vinelandii.

    PubMed Central

    Santero, E; Luque, F; Medina, J R; Tortolero, M

    1986-01-01

    A number of chlorate-resistant mutants of Azotobacter vinelandii affected in a general control of nitrogen metabolism were isolated. These mutants could not utilize dinitrogen, nitrate, or nitrite as a nitrogen source. The reason for this inability is that they were simultaneously deficient in nitrogenase and nitrate and nitrite reductase activities. They were complemented by a cosmid carrying a DNA fragment of A. vinelandii able to complement ntrA mutants of Escherichia coli, so they seemed to be ntrA-like mutants. PMID:3009406

  14. Transcutaneous immunization with tetanus toxoid and mutants of Escherichia coli heat-labile enterotoxin as adjuvants elicits strong protective antibody responses.

    PubMed

    Tierney, Rob; Beignon, Anne-Sophie; Rappuoli, Rino; Muller, Sylviane; Sesardic, Dorothea; Partidos, Charalambos D

    2003-09-01

    In this study, the adjuvanticity of 2 nontoxic derivatives (LTK63 and LTR72) of heat-labile enterotoxin of Escherichia coli (LT) was evaluated and was compared with that of a cytosine phosphodiester-guanine (CpG) motif, after transcutaneous immunization with tetanus toxoid (TT). TT plus LTR72 elicited the strongest antibody responses, compared with those elicited by the other vaccines (TT, TT plus LTK63, TT plus CpG, and TT plus LTK63 plus CpG); it neutralized the toxin and conferred full protection after passive transfer in mice. Preexisting immunity to LT mutants did not adversely affect their adjuvant potency. Both LTK63 and LTR72 promoted the induction of IgG1 antibodies. In contrast, mice receiving either CpG motif alone or CpG motif plus LTK63 produced strong IgG2a anti-TT antibody responses. Overall, these findings demonstrate that mutants of enterotoxins with reduced toxicity are effective adjuvants for transcutaneous immunization.

  15. Structure of the OsSERK2 leucine-rich repeat extracellular domain.

    PubMed

    McAndrew, Ryan; Pruitt, Rory N; Kamita, Shizuo G; Pereira, Jose Henrique; Majumdar, Dipali; Hammock, Bruce D; Adams, Paul D; Ronald, Pamela C

    2014-11-01

    Somatic embryogenesis receptor kinases (SERKs) are leucine-rich repeat (LRR)-containing integral membrane receptors that are involved in the regulation of development and immune responses in plants. It has recently been shown that rice SERK2 (OsSERK2) is essential for XA21-mediated resistance to the pathogen Xanthomonas oryzae pv. oryzae. OsSERK2 is also required for the BRI1-mediated, FLS2-mediated and EFR-mediated responses to brassinosteroids, flagellin and elongation factor Tu (EF-Tu), respectively. Here, crystal structures of the LRR domains of OsSERK2 and a D128N OsSERK2 mutant, expressed as hagfish variable lymphocyte receptor (VLR) fusions, are reported. These structures suggest that the aspartate mutation does not generate any significant conformational change in the protein, but instead leads to an altered interaction with partner receptors.

  16. Tetrahydrothiophene 1-oxide as an electron acceptor for Escherichia coli.

    PubMed Central

    Meganathan, R; Schrementi, J

    1987-01-01

    Escherichia coli used tetrahydrothiophene 1-oxide (THTO) as an electron acceptor for anaerobic growth with glycerol as a carbon source; the THTO was reduced to tetrahydrothiophene. Cell extracts also reduced THTO to tetrahydrothiophene in the presence of a variety of electron donors. Chlorate-resistant (chl) mutants (chlA, chlB, chlD, and chlE) were unable to grow with THTO as the electron acceptor. However, growth and THTO reduction by the chlD mutant were restored by high concentrations of molybdate. Similarly, mutants of E. coli that are blocked in the menaquinone (vitamin K2) biosynthetic pathway, i.e., menB, menC, and menD mutants, did not grow with THTO as an electron acceptor. Growth and THTO reduction were restored in these mutants by the presence of appropriate intermediates of the vitamin K biosynthetic pathway. PMID:3294808

  17. Mutant prevention concentrations of four carbapenems against gram-negative rods.

    PubMed

    Credito, Kim; Kosowska-Shick, Klaudia; Appelbaum, Peter C

    2010-06-01

    We tested the propensities of four carbapenems to select for resistant Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii mutants by determining the mutant prevention concentrations (MPCs) for 100 clinical strains with various ss-lactam phenotypes. Among the members of the Enterobacteriaceae family and A. baumannii strains, the MPC/MIC ratios were mostly 2 to 4. In contrast, for P. aeruginosa the MPC/MIC ratios were 4 to > or =16. The MPC/MIC ratios for beta-lactamase-positive K. pneumoniae and E. coli isolates were much higher (range, 4 to >16 microg/ml) than those for ss-lactamase-negative strains.

  18. Loss of Hda activity stimulates replication initiation from I-box, but not R4 mutant origins in Escherichia coli.

    PubMed

    Riber, Leise; Fujimitsu, Kazuyuki; Katayama, Tsutomu; Løbner-Olesen, Anders

    2009-01-01

    Initiation of chromosome replication in Escherichia coli is limited by the initiator protein DnaA associated with ATP. Within the replication origin, binding sites for DnaA associated with ATP or ADP (R boxes) and the DnaA(ATP) specific sites (I-boxes, tau-boxes and 6-mer sites) are found. We analysed chromosome replication of cells carrying mutations in conserved regions of oriC. Cells carrying mutations in DnaA-boxes I2, I3, R2, R3 and R5 as well as FIS and IHF binding sites resembled wild-type cells with respect to origin concentration. Initiation of replication in these mutants occurred in synchrony or with slight asynchrony only. Furthermore, lack of Hda stimulated initiation in all these mutants. The DnaA(ATP) containing complex that leads to initiation can therefore be formed in the absence of several of the origin DnaA binding sites including both DnaA(ATP) specific I-boxes. However, competition between I-box mutant and wild-type origins, revealed a positive role of I-boxes on initiation. On the other hand, mutations affecting DnaA-box R4 were found to be compromised for initiation and could not be augmented by an increase in cellular DnaA(ATP)/DnaA(ADP) ratio. Compared with the sites tested here, R4 therefore seems to contribute to initiation most critically.

  19. Escherichia coli mutants thermosensitive for deoxyribonucleic acid gyrase subunit A: effects on deoxyribonucleic acid replication, transcription, and bacteriophage growth.

    PubMed

    Kreuzer, K N; Cozzarelli, N R

    1979-11-01

    Temperature-sensitive nalA mutants of Escherichia coli have been used to investigate the structure and functions of deoxyribonucleic acid (DNA) gyrase. Extracts of one such mutant (nalA43) had thermosensitive DNA gyrase subunit A activity but normal gyrase subunit B activity, proving definitively that nalA is the structural gene for subunit A. Extracts of a second nalA (Ts) mutant (nalA45) had a 50-fold deficiency of gyrase subunit A activity. The residual DNA supertwisting was catalyzed by the mutant DNA gyrase rather than by a novel supertwisting enzyme. The nalA45(Ts) extract was also deficient in the nalidixic acid target, which is defined as the protein necessary to confer drug sensitivity to in vitro DNA replication directed by a nalidixic acid-resistant mutant extract. Thus, gyrase subunit A and the nalidixic acid target are one and the same protein, the nalA gene product. Shift of the nalA43(Ts) mutant to a nonpermissive temperature resulted in a precipitous decline in the rate of [(3)H]thymidine incorporation, demonstrating an obligatory role of the nalA gene product in DNA replication. The rates of incorporation of [(3)H]uridine pulses and continuously administered [(3)H]uracil were quickly reduced approximately twofold upon temperature shift of the nalA43(Ts) mutant, and therefore some but not all transcription requires the nalA gene product. The thermosensitive growth of bacteriophages phiX174 and T4 in the nalA43(Ts) host shows that these phages depend on the host nalA gene product. In contrast, the growth of phage T7 was strongly inhibited by nalidixic acid but essentially unaffected by the nalA43(Ts) mutation. The inhibition of T7 growth by nalidixic acid was, however, eliminated by temperature inactivation of the nal43 gene product. Therefore, nalidixic acid may block T7 growth by a corruption rather than a simple elimination of the nalidixic acid target. Possible mechanisms for such a corruption are considered, and their relevance to the puzzling

  20. The capsule plays an important role in Escherichia coli K1 interactions with Acanthamoeba.

    PubMed

    Jung, Suk-Yul; Matin, Abdul; Kim, Kwang Sik; Khan, Naveed Ahmed

    2007-03-01

    Escherichia coli K1 is shown to bind to, associate with, invade and survive inside Acanthamoeba, but the precise mechanisms associated with these events are unclear. We have previously shown that outer membrane protein A and lipopolysaccharide are critical bacterial determinants involved in E. coli K1 interactions with Acanthamoeba. Using an isogenic K1 capsule-deletion mutant (lacking the neuDB genes cluster that is necessary for the production of cytoplasmic precursors to the exopolysaccharide capsule), we observed that the capsule modulates and enhances E. coli K1 association and survival inside Acanthamoeba. The capsule-deletion mutant exhibited significantly reduced association compared with the wild type strain, E44. Similarly, the K1 capsule-deletion mutant exhibited limited ability for invasion/uptake by and survival inside Acanthamoeba. Next, we determined whether E. coli K1 survive inside Acanthamoeba during the encystment process and that viable bacteria can be isolated from the mature cysts. Using encystment assays, our findings revealed that E. coli K1, but not its capsule-deletion mutant, exhibit survival inside Acanthamoeba cysts. We believe this is the first demonstration that the K1 capsule plays an important role in E. coli K1 interactions with Acanthamoeba.

  1. Similarity and diversity of translational GTPase factors EF-G, EF4, and BipA: From structure to function.

    PubMed

    Ero, Rya; Kumar, Veerendra; Chen, Yun; Gao, Yong-Gui

    2016-12-01

    EF-G, EF4, and BipA are members of the translation factor family of GTPases with a common ribosome binding mode and GTPase activation mechanism. However, topological variations of shared as well as unique domains ensure different roles played by these proteins during translation. Recent X-ray crystallography and cryo-electron microscopy studies have revealed the structural basis for the involvement of EF-G domain IV in securing the movement of tRNAs and mRNA during translocation as well as revealing how the unique C-terminal domains of EF4 and BipA interact with the ribosome and tRNAs contributing to the regulation of translation under certain conditions. EF-G, EF-4, and BipA are intriguing examples of structural variations on a common theme that results in diverse behavior and function. Structural studies of translational GTPase factors have been greatly facilitated by the use of antibiotics, which have revealed their mechanism of action.

  2. LEE-encoded regulator (Ler) mutants elicit serotype-specific protection, but not cross protection, against attaching and effacing E. coli strains.

    PubMed

    Zhu, C; Feng, S; Yang, Z; Davis, K; Rios, H; Kaper, J B; Boedeker, E C

    2007-02-26

    We previously showed that single dose orogastric immunization with an attenuated regulatory Lee-encoded regulator (ler) mutant of the rabbit enteropathogenic Escherichia coli (REPEC) strain E22 (O103:H2) protected rabbits from fatal infection with the highly virulent parent strain. In the current study we assessed the degree of homologous (serotype-specific) and heterologous (cross-serotype) protection induced by immunization with REPEC ler mutant strains of differing serotypes, or with a prototype strain RDEC-1 (O15:H-) which expresses a full array of ler up-regulated proteins. We constructed an additional ler mutant using RDEC-1 thus, permitting immunization with a ler mutant of either serotype, O15 or O103, followed by challenge with a virulent REPEC strain of the same or different serotypes. Consistent with our previous data, the current study demonstrated that rabbits immunized with a RDEC-1 ler mutant were protected from challenge with virulent RDEC-H19A (RDEC-1 transduced with Shiga toxin-producing phage H19A) of the same serotype. Rabbits immunized with RDEC-1 or E22 derivative ler mutants demonstrated significant increase in serum antibody titers to the respective whole bacterial cells expressing O antigen but not to the LEE-encoded proteins. However, immunization with the ler mutants of either E22 or RDEC-1 failed to protect rabbits from infections with virulent organisms belonging to different serotypes. In contrast, rabbits immunized with the prototype RDEC-1 were cross protected against challenge with the heterologous E22 strain as shown by normal weight gain, and the absence of clinical signs of disease or characteristic attaching and effacing (A/E) lesions. Immunization with RDEC-1 induced significantly elevated serum IgG titers to LEE-encoded proteins. We thus, demonstrated homologous protection induced by the REPEC ler mutants and heterologous protection by RDEC-1. The observed correlation between elevated immune responses to the LEE

  3. Differential Responses of Post-Exercise Recovery of Leg Blood Flow and Oxygen Uptake Kinetics in HFpEF versus HFrEF.

    PubMed

    Thompson, Richard B; Pagano, Joseph J; Mathewson, Kory W; Paterson, Ian; Dyck, Jason R; Kitzman, Dalane W; Haykowsky, Mark J

    2016-01-01

    The goals of the current study were to compare leg blood flow, oxygen extraction and oxygen uptake (VO2) after constant load sub-maximal unilateral knee extension (ULKE) exercise in patients with heart failure with reduced ejection fraction (HFrEF) compared to those with preserved ejection fraction (HFpEF). Previously, it has been shown that prolonged whole body VO2 recovery kinetics are directly related to disease severity and all-cause mortality in HFrEF patients. To date, no study has simultaneously measured muscle-specific blood flow and oxygen extraction post exercise recovery kinetics in HFrEF or HFpEF patients; therefore it is unknown if muscle VO2 recovery kinetics, and more specifically, the recovery kinetics of blood flow and oxygen extraction at the level of the muscle, differ between HF phenotypes. Ten older (68±10yrs) HFrEF (n = 5) and HFpEF (n = 5) patients performed sub-maximal (85% of maximal weight lifted during an incremental test) ULKE exercise for 4 minutes. Femoral venous blood flow and venous O2 saturation were measured continuously from the onset of end-exercise, using a novel MRI method, to determine off-kinetics (mean response times, MRT) for leg VO2 and its determinants. HFpEF and HFrEF patients had similar end-exercise leg blood flow (1.1±0.6 vs. 1.2±0.6 L/min, p>0.05), venous saturation (42±12 vs. 41±11%, p>0.05) and VO2 (0.13±0.08 vs. 0.11±0.05 L/min, p>0.05); however HFrEF had significantly delayed recovery MRT for flow (292±135sec. vs 105±63sec., p = 0.004) and VO2 (95±37sec. vs. 47±15sec., p = 0.005) compared to HFpEF. Impaired muscle VO2 recovery kinetics following ULKE exercise differentiated HFrEF from HFpEF patients and suggests distinct underlying pathology and potential therapeutic approaches in these populations.

  4. Quality of life questionnaire predicts poor exercise capacity only in HFpEF and not in HFrEF.

    PubMed

    Ahmeti, Artan; Henein, Michael Y; Ibrahimi, Pranvera; Elezi, Shpend; Haliti, Edmond; Poniku, Afrim; Batalli, Arlind; Bajraktari, Gani

    2017-10-17

    The Minnesota Living with Heart Failure Questionnaire (MLHFQ) is the most widely used measure of quality of life (QoL) in HF patients. This prospective study aimed to assess the relationship between QoL and exercise capacity in HF patients. The study subjects were 118 consecutive patients with chronic HF (62 ± 10 years, 57 females, in NYHA I-III). Patients answered a MLHFQ questionnaire in the same day of complete clinical, biochemical and echocardiographic assessment. They also underwent a 5 min walk test (6-MWT), in the same day, which grouped them into; Group I: ≤ 300 m and Group II: >300 m. In addition, left ventricular (LV) ejection fraction (EF), divided them into: Group A, with preserved EF (HFpEF) and Group B with reduced EF (HFrEF). The mean MLHFQ total scale score was 48 (±17). The total scale, and the physical and emotional functional MLHFQ scores did not differ between HFpEF and HFpEF. Group I patients were older (p = 0.003), had higher NYHA functional class (p = 0.002), faster baseline heart rate (p = 0.006), higher prevalence of smoking (p = 0.015), higher global, physical and emotional MLHFQ scores (p < 0.001, for all), larger left atrial (LA) diameter (p = 0.001), shorter LV filling time (p = 0.027), higher E/e' ratio (0.02), shorter isovolumic relaxation time (p = 0.028), lower septal a' (p = 0.019) and s' (p = 0.023), compared to Group II. Independent predictors of 6-MWT distance for the group as a whole were increased MLHFQ total score (p = 0.005), older age (p = 0.035), and diabetes (p = 0.045), in HFpEF were total MLHFQ (p = 0.007) and diabetes (p = 0.045) but in HFrEF were only LA enlargement (p = 0.005) and age (p = 0.013. A total MLHFQ score of 48.5 had a sensitivity of 67% and specificity of 63% (AUC on ROC analysis of 72%) for limited exercise performance in HF patients. Quality of life, assessment by MLHFQ, is the best correlate of exercise capacity measured by 6-MWT, particularly in HFpEF

  5. Phosphorylation of eukaryotic elongation factor 2 (eEF2) by cyclin A-cyclin-dependent kinase 2 regulates its inhibition by eEF2 kinase.

    PubMed

    Hizli, Asli A; Chi, Yong; Swanger, Jherek; Carter, John H; Liao, Yi; Welcker, Markus; Ryazanov, Alexey G; Clurman, Bruce E

    2013-02-01

    Protein synthesis is highly regulated via both initiation and elongation. One mechanism that inhibits elongation is phosphorylation of eukaryotic elongation factor 2 (eEF2) on threonine 56 (T56) by eEF2 kinase (eEF2K). T56 phosphorylation inactivates eEF2 and is the only known normal eEF2 functional modification. In contrast, eEF2K undergoes extensive regulatory phosphorylations that allow diverse pathways to impact elongation. We describe a new mode of eEF2 regulation and show that its phosphorylation by cyclin A-cyclin-dependent kinase 2 (CDK2) on a novel site, serine 595 (S595), directly regulates T56 phosphorylation by eEF2K. S595 phosphorylation varies during the cell cycle and is required for efficient T56 phosphorylation in vivo. Importantly, S595 phosphorylation by cyclin A-CDK2 directly stimulates eEF2 T56 phosphorylation by eEF2K in vitro, and we suggest that S595 phosphorylation facilitates T56 phosphorylation by recruiting eEF2K to eEF2. S595 phosphorylation is thus the first known eEF2 modification that regulates its inhibition by eEF2K and provides a novel mechanism linking the cell cycle machinery to translational control. Because all known eEF2 regulation is exerted via eEF2K, S595 phosphorylation may globally couple the cell cycle machinery to regulatory pathways that impact eEF2K activity.

  6. Evidence that the recA441 (tif-1) mutant of Escherichia coli K-12 contains a thermosensitive intragenic suppressor of RecA constitutive protease activity.

    PubMed

    Wang, W B; Tessman, E S

    1985-07-01

    The recA441 mutant of Escherichia coli, which has been thought to have thermoinducible constitutive RecA protease activity, is known to have two mutations within recA. We show here that the mutation that alters codon 38 actually confers temperature-independent constitutive protease activity; the second mutation in recA441, which is at codon 298, appears to be acting as a temperature-sensitive suppressor of the protease activity.

  7. Phosphorylation of Eukaryotic Elongation Factor 2 (eEF2) by Cyclin A–Cyclin-Dependent Kinase 2 Regulates Its Inhibition by eEF2 Kinase

    PubMed Central

    Hizli, Asli A.; Chi, Yong; Swanger, Jherek; Carter, John H.; Liao, Yi; Welcker, Markus; Ryazanov, Alexey G.

    2013-01-01

    Protein synthesis is highly regulated via both initiation and elongation. One mechanism that inhibits elongation is phosphorylation of eukaryotic elongation factor 2 (eEF2) on threonine 56 (T56) by eEF2 kinase (eEF2K). T56 phosphorylation inactivates eEF2 and is the only known normal eEF2 functional modification. In contrast, eEF2K undergoes extensive regulatory phosphorylations that allow diverse pathways to impact elongation. We describe a new mode of eEF2 regulation and show that its phosphorylation by cyclin A–cyclin-dependent kinase 2 (CDK2) on a novel site, serine 595 (S595), directly regulates T56 phosphorylation by eEF2K. S595 phosphorylation varies during the cell cycle and is required for efficient T56 phosphorylation in vivo. Importantly, S595 phosphorylation by cyclin A-CDK2 directly stimulates eEF2 T56 phosphorylation by eEF2K in vitro, and we suggest that S595 phosphorylation facilitates T56 phosphorylation by recruiting eEF2K to eEF2. S595 phosphorylation is thus the first known eEF2 modification that regulates its inhibition by eEF2K and provides a novel mechanism linking the cell cycle machinery to translational control. Because all known eEF2 regulation is exerted via eEF2K, S595 phosphorylation may globally couple the cell cycle machinery to regulatory pathways that impact eEF2K activity. PMID:23184662

  8. Mutant fatty acid desaturase

    DOEpatents

    Shanklin, John; Cahoon, Edgar B.

    2004-02-03

    The present invention relates to a method for producing mutants of a fatty acid desaturase having a substantially increased activity towards fatty acid substrates with chains containing fewer than 18 carbons relative to an unmutagenized precursor desaturase having an 18 carbon atom chain length substrate specificity. The method involves inducing one or more mutations in the nucleic acid sequence encoding the precursor desaturase, transforming the mutated sequence into an unsaturated fatty acid auxotroph cell such as MH13 E. coli, culturing the cells in the absence of supplemental unsaturated fatty acids, thereby selecting for recipient cells which have received and which express a mutant fatty acid desaturase with an elevated specificity for fatty acid substrates having chain lengths of less than 18 carbon atoms. A variety of mutants having 16 or fewer carbon atom chain length substrate specificities are produced by this method. Mutant desaturases produced by this method can be introduced via expression vectors into prokaryotic and eukaryotic cells and can also be used in the production of transgenic plants which may be used to produce specific fatty acid products.

  9. Embedding EfS in Teacher Education through a Multi-Level Systems Approach: Lessons from Queensland

    ERIC Educational Resources Information Center

    Evans, Neus; Ferreira, Jo-Anne; Davis, Julie; Stevenson, Robert B.

    2016-01-01

    This article reports on the fourth stage of an evolving study to develop a systems model for embedding education for sustainability (EfS) into preservice teacher education. The fourth stage trialled the extension of the model to a comprehensive state-wide systems approach involving representatives from all eight Queensland teacher education…

  10. Antibiotic resistance profile and virulence genes of uropathogenic Escherichia coli isolates in relation to phylogeny.

    PubMed

    Adib, N; Ghanbarpour, R; Solatzadeh, H; Alizade, H

    2014-03-01

    Escherichia coli (E. coli) strains are the major cause of urinary tract infections (UTI) and belong to the large group of extra-intestinal pathogenic E. coli. The purposes of this study were to determine the antibiotic resistance profile, virulence genes and phylogenetic background of E. coli isolates from UTI cases. A total of 137 E. coli isolates were obtained from UTI samples. The antimicrobial susceptibility of confirmed isolates was determined by disk diffusion method against eight antibiotics. The isolates were examined to determine the presence and prevalence of selected virulence genes including iucD, sfa/focDE, papEF and hly. ECOR phylo-groups of isolates were determined by detection of yjaA and chuA genes and fragment TspE4.C2. The antibiogram results showed that 71% of the isolates were resistant to cefazolin, 60.42% to co-trimoxazole, 54.16% to nalidixic acid, 36.45% to gentamicin, 29.18% to ciprofloxacin, 14.58% to cefepime, 6.25% to nitrofurantoin and 0.00% to imipenem. Twenty-two antibiotic resistance patterns were observed among the isolates. Virulence genotyping of isolates revealed that 58.39% isolates had at least one of the four virulence genes. The iucD gene was the most prevalent gene (43.06%). The other genes including sfa/focDE, papEF and hly genes were detected in 35.76%, 18.97% and 2.18% isolates, respectively. Nine combination patterns of the virulence genes were detected in isolates. Phylotyping of 137 isolates revealed that the isolates fell into A (45.99%), B1 (13.14%), B2 (19.71%) and D (21.16%) groups. Phylotyping of multidrug resistant isolates indicated that these isolates are mostly in A (60.34%) and D (20.38%) groups. In conclusion, the isolates that possessed the iucD, sfa/focDE, papEF and hly virulence genes mostly belonged to A and B2 groups, whereas antibiotic resistant isolates were in groups A and D. Escherichia coli strains carrying virulence factors and antibiotic resistance are distributed in specific phylogenetic

  11. Characterization of the 1st and 2nd EF-hands of NADPH oxidase 5 by fluorescence, isothermal titration calorimetry, and circular dichroism

    PubMed Central

    2012-01-01

    Background Superoxide generated by non-phagocytic NADPH oxidases (NOXs) is of growing importance for physiology and pathobiology. The calcium binding domain (CaBD) of NOX5 contains four EF-hands, each binding one calcium ion. To better understand the metal binding properties of the 1st and 2nd EF-hands, we characterized the N-terminal half of CaBD (NCaBD) and its calcium-binding knockout mutants. Results The isothermal titration calorimetry measurement for NCaBD reveals that the calcium binding of two EF-hands are loosely associated with each other and can be treated as independent binding events. However, the Ca2+ binding studies on NCaBD(E31Q) and NCaBD(E63Q) showed their binding constants to be 6.5 × 105 and 5.0 × 102 M-1 with ΔHs of -14 and -4 kJ/mol, respectively, suggesting that intrinsic calcium binding for the 1st non-canonical EF-hand is largely enhanced by the binding of Ca2+ to the 2nd canonical EF-hand. The fluorescence quenching and CD spectra support a conformational change upon Ca2+ binding, which changes Trp residues toward a more non-polar and exposed environment and also increases its α-helix secondary structure content. All measurements exclude Mg2+-binding in NCaBD. Conclusions We demonstrated that the 1st non-canonical EF-hand of NOX5 has very weak Ca2+ binding affinity compared with the 2nd canonical EF-hand. Both EF-hands interact with each other in a cooperative manner to enhance their Ca2+ binding affinity. Our characterization reveals that the two EF-hands in the N-terminal NOX5 are Ca2+ specific. Graphical abstract PMID:22490336

  12. Artemisinin and Chinese Medicine as Tu Science.

    PubMed

    Fu, Jia-Chen

    2017-09-01

    The story of discovery of artemisinin highlights the diversity of scientific values across time and space. Resituating artemisinin research within a broader temporal framework allows us to understand how Chinese drugs like qinghao came to articulate a space for scientific experimentation and innovation through its embodiment of alternating clusters of meanings associated with tu and yang within scientific discourse. Tu science, which was associated with terms like native, Chinese, local, rustic, mass, and crude, articulated a radical vision of science in the service of socialist revolutionary ideals. Yang science, which signified foreign, Western, elite, and professional, tended to bear the hallmarks of professionalism, transnational networks in education and training, and an emphasis on basic or foundational research. With respect to medical research, the case of artemisinin highlights how the constitution of socialist science as an interplay of tu and yang engendered different scientific values and parameters for scientific endeavor. Modern medical research in Maoist China could harness the productive energies of mass participation to technical expertise in its investigations of Chinese drugs, and under the banner of tu science, it became possible and scientifically legitimate to research Chinese drugs in ways that had previously provoked resistance and controversy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Evidence that the recA441 (tif-1) mutant of Escherichia coli K-12 contains a thermosensitive intragenic suppressor of RecA constitutive protease activity.

    PubMed Central

    Wang, W B; Tessman, E S

    1985-01-01

    The recA441 mutant of Escherichia coli, which has been thought to have thermoinducible constitutive RecA protease activity, is known to have two mutations within recA. We show here that the mutation that alters codon 38 actually confers temperature-independent constitutive protease activity; the second mutation in recA441, which is at codon 298, appears to be acting as a temperature-sensitive suppressor of the protease activity. Images PMID:3891740

  14. eEF2K/eEF2 Pathway Controls the Excitation/Inhibition Balance and Susceptibility to Epileptic Seizures

    PubMed Central

    Heise, Christopher; Taha, Elham; Murru, Luca; Ponzoni, Luisa; Cattaneo, Angela; Guarnieri, Fabrizia C.; Montani, Caterina; Mossa, Adele; Vezzoli, Elena; Ippolito, Giulio; Zapata, Jonathan; Barrera, Iliana; Ryazanov, Alexey G.; Cook, James; Poe, Michael; Stephen, Michael Rajesh; Kopanitsa, Maksym; Benfante, Roberta; Rusconi, Francesco; Braida, Daniela; Francolini, Maura; Proud, Christopher G.; Valtorta, Flavia; Passafaro, Maria; Sala, Mariaelvina; Bachi, Angela; Verpelli, Chiara; Rosenblum, Kobi; Sala, Carlo

    2017-01-01

    Abstract Alterations in the balance of inhibitory and excitatory synaptic transmission have been implicated in the pathogenesis of neurological disorders such as epilepsy. Eukaryotic elongation factor 2 kinase (eEF2K) is a highly regulated, ubiquitous kinase involved in the control of protein translation. Here, we show that eEF2K activity negatively regulates GABAergic synaptic transmission. Indeed, loss of eEF2K increases GABAergic synaptic transmission by upregulating the presynaptic protein Synapsin 2b and α5-containing GABAA receptors and thus interferes with the excitation/inhibition balance. This cellular phenotype is accompanied by an increased resistance to epilepsy and an impairment of only a specific hippocampal-dependent fear conditioning. From a clinical perspective, our results identify eEF2K as a potential novel target for antiepileptic drugs, since pharmacological and genetic inhibition of eEF2K can revert the epileptic phenotype in a mouse model of human epilepsy. PMID:27005990

  15. Anaerobic respiration of Escherichia coli in the mouse intestine.

    PubMed

    Jones, Shari A; Gibson, Terri; Maltby, Rosalie C; Chowdhury, Fatema Z; Stewart, Valley; Cohen, Paul S; Conway, Tyrrell

    2011-10-01

    The intestine is inhabited by a large microbial community consisting primarily of anaerobes and, to a lesser extent, facultative anaerobes, such as Escherichia coli, which we have shown requires aerobic respiration to compete successfully in the mouse intestine (S. A. Jones et al., Infect. Immun. 75:4891-4899, 2007). If facultative anaerobes efficiently lower oxygen availability in the intestine, then their sustained growth must also depend on anaerobic metabolism. In support of this idea, mutants lacking nitrate reductase or fumarate reductase have extreme colonization defects. Here, we further explore the role of anaerobic respiration in colonization using the streptomycin-treated mouse model. We found that respiratory electron flow is primarily via the naphthoquinones, which pass electrons to cytochrome bd oxidase and the anaerobic terminal reductases. We found that E. coli uses nitrate and fumarate in the intestine, but not nitrite, dimethyl sulfoxide, or trimethylamine N-oxide. Competitive colonizations revealed that cytochrome bd oxidase is more advantageous than nitrate reductase or fumarate reductase. Strains lacking nitrate reductase outcompeted fumarate reductase mutants once the nitrate concentration in cecal mucus reached submillimolar levels, indicating that fumarate is the more important anaerobic electron acceptor in the intestine because nitrate is limiting. Since nitrate is highest in the absence of E. coli, we conclude that E. coli is the only bacterium in the streptomycin-treated mouse large intestine that respires nitrate. Lastly, we demonstrated that a mutant lacking the NarXL regulator (activator of the NarG system), but not a mutant lacking the NarP-NarQ regulator, has a colonization defect, consistent with the advantage provided by NarG. The emerging picture is one in which gene regulation is tuned to balance expression of the terminal reductases that E. coli uses to maximize its competitiveness and achieve the highest possible population in

  16. Periplasmic orientation of nascent lipid A in the inner membrane of an Escherichia coli LptA mutant

    PubMed Central

    Ma, Bing; Reynolds, C. Michael; Raetz, Christian R. H.

    2008-01-01

    The core-lipid A domain of Escherichia coli lipopolysaccharide (LPS) is synthesized on the inner surface of the inner membrane (IM) and flipped to its outer surface by the ABC transporter MsbA. Recent studies with deletion mutants implicate the periplasmic protein LptA, the cytosolic protein LptB, and the IM proteins LptC, LptF, and LptG in the subsequent transport of nascent LPS to the outer membrane (OM), where the LptD/LptE complex flips LPS to the outer surface. We have isolated a temperature-sensitive mutant (MB1) harboring the S22C and Q111P substitutions in LptA. MB1 stops growing after 30 min at 42°C. 32Pi and [35S]methionine labeling show that export of newly synthesized phospholipids and proteins is not severely impaired, but export of LPS is defective. Using the lipid A 1-phosphatase LpxE as a periplasmic IM marker and the lipid A 3-O-deacylase PagL as an OM marker, we show that core-lipid A reaches the periplasmic side of the IM at 42°C in MB1 but not the outer surface of the OM. Electron microscopy of MB1 reveals dense periplasmic material and a smooth OM at 42°C, consistent with a role for LptA in shuttling LPS across the periplasm. PMID:18768814

  17. Periplasmic orientation of nascent lipid A in the inner membrane of an Escherichia coli LptA mutant.

    PubMed

    Ma, Bing; Reynolds, C Michael; Raetz, Christian R H

    2008-09-16

    The core-lipid A domain of Escherichia coli lipopolysaccharide (LPS) is synthesized on the inner surface of the inner membrane (IM) and flipped to its outer surface by the ABC transporter MsbA. Recent studies with deletion mutants implicate the periplasmic protein LptA, the cytosolic protein LptB, and the IM proteins LptC, LptF, and LptG in the subsequent transport of nascent LPS to the outer membrane (OM), where the LptD/LptE complex flips LPS to the outer surface. We have isolated a temperature-sensitive mutant (MB1) harboring the S22C and Q111P substitutions in LptA. MB1 stops growing after 30 min at 42 degrees C. (32)P(i) and [(35)S]methionine labeling show that export of newly synthesized phospholipids and proteins is not severely impaired, but export of LPS is defective. Using the lipid A 1-phosphatase LpxE as a periplasmic IM marker and the lipid A 3-O-deacylase PagL as an OM marker, we show that core-lipid A reaches the periplasmic side of the IM at 42 degrees C in MB1 but not the outer surface of the OM. Electron microscopy of MB1 reveals dense periplasmic material and a smooth OM at 42 degrees C, consistent with a role for LptA in shuttling LPS across the periplasm.

  18. Characterisation of Translation Elongation Factor eEF1B Subunit Expression in Mammalian Cells and Tissues and Co-Localisation with eEF1A2

    PubMed Central

    Janikiewicz, Justyna; Doig, Jennifer; Abbott, Catherine M.

    2014-01-01

    Translation elongation is the stage of protein synthesis in which the translation factor eEF1A plays a pivotal role that is dependent on GTP exchange. In vertebrates, eEF1A can exist as two separately encoded tissue-specific isoforms, eEF1A1, which is almost ubiquitously expressed, and eEF1A2, which is confined to neurons and muscle. The GTP exchange factor for eEF1A1 is a complex called eEF1B made up of subunits eEF1Bα, eEF1Bδ and eEF1Bγ. Previous studies have cast doubt on the ability of eEF1B to interact with eEF1A2, suggesting that this isoform might use a different GTP exchange factor. We show that eEF1B subunits are all widely expressed to varying degrees in different cell lines and tissues, and at different stages of development. We show that ablation of any of the subunits in human cell lines has a small but significant impact on cell viability and cycling. Finally, we show that both eEF1A1 and eEF1A2 colocalise with all eEF1B subunits, in such close proximity that they are highly likely to be in a complex. PMID:25436608

  19. Stringency of substrate specificity of Escherichia coli malate dehydrogenase.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boernke, W. E.; Millard, C. S.; Stevens, P. W.

    1995-09-10

    Malate dehydrogenase and lactate dehydrogenase are members of the structurally and functionally homologous family of 2-ketoacid dehydrogenases. Both enzymes display high specificity for their respective keto substrates, oxaloacetate and pyruvate. Closer analysis of their specificity, however, reveals that the specificity of malate dehydrogenase is much stricter and less malleable than that of lactate dehydrogenase. Site-specific mutagenesis of the two enzymes in an attempt to reverse their specificity has met with contrary results. Conversion of a specific active-site glutamine to arginine in lactate dehydrogenase from Bacillus stearothermophilus generated an enzyme that displayed activity toward oxaloacetate equal to that of the nativemore » enzyme toward pyruvate (H. M. Wilks et al. (1988) Science 242, 1541-1544). We have constructed a series of mutants in the mobile, active site loop of the Escherichia coli malate dehydrogenase that incorporate the complementary change, conversion of arginine 81 to glutamine, to evaluate the role of charge distribution and conformational flexibility within this loop in defining the substrate specificity of these enzymes. Mutants incorporating the change R81Q all had reversed specificity, displaying much higher activity toward pyruvate than to the natural substrate, oxaloacetate. In contrast to the mutated lactate dehydrogenase, these reversed-specificity mutants were much less active than the native enzyme. Secondary mutations within the loop of the E. coli enzyme (A80N, A80P, A80P/M85E/D86T) had either no or only moderately beneficial effects on the activity of the mutant enzyme toward pyruvate. The mutation A80P, which can be expected to reduce the overall flexibility of the loop, modestly improved activity toward pyruvate. The possible physiological relevance of the stringent specificity of malate dehydrogenase was investigated. In normal strains of E. coli, fermentative metabolism was not affected by expression of the

  20. 40 CFR Appendixes T-U to Part 51 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 2 2011-07-01 2011-07-01 false [Reserved] T Appendixes T-U to Part 51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS REQUIREMENTS FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Appendixes T-U to Part 51 [Reserved] ...

  1. 40 CFR Appendixes T-U to Part 51 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false [Reserved] T Appendixes T-U to Part 51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS REQUIREMENTS FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Appendixes T-U to Part 51 [Reserved] ...

  2. Persister eradication: lessons from the world of natural products.

    PubMed

    Keren, Iris; Mulcahy, Lawrence R; Lewis, Kim

    2012-01-01

    Persisters are specialized survivor cells that protect bacterial populations from killing by antibiotics. Persisters are dormant phenotypic variants of regular cells rather than mutants. Bactericidal antibiotics kill by corrupting their targets into producing toxic products; tolerance to antibiotics follows when targets are inactive. Transcriptome analysis of isolated persisters points to toxin/antitoxin modules as a principle component of persister formation. Mechanisms of persister formation are redundant, making it difficult to eradicate these cells. In Escherichia coli, toxins RelE and MazF cause dormancy by degrading mRNA; HipA inhibits translation by phosphorylating Ef-Tu; and TisB forms an anion channel in the membrane, leading to a decrease in pmf and ATP levels. Prolonged treatment of chronic infections with antibiotics selects for hip mutants that produce more persister cells. Eradication of tolerant persisters is a serious challenge. Some of the existing antibiotics are capable of killing persisters, pointing to ways of developing therapeutics to treat chronic infections. Mitomycin is a prodrug which is converted into a reactive compound forming adducts with DNA upon entering the cell. Prolonged treatment with aminoglycosides that cause mistranslation leading to misfolded peptides can sterilize a stationary culture of Pseudomonas aeruginosa, a pathogen responsible for chronic, highly tolerant infections of cystic fibrosis patients. Finally, one of the best bactericidal agents is rifampin, an inhibitor of RNA polymerase, and we suggest that it "kills" by preventing persister resuscitation. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. An interbacterial NAD(P) + glycohydrolase toxin requires elongation factor Tu for delivery to target cells

    DOE PAGES

    Whitney, John C.; Quentin, Dennis; Sawai, Shin; ...

    2015-10-08

    Type VI secretion (T6S) influences the composition of microbial communities by catalyzing the delivery of toxins between adjacent bacterial cells. Here, we demonstrate that a T6S integral membrane toxin from Pseudomonas aeruginosa, Tse6, acts on target cells by degrading the universally essential dinucleotides NAD + and NADP +. Structural analyses of Tse6 show that it resembles mono-ADP-ribosyltransferase proteins, such as diphtheria toxin, with the exception of a unique loop that both excludes proteinaceous ADP-ribose acceptors and contributes to hydrolysis. We find that entry of Tse6 into target cells requires its binding to an essential housekeeping protein, translation elongation factor Tumore » (EF-Tu). These proteins participate in a larger assembly that additionally directs toxin export and provides chaperone activity. Lastly, visualization of this complex by electron microscopy defines the architecture of a toxin-loaded T6S apparatus and provides mechanistic insight into intercellular membrane protein delivery between bacteria.« less

  4. An Interbacterial NAD(P)+ Glycohydrolase Toxin Requires Elongation Factor Tu for Delivery to Target Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitney, John C.; Quentin, Dennis; Sawai, Shin

    2015-10-08

    Type VI secretion (T6S) influences the composition of microbial communities by catalyzing the delivery of toxins between adjacent bacterial cells. Here, we demonstrate that a T6S integral membrane toxin from Pseudomonas aeruginosa, Tse6, acts on target cells by degrading the universally essential dinucleotides NAD + and NADP +. Structural analyses of Tse6 show that it resembles mono-ADP-ribosyltransferase proteins, such as diphtheria toxin, with the exception of a unique loop that both excludes proteinaceous ADP-ribose acceptors and contributes to hydrolysis. We find that entry of Tse6 into target cells requires its binding to an essential housekeeping protein, translation elongation factor Tumore » (EF-Tu). These proteins participate in a larger assembly that additionally directs toxin export and provides chaperone activity. Visualization of this complex by electron microscopy defines the architecture of a toxin-loaded T6S apparatus and provides mechanistic insight into intercellular membrane protein delivery between bacteria.« less

  5. Mutant Prevention Concentrations of Four Carbapenems against Gram-Negative Rods▿ †

    PubMed Central

    Credito, Kim; Kosowska-Shick, Klaudia; Appelbaum, Peter C.

    2010-01-01

    We tested the propensities of four carbapenems to select for resistant Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii mutants by determining the mutant prevention concentrations (MPCs) for 100 clinical strains with various ß-lactam phenotypes. Among the members of the Enterobacteriaceae family and A. baumannii strains, the MPC/MIC ratios were mostly 2 to 4. In contrast, for P. aeruginosa the MPC/MIC ratios were 4 to ≥16. The MPC/MIC ratios for β-lactamase-positive K. pneumoniae and E. coli isolates were much higher (range, 4 to >16 μg/ml) than those for ß-lactamase-negative strains. PMID:20308376

  6. Genetic characterization of moaB mutants of Escherichia coli

    PubMed Central

    Kozmin, Stanislav G.; Schaaper, Roel M.

    2013-01-01

    The moaABCDE operon of Escherichia coli encodes enzymes essential for the biosynthesis of the molybdenum cofactor (Moco). However, the role of the moaB gene within this operon has remained enigmatic. Here, we have investigated the effect of moaB defects on two phenotypes diagnostic for Moco-deficiency: chlorate-resistance and sensitivity to the base analog 6-N-hydroxylaminopurine (HAP). We found that transposon insertions in moaB caused partial Moco-deficiency associated with chlorate-resistance, but not for HAP-sensitivity. On the other hand, in-frame deletions of moaB, or moaB overexpression, had no effect on either phenotype. Our combined data are consistent with the lack of any role for MoaB in Moco biosynthesis in E. coli. PMID:23680484

  7. Interaction of caffeine with the SOS response pathway in Escherichia coli.

    PubMed

    Whitney, Alyssa K; Weir, Tiffany L

    2015-01-01

    Previous studies have highlighted the antimicrobial activity of caffeine, both individually and in combination with other compounds. A proposed mechanism for caffeine's antimicrobial effects is inhibition of bacterial DNA repair pathways. The current study examines the influence of sub-lethal caffeine levels on the growth and morphology of SOS response pathway mutants of Escherichia coli. Growth inhibition after treatment with caffeine and methyl methane sulfonate (MMS), a mutagenic agent, was determined for E. coli mutants lacking key genes in the SOS response pathway. The persistence of caffeine's effects was explored by examining growth and morphology of caffeine and MMS-treated bacterial isolates in the absence of selective pressure. Caffeine significantly reduced growth of E. coli recA- and uvrA-mutants treated with MMS. However, there was no significant difference in growth between umuC-isolates treated with MMS alone and MMS in combination with caffeine after 48 h of incubation. When recA-isolates from each treatment group were grown in untreated medium, bacterial isolates that had been exposed to MMS or MMS with caffeine showed increased growth relative to controls and caffeine-treated isolates. Morphologically, recA-isolates that had been treated with caffeine and both caffeine and MMS together had begun to display filamentous growth. Caffeine treatment further reduced growth of recA- and uvrA-mutants treated with MMS, despite a non-functional SOS response pathway. However, addition of caffeine had very little effect on MMS inhibition of umuC-mutants. Thus, growth inhibition of E. coli with caffeine treatment may be driven by caffeine interaction with UmuC, but also appears to induce damage by additional mechanisms as evidenced by the additive effects of caffeine in recA- and uvrA-mutants.

  8. Highly ordered crystals of channel-forming membrane proteins, of nucleoside-monophosphate kinases, of FAD-containing oxidoreductases and of sugar-processing enzymes and their mutants

    NASA Astrophysics Data System (ADS)

    Schulz, G. E.; Dreyer, M.; Klein, C.; Kreusch, A.; Mittl, P.; Mu¨ller, C. W.; Mu¨ller-Dieckmann, J.; Muller, Y. A.; Proba, K.; Schlauderer, G.; Spu¨rgin, P.; Stehle, T.; Weiss, M. S.

    1992-08-01

    Preparation and crystallization procedures as well as crystal properties are reported for 12 proteins plus numerous site-directed mutants. The proteins are: the integral membrane protein porin from Rhodobacter capsulatus which diffracts to at least 1.8A˚resolution, porin from Rhodopseudomonas blastica which diffracts to at least 2.0A˚resolution, adenylate kinase from yeast and mutants, adenylate kinase from Escherichia coli and mutants, bovine liver mitochondrial adenylate kinase, guanylate kinase from yeast, uridylate kinase from yeast, glutathione reductase from E. coli and mutants, NADH peroxidase from Streptococcus faecalis containing a sulfenic acid as redox-center, pyruvate oxidase from Lactobacillus plantarum containing FAD and TPP, cyclodextrin glycosyltransferase from Bacillus circulans and mutants, and a fuculose aldolase from E. coli.

  9. [Changes of biological behavioral of E. coli K1 after ppk1 gene deletion].

    PubMed

    Peng, Liang; Pan, Jiayun; Luo, Su; Yang, Zhenghui; Huang, Mufang; Cao, Hong

    2014-06-01

    To study the changes in biological behaviors of meningitis E. coli K1 strain E44 after deletion of polyphosphate kinase 1 (ppk1) gene and explore the role of ppk1 in the pathogenesis of E. coli K1-induced meningitis. The wild-type strain E. coli K1 and ppk1 deletion mutant were exposed to heat at 56 degrees celsius; for 6 min, and their survival rates were determined. The adhesion and invasion of the bacteria to human brain microvascular endothelial cells (HBMECs) were observed using electron microscopy and quantitative tests. HBMECs were co-incubated with wild-type strain or ppk1 deletion mutant, and the cytoskeleton rearrangement was observed under laser scanning confocal microscope. The survival rate of the ppk1 deletion mutant was significantly lower than that of the wild-type strain after heat exposure. The ppk1 deletion mutant also showed lowered cell adhesion and invasion abilities and weakened ability to induce cytoskeleton rearrangement in HBMECs. ppk1 gene is important for E.coli K1 for heat resistance, cell adhesion and invasion, and for inducing cytoskeletal rearrangement in HBMECs.

  10. Substances released from probiotic Lactobacillus rhamnosus GR-1 potentiate NF-κB activity in Escherichia coli-stimulated urinary bladder cells.

    PubMed

    Karlsson, Mattias; Scherbak, Nikolai; Khalaf, Hazem; Olsson, Per-Erik; Jass, Jana

    2012-11-01

    Lactobacillus rhamnosus GR-1 is a probiotic bacterium used to maintain urogenital health. The putative mechanism for its probiotic effect is by modulating the host immunity. Urinary tract infections (UTI) are often caused by uropathogenic Escherichia coli that frequently evade or suppress immune responses in the bladder and can target pathways, including nuclear factor-kappaB (NF-κB). We evaluated the role of L. rhamnosus GR-1 on NF-κB activation in E. coli-stimulated bladder cells. Viable L. rhamnosus GR-1 was found to potentiate NF-κB activity in E. coli-stimulated T24 bladder cells, whereas heat-killed lactobacilli demonstrated a marginal increase in NF-κB activity. Surface components released by trypsin- or LiCl treatment, or the resultant heat-killed shaved lactobacilli, had no effect on NF-κB activity. Isolation of released products from L. rhamnosus GR-1 demonstrated that the induction of NF-κB activity was owing to released product(s) with a relatively large native size. Several putative immunomodulatory proteins were identified, namely GroEL, elongation factor Tu and NLP/P60. GroEL and elongation factor Tu have previously been shown to elicit immune responses from human cells. Isolating and using immune-augmenting substances produced by lactobacilli is a novel strategy for the prevention or treatment of UTI caused by immune-evading E. coli. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  11. A Grammar of Bao'an Tu, a Mongolic Language of Northwest China

    ERIC Educational Resources Information Center

    Fried, Robert Wayne

    2010-01-01

    The present study is a grammatical overview of the Bao'an Tu language (one of the varieties included in the designation "ISO6393-3:PEH", also known as "Tongren Monguor", "Southwestern Monguor", or "Tongren Tu"). Bao'an Tu is spoken by approximately 4,000 people who live on the Qinghai-Tibetan Plateau in…

  12. eEF2K/eEF2 Pathway Controls the Excitation/Inhibition Balance and Susceptibility to Epileptic Seizures.

    PubMed

    Heise, Christopher; Taha, Elham; Murru, Luca; Ponzoni, Luisa; Cattaneo, Angela; Guarnieri, Fabrizia C; Montani, Caterina; Mossa, Adele; Vezzoli, Elena; Ippolito, Giulio; Zapata, Jonathan; Barrera, Iliana; Ryazanov, Alexey G; Cook, James; Poe, Michael; Stephen, Michael Rajesh; Kopanitsa, Maksym; Benfante, Roberta; Rusconi, Francesco; Braida, Daniela; Francolini, Maura; Proud, Christopher G; Valtorta, Flavia; Passafaro, Maria; Sala, Mariaelvina; Bachi, Angela; Verpelli, Chiara; Rosenblum, Kobi; Sala, Carlo

    2017-03-01

    Alterations in the balance of inhibitory and excitatory synaptic transmission have been implicated in the pathogenesis of neurological disorders such as epilepsy. Eukaryotic elongation factor 2 kinase (eEF2K) is a highly regulated, ubiquitous kinase involved in the control of protein translation. Here, we show that eEF2K activity negatively regulates GABAergic synaptic transmission. Indeed, loss of eEF2K increases GABAergic synaptic transmission by upregulating the presynaptic protein Synapsin 2b and α5-containing GABAA receptors and thus interferes with the excitation/inhibition balance. This cellular phenotype is accompanied by an increased resistance to epilepsy and an impairment of only a specific hippocampal-dependent fear conditioning. From a clinical perspective, our results identify eEF2K as a potential novel target for antiepileptic drugs, since pharmacological and genetic inhibition of eEF2K can revert the epileptic phenotype in a mouse model of human epilepsy. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Chemical studies on damages of Escherichea coli by the immune bactericidal reaction. II. Release of phosphatidylethanolamine from a phospholipase A-deficient mutant of E. coli during the immune bactericidal reaction.

