Science.gov

Sample records for coli endotoxin lipopolysaccharide

  1. Lipopolysaccharide Endotoxins

    PubMed Central

    Raetz, Christian R. H.; Whitfield, Chris

    2008-01-01

    Summary Since lipopolysaccharide endotoxins of Gram-negative bacteria were last reviewed in this series in 1990, much has been learned about the assembly and signaling functions of these remarkable glycoconjugates. Lipopolysaccharides typically consist of a hydrophobic domain known as lipid A (or endotoxin), a non-repeating “core” oligosaccharide, and a distal polysaccharide (or O-antigen). The flood of recent genomic data has made it possible to study lipopolysaccharide assembly in diverse Gram-negative bacteria, many of which are human or plant pathogens, and to create mutants or hybrid constructs with novel properties. Unexpectedly, key genes for lipid A biosynthesis have also been found in higher plants, indicating that eucaryotic lipid A-like molecules may exist. The carbohydrate diversity of lipopolysaccharides is better appreciated now than ten years ago, but much remains to be learned about function. Sequence comparisons suggest that extensive lateral transfer of genes for the assembly of O-antigens has occurred among bacteria. The most significant finding in the field of endotoxin biology since 1990 has been the identification of the plasma membrane protein TLR4 as the lipid A signaling receptor of animal cells. The latter belongs to a family of innate immunity receptors, all of which possess a large extracellular domain of leucine-rich repeats, a single trans-membrane segment and a smaller cytoplasmic signaling region that engages the adaptor protein MyD88. The expanding knowledge of TLR4 specificity and its downstream signaling pathways should provide new opportunities for blocking the inflammatory side effects of sepsis. Future progress will require insights into lipopolysaccharide-protein recognition at the atomic level, greater understanding of intra- and inter-cellular lipopolysaccharide trafficking, and incisive biological approaches that combine the tools of bacterial and animal genetics. PMID:12045108

  2. Clearance of gut-derived endotoxins by the liver. Release and modification of 3H, 14C-lipopolysaccharide by isolated rat Kupffer cells.

    PubMed

    Fox, E S; Thomas, P; Broitman, S A

    1989-02-01

    This paper describes experiments that were designed to study postuptake modification by isolated rat Kupffer cells of a 3H,14C-biosynthetically labeled endotoxin purified from Escherichia coli J5 as assessed by cesium chloride isopyknic density gradients and gel permeation chromatography. Pulse-chase experiments demonstrated that half as much of the endotoxin's lipid, relative to polysaccharide, was released by the cells. Density gradients revealed that native endotoxin equilibrated at a density of 1.412 g/ml, whereas endotoxin retained by Kupffer cells equilibrated at densities of 1.274 and 1.295 g/ml. Gel permeation chromatography indicated that endotoxin retained by Kupffer cells formed a larger micelle than either exocytosed or native endotoxin. Endotoxin exocytosed by Kupffer cells fractionated into two peaks, one with a smaller and one with a larger apparent micelle size than native endotoxin but both smaller than the retained lipopolysaccharide. Both systems indicated that the Kupffer cell modified endotoxin by enriching the lipid content of the molecule and shortening the length of the O-antigen. Thus, the Kuffer cell, in its mode of action on the endotoxin molecule, appears to play a prominent role in the initial phase of a biochemical process for endotoxin clearance and detoxification. PMID:2642878

  3. Inactivation of Escherichia coli endotoxin by soft hydrothermal processing.

    PubMed

    Miyamoto, Toru; Okano, Shinya; Kasai, Noriyuki

    2009-08-01

    Bacterial endotoxins, also known as lipopolysaccharides, are a fever-producing by-product of gram-negative bacteria commonly known as pyrogens. It is essential to remove endotoxins from parenteral preparations since they have multiple injurious biological activities. Because of their strong heat resistance (e.g., requiring dry-heat sterilization at 250 degrees C for 30 min) and the formation of various supramolecular aggregates, depyrogenation is more difficult than sterilization. We report here that soft hydrothermal processing, which has many advantages in safety and cost efficiency, is sufficient to assure complete depyrogenation by the inactivation of endotoxins. The endotoxin concentration in a sample was measured by using a chromogenic limulus method with an endotoxin-specific limulus reagent. The endotoxin concentration was calculated from a standard curve obtained using a serial dilution of a standard solution. We show that endotoxins were completely inactivated by soft hydrothermal processing at 130 degrees C for 60 min or at 140 degrees C for 30 min in the presence of a high steam saturation ratio or with a flow system. Moreover, it is easy to remove endotoxins from water by soft hydrothermal processing similarly at 130 degrees C for 60 min or at 140 degrees C for 30 min, without any requirement for ultrafiltration, nonselective adsorption with a hydrophobic adsorbent, or an anion exchanger. These findings indicate that soft hydrothermal processing, applied in the presence of a high steam saturation ratio or with a flow system, can inactivate endotoxins and may be useful for the depyrogenation of parenterals, including end products and medical devices that cannot be exposed to the high temperatures of dry heat treatments. PMID:19502435

  4. Kdo2-Lipid A of Escherichia coli, a defined endotoxin that activates macrophages via TLR-4.

    PubMed

    Raetz, Christian R H; Garrett, Teresa A; Reynolds, C Michael; Shaw, Walter A; Moore, Jeff D; Smith, Dale C; Ribeiro, Anthony A; Murphy, Robert C; Ulevitch, Richard J; Fearns, Colleen; Reichart, Donna; Glass, Christopher K; Benner, Chris; Subramaniam, Shankar; Harkewicz, Richard; Bowers-Gentry, Rebecca C; Buczynski, Matthew W; Cooper, Jennifer A; Deems, Raymond A; Dennis, Edward A

    2006-05-01

    The LIPID MAPS Consortium (www.lipidmaps.org) is developing comprehensive procedures for identifying all lipids of the macrophage, following activation by endotoxin. The goal is to quantify temporal and spatial changes in lipids that occur with cellular metabolism and to develop bioinformatic approaches that establish dynamic lipid networks. To achieve these aims, an endotoxin of the highest possible analytical specification is crucial. We now report a large-scale preparation of 3-deoxy-D-manno-octulosonic acid (Kdo)(2)-Lipid A, a nearly homogeneous Re lipopolysaccharide (LPS) sub-structure with endotoxin activity equal to LPS. Kdo(2)-Lipid A was extracted from 2 kg cell paste of a heptose-deficient Escherichia coli mutant. It was purified by chromatography on silica, DEAE-cellulose, and C18 reverse-phase resin. Structure and purity were evaluated by electrospray ionization/mass spectrometry, liquid chromatography/mass spectrometry and (1)H-NMR. Its bioactivity was compared with LPS in RAW 264.7 cells and bone marrow macrophages from wild-type and toll-like receptor 4 (TLR-4)-deficient mice. Cytokine and eicosanoid production, in conjunction with gene expression profiling, were employed as readouts. Kdo(2)-Lipid A is comparable to LPS by these criteria. Its activity is reduced by >10(3) in cells from TLR-4-deficient mice. The purity of Kdo(2)-Lipid A should facilitate structural analysis of complexes with receptors like TLR-4/MD2. PMID:16479018

  5. The roots of Nardostachys jatamansi inhibits lipopolysaccharide-induced endotoxin shock.

    PubMed

    Bae, Gi-Sang; Seo, Sang-Wan; Kim, Min-Sun; Park, Kyoung-Chel; Koo, Bon Soon; Jung, Won-Seok; Cho, Gil-Hwan; Oh, Hyun Cheol; Yun, Seung-Won; Kim, Jong-Jin; Kim, Sung Gyu; Hwang, Sung-Yeon; Song, Ho-Joon; Park, Sung-Joo

    2011-01-01

    Nardostachys jatamansi (NJ) has been used in the treatment of inflammatory diseases. However, it is not clear how NJ produces anti-inflammatory effects. In the present study, using an experimental model of lipopolysaccharide (LPS)-induced endotoxin shock, the protective effects and mechanisms of action of NJ were investigated. The water extract of roots of NJ was administrated to mice orally (1, 5, and 10mg/kg) 1h after or before LPS challenge. The administration of NJ inhibited LPS-induced endotoxin shock and the production of inflammatory mediators, such as interleukin (IL)-1?, IL-6, tumor necrosis factor (TNF)-?, and interferon (IFN)-?/?. Murine peritoneal macrophages were used to determine the production of inflammatory mediators. In peritoneal macrophages, NJ also inhibited LPS-induced production of inflammatory mediators, such as IL-1?, IL-6, TNF-?, and IFN-?/?. In addition, NJ reduced the activation of mitogen-activated protein kinases (MAPKs) and the level of expression of interferon regulatory factor (IRF)-1 and IRF-7 mRNA. Furthermore, post-treatment with NJ reduced LPS-induced endotoxin shock and the production of inflammatory mediators. These results suggest that NJ inhibits endotoxin shock by inhibiting the production of IL-1?, IL-6, TNF-?, and IFN-?/? through the inhibition of MAPKs activation and IRF induction. PMID:20799070

  6. Immunomodulation of C3H/HeJ cells by endotoxin associated protein and lipopolysaccharide endotoxin.

    PubMed

    Sultzer, B M; Bandekar, J; Castagna, R; Abu-Lawi, K

    1992-01-01

    Protein kinase C plays a vital role in the activation of C3H/HeJ B lymphocytes by endotoxin associated protein; however, it is unlikely that G proteins are involved in the early signals stimulated by EP. On the other hand, LPS suppresses C3H/HeJ B cell DNA synthesis induced by EP which may be the result of PKC down regulation. LPS inhibits C3H/HeJ B cells from progressing through the G1 phase of the cell cycle blocking RNA synthesis within the first 12 hr after the cells are stimulated. Finally, this inhibition extends to activation of the arachidonic acid metabolism in C3H/HeJ macrophages and T cell proliferation to a limited extent. PMID:1414604

  7. Lactoferrin Inhibits the Endotoxin Interaction with CD14 by Competition with the Lipopolysaccharide-Binding Protein

    PubMed Central

    Elass-Rochard, Elisabeth; Legrand, Dominique; Salmon, Valerie; Roseanu, Anca; Trif, Mihaela; Tobias, Peter S.; Mazurier, Joel; Spik, Genevieve

    1998-01-01

    Human lactoferrin (hLf), a glycoprotein released from neutrophil granules during inflammation, and the lipopolysaccharide (LPS)-binding protein (LBP), an acute-phase serum protein, are known to bind to the lipid A of LPS. The LPS-binding sites are located in the N-terminal regions of both proteins, at amino acid residues 28 to 34 of hLf and 91 to 108 of LBP. Both of these proteins modulate endotoxin activities, but they possess biologically antagonistic properties. In this study, we have investigated the competition between hLf and recombinant human LBP (rhLBP) for the binding of Escherichia coli 055:B5 LPS to the differentiated monocytic THP-1 cell line. Our studies revealed that hLf prevented the rhLBP-mediated binding of LPS to the CD14 receptor on cells. Maximal inhibition of LPS-cell interactions by hLf was raised when both hLf and rhLBP were simultaneously added to LPS or when hLf and LPS were mixed with cells 30 min prior to the incubation with rhLBP. However, when hLf was added 30 min after the interaction of rhLBP with LPS, the binding of the rhLPS-LBP complex to CD14 could not be reversed. These observations indicate that hLf competes with rhLBP for the LPS binding and therefore interferes with the interaction of LPS with CD14. Furthermore, experiments involving competitive binding of the rhLBP-LPS complex to cells with two recombinant mutated hLfs show that in addition to residues 28 to 34, another basic cluster which contains residues 1 to 5 of hLf competes for the binding to LPS. Basic sequences homologous to residues 28 to 34 of hLf were evidenced on LPS-binding proteins such as LBP, bactericidal/permeability-increasing protein, and Limulus anti-LPS factor. PMID:9453600

  8. Effects of propranolol pretreatment on cerebral blood flow, oxygen uptake and catecholamines during metabolic acidosis following E. coli endotoxin in dogs.

    PubMed

    Westerlind, A; Larsson, L E; Hggendal, J; Ekstrm-Jodal, B

    1995-05-01

    After an intravenous injection of E. coli endotoxin in dogs a decrease in cerebral blood flow (CBF) and an increase in cerebral metabolic rate of oxygen (CMRo2) have been shown to occur. In metabolic acidosis following endotoxin CMRo2 increased with decreasing pH. A possible explanation for the increased CMRo2 after endotoxin and metabolic acidosis seems to be a damage of the blood-brain barrier (BBB) by endotoxin. This gives possibilities for a leakage of hydrogen ions and circulating monoamines from the blood to the brain, thus affecting the cerebral blood flow and metabolism. The effects of an E. coli endotoxin injection on CBF and CMRo2 during metabolic acidosis and beta-adrenoceptor blockade were studied in eight anaesthetized dogs. All the dogs were pretreated with propranolol (PPL), per os 12.5 mg.kg-1 twice a day for one week. Metabolic acidosis (pH 7.01-7.30) was achieved by an intravenous infusion of hydrochloric acid. Endotoxin E. coli lipopolysaccharide O 111:B 4 was given as an intravenous injection of 1 mg.kg-1 bodyweight over a 5 min period. Another five animals, published earlier, with the same experimental protocol but without PPL, constituted a control group. After endotoxin no increase in CMRo2 or CBF was observed with increasing acidosis in the PPL-group. In the control group, after endotoxin, both CBF and CMRo2 increased with decreasing pH. This resulted in a significant difference in both CBF and CMRo2 between the groups in the pH range 7.01-7.15. The present results indicate that the increase in CMRo2 and CBF with metabolic acidodis in endotoxinaemia is mediated via beta-adrenoceptors. PMID:7676780

  9. Synthesis, characterization and immunological properties of Escherichia coli 0157:H7 lipopolysaccharide- diphtheria toxoid conjugate vaccine

    PubMed Central

    Rokhsartalab-Azar, Shadi; Shapouri, Reza; Rahnema, Mehdi; Najafzadeh, Faezeh

    2015-01-01

    Background and Objective: Escherichia coli O157:H7, an emerging pathogen, causes severe enteritis and the extraintestinal complication of hemolytic-uremic syndrome. The goal of this study was to evaluate the conjugate of E. coli O157: H7 lipopolysaccharide (LPS) with diphtheria toxoid (DT) as a candidate vaccine in mice model. Material and Methods: LPS from E. coli O157:H7 was extracted by hot phenol method and then detoxified. Purified LPS was coupled to DT with adipic acid dihydrazide (ADH) as a spacer and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC) as a linker. The coupling molar ratio of LPS to DT was 3:1. Clinical evaluation of E. coli O157:H7 LPS-DT conjugate was also performed. Results: The conjugate was devoid of endotoxin activity and indicated 0.125 U/ml of D-LPS. Mice immunization with D-LPS DT conjugate elicited fourfold higher IgG antibody in comparison to D-LPS. Also, in vivo protection of mice with conjugate provided high protection against the LD50 of E. coli O157:H7, which indicated a good correlation with the IgG titer. Conclusion: Our results showed that the suggested vaccine composed of E. coli O157:H7 LPS and DT had a significant potential to protect against E. coli infections. PMID:26668702

  10. Delayed protection against ischaemia-induced ventricular arrhythmias and infarct size limitation by the prior administration of Escherichia coli endotoxin.

    PubMed Central

    Song, W.; Furman, B. L.; Parratt, J. R.

    1996-01-01

    1. Bacterial endotoxin (lipopolysaccharide derived from Escherichia coli) was injected intraperitoneally in conscious rats in doses ranging from 0.5 to 2.5 mg kg-1. At various times afterwards the animals were anaesthetized and subjected to a 30 min period of left coronary artery occlusion. 2. Under these conditions the severity of ventricular arrhythmias was markedly suppressed, in comparison with saline-injected controls, but this was particularly marked with the higher doses (1.5 and 2.5 mg kg-1); the number of ventricular premature beats was reduced from 1687 +/- 227 over the 0.5 h coronary artery occlusion period to 190 +/- 46 in those rats administered 2.5 mg kg-1 endotoxin 8 h previously (P < 0.05). The duration of ventricular tachycardia was also significantly reduced (138 +/- 26 s to 8.9 +/- 4.2 s; P < 0.01) and there was a reduction in the incidence of ventricular fibrillation (from 56% to 10%). 3. The time course of this protection was studied following the administration of a single dose of 2.5 mg kg-1 of endotoxin by anaesthetizing rats 4, 8 or 24 h later. Protection was apparent at each time but was particularly marked at 8 h. 4. No rat given the highest dose of endotoxin (32 in all) died as a result of ventricular fibrillation, or from any other cause, during an occlusion, in contrast to a 26% mortality in the controls (P < 0.01). 5. Infarct size, measured following a 30 min period of coronary artery occlusion followed by a 3 h reperfusion period, was reduced both 8 and 24 h after the administration of 2.5 mg kg-1 endotoxin (reductions of 24.3 and 23.1% respectively; P < 0.05). Endotoxin had no significant effect on the area at risk. 6. The beneficial effects of endotoxin on infarct size and on ventricular arrhythmias were markedly attenuated by the prior administration of dexamethasone, 3 mg kg-1 given 1 h prior to endotoxin administration. Dexamethasone itself reduced infarct size (P < 0.05) but had no direct effect on arrhythmia severity following coronary artery occlusion. 7. The mechanisms of this "cross-tolerance' induced by bacterial endotoxin against ischaemia-reperfusion injury remain to be elucidated but the most likely mechanisms appear to be the induction of protective enzymes or proteins (e.g. nitric oxide synthase, cyclo-oxygenase (COX) 2) probably mediated by cytokine release. PMID:8864556

  11. Endotoxin Nanovesicles: Hydrophilic Gold Nanodots Control Supramolecular Lipopolysaccharide Assembly for Modulating Immunological Responses.

    PubMed

    Luo, Yueh-Hsia; Wu, Zong Wei; Tsai, Hui-Ti; Lin, Shu-Yi; Lin, Pinpin

    2015-10-14

    In this study, we sought to control the assembly of an endotoxin known as the biologically supramolecular lipopolysaccharide (LPS, which consists of three portions: an O antigen, a core carbohydrate, and a lipid A molecule) in order to modulate immunological responses in a manner that has the potential for utilization in vaccine development. Changing the structures of LPS aggregates from lamellas to specific nonlamellas (i.e., cubosomes and hexosomes) can dramatically enhance the strength of LPS in causing inflammatory responses, leading to highly active responses. In order to control the formation of cubosome-free and hexosome-free nonlamellas, we designed a simple strategy based on the use of hydrophilic gold nanodots (AuNDs) to control LPS assembly to facilitate the formation of stable endotoxin nanovesicles, which are stable precursors of cubosomes and hexosomes with specific immunological effects. Structurally, the wall thicknesses of these nanovesicles are exactly twice the lengths of a single LPS molecule, indicating that the LPS molecules adopt a tail-to-tail arrangement (with the lipid A portions acting as the tail domain). The involvement of the hydrophilic AuNDs to laterally link polar domains of LPS can result in the progressive extension of an endotoxically active zone of lipid A assembly, leading to the eventual formation of large-size nanovesicles. Our results showed that endotoxin nanovesicles with such dense lipid A units can elicit the stronger inflammatory gene expressions, including interleukin 6 (IL-6), IL-1A, TNF-?, C-X-C chemokine ligand (CXCL) 1, 2, and 11, which have characteristics of T-helper 1 adjuvants. These findings provide evidence that the concept of manipulating the surface hydrophilicity of AuNDs to control LPS assembly in order to avoid the formation of highly active cubosomes and hexosomes, and thereby modulate immunological responses appropriately, could prove useful in vaccine development. PMID:26339979

  12. Anti-Endotoxin Agents. 2. Pilot High-Throughput Screening for Novel Lipopolysaccharide-Recognizing Motifs in Small Molecules

    PubMed Central

    Wood, Stewart J.; Miller, Kelly A.; David, Sunil A.

    2005-01-01

    Lipopolysaccharides (LPS), otherwise termed endotoxins, are an integral part of the outer leaflet of the outer-membrane of Gram-negative bacteria. Lipopolysaccharides play a pivotal role in the pathogenesis of Septic Shock, a major cause of mortality in the critically ill patient, worldwide. The sequestration of circulatory endotoxin may be a viable therapeutic strategy for the prophylaxis and treatment of Gram-negative sepsis. We have earlier shown that the pharmacophore necessary for small molecules to bind LPS is simple, comprising of two protonatable cationic functions separated by about 15, permitting the simultaneous interaction with the negatively charged phosphates on lipid A, the toxically active center of endotoxin. In this report, we employ high-throughput screening methods, using a novel fluorescent probe displacement method. Searches in three-dimensional structure databases yielded about ~ 4000 commercially available small molecules, each possessing two cationic functions spaced approximately 15 apart. Approximately 400 such compounds have been screened in an effort to validate the method by which high-affinity endotoxin binders can be identified. We show that the IC50 values that are obtained from the fluorescence-based primary screen are correlated both to the enthalpy of binding, as measured by isothermal titration calorimetry, as well as to biological potency in vitro assays. By performing rapid toxicity screens in tandem with the bioassays, lead compounds of interest can be easily identified for further systematic structural modifications and SAR studies. PMID:15578935

  13. Effects of arterial hypoxia and beta-adrenoceptor blockade on cerebral blood flow and oxygen uptake following E. coli endotoxin in dogs.

    PubMed

    Westerlind, A; Larsson, L E; Hggendal, J; Ekstr om-Jodal, B

    1995-05-01

    Earlier studies in normoxia have shown that an endotoxin injection in dogs leads to an increase in cerebral metabolic rate of oxygen (CMRo2), a decrease in cerebral blood flow (CBF) and increased concentrations of monoamines in blood and cerebrospinal fluid (CSF). In animals pretreated with propranolol (PPL) the CMRo2 increase was abolished and thus beta-adrenoceptor mediated. Arterial hypoxia normally increases CBF without any influence on CMRo2. The aim of this study was to investigate the effects of moderate arterial hypoxia on CBF, CMRo2 and catecholamine concentrations in blood and CSF after endotoxin with and without pretreatment with PPL. Three groups of dogs were studied. Group 1: Six animals were subjected to arterial hypoxia without any other intervention. Group 2: Six animals were given an endotoxin injection (E. coli lipopolysaccharide O 111: B 4), before the induction of hypoxia. Group 3: Eight animals were pretreated with PPL per os, 12.5 mg.kg-1 twice a day for one week before the experiments, and the effects of arterial hypoxia were studied both before and after an intravenous injection of endotoxin. Two levels of hypoxia were studied; oxygen saturation in arterial blood aiming at 75 and 50%. Endotoxin was given intravenously in a dose of 1 mg.kg-1 bodyweight over a 5 minute period. After an endotoxin injection, the response to arterial hypoxia was an increase in CMRo2, in contrast to the unchanged CMRo2 without endotoxin. After pretreatment with PPL the increase in CMRo2 after endotoxin was prevented. The CBF reaction to hypoxia was uniformly an increase.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7676781

  14. Capture of lipopolysaccharide (endotoxin) by the blood clot: a comparative study.

    PubMed

    Armstrong, Margaret T; Rickles, Frederick R; Armstrong, Peter B

    2013-01-01

    In vertebrates and arthropods, blood clotting involves the establishment of a plug of aggregated thrombocytes (the cellular clot) and an extracellular fibrillar clot formed by the polymerization of the structural protein of the clot, which is fibrin in mammals, plasma lipoprotein in crustaceans, and coagulin in the horseshoe crab, Limulus polyphemus. Both elements of the clot function to staunch bleeding. Additionally, the extracellular clot functions as an agent of the innate immune system by providing a passive anti-microbial barrier and microbial entrapment device, which functions directly at the site of wounds to the integument. Here we show that, in addition to these passive functions in immunity, the plasma lipoprotein clot of lobster, the coagulin clot of Limulus, and both the platelet thrombus and the fibrin clot of mammals (human, mouse) operate to capture lipopolysaccharide (LPS, endotoxin). The lipid A core of LPS is the principal agent of gram-negative septicemia, which is responsible for more than 100,000 human deaths annually in the United States and is similarly toxic to arthropods. Quantification using the Limulus Amebocyte Lysate (LAL) test shows that clots capture significant quantities of LPS and fluorescent-labeled LPS can be seen by microscopy to decorate the clot fibrils. Thrombi generated in the living mouse accumulate LPS in vivo. It is suggested that capture of LPS released from gram-negative bacteria entrapped by the blood clot operates to protect against the disease that might be caused by its systemic dispersal. PMID:24282521

  15. Capture of Lipopolysaccharide (Endotoxin) by the Blood Clot: A Comparative Study

    PubMed Central

    Armstrong, Margaret T.; Rickles, Frederick R.; Armstrong, Peter B.

    2013-01-01

    In vertebrates and arthropods, blood clotting involves the establishment of a plug of aggregated thrombocytes (the cellular clot) and an extracellular fibrillar clot formed by the polymerization of the structural protein of the clot, which is fibrin in mammals, plasma lipoprotein in crustaceans, and coagulin in the horseshoe crab, Limulus polyphemus. Both elements of the clot function to staunch bleeding. Additionally, the extracellular clot functions as an agent of the innate immune system by providing a passive anti-microbial barrier and microbial entrapment device, which functions directly at the site of wounds to the integument. Here we show that, in addition to these passive functions in immunity, the plasma lipoprotein clot of lobster, the coagulin clot of Limulus, and both the platelet thrombus and the fibrin clot of mammals (human, mouse) operate to capture lipopolysaccharide (LPS, endotoxin). The lipid A core of LPS is the principal agent of gram-negative septicemia, which is responsible for more than 100,000 human deaths annually in the United States and is similarly toxic to arthropods. Quantification using the Limulus Amebocyte Lysate (LAL) test shows that clots capture significant quantities of LPS and fluorescent-labeled LPS can be seen by microscopy to decorate the clot fibrils. Thrombi generated in the living mouse accumulate LPS in vivo. It is suggested that capture of LPS released from gram-negative bacteria entrapped by the blood clot operates to protect against the disease that might be caused by its systemic dispersal. PMID:24282521

  16. Adrenoceptor hyporeactivity is responsible for Escherichia coli endotoxin-induced acute vascular dysfunction in humans.

    PubMed

    Pleiner, Johannes; Heere-Ress, Elisabeth; Langenberger, Herbert; Sieder, Anna E; Bayerle-Eder, Michaela; Mittermayer, Fritz; Fuchsjger-Mayrl, Gabriele; Bhm, Johannes; Jansen, Burkhard; Wolzt, Michael

    2002-01-01

    Impaired response to catecholamines contributes to the altered hemodynamics in sepsis, which has been attributed to excessive NO formation. We have studied the systemic hemodynamic and local forearm responses and inducible NO synthase (iNOS) expression during experimental endotoxemia in humans. Escherichia coli endotoxin (lipopolysaccharide [LPS]) was administered at doses of 1 or 2 ng/kg to healthy volunteers. In 10 subjects, the systemic pressor effect of phenylephrine was assessed before and after the administration of LPS. In 9 further subjects, forearm blood flow responses to intra-arterial noradrenaline, acetylcholine, glyceryl trinitrate, and N(G)-monomethyl-L-arginine (L-NMMA) were studied at baseline and after LPS administration. Peripheral blood was collected and analyzed for iNOS mRNA and protein. Four hours after LPS, the response of systolic blood pressure (P<0.0005) and heart rate (P<0.05) to phenylephrine was significantly reduced. In the forearm, noradrenaline-induced vasoconstriction was also reduced by approximately 50% (P<0.01), but L-NMMA responsiveness was unchanged. iNOS mRNA or protein was not increased. Marked vascular adrenoceptor hyporeactivity is detectable in the absence of increased NO activity or iNOS expression in endotoxemia, arguing against major involvement of vascular iNOS activity in the acute systemic vasodilation to LPS. PMID:11788467

  17. Atypical antipsychotic paliperidone prevents behavioral deficits in mice prenatally challenged with bacterial endotoxin lipopolysaccharide.

    PubMed

    Kumar, Umesh; Mohanty, Banalata

    2015-01-15

    Studies on animal models provide enough evidences that old age appearance of psychosis on exposures to various insults during critical period of brain development could be prevented by antipsychotic drug treatment. Presently, gestational intervention of the atypical antipsychotic paliperidone (PAL) is done along with the exposure of bacterial endotoxin lipopolysaccharide/LPS hypothesizing that the drug would counteract and/or prevent the immune activation-induced behavioral deficits in mice. Effect of the PAL (0.05 mg/kg; GD 15-PND 28) in preventing reflex, sensorimotor and anxiety deficits in prenatally LPS-challenged (800 µg/kg; GD 15 and GD 17) mice was assessed at three different life stages: neonatal (PND 4-PND 14), adolescence (PND 35) and at adulthood (PND 85). LPS-induced behavioral deficits were recognizable even at neonatal and adolescence stages, though more pronounced at adulthood. In only PAL-treated group few behavioral deficits though observed both at neonatal and adult stages but less prominent than LPS group were found. PAL co-treatment prevented the abnormalities in nest-seeking behavior in neonates, anxiety abnormalities at adolescence and adulthood but not the sensorimotor impairment. The drug might have maintained the stress homeostasis to counteract the behavioral abnormalities as LPS-induced hypercorticosteronemia was prevented on PAL co-treatment. In view of the in utero exposure, comparatively low drug dose was selected. Though efficacy has been predicted, the dose was not effective to prevent all psychopathological impairments. Considering the wider objectives, it was not possible to conduct multi dose study simultaneously. Our ongoing study with higher dose may predict the effective PAL dose in prevention of psychiatric illness. PMID:25240711

  18. Comparison of the limulus amebocyte lysate test and gas chromatography-mass spectrometry for measuring lipopolysaccharides (endotoxins) in airborne dust from poultry-processing industries.

    PubMed Central

    Sonesson, A; Larsson, L; Schtz, A; Hagmar, L; Hallberg, T

    1990-01-01

    The lipopolysaccharide (endotoxin) content in airborne dust samples from three different poultry slaughterhouses was determined with both the chromogenic Limulus amebocyte lysate assay and gas chromatography-mass spectrometry analysis of lipopolysaccharide-derived 3-hydroxy fatty acids. Gram-negative cell walls were also measured by using two-dimensional gas chromatography/electron-capture analysis of diaminopimelic acid originating from the peptidoglycan. The correlation between the results of the Limulus assay and those of gas chromatography-mass spectrometry for determination of the lipopolysaccharide content in the dust samples was poor, whereas a good correlation was obtained between lipopolysaccharide and diaminopimelic acid concentrations with the gas chromatographic methods. The results suggest that it is predominantly cell-wall-dissociated lipopolysaccharides that are measured with the Limulus assay, whereas the gas chromatographic methods allow determination of total concentrations of lipopolysaccharide, including Limulus-inactive lipopolysaccharide, gram-negative cells, and cellular debris. PMID:2187411

  19. Effects of endotoxin on mammary secretion of lactating cows. [Escherichia coli

    SciTech Connect

    Lengemann, F.W.; Pitzrick, M.

    1986-05-01

    The objectives were to describe the magnitude and time course of changes in milk pH, Na, K, lactose, and somatic cells and to determine if paracellular pathways were altered after infusion of Escherichia coli endotoxin (serotype 0128:AB12) to produce inflammation in one-half of the udder of the goat. Intramammary infusion of endotoxin increased pH, number of somatic cells, and Na and decreased K and lactose in milk. Sodium and number of somatic cells were increased by as little as .1..mu..g of endotoxin; .25 ..mu..g produced changes in most of the other parameters; maximal effect was elicited by 1..mu..g of endotoxin. The gland response peaked from 5 to 7 h after infusion of endotoxin with an increase in milk cellularity as the only significant effect noted in the control gland. Infusion of (/sup 14/C)lactose into the gland and (/sup 99m/Tc)albumin into the blood demonstrated that large molecules were more able to cross into and out of udder halves after endotoxin treatment. It is suggested that ion interchange rather than bulk flow across paracellular paths is responsible for changes. In addition, endotoxin appeared to reduce lactose secretion and synthesis.

  20. Lpsd/Ran of endotoxin-resistant C3H/HeJ mice is defective in mediating lipopolysaccharide endotoxin responses

    PubMed Central

    Wong, Peter M. C.; Kang, Anthony; Chen, Hong; Yuan, Quan; Fan, Peidong; Sultzer, Barnet M.; Kan, Yuet Wai; Chung, Siu-Wah

    1999-01-01

    C3H/HeJ inbred mice are defective in that they are highly resistant to endotoxic shock as compared with normal responder mice. Their B cells and macrophages do not respond significantly when exposed to lipopolysaccharide (LPS), whereas cells from the responder mice do. Using a functional assay, we previously isolated a cDNA, which encodes for Ran/TC4 GTPase. We now show that this gene is mutated in C3H/HeJ mice, which accounts for their resistance to endotoxin stimulation. Sequence analysis of independent mutant Lpsd/Ran cDNAs isolated from splenic B cells of C3H/HeJ mice reveals a consistent single base substitution at position 870, where a thymidine is replaced with a cytidine. In situ hybridization maps the Lpsd/Ran cDNA to mouse chromosome 4. By retroviral gene transfer, the wild-type Lpsn/Ran cDNA but not the mutant Lpsd/Ran cDNA can restore LPS responsiveness of C3H/HeJ cells. Adenoviral gene transfer in vivo with the mutant Lpsd/Ran cDNA but not the wild-type Lpsn/Ran cDNA rescues endotoxin-sensitive mice from septic shock. Thus Lps/Ran is an important target for LPS-mediated signal transduction, and the Lpsd/Ran gene may be useful as a therapeutic sequence in gene therapy for endotoxemia and septic shock. PMID:10500213

  1. The effect of sodium chloride extract and commercial lipopolysaccharides of Escherichia coli and Salmonella typhimurium on chickens.

    PubMed Central

    Nakamura, K; Abe, F

    1988-01-01

    In chickens inoculated into the heart with a sodium chloride extract of Escherichia coli strain (serotype O2) isolated from a chicken with colibacillosis, characteristic hemorrhages into the anterior chamber of the eyes (hyphema) were found. Significant lesions were limited to the eyes. Cyclophosphamide-treated chickens were more sensitive to the extract than untreated chickens and hyphema was usually seen in association with hemorrhages of the iris. These activities were not reduced by heating the extract at 60 degrees C for one hour or by trypsin digestion. Chickens inoculated into the heart with commercial lipopolysaccharides of E. coli (serotypes O111:B4 and O55:B5) and Salmonella typhimurium showed similar lesions in the eyes as the chickens inoculated with the sodium chloride extract. These findings suggest that the endotoxin may induce hyphema in chickens. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:3285982

  2. Peptide-assembled graphene oxide as a fluorescent turn-on sensor for lipopolysaccharide (endotoxin) detection.

    PubMed

    Lim, Seng Koon; Chen, Peng; Lee, Fook Loy; Moochhala, Shabbir; Liedberg, Bo

    2015-09-15

    Lipopolysaccharide (LPS) is a toxic inflammatory stimulator released from the outer cell membrane of Gram-negative bacteria, known to be directly related to, for example, septic shock, that causes millions of casualties annually. This number could potentially be lowered significantly if specific, sensitive, and more simply applicable LPS biosensors existed. In this work, we present a facile, sensitive and selective LPS sensor, developed by assembling tetramethylrhodamine-labeled LPS-binding peptides on graphene oxide (GO). The fluorescence of the dye-labeled peptide is quenched upon interaction with GO. Specific binding to LPS triggers the release of the peptide-LPS complex from GO, resulting in fluorescence recovery. This fluorescent turn-on sensor offers an estimated limit of detection of 130 pM, which is the lowest ever reported among all synthetic LPS sensors to date. Importantly, this sensor is applicable for detection of LPS in commonly used clinical injectable fluids, and it enables selective detection of LPS from different bacterial strains as well as LPS on the membrane of living E. coli. PMID:26303386

  3. Pulmonary toxicity of endotoxins: comparison of lipopolysaccharides from various bacterial species.

    PubMed Central

    Helander, I; Saxn, H; Salkinoja-Salonen, M; Rylander, R

    1982-01-01

    Lipopolysaccharides from three gram-negative bacteria isolated from bale cotton and piggery air were analyzed for their chemical composition, and their pulmonary toxicity for guinea pigs, lethal toxicity for mice, and pyrogenicity for rabbits were measured. Lipopolysaccharides from Enterobacter agglomerans and Citrobacter freundii had closely related chemical compositions; both were pyrogenic for rabbits and caused a dose-dependent influx of polymorphonuclear leukocytes into the airways of guinea pigs. The lethal toxicities of these lipopolysaccharides in mice were comparable to that of Salmonella typhimurium lipopolysaccharide, which was used as a reference. Lipopolysaccharide from Agrobacterium sp. was chemically different from those of E. agglomerans and C. freundii, did not induce any influx of polymorphonuclear leukocytes, and was only weakly toxic or pyrogenic. The low biological activity of the agrobacterial lipopolysaccharide may be due to its different chemical composition. PMID:7056574

  4. Influence of antibiotic and E5 monoclonal immunoglobulin M interactions on endotoxin release from Escherichia coli and Pseudomonas aeruginosa.

    PubMed Central

    Lamp, K C; Rybak, M J; McGrath, B J; Summers, K K

    1996-01-01

    Recent controversy surrounding the activity of monoclonal antibodies against endotoxin highlights the necessity of identifying all factors associated with increased mortality, one of which is endotoxin concentrations. Antibiotics may induce different patterns of endotoxin release. We compared the release of free endotoxin (in endotoxin units per milliliter) over 6 h and changes in numbers of CFU of exponentially growing Escherichia coli and Pseudomonas aeruginosa (10(6) to 10(7) CFU/ml) cultured in chemically defined endotoxin-free broth combined with pooled human serum and/or 10 micrograms of E5 immunoglobulin M monoclonal antibody per ml. MICs and MBCs were tested in each medium at the same inoculum. The inoculum was exposed to antibiotics at a single fixed multiple of the MIC for each medium (range, two to eight times the MIC). E5 antibody had no effect on MICs, MBCs, bactericidal activity, or endotoxin release. In the presence of 50% serum, amikacin, ceftazidime, imipenem, and ofloxacin each killed equivalent amounts of E. coli over 6 h; however, ceftazidime induced the highest release of endotoxin. Amikacin and ofloxacin produced the most favorable ratio of endotoxin release to amount of bacterial killing. In the presence of 50% serum, ceftazidime and imipenem reduced the P. aeruginosa inoculum to the greatest extent over 6 h. Although its bactericidal activity was diminished, ofloxacin caused the lowest release of free endotoxin. Imipenem and ofloxacin showed similar low ratios of endotoxin release to bacterial killing. In summary, antibiotic class, presence of serum, and type of organism influenced bactericidal activity and endotoxin release. PMID:8787917

  5. Endotoxin of Escherichia coli and permeability of the mammary glands of goats

    SciTech Connect

    Lengemann, F.W.; Pitzrick, M.

    1987-01-01

    Serial collections of milk were used to determine where in the mammary gland endotoxin of Escherichia coli was effective in altering the transfer of selected milk components into blood and blood components into milk. Lactating goats had half the gland infused with 1 ..mu..g of endotoxin and the other half served as a control. Sodium-24 and /sup 42/K or (/sup 14/C) lactose were included with /sup 141/Ce in the infusate in some experiments, whereas in others /sup 99m/Tc-labelled albumin or /sup 24/Na and /sup 42/K were given intravenously 2 h after the endotoxin infusion. Milk was collected 3 h after endotoxin infusion. Endotoxin increased the loss of /sup 24/Na, /sup 42/K, and (/sup 14/C) lactose from the mammary gland and increased the transfer of /sup 24/Na and /sup 99m/Tc-albumin into the gland. The transfer in of /sup 42/K was reduced compared with control halves. Movement of stable Na and K was in accord with the movement of the /sup 24/Na and /sup 42/K. Endotoxin was effective in all parts of the gland but particularly from the mid-portion upward to the alveoli. For the control halves there was evidence that some /sup 24/Na and /sup 42/K crossed the ductal or cisternal epithelium into blood outside of the alveoli, whereas only /sup 42/K provided evidence for transfer from blood to milk in these same regions. There was no demonstrable transfer of lactose and albumin in regions other than the alveoli.

  6. Effects of metabolic pH-alterations on cerebral blood flow and oxygen uptake following E. coli endotoxin in dogs.

    PubMed

    Westerlind, A; Larsson, L E; Hggendal, J; Ekstrm-Jodal, B

    1994-02-01

    The aim of the present study was to investigate if metabolic pH-alterations have an influence on cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) after an injection of E. coli endotoxin. Following endotoxin in dogs with normal pH a decreased CBF and an increased CMRO2 have earlier been found. Thirteen anaesthetized dogs were subjected to metabolic pH-variations in blood by infusion of hydrochloric acid or sodium bicarbonate. Ten dogs received E. coli endotoxin in a dose of 1 mg.kg-1 bodyweight. CBF, CMRO2 and noradrenaline and adrenaline concentrations in blood and cerebrospinal fluid were measured repeatedly during normoxia and normocarbia. Measurements before endotoxin served as controls, together with three additional animals, where endotoxin was never given. In control measurements pH showed no influence on the variables studied. After endotoxin CBF, CMRO2 and noradrenaline in cerebrospinal fluid increased with decreasing arterial blood pH. The influence exerted by metabolic pH alterations in blood after endotoxin may be explained by hydrogen ions and monoamines passing over a blood-brain barrier (BBB), damaged by endotoxin, into the brain tissue causing vasodilation and neuronal activation. PMID:8171947

  7. Exposure of periodontal ligament progenitor cells to lipopolysaccharide from Escherichia coli changes osteoblast differentiation pattern

    PubMed Central

    ALBIERO, Mayra Laino; AMORIM, Bruna Rabelo; MARTINS, Luciane; CASATI, Mrcio Zaffalon; SALLUM, Enilson Antonio; NOCITI, Francisco Humberto; SILVRIO, Karina Gonzales

    2015-01-01

    Periodontal ligament mesenchymal stem cells (PDLMSCs) are an important alternative source of adult stem cells and may be applied for periodontal tissue regeneration, neuroregenerative medicine, and heart valve tissue engineering. However, little is known about the impact of bacterial toxins on the biological properties of PDLSMSCs, including self-renewal, differentiation, and synthesis of extracellular matrix. Objective : This study investigated whether proliferation, expression of pro-inflammatory cytokines, and osteogenic differentiation of CD105-enriched PDL progenitor cell populations (PDL-CD105+ cells) would be affected by exposure to bacterial lipopolysaccharide from Escherichia coli (EcLPS). Material and Methods : Toll-like receptor 4 (TLR4) expression was assessed in PDL-CD105+ cells by the immunostaining technique and confirmed using Western blotting assay. Afterwards, these cells were exposed to EcLPS, and the following assays were carried out: (i) cell viability using MTS; (ii) expression of the interleukin-1 beta (IL-1?), interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor alpha (TNF-?) genes; (iii) osteoblast differentiation assessed by mineralization in vitro, and by mRNA levels of run-related transcription factor-2 (RUNX2), alkaline phosphatase (ALP) and osteocalcin (OCN) determined by quantitative PCR. Results : PDL-CD105+ cells were identified as positive for TLR4. EcLPS did not affect cell viability, but induced a significant increase of transcripts for IL-6 and IL-8. Under osteogenic condition, PDL-CD105+ cells exposed to EcLPS presented an increase of mineralized matrix deposition and higher RUNX2 and ALP mRNA levels when compared to the control group. Conclusions : These results provide evidence that CD105-enriched PDL progenitor cells are able to adapt to continuous Escherichia coli endotoxin challenge, leading to an upregulation of osteogenic activities. PMID:26018305

  8. Lipopolysaccharide structure required for in vitro trimerization of Escherichia coli OmpF porin.

    PubMed Central

    Sen, K; Nikaido, H

    1991-01-01

    Deep rought mutants, which produce very defective lipopolysaccharides, are unable to export normal levels of porins into the outer membrane. In this study, we showed that lipopolysaccharides from such mutants were also unable to facilitate the trimerization, in vitro, of monomeric OmpF porin secreted by spheroplasts of Escherichia coli B/r. In contrast, lipopolysaccharides containing most or all of the core oligosaccharides were able to facilitate trimerization. Images PMID:1702785

  9. Oral administration of Saccharomyces cerevisiae boulardii reduces Escherichia coli endotoxin associated mortality in weaned pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of active dry yeast, Saccharomyces cerevisiae boulardii (Scb), on the immune/neuroendocrine response and subsequent mortality to E. coli lipopolysaccharide (LPS) administration were evaluated in newly weaned pigs (26.1 + or - 3.4 d of age). Barrows were assigned to 1 of 2 treatment group...

  10. Effect of E coli endotoxin on the leakage of /sup 14/C-sucrose from phosphatidylcholine liposomes

    SciTech Connect

    Onji, T.; Liu, M.S.

    1981-01-01

    The effect of E coli endotoxin on the leakage of /sup 14/C-sucrose from phosphatidylcholine liposomes in the absence or presence of Ca/sup 2 +/ was studied. Endotoxin decreased the leakage from liposomes from 27% to 4% in 5 hr when Ca/sup 2 +/ (1 mM) was incorporated into liposomes during sonication. The effect of endotoxin on the leakiness of liposomes was concentration dependent. Ca/sup 2 +/ alone increased the leakage of /sup 14/C-sucrose from liposomes. Mg/sup 2 +/ at concentrations higher than 5 mM exhibited an effect similar to that of Ca/sup 2 +/. These findings suggest that endotoxin increases the molecular packing of phosphatidylcholine bilayers in the presence of Ca/sup 2 +/ or Mg/sup 2 +/. A change in the physical state of membrane lipid bilayers induced by endotoxin may affect the function of biological membranes.

  11. Underlying mechanisms involved in the decrease of milk secretion during Escherichia coli endotoxin induced mastitis in lactating mice.

    PubMed

    Kobayashi, Ken; Oyama, Shoko; Uejyo, Takaaki; Kuki, Chinatsu; Rahman, Md Morshedur; Kumura, Haruto

    2013-01-01

    Mastitis, the inflammation of mammary glands resulting from bacterial infection, disrupts milk production in lactating mammary glands. In this study, we injected lipopolysaccharide (LPS), one of the endotoxins from Escherichia coli into mouse mammary glands to disrupt milk production, and we investigated the influence of LPS on nutrient uptake, synthesis, and secretion processes for milk component production in alveolar epithelial cells (AEC). The expression of genes relevant to the three-staged milk component production process (nutrient uptake, synthesis, and secretion of milk components) were down-regulated within 12 h after LPS injection in AEC. The internalization of glucose transporter 1 (GLUT-1) from the basolateral membrane to the cytoplasm occurred in accordance with the down-regulation of gene expression 3 h after LPS injection. The abnormal localization of adipophilin and beta-casein was also observed in the LPS-injected mammary glands. SLC7A1, an amino acid transporter, was up-regulated 3 and 6 h after LPS injection. Furthermore, the inactivation of signal transducer and activator of transcription 5 (STAT5) and the activation of STAT3 and nuclear factor-kappa B (NFkappaB) occurred 3 h after LPS injection. These results indicate that the nutrient uptake, synthesis, and secretion of milk components in AEC are rapidly shut down in the lactating mammary glands after LPS injection. PMID:24308795

  12. Production of functional inclusion bodies in endotoxin-free Escherichia coli.

    PubMed

    Rueda, Fabin; Cano-Garrido, Olivia; Mamat, Uwe; Wilke, Kathleen; Seras-Franzoso, Joaquin; Garca-Fruits, Elena; Villaverde, Antonio

    2014-11-01

    Escherichia coli is the workhorse for gene cloning and production of soluble recombinant proteins in both biotechnological and biomedical industries. The bacterium is also a good producer of several classes of protein-based self-assembling materials such as inclusion bodies (IBs). Apart from being a relatively pure source of protein for in vitro refolding, IBs are under exploration as functional, protein-releasing materials in regenerative medicine and protein replacement therapies. Endotoxin removal is a critical step for downstream applications of therapeutic proteins. The same holds true for IBs as they are often highly contaminated with cell-wall components of the host cells. Here, we have investigated the production of IBs in a recently developed endotoxin-free E. coli strain. The characterization of IBs revealed this mutant as a very useful cell factory for the production of functional endotoxin-free IBs that are suitable for the use at biological interfaces without inducing endotoxic responses in human immune cells. PMID:25129611

  13. Crosstalk between the lipopolysaccharide and phospholipid pathways during outer membrane biogenesis in Escherichia coli

    PubMed Central

    Emiola, Akintunde; Andrews, Steven S.; Heller, Carolin; George, John

    2016-01-01

    The outer membrane of gram-negative bacteria is composed of phospholipids in the inner leaflet and lipopolysaccharides (LPS) in the outer leaflet. LPS is an endotoxin that elicits a strong immune response from humans, and its biosynthesis is in part regulated via degradation of LpxC (EC 3.5.1.108) and WaaA (EC 2.4.99.12/13) enzymes by the protease FtsH (EC 3.4.24.-). Because the synthetic pathways for both molecules are complex, in addition to being produced in strict ratios, we developed a computational model to interrogate the regulatory mechanisms involved. Our model findings indicate that the catalytic activity of LpxK (EC 2.7.1.130) appears to be dependent on the concentration of unsaturated fatty acids. This is biologically important because it assists in maintaining LPS/phospholipids homeostasis. Further crosstalk between the phospholipid and LPS biosynthetic pathways was revealed by experimental observations that LpxC is additionally regulated by an unidentified protease whose activity is independent of lipid A disaccharide concentration (the feedback source for FtsH-mediated LpxC regulation) but could be induced in vitro by palmitic acid. Further experimental analysis provided evidence on the rationale for WaaA regulation. Overexpression of waaA resulted in increased levels of 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) sugar in membrane extracts, whereas Kdo and heptose levels were not elevated in LPS. This implies that uncontrolled production of WaaA does not increase the LPS production rate but rather reglycosylates lipid A precursors. Overall, the findings of this work provide previously unidentified insights into the complex biogenesis of the Escherichia coli outer membrane. PMID:26929331

  14. The influence of sanitizers on the lipopolysaccharide composition of Escherichia coli O111.

    PubMed

    Venter, P; Abraham, M; Lues, J F R; Ivanov, I

    2006-10-01

    This study focused on the influence of typical sanitizers on the composition of the lipopolysaccharides (LPS) produced by the verocytotoxin-producing (VTEC) Escherichia coli O111. We also aimed to cast light on the applicability of O-antigen-based serotyping and endotoxin based Limulus Amebocyte Lysate (LAL) assays applied in the food industry for the identification and quantification of Gram-negative bacteria. E. coli O111 was propagated in the presence of three typical commercially applied sanitizing solutions that included a Clean in Place (CIP) chlorinated sanitizer (bacteriocidal), heavy-duty alkaline sanitizer (bacteriocidal) and a phenolic hand wash solution (bacteriostatic). After the required growth phase was reached the LPS from both the intact cells and debris was extracted and methanolysed followed by trifluoroacetylation. Subsequently GC-MS analysis and the chromogenic LAL assay were applied to assess both the ultra-structure and the toxicity of the extracted LPS. The viability and debris formation during growth was also evaluated to verify the bacteriocidial and static effect of the applied sanitizers as well as to assess its relationship with LPS formation. The total LPS produced was quantified at 1.3 x 10(6) [KDO] x OD(620 nm)(-1) for the control samples, 6.5 x 10(3) [KDO] x OD(620 nm)(-1) for E. coli grown in the presence of CIP chlorinated sanitizer and 2.1 x 10(5) and 2.85 x 10(6) [KDO] x OD(620 nm)(-1) for the organisms grown in the presence of heavy-duty alkaline sanitizer and phenolic hand wash solution respectively (KDO = 2-keto-3-deoxy-octulosonic acid). A negative correlation (gamma(2)= -0.880) between the [KDO] and Delta viability was evident and indicated that E. coli O111 responds to factors that hinder viability by producing more LPS in its outer membrane. Subsequent assessment of the LPS ultra-structure revealed a definite change in both the total assessed saccharide and lipid fractions. The cumulative change of the LPS in response to the sanitizers further appeared to influence the toxicity of the LPS as the latter change could not be related to an individual compound within any of the assessed fractions. This emphasised the fact that the quantity of LPS obtained from E. coli O111 in this study, did not seem to determine the toxicity of the organism. From the results we further propose a coefficient that could be applied to describe the response of E. coli O111 LPS to sanitizers and caution against the application of serotyping (based on the O-antigen) and the LAL assay to quantify and identify E. coli O111 obtained from food strata where the possibility of sanitizer contamination exists. PMID:16859796

  15. Suppression of C3H/HeJ cell activation by lipopolysaccharide endotoxin.

    PubMed Central

    Sultzer, B M; Bandekar, J R; Castagna, R; Abu-Lawi, K; Sadeghian, M; Norin, A J

    1992-01-01

    Earlier studies in our laboratory showed that the lipopolysaccharide (LPS) of Salmonella typhi, which fails to activate B lymphocytes of C3H/HeJ mice, can suppress proliferation and polyclonal antibody synthesis by these cells when they are stimulated by polyclonal activators. In order to determine what stage of the cell cycle was blocked, resting B cells from C3H/HeJ spleens were activated by using different mitogens in the presence of inhibitory concentrations of LPS and analyzed by flow cytometry, using acridine orange to stain DNA and RNA. LPS was found to inhibit the progression of cells into the G1 stage of the cell cycle. Furthermore, [3H]uridine uptake studies showed that RNA synthesis is inhibited during the early phase of activation. These results indicate that inhibition by LPS of the signalling process occurs during a critical period of the cell cycle when the cells become susceptible to the inhibitory effects of LPS. To examine whether LPS acts only on B cells or whether it can suppress other immunocompetent cells from C3H/HeJ mice, studies were carried out on activated thymocytes and macrophages. LPS was found to inhibit thymocyte proliferation stimulated by concanavalin A or the combination of phorbol myristate acetate and ionomycin. Prostaglandin E2 synthesis by macrophages was also blocked by LPS. Thus, LPS is a potent inhibitor of the functioning of the major immunocompetent cells of C3H/HeJ mice. PMID:1379986

  16. Suppression of C3H/HeJ cell activation by lipopolysaccharide endotoxin.

    PubMed

    Sultzer, B M; Bandekar, J R; Castagna, R; Abu-Lawi, K; Sadeghian, M; Norin, A J

    1992-09-01

    Earlier studies in our laboratory showed that the lipopolysaccharide (LPS) of Salmonella typhi, which fails to activate B lymphocytes of C3H/HeJ mice, can suppress proliferation and polyclonal antibody synthesis by these cells when they are stimulated by polyclonal activators. In order to determine what stage of the cell cycle was blocked, resting B cells from C3H/HeJ spleens were activated by using different mitogens in the presence of inhibitory concentrations of LPS and analyzed by flow cytometry, using acridine orange to stain DNA and RNA. LPS was found to inhibit the progression of cells into the G1 stage of the cell cycle. Furthermore, [3H]uridine uptake studies showed that RNA synthesis is inhibited during the early phase of activation. These results indicate that inhibition by LPS of the signalling process occurs during a critical period of the cell cycle when the cells become susceptible to the inhibitory effects of LPS. To examine whether LPS acts only on B cells or whether it can suppress other immunocompetent cells from C3H/HeJ mice, studies were carried out on activated thymocytes and macrophages. LPS was found to inhibit thymocyte proliferation stimulated by concanavalin A or the combination of phorbol myristate acetate and ionomycin. Prostaglandin E2 synthesis by macrophages was also blocked by LPS. Thus, LPS is a potent inhibitor of the functioning of the major immunocompetent cells of C3H/HeJ mice. PMID:1379986

  17. The Structural Basis for Lipid and Endotoxin Binding in RP105-MD-1, and Consequences for Regulation of Host Lipopolysaccharide Sensitivity.