    PubMed

    Inoue, K; Yano, K; Amano, T

    1974-12-01

    When an antibody-sensitized, phospholipase A-deficient mutant of Escherichia coli B/SM was treated with complement in the absence of lysozyme, bacterial phosphatidylethanolamine (PE) was liberated into the lipid fraction of the surrounding medium, but only traces of its degradation products were found in this fraction. Therefore, most of the degradation of bacterial PE to FFA and LPE observed in the usual immune bactericidal reaction (Inoue et al., 1974) must be the result of the action of bacterial phospholipase A which is activated or becomes accessible to its substrate on formation of lesions by complement. The mechanism of complement-mediated formation of membrane lesions is discussed on the basis of these results.

  14. Escherichia coli K1-induced cytopathogenicity of human brain microvascular endothelial cells.

    PubMed

    Khan, Naveed Ahmed; Iqbal, Junaid; Siddiqui, Ruqaiyyah

    2012-01-01

    Pathophysiology of Escherichia coli sepsis is complex involving circulating bacterial products, cytokine release, and sustained bacteremia resulting in the damage of vascular endothelium. Here, it is shown that E. coli K1 produced cytopathogenicity of human brain microvascular endothelial cells (HBMEC), that constitute the blood-brain barrier. Whole bacteria or their conditioned medium produced severe HBMEC damage suggesting E. coli K1-cytopathogenicity is a contact-independent process. Using lipopolysaccharide (LPS) inhibitor, polymyxin B, purified LPS extracted from E. coli K1 as well as LPS mutant derived from E. coli K1, we showed that LPS is not the sole determinant of E. coli K1-mediated HBMEC death. Bacterial product(s) for HBMEC cytopathogenicity was heat-labile suggesting LPS-associated proteins. Several isogenic gene-deletion mutants (ΔompA, ΔibeA, ΔibeB, Δcnf1) exhibited HBMEC cytopathogenicity similar to that produced by wild type E. coli K1. E. coli K1-mediated HBMEC death was independent of phosphatidylinositol 3-kinase (PI3K) but dependent partially on focal adhesion kinase (FAK) using HBMEC expressing dominant negative FAK and PI3K. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Influence of cyclopropane fatty acids on heat, high pressure, acid and oxidative resistance in Escherichia coli.

    PubMed

    Chen, Yuan Yao; Gänzle, Michael G

    2016-04-02

    Heat and high pressure resistant strains of Escherichia coli are a challenge to food safety. This study investigated effects of cyclopropane fatty acids (CFAs) on stress tolerance in the heat- and pressure-resistant strain E. coli AW1.7 and the sensitive strain E. coli MG1655. The role of CFAs was explored by disruption of cfa coding for CFA synthase with an in-frame, unmarked deletion method. Both wild-type strains consumed all the unsaturated fatty acids (C16:1 and C18:1) that were mostly converted to CFAs and a low proportion to saturated fatty acid (C16:0). Moreover, E. coli AW1.7 contained a higher proportion of membrane C19:0 cyclopropane fatty acid than E. coli MG1655 (P<0.05). The Δcfa mutant strains did not produce CFAs, and the corresponding substrates C16:1 and C18:1 accumulated in membrane lipids. The deletion of cfa did not alter resistance to H2O2 but increased the lethality of heat, high pressure and acid treatments in E. coli AW1.7, and E. coli MG1655. E. coli AW1.7 and its Δcfa mutant were more resistant to pressure and heat but less resistant to acid stress than E. coli MG1655. Heat resistance of wild-type strains and their Δcfa mutant was also assessed in beef patties grilled to an internal temperature of 71 °C. After treatment, cell counts of wild type strains were higher than those of the Δcfa mutant strains. In conclusion, CFA synthesis in E. coli increases heat, high pressure and acid resistance, and increases heat resistance in food. This knowledge on mechanisms of stress resistance will facilitate the design of intervention methods for improved pathogen control in food production. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Functions that Protect Escherichia coli from Tightly Bound DNA-Protein Complexes Created by Mutant EcoRII Methyltransferase.

    PubMed

    Henderson, Morgan L; Kreuzer, Kenneth N

    2015-01-01

    Expression of mutant EcoRII methyltransferase protein (M.EcoRII-C186A) in Escherichia coli leads to tightly bound DNA-protein complexes (TBCs), located sporadically on the chromosome rather than in tandem arrays. The mechanisms behind the lethality induced by such sporadic TBCs are not well studied, nor is it clear whether very tight binding but non-covalent complexes are processed in the same way as covalent DNA-protein crosslinks (DPCs). Using 2D gel electrophoresis, we found that TBCs induced by M.EcoRII-C186A block replication forks in vivo. Specific bubble molecules were detected as spots on the 2D gel, only when M.EcoRII-C186A was induced, and a mutation that eliminates a specific EcoRII methylation site led to disappearance of the corresponding spot. We also performed a candidate gene screen for mutants that are hypersensitive to TBCs induced by M.EcoRII-C186A. We found several gene products necessary for protection against these TBCs that are known to also protect against DPCs induced with wild-type M.EcoRII (after 5-azacytidine incorporation): RecA, RecBC, RecG, RuvABC, UvrD, FtsK, XerCD and SsrA (tmRNA). In contrast, the RecFOR pathway and Rep helicase are needed for protection against TBCs but not DPCs induced by M.EcoRII. We propose that stalled fork processing by RecFOR and RecA promotes release of tightly bound (but non-covalent) blocking proteins, perhaps by licensing Rep helicase-driven dissociation of the blocking M.EcoRII-C186A. Our studies also argued against the involvement of several proteins that might be expected to protect against TBCs. We took the opportunity to directly compare the sensitivity of all tested mutants to two quinolone antibiotics, which target bacterial type II topoisomerases and induce a unique form of DPC. We uncovered rep, ftsK and xerCD as novel quinolone hypersensitive mutants, and also obtained evidence against the involvement of a number of functions that might be expected to protect against quinolones.

  17. TU-EF-210-02: MRg Hyperthermia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chopra, R.

    2015-06-15

    The use of therapeutic ultrasound to provide targeted therapy is an active research area that has a broad application scope. The invited talks in this session will address currently implemented strategies and protocols for both hyperthermia and ablation applications using therapeutic ultrasound. The role of both ultrasound and MRI in the monitoring and assessment of these therapies will be explored in both pre-clinical and clinical applications. Katherine Ferrara: High Intensity Focused Ultrasound, Drug Delivery, and Immunotherapy Rajiv Chopra: Translating Localized Doxorubicin Delivery to Pediatric Oncology using MRI-guided HIFU Elisa Konofagou: Real-time Ablation Monitoring and Lesion Quantification using Harmonic Motion Imagingmore » Keyvan Farahani: AAPM Task Groups in Interventional Ultrasound Imaging and Therapy Learning Objectives: Understand the role of ultrasound in localized drug delivery and the effects of immunotherapy when used in conjunction with ultrasound therapy. Understand potential targeted drug delivery clinical applications including pediatric oncology. Understand the technical requirements for performing targeted drug delivery. Understand how radiation-force approaches can be used to both monitor and assess high intensity focused ultrasound ablation therapy. Understand the role of AAPM task groups in ultrasound imaging and therapies. Chopra: Funding from Cancer Prevention and Research Initiative of Texas (CPRIT), Award R1308 Evelyn and M.R. Hudson Foundation; Research Support from Research Contract with Philips Healthcare; COI are Co-founder of FUS Instruments Inc Ferrara: Supported by NIH, UCDavis and California (CIRM and BHCE) Farahani: In-kind research support from Philips Healthcare.« less

  18. Modes of Overinitiation, dnaA Gene Expression, and Inhibition of Cell Division in a Novel Cold-Sensitive hda Mutant of Escherichia coli▿

    PubMed Central

    Fujimitsu, Kazuyuki; Su'etsugu, Masayuki; Yamaguchi, Yoko; Mazda, Kensaku; Fu, Nisi; Kawakami, Hironori; Katayama, Tsutomu

    2008-01-01

    The chromosomal replication cycle is strictly coordinated with cell cycle progression in Escherichia coli. ATP-DnaA initiates replication, leading to loading of the DNA polymerase III holoenzyme. The DNA-loaded form of the β clamp subunit of the polymerase binds the Hda protein, which promotes ATP-DnaA hydrolysis, yielding inactive ADP-DnaA. This regulation is required to repress overinitiation. In this study, we have isolated a novel cold-sensitive hda mutant, the hda-185 mutant. The hda-185 mutant caused overinitiation of chromosomal replication at 25°C, which most likely led to blockage of replication fork progress. Consistently, the inhibition of colony formation at 25°C was suppressed by disruption of the diaA gene, an initiation stimulator. Disruption of the seqA gene, an initiation inhibitor, showed synthetic lethality with hda-185 even at 42°C. The cellular ATP-DnaA level was increased in an hda-185-dependent manner. The cellular concentrations of DnaA protein and dnaA mRNA were comparable at 25°C to those in a wild-type hda strain. We also found that multiple copies of the ribonucleotide reductase genes (nrdAB or nrdEF) or dnaB gene repressed overinitiation. The cellular levels of dATP and dCTP were elevated in cells bearing multiple copies of nrdAB. The catalytic site within NrdA was required for multicopy suppression, suggesting the importance of an active form of NrdA or elevated levels of deoxyribonucleotides in inhibition of overinitiation in the hda-185 cells. Cell division in the hda-185 mutant was inhibited at 25°C in a LexA regulon-independent manner, suggesting that overinitiation in the hda-185 mutant induced a unique division inhibition pathway. PMID:18502852

  19. The SOS Response is Permitted in Escherichia coli Strains Deficient in the Expression of the mazEF Pathway

    DTIC Science & Technology

    2014-12-03

    DNA damage . It is controlled by a complex network involving the RecA and LexA proteins. We have previously shown that the SOS response to DNA damage ...Research Triangle Park, NC 27709-2211 enteric bacterium E. coli, SOS Response, DNA damage REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT...Report Title The Escherichia coli (E. coli) SOS response is the largest, most complex, and best characterized bacterial network induced by DNA damage

  20. Escherichia coli msbB gene as a virulence factor and a therapeutic target.

    PubMed

    Somerville, J E; Cassiano, L; Darveau, R P

    1999-12-01

    A mutation in the msbB gene of Escherichia coli results in the synthesis of E. coli lipopolysaccharide (LPS) that lacks the myristic acid moiety of lipid A. Although such mutant E. coli cells and their purified LPS have a greatly reduced ability to stimulate human immune cells, a minor reduction in the mouse inflammatory response is observed. When the msbB mutation is transferred into a clinical isolate of E. coli, there is a significant loss in virulence, as assessed by lethality in BALB/c mice. When a cloned msbB gene is provided to functionally complement the msbB mutant, virulence returns, providing direct evidence that the msbB gene product is an important virulence factor in a murine model of E. coli pathogenicity. In the genetic background of the clinical E. coli isolate, the msbB mutation also results in filamentation of the cells at 37 degrees C but not at 30 degrees C, a reduction in the level of the K1 capsule, an increase in the level of complement C3 deposition, and an increase in both opsonic and nonopsonic phagocytosis of the msbB mutant, phenotypes that can help to explain the loss in virulence. The demonstration that the inhibition of msbB gene function reduces the virulence of E. coli in a mouse infection model warrants further investigation of the msbB gene product as a novel target for antibiotic therapy.

  1. Clinical efficacy of gamma knife and surgery treatment of mesial temporal lobe epilepsy and their effects on EF-Tumt and EF-Tsmt expression.

    PubMed

    Wang, X-Q; Zhang, X-D; Han, Y-M; Shi, X-F; Lan, Z-B; Men, X-X; Pan, Y-W

    2017-04-01

    To study the clinical efficacy of gamma knife and surgery treatment of mesial temporal lobe epilepsy (MTLE) and their effects on EF-Tumt and EF-Tsmt expression. The data of 78 cases of MTLE patients treated in our hospital from April 2011 to March 2013 were retrospectively analyzed. The patients were divided into two groups according to the treatment methods: the surgery group (including 41 cases) and the gamma knife group (including 37 cases). The clinical efficacy, the occurrence and recurrence of complications were evaluated, respectively; meanwhile, the expression of the EF-Tumt protein and EF-Tsmt protein in brain tissue were analyzed. The difference between the efficacy rate of the two groups showed no statistical significance (χ2=0.960, p>0.05). The complication rate of the gamma knife group was significantly lower than that of the control group (χ2=6.430, p<0.05). The recurrence rate of the patients in the gamma knife group was significantly lower than that of the patients in the surgery group (p>0.05). Within the two groups, the positive expression granum of EF-Tsmt protein and EF-Tumt protein of the two groups after treatment were significantly lower than that before treatment (p<0.05). After treatment, the positive expression granum of EF-Tsmt protein of the patients in the gamma knife group was obviously more than that of the patients in the surgery group (p<0.05). The difference between the positive expression granum of EF-Tumt protein of the two groups showed no statistical significance (p>0.05). Before and after treatment within the group, the positive cell of EF-Tsmt protein and EF-Tumt protein of the two groups of patients after treatment were significantly lower than that before treatment (p<0.05). After treatment, the difference between the EF-Tsmt protein positive cell and the EF-Tumt protein positive cell of the two groups of patients showed no statistical significance (p>0.05). Both surgery and gamma knife could treat MTLE effectively, and

  2. Efficient production of mutant phytase (phyA-7) derived from Selenomonas ruminantium using recombinant Escherichia coli in pilot scale.

    PubMed

    Chi-Wei Lan, John; Chang, Chih-Kai; Wu, Ho-Shing

    2014-09-01

    A mutant gene of rumen phytase (phyA-7) was cloned into pET23b(+) vector and expressed in the Escherichia coli BL21 under the control of the T7 promoter. The study of fermentation conditions includes the temperature impacts of mutant phytase expression, the effect of carbon supplements over induction stage, the inferences of acetic acid accumulation upon enzyme expression and the comparison of one-stage and two-stage operations in batch mode. The maximum value of phytase activity was reached 107.0 U mL(-1) at induction temperature of 30°C. Yeast extract supplement demonstrated a significant increase on both protein concentration and phytase activity. The acetic acid (2 g L(-1)) presented in the modified synthetic medium demonstrated a significant decrease on expressed phytase activity. A two-stage batch operation enhanced the level of phytase activity from 306 to 1204 U mL(-1) in the 20 L of fermentation scale. An overall 3.7-fold improvement in phytase yield (35,375.72-1,31,617.50 U g(-1) DCW) was achieved in the two-stage operation. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Observations on the TU/VOS Option in Guatemalan Ladino Spanish.

    ERIC Educational Resources Information Center

    Pinkerton, Anne

    1986-01-01

    Examines the usage of the "voseo" in Guatemalan Ladino Spanish. It is concluded that "vos" has not replaced "tu" in Guatemalan Ladino Spanish but rather has joined with "tu" and "usted" to form a tri-level second person singular address system. (SED)

  4. Haploinsufficiency for Translation Elongation Factor eEF1A2 in Aged Mouse Muscle and Neurons Is Compatible with Normal Function

    PubMed Central

    Griffiths, Lowri A.; Doig, Jennifer; Churchhouse, Antonia M. D.; Davies, Faith C. J.; Squires, Charlotte E.; Newbery, Helen J.; Abbott, Catherine M.

    2012-01-01

    Translation elongation factor isoform eEF1A2 is expressed in muscle and neurons. Deletion of eEF1A2 in mice gives rise to the neurodegenerative phenotype “wasted” (wst). Mice homozygous for the wasted mutation die of muscle wasting and neurodegeneration at four weeks post-natal. Although the mutation is said to be recessive, aged heterozygous mice have never been examined in detail; a number of other mouse models of motor neuron degeneration have recently been shown to have similar, albeit less severe, phenotypic abnormalities in the heterozygous state. We therefore examined the effects of ageing on a cohort of heterozygous +/wst mice and control mice, in order to establish whether a presumed 50% reduction in eEF1A2 expression was compatible with normal function. We evaluated the grip strength assay as a way of distinguishing between wasted and wild-type mice at 3–4 weeks, and then performed the same assay in older +/wst and wild-type mice. We also used rotarod performance and immunohistochemistry of spinal cord sections to evaluate the phenotype of aged heterozygous mice. Heterozygous mutant mice showed no deficit in neuromuscular function or signs of spinal cord pathology, in spite of the low levels of eEF1A2. PMID:22848658

  5. Genomic Analysis Reveals Distinct Concentration-Dependent Evolutionary Trajectories for Antibiotic Resistance in Escherichia coli

    PubMed Central

    Mogre, Aalap; Sengupta, Titas; Veetil, Reshma T.; Ravi, Preethi; Seshasayee, Aswin Sai Narain

    2014-01-01

    Evolution of bacteria under sublethal concentrations of antibiotics represents a trade-off between growth and resistance to the antibiotic. To understand this trade-off, we performed in vitro evolution of laboratory Escherichia coli under sublethal concentrations of the aminoglycoside kanamycin over short time durations. We report that fixation of less costly kanamycin-resistant mutants occurred earlier in populations growing at lower sublethal concentration of the antibiotic, compared with those growing at higher sublethal concentrations; in the latter, resistant mutants with a significant growth defect persisted longer. Using deep sequencing, we identified kanamycin resistance-conferring mutations, which were costly or not in terms of growth in the absence of the antibiotic. Multiple mutations in the C-terminal end of domain IV of the translation elongation factor EF-G provided low-cost resistance to kanamycin. Despite targeting the same or adjacent residues of the protein, these mutants differed from each other in the levels of resistance they provided. Analysis of one of these mutations showed that it has little defect in growth or in synthesis of green fluorescent protein (GFP) from an inducible plasmid in the absence of the antibiotic. A second class of mutations, recovered only during evolution in higher sublethal concentrations of the antibiotic, deleted the C-terminal end of the ATP synthase shaft. This mutation confers basal-level resistance to kanamycin while showing a strong growth defect in the absence of the antibiotic. In conclusion, the early dynamics of the development of resistance to an aminoglycoside antibiotic is dependent on the levels of stress (concentration) imposed by the antibiotic, with the evolution of less costly variants only a matter of time. PMID:25281544

  6. Historically Speaking, "Tu" or "Vocus"?

    ERIC Educational Resources Information Center

    Maley, Catherine A.

    1972-01-01

    Comments on the usage of the second person pronouns of address ( tu" and vous") in French, and traces the usage from the fifteenth century to present day, reflecting social, religious, and political attitudes. (DS)

  7. Tunable Control of an Escherichia coli Expression System for the Overproduction of Membrane Proteins by Titrated Expression of a Mutant lac Repressor.

    PubMed

    Kim, Seong Keun; Lee, Dae-Hee; Kim, Oh Cheol; Kim, Jihyun F; Yoon, Sung Ho

    2017-09-15

    Most inducible expression systems suffer from growth defects, leaky basal induction, and inhomogeneous expression levels within a host cell population. These difficulties are most prominent with the overproduction of membrane proteins that are toxic to host cells. Here, we developed an Escherichia coli inducible expression system for membrane protein production based on titrated expression of a mutant lac repressor (mLacI). Performance of the mLacI inducible system was evaluated in conjunction with commonly used lac operator-based expression vectors using a T7 or tac promoter. Remarkably, expression of a target gene can be titrated by the dose-dependent addition of l-rhamnose, and the expression levels were homogeneous in the cell population. The developed system was successfully applied to overexpress three membrane proteins that were otherwise difficult to produce in E. coli. This gene expression control system can be easily applied to a broad range of existing protein expression systems and should be useful in constructing genetic circuits that require precise output signals.

  8. NlpI contributes to Escherichia coli K1 strain RS218 interaction with human brain microvascular endothelial cells.

    PubMed

    Teng, Ching-Hao; Tseng, Yu-Ting; Maruvada, Ravi; Pearce, Donna; Xie, Yi; Paul-Satyaseela, Maneesh; Kim, Kwang Sik

    2010-07-01

    Escherichia coli K1 is the most common Gram-negative bacillary organism causing neonatal meningitis. E. coli K1 binding to and invasion of human brain microvascular endothelial cells (HBMECs) is a prerequisite for its traversal of the blood-brain barrier (BBB) and penetration into the brain. In the present study, we identified NlpI as a novel bacterial determinant contributing to E. coli K1 interaction with HBMECs. The deletion of nlpI did not affect the expression of the known bacterial determinants involved in E. coli K1-HBMEC interaction, such as type 1 fimbriae, flagella, and OmpA, and the contribution of NlpI to HBMECs binding and invasion was independent of those bacterial determinants. Previous reports have shown that the nlpI mutant of E. coli K-12 exhibits growth defect at 42 degrees C at low osmolarity, and its thermosensitive phenotype can be suppressed by a mutation on the spr gene. The nlpI mutant of strain RS218 exhibited similar thermosensitive phenotype, but additional spr mutation did not restore the ability of the nlpI mutant to interact with HBMECs. These findings suggest the decreased ability of the nlpI mutant to interact with HBMECs is not associated with the thermosensitive phenotype. NlpI was determined as an outer membrane-anchored protein in E. coli, and the nlpI mutant was defective in cytosolic phospholipase A(2)alpha (cPLA(2)alpha) phosphorylation compared to the parent strain. These findings illustrate the first demonstration of NlpI's contribution to E. coli K1 binding to and invasion of HBMECs, and its contribution is likely to involve cPLA(2)alpha.

  9. Expression and regulation of the penicillin G acylase gene from Proteus rettgeri cloned in Escherichia coli.

    PubMed

    Daumy, G O; Williams, J A; McColl, A S; Zuzel, T J; Danley, D

    1986-10-01

    The penicillin G acylase genes from the Proteus rettgeri wild type and from a hyperproducing mutant which is resistant to succinate repression were cloned in Escherichia coli K-12. Expression of both wild-type and mutant P. rettgeri acylase genes in E. coli K-12 was independent of orientation in the cloning vehicle and apparently resulted from recognition in E. coli of the P. rettgeri promoter sequences. The P. rettgeri acylase was secreted into the E. coli periplasmic space and was composed of subunits electrophoretically identical to those made in P. rettgeri. Expression of these genes in E. coli K-12 was not repressed by succinate as it is in P. rettgeri. Instead, expression of the enzymes was regulated by glucose catabolite repression.

  10. Novel model to study virulence determinants of Escherichia coli K1.

    PubMed

    Khan, Naveed Ahmed; Goldsworthy, Graham John

    2007-12-01

    It is shown here for the first time that locusts can be used as a model to study Escherichia coli K1 pathogenesis. E. coli K-12 strain HB101 has very low pathogenicity to locusts and does not invade the locust brain, whereas the injection of 2 x 10(6) E. coli K1 strain RS218 (O18:K1:H7) kills almost 100% of locusts within 72 h and invades the brain within 24 h of injection. Both mortality and invasion of the brain in locusts after injection of E. coli K1 require at least two of the known virulence determinants shown for mammals. Thus, deletion mutants that lack outer membrane protein A or cytotoxic necrotizing factor 1 have reduced abilities to kill locusts and to invade the locust brain compared to the parent E. coli K1. Interestingly, deletion mutants lacking FimH or the NeuDB gene cluster are still able to cause high mortality. It is argued that the likely existence of additional virulence determinants can be investigated in vivo by using this insect system.

  11. Production of hydroxycinnamoyl-shikimates and chlorogenic acid in Escherichia coli: production of hydroxycinnamic acid conjugates

    PubMed Central

    2013-01-01

    Background Hydroxycinnamates (HCs) are mainly produced in plants. Caffeic acid (CA), p-coumaric acid (PA), ferulic acid (FA) and sinapic acid (SA) are members of the HC family. The consumption of HC by human might prevent cardiovascular disease and some types of cancer. The solubility of HCs is increased through thioester conjugation to various compounds such as quinic acid, shikimic acid, malic acid, anthranilic acid, and glycerol. Although hydroxycinnamate conjugates can be obtained from diverse plant sources such as coffee, tomato, potato, apple, and sweet potato, some parts of the world have limited availability to these compounds. Thus, there is growing interest in producing HC conjugates as nutraceutical supplements. Results Hydroxycinnamoyl transferases (HCTs) including hydroxycinnamate-CoA shikimate transferase (HST) and hydroxycinnamate-CoA quinate transferase (HQT) were co-expressed with 4-coumarateCoA:ligase (4CL) in Escherichia coli cultured in media supplemented with HCs. Two hydroxycinnamoyl conjugates, p-coumaroyl shikimates and chlorogenic acid, were thereby synthesized. Total 29.1 mg/L of four different p-coumaroyl shikimates (3-p-coumaroyl shikimate, 4-p-coumaroyl shikimate, 3,4-di-p-coumaroyl shikimate, 3,5-di-p-coumaroyl shikimate, and 4,5-di-p-coumaroyl shikimate) was obtained and 16 mg/L of chlorogenic acid was synthesized in the wild type E. coli strain. To increase the concentration of endogenous acceptor substrates such as shikimate and quinate, the shikimate pathway in E. coli was engineered. A E. coli aroL and aroK gene were mutated and the resulting mutants were used for the production of p-coumaroyl shikimate. An E. coli aroD mutant was used for the production of chlorogenic acid. We also optimized the vector and cell concentration optimization. Conclusions To produce p-coumaroyl-shikimates and chlorogenic acid in E. coli, several E. coli mutants (an aroD mutant for chlorogenic acid production; an aroL, aroK, and aroKL mutant for p

  12. New hemolysin (gamma) produced by Escherichia coli.

    PubMed

    Walton, J R; Smith, D H

    1969-04-01

    A new hemolysin (gamma) of Escherichia coli, active in the absence of viable bacteria, has been recognized in mutants resistant to nalidixic acid. Nalidixic acid affects either the production or release of the hemolysin.

  13. Involvement of Escherichia coli K1 ibeT in bacterial adhesion that is associated with the entry into human brain microvascular endothelial cells.

    PubMed

    Zou, Yanming; He, Lina; Chi, Feng; Jong, Ambrose; Huang, Sheng-He

    2008-12-01

    IbeT is a downstream gene of the invasion determinant ibeA in the chromosome of a clinical isolate of Escherichia coli K1 strain RS218 (serotype 018:K1:H7). Both ibeT and ibeA are in the same operon. Our previous mutagenesis and complementation studies suggested that ibeT may coordinately contribute to E. coli K1 invasion with ibeA. An isogenic in-frame deletion mutant of ibeT has been made by chromosomal gene replacement with a recombinant suicide vector carrying a fragment with an ibeT internal deletion. The characteristics of the mutant in meningitic E. coli infection were examined in vitro [cell culture of human brain microvascular endothelial cells (HBMEC)] and in vivo (infant rat model of E. coli meningitis) in comparison with the parent strain. The ibeT deletion mutant was significantly less adhesive and invasive than its parent strain E. coli E44 in vitro, and the adhesion- and invasion-deficient phenotypes of the mutant can be complemented by the ibeT gene. Recombinant IbeT protein is able to block E. coli E44 invasion of HBMEC. Furthermore, the ibeT deletion mutant is less capable of colonizing intestine and less virulent in bacterial translocation across the blood-brain barrier (BBB) than its parent E. coli E44 in vivo. These data suggest that ibeT-mediated E. coli K1 adhesion is associated with the bacterial invasion process.

  14. A liposomal formulation of the synthetic curcumin analog EF24 (Lipo-EF24) inhibits pancreatic cancer progression: towards future combination therapies.

    PubMed

    Bisht, Savita; Schlesinger, Martin; Rupp, Alexander; Schubert, Rolf; Nolting, Jens; Wenzel, Jörg; Holdenrieder, Stefan; Brossart, Peter; Bendas, Gerd; Feldmann, Georg

    2016-07-11

    Pancreatic cancer is one of the most lethal of human malignancies known to date and shows relative insensitivity towards most of the clinically available therapy regimens. 3,5-bis(2-fluorobenzylidene)-4-piperidone (EF24), a novel synthetic curcumin analog, has shown promising in vitro therapeutic efficacy in various human cancer cells, but insufficient water solubility and systemic bioavailability limit its clinical application. Here, we describe nano-encapsulation of EF24 into pegylated liposomes (Lipo-EF24) and evaluation of these particles in preclinical in vitro and in vivo model systems of pancreatic cancer. Transmission electron microscopy and size distribution studies by dynamic light scattering confirmed intact spherical morphology of the formed liposomes with an average diameter of less than 150 nm. In vitro, treatment with Lipo-EF24 induced growth inhibition and apoptosis in MIAPaCa and Pa03C pancreatic cancer cells as assessed by using cell viability and proliferation assays, replating and soft agar clonogenicity assays as well as western blot analyses. Lipo-EF24 potently suppressed NF-kappaB nuclear translocation by inhibiting phosphorylation and subsequent degradation of its inhibitor I-kappa-B-alpha. In vivo, synergistic tumor growth inhibition was observed in MIAPaCa xenografts when Lipo-EF24 was given in combination with the standard-of-care cytotoxic agent gemcitabine. In line with in vitro observations, western blot analysis revealed decreased phosphorylation of I-kappa-B-alpha in excised Lipo-EF24-treated xenograft tumor tissues. Due to its promising therapeutic efficacy and favorable toxicity profile Lipo-EF24 might be a promising starting point for development of future combinatorial therapeutic regimens against pancreatic cancer.

  15. Development of a novel ex vivo insect model for studying virulence determinants of Escherichia coli K1.

    PubMed

    Mokri-Moayyed, Behzad; Goldsworthy, Graham John; Khan, Naveed Ahmed

    2008-01-01

    A key step in Escherichia coli K1 meningitis is the crossing of the blood-brain barrier by the bacteria in order to gain entry into the central nervous system (CNS). In this study, a novel ex vivo model to study E. coli K1 invasion of the CNS is described that uses the African migratory locust, Locusta migratoria. By injecting bacteria into isolated locust head capsules, it was demonstrated that E. coli K1 invade the locust brain within 2 h in numbers depending on the concentration of bacteria injected. Using several mutants derived from K1, it was shown that outer-membrane protein A is a critical bacterial determinant required for the E. coli K1 invasion. The isogenic gene-deletion mutants, DeltafimH, Deltacnf1, DeltaneuDB and a rough LPS mutant showed significantly reduced invasion of locust brain. This novel model for the study of E. coli K1 pathogenesis offers several advantages over existing mammalian models in relation to its relative ease of use, cost-effectiveness and ethical acceptability.

  16. New Hemolysin (γ) Produced by Escherichia coli

    PubMed Central

    Walton, John R.; Smith, David H.

    1969-01-01

    A new hemolysin (γ) of Escherichia coli, active in the absence of viable bacteria, has been recognized in mutants resistant to nalidixic acid. Nalidixic acid affects either the production or release of the hemolysin. Images PMID:4891808

  17. Characterization of a dam Mutant of Serratia marcescens and Nucleotide Sequence of the dam Region

    PubMed Central

    Ostendorf, Tammo; Cherepanov, Peter; de Vries, Johann; Wackernagel, Wilfried

    1999-01-01

    The DNA of Serratia marcescens has N6-adenine methylation in GATC sequences. Among 2-aminopurine-sensitive mutants isolated from S. marcescens Sr41, one was identified which lacked GATC methylation. The mutant showed up to 30-fold increased spontaneous mutability and enhanced mutability after treatment with 2-aminopurine, ethyl methanesulfonate, or UV light. The gene (dam) coding for the adenine methyltransferase (Dam enzyme) of S. marcescens was identified on a gene bank plasmid which alleviated the 2-aminopurine sensitivity and the higher mutability of a dam-13::Tn9 mutant of Escherichia coli. Nucleotide sequencing revealed that the deduced amino acid sequence of Dam (270 amino acids; molecular mass, 31.3 kDa) has 72% identity to the Dam enzyme of E. coli. The dam gene is located between flanking genes which are similar to those found to the sides of the E. coli dam gene. The results of complementation studies indicated that like Dam of E. coli and unlike Dam of Vibrio cholerae, the Dam enzyme of S. marcescens plays an important role in mutation avoidance by allowing the mismatch repair enzymes to discriminate between the parental and newly synthesized strands during correction of replication errors. PMID:10383952

  18. Isolation and characterization of Escherichia coli K-12 mutants unable to induce the adaptive response to simple alkylating agents.

    PubMed Central

    Jeggo, P

    1979-01-01

    When Esherichia coli cells are exposed to a low level of simple alkylating agents, they induce the adaptive response which renders them more resistant to the killing and the mutagenic effects of the same or other alkylating agents. This paper describes the isolation of one strain that was deficient in mutagenic adaptation and five that were deficient in both mutagenic and killing adaptation, confirming previous suggestions that killing and mutagenic adaptation are, at least to some extent, separable. These six strains have been called Ada mutants. They were more sensitive to the killing and mutagenic effects of N-methy-N'-nitro-N-nitrosoguanidine (MNNG) than the unadapted Ada+ parent. Thus, the adaptation pathway is responsible for circumventing some alkylation-induced damage even in cells that are preinduced. The increase in mutation frequency seen in Ada cells treated with MNNG was the same whether the cells were lexA+ or lexA, showing that the extra mutations found in Ada- strains do not depend upon the SOS pathway. Ada strains accumulated more O6-methyl guanine lesions than the Ada+ parent on prolonged exposure to MNNG, and this supports the idea that O6-methyl guanine is the most important lesion for MNNG-induced mutagenesis. The ada mutations have been shown to map in the 47 to 53-min region of the E. coli chromosome. PMID:383692

  19. A comparison of HFrEF vs HFpEF's clinical workload and cost in the first year following hospitalization and enrollment in a disease management program.

    PubMed

    Murphy, T M; Waterhouse, D F; James, S; Casey, C; Fitzgerald, E; O'Connell, E; Watson, C; Gallagher, J; Ledwidge, M; McDonald, K

    2017-04-01

    Admission with heart failure (HF) is a milestone in the progression of the disease, often resulting in higher intensity medical care and ensuing readmissions. Whilst there is evidence supporting enrolling patients in a heart failure disease management program (HF-DMP), not all reported HF-DMPs have systematically enrolled patients with HF with preserved ejection fraction (HFpEF) and there is a scarcity of literature differentiating costs based on HF-phenotype. 1292 consenting, consecutive patients admitted with a primary diagnosis of HF were enrolled in a hospital based HF-DMP and categorized as HFpEF (EF≥45%) or HFrEF (EF<45%). Hospitalizations, primary care, medications, and DMP workload with associated costs were evaluated assessing DMP clinic-visits, telephonic contact, medication changes over 1year using a mixture of casemix and micro-costing techniques. The total average annual cost per patient was marginally higher in patients with HFrEF €13,011 (12,011, 14,078) than HFpEF, €12,206 (11,009, 13,518). However, emergency non-cardiovascular admission rates and average cost per patient were higher in the HFpEF vs HFrEF group (0.46 vs 0.31 per patient/12months) & €655 (318, 1073) vs €584 (396, 812). In the first 3months of the outpatient HF-DMP the HFrEF population cost more on average €791 (764, 819) vs €693 (660, 728). There are greater short-term (3-month) costs of HFrEF versus HFpEF as part of a HF-DMP following an admission. However, long-term (3-12month) costs of HFpEF are greater because of higher non-cardiovascular rehospitalisations. As HFpEF becomes the dominant form of HF, more work is required in HF-DMPs to address prevention of non-cardiovascular rehospitalisations and to integrate hospital based HF-DMPs into primary healthcare structures. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  20. Co-ordination of Mobile Information Agents in TuCSoN.

    ERIC Educational Resources Information Center

    Omicini, Andrea; Zambonelli, Franco

    1998-01-01

    Examines mobile agent coordination and presents TuCSoN, a coordination model for Internet applications based on mobile information agents that uses a tuple centre, a tuple space enhanced with the capability of programming its behavior in response to communication events. Discusses the effectiveness of the TuCSoN model in the contexts of Internet…

  1. Synthesis and assembly of Hepatitis B virus envelope protein-derived particles in Escherichia coli.

    PubMed

    Li, Hao; Onbe, Keisuke; Liu, Qiushi; Iijima, Masumi; Tatematsu, Kenji; Seno, Masaharu; Tada, Hiroko; Kuroda, Shun' Ichi

    2017-08-19

    Hepatitis B virus (HBV) envelope particles have been synthesized in eukaryotic cells (e.g., mammalian cells, insect cells, and yeast cells) as an HB vaccine immunogen and drug delivery system (DDS) nanocarrier. Many researchers had made attempts to synthesize the particles in Escherichia coli for minimize the cost and time for producing HBV envelope particles, but the protein was too deleterious to be synthesized in E. coli. In this study, we generated deletion mutants of HBV envelope L protein (389 amino acid residues (aa)) containing three transmembrane domains (TM1, TM2, TM3). The ΔNC mutant spanning from TM2 to N-terminal half of TM3 (from 237 aa to 335 aa) was found as a shortest form showing spontaneous particle formation. After the N-terminal end of ΔNC mutant was optimized by the N-end rule for E. coli expression, the modified ΔNC mutant (mΔNC) was efficiently expressed as particles in E. coli. The molecular mass of mΔNC particle was approx. 670 kDa, and the diameter was 28.5 ± 6.2 nm (mean ± SD, N = 61). The particle could react with anti-HBV envelope S protein antibody, indicating the particles exhibited S antigenic domain outside as well as HBV envelope particles. Taken together, the E. coli-derived mΔNC particles could be used as a substitute of eukaryotic cell-derived HBV envelope particles for versatile applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Novel mutant of Escherichia coli asparaginase II to reduction of the glutaminase activity in treatment of acute lymphocytic leukemia by molecular dynamics simulations and QM-MM studies.

    PubMed

    Ardalan, Noeman; Mirzaie, Sako; Sepahi, Abbas Akhavan; Khavari-Nejad, Ramazan Ali

    2018-03-01

    L-Asparaginases (ASNase) belong to a family of amidohydrolases, have both asparaginase and glutaminase activity. Acute lymphocytic leukemia (ALL) is an outrageous disease worldwide. Bacterial ASNase has been used for the treatment of ALL. Glutaminase activity of enzyme causes some side effect and it is not essential for anticancer activity. The aim of this study was engineering of Escherichia coli asparaginase II to find a mutant with reduced glutaminase activity by molecular docking, molecular dynamics (MD) and QM-MM (Quantum mechanics molecular dynamics) simulations. Residues with low free energy of binding to Asn and high free binding energy to Gln were chosen for mutagenesis. Then, a mutant with higher glutaminase free binding energy was selected for further studies. Additionally, the MD simulation and QM-MM computation of wild type (WT) were employed and the selected mutated ASNase were analyzed and discussed. Our data showed that V27T is a good candidate to reduction the glutaminase activity, while has no remarkable effect on asparaginase activity of the enzyme. The simulation analysis revealed that V27T mutant is more stable than WT and mutant simulation was successful completely. QM-MM results confirmed the successfulness of our mutagenesis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. eEF1A Controls ascospore differentiation through elevated accuracy, but controls longevity and fruiting body formation through another mechanism in Podospora anserina.

    PubMed Central

    Silar, P; Lalucque, H; Haedens, V; Zickler, D; Picard, M

    2001-01-01

    Antisuppressor mutations in the eEF1A gene of Podospora anserina were previously shown to impair ascospore formation, to drastically increase life span, and to permit the development of the Crippled Growth degenerative process. Here, we show that eEF1A controls ascospore formation through accuracy level maintenance. Examination of antisuppressor mutant perithecia reveals two main cytological defects, mislocalization of spindle and nuclei and nuclear death. Antisuppression levels are shown to be highly dependent upon both the mutation site and the suppressor used, precluding any correlation between antisuppression efficiency and severity of the sporulation impairment. Nevertheless, severity of ascospore differentiation defect is correlated with resistance to paromomycin. We also show that eEF1A controls fruiting body formation and longevity through a mechanism(s) different from accuracy control. In vivo, GFP tagging of the protein in a way that partly retains its function confirmed earlier cytological observation; i.e., this factor is mainly diffuse within the cytosol, but may transiently accumulate within nuclei or in defined regions of the cytoplasm. These data emphasize the fact that the translation apparatus exerts a global regulatory control over cell physiology and that eEF1A is one of the key factors involved in this monitoring. PMID:11514440

  4. Possibility of the transformation of eEF-2 (100 kDa) to eEF-2 (65 kDa) in the peptide elongation process in vitro.

    PubMed

    Gajko, A; Sredzińska, K; Galasiński, W; Gindzieński, A

    1999-02-16

    Two active eEF-2 polypeptides of approximately 100 and 65 kDa were copurified from rat liver cells and separated. The fate of eEF-2 (100 kDa) during its binding to ribosomes and in the translocation step of the peptide elongation process was investigated. It was shown that eEF-2 (100 kDa) did not change its form during the process of binding to the ribosomes. In the postribosomal supernatant, obtained from the postincubation mixture of the elongation process, only eEF-2 (65 kDa) was found. These results suggest that the form of eEF-2 (100 kDa), when bound to the ribosome during the elongation process, is transformed to eEF-2 (65 kDa). Copyright 1999 Academic Press.

  5. Identification of the recA (tif) gene product of Escherichia coli

    PubMed Central

    Gudas, Lorraine J.; Mount, David W.

    1977-01-01

    Treatments that inhibit DNA synthesis in recA+lexA+Escherichia coli stimulate synthesis of a 40,000 molecular weight protein species (protein X). The protein X molecules produced by wild-type and mutant E. coli strains have been compared by two-dimensional gel electrophoresis. One recA mutant (DM1415 spr recA1) produced a protein X with a more acidic isoelectric point than protein X from the wild type, demonstrating that protein X is probably the product of the recA gene. Additional mutants carrying the recA-linked tif-1 mutation yielded a protein X that was more basic than the wild-type protein, indicating that the tif-1 mutation also alters the recA protein. Protein X molecules from the above mutants and wild-type E. coli have been shown to yield similar partial products upon limited proteolysis in sodium dodecyl sulfate, indicating they are the same protein species. These and additional studies suggest that (i) the tif-1 mutation alters a site on the recA protein that is sensitive to DNA synthesis inhibition, (ii) synthesis of recA protein is self-regulated, and (iii) synthesis of recA protein is also regulated by the lexA product with lexA-suppressor mutations such as spr resulting in constitutive synthesis of recA protein. Images PMID:341152

  6. Determination of the termination efficiency of the transcription terminator using different fluorescent profiles in green fluorescent protein mutants.

    PubMed

    Nojima, Takahiko; Lin, Angela C; Fujii, Teruo; Endo, Isao

    2005-12-01

    An approach in determining the intrinsic termination efficiency (%T) of transcription termination using green fluorescent protein (GFP) mutants was developed. This approach utilizes a cassette vector in which the tested terminator is introduced between two GFP mutant genes: an ultraviolet-optimized mutant (GFPuv: F99S, M153T, V163A) and a blue-shifted mutant (BFP: F64L, S65T, T145F). The ratio of the fluorescence intensity of BFP to GFPuv after transcription and translation represents the termination efficiency of the terminator. E. coli ribosomal RNA operon T1 terminator, phage lambda terminator site R2, E. coli tryptophane attenuater were introduced into the vector, and their transcriptional efficiencies were estimated as 89, 79, and 24%, respectively, showing good agreement with published data.

  7. The dual exo/endo-type mode and the effect of ionic strength on the mode of catalysis of chitinase 60 (CHI60) from Serratia sp. TU09 and its mutants.

    PubMed

    Kuttiyawong, K; Nakapong, S; Pichyangkura, R

    2008-11-03

    Mutations of the tryptophan residues in the tryptophan-track of the N-terminal domain (W33F/Y and W69F/Y) and in the catalytic domain (W245F/Y) of Serratia sp. TU09 Chitinase 60 (CHI60) were constructed, as single and double point substitutions to either phenylalanine or tyrosine. The enzyme-substrate interaction and mode of catalysis, exo/endo-type, of wild type CHI60 and mutant enzymes on soluble (partially N-acetylated chitin), amorphous (colloidal chitin), and crystalline (β-chitin) substrates were studied. All CHI60 mutants exhibited a reduced substrate binding activity on colloidal chitin. CHI60 possesses a dual mode of catalysis with both exo- and endo-type activities allowing the enzyme to work efficiently on various substrate types. CHI60 preferentially uses the endo-type mode on soluble and amorphous substrates and the exo-type mode on crystalline substrate. However, the prevalent mode of hydrolysis mediated by CHI60 is regulated by ionic strength. Slightly elevated ionic strength, 0.1-0.2M NaCl, which promotes enzyme-substrate interactions, enhances CHI60 hydrolytic activity on amorphous substrate and, interestingly, on partially N-acetylated chitin. High ionic strength, 0.5-2.0M NaCl, prevents the enzyme from dissociating from amorphous substrate, occupying the enzyme in an enzyme-substrate non-productive complex. However, on crystalline substrates, the activity of CHI60 was only inhibited approximately 50% at high ionic strength, suggesting that the enzyme hydrolyzes crystalline substrates with an exo-type mode processively while remaining tightly bound to the substrate. Moreover, substitution of Trp-33 to either phenylalanine or tyrosine reduced the activity of the enzyme at high ionic strength, suggesting an important role of Trp-33 on enzyme processivity.

  8. The DIAN-TU Next Generation Alzheimer's prevention trial: Adaptive design and disease progression model.

    PubMed

    Bateman, Randall J; Benzinger, Tammie L; Berry, Scott; Clifford, David B; Duggan, Cynthia; Fagan, Anne M; Fanning, Kathleen; Farlow, Martin R; Hassenstab, Jason; McDade, Eric M; Mills, Susan; Paumier, Katrina; Quintana, Melanie; Salloway, Stephen P; Santacruz, Anna; Schneider, Lon S; Wang, Guoqiao; Xiong, Chengjie

    2017-01-01

    The Dominantly Inherited Alzheimer Network Trials Unit (DIAN-TU) trial is an adaptive platform trial testing multiple drugs to slow or prevent the progression of Alzheimer's disease in autosomal dominant Alzheimer's disease (ADAD) families. With completion of enrollment of the first two drug arms, the DIAN-TU now plans to add new drugs to the platform, designated as the Next Generation (NexGen) prevention trial. In collaboration with ADAD families, philanthropic organizations, academic leaders, the DIAN-TU Pharma Consortium, the National Institutes of Health, and regulatory colleagues, the DIAN-TU developed innovative clinical study designs for the DIAN-TU NexGen prevention trial. Our expanded trial toolbox consists of a disease progression model for ADAD, primary end point DIAN-TU cognitive performance composite, biomarker development, self-administered cognitive assessments, adaptive dose adjustments, and blinded data collection through the last participant completion. These steps represent elements to improve efficacy of the adaptive platform trial and a continued effort to optimize prevention and treatment trials in ADAD. Copyright © 2016 the Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  9. Classification and evolution of EF-hand proteins

    NASA Technical Reports Server (NTRS)

    Kawasaki, H.; Nakayama, S.; Kretsinger, R. H.

    1998-01-01

    Forty-five distinct subfamilies of EF-hand proteins have been identified. They contain from two to eight EF-hands that are recognizable by amino acid sequence as being statistically similar to other EF-hand domains. All proteins within one subfamily are congruent to one another, i.e. the dendrogram computed from one of the EF-hand domains is similar, within statistical error, to the dendrogram computed from another(s) domain. Thirteen subfamilies--including Calmodulin, Troponin C, Essential light chain, Regulatory light chain--referred to collectively as CTER, are congruent with one another. They appear to have evolved from a single ur-domain by two cycles of gene duplication and fusion. The subfamilies of CTER subsequently evolved by gene duplications and speciations. The remaining 32 subfamilies do not show such general patterns of congruence; however, some--such as S100, intestinal calcium binding protein (calbindin 9 kd), and trichohylin--do not form congruent clusters of subfamilies. Nearly all of the domains 1, 3, 5, and 7 are most similar to other ODD domains. Correspondingly the EVEN numbered domains of all 45 subfamilies most closely resemble EVEN domains of other subfamilies. Many sequence and chemical characteristics do not show systemic trends by subfamily or species of host organisms; such homoplasy is widespread. Eighteen of the subfamilies are heterochimeric; in addition to multiple EF-hands they contain domains of other evolutionary origins.

  10. Effects of ompA deletion on expression of type 1 fimbriae in Escherichia coli K1 strain RS218 and on the association of E. coli with human brain microvascular endothelial cells.

    PubMed

    Teng, Ching-Hao; Xie, Yi; Shin, Sooan; Di Cello, Francescopaolo; Paul-Satyaseela, Maneesh; Cai, Mian; Kim, Kwang Sik

    2006-10-01

    We have previously shown that outer membrane protein A (OmpA) and type 1 fimbriae are the bacterial determinants involved in Escherichia coli K1 binding to human brain microvascular endothelial cells (HBMEC), which constitute the blood-brain barrier. In investigating the role of OmpA in E. coli K1 binding to HBMEC, we showed for the first time that ompA deletion decreased the expression of type 1 fimbriae in E. coli K1. Decreased expression of type 1 fimbriae in the ompA deletion mutant was largely the result of driving the fim promoter toward the type 1 fimbrial phase-OFF orientation. mRNA levels of fimB and fimE were found to be decreased with the OmpA mutant compared to the parent strain. Of interest, the ompA deletion further decreased the abilities of E. coli K1 to bind to and invade HBMEC under the conditions of fixing type 1 fimbria expression in the phase-ON or phase-OFF status. These findings suggest that the decreased ability of the OmpA mutant to interact with HBMEC is not entirely due to its decreased type 1 fimbrial expression and that OmpA and type 1 fimbriae facilitate the interaction of E. coli K1 with HBMEC at least in an additive manner.

  11. Predictors and Prognostic Value of Worsening Renal Function During Admission in HFpEF Versus HFrEF: Data From the KorAHF (Korean Acute Heart Failure) Registry.