    PubMed

    Ortiz-Suarez, Maite L; Bond, Peter J

    2016-01-01

    MD-1 is a member of the MD-2-related lipid-recognition (ML) family, and associates with RP105, a cell-surface protein that resembles Toll-like receptor 4 (TLR4). The RP105?MD-1 complex has been proposed to play a role in fine-tuning the innate immune response to endotoxin such as bacterial lipopolysaccharide (LPS) via TLR4?MD-2, but controversy surrounds its mechanism. We have used atomically detailed simulations to reveal the structural basis for ligand binding and consequent functional dynamics of MD-1 and the RP105 complex. We rationalize reports of endogenous phospholipid binding, by showing that they prevent collapse of the malleable MD-1 fold, before refining crystallographic models and uncovering likely binding modes for LPS analogs. Subsequent binding affinity calculations reveal that endotoxin specificity arises from the entropic cost of expanding the MD-1 cavity to accommodate bulky lipid tails, and support the role of MD-1 as a "sink" that sequesters endotoxin from TLR4 and stabilizes RP105/TLR4 interactions. PMID:26671709

  18. GENE EXPRESSION PROFILING OF BOVINE MACROPHAGES IN RESPONSE TO ESCHERICHIA COLI O157:H7 LIPOPOLYSACCHARIDE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of this study was to identify changes in bovine macrophage gene expression in response to treatment with Escherichia coli 0157:H7 lipopolysaccharide (LPS), utilizing a human gene microarray. Bovine cDNA from control and LPS-treated primary macrophages hybridized to greater than 5,644 (79.8%)...

  19. Anti-Endotoxin Agents. 1. Development of a Fluorescent Probe Displacement Method Optimized for High-Throughput Identification of Lipopolysaccharide-Binding Agents

    PubMed Central

    Wood, Stewart J.; Miller, Kelly A.; David, Sunil A.

    2005-01-01

    Lipopolysaccharides (LPS), otherwise termed endotoxins, are outer-membrane constituents of Gram-negative bacteria. Lipopolysaccharides play a key role in the pathogenesis of Septic Shock, a major cause of mortality in the critically ill patient. Therapeutic options aimed at limiting downstream systemic inflammatory processes by targeting lipopolysaccharide do not exist at the present time. We have defined the pharmacophore necessary for small molecules to specifically bind and neutralize LPS, and have shown using animal models of sepsis that the sequestration of circulatory LPS by small molecules is a therapeutically viable strategy. Assays reported previously in the literature do not lend themselves well to the rapid screening of large numbers of structurally diverse compounds. In this report, we describe a highly sensitive and robust fluorescent displacement assay using BODIPY TR cadaverine (BC), which binds specifically to the toxic center of LPS, lipid A, and is competitively displaced by compounds displaying an affinity for lipid A. The assay clearly discriminates subtle differences in the binding of polymyxin B, and its nonapeptide derivative, with LPS. The spectral properties of the BODIPY fluorophore are ideally suited for screening diverse structural classes of compounds, including those with conjugated aromatic groups, or with chromophores in the 260500 nm range. The fluorescent probe: LPS complex is stable under physiologically relevant salt concentrations, resulting in the rapid rejection of spurious binders interacting via non-specific electrostatic interactions, and, therefore, in greatly improved dispersion of ED50 values. PMID:15134530

  20. PmrD is required for modifications to escherichia coli endotoxin that promote antimicrobial resistance.

    PubMed

    Rubin, Erica J; Herrera, Carmen M; Crofts, Alexander A; Trent, M Stephen

    2015-04-01

    In Salmonella enterica, PmrD is a connector protein that links the two-component systems PhoP-PhoQ and PmrA-PmrB. While Escherichia coli encodes a PmrD homolog, it is thought to be incapable of connecting PhoPQ and PmrAB in this organism due to functional divergence from the S. enterica protein. However, our laboratory previously observed that low concentrations of Mg(2+), a PhoPQ-activating signal, leads to the induction of PmrAB-dependent lipid A modifications in wild-type E. coli (C. M. Herrera, J. V. Hankins, and M. S. Trent, Mol Microbiol 76:1444-1460, 2010, http://dx.doi.org/10.1111/j.1365-2958.2010.07150.x). These modifications include phosphoethanolamine (pEtN) and 4-amino-4-deoxy-l-arabinose (l-Ara4N), which promote bacterial resistance to cationic antimicrobial peptides (CAMPs) when affixed to lipid A. Here, we demonstrate that pmrD is required for modification of the lipid A domain of E. coli lipopolysaccharide (LPS) under low-Mg(2+) growth conditions. Further, RNA sequencing shows that E. coli pmrD influences the expression of pmrA and its downstream targets, including genes coding for the modification enzymes that transfer pEtN and l-Ara4N to the lipid A molecule. In line with these findings, a pmrD mutant is dramatically impaired in survival compared with the wild-type strain when exposed to the CAMP polymyxin B. Notably, we also reveal the presence of an unknown factor or system capable of activating pmrD to promote lipid A modification in the absence of the PhoPQ system. These results illuminate a more complex network of protein interactions surrounding activation of PhoPQ and PmrAB in E. coli than previously understood. PMID:25605366

  1. PmrD Is Required for Modifications to Escherichia coli Endotoxin That Promote Antimicrobial Resistance

    PubMed Central

    Rubin, Erica J.; Herrera, Carmen M.; Crofts, Alexander A.

    2015-01-01

    In Salmonella enterica, PmrD is a connector protein that links the two-component systems PhoP-PhoQ and PmrA-PmrB. While Escherichia coli encodes a PmrD homolog, it is thought to be incapable of connecting PhoPQ and PmrAB in this organism due to functional divergence from the S. enterica protein. However, our laboratory previously observed that low concentrations of Mg2+, a PhoPQ-activating signal, leads to the induction of PmrAB-dependent lipid A modifications in wild-type E. coli (C. M. Herrera, J. V. Hankins, and M. S. Trent, Mol Microbiol 76:1444–1460, 2010, http://dx.doi.org/10.1111/j.1365-2958.2010.07150.x). These modifications include phosphoethanolamine (pEtN) and 4-amino-4-deoxy-l-arabinose (l-Ara4N), which promote bacterial resistance to cationic antimicrobial peptides (CAMPs) when affixed to lipid A. Here, we demonstrate that pmrD is required for modification of the lipid A domain of E. coli lipopolysaccharide (LPS) under low-Mg2+ growth conditions. Further, RNA sequencing shows that E. coli pmrD influences the expression of pmrA and its downstream targets, including genes coding for the modification enzymes that transfer pEtN and l-Ara4N to the lipid A molecule. In line with these findings, a pmrD mutant is dramatically impaired in survival compared with the wild-type strain when exposed to the CAMP polymyxin B. Notably, we also reveal the presence of an unknown factor or system capable of activating pmrD to promote lipid A modification in the absence of the PhoPQ system. These results illuminate a more complex network of protein interactions surrounding activation of PhoPQ and PmrAB in E. coli than previously understood. PMID:25605366

  2. In vivo effects of the antiglucocorticoid RU 486 on glucocorticoid and cytokine responses to Escherichia coli endotoxin.

    PubMed Central

    Hawes, A S; Rock, C S; Keogh, C V; Lowry, S F; Calvano, S E

    1992-01-01

    The endogenous adrenocortical response to sepsis is critical for host survival. The in vivo interactions among the endogenous glucocorticoid response, the induction of cytokines, and host survival during endotoxemia were explored in this study by use of the glucocorticoid receptor antagonist RU 486. Male Lewis rats underwent sterile insertion of a right jugular venous catheter. After a 72-h recovery period, animals received a 50% lethal dose of Escherichia coli endotoxin (2.5 mg/kg) via the catheter after pretreatment for 30 min prior to lipopolysaccharide (LPS) treatment with (i) vehicle alone intravenously (i.v.) (-corticosterone [-Cort]/-RU 486/+LPS) (n = 10), (ii) the antiglucocorticoid RU 486 (10 mg/kg) i.v. (-Cort/+RU 486/+LPS) (n = 11), or (iii) RU 486 (10 mg/kg) i.v. in animals that had undergone subcutaneous implantation of a corticosterone pellet at the time of catheter insertion (+Cort/+RU 486/+LPS) (n = 10). Except in animals receiving corticosterone pretreatment, baseline plasma corticosterone levels were low in all groups. Plasma corticosterone levels increased significantly (P less than 0.001) above the baseline following LPS administration. Animals in the -Cort/+RU 486/+LPS-treated group exhibited significantly increased mortality (P less than 0.001), with only 9% of the animals surviving at 72 h, as well as significantly increased plasma interleukin-6 levels, compared with animals receiving the vehicle alone (-Cort/-RU 486/+LPS), which showed 50% mortality. Pretreatment with corticosterone and RU 486 (+Cort/+RU 486/+LPS) significantly (P less than 0.001) reversed the mortality observed with RU 486 pretreatment alone (-Cort/+RU 486/+LPS), with 70% of the animals surviving at 72 h, and significantly attenuated the peak plasma tumor necrosis factor and interleukin-6 responses to LPS, compared with those in the animals treated with vehicle alone. These data demonstrate that the blockade of glucocorticoid binding by RU 486 increases LPS-induced mortality. The reversal of this effect by the induction of hypercorticosteronemia prior to RU 486 and LPS exposure (+Cort/+RU 486/+LPS) improves survival and is further associated with significant attenuation of cytokine production. Therefore, these data suggest that the protective effect of the endogenous glucocorticoid response to acute endotoxemia may result from the down-regulation of a potentially lethal cytokine response. PMID:1612734

  3. Oral administration of Saccharomyces cerevisiae boulardii reduces mortality associated with immune and cortisol responses to Escherichia coli endotoxin in pigs.

    PubMed

    Collier, C T; Carroll, J A; Ballou, M A; Starkey, J D; Sparks, J C

    2011-01-01

    The effects of active dry yeast, Saccharomyces cerevisiae boulardii (Scb), on the immune/cortisol response and subsequent mortality to Escherichia coli lipopolysaccharide (LPS) administration were evaluated in newly weaned piglets (26.1 3.4 d of age). Barrows were assigned to 1 of 2 treatment groups: with (Scb; n = 15) and without (control; n = 15) the in-feed inclusion of Scb (200 g/t) for 16 d. On d 16, all piglets were dosed via indwelling jugular catheters with LPS (25 ?g/kg of BW) at 0 h. Serial blood samples were collected at 30-min intervals from -1 to 6 h and then at 24 h. Differential blood cell populations were enumerated hourly from 0 to 6 h and at 24 h. Serum cortisol, IL-1?, IL-6, tumor necrosis factor-? (TNF-?), and interferon-? (IFN-?) concentrations were determined via porcine-specific ELISA at all time points. In Scb-treated piglets, cumulative ADG increased (P < 0.05) by 39.9% and LPS-induced piglet mortality was reduced 20% compared with control piglets. White blood cells, lymphocytes, and neutrophils were increased (P < 0.05) in Scb-treated animals before LPS dosing compared with control piglets before being equally suppressed (P < 0.05) from baseline in both treatments after LPS dosing with a return to baseline by 24 h. Suppression of circulating cortisol concentrations (P < 0.05) was observed in Scb-treated piglets from -1 h to 1 h relative to LPS dosing compared with control animals before both peaked equally and subsequently returned to baseline. Peak production (P < 0.05) of IL-1? and IL-6 was less in Scb-treated piglets after LPS administration compared with controls before both equally returned to baseline. Peak TNF-? production in Scb-treated animals was accelerated 0.5 h and was greater (P < 0.05) than peak production in control piglets, after which both equally returned to baseline. The peak production of IFN-? was greater and had increased (P < 0.05) amplitude persistence for 3 h in Scb-treated animals compared with control piglets before both equally returned to baseline. These results highlight the previously unidentified effects of Scb administration on immune and cortisol responses and the subsequent impact on growth and endotoxin-induced mortality in weaned piglets. PMID:20852076

  4. Inhibitory effect of naringin on lipopolysaccharide (LPS)-induced endotoxin shock in mice and nitric oxide production in RAW 264.7 macrophages.

    PubMed

    Kanno, Syu-Ichi; Shouji, Ai; Tomizawa, Ayako; Hiura, Takako; Osanai, Yuu; Ujibe, Mayuko; Obara, Yutaro; Nakahata, Norimichi; Ishikawa, Masaaki

    2006-01-11

    Lipopolysaccharide (LPS) has been known to induce endotoxin shock via production of inflammatory modulators such as tumor necrosis factor alpha (TNF-alpha), or nitric oxide (NO). In this study, we have examined the effect of naringin (NG), one of the flavonoids, on LPS-induced endotoxin shock in mice and NO production in RAW 264.7 macrophages. For intraperitoneal (i.p., 20 mg/kg) injection of LPS at 48 h, the survival rate of mice administered with LPS alone (n=10) or pretreated with NG at 10, 30 and 60 mg/kg (i.p.) group (n=10) was 0% or 10%, 50% and 70%, respectively. NG dose-dependently suppressed LPS-induced production of TNF-alpha. LPS-induced production of NO at 6 h (125.89+/-16.35 microM), as measured by nitrite formation, was significantly reduced by NG at 30 or 60 mg/kg for 49.49+/-4.81 or 27.91+/-1.81 microM (P<0.01 vs. LPS alone), respectively. To further examine the mechanism by which NG suppresses LPS-induced endotoxin shock, we used an in vitro model, RAW 264.7 mouse macrophage cells. NG (1 mM) suppressed LPS (0.01, 0.1 or 1 microg/ml)-induced production of NO and the expression of inflammatory gene products such as inducible NO synthase (iNOS), TNF-alpha, inducible cyclooxygenase (COX-2) and interleukin-6 (IL-6) as determined by RT-PCR assay. NG was found to have blocked the LPS-induced transcriptional activity of NF-kappaB in electrophoretic mobility shift assay and reporter assay. These findings suggest that suppression of the LPS-induced mortality and production of NO by NG is due to inhibition of the activation of NF-kappaB. PMID:16137700

  5. Lactoferrin-lipopolysaccharide interaction: involvement of the 28-34 loop region of human lactoferrin in the high-affinity binding to Escherichia coli 055B5 lipopolysaccharide.

    PubMed Central

    Elass-Rochard, E; Roseanu, A; Legrand, D; Trif, M; Salmon, V; Motas, C; Montreuil, J; Spik, G

    1995-01-01

    The ability of lactoferrin (Lf), an iron-binding glycoprotein that is also called lactotransferrin, to bind lipopolysaccharide (LPS) may be relevant to some of its biological properties. A knowledge of the LPS-binding site on Lf may help to explain the mechanism of its involvement in host defence. Our report reveals the presence of two Escherichia coli 055B5 LPS-binding sites on human Lf (hLf): a high-affinity binding site (Kd 3.6 +/- 1 nM) and a low-affinity binding site (Kd 390 +/- 20 nM). Bovine Lf (bLf), which shares about 70% amino acid sequence identity with hLf, exhibits the same behaviour towards LPS. Like hLf, bLf also contains a low- and a high-affinity LPS-binding site. The Kd value (4.5 +/- 2 nM) corresponding to the high-affinity binding site is similar to that obtained for hLf. Different LPS-binding sites for human serum transferrin have been suggested, as this protein, which is known to bind bacterial endotoxin, produced only 12% inhibition of hLf-LPS interaction. Binding and competitive binding experiments performed with the N-tryptic fragment (residues 4-283), the C-tryptic fragment (residues 284-692) and the N2-glycopeptide (residues 91-255) isolated from hLf have demonstrated that the high-affinity binding site is located in the N-terminal domain I of hLf, and the low-affinity binding site is present in the C-terminal lobe. The inhibition of hLf-LPS interaction by a synthetic octadecapeptide corresponding to residues 20-37 of hLf and lactoferricin B (residues 17-41), a proteolytic fragment from bLf, revealed the importance of the 28-34 loop region of hLf and the homologous region of bLf for LPS binding. Direct evidence that this amino acid sequence is involved in the high-affinity binding to LPS was demonstrated by assays carried out with EGS-loop hLf, a recombinant hLf mutated at residues 28-34. Images Figure 9 PMID:8554529

  6. Cytoplasmic ATP hydrolysis powers transport of lipopolysaccharide across the periplasm in E. coli.

    PubMed

    Okuda, Suguru; Freinkman, Elizaveta; Kahne, Daniel

    2012-11-30

    Millions of molecules of lipopolysaccharide (LPS) must be assembled on the Escherichia coli cell surface each time the cell divides. The biogenesis of LPS requires seven essential lipopolysaccharide transport (Lpt) proteins to move LPS from the inner membrane through the periplasm to the cell surface. However, no intermediate transport states have been observed. We developed methods to observe intermediate LPS molecules bound to Lpt proteins in the process of being transported in vivo. Movement of individual LPS molecules along these binding sites required multiple rounds of adenosine triphosphate (ATP) hydrolysis in vitro, which suggests that ATP is used to push a continuous stream of LPS through a transenvelope bridge in discrete steps against a concentration gradient. PMID:23138981

  7. Influence of Core Oligosaccharide of Lipopolysaccharide to Outer Membrane Behavior of Escherichia coli

    PubMed Central

    Wang, Zhou; Wang, Jianli; Ren, Ge; Li, Ye; Wang, Xiaoyuan

    2015-01-01

    Lipopolysaccharides, major molecules in the outer membrane of Gram-negative bacteria, play important roles on membrane integrity of the cell. However, how the core oligosaccharide of lipopolysaccharide affect the membrane behavior is not well understood. In this study, the relationship between the core oligosaccharide of lipopolysaccharide and the membrane behavior was investigated using a series of Escherichia coli mutants defective in genes to affect the biosynthesis of core oligosaccharide of lipopolysaccharide. Cell surface hydrophobicity, outer membrane permeability, biofilm formation and auto-aggregation of these mutant cells were compared. Compared to the wild type W3110, cell surface hydrophobicities of mutant ΔwaaC, ΔwaaF, ΔwaaG, ΔwaaO, ΔwaaP, ΔwaaY and ΔwaaB were enhanced, outer membrane permeabilities of ΔwaaC, ΔwaaF, ΔwaaG and ΔwaaP were significantly increased, abilities of biofilm formation by ΔwaaC, ΔwaaF, ΔwaaG, ΔwaaO, ΔwaaR, ΔwaaP, ΔwaaQ and ΔwaaY decreased, and auto-aggregation abilities of ΔwaaC, ΔwaaF, ΔwaaG, ΔwaaO, ΔwaaR, ΔwaaU, ΔwaaP and ΔwaaY were strongly enhanced. These results give new insight into the influence of core oligosaccharide of lipopolysaccharide on bacterial cell membrane behavior. PMID:26023839

  8. Trapped lipopolysaccharide and LptD intermediates reveal lipopolysaccharide translocation steps across the Escherichia coli outer membrane

    PubMed Central

    Li, Xuejun; Gu, Yinghong; Dong, Haohao; Wang, Wenjian; Dong, Changjiang

    2015-01-01

    Lipopolysaccharide (LPS) is a main component of the outer membrane of Gram-negative bacteria, which is essential for the vitality of most Gram-negative bacteria and plays a critical role for drug resistance. LptD/E complex forms a N-terminal LPS transport slide, a hydrophobic intramembrane hole and the hydrophilic channel of the barrel, for LPS transport, lipid A insertion and core oligosaccharide and O-antigen polysaccharide translocation, respectively. However, there is no direct evidence to confirm that LptD/E transports LPS from the periplasm to the external leaflet of the outer membrane. By replacing LptD residues with an unnatural amino acid p-benzoyl-L-phenyalanine (pBPA) and UV-photo-cross-linking in E.coli, the translocon and LPS intermediates were obtained at the N-terminal domain, the intramembrane hole, the lumenal gate, the lumen of LptD channel, and the extracellular loop 1 and 4, providing the first direct evidence and snapshots to reveal LPS translocation steps across the outer membrane. PMID:26149544

  9. [Changes in the afferent activity of the vagus nerve and the rectal temperature in rats following Escherichia coli endotoxin administration].

    PubMed

    Lapsha, V I; Lukashenko, T M; Utkina, L N; Gurin, V N

    2001-10-01

    In anaesthetised rats, i.p. administration of the Echerichia coli lipopolysaccharide in doses 5 mcg/kg (LPS) increased afferent activity of the cervical vagus, whereas 100 and 1000 mcg/kg doses inhibited the afferent discharges. Pyrogen-free saline (PFS) did not alter the activity. Rectal temperature (RT) was decreased by the PFS and by large doses of the LPS. Sodium salicylate administration prevented the effects. PMID:11767451

  10. The presence of endotoxin in powdered infant formula milk and the influence of endotoxin and Enterobacter sakazakii on bacterial translocation in the infant rat.

    PubMed

    Townsend, Stacy; Caubilla Barron, Juncal; Loc-Carrillo, Catherine; Forsythe, Stephen

    2007-02-01

    Lipopolysaccharide (LPS) is a heat stable endotoxin that persists during the processing of powdered infant formula milk (IFM). Upon ingestion it may increase the permeability of the neonatal intestinal epithelium and consequently bacterial translocation from the gut. To determine the level of endotoxin present in IFM, 75 samples were collected from seven countries (representing 31 brands) and analysed for endotoxin using the kinetic colorimetric Limulus amoebocyte lysate (LAL) assay. The endotoxin levels ranged from 40 to 5.5 x 10(4) endotoxin units (EU) per gram and did not correlate with the number of viable bacteria. The neonate rat model was used to address the risk of endotoxin-induced bacterial translocation from the gut. Purified Escherichia coli LPS was administered to rat pups followed by inoculation with Enterobacter sakazakii ATCC 12868. Bacteria were isolated from the mesentery, spleen, blood and cerebral spinal fluid (CSF) of endotoxin-treated rats due to enhanced gut and blood brain barrier penetration. Histological analysis of the colon showed marked distension of the mucosal and muscular layers. It is plausible that the risk of neonatal bacteraemia and endotoxemia, especially in neonates with immature innate immune systems, may be raised due to ingestion of IFM with high endotoxin levels. PMID:16943096

  11. Mucosal antibody responses of colonized cattle to Escherichia coli O157-secreted proteins, flagellin, outer membrane proteins and lipopolysaccharide.

    PubMed

    Nart, Pablo; Holden, Nicola; McAteer, Sean P; Wang, Dai; Flockhart, Allen F; Naylor, Stuart W; Low, J Christopher; Gally, David L; Huntley, John F

    2008-01-01

    The aim of this work was to characterize adaptive mucosal immune responses to Escherichia coli O157:H7 at the principal site of colonization in the bovine species. Following experimental infection, extracts from terminal rectum mucosal samples were tested for IgA antibodies by immunoblotting against different bacterial antigens including: whole-cell E. coli O157:H7 with and without proteinase treatment, outer membrane and cytoplasmic preparations, secreted protein supernatants and purified E. coli O157 lipopolysaccharide and H7 flagellin. Lipopolysaccharide and H7 flagellin preparations were also used to coat enzyme-linked immunosorbent assay plates to determine mucosal IgG1 and IgA antibody titers. In this work, evidence is presented of strong local IgA immune responses induced following infection at the bovine terminal rectal mucosa directed against multiple antigens including type III secretion-dependent proteins, O157 lipopolysaccharide, H7 flagellin and OmpC. PMID:17995963

  12. Enhanced host immune recognition of E.coli causing mastitis in CD-14 transgenic mice.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Escherchia coli causes mastitis, an economically significant disease in dairy animals. E. coli endotoxin (lipopolysaccharide, LPS) when bound by host membrane proteins such as CD-14, causes release of pro-inflammatory cytokines recruiting neutrophils as a early innate immune response. Excessive pr...

  13. Cytokine production by mononuclear cells following stimulation with a peptide-containing, endotoxin-free Escherichia coli extract.

    PubMed

    Thomsen, A; Loppnow, H

    1995-05-01

    The beneficial effects of the E. coli extract Colibiogen inj. N (Cb) observed in therapy of inflammatory bowel diseases, allergies, or gastrointestinal tumors are possibly mediated by the induction of cytokines in human leukocytes or vascular cells. Thus, the induction of the cytokines interleukin 1 (IL1), IL6 and tumor necrosis factor (TNF) in human mononuclear cells (MNC) and vascular cells was investigated in vitro. Various administration forms of the extract (including Cb-inj. N, Cb-oral, and Cb-infantibus N) induced the release of IL1 and IL6 from MNC. The compounds stimulated TNF production less potently, possibly due to a lower sensitivity of the TNF assay system, as compared to the IL1 and IL6 detection system. The MNC produced the cytokines with a kinetics similar to that observed with other stimuli. Monospecific antibodies abolished the respective cytokine activity in the biological assays. Addition of submaximal amounts of endotoxin potently enhanced the IL1- and IL6-inducing activity of the bacterial extract, indicating synergism of the extract and endotoxin. These results provide evidence that cytokines produced by MNC following administration of the tested bacterial extract may contribute to the regulation of the immune response during therapy of gastrointestinal tumors. At present the in vivo production of cytokines following treatment with the bacterial extract tested is under investigation in a phase III study. PMID:7612070

  14. Lipopolysaccharide biosynthesis without the lipids: recognition promiscuity of Escherichia coli heptosyltransferase I.

    PubMed

    Czyzyk, Daniel J; Liu, Cassie; Taylor, Erika A

    2011-12-13

    Heptosyltransferase I (HepI) is responsible for the transfer of l-glycero-d-manno-heptose to a 3-deoxy-?-D-oct-2-ulopyranosonic acid (Kdo) of the growing core region of lipopolysaccharide (LPS). The catalytic efficiency of HepI with the fully deacylated analogue of Escherichia coli HepI LipidA is 12-fold greater than with the fully acylated substrate, with a k(cat)/K(m) of 2.7 10(6) M(-1) s(-1), compared to a value of 2.2 10(5) M(-1) s(-1) for the Kdo(2)-LipidA substrate. Not only is this is the first demonstration that an LPS biosynthetic enzyme is catalytically enhanced by the absence of lipids, this result has significant implications for downstream enzymes that are now thought to utilize deacylated substrates. PMID:22059588

  15. Lipopolysaccharide Biosynthesis without the Lipids: Recognition Promiscuity of Escherichia coli Heptosyltransferase I

    PubMed Central

    Czyzyk, Daniel J.; Liu, Cassie; Taylor, Erika A.

    2011-01-01

    Heptosyltransferase I (HepI) is responsible for the transfer of L-glycero-D-manno-heptose to a 3-deoxy-?-D-oct-2-ulopyranosonic acid (Kdo) of the growing core region of lipopolysaccharide (LPS). The catalytic efficiency of HepI with the fully deacylated analogue of Escherichia coli HepI LipidA is 12-fold greater than with the fully acylated substrate, with a kcat/Km of 2.7 106 M?1 s?1, compared to a value of 2.2 105 M?1 s?1 for the Kdo2-LipidA substrate. Not only is this is the first demonstration that an LPS biosynthetic enzyme is catalytically enhanced by the absence of lipids, this result has significant implications for downstream enzymes that are now thought to utilize deacylated substrates. PMID:22059588

  16. Combined effect of ampicillin, colistin and dexamethasone administered intramuscularly to dairy cows on the clinico-pathological course of E. coli-endotoxin mastitis.

    PubMed

    Ziv, G; Shem-Tov, M; Ascher, F

    1998-01-01

    The effects of a single intramuscular injection of a drug product containing ampicillin, colistin and dexamethasone, as a suspension in a diester of propylene glycol of medium-chain fatty acids, on the clinico-pathological course of experimental Escherichia coli-endotoxin mastitis was examined in 30 dairy cows. Cows were divided into five groups, six cows per group, and 24 of them were infused with E. coli endotoxin into two quarters of their udders. The drug product was injected at 25,000 IU colistin sulphate, 10.0 mg ampicillin anhydrate and 0.025 mg dexamethasone acetate.kg-1 body weight as follows: Group 2 cows, immediately post-endotoxin infusion (PEI); Group 3 cows, 2 h PEI and, Group 4 cows, 4 h PEI. Group 1 cows were not treated with the product and served as a positive (endotoxin only) control while Group 5 cows were not challenged with endotoxin and were not treated with the product. A clinical mastitis score (CMS) was developed to quantitatively assess the degree of inflammation. Blood biochemistry and hematological parameters were used to monitor the immediate effects of treatment on several conventional inflammatory markers. Milk somatic cell counts (MSCC), milk electrical conductivity and daily milk production were among the parameters used to monitor systemic and local inflammatory reactions. Administration of the drug product immediately PEI and 2 h PEI clearly nullified some of the most severe early systemic reactions to inflammation but the effect of therapy on the local inflammatory markers was not as obvious. Notewhorthy, however, were the effects of the treatment on reducing the duration of elevated quarter MSCC and the increase in the speed of return to pre-endotoxin challenge daily milk production levels. PMID:9559523

  17. Monoclonal antibodies specific for Escherichia coli J5 lipopolysaccharide: cross-reaction with other gram-negative bacterial species.

    PubMed Central

    Mutharia, L M; Crockford, G; Bogard, W C; Hancock, R E

    1984-01-01

    Four monoclonal antibodies against Escherichia coli J5 were studied. Each of these monoclonal antibodies reacted with purified lipopolysaccharides from E. coli J5, the deep rough mutant Salmonella minnesota Re595, Agrobacterium tumefaciens, and Pseudomonas aeruginosa PAO1 as well as with the purified lipid A of P. aeruginosa. Enzyme-linked immunosorbent assays using the outer membranes from a variety of gram-negative bacteria demonstrated that these lipid A-specific monoclonal antibodies interacted with between 84 and 97% of the gram-negative bacterial species tested. One of the monoclonal antibodies, 5E4, was shown to interact with 34 of the 35 outer membrane or lipopolysaccharide antigens tested. Immunoenzymatic staining of Western electrophoretic blots of separated P. aeruginosa outer membrane components was used to demonstrate that antibody 5E4 interacted with a similar fast-migrating band, corresponding to rough lipopolysaccharide, from all 17 serotype strains and all 14 clinical isolates of P. aeruginosa. Similarly, iodinated goat anti-mouse immunoglobulin was used to detect the binding of monoclonal antibody 8A1 to a fast-migrating band on Western electrophoretic blots of purified lipopolysaccharides from Klebsiella pneumoniae and both smooth and rough strains of E. coli, Salmonella typhimurium, and S. minnesota. These results suggest considerable conservation of single antigenic sites in the lipid A of gram-negative bacteria. Images PMID:6381310

  18. Bladder instillation of Escherichia coli lipopolysaccharide alters the muscle contractions in rat urinary bladder via a protein kinase C-related pathway

    SciTech Connect

    Weng, T.I.; Chen, W.J.; Liu, S.H. . E-mail: shliu@ha.mc.ntu.edu.tw

    2005-10-15

    Uropathogenic Escherichia coli is a common cause of urinary tract infection. We determined the effects of intravesical instillation of E. coli lipopolysaccharide (LPS, endotoxin) on muscle contractions, protein kinase C (PKC) translocation, and inducible nitric oxide synthase (iNOS) expression in rat urinary bladder. The contractions of the isolated rat detrusor muscle evoked by electrical field stimulations were measured short-term (1 h) or long-term (24 h) after intravesical instillation of LPS. One hour after LPS intravesical instillation, bladder PKC-{alpha} translocation from cytosolic fraction to membrane fraction and endothelial (e)NOS protein was elevated, and detrusor muscle contractions were significantly increased. PKC inhibitors chelerythrine and Ro32-0432 inhibited this LPS-enhanced contractile response. Application of PKC activator {beta}-phorbol-12,13-dibutyrate enhanced the muscle contractions. Three hours after intravesical instillation of LPS, iNOS mRNA was detected in the bladder. Immunoblotting study also demonstrated that the induction of iNOS proteins is detected in bladder in which LPS was instilled. 24 h after intravesical instillation of LPS, PKC-{alpha} translocation was impaired in the bladder; LPS did not affect PKC-{delta} translocation. Muscle contractions were also decreased 24 h after LPS intravesical instillation. Aminoguanidine, a selective iNOS inhibitor, blocked the decrease in PKC-{alpha} translocation and detrusor contractions induced by LPS. These results indicate that there are different mechanisms involved in the alteration of urinary bladder contractions after short-term and long-term treatment of LPS; an iNOS-regulated PKC signaling may participate in causing the inhibition of muscle contractions in urinary bladder induced by long-term LPS treatment.

  19. Improving the soluble expression and purification of recombinant human stem cell factor (SCF) in endotoxin-free Escherichia coli by disulfide shuffling with persulfide.

    PubMed

    Ueda, Takafumi; Akuta, Teruo; Kikuchi-Ueda, Takane; Imaizumi, Keitaro; Ono, Yasuo

    2016-04-01

    We here present a new method for the expression and purification of recombinant human stem cell factor (rhSCF(164)) in endotoxin-free ClearColi(®) BL21(DE3) cells harboring codon-optimized Profinity eXact™-tagged hSCF cDNA. Previously, we demonstrated that co-expression with thioredoxin increased the solubility of rhSCF in Escherichia coli BL21(DE3), and addition of l-arginine enhanced chromatography performance by removing the endotoxin-masked surface of rhSCF. Initially, we tried to express rhSCF in an endotoxin-free strain using a thioredoxin co-expression system, which resulted in significantly lower expression, possibly due to the stress imposed by overexpressed thioredoxin or antibiotics susceptibility. Therefore, we developed a new expression system without thioredoxin. External redox coupling was tested using persulfides such as glutathione persulfide or cysteine persulfide for the in vivo-folding of hSCF in the cytoplasm. Persulfides improved the protein solubility by accelerating disulfide-exchange reactions for incorrectdisulfides during folding in E. coli. Furthermore, the persulfides enhanced the expression level, likely due to upregulation of the enzymatic activity of T7 RNA polymerase. The recombinant protein was purified via affinity chromatography followed by cleavage with sodium fluoride, resulting in complete proteolytic removal of the N-terminal tag. The endotoxin-free fusion protein from ClearColi(®) BL21(DE3) could bind to the resin in the standard protocol using sodium phosphate (pH 7.2). Furthermore, purified rhSCF enhanced the proliferation and maturation of the human mast cell line LAD2. Thus, we conclude that use of the protein expression system employing E. coli by disulfide shuffling with persulfide addition could be a very useful method for efficient protein production. PMID:26724416

  20. Lipopolysaccharide-deficient, bacteriophage-resistant mutants of Escherichia coli K-12.

    PubMed

    Hancock, R E; Reeves, P

    1976-07-01

    Bacteriophage-resistant mutants isolated and classified in a previous study were examined for alterations in their lipopolysaccharide (LPS) composition, and properties likely to be affected by alterations in LPS composition were studied. It was found that many of the mutants of the Ktw (K2-resistance), Ttk (T2, T4, or K19 resistance), Bar (bacteriophage), Wrm (wide-range mutants), and miscellaneous resistance groups were altered in their response to a series of antibiotics and to two LPS-specific bacteriophages, C21 and U3. Furthermore, many of the bacteriophages to which these mutants were resistant adsorbed to LPS preparations. By direct sugar analysis of the mutant LPS preparations, it was shown that the mutants fitted into six distinct classes, which are readily derived from LPS core with a structure resembling that of Salmonella or Escherichia coli O100. A number of the mutants were shown to map between pyrE and mtl, which has been previously shown to be the site of a cluster of rfa genes in both Salmonella and E. coli. Outer membrane protein composition was studied in the above mutants using polyacrylamide gel electrophoresis. Some strains were shown to have alterations in the amount of major proteins. The nature of the bacteriophage receptors involved and the alterations leading to resistance are discussed. PMID:776951

  1. Pharmacokinetics of Tulathromycin in Healthy and Neutropenic Mice Challenged Intranasally with Lipopolysaccharide from Escherichia coli

    PubMed Central

    Villarino, N.; Brown, S. A.

    2012-01-01

    Tulathromycin represents the first member of a novel subclass of macrolides, known as triamilides, approved to treat bovine and swine respiratory disease. The objectives of the present study were to assess the concentration-versus-time profile of tulathromycin in the plasma and lung tissue of healthy and neutropenic mice challenged intranasally with lipopolysaccharide (LPS) from Escherichia coli O111:B4. BALB/c mice were randomly allocated into four groups of 40 mice each: groups T-28 (tulathromycin at 28 mg/kg of body weight), T-7, T7-LPS, and T7-LPS-CP (cyclophosphamide). Mice in group T-28 were treated with tulathromycin at 28 mg/kg subcutaneously (s.c.) (time 0 h). The rest of the mice were treated with tulathromycin at 7 mg/kg s.c. (time 0 h). Animals in dose groups T-7-LPS and T7-LPS-CP received a single dose of E. coli LPS intranasally at ?7 h. Mice in group T7-LPS-CP were also rendered neutropenic with cyclophosphamide (150 mg/kg intraperitoneally) prior to the administration of tulathromycin. Blood and lung tissue samples were obtained from 5 mice from each dose group at each sampling time over 144 h after the administration of tulathromycin. There were not statistical differences in lung tissue concentrations among groups T-7, T-7-LPS, and T7-LPS-CP. For all dose groups, the distribution of tulathromycin in the lungs was rapid and persisted at relatively high levels during 6 days postadministration. The concentration-versus-time profile of tulathromycin in lung tissue was not influenced by the intranasal administration of E. coli LPS. The results suggest that in mice, neutrophils may not have a positive influence on tulathromycin accumulation in lung tissue when the drug is administered during either a neutrophilic or a neutropenic state. PMID:22585224

  2. Oral administration of Saccharomyces cerevisiae boulardii reduces mortality associated with immune and cortisol responses to Escherichia coli endotoxin in weaned pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of active dry yeast, Saccharomyces cerevisiae boulardii (Scb), on the immune/cortisol response and subsequent mortality to E. coli lipopolysaccharide (LPS) administration were evaluated in newly weaned piglets (26.1 +/- 3.4 d of age). Barrows were assigned to 1 of 2 treatment groups, wit...

  3. A mutant Escherichia coli that attaches peptidoglycan to lipopolysaccharide and displays cell wall on its surface

    PubMed Central

    Grabowicz, Marcin; Andres, Dorothee; Lebar, Matthew D; Maloj?i?, Goran; Kahne, Daniel; Silhavy, Thomas J

    2014-01-01

    The lipopolysaccharide (LPS) forms the surface-exposed leaflet of the outer membrane (OM) of Gram-negative bacteria, an organelle that shields the underlying peptidoglycan (PG) cell wall. Both LPS and PG are essential cell envelope components that are synthesized independently and assembled by dedicated transenvelope multiprotein complexes. We have identified a point-mutation in the gene for O-antigen ligase (WaaL) in Escherichia coli that causes LPS to be modified with PG subunits, intersecting these two pathways. Synthesis of the PG-modified LPS (LPS*) requires ready access to the small PG precursor pool but does not weaken cell wall integrity, challenging models of precursor sequestration at PG assembly machinery. LPS* is efficiently transported to the cell surface without impairing OM function. Because LPS* contains the canonical vancomycin binding site, these surface-exposed molecules confer increased vancomycin-resistance by functioning as molecular decoys that titrate the antibiotic away from its intracellular target. This unexpected LPS glycosylation fuses two potent pathogen-associated molecular patterns (PAMPs). DOI: http://dx.doi.org/10.7554/eLife.05334.001 PMID:25551294

  4. Effects of Lipopolysaccharide Biosynthesis Mutations on K1 Polysaccharide Association with the Escherichia coli Cell Surface

    PubMed Central

    Jimnez, Natalia; Senchenkova, Sofya N.; Knirel, Yuriy A.; Pieretti, Giuseppina; Corsaro, Maria M.; Aquilini, Eleonora; Regu, Miguel; Merino, Susana

    2012-01-01

    The presence of cell-bound K1 capsule and K1 polysaccharide in culture supernatants was determined in a series of in-frame nonpolar core biosynthetic mutants from Escherichia coli KT1094 (K1, R1 core lipopolysaccharide [LPS] type) for which the major core oligosaccharide structures were determined. Cell-bound K1 capsule was absent from mutants devoid of phosphoryl modifications on l-glycero-d-manno-heptose residues (HepI and HepII) of the inner-core LPS and reduced in mutants devoid of phosphoryl modification on HepII or devoid of HepIII. In contrast, in all of the mutants, K1 polysaccharide was found in culture supernatants. These results were confirmed by using a mutant with a deletion spanning from the hldD to waaQ genes of the waa gene cluster to which individual genes were reintroduced. A nuclear magnetic resonance (NMR) analysis of core LPS from HepIII-deficient mutants showed an alteration in the pattern of phosphoryl modifications. A cell extract containing both K1 capsule polysaccharide and LPS obtained from an O-antigen-deficient mutant could be resolved into K1 polysaccharide and core LPS by column chromatography only when EDTA and deoxycholate (DOC) buffer were used. These results suggest that the K1 polysaccharide remains cell associated by ionically interacting with the phosphate-negative charges of the core LPS. PMID:22522903

  5. Early effects of Escherichia coli endotoxin infusion on vasopressin-stimulated breakdown and metabolism of inositol lipids in rat hepatocytes

    SciTech Connect

    Rodriguez de Turco, E.B.; Spitzer, J.A.

    1988-08-30

    The turnover of vasopressin-stimulated 32P-phosphoinositides and 32P-phosphatidic acid and accumulation of (2-3H)-inositol phosphates were examined in hepatocytes from rats infused i.v. with saline and E. coli endotoxin for 3 hrs. Within 60s of VP stimulation the decrease in phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate labeling as well as the increased uptake of 32P into phosphatidic acid were similar in both groups. However, at a later time (300s) the 32P-phosphatidylinositol turnover was greatly decreased concomitantly with a higher labeling of phosphatidic acid. The accumulation of (2-3H)-inositol phosphates in ET-cells was significantly decreased both at 30s and 600s after VP addition. The distribution of (2-3H)-inositol labeling accumulated in the different inositol phosphate fractions over the first 30s of VP stimulation showed a tendency to lower accumulation of inositol trisphosphate, and a significantly lower accumulation of inositol bisphosphate simultaneously with a higher labeling of the inositol tetrakisphosphate fraction. These observations reflect an early effect of ET-infusion on VP-stimulated inositol lipid turnover and on the subsequent metabolism of the released inositol phosphates.

  6. Pharmacokinetics of florfenicol after intravenous administration in Escherichia coli lipopolysaccharide-induced endotoxaemic sheep.

    PubMed

    Prez, R; Palma, C; Drpela, C; Sepulveda, M; Espinoza, A; Peailillo, A K

    2015-04-01

    Experiments in different animal species have shown that febrile conditions, induced by Escherichia coli lipopolysaccharide (LPS), may alter the pharmacokinetic properties of drugs. The objective was to study the effects of a LPS-induced acute-phase response (APR) model on plasma pharmacokinetics of florfenicol (FFC) after its intravenous administration in sheep. Six adult clinically healthy Suffolk Down sheep, 8months old and 35.52.2kg in body weight (bw), were distributed through a crossover factorial 2נ2 design, with 4weeks of washout. Pairs of sheep similar in body weight were assigned to experimental groups: Group 1 (LPS) was treated with three intravenous doses of 1?g/kg bw of E.coli LPS before FFC treatment. Group 2 (control) was treated with an equivalent volume of saline solution (SS) at similar intervals as LPS. At 24h after the first injection of LPS or SS, an intravenous bolus of 20mg/kg bw of FFC was administered. Blood samples (5mL) were collected before drug administration and at different times between 0.05 and 48.0h after treatment. FFC plasma concentrations were determined by liquid chromatography. A noncompartmental pharmacokinetic model was used for data analysis, and data were compared using a Mann-Whitney U-test. The mean values of AUC0-? in the endotoxaemic sheep (105.914.3?gh/mL) were significantly higher (P<0.05) than values observed in healthy sheep (78.45.2?gh/mL). The total mean plasma clearance (CLT ) decreased from 257.716.9mLh/kg in the control group to 198.224.1 mLh/kg in LPS-treated sheep. A significant increase (P<0.05) in the terminal half-life was observed in the endotoxaemic sheep (16.93.8h) compared to the values observed in healthy sheep (10.43.2h). In conclusion, the APR induced by the intravenous administration of E.coli LPS in sheep produces higher plasma concentrations of FFC due to a decrease in the total body clearance of the drug. PMID:25229993

  7. Removal of Endotoxins from Bacteriophage Preparations by Extraction with Organic Solvents

    PubMed Central

    Szermer-Olearnik, Bożena; Boratyński, Janusz

    2015-01-01

    Lipopolysaccharide (LPS, endotoxin, pyrogen) constitutes a very troubling contaminant of crude phage lysates produced in Gram-negative bacteria. Toxicity of LPS depends on the strong innate immunity response including the cytokines. Therefore, its removal is important for bacteriophage applications. In this paper, we present a procedure for extractive removal of endotoxin from bacteriophage preparations with water immiscible solvents (1-octanol or 1-butanol). During extraction most of the phage lytic activity is retained in the aqueous phase, while endotoxin accumulates in the organic solvent. The levels of endotoxin (expressed as endotoxin units, EU) in the aqueous bacteriophage-containing fraction determined by limulus amebocyte lysate or EndoLISA assay were exceptionally low. While the initial endotoxin levels in the crude phage lysates ranged between 103 and 105 EU/ml the average level after organic extraction remaining in the aqueous fraction was 5.3 EU/ml. These values when related to phage titers decreased from 103-105 EU/109 PFU (plaque forming units) down to an average of 2.8 EU/109 PFU. The purification procedure is scalable, efficient and applicable to all the bacteriophages tested: T4, HAP1 (E. coli) and F8 (P. aeruginosa). PMID:25811193

  8. The induction of nitric oxide synthase and intestinal vascular permeability by endotoxin in the rat.

    PubMed Central

    Boughton-Smith, N. K.; Evans, S. M.; Laszlo, F.; Whittle, B. J.; Moncada, S.

    1993-01-01

    1. The effect of endotoxin (E. coli lipopolysaccharide) on the induction of nitric oxide synthase (NOS) and the changes in vascular permeability in the colon and jejunum over a 5 h period have been investigated in the rat. 2. Under resting conditions, a calcium-dependent constitutive NOS, determined by the conversion of radiolabelled L-arginine to citrulline, was detected in homogenates of both colonic and jejunal tissue. 3. Administration of endotoxin (3 mg kg-1, i.v.) led, after a 2 h lag period, to the appearance of calcium-independent NOS activity in the colon and jejunum ex vivo, characteristic of the inducible NOS enzyme. 4. Administration of endotoxin led to an increase in colonic and jejunal vascular permeability after a lag period of 3 h, determined by the leakage of radiolabelled albumin. 5. Pretreatment with dexamethasone (1 mg kg-1 s.c., 2 h prior to challenge) inhibited both the induction of NOS and the vascular leakage induced by endotoxin. 6. Administration of the NO synthase inhibitor NG-monomethyl-L-arginine (12.5-50 mg kg-1, s.c.) 3 h after endotoxin injection, dose-dependently reduced the subsequent increase in vascular permeability in jejunum and colon, an effect reversed by L-arginine (300 mg kg-1, s.c.). 7. These findings suggest that induction of NOS is associated with the vascular injury induced by endotoxin in the rat colon and jejunum. PMID:7507778

  9. Removal of endotoxins from bacteriophage preparations by extraction with organic solvents.

    PubMed

    Szermer-Olearnik, Bo?ena; Boraty?ski, Janusz

    2015-01-01

    Lipopolysaccharide (LPS, endotoxin, pyrogen) constitutes a very troubling contaminant of crude phage lysates produced in Gram-negative bacteria. Toxicity of LPS depends on the strong innate immunity response including the cytokines. Therefore, its removal is important for bacteriophage applications. In this paper, we present a procedure for extractive removal of endotoxin from bacteriophage preparations with water immiscible solvents (1-octanol or 1-butanol). During extraction most of the phage lytic activity is retained in the aqueous phase, while endotoxin accumulates in the organic solvent. The levels of endotoxin (expressed as endotoxin units, EU) in the aqueous bacteriophage-containing fraction determined by limulus amebocyte lysate or EndoLISA assay were exceptionally low. While the initial endotoxin levels in the crude phage lysates ranged between 10(3) and 10(5) EU/ml the average level after organic extraction remaining in the aqueous fraction was 5.3 EU/ml. These values when related to phage titers decreased from 10(3)-10(5) EU/10(9) PFU (plaque forming units) down to an average of 2.8 EU/10(9) PFU. The purification procedure is scalable, efficient and applicable to all the bacteriophages tested: T4, HAP1 (E. coli) and F8 (P. aeruginosa). PMID:25811193

  10. Metabolic and Hematological Consequences of Dietary Deoxynivalenol Interacting with Systemic Escherichia coli Lipopolysaccharide

    PubMed Central

    Bannert, Erik; Tesch, Tanja; Kluess, Jeannette; Frahm, Jana; Kersten, Susanne; Kahlert, Stefan; Renner, Lydia; Rothkötter, Hermann-Josef; Dänicke, Sven

    2015-01-01

    Previous studies have shown that chronic oral deoxynivalenol (DON) exposure modulated Escherichia coli lipopolysaccharide (LPS)-induced systemic inflammation, whereby the liver was suspected to play an important role. Thus, a total of 41 barrows was fed one of two maize-based diets, either a DON-diet (4.59 mg DON/kg feed, n = 19) or a control diet (CON, n = 22). Pigs were equipped with indwelling catheters for pre- or post-hepatic (portal vs. jugular catheter) infusion of either control (0.9% NaCl) or LPS (7.5 µg/kg BW) for 1h and frequent blood sampling. This design yielded six groups: CON_CONjugular-CONportal, CON_CONjugular-LPSportal, CON_LPSjugular-CONportal, DON_CONjugular-CONportal, DON_CONjugular-LPSportal and DON_LPSjugular-CONportal. Blood samples were analyzed for blood gases, electrolytes, glucose, pH, lactate and red hemogram. The red hemogram and electrolytes were not affected by DON and LPS. DON-feeding solely decreased portal glucose uptake (p < 0.05). LPS-decreased partial oxygen pressure (pO2) overall (p < 0.05), but reduced pCO2 only in arterial blood, and DON had no effect on either. Irrespective of catheter localization, LPS decreased pH and base-excess (p < 0.01), but increased lactate and anion-gap (p < 0.01), indicating an emerging lactic acidosis. Lactic acidosis was more pronounced in the group DON_LPSjugular-CONportal than in CON-fed counterparts (p < 0.05). DON-feeding aggravated the porcine acid-base balance in response to a subsequent immunostimulus dependent on its exposure site (pre- or post-hepatic). PMID:26580654

  11. Molecular Dynamics and NMR Spectroscopy Studies of E. coli Lipopolysaccharide Structure and Dynamics

    PubMed Central

    Wu, Emilia L.; Engström, Olof; Jo, Sunhwan; Stuhlsatz, Danielle; Yeom, Min Sun; Klauda, Jeffery B.; Widmalm, Göran; Im, Wonpil

    2013-01-01

    Lipopolysaccharide (LPS), a component of Gram-negative bacterial outer membranes, comprises three regions: lipid A, core oligosaccharide, and O-antigen polysaccharide. Using the CHARMM36 lipid and carbohydrate force fields, we have constructed a model of an Escherichia coli R1 (core) O6 (antigen) LPS molecule. Several all-atom bilayers are built and simulated with lipid A only (LIPA) and varying lengths of 0 (LPS0), 5 (LPS5), and 10 (LPS10) O6 antigen repeating units; a single unit of O6 antigen contains five sugar residues. From 1H,1H-NOESY experiments, cross-relaxation rates are obtained from an O-antigen polysaccharide sample. Although some experimental deviations are due to spin-diffusion, the remaining effective proton-proton distances show generally very good agreement between NMR experiments and molecular dynamics simulations. The simulation results show that increasing the LPS molecular length has an impact on LPS structure and dynamics and also on LPS bilayer properties. Terminal residues in a LPS bilayer are more flexible and extended along the membrane normal. As the core and O-antigen are added, per-lipid area increases and lipid bilayer order decreases. In addition, results from mixed LPS0/5 and LPS0/10 bilayer simulations show that the LPS O-antigen conformations at a higher concentration of LPS5 and LPS10 are more orthogonal to the membrane and less flexible. The O-antigen concentration of mixed LPS bilayers does not have a significant effect on per-lipid area and hydrophobic thickness. Analysis of ion and water penetration shows that water molecules can penetrate inside the inner core region, and hydration is critical to maintain the integrity of the bilayer structure. PMID:24047996

  12. Metabolic and hematological consequences of dietary deoxynivalenol interacting with systemic Escherichia coli lipopolysaccharide.

    PubMed

    Bannert, Erik; Tesch, Tanja; Kluess, Jeannette; Frahm, Jana; Kersten, Susanne; Kahlert, Stefan; Renner, Lydia; Rothktter, Hermann-Josef; Dnicke, Sven

    2015-11-01

    Previous studies have shown that chronic oral deoxynivalenol (DON) exposure modulated Escherichia coli lipopolysaccharide (LPS)-induced systemic inflammation, whereby the liver was suspected to play an important role. Thus, a total of 41 barrows was fed one of two maize-based diets, either a DON-diet (4.59 mg DON/kg feed, n = 19) or a control diet (CON, n = 22). Pigs were equipped with indwelling catheters for pre- or post-hepatic (portal vs. jugular catheter) infusion of either control (0.9% NaCl) or LPS (7.5 g/kg BW) for 1h and frequent blood sampling. This design yielded six groups: CON_CONjugular?CONportal, CON_CONjugular?LPSportal, CON_LPSjugular?CONportal, DON_CONjugular?CONportal, DON_CONjugular?LPSportal and DON_LPSjugular?CONportal. Blood samples were analyzed for blood gases, electrolytes, glucose, pH, lactate and red hemogram. The red hemogram and electrolytes were not affected by DON and LPS. DON-feeding solely decreased portal glucose uptake (p < 0.05). LPS-decreased partial oxygen pressure (pO?) overall (p < 0.05), but reduced pCO? only in arterial blood, and DON had no effect on either. Irrespective of catheter localization, LPS decreased pH and base-excess (p < 0.01), but increased lactate and anion-gap (p < 0.01), indicating an emerging lactic acidosis. Lactic acidosis was more pronounced in the group DON_LPSjugular-CONportal than in CON-fed counterparts (p < 0.05). DON-feeding aggravated the porcine acid-base balance in response to a subsequent immunostimulus dependent on its exposure site (pre- or post-hepatic). PMID:26580654

  13. Resistance of MMP9 and TIMP1 to endotoxin tolerance.

    PubMed

    Muthukuru, Manoj; Cutler, Christopher W

    2015-07-01

    Inflammatory cytokines activate tissue collagenases such as matrix metalloproteinases (MMPs). MMPs are antagonized by tissue inhibitors of metalloproteinases (TIMPs) that attempt to regulate excessive collagenase activity during inflammatory conditions. During chronic inflammatory conditions, induction of endotoxin tolerance negatively regulates the cytokine response in an attempt to curtail excessive host tissue damage. However, little is known about how downregulation of inflammatory cytokines during endotoxin tolerance regulates MMP activities. In this study, human monocyte-derived macrophages were either sensitized or further challenged to induce tolerance with lipopolysaccharide (LPS) from Porphyromonas gingivalis (PgLPS) or Escherichia coli (EcLPS). Inflammatory cytokines, such as TNF-? and IL-1?, and levels of MMP9 and TIMP1 were analyzed by a combination of cytometric bead array, western blot/gelatin zymography and real-time RT-PCR. Functional blocking with anti-TLR4 but not with anti-TLR2 significantly downregulated TNF-? and IL-1?. However, MMP9 levels were not inhibited by toll-like receptor (TLR) blocking. Interestingly, endotoxin tolerance significantly upregulated TIMP1 relative to MMP9 and downmodulated MMP9 secretion and its enzymatic activity. These results suggest that regulatory mechanisms such as induction of endotoxin tolerance could inhibit MMP activities and could facilitate restoring host tissue homeostasis. PMID:25951835

  14. Anti-inflammatory effect of an Escherichia coli extract in a mouse model of lipopolysaccharide-induced cystitis.

    PubMed

    Lee, Seung-Ju; Kim, Sae Woong; Cho, Yong-Hyun; Yoon, Moon Soo

    2006-02-01

    The bacterial extract, Uro-Vaxom, which consists of immunostimulating components derived from 18 Escherichia coli strains, was used for the prophylaxis of recurrent cystitis. To evaluate the anti-inflammatory effect of E. coli extract, we measured the cytokine levels of bladder tissue after oral administration and analyzed bladder inflammation by histopathologic examination in a model of lipopolysaccharide (LPS)-induced cystitis in mice. After oral administering the E. coli extract for 10 days, the cytokine [interleukin-6 (IL-6), IL-10, monocyte chemoattractant protein-1, interferon-gamma (IFN-gamma), tumor necrosis factor-alpha, IL-12p70] levels present in the bladder of female Balb/C mice were determined using a cytometric bead array. The bladder macrophage inflammatory protein-2 level was also measured using a sandwich enzyme immunoassay. After immunization with the E. coli extract, E. coli LPS was instilled into the bladders intravesically. Twenty-four hours later, the mice were sacrificed and the level of bladder inflammation was quantified using the bladder inflammatory index (BII). Significant changes in the bladder IL-6 and IFN-gamma levels were observed after the E. coli extract treatment. Secretions of the other cytokines were not stimulated by the E. coli extract. The bladder instilled with LPS had high inflammation scores for edema, leukocyte infiltration, and hemorrhage in the saline treated control mice. In contrast, the E. coli extract treated mice exhibited mild inflammation of their bladders with a significant reduction in the BII scores compared with the controls. These findings might explain the anti-inflammatory effect of the E. coli extract demonstrated in clinical studies. PMID:16389538

  15. Shwartzman reaction in endotoxin-resistant rabbits induced by heterologous endotoxin

    PubMed Central

    Kováts, T. G.; Végh, P.

    1967-01-01

    Moderate resistance to Escherichia coli and Serratia marcescens endotoxin was induced in rabbits. The E. coli endotoxin-resistant rabbits did not respond with a Shwartzman reaction if the skin preparation was carried out by E. coli endotoxin and the provocation by Serratia endotoxin. However, the same animals showed definite haemorrhagic reactions if their skin was prepared by endotoxin from other serological types, e.g. Serratia or Salmonella typhi endotoxin. Serratia endotoxin resistant rabbits did not display the Shwartzman reaction if the skin preparation was carried out by Serratia endotoxin. On the contrary, they displayed marked Shwartzman reactions at the sites of the skin preparation with E. coli endotoxin. The provocation of this haemorrhagic reaction could be carried out either by E. coli or by Serratia endotoxin. The above results point to the possibility of the role of an immunological specificity in the skin preparation of the Shwartzman phenomenon. No such specificity could be demonstrated with regards to the intravenous provocation of the reaction. The immunospecificity (serological specificity) in the preparation of the Shwartzman reaction is limited, because it disappears if a higher degree of resistance is established. The immunospecificity in resistance or in sensitivity is dose-dependent. By raising the preparing or provoking doses, the Shwartzman reaction can be induced by heterologous or homologous endotoxins in rabbits that have a higher degree of resistance. The possible cause is discussed. ImagesFIG. 1 PMID:5337212

  16. Assembly of Lipopolysaccharide in Escherichia coli Requires the Essential LapB Heat Shock Protein*

    PubMed Central

    Klein, Gracjana; Kobylak, Natalia; Lindner, Buko; Stupak, Anna; Raina, Satish

    2014-01-01

    Here, we describe two new heat shock proteins involved in the assembly of LPS in Escherichia coli, LapA and LapB (lipopolysaccharide assembly protein A and B). lapB mutants were identified based on an increased envelope stress response. Envelope stress-responsive pathways control key steps in LPS biogenesis and respond to defects in the LPS assembly. Accordingly, the LPS content in ?lapB or ?(lapA lapB) mutants was elevated, with an enrichment of LPS derivatives with truncations in the core region, some of which were pentaacylated and exhibited carbon chain polymorphism. Further, the levels of LpxC, the enzyme that catalyzes the first committed step of lipid A synthesis, were highly elevated in the ?(lapA lapB) mutant. ?(lapA lapB) mutant accumulated extragenic suppressors that mapped either to lpxC, waaC, and gmhA, or to the waaQ operon (LPS biosynthesis) and lpp (Braun's lipoprotein). Increased synthesis of either FabZ (3-R-hydroxymyristoyl acyl carrier protein dehydratase), slrA (novel RpoE-regulated non-coding sRNA), lipoprotein YceK, toxin HicA, or MurA (UDP-N-acetylglucosamine 1-carboxyvinyltransferase) suppressed some of the ?(lapA lapB) defects. LapB contains six tetratricopeptide repeats and, at the C-terminal end, a rubredoxin-like domain that was found to be essential for its activity. In pull-down experiments, LapA and LapB co-purified with LPS, Lpt proteins, FtsH (protease), DnaK, and DnaJ (chaperones). A specific interaction was also observed between WaaC and LapB. Our data suggest that LapB coordinates assembly of proteins involved in LPS synthesis at the plasma membrane and regulates turnover of LpxC, thereby ensuring balanced biosynthesis of LPS and phospholipids consistent with its essentiality. PMID:24722986

  17. Assembly of lipopolysaccharide in Escherichia coli requires the essential LapB heat shock protein.

    PubMed

    Klein, Gracjana; Kobylak, Natalia; Lindner, Buko; Stupak, Anna; Raina, Satish

    2014-05-23

    Here, we describe two new heat shock proteins involved in the assembly of LPS in Escherichia coli, LapA and LapB (lipopolysaccharide assembly protein A and B). lapB mutants were identified based on an increased envelope stress response. Envelope stress-responsive pathways control key steps in LPS biogenesis and respond to defects in the LPS assembly. Accordingly, the LPS content in ?lapB or ?(lapA lapB) mutants was elevated, with an enrichment of LPS derivatives with truncations in the core region, some of which were pentaacylated and exhibited carbon chain polymorphism. Further, the levels of LpxC, the enzyme that catalyzes the first committed step of lipid A synthesis, were highly elevated in the ?(lapA lapB) mutant. ?(lapA lapB) mutant accumulated extragenic suppressors that mapped either to lpxC, waaC, and gmhA, or to the waaQ operon (LPS biosynthesis) and lpp (Braun's lipoprotein). Increased synthesis of either FabZ (3-R-hydroxymyristoyl acyl carrier protein dehydratase), slrA (novel RpoE-regulated non-coding sRNA), lipoprotein YceK, toxin HicA, or MurA (UDP-N-acetylglucosamine 1-carboxyvinyltransferase) suppressed some of the ?(lapA lapB) defects. LapB contains six tetratricopeptide repeats and, at the C-terminal end, a rubredoxin-like domain that was found to be essential for its activity. In pull-down experiments, LapA and LapB co-purified with LPS, Lpt proteins, FtsH (protease), DnaK, and DnaJ (chaperones). A specific interaction was also observed between WaaC and LapB. Our data suggest that LapB coordinates assembly of proteins involved in LPS synthesis at the plasma membrane and regulates turnover of LpxC, thereby ensuring balanced biosynthesis of LPS and phospholipids consistent with its essentiality. PMID:24722986

  18. Platelet activating factor impairs pressor responses to noradrenaline in the anaesthetized rat but does not mediate endotoxin-induced hyporeactivity.

    PubMed

    Bouvier, C; Guc, M O; Furman, B L; Parratt, J R

    1994-01-01

    A nonhypotensive dose of endotoxin (Escherichia coli lipopolysaccharide, 250 micrograms kg-1 h-1) impaired both the pressor responsiveness to noradrenaline and its effects in reducing renal and hindquarter blood flow, measured using ultrasound Doppler flow probes. Platelet activating factor (PAF, 50 ng kg-1 h-1) similarly impaired pressor responsiveness to noradrenaline, although this effect was accompanied by marked hypotension. These actions of PAF were prevented by pretreatment with the PAF antagonists WEB 2086 (20 mg kg-1) or BN 50739 (10 mg kg-1) 15 min before commencing the infusion. However, neither antagonist modified the effect of endotoxin in impairing vascular responsiveness to noradrenaline. Thus, these results do not support a role for PAF in mediating endotoxin-induced vascular hyporeactivity, at least in the early stages of endotoxaemia. PMID:8149505

  19. Recent advances in biosensor based endotoxin detection.

    PubMed

    Das, A P; Kumar, P S; Swain, S

    2014-01-15

    Endotoxins also referred to as pyrogens are chemically lipopolysaccharides habitually found in food, environment and clinical products of bacterial origin and are unavoidable ubiquitous microbiological contaminants. Pernicious issues of its contamination result in high mortality and severe morbidities. Standard traditional techniques are slow and cumbersome, highlighting the pressing need for evoking agile endotoxin detection system. The early and prompt detection of endotoxin assumes prime importance in health care, pharmacological and biomedical sectors. The unparalleled recognition abilities of LAL biosensors perched with remarkable sensitivity, high stability and reproducibility have bestowed it with persistent reliability and their possible fabrication for commercial applicability. This review paper entails an overview of various trends in current techniques available and other possible alternatives in biosensor based endotoxin detection together with its classification, epidemiological aspects, thrust areas demanding endotoxin control, commercially available detection sensors and a revolutionary unprecedented approach narrating the influence of omics for endotoxin detection. PMID:23934306

  20. Proteins required for lipopolysaccharide assembly in Escherichia coli form a transenvelope complex.

    PubMed

    Chng, Shu-Sin; Gronenberg, Luisa S; Kahne, Daniel

    2010-06-01

    The viability of Gram-negative organisms is dependent on the proper placement of lipopolysaccharide (LPS) in the outer leaflet of its outer membrane. LPS is synthesized inside the cell and transported to the surface by seven essential lipopolysaccharide transport (Lpt) proteins. How these proteins cooperate to transport LPS is unknown. We show that these Lpt proteins can be found in a membrane fraction that contains inner and outer membranes and that they copurify. This constitutes the first evidence that the Lpt proteins form a transenvelope complex. We suggest that this protein bridge provides a route for LPS transport across the cell envelope. PMID:20446753

  1. Naturally occurring hypothermia is more advantageous than fever in severe forms of lipopolysaccharide- and Escherichia coli-induced systemic inflammation

    PubMed Central

    Liu, Elaine; Lewis, Kevin; Al-Saffar, Hiba; Krall, Catherine M.; Singh, Anju; Kulchitsky, Vladimir A.; Corrigan, Joshua J.; Simons, Christopher T.; Petersen, Scott R.; Musteata, Florin M.; Bakshi, Chandra S.; Romanovsky, Andrej A.; Sellati, Timothy J.

    2012-01-01

    The natural switch from fever to hypothermia observed in the most severe cases of systemic inflammation is a phenomenon that continues to puzzle clinicians and scientists. The present study was the first to evaluate in direct experiments how the development of hypothermia vs. fever during severe forms of systemic inflammation impacts the pathophysiology of this malady and mortality rates in rats. Following administration of bacterial lipopolysaccharide (LPS; 5 or 18 mg/kg) or of a clinical Escherichia coli isolate (5 × 109 or 1 × 1010 CFU/kg), hypothermia developed in rats exposed to a mildly cool environment, but not in rats exposed to a warm environment; only fever was revealed in the warm environment. Development of hypothermia instead of fever suppressed endotoxemia in E. coli-infected rats, but not in LPS-injected rats. The infiltration of the lungs by neutrophils was similarly suppressed in E. coli-infected rats of the hypothermic group. These potentially beneficial effects came with costs, as hypothermia increased bacterial burden in the liver. Furthermore, the hypotensive responses to LPS or E. coli were exaggerated in rats of the hypothermic group. This exaggeration, however, occurred independently of changes in inflammatory cytokines and prostaglandins. Despite possible costs, development of hypothermia lessened abdominal organ dysfunction and reduced overall mortality rates in both the E. coli and LPS models. By demonstrating that naturally occurring hypothermia is more advantageous than fever in severe forms of aseptic (LPS-induced) or septic (E. coli-induced) systemic inflammation, this study provides new grounds for the management of this deadly condition. PMID:22513748

  2. Exacerbation of murine ileitis by Toll‐like receptor 4 mediated sensing of lipopolysaccharide from commensal Escherichia coli

    PubMed Central

    Heimesaat, M M; Fischer, A; Jahn, H‐K; Niebergall, J; Freudenberg, M; Blaut, M; Liesenfeld, O; Schumann, R R; Göbel, U B; Bereswill, S

    2007-01-01

    Background In the course of inflammatory bowel diseases (IBD) and acute murine ileitis following peroral Toxoplasma gondii infection, commensal Escherichia coli accumulate at inflamed mucosal sites and aggravate small intestinal immunopathology. Aim To unravel the molecular mechanisms by which commensal E coli exacerbate ileitis. Methods Ileitis was investigated in mice that lack Toll‐like receptors (TLR) 2 or 4, specific for bacterial lipoproteins (LP) or lipopolysaccharide (LPS), respectively. Gnotobiotic mice, in which any cultivable gut bacteria were eradicated by antibiotic treatment, were used to study the role of LPS in ileitis. Results Microbiological analyses revealed that E coli increase in the inflamed ileum. TLR4−/−, but not TLR2−/−, mice displayed reduced mortality and small intestinal immunopathology. Decreased interferon (IFN)‐γ and nitric oxide (NO) levels in the inflamed terminal ileum of TLR4−/− mice indicated that TLR4 signalling aggravates ileitis via local mediator release from immune cells. E coli strains isolated from the inflamed ileum activated cultured mouse macrophages and induced TLR4‐dependent nuclear factor κB activation and NO production in human embryonic kidney 293 cells and in peritoneal macrophages, respectively. Most strikingly, in contrast with wild‐type mice, gnotobiotic TLR4−/− mice were protected from induction of ileitis by treatment with purified E coli lipid A or colonisation with live E coli. Finally, prophylactic treatment with the LPS scavenger polymyxin B ameliorated T gondii‐induced ileitis. Conclusion These findings highlight the innate immune system as a key player in T gondii‐induced ileal immunopathology. Treatment with LPS or TLR4 antagonists may represent a novel strategy for prophylaxis and/or therapy of small intestinal inflammation in IBD. PMID:17255219

  3. Efficacy of a novel endotoxin adsorber polyvinylidene fluoride fiber immobilized with l-serine ligand on septic pigs*

    PubMed Central

    Gao, Jian-ping; Huang, Man; Li, Ning; Wang, Peng-fei; Chen, Huan-lin; Xu, Qiu-ping

    2011-01-01

    A novel adsorber, polyvinylidene fluoride matrix immobilized with l-serine ligand (PVDF-Ser), was developed in the present study to evaluate its safety and therapeutic efficacy in septic pigs by extracorporeal hemoperfusion. Endotoxin adsorption efficiency (EAE) of the adsorber was firstly measured in vitro. The biocompatibility and hemodynamic changes during extracorporeal circulation were then evaluated. One half of 16 pigs receiving lipopolysaccharide (Escherichia coli O111:B4, 5 ?g/kg) intravenously in 1 h were consecutively treated by hemoperfusion with the new adsorber for 2 h. The changes of circulating endotoxin and certain cytokines and respiratory function were analyzed. The 72 h-survival rate was assessed eventually. EAE reached 46.3% (100 EU/ml in 80 ml calf serum) after 2 h-circulation. No deleterious effect was observed within the process. The plasma endotoxin, interleukin-6 (IL-6), and tumor necrosis factor-? (TNF-?) levels were decreased during the hemoperfusion. Arterial oxygenation was also improved during and after the process. Furthermore, the survival time was significantly extended (>72 h vs. 47.5 h for median survival time). The novel product PVDF-Ser could adsorb endotoxin with high safety and efficacy. Early use of extracorporeal hemoperfusion with the new adsorber could reduce the levels of circulating endotoxin, IL-6, and TNF-?, besides improve respiratory function and consequent 72 h-survival rate of the septic pigs. Endotoxin removal strategy with blood purification using the new adsorber renders a potential promising future in sepsis therapy. PMID:21462381

  4. ELEVATED MILK SOLUBLE CD 14 IN BOVINE MAMMARY GLANDS CHALLENGED WITH E. COLI LIPOPOLYSACCHARIDE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this study was to determine whether soluble CD 14 in milk were affected by the stage of lactation, the level of milk somatic cell count (SCC), the presence of bacteria or lipopolysaccharide (LPS)-induced inflammation. First, milk samples from 100 lactating cows (396 functional quarter...

  5. EFFECTS OF FISH OIL SUPPLEMENTATION ON PERFORMANCE AS WELL AS IMMUNOLOGICAL, ADRENAL, AND SOMATOTROPHIC RESPONSES OF WEANED PIGS AFTER ESCHERICHIA COLI LIPOPOLYSACCHARIDE CHALLENGE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seventy-two crossbred pigs (7.58 +/- 0.3 kg BW) weaned at 28 days of age were used to investigate the effects of fish oil supplementation on pig performance and immunological, adrenal, and somatotropic responses following Escherichia coli lipopolysaccharide (LPS) challenge in a 2 x 2 factorial desig...

  6. The Escherichia coli Lpt transenvelope protein complex for lipopolysaccharide export is assembled via conserved structurally homologous domains.

    PubMed

    Villa, Riccardo; Martorana, Alessandra M; Okuda, Suguru; Gourlay, Louise J; Nardini, Marco; Sperandeo, Paola; Deh, Gianni; Bolognesi, Martino; Kahne, Daniel; Polissi, Alessandra

    2013-03-01

    Lipopolysaccharide is a major glycolipid component in the outer leaflet of the outer membrane (OM), a peculiar permeability barrier of Gram-negative bacteria that prevents many toxic compounds from entering the cell. Lipopolysaccharide transport (Lpt) across the periplasmic space and its assembly at the Escherichia coli cell surface are carried out by a transenvelope complex of seven essential Lpt proteins spanning the inner membrane (LptBCFG), the periplasm (LptA), and the OM (LptDE), which appears to operate as a unique machinery. LptC is an essential inner membrane-anchored protein with a large periplasm-protruding domain. LptC binds the inner membrane LptBFG ABC transporter and interacts with the periplasmic protein LptA. However, its role in lipopolysaccharide transport is unclear. Here we show that LptC lacking the transmembrane region is viable and can bind the LptBFG inner membrane complex; thus, the essential LptC functions are located in the periplasmic domain. In addition, we characterize two previously described inactive single mutations at two conserved glycines (G56V and G153R, respectively) of the LptC periplasmic domain, showing that neither mutant is able to assemble the transenvelope machinery. However, while LptCG56V failed to copurify any Lpt component, LptCG153R was able to interact with the inner membrane protein complex LptBFG. Overall, our data further support the model whereby the bridge connecting the inner and outer membranes would be based on the conserved structurally homologous jellyroll domain shared by five out of the seven Lpt components. PMID:23292770

  7. Changes of stress oxidative enzymes in rat mammary tissue, blood and milk after experimental mastitis induced by E. coli lipopolysaccharide

    PubMed Central

    Eslami, Hadi; Batavani, Rooz Ali; Asr‎i-Rezaei, Siamak; Hobbenaghi, Rahim

    2015-01-01

    The present study investigated the effects of E. coli lipopolysaccharide (LPS) induced mastitis model in rat on the activity of antioxidant enzyme systems. To achieve this purpose, E. coli LPS were infused into the mammary gland of 12 rats 72 hr postpartum and compared with 12 rats in control group infused intramammary placebo sterile pyrogene – free, physiological saline. The antioxidant activities of the enzymes, superoxide dismutase, glutathione peroxidase, and catalase together with ‎‏malondialdehyde (MDA) level were assayed in blood serum, milk and mammary tissue. Results obtained showed that, the antioxidant enzyme activities in milk, blood serum and mammary tissue were significantly decreased while the level of MDA, the indicator of lipid peroxidation were significantly increased following intramammary inoculation of LPS compared to the control animals. Histopathological examination also revealed the infiltration of inflammatory cells in mammary tissue and disruption of acinar structure and acinar lumina in mastitic rats. The results indicated that E. coli LPS-induced ‎mastitis could alter antioxidant enzymes and increase lipid peroxidation. PMID:26261708

  8. Lipopolysaccharide (LPS)-induced autophagy is involved in the restriction of Escherichia coli in peritoneal mesothelial cells

    PubMed Central

    2013-01-01

    Background Host cell autophagy is implicated in the control of intracellular pathogen. Escherichia coli (E.coli) is the most common organism caused single-germ enterobacterial peritonitis during peritoneal dialysis. In this study, we investigated autophagy of peritoneal mesothelial cells and its role in defense against E.coli. Results Autophagy in human peritoneal mesothelial cell line (HMrSV5) was induced by lipopolysaccharide (LPS) in a dose-dependent and time-dependent way, which was demonstrated by increased expression of Beclin-1 and light chain 3 (LC3)-II, the accumulation of punctate green fluorescent protein-LC3, and a higher number of monodansylcadaverine-labeled autophagic vacuoles. After incubation of HMrSV5 cells with E.coli following LPS stimulation, both the intracellular bactericidal activity and the co-localization of E.coli (K12-strain) with autophagosomes were enhanced. Conversely, blockade of autophagy with 3-methyladenine, wortmannin or Beclin-1 small-interfering RNA (siRNA) led to a significant reduction in autophagy-associated protein expression, attenuation of intracellular bactericidal activity, and reduced co-localization of E.coli with monodansylcadaverine-labeled autophagosomes. In addition, treatment of HMrSV5 cells with LPS caused a dose-dependent and time-dependent increase in Toll-like receptor 4 (TLR4) expression. Both knockdown of TLR4 with siRNA and pharmacological inhibition of TLR4 with Polymyxin B significantly decreased LPS-induced autophagy. Furthermore, TLR4 siRNA attenuated remarkably LPS-induced intracellular bactericidal activity. Conclusions Our findings demonstrated for the first time that LPS-induced autophagy in peritoneal mesothelial cells could enhance the intracellular bactericidal activity and the co-localization of E.coli with autophagosomes. The activation of TLR4 signaling was involved in this process. These results indicate that LPS-induced autophagy may be a cell-autonomous defense mechanism triggered in peritoneal mesothelial cells in response to E.coli infection. PMID:24219662

  9. IFIT2 is an effector protein of type I IFN-mediated amplification of lipopolysaccharide (LPS)-induced TNF-? secretion and LPS-induced endotoxin shock.

    PubMed

    Siegfried, Alexandra; Berchtold, Susanne; Manncke, Birgit; Deuschle, Eva; Reber, Julia; Ott, Thomas; Weber, Michaela; Kalinke, Ulrich; Hofer, Markus J; Hatesuer, Bastian; Schughart, Klaus; Gailus-Durner, Valrie; Fuchs, Helmut; Hrabe de Angelis, Martin; Weber, Friedemann; Hornef, Mathias W; Autenrieth, Ingo B; Bohn, Erwin

    2013-10-01

    Type I IFN signaling amplifies the secretion of LPS-induced proinflammatory cytokines such as TNF-? or IL-6 and might thus contribute to the high mortality associated with Gram-negative septic shock in humans. The underlying molecular mechanism, however, is ill defined. In this study, we report the generation of mice deficient in IFN-induced protein with tetratricopeptide repeats 2 (Ifit2) and demonstrate that Ifit2 is a critical signaling intermediate for LPS-induced septic shock. Ifit2 expression was significantly upregulated in response to LPS challenge in an IFN-? receptor- and IFN regulatory factor (Irf)9-dependent manner. Also, LPS induced secretion of IL-6 and TNF-? by bone marrow-derived macrophages (BMDMs) was significantly enhanced in the presence of Ifit2. In accordance, Ifit2-deficient mice exhibited significantly reduced serum levels of IL-6 and TNF-? and reduced mortality in an endotoxin shock model. Investigation of the underlying signal transduction events revealed that Ifit2 upregulates Irf3 phosphorylation. In the absence of Irf3, reduced Ifn-? mRNA expression and Ifit2 protein expression after LPS stimulation was found. Also, Tnf-? and Il-6 secretion but not Tnf-? and Il-6 mRNA expression levels were reduced. Thus, IFN-stimulated Ifit2 via enhanced Irf3 phosphorylation upregulates the secretion of proinflammatory cytokines. It thereby amplifies LPS-induced cytokine production and critically influences the outcome of endotoxin shock. PMID:24014876

  10. Endotoxin emissions from commercial composting activities

    PubMed Central

    2009-01-01

    This paper describes an exploratory study of endotoxin emissions and dispersal from a commercial composting facility. Replicated samples of air were taken by filtration at different locations around the facility on 10 occasions. Measurements were made of endotoxin and associated culturable microorganisms. The inflammatory response of cell cultures exposed to extracts from the filters was measured. Endotoxin was detected in elevated concentrations close to composting activities. A secondary peak, of lesser magnitude than the peak at source was detected at 100-150 m downwind of the site boundary. Unexpectedly high concentrations of endotoxin were measured at the most distant downwind sampling point. Extracted endotoxin was found to stimulate human monocytes and a human lung epithelial cell line to produce significant amounts of pro-inflammatory cytokines. On a weight basis, endotoxin extracted from the composting source has a greater inflammatory cytokine inducing effect than commercial E. coli endotoxin. PMID:20102594

  11. Validation of inhibitors of an ABC transporter required to transport lipopolysaccharide to the cell surface in Escherichia coli.

    PubMed

    Sherman, David J; Okuda, Suguru; Denny, William A; Kahne, Daniel

    2013-08-15

    The presence of lipopolysaccharide (LPS) in the outer leaflet of the outer membrane (OM) of Gram-negative bacteria creates a permeability barrier that prevents the entry of most currently available antibiotics. The seven lipopolysaccharide transport (Lpt) proteins involved in transporting and assembling this glycolipid are essential for growth and division in Escherichia coli; therefore, inhibiting their functions leads to cell death. LptB, the ATPase that provides energy for LPS transport and assembly, forms a complex with three other inner membrane (IM) components, LptC, F, and G. We demonstrate that inhibitors of pure LptB can also inhibit the full IM complex, LptBFGC, purified in detergent. We also compare inhibition of LptB and the LptBFGC complex with the antibiotic activity of these compounds. Our long-term goal is to develop tools to study inhibitors of LPS biogenesis that could serve as potentiators by disrupting the OM permeability barrier, facilitating entry of clinically used antibiotics not normally used to treat Gram-negative infections, or that can serve as antibiotics themselves. PMID:23665139

  12. Relation Between Excreted Lipopolysaccharide Complexes and Surface Structures of a Lysine-Limited Culture of Escherichia coli

    PubMed Central

    Knox, K. W.; Vesk, Maret; Work, Elizabeth

    1966-01-01

    Knox, K. W. (Twyford Laboratories, London, England), Maret Vesk, and Elizabeth Work. Relation between excreted lipopolysaccharide complexes and surface structures of a lysine-limited culture of Escherichia coli. J. Bacteriol. 92:12061217. 1966.The lysine-requiring mutant Escherichia coli 12408, when grown in 15 liters of defined medium containing a suboptimal amount of lysine, showed a biphasic type of growth. During a long stationary phase of 15 hr, there was a steady accumulation of diaminopimelic acid (DAP) and an antigenic complex of lipopolysaccharide (LPS) and lipoprotein; the accumulation continued unchanged until the end of the second growth phase. The rapid rate of DAP excretion suggested that it was the result of a derepressed state of a biosynthetic pathway. LPS excretion was such that the amount in the culture fluid was doubled during a period corresponding to the normal generation time for the organism; this suggested that the LPS-lipoprotein complex was a product of unbalanced growth. Surface defects were suggested by the action of lysozyme, which, in low concentrations (10 ?g/ml), lysed the lysine-limited cells even in the absence of ethylenediaminetetraacetic acid, but had no effect at 10 ?g/ml on cells grown with adequate lysine. Electron microscopy of cells excreting the LPS complex showed them to be surrounded by a mass of stacked leaflets and globules, some of which were bounded by triple membranes. Sections showed no lysis but changes in cell surfaces; outer layers of the walls had numerous blebs whose outer membranes were sometimes continuous with the outer triple membrane of the wall. LPS-lipoprotein probably originates from these blebs. Images PMID:4959044

  13. Thoracic epidural anesthesia decreases endotoxin-induced endothelial injury

    PubMed Central

    2014-01-01

    Background The sympathetic nervous system is considered to modulate the endotoxin-induced activation of immune cells. Here we investigate whether thoracic epidural anesthesia with its regional symapathetic blocking effect alters endotoxin-induced leukocyte-endothelium activation and interaction with subsequent endothelial injury. Methods Sprague Dawley rats were anesthetized, cannulated and hemodynamically monitored. E. coli lipopolysaccharide (Serotype 0127:B8, 1.5mg x kg-1 x h-1) or isotonic saline (controls) was infused for 300minutes. An epidural catheter was inserted for continuous application of lidocaine or normal saline in endotoxemic animals and saline in controls. After 300minutes we measured catecholamine and cytokine plasma concentrations, adhesion molecule expression, leukocyte adhesion, and intestinal tissue edema. Results In endotoxemic animals with epidural saline, LPS significantly increased the interleukin-1? plasma concentration (48%), the expression of endothelial adhesion molecules E-selectin (34%) and ICAM-1 (42%), and the number of adherent leukocytes (40%) with an increase in intestinal myeloperoxidase activity (26%) and tissue edema (75%) when compared to healthy controls. In endotoxemic animals with epidural infusion of lidocaine the values were similar to those in control animals, while epinephrine plasma concentration was 32% lower compared to endotoxemic animals with epidural saline. Conclusions Thoracic epidural anesthesia attenuated the endotoxin-induced increase of IL-1? concentration, adhesion molecule expression and leukocyte-adhesion with subsequent endothelial injury. A potential mechanism is the reduction in the plasma concentration of epinephrine. PMID:24708631

  14. ENDOTOXINS, ALGAE AND 'LIMULUS' AMOEBOCYTE LYSATE TEST IN DRINKING WATER

    EPA Science Inventory

    Field and laboratory studies were conducted to determine the distribution of algae and bacteria, and investigate sources of endotoxins (lipopolysaccharides) in drinking water. The field survey was performed on five drinking water systems located in Allegheny County, Pennsylvania ...

  15. The structural characterization of the O-polysaccharide antigen in the lipopolysaccharide of Escherichia coli serotype O118 and its relationship to the O-antigens of Salmonella enterica O47 and Escherichia coli serotype O151

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mild acid hydrolysis of the lipopolysaccharide produced by Escherichia coli O118:H16 (standard reference strain; NRCC 6613) contained an O-polysaccharide (O-PS) composed of D-galactose, 2-acetimidoylamino-2,6-dideoxy-L-galactose (L-FucNAm), 2-acetamido-2-deoxy-D-glucose, ribitol, and phosphate (1:1...

  16. Effect of endotoxin administration in pregnant camels

    PubMed Central

    AL-Dughaym, A.M.; Homeida, A.M.

    2010-01-01

    Intravenous administration of Escherichia coli endotoxin at a dose of 0.05?g/kg bodyweight to pregnant camels resulted in abortion. The injection of endotoxin caused significant increases in the plasma concentration of 13,14-dihydro-15-prostaglandin F2?, the metabolite of prostaglandin F2? (PG F2?) and cortisol and a significant decrease in the concentration of progesterone. It is suggested that endotoxin caused abortion in camels was a consequence of endotoxin induced PG F2? secretion resulting in luteal regression and decreased progesterone concentration. PMID:23961064

  17. Endotoxin exposure during late pregnancy alters ovine offspring febrile and hypothalamic-pituitary-adrenal axis responsiveness later in life.

    PubMed

    Fisher, Rebecca E; Karrow, Niel A; Quinton, Margaret; Finegan, Esther J; Miller, Stephan P; Atkinson, Jim L; Boermans, Herman J

    2010-07-01

    A growing number of studies indicate that maternal infection during pregnancy is associated with adverse fetal development and neonatal health. In this study, late gestating sheep (day 135) were challenged systemically with saline (0.9%) or Escherichia coli lipopolysaccharide endotoxin (400 ng/kg x 3 consecutive days, or 1.2 microg/kg x 1 day) in order to assess the impact of maternal endotoxemia on the developing fetal neuroendocrine-immune system. During adulthood, cortisol secretion and febrile responses of female offspring and the cortisol response of the male offspring to endotoxin (400 ng/kg), as well as the female cortisol response to adrenocorticotropic hormone (ACTH) challenge, were measured to assess neuroendocrine-immune function. These studies revealed that maternal endotoxin treatment during late gestation altered the female febrile and male and female cortisol response to endotoxin exposure later in life; however, the response was dependent on the endotoxin treatment regime that the pregnant sheep received. The follow-up ACTH challenge suggests that programing of the adrenal gland may be altered in the female fetus during maternal endotoxemia. The long-term health implications of these changes warrant further investigation. PMID:20536335

  18. The Lipopolysaccharide Export Pathway in Escherichia coli: Structure, Organization and Regulated Assembly of the Lpt Machinery

    PubMed Central

    Polissi, Alessandra; Sperandeo, Paola

    2014-01-01

    The bacterial outer membrane (OM) is a peculiar biological structure with a unique composition that contributes significantly to the fitness of Gram-negative bacteria in hostile environments. OM components are all synthesized in the cytosol and must, then, be transported efficiently across three compartments to the cell surface. Lipopolysaccharide (LPS) is a unique glycolipid that paves the outer leaflet of the OM. Transport of this complex molecule poses several problems to the cells due to its amphipatic nature. In this review, the multiprotein machinery devoted to LPS transport to the OM is discussed together with the challenges associated with this process and the solutions that cells have evolved to address the problem of LPS biogenesis. PMID:24549203

  19. The lipopolysaccharide export pathway in Escherichia coli: structure, organization and regulated assembly of the Lpt machinery.

    PubMed

    Polissi, Alessandra; Sperandeo, Paola

    2014-02-01

    The bacterial outer membrane (OM) is a peculiar biological structure with a unique composition that contributes significantly to the fitness of Gram-negative bacteria in hostile environments. OM components are all synthesized in the cytosol and must, then, be transported efficiently across three compartments to the cell surface. Lipopolysaccharide (LPS) is a unique glycolipid that paves the outer leaflet of the OM. Transport of this complex molecule poses several problems to the cells due to its amphipatic nature. In this review, the multiprotein machinery devoted to LPS transport to the OM is discussed together with the challenges associated with this process and the solutions that cells have evolved to address the problem of LPS biogenesis. PMID:24549203

  20. Thermographic variation of the udder of dairy ewes in early lactation and following an Escherichia coli endotoxin intramammary challenge in late lactation.

    PubMed

    Castro-Costa, A; Caja, G; Salama, A A K; Rovai, M; Flores, C; Aguil, J

    2014-03-01

    A total of 83 lactating dairy ewes (Manchega, n=48; Lacaune, n=35) were used in 2 consecutive experiments for assessing the ability of infrared thermography (IRT) to detect intramammary infections (IMI) by measuring udder skin temperatures (UST). In experiment 1, ewes were milked twice daily and IRT pictures of the udder were taken before and after milking at 46 and 56d in milk (DIM). Milk yield was 1.46 0.04 L/d, on average. Detection of IMI was done using standard bacterial culture by udder half at 15, 34, and 64 DIM. Twenty-two ewes were classified as having IMI in at least one udder half, the others being healthy (142 healthy and 24 IMI halves, respectively). Four IMI halves had clinical mastitis. No UST differences were detected by IMI and udder side, being 32.94 0.04C on average. Nevertheless, differences in UST were detected for breed (Lacaune - Manchega=0.35 0.08C), milking process moment (after - before=0.13 0.11C), and milking schedule (p.m. - a.m.=0.79 0.07C). The UST increased linearly with ambient temperature (r=0.88). In experiment 2, the UST response to an Escherichia coli O55:B5 endotoxin challenge (5 ?g/udder half) was studied in 9 healthy Lacaune ewes milked once daily in late lactation (0.58 0.03 L/d; 155 26 DIM). Ewes were allocated into 3 balanced groups of 3 ewes to which treatments were applied by udder half after milking. Treatments were (1) control (C00, both udder halves untreated), (2) half udder treated (T10 and C01, one udder half infused with endotoxin and the other untreated, respectively), and (3) treated udder halves (T11, both udder halves infused with endotoxin). Body (vaginal) temperature and UST, milk yield, and milk composition changes were monitored by udder half at different time intervals (2 to 72 h). First local and systemic signs of IMI were observed at 4 and 6h postchallenge, respectively. For all treatments, UST increased after the challenge, peaking at 6h in T 0055 (which differed from that in C00, C01, and T10), and decreased thereafter without differences by treatment. Vaginal temperature and milk somatic cell count increased by 6h postchallenge, whereas lactose content decreased, in the endotoxin-infused udder halves. Effects of endotoxin on lactose and somatic cell count values were detectable in the infused udder halves until 72 h. In conclusion, despite the accuracy of the camera ( 0.15C) and the moderate standard errors of the mean obtained for UST measures ( 0.05 to 0.24C), we were unable to discriminate between healthy and infected (subclinically or clinically) udder halves in dairy ewes. PMID:24418270

  1. Endotoxin-neutralizing activity of hen egg phosvitin.

    PubMed

    Ma, Jie; Wang, Hongmiao; Wang, Yongjun; Zhang, Shicui

    2013-04-01

    Endotoxin, also known as lipopolysaccharide (LPS), is responsible for initiating host responses leading to inflammation and sometimes unwanted sepsis, which is associated with high mortality in patients. No therapeutic agents to date are efficacious enough to protect patients from LPS-mediated tissue damage and organ failure. Previously, egg yolk protein phosvitin (Pv) in zebrafish has been shown to act as a pattern recognition receptor, capable of binding to the microbial cell wall components including LPS, we therefore wonder if it has the capacity to block LPS toxicity. In this study we first demonstrated that hen Pv, a naturally occurring protein rich in egg yolk, had antimicrobial activity against Escherichia coli and Staphylococcus aureus under thermal stress, and then showed that Pv was able to bind to LPS, lipoteichoic acid and peptidoglycan as well as the microbes E. coli and S. aureus. More importantly, we revealed that Pv significantly inhibited LPS-induced tumor-necrosis factor (TNF)-α release from murine RAW264.7 cells and considerably reduced serum TNF-α level in mice. Additionally, hen Pv could promote the survival rate of the endotoxemia mice. Furthermore, hen Pv displayed no cytotoxicity to murine RAW264.7 macrophages and no hemolytic activity towards human red blood cells. Taken together, these data suggest that Pv is an endotoxin-neutralizing agent with a therapeutic potential in clinical treatment of LPS-induced sepsis. PMID:23079731

  2. Mediated effect of endotoxin and lead upon hepatic metabolism

    SciTech Connect

    Kuttner, R.E.; Ebata, T.; Schumer, W.

    1984-10-01

    A test was made of the possibility that gram-negative bacterial cell wall lipopolysaccharides acted directly on key glucoregulatory enzymes in rat liver cytosol to cause the characteristic hypoglycemia of severe endotoxemia. Fasted male rats were sensitized to endotoxin by the simultaneous intravenous injection of lead acetate. The minimum systemic dosage of endotoxin necessary to perturb the normal pattern of hepatic glycolytic intermediates was determined by serial testing with diminishing dosages of endotoxin. The hepatocyte concentration of endotoxin was then calculated from this minimum dosage by use of literature data on the fraction of endotoxin delivered to liver cells after a systemic intravenous injection of radiochromium labeled lipopolysaccharides. Accepting a molecular weight of 118,000 daltons for the smallest endotoxin monomer capable of evoking a physiologic response, the molar amount of endotoxin present in 1 gram of hepatocytes was readily calculated. The concentration of glucoregulatory enzymes in parenchymal cells was then estimated from other literature sources. It was found that the amount of endotoxin in the hepatocytes was insufficient to combine directly with even 1 per cent of the quantity of a single key glucoregulatory enzyme in liver parenchyma. Since a one to one stoichiometric reaction between endotoxin and enzyme could not occur in the liver cytosol, a direct interaction mechanism between agonist and biocatalyst can be ruled out. It is concluded that bacterial endotoxin must act on hepatic glucoregulation by an indirect mechanism presumably based upon the release and operation of mediators.

  3. Interleukin-1 decreases renal sodium reabsorption: possible mechanism of endotoxin-induced natriuresis

    SciTech Connect

    Caverzasio, J.; Rizzoli, R.; Dayer, J.M.; Bonjour, J.P.

    1987-05-01

    Administration of pyrogen or endotoxins such as Escherichia coli lipopolysaccharide can elicit a marked increase in urinary sodium excretion. This response occurs without any elevation in the filtered load of sodium and it does not appear to be prostaglandin mediated. The various effects produced by endotoxins appear to have interleukin-1 as a common mediator. In the present work, the authors have studied whether human recombinant interleukin-1..beta.. (hrIL-1) could affect the renal handling of sodium and thus, could be implicated in natriuretic response to pyrogens or endotoxins. They observed that hrIL-1 intravenously injected into conscious rats provokes a marked increase in sodium excretion. This natriuretic response was not associated with any increase in glomerular filtration rate (clearance of (/sup 3/H)inulin), nor was it accompanied by significant changes in the urinary excretion of potassium, calcium, or inorganic phosphate. The only concomitant alteration was a decrease in urinary pH. Pretreatment with indomethacin abolished the effect of hrIL-1 on urinary pH but did not modify the natriuretic response. In conclusion, hrIL-1 elicits a selective decrease in tubular sodium reabsorption, which does not appear to involve a change in prostaglandin synthesis. This observation strongly suggests that interleukin-1 could be a key mediator in endotoxin-induced natriuresis.

  4. Dose dependence of endotoxin-induced activation of the plasma contact system: an in vitro study.

    PubMed

    Roeise, O; Bouma, B N; Stadaas, J O; Aasen, A O

    1988-12-01

    The dose and time dependence of endotoxin-induced activation of the plasma contact system have been studied. Citrated pool plasma was incubated at 37 degrees C with endotoxin doses of 2.10(5), 2.10(6), 2.10(7), and 2.10(9) ng/l (lipopolysaccharide B, E. coli 026: B6, Difco Laboratories, Detroit, MI) for 24 hr. Samples for determination of components of the contact system were obtained prior to incubation and at 1, 2, 4, 6, 12, and 24 hr. Plasma kallikrein (KK) activity markedly increased at 12 hr in test plasma containing the highest dose of endotoxin (2.10(9) ng/l). Coincident with the elevated KK activity, reductions of both plasma prekallikrein (PKK) and functional kallikrein inhibition (KKI) were seen as assayed by chromogenic peptide substrate analyses. Also, functionally determined alpha 2-macroglobulin (alpha 2-M) and C1 inhibitor (C1INH) values were decreased, confirming the reduction of KKI values. Changes of Hageman factor (FXII), PKK, and high molecular weight kininogen (HMWK) values were also found at the same time point when assayed by immunochemical techniques. The same pattern of changes was seen in test plasma containing 2.10(7) and 2.10(6) ng/l of endotoxin. These changes, however, were less pronounced and not seen until 24 hr after beginning incubation. In control plasma and in plasma containing the lowest dose of endotoxin (2.10(5) ng/l), no changes were seen in any factors of the contact system. Our study shows that in vitro endotoxin-induced activation of the contact system is a slow process that is both time and dose dependent. PMID:2463883

  5. Purification and characterization of lipopolysaccharides from six strains of non-O157 Shiga toxin-producing Escherichia coli.

    PubMed

    Stromberg, Loreen R; Stromberg, Zachary R; Banisadr, Afsheen; Graves, Steven W; Moxley, Rodney A; Mukundan, Harshini

    2015-09-01

    Certain Shiga toxin-producing Escherichia coli (STEC) are virulent human pathogens that are most often acquired through contaminated food. The United States Department of Agriculture, Food Safety and Inspection Service has declared several serogroups of STEC as adulterants in non-intact raw beef products. Hence, sensitive and specific tests for the detection of these STEC are a necessity for implementation in food safety programs. E. coli serogroups are identified by their respective O-antigen moiety on the lipopolysaccharide (LPS) macromolecule. We propose that the development of O-antigen-specific immunological assays can facilitate simple and rapid discriminatory detection of STEC in beef. However, the resources (antigens and antibodies) required for such development are not readily available. To overcome this, we extracted and characterized LPS and O-antigen from six STEC strains. Using hot phenol extraction, we isolated the LPS component from each strain and purified it using a series of steps to eliminate proteins, nucleic acids, and lipid A antigens. Antigens and crude LPS extracts were characterized using gel electrophoresis, immunoblotting, and modified Western blotting with commercially available antibodies, thus assessing the serogroup specificity and sensitivity of available ligands as well. The results indicate that, while many commercially available antibodies bind LPS, their activities and specificities are highly variable, and often not as specific as those required for serogroup discrimination. This variability could be minimized by the production of antibodies specific for the O-antigen. Additionally, the antigens generated from this study provide a source of characterized LPS and O-antigen standards for six serogroups of STEC. PMID:26093258

  6. Endotoxin-Binding Peptides Derived from Casein Glycomacropeptide Inhibit Lipopolysaccharide-Stimulated Inflammatory Responses via Blockade of NF-κB activation in macrophages.

    PubMed

    Cheng, Xue; Gao, Dongxiao; Chen, Bin; Mao, Xueying

    2015-05-01

    Systemic low-grade inflammation and increased circulating lipopolysaccharide (LPS) contribute to metabolic dysfunction. The inhibitory effects and underlying molecular mechanisms of casein glycomacropeptide (GMP) hydrolysate on the inflammatory response of LPS-stimulated macrophages were investigated. Results showed that the inhibitory effect of GMP hydrolysates obtained with papain on nitric oxide (NO) production were obviously higher than that of GMP hydrolysates obtained with pepsin, alcalase and trypsin (p < 0.05), and the hydrolysate obtained with papain for 1 h hydrolysis (GHP) exhibited the highest inhibitory effect. Compared with native GMP, GHP markedly inhibited LPS-induced NO production in a dose-dependent manner with decreased mRNA level of inducible nitric oxide synthase (iNOS). GHP blocked toll-like receptor 4 (TLR4)/myeloid differentiation primary response 88 (MyD88)/nuclear factor-κB (NF-κB) signaling pathway activation, accompanied by downregulation of LPS-triggered significant upregulation of tumor necrosis factor (TNF)-α and interleukin (IL)-1β gene expression. Furthermore, GHP could neutralize LPS not only by direct binding to LPS, but also by inhibiting the engagement of LPS with the TLR4/MD2 complex, making it a potential LPS inhibitor. In conclusion, these findings suggest that GHP negatively regulates TLR4-mediated inflammatory response in LPS-stimulated RAW264.7 cells, and therefore may hold potential to ameliorate inflammation-related issues. PMID:25923657

  7. Endotoxin-Binding Peptides Derived from Casein Glycomacropeptide Inhibit Lipopolysaccharide-Stimulated Inflammatory Responses via Blockade of NF-κB activation in macrophages

    PubMed Central

    Cheng, Xue; Gao, Dongxiao; Chen, Bin; Mao, Xueying

    2015-01-01

    Systemic low-grade inflammation and increased circulating lipopolysaccharide (LPS) contribute to metabolic dysfunction. The inhibitory effects and underlying molecular mechanisms of casein glycomacropeptide (GMP) hydrolysate on the inflammatory response of LPS-stimulated macrophages were investigated. Results showed that the inhibitory effect of GMP hydrolysates obtained with papain on nitric oxide (NO) production were obviously higher than that of GMP hydrolysates obtained with pepsin, alcalase and trypsin (p < 0.05), and the hydrolysate obtained with papain for 1 h hydrolysis (GHP) exhibited the highest inhibitory effect. Compared with native GMP, GHP markedly inhibited LPS-induced NO production in a dose-dependent manner with decreased mRNA level of inducible nitric oxide synthase (iNOS). GHP blocked toll-like receptor 4 (TLR4)/myeloid differentiation primary response 88 (MyD88)/nuclear factor-κB (NF-κB) signaling pathway activation, accompanied by downregulation of LPS-triggered significant upregulation of tumor necrosis factor (TNF)-α and interleukin (IL)-1β gene expression. Furthermore, GHP could neutralize LPS not only by direct binding to LPS, but also by inhibiting the engagement of LPS with the TLR4/MD2 complex, making it a potential LPS inhibitor. In conclusion, these findings suggest that GHP negatively regulates TLR4-mediated inflammatory response in LPS-stimulated RAW264.7 cells, and therefore may hold potential to ameliorate inflammation-related issues. PMID:25923657

  8. Regulation of Cocaine- and Amphetamine-Regulated Transcript-Synthesising Neurons of the Hypothalamic Paraventricular Nucleus by Endotoxin; Implications for Lipopolysaccharide-Induced Regulation of Energy Homeostasis

    PubMed Central

    Füzesi, T.; Sánchez, E.; Wittmann, G.; Singru, P. S.; Fekete, C.; Lechan, R. M

    2009-01-01

    Infectious diseases and the administration of bacterial lipopolysaccharide (LPS) result in decreased food intake and increased energy expenditure. Because the hypothalamic paraventricular nucleus (PVN) has pivotal roles in the regulation of energy homeostasis and expresses an anorexic peptide, cocaine- and amphetamine-regulated transcript (CART), we hypothesised that increased CART synthesis in this nucleus may contribute to LPS-induced changes in energy homeostasis. Therefore, we studied the effects of intraperitoneal administration of LPS on CART gene expression in the PVN by semiquantitative in situ hybridisation. LPS caused a rapid increase in CART mRNA levels in the PVN. One hour after treatment, the density of silver grains was increased by three-fold in the PVN, and remained elevated 3 h after treatment. Because the dorsal vagal complex, an important vegetative centre in the brainstem, is heavily innervated by CART-containing axons, we determined whether the retrograde tracer, cholera toxin B subunit (CTB), accumulates in CART neurons in the PVN following stereotaxic injection of the tracer into the dorsal vagal complex. One week after injection, CTB accumulated in CART neurons in the ventral, medial, and lateral parvocellular subdivisions of the PVN. In addition, LPS administration induced c-fos expression in a population of CART neurons in the PVN that project to the dorsal vagal complex. These data indicate that increased CART gene expression in neurons of PVN may contribute to LPS-induced anorexia, and suggest that this action may be mediated, at least in part, through a PVN-dorsal vagal complex pathway. PMID:18624928

  9. Effect of Polysaccharides from Acanthopanax senticosus on Intestinal Mucosal Barrier of Escherichia coli Lipopolysaccharide Challenged Mice

    PubMed Central

    Han, Jie; Xu, Yunhe; Yang, Di; Yu, Ning; Bai, Zishan; Bian, Lianquan

    2016-01-01

    To investigate the role of polysaccharide from Acanthopanax senticosus (ASPS) in preventing lipopolysaccharide (LPS)-induced intestinal injury, 18 mice (at 5 wk of age) were assigned to three groups with 6 replicates of one mouse each. Mice were administrated by oral gavage with or without ASPS (300 mg/kg body weight) for 14 days and were injected with saline or LPS at 15 days. Intestinal samples were collected at 4 h post-challenge. The results showed that ASPS ameliorated LPS-induced deterioration of digestive ability of LPS-challenged mice, indicated by an increase in intestinal lactase activity (45%, p<0.05), and the intestinal morphology, as proved by improved villus height (20.84%, p<0.05) and villus height:crypt depth ratio (42%, p<0.05), and lower crypt depth in jejunum (15.55%, p<0.05), as well as enhanced intestinal tight junction proteins expression involving occludin-1 (71.43%, p<0.05). ASPS also prevented intestinal inflammation response, supported by decrease in intestinal inflammatory mediators including tumor necrosis factor α (22.28%, p<0.05) and heat shock protein (HSP70) (77.42%, p<0.05). In addition, intestinal mucus layers were also improved by ASPS, as indicated by the increase in number of goblet cells (24.89%, p<0.05) and intestinal trefoil peptide (17.75%, p<0.05). Finally, ASPS facilitated mRNA expression of epidermal growth factor (100%, p<0.05) and its receptor (200%, p<0.05) gene. These results indicate that ASPS can prevent intestinal mucosal barrier injury under inflammatory conditions, which may be associated with up-regulating gene mRNA expression of epidermal growth factor and its receptor. PMID:26732337

  10. Effect of Polysaccharides from Acanthopanax senticosus on Intestinal Mucosal Barrier of Escherichia coli Lipopolysaccharide Challenged Mice.