    PubMed

    Kang, Jeehoon; Park, Jin Joo; Cho, Young-Jin; Oh, Il-Young; Park, Hyun-Ah; Lee, Sang Eun; Kim, Min-Seok; Cho, Hyun-Jai; Lee, Hae-Young; Choi, Jin Oh; Hwang, Kyung-Kuk; Kim, Kye Hun; Yoo, Byung-Su; Kang, Seok-Min; Baek, Sang Hong; Jeon, Eun-Seok; Kim, Jae-Joong; Cho, Myeong-Chan; Chae, Shung Chull; Oh, Byung-Hee; Choi, Dong-Ju

    2018-03-13

    Worsening renal function (WRF) is associated with adverse outcomes in patients with heart failure. We investigated the predictors and prognostic value of WRF during admission, in patients with preserved ejection fraction (HFpEF) versus those with reduced ejection fraction (HFrEF). A total of 5625 patients were enrolled in the KorAHF (Korean Acute Heart Failure) registry. WRF was defined as an absolute increase in creatinine of ≥0.3 mg/dL. Transient WRF was defined as recovery of creatinine at discharge, whereas persistent WRF was indicated by a nonrecovered creatinine level. HFpEF and HFrEF were defined as a left ventricle ejection fraction ≥50% and ≤40%, respectively. Among the total population, WRF occurred in 3101 patients (55.1%). By heart failure subgroup, WRF occurred more frequently in HFrEF (57.0% versus 51.3%; P <0.001 in HFrEF and HFpEF). Prevalence of WRF increased as creatinine clearance decreased in both heart failure subgroups. Among various predictors of WRF, chronic renal failure was the strongest predictor. WRF was an independent predictor of adverse in-hospital outcomes (HFrEF: odds ratio; 2.75; 95% confidence interval, 1.50-5.02; P =0.001; HFpEF: odds ratio, 9.48; 95% confidence interval, 1.19-75.89; P =0.034) and 1-year mortality (HFrEF: hazard ratio, 1.41; 95% confidence interval, 1.12-1.78; P =0.004 versus HFpEF: hazard ratio, 1.72; 95% confidence interval, 1.23-2.42; P =0.002). Transient WRF was a risk factor for 1-year mortality, whereas persistent WRF had no additive risk compared to transient WRF. In patients with acute heart failure patients, WRF is an independent predictor of adverse in-hospital and follow-up outcomes in both HFrEF and HFpEF, though with a different effect size. URL: https://www.clinicaltrials.gov. Unique identifier: NCT01389843. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  12. Compositions and methods for making selenocysteine containing polypeptides

    DOEpatents

    Soll, Dieter; Aldag, Caroline; Hohn, Michael

    2016-10-11

    Non-naturally occurring tRNA.sup.Sec and methods of using them for recombinant expression of proteins engineered to include one or more selenocysteine residues are disclosed. The non-naturally occurring tRNA.sup.Sec can be used for recombinant manufacture of selenocysteine containing polypeptides encoded by mRNA without the requirement of an SECIS element. In some embodiments, selenocysteine containing polypeptides are manufactured by co-expressing a non-naturally occurring tRNA.sup.Sec a recombinant expression system, such as E. coli, with SerRS, EF-Tu, SelA, or PSTK and SepSecS, and an mRNA with at least one codon that recognizes the anticodon of the non-naturally occurring tRNA.sup.Sec.

  13. 75 FR 27986 - Electronic Filing System-Web (EFS-Web) Contingency Option

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-19

    ...] Electronic Filing System--Web (EFS-Web) Contingency Option AGENCY: United States Patent and Trademark Office... availability of its patent electronic filing system, Electronic Filing System--Web (EFS-Web) by providing a new contingency option when the primary portal to EFS-Web has an unscheduled outage. Previously, the entire EFS...

  14. The type III secretion system is involved in the invasion and intracellular survival of Escherichia coli K1 in human brain microvascular endothelial cells.

    PubMed

    Yao, Yufeng; Xie, Yi; Perace, Donna; Zhong, Yi; Lu, Jie; Tao, Jing; Guo, Xiaokui; Kim, Kwang Sik

    2009-11-01

    Type III secretion systems (T3SSs) have been documented in many Gram-negative bacteria, including enterohemorrhagic Escherichia coli. We have previously shown the existence of a putative T3SS in meningitis-causing E. coli K1 strains, referred to as E. coli type III secretion 2 (ETT2). The sequence of ETT2 in meningitis-causing E. coli K1 strain EC10 (O7:K1) revealed that ETT2 comprises the epr, epa and eiv genes, but bears mutations, deletions and insertions. We constructed the EC10 mutants deleted of ETT2 or eivA gene, and their contributions to bacterial pathogenesis were evaluated in human brain microvascular endothelial cells (HBMECs). The deletion mutant of ETT2 exhibited defects in invasion and intracellular survival compared with the parental E. coli K1 strain EC10. The mutant deleted of eivA within ETT2 was also significantly defective in invasion and intracellular survival in HBMECs, and the defects of the eiv mutant were restored to the levels of the parent strain EC10 by transcomplementation. These findings suggest that ETT2 plays a role in the pathogenesis of E. coli K1 infection, including meningitis.

  15. Biochemical and genetic characterization of the Enterococcus faecalis oxaloacetate decarboxylase complex.

    PubMed

    Repizo, Guillermo D; Blancato, Víctor S; Mortera, Pablo; Lolkema, Juke S; Magni, Christian

    2013-05-01

    Enterococcus faecalis encodes a biotin-dependent oxaloacetate decarboxylase (OAD), which is constituted by four subunits: E. faecalis carboxyltransferase subunit OadA (termed Ef-A), membrane pump Ef-B, biotin acceptor protein Ef-D, and the novel subunit Ef-H. Our results show that in E. faecalis, subunits Ef-A, Ef-D, and Ef-H form a cytoplasmic soluble complex (termed Ef-AHD) which is also associated with the membrane. In order to characterize the role of the novel Ef-H subunit, coexpression of oad genes was performed in Escherichia coli, showing that this subunit is vital for Ef-A and Ef-D interaction. Diminished growth of the oadA and oadD single deletion mutants in citrate-supplemented medium indicated that the activity of the complex is essential for citrate utilization. Remarkably, the oadB-deficient strain was still capable of growing to wild-type levels but with a delay during the citrate-consuming phase, suggesting that the soluble Ef-AHD complex is functional in E. faecalis. These results suggest that the Ef-AHD complex is active in its soluble form, and that it is capable of interacting in a dynamic way with the membrane-bound Ef-B subunit to achieve its maximal alkalinization capacity during citrate fermentation.

  16. Mutation of the ptsG Gene Results in Increased Production of Succinate in Fermentation of Glucose by Escherichia coli

    PubMed Central

    Chatterjee, Ranjini; Millard, Cynthia Sanville; Champion, Kathleen; Clark, David P.; Donnelly, Mark I.

    2001-01-01

    Escherichia coli NZN111 is blocked in the ability to grow fermentatively on glucose but gave rise spontaneously to a mutant that had this ability. The mutant carries out a balanced fermentation of glucose to give approximately 1 mol of succinate, 0.5 mol of acetate, and 0.5 mol of ethanol per mol of glucose. The causative mutation was mapped to the ptsG gene, which encodes the membrane-bound, glucose-specific permease of the phosphotransferase system, protein EIICBglc. Replacement of the chromosomal ptsG gene with an insertionally inactivated form also restored growth on glucose and resulted in the same distribution of fermentation products. The physiological characteristics of the spontaneous and null mutants were consistent with loss of function of the ptsG gene product; the mutants possessed greatly reduced glucose phosphotransferase activity and lacked normal glucose repression. Introduction of the null mutant into strains not blocked in the ability to ferment glucose also increased succinate production in those strains. This phenomenon was widespread, occurring in different lineages of E. coli, including E. coli B. PMID:11133439

  17. Radioiodination and biodistribution of the monoclonal antibody TU-20 and its scFv fragment

    NASA Astrophysics Data System (ADS)

    Kubaštová, H.; Kleinova, V.; Seifert, D.; Fišer, M.; Kranda, K.

    2006-01-01

    The ability of the monoclonal antibody TU-20 and its scFv fragment to specifically bind to the C-end of the class III beta-tubulin makes these preparations useful as potential diagnostics for in vivo determination of neurodegenerative diseases that entail degradation of neuronal cytoskeleton. To examine this hypothesis, TU-20 and its scFv were labelled with 125I and their properties were extensively investigated. TU-20 and its scFv were labelled via chloramine-T with the yield 90 95% and 64 78%, respectively. Their quality control, performed by an ELISA and gel electrophoresis, determined adequate properties for further studies. The in vitro experiment, involving autoradiography and immunohistochemistry of mice’ brain slices, enabled confirmation of preserved immunospecificity of the radiolabelled substances. Finally, the in vivo biodistribution proved differences in elimination of either TU-20, scFv TU-20, or iodide from the mice.

  18. Comparative Study on Different Expression Hosts for Alkaline Phytase Engineered in Escherichia coli.

    PubMed

    Chen, Weiwei; Yu, Hongwei; Ye, Lidan

    2016-07-01

    The application of alkaline phytase as a feed additive is restricted by the poor specific activity. Escherichia coli is a frequently used host for directed evolution of proteins including alkaline phytase towards improved activity. However, it is not suitable for production of food-grade products due to potential pathogenicity. To combine the advantages of different expression systems, mutants of the alkaline phytase originated from Bacillus subtilis 168 (phy168) were first generated via directed evolution in E. coli and then transformed to food-grade hosts B. subtilis and Pichia pastoris for secretory expression. In order to investigate the suitability of different expression systems, the phy168 mutants expressed in different hosts were characterized and compared in terms of specific activity, pH profile, pH stability, temperature profile, and thermostability. The specific activity of B. subtilis-expressed D24G/K70R/K111E/N121S mutant at pH 7.0 and 60 °C was 30.4 U/mg, obviously higher than those in P. pastoris (22.7 U/mg) and E. coli (19.7 U/mg). Moreover, after 10 min incubation at 80 °C, the B. subtilis-expressed D24G/K70R/K111E/N121S retained about 70 % of the activity at pH 7.0 and 37 °C, whereas the values were only about 25 and 50 % when expressed in P. pastoris and E. coli, respectively. These results suggested B. subtilis as an appropriate host for expression of phy168 mutants and that the strategy of creating mutants in one host and expressing them in another might be a new solution to industrial production of proteins with desired properties.

  19. Ferredoxin is involved in secretion of cytotoxic necrotizing factor 1 across the cytoplasmic membrane in Escherichia coli K1.

    PubMed

    Yu, Hao; Kim, Kwang Sik

    2010-02-01

    We previously showed that cytotoxic necrotizing factor 1 (CNF1) contributes to Escherichia coli K1 invasion of human brain microvascular endothelial cells (HBMEC) and interacts with the receptor on the surface of HBMEC. CNF1 is the cytoplasmic protein, and it remains incompletely understood how CNF1 is secreted across the inner and outer membranes in E. coli K1. In order to investigate the genetic determinants for secretion of CNF1 in E. coli K1, we performed Tn5 mutagenesis screening by applying beta-lactamase as a reporter to monitor secretion of CNF1. We identified a Tn5 mutant that exhibited no beta-lactamase activity in the culture supernatant and in which the mutated gene encodes a ferredoxin gene (fdx). In the fdx deletion mutant, there was no evidence of translocation of CNF1 into HBMEC. Western blot analysis of the fdx deletion mutant revealed that ferredoxin is involved in translocation of CNF1 across the cytoplasmic membrane. The fdx mutant exhibited significantly decreased invasion of HBMEC, similar to the decreased HBMEC invasion observed with the CNF1 mutant. The failures to secrete CNF1 and invade HBMEC of the fdx mutant were restored to the levels of the parent strain by complementation with fdx. These findings demonstrate for the first time that ferredoxin is involved in secretion of CNF1 across the inner membrane in meningitis-causing E. coli K1.

  20. Paraquat toxicity is increased in Escherichia coli defective in the synthesis of polyamines.

    PubMed

    Minton, K W; Tabor, H; Tabor, C W

    1990-04-01

    We have shown that toxicity of paraquat for Escherichia coli is increased over 10-fold in strains defective in the biosynthesis of spermidine compared to isogenic strains containing spermidine. The increased sensitivity of these spermidine-deficient mutants to paraquat is eliminated by growth in medium containing spermidine or by endogenous supplementation of spermidine by the use of a speE+D+ plasmid. No paraquat toxicity is seen in the absence of oxygen, even in amine-deficient strains, indicating that superoxide is the agent responsible for the increased toxicity. However, the specific mechanisms responsible for the increased paraquat toxicity in the spermidine-deficient mutants remain to be determined. The marked sensitivity to paraquat of E. coli deficient in spermidine is of particular interest, since such mutants have no other phenotypic properties that can be easily assayed. This increased sensitivity has been used as the basis of a convenient method for scoring for mutants in polyamine biosynthesis and for the detection of plasmids containing the biosynthetic genes.

  1. [Construction and pathogenic identification of aes-31 gene mutant of avian pathogenic Escherichia coli strain E058].

    PubMed

    Huan, Haixia; Zhang, Ke; Chen, Xiang; Gao, Song; Liu, Xiufan

    2010-12-01

    To find the primary function of aes-31 fragment through construction of defined mutation of Avian Pathogenic Escherichia coli strain E058 and animal experiments. The fragment of aes-31 was generated by PCR and cloned into pGEM-T-easy vector. A resultant suicide vector containing the aes-31 fragment named pMEG375-aes-31 was constructed and transformed to a receptor strain SM10. Then recombinant strain SM10 was hybridized with E058 strain in solid state. Mutant derivatives of strain E058 were generated by homologous recombination and were named E058 (delta aes-31). The 50% lethal dose (LD50) of E058 and E058 (delta aes-31) in commercial day-old chickens experimentally inoculated via intratrachea were 10(4.3) CFU and 10(3.5) CFU, respectively. The same way was used to inoculate with 10(8) CFU to obtain the pathogenic ability of E058 and E058 (delta aes-31) in 35-days-old SPF chickens. In the chicken challenge model,the mutant was tested to determine the individual function for virulence and persistence in 2-week-old SPF chicks. The pathogenicity test for E058 strain and E058 (delta aes-31) strain showed that the mutant had a higher mortality (75%) to 35-day-old specific pathogen-free (SPF) chicks than that of E058 (62.5%). In the chicken challenge model,there was no obviously CFUs difference in blood and lung in chicks of E058 group and E058 (delta aes-31) group 6 hours after inoculation. After 24 hours there was obvious CFUs difference in heart, liver, spleen, lung and blood in chicks of E058 group and E058 (delta aes-31) group. After 48 hours, there was also obvious CFUs difference in heart, liver and spleen in chicks of E058 group and E058 (delta aes-31) group E058 (delta aes-31) had a trend of increasing virulence in chicks. Aes-31 might be associated with negative regulatory gene for E058 virulence and its actual function needed further study.

  2. The DIAN-TU Next Generation Alzheimer’s prevention trial: adaptive design and disease progression model

    PubMed Central

    Bateman, Randall J.; Benzinger, Tammie L.; Berry, Scott; Clifford, David B.; Duggan, Cynthia; Fagan, Anne M.; Fanning, Kathleen; Farlow, Martin R.; Hassenstab, Jason; McDade, Eric M.; Mills, Susan; Paumier, Katrina; Quintana, Melanie; Salloway, Stephen P.; Santacruz, Anna; Schneider, Lon S.; Wang, Guoqiao; Xiong, Chengjie

    2016-01-01

    INTRODUCTION The Dominantly Inherited Alzheimer Network Trials Unit (DIAN-TU) trial is an adaptive platform trial testing multiple drugs to slow or prevent the progression of Alzheimer’s disease in autosomal dominant Alzheimer’s disease (ADAD) families. With completion of enrollment of the first two drug arms, the DIAN-TU now plans to add new drugs to the platform, designated as the Next Generation Prevention Trial (NexGen). METHODS In collaboration with ADAD families, philanthropic organizations, academic leaders, the DIAN-TU Pharma Consortium, the NIH, and regulatory colleagues, the DIAN-TU developed innovative clinical study designs for the DIAN-TU NexGen trial. RESULTS Our expanded trials toolbox consists of a Disease Progression Model for ADAD, primary endpoint DIAN-TU cognitive performance composite, biomarker development, self-administered cognitive assessments, adaptive dose adjustments, and blinded data collection through the last participant completion. CONCLUSION These steps represent elements to improve efficacy of the adaptive platform trial and a continued effort to optimize prevention and treatment trials in ADAD. PMID:27583651

  3. Interaction between the Sbcc Gene of Escherichia Coli and the Gam Gene of Phage λ

    PubMed Central

    Kulkarni, S. K.; Stahl, F. W.

    1989-01-01

    gam mutants of phage λ carrying long palindromes fail to form plaques on wild-type Escherichia coli but do grow on strains that are mutant in the sbcC gene. gam(+) λ carrying the same palindrome grow on both hosts and on a host deleted for the recB, C and D genes. These results suggest that the Gam protein of λ, known to interact also with E. coli's recBCD protein, can interact with the product of the sbcC gene. PMID:2531105

  4. Problem-Centered Design and Personal Teaching Style: An Exploratory Study of Youguang Tu's Course on Philosophy of Education

    ERIC Educational Resources Information Center

    Lei, Hongde

    2016-01-01

    Youguang Tu is a contemporary Chinese philosopher of education. His course on philosophy of education had a significant impact on his students. This exploratory study examines how Tu designed and taught this course. Ultimately, there are two reasons why Tu's course had such a significant influence on his students. The first is that Tu used…

  5. Impact of metal ion homeostasis of genetically modified Escherichia coli Nissle 1917 and K12 (W3110) strains on colonization properties in the murine intestinal tract.

    PubMed

    Kupz, Andreas; Fischer, André; Nies, Dietrich H; Grass, Gregor; Göbel, Ulf B; Bereswill, Stefan; Heimesaat, Markus M

    2013-09-01

    Metal ions are integral parts of pro- as well as eukaryotic cell homeostasis. Escherichia coli proved a valuable in vitro model organism to elucidate essential mechanisms involved in uptake, storage, and export of metal ions. Given that E. coli Nissle 1917 is able to overcome murine colonization resistance, we generated several E. coli Nissle 1917 mutants with defects in zinc, iron, copper, nickel, manganese homeostasis and performed a comprehensive survey of the impact of metal ion transport and homeostasis for E. coli colonization capacities within the murine intestinal tract. Seven days following peroral infection of conventional mice with E. coli Nissle 1917 strains exhibiting defined defects in zinc or iron uptake, the respective mutant and parental strains could be cultured at comparable, but low levels from the colonic lumen. We next reassociated gnotobiotic mice in which the microbiota responsible for colonization resistance was abrogated by broad-spectrum antibiotics with six different E. coli K12 (W3110) mutants. Seven days following peroral challenge, each mutant and parental strain stably colonized duodenum, ileum, and colon at comparable levels. Taken together, defects in zinc, iron, copper, nickel, and manganese homeostasis do not compromise colonization capacities of E. coli in the murine intestinal tract.

  6. Isolation and characterization of an Escherichia coli mutant lacking cytochrome d terminal oxidase.

    PubMed Central

    Green, G N; Gennis, R B

    1983-01-01

    A screening procedure was devised which permitted the isolation of a cytochrome d-deficient mutant by its failure to oxidize the artificial electron donor N,N,N',N'-tetramethyl-p-phenylenediamine. Cytochrome a1 and probably cytochrome b558 were also missing in the mutant. Growth and oxygen uptake rates were similar for both parent and mutant strains. However, the strain lacking cytochrome d had an increased sensitivity to cyanide, indicating that cytochrome d confers some resistance to this respiratory inhibitor. The gene responsible for these phenotypes has been named cyd and maps between tolA and sucB. PMID:6304009

  7. Isolation and Characterization of Lytic Phage vB_EcoM_JS09 against Clinically Isolated Antibiotic-Resistant Avian Pathogenic Escherichia coli and Enterotoxigenic Escherichia coli.

    PubMed

    Zhou, Yan; Bao, Hongduo; Zhang, Hui; Wang, Ran

    2015-01-01

    To characterize the lytic coliphage vB_EcoM_JS09 (phage JS09) isolated from sewage samples of a swine farm in Jiangsu Province, China, which infects antibiotic-resistant avian pathogenic Escherichia coli (APEC) and enterotoxigenic E. coli (ETEC). Transmission electron microscopy revealed that phage JS09 has an isometric icosahedral head (76 nm in diameter) and a long contractile tail (140 nm in length) and features a T-even morphology. Its latent period was 30 min and the average burst size was 79 phage particles per infected cell. It attached to the host cells within 9 min. JS09 could infect 16 clinically isolated APEC and ETEC strains and the laboratory-engineered E. coli K and B strains. Ten of the clinical isolates of E. coli were resistant to antibiotics. At a multiplicity of infection of 10, 3, 1, or 0.3, the phage caused rapid cell lysis within 2 h, resulting in 5- to 10-fold reductions in cell concentration. Sequencing of the JS09 genome revealed a 169.148-kb linear but circularly permuted and terminally redundant dsDNA with 37.98% G+C content. Two hundred seventy-three open reading frames were predicted to be coding sequences, 135 of which were functionally defined and organized in a modular format which includes modules for DNA replication, DNA packaging, structural proteins, and host cell lysis proteins. Phage JS09 is assigned to the Caudovirales order (Myoviridae phage family), and it is considered a T4-like phage based on its morphological, genomic, and growth characteristics. JS09 gp37, a receptor-binding protein (RBP) important for host cell infection, shares little homology with other RBP in the NCBI database, which suggests that the variable regions in gp37 determine the unique host range of phage JS09. Protein sequence comparisons cluster the putative 'RBP' of JS09 much more closely with those of Yersinia phage phiD1, phage TuIa, and phage TuIb. A novel lytic coliphage named JS09 was isolated from sewage samples of a swine farm in Jiangsu Province

  8. Influence of very short patch mismatch repair on SOS inducing lesions after aminoglycoside treatment in Escherichia coli.

    PubMed

    Baharoglu, Zeynep; Mazel, Didier

    2014-01-01

    Low concentrations of aminoglycosides induce the SOS response in Vibrio cholerae but not in Escherichia coli. In order to determine whether a specific factor present in E. coli prevents this induction, we developed a genetic screen where only SOS inducing mutants are viable. We identified the vsr gene coding for the Vsr protein of the very short patch mismatch repair (VSPR) pathway. The effect of mismatch repair (MMR) mutants was also studied. We propose that lesions formed upon aminoglycoside treatment are preferentially repaired by VSPR without SOS induction in E. coli and by MMR when VSPR is impaired. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  9. Strain of Escherichia coli with a temperature-sensitive mutation affecting ribosomal ribonucleic acid accumulation.

    PubMed Central

    Frey, T; Newlin, L L; Atherly, A G

    1975-01-01

    A mutant of Escherichia coli has been isolated that has a temperature-sensitive mutation that results in specific loss of ribosomal ribonucleic acid (RNA) synthesis and some reduction in messenger RNA synthesis. When the strain was grown in glucose medium at a restrictive temperature, RNA accumulation ceased, but both messenger RNA and protein synthesis continued for an extended time. Because carbon metabolism was slowed drastically when strain AA-157 was placed at the restrictive temperature, this phenotype can be compared with carbon depletion conditions present during diauxic lag. However, the phenotype of mutant AA-157 differs from shift-down conditions in that guanosine-3',5'-tetraphosphate levels are unaffected; therefore, a different site is affected. This mutant strain (AA-157) thus shows many characteristics similar to an aldolase mutant previously reported (Böck and Neidhardt, 1966). However, the mutation occurred in a different position on the E. coli genetic map, and furthermore, aldolase was not temperature sensitive in strain AA-157. In this paper we present a study of macromolecular biosynthesis in this mutant. PMID:1090609

  10. Altered Regulation of the Diguanylate Cyclase YaiC Reduces Production of Type 1 Fimbriae in a Pst Mutant of Uropathogenic Escherichia coli CFT073

    PubMed Central

    Crépin, Sébastien; Porcheron, Gaëlle; Houle, Sébastien; Harel, Josée

    2017-01-01

    ABSTRACT The pst gene cluster encodes the phosphate-specific transport (Pst) system. Inactivation of the Pst system constitutively activates the two-component regulatory system PhoBR and attenuates the virulence of pathogenic bacteria. In uropathogenic Escherichia coli strain CFT073, attenuation by inactivation of pst is predominantly attributed to the decreased expression of type 1 fimbriae. However, the molecular mechanisms connecting the Pst system and type 1 fimbriae are unknown. To address this, a transposon library was constructed in the pst mutant, and clones were tested for a regain in type 1 fimbrial production. Among them, the diguanylate cyclase encoded by yaiC (adrA in Salmonella) was identified to connect the Pst system and type 1 fimbrial expression. In the pst mutant, the decreased expression of type 1 fimbriae is connected by the induction of yaiC. This is predominantly due to altered expression of the FimBE-like recombinase genes ipuA and ipbA, affecting at the same time the inversion of the fim promoter switch (fimS). In the pst mutant, inactivation of yaiC restored fim-dependent adhesion to bladder cells and virulence. Interestingly, the expression of yaiC was activated by PhoB, since transcription of yaiC was linked to the PhoB-dependent phoA-psiF operon. As YaiC is involved in cyclic di-GMP (c-di-GMP) biosynthesis, an increased accumulation of c-di-GMP was observed in the pst mutant. Hence, the results suggest that one mechanism by which deletion of the Pst system reduces the expression of type 1 fimbriae is through PhoBR-mediated activation of yaiC, which in turn increases the accumulation of c-di-GMP, represses the fim operon, and, consequently, attenuates virulence in the mouse urinary tract infection model. IMPORTANCE Urinary tract infections (UTIs) are common bacterial infections in humans. They are mainly caused by uropathogenic Escherichia coli (UPEC). We previously showed that interference with phosphate homeostasis decreases the

  11. Altered Regulation of the Diguanylate Cyclase YaiC Reduces Production of Type 1 Fimbriae in a Pst Mutant of Uropathogenic Escherichia coli CFT073.

    PubMed

    Crépin, Sébastien; Porcheron, Gaëlle; Houle, Sébastien; Harel, Josée; Dozois, Charles M

    2017-12-15

    The pst gene cluster encodes the phosphate-specific transport (Pst) system. Inactivation of the Pst system constitutively activates the two-component regulatory system PhoBR and attenuates the virulence of pathogenic bacteria. In uropathogenic Escherichia coli strain CFT073, attenuation by inactivation of pst is predominantly attributed to the decreased expression of type 1 fimbriae. However, the molecular mechanisms connecting the Pst system and type 1 fimbriae are unknown. To address this, a transposon library was constructed in the pst mutant, and clones were tested for a regain in type 1 fimbrial production. Among them, the diguanylate cyclase encoded by yaiC ( adrA in Salmonella ) was identified to connect the Pst system and type 1 fimbrial expression. In the pst mutant, the decreased expression of type 1 fimbriae is connected by the induction of yaiC This is predominantly due to altered expression of the FimBE-like recombinase genes ipuA and ipbA , affecting at the same time the inversion of the fim promoter switch ( fimS ). In the pst mutant, inactivation of yaiC restored fim -dependent adhesion to bladder cells and virulence. Interestingly, the expression of yaiC was activated by PhoB, since transcription of yaiC was linked to the PhoB-dependent phoA-psiF operon. As YaiC is involved in cyclic di-GMP (c-di-GMP) biosynthesis, an increased accumulation of c-di-GMP was observed in the pst mutant. Hence, the results suggest that one mechanism by which deletion of the Pst system reduces the expression of type 1 fimbriae is through PhoBR-mediated activation of yaiC , which in turn increases the accumulation of c-di-GMP, represses the fim operon, and, consequently, attenuates virulence in the mouse urinary tract infection model. IMPORTANCE Urinary tract infections (UTIs) are common bacterial infections in humans. They are mainly caused by uropathogenic Escherichia coli (UPEC). We previously showed that interference with phosphate homeostasis decreases the

  12. TU-EF-BRA-00: MR Basics I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    NMR, and Proton Density MRI of the 1D Patient - Anthony Wolbarst Net Voxel Magnetization, m(x,t). T1-MRI; The MRI Device - Lisa Lemen ‘Classical’ NMR; FID Imaging in 1D via k-Space - Nathan Yanasak Spin-Echo; S-E/Spin Warp in a 2D Slice - Ronald Price Magnetic resonance imaging not only reveals the structural, anatomic details of the body, as does CT, but also it can provide information on the physiological status and pathologies of its tissues, like nuclear medicine. It can display high-quality slice and 3D images of organs and vessels viewed from any perspective, with resolution better than 1 mm.more » MRI is perhaps most extraordinary and notable for the plethora of ways in which it can create unique forms of image contrast, reflective of fundamentally different biophysical phenomena. As with ultrasound, there is no risk from ionizing radiation to the patient or staff, since no X-rays or radioactive nuclei are involved. Instead, MRI harnesses magnetic fields and radio waves to probe the stable nuclei of the ordinary hydrogen atoms (isolated protons) occurring in water and lipid molecules within and around cells. MRI consists, in essence, of creating spatial maps of the electromagnetic environments around these hydrogen nuclei. Spatial variations in the proton milieus can be related to clinical differences in the biochemical and physiological properties and conditions of the associated tissues. Imaging of proton density (PD), and of the tissue proton spin relaxation times known as T1 and T2, all can reveal important clinical information, but they do so with approaches so dissimilar from one another that each is chosen for only certain clinical situations. T1 and T2 in a voxel are determined by different aspects of the rotations and other motions of the water and lipid molecules involved, as constrained by the local biophysical surroundings within and between its cells – and they, in turn, depend on the type of tissue and its state of health. Three other common applications of MRI exploit its capability to detect and image distinct movements of fluids: MR angiography (MRA), which rivals CT angiography but often requires no contrast medium, monitors the bulk flow of blood; functional MRI (f MRI), distinguishes the perfusion of oxygenated blood from that of de-oxygenated, and lights up parts of the brain that are activated by a stimulus, rather like PET; and diffusion tensor imaging (DTI) indicates the diffusion of free water along tracts of axons, thereby bringing nerve trunks into view. There are variants on all of these themes, and on others as well. Magnetic Resonance Spectroscopy (MRS), for example, can perform non-invasive ‘virtual biopsies’ that allow identification of certain cancers and other lesions. And an MRI-guided needle biopsy can sample brain tissue from a region only millimeters in dimensions. MRI, however, involves deeper and more complex aspects of physics, technology, and biology than do most other imaging modalities, and it is widely considered to be correspondingly more difficult to learn. We could probably cover all of this rather comprehensively if we had 50 hours available rather than 2 ̶ but, to paraphrase a former Secretary of Defense, you tell your story in the time you have allotted. The four presenters and another physicist, Kevin King from GE, have combined their efforts to co-author a single slide show that describes essentials of MRI as simply as possible. It is obviously far from thorough, but hopefully it will succeed in explaining some of the basics in a simplified but still valid fashion; in providing a taste of the numerous capabilities and complexities of the modality; and in whetting your appetite to learn more. Part I. NMR, and Proton Density MRI of the 1D Patient (Wolbarst), begins with an introductory case study that illustrates a half dozen ways in which MRI provides valuable clinical information. It then explores the nuclear magnetic resonance (NMR) phenomenon, which underlies MRI. NMR can be introduced with either of two approaches. In the first, one thinks (loosely) of the nuclei of hydrogen atoms as (rotating and charged and therefore) magnetic objects, whose spin-axes tend to align in a strong external magnetic field, much like a compass needle. As with the Bohr atom, this spin-up/spin-down picture is a highly abridged version of the full quantum mechanical treatment, but still it leads to some useful, legitimate pictures of the NMR process occurring within a voxel: When RF photons of the correct (Larmor) frequency elevate protons in a fixed magnetic field out of their lower-energy spin state into the upper, the NMR phenomenon is indicated by the detectable absorption of RF power. With the addition of a linear gradient field along a multi-voxel, one-dimensional patient/phantom, as well, we can determine the water content of each compartment – an example of a real MRI study, albeit in 1D. Part I concludes with a discussion of the net magnetization at position x, m0(x), under conditions of dynamic thermal equilibrium, which leads into: Part II. Net Voxel Magnetization, m(x,t); T1-MRI; The MRI Device (Lemen), investigates the biophysics of the form of proton spin relaxation process characterized by the time T1. It then moves on to the creation of an MR image that displays the spatial variation in the values of this clinically relevant parameter, again in 1D. Finally, the design and workings of a clinical MRI machine are sketched, in preparation for: Part III. ‘Classical’ NMR; FID Imaging in 1D via k-Space (Yanasak) presents the second standard approach to NMR and MRI, the classical model. It focuses on the time dependence of the net nuclear magnetization, m(x,t), the overall magnetic field generated by the cohort of protons in the voxel at position x. Quite remarkably, this nuclear net magnetization itself acts in a strong magnetic field like a gyroscope in a gravitational field. This tack is better for explaining Free Induction Decay (FID), which involves a brief introduction to the Fourier transform and k-space. This leads to conventional Spin-Echo (S-E) reconstruction techniques for creating clinical images from raw data, and sets the stage for: Part IV. Spin-Echo; S-E / Spin Warp in a 2D Slice (Price) discusses application of the S- E sequence of radiofrequency pulses and gradient magnetic fields to the 1D patient. T2 is introduced but not explained. This Part also considers how to manipulate the image acquisition parameters so as to generate clinical pictures with contrast dominated by spatial variations in PD, T1, or T2. We conclude by demonstrating the spin-warp approach to imaging in 2D with a simple 2×2, 4-voxel example. Much of this material is presented in more detail in the chapter “MRI of the One-dimensional Patient, Part I”, in Advances in Medical Physics, Vol 5 (2014). Copies are on display at the Medical Physics Publishing booth. Learning Objectives: The participant will learn about the processes of NMR and T1 spin relaxation in a tissue voxel in a uniform magnetic field. The participant will learn about combining spin-up/spin-down NMR and T1 processes with a linear gradient to effect frequency-encoding of voxel spatial position. This approach can be used to create proton density and T1 MRI maps, respectively, of the contents of multi-voxel 1D phantoms. The participant will learn about how the ‘classical’ model of NMR it can generate Free Induction Decay (FID) images of 1D phantoms, which involves the use of the Fourier transform in k-space. This can lead simply into standard Spin-Echo images. The participant will learn about extending Spin-Echo imaging into 2 and more dimensions.« less

  13. Pathophysiological understanding of HFpEF: microRNAs as part of the puzzle.

    PubMed

    Rech, Monika; Barandiarán Aizpurua, Arantxa; van Empel, Vanessa; van Bilsen, Marc; Schroen, Blanche

    2018-05-01

    Half of all heart failure patients have preserved ejection fraction (HFpEF). Comorbidities associated with and contributing to HFpEF include obesity, diabetes and hypertension. Still, the underlying pathophysiological mechanisms of HFpEF are unknown. A preliminary consensus proposes that the multi-morbidity triggers a state of systemic, chronic low-grade inflammation, and microvascular dysfunction, causing reduced nitric oxide bioavailability to adjacent cardiomyocytes. As a result, the cardiomyocyte remodels its contractile elements and fails to relax properly, causing diastolic dysfunction, and eventually HFpEF. HFpEF is a complex syndrome for which currently no efficient therapies exist. This is notably due to the current one-size-fits-all therapy approach that ignores individual patient differences. MicroRNAs have been studied in relation to pathophysiological mechanisms and comorbidities underlying and contributing to HFpEF. As regulators of gene expression, microRNAs may contribute to the pathophysiology of HFpEF. In addition, secreted circulating microRNAs are potential biomarkers and as such, they could help stratify the HFpEF population and open new ways for individualized therapies. In this review, we provide an overview of the ever-expanding world of non-coding RNAs and their contribution to the molecular mechanisms underlying HFpEF. We propose prospects for microRNAs in stratifying the HFpEF population. MicroRNAs add a new level of complexity to the regulatory network controlling cardiac function and hence the understanding of gene regulation becomes a fundamental piece in solving the HFpEF puzzle.

  14. A genome-wide screen of bacterial mutants that enhance dauer formation in C. elegans.

    PubMed

    Khanna, Amit; Kumar, Jitendra; Vargas, Misha A; Barrett, LaKisha; Katewa, Subhash; Li, Patrick; McCloskey, Tom; Sharma, Amit; Naudé, Nicole; Nelson, Christopher; Brem, Rachel; Killilea, David W; Mooney, Sean D; Gill, Matthew; Kapahi, Pankaj

    2016-12-13

    Molecular pathways involved in dauer formation, an alternate larval stage that allows Caenorhabditis elegans to survive adverse environmental conditions during development, also modulate longevity and metabolism. The decision to proceed with reproductive development or undergo diapause depends on food abundance, population density, and temperature. In recent years, the chemical identities of pheromone signals that modulate dauer entry have been characterized. However, signals derived from bacteria, the major source of nutrients for C. elegans, remain poorly characterized. To systematically identify bacterial components that influence dauer formation and aging in C. elegans, we utilized the individual gene deletion mutants in E. coli (K12). We identified 56 diverse E. coli deletion mutants that enhance dauer formation in an insulin-like receptor mutant (daf-2) background. We describe the mechanism of action of a bacterial mutant cyaA, that is defective in the production of cyclic AMP, which extends lifespan and enhances dauer formation through the modulation of TGF-β (daf-7) signaling in C. elegans. Our results demonstrate the importance of bacterial components in influencing developmental decisions and lifespan in C. elegans. Furthermore, we demonstrate that C. elegans is a useful model to study bacterial-host interactions.

  15. Increased resistance to ionizing and ultraviolet radiation in Escherichia coli JM83 is associated with a chromosomal rearrangement.

    PubMed

    McLean, K M; Gutman, P D; Minton, K W; Clark, E P

    1992-06-01

    Cells cope with radiation damage through several mechanisms: (1) increased DNA repair activity, (2) scavenging and inactivation of radiation-induced radical molecules, and (3) entry into a G0-like quiescent state. We have investigated a chromosomal rearrangement to elucidate further the molecular and genetic mechanisms underlying these phenomena. A mutant of Escherichia coli JM83 (phi 80dlacZ delta M15) was isolated that demonstrated significantly increased resistance to both ionizing and ultraviolet radiation. Surviving fractions of mutant and wild-type cells were measured following exposure to standardized doses of radiation. Increased radioresistance was directly related to a chromosomal alteration near the bacteriophage phi 80 attachment site (attB), as initially detected by the LacZ- phenotype of the isolate. Southern hybridization of chromosomal DNA from the mutant and wild-type E. coli JM83 strains indicated that a deletion had occurred. We propose that the deletion near the attB locus produces the radioresistant phenotype of the E. coli JM83 LacZ- mutant, perhaps through the alteration or inactivation of a gene or its controlling element(s).

  16. Affinities of penicillins and cephalosporins for the penicillin-binding proteins of Escherichia coli K-12 and their antibacterial activity.

    PubMed Central

    Curtis, N A; Orr, D; Ross, G W; Boulton, M G

    1979-01-01

    The affinities of a range of penicillins and cephalosporins for ther penicillin-binding proteins of Escherichia coli K-12 have been studied, and the results were compared with the antibacterial activity of the compounds against E. coli K-12 and an isogenic permeability mutant. Different penicillins and cephalosporins exhibited different affinities for the "essential" penicillin-binding proteins of E. coli K-12, in a manner which directly correlated with their observed effects upon bacterial morphology. Furthermore, the affinities of the compounds for their "primary" lethal penicillin-binding protein targets showed close agreement with their antibacterial activities against the permeability mutant. Images PMID:393164

  17. The Escherichia coli argW-dsdCXA genetic island is highly variable, and E. coli K1 strains commonly possess two copies of dsdCXA.

    PubMed

    Moritz, Rebecca L; Welch, Rodney A

    2006-11-01

    The genome sequences of Escherichia coli pathotypes reveal extensive genetic variability in the argW-dsdCXA island. Interestingly, the archetype E. coli K1 neonatal meningitis strain, strain RS218, has two copies of the dsdCXA genes for d-serine utilization at the argW and leuX islands. Because the human brain contains d-serine, an epidemiological study emphasizing K1 isolates surveyed the dsdCXA copy number and function. Forty of 41 (97.5%) independent E. coli K1 isolates could utilize d-serine. Southern blot hybridization revealed physical variability within the argW-dsdC region, even among 22 E. coli O18:K1:H7 isolates. In addition, 30 of 41 K1 strains, including 21 of 22 O18:K1:H7 isolates, had two dsdCXA loci. Mutational analysis indicated that each of the dsdA genes is functional in a rifampin-resistant mutant of RS218, mutant E44. The high percentage of K1 strains that can use d-serine is in striking contrast to our previous observation that only 4 of 74 (5%) isolates in the diarrheagenic E. coli (DEC) collection have this activity. The genome sequence of diarrheagenic E. coli isolates indicates that the csrRAKB genes for sucrose utilization are often substituted for dsdC and a portion of dsdX present at the argW-dsdCXA island of extraintestinal isolates. Among DEC isolates there is a reciprocal pattern of sucrose fermentation versus d-serine utilization. The ability to use d-serine is a trait strongly selected for among E. coli K1 strains, which have the ability to infect a wide range of extraintestinal sites. Conversely, diarrheagenic E. coli pathotypes appear to have substituted sucrose for d-serine as a potential nutrient.

  18. Easy preparation of a large-size random gene mutagenesis library in Escherichia coli.

    PubMed

    You, Chun; Percival Zhang, Y-H

    2012-09-01

    A simple and fast protocol for the preparation of a large-size mutant library for directed evolution in Escherichia coli was developed based on the DNA multimers generated by prolonged overlap extension polymerase chain reaction (POE-PCR). This protocol comprised the following: (i) a linear DNA mutant library was generated by error-prone PCR or shuffling, and a linear vector backbone was prepared by regular PCR; (ii) the DNA multimers were generated based on these two DNA templates by POE-PCR; and (iii) the one restriction enzyme-digested DNA multimers were ligated to circular plasmids, followed by transformation to E. coli. Because the ligation efficiency of one DNA fragment was several orders of magnitude higher than that of two DNA fragments for typical mutant library construction, it was very easy to generate a mutant library with a size of more than 10(7) protein mutants per 50 μl of the POE-PCR product. Via this method, four new fluorescent protein mutants were obtained based on monomeric cherry fluorescent protein. This new protocol was simple and fast because it did not require labor-intensive optimizations in restriction enzyme digestion and ligation, did not involve special plasmid design, and enabled constructing a large-size mutant library for directed enzyme evolution within 1 day. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Evolved osmotolerant Escherichia coli mutants frequently exhibit defective N-acetylglucosamine catabolism and point mutations in cell shape-regulating protein MreB.

    PubMed

    Winkler, James D; Garcia, Carlos; Olson, Michelle; Callaway, Emily; Kao, Katy C

    2014-06-01

    Biocatalyst robustness toward stresses imposed during fermentation is important for efficient bio-based production. Osmotic stress, imposed by high osmolyte concentrations or dense populations, can significantly impact growth and productivity. In order to better understand the osmotic stress tolerance phenotype, we evolved sexual (capable of in situ DNA exchange) and asexual Escherichia coli strains under sodium chloride (NaCl) stress. All isolates had significantly improved growth under selection and could grow in up to 0.80 M (47 g/liter) NaCl, a concentration that completely inhibits the growth of the unevolved parental strains. Whole genome resequencing revealed frequent mutations in genes controlling N-acetylglucosamine catabolism (nagC, nagA), cell shape (mrdA, mreB), osmoprotectant uptake (proV), and motility (fimA). Possible epistatic interactions between nagC, nagA, fimA, and proV deletions were also detected when reconstructed as defined mutations. Biofilm formation under osmotic stress was found to be decreased in most mutant isolates, coupled with perturbations in indole secretion. Transcriptional analysis also revealed significant changes in ompACGL porin expression and increased transcription of sulfonate uptake systems in the evolved mutants. These findings expand our current knowledge of the osmotic stress phenotype and will be useful for the rational engineering of osmotic tolerance into industrial strains in the future. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  20. Understanding the EF-hand closing pathway using non-biased interatomic potentials.

    PubMed

    Dupuis, L; Mousseau, Normand

    2012-01-21

    The EF-hand superfamily of proteins is characterized by the presence of calcium binding helix-loop-helix structures. Many of these proteins undergo considerable motion responsible for a wide range of properties upon binding but the exact mechanism at the root of this motion is not fully understood. Here, we use an unbiased accelerated multiscale simulation scheme, coupled with two force fields - CHARMM-EEF1 and the extended OPEP - to explore in details the closing pathway, from the unbound holo state to the closed apo state, of two EF-hand proteins, the Calmodulin and Troponin C N-terminal nodules. Based on a number of closing simulations for these two sequences, we show that the EF-hand β-scaffold, identified as crucial by Grabarek for the EF-hand opening driven by calcium binding, is also important in closing the EF-hand. We also show the crucial importance of the phenylalanine situated at the end of first EF-hand helix, and identify an intermediate state modulating its behavior, providing a detailed picture of the closing mechanism for these two representatives of EF-hand proteins. © 2012 American Institute of Physics

  1. Selection for Spontaneous "Escherichia coli" Streptomycin Mutants Using Basic Fuchsin.

    ERIC Educational Resources Information Center

    Walkosz, Ronald

    1991-01-01

    An exercise that uses a common bacterium, E. coli, in great numbers, to detect a demonstrable change in the ability of some cells to become resistant to the common antibiotic streptomycin is presented. The procedure for preparing and pouring the gradient antibiotic plates is provided. The advantages of using the Basic Fuchsin in the agar are…

  2. Proton translocation coupled to trimethylamine N-oxide reduction in anaerobically grown Escherichia coli.

    PubMed Central

    Takagi, M; Tsuchiya, T; Ishimoto, M

    1981-01-01

    Proton translocation coupled to trimethylamine N-oxide reduction was studied in Escherichia coli grown anaerobically in the presence of trimethylamine N-oxide. Rapid acidification of the medium was observed when trimethylamine N-oxide was added to anaerobic cell suspensions of E. coli K-10. Acidification was sensitive to the proton conductor 3,5-di-tert-butyl-4-hydroxybenzylidenemalononitrile (SF6847). No pH change was shown in a strain deficient in trimethylamine N-oxide reductase activity. The apparent H+/trimethylamine N-oxide ratio in cells oxidizing endogenous substrates was 3 to 4 g-ions of H+ translocated per mol of trimethylamine N-oxide added. The addition of trimethylamine N-oxide and formate to ethylenediaminetetraacetic acid-treated cell suspension caused fluorescence quenching of 3,3'-dipropylthiacarbocyanine [diS-C3-(5)], indicating the generation of membrane potential. These results indicate that the reduction of trimethylamine N-oxide in E. coli is catalyzed by an anaerobic electron transfer system, resulting in formation of a proton motive force. Trimethylamine N-oxide reductase activity and proton extrusion were also examined in chlorate-resistant mutants. Reduction of trimethylamine N-oxide occurred in chlC, chlG, and chlE mutants, whereas chlA, chlB, and chlD mutants, which are deficient in the molybdenum cofactor, could not reduce it. Protons were extruded in chlC and chlG mutants, but not in chlA, chlB, and chlD mutants. Trimethylamine N-oxide reductase activity in a chlD mutant was restored to the wild-type level by the addition of 100 microM molybdate to the growth medium, indicating that the same molybdenum cofactor as used by nitrate reductase is required for the trimethylamine N-oxide reductase system. PMID:7031034

  3. Ca2+ Binding to EF Hands 1 and 3 Is Essential for the Interaction of Apoptosis-Linked Gene-2 with Alix/AIP1 in Ocular Melanoma†

    PubMed Central

    Subramanian, Lalita; Polans, Arthur S.; Walker, Teresa M.; van Ginkel, Paul R.; Bhattacharya, Saswati; Dellaria, Julia M.; Crabb, John W.; Cox, Jos; Durussel, Isabelle; Palczewski, Krzysztof

    2005-01-01

    Apoptosis-linked gene-2 (ALG-2) encodes a 22 kDa Ca2+-binding protein of the penta EF-hand family that is required for programmed cell death in response to various apoptotic agents. Here, we demonstrate that ALG-2 mRNA and protein are down-regulated in human uveal melanoma cells compared to their progenitor cells, normal melanocytes. The down regulation of ALG-2 may provide melanoma cells with a selective advantage. ALG-2 and its putative target molecule, Alix/AIP1, are localized primarily in the cytoplasm of melanocytes and melanoma cells independent of the intracellular Ca2+ concentration or the activation of apoptosis. Cross-linking and analytical centrifugation studies support a single-species dimer conformation of ALG-2, also independent of Ca2+ concentration. However, binding of Ca2+ to both EF-1 and EF-3 is necessary for ALG-2 interaction with Alix/AIP1 as demonstrated using surface plasmon resonance spectroscopy. Mutations in EF-5 result in reduced target interaction without alteration in Ca2+ affinity. The addition of N-terminal ALG-2 peptides, residues 1–22 or residues 7–17, does not alter the interaction of ALG-2 or an N-terminal deletion mutant of ALG-2 with Alix/AIP1, as might be expected from a model derived from the crystal structure of ALG-2. Fluorescence studies of ALG-2 demonstrate that an increase in surface hydrophobicity is primarily due to Ca2+ binding to EF-3, while Ca2+ binding to EF-1 has little effect on surface exposure of hydrophobic residues. Together, these data indicate that gross surface hydrophobicity changes are insufficient for target recognition. PMID:15366927

  4. Slugs: potential novel vectors of Escherichia coli O157.

    PubMed

    Sproston, Emma L; Macrae, M; Ogden, Iain D; Wilson, Michael J; Strachan, Norval J C

    2006-01-01

    Field and laboratory studies were performed to determine whether slugs could act as novel vectors for pathogen (e.g., Escherichia coli O157) transfer from animal feces to salad vegetables. Escherichia coli O157 was isolated from 0.21% of field slugs from an Aberdeenshire sheep farm. These isolates carried the verocytotoxin genes (vt1 and vt2) and the attaching and effacing gene (eae), suggesting that they are potentially pathogenic to humans. Strain typing using multilocus variable number tandem repeats analysis showed that slug and sheep isolates were indistinguishable. Laboratory experiments using an E. coli mutant resistant to nalidixic acid showed that the ubiquitous slug species Deroceras reticulatum could carry viable E. coli on its external surface for up to 14 days. Slugs that had been fed E. coli shed viable bacteria in their feces with numbers showing a short but statistically significant linear log decline. Further, it was found that E. coli persisted for up to 3 weeks in excreted slug feces, and hence, we conclude that slugs have the potential to act as novel vectors of E. coli O157.

  5. Dose modification in e.coli by a constitutive radioprotective agent isolated from m. radiodurans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldstein, Lawrence S.