    PubMed

    Han, Jie; Xu, Yunhe; Yang, Di; Yu, Ning; Bai, Zishan; Bian, Lianquan

    2016-01-01

    To investigate the role of polysaccharide from Acanthopanax senticosus (ASPS) in preventing lipopolysaccharide (LPS)-induced intestinal injury, 18 mice (at 5 wk of age) were assigned to three groups with 6 replicates of one mouse each. Mice were administrated by oral gavage with or without ASPS (300 mg/kg body weight) for 14 days and were injected with saline or LPS at 15 days. Intestinal samples were collected at 4 h post-challenge. The results showed that ASPS ameliorated LPS-induced deterioration of digestive ability of LPS-challenged mice, indicated by an increase in intestinal lactase activity (45%, p<0.05), and the intestinal morphology, as proved by improved villus height (20.84%, p<0.05) and villus height:crypt depth ratio (42%, p<0.05), and lower crypt depth in jejunum (15.55%, p<0.05), as well as enhanced intestinal tight junction proteins expression involving occludin-1 (71.43%, p<0.05). ASPS also prevented intestinal inflammation response, supported by decrease in intestinal inflammatory mediators including tumor necrosis factor α (22.28%, p<0.05) and heat shock protein (HSP70) (77.42%, p<0.05). In addition, intestinal mucus layers were also improved by ASPS, as indicated by the increase in number of goblet cells (24.89%, p<0.05) and intestinal trefoil peptide (17.75%, p<0.05). Finally, ASPS facilitated mRNA expression of epidermal growth factor (100%, p<0.05) and its receptor (200%, p<0.05) gene. These results indicate that ASPS can prevent intestinal mucosal barrier injury under inflammatory conditions, which may be associated with up-regulating gene mRNA expression of epidermal growth factor and its receptor. PMID:26732337

  11. Endotoxin removal by radio frequency gas plasma (glow discharge)

    NASA Astrophysics Data System (ADS)

    Poon, Angela

    2011-12-01

    Contaminants remaining on implantable medical devices, even following sterilization, include dangerous fever-causing residues of the outer lipopolysaccharide-rich membranes of Gram-negative bacteria such as the common gut microorganism E. coli. The conventional method for endotoxin removal is by Food & Drug Administration (FDA)-recommended dry-heat depyrogenation at 250°C for at least 45 minutes, an excessively time-consuming high-temperature technique not suitable for low-melting or heat-distortable biomaterials. This investigation evaluated the mechanism by which E. coli endotoxin contamination can be eliminated from surfaces during ambient temperature single 3-minute to cumulative 15-minute exposures to radio-frequency glow discharge (RFGD)-generated residual room air plasmas activated at 0.1-0.2 torr in a 35MHz electrodeless chamber. The main analytical technique for retained pyrogenic bio-activity was the Kinetic Chromogenic Limulus Amebocyte Lysate (LAL) Assay, sufficiently sensitive to document compliance with FDA-required Endotoxin Unit (EU) titers less than 20 EU per medical device by optical detection of enzymatic color development corresponding to < 0.5 EU/ml in sterile water extracts of each device. The main analytical technique for identification of chemical compositions, amounts, and changes during sequential reference Endotoxin additions and subsequent RFGD-treatment removals from infrared (IR)-transparent germanium (Ge) prisms was Multiple Attenuated Internal Reflection (MAIR) infrared spectroscopy sensitive to even monolayer amounts of retained bio-contaminant. KimaxRTM 60 mm x 15 mm and 50mm x 15mm laboratory glass dishes and germanium internal reflection prisms were inoculated with E. coli bacterial endotoxin water suspensions at increments of 0.005, 0.05, 0.5, and 5 EU, and characterized by MAIR-IR spectroscopy of the dried residues on the Ge prisms and LAL Assay of sterile water extracts from both glass and Ge specimens. The Ge prism MAIR-IR measurements were repeated after employing 3-minute RFGD treatments sequentially for more than 10 cycles to observe removal of deposited matter that correlated with diminished EU titers. The results showed that 5 cycles, for a total exposure time of 15 minutes to low-temperature gas plasma, was sufficient to reduce endotoxin titers to below 0.05 EU/ml, and correlated with concurrent reduction of major endotoxin reference standard absorption bands at 3391 cm-1, 2887 cm-1, 1646 cm -1 1342 cm-1, and 1103 cm-1 to less than 0.05 Absorbance Units. Band depletion varied from 15% to 40% per 3-minute cycle of RFGD exposure, based on peak-to-peak analyses. In some cases, 100% of all applied biomass was removed within 5 sequential 3-minute RFGD cycles. The lipid ester absorption band expected at 1725 cm-1 was not detectable until after the first RFGD cycle, suggesting an unmasking of the actual bacterial endotoxin membrane induced within the gas plasma environment. Future work must determine the applicability of this low-temperature, quick depyrogenation process to medical devices of more complicated geometry than the flat surfaces tested here.

  12. Evaluation of blood acid-base balance after experimental administration of endotoxin in adult cow.

    PubMed

    Ohtsuka, H; Ohki, K; Tajima, M; Yoshino, T; Takahashi, K

    1997-06-01

    Esherichia coli endotoxin was administered intravenously to 7 Holstein adult cows, to evaluate the effect of endotoxin on acid-base balance. Endotoxin shock was observed immediately after the administration of endotoxin. A loss of appetite and depression of digestive tract motility continued for about 120 hr after the challenge. Metabolic alkalosis following hypochloremia and hypokalemia were particularly pronounced at 12 to 72 hr after the administration of endotoxin. PMID:9234228

  13. Preparation of endotoxin-free bacteriophages.

    PubMed

    Boratyński, Janusz; Syper, Danuta; Weber-Dabrowska, Beata; Łusiak-Szelachowska, Marzanna; Poźniak, Gryzelda; Górski, Andrzej

    2004-01-01

    Bacteriophages (phages) are bacterial viruses that interact with bacterial walls and invade bacterial cells. Moreover, they disturb bacterial metabolism and lead to bacteria lysis. In the case of Gram-negative bacteria crude phage cultures, apart from the phages themselves, the bacterial debris, bacterial proteins and nucleic acids contain endotoxins. These endotoxins (lipopolysaccharides) posses a high degree of toxicity in vitro and in vivo, and their removal is essential for safety in antibacterial bacteriophage therapy. An effective, scaleable purification of bacteriophages from endotoxins was accomplished by sequential ultrafiltration through polysulfone membrane (30 nm) followed by chromatography on sepharose 4B and Matrex Cellulofine Sulfate. The phage fraction after gel filtration chromatography routinely contained endotoxins in the 150-2500 EU/ml range. The procedure yielded bacteriophages contaminated with as little as 0.4-7 EU/ml (Limulus assay). This value lies within the permitted level for intravenous applications (5 EU/kg/h by European Pharmacopoeia, 1997). PMID:15213806

  14. A comparison of the endotoxin biosynthesis and protein oxidation pathways in the biogenesis of the outer membrane of Escherichia coli and Neisseria meningitidis

    PubMed Central

    Piek, Susannah; Kahler, Charlene M.

    2012-01-01

    The Gram-negative bacterial cell envelope consists of an inner membrane (IM) that surrounds the cytoplasm and an asymmetrical outer-membrane (OM) that forms a protective barrier to the external environment. The OM consists of lipopolysaccahride (LPS), phospholipids, outer membrane proteins (OMPs), and lipoproteins. Oxidative protein folding mediated by periplasmic oxidoreductases is required for the biogenesis of the protein components, mainly constituents of virulence determinants such as pili, flagella, and toxins, of the Gram-negative OM. Recently, periplasmic oxidoreductases have been implicated in LPS biogenesis of Escherichia coli and Neisseria meningitidis. Differences in OM biogenesis, in particular the transport pathways for endotoxin to the OM, the composition and role of the protein oxidation, and isomerization pathways and the regulatory networks that control them have been found in these two Gram-negative species suggesting that although form and function of the OM is conserved, the pathways required for the biosynthesis of the OM and the regulatory circuits that control them have evolved to suit the lifestyle of each organism. PMID:23267440

  15. Effect of dexamethasone on the onset and persistence of vascular hyporeactivity induced by E. coli lipopolysaccharide in rats.

    PubMed

    Paya, D; Gray, G A; Fleming, I; Stoclet, J C

    1993-10-01

    The effects of dexamethasone (DEX) were studied on early and delayed hyporesponsiveness to noradrenaline (NA) induced by Escherichia coli lipopolysaccharide (LPS) in pentobarbitone-anesthetized rats, and in aortic rings, which were either removed from LPS-treated rats or exposed to LPS in vitro. In all three preparations, the LPS-impaired responses to NA were restored by N omega-nitro-L-arginine methyl ester. In addition, delayed depression of NA-induced aortic contractions was enhanced by L-arginine (1 mM). In control conditions, DEX had no effect on responses to NA. When administered before LPS, or before hyporeactivity was fully developed, DEX (5-10 mg/kg or 10 microM) entirely prevented both the early decline in responses to NA or its progression, and the delayed impaired aortic contraction induced by LPS. However, DEX did not prevent the transient drop in mean arterial blood pressure (which was maximal at 20 min after the onset of LPS infusion) observed before the full development of impaired reactivity to NA (reached after 55 min). Neither did DEX modify the responses to NA, in vivo or in vitro, once LPS-induced hyporesponsiveness was fully established. These results indicate that DEX inhibits both the onset of impaired responsiveness to NA, which probably involves the early stimulation of the constitutive nitric oxide (NO) synthase, and persistent vascular hyporeactivity resulting from the delayed induction of NO-synthase by LPS. In addition, they show that DEX has no effect on hyporeactivity to NA once fully established. PMID:7694812

  16. Acute mammary and liver transcriptome responses after an intramammary Escherichia coli lipopolysaccharide challenge in postpartal dairy cows

    PubMed Central

    Minuti, Andrea; Zhou, Zheng; Graugnard, Daniel E; Rodriguez-Zas, Sandra L; Palladino, Alejandro R; Cardoso, Felipe C; Trevisi, Erminio; Loor, Juan J

    2015-01-01

    The study investigated the effect of an intramammary lipopolysaccharide (LPS) challenge on the bovine mammary and liver transcriptome and its consequences on metabolic biomarkers and liver tissue composition. At 7 days of lactation, 7 cows served as controls (CTR) and 7 cows (LPS) received an intramammary Escherichia coli LPS challenge. The mammary and liver tissues for transcriptomic profiling were biopsied at 2.5 h from challenge. Liver composition was evaluated at 2.5 h and 7 days after challenge, and blood biomarkers were analyzed at 2, 3, 7 and 14 days from challenge. In mammary tissue, the LPS challenge resulted in 189 differentially expressed genes (DEG), with 20 down-regulated and 169 up-regulated. In liver tissue, there were 107 DEG in LPS compared with CTR with 42 down-regulated and 65 up-regulated. In mammary, bioinformatics analysis highlighted that LPS led to activation of NOD-like receptor signaling, Toll-like receptor signaling, RIG-I-like receptor signaling and apoptosis pathways. In liver, LPS resulted in an overall inhibition of fatty acid elongation in mitochondria and activation of the p53 signaling pathway. The LPS challenge induced changes in liver lipid composition, a systemic inflammation (rise of blood ceruloplasmin and bilirubin), and an increase in body fat mobilization. The data suggest that cells within the inflamed mammary gland respond by activating mechanisms of pathogen recognition. However, in the liver the response likely depends on mediators originating from the udder that affect liver functionality and specifically fatty acid metabolism (β-oxidation, ketogenesis, and lipoprotein synthesis). PMID:25921778

  17. Advances and needs for endotoxin-free production strains.

    PubMed

    Taguchi, Seiichi; Ooi, Toshihiko; Mizuno, Kouhei; Matsusaki, Hiromi

    2015-11-01

    The choice of an appropriate microbial host cell and suitable production conditions is crucial for the downstream processing of pharmaceutical- and food-grade products. Although Escherichia coli serves as a highly valuable leading platform for the production of value-added products, like most Gram-negative bacteria, this bacterium contains a potent immunostimulatory lipopolysaccharide (LPS), referred to as an endotoxin. In contrast, Gram-positive bacteria, notably Bacillus, lactic acid bacteria (LAB), Corynebacterium, and yeasts have been extensively used as generally recognized as safe (GRAS) endotoxin-free platforms for the production of a variety of products. This review summarizes the currently available knowledge on the utilization of these representative Gram-positive bacteria for the production of eco- and bio-friendly products, particularly natural polyesters, polyhydroxyalkanoates, bacteriocins, and membrane proteins. The successful case studies presented here serve to inspire the use of these microorganisms as a main-player or by-player depending on their individual properties for the industrial production of these desirable targets. PMID:26362682

  18. Impact of endotoxin challenge in obese pigs.

    PubMed

    Duburcq, Thibault; Hubert, Thomas; Saint-Lger, Pierre; Mangalaboyi, Jacques; Favory, Raphael; Gmyr, Valery; Quintane, Laurence; Tailleux, Anne; Staels, Bart; Tournoys, Antoine; Pattou, Franois; Jourdain, Merc

    2014-06-01

    Studies exploring the influence of obesity on septic shock remain limited and controversial. Pigs were chosen as a clinically relevant species, resembling to humans in various functions. We hypothesize obesity may impair porcine acute endotoxic shock. Four groups of five "Yucatan" minipigs were studied: lean and obese control groups, lean lipopolysaccharide (LPS) group receiving Escherichia coli endotoxin (LPS) and obese LPS group receiving the same endotoxin dose. We measured hemodynamic and oxygenation parameters, skin microvascular blood flow at rest and during reactive hyperemia, von Willebrand factor, tumor necrosis factor ?, and interleukin 6. All measurements were performed at baseline and at 30, 60, 90, 150, and 300 min. Results were given as median with 25th to 75th interquartile range. Control groups remained stable during the study period. In LPS groups, administration of endotoxin resulted in a typical hypokinetic shock. In obese LPS group at 300 min, we observed a significant impairment of cardiac index (1.2 [1.06-1.45] vs. 1.7 [1.57-1.97] L/min per m, P = 0.008) compared with the lean LPS group; moreover, pulmonary hypertension (mean arterial pressure: 42 [39-47] vs. 32 [28-34] mmHg, P = 0.008), hypoxemia (partial pressure of oxygen: 216 [178-262] vs. 325 [285-414] mmHg, P = 0.02), and lactate levels (5.8 [4.2-6.8] vs. 3.9 [2.2-5.5] mmol/L, P = 0.04) were significantly higher compared with the lean LPS group. Throughout the study, rest flow and peak flow during reactive hyperemia were more decreased in the obese LPS group. Compared with the lean LPS group, tumor necrosis factor ? levels at 60 min (269 [178-428] vs. 126 [105-166] ng/mL, P = 0.03) and interleukin 6 levels at 300 min (101 [61-142] vs. 52 [36-64] ng/mL, P = 0.03) were significantly higher in the obese LPS group. In our model of endotoxic shock, obese pigs developed a more severe hemodynamic failure with pronounced microcirculatory dysfunction and proinflammatory response. PMID:24569508

  19. The acute phase response induced by Escherichia coli lipopolysaccharide modifies the pharmacokinetics and metabolism of florfenicol in rabbits.

    PubMed

    Pérez, R; Palma, C; Burgos, R; Jeldres, J A; Espinoza, A; Peñailillo, A K

    2016-04-01

    The aim of this study was to determine the effect of Escherichia coli lipopolysaccharide (LPS)-induced acute phase response (APR) on the pharmaco-kinetics and biotransformation of florfenicol (FFC) in rabbits. Six rabbits (3.0 ± 0.08 kg body weight (bw)) were distributed through a crossover design with 4 weeks of washout period. Pairs of rabbits similar in bw and sex were assigned to experimental groups: Group 1 (LPS) was treated with three intravenous doses of 1 μg/kg bw of E. coli LPS at intervals of 6 h, and Group 2 (control) was treated with an equivalent volume of saline solution (SS) at the same intervals and frequency of Group 1. At 24 h after the first injection of LPS or SS, an intravenous bolus of 20 mg/kg bw of FFC was administered. Blood samples were collected from the auricular vein before drug administration and at different times between 0.05 and 24.0 h after treatment. FFC and florfenicol-amine (FFC-a) were extracted from the plasma, and their concentrations were determined by high-performance liquid chromatography. A noncompartmental pharmacokinetic model was used for data analysis, and data were compared using the paired Student t-test. The mean values of AUC0-∞ in the endotoxaemic rabbits (26.3 ± 2.7 μg·h/mL) were significantly higher (P < 0.05) than values observed in healthy rabbits (17.2 ± 0.97 μg·h/mL). The total mean plasma clearance (CLT ) decreased from 1228 ± 107.5 mL·h/kg in the control group to 806.4 ± 91.4 mL·h/kg in the LPS-treated rabbits. A significant increase (P < 0.05) in the half-life of elimination was observed in the endotoxaemic rabbits (5.59 ± 1.14 h) compared to the values observed in healthy animals (3.44 ± 0.57 h). In conclusion, the administration of repeated doses of 1 μg/kg E. coli LPS induced an APR in rabbits, producing significant modifications in plasma concentrations of FFC leading to increases in the AUC, terminal half-life and mean residence time (MRT), but a significant decrease in CLT of the drug. As a consequence of the APR induced by LPS, there was a reduction in the metabolic conversion of FFC to their metabolite FFC-a in the liver, suggesting that the mediators released during the APR induced significant inhibitory effects on the hepatic drug-metabolizing enzymes. PMID:26010096

  20. Gene expression of factors related to the immune reaction in response to intramammary Escherichia coli lipopolysaccharide challenge.

    PubMed

    Bruckmaier, Rupert M

    2005-01-01

    Pathogenic microorganisms invading the mammary gland induce an inflammatory reaction which includes an increase of somatic cells in milk and activation of bacteriostatic enzymes and proteins in milk. During spontaneously occurring subclinical mastitis the somatic milk cells, mainly macrophages, secrete cytokines, eicosanoids, acute phase proteins and other immunomediators. In contrast, the bacteriostatic protein lactoferrin is mainly secreted by mammary epithelial tissue, while major milk proteins like alpha-lactalbumin and kappa-casein are down-regulated already during subclinical infection. Changes of the mRNA expression of various immunomediators in the mammary tissue of cows during 12 h after induction of mastitis via intramammary administration of lipopolysaccharide (LPS) in several studies are reported. Six healthy lactating cows were injected in one quarter with 100 microg Escherichia coli-LPS (O26: B6) and the contralateral quarter with saline (9 g/l) serving as control. mRNA expression in mammary biopsy samples of various inflammatory factors and milk proteins at 0, 3, 6, 9 and 12 h after LPS administration was quantified by real-time reverse transcription-PCR. In LPS-challenged quarters tumour necrosis factor alpha and cyclooxygenase-2 mRNA expression increased to their highest values (P<0.05) at 3 h after LPS-challenge. Expression of lactoferrin, lysozyme, inducible nitric oxide synthase, and of the apoptotic factors caspase-3, caspase-7 and FAS was elevated (P<0.05) and peaked at 6 h after challenge. No significant increase in mRNA expression of platelet-activating factor acethylhydrolase, 5-lipoxygenase, and insulin-like growth factor 1 was found. None of the parameters tested did change significantly in the control quarters. mRNA expression of major milk proteins did not change significantly in response to the LPS challenge (alphaS1-casein, alphaS2-CN, beta-CN and beta-lactoglobulin) except for alpha-lactalbumin which decreased (P<0.05) in LPS-treated and control quarters and for kappa-CN which decreased in the LPS-treated quarters. In conclusion, mRNA expression of the majority albeit not all inflammatory factors changed within hours of LPS challenge. Decreased gene expression of alpha-lactalbumin and kappa-CN may reduce milk yield and suitability for cheese production. PMID:16180730

  1. Concentration, physical state, and purity of bacterial endotoxin affect its detoxification by ionizing radiation

    SciTech Connect

    Csako, G.; Tsai, C.M.; Hochstein, H.D.; Elin, R.J.

    1986-11-01

    Increasing concentrations of a highly purified bacterial lipopolysaccharide preparation, the U.S. Reference Standard Endotoxin, were exposed to increasing doses of ionizing radiation from a 60Co source. At identical radiation doses both the structural change and Limulus amebocyte lysate (LAL) reactivity were progressively smaller with increasing concentrations of the lipopolysaccharide in an aqueous medium. Under the experimental conditions used, there was a linear relationship between the endotoxin concentration and radiation dose for the structural changes. In contrast to endotoxin in aqueous medium, endotoxin irradiated in its dry state showed no decrease in LAL reactivity and rabbit pyrogenicity. Endotoxin exposed to radiation in water in the presence of albumin showed a much smaller decrease in LAL and pyrogenic activities than expected. The results show that the concentration, physical state, and purity of endotoxin influence its structural and functional alteration by ionizing radiation.

  2. CD36 regulates lipopolysaccharide-induced signaling pathways and mediates the internalization of Escherichia coli in cooperation with TLR4 in goat mammary gland epithelial cells.

    PubMed

    Cao, Duoyao; Luo, Jun; Chen, Dekun; Xu, Huifen; Shi, Huaiping; Jing, Xiaoqi; Zang, Wenjuan

    2016-01-01

    The scavenger receptor CD36 is involved in pathogen recognition, phagocytosis, and pathogen-induced signaling. This study investigated the relationship between CD36 and TLR4 in modifying lipopolysaccharide (LPS)-induced signaling pathways and mediating Escherichia coli (E. coli) endocytosis in primary goat mammary epithelial cells (pGMECs). The manipulation of CD36 expression significantly influenced TLR4 and nuclear factor kappa B (NF-κB) mRNA expression in pGMECs stimulated with LPS for 12 h. NF-κB and activator protein-1 (AP-1) activity was regulated by the manipulation of CD36 expression in LPS-induced pGMECs. However, CD36-mediated AP-1 activation occurred primarily through c-Jun N-terminal kinase (c-JNK). Adaptor proteins and proinflammatory cytokines were also involved in these signaling pathways and acted by regulating CD36 expression in LPS-stimulated cells. Moreover, CD36 cooperated with TLR4 in TLR4-mediated phagocytosis following E. coli simulation, but this complex was not induced by LPS treatment. Our study is the first to illuminate CD36 as a scavenger receptor in ruminants. Additionally, this study indicates that CD36 plays a vital role in the LPS-induced activation of downstream signaling cascades and mediates E. coli phagocytosis via TLR4 in pGMECs, which offers a novel treatment strategy for mastitis. PMID:26976286

  3. CD36 regulates lipopolysaccharide-induced signaling pathways and mediates the internalization of Escherichia coli in cooperation with TLR4 in goat mammary gland epithelial cells

    PubMed Central

    Cao, Duoyao; Luo, Jun; Chen, Dekun; Xu, Huifen; Shi, Huaiping; Jing, Xiaoqi; Zang, Wenjuan

    2016-01-01

    The scavenger receptor CD36 is involved in pathogen recognition, phagocytosis, and pathogen-induced signaling. This study investigated the relationship between CD36 and TLR4 in modifying lipopolysaccharide (LPS)-induced signaling pathways and mediating Escherichia coli (E. coli) endocytosis in primary goat mammary epithelial cells (pGMECs). The manipulation of CD36 expression significantly influenced TLR4 and nuclear factor kappa B (NF-κB) mRNA expression in pGMECs stimulated with LPS for 12 h. NF-κB and activator protein-1 (AP-1) activity was regulated by the manipulation of CD36 expression in LPS-induced pGMECs. However, CD36-mediated AP-1 activation occurred primarily through c-Jun N-terminal kinase (c-JNK). Adaptor proteins and proinflammatory cytokines were also involved in these signaling pathways and acted by regulating CD36 expression in LPS-stimulated cells. Moreover, CD36 cooperated with TLR4 in TLR4-mediated phagocytosis following E. coli simulation, but this complex was not induced by LPS treatment. Our study is the first to illuminate CD36 as a scavenger receptor in ruminants. Additionally, this study indicates that CD36 plays a vital role in the LPS-induced activation of downstream signaling cascades and mediates E. coli phagocytosis via TLR4 in pGMECs, which offers a novel treatment strategy for mastitis. PMID:26976286

  4. Removal of viable bacteria and endotoxins by Electro Deionization (EDI).

    PubMed

    Harada, Norimitsu; Otomo, Teruo; Watabe, Tomoichi; Ase, Tomonobu; Takemura, Takuto; Sato, Toshio

    2011-09-01

    Viable bacteria and endotoxins in water sometimes cause problems for human health. Endotoxins are major components of the outer cell wall of gram-negative bacteria (lipopolysaccharides). In medical procedures, especially haemodialysis (HD) and related therapies (haemodiafiltration (HDF), haemofiltration (HF)), endotoxins in the water for haemodialysis can permeate through the haemodialysis membrane and cause microinflammation or various haemodialysis-related illnesses. To decrease such a biological risk, RO and UF membranes are generally used. Also, hot water disinfection or the chemical disinfection is regularly executed to kill bacteria which produce endotoxins. However, simple treatment methods and equipment may be able to decrease the biological risk more efficiently. In our experiments, we confirmed that viable bacteria and endotoxins were removed by Electro Deionization (EDI) technology and also clarified the desorption mechanisms. PMID:21946321

  5. Collagenase Production by Endotoxin-Activated Macrophages

    PubMed Central

    Wahl, Larry M.; Wahl, Sharon M.; Mergenhagen, Stephan E.; Martin, George R.

    1974-01-01

    Peritoneal exudate macrophages, when exposed to bacterial lipopolysaccharide in culture, were found to produce collagenase (EC 3.4.24.3). This enzyme was not detected in extracts of the macrophages or in media from nonstimulated macrophage cultures. Lipidcontaining fractions of the lipopolysaccharide, including a glycolipid from the rough mutant of Salmonella minnesota (R595) and lipid A, were potent stimulators of collagenase production. The lipid-free polysaccharide fraction had no effect. Cycloheximide prevented the production of collagenase by endotoxin-treated macrophages, suggesting that it was newly synthesized. Images PMID:4372628

  6. Dose-dependent changes in the antigenicity of bacterial endotoxin exposed to ionizing radiation. Report No. 2, 1986-1987

    SciTech Connect

    Csako, G.; Suba, E.A.; Tsai, C.M.; Mocca, L.F.; Elin, R.J.

    1987-01-01

    The antigenic properties of the highly purified US reference standard endotoxin (RSE) exposed to varying doses of ionizing radiation were studied with double immuno-diffusion, immunoelectrophoresis, and immunoblotting. Rabbit RSE antisera identified 2 distinct major antigenic components for untreated RSE: one related to the O-polysaccharide side chain (O-antigenic specificity), the other to the R-core. Based on a serologic cross-reactivity of R-core of RSE (Escherichia coli 0113) with the R-core of the lipopolysaccharide from E. coli 0111, the core type of E. coli 0113 was identified as coli R3. Increasing exposure of RSE to ionizing radiation progressively destroyed all antigenic reactivities; at lower doses of radiation the rate of elimination differed for the 2 antigen classes. The O-polysaccharide was more sensitive to gamma radiation than the R-core and the O-antigenicity was lost before that of the R-core. Endotoxin molecules containing incomplete R-core (radiation-induced or mutant) did not react with the RSE antiserum. Keywords: Antigenicity, Reprints. (KT/KR)

  7. Effects of endotoxin on the lactating mouse

    SciTech Connect

    Carr, J.K.

    1985-01-01

    The regulation of endogenous mouse mammary tumor virus (MMTV) sequences in trans by a host gene, the Lps locus on mouse chromosome 4, was suspected from a genetic linkage analysis. The Lps locus mediates the mouse's response to the injection of lipopolysaccharide (LPS) in the responder mouse while mice with the deficient allele are incapable of responding. Others have found that endotoxin exposure reduces milk production in lactating animals. This observation was confirmed in mice and extended by examining /sup 125/I-prolactin binding to liver membranes of lactating mice. Endotoxin treatment of responder mice increases liver prolactin binding within 15 minutes, followed by a decline over 6 hours. Scatchard analysis shows that the immediate increase comes from both increased affinity and abundance of the prolactin receptor. No such change in prolactin binding is seen in the non-responder following endotoxin treatment nor in /sup 125/I-insulin binding in responders.

  8. Pathogenic Escherichia coli and lipopolysaccharide enhance the expression of IL-8, CXCL5, and CXCL10 in canine endometrial stromal cells.

    PubMed

    Karlsson, Iulia; Hagman, Ragnvi; Guo, Yongzhi; Humblot, Patrice; Wang, Liya; Wernersson, Sara

    2015-07-01

    Chemokines play a central role in cellular communication in response to bacterial infection. However, the knowledge of the chemokine responses to bacterial infections in dogs remains limited. Uterine bacterial infection (pyometra) is one of the most common bacterial diseases in dogs and causes sepsis in most of the cases. We have shown previously that dogs with pyometra have higher messenger RNA (mRNA) levels of chemokines in uterus. To assess whether the stromal part of the endometrium expresses chemokines in response to bacterial infection, we cultured endometrial stromal cells isolated from healthy dogs and exposed them to either live pathogenic Escherichia coli, isolated from the uterus of a dog with pyometra, or lipopolysaccharide. Changes in the mRNA expression of ELR(+) CXC chemokines, IL-8, CXCL5, CXCL7, and ELR(-) CXC chemokine, CXCL10, were measured after 24 hours using quantitative real-time polymerase chain reaction. Levels of IL-8, CXCL5, and CXCL10 were upregulated in endometrial stromal cells exposed to E coli and lipopolysaccharide, whereas the level of CXCL7 was decreased or unaffected. In addition, levels of IL-8 and CXCL5, but not CXCL7 or CXCL10, were significantly higher in dogs with pyometra than those in healthy dogs. Our findings show that pathogenic uterine-derived E coli induces a CXC chemokine response both in cultured endometrial stromal cells within 24 hours and in pyometra-affected uteri from dogs. Stromal cells could therefore play an important role in early neutrophil and T cell recruitment to the site of inflammation during gram-negative bacterial infection of the uterus. Further studies are needed to clarify the role of chemokines in host response to bacterial infection in dogs and the possibility of using chemokines as diagnostic parameters for bacterial infection in this species. PMID:25765298

  9. UDP-N-acetylglucosamine acyltransferase of Escherichia coli. The first step of endotoxin biosynthesis is thermodynamically unfavorable.

    PubMed

    Anderson, M S; Bull, H G; Galloway, S M; Kelly, T M; Mohan, S; Radika, K; Raetz, C R

    1993-09-15

    UDP-N-acetylglucosamine acyltransferase of Escherichia coli catalyzes the reaction, UDP-GlcNAc + R-3-hydroxymyristoyl-ACP--> UDP-3-O-(R-3-hydroxymyristoyl)-GlcNAc + ACP. Using Matrex Gel Green A and heparin-agarose, we have purified the enzyme to near homogeneity from a strain that overproduces it 474-fold. The subunit molecular mass determined by SDS-gel electrophoresis is approximately 30 kDa, consistent with results of previous radiolabeling experiments in mini-cells. The amino-terminal sequence (Met-Ile-Asp-Lys-Ser-Ala-Phe-Val-His-Pro) and the amino acid composition of the purified protein are consistent with DNA sequencing (Coleman, J., and Raetz, C. R. H. (1988) J. Bacteriol. 170, 1268-1274). At saturating concentrations of the second substrate, the apparent Km values for UDP-GlcNAc and R-3-hydroxymyristoyl-ACP are 99 and 1.6 microM, respectively. There is an absolute requirement for the R-3-hydroxy moiety of the fatty acyl-ACP substrate; myristoyl-ACP binds effectively (IC50 = 2 microM) but is inactive (< 0.01%) as an alternate substrate. The most remarkable feature of the reaction is its unfavorable equilibrium constant, Keq approximately equal to 0.01, which is not predicted by model S-->O acyl transfer reactions. Thus, although UDP-GlcNAc acyltransferase catalyzes the first unique step of lipid A biosynthesis, it is the second enzyme (the deacetylase) that commits the substrates to this pathway. The specific activity of the deacetylase is elevated approximately 5-fold when lipid A synthesis is inhibited. PMID:8366124

  10. Lipopolysaccharide, capsule, and fimbriae as virulence factors among O1, O7, O16, O18, or O75 and K1, K5, or K100 Escherichia coli.

    PubMed Central

    Kusecek, B; Wloch, H; Mercer, A; Vaisnen, V; Pluschke, G; Korhonen, T; Achtman, M

    1984-01-01

    K1, K5, and K100 Escherichia coli isolates of the lipopolysaccharide antigen types O1, O7, O16, O18, or O75, which had formerly been assigned to clonal groupings were compared with K? E. coli isolates and with laboratory-derived mutants defective in capsule or lipopolysaccharide synthesis. The amount of K1 capsule, the length distribution of the lipopolysaccharide, and the expression of type I and P fimbriae were determined. The clonal groupings were uniform with regard to these properties within each group but different from each other. Many of the K? strains differed from the clonal representatives. The results are interpreted with regard to the different diseases caused by each of these bacterial groups. Images PMID:6140224

  11. Uropathogenic Escherichia coli triggers oxygen-dependent apoptosis in human neutrophils through the cooperative effect of type 1 fimbriae and lipopolysaccharide.

    PubMed

    Blomgran, Robert; Zheng, Limin; Stendahl, Olle

    2004-08-01

    Type 1 fimbriae are the most commonly expressed virulence factor on uropathogenic Escherichia coli. In addition to promoting avid bacterial adherence to the uroepithelium and enabling colonization, type 1 fimbriae recruit neutrophils to the urinary tract as an early inflammatory response. Using clinical isolates of type 1 fimbriated E. coli and an isogenic type 1 fimbria-negative mutant (CN1016) lacking the FimH adhesin, we investigated if these strains could modulate apoptosis in human neutrophils. We found that E. coli expressing type 1 fimbriae interacted with neutrophils in a mannose- and lipopolysaccharide (LPS)-dependent manner, leading to apoptosis which was triggered by the intracellular generation of reactive oxygen species. This induced neutrophil apoptosis was abolished by blocking FimH-mediated attachment, by inhibiting NADPH oxidase activation, or by neutralizing LPS. In contrast, CN1016, which did not adhere to or activate the respiratory burst of neutrophils, delayed the spontaneous apoptosis in an LPS-dependent manner. This delayed apoptosis could be mimicked by adding purified LPS and was also observed by using fimbriated bacteria in the presence of d-mannose. These results suggest that LPS is required for E. coli to exert both pro- and antiapoptotic effects on neutrophils and that the difference in LPS presentation (i.e., with or without fimbriae) determines the outcome. The present study showed that there is a fine-tuned balance between type 1 fimbria-induced and LPS-mediated delay of apoptosis in human neutrophils, in which altered fimbrial expression on uropathogenic E. coli determines the neutrophil survival and the subsequent inflammation during urinary tract infections. PMID:15271917

  12. Bactericidal monoclonal antibodies specific to the lipopolysaccharide O antigen from multidrug-resistant Escherichia coli clone ST131-O25b:H4 elicit protection in mice.

    PubMed

    Szijrt, Valria; Guachalla, Luis M; Visram, Zehra C; Hartl, Katharina; Varga, Ceclia; Mirkina, Irina; Zmajkovic, Jakub; Badarau, Adriana; Zauner, Gerhild; Pleban, Clara; Magyarics, Zoltn; Nagy, Eszter; Nagy, Gbor

    2015-01-01

    The Escherichia coli sequence type 131 (ST131)-O25b:H4 clone has spread worldwide and become responsible for a significant proportion of multidrug-resistant extraintestinal infections. We generated humanized monoclonal antibodies (MAbs) that target the lipopolysaccharide O25b antigen conserved within this lineage. These MAbs bound to the surface of live bacterial cells irrespective of the capsular type expressed. In a serum bactericidal assay in vitro, MAbs induced >95% bacterial killing in the presence of human serum as the complement source. Protective efficacy at low antibody doses was observed in a murine model of bacteremia. The mode of action in vivo was investigated by using aglycosylated derivatives of the protective MAbs. The significant binding to live E. coli cells and the in vitro and in vivo efficacy were corroborated in assays using bacteria grown in human serum to mimic relevant clinical conditions. Given the dry pipeline of novel antibiotics against multidrug-resistant Gram-negative pathogens, passive immunization with bactericidal antibodies offers a therapeutic alternative to control infections caused by E. coli ST131-O25b:H4. PMID:25779571

  13. Distribution of radiolabeled endotoxin with particular reference to the eye: concise communication

    SciTech Connect

    Rosenbaum, J.T.; Hendricks, P.A.; Shively, J.E.; McDougall, I.R.

    1983-01-01

    A single systemic injection of endotoxin (lipopolysaccharide or LPS) reproducibly induces a cellular infiltrate in the uveal tract of the rat eye within 24 hr. Other organs are not comparably sensitive to systemic endotoxin. One hypothesis to explain this unique sensitivity is that endotoxin is preferentially bound by ocular tissue. Researchers tested this hypothesis by studying the distribution in the rat of intravenously injected endotoxin that had been radiolabeled with /sup 99m/Tc or /sup 32/P. With either radionuclide the concentration of endotoxin per gram of tissue at a variety of times after injection ranging from 5 min to 3 hr and 45 min, was markedly less in the eye than in liver, kidney, or spleen. A study with radiolabeled albumin indicated that these differences could not be ascribed solely to the organ's blood volume. They demonstrate, therefore, that the eye does not preferentially bind endotoxin, and they are compatible with the hypothesis that endotoxin's ocular effects are indirectly mediated.

  14. The rfaE Gene from Escherichia coli Encodes a Bifunctional Protein Involved in Biosynthesis of the Lipopolysaccharide Core Precursor ADP-l-glycero-d-manno-Heptose

    PubMed Central

    Valvano, Miguel A.; Marolda, Cristina L.; Bittner, Mauricio; Glaskin-Clay, Mike; Simon, Tania L.; Klena, John D.

    2000-01-01

    The intermediate steps in the biosynthesis of the ADP-l-glycero-d-manno-heptose precursor of inner core lipopolysaccharide (LPS) are not yet elucidated. We isolated a mini-Tn10 insertion that confers a heptoseless LPS phenotype in the chromosome of Escherichia coli K-12. The mutation was in a gene homologous to the previously reported rfaE gene from Haemophilus influenzae. The E. coli rfaE gene was cloned into an expression vector, and an in vitro transcription-translation experiment revealed a polypeptide of approximately 55 kDa in mass. Comparisons of the predicted amino acid sequence with other proteins in the database showed the presence of two clearly separate domains. Domain I (amino acids 1 to 318) shared structural features with members of the ribokinase family, while Domain II (amino acids 344 to 477) had conserved features of the cytidylyltransferase superfamily that includes the aut gene product of Ralstonia eutrophus. Each domain was expressed individually, demonstrating that only Domain I could complement the rfaE::Tn10 mutation in E. coli, as well as the rfaE543 mutation of Salmonella enterica SL1102. DNA sequencing of the rfaE543 gene revealed that Domain I had one amino acid substitution and a 12-bp in-frame deletion resulting in the loss of four amino acids, while Domain II remained intact. We also demonstrated that the aut::Tn5 mutation in R. eutrophus is associated with heptoseless LPS, and this phenotype was restored following the introduction of a plasmid expressing the E. coli Domain II. Thus, both domains of rfaE are functionally different and genetically separable confirming that the encoded protein is bifunctional. We propose that Domain I is involved in the synthesis of d-glycero-d-manno-heptose 1-phosphate, whereas Domain II catalyzes the ADP transfer to form ADP-d-glycero-d-manno-heptose. PMID:10629197

  15. Influence of Sanitizers on the Lipopolysaccharide Toxicity of Escherichia coli Strains Cultivated in the Presence of Zygosaccharomyces bailii

    PubMed Central

    Mogotsi, Lerato; De Smidt, Olga; Venter, Pierre; Groenewald, Willem

    2014-01-01

    The influence of sublethal concentrations of two sanitizers, liquid iodophor and liquid hypochlorite (LH), on the growth rates and toxicity of food-borne pathogenic Escherichia coli strains grown in the presence of spoilage yeast Zygosaccharomyces bailii was assessed. When grown in combination with Z. bailii both E. coli O113 and E. coli O26 exhibited slower growth rates, except when E. coli O113 was grown in combination with Z. bailii at 0.2% LH. The growth rate of Z. bailii was not impacted by the addition of the sanitizers or by communal growth with E. coli strains. LAL and IL-6 results indicated a decrease in toxicity of pure E. coli cultures with comparable profiles for control and sanitizer exposed samples, although the LAL assay proved to be more sensitive. Interestingly, pure cultures of Z. bailii showed increased toxicity measured by LAL and decreased toxicity measured by IL-6. LAL analysis showed a decrease in toxicity of both E. coli strains grown in combination with Z. bailii, while IL-6 analysis of the mixed cultures showed an increase in toxicity. The use of LAL for toxicity determination in a mixed culture overlooks the contribution made by spoilage yeast, thus demonstrating the importance of using the appropriate method for toxicity testing in mixed microbe environments. PMID:24977173

  16. Influence of sanitizers on the lipopolysaccharide toxicity of Escherichia coli strains cultivated in the presence of Zygosaccharomyces bailii.

    PubMed

    Mogotsi, Lerato; De Smidt, Olga; Venter, Pierre; Groenewald, Willem

    2014-01-01

    The influence of sublethal concentrations of two sanitizers, liquid iodophor and liquid hypochlorite (LH), on the growth rates and toxicity of food-borne pathogenic Escherichia coli strains grown in the presence of spoilage yeast Zygosaccharomyces bailii was assessed. When grown in combination with Z. bailii both E. coli O113 and E. coli O26 exhibited slower growth rates, except when E. coli O113 was grown in combination with Z. bailii at 0.2% LH. The growth rate of Z. bailii was not impacted by the addition of the sanitizers or by communal growth with E. coli strains. LAL and IL-6 results indicated a decrease in toxicity of pure E. coli cultures with comparable profiles for control and sanitizer exposed samples, although the LAL assay proved to be more sensitive. Interestingly, pure cultures of Z. bailii showed increased toxicity measured by LAL and decreased toxicity measured by IL-6. LAL analysis showed a decrease in toxicity of both E. coli strains grown in combination with Z. bailii, while IL-6 analysis of the mixed cultures showed an increase in toxicity. The use of LAL for toxicity determination in a mixed culture overlooks the contribution made by spoilage yeast, thus demonstrating the importance of using the appropriate method for toxicity testing in mixed microbe environments. PMID:24977173

  17. Risks associated with endotoxins in feed additives produced by fermentation.

    PubMed

    Wallace, R John; Gropp, Jürgen; Dierick, Noël; Costa, Lucio G; Martelli, Giovanna; Brantom, Paul G; Bampidis, Vasileios; Renshaw, Derek W; Leng, Lubomir

    2016-01-01

    Increasingly, feed additives for livestock, such as amino acids and vitamins, are being produced by Gram-negative bacteria, particularly Escherichia coli. The potential therefore exists for animals, consumers and workers to be exposed to possibly harmful amounts of endotoxin from these products. The aim of this review was to assess the extent of the risk from endotoxins in feed additives and to calculate how such risk can be assessed from the properties of the additive. Livestock are frequently exposed to a relatively high content of endotoxin in the diet: no additional hazard to livestock would be anticipated if the endotoxin concentration of the feed additive falls in the same range as feedstuffs. Consumer exposure will be unaffected by the consumption of food derived from animals receiving endotoxin-containing feed, because the small concentrations of endotoxin absorbed do not accumulate in edible tissues. In contrast, workers processing a dusty additive may be exposed to hazardous amounts of endotoxin even if the endotoxin concentration of the product is low. A calculation method is proposed to compare the potential risk to the worker, based on the dusting potential, the endotoxin concentration and technical guidance of the European Food Safety Authority, with national exposure limits. PMID:26768246

  18. [Bacterial endotoxins: relationship between chemical structure and biological effect].

    PubMed

    Rietschel, E T; Brade, L; Schade, F U; Seydel, U; Zähringer, U; Mamat, U; Schmidt, G; Ulmer, A J; Loppnow, H; Flad, H D

    1993-04-01

    Gram-negative bacteria carry on their surface endotoxins, which are essential for bacterial growth and survival. If released from the bacterial cell, endotoxins induce in higher organisms a great variety of pathophysiological effects. Chemically, endotoxins constitute lipopolysaccharides (LPS), the lipid component (termed lipid A) of which is responsible for the induction of endotoxin effects. The structural and conformational parameters, endowing lipid A with its potent bioactivity, have been well characterized. The toxic effects of endotoxins are initiated by the specific interaction of lipid A with macrophages/monocytes resulting in the production of peptide or lipid mediators. This interaction is governed by a unique (toxic) conformation of lipid A on the one hand, and by specific cellular receptors on the other. The interaction and subsequent mediator production can be specifically and antagonistically inhibited by lipid A partial structures. A recently developed monoclonal anti-LPS-antibody cross-reacts with endotoxins of various bacterial origin, and it cross-protects against harmful endotoxin effects such as pyrogenicity and lethality. PMID:8340135

  19. Contamination of nanoparticles by endotoxin: evaluation of different test methods

    PubMed Central

    2012-01-01

    Background Nanomaterials can be contaminated with endotoxin (lipopolysaccharides, LPS) during production or handling. In this study, we searched for a convenient in vitro method to evaluate endotoxin contamination in nanoparticle samples. We assessed the reliability of the commonly used limulus amebocyte lysate (LAL) assay and an alternative method based on toll-like receptor (TLR) 4 reporter cells when applied with particles (TiO2, Ag, CaCO3 and SiO2), or after extraction of the endotoxin as described in the ISO norm 29701. Results Our results indicate that the gel clot LAL assay is easily disturbed in the presence of nanoparticles; and that the endotoxin extraction protocol is not suitable at high particle concentrations. The chromogenic-based LAL endotoxin detection systems (chromogenic LAL assay and Endosafe-PTS), and the TLR4 reporter cells were not significantly perturbed. Conclusion We demonstrated that nanoparticles can interfere with endotoxin detection systems indicating that a convenient test method must be chosen before assessing endotoxin contamination in nanoparticle samples. PMID:23140310

  20. Endotoxin contamination delays the foreign body reaction.

    PubMed

    van Putten, Sander M; Wbben, Maike; Plantinga, Jose A; Hennink, Wim E; van Luyn, Marja J A; Harmsen, Martin C

    2011-09-15

    Biomaterials are at continuous risk of bacterial contamination during production and application. In vivo, bacterial contamination of biomaterials delays the foreign body reaction (FBR). Endotoxins such as lipopolysaccharides (LPS), major constituents of the bacterial cell wall, are potent stimulators of the immune system in vitro and in vivo. In vitro, biomaterials contaminated with LPS induce the production of proinflammatory cytokines by adherent macrophages. This suggests that the presence of endotoxins on biomaterials will intensify the FBR. The effects of LPS on the course of the FBR have never been studied in vivo. In this study, the influence of LPS contamination on the FBR to subcutaneously implanted Puramatrix-loaded hexamethylenediisocyanate-crosslinked dermal sheep collagen (HDSC) disks was studied in rats. During the onset phase of the FBR, a massive influx of granulocytes was detected in LPS-contaminated disks, while their presence was prolonged. IL-10 production inside LPS-contaminated disks was increased at days 10 and 21. Macrophage densities were not affected by the presence of LPS. However, macrophage functionality was altered: giant cell formation and biomaterial degradation were delayed by LPS-contamination up to 21 days. On the basis of these results, we conclude that LPS delays the FBR. This finding indicates that endotoxin contamination has significant implications for the in vivo function of biomaterials and medical devices and emphasizes the importance of endotoxin testing. PMID:21681945

  1. The Protective Effects of Lactoferrin Feeding against Endotoxin Lethal Shock in Germfree Piglets

    PubMed Central

    Lee, Wang J.; Farmer, Jeffrey L.; Hilty, Milo; Kim, Yoon B.

    1998-01-01

    The unique germfree, colostrum-deprived, immunologically virgin piglet model was used to evaluate the ability of lactoferrin (LF) to protect against lethal shock induced by intravenously administered endotoxin. Piglets were fed LF or bovine serum albumin (BSA) prior to challenge with intravenous Escherichia coli lipopolysaccharide (LPS), and temperature, clinical symptoms, and mortality were tracked for 48 h following LPS administration. Prefeeding with LF resulted in a significant decrease in piglet mortality compared to feeding with BSA (16.7 versus 73.7% mortality, P < 0.001). Protection against the LPS challenge by LF was also correlated with both resistance to induction of hypothermia by endotoxin and an overall increase in wellness, as quantified by a toxicity score developed for these studies. In vitro studies using a flow cytometric assay system demonstrated that LPS binding to porcine monocytes was inhibited by LF in a dose-dependent fashion, suggesting that the mechanism of LF action in vivo may be inhibition of LPS binding to monocytes/macrophages and, in turn, prevention of induction of monocyte/macrophage-derived inflammatory-toxic cytokines. PMID:9529062

  2. The protective effects of lactoferrin feeding against endotoxin lethal shock in germfree piglets.

    PubMed

    Lee, W J; Farmer, J L; Hilty, M; Kim, Y B

    1998-04-01

    The unique germfree, colostrum-deprived, immunologically "virgin" piglet model was used to evaluate the ability of lactoferrin (LF) to protect against lethal shock induced by intravenously administered endotoxin. Piglets were fed LF or bovine serum albumin (BSA) prior to challenge with intravenous Escherichia coli lipopolysaccharide (LPS), and temperature, clinical symptoms, and mortality were tracked for 48 h following LPS administration. Prefeeding with LF resulted in a significant decrease in piglet mortality compared to feeding with BSA (16.7 versus 73.7% mortality, P < 0.001). Protection against the LPS challenge by LF was also correlated with both resistance to induction of hypothermia by endotoxin and an overall increase in wellness, as quantified by a toxicity score developed for these studies. In vitro studies using a flow cytometric assay system demonstrated that LPS binding to porcine monocytes was inhibited by LF in a dose-dependent fashion, suggesting that the mechanism of LF action in vivo may be inhibition of LPS binding to monocytes/macrophages and, in turn, prevention of induction of monocyte/macrophage-derived inflammatory-toxic cytokines. PMID:9529062

  3. Ventromedial hypothalamic lesions impair glucoregulation in response to endotoxin.

    PubMed

    Lynch, J P; Wojnar, M M; Lang, C H

    1997-05-01

    The purpose of the present study was to determine the role of the ventromedial hypothalamus (VMH) in regulating counter-regulatory hormone release and the increase in glucose flux that is observed after injection of endotoxin [lipopolysaccharide (LPS)]. Bilateral lesions of the VMH were produced electrolytically 2 wk before the experiment; sham-operated rats served as controls. [3-3H]glucose was infused to assess whole body glucose flux before and for 4 h after intravenous injection of Escherichia coli LPS. In control rats, LPS increased the plasma concentrations of glucose and lactate and the rates of glucose appearance and disappearance. In these animals, LPS also produced sustained elevations in corticosterone, glucagon, and catecholamines. In contrast, the glucose metabolic response to LPS was attenuated by > 50% in VMH-lesioned rats. These changes were associated with a blunted increase in the plasma concentration of glucagon, epinephrine, and norepinephrine in VMH-lesioned rats compared with control animals. There was no difference in the plasma concentrations of corticosterone or TNF-alpha between the two groups after LPS or the responsiveness of sham- and VMH-lesioned rats to an infusion of either glucagon or epinephrine. These data indicate that the VMH plays a central role in regulating the secretion of glucagon and catecholamines and the stimulation of glucose flux after LPS. PMID:9176344

  4. IMPACT OF OBESITY ON ENDOTOXIN-INDUCED DISSEMINATED INTRAVASCULAR COAGULATION.

    PubMed

    Duburcq, Thibault; Tournoys, Antoine; Gnemmi, Viviane; Hubert, Thomas; Gmyr, Valery; Pattou, François; Jourdain, Mercé

    2015-10-01

    An early activation of coagulation and fibrinolysis occurs during sepsis, leading to the syndrome of disseminated intravascular coagulation (DIC). Obesity has been demonstrated to be a hypercoagulable and hypofibrinolytic state, but its impact on DIC has never been studied. In this study, we aimed to determine if obesity impairs DIC in an acute endotoxic shock model using minipigs. This was a prospective, comparative, and experimental ancillary study approved by the Animal Ethics Committee. Pigs were chosen as a clinically relevant species, resembling humans in coagulation reactions. Four groups of five "Yucatan" minipigs were studied: lean and obese control groups, a lean lipopolysaccharide (LPS) group receiving Escherichia coli endotoxin (LPS), and an obese LPS group receiving the same endotoxin dose. We measured standard coagulation parameters (prothrombin time [PT], platelet count, and fibrinogen levels), thrombin-antithrombin complexes, tissue-type plasminogen activator, and plasminogen activator inhibitor-1. All measurements were performed at baseline and 30, 60, 90, 150, and 300 min. Results were given as median with interquartile ranges. At baseline, platelet count (477 [428 - 532] G/L vs. 381 [307 - 442] G/L; P = 0.005) and fibrinogen levels (4.6 [3.8 - 5.2] g/L vs. 2 [1.8 - 2.9] g/L; P < 0.001) were significantly higher, whereas PT (80% [76% - 92%] vs. 96% [89% - 100%]; P = 0.01) was significantly lower in obese pigs compared with lean pigs. In the LPS groups, administration of endotoxin resulted in a typical hypokinetic shock with DIC. The decrease in coagulation parameters (PT, platelet count, and fibrinogen levels) and the increase in thrombin-antithrombin complexes (581 [382 - 1,057] μg/mL vs. 247 [125 - 369] μg/mL at 150 min; P = 0.03) were significantly more important in the obese LPS group compared with those in the lean LPS group. Concerning the fibrinolytic reaction, we found a slightly more elevated increase of plasminogen activator inhibitor-1 in the obese LPS group at 300 min (481 [365 - 617] ng/mL vs. 355 [209 - 660] ng/mL; P = 0.66). In our model of endotoxic shock, obese pigs developed a more severe DIC with a more severe procoagulant response. PMID:26125085

  5. Loss of the O4 antigen moiety from the lipopolysaccharide of an extraintestinal isolate of Escherichia coli has only minor effects on serum sensitivity and virulence in vivo.

    PubMed Central

    Russo, T A; Sharma, G; Brown, C R; Campagnari, A A

    1995-01-01

    The O-specific antigen in extraintestinal isolates of Escherichia coli is believed to be an important virulence factor. To assess its role in the pathogenic process, proven isogenic derivatives with either a complete (CP921) or nearly complete (CP920) deficiency of the O4 antigen were obtained by TnphoA'1-mediated transposon mutagenesis of an O4/K54/H5 blood isolate (CP9). By utilizing a previously reported isogenic K54 capsule-deficient derivative (CP9.137), additional isogenic derivatives deficient in both the K54 capsular antigen and either all (CP923) or nearly all (CP922) of the O4 antigen were also constructed. These strains and their wild-type parent were evaluated in vitro for serum sensitivity and in vivo by intraperitoneal challenge of outbred mice. The complete or nearly complete loss of the O4 antigen (CP920 and CP921) resulted in only a minor increase in serum sensitivity. In contrast, CP9.137 had a significant increase in serum sensitivity, and CP922 and CP923 were extremely serum sensitive. When tested in vivo, the complete or nearly complete loss of the O4 antigen resulted in a small but significant increase (P < or = 0.05), not the expected decrease, in virulence compared with its wild-type parent. In contrast, CP9.137 and CP922 were significantly less virulent (P < or = 0.05). These studies do not exclude a role for the O4 antigen moiety of lipopolysaccharide in the pathogenesis of extraintestinal E. coli infection; however, they demonstrate that the O4 antigen plays only a minor role in serum resistance in vitro and that its loss does not diminish and perhaps enhances the virulence of CP9 in vivo after intraperitoneal challenge. PMID:7890383

  6. The effect of probiotic Escherichia coli strain Nissle 1917 lipopolysaccharide on the 5-aminosalicylic acid transepithelial transport across Caco-2 cell monolayers.

    PubMed

    Stětinová, Věra; Smetanová, Libuše; Kholová, Dagmar; Květina, Jaroslav; Svoboda, Zbyněk; Zídek, Zdeněk; Tlaskalová-Hogenová, Helena

    2013-09-01

    The object of this study was to investigate the effect of probiotic Escherichia coli strain Nissle 1917 (EcN) (i) EcN lipopolysaccharide (EcN LPS) and (ii) bacteria-free supernatant of EcN suspension (EcN supernatant) on in vitro transepithelial transport of mesalazine (5-aminosalicylic acid, 5-ASA), the most commonly prescribed anti-inflammatory drug in inflammatory bowel disease (IBD). Effect of co-administered EcN LPS (100 µg/ml) or EcN supernatant (50 µg/ml) on the 5-ASA transport (300 µmol/l) was studied using the Caco-2 monolayer (a human colon carcinoma cell line) as a model of human intestinal absorption. Permeability characteristics for absorptive and secretory transport of parent drug and its intracellularly-formed metabolite were determined. The quantification of 5-ASA and its main metabolite N-acetyl-5-amino-salicylic acid (N-Ac-5-ASA) was performed by high performance liquid chromatography. Obtained results suggest that neither EcN LPS nor EcN supernatant had effect on the total 5-ASA transport (secretory flux greater than absorptive flux) and on the transport of intracellularly formed N-Ac-5-ASA (preferentially transported in the secretory direction). The percent cumulative transport of the total 5-ASA alone or in combination with EcN LPS or EcN supernatant did not exceed 1%. PMID:23846256

  7. Molecular dynamics simulations of six different fully hydrated monomeric conformers of Escherichia coli re-lipopolysaccharide in the presence and absence of Ca2+.

    PubMed Central

    Obst, S; Kastowsky, M; Bradaczek, H

    1997-01-01

    Six previously published conformational models of Escherichia coli Re lipopolysaccharide (ReLPS) were subjected to molecular dynamics simulations using the CHARMM force field. The monomers of ReLPS were completely immersed in a water box. The dynamic behavior of the solvated models in the presence and absence of calcium cations was compared. The structure of the solvent shell was analyzed in terms of radial distribution functions. Diffusion coefficients and mean residence times were analyzed to characterize the dynamic behavior of the solvent. Order parameters and number of gauche defects were used for the description of the dynamics of the acyl chains. The cations are preferentially located between the carboxylate and phosphate groups of the headgroup. Their presence leads to a rigidification of the headgroup structure and alters the conformation of the backbone, thus influencing the structure and flexibility of the hydrophobic region as well. The effect of calcium on the backbone flexibility was measured in terms of glycosidic torsion angles. The six fatty acid chains of each ReLPS monomer adopt a highly ordered micromembrane structure. The packing parameter indicates that aggregation of these ReLPS monomers will lead to lamellar structures. Evaluation of all data enables us to present one conformation, C, which is thought to best represent the average structure of the ReLPS conformers. Images FIGURE 4 PMID:9138554

  8. GM1 and GD1a gangliosides modulate toxic and inflammatory effects of E. coli lipopolysaccharide by preventing TLR4 translocation into lipid rafts.

    PubMed

    Nikolaeva, Svetlana; Bayunova, Lubov; Sokolova, Tatyana; Vlasova, Yulia; Bachteeva, Vera; Avrova, Natalia; Parnova, Rimma

    2015-03-01

    Exogenous gangliosides are known to inhibit the effects of Escherichia coli lipopolysaccharide (LPS) in different cells exhibiting anti-inflammatory and immunosuppressive activities. The mechanisms underlying ganglioside action are not fully understood. Because LPS recognition and receptor complex formation occur in lipid rafts, and gangliosides play a key role in their maintenance, we hypothesize that protective effects of exogenous gangliosides would depend on inhibition of LPS signaling via prevention of TLR4 translocation into lipid rafts. The effect of GM1 and GD1a gangliosides on LPS-induced toxic and inflammatory reactions in PC12 cells, and in epithelial cells isolated from the frog urinary bladder, was studied. In PC12 cells, GD1a and GM1 significantly reduced the effect of LPS on the decrease of cell survival and on stimulation of reactive oxygen species production. In epithelial cells, gangliosides decreased LPS-stimulated iNOS expression, NO, and PGE2 production. Subcellular fractionation, in combination with immunoblotting, showed that pretreatment of cells with GM1, GD1a, or methyl-?-cyclodextrin, completely eliminated the effect of LPS on translocation of TLR4 into lipid rafts. The results are consistent with the hypothesis that ganglioside-induced prevention of TLR4 translocation into lipid rafts could be a mechanism of protection against LPS in various cells. PMID:25499607

  9. Growth inhibitory effects of endotoxins from Bacteroides gingivalis and intermedius on human gingival fibroblasts in vitro

    SciTech Connect

    Layman, D.L.; Diedrich, D.L.

    1987-06-01

    Purified endotoxin or lipopolysaccharide from Bacteroides gingivalis and Bacteroides intermedius caused a similar dose-dependent inhibition of growth of cultured human gingival fibroblasts as determined by /sup 3/H-thymidine incorporation and direct cell count. Approximately 200 micrograms/ml endotoxin caused a 50% reduction in /sup 3/H-thymidine uptake of logarithmically growing cells. Inhibition of growth was similar in cultures of fibroblasts derived from either healthy or diseased human gingiva. When examining the change in cell number with time of exposure in culture, the rate of proliferation was significantly suppressed during the logarithmic phase of growth. However, the cells recovered so that the rate of proliferation, although reduced, was sufficient to produce a cell density similar to the control cells with prolonged culture. The endotoxins were characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The profiles of the Bacteroides endotoxins were different. B. gingivalis endotoxin showed a wide range of distinct bands indicating a heterogeneous distribution of molecular species. Endotoxin from B. intermedius exhibited a few discrete low molecular weight bands, but the majority of the lipopolysaccharides electrophoresed as a diffuse band of high molecular weight material. The apparent heterogeneity of the two Bacteroides endotoxins and the similarity in growth inhibitory capacity suggest that growth inhibitory effects of these substances cannot be attributed to any polysaccharide species of endotoxin.

  10. Some metabolic effects of bacterial endotoxins in salmonid fishes

    USGS Publications Warehouse

    Wedemeyer, G.A.; Ross, A.J.; Smith, L.

    1968-01-01

    Coho salmon (Oncorhynchus kisutch) and rainbow trout (Salmo gairdneri) were highly resistant to endotoxins from both Escherichia coli and Aeromonas salmonicida (a fish pathogen) at 14 and 18?C.This resistance was investigated with liver tryptophan pyrrolase, liver glycogen depletion in vitro, and the arterial blood pressure as indicators. Liver glycogen depletion was accelerated by both endotoxins, but there was no significant cardiovascular response or effect on liver tryptophan pyrrolase activity. Since the cardiovascular effects of histamine were also limited, it was concluded that the metabolic effects of bacterial endotoxins in salmonids are qualitatively different from those of the higher vertebrates.

  11. Structural analysis of the lipid A isolated from Hafnia alvei 32 and PCM 1192 lipopolysaccharides[S

    PubMed Central

    Lukasiewicz, Jolanta; Jachymek, Wojciech; Niedziela, Tomasz; Kenne, Lennart; Lugowski, Czeslaw

    2010-01-01

    Hafnia alvei, a Gram-negative bacterium, is an opportunistic pathogen associated with mixed hospital infections, bacteremia, septicemia, and respiratory diseases. The majority of clinical symptoms of diseases caused by this bacterium have a lipopolysaccharide (LPS, endotoxin)-related origin. The lipid A structure affects the biological activity of endotoxins predominantly. Thus, the structure of H. alvei lipid A was analyzed for the first time. The major form, asymmetrically hexa-acylated lipid A built of ?-d-GlcpN4P-(1?6)-?-d-GlcpN1P substituted with (R)-14:0(3-OH) at N-2 and O-3, 14:0(3-(R)-O-12:0) at N-2?, and 14:0(3-(R)-O-14:0) at O-3?, was identified by ESI-MSn and MALDI-time-of-flight (TOF) MS. Comparative analysis performed by MS suggested that LPSs of H. alvei 32, PCM 1192, PCM 1206, and PCM 1207 share the identified structure of lipid A. LPSs of H. alvei are yet another example of enterobacterial endotoxins having the Escherichia coli-type structure of lipid A. The presence of hepta-acylated forms of H. alvei lipid A resulted from the addition of palmitate (16:0) substituting 14:0(3-OH) at N-2 of the ?-GlcpN residue. All the studied strains of H. alvei have an ability to modify their lipid A structure by palmitoylation. PMID:19706748

  12. Binding of /sup 125/I-labeled endotoxin to bovine, canine, and equine platelets and endotoxin-induced agglutination of canine platelets

    SciTech Connect

    Meyers, K.M.; Boehme, M.; Inbar, O.

    1982-10-01

    Endotoxin from Escherichia coli O127:B8, Salmonella abortus-equi and S minnesota induced clumping of some canine platelets (PLT) at a final endotoxin concentration of 1 microgram/ml. Endotoxin-induced clumping of canine PLT was independent of PLT energy-requiring processes, because clumping was observed with canine PLT incubated with 2-deoxy-D-glucose and antimycin A. The PLT responded to adenosine diphosphate before, but not after, incubation with the metabolic inhibitors. Endotoxin induced a slight and inconsistant clumping of bovine and equine PLT at high (mg/ml) endotoxin concentration. High-affinity binding sites could not be demonstrated on canine, bovine, and equine PLT, using /sup 125/I-labeled E coli O127:B8 endotoxin. Nonspecific binding was observed and appeared to be due primarily to an extraneous coat on the PLT surface that was removed by gel filtration. The endotoxin that was bound to PLT did not appear to modify PLT function. An attempt to identify plasma proteins that bound physiologically relevant amounts of endotoxin was not successful. The significance of the endotoxin-induced clumping or lack of it on the pathophysiology of endotoxemia is discussed.

  13. Effect of Lead Acetate on the Susceptibility of Rats to Bacterial Endotoxins

    PubMed Central

    Selye, H.; Tuchweber, B.; Bertok, L.

    1966-01-01

    Selye, H. (Universit de Montral, Montreal, Canada), B. Tuchweber, and L. Bertk. Effect of lead acetate on susceptibility of rats to bacterial endotoxins. J. Bacteriol. 91:884890. 1966.A single, normally well-tolerated, intravenous injection of lead acetate increases the sensitivity of the rat to the endotoxins of various gram-negative bacteria about 100,000 times above normal. Under the conditions of these experiments, the mortality and organ changes normally produced by the intravenous injection of 100 ?g of Escherichia coli endotoxin were essentially the same as those obtained by use of 1 nanogram in lead-sensitized rats. The sensitizing effect of lead acetate for E. coli endotoxin is greatest when the two agents are given simultaneously. However, considerable sensitization is still detectable when endotoxin is injected up to 1 hr before or 7 hr after sensitization with lead. No sensitization was noted when the endotoxin was administered 24 hr before or after lead acetate. Under our experimental conditions, the minimal dose of lead acetate which could still induce significant sensitization to E. coli endotoxin was 1 mg per 100 g of body weight. Although lead acetate induces a high degree of susceptibility to various endotoxins, other reticuloendothelial blocking agents did not acquire unusual toxicity after pretreatment with lead. Finally, none of the other metals or reticuloendothelial blocking agents tested could duplicate the pronounced decrease in endotoxin resistance induced by lead acetate. Images PMID:5327235

  14. Vitamin E and omega-3 fatty acids independently attenuate plasma concentrations of proinflammatory cytokines and prostaglandin E3 in Escherichia coli lipopolysaccharide-challenged growing-finishing pigs.

    PubMed

    Upadhaya, S D; Kim, J C; Mullan, B P; Pluske, J R; Kim, I H

    2015-06-01

    This study tested the hypothesis that vitamin E (Vit E) and omega-3 fatty acids will additively attenuate the production of proinflammatory cytokines and PGE2 in immune systemstimulated growingfinishing pigs. A total of 80 mixed sex pigs weighing 50.7 0.76 kg (mean SE) were blocked and stratified based on sex and BW to a 2 2 factorial design with the respective factors being 1) without and with 300 IU Vit E and 2) without and with 25% replacement of tallow to linseed oil as a source of n-3 fatty acids. Each treatment consisted of 4 replicate pens with 5 pigs (3 barrows and 2 gilts) per pen. All pigs were challenged with an intramuscular injection of Escherichia coli lipopolysaccharide (LPS; O111:B4) twice weekly over the 6-wk experiment. After LPS challenge, pigs fed a diet supplemented with n-3 fatty acids had fewer (P < 0.05) white blood cells and tended to show both a reduced (P < 0.10) proportion of lymphocytes and IgG concentration compared with pigs fed a diet without any supplements. Supplementation of n-3 fatty acids reduced (P < 0.01 and P < 0.05) serum concentrations of cortisol and tumor necrosis factor ? (TNF-?), respectively. The serum concentration of PGE2 was decreased (P < 0.05) with supplementation of both Vit E and n-3 fatty acids; however, the extent of the reduction was greater (P < 0.001) in pigs fed an n-3 fatty acidsupplemented diet. However, there were no additive effects of the combined supplementation of Vit E and n-3 fatty acids on serum concentrations of proinflammatory cytokines and PGE2. The results suggest that n-3 fatty acids independently attenuate production of TNF-? and PGE2 in immune systemstimulated growingfinishing pigs. PMID:26115279

  15. Statistical optimization of medium composition and culture condition for the production of recombinant anti-lipopolysaccharide factor of Eriocheir sinensis in Escherichia coli

    NASA Astrophysics Data System (ADS)

    Jiang, Shan; Liu, Mei; Wang, Baojie; Jiang, Keyong; Wang, Lei

    2011-11-01

    Anti-lipopolysaccharide factors (ALFs) are important antimicrobial peptides that are isolated from some aquatic species. In a previous study, we isolated ALF genes from Chinese mitten crab, Eriocheir sinensis. In this study, we optimized the production of a recombinant ALF by expressing E. sinensis ALF genes in Escherichia coli maintained in shake-flasks. In particular, we focused on optimization of both the medium composition and the culture condition. Various medium components were analyzed by the Plackett-Burman design, and two significant screened factors, (NH4)2SO4 and KH2PO4, were further optimized via the central composite design (CCD). Based on the CCD analysis, we investigated the induction start-up time, the isopropylthio-D-galactoside (IPTG) concentration, the post-induction time, and the temperature by response surface methodology. We found that the highest level of ALF fusion protein was achieved in the medium containing 1.89 g/L (NH4)2SO4 and 3.18 g/L KH2PO4, with a cell optical density of 0.8 at 600 nm before induction, an IPTG concentration of 0.5 mmol/L, a post-induction temperature of 32.7C, and a post-induction time of 4 h. Applying the whole optimization strategy using all optimal factors improved the target protein content from 6.1% (without optimization) to 13.2%. We further applied the optimized medium and conditions in high cell density cultivation, and determined that the soluble target protein constituted 10.5% of the total protein. Our identification of the economic medium composition, optimal culture conditions, and details of the fermentation process should facilitate the potential application of ALF for further research.

  16. Effect of endotoxin on heart rate dynamics in rats with cirrhosis.

    PubMed

    Haddadian, Zahra; Eftekhari, Golnar; Mazloom, Roham; Jazaeri, Farahnaz; Dehpour, Ahmad R; Mani, Ali R

    2013-10-01

    Reduced heart rate variability (HRV) is a hallmark of systemic inflammation which carries negative prognostic information in sepsis. Decreased HRV is associated with partial uncoupling of cardiac pacemaker from cholinergic neural control during systemic inflammation. Sepsis is a common complication in liver cirrhosis with high mortality. The present study was aimed to explore the hypothesis that endotoxin uncouples cardiac pacemaker from autonomic neural control and reduces HRV in an experimental model of cirrhosis. Cirrhosis was induced by surgical ligation of the bile duct in rats. Cirrhotic rats were given intraperitoneal injection of either saline or lipopolysaccharide (endotoxin, 1mg/kg). Changes in HRV indices were studied in conscious rats using implanted telemetric probes. The atria were isolated and chronotropic responsiveness to cholinergic stimulation was assessed in vitro. Endotoxin injection induced a significant tachycardia and decreased short-term and long-term HRV indices in control rats. However, endotoxin was unable to increase heart rate in cirrhotic animals. In contrast with control rats, endotoxin induced biphasic changes in short-term HRV in cirrhotic rats. Acute endotoxin challenge reduced long-term HRV with 60-min delay in comparison with control animals. Endotoxin injection was associated with a significant hypo-responsiveness to cholinergic stimulation in control rats in vitro. Endotoxin did not change atrial chronotropic responsiveness to cholinergic stimulation in cirrhotic rats. Our data shows that cirrhosis is associated with development of tolerance to cardiac chronotropic effect of endotoxin in rats. PMID:23511062

  17. Production and properties of cyanobacterial endotoxins.

    PubMed

    Keleti, G; Sykora, J L

    1982-01-01

    Lipopolysaccharides (LPS) were isolated from four species of cyanobacteria (Anabaena flos-aquae UTEX 1444. A. cylindrica, Oscillatoria tenuis, and O. brevis) frequently occurring in drinking-water supplies. The cyanobacterial LPS contained glucose, xylose, mannose, and rhamnose, but differed from the LPS derived from most gram-negative bacteria because of the variable presence of 2-keto-3-deoxyoctonate, heptose, galactose, and glucosamine. Cyanobacterial lipid A is characterized by long-chain saturated an unsaturated fatty acids and hydroxy fatty acids which show great diversity. Unlike lipid A from heterotrophic gram-negative bacteria, lipid A from cyanobacteria usually lacks phosphates. The detection of distinct O-antigen chemotypes indicates that LPS may be used for taxonomic classification. Isolated cyanobacterial LPS always induced Limulus amoebocyte lysate gelation. A. flos-aquae LPS gave a positive Schwartzman reaction. Endotoxins from A. cylindrica and O. brevis were toxic to mice when injected intraperitoneally. The cyanobacterial endotoxins showed generally lower biological activity than did LPS derived from common heterotrophic gram-negative bacteria. Nevertheless, cyanobacteria in algal blooms may be a significant source of endotoxins in water supplies. PMID:6798930

  18. Antiproteases modulate bronchial epithelial cell responses to endotoxin.

    PubMed Central

    Koyama, S.; Rennard, S. I.; Claassen, L.; Robbins, R. A.

    1995-01-01

    Escherichia coli endotoxin (0.1 to 1000 micrograms/ml) stimulated the release of neutrophil chemotactic activity (P < 0.001) and induced bronchial epithelial cell (BEC) cytotoxicity assessed by lactate dehydrogenase release (P < 0.001). Endotoxin (100 micrograms/ml) inhibited BEC accumulation (P < 0.001). In the present study, we investigated the role of proteolytic activity of BECs per se in response to endotoxin. Several structurally and functionally different antiproteases, alpha 1 protease inhibitor, soybean trypsin inhibitor, two chloromethyl ketone derivatives (N-tosyl-L-lysine chloromethyl ketone and methoxysuccinyl-Ala-Ala-Pro-Val chloromethyl ketone), and L-658,758, a neutrophil elastase inhibitor, attenuated the release of neutrophil chemotactic activity and lactate dehydrogenase (P < 0.01). alpha 1-Protease inhibitor and N-tosyl-L-lysine chloromethyl ketone attenuated the inhibition of BEC accumulation by endotoxin (P < 0.001). The proteolytic enzyme activity measured by synthetic substrates revealed that endotoxin significantly augmented the serine proteolytic activity in the cell layers. Culture supernatant fluids and cell lysates of BECs in the presence of endotoxin solubilized 14C-labeled casein. These data suggest that responses of BECs to endotoxin may involve activation of cellular proteolytic activity. PMID:7747815

  19. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin

    NASA Astrophysics Data System (ADS)

    Borovikova, Lyudmila V.; Ivanova, Svetlana; Zhang, Minghuang; Yang, Huan; Botchkina, Galina I.; Watkins, Linda R.; Wang, Haichao; Abumrad, Naji; Eaton, John W.; Tracey, Kevin J.

    2000-05-01

    Vertebrates achieve internal homeostasis during infection or injury by balancing the activities of proinflammatory and anti-inflammatory pathways. Endotoxin (lipopolysaccharide), produced by all gram-negative bacteria, activates macrophages to release cytokines that are potentially lethal. The central nervous system regulates systemic inflammatory responses to endotoxin through humoral mechanisms. Activation of afferent vagus nerve fibres by endotoxin or cytokines stimulates hypothalamic-pituitary-adrenal anti-inflammatory responses. However, comparatively little is known about the role of efferent vagus nerve signalling in modulating inflammation. Here, we describe a previously unrecognized, parasympathetic anti-inflammatory pathway by which the brain modulates systemic inflammatory responses to endotoxin. Acetylcholine, the principle vagal neurotransmitter, significantly attenuated the release of cytokines (tumour necrosis factor (TNF), interleukin (IL)-1?, IL-6 and IL-18), but not the anti-inflammatory cytokine IL-10, in lipopolysaccharide-stimulated human macrophage cultures. Direct electrical stimulation of the peripheral vagus nerve in vivo during lethal endotoxaemia in rats inhibited TNF synthesis in liver, attenuated peak serum TNF amounts, and prevented the development of shock.

  20. Mechanisms of endotoxin tolerance. The role of the spleen.

    PubMed Central

    Greisman, S E; Young, E J; Workman, J B; Ollodart, R M; Hornick, R B

    1975-01-01

    Splenectomy markedly impaired the production of circulating anti-endotoxin antibodies during the initial 10 days after .v. administration of a Boivin preparation of Escherichia coli endotoxin (ET) in both rabbit and man. Increase in antibodies with secondary (flocculating and bactericidal) activities were virtually abolished, whereas increases in antibodies with primary (binding) activity were significantly reduced. On the basis of these findings, splenectomized rabbit and man were employed to test the hypothesis that the early phase (less than 72 h) of pyrogenic tolerance to endotoxin is independent of anti-endotoxin antibody but that such antibody contributes significantly to the later phase (less than or equal to 72 h) of tolerance. In the splenectomized rabbit, the initial pyrogenic reponses to ET and the subsequent tolerant responses at 24 and 48 h were comparable to sham-operated controls... PMID:1104660

  1. Kinetics of hydrothermal inactivation of endotoxins.

    PubMed

    Li, Lixiong; Wilbur, Chris L; Mintz, Kathryn L

    2011-04-01

    A kinetic model was established for the inactivation of endotoxins in water at temperatures ranging from 210C to 270C and a pressure of 6.2 10(6) Pa. Data were generated using a bench scale continuous-flow reactor system to process feed water spiked with endotoxin standard (Escherichia coli O113:H10). Product water samples were collected and quantified by the Limulus amebocyte lysate assay. At 250C, 5-log endotoxin inactivation was achieved in about 1 s of exposure, followed by a lower inactivation rate. This non-log-linear pattern is similar to reported trends in microbial survival curves. Predictions and parameters of several non-log-linear models are presented. In the fast-reaction zone (3- to 5-log reduction), the Arrhenius rate constant fits well at temperatures ranging from 120C to 250C on the basis of data from this work and the literature. Both biphasic and modified Weibull models are comparable to account for both the high and low rates of inactivation in terms of prediction accuracy and the number of parameters used. A unified representation of thermal resistance curves for a 3-log reduction and a 3 D value associated with endotoxin inactivation and microbial survival, respectively, is presented. PMID:21193667

  2. Single-dose tumor necrosis factor protection against endotoxin-induced shock and tissue injury in rats.

    PubMed

    Alexander, H R; Doherty, G M; Block, M I; Kragel, P J; Jensen, J C; Langstein, H N; Walker, E; Norton, J A

    1991-11-01

    Tumor necrosis factor (TNF), a macrophage product released in response to endotoxin and other stimuli, has been shown to be a central mediator of endotoxin or septic shock. However, its highly conserved and wide-ranging physiological effects suggest that it may also be an essential cytokine in the host defense against acute bacterial infection or sepsis. A single nontoxic dose of human recombinant TNF administered intravenously 24 h prior to a lethal infusion of Escherichia coli lipopolysaccharide (LPS) completely prevented acute LPS-induced hypotension, ameliorated tissue injury in the lungs and liver, and improved survival in male Fisher 344 rats. The protective effects of TNF were dose dependent and required a 24-h pretreatment interval. After the infusion of LPS, animals in both groups (TNF-treated animals and saline-pretreated controls) initially appeared acutely ill and had a similar severe metabolic acidosis, indicating that TNF did not inactivate or prevent the toxic effects of LPS. Twelve hours after the administration of TNF, the gene for manganous superoxide dismutase, a mitochondrial enzyme which scavenges toxic reactive oxygen species and is induced during conditions which generate a free radical stress, was expressed in liver tissue, suggesting that the induction of manganous superoxide dismutase may be an important in vivo protective mechanism against cellular injury during lethal endotoxemia. PMID:1937748

  3. ?-Chaconine isolated from a Solanum tuberosum L. cv Jayoung suppresses lipopolysaccharide-induced pro-inflammatory mediators via AP-1 inactivation in RAW 264.7 macrophages and protects mice from endotoxin shock.

    PubMed

    Lee, Kyoung-Goo; Lee, Suel-Gie; Lee, Hwi-Ho; Lee, Hae Jun; Shin, Ji-Sun; Kim, Nan-Jung; An, Hyo-Jin; Nam, Jung-Hwan; Jang, Dae Sik; Lee, Kyung-Tae

    2015-06-25

    In this study, we investigated the molecular mechanisms underlying the anti-inflammatory effects of ?-chaconine in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages and in LPS-induced septic mice. ?-Chaconine inhibited the expressions of cyclooxygenase-2 (COX-2), interleukin-1? (IL-1?), IL-6, and tumor necrosis factor-? (TNF-?) at the transcriptional level, and attenuated the transcriptional activity of activator protein-1 (AP-1) by reducing the translocation and phosphorylation of c-Jun. ?-Chaconine also suppressed the phosphorylation of TGF-?-activated kinase-1 (TAK1), which lies upstream of mitogen-activated protein kinase kinase 7 (MKK7)/Jun N-terminal kinase (JNK) signaling. JNK knockdown using siRNA prevented the ?-chaconine-mediated inhibition of pro-inflammatory mediators. In a sepsis model, pretreatment with ?-chaconine reduced the LPS-induced lethality and the mRNA and production levels of pro-inflammatory mediators by inhibiting c-Jun activation. These results suggest that the anti-inflammatory effects of ?-chaconine are associated with the suppression of AP-1, and support its possible therapeutic role for the treatment of sepsis. PMID:25913072

  4. Tackling multiple antibiotic resistance in enteropathogenic Escherichia coli (EPEC) clinical isolates: a diarylheptanoid from Alpinia officinarum shows promising antibacterial and immunomodulatory activity against EPEC and its lipopolysaccharide-induced inflammation.

    PubMed

    Subramanian, Krishnan; Selvakkumar, Chinnasamy; Vinaykumar, Kontham Sanathkumar; Goswami, Nabajyoti; Meenakshisundaram, Sankaranarayanan; Balakrishnan, Arun; Lakshmi, Baddireddi Subhadra

    2009-03-01

    Antibiotic treatment for infectious diseases commonly leads to host inflammatory responses. Molecules with bifunctional antibacterial and anti-inflammatory properties could provide a solution for such clinical manifestations. Here we report such bifunctional activity for a diarylheptanoid (5-hydroxy-7-(4''-hydroxy-3-methoxyphenyl)-1-phenyl-3-heptanone) isolated from Alpinia officinarum, a medicinal plant belonging to the Zingiberaceae family, against enteropathogenic Escherichia coli (EPEC). The diarylheptanoid showed inhibitory and bactericidal activity against EPEC clinical isolates and efficiently suppressed EPEC lipopolysaccharide-induced inflammation in human peripheral blood mononuclear cells. In silico docking analysis revealed that the diarylheptanoid could interact with subunit A of E. coli DNA gyrase. Such molecules with bifunctional activity may be potential therapeutics for infectious diseases. PMID:19095411

  5. Effects of Lactobacillus acidophilus dietary supplementation on the performance, intestinal barrier function, rectal microflora and serum immune function in weaned piglets challenged with Escherichia coli lipopolysaccharide.

    PubMed

    Qiao, Jiayun; Li, Haihua; Wang, Zhixiang; Wang, Wenjie

    2015-04-01

    This study was conducted with a lipopolysaccharide (LPS)-challenged piglet model to determine the effects of diets containing Lactobacillus acidophilus on the performance, intestinal barrier function, rectal microflora and serum immune function. A total of 150 piglets (initial body weight (BW) 7.53 ± 0.21 kg) were allotted to one of the following diets, including a basal diet, a basal diet supplemented with 250 mg/kg Flavomycin, or basal diet plus 0.05, 0.1 or 0.2 % L. acidophilus. On day 28 of the trial, the pigs were given an intraperitoneal injection of LPS (200 μg/kg body weight) followed by blood collection 3 h later. Diets with either antibiotics, 0.1 or 0.2 % Lactobacillus increased (P < 0.05) the final BW and decreased (P < 0.05) feed gain ratio (F/G) compared with the control group. Pigs fed diets containing antibiotic or Lactobacillus had greater average daily gain (ADG) (P < 0.05) than pigs fed the control diet. The rectal content Lactobacillus counts for pigs fed diet containing Lactobacillus were significant higher (P < 0.01) than those fed antibiotic or control diet. Feeding the Lactobacillus diets decreased the Escherichia coli counts of rectal content (P < 0.01). Pigs fed diets containing 0.1 or 0.2 % Lactobacillus decreased serum DAO activity (P < 0.05) compared with pigs fed the control diet. Serum IL-10 concentration was enhanced in pigs fed the diet with Lactobacillus compared to pigs fed the control diet and antibiotic diet. Feeding a diet with Lactobacillus reduced (P < 0.05) IFN-γ concentration compared to the control diet. Inclusion of Lactobacillus in diets fed to pigs reduced TNF-α concentration compared with pigs fed no Lactobacillus (P < 0.05). These results indicate that feeding with L. acidophilus improved growth performance and protected against LPS-induced inflammatory status. PMID:25577203

  6. Metabolic and clinical response to Escherichia coli lipopolysaccharide in layer pullets of different genetic backgrounds supplied with graded dietary L-arginine.

    PubMed

    Lieboldt, M A; Frahm, J; Halle, I; Görs, S; Schrader, L; Weigend, S; Preisinger, R; Metges, C C; Breves, G; Dänicke, S

    2016-03-01

    L-arginine (Arg) is an essential amino acid in birds that plays a decisive role in avian protein synthesis and immune response. Effects of graded dietary Arg supply on metabolic and clinical response to Escherichia coli lipopolysaccharide (LPS) were studied over 48 hours after a single intramuscular LPS injection in 18-week-old genetically diverse purebred pullets. LPS induced a genotype-specific fever response within 4 hours post injectionem. Whereas brown genotypes showed an initial hypothermia followed by longer-lasting moderate hyperthermia, white genotypes exhibited a biphasic hyperthermia without initial hypothermia. Furthermore, within 2 hours after LPS injection, sickness behavior characterized by lethargy, anorexia, intensified respiration, and ruffled feathers appeared, persisted for 3 to 5 hours and recovered 12 hours post injectionem. The varying grades of Arg did not alter the examined traits named above, whereas insufficient Arg reduced body growth and increased relative weights of liver and pancreas significantly. At 48 hours post injectionem, increased relative weights of liver and spleen were also found in LPS treated pullets, whereas LPS decreased those of pancreas, bursa, thymus, and cecal tonsils. Moreover, LPS lowered the sum of plasma amino acids and decreased plasma concentrations of Arg, citrulline, glutamate, methionine, ornithine, phenylalanine, proline, tryptophan, and tyrosine, and increased those of aspartate, glutamine, lysine, 1- and 3-methyl-histidine. Elevating concentrations of dietary Arg led to increasing plasma concentrations of Arg, citrulline, ornithine, and 3-methyl-histidine subsequently. As quantitative expression of LPS-induced anorexia, proteolysis, and the following changes in plasma amino acids, pullets showed a significant decrease of feed and nitrogen intake and catabolic metabolism characterized by negative nitrogen balance and body weight loss in the first 24 hours post injectionem. Pullets recovered from the challenge within the second 24 hours post injectionem and changed to anabolism with re-increased feed and nitrogen intake, positive nitrogen retention, and weight gain. To conclude, present results confirmed that LPS induced numerous metabolic and physiological changes in pullet's genotypes, whereas dietary Arg affected the examined traits only slightly. PMID:26740139

  7. Anti-endotoxin therapy in primate bacteremia with HA-1A and BPI.

    PubMed Central

    Rogy, M A; Moldawer, L L; Oldenburg, H S; Thompson, W A; Montegut, W J; Stackpole, S A; Kumar, A; Palladino, M A; Marra, M N; Lowry, S F

    1994-01-01

    OBJECTIVE: The in vivo neutralizing activities of an anti-lipopolysaccharide (LPS) antibody HA-1A (Centoxin [Centocor, Malvern, PA]), a human immunoglobulin M monoclonal antibody, and of bactericidal/permeability-increasing protein (BPI), an endogenously produced human LPS-neutralizing protein, were studied in a primate model of lethal Escherichia coli bacteremia. SUMMARY BACKGROUND DATA: HA-1A has been used with variable success against LPS activity in some animal models and in a recently reported clinical trial. However, no data assessing the efficacy of this agent in subhuman primates is available. Bactericidal/permeability-increasing protein is a product of polymorphomononuclear cells (PMNs) that is stored in azurophilic granules and exhibits LPS-neutralizing activity in vitro and in some in vivo models. METHODS: Immediately after E. coli infusion and in a blinded fashion, three baboons were treated with BPI (5 mg/kg bolus infusion and 95 micrograms/kg/min infusion over 4 hr). Three animals received 3 mg/kg BW of HA-1A, whereas another three baboons received a placebo treatment. RESULTS: The BPI-treated animals demonstrated significantly (p < 0.03) lower circulating LPS-limulus amoebocyte lysate (LAL) activity compared with the control animals, but this reduction in LPS-LAL activity was not associated with improved survival. HA-1A treatment did not reduce LPS-LAL activity. However, both BPI and HA-1A treatment did attenuate the pro-inflammatory cytokine response. CONCLUSION: The current data suggests that incomplete neutralization of endotoxin activity does not alter mortality from severe bacteremia. Given the diversity of mediator production under such circumstances, a strategy of combination therapy in the form of anti-lipopolysaccharide and anticytokine treatment may be necessary to achieve optimal survival. PMID:8024362

  8. Stress-Derived Corticotropin Releasing Factor Breaches Epithelial Endotoxin Tolerance

    PubMed Central

    Yu, Yong; Geng, Xiao-Rui; Yang, Gui; Liu, Zhi-Gang; Zheng, Peng-Yuan; Yang, Ping-Chang

    2013-01-01

    Background and aims Loss of the endotoxin tolerance of intestinal epithelium contributes to a number of intestinal diseases. The etiology is not clear. Psychological stress is proposed to compromise the intestinal barrier function. The present study aims to elucidate the role of the stress-derived corticotropin releasing factor (CRF) in breaching the established intestinal epithelial endotoxin tolerance. Methods Epithelial cells of HT-29, T84 and MDCK were exposed to lipopolysaccharide to induce the endotoxin tolerance; the cells were then stimulated with CRF. The epithelial barrier function was determined using as indicators of the endotoxin tolerant status. A water-avoid stress mouse model was employed to test the role of CRF in breaching the established endotoxin tolerance in the intestine. Results The established endotoxin tolerance in the epithelial cell monolayers was broken down by a sequent exposure to CRF and LPS manifesting a marked drop of the transepithelial resistance (TER) and an increase in the permeability to a macromolecular tracer, horseradish peroxidase (HRP). The exposure to CRF also increased the expression of Cldn2 in the epithelial cells, which could be mimicked by over expression of TLR4 in epithelial cells. Over expression of Cldn2 resulted in low TER in epithelial monolayers and high permeability to HRP. After treating mice with the 10-day chronic stress, the intestinal epithelial barrier function was markedly compromised, which could be prevented by blocking either CRF, or TLR4, or Cldn2. Conclusions Psychological stress-derived CRF can breach the established endotoxin tolerance in the intestinal mucosa. PMID:23840363

  9. EFFECT OF ENDOTOXIN ON CELLS AND ON THEIR RESPONSE TO INFECTION BY POLIOVIRUSES1

    PubMed Central

    Murphy, William H.; Wisner, Carolyn

    1962-01-01

    Murphy, W. H. (The University of Michigan, Ann Arbor) and C. Wisner. Effect of endotoxin on cells and on their response to infection by polioviruses. J. Bacteriol. 83:649662. 1962.The effect of lipopolysaccharide on HeLa-S3, HeLa-Gey, Chang-liver, Maben, and L strain mouse fibroblasts was studied. The liminal dose of endotoxin for the human epithelial cell strains was approximately 250 ?g/ml, and their order of sensitivity to endotoxin was: Chang-liver, HeLa-Gey, HeLa-S3, and Maben, the latter being the most resistant. Endotoxin at concentrations exceeding 100 ?g/ml was cytotoxic to the L strain of mouse fibroblasts and caused them to markedly agglutinate. Cytotoxic response of cells to endotoxin was not characterized by cell lysis, but by distinctive nuclear changes. In an attempt to demonstrate the metabolic induction of the latent infection of cell cultures by a noncytopathic variant of poliovirus, endotoxin was added at maximal subliminal concentration to cell cultures totally, partially, or fully susceptible to virus. Endotoxin caused a slight but consistent accelerative cytopathic response of cells to infection by cytopathic poliovirus, but failed to induce cytopathic response to infection by submoderate (noncytopathic) poliovirus. Although endotoxin slightly suppressed yields of poliovirus from cells, it did not affect the plating efficiency of virus on cell monolayers. Images PMID:14477444

  10. Physical and biological properties of U. S. standard endotoxin EC after exposure to ionizing radiation

    SciTech Connect

    Csako, G.; Elin, R.J.; Hochstein, H.D.; Tsai, C.M.

    1983-07-01

    Techniques that reduce the toxicity of bacterial endotoxins are useful for studying the relationship between structure and biological activity. We used ionizing radiation to detoxify a highly refined endotoxin preparation. U.S. standard endotoxin EC. Dose-dependent changes occurred by exposure to /sup 60/Co-radiation in the physical properties and biological activities of the endotoxin. Sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis showed gradual loss of the polysaccharide components (O-side chain and R-core) from the endotoxin molecules. In contrast, although endotoxin revealed a complex absorption pattern in the UV range, radiation treatment failed to modify that pattern. Dose-related destruction of the primary toxic component, lipid A, was suggested by the results of activity tests: both the pyrogenicity and limulus reactivity of the endotoxin were destroyed by increasing doses of radiation. The results indicate that the detoxification is probably due to multiple effects of the ionizing radiation on bacterial lipopolysaccharides, and the action involves (i) the destruction of polysaccharide moieties and possibly (ii) the alteration of lipid A component of the endotoxin molecule.

  11. Paenibacterin, a novel broad-spectrum lipopeptide antibiotic, neutralises endotoxins and promotes survival in a murine model of Pseudomonas aeruginosa-induced sepsis.

    PubMed

    Huang, En; Yousef, Ahmed E

    2014-07-01

    Paenibacterin, produced by Paenibacillus thiaminolyticus OSY-SE, is active both against Gram-negative and Gram-positive pathogens, including antibiotic-resistant strains of Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae, Staphylococcus aureus and Enterococcus faecalis. Paenibacterin showed relatively low cytotoxicity against a human kidney cell line (ATCC CRL-2190), with a 50% inhibitory concentration (IC50)≥109μg/mL. The cationic paenibacterin molecule binds to the negatively charged Gram-negative endotoxins in vitro, suggesting that paenibacterin can neutralise lipopolysaccharides. In a murine septic shock model, two 500μg doses of paenibacterin significantly increased the survival of mice challenged with a lethal level of P. aeruginosa. Considering that paenibacterin is effective against many strains of antibiotic-resistant pathogens, this study suggests that this antimicrobial agent is a promising candidate as a new drug. PMID:24802906

  12. Influence of various dust sampling and extraction methods on the measurement of airborne endotoxin.

    PubMed

    Douwes, J; Versloot, P; Hollander, A; Heederik, D; Doekes, G

    1995-05-01

    The influence of various filter types and extraction conditions on the quantitation of airborne endotoxin with the Limulus amebocyte lysate test was studied by using airborne dusts sampled in a potato processing plant. Samples were collected with an apparatus designed to provide parallel samples. Data from the parallel-sampling experiment were statistically evaluated by using analysis of variance. In addition, the influence of storage conditions on the detectable endotoxin concentration was investigated by using commercially available lipopolysaccharides (LPS) and endotoxin-containing house dust extracts. The endotoxin extraction efficiency of 0.05% Tween 20 in pyrogen-free water was seven times higher than that of pyrogen-free water only. Two-times-greater amounts of endotoxin were extracted from glass fiber, Teflon, and polycarbonate filters than from cellulose ester filters. The temperature and shaking intensity during extraction were not related to the extraction efficiency. Repeated freeze (-20 degrees C)-and-thaw cycles with commercial LPS reconstituted in pyrogen-free water had a dramatic effect on the detectable endotoxin level. A 25% loss in endotoxin activity per freeze-thaw cycle was observed. Storage of LPS samples for a period of 1 year at 7 degrees C had no effect on the endotoxin level. House dust extracts showed a decrease of about 20% in the endotoxin level after they had been frozen and thawed for a second time. The use of different container materials (borosilicate glass, "soft" glass, and polypropylene) did not result in different endotoxin levels. This study indicates that the assessment of endotoxin exposure may differ considerably between groups when different sampling, extraction, and storage procedures are employed. PMID:7646014

  13. Growth and Development Symposium: Endotoxin, inflammation, and intestinal function in livestock.

    PubMed

    Mani, V; Weber, T E; Baumgard, L H; Gabler, N K

    2012-05-01

    Endotoxin, also referred to as lipopolysaccharide (LPS), can stimulate localized or systemic inflammation via the activation of pattern recognition receptors. Additionally, endotoxin and inflammation can regulate intestinal epithelial function by altering integrity, nutrient transport, and utilization. The gastrointestinal tract is a large reservoir of both gram-positive and gram-negative bacteria, of which the gram-negative bacteria serve as a source of endotoxin. Luminal endotoxin can enter circulation via two routes: 1) nonspecific paracellular transport through epithelial cell tight junctions, and 2) transcellular transport through lipid raft membrane domains involving receptor-mediated endocytosis. Paracellular transport of endotoxin occurs through dissociation of tight junction protein complexes resulting in reduced intestinal barrier integrity, which can be a result of enteric disease, inflammation, or environmental and metabolic stress. Transcellular transport, via specialized membrane regions rich in glycolipids, sphingolipids, cholesterol, and saturated fatty acids, is a result of raft recruitment of endotoxin-related signaling proteins leading to endotoxin signaling and endocytosis. Both transport routes and sensitivity to endotoxin may be altered by diet and environmental and metabolic stresses. Intestinal-derived endotoxin and inflammation result in suppressed appetite, activation of the immune system, and partitioning of energy and nutrients away from growth toward supporting the immune system requirements. In livestock, this leads to the suppression of growth, particularly suppression of lean tissue accretion. In this paper, we summarize the evidence that intestinal transport of endotoxin and the subsequent inflammation leads to decrease in the production performance of agricultural animals and we present an overview of endotoxin detoxification mechanisms in livestock. PMID:22247110

  14. RECOMBINANT BOVINE SOLUBLE CD14 REDUCES FATALITY OF ENDOTOXIN CHALLENGED MICE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Endotoxin, or lipopolysaccharide (LPS), has been demonstrated to be responsible for the pathogenesis of Gram-negative bacterial infections, such as bovine coliform mastitis. In the US, 300,000 dairy cows are removed from herds or die annually because of acute coliform mastitis. Standard therapy for ...

  15. Endotoxin and Cancer

    PubMed Central

    Lundin, Jessica I.; Checkoway, Harvey

    2009-01-01

    Objective Exposure to endotoxin, a component of gram-negative bacterial cell walls, is widespread in many industrial settings and in the ambient environment. Heavy-exposure environments include livestock farms, cotton textile facilities, and saw mills. Concentrations are highly variable in non-occupational indoor and outdoor environments. Endotoxin is a potent inflammagen with recognized health effects, including fever, shaking chills, septic shock, toxic pneumonitis, and respiratory symptoms. Somewhat paradoxically, given the putative role of inflammation in carcinogenesis, various lines of evidence suggest that endotoxin may prevent cancer initiation or limit tumor growth. The hypothesis that components of bacteria may retard cancer progression dates back to William B. Coley’s therapeutic experiments (“bacterial vaccine”) in the 1890s. Data sources In this article, we review epidemiologic, clinical trial, and experimental studies pertinent to the hypothesis that endotoxin prevents cancer. Since the 1970s, epidemiologic studies of cotton textile and other endotoxin-exposed occupational groups have consistently demonstrated reduced lung cancer risks. Experimental animal toxicology research and some limited therapeutic trials in cancer patients offer additional support for an anticarcinogenic potential. The underlying biological mechanisms of anticarcinogenesis are not entirely understood but are thought to involve the recruitment and activation of immune cells and proinflammatory mediators (e.g., tumor necrosis factor α and interleukin-1 and -6). Conclusions In view of the current state of knowledge, it would be premature to recommend endotoxin as a cancer-chemopreventive agent. Nonetheless, further epidemiologic and experimental investigations that can clarify further dose–effect and exposure–timing relations could have substantial public health and basic biomedical benefits. PMID:19750096

  16. Biosensor of endotoxin and sepsis

    NASA Astrophysics Data System (ADS)

    Shao, Yang; Wang, Xiang; Wu, Xi; Gao, Wei; He, Qing-hua; Cai, Shaoxi

    2001-09-01

    To investigate the relation between biosensor of endotoxin and endotoxin of plasma in sepsis. Method: biosensor of endotoxin was designed with technology of quartz crystal microbalance bioaffinity sensor ligand of endotoxin were immobilized by protein A conjugate. When a sample soliton of plasma containing endotoxin 0.01, 0.03, 0.06, 0.1, 0.5, 1.0Eu, treated with perchloric acid and injected into slot of quartz crystal surface respectively, the ligand was released from the surface of quartz crystal to form a more stable complex with endotoxin in solution. The endotoxin concentration corresponded to the weight change on the crystal surface, and caused change of frequency that occurred when desorbed. The result was biosensor of endotoxin might detect endotoxin of plasma in sepsis, measurements range between 0.05Eu and 0.5Eu in the stop flow mode, measurement range between 0.1Eu and 1Eu in the flow mode. The sensor of endotoxin could detect the endotoxin of plasm rapidly, and use for detection sepsis in clinically.

  17. The effect of vasopressin on organ blood flow in an endotoxin-induced rabbit shock model.

    PubMed

    Kang, Chang Hyun; Kim, Won Gon

    2006-01-01

    The effects of vasopressin on the vasculature differ from those of other vasopressors, and its effects on the coronary artery remain debatable. This study was undertaken to examine the effects of vasopressin in a rabbit endotoxin-induced shock model and to compare these effects with those of norepinephrine. Thirty rabbits were divided into four study groups: a normal control group (group I, n = 5), a shock control group (group II, n = 5), a vasopressin group (group III, n = 10), and a norepinephrine group (group IV, n = 10). Shock was induced by intravenously infusing lipopolysaccharide (Escherichia coli O111:B4) in groups II, III, and IV. In groups III and IV, systemic blood pressure was maintained to the level of group I by adjusting vasopressin and norepinephrine doses. Left ventricle, right ventricle, ventricular septum, kidney, liver, spleen, and skeletal muscle blood flows were measured using radioisotope tagged microspheres at baseline and 2 h after initial blood flow measurement. No difference in organ blood flows were observed between groups I and II, and coronary blood flow in the left ventricle, right ventricle, and ventricular septum was similar in all study groups. However, renal blood flow was significantly lower in group IV than in group III (p < .05) and hepatic arterial blood flow was significantly lower in group III than in group IV (p < .05). Thus, effect of vasopressin on organ blood flow is organ dependent. Vasopressin increased renal blood flow and decreased hepatic arterial blood flow in this endotoxin-induced shock model, whereas norepinephrine did not. However, coronary blood flow was not changed by shock status or vasopressor type. PMID:17101605

  18. Removal of endotoxin from water by microfiltration through a microporous polyethylene hollow-fiber membrane

    SciTech Connect

    Sawada, Y.; Fujii, R.; Igami, I.; Kawai, A.; Kamiki, T.; Niwa, M.

    1986-04-01

    The microporous polyethylene hollow-fiber membrane has a unique microfibrile structure throughout its depth and has been found to possess the functions of filtration and adsorption of endotoxin in water. The membrane has a maximum pore diameter of approximately 0.04 micron, a diameter which is within the range of microfiltration. Approximately 10 and 20% of the endotoxin in tap water and subterranean water, respectively, was smaller than 0.025 micron. Endotoxin in these water sources was efficiently removed by the microporous polyethylene hollow-fiber membrane. Escherichia coli O113 culture broth contained 26.4% of endotoxin smaller than 0.025 micron which was also removed. Endotoxin was leaked into the filtrate only when endotoxin samples were successively passed through the membrane. These results indicate that endotoxin smaller than the pore size of the membrane was adsorbed and then leaked into the filtrate because of a reduction in binding sites. Dissociation of /sup 3/H-labeled endotoxin from the membrane was performed, resulting in the removal of endotoxin associated with the membrane by alcoholic alkali at 78% efficiency.

  19. Saliva IgM and IgA are a sensitive indicator of the humoral immune response to Escherichia coli O157 lipopolysaccharide in children with enteropathic hemolytic uremic syndrome.

    PubMed

    Ludwig, Kerstin; Grabhorn, Enke; Bitzan, Martin; Bobrowski, Christoph; Kemper, Markus J; Sobottka, Ingo; Laufs, Rainer; Karch, Helge; Mller-Wiefel, Dirk E

    2002-08-01

    Saliva antibodies to Escherichia coli O157 were investigated as markers of the immune response in children with enteropathic hemolytic uremic syndrome (HUS). Paired serum and saliva samples were collected from 22 children with HUS during acute disease and convalescence and were tested for E. coli O157 lipopolysaccharide (LPS)-specific IgM and IgA antibodies by ELISA. Serum and saliva samples from 44 age-matched controls were used to establish the cut-off values. Elevated levels of IgM and/or IgA antibodies to O157 LPS were detected in saliva of 13/13 HUS patients with Shiga toxin-producing E. coli (STEC) O157 in stool culture and from 4 of 5 HUS patients in whom STEC were not detected. These results closely mirrored the results obtained with paired serum samples. In contrast, saliva and serum samples from four children with STEC isolates belonging to O-groups O26, O145 (n = 2), and O165 lacked detectable O157 LPS-specific antibodies. The specificity of the ELISA was confirmed by western blotting. In STEC O157 culture-confirmed cases, the sensitivity of the ELISA was 92% for saliva IgM and IgA, based on the first available sample, and 100% and 92%, respectively, when subsequent samples were included. The specificity was 98% for IgM and 100% for IgA. Children with E. coli O157 HUS demonstrate a brisk, easily detectable immune response as reflected by the presence of specific antibodies in their saliva. Saliva-based immunoassays offer a reliable, noninvasive method for the diagnosis of E. coli O157 infection in patients with enteropathic HUS. PMID:12149511

  20. Chronic ethanol consumption enhances endotoxin induced hepatic sinusoidal leukocyte adhesion.

    PubMed

    Ohki, E; Kato, S; Horie, Y; Mizukami, T; Tamai, H; Yokoyama, H; Ito, D; Fukuda, M; Suzuki, H; Kurose, I; Ishii, H

    1996-12-01

    In alcoholic liver disease, endotoxin has been postulated to play an important role in its pathogenesis. Endotoxin is known to lead to impediment of hepatic microcirculation, including the adhesion of leukocytes to sinusoidal endothelial cells. In this study, the effect of chronic ethanol consumption on the leukocyte adhesion elicited by endotoxin was examined. Male Wistar rats were pair-fed with a liquid diet containing ethanol or an isocaloric control diet for 6 weeks. The liver of anesthetized rats were placed on the nonfluorescent cover-glass for observation by an intravital inverted microscope equipped with a silicon intensified target camera. The red blood cell (RBC) velocity in hepatic sinusoids was measured by an off-line temporal correlation velocimeter (Capiflow, Sweden) after intravenous injection of fluorescein isothiocyanate-labeled rat RBC. RBC velocity in sinusoids was more severely disturbed in ethanol fed rats than in controls. Leukocytes were stained by the intravenous injection of carboxyfluorescein succinimidyl ester for a fluorographic observation of leukocyte adhesion. After lipopolysaccharide injection, the number of adherent leukocytes was significantly greater in ethanol-fed rats than in controls. Plasma tumor necrosis factor-alpha levels were also higher in ethanol-fed rats than in controls. These results suggest that chronic ethanol consumption aggravates endotoxin induced leukocytes adhesion that may result in hepatic microcirculatory disturbances. Leukocyte adhesion to the sinusoidal wall may be associated with increased in tumor necrosis factor-alpha levels. PMID:8986236

  1. Endotoxin detection--from limulus amebocyte lysate to recombinant factor C.

    PubMed

    Ding, Jeak Ling; Ho, Bow

    2010-01-01

    Gram negative bacterial endotoxin is a biological pyrogen that causes fever when introduced intravenously. The endotoxin, also known as lipopolysaccharide (LPS), is found in the outer membrane of Gram-negative bacteria. During Gram-negative sepsis, endotoxin stimulates host macrophages to release inflammatory cytokines. However, excessive inflammation causes multiple organ failure and death. Endotoxins, which are ubiquitous pathogenic molecules, are a bane to the pharmaceutical industry and healthcare community. Thus early and sensitive detection of endotoxin is crucial to prevent endotoxaemia. The limulus amebocyte lysate (LAL) has been widely used for ~30 years for the detection of endotoxin in the quality assurance of injectable drugs and medical devices. The LAL constitutes a cascade of serine proteases which are triggered by trace levels of endotoxin, culminating in a gel clot at the end of the reaction. The Factor C, which normally exists as a zymogen, is the primer of this coagulation cascade. In vivo, Factor C is the perfect biosensor, which alerts the horseshoe crab of the presence of a Gram-negative invader. The hemostatic end-point entraps the invader, killing it and limiting further infection. However, as an in vitro endotoxin detection tool, variations in the sensitivity and specificity of LAL to endotoxin, and the dwindling supply of horseshoe crabs are posing increasing challenges to the biotechnology industry. This has necessitated the innovation of an alternative test for endotoxin. Thus, Factor C became the obvious, albeit tricky target for the recombinant technology effort. This chapter documents the backwater of mining the natural blood lysate of the endangered species to the monumental effort of genetic engineering, to produce recombinant Factor C (rFC). The rFC is a 132 kDa molecule, which was produced as a proenzyme inducible by the presence of trace levels of endotoxin. The rFC forms the basis of the "PyroGene" kit, which is a novel micro-enzymatic endotoxin diagnostic assay for high-throughput screens of endotoxin. Using the rFC, Lonza Inc. has spawned the "PyroSense" which serves as checkpoints of the biotechnology production line. Thus, from cloning to commercial applications, the rFC has initiated a new era in endotoxin-testing for the quality assurance of biomedical products and for the healthcare industry, whilst sparing the endangered horseshoe crabs. PMID:20593268

  2. Antimicrobial Action and Cell Agglutination by the Eosinophil Cationic Protein Are Modulated by the Cell Wall Lipopolysaccharide Structure

    PubMed Central

    Pulido, David; Moussaoui, Mohammed; Andreu, David; Nogués, M. Victòria

    2012-01-01

    Antimicrobial proteins and peptides (AMPs) are essential effectors of innate immunity, acting as a first line of defense against bacterial infections. Many AMPs exhibit high affinity for cell wall structures such as lipopolysaccharide (LPS), a potent endotoxin able to induce sepsis. Hence, understanding how AMPs can interact with and neutralize LPS endotoxin is of special relevance for human health. Eosinophil cationic protein (ECP) is an eosinophil secreted protein with high activity against both Gram-negative and Gram-positive bacteria. ECP has a remarkable affinity for LPS and a distinctive agglutinating activity. By using a battery of LPS-truncated E. coli mutant strains, we demonstrate that the polysaccharide moiety of LPS is essential for ECP-mediated bacterial agglutination, thereby modulating its antimicrobial action. The mechanism of action of ECP at the bacterial surface is drastically affected by the LPS structure and in particular by its polysaccharide moiety. We have also analyzed an N-terminal fragment that retains the whole protein activity and displays similar cell agglutination behavior. Conversely, a fragment with further minimization of the antimicrobial domain, though retaining the antimicrobial capacity, significantly loses its agglutinating activity, exhibiting a different mechanism of action which is not dependent on the LPS composition. The results highlight the correlation between the protein's antimicrobial activity and its ability to interact with the LPS outer layer and promote bacterial agglutination. PMID:22330910

  3. Endotoxin Structures in the Psychrophiles Psychromonas marina and Psychrobacter cryohalolentis Contain Distinctive Acyl Features

    PubMed Central

    Sweet, Charles R.; Alpuche, Giancarlo M.; Landis, Corinne A.; Sandman, Benjamin C.