    1972-01-01

    A constitutive low molecular weight radioprotective agent has been isolated from a colorless mutant of Micrococcus radiodurans. The effect of radioprotective extract was also investigated in three mutant strains of E.coli B/r differing from one another at a given locus concerned with the repair of radiation induced damage/

  6. Biofilm formation and binding specificities of CFA/I, CFA/II and CS2 adhesions of enterotoxigenic Escherichia coli and Cfae-R181A mutant.

    PubMed

    Liaqat, Iram; Sakellaris, Harry

    2012-07-01

    Enterotoxigenic Escherichia coli (ETEC) strains are leading causes of childhood diarrhea in developing countries. Adhesion is the first step in pathogenesis of ETEC infections and ETEC pili designated colonization factor antigens (CFAs) are believed to be important in the biofim formation, colonization and host cell adhesions. As a first step, we have determined the biofilm capability of ETEC expressing various types of pili (CFA/I, CfaE-R181A mutant/CfaE tip mutant, CFA/II and CS2). Further, enzyme-linked immunosorbent assay (ELISA) assay were developed to compare the binding specificity of CFA/I, CFA/II (CS1 - CS3) and CS2 of ETEC, using extracted pili and piliated bacteria. CFA/II strain (E24377a) as well as extracted pili exhibited significantly higher binding both in biofilm and ELISA assays compared to non piliated wild type E24377a, CFA/I and CS2 strains. This indicates that co-expression of two or more CS2 in same strain is more efficient in increasing adherence. Significant decrease in binding specificity of DH5αF'lacI (q)/∆cotD (CS2) strain and MC4100/pEU2124 (CfaE-R181A) mutant strain indicated the important contribution of tip proteins in adherence assays. However, CS2 tip mutant strain (DH5αF'lacI (q)/pEU5881) showed that this specific residue may not be important as adhesions in these strains. In summary, our data suggest that pili, their minor subunits are important for biofilm formation and adherence mechanisms. Overall, the functional reactivity of strains co expressing various antigens, particularly minor subunit antigen observed in this study suggest that fewer antibodies may be required to elicit immunity to ETEC expressing a wider array of related pili.

  7. 23 CFR Appendixes E-F to Subpart A... - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false [Reserved] E Appendixes E-F to Subpart A of Part 230 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION CIVIL RIGHTS EXTERNAL PROGRAMS Equal...) Appendixes E-F to Subpart A of Part 230 [Reserved] ...

  8. Recognition of Artificial Nucleobases by E. coli Purine Nucleoside Phosphorylase versus its Ser90Ala Mutant in the Synthesis of Base-Modified Nucleosides.

    PubMed

    Fateev, Ilja V; Kharitonova, Maria I; Antonov, Konstantin V; Konstantinova, Irina D; Stepanenko, Vasily N; Esipov, Roman S; Seela, Frank; Temburnikar, Kartik W; Seley-Radtke, Katherine L; Stepchenko, Vladimir A; Sokolov, Yuri A; Miroshnikov, Anatoly I; Mikhailopulo, Igor A

    2015-09-14

    A wide range of natural purine analogues was used as probe to assess the mechanism of recognition by the wild-type (WT) E. coli purine nucleoside phosphorylase (PNP) versus its Ser90Ala mutant. The results were analyzed from viewpoint of the role of the Ser90 residue and the structural features of the bases. It was found that the Ser90 residue of the PNP 1) plays an important role in the binding and activation of 8-aza-7-deazapurines in the synthesis of their nucleosides, 2) participates in the binding of α-D-pentofuranose-1-phosphates at the catalytic site of the PNP, and 3) catalyzes the dephosphorylation of intermediary formed 2-deoxy-α-D-ribofuranose-1-phosphate in the trans-2-deoxyribosylation reaction. 5-Aza-7-deazaguanine manifested excellent substrate activity for both enzymes, 8-amino-7-thiaguanine and 2-aminobenzothiazole showed no substrate activity for both enzymes. On the contrary, the 2-amino derivatives of benzimidazole and benzoxazole are substrates and are converted into the N1- and unusual N2-glycosides, respectively. 9-Deaza-5-iodoxanthine showed moderate inhibitory activity of the WT E. coli PNP, whereas 9-deazaxanthine and its 2'-deoxyriboside are weak inhibitors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Study of phosphorylation of translation elongation factor 2 (EF-2) from wheat germ.

    PubMed

    Smailov, S K; Lee, A V; Iskakov, B K

    1993-04-26

    Phosphorylation of elongation factor 2 (EF-2) by specific Ca2+/calmodulin-dependent kinase is considered as a possible mechanism of regulation of protein biosynthesis in animal cells at the level of polypeptide chain elongation. In this report we show that wheat germ EF-2 can be intensively phosphorylated by the rabbit reticulocyte EF-2 kinase. Phosphorylation results in inhibition of the activity of plant EF-2 in poly(U)-dependent cell-free translation system. Thus, the activity of EF-2 in plant cells can be potentially regulated by phosphorylation. However, we could not detect endogenous EF-2 kinase activity in wheat germ either in vitro or in vivo. Furthermore, EF-2 kinase activity is not displayed in different organs of wheat and other higher plants.

  10. Overexpression of Salmonella enterica serovar Typhi recA gene confers fluoroquinolone resistance in Escherichia coli DH5α.

    PubMed

    Yassien, M A M; Elfaky, M A

    2015-11-01

    A spontaneous fluoroquinolone-resistant mutant (STM1) was isolated from its parent Salmonella enterica serovar Typhi (S. Typhi) clinical isolate. Unlike its parent isolate, this mutant has selective resistance to fluoroquinolones without any change in its sensitivity to various other antibiotics. DNA gyrase assays revealed that the fluoroquinolone resistance phenotype of the STM1 mutant did not result from alteration of the fluoroquinolone sensitivity of the DNA gyrase isolated from it. To study the mechanism of fluoroquinolone resistance, a genomic library from the STM1 mutant was constructed in Escherichia coli DH5α and two recombinant plasmids were obtained. Only one of these plasmids (STM1-A) conferred the selective fluoroquinolone resistance phenotype to E. coli DH5α. The chromosomal insert from STM1-A, digested with EcoRI and HindIII restriction endonucleases, produced two DNA fragments and these were cloned separately into pUC19 thereby generating two new plasmids, STM1-A1 and STM1-A2. Only STM1-A1 conferred the selective fluoroquinolone resistance phenotype to E. coli DH5α. Sequence and subcloning analyses of STM1-A1 showed the presence of an intact RecA open reading frame. Unlike that of the wild-type E. coli DH5α, protein analysis of a crude STM1-A1 extract showed overexpression of a 40 kDa protein. Western blotting confirmed the 40 kDa protein band to be RecA. When a RecA PCR product was cloned into pGEM-T and introduced into E. coli DH5α, the STM1-A11 subclone retained fluoroquinolone resistance. These results suggest that overexpression of RecA causes selective fluoroquinolone resistance in E. coli DH5α.

  11. delta. -aminolevulinic acid dehydratase deficiency can cause. delta. -aminolevulinate auxotrophy in Escherichia coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Neill, G.P.; Michelsen, U.; Soll, D.

    Ethylmethane sulfonate-induced mutants of several Escherichia coli strains that required {delta}-aminolevulinic acid (ALA) for growth were isolated by penicillin enrichment or by selection for respiratory-defective strains resistant to the aminoglycoside antibiotic kanamycin. Three classes of mutants were obtained. Two-thirds of the strains were mutants in hemA. Representative of a third of the mutations was the hem-201 mutation. This mutation was mapped to min 8.6 to 8.7. Complementation of the auxotrophic phenotype by wild-type DNA from the corresponding phage 8F10 allowed the isolation of the gene. DNA sequence analysis revealed that the hem-201 gene encoded ALA dehydratase and was similar tomore » a known hemB gene of E. coli. Complementation studies of hem-201 and hemB1 mutant strains with various hem-201 gene subfragments showed that hem-201 and the previously reported hemB1 mutation are in the same gene and that no other gene is required to complement the hem-201 mutant. ALA-forming activity from glutamate could not be detected by in vitro or in vivo assays. Extracts of hem-201 cells had drastically reduce ALA dehydratase levels, while cells transformed with the plasmid-encoded wild-type gene possessed highly elevated enzyme levels. The ALA requirement for growth, the lack of any ALA-forming enzymatic activity, and greatly reduced ALA dehydratase activity of the hem-201 strain suggest that a diffusible product of an enzyme in the heme biosynthetic pathway after ALA formation is involved in positive regulation of ALA biosynthesis. Analysis of another class of ALA-requiring mutants showed that the auxotrophy of the hem-205 mutant could be relieved by either methionine or cysteine and that the mutation maps in the cysG gene, which encodes uroporphyrinogen III methylase. The properties of these nonleaky ALA-requiring strains suggest that ALA is involved more extensively in E. coli intermediary metabolism than has been appreciated to date.« less

  12. Synthesis of bacteriophage phiC DNA in dna mutants of Esherichia coli.

    PubMed

    Kodaira, K I; Taketo, A

    1978-06-01

    Host dna functions involved in the replication of microvirid phage phiC DNA were investigated in vivo. Although growth of this phage was markedly inhibited even at 35-37 degrees C even in dna+ host, conversion of the infecting single-stranded DNA into the double-stranded parental replicative form (stage I synthesis) occurred normally at 43 degrees C in dna+, dnaA, dnaB, dnaC(D), and dnaE cells. In dnaG mutant, the stage I synthesis was severely inhibited at 43 degrees C but not at 30 degrees C. The stage I replication of phiC DNA was clearly thermosensitive in dnaZ cells incubated in nutrient broth. In Tris-casamino acids-glucose medium, however, the dnaZ mutant sufficiently supported synthesis of the parental replicative form. At 43 degrees C, synthesis of the progeny replicative form DNA (stage II replication) was significantly inhibited even in dna+ cells and was nearly completely blocked in dnaB or dnaC(D) mutant. At 37 degrees C, the stage II replication proceeded normally in dna+ bacteria.

  13. [Expression and significance of c-fos in resistant cell line TU177/VCR of larynx squamous cell carcinoma].

    PubMed

    Li, G D; Hu, X L; Xing, J F; Shi, R Y; Li, X; Li, J F; Li, T L

    2018-04-07

    Objective: To explore the effect of c-fos on multidrug resistance of laryngeal cancer TU177 cells. Method: Increasing drug concentration gradient is adopted to establish the stability of the laryngeal cancer drug resistance in cell line; RT-PCR and Western blot were used to detect difference of the c-fos between TU177 and TU177/VCR cells; plasmids with human c-fos knockdown or over expression were transfected into TU177/VCR and TU177 cells respectively, and the effects of different treatment on cell proliferation were investigated with MTT. Results: The drug resistance of TU177/VCR cells was 26.25-fold in vincristine (VCR), 7.33-fold in Paclitaxel (TAX), 2.41 in cisplatin (DDP), and 5.50 in 5-fluorouracil (5-FU), comparing with TU177( P <0.05). The TU177/VCR cells had significantly higher c-fos expression compared to TU177 cells( P <0.05). The results showed that the IC(50) values of 5-FU for the NC group and c-fos shRNA group were (306.2±6.3)μmol/L and (81.3±3.9)μmol/L, respectively, which was decreased by 73% in the c-fos shRNA group compared to that in the NC group ( P <0.05). Similarly, the results showed that the IC(50) values for 5-FU were (55.3±9.4) μmol/L in NC group and (288.1±7.3)μmol/L in c-fos WT group, which was increased 5.21-fold in c-fos WT cells. Conclusion: C-fos plays important role in multidrug resistance of larynx cancer cell TU177/VCR, and might become a new molecular target for laryngeal cancer treatment.

  14. PBP5, PBP6 and DacD play different roles in intrinsic β-lactam resistance of Escherichia coli.

    PubMed

    Sarkar, Sujoy Kumar; Dutta, Mouparna; Chowdhury, Chiranjit; Kumar, Akash; Ghosh, Anindya S

    2011-09-01

    Escherichia coli PBP5, PBP6 and DacD, encoded by dacA, dacC and dacD, respectively, share substantial amino acid identity and together constitute ~50 % of the total penicillin-binding proteins of E. coli. PBP5 helps maintain intrinsic β-lactam resistance within the cell. To test if PBP6 and DacD play simlar roles, we deleted dacC and dacD individually, and dacC in combination with dacA, from E. coli 2443 and compared β-lactam sensitivity of the mutants and the parent strain. β-Lactam resistance was complemented by wild-type, but not dd-carboxypeptidase-deficient PBP5, confirming that enzymic activity of PBP5 is essential for β-lactam resistance. Deletion of dacC and expression of PBP6 during exponential or stationary phase did not alter β-lactam resistance of a dacA mutant. Expression of DacD during mid-exponential phase partially restored β-lactam resistance of the dacA mutant. Therefore, PBP5 dd-carboxypeptidase activity is essential for intrinsic β-lactam resistance of E. coli and DacD can partially compensate for PBP5 in this capacity, whereas PBP6 cannot.

  15. Ultraviolet-Sensitive Mutator Strain of Escherichia coli K-12

    PubMed Central

    Siegel, Eli C.

    1973-01-01

    An ultraviolet (UV)-sensitive mutator gene, mutU, was identified in Escherichia coli K-12. The mutation mutU4 is very close to uvrD, between metE and ilv, on the E. coli chromosome. It was recessive as a mutator and as a UV-sensitive mutation. The frequency of reversion of trpA46 on an F episome was increased by mutU4 on the chromosome. The mutator gene did not increase mutation frequencies in virulent phages or in lytically grown phage λ. The mutU4 mutation predominantly induced transitional base changes. Mutator strains were normal for recombination and host-cell reactivation of UV-irradiated phage T1. They were normally resistant to methyl methanesulfonate and were slightly more sensitive to gamma irradiation than Mut+ strains. UV irradiation induced mutations in a mutU4 strain, and phage λ was UV-inducible. Double mutants containing mutU4 and recA, B, or C were extremely sensitive to UV irradiation; a mutU4 uvrA6 double mutant was only slightly more sensitive than a uvrA6 strain. The mutU4 uvrA6 and mutU4 recA, B, or C double mutants had mutation rates similar to that of a mutU4 strain. Two UV-sensitive mutators, mut-9 and mut-10, isolated by Liberfarb and Bryson in E. coli B/UV, were found to be co-transducible with ilv in the same general region as mutU4. PMID:4345920

  16. Metabolic engineering of Escherichia coli for the biosynthesis of 2-pyrrolidone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jingwei; Kao, Emily; Wang, George

    2-Pyrrolidone is a valuable bulk chemical with myriad applications as a solvent, polymer precursor and active pharmaceutical intermediate. A novel 2-pyrrolidone synthase, ORF27, from Streptomyces aizunensis was identified to catalyze the ring closing dehydration of γ-aminobutyrate. ORF27's tendency to aggregate was resolved by expression at low temperature and fusion to the maltose binding protein (MBP). Recombinant Escherichia coli was metabolically engineered for the production of 2-pyrrolidone from glutamate by expressing both the genes encoding GadB, a glutamate decarboxylase, and ORF27. Incorporation of a GadB mutant lacking H465 and T466, GadB_δHT, improved the efficiency of one-pot 2-pyrrolidone biosynthesis in vivo. Whenmore » the recombinant E. coli strain expressing the E. coli GadB_δHT mutant and the ORF27-MBP fusion was cultured in ZYM-5052 medium containing 9. g/L of l-glutamate, 7.7. g/L of l-glutamate was converted to 1.1. g/L of 2-pyrrolidone within 31. h, achieving 25% molar yield from the consumed substrate.« less

  17. Metabolic engineering of Escherichia coli for the biosynthesis of 2-pyrrolidone

    DOE PAGES

    Zhang, Jingwei; Kao, Emily; Wang, George; ...

    2016-12-01

    2-Pyrrolidone is a valuable bulk chemical with myriad applications as a solvent, polymer precursor and active pharmaceutical intermediate. A novel 2-pyrrolidone synthase, ORF27, from Streptomyces aizunensis was identified to catalyze the ring closing dehydration of γ-aminobutyrate. ORF27's tendency to aggregate was resolved by expression at low temperature and fusion to the maltose binding protein (MBP). Recombinant Escherichia coli was metabolically engineered for the production of 2-pyrrolidone from glutamate by expressing both the genes encoding GadB, a glutamate decarboxylase, and ORF27. Incorporation of a GadB mutant lacking H465 and T466, GadB_δHT, improved the efficiency of one-pot 2-pyrrolidone biosynthesis in vivo. Whenmore » the recombinant E. coli strain expressing the E. coli GadB_δHT mutant and the ORF27-MBP fusion was cultured in ZYM-5052 medium containing 9. g/L of l-glutamate, 7.7. g/L of l-glutamate was converted to 1.1. g/L of 2-pyrrolidone within 31. h, achieving 25% molar yield from the consumed substrate.« less

  18. Nonrandom γ-TuNA-dependent spatial pattern of microtubule nucleation at the Golgi

    PubMed Central

    Sanders, Anna A. W. M.; Chang, Kevin; Zhu, Xiaodong; Thoppil, Roslin J.; Holmes, William R.; Kaverina, Irina

    2017-01-01

    Noncentrosomal microtubule (MT) nucleation at the Golgi generates MT network asymmetry in motile vertebrate cells. Investigating the Golgi-derived MT (GDMT) distribution, we find that MT asymmetry arises from nonrandom nucleation sites at the Golgi (hotspots). Using computational simulations, we propose two plausible mechanistic models of GDMT nucleation leading to this phenotype. In the “cooperativity” model, formation of a single GDMT promotes further nucleation at the same site. In the “heterogeneous Golgi” model, MT nucleation is dramatically up-regulated at discrete and sparse locations within the Golgi. While MT clustering in hotspots is equally well described by both models, simulating MT length distributions within the cooperativity model fits the data better. Investigating the molecular mechanism underlying hotspot formation, we have found that hotspots are significantly smaller than a Golgi subdomain positive for scaffolding protein AKAP450, which is thought to recruit GDMT nucleation factors. We have further probed potential roles of known GDMT-promoting molecules, including γ-TuRC-mediated nucleation activator (γ-TuNA) domain-containing proteins and MT stabilizer CLASPs. While both γ-TuNA inhibition and lack of CLASPs resulted in drastically decreased GDMT nucleation, computational modeling revealed that only γ-TuNA inhibition suppressed hotspot formation. We conclude that hotspots require γ-TuNA activity, which facilitates clustered GDMT nucleation at distinct Golgi sites. PMID:28931596

  19. Structural insights into translational fidelity.

    PubMed

    Ogle, James M; Ramakrishnan, V

    2005-01-01

    The underlying basis for the accuracy of protein synthesis has been the subject of over four decades of investigation. Recent biochemical and structural data make it possible to understand at least in outline the structural basis for tRNA selection, in which codon recognition by cognate tRNA results in the hydrolysis of GTP by EF-Tu over 75 A away. The ribosome recognizes the geometry of codon-anticodon base pairing at the first two positions but monitors the third, or wobble position, less stringently. Part of the additional binding energy of cognate tRNA is used to induce conformational changes in the ribosome that stabilize a transition state for GTP hydrolysis by EF-Tu and subsequently result in accelerated accommodation of tRNA into the peptidyl transferase center. The transition state for GTP hydrolysis is characterized, among other things, by a distorted tRNA. This picture explains a large body of data on the effect of antibiotics and mutations on translational fidelity. However, many fundamental questions remain, such as the mechanism of activation of GTP hydrolysis by EF-Tu, and the relationship between decoding and frameshifting.

  20. Proton suicide: general method for direct selection of sugar transport- and fermentation-defective mutants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winkelman, J.W.; Clark, D.P.

    A positive selection procedure was devised for bacterial mutants incapable of producing acid from sugars by fermentation. The method relied on the production of elemental bromine from a mixture of bromide and bromate under acidic conditions. When wild-type Escherichia coli cells were plated on media containing a fermentable sugar and an equimolar mixture of bromide and bromate, most of the cells were killed but a variety of mutants unable to produce acid from the sugar survived. Among these mutants were those defective in (i) sugar uptake, (ii) the glycolytic pathway, and (iii) the excretion. There were also novel mutants withmore » some presumed regulatory defects affecting fermentation.« less

  1. The type III secretion system is involved in Escherichia coli K1 interactions with Acanthamoeba.

    PubMed

    Siddiqui, Ruqaiyyah; Malik, Huma; Sagheer, Mehwish; Jung, Suk-Yul; Khan, Naveed Ahmed

    2011-08-01

    The type III secretion system among Gram-negative bacteria is known to deliver effectors into host cell to interfere with host cellular processes. The type III secretion system in Yersina, Pseudomonas and Enterohemorrhagic Escherichia coli have been well documented to be involved in the bacterial pathogenicity. The existence of type III secretion system has been demonstrated in neuropathogenic E. coli K1 strains. Here, it is observed that the deletion mutant of type III secretion system in E. coli strain EC10 exhibited defects in the invasion and intracellular survival in Acanthamoeba castellanii (a keratitis isolate) compared to its parent strain. Next, it was determined whether type III secretion system plays a role in E. coli K1 survival inside Acanthamoeba during the encystment process. Using encystment assays, our findings revealed that the type III secretion system-deletion mutant exhibited significantly reduced survival inside Acanthamoeba cysts compared with its parent strain, EC10 (P<0.01). This is the first demonstration that the type III secretion system plays an important role in E. coli interactions with Acanthamoeba. A complete understanding of how amoebae harbor bacterial pathogens will help design strategies against E. coli transmission to the susceptible hosts. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Phaseolotoxin transport in Escherichia coli and Salmonella typhimurium via the oligopeptide permease.

    PubMed Central

    Staskawicz, B J; Panopoulos, N J

    1980-01-01

    Phaseolotoxin [(N delta-phosphosulfamyl)ornithylalanylhomoarginine], a phytotoxic tripeptide produced by Pseudomonas syringae pv. phaseolicola that inhibits ornithine carbamoyltransferase, is transported into Escherichia coli and Salmonella typhimurium via the oligopeptide transport system (Opp). Mutants defective in oligopeptide permease (Opp-) were resistant to phaseolotoxin. Spontaneous phaseolotoxin-resistant mutants (Toxr) lacked the Opp function as evidenced by their cross-resistance to triornithine and failure to utilize glycylhistidylglycine as a source of histidine. Growth inhibition by phaseolotoxin was prevented by peptides known to be transported via the Opp system and by treatment of the toxin with L-aminopeptidase. In both E. coli and S. typhimurium, Toxr mutations were cotransducible with trp, suggesting that the opp locus occupies similar positions in genetic maps of these bacteria. PMID:6991475

  3. Modification of glucose import capacity in Escherichia coli: physiologic consequences and utility for improving DNA vaccine production

    PubMed Central

    2013-01-01

    Background The bacterium Escherichia coli can be grown employing various carbohydrates as sole carbon and energy source. Among them, glucose affords the highest growth rate. This sugar is nowadays widely employed as raw material in industrial fermentations. When E. coli grows in a medium containing non-limiting concentrations of glucose, a metabolic imbalance occurs whose main consequence is acetate secretion. The production of this toxic organic acid reduces strain productivity and viability. Solutions to this problem include reducing glucose concentration by substrate feeding strategies or the generation of mutant strains with impaired glucose import capacity. In this work, a collection of E. coli strains with inactive genes encoding proteins involved in glucose transport where generated to determine the effects of reduced glucose import capacity on growth rate, biomass yield, acetate and production of an experimental plasmid DNA vaccine (pHN). Results A group of 15 isogenic derivatives of E. coli W3110 were generated with single and multiple deletions of genes encoding glucose, mannose, beta-glucoside, maltose and N-acetylglucosamine components of the phosphoenolpyruvate:sugar phosphotransferase system (PTS), as well as the galactose symporter and the Mgl galactose/glucose ABC transporter. These strains were characterized by growing them in mineral salts medium supplemented with 2.5 g/L glucose. Maximum specific rates of glucose consumption (qs) spanning from 1.33 to 0.32 g/g h were displayed by the group of mutants and W3110, which resulted in specific growth rates ranging from 0.65-0.18 h-1. Acetate accumulation was reduced or abolished in cultures with all mutant strains. W3110 and five selected mutant derivatives were transformed with pHN. A 3.2-fold increase in pHN yield on biomass was observed in cultures of a mutant strain with deletion of genes encoding the glucose and mannose PTS components, as well as Mgl. Conclusions The group of E. coli mutants

  4. Linkage of interactions in sickle hemoglobin fiber assembly: inhibitory effect emanating from mutations in the AB region of the alpha-chain is annulled by a mutation at its EF corner.

    PubMed

    Sudha, Rajamani; Anantharaman, Lavanya; Sivaram, Mylavarapu V S; Mirsamadi, Neda; Choudhury, Devapriya; Lohiya, Nirmal K; Gupta, Rasik B; Roy, Rajendra P

    2004-05-07

    The AB and GH regions of the alpha-chain are located in spatial proximity and contain a cluster of intermolecular contact residues of the sickle hemoglobin (HbS) fiber. We have examined the role of dynamics of AB/GH region on HbS polymerization through simultaneous replacement of non-contact Ala(19) and Ala(21) of the AB corner with more flexible Gly or rigid alpha-aminoisobutyric acid (Aib) residues. The polymerization behavior of HbS with Aib substitutions was similar to the native HbS. In contrast, Gly substitutions inhibited HbS polymerization. Molecular dynamics simulation studies of alpha-chains indicated that coordinated motion of AB and GH region residues present in native (Ala) as well as in Aib mutant was disrupted in the Gly mutant. The inhibitory effect due to Gly substitutions was further explored in triple mutants that included mutation of an inter-doublestrand contact (alphaAsn(78) --> His or Gln) at the EF corner. Although the inhibitory effect of Gly substitutions in the triple mutant was unaffected in the presence of alphaGln(78), His at this site almost abrogated its inhibitory potential. The polymerization studies of point mutants (alphaGln(78) --> His) indicated that the inhibitory effect due to Gly substitutions in the triple mutant was synergistically compensated for by the polymerization-enhancing activity of His(78). Similar synergistic coupling, between alphaHis(78) and an intra-double-strand contact point (alpha16) mutation located in the AB region, was also observed. Thus, two conclusions are made: (i) Gly mutations at the AB corner inhibit HbS polymerization by perturbing the dynamics of the AB/GH region, and (ii) perturbations of AB region (through changes in dynamics of the AB/GH region or abolition of a specific fiber contact site) that influence HbS polymerization do so in concert with alpha78 site at the EF corner. The overall results provide insights about the interaction-linkage between distant regions of the HbS tetramer in

  5. Characterization of the Deoxynucleotide Triphosphate Triphosphohydrolase (dNTPase) Activity of the EF1143 Protein from Enterococcus faecalis and Crystal Structure of the Activator-Substrate Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vorontsov, Ivan I.; Minasov, George; Kiryukhina, Olga

    2012-06-19

    The EF1143 protein from Enterococcus faecalis is a distant homolog of deoxynucleotide triphosphate triphosphohydrolases (dNTPases) from Escherichia coli and Thermus thermophilus. These dNTPases are important components in the regulation of the dNTP pool in bacteria. Biochemical assays of the EF1143 dNTPase activity demonstrated nonspecific hydrolysis of all canonical dNTPs in the presence of Mn{sup 2+}. In contrast, with Mg{sup 2+} hydrolysis required the presence of dGTP as an effector, activating the degradation of dATP and dCTP with dGTP also being consumed in the reaction with dATP. The crystal structure of EF1143 and dynamic light scattering measurements in solution revealed amore » tetrameric oligomer as the most probable biologically active unit. The tetramer contains four dGTP specific allosteric regulatory sites and four active sites. Examination of the active site with the dATP substrate suggests an in-line nucleophilic attack on the {alpha}-phosphate center as a possible mechanism of the hydrolysis and two highly conserved residues, His-129 and Glu-122, as an acid-base catalytic dyad. Structural differences between EF1143 apo and holo forms revealed mobility of the {alpha}3 helix that can regulate the size of the active site binding pocket and could be stabilized in the open conformation upon formation of the tetramer and dGTP effector binding.« less

  6. Role of four conserved aspartic acid residues of EF-loops in the metal ion binding and in the self-assembly of ciliate Euplotes octocarinatus centrin.

    PubMed

    Liu, Wen; Duan, Lian; Sun, Tijian; Yang, Binsheng

    2016-12-01

    Ciliate Euplotes octocarinatus centrin (EoCen) is an EF-hand calcium-binding protein closely related to the prototypical calcium sensor protein calmodulin. Four mutants (D37K, D73K, D110K and D146K) were created firstly to elucidate the importance of the first aspartic acid residues (Asp37, Asp73, Asp110 and Asp146) in the beginning of the four EF-loops of EoCen. Aromatic-sensitized Tb 3+ fluorescence indicates that the aspartic acid residues are very important for the metal-binding of EoCen, except for Asp73 (in EF-loop II). Resonance light scattering (RLS) measurements for different metal ions (Ca 2+ and Tb 3+ ) binding proteins suggest that the order of four conserved aspartic acid residues for contributing to the self-assembly of EoCen is Asp37 > Asp146 > Asp110 > Asp73. Cross-linking experiment also exhibits that Asp37 and Asp146 play critical role in the self-assembly of EoCen. Asp37, in site I, which is located in the N-terminal domain, plays the most important role in the metal ion-dependent self-assembly of EoCen, and there is cooperativity between N-terminal and C-terminal domain (especially the site IV). In addition, the dependence of Tb 3+ induced self-assembly of EoCen and the mutants on various factors, including ionic strength and pH, were characterized using RLS. Finally, 2-p-toluidinylnaphthalene-6-sulfonate (TNS) binding, ionic strength and pH control experiments indicate that in the process of EoCen self-assembly, molecular interactions are mediated by both electrostatic and hydrophobic forces, and the hydrophobic interaction has the important status.

  7. Slugs: Potential Novel Vectors of Escherichia coli O157

    PubMed Central

    Sproston, Emma L.; Macrae, M.; Ogden, Iain D.; Wilson, Michael J.; Strachan, Norval J. C.

    2006-01-01

    Field and laboratory studies were performed to determine whether slugs could act as novel vectors for pathogen (e.g., Escherichia coli O157) transfer from animal feces to salad vegetables. Escherichia coli O157 was isolated from 0.21% of field slugs from an Aberdeenshire sheep farm. These isolates carried the verocytotoxin genes (vt1 and vt2) and the attaching and effacing gene (eae), suggesting that they are potentially pathogenic to humans. Strain typing using multilocus variable number tandem repeats analysis showed that slug and sheep isolates were indistinguishable. Laboratory experiments using an E. coli mutant resistant to nalidixic acid showed that the ubiquitous slug species Deroceras reticulatum could carry viable E. coli on its external surface for up to 14 days. Slugs that had been fed E. coli shed viable bacteria in their feces with numbers showing a short but statistically significant linear log decline. Further, it was found that E. coli persisted for up to 3 weeks in excreted slug feces, and hence, we conclude that slugs have the potential to act as novel vectors of E. coli O157. PMID:16391036

  8. Engineering Escherichia coli for improved ethanol production from gluconate.

    PubMed

    Hildebrand, Amanda; Schlacta, Theresa; Warmack, Rebeccah; Kasuga, Takao; Fan, Zhiliang

    2013-10-10

    We report on engineering Escherichia coli to produce ethanol at high yield from gluconic acid (gluconate). Knocking out genes encoding for the competing pathways (l-lactate dehydrogenase and pyruvate formate lyase A) in E. coli KO11 eliminated lactate production, lowered the carbon flow toward acetate production, and improved the ethanol yield from 87.5% to 97.5% of the theoretical maximum, while the growth rate of the mutant strain was about 70% of the wild type. The corresponding genetic modifications led to a small improvement of ethanol yield from 101.5% to 106.0% on glucose. Deletion of the pyruvate dehydrogenase gene (pdh) alone improved the ethanol yield from 87.5% to 90.4% when gluconate was a substrate. The growth rate of the mutant strain was identical to that of the wild type. The corresponding genetic modification led to no improvements on ethanol yield on glucose. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. The aminoglycoside antibiotic kanamycin damages DNA bases in Escherichia coli: caffeine potentiates the DNA-damaging effects of kanamycin while suppressing cell killing by ciprofloxacin in Escherichia coli and Bacillus anthracis.

    PubMed

    Kang, Tina Manzhu; Yuan, Jessica; Nguyen, Angelyn; Becket, Elinne; Yang, Hanjing; Miller, Jeffrey H

    2012-06-01

    The distribution of mutants in the Keio collection of Escherichia coli gene knockout mutants that display increased sensitivity to the aminoglycosides kanamycin and neomycin indicates that damaged bases resulting from antibiotic action can lead to cell death. Strains lacking one of a number of glycosylases (e.g., AlkA, YzaB, Ogt, KsgA) or other specific repair proteins (AlkB, PhrB, SmbC) are more sensitive to these antibiotics. Mutants lacking AlkB display the strongest sensitivity among the glycosylase- or direct lesion removal-deficient strains. This perhaps suggests the involvement of ethenoadenine adducts, resulting from reactive oxygen species and lipid peroxidation, since AlkB removes this lesion. Other sensitivities displayed by mutants lacking UvrA, polymerase V (Pol V), or components of double-strand break repair indicate that kanamycin results in damaged base pairs that need to be removed or replicated past in order to avoid double-strand breaks that saturate the cellular repair capacity. Caffeine enhances the sensitivities of these repair-deficient strains to kanamycin and neomycin. The gene knockout mutants that display increased sensitivity to caffeine (dnaQ, holC, holD, and priA knockout mutants) indicate that caffeine blocks DNA replication, ultimately leading to double-strand breaks that require recombinational repair by functions encoded by recA, recB, and recC, among others. Additionally, caffeine partially protects cells of both Escherichia coli and Bacillus anthracis from killing by the widely used fluoroquinolone antibiotic ciprofloxacin.

  10. Protective effects of murine monoclonal antibodies in experimental septicemia: E. coli antibodies protect against different serotypes of E. coli.

    PubMed

    Salles, M F; Mandine, E; Zalisz, R; Guenounou, M; Smets, P

    1989-04-01

    Murine monoclonal antibodies that bind outer membrane antigens of the J5 mutant of Escherichia coli O111:B4 were derived from spleen cells of BALB/c mice immunized with killed whole cells and boosted with lipopolysaccharide (LPS) and LPS-associated proteins. Seven hybridomas were selected for their reactivity against the J5 LPS; they cross-reacted with O111, O55, O127, and O128 E. coli LPS. One (B7B3) also reacted with the Serratia marcescens LPS and Klebsiella pneumoniae lipid A. A protective effect was obtained with D6B4 antibody in a lethal endotoxemia model induced by LPS from O111, O127, and O128 E. coli serotypes in D-galactosamine-sensitized mice. D6B4 and D6B3 antibodies protected mice infected with E. coli O111:B4, when administered before infection. The D6B4 antibody was also protective when administered after infection. The antibodies D6B3 and D4B5 were protective in heterologous infection induced by E. coli O2:K1.

  11. Structure of the ACF7 EF-Hand-GAR Module and Delineation of Microtubule Binding Determinants.

    PubMed

    Lane, Thomas R; Fuchs, Elaine; Slep, Kevin C

    2017-07-05

    Spectraplakins are large molecules that cross-link F-actin and microtubules (MTs). Mutations in spectraplakins yield defective cell polarization, aberrant focal adhesion dynamics, and dystonia. We present the 2.8 Å crystal structure of the hACF7 EF1-EF2-GAR MT-binding module and delineate the GAR residues critical for MT binding. The EF1-EF2 and GAR domains are autonomous domains connected by a flexible linker. The EF1-EF2 domain is an EFβ-scaffold with two bound Ca 2+ ions that straddle an N-terminal α helix. The GAR domain has a unique α/β sandwich fold that coordinates Zn 2+ . While the EF1-EF2 domain is not sufficient for MT binding, the GAR domain is and likely enhances EF1-EF2-MT engagement. Residues in a conserved basic patch, distal to the GAR domain's Zn 2+ -binding site, mediate MT binding. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Crystallization and preliminary X-ray crystallographic analysis of YfcM: an important factor for EF-P hydroxylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Kan; RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198; Suzuki, Takehiro

    2014-08-27

    E. coli YfcM was expressed, purified and crystallized. Crystals of YfcM were obtained by the in situ proteolysis crystallization method. Using these crystals, an X-ray diffraction data set was collected at 1.45 Å resolution. Elongation factor P (EF-P) plays an essential role in the translation of polyproline-containing proteins in bacteria. It becomes functional by the post-translational modification of its highly conserved lysine residue. It is first β-lysylated by PoxA and then hydroxylated by YfcM. In this work, the YfcM protein from Escherichia coli was overexpressed, purified and crystallized. The crystal of YfcM was obtained by the in situ proteolysis crystallizationmore » method and diffracted X-rays to 1.45 Å resolution. It belonged to space group C2, with unit-cell parameters a = 124.4, b = 37.0, c = 37.6 Å, β = 101.2°. The calculated Matthews coefficient (V{sub M}) of the crystal was 1.91 Å{sup 3} Da{sup −1}, indicating that one YfcM molecule is present in the asymmetric unit with a solvent content of 35.7%.« less

  13. The orientation of iron–sulphur clusters in membrane multilayers prepared from aerobically-grown Escherichia coli K12 and a cytochrome-deficient mutant

    PubMed Central

    Blum, Haywood; Poole, Robert K.; Ohnishi, Tomoko

    1980-01-01

    1. Membrane particles prepared from ultrasonically-disrupted, aerobically-grown Escherichia coli were centrifuged on to a plastic film that was supported perpendicular to the centrifugal field to yield oriented membrane multilayers. In such preparations, there is a high degree of orientation of the planes of the membranes such that they lie parallel to each other and to the supporting film. 2. When dithionite- or succinate-reduced multilayers are rotated in the magnetic field of an e.p.r. spectrometer, about an axis lying in the membrane plane, angular-dependent signals from an iron–sulphur cluster at gx=1.92, gy=1.93 and gz=2.02 are seen. The g=1.93 signal has maximal amplitude when the plane of the multilayer is perpendicular to the magnetic field. Conversely, the g=2.02 signal is maximal when the plane of the multilayer is parallel with the magnetic field. 3. Computer simulations of the experimental data show that the cluster lies in the cytoplasmic membrane with the gy axis perpendicular to the membrane plane and with the gx and gz axes lying in the membrane plane. 4. In partially-oxidized multilayers, a signal resembling the mitochondrial high-potential iron–sulphur protein (Hipip) is seen whose gz=2.02 axis may be deduced as lying perpendicular to the membrane plane. 5. Appropriate choice of sample temperature and receiver gain reveals two further signals in partially-reduced multilayers: a g=2.09 signal arises from a cluster with its gz axis in the membrane plane, whereas a g=2.04 signal is from a cluster with the gz axis lying along the membrane normal. 6. Membrane particles from a glucose-grown, haem-deficient mutant contain dramatically-lowered levels of cytochromes and exhibit, in addition to the iron–sulphur clusters seen in the parental strain, a major signal at g=1.90. 7. Only the latter may be demonstrated to be oriented in multilayer preparations from the mutant. 8. Comparisons are drawn between the orientations of the iron–sulphur proteins

  14. Electrostatics effects on Ca(2+) binding and conformational changes in EF-hand domains: Functional implications for EF-hand proteins.

    PubMed

    Ababou, Abdessamad; Zaleska, Mariola

    2015-12-01

    Mutations of Gln41 and Lys75 with nonpolar residues in the N-terminal domain of calmodulin (N-Cam) revealed the importance of solvation energetics in conformational change of Ca(2+) sensor EF-hand domains. While in general these domains have polar residues at these corresponding positions yet the extent of their conformational response to Ca(2+) binding and their Ca(2+) binding affinity can be different from N-Cam. Consequently, here we address the charge state of the polar residues at these positions. The results show that the charge state of these polar residues can affect substantially the conformational change and the Ca(2+) binding affinity of our N-Cam variants. Since all the variants kept their conformational activity in the presence of Ca(2+) suggests that the differences observed among them mainly originate from the difference in their molecular dynamics. Hence we propose that the molecular dynamics of Ca(2+) sensor EF-hand domains is a key factor in the multifunctional aspect of EF-hand proteins. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Multiformity of elongation factor eEF-2 isolated from rat liver cells.

    PubMed

    Gajko, A; Gałasiński, W; Gindzieński, A

    1994-07-29

    Two fractions of eEF-2 (M(r) approx. 100,000 and M(r) approx. 65,000) were isolated from post-ribosomal supernatant of the rat liver cells. Only eEF-2, with mol. weight of about 100,000 Da, can be phosphorylated, but only eEF-2, with mol. weight of about 65,000 Da, was isolated from the active polyribosomes. The existence of two eEF-2 forms with different properties in the rat liver cells is striking and uncovers new aspects for the cellular function of this protein.

  16. An 'instant gene bank' method for gene cloning by mutant complementation.

    PubMed

    Gems, D; Aleksenko, A; Belenky, L; Robertson, S; Ramsden, M; Vinetski, Y; Clutterbuck, A J

    1994-02-01

    We describe a new method of gene cloning by complementation of mutant alleles which obviates the need for construction of a gene library in a plasmid vector in vitro and its amplification in Escherichia coli. The method involves simultaneous transformation of mutant strains of the fungus Aspergillus nidulans with (i) fragmented chromosomal DNA from a donor species and (ii) DNA of a plasmid without a selectable marker gene, but with a fungal origin of DNA replication ('helper plasmid'). Transformant colonies appear as the result of the joining of chromosomal DNA fragments carrying the wild-type copies of the mutant allele with the helper plasmid. Joining may occur either by ligation (if the helper plasmid is in linear form) or recombination (if it is cccDNA). This event occurs with high efficiency in vivo, and generates an autonomously replicating plasmid cointegrate. Transformants containing Penicillium chrysogenum genomic DNA complementing A. nidulans niaD, nirA and argB mutations have been obtained. While some of these cointegrates were evidently rearranged or consisted only of unaltered replicating plasmid, in other cases plasmids could be recovered into E. coli and were subsequently shown to contain the selected gene. The utility of this "instant gene bank" technique is demonstrated here by the molecular cloning of the P. canescens trpC gene.

  17. General method for site-directed mutagenesis in Escherichia coli O18ac:K1:H7: deletion of the inducible superoxide dismutase gene, sodA, does not diminish bacteremia in neonatal rats.

    PubMed

    Bloch, C A; Thorne, G M; Ausubel, F M

    1989-07-01

    A defined deletion in the Escherichia coli K-12 sodA gene (encoding manganese-superoxide dismutase) linked to a nontransposable selectable marker was generated by transposon Tn5 insertion in combination with in vitro mutagenesis. This mutant allele was used to replace the wild-type sodA gene in an E. coli clinical isolate of serotype O18ac:K1:H7 by bacteriophage P1 transduction. The O18ac:K1:H7 sodA mutant contained no manganese-superoxide dismutase and no hybrid manganese-iron-superoxide dismutase. The sodA mutant was more sensitive to paraquat toxicity than were the parental strain and an isogenic mutant bearing an analogously constructed sodA+ Tn5 insertion allele. In a suckling rat model for bacteremia following oral inoculation of E. coli K1, the sodA mutant was undiminished in its capabilities both to colonize the gastrointestinal tract and, surprisingly, to cause bacteremia. In conjunction with the rat model for E. coli K1 pathogenesis, the method for site-directed mutagenesis described in this paper permits determination of the role played in colonization and bacteremia by any K1 gene which either has a homolog in E. coli K-12 or can be cloned and manipulated therein.

  18. Regulatory role of XynR (YagI) in catabolism of xylonate in Escherichia coli K-12.

    PubMed

    Shimada, Tomohiro; Momiyama, Eri; Yamanaka, Yuki; Watanabe, Hiroki; Yamamoto, Kaneyoshi; Ishihama, Akira

    2017-12-01

    The genome of Escherichia coli K-12 contains ten cryptic phages, altogether constituting about 3.6% of the genome in sequence. Among more than 200 predicted genes in these cryptic phages, 14 putative transcription factor (TF) genes exist, but their regulatory functions remain unidentified. As an initial attempt to make a breakthrough for understanding the regulatory roles of cryptic phage-encoded TFs, we tried to identify the regulatory function of CP4-6 cryptic prophage-encoded YagI with unknown function. After SELEX screening, YagI was found to bind mainly at a single site within the spacer of bidirectional transcription units, yagA (encoding another uncharacterized TF) and yagEF (encoding 2-keto-3-deoxy gluconate aldolase, and dehydratase, respectively) within this prophage region. YagEF enzymes are involved in the catabolism of xylose downstream from xylonate. We then designated YagI as XynR (regulator of xylonate catabolism), one of the rare single-target TFs. In agreement with this predicted regulatory function, the activity of XynR was suggested to be controlled by xylonate. Even though low-affinity binding sites of XynR were identified in the E. coli K-12 genome, they all were inside open reading frames, implying that the regulation network of XynR is still fixed within the CR4-6 prophage without significant influence over the host E. coli K-12. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Chromosomal Fragmentation in "Escherichia Coli": Its Absence in "mutT" Mutants and Its Mechanisms in "seqA" Mutants

    ERIC Educational Resources Information Center

    Rotman, Ella Rose

    2009-01-01

    Chromosomal fragmentation in "Escherichia coli" is a lethal event for the cell unless mended by the recombinational repair proteins RecA, RecBCD, and RuvABC. Certain mutations exacerbate problems that cause the cell to be dependent on the recombinational repair proteins for viability. We tested whether the absence of the MutT protein caused…

  20. Organization of genes for transcription and translation in the rif region of the Escherichia coli chromosome. [uv radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, M.; Nomura, M.

    1979-01-01

    The lambda rif/sup d/18 transducing phage is known to carry several genes for components of transcriptional and translational machineries; these genes are clustered in the rif region at 88 min on the Escherichia coli genetic map. They include a set of genes for rRNA's (rrnB), a gene for spacer tRNA, tRNA/sub 2//sup Glu/(tgtB), one of the two genes for EF-TU (tufB), genes for four ribosomal proteins (rplK, A, J, and L), genes for the ..beta.. and ..beta..' subunits of RNA polymerase (rpoB and rpoC), and genes for three tRNA's (tyrU, gluT, and thrT). An additional tRNA gene (subsequently identified asmore » thrU by Landy and his co-workers) and a gene for a protein (protein U) with unknown functions were found to be carried by lambda rif/sup d/18. We analyzed the organization of these genes by using various deletion and hybrid phages derived from lambda rif/sup d/18 and lambda rif/sup d/12, a phage related to lambda rif/sup d/18. The expression of various genes was examined in uv-irradiated cells infected with these transducing phages. Two main conclusions were obtained. First, the four tRNA genes are not cotranscribed with the genes in rrnB, even though these tRNA genes are located close to the distal end of rrnB. Second, the four ribosomal protein genes are organized into two separate transcriptional units; rplK and A are in one unit and rplJ and L are in the second unit.« less

  1. EF24 suppresses maturation and inflammatory response in dendritic cells.

    PubMed

    Vilekar, Prachi; Awasthi, Shanjana; Natarajan, Aravindan; Anant, Shrikant; Awasthi, Vibhudutta

    2012-07-01

    Synthetic curcuminoid EF24 was studied for its effect on the maturation and inflammatory response in murine bone marrow derived immortalized JAWS II dendritic cells (DCs). EF24 reduced the expression of LPS-induced MHC class II, CD80 and CD86 molecules. It also abrogated the appearance of dendrites, a typical characteristic of mature DCs. These effects were accompanied by the inhibition of LPS-induced activation of transcription factor nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB). Simultaneous reduction of pro-inflammatory cytokines [tumor necrosis factor (TNF)-α, IL-6] both at the mRNA and secreted levels was also observed. To investigate the dependency of LPS effects on MyD88 adaptor protein, we transfected JAWS II DCs with dominant negative MyD88 plasmid construct (MyD88-DN). EF24 reduced NF-κB activity and TNF-α secretion in a MyD88-dependent manner. These results suggest that EF24 modulates DCs by suppressing their maturation and reducing the secretion of inflammatory cytokines. Further, it appears that EF24 acts at or upstream of MyD88 in the LPS-TLR4/MyD88/NF-κB pathway.

  2. EF24 suppresses maturation and inflammatory response in dendritic cells

    PubMed Central

    Vilekar, Prachi; Natarajan, Aravindan; Anant, Shrikant

    2012-01-01

    Synthetic curcuminoid EF24 was studied for its effect on the maturation and inflammatory response in murine bone marrow derived immortalized JAWS II dendritic cells (DCs). EF24 reduced the expression of LPS-induced MHC class II, CD80 and CD86 molecules. It also abrogated the appearance of dendrites, a typical characteristic of mature DCs. These effects were accompanied by the inhibition of LPS-induced activation of transcription factor nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB). Simultaneous reduction of pro-inflammatory cytokines [tumor necrosis factor (TNF)-α, IL-6] both at the mRNA and secreted levels was also observed. To investigate the dependency of LPS effects on MyD88 adaptor protein, we transfected JAWS II DCs with dominant negative MyD88 plasmid construct (MyD88-DN). EF24 reduced NF-κB activity and TNF-α secretion in a MyD88-dependent manner. These results suggest that EF24 modulates DCs by suppressing their maturation and reducing the secretion of inflammatory cytokines. Further, it appears that EF24 acts at or upstream of MyD88 in the LPS-TLR4/MyD88/NF-κB pathway. PMID:22378503

  3. Tagatose production by immobilized recombinant Escherichia coli cells containing Geobacillus stearothermophilus l-arabinose isomerase mutant in a packed-bed bioreactor.

    PubMed

    Jung, Eun-Sook; Kim, Hye-Jung; Oh, Deok-Kun

    2005-01-01

    Using immobilized recombinant Escherichia coli cells containing Geobacillus stearothermophilus l-arabinose isomerase mutant (Gali 152), we found that the galactose isomerization reaction was maximal at 70 degrees C and pH 7.0. Manganese ion enhanced galactose isomerization to tagatose. The immobilized cells were most stable at 60 degrees C and pH 7.0. The cell and substrate concentrations and dilution rate were optimal at 34 g/L, 300 g/L, and 0.05 h(-1), respectively. Under the optimum conditions, the immobilized cell reactor with Mn2+ produced an average of 59 g/L tagatose with a productivity of 2.9 g/L.h and a conversion yield of 19.5% for the first 20 days. The operational stability of immobilized cells with Mn2+ was demonstrated, and their half-life for tagatose production was 34 days. Tagatose production was compared for free and immobilized enzymes and free and immobilized cells using the same mass of cells. Immobilized cells produced the highest tagatose concentration, indicating that cell immobilization was more efficient for tagatose production than enzyme immobilization.

  4. Fungal toxins bind to the URF13 protein in maize mitochondria and Escherichia coli.

    PubMed Central

    Braun, C J; Siedow, J N; Levings, C S

    1990-01-01

    Expression of the maize mitochondrial T-urf13 gene results in a sensitivity to a family of fungal pathotoxins and to methomyl, a structurally unrelated systemic insecticide. Similar effects of pathotoxins and methomyl are observed when T-urf13 is cloned and expressed in Escherichia coli. An interaction between these compounds and the membrane-bound URF13 protein permeabilizes the inner mitochondrial and bacterial plasma membranes. To understand the toxin-URF13 effects, we have investigated whether toxin specifically binds to the URF13 protein. Our studies indicate that toxin binds to the URF13 protein in maize mitochondria and in E. coli expressing URF13. Binding analysis in E. coli reveals cooperative toxin binding. A low level of specific toxin binding is also demonstrated in cms-T and cms-T-restored mitochondria; however, binding does not appear to be cooperative in maize mitochondria. Competition and displacement studies in E. coli demonstrate that toxin binding is reversible and that the toxins and methomyl compete for the same, or for overlapping, binding sites. Two toxin-insensitive URF13 mutants display a diminished capability to bind toxin in E. coli, which identifies residues of URF13 important in toxin binding. A third toxin-insensitive URF13 mutant shows considerable toxin binding in E. coli, demonstrating that toxin binding can occur without causing membrane permeabilization. Our results indicate that toxin-mediated membrane permeabilization only occurs when toxin or methomyl is bound to URF13. PMID:2136632

  5. Type 1 fimbriae contribute to catheter-associated urinary tract infections caused by Escherichia coli.

    PubMed

    Reisner, Andreas; Maierl, Mario; Jörger, Michael; Krause, Robert; Berger, Daniela; Haid, Andrea; Tesic, Dijana; Zechner, Ellen L

    2014-03-01

    Biofilm formation on catheters is thought to contribute to persistence of catheter-associated urinary tract infections (CAUTI), which represent the most frequent nosocomial infections. Knowledge of genetic factors for catheter colonization is limited, since their role has not been assessed using physicochemical conditions prevailing in a catheterized human bladder. The current study aimed to combine data from a dynamic catheterized bladder model in vitro with in vivo expression analysis for understanding molecular factors relevant for CAUTI caused by Escherichia coli. By application of the in vitro model that mirrors the physicochemical environment during human infection, we found that an E. coli K-12 mutant defective in type 1 fimbriae, but not isogenic mutants lacking flagella or antigen 43, was outcompeted by the wild-type strain during prolonged catheter colonization. The importance of type 1 fimbriae for catheter colonization was verified using a fimA mutant of uropathogenic E. coli strain CFT073 with human and artificial urine. Orientation of the invertible element (IE) controlling type 1 fimbrial expression in bacterial populations harvested from the colonized catheterized bladder in vitro suggested that the vast majority of catheter-colonizing cells (up to 88%) express type 1 fimbriae. Analysis of IE orientation in E. coli populations harvested from patient catheters revealed that a median level of ∼73% of cells from nine samples have switched on type 1 fimbrial expression. This study supports the utility of the dynamic catheterized bladder model for analyzing catheter colonization factors and highlights a role for type 1 fimbriae during CAUTI.

  6. EFS: an ensemble feature selection tool implemented as R-package and web-application.

    PubMed

    Neumann, Ursula; Genze, Nikita; Heider, Dominik

    2017-01-01

    Feature selection methods aim at identifying a subset of features that improve the prediction performance of subsequent classification models and thereby also simplify their interpretability. Preceding studies demonstrated that single feature selection methods can have specific biases, whereas an ensemble feature selection has the advantage to alleviate and compensate for these biases. The software EFS (Ensemble Feature Selection) makes use of multiple feature selection methods and combines their normalized outputs to a quantitative ensemble importance. Currently, eight different feature selection methods have been integrated in EFS, which can be used separately or combined in an ensemble. EFS identifies relevant features while compensating specific biases of single methods due to an ensemble approach. Thereby, EFS can improve the prediction accuracy and interpretability in subsequent binary classification models. EFS can be downloaded as an R-package from CRAN or used via a web application at http://EFS.heiderlab.de.

  7. Screening a wide host-range, waste-water metagenomic library in tryptophan auxotrophs of Rhizobium leguminosarum and of Escherichia coli reveals different classes of cloned trp genes.

    PubMed

    Li, Youguo; Wexler, Margaret; Richardson, David J; Bond, Philip L; Johnston, Andrew W B

    2005-12-01

    A metagenomic cosmid library was constructed, in which the insert DNA was derived from bacteria in a waste-water treatment plant and the vector was the wide host-range cosmid pLAFR3. The library was screened for clones that could correct defined tryptophan auxotrophs of the alpha-proteobacterium Rhizobium leguminosarum and of Escherichia coli. A total of 26 different cosmids that corrected at least one trp mutant in one or both of these species were obtained. Several cosmids corrected the auxotrophy of one or more R. leguminosarum trp mutants, but not the corresponding mutants in E. coli. Conversely, one cosmid corrected trpA, B, C, D and E mutants of E. coli but none of the trp mutants of R. leguminosarum. Two of the Trp+ cosmids were examined in more detail. One contained a trp operon that resembled that of the pathogen Chlamydophila caviae, containing the unusual kynU gene, which specifies kynureninase. The other, whose trp genes functioned in R. leguminosarum but not in E. coli, contained trpDCFBA in an operon that is likely co-transcribed with five other genes, most of which had no known link with tryptophan synthesis. The sequences of these TRP proteins, and the products of nine other genes encoded by this cosmid, failed to affiliate them with any known bacterial lineage. For one metagenomic cosmid, lac reporter fusions confirmed that its cloned trp genes were transcribed in R. leguminosarum, but not in E. coli. Thus, rhizobia, with their many sigma-factors, may be well-suited hosts for metagenomic libraries, cloned in wide host-range vectors.

  8. Identification and characterization of a gene product that regulates type 1 piliation in Escherichia coli.

    PubMed Central

    Orndorff, P E; Falkow, S

    1984-01-01

    The recombinant plasmid pSH2 confers type 1 piliation (Pil+) on a nonpiliated (Pil-) strain of Escherichia coli K-12. At least four plasmid-encoded gene products are involved in pilus biosynthesis and expression. We present evidence which indicates that one gene encodes an inhibitor of piliation. Hyperpiliated (Hyp) mutants were isolated after Tn5 insertion mutagenesis of pSH2 and introduction of the plasmid DNA into a Pil- strain of E. coli as unique small, compact colonies. Also, Hyp mutants clumped during growth in static broth and were piliated under several cultural conditions that normally suppressed piliation. Electron microscopic examination of Hyp mutants associated an observed 40-fold increase in pilin antigen with an increase in the number and length of pili per cell. All Hyp mutants examined failed to produce a 23-kilodalton protein that was encoded by a gene adjacent to the structural (pilin) gene for type 1 pili, and all Tn5 insertion mutations that produced the Hyp phenotype mapped in this region (hyp). Piliation in Hyp mutants could be reduced to near parental levels by introducing a second plasmid containing a parental hyp gene. Thus the 23-kilodalton (hyp) protein appears to act in trans to regulate the level of piliation. Images PMID:6148338

  9. Isolation and properties of the subunit form EF-1C of elongation factor 1 from Guerin epithelioma cells.

    PubMed

    Marcinkiewicz, C; Gałasiński, W

    1993-01-01

    EF-1C is a component of the aggregate EF-1B, consisting of the subunit forms EF-1A.EF-1C; it was isolated by dissociation of this aggregate in the presence of GTP. The subunit form EF-1C stimulates binding of aminoacyl-tRNA to ribosomes, catalysed by EF-1A, similarly as EF-1 beta gamma which stimulates the activity of EF-1 in other eukaryotic cells. EF-1C in the presence of 6 M urea was separated into two polypeptides. Polypeptide of molecular mass 32,000 Da is responsible for regeneration of the EF-1A.GTP active complex. Thermal sensitivity of EF-1A was much higher than that of EF-1B, thus a protective role of EF-1C in the EF-1A.EF-1C complex is suggested.

  10. Identification of a Novel EF-Loop in the N-terminus of TRPM2 Channel Involved in Calcium Sensitivity

    PubMed Central

    Luo, Yuhuan; Yu, Xiafei; Ma, Cheng; Luo, Jianhong; Yang, Wei

    2018-01-01

    As an oxidative stress sensor, transient receptor potential melastatin 2 (TRPM2) channel is involved in many physiological and pathological processes including warmth sensing, ischemia injury, inflammatory diseases and diabetes. Intracellular calcium is critical for TRPM2 channel activation and the IQ-like motif in the N-terminus has been shown to be important by mediating calmodulin binding. Sequence analysis predicted two potential EF-loops in the N-terminus of TRPM2. Site-directed mutagenesis combining with functional assay showed that substitution with alanine of several residues, most of which are conserved in the typical EF-loop, including D267, D278, D288, and E298 dramatically reduced TRPM2 channel currents. By further changing the charges or side chain length of these conserved residues, our results indicate that the negative charge of D267 and the side chain length of D278 are critical for calcium-induced TRPM2 channel activation. G272I mutation also dramatically reduced the channel currents, suggesting that this site is critical for calcium-induced TRPM2 channel activation. Furthermore, D267A mutant dramatically reduced the currents induced by calcium alone compared with that by ADPR, indicating that D267 residue in D267–D278 motif is the most important site for calcium sensitivity of TRPM2. In addition, inside-out recordings showed that mutations at D267, G272, D278, and E298 had no effect on single-channel conductance. Taken together, our data indicate that D267–D278 motif in the N-terminus as a novel EF-loop is critical for calcium-induced TRPM2 channel activation.

  11. Genetic requirements for high constitutive SOS expression in recA730 mutants of Escherichia coli.

    PubMed

    Vlašić, Ignacija; Šimatović, Ana; Brčić-Kostić, Krunoslav

    2011-09-01

    The RecA protein in its functional state is in complex with single-stranded DNA, i.e., in the form of a RecA filament. In SOS induction, the RecA filament functions as a coprotease, enabling the autodigestion of the LexA repressor. The RecA filament can be formed by different mechanisms, but all of them require three enzymatic activities essential for the processing of DNA double-stranded ends. These are helicase, 5'-3' exonuclease, and RecA loading onto single-stranded DNA (ssDNA). In some mutants, the SOS response can be expressed constitutively during the process of normal DNA metabolism. The RecA730 mutant protein is able to form the RecA filament without the help of RecBCD and RecFOR mediators since it better competes with the single-strand binding (SSB) protein for ssDNA. As a consequence, the recA730 mutants show high constitutive SOS expression. In the study described in this paper, we studied the genetic requirements for constitutive SOS expression in recA730 mutants. Using a β-galactosidase assay, we showed that the constitutive SOS response in recA730 mutants exhibits different requirements in different backgrounds. In a wild-type background, the constitutive SOS response is partially dependent on RecBCD function. In a recB1080 background (the recB1080 mutation retains only helicase), constitutive SOS expression is partially dependent on RecBCD helicase function and is strongly dependent on RecJ nuclease. Finally, in a recB-null background, the constitutive SOS expression of the recA730 mutant is dependent on the RecJ nuclease. Our results emphasize the importance of the 5'-3' exonuclease for high constitutive SOS expression in recA730 mutants and show that RecBCD function can further enhance the excellent intrinsic abilities of the RecA730 protein in vivo. Copyright © 2011, American Society for Microbiology. All Rights Reserved.

  12. TU-EF-BRD-03: Mental Workload and Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazur, L.

    Research related to quality and safety has been a staple of medical physics academic activities for a long time. From very early on, medical physicists have developed new radiation measurement equipment and analysis techniques, created ever increasingly accurate dose calculation models, and have vastly improved imaging, planning, and delivery techniques. These and other areas of interest have improved the quality and safety of radiotherapy for our patients. With the advent of TG-100, quality and safety is an area that will garner even more research interest in the future. As medical physicists pursue quality and safety research in greater numbers, itmore » is worthwhile to consider what actually constitutes research on quality and safety. For example, should the development of algorithms for real-time EPID-based in-vivo dosimetry be defined as “quality and safety” research? How about the clinical implementation of such as system? Surely the application of failure modes and effects analysis to a clinical process would be considered quality and safety research, but is this type of research that should be included in the medical physics peer-reviewed literature? The answers to such questions are of critical importance to set researchers in a direction that will provide the greatest benefit to our field and the patients we serve. The purpose of this symposium is to consider what constitutes research in the arena of quality and safety and differentiate it from other research directions. The key distinction here is developing the tool itself (e.g. algorithms for EPID dosimetry) vs. studying the impact of the tool with some quantitative metric. Only the latter would I call quality and safety research. Issues of ‘basic’ versus ‘applied’ quality and safety research will be covered as well as how the research results should be structured to provide increasing levels of support that a quality and safety intervention is effective and sustainable. Examples from existing peer-reviewed research will be used to highlight the main points. Historical, medical physicists have leveraged many areas of applied physics, engineering and biology to improve radiotherapy. Research on quality and safety is another area where physicists can have an impact. The key to further progress is to clearly define what constitutes quality and safety research for those interested in doing such research and the reviewers of that research. Learning Objectives: List several tools of quality and safety with references to peer-reviewed literature. Describe effects of mental workload on performance. Outline research in quality and safety indicators and technique analysis. Understand what quality and safety research needs to be going forward. Understand the links between cooperative group trials and quality and safety research.« less

  13. "Anything "You" Can Do, "Tu" Can Do Better": "Tu" and "Vous" as Substitutes for Indefinite "On" in French.

    ERIC Educational Resources Information Center

    Coveney, Aidan

    2003-01-01

    Presents a survey of the French indefinite "tu/vous" in in earlier periods and in a range of varieties. Draws on a corpus of French spoken in Picardy in Northern France to investigate the extent to which this use of second person pronouns helps to avoid ambiguity and co-occurs with another grammatical variable. (Author/VWL)

  14. Teaching Tu Fu on the Night Shift.

    ERIC Educational Resources Information Center

    Brady, Philip

    1995-01-01

    Describes a teacher's unsuccessful attempt to introduce the poetry of Tu Fu, a wayward bureaucrat of the T'ang dynasty, to a class of part-time students. Uses his students' resistance to this poetry as an occasion to discuss the importance of personal responses to poetry, as opposed to "correct" academic responses. (TB)

  15. Nonrandom γ-TuNA-dependent spatial pattern of microtubule nucleation at the Golgi.

    PubMed

    Sanders, Anna A W M; Chang, Kevin; Zhu, Xiaodong; Thoppil, Roslin J; Holmes, William R; Kaverina, Irina

    2017-11-07

    Noncentrosomal microtubule (MT) nucleation at the Golgi generates MT network asymmetry in motile vertebrate cells. Investigating the Golgi-derived MT (GDMT) distribution, we find that MT asymmetry arises from nonrandom nucleation sites at the Golgi (hotspots). Using computational simulations, we propose two plausible mechanistic models of GDMT nucleation leading to this phenotype. In the "cooperativity" model, formation of a single GDMT promotes further nucleation at the same site. In the "heterogeneous Golgi" model, MT nucleation is dramatically up-regulated at discrete and sparse locations within the Golgi. While MT clustering in hotspots is equally well described by both models, simulating MT length distributions within the cooperativity model fits the data better. Investigating the molecular mechanism underlying hotspot formation, we have found that hotspots are significantly smaller than a Golgi subdomain positive for scaffolding protein AKAP450, which is thought to recruit GDMT nucleation factors. We have further probed potential roles of known GDMT-promoting molecules, including γ-TuRC-mediated nucleation activator (γ-TuNA) domain-containing proteins and MT stabilizer CLASPs. While both γ-TuNA inhibition and lack of CLASPs resulted in drastically decreased GDMT nucleation, computational modeling revealed that only γ-TuNA inhibition suppressed hotspot formation. We conclude that hotspots require γ-TuNA activity, which facilitates clustered GDMT nucleation at distinct Golgi sites. © 2017 Sanders et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  16. Enterococcus faecalis Constitutes an Unusual Bacterial Model in Lysozyme Resistance▿

    PubMed Central

    Hébert, Laurent; Courtin, Pascal; Torelli, Riccardo; Sanguinetti, Maurizio; Chapot-Chartier, Marie-Pierre; Auffray, Yanick; Benachour, Abdellah

    2007-01-01

    Lysozyme is an important and widespread compound of the host constitutive defense system, and it is assumed that Enterococcus faecalis is one of the few bacteria that are almost completely lysozyme resistant. On the basis of the sequence analysis of the whole genome of E. faecalis V583 strain, we identified two genes that are potentially involved in lysozyme resistance, EF_0783 and EF_1843. Protein products of these two genes share significant homology with Staphylococcus aureus peptidoglycan O-acetyltransferase (OatA) and Streptococcus pneumoniae N-acetylglucosamine deacetylase (PgdA), respectively. In order to determine whether EF_0783 and EF_1843 are involved in lysozyme resistance, we constructed their corresponding mutants and a double mutant. The ΔEF_0783 mutant and ΔEF_0783 ΔEF_1843 double mutant were shown to be more sensitive to lysozyme than the parental E. faecalis JH2-2 strain and ΔEF_1843 mutant were. However, compared to other bacteria, such as Listeria monocytogenes or S. pneumoniae, the tolerance of ΔEF_0783 and ΔEF_0783 ΔEF_1843 mutants towards lysozyme remains very high. Peptidoglycan structure analysis showed that EF_0783 modifies the peptidoglycan by O acetylation of N-acetyl muramic acid, while the EF_1843 deletion has no obvious effect on peptidoglycan structure under the same conditions. Moreover, the EF_0783 and EF_1843 deletions seem to significantly affect the ability of E. faecalis to survive within murine macrophages. In all, while EF_0783 is currently involved in the lysozyme resistance of E. faecalis, peptidoglycan O acetylation and de-N-acetylation are not the main mechanisms conferring high levels of lysozyme resistance to E. faecalis. PMID:17785473

  17. A single base change in the acceptor stem of tRNA(3Leu) confers resistance upon Escherichia coli to the calmodulin inhibitor, 48/80.

    PubMed Central

    Chen, M X; Bouquin, N; Norris, V; Casarégola, S; Séror, S J; Holland, I B

    1991-01-01

    We have isolated several classes of spontaneous mutants resistant to the calmodulin inhibitor 48/80 which inhibits cell division in Escherichia coli K12. Several mutants were also temperature sensitive for growth and this property was exploited to clone a DNA fragment from an E. coli gene library restoring growth at 42 degrees C and drug sensitivity at 30 degrees C in one such mutant. Physical and genetic mapping confirmed that both the mutation and the cloned DNA were located at 15.5 min on the E. coli chromosome at a locus designated feeB. By subcloning, complementation analysis and sequencing, the feeB locus was identified as identical to the tRNA(CUALEU) gene. When the mutant locus was isolated and sequenced, the mutation was confirmed as a single base change, C to A, at position 77 in the acceptor stem of this rare Leu tRNA. In other studies we obtained evidence that this mutant tRNA, recognizing the rare Leu codon, CUA, was defective in translation at both permissive and non-permissive temperatures. The feeB1 mutant is defective in division and shows a reduced growth rate at non-permissive temperature. We discuss the possibility that the mutant tRNA(3Leu) is limiting for the synthesis of a polypeptide(s), requiring several CUA codons for translation which in turn regulates in some way the level or activity of the drug target, a putative cell cycle protein. Images PMID:1915285

  18. A retrospective: Use of Escherichia coli as a vehicle to study phospholipid synthesis and function

    PubMed Central

    Dowhan, William

    2012-01-01

    Although the study of individual phospholipids and their synthesis began in the 1920’s first in plants and then mammals, it was not until the early 1960’s that Eugene Kennedy using Escherichia coli initiated studies of bacterial phospholipid metabolism. With the base of information already available from studies of mammalian tissue, the basic blueprint of phospholipid biosynthesis in E. coli was worked out by the late 1960’s. In 1970’s and 1980’s most of the enzymes responsible for phospholipid biosynthesis were purified and many of the genes encoding these enzymes were identified. By the late 1990’s conditional and null mutants were available along with clones of the genes for every step of phospholipid biosynthesis. Most of these genes had been sequenced before the complete E. coli genome sequence was available. Strains of E. coli were developed in which phospholipid composition could be changed in a systematic manner while maintaining cell viability. Null mutants, strains in which phospholipid metabolism was artificially regulated, and strains synthesizing foreign lipids not found in E. coli have been used to this day to define specific roles for individual phospholipid. This review will trace the findings that have led to the development of E. coli as an excellent model system to study mechanisms underlying the synthesis and function of phospholipids that are widely applicable to other prokaryotic and eukaryotic systems. PMID:22925633

  19. Recombinant Escherichia coli K5 strain with the deletion of waaR gene decreases the molecular weight of the heparosan capsular polysaccharide.

    PubMed

    Huang, Haichan; Liu, Xiaobo; Lv, Shencong; Zhong, Weihong; Zhang, Fuming; Linhardt, Robert J

    2016-09-01

    Heparosan, the capsular polysaccharide of Escherichia coli K5 having a carbohydrate backbone similar to that of heparin, has become a potential precursor for bioengineering heparin. In the heparosan biosynthesis pathway, the gene waaR encoding α-1-, 2- glycosyltransferase catalyze s the third glucosyl residues linking to the oligosaccharide chain. In the present study, a waaR deletion mutant of E. coli K5 was constructed. The mutant showed improvement of capsule polysaccharide yield. It is interesting that the heparosan molecular weight of the mutant is reduced and may become more suitable as a precursor for the production of low molecular weight heparin derived from the wild-type K5 capsular polysaccharide.

  20. Generation of an endogenous DNA-methylating agent by nitrosation in Escherichia coli.

    PubMed Central

    Taverna, P; Sedgwick, B

    1996-01-01

    Escherichia coli ada ogt mutants, which are totally deficient in O6-methylguanine-DNA methyltransferases, have an increased spontaneous mutation rate. This phenotype is particularly evident in starving cells and suggests the generation of an endogenous DNA alkylating agent under this growth condition. We have found that in wild-type cells, the level of the inducible Ada protein is 20-fold higher in stationary-phase and starving cells than in rapidly growing cells, thus enhancing the defense of these cells against DNA damage. The increased level of Ada in stationary cells is dependent on RpoS, a stationary-phase-specific sigma subunit of RNA polymerase. We have also identified a potential source of the mutagenic agent. Nitrosation of amides and related compounds can generate directly acting methylating agents and can be catalyzed by bacteria] enzymes. E. coli moa mutants, which are defective in the synthesis of a molybdopterin cofactor required by several reductases, are deficient in nitrosation activity. It is reported here that a moa mutant shows reduced generation of a mutagenic methylating agent from methylamine (or methylurea) and nitrite added to agar plates. Moreover, a moa mutation eliminates much of the spontaneous mutagenesis in ada ogt mutants. These observations indicate that the major endogenous mutagen is not S-adenosylmethionine but arises by bacterially catalyzed nitrosation. PMID:8752326

  1. Division Planes Alternate in Spherical Cells of Escherichia coli

    PubMed Central

    Begg, K. J.; Donachie, W. D.

    1998-01-01

    In the spherical cells of Escherichia coli rodA mutants, division is initiated at a single point, from which a furrow extends progressively around the cell. Using “giant” rodA ftsA cells, we confirmed that each new division furrow is initiated at the midpoint of the previous division plane and runs perpendicular to it. PMID:9573213

  2. Adaptation of signature-tagged mutagenesis to Escherichia coli K1 and the infant-rat model of invasive disease.

    PubMed

    Gonzalez, M D; Lichtensteiger, C A; Vimr, E R

    2001-05-01

    With the exception of the polysialic acid capsule (K1 antigen), little is known about other virulence factors needed for systemic infection by Escherichia coli K1, the leading cause of Gram-negative neonatal meningitis in humans. In this work, the functional genomics method of signature-tagged mutagenesis (STM) was adapted to E. coli K1 and the infant-rat model to identify non-capsule virulence genes. Validation of the method was demonstrated by the failure to recover a reconstructed acapsular mutant from bacterial pools used to systemically infect 5-day-old rats. Three new genes required for systemic disease were identified from a total of 192 mutants screened by STM (1.56% hit rate). Gut colonization, Southern blot hybridization, mixed-challenge infection, and DNA sequence analyses showed that the attenuating defects in the mutants were associated with transposon insertions in rfaL (O antigen ligase), dsbA (thiol:disulfide oxidoreductase), and a new gene, puvA (previously unidentified virulence gene A), with no known homologues. The results indicate the ability of STM to identify novel systemic virulence factors in E. coli K1.

  3. EF24 induces ROS-mediated apoptosis via targeting thioredoxin reductase 1 in gastric cancer cells

    PubMed Central

    Chen, Weiqian; Chen, Xi; Ying, Shilong; Feng, Zhiguo; Chen, Tongke; Ye, Qingqing; Wang, Zhe; Qiu, Chenyu; Yang, Shulin; Liang, Guang

    2016-01-01

    Gastric cancer (GC) is one of the leading causes of cancer mortality in the world, and finding novel agents for the treatment of advanced gastric cancer is of urgent need. Diphenyl difluoroketone (EF24), a molecule having structural similarity to curcumin, exhibits potent anti-tumor activities by arresting cell cycle and inducing apoptosis. Although EF24 demonstrates potent anticancer efficacy in numerous types of human cancer cells, the cellular targets of EF24 have not been fully defined. We report here that EF24 may interact with the thioredoxin reductase 1 (TrxR1), an important selenocysteine (Sec)-containing antioxidant enzyme, to induce reactive oxygen species (ROS)-mediated apoptosis in human gastric cancer cells. By inhibiting TrxR1 activity and increasing intracellular ROS levels, EF24 induces a lethal endoplasmic reticulum stress in human gastric cancer cells. Importantly, knockdown of TrxR1 sensitizes cells to EF24 treatment. In vivo, EF24 treatment markedly reduces the TrxR1 activity and tumor cell burden, and displays synergistic lethality with 5-FU against gastric cancer cells. Targeting TrxR1 with EF24 thus discloses a previously unrecognized mechanism underlying the biological activity of EF24, and reveals that TrxR1 is a good target for gastric cancer therapy. PMID:26919110

  4. Lopinavir Impairs Protein Synthesis and Induces eEF2 Phosphorylation via the Activation of AMP-Activated Protein Kinase

    PubMed Central

    Hong-Brown, Ly Q.; Brown, C. Randell; Huber, Danuta S.; Lang, Charles H.

    2008-01-01

    HIV anti-retroviral drugs decrease protein synthesis, although the underlying regulatory mechanisms of this process are not fully established. Therefore, we investigated the effects of the HIV protease inhibitor lopinavir (LPV) on protein metabolism. We also characterized the mechanisms that mediate the effects of this drug on elongation factor-2 (eEF2), a key component of the translational machinery. Treatment of C2C12 myocytes with LPV produced a dose-dependent inhibitory effect on protein synthesis. This effect was observed at 15 min and was maintained for at least 4 h. Mechanistically, LPV increased the phosphorylation of eEF2 and thereby decreased the activity of this protein. Increased phosphorylation of eEF2 was associated with increased activity of its upstream regulators AMP-activated protein kinase (AMPK) and eEF2 kinase (eEF2K). Both AMPK and eEF2K directly phosphorylated eEF2 in an in vitro kinase assay suggesting two distinct paths lead to eEF2 phosphorylation. To verify this connection, myocytes were treated with the AMPK inhibitor compound C. Compound C blocked eEF2K and eEF2 phosphorylation, demonstrating that LPV affects eEF2 activity via an AMPK-eEF2K dependent pathway. In contrast, incubation of myocytes with rottlerin suppressed eEF2K, but not eEF2 phosphorylation, suggesting that eEF2 can be regulated independent of eEF2K. Finally, LPV did not affect PP2A activity when either eEF2 or peptide was used as the substrate. Collectively, these results indicate that LPV decreases protein synthesis, at least in part, via inhibition of eEF2. This appears regulated by AMPK which can act directly on eEF2 or indirectly via the action of eEF2K. PMID:18712774

  5. Identification of endogenous inducers of the mal regulon in Escherichia coli.

    PubMed Central

    Ehrmann, M; Boos, W

    1987-01-01

    The expression of the maltose regulon in Escherichia coli is induced when maltose or maltodextrins are present in the growth medium. Mutations in malK, which codes for a component of the transport system, result in the elevated expression of the remaining mal genes. Uninduced expression in the wild type, as well as elevated expression in malK mutants, is strongly repressed at high osmolarity. In the absence of malQ-encoded amylomaltase, expression remains high at high osmolarity. We found that uninduced expression in the wild type and elevated expression in malK mutants were paralleled by the appearance of two types of endogenous carbohydrates. One, produced primarily at high osmolarity, was identified as comprising maltodextrins that are derived from glycogen or glycogen-synthesizing enzymes. The other, produced primarily at low osmolarity, consisted of an oligosaccharide that was not derived from glycogen. We isolated a mutant that no longer synthesized this oligosaccharide. The gene carrying this mutation, termed malI, was mapped at min 36 on the E. coli linkage map. A Tn10 insertion in malI also resulted in the loss of constitutivity at low osmolarity and delayed the induction of the maltose regulon by exogenous inducers. Images PMID:3038842

  6. The flagella of F18ab Escherichia coli is a virulence factor that contributes to infection in a IPEC-J2 cell model in vitro.

    PubMed

    Duan, Qiangde; Zhou, Mingxu; Zhu, Xiaofang; Bao, Wenbin; Wu, Shenglong; Ruan, Xiaosai; Zhang, Weiping; Yang, Yang; Zhu, Jun; Zhu, Guoqiang

    2012-11-09

    Bacterial flagella contribute to pathogen virulence; however, the role of flagella in the pathogenesis of F18ab E. coli-mediated swine edema disease (ED) is not currently known. We therefore evaluated the role of flagella in F18ab E. coli adhesion, invasion, biofilm formation, and IL-8 production using an in vitro cell infection model approach with gene-deletion mutant and complemented bacterial strains. We demonstrated that the flagellin-deficient fliC mutant had a marked decrease in the ability to adhere to and invade porcine epithelial IPEC-J2 cells. Surprisingly, there was no difference in adhesion between the F18 fimbriae-deficient ΔfedA mutant and its parent strain. In addition, both the ΔfedA and double ΔfliCΔfedA mutants exhibited an increased ability to invade IPEC-J2 cells compared to the wild-type strain, although this may be due to increased expression of other adhesins following the loss of F18ab fimbriae and flagella. Compared to the wild-type strain, the ΔfliC mutant showed significantly reduced ability to form biofilm, whereas the ΔfedA mutant increased biofilm formation. Although ΔfliC, ΔfedA, and ΔfliCΔfedA mutants had a reduced ability to stimulate IL-8 production from infected Caco-2 cells, the ΔfliC mutant impaired this ability to a greater extent than the ΔfedA mutant. The results from this study clearly demonstrate that flagella are required for efficient F18ab E. coli adhesion, invasion, biofilm formation, and IL-8 production in vitro. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. A Feline HFpEF Model with Pulmonary Hypertension and Compromised Pulmonary Function.

    PubMed

    Wallner, Markus; Eaton, Deborah M; Berretta, Remus M; Borghetti, Giulia; Wu, Jichuan; Baker, Sandy T; Feldsott, Eric A; Sharp, Thomas E; Mohsin, Sadia; Oyama, Mark A; von Lewinski, Dirk; Post, Heiner; Wolfson, Marla R; Houser, Steven R

    2017-11-29

    Heart Failure with preserved Ejection Fraction (HFpEF) represents a major public health problem. The causative mechanisms are multifactorial and there are no effective treatments for HFpEF, partially attributable to the lack of well-established HFpEF animal models. We established a feline HFpEF model induced by slow-progressive pressure overload. Male domestic short hair cats (n = 20), underwent either sham procedures (n = 8) or aortic constriction (n = 12) with a customized pre-shaped band. Pulmonary function, gas exchange, and invasive hemodynamics were measured at 4-months post-banding. In banded cats, echocardiography at 4-months revealed concentric left ventricular (LV) hypertrophy, left atrial (LA) enlargement and dysfunction, and LV diastolic dysfunction with preserved systolic function, which subsequently led to elevated LV end-diastolic pressures and pulmonary hypertension. Furthermore, LV diastolic dysfunction was associated with increased LV fibrosis, cardiomyocyte hypertrophy, elevated NT-proBNP plasma levels, fluid and protein loss in pulmonary interstitium, impaired lung expansion, and alveolar-capillary membrane thickening. We report for the first time in HFpEF perivascular fluid cuff formation around extra-alveolar vessels with decreased respiratory compliance. Ultimately, these cardiopulmonary abnormalities resulted in impaired oxygenation. Our findings support the idea that this model can be used for testing novel therapeutic strategies to treat the ever growing HFpEF population.

  8. Genome-wide Escherichia coli stress response and improved tolerance towards industrially relevant chemicals.

    PubMed

    Rau, Martin Holm; Calero, Patricia; Lennen, Rebecca M; Long, Katherine S; Nielsen, Alex T

    2016-10-13

    Economically viable biobased production of bulk chemicals and biofuels typically requires high product titers. During microbial bioconversion this often leads to product toxicity, and tolerance is therefore a critical element in the engineering of production strains. Here, a systems biology approach was employed to understand the chemical stress response of Escherichia coli, including a genome-wide screen for mutants with increased fitness during chemical stress. Twelve chemicals with significant production potential were selected, consisting of organic solvent-like chemicals (butanol, hydroxy-γ-butyrolactone, 1,4-butanediol, furfural), organic acids (acetate, itaconic acid, levulinic acid, succinic acid), amino acids (serine, threonine) and membrane-intercalating chemicals (decanoic acid, geraniol). The transcriptional response towards these chemicals revealed large overlaps of transcription changes within and between chemical groups, with functions such as energy metabolism, stress response, membrane modification, transporters and iron metabolism being affected. Regulon enrichment analysis identified key regulators likely mediating the transcriptional response, including CRP, RpoS, OmpR, ArcA, Fur and GadX. These regulators, the genes within their regulons and the above mentioned cellular functions therefore constitute potential targets for increasing E. coli chemical tolerance. Fitness determination of genome-wide transposon mutants (Tn-seq) subjected to the same chemical stress identified 294 enriched and 336 depleted mutants and experimental validation revealed up to 60 % increase in mutant growth rates. Mutants enriched in several conditions contained, among others, insertions in genes of the Mar-Sox-Rob regulon as well as transcription and translation related gene functions. The combination of the transcriptional response and mutant screening provides general targets that can increase tolerance towards not only single, but multiple chemicals.

  9. Adherence to abiotic surface induces SOS response in Escherichia coli K-12 strains under aerobic and anaerobic conditions.

    PubMed

    Costa, Suelen B; Campos, Ana Carolina C; Pereira, Ana Claudia M; de Mattos-Guaraldi, Ana Luiza; Júnior, Raphael Hirata; Rosa, Ana Cláudia P; Asad, Lídia M B O

    2014-09-01

    During the colonization of surfaces, Escherichia coli bacteria often encounter DNA-damaging agents and these agents can induce several defence mechanisms. Base excision repair (BER) is dedicated to the repair of oxidative DNA damage caused by reactive oxygen species (ROS) generated by chemical and physical agents or by metabolism. In this work, we have evaluated whether the interaction with an abiotic surface by mutants derived from E. coli K-12 deficient in some enzymes that are part of BER causes DNA damage and associated filamentation. Moreover, we studied the role of endonuclease V (nfi gene; 1506 mutant strain) in biofilm formation. Endonuclease V is an enzyme that is involved in DNA repair of nitrosative lesions. We verified that endonuclease V is involved in biofilm formation. Our results showed more filamentation in the xthA mutant (BW9091) and triple xthA nfo nth mutant (BW535) than in the wild-type strain (AB1157). By contrast, the mutant nfi did not present filamentation in biofilm, although its wild-type strain (1466) showed rare filaments in biofilm. The filamentation of bacterial cells attaching to a surface was a consequence of SOS induction measured by the SOS chromotest. However, biofilm formation depended on the ability of the bacteria to induce the SOS response since the mutant lexA Ind(-) did not induce the SOS response and did not form any biofilm. Oxygen tension was an important factor for the interaction of the BER mutants, since these mutants exhibited decreased quantitative adherence under anaerobic conditions. However, our results showed that the presence or absence of oxygen did not affect the viability of BW9091 and BW535 strains. The nfi mutant and its wild-type did not exhibit decreased biofilm formation under anaerobic conditions. Scanning electron microscopy was also performed on the E. coli K-12 strains that had adhered to the glass, and we observed the presence of a structure similar to an extracellular matrix that depended on the

  10. EF24 induces ROS-mediated apoptosis via targeting thioredoxin reductase 1 in gastric cancer cells.

    PubMed

    Zou, Peng; Xia, Yiqun; Chen, Weiqian; Chen, Xi; Ying, Shilong; Feng, Zhiguo; Chen, Tongke; Ye, Qingqing; Wang, Zhe; Qiu, Chenyu; Yang, Shulin; Liang, Guang

    2016-04-05

    Gastric cancer (GC) is one of the leading causes of cancer mortality in the world, and finding novel agents for the treatment of advanced gastric cancer is of urgent need. Diphenyl difluoroketone (EF24), a molecule having structural similarity to curcumin, exhibits potent anti-tumor activities by arresting cell cycle and inducing apoptosis. Although EF24 demonstrates potent anticancer effïcacy in numerous types of human cancer cells, the cellular targets of EF24 have not been fully defined. We report here that EF24 may interact with the thioredoxin reductase 1 (TrxR1), an important selenocysteine (Sec)-containing antioxidant enzyme, to induce reactive oxygen species (ROS)-mediated apoptosis in human gastric cancer cells. By inhibiting TrxR1 activity and increasing intracellular ROS levels, EF24 induces a lethal endoplasmic reticulum stress in human gastric cancer cells. Importantly, knockdown of TrxR1 sensitizes cells to EF24 treatment. In vivo, EF24 treatment markedly reduces the TrxR1 activity and tumor cell burden, and displays synergistic lethality with 5-FU against gastric cancer cells. Targeting TrxR1 with EF24 thus discloses a previously unrecognized mechanism underlying the biological activity of EF24, and reveals that TrxR1 is a good target for gastric cancer therapy.

  11. TraJ-dependent Escherichia coli K1 interactions with professional phagocytes are important for early systemic dissemination of infection in the neonatal rat.

    PubMed

    Hill, Val T; Townsend, Stacy M; Arias, Robyn S; Jenabi, Jasmine M; Gomez-Gonzalez, Ignacio; Shimada, Hiroyuki; Badger, Julie L

    2004-01-01

    Escherichia coli is a major cause of neonatal bacterial sepsis and meningitis. We recently identified a gene, traJ, which contributes to the ability of E. coli K1 to penetrate the blood-brain barrier in the neonatal rat. Because very little is known regarding the most critical step in disease progression, translocation to the gut and dissemination to the lymphoid tissues after a natural route of infection, we assessed the ability of a traJ mutant to cause systemic disease in the neonatal rat. Our studies determined that the traJ mutant is significantly less virulent than the wild type in the neonatal rat due to a decreased ability to disseminate from the mesenteric lymph nodes to the deeper tissues of the liver and spleen and to the blood during the early stages of systemic disease. Histopathologic studies determined that although significantly less or no mutant bacteria were recovered from the spleen and livers of infected neonatal rats, the inflammatory response was considerably greater than that in wild-type-colonized tissues. In vitro studies revealed that macrophages internalize the traJ mutant less frequently than they do the wild type and by a morphologically distinct process. Furthermore, we determined that tissue macrophages and dendritic cells within the liver and spleen are the major cellular targets of E. coli K1 and that TraJ significantly contributes to the predominantly intracellular nature of E. coli K1 within these professional phagocytes exclusively during the early stages of systemic disease. These data indicate that, contrary to earlier indications, E. coli K1 resides within professional phagocytes, and this is essential for the efficient progression of systemic disease.

  12. EF24, a novel curcumin analog, disrupts the microtubule cytoskeleton and inhibits HIF-1

    PubMed Central

    Thomas, Shala L.; Zhong, Diansheng; Zhou, Wei; Malik, Sanna; Liotta, Dennis; Snyder, James P.; Hamel, Ernest; Giannakakou, Paraskevi

    2008-01-01

    Curcumin, the yellow pigment of the spice turmeric, has emerged as a promising anticancer agent due to its antiproliferative and antiangiogenic properties. However, the molecular mechanism of action of this compound remains a subject of debate. In addition, curcumin’s low bioavailability and efficacy profile in vivo further hinders its clinical development. This study focuses on the mechanism of action of EF24, a novel curcumin analog with greater than curcumin biological activity and bioavailability, but no increased toxicity. Treatment of MDA-MB231 breast and PC3 prostate cancer cells with EF24 or curcumin led to inhibition of HIF-1α protein levels and, consequently, inhibition of HIF transcriptional activity. This drug-induced HIF inhibition occurred in a VHL-dependent but proteasome-independent manner. We found that, while curcumin inhibited HIF-1α gene transcription, EF24 exerted its activity by inhibiting HIF-1α posttranscriptionally. This result suggested that the two compounds are structurally similar but mechanistically distinct. Another cellular effect that further differentiated the two compounds was the ability of EF24, but not curcumin, to induce microtubule stabilization in cells. EF24 had no stabilizing effect on tubulin polymerization in an in vitro assay using purified bovine brain tubulin, suggesting that the EF24-induced cytoskeletal disruption in cells may be the result of upstream signaling events rather than EF24 direct binding to tubulin. In summary, our study identifies EF24 as a novel curcumin-related compound possessing a distinct mechanism of action, which we believe contributes to the potent anticancer activity of this agent and can be further exploited to investigate the therapeutic potential of EF24. PMID:18682687

  13. EF24, a novel curcumin analog, disrupts the microtubule cytoskeleton and inhibits HIF-1.

    PubMed

    Thomas, Shala L; Zhong, Diansheng; Zhou, Wei; Malik, Sanna; Liotta, Dennis; Snyder, James P; Hamel, Ernest; Giannakakou, Paraskevi

    2008-08-01

    Curcumin, the yellow pigment of the spice turmeric, has emerged as a promising anticancer agent due to its antiproliferative and antiangiogenic properties. However, the molecular mechanism of action of this compound remains a subject of debate. In addition, curcumin's low bioavailability and efficacy profile in vivo further hinders its clinical development. This study focuses on the mechanism of action of EF24, a novel curcumin analog with greater than curcumin biological activity and bioavailability, but no increased toxicity. Treatment of MDA-MB231 breast and PC3 prostate cancer cells with EF24 or curcumin led to inhibition of HIF-1alpha protein levels and, consequently, inhibition of HIF transcriptional activity. This drug-induced HIF inhibition occurred in a VHL-dependent but proteasome-independent manner. We found that, while curcumin inhibited HIF-1alpha gene transcription, EF24 exerted its activity by inhibiting HIF-1alpha posttranscriptionally. This result suggested that the two compounds are structurally similar but mechanistically distinct. Another cellular effect that further differentiated the two compounds was the ability of EF24, but not curcumin, to induce microtubule stabilization in cells. EF24 had no stabilizing effect on tubulin polymerization in an in vitro assay using purified bovine brain tubulin, suggesting that the EF24-induced cytoskeletal disruption in cells may be the result of upstream signaling events rather than EF24 direct binding to tubulin. In summary, our study identifies EF24 as a novel curcumin-related compound possessing a distinct mechanism of action, which we believe contributes to the potent anticancer activity of this agent and can be further exploited to investigate the therapeutic potential of EF24.

  14. In Vivo and In Vitro Suppression of Hepatocellular Carcinoma by EF24, a Curcumin Analog

    PubMed Central

    Wang, Luoluo; Tian, Lantian; Song, Ruipeng; Han, Tianwen; Pan, Shangha; Liu, Lianxin

    2012-01-01

    The synthetic compound 3,5-bis(2-flurobenzylidene)piperidin-4-one (EF24) is a potent analog of curcumin that exhibits enhanced biological activity and bioavailability without increasing toxicity. EF24 exerts antitumor activity by arresting the cell cycle and inducing apoptosis, suppressing many types of cancer cells in vitro. The antiproliferative and antiangiogenic properties of EF24 provide theoretical support for its development and application to liver cancers. We investigated the in vitro and in vivo activities of EF24 on liver cancer to better understand its therapeutic effects and mechanisms. EF24 induced significant apoptosis and G2/M-phase cell cycle arrest in mouse liver cancer cell lines, Hepa1-6 and H22. The expression levels of G2/M cell cycle regulating factors, cyclin B1 and Cdc2, were significantly decreased, pp53, p53, and p21 were significantly increased in EF24-treated cells. In addition, EF24 treatment significantly reduced Bcl-2 concomitant with an increase in Bax, enhanced the release of cytochrome c from the mitochondria into the cytosol, resulting in an upregulation of cleaved-caspase-3, which promoted poly (ADP-ribose) polymerase cleavage. EF24-treated cells also displayed decreases in phosphorylated Akt, phosphorylated extracellular signal-regulated kinase and vascular endothelial growth factor. Our in vitro protein expression data were confirmed in vivo using a subcutaneous hepatocellular carcinoma (HCC) tumor model. This mouse HCC model confirmed that total body weight was unchanged following EF24 treatment, although tumor weight was significantly decreased. Using an orthotopic HCC model, EF24 significantly reduced the liver/body weight ratio and relative tumor areas compared to the control group. In situ detection of apoptotic cells and quantification of Ki-67, a biomarker of cell proliferation, all indicated significant tumor suppression with EF24 treatment. These results suggest that EF24 exhibits anti-tumor activity on liver cancer

  15. In vivo and in vitro suppression of hepatocellular carcinoma by EF24, a curcumin analog.

    PubMed

    Liu, Haitao; Liang, Yingjian; Wang, Luoluo; Tian, Lantian; Song, Ruipeng; Han, Tianwen; Pan, Shangha; Liu, Lianxin

    2012-01-01

    The synthetic compound 3,5-bis(2-flurobenzylidene)piperidin-4-one (EF24) is a potent analog of curcumin that exhibits enhanced biological activity and bioavailability without increasing toxicity. EF24 exerts antitumor activity by arresting the cell cycle and inducing apoptosis, suppressing many types of cancer cells in vitro. The antiproliferative and antiangiogenic properties of EF24 provide theoretical support for its development and application to liver cancers. We investigated the in vitro and in vivo activities of EF24 on liver cancer to better understand its therapeutic effects and mechanisms. EF24 induced significant apoptosis and G2/M-phase cell cycle arrest in mouse liver cancer cell lines, Hepa1-6 and H22. The expression levels of G2/M cell cycle regulating factors, cyclin B1 and Cdc2, were significantly decreased, pp53, p53, and p21 were significantly increased in EF24-treated cells. In addition, EF24 treatment significantly reduced Bcl-2 concomitant with an increase in Bax, enhanced the release of cytochrome c from the mitochondria into the cytosol, resulting in an upregulation of cleaved-caspase-3, which promoted poly (ADP-ribose) polymerase cleavage. EF24-treated cells also displayed decreases in phosphorylated Akt, phosphorylated extracellular signal-regulated kinase and vascular endothelial growth factor. Our in vitro protein expression data were confirmed in vivo using a subcutaneous hepatocellular carcinoma (HCC) tumor model. This mouse HCC model confirmed that total body weight was unchanged following EF24 treatment, although tumor weight was significantly decreased. Using an orthotopic HCC model, EF24 significantly reduced the liver/body weight ratio and relative tumor areas compared to the control group. In situ detection of apoptotic cells and quantification of Ki-67, a biomarker of cell proliferation, all indicated significant tumor suppression with EF24 treatment. These results suggest that EF24 exhibits anti-tumor activity on liver cancer

  16. GenoBase: comprehensive resource database of Escherichia coli K-12

    PubMed Central

    Otsuka, Yuta; Muto, Ai; Takeuchi, Rikiya; Okada, Chihiro; Ishikawa, Motokazu; Nakamura, Koichiro; Yamamoto, Natsuko; Dose, Hitomi; Nakahigashi, Kenji; Tanishima, Shigeki; Suharnan, Sivasundaram; Nomura, Wataru; Nakayashiki, Toru; Aref, Walid G.; Bochner, Barry R.; Conway, Tyrrell; Gribskov, Michael; Kihara, Daisuke; Rudd, Kenneth E.; Tohsato, Yukako; Wanner, Barry L.; Mori, Hirotada

    2015-01-01

    Comprehensive experimental resources, such as ORFeome clone libraries and deletion mutant collections, are fundamental tools for elucidation of gene function. Data sets by omics analysis using these resources provide key information for functional analysis, modeling and simulation both in individual and systematic approaches. With the long-term goal of complete understanding of a cell, we have over the past decade created a variety of clone and mutant sets for functional genomics studies of Escherichia coli K-12. We have made these experimental resources freely available to the academic community worldwide. Accordingly, these resources have now been used in numerous investigations of a multitude of cell processes. Quality control is extremely important for evaluating results generated by these resources. Because the annotation has been changed since 2005, which we originally used for the construction, we have updated these genomic resources accordingly. Here, we describe GenoBase (http://ecoli.naist.jp/GB/), which contains key information about comprehensive experimental resources of E. coli K-12, their quality control and several omics data sets generated using these resources. PMID:25399415

  17. Tutoiement et Vouvoiement chez les Lyceens Francais (French Pupils' Use of the Personal Pronouns "Tu" and "Vous")

    ERIC Educational Resources Information Center

    Bustin-Lekeu, Francine

    1973-01-01

    Surveys conducted among secondary school students in Toulon, France in choice of personal pronouns indicate more prevalent use of tu''. Students consider widespread use of tu'' to be more democratic and thought employment of vous'' on certain occasions is a hypocritical and bourgeois habit. (DS)

  18. Proteases in Escherichia coli and Staphylococcus aureus confer reduced susceptibility to lactoferricin B.

    PubMed

    Ulvatne, Hilde; Haukland, Hanne Husom; Samuelsen, Ørjan; Krämer, Manuela; Vorland, Lars H

    2002-10-01

    Lactoferricin B is a cationic antimicrobial peptide derived from the N-terminal part of bovine lactoferrin. The effect of bacterial proteases on the antibacterial activity of lactoferricin B towards Escherichia coli and Staphylococcus aureus was investigated using various protease inhibitors and protease-deficient E. coli mutants. Sodium-EDTA, a metalloprotease inhibitor, was the most efficient inhibitors in both species, but combinations of sodium-EDTA with other types of protease inhibitor gave a synergic effect. The results indicate that several groups of proteases are involved in resistance to lactoferricin B in both E. coli and S. aureus. We also report that genetic inactivation of the heat shock-induced serine protease DegP increased the susceptibility to lactoferricin B in E. coli, suggesting that this protease, at least, is involved in reduced susceptibility to lactoferricin B.