    2014-01-01

    Lipid A is the essential component of endotoxin (Gram-negative lipopolysaccharide), a potent immunostimulatory compound. As the outer surface of the outer membrane, the details of lipid A structure are crucial not only to bacterial pathogenesis but also to membrane integrity. This work characterizes the structure of lipid A in two psychrophiles, Psychromonas marina and Psychrobacter cryohalolentis, and also two mesophiles to which they are related using MALDI-TOF MS and fatty acid methyl ester (FAME) GC-MS. P. marina lipid A is strikingly similar to that of Escherichia coli in organization and total acyl size, but incorporates an unusual doubly unsaturated tetradecadienoyl acyl residue. P. cryohalolentis also shows structural organization similar to a closely related mesophile, Acinetobacter baumannii, however it has generally shorter acyl constituents and shows many acyl variants differing by single methylene (-CH2-) units, a characteristic it shares with the one previously reported psychrotolerant lipid A structure. This work is the first detailed structural characterization of lipid A from an obligate psychrophile and the second from a psychrotolerant species. It reveals distinctive structural features of psychrophilic lipid A in comparison to that of related mesophiles which suggest constitutive adaptations to maintain outer membrane fluidity in cold environments. PMID:25010385

  4. Involvement of capsaicin-sensitive nerves in regulating the hormone and glucose metabolic response to endotoxin.

    PubMed

    Morgan, A E; Lang, C H

    1997-08-01

    This study investigated the role that sensory nerves play in mediating the hormone and glucose metabolic response to endotoxin [lipopolysaccharide (LPS)]. Adult rats were pretreated subcutaneously with capsaicin to selectively destroy primary sensory afferent nerve fibers. Ten days later, [3-3H]glucose was infused intravenously to assess whole body glucose flux before and after the intravenous injection of Escherichia coli LPS (100 micrograms/100 g body wt). Control animals responded to LPS with characteristic increases in the plasma concentration of glucose (91%) and lactate (threefold) and elevations in the rates of glucose appearance and disappearance (77%). In capsaicin-treated rats, the maximal LPS-induced increase in these parameters was attenuated by 50-60%. In addition, these animals were hypoglycemic at the conclusion of the experiment. Control animals demonstrated early and sustained elevations in circulating levels of corticosterone, glucagon, and catecholamines. In contrast, the early LPS-induced elevation in epinephrine and norepinephrine, and to a lesser extent glucagon, was completely absent or greatly impaired by capsaicin pretreatment. In a separate study, the epinephrine-induced increase in glucose flux was blunted by 75% in capsaicin-treated rats. These data indicate that sensory afferent neurons play a critical role in the early secretory response of glucagon and catecholamines, the maintenance of tissue catecholamine responsiveness, and the stimulation of glucose production after LPS. PMID:9277386

  5. On the Essentiality of Lipopolysaccharide to Gram-Negative Bacteria

    PubMed Central

    Zhang, Ge; Meredith, Timothy C.; Kahne, Daniel

    2013-01-01

    Lipopolysaccharide is a highly acylated saccharolipid located on the outer leaflet of the outer membrane of Gram-negative bacteria. Lipopolysaccharide is critical to maintaining the barrier function preventing the passive diffusion of hydrophobic solutes such as antibiotics and detergents into the cell. Lipopolysaccharide has been considered an essential component for outer membrane biogenesis and cell viability based on pioneering studies in the model Gram-negative organisms Escherichia coli and Salmonella. With the isolation of lipopolysaccharide-null mutants in Neisseria meningitides, Moraxella catarrhalis, and most recently in Acinetobacter baumannii, it has become increasingly apparent that lipopolysaccharide is not an essential outer membrane building block in all organisms. We suggest the accumulation of toxic intermediates, misassembly of essential outer membrane porins, and outer membrane stress response pathways that are activated by mislocalized lipopolysaccharide may collectively contribute to the observed strain-dependent essentiality of lipopolysaccharide. PMID:24148302

  6. Proteogenomics of selective susceptibility to endotoxin using circulating acute phase biomarkers and bioassay development in sheep: a review

    PubMed Central

    2014-01-01

    Scientists have injected endotoxin into animals to investigate and understand various pathologies and novel therapies for several decades. Recent observations have shown that there is selective susceptibility to Escherichia coli lipopolysaccharide (LPS) endotoxin in sheep, despite having similar breed characteristics. The reason behind this difference is unknown, and has prompted studies aiming to explain the variation by proteogenomic characterisation of circulating acute phase biomarkers. It is hypothesised that genetic trait, biochemical, immunological and inflammation marker patterns contribute in defining and predicting mammalian response to LPS. This review discusses the effects of endotoxin and host responses, genetic basis of innate defences, activation of the acute phase response (APR) following experimental LPS challenge, and the current approaches employed in detecting novel biomarkers including acute phase proteins (APP) and micro-ribonucleic acids (miRNAs) in serum or plasma. miRNAs are novel targets for elucidating molecular mechanisms of disease because of their differential expression during pathological, and in healthy states. Changes in miRNA profiles during a disease challenge may be reflected in plasma. Studies show that gel-based two-dimensional electrophoresis (2-DE) coupled with either matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) or liquid chromatography–mass spectrometry (LC-MS/MS) are currently the most used methods for proteome characterisation. Further evidence suggests that proteomic investigations are preferentially shifting from 2-DE to non-gel based LC-MS/MS coupled with data extraction by sequential window acquisition of all theoretical fragment-ion spectra (SWATH) approaches that are able to identify a wider range of proteins. Enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qRT-PCR), and most recently proteomic methods have been used to quantify low abundance proteins such as cytokines. qRT-PCR and next generation sequencing (NGS) are used for the characterisation of miRNA. Proteogenomic approaches for detecting APP and novel miRNA profiling are essential in understanding the selective resistance to endotoxin in sheep. The results of these methods could help in understanding similar pathology in humans. It might also be helpful in the development of physiological and diagnostic screening assays for determining experimental inclusion and endpoints, and in clinical trials in future. PMID:24580811

  7. Effect of Heat-Killed Escherichia coli, Lipopolysaccharide, and Muramyl Dipeptide Treatments on the Immune Response Phenotype and Allergy in Neonatal Pigs Sensitized to the Egg White Protein Ovomucoid

    PubMed Central

    Schmied, Julie; Rupa, Prithy; Garvie, Sarah

    2012-01-01

    Predisposition to food allergies may reflect a type 2 immune response (IR) bias in neonates due to the intrauterine environment required to maintain pregnancy. The hygiene hypothesis states that lack of early environmental stimulus leading to inappropriate development and bias in IR may also contribute. Here, the ability of heat-killed Escherichia coli, lipopolysaccharide (LPS), or muramyl dipeptide (MDP) to alter IR bias and subsequent allergic response in neonatal pigs was investigated. Three groups of three litters of pigs (12 pigs/litter) were given intramuscular injections of E. coli, LPS, MDP, or phosphate-buffered saline (PBS) (control) and subsequently sensitized to the egg white allergen ovomucoid using an established protocol. To evaluate change in IR bias, immunoglobulin isotype-associated antibody activity (AbA), concentrations of type 1 and 2 and proinflammatory cytokines released from mitogen-stimulated blood mononuclear cells, and the percentage of T-regulatory cells (T-regs) in blood were measured. Clinical signs of allergy were assessed after oral challenge with egg white. The greatest effect on IR bias was observed in MDP-treated pigs, which had a type 2-biased phenotype by isotype-specific AbA, cytokine production, and a low proportion of T-regs. LPS-treated pigs had decreased type 1- and type 2-associated AbA. E. coli-treated pigs displayed increased response to Ovm as AbA and had more balanced cytokine profiles, as well as the highest proportion of T-regs. Accordingly, pigs treated with MDP were more susceptible to allergy than PBS controls, while pigs treated with LPS were less susceptible. Treatment with E. coli did not significantly alter the frequency of clinical signs. PMID:23081818

  8. Endotoxin removal by magnetic separation-based blood purification.

    PubMed

    Herrmann, Inge K; Urner, Martin; Graf, Samuel; Schumacher, Christoph M; Roth-Z'graggen, Birgit; Hasler, Melanie; Stark, Wendelin J; Beck-Schimmer, Beatrice

    2013-06-01

    This work describes a magnetic separation-based approach using polymyxin B-functionalized metal alloy nanomagnets for the rapid elimination of endotoxins from human blood in vitro and functional assays to evaluate the biological relevance of the blood purification process. Playing a central role in gram-negative sepsis, bacteria-derived endotoxins are attractive therapeutic targets. However, both direct endotoxin detection in and removal from protein-rich fluids remains challenging. We present the synthesis and functionalization of ultra-magnetic cobalt/iron alloy nanoparticles and a magnetic separation-based approach using polymyxin B-functionalized nanomagnets to remove endotoxin from human blood in vitro. Conventional chromogenic Limulus Amebocyte Lysate assays confirm decreased endotoxin activity in purified compared to untreated samples. Functional assays assessing key steps in host defense against bacteria show an attenuated inflammatory mediator expression from human primary endothelial cells in response to purified blood samples compared to untreated blood and less chemotactic activity. Exposing Escherichia coli-positive blood samples to polymyxin B-functionalized nanomagnets even impairs the ability of gram-negative bacteria to form colony forming units, thus making magnetic separation based blood purification a promising new approach for future sepsis treatment. PMID:23225582

  9. Single session of Nd:YAG laser intracanal irradiation neutralizes endotoxin in dental root dentin

    NASA Astrophysics Data System (ADS)

    Archilla, Jos R. F.; Moreira, Maria S. N. A.; Miyagi, Sueli P. H.; Bombana, Antnio C.; Gutknecht, Norbert; Marques, Mrcia M.

    2012-11-01

    Endotoxins released in the dental root by Gram-negative microorganisms can be neutralized by calcium hydroxide, when this medication is applied inside the root canal for at least seven days. However, several clinical situations demand faster root canal decontamination. Thus, for faster endotoxin neutralization, endodontists are seeking additional treatments. The in vitro study tested whether or not intracanal Nd:YAG laser irradiation would be able to neutralize endotoxin within the human dental root canal in a single session. Twenty-four human teeth with one root were mounted between two chambers. After conventional endodontic treatment, root canals were contaminated with Escherichia coli endotoxin. Then they were irradiated or not (controls) in contact mode with an Nd:YAG laser (1.5 W, 15 Hz, 100 mJ and pulse fluency of 124 J/cm2). The endotoxin activity was measured using the limulus lysate technique and data were statistically compared (p?0.05). The concentration of active endotoxin measured in the negative control group was significantly lower than that of the positive control group (p=0.04). The concentrations of endotoxin in both irradiated groups were significantly lower than that of the positive control group (p=0.027) and similar to that of negative control group (p=0.20). A single session of intracanal Nd:YAG laser irradiation is able to neutralize endotoxin in the dental root tissues.

  10. Effect of radio-detoxified endotoxin on the liver microsomal drug metabolizing enzyme system in rats

    SciTech Connect

    Bertok, L.; Szeberenyi, S.

    1983-06-01

    E. coli endotoxin (LPS) depresses the hepatic microsomal mono-oxygenase activity. Radio-detoxified LPS (TOLERIN: /sup 60/Co irradiated endotoxin preparation) decreases this biotransforming activity to a smaller extent. Phenobarbital, an inducer of this mono-oxygenase system, failed to induce in LPS-treated animals. In radio-detoxified LPS-treated rats, phenobarbital induced the mono-oxygenase and almost fully restored the biotransformation.

  11. Endotoxin, cytokines, and endotoxin binding proteins in obstructive jaundice and after preoperative biliary drainage

    PubMed Central

    Kimmings, A; van Deventer, S J H; Obertop, H; Rauws, E; Huibregtse, K; Gouma, D

    2000-01-01

    BACKGROUND—Obstructive jaundice is associated with postoperative complications related to increased endotoxaemia and the inflammatory response. In animals obstructive jaundice is associated with endotoxaemia and cytokine induction, which are reversed by internal biliary drainage.
AIMS—To study endotoxaemia and the subsequent inflammatory response in obstructive jaundiced patients and after endoscopic biliary drainage.
METHODS—In 15 patients with malignant distal obstructive jaundice, inflammatory and bacteriological parameters were assessed before endoscopic stent placement and after three weeks endoscopic drainage.
RESULTS—Drainage reduced bilirubin from 252.5 to 45.1 µmol/l. At baseline low level endotoxaemia was detected (4.3 pg/ml) which was not affected after drainage (4.5 pg/ml). Serum interleukin 8 (IL-8) and endotoxin binding proteins were increased in jaundice and reduced after drainage (IL-8 113.6 to 20.7 pg/ml; lipopolysaccharide binding protein 24.2 to 16.5 µg/ml; sCD14 17.4 to 7.6 µg/ml; bactericidal/permeability increasing protein 2.9 to 1.8 ng/ml). Levels of other cytokines, augmented in animals, were only slightly increased and not changed after drainage (tumour necrosis factor (TNF): 21.7 and 18.4 pg/ml; sTNFr p55/75: 2.9/7.0 and 2.7/5.6 ng/ml; IL-6: 4.2 and 6.1 pg/ml; IL-10: 4.5 and 2.7 pg/ml). Elastase and lactoferrin tended towards reduction after drainage. All bile cultures were positive after stenting.
CONCLUSIONS—The effects of obstructive jaundice in humans on endotoxin and cytokines are different from those in animal models. Obstructive jaundice causes alterations in circulating endotoxin binding proteins and IL-8. Concentrations of other mediators (TNF, previously suggested as being responsible for systemic endotoxaemia effects) are low and not affected by drainage.


Keywords: endotoxin; obstructive jaundice; cytokines; endotoxin binding proteins PMID:10764720

  12. Lipopolysaccharide Is Transferred from High-Density to Low-Density Lipoproteins by Lipopolysaccharide-Binding Protein and Phospholipid Transfer Protein

    PubMed Central

    Levels, J. H. M.; Marquart, J. A.; Abraham, P. R.; van den Ende, A. E.; Molhuizen, H. O. F.; van Deventer, S. J. H.; Meijers, J. C. M.

    2005-01-01

    Lipopolysaccharide (LPS), the major outer membrane component of gram-negative bacteria, is a potent endotoxin that triggers cytokine-mediated systemic inflammatory responses in the host. Plasma lipoproteins are capable of LPS sequestration, thereby attenuating the host response to infection, but ensuing dyslipidemia severely compromises this host defense mechanism. We have recently reported that Escherichia coli J5 and Re595 LPS chemotypes that contain relatively short O-antigen polysaccharide side chains are efficiently redistributed from high-density lipoproteins (HDL) to other lipoprotein subclasses in normal human whole blood (ex vivo). In this study, we examined the role of the acute-phase proteins LPS-binding protein (LBP) and phospholipid transfer protein (PLTP) in this process. By the use of isolated HDL containing fluorescent J5 LPS, the redistribution of endotoxin among the major lipoprotein subclasses in a model system was determined by gel permeation chromatography. The kinetics of LPS and lipid particle interactions were determined by using Biacore analysis. LBP and PLTP were found to transfer LPS from HDL predominantly to low-density lipoproteins (LDL), in a time- and dose-dependent manner, to induce remodeling of HDL into two subpopulations as a consequence of the LPS transfer and to enhance the steady-state association of LDL with HDL in a dose-dependent fashion. The presence of LPS on HDL further enhanced LBP-dependent interactions of LDL with HDL and increased the stability of the HDL-LDL complexes. We postulate that HDL remodeling induced by LBP- and PLTP-mediated LPS transfer may contribute to the plasma lipoprotein dyslipidemia characteristic of the acute-phase response to infection. PMID:15784577

  13. OmniGen-AF supplementation modulated the physiological and acute phase responses of Brahman heifers to an endotoxin challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study examined the effect of feeding OmniGen-AF (OG; Prince Agri Products) on the physiological and acute phase responses (APR) of newly-weaned heifers to an endotoxin (lipopolysaccharide; LPS) challenge. Brahman heifers (n=24; 183±5 kilograms) from the Texas AgriLife Research Center in Overton...

  14. Dried citrus pulp modulates the physiological and acute phase responses of crossbred heifers to an endotoxin challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study examined the effect of feeding dried citrus pulp (CP) pellets on the physiological and acute phase responses (APR) of newly-received crossbred heifers to an endotoxin (lipopolysaccharide; LPS) challenge. Heifers (n=24; 218.3±2.4 kg) were obtained from commercial sale barns and transported...

  15. The effect of yeast cell wall supplementation on the physiological and acute phase responses of crossbred heifers to endotoxin challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted to determine the effect of feeding yeast cell wall (YCW) products on the physiological and acute phase responses of crossbred newly-received heifers to endotoxin (lipopolysaccharide; LPS) challenge. Heifers (n=24; 218.9+/-2.4 kg) were obtained from commercial sale barns and tra...

  16. Modulation of the metabolic response to an endotoxin challenge in Brahman heifers through OmniGen-AF supplementation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study examined the effect of feeding OmniGen-AF (OG; Prince Agri Products) on the metabolic response of newly-weaned heifers to an endotoxin (lipopolysaccharide; LPS) challenge. Brahman heifers (n=24; 1835 kilograms) from the Texas AgriLife Research Center in Overton, TX, were separated into 2...

  17. Ultrasound body composition traits response to an endotoxin challenge in Brahman heifers supplemented with Omnigen-AF

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study examined the effect of feeding OmniGen-AF (OG; Prince Agri Products) on the body composition traits response of newly-weaned heifers to an endotoxin (lipopolysaccharide; LPS) challenge. Brahman heifers (n=24; 183 5 kg) from the Texas AgriLife Research Center in Overton, TX, were separat...

  18. Sexually dimorphic secretion of cortisol but not catecholamines in response to an endotoxin challenge in beef cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was designed to determine the effect of endotoxin (lipopolysaccharide; LPS) challenge on secretion of the adrenal stress-related hormones cortisol, epinephrine, and norepinephrine in bull and heifer calves. Brahman calves (n = 12; 269 11.7 kg) were randomly selected from the fall 2007 c...

  19. Influence of an in vivo endotoxin challenge on ex vivo phagocytic and oxidative burst capacities of bovine neutrophils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Neutrophils promote health by reducing the early growth of invading pathogens. The objective of this study was to elucidate the temporal effects of an exogenous endotoxin (lipopolysaccharide; LPS) challenge on neutrophil function. Brahman heifers (186.111.8 kg; n=6) were challenged with an intraven...

  20. The effect of yeast cell wall supplementation on the metabolic responses of crossbred heifers to endotoxin challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study examined the effect of feeding yeast cell wall (YCW) products on the metabolic responses of newly-received heifers to endotoxin (lipopolysaccharide; LPS) challenge. Heifers (n=24; 218.9±2.4 kg) were obtained from commercial sale barns and transported to the Texas Tech University Beef Cent...

  1. Temperament influences endotoxin-induced changes in rectal temperature, sickness behavior, and plasma epinephrine concentrations in bulls

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was designed to determine the influence of temperament on endotoxin (lipopolysaccharide; LPS) induced changes in body temperature and the secretion of cortisol and epinephrine. Purebred Brahman bulls were selected based on temperament score (average of exit velocity, EV, and pen score, PS...

  2. Endotoxin induction of an inhibitor of plasminogen activator in bovine pulmonary artery endothelial cells

    SciTech Connect

    Not Available

    1986-01-05

    The effects of bacterial lipopolysaccharide (endotoxin) on the fibrinolytic activity of bovine pulmonary artery endothelial cells were examined. Endotoxin suppressed the net fibrinolytic activity of cell extracts and conditioned media in a dose-dependent manner. The effects of endotoxin required at least 6 h for expression. Cell extracts and conditioned media contained a 44-kDa urokinase-like plasminogen activator. Media also contained multiple plasminogen activators with molecular masses of 65-75 and 80-100 kDa. Plasminogen activators in extracts and media were unchanged by treatment of cells with endotoxin. Diisopropyl fluorophosphate (DFP)-abolished fibrinolytic activity of extracts and conditioned media. DFP-treated samples from endotoxin-treated but not untreated cells inhibited urokinase and tissue plasminogen activator, but not plasmin. Inhibitory activity was lost by incubation at pH 3 or heating to 56/sup 0/C for 10 min. These treatments did not affect inhibitory activity of fetal bovine serum. Incubation of /sup 125/I-urokinase with DFP-treated medium from endotoxin-treated cells produced an inactive complex with an apparent molecular mass of 80-85 kDa.

  3. Tumor necrosis factor and interleukin 1 as mediators of endotoxin-induced beneficial effects

    SciTech Connect

    Urbaschek, R.; Urbaschek, B.

    1987-09-01

    Bacterial lipopolysaccharides or endotoxins are known to induce tumor necrosis; enhanced nonspecific resistance to bacterial, viral, and parasitic infections and to radiation sickness; and tolerance to lethal doses of endotoxin. These beneficial effects are achieved by pretreatment with minute amounts of endotoxin. Recombinant tumor necrosis factor (TNF) and interleukin 1 (IL-1) are among the mediators capable of invoking radioprotection or resistance to the consequences of cecal ligation and puncture. Both cytokines are potent inducers of serum colony-stimulating factor (CSF) in C3H/HeJ mice (low responders to endotoxin). The number of splenic granulocyte-macrophage precursors was found to increase 5 days after injection of TNF in these mice. Although with IL-1 no increase in the number of granulocyte-macrophage colonies occurred in culture in the presence of serum CSF, a marked stimulation was observed when TNF was added. This stimulation of myelopoiesis observed in vivo and in vitro may be related to the radioprotective effect of TNF. The data presented suggest that TNF and IL-1 released after injection of endotoxin participate in the mediation of endotoxin-induced enhancement of nonspecific resistance and stimulation of hematopoiesis. 76 references.

  4. Removal of endotoxin from deionized water using micromachined silicon nanopore membranes

    NASA Astrophysics Data System (ADS)

    Smith, Ross A.; Goldman, Ken; Fissell, William H.; Fleischman, Aaron J.; Zorman, Christian A.; Roy, Shuvo

    2011-05-01

    Endotoxins are lipopolysaccharide components of the cell membrane of Gram-negative bacteria that trigger the body's innate immune system and can cause shock and death. Water for medical therapy, including parenteral and dialysate solutions, must be free of endotoxin. This purity is challenging to achieve as many Gram-negative bacteria are endemic in the environment, and can thrive in harsh, nutrient-poor conditions. Current methods for removing endotoxin include distillation and reverse osmosis, both of which are resource intensive processes. Membranes that present an absolute barrier to macromolecular passage may be capable of delivering pure water for biomedical applications. In this work, endotoxin has been filtered from aqueous solutions using silicon nanopore membranes (SNMs) with monodisperse pore size distributions. SNMs with critical pore sizes between 26 and 49 nm were challenged with solutions of deionized water spiked with endotoxin and with Pseudomonas cepacia. The filtrate produced by the SNM from Pseudomonas-contaminated water had <1.0 endotoxin unit (EU) ml-1, which meets standards for dialysate purity. This approach suggests a technique for single-step cleanup of heavily contaminated water that may be suitable for field or clinical use.

  5. Induction of immune and adjuvant immunoglobulin G responses in mice by Brucella lipopolysaccharide.

    PubMed Central

    Moreno, E; Kurtz, R S; Berman, D T

    1984-01-01

    The immunogenic and adjuvant properties of Brucella abortus and Escherichia coli lipopolysaccharides (LPSs) were studied in endotoxin-responsive, athymic, and euthymic BALB/c mice and in responsive C3H/HeAu mice and congenic nonresponsive C3H/HeJ mice. Consistent with previous reports, E. coli LPS did not stimulate significant primary or secondary antibody responses in C3H/HeJ mice and induced the production of immunoglobulin M (IgM) and low levels of IgG in C3H/HeAu mice. In contrast, B. abortus smooth and rough LPS stimulated primary and secondary antibody responses and induced the production of IgM and high levels of IgG in both responsive and nonresponsive strains of C3H/He mice and in nude mice. When used as adjuvant, B. abortus LPS augmented the IgG plaque-forming-cell response of C3H/HeAu and BALB/c euthymic mice to the T-dependent antigen sheep erythrocytes. E. coli LPS augmented only the IgM plaque-forming-cell response in the same mouse strains. Neither B. abortus nor E. coli LPS was adjuvant for C3H/HeJ or nude mice. The dichotomy between the antibody and adjuvant responses of both C3H/HeJ mice and athymic mice to B. abortus LPS may be a function of the true thymus independence and dependence of these responses. In addition, the refractiveness of C3H/HeJ and nude mice to B. abortus LPS as adjuvant, but not as mitogen or polyclonal B cell activator, clearly dissociates these phenomena. PMID:6434430

  6. Endotoxin suppresses surfactant synthesis in cultured rat lung cells

    SciTech Connect

    Li, J.J.; Sanders, R.L.; McAdam, K.P.; Gelfand, J.A.; Burke, J.F.

    1989-02-01

    Pulmonary complications secondary to postburn sepsis are a major cause of death in burned patients. Using an in vitro organotypic culture system, we examined the effect of E. coli endotoxin (LPS) on lung cell surfactant synthesis. Our results showed that E. coli endotoxin (1.0, 2.5, 10 micrograms LPS/ml) was capable of suppressing the incorporation of /sup 3/H-choline into de novo synthesized surfactant, lamellar bodies (LB), and common myelin figures (CMF) at 50%, 68%, and 64%, respectively. In a similar study, we were able to show that LPS also inhibited /sup 3/H-palmitate incorporation by cultured lung cells. LPS-induced suppression of surfactant synthesis was reversed by hydrocortisone. Our results suggest that LPS may play a significant role in reducing surfactant synthesis by rat lung cells, and thus contribute to the pathogenesis of sepsis-related respiratory distress syndrome (RDS) in burn injury.

  7. Endotoxin in endodontic infections: a review.

    PubMed

    Mohammadi, Zahed

    2011-03-01

    Gram-negative bacteria play an essential role in primary endodontic infections. They have several virulence factors such as endotoxin, a large molecule that plays a role in the initiation and perpetuation of apical periodontitis. This paper reviews the role of gram-negative bacteria in endodontic infections, structure and mechanisms of action of endotoxin, endotoxin in infected root canals, effects of calcium hydroxide and polymixin B on endotoxin, and applications of endotoxin to measure leakage. PMID:21563594

  8. Endotoxin-neutralizing activity and mechanism of action of a cationic ?-helical antimicrobial octadecapeptide derived from ?-amylase of rice.

    PubMed

    Taniguchi, Masayuki; Ochiai, Akihito; Matsushima, Kenta; Tajima, Koji; Kato, Tetsuo; Saitoh, Eiichi; Tanaka, Takaaki

    2016-01-01

    We have previously reported that AmyI-1-18, an octadecapeptide derived from ?-amylase (AmyI-1) of rice, is a novel cationic ?-helical peptide that exhibited antimicrobial activity against human pathogens, including Porphyromonas gingivalis, Pseudomonas aeruginosa, Propionibacterium acnes, Streptococcus mutans, and Candida albicans. In this study, to further investigate the potential functions of AmyI-1-18, we examined its inhibitory ability against the endotoxic activities of lipopolysaccharides (LPSs, smooth and Rc types) and lipid A from Escherichia coli. AmyI-1-18 inhibited the production of endotoxin-induced nitric oxide (NO), an inflammatory mediator, in mouse macrophages (RAW264) in a concentration-dependent manner. The results of a chromogenic Limulus amebocyte lysate assay illustrated that the ability [50% effective concentration (EC50): 0.17?M] of AmyI-1-18 to neutralize lipid A was similar to its ability (EC50: 0.26?M) to neutralize LPS, suggesting that AmyI-1-18 specifically binds to the lipid A moiety of LPS. Surface plasmon resonance analysis of the interaction between AmyI-1-18 and LPS or lipid A also suggested that AmyI-1-18 directly binds to the lipid A moiety of LPS because the dissociation constant (KD) of AmyI-1-18 with lipid A is 5.610(-10)M, which is similar to that (4.310(-10)M) of AmyI-1-18 with LPS. In addition, AmyI-1-18 could block the binding of LPS-binding protein to LPS, although its ability was less than that of polymyxin B. These results suggest that AmyI-1-18 expressing antimicrobial and endotoxin-neutralizing activities is useful as a safe and potent host defense peptide against pathogenic Gram-negative bacteria in many fields of healthcare. PMID:26643956

  9. Lipopolysaccharides and divalent cations are involved in the formation of an assembly-competent intermediate of outer-membrane protein PhoE of E.coli.

    PubMed Central

    de Cock, H; Tommassen, J

    1996-01-01

    To identify the requirements for the biogenesis of outer-membrane proteins in Gram-negative bacteria, the sorting and assembly of the trimeric, pore-forming protein PhoE was studied in vitro. Purified lipopolysaccharide (LPS) in combination with low amounts of Triton X-100 and divalent cations induced the formation of folded monomers. LPS of deep-rough strains was far less efficient in the formation of folded monomers than wild-type LPS was. These folded monomers could be converted into heat-stable trimers upon addition of outer membranes and higher amounts of Triton X-100. Trimerization could precede the insertion step. These in vitro data suggest that the assembly in vivo proceeds sequentially by (i) formation of a folded monomer by interaction with LPS; (ii) sorting of the folded monomers to assembly sites in the outer membrane; (iii) trimerization; and (iv) insertion. Images PMID:8896450

  10. Oxidative degradation of endotoxin by advanced oxidation process (O3/H2O2 & UV/H2O2).

    PubMed

    Oh, Byung-Taek; Seo, Young-Suk; Sudhakar, Dega; Choe, Ji-Hyun; Lee, Sang-Myeong; Park, Youn-Jong; Cho, Min

    2014-08-30

    The presence of endotoxin in water environments may pose a serious public health hazard. We investigated the effectiveness of advanced oxidative processes (AOP: O3/H2O2 and UV/H2O2) in the oxidative degradation of endotoxin. In addition, we measured the release of endotoxin from Escherichia coli following typical disinfection methods, such as chlorine, ozone alone and UV, and compared it with the use of AOPs. Finally, we tested the AOP-treated samples in their ability to induce tumor necrosis factor alpha (TNF-?) in mouse peritoneal macrophages. The production of hydroxyl radical in AOPs showed superior ability to degrade endotoxin in buffered solution, as well as water samples from Korean water treatment facilities, with the ozone/H2O2 being more efficient compared to UV/H2O2. In addition, the AOPs proved effective not only in eliminating E. coli in the samples, but also in endotoxin degradation, while the standard disinfection methods lead to the release of endotoxin following the bacteria destruction. Furthermore, in the experiments with macrophages, the AOPs-deactivated endotoxin lead to the smallest induction of TNF-?, which shows the loss of inflammation activity, compared to ozone treatment alone. In conclusion, these results suggest that AOPs offer an effective and mild method for endotoxin degradation in the water systems. PMID:25038578

  11. Alteration of the antibody response to Escherichia coli O antigen in mice by prior exposure to various somatic antigens.

    PubMed Central

    Ahlstedt, S; Holmgren, J

    1975-01-01

    In the present study in mice we used the Jerne plaque assay to compare the immunity enhancing potential of different Gram-negative bacteria with special regard to their endotoxin. The results confirm the recent finding that injection of Escherichia coli bacteria of various serotypes may enhance the IgG antibody response to the O antigen of a serologically unrelated E. coli strain injected subsequently, but may suppress the IgM antibody formation. The O antibodies formed were of low avidity but were antigen specific. Smaller amounts of antibodies were formed to a serologically unrelated antigen, E. coli O76, which had not been injected. Of the strains tested as primary stimuli E. coli O4 gave considerably greater enhancement than any other serotype including the homologous E. coli O6, when a short interval between the injections was used. The influence of O4 on the serologically unrelated anti-O6 response was stronger than on the response to the cross-reactive E. coli O18 antigen, suggesting that O antigen cross-reactivity is not the basis for the immunomodulation. Formalin-killed bacteria were more effective in this respect than boiled bacteria or purified lipopolysaccharide and rough mutants (E. coli R1--R4) and E. coli O4 were less effective than many of the other smooth E. coli. These findings suggest that shared determinants in the lipid, basic carbohydrate core or Kunin common antigen portions of the endotoxin do not play the major immunomodulating role in this system. Salmonella reading but not Pseudomonas aeruginosa affected the anti-E. coli O6 response in a similar manner. One explanation for the alterations in the immune response observed implies the presence of an antigen determinant shared by many Enterobacteriaceae in such a position in relation to the O antigen that it can be utilized for cellular co-operative events in the O antibody response. The protein portion of the endotoxin protein--lipid--carbohydrate complex is a possible location. PMID:51829

  12. Grape seed procyanidin extract reduces the endotoxic effects induced by lipopolysaccharide in rats.

    PubMed

    Pallarès, Victor; Fernández-Iglesias, Anabel; Cedó, Lídia; Castell-Auví, Anna; Pinent, Montserrat; Ardévol, Anna; Salvadó, Maria Josepa; Garcia-Vallvé, Santiago; Blay, Mayte

    2013-07-01

    Acute inflammation is a response to injury, infection, tissue damage, or shock. Bacterial lipopolysaccharide (LPS) is an endotoxin implicated in triggering sepsis and septic shock, and LPS promotes the inflammatory response, resulting in the secretion of proinflammatory and anti-inflammatory cytokines such as the interleukins (IL-6, IL-1β, and IL-10) and tumor necrosis factor-α by the immune cells. Furthermore, nitric oxide and reactive oxygen species levels increase rapidly, which is partially due to the activation of inducible nitric oxide synthase in several tissues in response to inflammatory stimuli. Previous studies have shown that procyanidins, polyphenols present in foods such as apples, grapes, cocoa, and berries, have several beneficial properties against inflammation and oxidative stress using several in vitro and in vivo models. In this study, the anti-inflammatory and antioxidant effects of two physiological doses and two pharmaceutical doses of grape seed procyanidin extract (GSPE) were analyzed using a rat model of septic shock by the intraperitoneal injection of LPS derived from Escherichia coli. The high nutritional (75mg/kg/day) and the high pharmacological doses (200mg/kg/day) of GSPE showed anti-inflammatory effects by decreasing the proinflammatory marker NOx in the plasma, red blood cells, spleen, and liver. Moreover, the high pharmacological dose also downregulated the genes Il-6 and iNos; and the high nutritional dose decreased the glutathione ratio (GSSG/total glutathione), further illustrating the antioxidant capability of GSPE. In conclusion, several doses of GSPE can alleviate acute inflammation triggered by LPS in rats at the systemic and local levels when administered for as few as 15 days before the injection of endotoxin. PMID:23439188

  13. Lipopolysaccharide-induced hyperglycemia is mediated by CHH release in crustaceans.

    PubMed

    Lorenzon, S; Giulianini, P G; Ferrero, E A

    1997-12-01

    Septicemia in crustaceans may occur occasionally due to Gram-negative opportunistic bacteria, especially under conditions of intensive aquaculture. The lipopolysaccharide (LPS) endotoxin induces in mammals septic shock and the activation by LPS of hormone release through the hypothalamo-pituitary axis is well known. In crustaceans an increase in circulating Crustacean hyperglycemic hormone and hyperglycemia are reported to result from exposure to several environmental stressors but the metabolic and hormonal effects of LPS in vivo are undescribed. A sublethal dose of LPS (Sigma, Escherichia coli 0111:B4) was injected into at least five individuals of species representative of crustacean taxa and life habits: Squilla mantis (Stomatopoda); the Decapoda Crangon crangon and Palaemon elegans (Caridea), Nephrops norvegicus (Astacidea), Munida rugosa and Paguristes oculatus (Anomura), Pilumnus hirtellus, Macropipus vernalis, Parthenope massena, and Ilia nucleus (Brachyura). Within 3 hr an increase in blood sugar developed ranging from 26.00 +/- 8.37 sd mg/dl in M. rugosa to 201.50 +/- 95. 91 sd mg/dl in P. oculatus and a significant increase of 79% in M. rugosa up to 1300% in P. hirtellus over control levels was observed. The involvement of eyestalk hormones in this generalized response was tested on S. mantis, M. vernalis, and P. elegans; LPS injected into eyestalkless animals did not elicit a significant hyperglycemic response compared with saline-injected controls. Eyestalkless animals injected with one eyestalk equivalent homogenate in saline from untreated animals did show a change in color from red to normal likely due to red pigment concentrating hormone and a hyperglycemic response within 2 hr. Eyestalkless animals injected with homogenate from LPS-treated shrimps showed the change in color but not the hyperglycemic response. It is concluded that LPS directly, or cytokines circulated upon challenge by the endotoxin, may act on the medulla terminalis X-organ-sinus gland complex and release CHH selectively eliciting an hyperglycemic stress response, after which CHH stores become relatively depleted. PMID:9405116

  14. Farm dust and endotoxin protect against allergy through A20 induction in lung epithelial cells.

    PubMed

    Schuijs, Martijn J; Willart, Monique A; Vergote, Karl; Gras, Delphine; Deswarte, Kim; Ege, Markus J; Madeira, Filipe Branco; Beyaert, Rudi; van Loo, Geert; Bracher, Franz; von Mutius, Erika; Chanez, Pascal; Lambrecht, Bart N; Hammad, Hamida

    2015-09-01

    Growing up on a dairy farm protects children from allergy, hay fever, and asthma. A mechanism linking exposure to this endotoxin (bacterial lipopolysaccharide)-rich environment with protection has remained elusive. Here we show that chronic exposure to low-dose endotoxin or farm dust protects mice from developing house dust mite (HDM)-induced asthma. Endotoxin reduced epithelial cell cytokines that activate dendritic cells (DCs), thus suppressing type 2 immunity to HDMs. Loss of the ubiquitin-modifying enzyme A20 in lung epithelium abolished the protective effect. A single-nucleotide polymorphism in the gene encoding A20 was associated with allergy and asthma risk in children growing up on farms. Thus, the farming environment protects from allergy by modifying the communication between barrier epithelial cells and DCs through A20 induction. PMID:26339029

  15. Biophysical mechanisms of endotoxin neutralization by cationic amphiphilic peptides.

    PubMed

    Kaconis, Yani; Kowalski, Ina; Howe, Jrg; Brauser, Annemarie; Richter, Walter; Razquin-Olazarn, Iosu; Iigo-Pestaa, Melania; Garidel, Patrick; Rssle, Manfred; Martinez de Tejada, Guillermo; Gutsmann, Thomas; Brandenburg, Klaus

    2011-06-01

    Bacterial endotoxins (lipopolysaccharides (LPS)) are strong elicitors of the human immune system by interacting with serum and membrane proteins such as lipopolysaccharide-binding protein (LBP) and CD14 with high specificity. At LPS concentrations as low as 0.3 ng/ml, such interactions may lead to severe pathophysiological effects, including sepsis and septic shock. One approach to inhibit an uncontrolled inflammatory reaction is the use of appropriate polycationic and amphiphilic antimicrobial peptides, here called synthetic anti-LPS peptides (SALPs). We designed various SALP structures and investigated their ability to inhibit LPS-induced cytokine secretion in vitro, their protective effect in a mouse model of sepsis, and their cytotoxicity in physiological human cells. Using a variety of biophysical techniques, we investigated selected SALPs with considerable differences in their biological responses to characterize and understand the mechanism of LPS inactivation by SALPs. Our investigations show that neutralization of LPS by peptides is associated with a fluidization of the LPS acyl chains, a strong exothermic Coulomb interaction between the two compounds, and a drastic change of the LPS aggregate type from cubic into multilamellar, with an increase in the aggregate sizes, inhibiting the binding of LBP and other mammalian proteins to the endotoxin. At the same time, peptide binding to phospholipids of human origin (e.g., phosphatidylcholine) does not cause essential structural changes, such as changes in membrane fluidity and bilayer structure. The absence of cytotoxicity is explained by the high specificity of the interaction of the peptides with LPS. PMID:21641310

  16. Pulmonary Endotoxin Tolerance Protects against Cockroach Allergen-Induced Asthma-Like Inflammation in a Mouse Model

    PubMed Central

    Natarajan, Sudha; Kim, Jiyoun; Bouchard, Jacqueline; Cruikshank, William; Remick, Daniel G.

    2012-01-01

    Background Compounds which activate the innate immune system, such as lipopolysaccharide, are significant components of ambient air, and extremely difficult to remove from the environment. It is currently unclear how prior inhalation of endotoxin affects allergen sensitization. We examined whether lung-specific endotoxin tolerance induction prior to sensitization can modulate the response to allergen. Methods Endotoxin tolerance was induced by repeated intratracheal exposure to endotoxin. All mice were then sensitized and challenged by direct intratracheal instillation of cockroach allergen. Results After allergen sensitization and challenge, endotoxin tolerant mice had significantly decreased airways hyperresponsiveness to methacholine challenge, which was confirmed by invasive lung function tests. Decreased goblet cell hyperplasia and mucus production were also found by histological assessment. Tolerant mice were protected from airway eosinophilia through the mechanism of reduced CCL11 and CCL24. Interestingly, endotoxin tolerant mice had only a modest reduction in cockroach-specific IgE; however, total IgE was significantly reduced. Conclusions These data show that induction of endotoxin tolerance prior to sensitization protects against the hallmark features of asthma-like inflammation, and that transient modulation of innate immunity can have long-lasting effects on adaptive responses. PMID:22269653

  17. The Limulus Amebocyte Lysate assay may be unsuitable for detecting endotoxin in blood of healthy female subjects.

    PubMed

    Gnauck, Anne; Lentle, Roger G; Kruger, Marlena C

    2015-01-01

    We examined the factors that may influence the outcome of the Limulus Amebocyte Lysate (LAL) assay, when it is used for quantifying Gram-negative bacterial endotoxin, also referred to as lipopolysaccharide (LPS), in samples of human blood. We found that the method recommended by the manufacturers, based on the reaction time, was inaccurate with any type of serum samples due to the slowing of the initial phase of reaction, likely by serum proteins. We describe an alternative method that is more accurate for use with heated serum samples. Further, we found that components of fresh serum irreversibly sequester endotoxin but that this action may be largely prevented by dilution and heating, but only if this occurs prior to the addition of endotoxin. The tests also indicated that a number of types of proprietary plastic vacutainers appeared to contain significant amounts of endotoxin. However, even when appropriate blood collection containers and calculation methods were used, the levels of endotoxin in serum samples detected by LAL assay were unlikely to reflect the total quantities of endotoxin in that sample and more likely to reflect the capacity of a given serum sample to sequester endotoxin. PMID:25433222

  18. Biophysical characterization of the interaction of high-density lipoprotein (HDL) with endotoxins.

    PubMed

    Brandenburg, Klaus; Jrgens, Gudrun; Andr, Jrg; Lindner, Buko; Koch, Michel H J; Blume, Alfred; Garidel, Patrick

    2002-12-01

    The interaction of bacterial endotoxins [lipopolysaccharide (LPS) and the 'endotoxic principle' lipid A], with high-density lipoprotein (HDL) from serum was investigated with a variety of physical techniques and biological assays. HDL exhibited an increase in the gel to liquid crystalline phase transition temperature Tc and a rigidification of the acyl chains of the endotoxins as measured by Fourier-transform infrared spectroscopy and differential scanning calorimetry. The functional groups of the endotoxins interacting with HDL are the phosphates and the diglucosamine backbone. The finding of phosphates as target groups is in accordance to measurements of the electrophoretic mobility showing that the zeta potential decreases from -50 to -60 mV to -20 mV at binding saturation. The importance of the sugar backbone as further target structure is in accordance with the remaining negative potential and competition experiments with polymyxin B (PMB) and phase transition data of the system PMB/dephosphorylated LPS. Furthermore, endotoxin binding to HDL influences the secondary structure of the latter manifesting in a change from a mixed alpha-helical/beta-sheet structure to a predominantly alpha-helical structure. The aggregate structure of the lipid A moiety of the endotoxins as determined by small-angle X-ray scattering shows a change of a unilamellar/inverted cubic into a multilamellar structure in the presence of HDL. Fluorescence resonance energy transfer data indicate an intercalation of pure HDL, and of [LPS]-[HDL] complexes into phospholipid liposomes. Furthermore, HDL may enhance the lipopolysaccharide-binding protein-induced intercalation of LPS into phospholipid liposomes. Parallel to these observations, the LPS-induced cytokine production of human mononuclear cells and the reactivity in the Limulus test are strongly reduced by the addition of HDL. These data allow to develop a model of the [endotoxin]/[HDL] interaction. PMID:12444987

  19. Endotoxin Deactivation by Transient Acidification

    PubMed Central

    Ribeiro, Melina M.; Xu, Xiumin; Klein, Dagmar; Kenyon, Norma S; Ricordi, Camillo; Felipe, Maria Sueli S.; Pastori, Ricardo L.

    2015-01-01

    Recombinant proteins are an important tool for research and therapeutic applications. Therapeutic proteins have been delivered to several cell types and tissues and might be used to improve the outcome of the cell transplantation. Recombinant proteins are propagated in bacteria, which will contaminate them with the lypopolysacharide-endotoxin found in the outer bacterial membrane. Endotoxin could interfere with in vitro biological assays and is the major pathological factor, which must be removed or inactivated before in vivo administration. Here we describe a one-step protocol in which the endotoxin activity on recombinant proteins is remarkably reduced by transient exposure to acidic conditions. Maximum endotoxin deactivation occurs at acidic pH below their respective isoelectric point (pI). This method does not require additional protein purification or separation of the protein from the endotoxin fraction. The endotoxin level was measured both in vitro and in vivo. For in vitro assessment we have utilized Limulus Amebocyte Lysate method for in vivo the pyrogenic test. We have tested the above-mentioned method with 5 different recombinant proteins including a monoclonal antibody clone 5c8 against CD154 produced by hybridomas. More than 99% of endotoxin was deactivated in all of the proteins, the recovery of the protein after deactivation varied between maximum 72.9 and minimum 46.8%. The anti CD154 clone 5c8 activity remained unchanged as verified by the measurement of binding capability to activated lymphocytes. Furthermore, the effectiveness of this method was not significantly altered by urea, commonly used in protein purification. This procedure provides a simple and cost-efficient way to reduce the endotoxin activity in antibodies and recombinant proteins. PMID:20412635

  20. Effects of endotoxin induced lung injury and exercise in goats/sheep. Final report, 1 February 1992-2 June 1993

    SciTech Connect

    Mundie, T.G.

    1993-06-02

    This study was designed the effects of exercise performed on animals already injured with E. coli endotoxin. This would tell us whether exercise makes the lung injury worse. It would also tell us how much exercise performance is impaired. These studies were designed to give further insights into the underlying causes of acute lung injury. Premature termination of the study prevented completion of the research project. It appeared from the limited experimentation conducted that maximal exercise was impaired by endotoxin-induced lung injury. Conclusions regarding exacerbation of endotoxin-induced lung injury cannot be made.... Acute lung injury, Maximal exercise, Endotoxin.

  1. Yohimbine ameliorates the effects of endotoxin on gastric emptying of the liquid marker acetaminophen in horses.

    PubMed Central

    Meisler, S D; Doherty, T J; Andrews, F M; Osborne, D; Frazier, D L

    2000-01-01

    The effect of yohimbine pretreatment on gastric emptying of a liquid marker in horses was evaluated by measuring serum concentrations of acetaminophen. Gastric emptying was determined in normal, fasted horses, in horses given endotoxin (E. coli 055 B5; 0.2 microg/kg) intravenously, and in horses given yohimbine (0.25 mg/kg, IV, over 30 minutes) plus endotoxin. Acetaminophen (20 mg/kg) was given by stomach tube 15 minutes after the endotoxin infusion. Blood samples for acetaminophen analysis were collected, and time to reach the peak serum concentration (Tmax), the maximum serum concentration (Cmax) and the area under the acetaminophen serum concentration versus time curve (AUC) were determined for each treatment group. Endotoxin significantly increased Tmax, indicating a profound delay in gastric emptying and yohimbine pretreatment significantly (P < or = 0.05) prevented this effect. PMID:11041497

  2. HSP induction inhibits iNOS mRNA expression and attenuates hypotension in endotoxin-challenged rats.

    PubMed

    Hauser, G J; Dayao, E K; Wasserloos, K; Pitt, B R; Wong, H R

    1996-12-01

    Endotoxin (lipopolysaccharide, LPS)-induced hypotension is, in part, mediated via induction of nitric oxide synthase (iNOS), release of nitric oxide, and suppression of vascular reactivity (vasoplegia). Induction of heat shock proteins (HSP) or inhibition of iNOS expression improves survival in LPS-challenged rodents. We studied the effect of induction of HSP on LPS-mediated iNOS expression and on LPS-induced vasoplegia and hypotension. Rats were treated with the HSP inducer sodium arsenite (6 mg/kg iv) or saline control. Seventeen hours later, rats were challenged intravenously with 10 mg/kg of Escherichia coli LPS O127:B8 or saline control. Arsenite pretreatment resulted in expression of HSP 70 mRNA and of HSP 70 and heme oxygenase-1 proteins, inhibition of LPS-mediated iNOS mRNA induction, reversal of the LPS-induced hyporesponsiveness to norepinephrine ex vivo in isolated mesenteric arteries, and attenuation of LPS-induced hypotension in vivo. Our data suggest that induction of HSP expression protects rats from LPS by blocking LPS-induced iNOS expression, leading to inhibition of the overproduction of nitric oxide and thereby reversing LPS-induced vasoplegia and LPS-induced hypotension. PMID:8997314

  3. Metabolic and functional stimulation of lymphocytes and macrophages by an Escherichia coli extract (OM-89): in vitro studies.

    PubMed

    Van Pham, T; Kreis, B; Corradin-Betz, S; Bauer, J; Maul, J

    1990-04-01

    OM-89, a proteinaceous extract from Escherichia coli with very low endotoxin content, was tested for its capacity to stimulate in vitro cells involved in the immune response. OM-89 induced a marked proliferation of mouse spleen cells; E. coli lipopolysaccharide (LPS) at the same concentration as present in OM-89 was totally ineffective. Passage through nylon wool strongly decreased the OM-89-induced effect, suggesting that the responding lymphocytes were of the B lineage. Exposure of bone marrow-derived macrophages to OM-89 promoted glucose oxidation through the hexose monophosphate shunt pathway and the capacity to generate superoxide upon phorbol myristate acetate (PMA) stimulation. These effects were not blocked by polymyxin B, whereas this compound completely prevented induction of similar metabolic activation by E. coli lipopolysaccharide. In addition, OM-89 treatment induced marked PMA-dependent superoxide and hydrogen peroxide release by macrophages from the LPS low responder mouse strain C3H/HeJ. Incubation with recombinant murine interferon-gamma and OM-89, but not with either compound alone, led to functional activation, as shown by the killing of tumor target cells, and by the destruction of the intracellular parasite Leishmania enrietti by macrophages of both LPS-responsive and unresponsive mouse strains. These experiments indicate that OM-89 can stimulate metabolic and functional activities of lymphocytes and macrophages that are important for host defense. PMID:2160522

  4. Prevention of experimental endotoxin shock by a monocyte activator.

    PubMed Central

    Passlick, B; Labeta, M O; Izbicki, J R; Ostertag, P; Lffler, T; Siebeck, M; Pichlmeier, U; Schweiberer, L; Ziegler-Heitbrock, H W

    1995-01-01

    In patients with polytrauma or major surgery, severe bacterial infections leading to septic shock and multiorgan failure are still a major cause of death. Prevention of septic shock in patients at risk would be an alternative to treatment of patients with overt septic shock. We therefore conducted a trial with the monocyte activator muramyl tripeptide phosphatidylethanolamine (MTP-PE) in an experimental pig model. Liposome encapsulated MTP-PE (50 micrograms/kg of body weight) or liposomes alone were given intravenously at 72 or 24 h before endotoxemia was induced by lipopolysaccharide (LPS), simultaneously with the induction of endotoxin shock, or 1 h thereafter. Pretreatment with MTP-PE at 72 and 24 h before endotoxemia was induced resulted in a reduction of endotoxin shock-induced mortality from 81.8% (9 of 11 animals) in the control group to 8.3% (1 of 12 animals) of the MTP-PE-pretreated animals (P < 0.001). The administration of MTP-PE 24 h before the induction of endotoxin shock was more effective (P < 0.01) than administration of MTP-PE 72 h before endotoxemia was induced (P = 0.05). The pretreated animals did not develop fever or cardiovascular complications, and pulmonary function was significantly improved. Furthermore, the alpha-form of the soluble CD14 LPS receptor in pig serum showed a marked decrease in LPS-treated animals, and this decrease was reduced by MTP-PE pretreatment at 24 h before endotoxemia was induced. When MTP-PE was given simultaneously with the induction of septic shock or 1 h thereafter, it did not influence either mortality or morbidity. In conclusion, pretreatment of pigs with MTP-PE improves several parameters of endotoxin shock and it reduces mortality. Patients with high risk of developing septic complications might benefit from a pretreatment with this monocyte-activating substance. PMID:8585740

  5. Functional characterization and membrane topology of Escherichia coli WecA, a sugar-phosphate transferase initiating the biosynthesis of enterobacterial common antigen and O-antigen lipopolysaccharide.