  19. Mutant forms of Escherichia coli protein L25 unable to bind to 5S rRNA are incorporated efficiently into the ribosome in vivo.

    PubMed

    Anikaev, A Y; Korepanov, A P; Korobeinikova, A V; Kljashtorny, V G; Piendl, W; Nikonov, S V; Garber, M B; Gongadze, G M

    2014-08-01

    5S rRNA-binding ribosomal proteins of the L25 family are an evolutional acquisition of bacteria. Earlier we showed that (i) single replacements in the RNA-binding module of the protein of this family result in destabilization or complete impossibility to form a complex with 5S rRNA in vitro; (ii) ΔL25 ribosomes of Escherichia coli are less efficient in protein synthesis in vivo than the control ribosomes. In the present work, the efficiency of incorporation of the E. coli protein L25 with mutations in the 5S rRNA-binding region into the ribosome in vivo was studied. It was found that the mutations in L25 that abolish its ability to form the complex with free 5S rRNA do not prevent its correct and efficient incorporation into the ribosome. This is supported by the fact that even the presence of a very weakly retained mutant form of the protein in the ribosome has a positive effect on the activity of the translational machinery in vivo. All this suggests the existence of an alternative incorporation pathway for this protein into the ribosome, excluding the preliminary formation of the complex with 5S rRNA. At the same time, the stable L25-5S rRNA contact is important for the retention of the protein within the ribosome, and the conservative amino acid residues of the RNA-binding module play a key role in this.

  20. The pretranslocation ribosome is targeted by GTP-bound EF-G in partially activated form

    PubMed Central

    Hauryliuk, Vasili; Mitkevich, Vladimir A.; Eliseeva, Natalia A.; Petrushanko, Irina Yu.; Ehrenberg, Måns; Makarov, Alexander A.

    2008-01-01

    Translocation of the tRNA·mRNA complex through the bacterial ribosome is driven by the multidomain guanosine triphosphatase elongation factor G (EF-G). We have used isothermal titration calorimetry to characterize the binding of GDP and GTP to free EF-G at 4°C, 20°C, and 37°C. The binding affinity of EF-G is higher to GDP than to GTP at 4°C, but lower at 37°C. The binding enthalpy and entropy change little with temperature in the case of GDP binding but change greatly in the case of GTP binding. These observations are compatible with a large decrease in the solvent-accessible hydrophobic surface area of EF-G on GTP, but not GDP, binding. The explanation we propose is the locking of the switch 1 and switch 2 peptide loops in the G domain of EF-G to the γ-phosphate of GTP. From these data, in conjunction with previously reported structural data on guanine nucleotide-bound EF-G, we suggest that EF-G enters the pretranslocation ribosome as an “activity chimera,” with the G domain activated by the presence of GTP but the overall factor conformation in the inactive form typical of a GDP-bound multidomain guanosine triphosphatase. We propose that the active overall conformation of EF-G is attained only in complex with the ribosome in its “ratcheted state,” with hybrid tRNA binding sites. PMID:18836081

  1. Effect of inactivation of the global oxidative stress regulator oxyR on the colonization ability of Escherichia coli O1:K1:H7 in a mouse model of ascending urinary tract infection.

    PubMed

    Johnson, James R; Clabots, Connie; Rosen, Henry

    2006-01-01

    To survive within the host urinary tract, Escherichia coli strains that cause urinary tract infection (UTI) presumably must overcome powerful oxidant stresses, including the oxygen-dependent killing mechanisms of neutrophils. Accordingly, we assessed the global oxygen stress regulator OxyR of Escherichia coli as a possible virulence factor in UTI by determining the impact of oxyR inactivation on experimental urovirulence in CBA/J and C57BL (both wild-type and p47(phox-/-)) mice. The oxyR and oxyS genes of wild-type E. coli strain Ec1a (O1:K1:H7) were replaced with a kanamycin resistance cassette to produce an oxyRS mutant. During in vitro growth in broth or human urine, the oxyRS mutant exhibited the same log-phase growth rate (broth) and plateau density (broth and urine) as Ec1a, despite its prolonged lag phase (broth) or initial decrease in concentration (urine). The mutant, and oxyRS mutants of other wild-type ExPEC strains, exhibited significantly increased in vitro susceptibility to inhibition by H(2)O(2), which, like the altered growth kinetics observed with oxyRS inactivation, were reversed by restoration of oxyR on a multiple-copy-number plasmid. In CBA/J mice, Ec1a significantly outcompeted its oxyRS mutant (by >1 log(10)) in urine, bladder, and kidney cultures harvested 48 h after perurethral inoculation of mice, whereas an oxyR-complemented mutant exhibited equal or greater colonizing ability than that of the parent. Although C57BL mice were less susceptible to experimental UTI than CBA/J mice, wild-type and p47(phox-/-) C57BL mice were similarly susceptible, and the oxyR mutant of Ec1a was similarly attenuated in C57BL mice, regardless of the p47(phox) genotype, as in CBA/J mice. Within the E. coli Reference collection, 94% of strains were positive for oxyR. These findings fulfill the second and third of Koch's molecular postulates for oxyR as a candidate virulence-facilitating factor in E. coli and indicate that oxyR is a broadly prevalent potential

  2. Type 1 fimbriae and extracellular polysaccharides are preeminent uropathogenic Escherichia coli virulence determinants in the murine urinary tract.

    PubMed

    Bahrani-Mougeot, Farah K; Buckles, Eric L; Lockatell, C V; Hebel, J R; Johnson, D E; Tang, C M; Donnenberg, M S

    2002-08-01

    Escherichia coli is the leading cause of urinary tract infections (UTIs). Despite the association of numerous bacterial factors with uropathogenic E. coli (UPEC), few such factors have been proved to be required for UTI in animal models. Previous investigations of urovirulence factors have relied on prior identification of phenotypic characteristics. We used signature-tagged mutagenesis (STM) in an unbiased effort to identify genes that are essential for UPEC survival within the murine urinary tract. A library of 2049 transposon mutants of the prototypic UPEC strain CFT073 was constructed using mini-Tn5km2 carrying 92 unique tags and screened in a murine model of ascending UTI. After initial screening followed by confirmation in co-infection experiments, 19 survival-defective mutants were identified. These mutants were recovered in numbers 101- to 106-fold less than the wild type in the bladder, kidneys or urine or at more than one site. The transposon junctions from each attenuated mutant were sequenced and analysed. Mutations were found in: (i) the type 1 fimbrial operon; (ii) genes involved in the biosyn-thesis of extracellular polysaccharides including group I capsule, group II capsule and enterobacterial common antigen; (iii) genes involved in metabolic pathways; and (iv) genes with unknown function. Five of the genes identified are absent from the genome of the E. coli K-12 strain. Mutations in type 1 fimbrial genes resulted in severely attenuated colonization, even in the case of a mutant with an insertion upstream of the fim operon that affected the rate of fimbrial switching from the 'off' to the 'on' phase. Three mutants had insertions in a new type II capsule biosynthesis locus on a pathogenicity island and were impaired in the production of capsule in vivo. An additional mutant with an insertion in wecE was unable to synthesize enterobacterial common antigen. These results confirm the pre-eminence of type 1 fimbriae, establish the importance of

  3. The double-stranded transcriptome of Escherichia coli.

    PubMed

    Lybecker, Meghan; Zimmermann, Bob; Bilusic, Ivana; Tukhtubaeva, Nadezda; Schroeder, Renée

    2014-02-25

    Advances in high-throughput transcriptome analyses have revealed hundreds of antisense RNAs (asRNAs) for many bacteria, although few have been characterized, and the number of functional asRNAs remains unknown. We have developed a genome-wide high-throughput method to identify functional asRNAs in vivo. Most mechanisms of gene regulation via asRNAs require an RNA-RNA interaction with its target RNA, and we hypothesized that a functional asRNA would be found in a double strand (dsRNA), duplexed with its cognate RNA in a single cell. We developed a method of isolating dsRNAs from total RNA by immunoprecipitation with a ds-RNA specific antibody. Total RNA and immunoprecipitated dsRNA from Escherichia coli RNase III WT and mutant strains were deep-sequenced. A statistical model was applied to filter for biologically relevant dsRNA regions, which were subsequently categorized by location relative to annotated genes. A total of 316 potentially functional asRNAs were identified in the RNase III mutant strain and are encoded primarily opposite to the 5' ends of transcripts, but are also found opposite ncRNAs, gene junctions, and the 3' ends. A total of 21 sense/antisense RNA pairs identified in dsRNAs were confirmed by Northern blot analyses. Most of the RNA steady-state levels were higher or detectable only in the RNase III mutant strain. Taken together, our data indicate that a significant amount of dsRNA is formed in the cell, that RNase III degrades or processes these dsRNAs, and that dsRNA plays a major role in gene regulation in E. coli.

  4. RNA Sequencing Identifies New RNase III Cleavage Sites in Escherichia coli and Reveals Increased Regulation of mRNA

    DOE PAGES

    Gordon, Gina C.; Cameron, Jeffrey C.; Pfleger, Brian F.

    2017-03-28

    Ribonucleases facilitate rapid turnover of RNA, providing cells with another mechanism to adjust transcript and protein levels in response to environmental conditions. While many examples have been documented, a comprehensive list of RNase targets is not available. To address this knowledge gap, we compared levels of RNA sequencing coverage of Escherichia coli and a corresponding RNase III mutant to expand the list of known RNase III targets. RNase III is a widespread endoribonuclease that binds and cleaves double-stranded RNA in many critical transcripts. RNase III cleavage at novel sites found in aceEF, proP, tnaC, dctA, pheM, sdhC, yhhQ, glpT, aceK,more » and gluQ accelerated RNA decay, consistent with previously described targets wherein RNase III cleavage initiates rapid degradation of secondary messages by other RNases. In contrast, cleavage at three novel sites in the ahpF, pflB, and yajQ transcripts led to stabilized secondary transcripts. Two other novel sites in hisL and pheM overlapped with transcriptional attenuators that likely serve to ensure turnover of these highly structured RNAs. Many of the new RNase III target sites are located on transcripts encoding metabolic enzymes. For instance, two novel RNase III sites are located within transcripts encoding enzymes near a key metabolic node connecting glycolysis and the tricarboxylic acid (TCA) cycle. Pyruvate dehydrogenase activity was increased in an rnc deletion mutant compared to the wild-type (WT) strain in early stationary phase, confirming the novel link between RNA turnover and regulation of pathway activity. Identification of these novel sites suggests that mRNA turnover may be an underappreciated mode of regulating metabolism. IMPORTANCE: The concerted action and overlapping functions of endoribonucleases, exoribonucleases, and RNA processing enzymes complicate the study of global RNA turnover and recycling of specific transcripts. More information about RNase specificity and activity is

  5. RNA Sequencing Identifies New RNase III Cleavage Sites in Escherichia coli and Reveals Increased Regulation of mRNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, Gina C.; Cameron, Jeffrey C.; Pfleger, Brian F.

    Ribonucleases facilitate rapid turnover of RNA, providing cells with another mechanism to adjust transcript and protein levels in response to environmental conditions. While many examples have been documented, a comprehensive list of RNase targets is not available. To address this knowledge gap, we compared levels of RNA sequencing coverage of Escherichia coli and a corresponding RNase III mutant to expand the list of known RNase III targets. RNase III is a widespread endoribonuclease that binds and cleaves double-stranded RNA in many critical transcripts. RNase III cleavage at novel sites found in aceEF, proP, tnaC, dctA, pheM, sdhC, yhhQ, glpT, aceK,more » and gluQ accelerated RNA decay, consistent with previously described targets wherein RNase III cleavage initiates rapid degradation of secondary messages by other RNases. In contrast, cleavage at three novel sites in the ahpF, pflB, and yajQ transcripts led to stabilized secondary transcripts. Two other novel sites in hisL and pheM overlapped with transcriptional attenuators that likely serve to ensure turnover of these highly structured RNAs. Many of the new RNase III target sites are located on transcripts encoding metabolic enzymes. For instance, two novel RNase III sites are located within transcripts encoding enzymes near a key metabolic node connecting glycolysis and the tricarboxylic acid (TCA) cycle. Pyruvate dehydrogenase activity was increased in an rnc deletion mutant compared to the wild-type (WT) strain in early stationary phase, confirming the novel link between RNA turnover and regulation of pathway activity. Identification of these novel sites suggests that mRNA turnover may be an underappreciated mode of regulating metabolism. IMPORTANCE: The concerted action and overlapping functions of endoribonucleases, exoribonucleases, and RNA processing enzymes complicate the study of global RNA turnover and recycling of specific transcripts. More information about RNase specificity and activity is

  6. Evolution of EF-hand calcium-modulated proteins. IV. Exon shuffling did not determine the domain compositions of EF-hand proteins

    NASA Technical Reports Server (NTRS)

    Kretsinger, R. H.; Nakayama, S.

    1993-01-01

    In the previous three reports in this series we demonstrated that the EF-hand family of proteins evolved by a complex pattern of gene duplication, transposition, and splicing. The dendrograms based on exon sequences are nearly identical to those based on protein sequences for troponin C, the essential light chain myosin, the regulatory light chain, and calpain. This validates both the computational methods and the dendrograms for these subfamilies. The proposal of congruence for calmodulin, troponin C, essential light chain, and regulatory light chain was confirmed. There are, however, significant differences in the calmodulin dendrograms computed from DNA and from protein sequences. In this study we find that introns are distributed throughout the EF-hand domain and the interdomain regions. Further, dendrograms based on intron type and distribution bear little resemblance to those based on protein or on DNA sequences. We conclude that introns are inserted, and probably deleted, with relatively high frequency. Further, in the EF-hand family exons do not correspond to structural domains and exon shuffling played little if any role in the evolution of this widely distributed homolog family. Calmodulin has had a turbulent evolution. Its dendrograms based on protein sequence, exon sequence, 3'-tail sequence, intron sequences, and intron positions all show significant differences.

  7. Fur-dependent detoxification of organic acids by rpoS mutants during prolonged incubation under aerobic, phosphate starvation conditions.

    PubMed

    Guillemet, Mélanie L; Moreau, Patrice L

    2008-08-01

    The activity of amino acid-dependent acid resistance systems allows Escherichia coli to survive during prolonged incubation under phosphate (P(i)) starvation conditions. We show in this work that rpoS-null mutants incubated in the absence of any amino acid survived during prolonged incubation under aerobic, P(i) starvation conditions. Whereas rpoS(+) cells incubated with glutamate excreted high levels of acetate, rpoS mutants grew on acetic acid. The characteristic metabolism of rpoS mutants required the activity of Fur (ferric uptake regulator) in order to decrease the synthesis of the small RNA RyhB that might otherwise inhibit the synthesis of iron-rich proteins. We propose that RpoS (sigma(S)) and the small RNA RyhB contribute to decrease the synthesis of iron-rich proteins required for the activity of the tricarboxylic acid (TCA) cycle, which redirects the metabolic flux toward the production of acetic acid at the onset of stationary phase in rpoS(+) cells. In contrast, Fur activity, which represses ryhB, and the lack of RpoS activity allow a substantial activity of the TCA cycle to continue in stationary phase in rpoS mutants, which decreases the production of acetic acid and, eventually, allows growth on acetic acid and P(i) excreted into the medium. These data may help explain the fact that a high frequency of E. coli rpoS mutants is found in nature.

  8. [E75, R78 and D82 of Escherichia coli FtsZ are key residues for FtsZ cellular self-assembly and FtsZ-MreB interaction].

    PubMed

    Huo, Yujia; Lu, Qiaonan; Zheng, Xiaowei; Ma, Yuanfang; Lu, Feng

    2016-02-04

    To explore effects of FtsZ mutants FtsZ(E75A), FtsZ(R78G) and FtsZ(D82A) on FtsZ self-assembly and interaction of FtsZ with MreB in Escherichia coli strains. METHODS) We constructed FtsZ and its mutant's plasmids by molecular clone and site-directed mutagenesis methods, and purified targeted proteins by affinity chromatography. QN6(ftsZ::yfp-cat), QN7(tsZ::yfp-cat), QN8(ftsZ(R78G)::yfp-cat) and QN9 (ftsZ(D82A):.:yfp-cat) strains were constructed by linear DNA homologous recombination. We observed cellular localization pattern of FtsZ and its mutants in E. coli by living cell imaging experiments, examined interaction of FtsZ/FtsZ*-FtsZ* and FtsZ/FtsZ*-MreB by Coimmunoprecipitation and bacteria two hybrid, and analyzed assembly characteristics of FtsZ mutants by Light scattering. RESULTS) The Yfp-labeled FtsZ(E75A), FtsZ(R78G) and FtsZ(D82A) mutant proteins failed to assemble into functional Z-ring structure and localize correctly in E. coli strains. Interaction of FtsZ with its mutants, or FtsZ*-FtsZ* and FtsZ*-MreB interaction were weakened or completely disappeared. In addition, in vitro experiments show that E75A, R78G and D82A mutations decreased the polymerization efficiency of FtsZ monomer. FtsZ E75, R78 and D82 are critical amino acids in the assembly, function of FtsZ protein and FtsZ-MreB interaction in E. coli strains.

  9. The Impending Demise of "tu" in Montevideo, Uruguay

    ERIC Educational Resources Information Center

    Weyers, Joseph R.

    2009-01-01

    Since the early 1960s, the "tuteo" (T-T), and particularly the use of tonic "tu" with the "vos" verbal morphology (T-V) has been accepted as typical of the speech of Montevideo, Uruguay, a region generally classified as "voseante". This paper reports on the results of 117 rapid anonymous interviews conducted…

  10. Peptidoglycan Association of Murein Lipoprotein Is Required for KpsD-Dependent Group 2 Capsular Polysaccharide Expression and Serum Resistance in a Uropathogenic Escherichia coli Isolate

    PubMed Central

    Diao, Jingyu; Bouwman, Catrien; Yan, Donghong; Kang, Jing; Katakam, Anand K.; Liu, Peter; Pantua, Homer; Abbas, Alexander R.; Nickerson, Nicholas N.; Austin, Cary; Reichelt, Mike; Sandoval, Wendy; Xu, Min

    2017-01-01

    ABSTRACT Murein lipoprotein (Lpp) and peptidoglycan-associated lipoprotein (Pal) are major outer membrane lipoproteins in Escherichia coli. Their roles in cell-envelope integrity have been documented in E. coli laboratory strains, and while Lpp has been linked to serum resistance in vitro, the underlying mechanism has not been established. Here, lpp and pal mutants of uropathogenic E. coli strain CFT073 showed reduced survival in a mouse bacteremia model, but only the lpp mutant was sensitive to serum killing in vitro. The peptidoglycan-bound Lpp form was specifically required for preventing complement-mediated bacterial lysis in vitro and complement-mediated clearance in vivo. Compared to the wild-type strain, the lpp mutant had impaired K2 capsular polysaccharide production and was unable to respond to exposure to serum by elevating capsular polysaccharide amounts. These properties correlated with altered cellular distribution of KpsD, the predicted outer membrane translocon for “group 2” capsular polysaccharides. We identified a novel Lpp-dependent association between functional KpsD and peptidoglycan, highlighting important interplay between cell envelope components required for resistance to complement-mediated lysis in uropathogenic E. coli isolates. PMID:28536290

  11. Isolation and Characterization of Escherichia coli tolC Mutants Defective in Secreting Enzymatically Active Alpha-Hemolysin

    PubMed Central

    Vakharia, Hema; German, Greg J.; Misra, Rajeev

    2001-01-01

    This study describes the isolation and characterization of a unique class of TolC mutants that, under steady-state growth conditions, secreted normal levels of largely inactive alpha-hemolysin. Unlike the reduced activity in the culture supernatants, the cell-associated hemolytic activity in these mutants was identical to that in the parental strain, thus reflecting a normal intracellular toxin activation event. Treatment of the secreted toxin with guanidine hydrochloride significantly restored cytolytic activity, suggesting that the diminished activity may have been due to the aggregation or misfolding of the toxin molecules. Consistent with this notion, sedimentation and filtration analyses showed that alpha-hemolysin secreted from the mutant strain has a mass greater than that secreted from the parental strain. Experiments designed to monitor the time course of alpha-hemolysin release showed delayed appearance of toxin in the culture supernatant of the mutant strain, thus indicating a possible defect in alpha-hemolysin translocation or release. Eight different TolC substitutions displaying this toxin secretion defect were scattered throughout the protein, of which six localized in the periplasmically exposed α-helical domain, while the remaining two mapped within the outer membrane-embedded β-barrel domain of TolC. A plausible model for the secretion of inactive alpha-hemolysin in these TolC mutants is discussed in the context of the recently determined three-dimensional structure of TolC. PMID:11698380

  12. Inhibition of hydrogen uptake in Escherichia coli by expressing the hydrogenase from the cyanobacterium Synechocystis sp. PCC 6803

    PubMed Central

    Maeda, Toshinari; Vardar, Gönül; Self, William T; Wood, Thomas K

    2007-01-01

    Background Molecular hydrogen is an environmentally-clean fuel and the reversible (bi-directional) hydrogenase of the cyanobacterium Synechocystis sp. PCC 6803 as well as the native Escherichia coli hydrogenase 3 hold great promise for hydrogen generation. These enzymes perform the simple reaction 2H+ + 2e- ↔ H2 (g). Results Hydrogen yields were enhanced up to 41-fold by cloning the bidirectional hydrogenase (encoded by hoxEFUYH) from the cyanobacterium into E. coli. Using an optimized medium, E. coli cells expressing hoxEFUYH also produced twice as much hydrogen as the well-studied Enterobacter aerogenes HU-101, and hydrogen gas bubbles are clearly visible from the cultures. Overexpression of HoxU alone (small diaphorase subunit) accounts for 43% of the additional hydrogen produced by HoxEFUYH. In addition, hydrogen production in E. coli mutants with defects in the native formate hydrogenlyase system show that the cyanobacterial hydrogenase depends on both the native E. coli hydrogenase 3 as well as on its maturation proteins. Hydrogen absorption by cells expressing hoxEFUYH was up to 10 times lower than cells which lack the cloned cyanobacterial hydrogenase; hence, the enhanced hydrogen production in the presence of hoxEFUYH is due to inhibition of hydrogen uptake activity in E. coli. Hydrogen uptake by cells expressing hoxEFUYH was suppressed in three wild-type strains and in two hycE mutants but not in a double mutant defective in hydrogenase 1 and hydrogenase 2; hence, the active cyanobacterial locus suppresses hydrogen uptake by hydrogenase 1 and hydrogenase 2 but not by hydrogenase 3. Differential gene expression indicated that overexpression of HoxEFUYH does not alter expression of the native E. coli hydrogenase system; instead, biofilm-related genes are differentially regulated by expression of the cyanobacterial enzymes which resulted in 2-fold elevated biofilm formation. This appears to be the first enhanced hydrogen production by cloning a

  13. 75 FR 41894 - Wapakoneta Machine Company, Currently Known as EF Industrial Technologies, Inc., Wapakoneta, OH...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-19

    ... Company, Currently Known as EF Industrial Technologies, Inc., Wapakoneta, OH; Amended Certification... of early 2010, Wapakoneta Machine Company is currently known as EF Industrial Technologies, Inc. Some... Wapakoneta Machine Company, currently known as EF Industrial Technologies, Inc., Wapakoneta, Ohio became...

  14. Transcriptional responses of Escherichia coli K-12 and O157:H7 associated with lettuce leaves.

    PubMed

    Fink, Ryan C; Black, Elaine P; Hou, Zhe; Sugawara, Masayuki; Sadowsky, Michael J; Diez-Gonzalez, Francisco

    2012-03-01

    An increasing number of outbreaks of gastroenteritis recently caused by Escherichia coli O157:H7 have been linked to the consumption of leafy green vegetables. Although it is known that E. coli survives and grows in the phyllosphere of lettuce plants, the molecular mechanisms by which this bacterium associates with plants are largely unknown. The goal of this study was to identify E. coli genes relevant to its interaction, survival, or attachment to lettuce leaf surfaces, comparing E. coli K-12, a model system, and E. coli O157:H7, a pathogen associated with a large number of outbreaks. Using microarrays, we found that upon interaction with intact leaves, 10.1% and 8.7% of the 3,798 shared genes were differentially expressed in K-12 and O157:H7, respectively, whereas 3.1% changed transcript levels in both. The largest group of genes downregulated consisted of those involved in energy metabolism, including tnaA (33-fold change), encoding a tryptophanase that converts tryptophan into indole. Genes involved in biofilm modulation (bhsA and ybiM) and curli production (csgA and csgB) were significantly upregulated in E. coli K-12 and O157:H7. Both csgA and bhsA (ycfR) mutants were impaired in the long-term colonization of the leaf surface, but only csgA mutants had diminished ability in short-term attachment experiments. Our data suggested that the interaction of E. coli K-12 and O157:H7 with undamaged lettuce leaves likely is initiated via attachment to the leaf surface using curli fibers, a downward shift in their metabolism, and the suppression of biofilm formation.

  15. Transcriptional Responses of Escherichia coli K-12 and O157:H7 Associated with Lettuce Leaves

    PubMed Central

    Fink, Ryan C.; Black, Elaine P.; Hou, Zhe; Sugawara, Masayuki; Sadowsky, Michael J.

    2012-01-01

    An increasing number of outbreaks of gastroenteritis recently caused by Escherichia coli O157:H7 have been linked to the consumption of leafy green vegetables. Although it is known that E. coli survives and grows in the phyllosphere of lettuce plants, the molecular mechanisms by which this bacterium associates with plants are largely unknown. The goal of this study was to identify E. coli genes relevant to its interaction, survival, or attachment to lettuce leaf surfaces, comparing E. coli K-12, a model system, and E. coli O157:H7, a pathogen associated with a large number of outbreaks. Using microarrays, we found that upon interaction with intact leaves, 10.1% and 8.7% of the 3,798 shared genes were differentially expressed in K-12 and O157:H7, respectively, whereas 3.1% changed transcript levels in both. The largest group of genes downregulated consisted of those involved in energy metabolism, including tnaA (33-fold change), encoding a tryptophanase that converts tryptophan into indole. Genes involved in biofilm modulation (bhsA and ybiM) and curli production (csgA and csgB) were significantly upregulated in E. coli K-12 and O157:H7. Both csgA and bhsA (ycfR) mutants were impaired in the long-term colonization of the leaf surface, but only csgA mutants had diminished ability in short-term attachment experiments. Our data suggested that the interaction of E. coli K-12 and O157:H7 with undamaged lettuce leaves likely is initiated via attachment to the leaf surface using curli fibers, a downward shift in their metabolism, and the suppression of biofilm formation. PMID:22247152

  16. [Effect of amphipathic helix characteristics of FtsZ (236-245) domain on FtsZ assembly and its function in Escherichia coli strains].

    PubMed

    Ma, Qingsu; Zhang, Huijuan; Zheng, Xiaowei; Huo, Yujia; Lu, Feng

    2017-04-04

    To study the effect of amphipathic helix characteristics of FtsZ (236-245) domain on FtsZ assembly and interaction of FtsZ with FtsA in Escherichia coli strains. We constructed FtsZ and its mutant's plasmids by molecular clone and site-directed mutagenesis, and purified targeted proteins using affinity chromatography. QN23-QN29 strains were constructed by linear DNA homologous recombination and P1 transduction. We observed cellular localization patterns of FtsZ and its mutants in E. coli by living cell imaging experiments, examined membrane binding properties of FtsZ mutants by membrane proteins isolation and Western blot analysis, and analyzed interaction of FtsZ/FtsZ* with FtsA by Co-immunoprecipitation and far Western blot. Native gel separation and in vitro polymerization experiments were done to check effects of FtsZ point mutation on FtsZ assembly. Yfp-labeled FtsZE237A/K and FtsZE241A/K mutant proteins failed to localize in E. coli strains, assemble into functional Z-ring structure, and had decreased function of FtsZ (wt). In vitro experiments showed that E237A/K and E241A/K mutations of FtsZ decreased the polymerization efficiency of FtsZ monomer, weakened FtsZ*-FtsA interaction and changed membrane binding properties of FtsZ. FtsZ E237 and E241 are critical amino acids that affect the amphipathic helix characteristics of FtsZ (236-245) domain, FtsZ assembly and FtsZ-FtsA interaction in E. coli strains.

  17. Tentative identification of glycerol dehydrogenase as Escherichia coli K1 virulence factor cglD and its involvement in the pathogenesis of experimental neonatal meningitis.

    PubMed

    Zhang, Ke; Zhao, Wei-Dong; Li, Qiang; Fang, Wen-Gang; Zhu, Li; Shang, De-Shu; Chen, Yu-Hua

    2009-08-01

    Escherichia coli (E. coli) is the most common gram-negative organism causing meningitis during the neonatal period. The mechanism involved in the pathogenesis of E. coli meningitis remains unclear. We previously identified a pathogenicity island GimA (genetic island of meningitic E. coli containing ibeA) from the genomic DNA library of E. coli K1, which may contribute to the E. coli invasion of the blood-brain barrier (BBB). CglD is one of the genes in GimA, and its function remains unknown. In order to characterize the role of cglD in the E. coli meningitis, an isogenic in-frame cglD deletion mutant of E. coli K1 was generated. The results showed that the median lethal dose of the cglD deletion mutant strain was significant higher than that of parent E. coli K1 strain, and the cglD deletion in E. coli K1 prolonged survival of the neonatal rats in experimental meningitis. However, deletion of cglD has no effect on the penetration of E. coli K1 through BBB in vitro and in vivo. Furthermore, our results showed that deletion of cglD in E. coli K1 attenuated cerebrospinal fluid changes, meningeal thickening, and neutrophil infiltration in the cerebral cortex in the neonatal rats with experimental meningitis. Additional results showed that the role of CglD in neonatal meningitis may be associated with its activity of glycerol dehydrogenase. Taken together, our study suggested that CglD is a virulence factor of E. coli K1 contributed to the development of neonatal meningitis.

  18. Design, synthesis, and biological evaluation of novel EF24 and EF31 analogs as potential IκB kinase β inhibitors for the treatment of pancreatic cancer.

    PubMed

    Xie, Xuemeng; Tu, Jinfu; You, Heyi; Hu, Bingren

    2017-01-01

    Given the important role that inhibitory kappa B (IκB) kinase β (IKKβ) plays in pancreatic cancer (PC) development and progression, inhibitors targeting IKKβ are believed to be increasingly popular as novel anti-PC therapies. Two synthetic molecules, named EF24 and EF31 , exhibited favorable potential in terms of inhibition of both IKKβ activity and PC cell proliferation. Aiming to enhance their cellular efficacy and to analyze their structure-activity relationship, four series of EF24 and EF31 analogs were designed and synthesized. Through kinase activity and vitality screening of cancer cells, D6 displayed excellent inhibition of both IKKβ activity and PC cell proliferation. Additionally, multiple biological evaluations showed that D6 was directly bound to IKKβ and significantly suppressed the activation of the IKKβ/nuclear factor κB pathway induced by tumor necrosis factor-α, as well as effectively inducing cancer cell apoptosis. Moreover, molecular docking and molecular dynamics simulation analysis indicated that the dominant force between D6 and IKKβ comprised hydrophobic interactions. In conclusion, D6 may be a promising therapeutic agent for PC treatment and it also provides a structural lead for the design of novel IKKβ inhibitors.

  19. Design, synthesis, and biological evaluation of novel EF24 and EF31 analogs as potential IκB kinase β inhibitors for the treatment of pancreatic cancer

    PubMed Central

    Xie, Xuemeng; Tu, Jinfu; You, Heyi; Hu, Bingren

    2017-01-01

    Given the important role that inhibitory kappa B (IκB) kinase β (IKKβ) plays in pancreatic cancer (PC) development and progression, inhibitors targeting IKKβ are believed to be increasingly popular as novel anti-PC therapies. Two synthetic molecules, named EF24 and EF31, exhibited favorable potential in terms of inhibition of both IKKβ activity and PC cell proliferation. Aiming to enhance their cellular efficacy and to analyze their structure–activity relationship, four series of EF24 and EF31 analogs were designed and synthesized. Through kinase activity and vitality screening of cancer cells, D6 displayed excellent inhibition of both IKKβ activity and PC cell proliferation. Additionally, multiple biological evaluations showed that D6 was directly bound to IKKβ and significantly suppressed the activation of the IKKβ/nuclear factor κB pathway induced by tumor necrosis factor-α, as well as effectively inducing cancer cell apoptosis. Moreover, molecular docking and molecular dynamics simulation analysis indicated that the dominant force between D6 and IKKβ comprised hydrophobic interactions. In conclusion, D6 may be a promising therapeutic agent for PC treatment and it also provides a structural lead for the design of novel IKKβ inhibitors. PMID:28553074

  20. Deletion Mapping of zwf, the Gene for a Constitutive Enzyme, Glucose 6-Phosphate Dehydrogenase in ESCHERICHIA COLI

    PubMed Central

    Fraenkel, D. G.; Banerjee, Santimoy

    1972-01-01

    Genes for three enzymes of intermediary sugar metabolism in E. coli, zwf (glucose 6-phosphate dehydrogenase, constitutive), edd (gluconate 6-phosphate dehydrase, inducible), and eda (2-keto-3-deoxygluconate 6-phosphate aldolase, differently inducible) are closely linked on the E. coli genetic map, the overall gene order being man... old... eda. edd. zwf... cheB... uvrC... his. One class of apparent revertants of an eda mutant strain contains a secondary mutation in edd, and some of these mutations are deletions extending into zwf. We have used a series of spontaneous edd-zwf deletions to map a series of point mutants in zwf and thus report the first fine structure map of a gene for a constitutive enzyme (zwf). PMID:4560065

  1. Molecular Analysis of Asymptomatic Bacteriuria Escherichia coli Strain VR50 Reveals Adaptation to the Urinary Tract by Gene Acquisition

    PubMed Central

    Ben Zakour, Nouri L.; Totsika, Makrina; Forde, Brian M.; Watts, Rebecca E.; Mabbett, Amanda N.; Szubert, Jan M.; Sarkar, Sohinee; Phan, Minh-Duy; Peters, Kate M.; Petty, Nicola K.; Alikhan, Nabil-Fareed; Sullivan, Mitchell J.; Gawthorne, Jayde A.; Stanton-Cook, Mitchell; Nhu, Nguyen Thi Khanh; Chong, Teik Min; Yin, Wai-Fong; Chan, Kok-Gan; Hancock, Viktoria; Ussery, David W.; Ulett, Glen C.

    2015-01-01

    Urinary tract infections (UTIs) are among the most common infectious diseases of humans, with Escherichia coli responsible for >80% of all cases. One extreme of UTI is asymptomatic bacteriuria (ABU), which occurs as an asymptomatic carrier state that resembles commensalism. To understand the evolution and molecular mechanisms that underpin ABU, the genome of the ABU E. coli strain VR50 was sequenced. Analysis of the complete genome indicated that it most resembles E. coli K-12, with the addition of a 94-kb genomic island (GI-VR50-pheV), eight prophages, and multiple plasmids. GI-VR50-pheV has a mosaic structure and contains genes encoding a number of UTI-associated virulence factors, namely, Afa (afimbrial adhesin), two autotransporter proteins (Ag43 and Sat), and aerobactin. We demonstrated that the presence of this island in VR50 confers its ability to colonize the murine bladder, as a VR50 mutant with GI-VR50-pheV deleted was attenuated in a mouse model of UTI in vivo. We established that Afa is the island-encoded factor responsible for this phenotype using two independent deletion (Afa operon and AfaE adhesin) mutants. E. coli VR50afa and VR50afaE displayed significantly decreased ability to adhere to human bladder epithelial cells. In the mouse model of UTI, VR50afa and VR50afaE displayed reduced bladder colonization compared to wild-type VR50, similar to the colonization level of the GI-VR50-pheV mutant. Our study suggests that E. coli VR50 is a commensal-like strain that has acquired fitness factors that facilitate colonization of the human bladder. PMID:25667270

  2. New Small Polypeptides Associated with DNA-Dependent RNA Polymerase of Escherichia coli after Infection with Bacteriophage T4

    PubMed Central

    Stevens, Audrey

    1972-01-01

    Four new small polypeptides are associated with DNA-dependent RNA polymerase from E. coli after infection with T4 phage. The new polypeptides are easily detected in RNA polymerase from E. coli cells labeled with amino acids after phage infection. Their molecular weights range from 10,000 to 22,000, as detected by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. All four polypeptides are found after infection with either wild-type T4 phage or T4 early amber mutants in genes 44, 42, 47, and 46. None of the polypeptides is labeled significantly before 5 min after infection at 30°. When two maturation-defective amber mutants in gene 55 of T4 phage are used for infection, a polypeptide with a molecular weight of 22,000 is absent. When a maturation-defective amber mutant in gene 33 of T4 phage is used, another small protein is absent. PMID:4551978

  3. Altered Escherichia coli membrane protein assembly machinery allows proper membrane assembly of eukaryotic protein vitamin K epoxide reductase.

    PubMed

    Hatahet, Feras; Blazyk, Jessica L; Martineau, Eugenie; Mandela, Eric; Zhao, Yongxin; Campbell, Robert E; Beckwith, Jonathan; Boyd, Dana

    2015-12-08

    Functional overexpression of polytopic membrane proteins, particularly when in a foreign host, is often a challenging task. Factors that negatively affect such processes are poorly understood. Using the mammalian membrane protein vitamin K epoxide reductase (VKORc1) as a reporter, we describe a genetic selection approach allowing the isolation of Escherichia coli mutants capable of functionally expressing this blood-coagulation enzyme. The isolated mutants map to components of membrane protein assembly and quality control proteins YidC and HslV. We show that changes in the VKORc1 sequence and in the YidC hydrophilic groove along with the inactivation of HslV promote VKORc1 activity and dramatically increase its expression level. We hypothesize that such changes correct for mismatches in the membrane topogenic signals between E. coli and eukaryotic cells guiding proper membrane integration. Furthermore, the obtained mutants allow the study of VKORc1 reaction mechanisms, inhibition by warfarin, and the high-throughput screening for potential anticoagulants.

  4. Altered Escherichia coli membrane protein assembly machinery allows proper membrane assembly of eukaryotic protein vitamin K epoxide reductase

    PubMed Central

    Hatahet, Feras; Blazyk, Jessica L.; Martineau, Eugenie; Mandela, Eric; Zhao, Yongxin; Campbell, Robert E.; Beckwith, Jonathan; Boyd, Dana

    2015-01-01

    Functional overexpression of polytopic membrane proteins, particularly when in a foreign host, is often a challenging task. Factors that negatively affect such processes are poorly understood. Using the mammalian membrane protein vitamin K epoxide reductase (VKORc1) as a reporter, we describe a genetic selection approach allowing the isolation of Escherichia coli mutants capable of functionally expressing this blood-coagulation enzyme. The isolated mutants map to components of membrane protein assembly and quality control proteins YidC and HslV. We show that changes in the VKORc1 sequence and in the YidC hydrophilic groove along with the inactivation of HslV promote VKORc1 activity and dramatically increase its expression level. We hypothesize that such changes correct for mismatches in the membrane topogenic signals between E. coli and eukaryotic cells guiding proper membrane integration. Furthermore, the obtained mutants allow the study of VKORc1 reaction mechanisms, inhibition by warfarin, and the high-throughput screening for potential anticoagulants. PMID:26598701

  5. Multiple anticancer activities of EF24, a novel curcumin analog, on human ovarian carcinoma cells.

    PubMed

    Tan, Xin; Sidell, Neil; Mancini, Alessandra; Huang, Ruo-Pan; Shenming Wang; Horowitz, Ira R; Liotta, Dennis C; Taylor, Robert N; Wieser, Friedrich

    2010-10-01

    Curcumin, a component of turmeric, has been reported to exhibit potential antitumor activities. This study assessed the effects of a novel synthetic curcumin analog, EF24, on proliferation, apoptosis, and vascular endothelial growth factor (VEGF) regulation in platinum-sensitive (IGROV1) and platinum-resistant (SK-OV-3) human ovarian cancer cells. EF24 time- and dose-dependently suppressed the growth of both cell lines and synergized with cisplatin to induce apoptosis. Although treatment with EF24 had no significant effect on VEGF messenger RNA (mRNA) expression,VEGF protein secretion into conditioned media was dose-dependently reduced with EF24 demonstrating ∼8-fold greater potency than curcumin (P < .05). EF24 significantly inhibited hydrogen peroxide (H(2)O(2))-induced VEGF expression, as did the phenolic antioxidant tert-butylhydroquinone (t-BHQ). EF24 upregulated cellular antioxidant responses as observed by the suppression of reactive oxygen species (ROS) generation and activation of antioxidant response element (ARE)-dependent gene transcription. Given its high potency, EF24 is an excellent lead candidate for further development as an adjuvant therapeutic agent in preclinical models of ovarian cancer.

  6. D-arabinose metabolism in Escherichia coli B: induction and cotransductional mapping of the L-fucose-D-arabinose pathway enzymes.

    PubMed

    Elsinghorst, E A; Mortlock, R P

    1988-12-01

    D-Arabinose is degraded by Escherichia coli B via some of the L-fucose pathway enzymes and a D-ribulokinase which is distinct from the L-fuculokinase of the L-fucose pathway. We found that L-fucose and D-arabinose acted as the apparent inducers of the enzymes needed for their degradation. These enzymes, including D-ribulokinase, appeared to be coordinately regulated, and mutants which constitutively synthesized the L-fucose enzymes also constitutively synthesized D-ribulokinase. In contrast to D-arabinose-positive mutants of E. coli K-12, in which L-fuculose-1-phosphate and D-ribulose-1-phosphate act as inducers of the L-fucose pathway, we found that these intermediates did not act as inducers in E. coli B. To further characterize the E. coli B system, some of the L-fucose-D-arabinose genes were mapped by using bacteriophage P1 transduction. A transposon Tn10 insertion near the E. coli B L-fucose regulon was used in two- and three-factor reciprocal crosses. The gene encoding D-ribulokinase, designated darK, was found to map within the L-fucose regulon, and the partial gene order was found to be Tn10-fucA-darK-fucI-fucK-thyA.

  7. D-arabinose metabolism in Escherichia coli B: induction and cotransductional mapping of the L-fucose-D-arabinose pathway enzymes.

    PubMed Central

    Elsinghorst, E A; Mortlock, R P

    1988-01-01

    D-Arabinose is degraded by Escherichia coli B via some of the L-fucose pathway enzymes and a D-ribulokinase which is distinct from the L-fuculokinase of the L-fucose pathway. We found that L-fucose and D-arabinose acted as the apparent inducers of the enzymes needed for their degradation. These enzymes, including D-ribulokinase, appeared to be coordinately regulated, and mutants which constitutively synthesized the L-fucose enzymes also constitutively synthesized D-ribulokinase. In contrast to D-arabinose-positive mutants of E. coli K-12, in which L-fuculose-1-phosphate and D-ribulose-1-phosphate act as inducers of the L-fucose pathway, we found that these intermediates did not act as inducers in E. coli B. To further characterize the E. coli B system, some of the L-fucose-D-arabinose genes were mapped by using bacteriophage P1 transduction. A transposon Tn10 insertion near the E. coli B L-fucose regulon was used in two- and three-factor reciprocal crosses. The gene encoding D-ribulokinase, designated darK, was found to map within the L-fucose regulon, and the partial gene order was found to be Tn10-fucA-darK-fucI-fucK-thyA. PMID:3056899

  8. Deciphering the roles of outer membrane protein A extracellular loops in the pathogenesis of Escherichia coli K1 meningitis.

    PubMed

    Mittal, Rahul; Krishnan, Subramanian; Gonzalez-Gomez, Ignacio; Prasadarao, Nemani V

    2011-01-21

    Outer membrane protein A (OmpA) has been implicated as an important virulence factor in several gram-negative bacterial infections such as Escherichia coli K1, a leading cause of neonatal meningitis associated with significant mortality and morbidity. In this study, we generated E. coli K1 mutants that express OmpA in which three or four amino acids from various extracellular loops were changed to alanines, and we examined their ability to survive in several immune cells. We observed that loop regions 1 and 2 play an important role in the survival of E. coli K1 inside neutrophils and dendritic cells, and loop regions 1 and 3 are needed for survival in macrophages. Concomitantly, E. coli K1 mutants expressing loop 1 and 2 mutations were unable to cause meningitis in a newborn mouse model. Of note, mutations in loop 4 of OmpA enhance the severity of the pathogenesis by allowing the pathogen to survive better in circulation and to produce high bacteremia levels. These results demonstrate, for the first time, the roles played by different regions of extracellular loops of OmpA of E. coli K1 in the pathogenesis of meningitis and may help in designing effective preventive strategies against this deadly disease.

  9. Dual-Polarimetric Radar-Based Tornado Debris Paths Associated with EF-4 and EF-5 Tornadoes over Northern Alabama During the Historic Outbreak of 27 April 2011

    NASA Technical Reports Server (NTRS)

    Carey, Lawrence D.; Schultz, Christopher J.; Schultz, Elise V.; Petersen, Walter A.; Gatlin, Patrick N.; Knupp, Kevin R.; Molthan, Andrew L.; Darden, Christopher B.

    2011-01-01

    An historic tornado and severe weather outbreak devastated much of the southeastern United States between 25 and 28 April 2011. On 27 April 2011, northern Alabama was particularly hard hit by a large number of tornadoes, including several that reached EF-4 and EF-5 on the Enhanced Fujita damage scale. In northern Alabama alone, there were approximately 100 fatalities and hundreds of more people who were injured or lost their homes during the havoc caused by these violent tornadic storms. Two long-track and violent (EF-4 and EF-5) tornadoes occurred within range of the University of Alabama in Huntsville (UAHuntsville) Advanced Radar for Meteorological and Operational Research (ARMOR, C-band dual-polarimetric). A unique capability of dual-polarimetric radar is the near-real time identification of lofted debris associated with ongoing tornadoes on the ground. The focus of this paper is to analyze the dual-polarimetric radar-inferred tornado debris signatures and identify the associated debris paths of the long-track EF-4 and EF-5 tornadoes near ARMOR. The relative locations of the debris and damage paths for each tornado will be ascertained by careful comparison of the ARMOR analysis with NASA MODIS (Moderate Resolution Imaging Spectroradiometer) and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) satellite imagery of the tornado damage scenes and the National Weather Service tornado damage surveys. With the ongoing upgrade of the WSR-88D (Weather Surveillance Radar - 1988 Doppler) operational network to dual-polarimetry and a similar process having already taken place or ongoing for many private sector radars, dual-polarimetric radar signatures of tornado debris promise the potential to assist in the situational awareness of government and private sector forecasters and emergency managers during tornadic events. As such, a companion abstract (Schultz et al.) also submitted to this conference explores "The use of dual-polarimetric tornadic

  10. Dual-Polarimetric Radar-Based Tornado Debris Paths Associated with EF-4 and EF-5 Tornadoes over Northern Alabama During the Historic Outbreak of 27 April 2011

    NASA Technical Reports Server (NTRS)

    Carey, Lawrence D.; Schultz, Chrstopher J.; Schultz, Elise V.; Petersen, Walter A.; Gatlin, Patrick N.; Knupp, Kevin R.; Molthan, Andrew L.; Jedlovec, Gary J.; Darden, Christopher B.

    2012-01-01

    An historic tornado and severe weather outbreak devastated much of the southeastern United States between 25 and 28 April 2011. On 27 April 2011, northern Alabama was particularly hard hit by a large number of tornadoes, including several that reached EF-4 and EF-5 on the Enhanced Fujita damage scale. In northern Alabama alone, there were approximately 100 fatalities and hundreds of more people who were injured or lost their homes during the havoc caused by these violent tornadic storms. Two long-track and violent (EF-4 and EF-5) tornadoes occurred within range of the University of Alabama in Huntsville (UAHuntsville) Advanced Radar for Meteorological and Operational Research (ARMOR, C-band dual-polarimetric). A unique capability of dual-polarimetric radar is the near-real time identification of lofted debris associated with ongoing tornadoes on the ground. The focus of this paper is to analyze the dual-polarimetric radar-inferred tornado debris signatures and identify the associated debris paths of the long-track EF-4 and EF-5 tornadoes near ARMOR. The relative locations of the debris and damage paths for each tornado will be ascertained by careful comparison of the ARMOR analysis with NASA MODIS (Moderate Resolution Imaging Spectroradiometer) and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) satellite imagery of the tornado damage scenes and the National Weather Service tornado damage surveys. With the ongoing upgrade of the WSR-88D (Weather Surveillance Radar 1988 Doppler) operational network to dual-polarimetry and a similar process having already taken place or ongoing for many private sector radars, dual-polarimetric radar signatures of tornado debris promise the potential to assist in the situational awareness of government and private sector forecasters and emergency managers during tornadic events. As such, a companion abstract (Schultz et al.) also submitted to this conference explores The use of dual-polarimetric tornadic debris

  11. Pod Corn Is Caused by Rearrangement at the Tunicate1 Locus[W][OA

    PubMed Central

    Han, Jong-Jin; Jackson, David; Martienssen, Robert

    2012-01-01

    Pod corn (Zea mays var tunicata) was once regarded as ancestral to cultivated maize, and was prized by pre-Columbian cultures for its magical properties. Tunicate1 (Tu1) is a dominant pod corn mutation in which kernels are completely enclosed in leaflike glumes. Here we show that Tu1 encodes a MADS box transcription factor expressed in leaves whose 5′ regulatory region is fused by a 1.8-Mb chromosomal inversion to the 3′ region of a gene expressed in the inflorescence. Both genes are further duplicated, accounting for classical derivative alleles isolated by recombination, and Tu1 transgenes interact with these derivative alleles in a dose-dependent manner. In young ear primordia, TU1 proteins are nuclearly localized in specific cells at the base of spikelet pair meristems. Tu1 branch determination defects resemble those in ramosa mutants, which encode regulatory proteins expressed in these same cells, accounting for synergism in double mutants discovered almost 100 years ago. The Tu1 rearrangement is not found in ancestral teosinte and arose after domestication of maize. PMID:22829149

  12. EF1A1/HSC70 Cooperatively Suppress Brain Endothelial Cell Apoptosis via Regulating JNK Activity.

    PubMed

    Liu, Ying; Jiang, Shu; Yang, Peng-Yuan; Zhang, Yue-Fan; Li, Tie-Jun; Rui, Yao-Cheng

    2016-10-01

    In our previous study, eEF1A1 was identified to be a new target for protecting brain ischemia injury, but the mechanism remains largely unknown. In this study, we screened the downstream cellular protein molecules interacted with eEF1A1 and found mechanism of eEF1A1 in brain ischemia protection. Through co-immunoprecipitation and mass spectrometry for searching the interaction of proteins with eEF1A1 in bEnd3 cells, HSC70 was identified to be a binding protein of eEF1A1, which was further validated by Western blot and immunofluorescence. eEF1A1 or HSC70 knockdown, respectively, increased OGD-induced apoptosis of brain vascular endothelial cells, which was detected by Annexin V-FITC/PI staining. HSC70 or eEF1A1 knockdown enhances phosphorylated JNK, phosphorylation of c-JUN (Ser63, Ser73), cleaved caspase-9, and cleaved caspase-3 expression, which could be rescued by JNK inhibitor. In summary, our data suggest that the presence of chaperone forms of interaction between eEF1A1 and HSC70 in brain vascular endothelial cells, eEF1A1 and HSC70 can play a protective role in the process of ischemic stroke by inhibiting the JNK signaling pathway activation. © 2016 John Wiley & Sons Ltd.

  13. "The Et Tu Brute Complex" Compulsive Self Betrayal

    ERIC Educational Resources Information Center

    Antus, Robert Lawrence

    2006-01-01

    In this article, the author discusses "The Et Tu Brute Complex." More specifically, this phenomenon occurs when a person, instead of supporting and befriending himself, orally condemns himself in front of other people and becomes his own worst enemy. This is a form of compulsive self-hatred. Most often, the victim of this complex is unaware of the…

  14. Up-regulation of eEF1A2 promotes proliferation and inhibits apoptosis in prostate cancer.

    PubMed

    Sun, Yue; Du, Chengli; Wang, Bo; Zhang, Yanling; Liu, Xiaoyan; Ren, Guoping

    2014-07-18

    eEF1A2 is a protein translation factor involved in protein synthesis, which possesses important function roles in cancer development. This study aims at investigating the expression pattern of eEF1A2 in prostate cancer and its potential role in prostate cancer development. We examined the expression level of eEF1A2 in 30 pairs of prostate cancer tissues by using RT-PCR and immunohistochemical staining (IHC). Then we applied siRNA specifically targeting eEF1A2 to down-regulate its expression in DU-145 and PC-3 cells. Flow cytometer was used to explore apoptosis and Western-blot was used to detect the pathway proteins of apoptosis. Our results showed that the expression level of eEF1A2 in prostate cancer tissues was significantly higher compared to their corresponding normal tissues. Reduction of eEF1A2 expression in DU-145 and PC-3 cells led to a dramatic inhibition of proliferation accompanied with enhanced apoptosis rate. Western blot revealed that apoptosis pathway proteins (caspase3, BAD, BAX, PUMA) were significantly up-regulated after suppression of eEF1A2. More importantly, the levels of eEF1A2 and caspase3 were inversely correlated in prostate cancer tissues. Our data suggests that eEF1A2 plays an important role in prostate cancer development, especially in inhibiting apoptosis. So eEF1A2 might serve as a potential therapeutic target in prostate cancer. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Isolation and characterization of elongation factor EF-2 from Guerin tumour.

    PubMed

    Jabłonowska, K; Kopacz-Jodczyk, T; Niedźwiecka, J; Gałasiński, W

    1983-01-01

    A homogeneous preparation of EF-2 from Guerin tumour cells was obtained. Its Mr (68 000), pI (6.5), optimum pH (7.0) and amino acid composition are very close to those of rat liver elongation factor. EF-2 from Guerin tumour cells is active in the heterologous liver - tumour system, although half as effective as in the homologous system.

  16. Autonomic regulation therapy to enhance myocardial function in heart failure patients: the ANTHEM‐HFpEF study

    PubMed Central

    DiCarlo, Lorenzo A.; Libbus, Imad; Kumar, H. Uday; Mittal, Sanjay; Premchand, Rajendra K.; Amurthur, Badri; KenKnight, Bruce H.; Ardell, Jeffrey L.

    2017-01-01

    Abstract Background Approximately half of the patients presenting with new‐onset heart failure (HF) have HF with preserved left ventricular ejection fraction (HFpEF) and HF with mid‐range left ventricular ejection fraction (HFmrEF). These patients have neurohormonal activation like that of HF with reduced ejection fraction; however, beta‐blockers and angiotensin‐converting enzyme inhibitors have not been shown to improve their outcomes, and current treatment for these patients is symptom based and empiric. Sympathoinhibition using parasympathetic stimulation has been shown to improve central and peripheral aspects of the cardiac nervous system, reflex control, induce myocyte cardioprotection, and can lead to regression of left ventricular hypertrophy. Beneficial effects of autonomic regulation therapy (ART) using vagus nerve stimulation (VNS) have also been observed in several animal models of HFpEF, suggesting a potential role for ART in patients with this disease. Methods The Autonomic Neural Regulation Therapy to Enhance Myocardial Function in Patients with Heart Failure and Preserved Ejection Fraction (ANTHEM‐HFpEF) study is designed to evaluate the feasibility, tolerability, and safety of ART using right cervical VNS in patients with chronic, stable HFpEF and HFmrEF. Patients with symptomatic HF and HFpEF or HFmrEF fulfilling the enrolment criteria will receive chronic ART with a subcutaneous VNS system attached to the right cervical vagus nerve. Safety parameters will be continuously monitored, and cardiac function and HF symptoms will be assessed every 3 months during a post‐titration follow‐up period of at least 12 months. Conclusions The ANTHEM‐HFpEF study is likely to provide valuable information intended to expand our understanding of the potential role of ART in patients with chronic symptomatic HFpEF and HFmrEF. PMID:29283224

  17. Curcumin analog EF24 induces apoptosis via ROS-dependent mitochondrial dysfunction in human colorectal cancer cells.

    PubMed

    He, Guodong; Feng, Chen; Vinothkumar, Rajamanickam; Chen, Weiqian; Dai, Xuanxuan; Chen, Xi; Ye, Qingqing; Qiu, Chenyu; Zhou, Huiping; Wang, Yi; Liang, Guang; Xie, Yubo; Wu, Wei

    2016-12-01

    Colorectal cancer is the most commonly diagnosed malignancy with high mortality rates worldwide. Improved therapeutic strategies with minimal adverse side effects are urgently needed. In this study, the anti-tumor effects of EF24, a novel analog of the natural compound curcumin, were evaluated in colorectal cancer cells. The anti-tumor activity of EF24 on human colon cancer lines (HCT-116, SW-620, and HT-29) was determined by measures of cell cycle arrest, apoptosis, and mitochondrial function. The contribution of ROS in the EF24-induced anti-tumor activity was evaluated by measures of H 2 O 2 and pretreatment with an ROS scavenger, NAC. The findings indicated that EF24 treatment dose-dependently inhibited cell viability and caused cell cycle arrest at G2/M phase in all the tested colon cancer cell lines. Furthermore, we demonstrated that EF24 treatment induced apoptosis effectively via enhancing intracellular accumulation of ROS in both HCT-116 and SW-620 cells, but with moderate effects in HT-29 cells. We found that EF24 treatment decreased the mitochondrial membrane potential in the colon cancer cells, leading to the release of mitochondrial cytochrome c. Also, EF24 induced activation of caspases 9 and 3, causing decreased Bcl-2 protein expression and Bcl-2/Bax ratio. Pretreatment with NAC, a ROS scavenger, abrogated the EF24-induced cell death, apoptosis, cell cycle arrest, and mitochondrial dysfunction, suggesting an upstream ROS generation which was responsible for the anticancer effects of EF24. Our findings support an anticancer mechanism by which EF24 enhanced ROS accumulation in colon cancer cells, thereby resulting in mitochondrial membrane collapse and activated intrinsic apoptotic signaling. Thus, EF24 could be a potential candidate for therapeutic application of colon cancer.

  18. A mutant crp allele that differentially activates the operons of the fuc regulon in Escherichia coli.

    PubMed

    Zhu, Y; Lin, E C

    1988-05-01

    L-Fucose is used by Escherichia coli through an inducible pathway mediated by a fucP-encoded permease, a fucI-encoded isomerase, a fucK-encoded kinase, and a fucA-encoded aldolase. The adolase catalyzes the formation of dihydroxyacetone phosphate and L-lactaldehyde. Anaerobically, lactaldehyde is converted by a fucO-encoded oxidoreductase to L-1,2-propanediol, which is excreted. The fuc genes belong to a regulon comprising four linked operons: fucO, fucA, fucPIK, and fucR. The positive regulator encoded by fucR responds to fuculose 1-phosphate as the effector. Mutants serially selected for aerobic growth on propanediol became constitutive in fucO and fucA [fucO(Con) fucA(Con)], but noninducible in fucPIK [fucPIK(Non)]. An external suppressor mutation that restored growth on fucose caused constitutive expression of fucPIK. Results from this study indicate that this suppressor mutation occurred in crp, which encodes the cyclic AMP-binding (or receptor) protein. When the suppressor allele (crp-201) was transduced into wild-type strains, the recipient became fucose negative and fucose sensitive (with glycerol as the carbon and energy source) because of impaired expression of fucA. The fucPIK operon became hyperinducible. The growth rate on maltose was significantly reduced, but growth on L-rhamnose, D-galactose, L-arabinose, glycerol, or glycerol 3-phosphate was close to normal. Lysogenization of fuc+ crp-201 cells by a lambda bacteriophage bearing crp+ restored normal growth ability on fucose. In contrast, lysogenization of [fucO(Con)fucA(Con)fucPIK(Non)crp-201] cells by the same phage retarded their growth on fucose.

  19. A mutant crp allele that differentially activates the operons of the fuc regulon in Escherichia coli.

    PubMed Central

    Zhu, Y; Lin, E C

    1988-01-01

    L-Fucose is used by Escherichia coli through an inducible pathway mediated by a fucP-encoded permease, a fucI-encoded isomerase, a fucK-encoded kinase, and a fucA-encoded aldolase. The adolase catalyzes the formation of dihydroxyacetone phosphate and L-lactaldehyde. Anaerobically, lactaldehyde is converted by a fucO-encoded oxidoreductase to L-1,2-propanediol, which is excreted. The fuc genes belong to a regulon comprising four linked operons: fucO, fucA, fucPIK, and fucR. The positive regulator encoded by fucR responds to fuculose 1-phosphate as the effector. Mutants serially selected for aerobic growth on propanediol became constitutive in fucO and fucA [fucO(Con) fucA(Con)], but noninducible in fucPIK [fucPIK(Non)]. An external suppressor mutation that restored growth on fucose caused constitutive expression of fucPIK. Results from this study indicate that this suppressor mutation occurred in crp, which encodes the cyclic AMP-binding (or receptor) protein. When the suppressor allele (crp-201) was transduced into wild-type strains, the recipient became fucose negative and fucose sensitive (with glycerol as the carbon and energy source) because of impaired expression of fucA. The fucPIK operon became hyperinducible. The growth rate on maltose was significantly reduced, but growth on L-rhamnose, D-galactose, L-arabinose, glycerol, or glycerol 3-phosphate was close to normal. Lysogenization of fuc+ crp-201 cells by a lambda bacteriophage bearing crp+ restored normal growth ability on fucose. In contrast, lysogenization of [fucO(Con)fucA(Con)fucPIK(Non)crp-201] cells by the same phage retarded their growth on fucose. PMID:2834341

  20. Dual-species biofilm of Listeria monocytogenes and Escherichia coli on stainless steel surface.

    PubMed

    de Grandi, Aline Zago; Pinto, Uelinton Manoel; Destro, Maria Teresa

    2018-04-12

    Listeria monocytogenes is a Gram-positive bacterium commonly associated with foodborne diseases. Due its ability to survive under adverse environmental conditions and to form biofilm, this bacterium is a major concern for the food industry, since it can compromise sanitation procedures and increase the risk of post-processing contamination. Little is known about the interaction between L. monocytogenes and Gram-negative bacteria on biofilm formation. Thus, in order to evaluate this interaction, Escherichia coli and L. monocytogenes were tested for their ability to form biofilms together or in monoculture. We also aimed to evaluate the ability of L. monocytogenes 1/2a and its isogenic mutant strain (ΔprfA ΔsigB) to form biofilm in the presence of E. coli. We assessed the importance of the virulence regulators, PrfA and σ B , in this process since they are involved in many aspects of L. monocytogenes pathogenicity. Biofilm formation was assessed using stainless steel AISI 304 #4 slides immersed into brain heart infusion broth, reconstituted powder milk and E. coli preconditioned medium at 25 °C. Our results indicated that a higher amount of biofilm was formed by the wild type strain of L. monocytogenes than by its isogenic mutant, indicating that prfA and sigB are important for biofilm development, especially maturation under our experimental conditions. The presence of E. coli or its metabolites in preconditioned medium did not influence biofilm formation by L. monocytogenes. Our results confirm the possibility of concomitant biofilm formation by L. monocytogenes and E. coli, two bacteria of major significance in the food industry.

  1. In vivo bioluminescence imaging of Escherichia coli O104:H4 and role of aerobactin during colonization of a mouse model of infection.

    PubMed

    Torres, Alfredo G; Cieza, Roberto J; Rojas-Lopez, Maricarmen; Blumentritt, Carla A; Souza, Cristiane S; Johnston, R Katie; Strockbine, Nancy; Kaper, James B; Sbrana, Elena; Popov, Vsevolod L

    2012-06-20

    A major outbreak of bloody diarrhea associated with Shiga toxin-producing Escherichia coli O104:H4 occurred early in 2011, to which an unusual number of hemolytic uremic syndrome cases were linked. Due to limited information regarding pathogenesis and/or virulence properties of this particular serotype, we investigated the contribution of the aerobactin iron transport system during in vitro and in vivo conditions. A bioluminescent reporter construct was used to perform real-time monitoring of E. coli O104:H4 in a mouse model of infection. We verified that our reporter strain maintained characteristics and growth kinetics that were similar to those of the wild-type E. coli strain. We found that the intestinal cecum of ICR (CD-1) mice was colonized by O104:H4, with bacteria persisting for up to 7 days after intragastric inoculation. MALDI-TOF analysis of heat-extracted proteins was performed to identify putative surface-exposed virulence determinants. A protein with a high similarity to the aerobactin iron receptor was identified and further demonstrated to be up-regulated in E. coli O104:H4 when grown on MacConkey agar or during iron-depleted conditions. Because the aerobactin iron acquisition system is a key virulence factor in Enterobacteriaceae, an isogenic aerobactin receptor (iutA) mutant was created and its intestinal fitness assessed in the murine model. We demonstrated that the aerobactin mutant was out-competed by the wild-type E. coli O104:H4 during in vivo competition experiments, and the mutant was unable to persist in the cecum. Our findings demonstrate that bioluminescent imaging is a useful tool to monitor E. coli O104:H4 colonization properties, and the murine model can become a rapid way to evaluate bacterial factors associated with fitness and/or colonization during E. coli O104:H4 infections.

  2. The zntA gene of Escherichia coli encodes a Zn(II)-translocating P-type ATPase

    PubMed Central

    Rensing, Christopher; Mitra, Bharati; Rosen, Barry P.

    1997-01-01

    The first Zn(II)-translocating P-type ATPase has been identified as the product of o732, a potential gene identified in the sequencing of the Escherichia coli genome. This gene, termed zntA, was disrupted by insertion of a kanamycin gene through homologous recombination. The mutant strain exhibited hypersensitivity to zinc and cadmium salts but not salts of other metals, suggesting a role in zinc homeostasis in E. coli. Everted membrane vesicles from a wild-type strain accumulated 65Zn(II) and 109Cd(II) by using ATP as an energy source. Transport was sensitive to vanadate, an inhibitor of P-type ATPases. Membrane vesicles from the zntA∷kan strain did not accumulate those metal ions. Both the sensitive phenotype and transport defect of the mutant were complemented by expression of zntA on a plasmid. PMID:9405611

  3. Accumulation of peptidyl tRNA is lethal to Escherichia coli.

    PubMed Central

    Menninger, J R

    1979-01-01

    A mutant strain of Escherichia coli with temperature-sensitive peptidyl-tRNA hydrolase grows at 30 degrees C but, when shifted to 40 degrees C, dies at rates affected by physiological, pharmacological, and genetical perturbations. The rate of killing correlates with the relative accumulation of peptidyl-tRNA, suggesting that it is responsible for the death of the cells. PMID:368041

  4. PBP deletion mutants of Escherichia coli exhibit irregular distribution of MreB at the deformed zones.

    PubMed

    Vijayan, Saptha; Mallick, Sathi; Dutta, Mouparna; Narayani, M; Ghosh, Anindya S

    2014-02-01

    MreB is a cytoskeletal protein, which is responsible for maintaining proper cellular morphology and is essential for cell survival. Likewise, penicillin-binding protein 5 (PBP5) helps in maintaining cell shape, though non-essential for survival. The contradicting feature of these two proteins paves the way for this study, wherein we attempt to draw a relation on the nature of distribution of MreB in PBP deletion mutants. The study revealed that the uniform MreB helices/patches were destabilized/disturbed at the zone of deformities of the PBP mutants, whereas the helical patterns were retained at the regions maintaining a rod shape. We interpret that MreB remains functional irrespective of its distribution being misguided by the aberrant shapes of PBP mutants.

  5. Mechanisms of Inactivation of Dry Escherichia coli by High-Pressure Carbon Dioxide

    PubMed Central

    Chen, Yuan Yao; Temelli, Feral

    2017-01-01

    ABSTRACT High-pressure carbon dioxide processing is a promising technology for nonthermal food preservation. However, few studies have determined the lethality of high-pressure CO2 on dry bacterial cells, and the mechanism of inactivation remains unknown. This study explored the mechanisms of inactivation by using Escherichia coli AW1.7 and mutant strains differing in heat and acid resistance, in membrane composition based on disruption of the locus of heat resistance, and in genes coding for glutamate decarboxylases and cyclopropane fatty acid synthase. The levels of lethality of treatments with liquid, gaseous, and supercritical CO2 were compared. The cell counts of E. coli AW1.7 and mutants with a water activity (aW) of 1.0 were reduced by more than 3 log10 (CFU/ml) after supercritical CO2 treatment at 35°C for 15 min; increasing the pressure generally enhanced inactivation, except for E. coli AW1.7 ΔgadAB. E. coli AW1.7 Δcfa was more susceptible than E. coli AW1.7 after treatment at 10 and 40 MPa; other mutations did not affect survival. Dry cells of E. coli were resistant to treatments with supercritical and liquid CO2 at any temperature. Treatments with gaseous CO2 at 65°C were more bactericidal than those with supercritical CO2 or treatments at 65°C only. Remarkably, E. coli AW1.7 was more susceptible than E. coli AW1.7 Δcfa when subjected to the gaseous CO2 treatment. This study identified CO2-induced membrane fluidization and permeabilization as causes of supercritical mediated microbial inactivation, and diffusivity was a dominant factor for gaseous CO2. IMPORTANCE The safety of dry foods is of increasing concern for public health. Desiccated microorganisms, including pathogens, remain viable over long periods of storage and generally tolerate environmental insults that are lethal to the same organisms at high water activity. This study explored the use of high-pressure carbon dioxide to determine its lethality for dried Escherichia coli and to

  6. Mechanisms of Inactivation of Dry Escherichia coli by High-Pressure Carbon Dioxide.

    PubMed

    Chen, Yuan Yao; Temelli, Feral; Gänzle, Michael G

    2017-05-15

    High-pressure carbon dioxide processing is a promising technology for nonthermal food preservation. However, few studies have determined the lethality of high-pressure CO 2 on dry bacterial cells, and the mechanism of inactivation remains unknown. This study explored the mechanisms of inactivation by using Escherichia coli AW1.7 and mutant strains differing in heat and acid resistance, in membrane composition based on disruption of the locus of heat resistance, and in genes coding for glutamate decarboxylases and cyclopropane fatty acid synthase. The levels of lethality of treatments with liquid, gaseous, and supercritical CO 2 were compared. The cell counts of E. coli AW1.7 and mutants with a water activity (a W ) of 1.0 were reduced by more than 3 log 10 (CFU/ml) after supercritical CO 2 treatment at 35°C for 15 min; increasing the pressure generally enhanced inactivation, except for E. coli AW1.7 Δ gadAB E. coli AW1.7 Δ cfa was more susceptible than E. coli AW1.7 after treatment at 10 and 40 MPa; other mutations did not affect survival. Dry cells of E. coli were resistant to treatments with supercritical and liquid CO 2 at any temperature. Treatments with gaseous CO 2 at 65°C were more bactericidal than those with supercritical CO 2 or treatments at 65°C only. Remarkably, E. coli AW1.7 was more susceptible than E. coli AW1.7 Δ cfa when subjected to the gaseous CO 2 treatment. This study identified CO 2 -induced membrane fluidization and permeabilization as causes of supercritical mediated microbial inactivation, and diffusivity was a dominant factor for gaseous CO 2 IMPORTANCE The safety of dry foods is of increasing concern for public health. Desiccated microorganisms, including pathogens, remain viable over long periods of storage and generally tolerate environmental insults that are lethal to the same organisms at high water activity. This study explored the use of high-pressure carbon dioxide to determine its lethality for dried Escherichia coli and to

  7. Low intensity infrared laser induces filamentation in Escherichia coli cells

    NASA Astrophysics Data System (ADS)

    Fonseca, A. S.; Presta, G. A.; Geller, M.; Paoli, F.

    2011-10-01

    Low intensity continuous wave and pulsed emission modes laser is used in treating many diseases and the resulting biostimulative effect on tissues has been described, yet the photobiological basis is not well understood. The aim of this wok was to evaluate, using bacterial filamentation assay, effects of laser on Escherichia coli cultures in exponential and stationary growth phase. E. coli cultures, proficient and deficient on DNA repair, in exponential and stationary growth phase, were exposed to low intensity infrared laser, aliquots were spread onto microscopic slides, stained by Gram method, visualized by optical microscopy, photographed and percentage of bacterial filamentation were determined. Low intensity infrared laser with therapeutic fluencies and different emission modes can induce bacterial filamentation in cultures of E. coli wild type, fpg/ mutM, endonuclease III and exonuclease III mutants in exponential and stationary growth phase. This study showed induction of bacterial, filamentation in E. coli cultures expose to low intensity infrared laser and attention to laser therapy protocols, which should take into account fluencies, wavelengths, tissue conditions, and genetic characteristics of cells before beginning treatment.

  8. ISOLEUCINE AND VALINE METABOLISM IN ESCHERICHIA COLI XI. K-12

    PubMed Central

    Leavitt, Richard I.; Umbarger, H. E.

    1962-01-01

    Leavitt, Richard I. (Harvard Medical School, Boston, Mass.) and H. E. Umbarger. Isoleucine and valine metabolism in Escherichia coli. XI. Valine inhibition of the growth of Escherichia coli strain K-12. J. Bacteriol. 83:624–630. 1962.—The inhibition of the growth of Escherichia coli strain K-12 by valine was shown to be due to the sensitivity of the acetohydroxybutyrate-forming system to valine. It was demonstrated that both E. coli strain W, a strain whose growth is unaffected by valine, and a valine-resistant mutant of strain K-12 have acetolactate- and acetohydroxybutyrate-forming systems which are less sensitive to valine than that of strain K-12. It was further shown that α-aminobutyrate accumulates in the culture fluid of the valine-sensitive strain when incubated in the presence of valine. The levels of valine in the “free amino acid pool” were examined and found to be related to the differences in valine sensitivity of the acetolactate-forming systems of the three strains. PMID:14463257

  9. Postgenomics Characterization of an Essential Genetic Determinant of Mammary Pathogenic Escherichia coli

    PubMed Central

    2018-01-01

    ABSTRACT Escherichia coli are major bacterial pathogens causing bovine mastitis, a disease of great economic impact on dairy production worldwide. This work aimed to study the virulence determinants of mammary pathogenic E. coli (MPEC). By whole-genome sequencing analysis of 40 MPEC and 22 environmental (“dairy-farm” E. coli [DFEC]) strains, we found that only the fec locus (fecIRABCDE) for ferric dicitrate uptake was present in the core genome of MPEC and that it was absent in DFEC genomes (P < 0.05). Expression of the FecA receptor in the outer membrane was shown to be citrate dependent by mass spectrometry. FecA was overexpressed when bacteria were grown in milk. Transcription of the fecA gene and of the inner membrane transport component fecB gene was upregulated in bacteria recovered from experimental intramammary infection. The presence of the fec system was shown to affect the ability of E. coli to grow in milk. While the rate of growth in milk of fec-positive (fec+) DFEC was similar to that of MPEC, it was significantly lower in DFEC lacking fec. Furthermore, deletion of fec reduced the rate of growth in milk of MPEC strain P4, whereas fec-transformed non-mammary gland-pathogenic DFEC strain K71 gained the phenotype of the level of growth in milk observed in MPEC. The role of fec in E. coli intramammary pathogenicity was investigated in vivo in cows, with results showing that an MPEC P4 mutant lacking fec lost its ability to induce mastitis, whereas the fec+ DFEC K71 mutant was able to trigger intramammary inflammation. For the first time, a single molecular locus was shown to be crucial in MPEC pathogenicity. PMID:29615502

  10. Trim25 Is an RNA-Specific Activator of Lin28a/TuT4-Mediated Uridylation.

    PubMed

    Choudhury, Nila Roy; Nowak, Jakub S; Zuo, Juan; Rappsilber, Juri; Spoel, Steven H; Michlewski, Gracjan

    2014-11-20

    RNA binding proteins have thousands of cellular RNA targets and often exhibit opposite or passive molecular functions. Lin28a is a conserved RNA binding protein involved in pluripotency and tumorigenesis that was previously shown to trigger TuT4-mediated pre-let-7 uridylation, inhibiting its processing and targeting it for degradation. Surprisingly, despite binding to other pre-microRNAs (pre-miRNAs), only pre-let-7 is efficiently uridylated by TuT4. Thus, we hypothesized the existence of substrate-specific cofactors that stimulate Lin28a-mediated pre-let-7 uridylation or restrict its functionality on non-let-7 pre-miRNAs. Through RNA pull-downs coupled with quantitative mass spectrometry, we identified the E3 ligase Trim25 as an RNA-specific cofactor for Lin28a/TuT4-mediated uridylation. We show that Trim25 binds to the conserved terminal loop (CTL) of pre-let-7 and activates TuT4, allowing for more efficient Lin28a-mediated uridylation. These findings reveal that protein-modifying enzymes, only recently shown to bind RNA, can guide the function of canonical ribonucleoprotein (RNP) complexes in cis, thereby providing an additional level of specificity.

  11. Selenium-Dependent Biogenesis of Formate Dehydrogenase in Campylobacter jejuni Is Controlled by the fdhTU Accessory Genes

    PubMed Central

    Shaw, Frances L.; Mulholland, Francis; Le Gall, Gwénaëlle; Porcelli, Ida; Hart, Dave J.; Pearson, Bruce M.

    2012-01-01

    The food-borne bacterial pathogen Campylobacter jejuni efficiently utilizes organic acids such as lactate and formate for energy production. Formate is rapidly metabolized via the activity of the multisubunit formate dehydrogenase (FDH) enzyme, of which the FdhA subunit is predicted to contain a selenocysteine (SeC) amino acid. In this study we investigated the function of the cj1500 and cj1501 genes of C. jejuni, demonstrate that they are involved in selenium-controlled production of FDH, and propose the names fdhT and fdhU, respectively. Insertional inactivation of fdhT or fdhU in C. jejuni resulted in the absence of FdhA and FdhB protein expression, reduced fdhABC RNA levels, the absence of FDH enzyme activity, and the lack of formate utilization, as assessed by 1H nuclear magnetic resonance. The fdhABC genes are transcribed from a single promoter located two genes upstream of fdhA, and the decrease in fdhABC RNA levels in the fdhU mutant is mediated at the posttranscriptional level. FDH activity and the ability to utilize formate were restored by genetic complementation with fdhU and by supplementation of the growth media with selenium dioxide. Disruption of SeC synthesis by inactivation of the selA and selB genes also resulted in the absence of FDH activity, which could not be restored by selenium supplementation. Comparative genomic analysis suggests a link between the presence of selA and fdhTU orthologs and the predicted presence of SeC in FdhA. The fdhTU genes encode accessory proteins required for FDH expression and activity in C. jejuni, possibly by contributing to acquisition or utilization of selenium. PMID:22609917

  12. EF24 inhibits tumor growth and metastasis via suppressing NF-kappaB dependent pathways in human cholangiocarcinoma

    PubMed Central

    Yin, Da-long; Liang, Ying-jian; Zheng, Tong-sen; Song, Rui-peng; Wang, Jia-bei; Sun, Bo-shi; Pan, Shang-ha; Qu, Lian-dong; Liu, Jia-ren; Jiang, Hong-chi; Liu, Lian-xin

    2016-01-01

    A synthetic monoketone analog of curcumin, termed 3, 5-bis (2-flurobenzylidene) piperidin-4-one (EF24), has been reported to inhibit the growth of a variety of cancer cells both in vitro and in vivo. However, whether EF24 has anticancer effects on cholangiocarcinoma (CCA) cells and the mechanisms remain to be investigated. The aim of our study was to evaluate the molecular mechanisms underlying the anticancer effects of EF24 on CCA tumor growth and metastasis. Cell proliferation, apoptosis, migration, invasion, tumorigenesis and metastasis were examined. EF24 exhibited time- and dose-dependent inhibitory effects on HuCCT-1, TFK-1 and HuH28 human CCA cell lines. EF24 inhibited CCA cell proliferation, migration, and induced G2/M phase arrest. EF24 induced cell apoptosis along with negative regulation of NF-κB- X-linked inhibitor of apoptosis protein (XIAP) signaling pathway. XIAP inhibition by lentivirus mediated RNA interference enhanced EF24-induced apoptosis, while XIAP overexpression reduced it in CCA cells. In vivo, EF24 significantly suppressed the growth of CCA tumor xenografts and tumor metastasis while displaying low toxicity levels. Our findings indicate that EF24 is a potent antitumor agent that inhibits tumor growth and metastasis by inhibiting NF-κB dependent signaling pathways. EF24 may represent a novel approach for CCA treatment. PMID:27571770

  13. EF24 inhibits tumor growth and metastasis via suppressing NF-kappaB dependent pathways in human cholangiocarcinoma.

    PubMed

    Yin, Da-Long; Liang, Ying-Jian; Zheng, Tong-Sen; Song, Rui-Peng; Wang, Jia-Bei; Sun, Bo-Shi; Pan, Shang-Ha; Qu, Lian-Dong; Liu, Jia-Ren; Jiang, Hong-Chi; Liu, Lian-Xin

    2016-08-30

    A synthetic monoketone analog of curcumin, termed 3, 5-bis (2-flurobenzylidene) piperidin-4-one (EF24), has been reported to inhibit the growth of a variety of cancer cells both in vitro and in vivo. However, whether EF24 has anticancer effects on cholangiocarcinoma (CCA) cells and the mechanisms remain to be investigated. The aim of our study was to evaluate the molecular mechanisms underlying the anticancer effects of EF24 on CCA tumor growth and metastasis. Cell proliferation, apoptosis, migration, invasion, tumorigenesis and metastasis were examined. EF24 exhibited time- and dose-dependent inhibitory effects on HuCCT-1, TFK-1 and HuH28 human CCA cell lines. EF24 inhibited CCA cell proliferation, migration, and induced G2/M phase arrest. EF24 induced cell apoptosis along with negative regulation of NF-κB- X-linked inhibitor of apoptosis protein (XIAP) signaling pathway. XIAP inhibition by lentivirus mediated RNA interference enhanced EF24-induced apoptosis, while XIAP overexpression reduced it in CCA cells. In vivo, EF24 significantly suppressed the growth of CCA tumor xenografts and tumor metastasis while displaying low toxicity levels. Our findings indicate that EF24 is a potent antitumor agent that inhibits tumor growth and metastasis by inhibiting NF-κB dependent signaling pathways. EF24 may represent a novel approach for CCA treatment.

  14. Interleukin-11 binds specific EF-hand proteins via their conserved structural motifs.

    PubMed

    Kazakov, Alexei S; Sokolov, Andrei S; Vologzhannikova, Alisa A; Permyakova, Maria E; Khorn, Polina A; Ismailov, Ramis G; Denessiouk, Konstantin A; Denesyuk, Alexander I; Rastrygina, Victoria A; Baksheeva, Viktoriia E; Zernii, Evgeni Yu; Zinchenko, Dmitry V; Glazatov, Vladimir V; Uversky, Vladimir N; Mirzabekov, Tajib A; Permyakov, Eugene A; Permyakov, Sergei E

    2017-01-01

    Interleukin-11 (IL-11) is a hematopoietic cytokine engaged in numerous biological processes and validated as a target for treatment of various cancers. IL-11 contains intrinsically disordered regions that might recognize multiple targets. Recently we found that aside from IL-11RA and gp130 receptors, IL-11 interacts with calcium sensor protein S100P. Strict calcium dependence of this interaction suggests a possibility of IL-11 interaction with other calcium sensor proteins. Here we probed specificity of IL-11 to calcium-binding proteins of various types: calcium sensors of the EF-hand family (calmodulin, S100B and neuronal calcium sensors: recoverin, NCS-1, GCAP-1, GCAP-2), calcium buffers of the EF-hand family (S100G, oncomodulin), and a non-EF-hand calcium buffer (α-lactalbumin). A specific subset of the calcium sensor proteins (calmodulin, S100B, NCS-1, GCAP-1/2) exhibits metal-dependent binding of IL-11 with dissociation constants of 1-19 μM. These proteins share several amino acid residues belonging to conservative structural motifs of the EF-hand proteins, 'black' and 'gray' clusters. Replacements of the respective S100P residues by alanine drastically decrease its affinity to IL-11, suggesting their involvement into the association process. Secondary structure and accessibility of the hinge region of the EF-hand proteins studied are predicted to control specificity and selectivity of their binding to IL-11. The IL-11 interaction with the EF-hand proteins is expected to occur under numerous pathological conditions, accompanied by disintegration of plasma membrane and efflux of cellular components into the extracellular milieu.

  15. The surface protease ompT serves as Escherichia coli K1 adhesin in binding to human brain micro vascular endothelial cells.

    PubMed

    Wan, Lei; Guo, Yan; Hui, Chang-Ye; Liu, Xiao-Lu; Zhang, Wen-Bing; Cao, Hong; Cao, Hong

    2014-05-01

    Escherichia coli (E. coli) K1 is the most common bacteria that cause meningitis in the neonatal period. But it's not entirely clear about how E. coli crosses the blood-brain barrier. The features of the ompT deletion in meningitic E. coli infection were texted in vitro. In comparison with the parent strain, the isogenic ompT deletion mutant was significantly less adhesive to human brain microvascular endothelial cells (HBMEC). The adhesion-deficient phenotype of the mutant was restored to the level of the wild-type by complementing with low-level OmpT expression plasmid. Interestingly, the adhesion was enhanced by point mutation at the OmpT proposed catalytic residue D85. Compared with the poor adhesive activity of bovine serum albumin-coated fluorescent beads, recombinant OmpT or catalytically inactive variant of OmpT-coated beads bound to HBMEC monolayer effectively. Our study suggests that OmpT is important for bacterial adhesion while entering into central nervous system, and the adhesion does not involve in the proteolytic activity of OmpT.

  16. Lesions in two Escherichia coli type 1 pilus genes alter pilus number and length without affecting receptor binding.

    PubMed Central

    Russell, P W; Orndorff, P E

    1992-01-01

    We describe the characterization of two genes, fimF and fimG (also called pilD), that encode two minor components of type 1 pili in Escherichia coli. Defined, in-frame deletion mutations were generated in vitro in each of these two genes. A double mutation that had deletions identical to both single lesions was also constructed. Examination of minicell transcription and translation products of parental and mutant plasmids revealed that, as predicted from the nucleotide sequence and previous reports, the fimF gene product was a protein of ca. 16 kDa and that the fimG gene product was a protein of ca. 14 kDa. Each of the constructions was introduced, via homologous recombination, into the E. coli chromosome. All three of the resulting mutants produced type 1 pili and exhibited hemagglutination of guinea pig erythrocytes. The latter property was also exhibited by partially purified pili isolated from each of the mutants. Electron microscopic examination revealed that the fimF mutant had markedly reduced numbers of pili per cell, whereas the fimG mutant had very long pili. The double mutant displayed the characteristics of both single mutants. However, pili in the double mutant were even longer than those seen in the fimG mutant, and the numbers of pili were even fewer than those displayed by the fimF mutant. All three mutants could be complemented in trans with a single-copy-number plasmid bearing the appropriate parental gene or genes to give near-normal parental piliation. On the basis of the phenotypes exhibited by the single and double mutants, we believe that the fimF gene product may aid in initiating pilus assembly and that the fimG product may act as an inhibitor of pilus polymerization. In contrast to previous studies, we found that neither gene product was required for type 1 pilus receptor binding. Images PMID:1355769

  17. Education for Sustainability (EFS): Citizenship Education for Radical Resistance or Cultural Conformity?

    ERIC Educational Resources Information Center

    Tulloch, Lynley

    2009-01-01

    There is little doubt that the use of EFS curricula, resources, and programmes in publicly provided education has been controversial. This paper will examine the dilemmas, for educators involved in EFS, relating to the politics and conservative forces underpinning national curriculum development in a free market capitalist economy such as…

  18. Youyou Tu: significance of winning the 2015 Nobel Prize in Physiology or Medicine.

    PubMed

    Liu, Wenxiu; Liu, Yue

    2016-02-01

    Youyou Tu, a female scientist at the China Academy of Traditional Chinese Medicine in Beijing, is the first Chinese winner of the Nobel Prize in Physiology or Medicine. Based on the study of recipes which had been used for thousands of years to treat fever, Tu's group discovered that the plant artemesia annua, sweet wormwood, showed substantial inhibition of rodent malaria parasites. Her achievement and experience have inspired other researchers and emphasized the development of traditional Chinese medicine. Her award has led to a heated discussion about scientific research investment, fair treatment of research staff, and intellectual property right (IPR) protection in China.

  19. A complete collection of single-gene deletion mutants of Acinetobacter baylyi ADP1

    PubMed Central

    de Berardinis, Véronique; Vallenet, David; Castelli, Vanina; Besnard, Marielle; Pinet, Agnès; Cruaud, Corinne; Samair, Sumitta; Lechaplais, Christophe; Gyapay, Gabor; Richez, Céline; Durot, Maxime; Kreimeyer, Annett; Le Fèvre, François; Schächter, Vincent; Pezo, Valérie; Döring, Volker; Scarpelli, Claude; Médigue, Claudine; Cohen, Georges N; Marlière, Philippe; Salanoubat, Marcel; Weissenbach, Jean

    2008-01-01

    We have constructed a collection of single-gene deletion mutants for all dispensable genes of the soil bacterium Acinetobacter baylyi ADP1. A total of 2594 deletion mutants were obtained, whereas 499 (16%) were not, and are therefore candidate essential genes for life on minimal medium. This essentiality data set is 88% consistent with the Escherichia coli data set inferred from the Keio mutant collection profiled for growth on minimal medium, while 80% of the orthologous genes described as essential in Pseudomonas aeruginosa are also essential in ADP1. Several strategies were undertaken to investigate ADP1 metabolism by (1) searching for discrepancies between our essentiality data and current metabolic knowledge, (2) comparing this essentiality data set to those from other organisms, (3) systematic phenotyping of the mutant collection on a variety of carbon sources (quinate, 2-3 butanediol, glucose, etc.). This collection provides a new resource for the study of gene function by forward and reverse genetic approaches and constitutes a robust experimental data source for systems biology approaches. PMID:18319726

  20. [Substrate specificities of bile salt hydrolase 1 and its mutants from Lactobacillus salivarius].

    PubMed

    Bi, Jie; Fang, Fang; Qiu, Yuying; Yang, Qingli; Chen, Jian

    2014-03-01

    In order to analyze the correlation between critical residues in the catalytic centre of BSH and the enzyme substrate specificity, seven mutants of Lactobacillus salivarius bile salt hydrolase (BSH1) were constructed by using the Escherichia coli pET-20b(+) gene expression system, rational design and site-directed mutagenesis. These BSH1 mutants exhibited different hydrolytic activities against various conjugated bile salts through substrate specificities comparison. Among the residues being tested, Cys2 and Thr264 were deduced as key sites for BSH1 to catalyze taurocholic acid and glycocholic acid, respectively. Moreover, Cys2 and Thr264 were important for keeping the catalytic activity of BSH1. The high conservative Cys2 was not the only active site, other mutant amino acid sites were possibly involved in substrate binding. These mutant residues might influence the space and shape of the substrate-binding pockets or the channel size for substrate passing through and entering active site of BSH1, thus, the hydrolytic activity of BSH1 was changed to different conjugated bile salt.

  1. Liposome-encapsulated EF24-HPβCD inclusion complex: a preformulation study and biodistribution in a rat model

    NASA Astrophysics Data System (ADS)

    Agashe, H.; Lagisetty, P.; Sahoo, K.; Bourne, D.; Grady, B.; Awasthi, V.

    2011-06-01

    3,5-Bis(2-fluorobenzylidene)-4-piperidone (EF24) is an anti-proliferative diphenyldifluoroketone analog of curcumin with more potent activity. The authors describe a liposome preparation of EF24 using a "drug-in-CD-in liposome" approach. An aqueous solution of EF24 and hydroxypropyl-β-cyclodextrin (HPβCD) inclusion complex (IC) was used to prepare EF24 liposomes. The liposome size was reduced by a combination of multiple freeze-thaw cycles. Co-encapsulation of glutathione inside the liposomes conferred them with the capability of labeling with imageable radionuclide Tc-99m. Phase solubility analysis of EF24-HPβCD mixture provided k 1:1 value of 9.9 M-1. The enhanced aqueous solubility of EF24 (from 1.64 to 13.8 mg/mL) due to the presence of HPβCD helped in the liposome preparation. About 19% of the EF24 IC was encapsulated inside the liposomes (320.5 ± 2.6 nm) by dehydration-rehydration technique. With extrusion technique, the size of 177 ± 6.5 nm was obtained without any effect on encapsulation efficiency. The EF24-liposomes were evaluated for anti-proliferative activity in lung adenocarcinoma H441 and prostate cancer PC-3 cells. The EF24-liposomes demonstrated anti-proliferative activity superior to that of plain EF24 at 10 μM dose. When injected in rats, the Tc-99m-labeled EF24-liposomes cleared from blood with an α- t 1/2 of 21.4 min and β- t 1/2 of 397 min. Tissue radioactivity counting upon necropsy showed that the majority of clearance was due to the uptake in liver and spleen. The results suggest that using "drug-in-CD-in liposome" approach is a feasible strategy to formulate an effective parenteral preparation of EF24. In vitro studies show that the liposomal EF24 remains anti-proliferative, while presenting an opportunity to image its biodistribution.

  2. Liposome-encapsulated EF24-HPβCD inclusion complex: a preformulation study and biodistribution in a rat model

    PubMed Central

    Agashe, H.; Lagisetty, P.; Sahoo, K.; Bourne, D.; Grady, B.

    2011-01-01

    3,5-Bis(2-fluorobenzylidene)-4-piperidone (EF24) is an anti-proliferative diphenyldifluoroketone analog of curcumin with more potent activity. The authors describe a liposome preparation of EF24 using a “drug-in-CD-in liposome” approach. An aqueous solution of EF24 and hydroxypropyl-β-cyclodextrin (HPβCD) inclusion complex (IC) was used to prepare EF24 liposomes. The liposome size was reduced by a combination of multiple freeze–thaw cycles. Co-encapsulation of glutathione inside the liposomes conferred them with the capability of labeling with imageable radionuclide Tc-99m. Phase solubility analysis of EF24-HPβCD mixture provided k1:1 value of 9.9 M−1. The enhanced aqueous solubility of EF24 (from 1.64 to 13.8 mg/mL) due to the presence of HPβCD helped in the liposome preparation. About 19% of the EF24 IC was encapsulated inside the liposomes (320.5 ± 2.6 nm) by dehydration–rehydration technique. With extrusion technique, the size of 177 ± 6.5 nm was obtained without any effect on encapsulation efficiency. The EF24-liposomes were evaluated for anti-proliferative activity in lung adenocarcinoma H441 and prostate cancer PC-3 cells. The EF24-liposomes demonstrated anti-proliferative activity superior to that of plain EF24 at 10 μM dose. When injected in rats, the Tc-99m-labeled EF24-liposomes cleared from blood with an α-t1/2 of 21.4 min and β-t1/2 of 397 min. Tissue radioactivity counting upon necropsy showed that the majority of clearance was due to the uptake in liver and spleen. The results suggest that using “drug-in-CD-in liposome” approach is a feasible strategy to formulate an effective parenteral preparation of EF24. In vitro studies show that the liposomal EF24 remains anti-proliferative, while presenting an opportunity to image its biodistribution. PMID:21779150

  3. Liposome-encapsulated EF24-HPβCD inclusion complex: a preformulation study and biodistribution in a rat model.

    PubMed

    Agashe, H; Lagisetty, P; Sahoo, K; Bourne, D; Grady, B; Awasthi, V

    2011-06-01

    3,5-Bis(2-fluorobenzylidene)-4-piperidone (EF24) is an anti-proliferative diphenyldifluoroketone analog of curcumin with more potent activity. The authors describe a liposome preparation of EF24 using a "drug-in-CD-in liposome" approach. An aqueous solution of EF24 and hydroxypropyl-β-cyclodextrin (HPβCD) inclusion complex (IC) was used to prepare EF24 liposomes. The liposome size was reduced by a combination of multiple freeze-thaw cycles. Co-encapsulation of glutathione inside the liposomes conferred them with the capability of labeling with imageable radionuclide Tc-99m. Phase solubility analysis of EF24-HPβCD mixture provided k(1:1) value of 9.9 M(-1). The enhanced aqueous solubility of EF24 (from 1.64 to 13.8 mg/mL) due to the presence of HPβCD helped in the liposome preparation. About 19% of the EF24 IC was encapsulated inside the liposomes (320.5 ± 2.6 nm) by dehydration-rehydration technique. With extrusion technique, the size of 177 ± 6.5 nm was obtained without any effect on encapsulation efficiency. The EF24-liposomes were evaluated for anti-proliferative activity in lung adenocarcinoma H441 and prostate cancer PC-3 cells. The EF24-liposomes demonstrated anti-proliferative activity superior to that of plain EF24 at 10 μM dose. When injected in rats, the Tc-99m-labeled EF24-liposomes cleared from blood with an α-t(1/2) of 21.4 min and β-t(1/2) of 397 min. Tissue radioactivity counting upon necropsy showed that the majority of clearance was due to the uptake in liver and spleen. The results suggest that using "drug-in-CD-in liposome" approach is a feasible strategy to formulate an effective parenteral preparation of EF24. In vitro studies show that the liposomal EF24 remains anti-proliferative, while presenting an opportunity to image its biodistribution.

  4. Engineering Escherichia coli Nicotinic Acid Mononucleotide Adenylyltransferase for Fully Active Amidated NAD Biosynthesis.

    PubMed

    Wang, Xueying; Zhou, Yongjin J; Wang, Lei; Liu, Wujun; Liu, Yuxue; Peng, Chang; Zhao, Zongbao K

    2017-07-01

    NAD and its reduced form NADH function as essential redox cofactors and have major roles in determining cellular metabolic features. NAD can be synthesized through the deamidated and amidated pathways, for which the key reaction involves adenylylation of nicotinic acid mononucleotide (NaMN) and nicotinamide mononucleotide (NMN), respectively. In Escherichia coli , NAD de novo biosynthesis depends on the protein NadD-catalyzed adenylylation of NaMN to nicotinic acid adenine dinucleotide (NaAD), followed by NAD synthase-catalyzed amidation. In this study, we engineered NadD to favor NMN for improved amidated pathway activity. We designed NadD mutant libraries, screened by a malic enzyme-coupled colorimetric assay, and identified two variants, 11B4 (Y84V/Y118D) and 16D8 (A86W/Y118N), with a high preference for NMN. Whereas in the presence of NMN both variants were capable of enabling the viability of cells of E. coli BW25113-derived NAD-auxotrophic strain YJE003, for which the last step of the deamidated pathway is blocked, the 16D8 expression strain could grow without exogenous NMN and accumulated a higher cellular NAD(H) level than BW25113 in the stationary phase. These mutants established fully active amidated NAD biosynthesis and offered a new opportunity to manipulate NAD metabolism for biocatalysis and metabolic engineering. IMPORTANCE Adenylylation of nicotinic acid mononucleotide (NaMN) and adenylylation of nicotinamide mononucleotide (NMN), respectively, are the key steps in the deamidated and amidated pathways for NAD biosynthesis. In most organisms, canonical NAD biosynthesis follows the deamidated pathway. Here we engineered Escherichia coli NaMN adenylyltransferase to favor NMN and expressed the mutant enzyme in an NAD-auxotrophic E. coli strain that has the last step of the deamidated pathway blocked. The engineered strain survived in M9 medium, which indicated the implementation of a functional amidated pathway for NAD biosynthesis. These results enrich

  5. GenoBase: comprehensive resource database of Escherichia coli K-12.

    PubMed

    Otsuka, Yuta; Muto, Ai; Takeuchi, Rikiya; Okada, Chihiro; Ishikawa, Motokazu; Nakamura, Koichiro; Yamamoto, Natsuko; Dose, Hitomi; Nakahigashi, Kenji; Tanishima, Shigeki; Suharnan, Sivasundaram; Nomura, Wataru; Nakayashiki, Toru; Aref, Walid G; Bochner, Barry R; Conway, Tyrrell; Gribskov, Michael; Kihara, Daisuke; Rudd, Kenneth E; Tohsato, Yukako; Wanner, Barry L; Mori, Hirotada

    2015-01-01

    Comprehensive experimental resources, such as ORFeome clone libraries and deletion mutant collections, are fundamental tools for elucidation of gene function. Data sets by omics analysis using these resources provide key information for functional analysis, modeling and simulation both in individual and systematic approaches. With the long-term goal of complete understanding of a cell, we have over the past decade created a variety of clone and mutant sets for functional genomics studies of Escherichia coli K-12. We have made these experimental resources freely available to the academic community worldwide. Accordingly, these resources have now been used in numerous investigations of a multitude of cell processes. Quality control is extremely important for evaluating results generated by these resources. Because the annotation has been changed since 2005, which we originally used for the construction, we have updated these genomic resources accordingly. Here, we describe GenoBase (http://ecoli.naist.jp/GB/), which contains key information about comprehensive experimental resources of E. coli K-12, their quality control and several omics data sets generated using these resources. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Involvement of ribosomal protein L6 in assembly of functional 50S ribosomal subunit in Escherichia coli cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shigeno, Yuta; Uchiumi, Toshio; Nomura, Takaomi, E-mail: nomurat@shinshu-u.ac.jp

    Ribosomal protein L6, an essential component of the large (50S) subunit, primarily binds to helix 97 of 23S rRNA and locates near the sarcin/ricin loop of helix 95 that directly interacts with GTPase translation factors. Although L6 is believed to play important roles in factor-dependent ribosomal function, crucial biochemical evidence for this hypothesis has not been obtained. We constructed and characterized an Escherichia coli mutant bearing a chromosomal L6 gene (rplF) disruption and carrying a plasmid with an arabinose-inducible L6 gene. Although this ΔL6 mutant grew more slowly than its wild-type parent, it proliferated in the presence of arabinose. Interestingly,more » cell growth in the absence of arabinose was biphasic. Early growth lasted only a few generations (LI-phase) and was followed by a suspension of growth for several hours (S-phase). This suspension was followed by a second growth phase (LII-phase). Cells harvested at both LI- and S-phases contained ribosomes with reduced factor-dependent GTPase activity and accumulated 50S subunit precursors (45S particles). The 45S particles completely lacked L6. Complete 50S subunits containing L6 were observed in all growth phases regardless of the L6-depleted condition, implying that the ΔL6 mutant escaped death because of a leaky expression of L6 from the complementing plasmid. We conclude that L6 is essential for the assembly of functional 50S subunits at the late stage. We thus established conditions for the isolation of L6-depleted 50S subunits, which are essential to study the role of L6 in translation. - Highlights: • We constructed an in vivo functional assay system for Escherichia coli ribosomal protein L6. • Growth of an E. coli ΔL6 mutant was biphasic when L6 levels were depleted. • The ΔL6 mutant accumulated 50S ribosomal subunit precursors that sedimented at 45S. • L6 is a key player in the late stage of E. coli 50S subunit assembly.« less

  7. 9 CFR 205.210 - Effect of EFS outside State in which filed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Effect of EFS outside State in which filed. 205.210 Section 205.210 Animals and Animal Products GRAIN INSPECTION, PACKERS AND STOCKYARDS... OF FARM PRODUCTS Interpretive Opinions § 205.210 Effect of EFS outside State in which filed. (a) A...