    PubMed

    Lehrer, Jason; Vigeant, Karen A; Tatar, Laura D; Valvano, Miguel A

    2007-04-01

    WecA is an integral membrane protein that initiates the biosynthesis of enterobacterial common antigen and O-antigen lipopolysaccharide (LPS) by catalyzing the transfer of N-acetylglucosamine (GlcNAc)-1-phosphate onto undecaprenyl phosphate (Und-P) to form Und-P-P-GlcNAc. WecA belongs to a large family of eukaryotic and prokaryotic prenyl sugar transferases. Conserved aspartic acids in putative cytoplasmic loops 2 (Asp90 and Asp91) and 3 (Asp156 and Asp159) were targeted for replacement mutagenesis with either glutamic acid or asparagine. We examined the ability of each mutant protein to complement O-antigen LPS synthesis in a wecA-deficient strain and also determined the steady-state kinetic parameters of the mutant proteins in an in vitro transfer assay. Apparent K(m) and V(max) values for UDP-GlcNAc, Mg(2+), and Mn(2+) suggest that Asp156 is required for catalysis, while Asp91 appears to interact preferentially with Mg(2+), possibly playing a role in orienting the substrates. Topological analysis using the substituted cysteine accessibility method demonstrated the cytosolic location of Asp90, Asp91, and Asp156 and provided a more refined overall topological map of WecA. Also, we show that cells expressing a WecA derivative C terminally fused with the green fluorescent protein exhibited a punctate distribution of fluorescence on the bacterial surface, suggesting that WecA localizes to discrete regions in the bacterial plasma membrane. PMID:17237164

  6. Asparagine attenuates intestinal injury, improves energy status and inhibits AMP-activated protein kinase signalling pathways in weaned piglets challenged with Escherichia coli lipopolysaccharide.

    PubMed

    Wang, Xiuying; Liu, Yulan; Li, Shuang; Pi, Dingan; Zhu, Huiling; Hou, Yongqing; Shi, Haifeng; Leng, Weibo

    2015-08-28

    The intestine requires a high amount of energy to maintain its health and function; thus, energy deficits in intestinal mucosa may lead to intestinal damage. Asparagine (Asn) is a precursor for many other amino acids such as aspartate, glutamine and glutamate, which can be used to supply energy to enterocytes. In the present study, we hypothesise that dietary supplementation of Asn could alleviate bacterial lipopolysaccharide (LPS)-induced intestinal injury via improvement of intestinal energy status. A total of twenty-four weaned piglets were assigned to one of four treatments: (1) non-challenged control; (2) LPS+0 % Asn; (3) LPS+0·5 % Asn; (4) LPS+1·0 % Asn. On day 19, piglets were injected with LPS or saline. At 24 h post-injection, piglets were slaughtered and intestinal samples were collected. Asn supplementation improved intestinal morphology, indicated by higher villus height and villus height:crypt depth ratio, and lower crypt depth. Asn supplementation also increased the ratios of RNA:DNA and protein:DNA as well as disaccharidase activities in intestinal mucosa. In addition, Asn supplementation attenuated bacterial LPS-induced intestinal energy deficits, indicated by increased ATP and adenylate energy charge levels, and decreased AMP:ATP ratio. Moreover, Asn administration increased the activities of key enzymes involved in the tricarboxylic acid cycle, including citrate synthase, isocitrate dehydrogenase and α-ketoglutarate dehydrogenase complex. Finally, Asn administration decreased the mRNA abundance of intestinal AMP-activated protein kinase-α1 (AMPKα1), AMPKα2, silent information regulator 1 (SIRT1) and PPARγ coactivator-1α (PGC1α), and reduced intestinal AMPKα phosphorylation. Collectively, these results indicate that Asn supplementation alleviates bacterial LPS-induced intestinal injury by modulating the AMPK signalling pathway and improving energy status. PMID:26277838

  7. Deoxynivalenol, but not E. coli lipopolysaccharide, changes the response pattern of intestinal porcine epithelial cells (IPEC-J2) according to its route of application.

    PubMed

    Kluess, J W; Kahlert, S; Kröber, A; Diesing, A-K; Rothkötter, H-J; Wimmers, Klaus; Dänicke, S

    2015-12-15

    The porcine intestinal epithelium is a primary target for mycotoxin deoxynivalenol (DON) and lipopolysaccharides (LPS). Although epithelial cells are exposed to these toxins mainly from the luminal-chyme compartment an exposure from the blood side resulting from systemic absorption cannot be excluded. Thus, we investigated the effect of DON and LPS, alone or combined, on porcine intestinal epithelial cells IPEC-J2 on a transcriptional, translational and functional level when administered either from apical or basolateral. IPEC-J2 cells were cultured on 12-well inserts in complete medium at 5% CO2 and 39°C and subjected to following treatments: control (CON), 2000 ng/mL DON, 1 μg/mL LPS or DON+LPS for 72 h, either from apical or basolateral. Transepithelial electrical resistance (TEER), protein and IL-8 content were measured and microarray analysis, qRT-PCR (IL-8, zonula occludens-1 ZO-1, β-actin), Western Blot (ZO-1, β-actin) and immunofluorescence (ZO-1) were performed. Data of at least three independent experiments were analysed with ANOVA and Dunnett's post hoc test. Basolateral DON resulted in significantly lower cell counts (p<0.05) with larger cells (p<0.01), whereas apical DON reduced total (p<0.001) and specific protein content (IL-8 content CON vs. DON: 2378 pg/3 mL vs. 991 pg/3 mL; p<0.001). Transcripts of ß-actin and ZO-1 were significantly upregulated in response to DON, irrespective of direction, whereas IL-8 mRNA remained unaffected. However, ZO-1 spatial distribution in the tight junction and its function (TEER) were detrimentally affected by basolateral DON only. In conclusion, direction of DON exposure affected IPEC-J2 differently on a translational and functional level, but was mainly inconsequential on a transcriptional level. PMID:26417708

  8. Interactions of lipopolysaccharide with lipid membranes, raft models - a solid state NMR study.

    PubMed

    Ciesielski, Filip; Griffin, David C; Rittig, Michael; Moriyn, Ignacio; Bonev, Boyan B

    2013-08-01

    Lipopolysaccharide (LPS) is a major component of the external leaflet of bacterial outer membranes, key pro-inflammatory factor and an important mediator of host-pathogen interactions. In host cells it activates the complement along with a pro-inflammatory response via a TLR4-mediated signalling cascade and shows preference for cholesterol-containing membranes. Here, we use solid state (13)C and (31)P MAS NMR to investigate the interactions of LPS from three bacterial species, Brucella melitensis, Klebsiella pneumoniae and Escherichia coli, with mixed lipid membranes, raft models. All endotoxin types are found to be pyrophosphorylated and Klebsiellar LPS is phosphonylated, as well. Carbon-13 MAS NMR indicates an increase in lipid order in the presence of LPS. Longitudinal (31)P relaxation, providing a direct probe of LPS molecular and segmental mobility, reveals a significant reduction in (31)P T1 times and lower molecular mobility in the presence of ternary lipid mixtures. Along with the ordering effect on membrane lipid, this suggests a preferential partitioning of LPS into ordered bilayer sphingomyelin/cholesterol-rich domains. We hypothesise that this is an important evolutionary drive for the selection of GPI-anchored raft-associated LPS-binding proteins as a first line of response to membrane-associated LPS. PMID:23567915

  9. Processing Body Formation Limits Proinflammatory Cytokine Synthesis in Endotoxin-Tolerant Monocytes and Murine Septic Macrophages.

    PubMed

    McClure, Clara; Brudecki, Laura; Yao, Zhi Q; McCall, Charles E; El Gazzar, Mohamed

    2015-01-01

    An anti-inflammatory phenotype with pronounced immunosuppression develops during sepsis, during which time neutrophils and monocytes/macrophages limit their Toll-like receptor 4 responses to bacterial lipopolysaccharide (LPS/endotoxin). We previously reported that during this endotoxin-tolerant state, distinct signaling pathways differentially repress transcription and translation of proinflammatory cytokines such as TNF? and IL-6. Sustained endotoxin tolerance contributes to sepsis mortality. While transcription repression requires chromatin modifications, a translational repressor complex of Argonaute 2 (Ago2) and RNA-binding motif protein 4 (RBM4), which bind the 3'-UTR of TNF? and IL-6 mRNA, limits protein synthesis. Here, we show that Dcp1 supports the assembly of the Ago2 and RBM4 repressor complex into cytoplasmic processing bodies (p-bodies) in endotoxin-tolerant THP-1 human monocytes following stimulation with LPS, resulting in translational repression and limiting protein synthesis. Importantly, this translocation process is reversed by Dcp1 knockdown, which restores TNF? and IL-6 protein levels. We also find this translational repression mechanism in primary macrophages of septic mice. Because p-body formation is a critical step in mRNA translation repression, we conclude that Dcp1 is a major component of the translational repression machinery of endotoxin tolerance and may contribute to sepsis outcome. PMID:25998849

  10. Obesity Increases Sensitivity to Endotoxin Liver Injury: Implications for the Pathogenesis of Steatohepatitis

    NASA Astrophysics Data System (ADS)

    Yang, Shi Qi; Zhi Lin, Hui; Lane, M. Daniel; Clemens, Mark; Diehl, Anna Mae

    1997-03-01

    Genetically obese fatty/fatty rats and obese/obese mice exhibit increased sensitivity to endotoxin hepatotoxicity, quickly developing steatohepatitis after exposure to low doses of lipopolysaccharide (LPS). Among obese animals, females are more sensitive to endotoxin liver injury than males. LPS induction of tumor necrosis factor α (TNFα ), the proven affecter of endotoxin liver injury, is no greater in the livers, white adipose tissues, or sera of obese animals than in those of lean controls. Indeed, the lowest serum concentrations of TNF occur in female obese rodents, which exhibit the most endotoxin-induced liver injury. Several cytokines that modulate the biological activity of TNF are regulated abnormally in the livers of obese animals. After exposure to LPS, mRNA of interferon γ , which sensitizes hepatocytes to TNF toxicity, is overexpressed, and mRNA levels of interleukin 10, a TNF inhibitor, are decreased. The phagocytic activity of liver macrophages and the hepatic expression of a gene encoding a macrophage-specific receptor are also decreased in obesity. This new animal model of obesity-associated liver disease demonstrates that hepatic macrophage dysfunction occurs in obesity and suggests that this might promote steatohepatitis by sensitizing hepatocytes to endotoxin.

  11. Toxicologic interactions between ozone and bacterial endotoxin

    SciTech Connect

    Peavy, D.L.; Fairchild, E.J. II

    1987-02-01

    The effects of acute exposure of mice to bacterial lipopolysaccharide (LPS), the endotoxin of gram negative microorganisms, and ozone (O3) have been investigated. Intraperitoneal (ip) administration of 5 mg/kg LPS to CD-1 mice followed by exposure to 15 ppm O3 for 1.5 hr produced synergistic effects as measured by pulmonary edemagenesis and lethality assays. In contrast, ip administration of 0.1-1.6 mg/kg LPS to CD-1 mice over 5 consecutive days, a dose regimen resulting in LPS tolerance, protected against a lethal challenge of 20 ppm O3 for 3 hr. A statistically significant increase in catalase and glutathione peroxidase activity was measured in homogenates of lungs obtained from CD-1 mice receiving a tolerance-inducing regimen of LPS. These results demonstrate that two, distinct toxicologic interactions can occur between O3 and bacterial LPS. Synergism between these agents could explain, in part, the increased susceptibility of O3-exposed animals to respiratory infection with gram negative microorganisms. Protection resulting from LPS-induced increases in pulmonary antioxidant activity provides additional evidence that O3 and, possibly, LPS mediate their toxicity through oxidative mechanisms.

  12. SUBCHRONIC ENDOTOXIN INHALATION CAUSES CHRONIC AIRWAY DISEASE IN ENDOTOXIN-SENSITIVE BUT NOT ENDOTOXIN-RESISTANT MICE

    EPA Science Inventory

    SUBCHRONIC ENDOTOXIN INHALATION CAUSES CHRONIC AIRWAY DISEASE IN ENDOTOXIN-SENSITIVE BUT NOT ENDOTOXIN-RESISTANT MICE. D. M. Brass, J. D. Savov, *S. H. Gavett, ?C. George, D. A. Schwartz. Duke Univ Medical Center Durham, NC, *U.S. E.P.A. Research Triangle Park, NC, ?Univ of Iowa,...

  13. Endotoxin Induces Fibrosis in Vascular Endothelial Cells through a Mechanism Dependent on Transient Receptor Protein Melastatin 7 Activity

    PubMed Central

    Echeverra, Cesar; Montorfano, Ignacio; Hermosilla, Tamara; Armisn, Ricardo; Velsquez, Luis A.; Cabello-Verrugio, Claudio; Varela, Diego; Simon, Felipe

    2014-01-01

    The pathogenesis of systemic inflammatory diseases, including endotoxemia-derived sepsis syndrome, is characterized by endothelial dysfunction. It has been demonstrated that the endotoxin lipopolysaccharide (LPS) induces the conversion of endothelial cells (ECs) into activated fibroblasts through endothelialtomesenchymal transition mechanism. Fibrogenesis is highly dependent on intracellular Ca2+ concentration increases through the participation of calcium channels. However, the specific molecular identity of the calcium channel that mediates the Ca2+ influx during endotoxin-induced endothelial fibrosis is still unknown. Transient receptor potential melastatin 7 (TRPM7) is a calcium channel that is expressed in many cell types, including ECs. TRPM7 is involved in a number of crucial processes such as the conversion of fibroblasts into activated fibroblasts, or myofibroblasts, being responsible for the development of several characteristics of them. However, the role of the TRPM7 ion channel in endotoxin-induced endothelial fibrosis is unknown. Thus, our aim was to study whether the TRPM7 calcium channel participates in endotoxin-induced endothelial fibrosis. Using primary cultures of ECs, we demonstrated that TRPM7 is a crucial protein involved in endotoxin-induced endothelial fibrosis. Suppression of TRPM7 expression protected ECs from the fibrogenic process stimulated by endotoxin. Downregulation of TRPM7 prevented the endotoxin-induced endothelial markers decrease and fibrotic genes increase in ECs. In addition, TRPM7 downregulation abolished the endotoxin-induced increase in ECM proteins in ECs. Furthermore, we showed that intracellular Ca2+ levels were greatly increased upon LPS challenge in a mechanism dependent on TRPM7 expression. These results demonstrate that TRPM7 is a key protein involved in the mechanism underlying endotoxin-induced endothelial fibrosis. PMID:24710004

  14. Endotoxin induces fibrosis in vascular endothelial cells through a mechanism dependent on transient receptor protein melastatin 7 activity.

    PubMed

    Echeverra, Cesar; Montorfano, Ignacio; Hermosilla, Tamara; Armisn, Ricardo; Velsquez, Luis A; Cabello-Verrugio, Claudio; Varela, Diego; Simon, Felipe

    2014-01-01

    The pathogenesis of systemic inflammatory diseases, including endotoxemia-derived sepsis syndrome, is characterized by endothelial dysfunction. It has been demonstrated that the endotoxin lipopolysaccharide (LPS) induces the conversion of endothelial cells (ECs) into activated fibroblasts through endothelial-to-mesenchymal transition mechanism. Fibrogenesis is highly dependent on intracellular Ca2+ concentration increases through the participation of calcium channels. However, the specific molecular identity of the calcium channel that mediates the Ca2+ influx during endotoxin-induced endothelial fibrosis is still unknown. Transient receptor potential melastatin 7 (TRPM7) is a calcium channel that is expressed in many cell types, including ECs. TRPM7 is involved in a number of crucial processes such as the conversion of fibroblasts into activated fibroblasts, or myofibroblasts, being responsible for the development of several characteristics of them. However, the role of the TRPM7 ion channel in endotoxin-induced endothelial fibrosis is unknown. Thus, our aim was to study whether the TRPM7 calcium channel participates in endotoxin-induced endothelial fibrosis. Using primary cultures of ECs, we demonstrated that TRPM7 is a crucial protein involved in endotoxin-induced endothelial fibrosis. Suppression of TRPM7 expression protected ECs from the fibrogenic process stimulated by endotoxin. Downregulation of TRPM7 prevented the endotoxin-induced endothelial markers decrease and fibrotic genes increase in ECs. In addition, TRPM7 downregulation abolished the endotoxin-induced increase in ECM proteins in ECs. Furthermore, we showed that intracellular Ca2+ levels were greatly increased upon LPS challenge in a mechanism dependent on TRPM7 expression. These results demonstrate that TRPM7 is a key protein involved in the mechanism underlying endotoxin-induced endothelial fibrosis. PMID:24710004

  15. An Endotoxin Tolerance Signature Predicts Sepsis and Organ Dysfunction at Initial Clinical Presentation

    PubMed Central

    Pena, Olga M.; Hancock, David G.; Lyle, Ngan H.; Linder, Adam; Russell, James A.; Xia, Jianguo; Fjell, Christopher D.; Boyd, John H.; Hancock, Robert E.W.

    2014-01-01

    Background Sepsis involves aberrant immune responses to infection, but the exact nature of this immune dysfunction remains poorly defined. Bacterial endotoxins like lipopolysaccharide (LPS) are potent inducers of inflammation, which has been associated with the pathophysiology of sepsis, but repeated exposure can also induce a suppressive effect known as endotoxin tolerance or cellular reprogramming. It has been proposed that endotoxin tolerance might be associated with the immunosuppressive state that was primarily observed during late-stage sepsis. However, this relationship remains poorly characterised. Here we clarify the underlying mechanisms and timing of immune dysfunction in sepsis. Methods We defined a gene expression signature characteristic of endotoxin tolerance. Gene-set test approaches were used to correlate this signature with early sepsis, both newly and retrospectively analysing microarrays from 593 patients in 11 cohorts. Then we recruited a unique cohort of possible sepsis patients at first clinical presentation in an independent blinded controlled observational study to determine whether this signature was associated with the development of confirmed sepsis and organ dysfunction. Findings All sepsis patients presented an expression profile strongly associated with the endotoxin tolerance signature (p<0.01; AUC 96.1%). Importantly, this signature further differentiated between suspected sepsis patients who did, or did not, go on to develop confirmed sepsis, and predicted the development of organ dysfunction. Interpretation Our data support an updated model of sepsis pathogenesis in which endotoxin tolerance-mediated immune dysfunction (cellular reprogramming) is present throughout the clinical course of disease and related to disease severity. Thus endotoxin tolerance might offer new insights guiding the development of new therapies and diagnostics for early sepsis. PMID:25685830

  16. Protective effects of yangambin on cardiovascular hyporeactivity to catecholamines in rats with endotoxin-induced shock.

    PubMed

    Arajo, C V; Barbosa-Filho, J M; Cordeiro, R S; Tibiri, E

    2001-03-01

    The protective effects of a new, selective, plant-derived platelet-activating factor (PAF) antagonist, yangambin, on the cardiovascular alterations and mortality due to endotoxic shock were investigated in anaesthetized rats. We also studied the involvement of PAF in the induction of the vascular and cardiac hyporesponsiveness to adrenergic stimulation observed during endotoxaemia. The animals were sensitized to the lethal effects of Escherichia coli lipopolysaccharide (LPS) with D(+)-galactosamine (50 mg/kg, i.v.) 15 min before LPS injection. LPS (3 mg/kg, i.v.) induced a progressive and marked decrease in mean arterial blood pressure from 85+/-4 to 30+/-3 mmHg and a reduction of cardiac output (CO) from 180+/-7 to 37+/-3 ml/min (120 min) accompanied by a maintenance of systemic vascular resistance, suggesting that cardiovascular collapse resulted mainly from myocardial depression. The maximum pressor responses to noradrenaline (0.3-3.0 microg/kg, i.v.) fell from 72+/-9 (control) to 5+/-1 mmHg (LPS) while the CO responses decreased from 81+/-5 to 8+/-3 ml/min. Pre-treatment with yangambin (30 mg/kg, i.v.) or with WEB 2086 (5 mg/kg, i.v.), a reference PAF receptor antagonist, completely prevented the LPS-induced cardiovascular collapse and abolished the sharp reductions of the arterial blood pressure and CO responses to noradrenaline observed during endotoxaemia. Post-treatment with yangambin 90 min after LPS administration did not reverse the arterial hypotension, cardiac failure or cardiovascular hyporesponsiveness to catecholamines. Finally, the acute (150 min) survival rates of endotoxic shock increased from 0% (LPS group) to 100% in the groups pretreated with either yangambin or WEB 2086. The long-term (7-day) survival also increased from 0% (LPS group) to 85% (yangambin pre-treatment group). In conclusion, these data suggest a role for PAF in the pathogenesis of endotoxin-induced vascular and cardiac hyporesponsiveness to catecholamines and confirm its involvement in the complex cascade of multiple mediators released during endotoxic/septic shock. Yangambin proved to be an effective pharmacological agent against cardiovascular collapse and mortality in endotoxin shock. PMID:11284440

  17. Endotoxin-like activity associated with Lyme disease Borrelia.

    PubMed

    Fumarola, D; Munno, I; Marcuccio, C; Miragliotta, G

    1986-12-01

    The newly recognized spirochete, Borrelia burgdorferi, the causative agent of Lyme Disease, has been examined for endotoxin-like activities as measured by the standard Farmacopea Ufficiale della Republica Italiana rabbit fever test and the Limulus amoebocyte lysate assay. The suspension of heat-killed microorganism caused a febrile response at a dose of 1 X 10(8) bacteria pro kilo. Similar results were obtained in the Limulus assay where the heat-killed spirochetes stimulated formation of solid clot until the concentration of 1 X 10(5) per ml. Both in pyrogen test and in Limulus assay heat-killed Escherichia coli exhibited a higher degree of potency. These results show that LD-Borrelia possess endotoxin-like activities which could help in understanding the pathogenesis of the clinical symptomatology of the disease. PMID:3577476

  18. Endotoxin Studies And Biosolids Stabilization Research

    EPA Science Inventory

    This presentation has three parts; a review of bench-scale endotoxin research, a review of observations from a field scale endotoxin release study, and discussion of biosolids stabilization and characterization by PLFA/FAME microbial community analysis. Endotoxins are part of th...

  19. SUBCHRONIC ENDOTOXIN INHALATION CAUSES PERSISTENT AIRWAY DISEASE

    EPA Science Inventory

    ABSTRACT

    The endotoxin component of organic dusts causes acute reversible airflow obstruction and airway inflammation. To test the hypothesis that endotoxin alone causes airway remodeling, we have compared the response of two inbred mouse strains to subchronic endotoxin ...

  20. Impact of lipopolysaccharide coating on clay particle wettability.

    PubMed

    Chen, Gang; Zhu, Honglong

    2004-05-15

    Impact of lipopolysaccharide coating on kaolinite and Na-montmorillonite wettability was investigated. Kaolinite had greater diiodomethane contact angles, smaller water and formamide contact angles than Na-montmorillonite. After lipopolysaccharide coating, diiodomethane and formamide contact angles decreased, while water contact angles increased for both kaolinite and Na-montmorillonite. The decrease and increase in liquid contact angles after lipopolysaccharide coating were most pronounced for lipopolysaccharide extracted from Pseudomonas aeruginosa, followed by Pseudomonas fluorescens and Echerichia coli. Clay particle wettability was determined by particle surface thermodynamic properties. Both kaolinite and Na-montmorillonite exhibited a monopolar surface and the monopolarity decreased after lipopolysaccharide coating, indicating an increase in hydration or surface wetness. The origins of interactions of clay particles with water molecules were discussed and related to clay particle water wettability. PMID:15261047

  1. Short exposure to endotoxin increases the constriction induced by angiotensin II in rat aorta.

    PubMed

    Rasetti, C; Vicaut, E

    1995-12-01

    The contraction elicited by angiotensin II (ANG II) was studied by using standard isometric tension techniques in aortic rings exposed for 1 h to 1 or 10 micrograms/ml Escherichia coli lipopolysaccharide endotoxin (LPS). This contraction was 18 and 71% greater for the two doses of LPS, respectively, than in unexposed control rings. In endothelium-denuded rings, the LPS-induced increase in contraction in response to ANG II was completely abolished. Because the contraction induced by ANG II is modulated by the simultaneous release of prostaglandins, we tested the hypothesis that LPS interferes with this modulation. We found that the LPS-induced increase in contraction to ANG II was inhibited in the presence of the cyclooxygenase inhibitor indomethacin (10(-5) M) or the prostaglandin H2/thromboxane A2-receptor antagonist SQ-29548 (2 x 10(-7) M). Conversely, the LPS-induced increase in contraction in response to ANG II was not inhibited by the presence of dexamethasone (10(-6) M), which inhibits new protein synthesis. In addition, there was no loss of vasodilator response to the endothelium-dependent receptor agonist acetylcholine (10(-8)-10(-4) M) or in the constrictor responses to norepinephrine (10(-9)-10(-5) M) and KCl (20-100 mM). We conclude that short exposure to LPS produces a specific increase in the constrictor response to ANG II via mechanisms mediated by prostaglandin H2/thromboxane A2. This effect could be a LPS-induced shift in favor of constrictor prostanoids in the balance of dilator/constrictor prostanoids, the release of which is associated with stimulation by ANG II. PMID:8847278

  2. Amelioration of endotoxin-induced uveitis treated with the sea urchin pigment echinochrome in rats

    PubMed Central

    Kitaichi, Nobuyoshi; Noda, Kousuke; Mizuuchi, Kazuomi; Ando, Ryo; Dong, Zhenyu; Fukuhara, Junichi; Kinoshita, Satoshi; Namba, Kenichi; Ohno, Shigeaki; Ishida, Susumu

    2014-01-01

    Purpose Echinochrome is a pigment present in the shells and spines of sea urchins. It has been reported to have several biologic protective effects, including in experimental models of myocardial ischemia/reperfusion injury, for which the proposed mechanisms are scavenging reactive oxygen species (ROS) and chelating iron. Endotoxin-induced uveitis (EIU) is an animal model of acute anterior segment intraocular inflammation that is induced by the injection of lipopolysaccharide (LPS). In this study, the therapeutic effect of echinochrome was examined in uveitis using the EIU model. Methods EIU was induced in Lewis rats via 200 ?g subcutaneous injections of LPS from Escherichia coli. Echinochrome was administered intravenously in 10, 1, or 0.1 mg/kg doses suspended in PBS (controls were injected with PBS only). Twenty-four hours after LPS injection, the number of infiltrating cells and the protein concentration in aqueous humor were determined. Aqueous tumor necrosis factor ? (TNF-?) concentration was quantified with enzyme-linked immunosorbent assay, eyes were stained with nuclear factor (NF) ?B antibodies, and ROS production was determined by dihydroethidium staining in fresh frozen samples. Results The number of inflammatory aqueous cells and protein levels were lower in the groups treated with 10 and 1 mg/kg of echinochrome than in the untreated LPS group (p<0.01). Treatment with 10 and 1 mg/kg of echinochrome significantly reduced TNF-? concentrations in aqueous humor (p<0.01). The numbers of NF?B-positive cells and ROS signals were also reduced by echinochrome administration (p<0.05). Conclusions Echinochrome ameliorated intraocular inflammation caused by EIU by reducing ROS production, thereby also decreasing the expression of NF?B and TNF-?. As a natural pigment, echinochrome may therefore be a promising candidate for the safe treatment of intraocular inflammation. The use of sea urchin shells and spines in health foods and medical products is thus both economically and environmentally meaningful. PMID:24520186

  3. Effect of endotoxin on lipid peroxidation in vivo in selenium and vitamin E deficient rats

    SciTech Connect

    Sword, J.T.; Pope, A.L.; Hoekstra, W.G.

    1986-03-01

    The authors have used respiratory ethane production by selenium (Se) and vitamin E (E) deficient rats, an index of lipid peroxidation, to identify oxidant stressors which might precipitate sudden tissue degeneration in deficient animals. Other studies have suggested that endotoxin (gram-negative bacterial lipopolysaccharide-LPS) might be such an oxidant stressor, especially in the lungs. Male weanling rats were fed a Se and E deficient diet for about 80 days. Rats were injected ip with Salmonella typhimurium LPS (.25, .5, or 1.0 mg/kg) or saline, and respiratory ethane was collected for 16 hr. In a representative experiment, mean rate of ethane production (nm/100g/hr) was increased (p < .01) by LPS: saline, .48 +/- .04 (SEM); .25 mg LPS/kg, 1.30 +/- .17; .5, 1.47 +/- .18 and 1.0, 1.68 +/- .18. E. coli and S. minnesota LPS gave similar results. Rats fed a supplemented diet (.2 ppm Se and 200 IU E/kg diet) produced less (p < .01) ethane: saline, .068 +/- .009 and .5 mg LPS/kg, .114 +/- .01. Over all experiments LPS produced a small yet significant increase in ethane in rats receiving Se or E supplementation but produced a marked increase in unsupplemented rats. In further studies with LPS treated rats, Se supplementation alone was 73%, and E supplementation alone 99% as effective as Se + E. These results showed that LPS stimulates lipid peroxidation in Se and E deficient rats and that infections may initiate oxidative cell damage in deficient animals. E was more protective than Se against LPS-induced peroxidation.

  4. Lipopolysaccharide Phosphorylation by the WaaY Kinase Affects the Susceptibility of Escherichia coli to the Human Antimicrobial Peptide LL-37.

    PubMed

    Bociek, Karol; Ferluga, Sara; Mardirossian, Mario; Benincasa, Monica; Tossi, Alessandro; Gennaro, Renato; Scocchi, Marco

    2015-08-01

    The human cathelicidin LL-37 is a multifunctional host defense peptide with immunomodulatory and antimicrobial roles. It kills bacteria primarily by altering membrane barrier properties, although the exact sequence of events leading to cell lysis has not yet been completely elucidated. Random insertion mutagenesis allowed isolation of Escherichia coli mutants with altered susceptibility to LL-37, pointing to factors potentially relevant to its activity. Among these, inactivation of the waaY gene, encoding a kinase responsible for heptose II phosphorylation in the LPS inner core, leads to a phenotype with decreased susceptibility to LL-37, stemming from a reduced amount of peptide binding to the surface of the cells, and a diminished capacity to lyse membranes. This points to a specific role of the LPS inner core in guiding LL-37 to the surface of Gram-negative bacteria. Although electrostatic interactions are clearly relevant, the susceptibility of the waaY mutant to other cationic helical cathelicidins was unaffected, indicating that particular structural features or LL-37 play a role in this interaction. PMID:26100635

  5. Effects of Puerariae Radix Extract on Endotoxin Receptors and TNF-? Expression Induced by Gut-Derived Endotoxin in Chronic Alcoholic Liver Injury

    PubMed Central

    Peng, Jing-Hua; Cui, Tuan; Sun, Zhao-Lin; Huang, Fu; Chen, Liang; Xu, Lin; Feng, Qin; Hu, Yi-Yang

    2012-01-01

    Kudzu (Pueraria lobata) is one of the earliest medicinal plants used to treat alcohol abuse in traditional Chinese medicine for more than a millennium. However, little is known about its effects on chronic alcoholic liver injury. Therefore, the present study observed the effects of puerariae radix extract (RPE) on chronic alcoholic liver injury as well as Kupffer cells (KCs) activation to release tumor necrosis factor alpha (TNF-?) induced by gut-derived endotoxin in rats and macrophage cell line. RPE was observed to alleviate the pathological changes and lipids deposition in liver tissues as well as the serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and hepatic gamma-glutamyl transpeptidase (GGT) activity. Meanwhile, RPE inhibited KCs activation and subsequent hepatic TNF-? expression and downregulated the protein expression of endotoxin receptors, lipopolysaccharide binding protein (LBP), CD14, Toll-like receptor (TLR) 2, and TLR4 in chronic alcohol intake rats. Furthermore, an in vitro study showed that RPE inhibited the expression of TNF-? and endotoxin receptors, CD14 and TLR4, induced by LPS in RAW264.7 cells. In summary, this study demonstrated that RPE mitigated liver damage and lipid deposition induced by chronic alcohol intake in rats, as well as TNF-? release, protein expression of endotoxin receptors in vivo or in vitro. PMID:23133491

  6. Predictors of airborne endotoxin in the home.

    PubMed Central

    Park, J H; Spiegelman, D L; Gold, D R; Burge, H A; Milton, D K

    2001-01-01

    We identified home characteristics associated with the level of airborne endotoxin in 111 Boston-area homes enrolled in a cohort study of home exposures and childhood asthma, and we developed a predictive model to estimate airborne endotoxin. We measured endotoxin in family-room air and in dust from the baby's bed, family room, bedroom, and kitchen floor. Level of airborne endotoxin was weakly correlated (r < 0.3) with level of endotoxin in each of the four types of dust samples and was significantly correlated with endotoxin in family-room dust (p < 0.05). Endotoxin in family-room dust accounted for < 6% of the variability of airborne endotoxin. In a multivariate model, certain home characteristics were positively (p < 0.05) associated with airborne endotoxin. These included current presence of dog (difference in level, dog vs. no dog = 72%, partial R(2 )= 12.8%), past presence of dog (partial R(2) = 5.5%), and endotoxin level in family-room dust (partial R(2) = 5.3%). Use of a dehumidifier (partial R(2) = 6.4%) was negatively associated (p = 0.02; difference = -31%) with airborne endotoxin. Other home characteristics were identified as important determinants of increased airborne endotoxin in this model, but individual coefficients were not statistically significant (alpha = 0.05): total amount of fine dust collected in the home (partial R(2 )= 3.8%), concrete floor in family room (3.7%), water damage (3.6%), and use of cool-mist humidifier in past year (2.7%). This multivariate model explained 42% of the variability of airborne endotoxin levels, a substantial improvement over that with dust endotoxin alone. Airborne endotoxin in Boston-area homes appears to be determined by the presence of dogs, moisture sources, and increased amounts of settled dust. PMID:11564624

  7. Predictors of airborne endotoxin in the home.

    PubMed

    Park, J H; Spiegelman, D L; Gold, D R; Burge, H A; Milton, D K

    2001-08-01

    We identified home characteristics associated with the level of airborne endotoxin in 111 Boston-area homes enrolled in a cohort study of home exposures and childhood asthma, and we developed a predictive model to estimate airborne endotoxin. We measured endotoxin in family-room air and in dust from the baby's bed, family room, bedroom, and kitchen floor. Level of airborne endotoxin was weakly correlated (r < 0.3) with level of endotoxin in each of the four types of dust samples and was significantly correlated with endotoxin in family-room dust (p < 0.05). Endotoxin in family-room dust accounted for < 6% of the variability of airborne endotoxin. In a multivariate model, certain home characteristics were positively (p < 0.05) associated with airborne endotoxin. These included current presence of dog (difference in level, dog vs. no dog = 72%, partial R(2 )= 12.8%), past presence of dog (partial R(2) = 5.5%), and endotoxin level in family-room dust (partial R(2) = 5.3%). Use of a dehumidifier (partial R(2) = 6.4%) was negatively associated (p = 0.02; difference = -31%) with airborne endotoxin. Other home characteristics were identified as important determinants of increased airborne endotoxin in this model, but individual coefficients were not statistically significant (alpha = 0.05): total amount of fine dust collected in the home (partial R(2 )= 3.8%), concrete floor in family room (3.7%), water damage (3.6%), and use of cool-mist humidifier in past year (2.7%). This multivariate model explained 42% of the variability of airborne endotoxin levels, a substantial improvement over that with dust endotoxin alone. Airborne endotoxin in Boston-area homes appears to be determined by the presence of dogs, moisture sources, and increased amounts of settled dust. PMID:11564624

  8. Comparison of Different Irrigants in the Removal of Endotoxins and Cultivable Microorganisms from Infected Root Canals

    PubMed Central

    Valera, Marcia Carneiro; Cardoso, Flvia Goulart da Rosa; Chung, Adriana; Xavier, Ana Cludia Carvalho; Figueiredo, Mariana Diehl; Martinho, Frederico Canato; Palo, Renato Miotto

    2015-01-01

    This study was conducted to compare the effectiveness of different irrigants used to remove endotoxins and cultivable microorganisms during endodontic therapy. Forty root canals were contaminated and divided into groups according to the irrigant: 2% NaOCl + surfactant, 2% CHX, 2.5% NaOCl, and pyrogen-free saline solution (control). Samples were collected after root canal contamination (S1), after instrumentation (S2), and 7 days after instrumentation (S3). Microorganisms and endotoxins were recovered from 100% of the contaminated root canals (S1). At S2, 2% NaOCl + surfactant, 2% CHX, and 2.5% NaOCl were able to completely eliminate cultivable microorganisms. At S3, both 2% CHX and 2.5% NaOCl were effective in preventing C. albicans and E. coli regrowth, but E. faecalis was still detected. No microorganism species was recovered from root canals instrumented with 2% NaOCl + surfactant. At S2, a higher percentage value of endotoxin reduction was found for 2% NaOCl + surfactant (99.3%) compared to 2% CHX (98.9%) and 2.5% NaOCl (97.18%) (p < 0.05). Moreover, at S3, 2% NaOCl + surfactant (100%) was the most effective irrigant against endotoxins. All irrigants tested were effective in reducing microorganisms and endotoxins from root canals. Moreover, 2% NaOCl + surfactant was the most effective irrigant against endotoxins and regrowth of microorganisms. PMID:26346574

  9. Impact of bacterial endotoxin on the structure of DMPC membranes.

    PubMed

    Nagel, Michael; Brauckmann, Stephan; Moegle-Hofacker, Franzeska; Effenberger-Neidnicht, Katharina; Hartmann, Matthias; de Groot, Herbert; Mayer, Christian

    2015-10-01

    Bacterial lipopolysaccharides are believed to have a toxic effect on human cell membranes. In this study, the influence of a lipopolysaccharide (LPS) from Escherichia coli on the structure, the dynamics and the mechanical strength of phospholipid membranes are monitored by nuclear magnetic resonance spectroscopy (NMR) and by atomic force microscopy (AFM). Model membranes are formed from 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and are either prepared as multilamellar bulk samples or multilamellar vesicles. Field gradient NMR data directly prove the rapid integration of LPS into DMPC membranes. Solid state NMR experiments primarily detect decreasing molecular order parameters with increasing LPS content. This is accompanied by a mechanical softening of the membrane bilayers as is shown by AFM indentation measurements. Altogether, the data prove that lipopolysaccharide molecules quickly insert into phospholipid bilayers, increase membrane fluctuation amplitudes and significantly weaken their mechanical stiffness. PMID:26071197

  10. Mononuclear cells in the corneal response to endotoxin

    SciTech Connect

    Howes, E.L.; Cruse, V.K.; Kwok, M.T.

    1982-04-01

    A severe keratitis can be produced after the direct injection of bacterial endotoxin, or lipopolysaccharide (LPS), in rabbits. Corneal inflammation can progress to scarring and vascularization within a 2 to 3 week period. Pretreatment with systemic adrenal corticosteroids (triamcinolone) prevents this response. Limbal cellular and vascular events were studied during the first 20 hr after injection of LPS in treated and nontreated rabbits. Perivascular limbal inflammatory cells were counted and limbal vascular permeability was assessed by extravasation of 131I-albumin and 125I-fibrinogen in the cornea. Corticosteroids decreased but did not prevent the early protein extravasation and profoundly altered the inflammatory cell population around blood vessels at the limbus. Mononuclear cells, particularly mononuclear phagocytes, were sharply reduced. It is proposed that these cell types play an important role in the perpetuation and amplification of the inflammatory response in this reaction.

  11. Peptides with dual mode of action: Killing bacteria and preventing endotoxin-induced sepsis.

    PubMed

    Brandenburg, Klaus; Heinbockel, Lena; Correa, Wilmar; Lohner, Karl

    2016-05-01

    Bacterial infections, with the most severe form being sepsis, can often not be treated adequately leading to high morbidity and lethality of infected patients in critical care units. In particular, the increase in resistant bacterial strains and the lack of new antibiotics are main reasons for the worsening of the current situation, As a new approach, the use of antimicrobial peptides (AMPs) seems to be promising, combining the ability of broad-spectrum bactericidal activity and low potential of induction of resistance. Peptides based on natural defense proteins or polypeptides such as lactoferrin, Limulus anti-lipopolysaccharide factor (LALF), cathelicidins, and granulysins are candidates due to their high affinity to bacteria and to their pathogenicity factors, in first line lipopolysaccharide (LPS, endotoxin) of Gram-negative origin. In this review, we discuss literature with the focus on the use of AMPs from natural sources and their variants as antibacterial as well as anti-endotoxin (anti-inflammatory) drugs. Considerable progress has been made by the design of new AMPs for acting efficiently against the LPS-induced inflammation reaction in vitro as well as in vivo (mouse) models of sepsis. Furthermore, the data indicate that efficient antibacterial compounds are not necessarily equally efficient as anti-endotoxin drugs and vice versa. The most important reason for this may be the different molecular geometry of LPS in bacteria and in free form. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert. PMID:26801369

  12. Immobilization of ?-polylysine onto the probe surface for molecular adsorption type endotoxin detection system

    NASA Astrophysics Data System (ADS)

    Ooe, Katsutoshi; Tsuji, Akihito; Nishishita, Naoki; Hirano, Yoshiaki

    2007-04-01

    Patients with renal failure become not able to expel the waste product, and they accumulate the toxic products for themselves. They therefore must use the hemodialysis to weed out the metabolic decomposition product. Hemodialysis for chronic renal failure is the most popular treatment method with artificial organs. However, hemodialysis patients must continue the treatment throughout their life, the results of long term extracorporeal dialysis, those patients develop the various complications and diseases, for example, dialysis amyloidosis etc. Dialysis amyloidosis is one of the refractory complications, and the prevention of this complication is important. Recently, endotoxin is thought to be the most likely cause of the complication. Endotoxin is one of the major cell wall components of gram-negative bacteria, and it forms the complex with proteins and lipopolysaccharide (LPS). It has various biological activities, e.g. attack of fever, when it gets mixed into human blood. In addition, it is known that large amount of endotoxin exists in living environment, and medicine is often contaminated with endotoxin. When contaminated dialyzing fluids are used to hemodialysis, above-mentioned dialysis amyloidosis is developed. Therefore, it is important that the detection and removal of endotoxin from dialyzing fluids. Until now, the measurement methods using Limulus Amebosyte Lysate (LAL) reagent were carried out as the tests for the presence of endotoxin. However, these methods include several different varieties of measurement techniques. The following are examples of them, gelatinization method, turbidimetric assay method, colorimetric assay method and fluoroscopic method. However, these techniques needed 30-60 minutes for the measurement. From these facts, they are not able to use as a "real-time endotoxin detector". The detection of endotoxin has needed to carry out immediately, for that reason, a new "real-time" detection method is desired. We focused attention to adsorption reaction between ?-polylysine and endotoxin. ?-polylysine has the structure of straight chain molecule composed by 25-30 residues made by lysine, and it is used as an antimicrobial agent, moreover, cellulose beads with immobilized ?-polylysine is used as the barrier filter for endotoxin removal. Therefore, it is expected that the endotoxin be adsorbed to the immobilized ?-polylysine onto the probe. As the result of this reaction, the mass of the probe is increased, and endotoxin can be detected by using of Quartz Crystal Microbalance (QCM). In our previous research, we have already acquired the proteins immobilization technique onto Au and Si surface. In this report, the proposal of molecular adsorption type endotoxin detection system, and the immobilization of ?-polylysine onto the probe are described. We use X-ray Photoelectron Spectroscopy (XPS) to confirm the ?-polylysine immobilization, and the adsorptive activity of immobilized ?-polylysine is measured by XPS and AFM. The purpose of this study is to bring about the realization of "Real-time endotoxin detection system".

  13. Changes in regional plasma extravasation in rats following endotoxin infusion

    SciTech Connect

    van Lambalgen, A.A.; van den Bos, G.C.; Thijs, L.G.

    1987-07-01

    Regional differences in plasma extravasation during endotoxin shock in rats and a possible relationship with changes in regional blood flow were studied with radioactive isotopes (/sup 125/I-HSA, 51Cr-labeled red blood cells, microspheres) in anesthetized rats (pentobarbital). Shock was induced by intravenous infusion of endotoxin (Eschericia coli; 10 mg X kg-1) for 60 min (starting at t = 0); at t = 120 min, the experiments were terminated. These rats (n = 8) were compared with time-matched control rats (n = 8). A third group (rats killed 7.5 min after injection of /sup 125/I-HSA, i.e., no extravasation; n = 8) served as baseline. The amount of plasma extravasated in 2 hr of endotoxin shock was significantly increased over control values in skin (by 67%), colon (88%), skeletal muscle (105%), stomach (230%), pancreas (300%), and diaphragm (1300%). Losses of /sup 125/I-HSA into intestinal lumen and peritoneal cavity had also increased over control values by 146 and 380%, respectively. Blood flow was compromised in most organs except heart and diaphragm. Extravasation when normalized for total plasma supply was correlated with total blood supply; the more the blood supply decreased, the higher the normalized extravasation. In the diaphragm, however, blood supply and plasma leakage increased together. Decreased blood supply and plasma extravasation may be related but they could also be simultaneously occurring independent phenomena with a common origin.

  14. Protection from Oxygen Toxicity with Endotoxin

    PubMed Central

    Frank, L.; Summerville, J.; Massaro, D.

    1980-01-01

    Endotoxin treatment of adult rats before hyperoxic exposure significantly increases their survival rate in >95% O2 (J. Clin. Invest.61: 269, 1978). In this study, we wished to determine: (a) whether endotoxin would protect against O2 toxicity if it were administered after the animals were already in >95% O2 for 12-48 h; and (b) the relationship between the endogenous antioxidant enzymes of the lung and the protective effect of endotoxin treatment. Our results showed that adult rats given a single 500 ?g/kg dose of endotoxin up to 36 h after the onset of O2 exposure had significantly increased survival rates and decreased lung fluid accumulation compared to untreated animals in O2 (P < 0.05). (Survival, 16/49 [untreated rats]; 18/20 [endotoxin at 12 h after the start of O2 exposure]; 25/26 [endotoxin-24 h]; 15/20 [endotoxin-36 h].) Endotoxin-treated animals in O2 showed increases in pulmonary superoxide dismutase, catalase, and glutathione peroxidase activities before the usual time of onset of measurable pulmonary edema in untreated animals in O2. When diethyldithiocarbamate was used to block the superoxide dismutase enzyme rise in the endotoxin-treated rats in O2, the protective action of endotoxin against pulmonary O2 toxicity was nullified. In endotoxin-treated, O2-exposed mice, there were no lung antioxidant enzyme increases, and no protective effect from O2 toxicity was achieved. We conclude that, in the rat, a single dose of endotoxin given even 36 h after the onset of hyperoxic exposure results in marked protection against O2-induced lung damage; and the increased lung antioxidant enzyme activity in the endotoxin-treated rats appears to be an essential component of this protective action. PMID:6245106

  15. Lipopolysaccharide Membrane Building and Simulation

    PubMed Central

    Jo, Sunhwan; Wu, Emilia L.; Stuhlsatz, Danielle; Klauda, Jeffery B.; Widmalm, Göran; Im, Wonpil

    2015-01-01

    Summary While membrane simulations are widely employed to study the structure and dynamics of various lipid bilayers and membrane proteins in the bilayers, simulations of lipopolysaccharides (LPS) in membrane environments have been limited due to its structural complexity, difficulties in building LPS-membrane systems, and lack of appropriate molecular force field. In this work, as a first step to extend CHARMM-GUI Membrane Builder to incorporate LPS molecules and to explore their structures and dynamics in membrane environments using molecular dynamics simulations, we describe step-by-step procedures to build LPS bilayer systems using CHARMM and the recently developed CHARMM carbohydrate and lipid force fields. Such procedures are illustrated by building various bilayers of Escherichia coli O6 LPS and their preliminary simulation results are given in terms of per-LPS area and density distributions of various components along the membrane normal. PMID:25753722

  16. Escin attenuates acute lung injury induced by endotoxin in mice.

    PubMed

    Xin, Wenyu; Zhang, Leiming; Fan, Huaying; Jiang, Na; Wang, Tian; Fu, Fenghua

    2011-01-18

    Endotoxin causes multiple organ dysfunctions, including acute lung injury (ALI). The current therapeutic strategies for endotoxemia are designed to neutralize one or more of the inflammatory mediators. Accumulating experimental evidence suggests that escin exerts anti-inflammatory and anti-edematous effects. The aim of this study was to evaluate the effect of escin on ALI induced by endotoxin in mice. ALI was induced by injection of lipopolysaccharide (LPS) intravenously. The mice were given dexamethasone or escin before injection of LPS. The mortality rate was recorded. Tumor necrosis factor-? (TNF-?), interleukin 1? (IL-1?) and nitric oxide (NO) were measured. Pulmonary superoxide dismutase (SOD), glutathione peroxidase (GPx) activity, glutathione (GSH), malondialdehyde (MDA) contents, and myeloperoxidase (MPO) activity were also determined. The expression of glucocorticoid receptor (GR) level was detected by Western blotting. Pretreatment with escin could decrease the mortality rate, attenuate lung injury resulted from LPS, down-regulate the level of the inflammation mediators, including NO, TNF-?, and IL-1?, enhance the endogenous antioxidant capacity, and up-regulating the GR expression in lung. The results suggest that escin may have potent protective effect on the LPS-induced ALI by inhibiting of the inflammatory response, and its mechanism involves in up-regulating the GR and enhancing the endogenous antioxidant capacity. PMID:21040784

  17. Investigation of adrenergic and prostaglandin influences in the endotoxin alteration of hepatic heme oxygenase, microsomal mixed-function oxidase, and glucocorticoid-induced tryptophan oxygenase activities.