  8. 9 CFR 205.210 - Effect of EFS outside State in which filed.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Effect of EFS outside State in which filed. 205.210 Section 205.210 Animals and Animal Products GRAIN INSPECTION, PACKERS AND STOCKYARDS... OF FARM PRODUCTS Interpretive Opinions § 205.210 Effect of EFS outside State in which filed. (a) A...

  9. Formation of virions is strictly required for turnip yellows virus long-distance movement in plants.

    PubMed

    Hipper, Clémence; Monsion, Baptiste; Bortolamiol-Bécet, Diane; Ziegler-Graff, Véronique; Brault, Véronique

    2014-02-01

    Viral genomic RNA of the Turnip yellows virus (TuYV; genus Polerovirus; family Luteoviridae) is protected in virions formed by the major capsid protein (CP) and the minor component, the readthrough (RT*) protein. Long-distance transport, used commonly by viruses to systemically infect host plants, occurs in phloem sieve elements and two viral forms of transport have been described: virions and ribonucleoprotein (RNP) complexes. With regard to poleroviruses, virions have always been presumed to be the long-distance transport form, but the potential role of RNP complexes has not been investigated. Here, we examined the requirement of virions for polerovirus systemic movement by analysing CP-targeted mutants that were unable to form viral particles. We confirmed that TuYV mutants that cannot encapsidate into virions are not able to reach systemic leaves. To completely discard the possibility that the introduced mutations in CP simply blocked the formation or the movement of RNP complexes, we tested in trans complementation of TuYV CP mutants by providing WT CP expressed in transgenic plants. WT CP was able to facilitate systemic movement of TuYV CP mutants and this observation was always correlated with the formation of virions. This demonstrated clearly that virus particles are essential for polerovirus systemic movement.

  10. Molecular Analysis of Asymptomatic Bacteriuria Escherichia coli Strain VR50 Reveals Adaptation to the Urinary Tract by Gene Acquisition

    DOE PAGES

    Beatson, Scott A.; Ben Zakour, Nouri L.; Totsika, Makrina; ...

    2015-05-01

    Urinary tract infections (UTIs) are among the most common infectious diseases of humans, with Escherichia coli for >80% of all cases. One extreme of UTI is asymptomatic bacteriuria (ABU), which occurs as an asymptomatic carrier state that resembles commensalism. Here, to understand the evolution and molecular mechanisms that underpin ABU, the genome of the ABU E. coli strain VR50 was sequenced. Analysis of the complete genome indicated that it most resembles E. coli K-12, with the addition of a 94-kb genomic island (GI-VR50-pheV), eight prophages, and multiple plasmids. GI-VR50- pheV has a mosaic structure and contains genes encoding a numbermore » of UTI-associated virulence factors, namely, Afa (afimbrial adhesin), two autotransporter proteins (Ag43 and Sat), and aerobactin. We demonstrated that the presence of this island in VR50 confers its ability to colonize the murine bladder, as a VR50 mutant with GI-VR50- pheV deleted was attenuated in a mouse model of UTI in vivo. We established that Afa is the island-encoded factor responsible for this phenotype using two independent deletion (Afa operon and AfaE adhesin) mutants. E. coli VR50 afa and VR50 afaE displayed significantly decreased ability to adhere to human bladder epithelial cells. In the mouse model of UTI, VR50 afa and VR50 afaE displayed reduced bladder colonization compared to wild-type VR50, similar to the colonization level of the GI-VR50- pheV mutant. In conlusion, our study suggests that E. coli VR50 is a commensal-like strain that has acquired fitness factors that facilitate colonization of the human bladder.« less

  11. Molecular Analysis of Asymptomatic Bacteriuria Escherichia coli Strain VR50 Reveals Adaptation to the Urinary Tract by Gene Acquisition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beatson, Scott A.; Ben Zakour, Nouri L.; Totsika, Makrina

    Urinary tract infections (UTIs) are among the most common infectious diseases of humans, with Escherichia coli for >80% of all cases. One extreme of UTI is asymptomatic bacteriuria (ABU), which occurs as an asymptomatic carrier state that resembles commensalism. Here, to understand the evolution and molecular mechanisms that underpin ABU, the genome of the ABU E. coli strain VR50 was sequenced. Analysis of the complete genome indicated that it most resembles E. coli K-12, with the addition of a 94-kb genomic island (GI-VR50-pheV), eight prophages, and multiple plasmids. GI-VR50- pheV has a mosaic structure and contains genes encoding a numbermore » of UTI-associated virulence factors, namely, Afa (afimbrial adhesin), two autotransporter proteins (Ag43 and Sat), and aerobactin. We demonstrated that the presence of this island in VR50 confers its ability to colonize the murine bladder, as a VR50 mutant with GI-VR50- pheV deleted was attenuated in a mouse model of UTI in vivo. We established that Afa is the island-encoded factor responsible for this phenotype using two independent deletion (Afa operon and AfaE adhesin) mutants. E. coli VR50 afa and VR50 afaE displayed significantly decreased ability to adhere to human bladder epithelial cells. In the mouse model of UTI, VR50 afa and VR50 afaE displayed reduced bladder colonization compared to wild-type VR50, similar to the colonization level of the GI-VR50- pheV mutant. In conlusion, our study suggests that E. coli VR50 is a commensal-like strain that has acquired fitness factors that facilitate colonization of the human bladder.« less

  12. Molecular analysis of asymptomatic bacteriuria Escherichia coli strain VR50 reveals adaptation to the urinary tract by gene acquisition.

    PubMed

    Beatson, Scott A; Ben Zakour, Nouri L; Totsika, Makrina; Forde, Brian M; Watts, Rebecca E; Mabbett, Amanda N; Szubert, Jan M; Sarkar, Sohinee; Phan, Minh-Duy; Peters, Kate M; Petty, Nicola K; Alikhan, Nabil-Fareed; Sullivan, Mitchell J; Gawthorne, Jayde A; Stanton-Cook, Mitchell; Nhu, Nguyen Thi Khanh; Chong, Teik Min; Yin, Wai-Fong; Chan, Kok-Gan; Hancock, Viktoria; Ussery, David W; Ulett, Glen C; Schembri, Mark A

    2015-05-01

    Urinary tract infections (UTIs) are among the most common infectious diseases of humans, with Escherichia coli responsible for >80% of all cases. One extreme of UTI is asymptomatic bacteriuria (ABU), which occurs as an asymptomatic carrier state that resembles commensalism. To understand the evolution and molecular mechanisms that underpin ABU, the genome of the ABU E. coli strain VR50 was sequenced. Analysis of the complete genome indicated that it most resembles E. coli K-12, with the addition of a 94-kb genomic island (GI-VR50-pheV), eight prophages, and multiple plasmids. GI-VR50-pheV has a mosaic structure and contains genes encoding a number of UTI-associated virulence factors, namely, Afa (afimbrial adhesin), two autotransporter proteins (Ag43 and Sat), and aerobactin. We demonstrated that the presence of this island in VR50 confers its ability to colonize the murine bladder, as a VR50 mutant with GI-VR50-pheV deleted was attenuated in a mouse model of UTI in vivo. We established that Afa is the island-encoded factor responsible for this phenotype using two independent deletion (Afa operon and AfaE adhesin) mutants. E. coli VR50afa and VR50afaE displayed significantly decreased ability to adhere to human bladder epithelial cells. In the mouse model of UTI, VR50afa and VR50afaE displayed reduced bladder colonization compared to wild-type VR50, similar to the colonization level of the GI-VR50-pheV mutant. Our study suggests that E. coli VR50 is a commensal-like strain that has acquired fitness factors that facilitate colonization of the human bladder. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Synthesis of avenanthramides using engineered Escherichia coli.

    PubMed

    Lee, Su Jin; Sim, Geun Young; Kang, Hyunook; Yeo, Won Seok; Kim, Bong-Gyu; Ahn, Joong-Hoon

    2018-03-22

    Hydroxycinnamoyl anthranilates, also known as avenanthramides (avns), are a group of phenolic alkaloids with anti-inflammatory, antioxidant, anti-itch, anti-irritant, and antiatherogenic activities. Some avenanthramides (avn A-H and avn K) are conjugates of hydroxycinnamic acids (HC), including p-coumaric acid, caffeic acid, and ferulic acid, and anthranilate derivatives, including anthranilate, 4-hydroxyanthranilate, and 5-hydroxyanthranilate. Avns are primarily found in oat grain, in which they were originally designated as phytoalexins. Knowledge of the avns biosynthesis pathway has now made it possible to synthesize avns through a genetic engineering strategy, which would help to further elucidate their properties and exploit their beneficial biological activities. The aim of the present study was to synthesize natural avns in Escherichia coli to serve as a valuable resource. We synthesized nine avns in E. coli. We first synthesized avn D from glucose in E. coli harboring tyrosine ammonia lyase (TAL), 4-coumarate:coenzyme A ligase (4CL), anthranilate N-hydroxycinnamoyl/benzoyltransferase (HCBT), and anthranilate synthase (trpEG). A trpD deletion mutant was used to increase the amount of anthranilate in E. coli. After optimizing the incubation temperature and cell density, approximately 317.2 mg/L of avn D was synthesized. Avn E and avn F were then synthesized from avn D, using either E. coli harboring HpaBC and SOMT9 or E. coli harboring HapBC alone, respectively. Avn A and avn G were synthesized by feeding 5-hydroxyanthranilate or 4-hydroxyanthranilate to E. coli harboring TAL, 4CL, and HCBT. Avn B, avn C, avn H, and avn K were synthesized from avn A or avn G, using the same approach employed for the synthesis of avn E and avn F from avn D. Using different HCs, nine avns were synthesized, three of which (avn D, avn E, and avn F) were synthesized from glucose in E. coli. These diverse avns provide a strategy to synthesize both natural and unnatural avns

  14. Mechanism of phagocytosis in dictyostelium discoideum: phagocytosis is mediated by different recognition sites as disclosed by mutants with altered phagocytotic properties

    PubMed Central

    Vogel, G; Thilo, L; Schwarz, H; Steinhart, R

    1980-01-01

    The recognition step in the phagocytotic process of the unicellular amoeba dictyostelium discoideum was examined by analysis of mutants defective in phagocytosis, Reliable and simple assays were developed to measure endocytotic uptake. For pinocytosis, FITC-dextran was found to be a suitable fluid-phase marker; FITC-bacteria, latex beads, and erythrocytes were used as phagocytotic substrates. Ingested material was isolated in one step by centrifuging through highly viscous poly(ethyleneglycol) solutions and was analyzed optically. A selection procedure for isolating mutants defective in phagocytosis was devised using tungsten beads as particulate prey. Nonphagocytosing cells were isolated on the basis of their lower density. Three mutant strains were found exhibiting a clear-cut phenotype directly related to the phagocytotic event. In contrast to the situation in wild-type cells, uptake of E. coli B/r by mutant cells is specifically and competitively inhibited by glucose. Mutant amoeba phagocytose latex beads normally but not protein-coated latex, nonglucosylated bacteria, or erythrocytes. Cohesive properties of mutant cells are altered: they do not form EDTA-sensitive aggregates, and adhesiveness to glass or plastic surfaces is greatly reduced. Based upon these findings, a model for recognition in phagocytosis is proposed: (a) A lectin-type receptor specifically mediates binding of particles containing terminal glucose (E. coli B/r). (b) A second class of "nonspecific" receptors mediate binding of a variety of particles by hydrophobic interaction. Nonspecific binding is affected by mutation in such a way that only strongly hydrophobic (latex) but not more hydrophilic particles (e.g., protein-coated latex, bacteria, erythrocytes) can be phagocytosed by mutant amoebae. PMID:6995464

  15. Genetic analysis of the role of yfiR in the ability of Escherichia coli CFT073 to control cellular cyclic dimeric GMP levels and to persist in the urinary tract.

    PubMed

    Raterman, Erica L; Shapiro, Daniel D; Stevens, Daniel J; Schwartz, Kevin J; Welch, Rodney A

    2013-09-01

    During urinary tract infections (UTIs), uropathogenic Escherichia coli must maintain a delicate balance between sessility and motility to achieve successful infection of both the bladder and kidneys. Previous studies showed that cyclic dimeric GMP (c-di-GMP) levels aid in the control of the transition between motile and nonmotile states in E. coli. The yfiRNB locus in E. coli CFT073 contains genes for YfiN, a diguanylate cyclase, and its activity regulators, YfiR and YfiB. Deletion of yfiR yielded a mutant that was attenuated in both the bladder and the kidneys when tested in competition with the wild-type strain in the murine model of UTI. A double yfiRN mutant was not attenuated in the mouse model, suggesting that unregulated YfiN activity and likely increased cytoplasmic c-di-GMP levels cause a survival defect. Curli fimbriae and cellulose production were increased in the yfiR mutant. Expression of yhjH, a gene encoding a proven phosphodiesterase, in CFT073 ΔyfiR suppressed the overproduction of curli fimbriae and cellulose and further verified that deletion of yfiR results in c-di-GMP accumulation. Additional deletion of csgD and bcsA, genes necessary for curli fimbriae and cellulose production, respectively, returned colonization levels of the yfiR deletion mutant to wild-type levels. Peroxide sensitivity assays and iron acquisition assays displayed no significant differences between the yfiR mutant and the wild-type strain. These results indicate that dysregulation of c-di-GMP production results in pleiotropic effects that disable E. coli in the urinary tract and implicate the c-di-GMP regulatory system as an important factor in the persistence of uropathogenic E. coli in vivo.

  16. TU-EF-210-01: HIFU, Drug Delivery, and Immunotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrara, K.

    The use of therapeutic ultrasound to provide targeted therapy is an active research area that has a broad application scope. The invited talks in this session will address currently implemented strategies and protocols for both hyperthermia and ablation applications using therapeutic ultrasound. The role of both ultrasound and MRI in the monitoring and assessment of these therapies will be explored in both pre-clinical and clinical applications. Katherine Ferrara: High Intensity Focused Ultrasound, Drug Delivery, and Immunotherapy Rajiv Chopra: Translating Localized Doxorubicin Delivery to Pediatric Oncology using MRI-guided HIFU Elisa Konofagou: Real-time Ablation Monitoring and Lesion Quantification using Harmonic Motion Imagingmore » Keyvan Farahani: AAPM Task Groups in Interventional Ultrasound Imaging and Therapy Learning Objectives: Understand the role of ultrasound in localized drug delivery and the effects of immunotherapy when used in conjunction with ultrasound therapy. Understand potential targeted drug delivery clinical applications including pediatric oncology. Understand the technical requirements for performing targeted drug delivery. Understand how radiation-force approaches can be used to both monitor and assess high intensity focused ultrasound ablation therapy. Understand the role of AAPM task groups in ultrasound imaging and therapies. Chopra: Funding from Cancer Prevention and Research Initiative of Texas (CPRIT), Award R1308 Evelyn and M.R. Hudson Foundation; Research Support from Research Contract with Philips Healthcare; COI are Co-founder of FUS Instruments Inc Ferrara: Supported by NIH, UCDavis and California (CIRM and BHCE) Farahani: In-kind research support from Philips Healthcare.« less

  17. TU-EF-210-00: Therapeutic Strategies and Image Guidance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2015-06-15

    The use of therapeutic ultrasound to provide targeted therapy is an active research area that has a broad application scope. The invited talks in this session will address currently implemented strategies and protocols for both hyperthermia and ablation applications using therapeutic ultrasound. The role of both ultrasound and MRI in the monitoring and assessment of these therapies will be explored in both pre-clinical and clinical applications. Katherine Ferrara: High Intensity Focused Ultrasound, Drug Delivery, and Immunotherapy Rajiv Chopra: Translating Localized Doxorubicin Delivery to Pediatric Oncology using MRI-guided HIFU Elisa Konofagou: Real-time Ablation Monitoring and Lesion Quantification using Harmonic Motion Imagingmore » Keyvan Farahani: AAPM Task Groups in Interventional Ultrasound Imaging and Therapy Learning Objectives: Understand the role of ultrasound in localized drug delivery and the effects of immunotherapy when used in conjunction with ultrasound therapy. Understand potential targeted drug delivery clinical applications including pediatric oncology. Understand the technical requirements for performing targeted drug delivery. Understand how radiation-force approaches can be used to both monitor and assess high intensity focused ultrasound ablation therapy. Understand the role of AAPM task groups in ultrasound imaging and therapies. Chopra: Funding from Cancer Prevention and Research Initiative of Texas (CPRIT), Award R1308 Evelyn and M.R. Hudson Foundation; Research Support from Research Contract with Philips Healthcare; COI are Co-founder of FUS Instruments Inc Ferrara: Supported by NIH, UCDavis and California (CIRM and BHCE) Farahani: In-kind research support from Philips Healthcare.« less

  18. Molybdenum cofactor (chlorate-resistant) mutants of Klebsiella pneumoniae M5al can use hypoxanthine as the sole nitrogen source.

    PubMed Central

    Garzón, A; Li, J; Flores, A; Casadesus, J; Stewart, V

    1992-01-01

    Selection for chlorate resistance yields mol (formerly chl) mutants with defects in molybdenum cofactor synthesis. Complementation and genetic mapping analyses indicated that the Klebsiella pneumoniae mol genes are functionally homologous to those of Escherichia coli and occupy analogous genetic map positions. Hypoxanthine utilization in other organisms requires molybdenum cofactor as a component of xanthine dehydrogenase, and thus most chlorate-resistant mutants cannot use hypoxanthine as a sole source of nitrogen. Surprisingly, the K. pneumoniae mol mutants and the mol+ parent grew equally well with hypoxanthine as the sole nitrogen source, suggesting that K. pneumoniae has a molybdenum cofactor-independent pathway for hypoxanthine utilization. PMID:1400180

  19. Acetohydroxy acid synthase is a target for leucine containing peptide toxicity in Escherichia coli.

    PubMed Central

    Gollop, N; Tavori, H; Barak, Z

    1982-01-01

    Acetohydroxy acid synthase from a mutant resistant to leucine-containing peptides was insensitive to leucine inhibition. It is concluded that acetohydroxy acid synthase is a target for the toxicity of the high concentrations of leucine brought into Escherichia coli K-12 by leucine-containing peptides. PMID:7033214

  20. Structure of Escherichia coli dGTP Triphosphohydrolase: A Hexameric Enzyme with DNA Effector Molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Deepa; Gawel, Damian; Itsko, Mark

    The Escherichia coli dgt gene encodes a dGTP triphosphohydrolase whose detailed role still remains to be determined. Deletion of dgt creates a mutator phenotype, indicating that the dGTPase has a fidelity role, possibly by affecting the cellular dNTP pool. In the present paper, we have investigated the structure of the Dgt protein at 3.1-Å resolution. One of the obtained structures revealed a protein hexamer that contained two molecules of single-stranded DNA. The presence of DNA caused significant conformational changes in the enzyme, including in the catalytic site of the enzyme. Dgt preparations lacking DNA were able to bind single-stranded DNAmore » with high affinity (K d ~ 50 nM). DNA binding positively affected the activity of the enzyme: dGTPase activity displayed sigmoidal (cooperative) behavior without DNA but hyperbolic (Michaelis-Menten) kinetics in its presence, consistent with a specific lowering of the apparent K m for dGTP. A mutant Dgt enzyme was also created containing residue changes in the DNA binding cleft. This mutant enzyme, whereas still active, was incapable of DNA binding and could no longer be stimulated by addition of DNA. We also created an E. coli strain containing the mutant dgt gene on the chromosome replacing the wild-type gene. The mutant also displayed a mutator phenotype. Finally, our results provide insight into the allosteric regulation of the enzyme and support a physiologically important role of DNA binding.« less

  1. Structure of Escherichia coli dGTP Triphosphohydrolase: A Hexameric Enzyme with DNA Effector Molecules

    DOE PAGES

    Singh, Deepa; Gawel, Damian; Itsko, Mark; ...

    2015-02-18

    The Escherichia coli dgt gene encodes a dGTP triphosphohydrolase whose detailed role still remains to be determined. Deletion of dgt creates a mutator phenotype, indicating that the dGTPase has a fidelity role, possibly by affecting the cellular dNTP pool. In the present paper, we have investigated the structure of the Dgt protein at 3.1-Å resolution. One of the obtained structures revealed a protein hexamer that contained two molecules of single-stranded DNA. The presence of DNA caused significant conformational changes in the enzyme, including in the catalytic site of the enzyme. Dgt preparations lacking DNA were able to bind single-stranded DNAmore » with high affinity (K d ~ 50 nM). DNA binding positively affected the activity of the enzyme: dGTPase activity displayed sigmoidal (cooperative) behavior without DNA but hyperbolic (Michaelis-Menten) kinetics in its presence, consistent with a specific lowering of the apparent K m for dGTP. A mutant Dgt enzyme was also created containing residue changes in the DNA binding cleft. This mutant enzyme, whereas still active, was incapable of DNA binding and could no longer be stimulated by addition of DNA. We also created an E. coli strain containing the mutant dgt gene on the chromosome replacing the wild-type gene. The mutant also displayed a mutator phenotype. Finally, our results provide insight into the allosteric regulation of the enzyme and support a physiologically important role of DNA binding.« less

  2. The Role of Protein Elongation Factor eEF1A2 in Breast Cancer

    DTIC Science & Technology

    2006-09-01

    serve as regulators of multiple signaling pathways (15-18). PIs are composed of an inositol ring covalently bound to a lipid phosphatidic acid ...mouse model of aristolochic acid nephropathy, and human kidney-proximal tubule cells. Satisfyingly, one of these targets is Dishevelled 2 (DVL2...Rho signaling proteins together. The two human eEF1A isoforms (eEF1A2 and eEF1A2) are very similar proteins (92% amino acid identity). The two

  3. A Complex Distribution of Elongation Family GTPases EF1A and EFL in Basal Alveolate Lineages

    PubMed Central

    Mikhailov, Kirill V.; Janouškovec, Jan; Tikhonenkov, Denis V.; Mirzaeva, Gulnara S.; Diakin, Andrei Yu.; Simdyanov, Timur G.; Mylnikov, Alexander P.; Keeling, Patrick J.; Aleoshin, Vladimir V.

    2014-01-01

    Translation elongation factor-1 alpha (EF1A) and the related GTPase EF-like (EFL) are two proteins with a complex mutually exclusive distribution across the tree of eukaryotes. Recent surveys revealed that the distribution of the two GTPases in even closely related taxa is frequently at odds with their phylogenetic relationships. Here, we investigate the distribution of EF1A and EFL in the alveolate supergroup. Alveolates comprise three major lineages: ciliates and apicomplexans encode EF1A, whereas dinoflagellates encode EFL. We searched transcriptome databases for seven early-diverging alveolate taxa that do not belong to any of these groups: colpodellids, chromerids, and colponemids. Current data suggest all seven are expected to encode EF1A, but we find three genera encode EFL: Colpodella, Voromonas, and the photosynthetic Chromera. Comparing this distribution with the phylogeny of alveolates suggests that EF1A and EFL evolution in alveolates cannot be explained by a simple horizontal gene transfer event or lineage sorting. PMID:25179686

  4. Trim25 Is an RNA-Specific Activator of Lin28a/TuT4-Mediated Uridylation

    PubMed Central

    Choudhury, Nila Roy; Nowak, Jakub S.; Zuo, Juan; Rappsilber, Juri; Spoel, Steven H.; Michlewski, Gracjan

    2014-01-01

    Summary RNA binding proteins have thousands of cellular RNA targets and often exhibit opposite or passive molecular functions. Lin28a is a conserved RNA binding protein involved in pluripotency and tumorigenesis that was previously shown to trigger TuT4-mediated pre-let-7 uridylation, inhibiting its processing and targeting it for degradation. Surprisingly, despite binding to other pre-microRNAs (pre-miRNAs), only pre-let-7 is efficiently uridylated by TuT4. Thus, we hypothesized the existence of substrate-specific cofactors that stimulate Lin28a-mediated pre-let-7 uridylation or restrict its functionality on non-let-7 pre-miRNAs. Through RNA pull-downs coupled with quantitative mass spectrometry, we identified the E3 ligase Trim25 as an RNA-specific cofactor for Lin28a/TuT4-mediated uridylation. We show that Trim25 binds to the conserved terminal loop (CTL) of pre-let-7 and activates TuT4, allowing for more efficient Lin28a-mediated uridylation. These findings reveal that protein-modifying enzymes, only recently shown to bind RNA, can guide the function of canonical ribonucleoprotein (RNP) complexes in cis, thereby providing an additional level of specificity. PMID:25457611

  5. Ca2+-independent Binding of Anionic Phospholipids by Phospholipase C δ1 EF-hand Domain*

    PubMed Central

    Cai, Jingfei; Guo, Su; Lomasney, Jon W.; Roberts, Mary F.

    2013-01-01

    Recombinant EF-hand domain of phospholipase C δ1 has a moderate affinity for anionic phospholipids in the absence of Ca2+ that is driven by interactions of cationic and hydrophobic residues in the first EF-hand sequence. This region of PLC δ1 is missing in the crystal structure. The relative orientation of recombinant EF with respect to the bilayer, established with NMR methods, shows that the N-terminal helix of EF-1 is close to the membrane interface. Specific mutations of EF-1 residues in full-length PLC δ1 reduce enzyme activity but not because of disturbing partitioning of the protein onto vesicles. The reduction in enzymatic activity coupled with vesicle binding studies are consistent with a role for this domain in aiding substrate binding in the active site once the protein is transiently anchored at its target membrane. PMID:24235144

  6. Impaired associative taste learning and abnormal brain activation in kinase-defective eEF2K mice.

    PubMed

    Gildish, Iness; Manor, David; David, Orit; Sharma, Vijendra; Williams, David; Agarwala, Usha; Wang, Xuemin; Kenney, Justin W; Proud, Chris G; Rosenblum, Kobi

    2012-02-24

    Memory consolidation is defined temporally based on pharmacological interventions such as inhibitors of mRNA translation (molecular consolidation) or post-acquisition deactivation of specific brain regions (systems level consolidation). However, the relationship between molecular and systems consolidation are poorly understood. Molecular consolidation mechanisms involved in translation initiation and elongation have previously been studied in the cortex using taste-learning paradigms. For example, the levels of phosphorylation of eukaryotic elongation factor 2 (eEF2) were found to be correlated with taste learning in the gustatory cortex (GC), minutes following learning. In order to isolate the role of the eEF2 phosphorylation state at Thr-56 in both molecular and system consolidation, we analyzed cortical-dependent taste learning in eEF2K (the only known kinase for eEF2) ki mice, which exhibit reduced levels of eEF2 phosphorylation but normal levels of eEF2 and eEF2K. These mice exhibit clear attenuation of cortical-dependent associative, but not of incidental, taste learning. In order to gain a better understanding of the underlying mechanisms, we compared brain activity as measured by MEMRI (manganese-enhanced magnetic resonance imaging) between eEF2K ki mice and WT mice during conditioned taste aversion (CTA) learning and observed clear differences between the two but saw no differences under basal conditions. Our results demonstrate that adequate levels of phosphorylation of eEF2 are essential for cortical-dependent associative learning and suggest that malfunction of memory processing at the systems level underlies this associative memory impairment. © 2012 Cold Spring Harbor Laboratory Press

  7. Identification of two new genes, mukE and mukF, involved in chromosome partitioning in Escherichia coli.

    PubMed

    Yamanaka, K; Ogura, T; Niki, H; Hiraga, S

    1996-02-25

    We have previously reported that the MukB protein is essential for chromosome partitioning in Escherichia coli and that mukB mutants produce anucleate cells and are temperature-sensitive for colony formation. The mukB gene maps at 21 min on the E. coli chromosome and smtA-mukF-mukE-mukB genes might comprise an operon, which is transcribed in a clockwise direction. Here, we report that mukF and mukE null mutants are both temperature-sensitive for colony formation and produce anucleate cells even at the permissive temperature. These phenotypes are the same as those observed in the mukB null mutant. The primary sequence of MukF includes a leucine zipper structure and an acidic domain. Mutational analysis revealed that both are required for MukF function. When the MukF protein was overproduced in the wild-type strain, anucleate cells were produced. In contrast, overproduction of either MukE or MukB did not cause the defect. In null mutants for the mukF, mukE, and mukB genes, the synchronous initiation of chromosome replication was not affected. The mini-F plasmid was as stably maintained in these mutants as in the wild-type strain. These results indicate that the MukF, MukE, and MukB proteins are involved in the chromosome partitioning steps, but are not required for mini-F plasmid partitioning.

  8. The gammaTuRC Nanomachine Mechanism and Future Applications

    NASA Astrophysics Data System (ADS)

    Riehlman, Timothy D.

    The complexity and precision of the eukaryotic cell's cytoskeletal network is unrivaled by any man-made systems, perfected by billions of years of evolution, mastering elegant processes of self-assembly, error correction, and self-repair. Understanding the capabilities of these networks will have important and far reaching applications in human medicine by aiding our understanding of developmental processes, cellular division, and disease mechanisms, and through biomimicry will provide insights for biosynthetic manufacturing at the nanoscale and across scales. My research utilizes cross species techniques from Human to the model organism of Fission Yeast to investigate the structure and mechanisms of the g-tubulin ring complex (gTuRC). The gTuRC is a highly conserved eukaryotic multiprotein complex serving as a microtubule organizing center (MTOC) responsible for microtubule nucleation through templating, regulation of dynamics, and establishment of microtubule polarity. Microtubules are 25 nm diameter dynamic flexible polymers of a/b-tubulin heterodimers that function as scaffolds, force generators, distributors, and intracellular highways. The microtubule cytoskeleton is essential for numerous fundamental cellular processes such as mitotic division of chromosomes and cell division, organelle distribution within the cell, cell signaling, and cell shape. This incredible diversity in functions is made possible in part due to molecular motor Kinesin-like proteins (Klps), which allow expansion into more specialized neural, immune, and ciliated cell functions. Combined, the MTOC, microtubules, and Klps represent ideal microtubule cytoskeleton protein (MCP) modular components for in vitro biomimicry towards generation of adaptable patterned networks for human designed applications. My research investigates the hypothesis that a mechanistic understanding of conserved MTOC gTuRC mechanisms will help us understand dynamic cellular nanomachines and their ability to self

  9. Genetic analysis of the roles of agaA, agaI, and agaS genes in the N-acetyl-D-galactosamine and D-galactosamine catabolic pathways in Escherichia coli strains O157:H7 and C

    PubMed Central

    2013-01-01

    Background The catabolic pathways of N-acetyl-D-galactosamine (Aga) and D-galactosamine (Gam) in E. coli were proposed from bioinformatic analysis of the aga/gam regulon in E. coli K-12 and later from studies using E. coli C. Of the thirteen genes in this cluster, the roles of agaA, agaI, and agaS predicted to code for Aga-6-P-deacetylase, Gam-6-P deaminase/isomerase, and ketose-aldolase isomerase, respectively, have not been experimentally tested. Here we study their roles in Aga and Gam utilization in E. coli O157:H7 and in E. coli C. Results Knockout mutants in agaA, agaI, and agaS were constructed to test their roles in Aga and Gam utilization. Knockout mutants in the N-acetylglucosamine (GlcNAc) pathway genes nagA and nagB coding for GlcNAc-6-P deacetylase and glucosamine-6-P deaminase/isomerase, respectively, and double knockout mutants ΔagaA ΔnagA and ∆agaI ∆nagB were also constructed to investigate if there is any interplay of these enzymes between the Aga/Gam and the GlcNAc pathways. It is shown that Aga utilization was unaffected in ΔagaA mutants but ΔagaA ΔnagA mutants were blocked in Aga and GlcNAc utilization. E. coli C ΔnagA could not grow on GlcNAc but could grow when the aga/gam regulon was constitutively expressed. Complementation of ΔagaA ΔnagA mutants with either agaA or nagA resulted in growth on both Aga and GlcNAc. It was also found that ΔagaI, ΔnagB, and ∆agaI ΔnagB mutants were unaffected in utilization of Aga and Gam. Importantly, ΔagaS mutants were blocked in Aga and Gam utilization. Expression analysis of relevant genes in these strains with different genetic backgrounds by real time RT-PCR supported these observations. Conclusions Aga utilization was not affected in ΔagaA mutants because nagA was expressed and substituted for agaA. Complementation of ΔagaA ΔnagA mutants with either agaA or nagA also showed that both agaA and nagA can substitute for each other. The ∆agaI, ∆nagB, and ∆agaI ∆nagB mutants were

  10. The crystal structure of TrxA(CACA): Insights into the formation of a [2Fe-2S] iron-sulfur cluster in an Escherichia coli thioredoxin mutant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collet, Jean-Francois; Peisach, Daniel; Bardwell, James C.A.

    2010-07-13

    Escherichia coli thioredoxin is a small monomeric protein that reduces disulfide bonds in cytoplasmic proteins. Two cysteine residues present in a conserved CGPC motif are essential for this activity. Recently, we identified mutations of this motif that changed thioredoxin into a homodimer bridged by a [2Fe-2S] iron-sulfur cluster. When exported to the periplasm, these thioredoxin mutants could restore disulfide bond formation in strains lacking the entire periplasmic oxidative pathway. Essential for the assembly of the iron-sulfur was an additional cysteine that replaced the proline at position three of the CGPC motif. We solved the crystalline structure at 2.3 {angstrom} formore » one of these variants, TrxA(CACA). The mutant protein crystallized as a dimer in which the iron-sulfur cluster is replaced by two intermolecular disulfide bonds. The catalytic site, which forms the dimer interface, crystallized in two different conformations. In one of them, the replacement of the CGPC motif by CACA has a dramatic effect on the structure and causes the unraveling of an extended {alpha}-helix. In both conformations, the second cysteine residue of the CACA motif is surface-exposed, which contrasts with wildtype thioredoxin where the second cysteine of the CXXC motif is buried. This exposure of a pair of vicinal cysteine residues apparently allows thioredoxin to acquire an iron-sulfur cofactor at its active site, and thus a new activity and mechanism of action.« less

  11. The crystal structure of TrxA(CACA): Insights into the formation of a [2Fe-2S] iron–sulfur cluster in an Escherichia coli thioredoxin mutant

    PubMed Central

    Collet, Jean-Francois; Peisach, Daniel; Bardwell, James C.A.; Xu, Zhaohui

    2005-01-01

    Escherichia coli thioredoxin is a small monomeric protein that reduces disulfide bonds in cytoplasmic proteins. Two cysteine residues present in a conserved CGPC motif are essential for this activity. Recently, we identified mutations of this motif that changed thioredoxin into a homodimer bridged by a [2Fe-2S] iron–sulfur cluster. When exported to the periplasm, these thioredoxin mutants could restore disulfide bond formation in strains lacking the entire periplasmic oxidative pathway. Essential for the assembly of the iron–sulfur was an additional cysteine that replaced the proline at position three of the CGPC motif. We solved the crystalline structure at 2.3 Å for one of these variants, TrxA(CACA). The mutant protein crystallized as a dimer in which the iron–sulfur cluster is replaced by two intermolecular disulfide bonds. The catalytic site, which forms the dimer interface, crystallized in two different conformations. In one of them, the replacement of the CGPC motif by CACA has a dramatic effect on the structure and causes the unraveling of an extended α-helix. In both conformations, the second cysteine residue of the CACA motif is surface-exposed, which contrasts with wildtype thioredoxin where the second cysteine of the CXXC motif is buried. This exposure of a pair of vicinal cysteine residues apparently allows thioredoxin to acquire an iron–sulfur cofactor at its active site, and thus a new activity and mechanism of action. PMID:15987909

  12. The crystal structure of TrxA(CACA): Insights into the formation of a [2Fe-2S] iron-sulfur cluster in an Escherichia coli thioredoxin mutant.

    PubMed

    Collet, Jean-Francois; Peisach, Daniel; Bardwell, James C A; Xu, Zhaohui

    2005-07-01

    Escherichia coli thioredoxin is a small monomeric protein that reduces disulfide bonds in cytoplasmic proteins. Two cysteine residues present in a conserved CGPC motif are essential for this activity. Recently, we identified mutations of this motif that changed thioredoxin into a homodimer bridged by a [2Fe-2S] iron-sulfur cluster. When exported to the periplasm, these thioredoxin mutants could restore disulfide bond formation in strains lacking the entire periplasmic oxidative pathway. Essential for the assembly of the iron-sulfur was an additional cysteine that replaced the proline at position three of the CGPC motif. We solved the crystalline structure at 2.3 Angstroms for one of these variants, TrxA(CACA). The mutant protein crystallized as a dimer in which the iron-sulfur cluster is replaced by two intermolecular disulfide bonds. The catalytic site, which forms the dimer interface, crystallized in two different conformations. In one of them, the replacement of the CGPC motif by CACA has a dramatic effect on the structure and causes the unraveling of an extended alpha-helix. In both conformations, the second cysteine residue of the CACA motif is surface-exposed, which contrasts with wildtype thioredoxin where the second cysteine of the CXXC motif is buried. This exposure of a pair of vicinal cysteine residues apparently allows thioredoxin to acquire an iron-sulfur cofactor at its active site, and thus a new activity and mechanism of action.

  13. Effects of beta-lactamases and omp mutation on susceptibility to beta-lactam antibiotics in Escherichia coli.

    PubMed Central

    Hiraoka, M; Okamoto, R; Inoue, M; Mitsuhashi, S

    1989-01-01

    Four types of beta-lactamases consisting of a penicillinase type I (TEM-1), a penicillinase type II (OXA-1), a cephalosporinase of Citrobacter freundii, and a cephalosporinase of Proteus vulgaris were introduced into Escherichia coli MC4100 and its omp mutants, MH1160 (MC4100 ompR1) and MH760 (MC4100 ompR2), by transformation. Effects of the combination of the omp mutations and these beta-lactamases on the susceptibility of E. coli strains were studied with 15 beta-lactam antibiotics including cephalosporins, cephamycins, penicillins, imipenem, and aztreonam. The ompR1 mutant, MH1160, lacks OmpF and OmpC, and it showed reduced susceptibility to 11 of the 15 beta-lactam agents. The reduction in susceptibility to cefoxitin, moxalactam, and flomoxef was much greater than reduction in susceptibility to the other agents. When the ompR1 mutant produced the cephalosporinase of C. freundii, the susceptibility of the mutant to 12 of the 15 beta-lactam antibiotics decreased. The reduction in susceptibility of MH1160 to 10 of the 12 agents affected by the enzyme was two- to fourfold greater than that observed in MC4100. Such a synergistic effect was also observed with the cephalosporinase of P. vulgaris and ompR1 mutation against six cephalosporins, moxalactam, and aztreonam. Images PMID:2658786

  14. H-NS Mutation-Mediated CRISPR-Cas Activation Inhibits Phage Release and Toxin Production of Escherichia coli Stx2 Phage Lysogen.

    PubMed

    Fu, Qiang; Li, Shiyu; Wang, Zhaofei; Shan, Wenya; Ma, Jingjiao; Cheng, Yuqiang; Wang, Hengan; Yan, Yaxian; Sun, Jianhe

    2017-01-01

    Shiga toxin-converting bacteriophages (Stx phages) carry the stx gene and convert nonpathogenic bacterial strains into Shiga toxin-producing bacteria. There is limited understanding of the effect that an Escherichia coli ( E. coli ) clustered regularly interspaced short palindromic repeats (CRISPR)-Cas adaptive immune system has on Stx phage lysogen. We investigated heat-stable nucleoid-structuring (H-NS) mutation-mediated CRISPR-Cas activation and its effect on E. coli Stx2 phage lysogen. The Δ hns mutant (MG1655Δ hns ) of the E. coli K-12 strain MG1655 was obtained. The Δ hns mutant lysogen that was generated after Stx phage lysogenic infection had a repressed growth status and showed subdued group behavior, including biofilm formation and swarming motility, in comparison to the wild-type strain. The de-repression effect of the H-NS mutation on CRISPR-Cas activity was then verified. The results showed that cas gene expression was upregulated and the transformation efficiency of the wild-type CRISPR plasmids was decreased, which may indicate activation of the CRISPR-Cas system. Furthermore, the function of CRISPR-Cas on Stx2 phage lysogen was investigated by activating the CRISPR-Cas system, which contains an insertion of the protospacer regions of the Stx2 phage Min27. The phage release and toxin production of four lysogens harboring the engineered CRISPRs were investigated. Notably, in the supernatant of the Δ hns mutant lysogen harboring the Min27 spacer, both the progeny phage release and the toxin production were inhibited after mitomycin C induction. These observations demonstrate that the H-NS mutation-activated CRISPR-Cas system plays a role in modifying the effects of the Stx2 phage lysogen. Our findings indicated that H-NS mutation-mediated CRISPR-Cas activation in E. coli protects bacteria against Stx2 phage lysogeny by inhibiting the phage release and toxin production of the lysogen.

  15. Inferring the palaeoenvironment of ancient bacteria on the basis of resurrected proteins

    NASA Technical Reports Server (NTRS)

    Gaucher, Eric A.; Thomson, J. Michael; Burgan, Michelle F.; Benner, Steven A.

    2003-01-01

    Features of the physical environment surrounding an ancestral organism can be inferred by reconstructing sequences of ancient proteins made by those organisms, resurrecting these proteins in the laboratory, and measuring their properties. Here, we resurrect candidate sequences for elongation factors of the Tu family (EF-Tu) found at ancient nodes in the bacterial evolutionary tree, and measure their activities as a function of temperature. The ancient EF-Tu proteins have temperature optima of 55-65 degrees C. This value seems to be robust with respect to uncertainties in the ancestral reconstruction. This suggests that the ancient bacteria that hosted these particular genes were thermophiles, and neither hyperthermophiles nor mesophiles. This conclusion can be compared and contrasted with inferences drawn from an analysis of the lengths of branches in trees joining proteins from contemporary bacteria, the distribution of thermophily in derived bacterial lineages, the inferred G + C content of ancient ribosomal RNA, and the geological record combined with assumptions concerning molecular clocks. The study illustrates the use of experimental palaeobiochemistry and assumptions about deep phylogenetic relationships between bacteria to explore the character of ancient life.

  16. Facile Construction of Random Gene Mutagenesis Library for Directed Evolution Without the Use of Restriction Enzyme in Escherichia coli.

    PubMed

    Kim, Jae-Eung; Huang, Rui; Chen, Hui; You, Chun; Zhang, Y-H Percival

    2016-09-01

    A foolproof protocol was developed for the construction of mutant DNA library for directed protein evolution. First, a library of linear mutant gene was generated by error-prone PCR or molecular shuffling, and a linear vector backbone was prepared by high-fidelity PCR. Second, the amplified insert and vector fragments were assembled by overlap-extension PCR with a pair of 5'-phosphorylated primers. Third, full-length linear plasmids with phosphorylated 5'-ends were self-ligated with T4 ligase, yielding circular plasmids encoding mutant variants suitable for high-efficiency transformation. Self-made competent Escherichia coli BL21(DE3) showed a transformation efficiency of 2.4 × 10(5) cfu/µg of the self-ligated circular plasmid. Using this method, three mutants of mCherry fluorescent protein were found to alter their colors and fluorescent intensities under visible and UV lights, respectively. Also, one mutant of 6-phosphorogluconate dehydrogenase from a thermophilic bacterium Moorella thermoacetica was found to show the 3.5-fold improved catalytic efficiency (kcat /Km ) on NAD(+) as compared to the wild-type. This protocol is DNA-sequence independent, and does not require restriction enzymes, special E. coli host, or labor-intensive optimization. In addition, this protocol can be used for subcloning the relatively long DNA sequences into any position of plasmids. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Genetic analysis of an Escherichia coli syndrome.

    PubMed

    Lennette, E T; Apirion, D

    1971-12-01

    A mutant strain of Escherichia coli that fails to recover from prolonged (72 hr) starvation also fails to grow at 43 C. Extracts of this mutant strain show an increased ribonuclease II activity as compared to extracts of the parental strain, and stable ribonucleic acid is degraded to a larger extent in this strain during starvation. Ts(+) transductants and revertants were tested for all the above-mentioned phenotypes. All the Ts(+) transductants and revertants tested behaved like the Ts(+) parental strain, which suggests that all the observed phenotypes are caused by a single sts (starvation-temperature sensitivity) mutation. The reversion rate from sts(-) to sts(+) is rather low but is within the range of reversion rates for other single-site mutations. Three-point transduction crosses located this sts mutation between the ilv and rbs genes. The properties of sts(+)/sts(-) merozygotes suggested that the Ts(-) phenotype of this mutation is recessive.

  18. Inhibition of cell division in hupA hupB mutant bacteria lacking HU protein.

    PubMed Central

    Dri, A M; Rouviere-Yaniv, J; Moreau, P L

    1991-01-01

    Escherichia coli hupA hypB double mutants that lack HU protein have severe cellular defects in cell division, DNA folding, and DNA partitioning. Here we show that the sfiA11 mutation, which alters the SfiA cell division inhibitor, reduces filamentation and production of anucleate cells in AB1157 hupA hupB strains. However, lexA3(Ind-) and sfiB(ftsZ)114 mutations, which normally counteract the effect of the SfiA inhibitor, could not restore a normal morphology to hupA hupB mutant bacteria. The LexA repressor, which controls the expression of the sfiA gene, was present in hupA hupB mutant bacteria in concentrations half of those of the parent bacteria, but this decrease was independent of the specific cleavage of the LexA repressor by activated RecA protein. One possibility to account for the filamentous morphology of hupA hupB mutant bacteria is that the lack of HU protein alters the expression of specific genes, such as lexA and fts cell division genes. Images PMID:2019558

  19. Reduction and removal of heptavalent technetium from solution by Escherichia coli.

    PubMed

    Lloyd, J R; Cole, J A; Macaskie, L E

    1997-03-01

    Anaerobic, but not aerobic, cultures of Escherichia coli accumulated Tc(VII) and reduced it to a black insoluble precipitate. Tc was the predominant element detected when the precipitate was analyzed by proton-induced X-ray emission. Electron microscopy in combination with energy-dispersive X-ray analysis showed that the site of Tc deposition was intracellular. It is proposed that Tc precipitation was a result of enzymatically mediated reduction of Tc(VII) to an insoluble oxide. Formate was an effective electron donor for Tc(VII) reduction which could be replaced by pyruvate, glucose, or glycerol but not by acetate, lactate, succinate, or ethanol. Mutants defective in the synthesis of the transcription factor FNR, in molybdenum cofactor (molybdopterin guanine dinucleotide [MGD]) synthesis, or in formate dehydrogenase H synthesis were all defective in Tc(VII) reduction, implicating a role for the formate hydrogenlyase complex in Tc(VII) reduction. The following observations confirmed that the hydrogenase III (Hyc) component of formate hydrogenlyase in both essential and sufficient for Tc(VII) reduction: (i) dihydrogen could replace formate as an effective electron donor for Tc(VII) reduction by wild-type bacteria and mutants defective in MGD synthesis; (ii) the inability of fnr mutants to reduce Tc(VII) can be suppressed phenotypically by growth with 250 microM Ni2+ and formate; (iii) Tc(VII) reduction is defective in a hyc mutant; (iv) the ability to reduce Tc(VII) was repressed during anaerobic growth in the presence of nitrate, but this repression was counteracted by the addition of formate to the growth medium; (v) H2, but not formate, was an effective electron donor for a Sel- mutant which is unable to incorporate selenocysteine into any of the three known formate dehydrogenases of E. coli. This appears to be the first report of Hyc functioning as an H2-oxidizing hydrogenase or as a dissimilatory metal ion reductase in enteric bacteria.

  20. Influence of activated carbon preloading by EfOM fractions from treated wastewater on adsorption of pharmaceutically active compounds.

    PubMed

    Hu, Jingyi; Shang, Ran; Heijman, Bas; Rietveld, Luuk

    2016-05-01

    In this study, the preloading effects of different fractions of wastewater effluent organic matter (EfOM) on the adsorption of trace-level pharmaceutically active compounds (PhACs) onto granular activated carbon (GAC) were investigated. A nanofiltration (NF) membrane was employed to separate the EfOM by size, and two GACs with distinct pore structures were chosen for comparison. The results showed that preloading with EfOM substantially decreased PhAC uptake of the GACs; however, comparable PhAC adsorption capacities were achieved on GACs preloaded by feed EfOM and the NF-permeating EfOM. This indicates that: (1) the NF-rejected, larger EfOM molecules with an expectation to block the PhAC adsorption pores exerted little impact on the adsorbability of PhACs; (2) the smaller EfOM molecules present in the NF permeate contributed mainly to the decrease in PhAC uptake, mostly due to site competition. Of the two examined GACs, the wide pore-size-distributed GAC was found to be more susceptible to EfOM preloading than the microporous GAC. Furthermore, among the fourteen investigated PhACs, the negatively charged hydrophilic PhACs were generally subjected to a greater EfOM preloading impact. Copyright © 2016 Elsevier Ltd. All rights reserved.