    PubMed

    Williams, J F; Szentivanyi, A

    1983-08-01

    The possible role for adrenergic influences or prostaglandins in the effects of endotoxin to inhibit the glucocorticoid induction of hepatic tryptophan oxygenase (TO) activity, to decrease the hepatic microsomal cytochrome P--450-dependent drug-metabolizing activity, and to induce heme oxygenase activity was examined. Administration of the alpha-adrenergic locking agents phenoxybenzamine or phentolamine attenuated the inhibitory effect of the bacterial lipopolysaccharide on the induction of TO activity by dexamethasone. Injection of a beta-adrenergic blocker, propranolol, or of indomethacin, an inhibitor of prostaglandin biosynthesis, accentuated the effect of endotoxin to inhibit TO induction. Neither phenoxybenzamine, propranolol, nor indomethacin altered the effect of endotoxin to decrease aniline hydroxylase activity, ethylmorphine N-demethylase activity, or the levels of cytochrome P--450. Also, dexamethasone administration did not significantly protect against the effects of endotoxin on the hepatic microsomal drug metabolizing enzyme system, and none of the pharmacological agents diminished the effects of endotoxin to induce hepatic heme oxygenase activity. Endotoxin administration was also shown to diminish, but not prevent, the induction of cytochrome P--450 and ethylmorphine N-demethylase activity produced by phenobarbital. The results indicate that alpha-adrenergic mechanisms are involved in the endotoxic inhibition of the glucocorticoid induction of TO activity and suggest that neither adrenergic influences nor prostaglandins play a significant role in the effect of endotoxin to decrease hepatic mixed-function oxidase activity. PMID:6136493

  18. Comparative Analysis of Hepatic CD14 Expression between Two Different Endotoxin Shock Model Mice: Relation between Hepatic Injury and CD14 Expression

    PubMed Central

    Hozumi, Hiroyasu; Tada, Rui; Murakami, Taisuke; Adachi, Yoshiyuki; Ohno, Naohito

    2013-01-01

    CD14 is a glycoprotein that recognizes gram-negative bacterial lipopolysaccharide (LPS) and exists in both membrane-bound and soluble forms. Infectious and/or inflammatory diseases induce CD14 expression, which may be involved in the pathology of endotoxin shock. We previously found that the expression of CD14 protein differs among the endotoxin shock models used, although the reasons for these differences are unclear. We hypothesized that the differences in CD14 expression might be due to liver injury, because the hepatic tissue produces CD14 protein. We investigated CD14 expression in the plasma and liver in the carrageenan (CAR)-primed and D-galN-primed mouse models of endotoxin shock. Our results showed that severe liver injury was not induced in CAR-primed endotoxin shock model mice. In this CAR-primed model, the higher mRNA and protein expression of CD14 was observed in the liver, especially in the interlobular bile duct in contrast to D-galN-primed-endotoxin shock model mice. Our findings indicated that the molecular mechanism(s) underlying septic shock in CAR-primed and D-galN-primed endotoxin shock models are quite different. Because CD14 expression is correlated with clinical observations, the CAR-primed endotoxin shock model might be useful for studying the functions of CD14 during septic shock in vivo. PMID:23308276

  19. Escherichia coli morphological changes and lipid A removal induced by reduced pressure nitrogen afterglow exposure.

    PubMed

    Zerrouki, Hayat; Rizzati, Virginie; Bernis, Corinne; Ngre-Salvayre, Anne; Sarrette, Jean Philippe; Cousty, Sarah

    2015-01-01

    Lipid A is a major hydrophobic component of lipopolysaccharides (endotoxin) present in the membrane of most Gram-negative bacteria, and the major responsible for the bioactivity and toxicity of the endotoxin. Previous studies have demonstrated that the late afterglow region of flowing post-discharges at reduced pressure (1-20 Torr) can be used for the sterilization of surfaces and of the reusable medical instrumentation. In the present paper, we show that the antibacterial activity of a pure nitrogen afterglow can essentially be attributed to the large concentrations of nitrogen atoms present in the treatment area and not to the UV radiation of the afterglow. In parallel, the time variation of the inactivation efficiency quantified by the log reduction of the initial Escherichia coli (E. coli) population is correlated with morphologic changes observed on the bacteria by scanning electron microscopy (SEM) for increasing afterglow exposure times. The effect of the afterglow exposure is also studied on pure lipid A and on lipid A extracted from exposed E. coli bacteria. We report that more than 60% of lipid A (pure or bacteria-extracted) are lost with the used operating conditions (nitrogen flow QN2 = 1 standard liter per minute (slpm), pressure p = 5 Torr, microwave injected power PMW = 200 W, exposure time: 40 minutes). The afterglow exposure also results in a reduction of the lipid A proinflammatory activity, assessed by the net decrease of the redox-sensitive NF?B transcription factor nuclear translocation in murine aortic endothelial cells stimulated with control vs afterglow-treated (pure and extracted) lipid A. Altogether these results point out the ability of reduced pressure nitrogen afterglows to neutralize the cytotoxic components in Gram-negative bacteria. PMID:25837580

  20. Escherichia coli Morphological Changes and Lipid A Removal Induced by Reduced Pressure Nitrogen Afterglow Exposure

    PubMed Central

    Zerrouki, Hayat; Rizzati, Virginie; Bernis, Corinne; Nègre-Salvayre, Anne; Sarrette, Jean Philippe; Cousty, Sarah

    2015-01-01

    Lipid A is a major hydrophobic component of lipopolysaccharides (endotoxin) present in the membrane of most Gram-negative bacteria, and the major responsible for the bioactivity and toxicity of the endotoxin. Previous studies have demonstrated that the late afterglow region of flowing post-discharges at reduced pressure (1-20 Torr) can be used for the sterilization of surfaces and of the reusable medical instrumentation. In the present paper, we show that the antibacterial activity of a pure nitrogen afterglow can essentially be attributed to the large concentrations of nitrogen atoms present in the treatment area and not to the UV radiation of the afterglow. In parallel, the time variation of the inactivation efficiency quantified by the log reduction of the initial Escherichia coli (E. coli) population is correlated with morphologic changes observed on the bacteria by scanning electron microscopy (SEM) for increasing afterglow exposure times. The effect of the afterglow exposure is also studied on pure lipid A and on lipid A extracted from exposed E. coli bacteria. We report that more than 60% of lipid A (pure or bacteria-extracted) are lost with the used operating conditions (nitrogen flow QN2 = 1 standard liter per minute (slpm), pressure p = 5 Torr, microwave injected power PMW = 200 W, exposure time: 40 minutes). The afterglow exposure also results in a reduction of the lipid A proinflammatory activity, assessed by the net decrease of the redox-sensitive NFκB transcription factor nuclear translocation in murine aortic endothelial cells stimulated with control vs afterglow-treated (pure and extracted) lipid A. Altogether these results point out the ability of reduced pressure nitrogen afterglows to neutralize the cytotoxic components in Gram-negative bacteria. PMID:25837580

  1. Bench-to-bedside review: Clinical experience with the endotoxin activity assay

    PubMed Central

    2012-01-01

    Endotoxin detection in human patients has been a difficult challenge, in part due to the fact that the conserved active portion of the molecule (lipid A) is a relatively small epitope only amenable to binding by a single ligand at any one instance and low levels (pg/ml) are capable of stimulating the immune system. The endotoxin activity assay, a bioassay based on neutrophil activation by complement opsonized immune complexes of lipopolysaccharide (LPS), has allowed the specific detection of the lipid A epitope of LPS in a rapid whole blood assay format. This review summarizes diagnostic studies utilizing the endotoxin activity assay in a variety of hospital patient populations in whom endotoxin is postulated to play a significant role in disease etiology. These include ICU patients at risk of developing 'sepsis syndrome', abdominal and cardiovascular surgery patients and patients with serious traumatic injury. Significant features of these studies include the high negative predictive value of the assay (98.6%) for rule out of Gram-negative infection, ability to risk stratify patients progressing to severe sepsis (odds ratio 3.0) and evidence of LPS release in patients with gut hypoperfusion. Preliminary studies have successfully combined the assay with anti-LPS removal strategies to prospectively identify patients who might benefit from this therapy with early evidence of clinical benefit. PMID:23206992

  2. Capillary electrophoresis chips for fingerprinting endotoxin chemotypes from whole-cell lysates.

    PubMed

    Kocsis, Béla; Kilár, Anikó; Makszin, Lilla; Kovács, Krisztina; Kilár, Ferenc

    2011-01-01

    Endotoxins (lipopolysaccharides, LPSs) are components of the envelope of Gram-negative bacteria. These molecules, responsible for both advantageous and harmful biological activities of these microorganisms, are highly immunogenic and directly involved in numerous bacterial diseases in humans such as Gram-negative sepsis. The characterization of endotoxins is of importance, since their physiological and pathophysiological effects depend on their chemical structure. The differences among LPSs from different bacterial serotypes and their mutants include variations mainly within the composition and length of their O-specific polysaccharide chains.Proper assignation of the S or R chemotypes of endotoxins is possible by analyzing their electrophoretic profiles. The recent microchip electrophoretic methods provide fast characterizations and differentiations of endotoxins. The methods are applicable for determination directly from whole-cell lysates after destruction of the proteinaceous components by proteinase K digestion and precipitation of the LPS components. The partially purified LPS components are visualized either by interaction with dodecyl sulfate and a fluorescent dye, or by a covalently bound fluorescent dye. These chip electrophoretic methods have advantages of high speed and quantification and replace the sodium dodecyl sulfate-polyacrylamide gel electrophoresis with silver staining. PMID:21567320

  3. Mifepristone (RU486) restores humoral and T cell-mediated immune response in endotoxin immunosuppressed mice.

    PubMed

    Rearte, B; Maglioco, A; Balboa, L; Bruzzo, J; Landoni, V I; Laborde, E A; Chiarella, P; Ruggiero, R A; Fernndez, G C; Isturiz, M A

    2010-12-01

    Sepsis and septic shock can be caused by Gram-positive and -negative bacteria and other microorganisms. In the case of Gram-negative bacteria, endotoxin, a normal constituent of the bacterial wall, also known as lipopolysaccharide (LPS), has been considered as one of the principal agents causing the undesirable effects in this critical illness. The response to LPS involves a rapid secretion of proinflammatory cytokines such as tumour necrosis factor (TNF)-?, interleukin (IL)-1, IL-6, interferon (IFN)-? and the concomitant induction of anti-inflammatory mediators such as IL-10, transforming growth factor (TGF)-? or glucocorticoids, which render the host temporarily refractory to subsequent lethal doses of LPS challenge in a process known as LPS or endotoxin tolerance. Although protective from the development of sepsis or systemic inflammation, endotoxin tolerance has also been pointed out as the main cause of the non-specific humoral and cellular immunosuppression described in these patients. In this report we demonstrate, using a mouse model, that mifepristone (RU486), a known glucocorticoid receptor antagonist, could play an important role in the restoration of both adaptive humoral and cellular immune response in LPS immunosuppressed mice, suggesting the involvement of endogenous glucocorticoids in this phenomenon. On the other hand, using cyclophosphamide and gemcitabine, we demonstrated that regulatory/suppressor CD4(+) CD25(+) forkhead boxP3(+) and GR-1(+) CD11b(+) cells do not play a major role in the establishment or the maintenance of endotoxin tolerance, a central mechanism for inducing an immunosuppression state. PMID:20964639

  4. Effects of urethane, ambient temperature and injection route on rat body temperature and metabolism due to endotoxins.

    PubMed Central

    Bibby, D C; Grimble, R F

    1988-01-01

    1. We have investigated the influence of environmental temperature, anaesthesia and route of administration on rectal temperature and other metabolic responses to two preparations of bacterial endotoxin in male adult Wistar rats. 2. Urethane anaesthesia, environmental temperatures of 20 and 28 degrees C, subcutaneous (S.C.) and intraperitoneal (I.P.) routes of administration and butanol and trichloroacetic acid (TCA) extracts of E. coli endotoxin (1.2 mg/kg) were used. 3. In addition to rectal temperature, serum zinc, albumin and urea concentrations and liver protein, RNA and zinc contents were measured. 4. Fevers were produced by injections of both endotoxins, by either route at 28 degrees C. Butanol-extracted endotoxin produced a more rapid response than the TCA extract via the I.P. route whereas the TCA extract produced a higher temperature than the butanol extract when the S.C. route was used. 5. Fevers were inhibited at an environmental temperature of 20 degrees C and by anaesthesia, while the former had no effect on compositional changes the latter inhibited the fall in serum zinc in response to subcutaneous doses of either endotoxin and the increase in liver zinc content in response to the butanol extract of endotoxin. 6. At 20 degrees C a marked fall in rectal temperature occurred in conscious rats 2 h after receiving the TCA but not the butanol extract of endotoxin. Temperature depression was more severe when endotoxin was administered by the I.P. route. 7. Serum urea was elevated in conscious rats by the TCA extract of endotoxin via both routes but only by the I.P. route for the butanol extract of endotoxin. In anaesthetized animals only the TCA extract of endotoxin raised serum urea concentration when given intraperitoneally. 8. Serum albumin and liver protein and RNA were unaffected by endotoxin injections over the 7 h time course of the study. 9. Rectal temperature responses to endotoxins were influenced in direction and magnitude by all variables employed in the study, while compositional changes were unaffected by environmental temperature but influenced to varying degrees by urethane anaesthesia and the route of administration employed. PMID:2475610

  5. Fucoidan extracted from Fucus evanescens prevents endotoxin-induced damage in a mouse model of endotoxemia.

    PubMed

    Kuznetsova, Tatyana A; Besednova, Natalya N; Somova, Larisa M; Plekhova, Natalya G

    2014-02-01

    An important problem of treating patients with endotoxemia is to find drugs to reduce the negative effects of endotoxin on the organism. We tested fucoidan (sulfated polysaccharide) from the brown alga Fucus evanescens as a potential drug in a mouse model of endotoxemia inducted by lipopolysaccharide (LPS). The survival time of mice injected with LPS increased under fucoidan treatment compared with the group of mice injected with LPS only. The preventive administration of fucoidan to mice with endotoxemia resulted in inhibition of increased levels of proinflammatory cytokines (TNF? and IL-6), as well as decreasing of the processes of hypercoagulability. The parenteral or per os administration of fucoidan resulted in decreasing the degree of microcirculatory disorders and secondary dystrophic-destructive changes in parenchymal organs of mice with endotoxemia. Taken together, these results demonstrate that fucoidan prevents endotoxin-induced damage in a mouse model of endotoxemia and increases the mice's resistance to LPS. PMID:24492521

  6. Fucoidan Extracted from Fucus Evanescens Prevents Endotoxin-Induced Damage in a Mouse Model of Endotoxemia

    PubMed Central

    Kuznetsova, Tatyana A.; Besednova, Natalya N.; Somova, Larisa M.; Plekhova, Natalya G.

    2014-01-01

    An important problem of treating patients with endotoxemia is to find drugs to reduce the negative effects of endotoxin on the organism. We tested fucoidan (sulfated polysaccharide) from the brown alga Fucus evanescens as a potential drug in a mouse model of endotoxemia inducted by lipopolysaccharide (LPS). The survival time of mice injected with LPS increased under fucoidan treatment compared with the group of mice injected with LPS only. The preventive administration of fucoidan to mice with endotoxemia resulted in inhibition of increased levels of proinflammatory cytokines (TNF? and IL-6), as well as decreasing of the processes of hypercoagulability. The parenteral or per os administration of fucoidan resulted in decreasing the degree of microcirculatory disorders and secondary dystrophic-destructive changes in parenchymal organs of mice with endotoxemia. Taken together, these results demonstrate that fucoidan prevents endotoxin-induced damage in a mouse model of endotoxemia and increases the mices resistance to LPS. PMID:24492521

  7. Direct induction of tissue factor synthesis by endotoxin in human macrophages from diverse anatomical sites.

    PubMed Central

    Semeraro, N; Biondi, A; Lorenzet, R; Locati, D; Mantovani, A; Donati, M B

    1983-01-01

    On exposure to endotoxin and other stimuli, human peripheral-blood mononuclear cells generate a potent procoagulant activity (PCA), identified as tissue factor. Although it is now recognized that the monocytes are the source of PCA, the question whether these cells per se are capable of procoagulant response to endotoxin or require lymphocyte collaboration remains unsettled. We have investigated the capacity of highly purified human macrophages from diverse anatomical sites to generate PCA following endotoxin stimulation. Purified (greater than 99%) monocyte-derived macrophages were obtained by prolonged (3-10 days) in-vitro culture of adherent monocytes using medium supplemented with 50% human serum. Purified (greater than 95%) peritoneal and milk macrophages were isolated by adherence to plastic. PCA was measured before and after incubation (4 hr at 37 degrees) with endotoxin (Salmonella enteritidis LPS, W or Escherichia coli O111:B4LPS, W, 1 microgram/ml final concentration) using a one-stage clotting assay and/or a two-stage amidolytic assay. Monocyte-derived macrophages had low baseline PCA (14-19 units/10(5) cells) but, upon exposure to endotoxin, displayed an eight-fold increase in PCA over control. Peritoneal and milk macrophages expressed very low baseline activity (1-5 units/10(5) cells). The latter, however, increased 15-20 times over control following endotoxin stimulation. PCA was identified as tissue factor by biological and immunological criteria. Its generation was completely abolished by cycloheximide. It is concluded that in the human mononuclear phagocyte series the capacity to produce PCA is not restricted to circulating monocytes but is also expressed by macrophages obtained from diverse anatomical sites. These macrophages appear to be autonomous in their procoagulant response to endotoxin. PMID:6654386

  8. Inhibition of lipopolysaccharide induced acute inflammation in lung by chlorination.

    PubMed

    Zhang, Jinshan; Xue, Jinling; Xu, Bi; Xie, Jiani; Qiao, Juan; Lu, Yun

    2016-02-13

    Lipopolysaccharide (LPS, also called endotoxin) is a pro-inflammatory constituent of gram negative bacteria and cyanobacteria, which causes a potential health risk in the process of routine urban application of reclaimed water, such as car wash, irrigation, scenic water refilling, etc. Previous studies indicated that the common disinfection treatment, chlorination, has little effect on endotoxin activity removal measured by Limulus amebocyte lysate (LAL) assay. However, in this study, significant decrease of acute inflammatory effects was observed in mouse lung, while LAL assay still presented a moderate increase of endotoxin activity. To explore the possible mechanisms, the nuclear magnetic resonance (NMR) results showed the chlorination happened in alkyl chain of LPS molecules, which could affect the interaction between LPS and LPS-binding protein. Also the size of LPS aggregates was found to drop significantly after treatment, which could be another results of chlorination caused polarity change. In conclusion, our observation demonstrated that chlorination is effective to reduce the LPS induced inflammation in lung, and it is recommended to use health effect-based methods to assess risk removal of water treatment technologies. PMID:26530889

  9. Lipopolysaccharide Neutralization by Cationic-Amphiphilic Polymers through Pseudoaggregate Formation.

    PubMed

    Uppu, Divakara S S M; Haldar, Jayanta

    2016-03-14

    Synthetic polymers incorporating the cationic charge and hydrophobicity to mimic the function of antimicrobial peptides (AMPs) have been developed. These cationic-amphiphilic polymers bind to bacterial membranes that generally contain negatively charged phospholipids and cause membrane disintegration resulting in cell death; however, cationic-amphiphilic antibacterial polymers with endotoxin neutralization properties, to the best of our knowledge, have not been reported. Bacterial endotoxins such as lipopolysaccharide (LPS) cause sepsis that is responsible for a great amount of mortality worldwide. These cationic-amphiphilic polymers can also bind to negatively charged and hydrophobic LPS and cause detoxification. Hence, we envisaged that cationic-amphiphilic polymers can have both antibacterial as well as LPS binding properties. Here we report synthetic amphiphilic polymers with both antibacterial as well as endotoxin neutralizing properties. Levels of proinflammatory cytokines in human monocytes caused by LPS stimulation were inhibited by >80% when coincubated with these polymers. These reductions were found to be dependent on concentration and, more importantly, on the side-chain chemical structure due to variations in the hydrophobicity profiles of these polymers. These cationic-amphiphilic polymers bind and cause LPS neutralization and detoxification. Investigations of polymer interaction with LPS using fluorescence spectroscopy and dynamic light scattering (DLS) showed that these polymers bind but neither dissociate nor promote LPS aggregation. We show that polymer binding to LPS leads to sort of a pseudoaggregate formation resulting in LPS neutralization/detoxification. These findings provide an unusual mechanism of LPS neutralization using novel synthetic cationic-amphiphilic polymers. PMID:26839947

  10. Nitric oxide-mediated hyporeactivity to noradrenaline precedes the induction of nitric oxide synthase in endotoxin shock.

    PubMed

    Szab, C; Mitchell, J A; Thiemermann, C; Vane, J R

    1993-03-01

    1. The role of an enhanced formation of nitric oxide (NO) and the relative importance of the constitutive and inducible NO synthase (NOS) for the development of immediate (within 60 min) and delayed (at 180 min) vascular hyporeactivity to noradrenaline was investigated in a model of circulatory shock induced by endotoxin (lipopolysaccharide; LPS) in the rat. 2. Male Wistar rats were anaesthetized and instrumented for the measurement of mean arterial blood pressure (MAP) and heart rate. In addition, the calcium-dependent and calcium-independent NOS activity was measured ex vivo by the conversion of [3H]-arginine to [3H]-citrulline in homogenates from several organs obtained from vehicle- and LPS-treated rats. 3. E. coli LPS (10 mg kg-1, i.v. bolus) caused a rapid (within 5 min) and sustained fall in MAP. At 30 and 60 min after LPS, pressor responses to noradrenaline (0.3, 1 or 3 micrograms kg-1, i.v.) were significantly reduced. The pressor responses were restored by NG-nitro-L-arginine methyl ester (L-NAME, 1 mg kg-1, i.v. at 60 min), a potent inhibitor of NO synthesis. In contrast, L-NAME did not potentiate the noradrenaline-induced pressor responses in control animals. 4. Dexamethasone (3 mg kg-1, i.v., 60 min prior to LPS), a potent inhibitor of the induction of NOS, did not alter initial MAP or pressor responses to noradrenaline in control rats, but significantly attenuated the LPS-induced fall in MAP at 15 to 60 min after LPS. Dexamethasone did not influence the development of the LPS-induced immediate (within 60 min) hyporeactivity to noradrenaline. However,dexamethasone pretreatment prevented the hypotension and vascular hyporeactivity at 180 min.5. At 60 min after LPS a moderate increase in the activity of a calcium-independent (inducible) NOS activity was detected in the aorta, but not in any of the other tissues studied. However, at 180 min after LPS, a significant NOS induction was observed in the lung, liver, spleen, mesentery, heart and aorta.This NOS induction was substantially prevented by pretreatment with dexamethasone.6. These results suggest that the immediate hypotension and vascular hyporeactivity to noradrenaline in endotoxin shock is caused by an enhanced formation of NO due to activation of the constitutive enzyme. The delayed hypotension and vascular hyporeactivity, however, is due to enhanced NO formation by the LPS-induced enzyme. PMID:7682137

  11. 21 CFR 866.3210 - Endotoxin assay.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Endotoxin assay. 866.3210 Section 866.3210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3210 Endotoxin assay....

  12. 21 CFR 866.3210 - Endotoxin assay.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Endotoxin assay. 866.3210 Section 866.3210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3210 Endotoxin assay....

  13. 21 CFR 866.3210 - Endotoxin assay.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Endotoxin assay. 866.3210 Section 866.3210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3210 Endotoxin assay....

  14. 21 CFR 866.3210 - Endotoxin assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Endotoxin assay. 866.3210 Section 866.3210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3210 Endotoxin assay....

  15. 21 CFR 866.3210 - Endotoxin assay.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Endotoxin assay. 866.3210 Section 866.3210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3210 Endotoxin assay....

  16. Responses in whole-body amino acid kinetics to an acute, sub-clinical endotoxin challenge in lambs.

    PubMed

    Hoskin, S O; Bremner, D M; Holtrop, G; Lobley, G E

    2016-02-01

    Some effects of parasitism, endotoxaemia or sepsis can be mitigated by provision of extra protein. Supplemented protein may encompass a metabolic requirement for specific amino acids (AA). The current study investigates a method to identify and quantify the amounts of AA required during inflammation induced by an endotoxin challenge. One of each pair of six twin sheep was infused in the jugular vein for 20 h with either saline (control) or lipopolysaccharide (LPS, 2 ng/kg body weight per min) from Escherichia coli. Between 12 and 20 h a mixture of stable isotope-labelled AA was infused to measure irreversible loss rates. From 16 to 20 h all sheep were supplemented with a mixture of unlabelled AA infused intravenously. Blood samples were taken before the start of infusions, and then continuously over intervals between 14 and 20 h. At 20 h the sheep were euthanised, and liver and kidney samples were taken for measurement of serine-threonine dehydratase (SDH) activity. LPS infusion decreased plasma concentrations of most AA (P<005; P<010 for leucine and tryptophan), except for phenylalanine (which increased P=0022) and tyrosine. On the basis of the incremental response to the supplemental AA, arginine, aspartate, cysteine, glutamate, lysine (tendency only), glycine, methionine, proline, serine and threonine were important in the metabolic response to the endotoxaemia. The AA infusion between 16 and 20 h restored the plasma concentrations in the LPS-treated sheep for the majority of AA, except for glutamine, isoleucine, methionine, serine and valine. LPS treatment increased (P<002) SDH activity in both liver and kidney. The approach allows quantification of key AA required during challenge situations. PMID:26652711

  17. Inhibition of IRAK-4 activity for rescuing endotoxin LPS-induced septic mortality in mice by lonicerae flos extract

    SciTech Connect

    Park, Sun Hong; Roh, Eunmiri; Kim, Hyun Soo; Baek, Seung-Il; Choi, Nam Song; Kim, Narae; Hwang, Bang Yeon; Han, Sang-Bae; Kim, Youngsoo

    2013-12-13

    Highlights: •Lonicerae flos extract (HS-23) is a clinical candidate, Phase I for sepsis treatment. •Here, HS-23 or its major constituents rescued LPS-induced septic mortality in mice. •As a mechanism, they directly inhibited IRAK-4-catalyzed kinase activity. •Thus, they suppressed LPS-induced expression of NF-κB/AP-1-target inflammatory genes. -- Abstract: Lonicerae flos extract (HS-23) is a clinical candidate currently undergoing Phase I trial in lipopolysaccharide (LPS)-injected healthy human volunteers, but its molecular basis remains to be defined. Here, we investigated protective effects of HS-23 or its major constituents on Escherichia coli LPS-induced septic mortality in mice. Intravenous treatment with HS-23 rescued LPS-intoxicated C57BL/6J mice under septic conditions, and decreased the levels of cytokines such as tumor necrosis factor α (TNF-α), interleukin (IL)-1β and high-mobility group box-1 (HMGB-1) in the blood. Chlorogenic acid (CGA) and its isomers were assigned as major constituents of HS-23 in the protection against endotoxemia. As a molecular mechanism, HS-23 or CGA isomers inhibited endotoxin LPS-induced autophosphorylation of the IL-1 receptor-associated kinase 4 (IRAK-4) in mouse peritoneal macrophages as well as the kinase activity of IRAK-4 in cell-free reactions. HS-23 consequently suppressed downstream pathways critical for LPS-induced activation of nuclear factor (NF)-κB or activating protein 1 (AP-1) in the peritoneal macrophages. HS-23 also inhibited various toll-like receptor agonists-induced nitric oxide (NO) production, and down-regulated LPS-induced expression of NF-κB/AP-1-target inflammatory genes in the cells. Taken together, HS-23 or CGA isomers exhibited anti-inflammatory therapy against LPS-induced septic mortality in mice, at least in part, mediated through the inhibition of IRAK-4.

  18. Effect of Endotoxin on the Serum Ribonuclease Activity in Rats

    PubMed Central

    Kutas, Vera; Bertk, L.; Szab, L. D.

    1969-01-01

    The effects of endotoxin shock, endotoxin tolerance, and lead acetate plus a minute amount of endotoxin on the serum ribonuclease activity of rats was measured. Changes in serum ribonuclease activity after various entoxin treatments could be a primary effect or a secondary effect of the damaging effect of endotoxin. PMID:4899009

  19. Cyclic antimicrobial peptides based on Limulus anti-lipopolysaccharide factor for neutralization of lipopolysaccharide.

    PubMed

    Andr, Jrg; Lamata, Marta; Martinez de Tejada, Guillermo; Bartels, Rainer; Koch, Michel H J; Brandenburg, Klaus

    2004-10-01

    Bacterial endotoxin (lipopolysaccharide, LPS) is responsible for the septic shock syndrome. As potential therapeutic agents cyclic cationic antimicrobial peptides of different length, based on the Limulus anti-lipopolysaccharide factor (LALF), were synthesized, and their interaction with LPS was characterized physico-chemically and related to results in biological assays. All peptides inhibited the LPS-induced cytokine production in human mononuclear cells and the Limulus amebocyte lysate in a concentration-dependent way, with the peptide comprising the complete LPS-binding loop of the LALF (cLALF22) being the most effective. The peptides were neither cytotoxic nor hemolytic, except a slight effect of cLALF22. The peptides were able to displace Ca(2+) cations from a LPS monolayer, with cLALF22 being again most effective in accordance with results from isothermal titration calorimetry, in which saturation of binding was observed at an equimolar [cLALF22]:[LPS] ratio, and at a ratio 2-2.5 for the other peptides. For cLALF22, zeta (xi) potential experiments exhibited a complete compensation of the negative charges of LPS, whereas for the other peptides a residual negative potential of -20 to -40mV was found. X-ray diffraction experiments showed that the mixed unilamellar/cubic inverted aggregate structure of the lipid A part of LPS was converted into a multilamellar one. The gel to liquid crystalline phase transition of the acyl chains of LPS was changed upon cLALF22 binding, leading to a clear fluidization, which was not observed or only to a lesser degree for the other peptides. The affinity of the peptides for LPS led to a reduced binding of lipopolysaccharide-binding protein (LBP) to target membranes and hence to an inhibition of cytokine induction in human mononuclear cells. PMID:15345319

  20. Cold storage sensitizes rat femoral artery to an endotoxin-induced decrease in endothelium-dependent relaxation.

    PubMed

    Piepot, Harro A; Pneumatikos, Ioannis A; Groeneveld, A B Johan; van Lambalgen, Antonie A; Sipkema, Pieter

    2002-06-15

    Cold-stored arteries, tissues or organs are transferred in vascular, reconstructive and transplantation surgery. The function of transferred vessels and tissues diminishes when infection complicates transplantation, thereby contributing to morbidity. To evaluate the mechanisms involved, the effects of cold storage on basal vascular reactivity and the sensitivity to the vascular effects of endotoxin were tested in isolated rat femoral artery segments. A crossover design was followed, so that prior to cold storage 4 vessels were incubated for 2 h at 37 degrees C with endotoxin (Escherichia coli 0127:B8, 50 microg mL(-1)) in Krebs solution and 4 with Krebs solution only, while, after cold storage, segments from the former vessels were incubated with Krebs solution only and segments from the latter with endotoxin in Krebs solution. Vascular reactivity was tested in a wire myograph by the addition of depolarizing 125 mM KCl or norepinephrine (NE) as well as the endothelium-dependent vasodilator acetylcholine (ACh) and endothelium-independent vasodilator sodium nitroprusside (SNP). Cold storage did not affect vascular reactivity in the absence of endotoxin. Endotoxin decreased maximum response to NE prior to storage and sensitivity to SNP prior to and after cold storage. After cold storage, endotoxin decreased relaxation to ACh and increased vasoconstriction in response to KCl and NE (P < 0.05). We conclude that cold storage does not alter endothelial and smooth muscle function but sensitizes rat femoral artery to an endotoxin-induced decrease in endothelium-dependent relaxation and thereby to an increase in vasoconstrictor responses, whereas endotoxin alone only decreases receptor-dependent vasoconstrictor responses and sensitivity to NO donors. This may explain in part the detrimental effect of infection on function of cold-stored arterial grafts and tissue/organ transfers. PMID:12121706

  1. Human exposure to endotoxins and fecal indicators originating from water features.

    PubMed

    de Man, H; Heederik, D D J; Leenen, E J T M; de Roda Husman, A M; Spithoven, J J G; van Knapen, F

    2014-03-15

    Exposure to contaminated aerosols and water originating from water features may pose public health risks. Endotoxins in air and water and fecal bacteria in water of water features were measured as markers for exposure to microbial cell debris and enteric pathogens, respectively. Information was collected about wind direction, wind force, distance to the water feature, the height of the water feature and the tangibility of water spray. The mean concentration of endotoxins in air nearby and in water of 31 water features was 10 endotoxin units (EU)/m(3) (Geometric Mean (GM), range 0-85.5EU/m(3) air) and 773EU/mL (GM, range 9-18,170EU/mL water), respectively. Such mean concentrations may be associated with respiratory health effects. The water quality of 26 of 88 water features was poor when compared to requirements for recreational water in the Bathing Water Directive 2006/7/EC. Concentrations greater than 1000 colony forming units (cfu) Escherichia coli per 100mL and greater than 400cfu intestinal enterococci per 100mL increase the probability of acquiring gastrointestinal health complaints. Regression analyses showed that the endotoxin concentration in air was significantly influenced by the concentration of endotoxin in water, the distance to the water feature and the tangibility of water spray. Exposure to air and water near water features was shown to lead to exposure to endotoxins and fecal bacteria. The potential health risks resulting from such exposure to water features may be estimated by a quantitative microbial risk assessment (QMRA), however, such QMRA would require quantitative data on pathogen concentrations, exposure volumes and dose-response relationships. The present study provides estimates for aerosolisation ratios that can be used as input for QMRA to quantify exposure and to determine infection risks from exposure to water features. PMID:24231029

  2. Endotoxins in urban air in Stockholm, Sweden

    NASA Astrophysics Data System (ADS)

    Nilsson, S.; Merritt, A. S.; Bellander, T.

    2011-01-01

    Endotoxins, i.e. components originating from the outer membrane in the cell wall of Gram-negative bacteria, activate the human immune system, which may result in airway symptoms such as shortness of breath and airway inflammation. Endotoxins are present in the environment, both outdoors and indoors, and stay airborne for a long time. In order to investigate the levels of endotoxins in urban air and the influence of traffic and meteorological factors, particles (PM 10 and PM 2.5) were collected at five sites in Stockholm, Sweden on four occasions per site between May and September 2009. Endotoxins were extracted from the filters and analysis was conducted with the Limulus Amebocyte Lysate (LAL)-assay. Endotoxins were present in urban air in Stockholm, albeit in low levels, and were similar to levels found in urban areas outside Sweden. To our knowledge, this is the northernmost location where endotoxins have been measured. The endotoxin levels found in PM 10 ranged from 0.020 to 0.107 EU m -3 with a geometric mean of 0.050 EU m -3 and the levels found in PM 2.5 ranged from 0.005 to 0.064 EU m -3 with a geometric mean of 0.015 EU m -3. No obvious effects of traffic or meteorological factors on endotoxin levels were observed, although a moderate correlation could be seen with soot. The small number of sampling sites is however a shortcoming of the present study. In future studies, more sites and sampling during all seasons would be preferable in order to get a better picture of the influence of different sources on endotoxin levels.

  3. Cardiovascular sequelae of endotoxin shock in diabetic dogs.

    PubMed

    Law, W R; Moriarty, M T; McLane, M P

    1991-10-01

    Diabetic patients exhibit a higher incidence of post-surgical sepsis, as well as a higher rate of mortality from sepsis, than their non-diabetic counterparts. This may be a result of cardiovascular deterioration associated with diabetes mellitus. This study was designed to characterize the cardiovascular sequelae associated with endotoxin shock in a canine model of diabetes. Diabetes was induced with alloxan (50 mg/kg) and streptozotocin (30 mg/kg) in dogs weighing 19-25 kg. Thirty days later, anaesthetized dogs were instrumented to obtain blood pressures, blood samples, left ventricular chamber diameter, circumflex arterial blood flow, and aortic blood flow. Metabolic parameters were calculated according to the Fick principle, and myocardial inotropic state assessed with the end-systolic pressure-diameter relationship. After stable baseline measurements, Escherichia coli endotoxin (1 mg/kg) was infused over 1 h, and measurements were obtained every 30 min. After endotoxin administration diabetic dogs became more hypotensive than the non-diabetic dogs. Cardiac performance parameters were also depressed to a greater degree. These changes could be attributed to depressions in vascular resistance and myocardial inotropic state in diabetic dogs. Cardiac dysfunction occurred in association with a relative decrease in the supply to demand ratio for oxygen in the diabetic dogs, suggesting functional ischemia. Data indicating a decrease in pre-load and vascular resistance in the diabetic group suggest a greater degree of vascular collapse, vascular pooling, or extravasation of fluid than occurred in the non-diabetic group. These data support the hypothesis that the cardiovascular system of diabetic subjects cannot tolerate a septic insult as well as their non-diabetic counterparts. PMID:1959700

  4. Distribution and Kinetics of Lipoprotein-Bound Endotoxin

    PubMed Central

    Levels, J. H. M.; Abraham, P. R.; van den Ende, A.; van Deventer, S. J. H.

    2001-01-01

    Lipopolysaccharide (LPS), the major glycolipid component of gram-negative bacterial outer membranes, is a potent endotoxin responsible for pathophysiological symptoms characteristic of infection. The observation that the majority of LPS is found in association with plasma lipoproteins has prompted the suggestion that sequestering of LPS by lipid particles may form an integral part of a humoral detoxification mechanism. Previous studies on the biological properties of isolated lipoproteins used differential ultracentrifugation to separate the major subclasses. To preserve the integrity of the lipoproteins, we have analyzed the LPS distribution, specificity, binding capacity, and kinetics of binding to lipoproteins in human whole blood or plasma by using high-performance gel permeation chromatography and fluorescent LPS of three different chemotypes. The average distribution of O111:B4, J5, or Re595 LPS in whole blood from 10 human volunteers was 60% (±8%) high-density lipoprotein (HDL), 25% (±7%) low-density lipoprotein, and 12% (±5%) very low density lipoprotein. The saturation capacity of lipoproteins for all three LPS chemotypes was in excess of 200 μg/ml. Kinetic analysis however, revealed a strict chemotype dependence. The binding of Re595 or J5 LPS was essentially complete within 10 min, and subsequent redistribution among the lipoprotein subclasses occurred to attain similar distributions as O111:B4 LPS at 40 min. We conclude that under simulated physiological conditions, the binding of LPS to lipoproteins is highly specific, HDL has the highest binding capacity for LPS, the saturation capacity of lipoproteins for endotoxin far exceeds the LPS concentrations measured in clinical situations, and the kinetics of LPS association with lipoproteins display chemotype-dependent differences. PMID:11292694

  5. Endotoxin-induced changes in IGF-I differ in rats provided enteral vs. parenteral nutrition.

    PubMed

    Wojnar, M M; Fan, J; Li, Y H; Lang, C H

    1999-03-01

    The purpose of the present study was to determine whether acute changes in the insulin-like growth factor (IGF) system induced by mild surgical trauma/fasting or endotoxin [lipopolysaccharide (LPS)] are differentially modulated by total enteral nutrition (TEN) or total parenteral nutrition (TPN). Rats had vascular catheters and a gastrostomy tube surgically placed and were fasted overnight. The next morning animals randomly received an isocaloric, isonitrogenous (250 kcal. kg-1. day-1, 1.6 g N. kg-1. day-1) infusion of either TEN or TPN for 48 h. Then rats were injected intravenously with Escherichia coli LPS (1 mg/kg) while nutritional support was continued. Time-matched control animals were injected with saline. After mild surgical trauma and an 18-h fast, TEN was more effective at increasing plasma IGF-I levels than TPN. Subsequent injection of LPS decreased IGF-I in blood, liver, and muscle in both TEN- and TPN-fed rats compared with saline-injected control animals. However, this decrease was approximately 30% greater in rats fed TPN compared with those fed TEN. LPS-induced downregulation of IGF-I mRNA expression in liver and muscle was also more prominent in TPN-fed rats. The LPS-induced increase in plasma corticosterone and tumor necrosis factor-alpha was greater (2- and 1.6-fold, respectively) in TPN-fed rats, and these changes were consistent with the greater reduction in IGF-I seen in these animals. In similarly treated rats allowed to survive for 24 h after LPS injection, the LPS-induced increase in the urinary 3-methylhistidine-to-creatinine ratio was smaller in TEN-fed rats. In summary, LPS reduced systemic levels of IGF-I as well as IGF-I protein and mRNA in critical target organs. Enteral feeding greatly attenuated this response. Maintenance of higher IGF-I levels in TEN-fed rats was associated with a reduction in inflammatory cytokine levels and lower rates of myofibrillar degradation. PMID:10070010

  6. Super-low Dose Endotoxin Pre-conditioning Exacerbates Sepsis Mortality

    PubMed Central

    Chen, Keqiang; Geng, Shuo; Yuan, Ruoxi; Diao, Na; Upchurch, Zachary; Li, Liwu

    2015-01-01

    Sepsis mortality varies dramatically in individuals of variable immune conditions, with poorly defined mechanisms. This phenomenon complements the hypothesis that innate immunity may adopt rudimentary memory, as demonstrated in vitro with endotoxin priming and tolerance in cultured monocytes. However, previous in vivo studies only examined the protective effect of endotoxin tolerance in the context of sepsis. In sharp contrast, we report herein that pre-conditioning with super-low or low dose endotoxin lipopolysaccharide (LPS) cause strikingly opposite survival outcomes. Mice pre-conditioned with super-low dose LPS experienced severe tissue damage, inflammation, increased bacterial load in circulation, and elevated mortality when they were subjected to cecal-ligation and puncture (CLP). This is in contrast to the well-reported protective phenomenon with CLP mice pre-conditioned with low dose LPS. Mechanistically, we demonstrated that super-low and low dose LPS differentially modulate the formation of neutrophil extracellular trap (NET) in neutrophils. Instead of increased ERK activation and NET formation in neutrophils pre-conditioned with low dose LPS, we observed significantly reduced ERK activation and compromised NET generation in neutrophils pre-conditioned with super-low dose LPS. Collectively, our findings reveal a mechanism potentially responsible for the dynamic programming of innate immunity in vivo as it relates to sepsis risks. PMID:26029736

  7. Differential effects of glucocorticoids in the establishment and maintenance of endotoxin tolerance.

    PubMed

    Rearte, B; Landoni, V; Laborde, E; Fernndez, G; Isturiz, M

    2010-02-01

    Gram-negative infections can result in endotoxic shock, which is the most common cause of death in intensive care units. Most of the undesirable effects in sepsis and septic shock have been ascribed to lipopolysaccharide (LPS), a normal constituent of the bacterial wall. The response to LPS involves rapid secretion of proinflammatory cytokines [tumour necrosis factor-alpha, interleukin (IL)-1, IL-6, IL-8, interferon-gamma] and the concomitant induction of anti-inflammatory mediators such as IL-10 and transforming growth factor-beta and glucocorticoids (GC), which render the host temporarily refractory to subsequent lethal doses of LPS challenge in a process known as LPS or endotoxin tolerance. Although protective from the development of sepsis or systemic inflammation, endotoxin tolerance has also been pointed out as the principal cause of the non-specific immunosuppression described in these patients. In this report we demonstrate, using a mouse model, that while the maintenance of tolerance is dependent upon GC, the establishment of tolerance by LPS could be inhibited by dexamethasone (Dex), a synthetic GC. Conversely, we demonstrated that mifepristone (RU486), a known GC receptor antagonist, was capable of inducing a transient and reversible disruption of endotoxin tolerance, also permitting partial restoration of the humoral immune response in LPS tolerant/immunosuppressed mice. These results are encouraging for the management of immunosuppression in sepsis and/or non-infectious shock, and deserve further investigation in the future. PMID:19912256

  8. ?-hydroxymyristic acid as a chemical marker to detect endotoxins in dialysis water.

    PubMed

    Mishra, Rupesh K; Robert-Peillard, Fabien; Ravier, Sylvain; Coulomb, Bruno; Boudenne, Jean-Luc

    2015-02-01

    An analytical chemical method has been developed for determination of ?-hydroxymyristic acid (?-HMA), a component of lipopolysaccharides (LPSs/endotoxins) in dialysis water. In our investigation, the ?-HMA component was used as a chemical marker for endotoxin presence in dialysis water because it is available in the molecular subunit (lipid A) and responsible for toxicity. It is the most abundant saturated fatty acid in that subunit. The developed method is based on fluorescence derivatization with 4-nitro-7-piperazino-2,1,3-benzoxadiazole (NBD-PZ). A high-performance liquid chromatographic separation of the ?-HMA derivative was achieved using an octadecyl silica column in gradient elution. A wide dynamic range of ?-HMA was tested and a calibration curve was constructed with accuracy of 90% and variability of less than 10%. The limits of detection and quantification obtained were 2 and 5?M, respectively. The developed method was applied to detect endotoxins in dialysis water by alkaline hydrolysis of LPS using NaOH (0.25M) at 60C for 2h. After hydrolysis, free acid was detected as its NBD-PZ derivative using high-performance liquid chromatography/mass spectrometry (HPLC/MS). Good recovery rates ranging from 98 to 105% were obtained for ?-HMA in dialysis water. PMID:25449302

  9. Lipopolysaccharide priming enhances expression of effectors of immune defence while decreasing expression of pro-inflammatory cytokines in mammary epithelia cells from cows

    PubMed Central

    2012-01-01

    Background Udder infections with environmental pathogens like Escherichia coli are a serious problem for the dairy industry. Reduction of incidence and severity of mastitis is desirable and mild priming of the immune system either through vaccination or with low doses of immune stimulants such as lipopolysaccharide LPS was previously found to dampen detrimental effects of a subsequent infection. Monocytes/macrophages are known to develop tolerance towards the endotoxin LPS (endotoxin tolerance, ET) as adaptation strategy to prevent exuberant inflammation. We have recently observed that infusion of 1 ?g of LPS into the quarter of an udder effectively protected for several days against an experimentally elicited mastitis. We have modelled this process in primary cultures of mammary epithelial cells (MEC) from the cow. MEC are by far the most abundant cells in the healthy udder coming into contact with invading pathogens and little is known about their role in establishing ET. Results We primed primary MEC cultures for 12 h with LPS (100 ng/ml) and stimulated three cultures either 12 h or 42 h later with 107/ml particles of heat inactivated E. coli bacteria for six hours. Priming-related alterations in the global transcriptome of those cells were quantified with Affymetrix microarrays. LPS priming alone caused differential expression of 40 genes and mediated significantly different response to a subsequent E. coli challenge of 226 genes. Expression of 38 genes was enhanced while that of 188 was decreased. Higher expressed were anti-microbial factors (?-defensin LAP, SLPI), cell and tissue protecting factors (DAF, MUC1, TGM1, TGM3) as well as mediators of the sentinel function of MEC (CCL5, CXCL8). Dampened was the expression of potentially harmful pro-inflammatory master cytokines (IL1B, IL6, TNF-?) and immune effectors (NOS2, matrix metalloproteases). Functional network analysis highlighted the reduced expression of IL1B and of IRF7 as key to this modulation. Conclusion LPS-primed MEC are fitter to repel pathogens and better protected against misguided attacks of the immune response. Attenuated is the exuberant expression of factors potentially promoting immunopathological processes. MEC therefore recapitulate many aspects of ET known so far from professional immune cells. PMID:22235868

  10. Relation of structure to function for the US reference standard endotoxin after exposure to /sup 60/Co radiation

    SciTech Connect

    Csako, G.; Suba, E.A.; Ahlgren, A.; Tsai, C.M.; Elin, R.J.

    1986-01-01

    The structure and function of the highly purified US reference standard endotoxin (RSE) were studied after exposure to ionizing radiation from a /sup 60/Co source. With increasing doses of radiation, the trilaminar ribbon-like structure of untreated endotoxin exhibited focal swelling, after which only spherical particles were seen by electron microscopy. These morphological changes were paralleled by the respective loss of O-side chain repeating units and pieces of the R-core from the lipopolysaccharide molecules, as demonstrated by electrophoresis. The biologic function of the irradiated endotoxin was assessed with a variety of tests. At higher doses of radiation, a direct relation was observed between the degradation of the molecular and supramolecular structure and the loss of biologic function. At lower doses of radiation, however, there was variability among the functional assays in their rate of change with progressive irradiation of the RSE. The results suggest that the carbohydrate moiety plays an important role both in determining the supramolecular structure and in modulating certain biologic activities of bacterial endotoxins.

  11. Effect of naloxone on regional cerebral blood flow during endotoxin shock in conscious rats

    SciTech Connect

    Law, W.R.; Ferguson, J.L. )

    1987-09-01

    Maintenance of cerebral blood flow (CBF) is vital during cardiovascular shock. Since opioids have been implicated in the pathophysiology of endotoxin shock and have been shown to alter cerebral perfusion patterns, the authors determined whether opioids were responsible for any of the changes in regional CBF observed during endotoxin shock and whether the use of naloxone might impair or aid in the maintenance of CBF. When blood flow (BF) is studied with radioactively-labeled microspheres in rats, the left ventricle of the heart is often cannulated via the right carotid artery. Questions have arisen concerning the potential adverse effects of this method on CBF in the hemisphere ipsilateral to the ligated artery. They measured right and left regional CBF by use of this route of cannulation. Twenty-four hours after cannulations were performed, flow measurements were made using radiolabeled microspheres in conscious unrestrained male Sprague-Dawley rats (300-400 g) before and 10, 30, and 60 min after challenging with 10 mg/kg Escherichia coli endotoxin (etx) or saline. Naloxone (2 mg/kg) or saline was given as a treatment 25 min post-etx. They found no significant differences between right and left cortical, midbrain, or cerebellar BF at any time in any treatment group. Therefore naloxone treatment of endotoxin shock may be beneficial in preventing decreases in regional CBF.

  12. Effect of Zingiber officinale and propolis on microorganisms and endotoxins in root canals

    PubMed Central

    MAEKAWA, Lilian Eiko; VALERA, Marcia Carneiro; de OLIVEIRA, Luciane Dias; CARVALHO, Cludio Antonio Talge; CAMARGO, Carlos Henrique Ribeiro; JORGE, Antonio Olavo Cardoso

    2013-01-01

    The purpose of this study was to evaluate the effectiveness of glycolic propolis (PRO) and ginger (GIN) extracts, calcium hydroxide (CH), chlorhexidine (CLX) gel and their combinations as ICMs (ICMs) against Candida albicans, Enterococcus faecalis, Escherichia coli and endotoxins in root canals. Material and Methods: After 28 days of contamination with microorganisms, the canals were instrumented and then divided according to the ICM: CH+saline; CLX, CH+CLX, PRO, PRO+CH; GIN; GIN+CH; saline. The antimicrobial activity and quantification of endotoxins by the chromogenic test of Limulus amebocyte lysate were evaluated after contamination and instrumentation at 14 days of ICM application and 7 days after ICM removal. Results and Conclusion: After analysis of results and application of the Kruskal-Wallis and Dunn statistical tests at 5% significance level, it was concluded that all ICMs were able to eliminate the microorganisms in the root canals and reduce their amount of endotoxins; however, CH was more effective in neutralizing endotoxins and less effective against C. albicans and E. faecalis, requiring the use of medication combinations to obtain higher success. PMID:23559108

  13. Altered transcriptional regulation of phosphoenolpyruvate carboxykinase in rats following endotoxin treatment.

    PubMed Central

    Hill, M; McCallum, R

    1991-01-01

    The molecular mechanism involved in altered regulation of the rate-limiting enzyme in hepatic gluconeogenesis, phosphoenolpyruvate carboxykinase (PEPCK), during endotoxemia is not completely understood. We examined, therefore, the effect of a nonlethal dose of Escherichia coli endotoxin on PEPCK gene expression in fasted rats. 5 h after endotoxin treatment, the PEPCK transcription rate and the amount of mRNA(PEPCK) were significantly decreased at a time when the insulin/glucagon (I/G) molar ratio and plasma corticosterone levels were significantly increased. Similar results were observed in a time course study, in which altered cAMP induction of PEPCK gene expression paralleled changes in the I/G molar ratio. In diabetic rats treated with endotoxin, PEPCK gene expression was decreased in the absence, however, of an increased I/G molar ratio. This finding indicates that other factors, such as inflammatory mediators or cytokines, alter PEPCK gene transcription during endotoxemia. IL-6, a putative mediator of endotoxin action in the liver, had no effect on PEPCK gene expression in fasted rats, but did decrease cAMP induction of PEPCK gene expression. These results indicate that, during endotoxemia, regulation of PEPCK gene expression is influenced by inflammatory mediators in addition to the classical endocrine hormones. IL-6, however, does not appear to be involved directly in the altered regulation of the PEPCK gene during endotoxemia. PMID:1653277

  14. Endotoxins in cotton: washing effects and size distribution

    SciTech Connect

    Olenchock, S.A.; Mull, J.C.; Jones, W.G.

    1983-01-01

    Endotoxin contamination was measured in washed and unwashed cottons from three distinct growing areas, California, Mississippi, and Texas. The data show differences in endotoxin contamination based upon the geographic source of the cotton. It is also shown that washing bulk cotton before the carding process results in lower endotoxin in the cotton dust. Washing conditions can affect the endotoxin levels, and all size fractions of the airborne dust contain quantifiable endotoxin contamination. Endotoxin analyses provide a simple and reliable method for monitoring the cleanliness of cotton or airborne cotton dusts.

  15. Covalent binding of (/sup 14/C)thiourea to protein in lungs from endotoxin-treated rats

    SciTech Connect

    Hollinger, M.A.

    1983-08-01

    Administration of thiourea to mature male rats at a dosage of 3.5 mg/kg (ip) produced marked pleural effusion by 2 hr (3-4 ml). Pretreatment with bacterial lipopolysaccharide (endotoxin) significantly reduced this pleural effusion (less than 0.5 ml). Despite this unequivocal effect, there was no corresponding reduction in the covalent binding of (/sup 14/C)thiourea to lung protein. These data indicate that the protective effect of endotoxin against the initial stages of thiourea pneumotoxicity does not involve a reduction in binding of the (/sup 14/C)thiourea or a metabolite to lung protein. However, alterations in low levels of binding to specific cell types or particular protein(s) relative to covalent binding cannot be ruled out.

  16. A true theranostic approach to medicine: towards tandem sensor detection and removal of endotoxin in blood.

    PubMed

    Thompson, Michael; Blaszykowski, Christophe; Sheikh, Sonia; Romaschin, Alexander

    2015-05-15

    Sepsis is one of the leading causes of death around the world. The condition occurs when a local infection overcomes the host natural defense mechanism and suddenly spreads into the circulatory system, triggering a vigorous, self-injurious inflammatory host response. The pathogenesis of sepsis is relatively well known, one of the most potent immuno-activator being bacterial lipopolysaccharide (LPS) - also known as 'endotoxin'. Tests exist to detect endotoxin in bodily fluids, but are expensive, not necessarily user-friendly and require reporter molecules. In addition, the situation for safe and effective anti-endotoxin therapy is problematical. At the present time, endotoxin removal through cartridge hemoperfusion is one of the better alternatives to combat sepsis. The capability to both measure endotoxemia levels and offer an adapted response treatment in a timely manner is crucial for better management and improved prognosis, but is currently unavailable. In this context, we describe herein preliminary research towards the development of an alternative LPS biosensor and an innovative LPS neutralization cartridge to be eventually combined in an all-integrated configuration for the theranostic, personalized treatment of blood endotoxemia/sepsis. LPS detection is performed in a real-time and label-free manner in full human blood plasma, using ultra-high frequency acoustic wave sensing in combination with ultrathin, oligoethylene glycol-based mixed surface chemistry imposed on piezoelectric quartz discs. Biosensing platforms are functionalized with polymyxin B (PMB), a cyclic peptide antibiotic with high affinity for LPS. Analogous surface modification is used on glass beads for the therapeutic cartridge component of the combined strategy. Incubation of LPS-spiked whole blood with PMB-bead chemistry resulted in a significant decrease in the production of pro-inflammatory TNF-? cytokine. LPS neutralization is discussed in relation to the perturbation of its supramolecular chemistry in solution. PMID:25067837

  17. Profiling of 3-hydroxy fatty acids as environmental markers of endotoxin using liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    Uhlig, Silvio; Negård, Mariell; Heldal, Kari K; Straumfors, Anne; Madsø, Lene; Bakke, Berit; Eduard, Wijnand

    2016-02-19

    3-Hydroxy acids are constituents of the lipid A part of lipopolysaccharides and may potentially be used as chemical markers of endotoxin. While commercial enzymatic assays, such as the widely used Limulus amebocyte lysate (LAL) assay, commonly detect merely the water-soluble fraction of the bioactive endotoxin, the chemical approach aims to estimate the total amount of endotoxin present in a sample. Our objective was to develop a simple method for quantitative profiling of 3-hydroxy fatty acids in occupational and environmental samples based on detection with HPLC-MS/MS. We included eleven 3-hydroxy fatty acids (3-hydroxyoctanoic acid to 3-hydroxyoctadecanoic acid) in the HPLC-MS/MS based method, which involved base hydrolysis of filter samples using 1M sodium hydroxide and removal of the base as well as concentration of the fatty acids using solid-phase extraction on a functionalized polystyrene-divinylbenzene polymer. Recovery trials from spiked glass fiber filters, using threo-9,10-dihydroxyhexadecanoic acid as internal standard, gave an overall recovery of 54-86% for 3-hydroxy fatty acids of medium chain length (3-hydroxynonanoic to 3-hydroxypentadecanoic acid). 3-Hydroxyoctanoic acid and the longer chain fatty acids were more problematic yielding overall spike recoveries of 11-39%. While the 3-hydroxy fatty acid profile of pure lipopolysaccharides was dominated by 3-hydroxydecanoic, 3-hydroxydodecanoic and 3-hydroxytetradecanoic acid the aqueous phase from drilling mud contained in addition relatively high amounts of 3-hydroxyoctanoic and 3-hydroxynonanoic acid. Endotoxin activity as measured by the LAL assay was reasonably correlated (R(2)=0.54) to the sum of 3-hydroxydecanoic acid, 3-hydroxydodecanoic acid and 3-hydroxytetradecanoic acid in these samples. PMID:26818235

  18. Gene expression profiles in the intestine of lipopolysaccharide-challenged piglets.

    PubMed

    Yi, Dan; Hou, Yongqing; Wang, Lei; Zhao, Di; Ding, Binying; Wu, Tao; Chen, Hongbo; Liu, Yulan; Kang, Ping; Wu, Guoyao

    2016-01-01

    Bowel diseases are common in human and animals and are characterized by intestinal dysfunction and injury. A well-established porcine model of intestinal injury can be induced by lipopolysaccharide (LPS), an endotoxin released from the cell wall of pathogenic bacteria. LPS affects the expression of genes associated with intestinal immune response, mucosal growth, energy metabolism, absorption, mucosal barrier function, and antiviral function. Transcriptional analysis of intestinal genes reveals that the duodenum, jejunum, ileum and colon respond to LPS challenge in a similar pattern. Moreover, the jejunum and ileum exhibit greater responses to LPS challenge than the duodenum and colon with regard to gene expression. Additionally, over 85% of genes are co-expressed along the small and large intestines and there is a clear distinction in gene expression patterns amongst the different intestinal segments in pigs. These findings have important implications for underlying molecular mechanisms responsible for endotoxin-induced intestinal injury and dysfunction. PMID:26709789

  19. Possible mechanism for preterm labor associated with bacterial infection. I. Stimulation of phosphoinositide metabolism by endotoxin in endometrial fibroblasts

    SciTech Connect

    Khan, A.A.; Imai, A.; Tamaya, T. )

    1990-07-01

    Growing evidence suggests an association between intra-amniotic infection and premature initiation of parturition. We recently demonstrated that some factor(s) including endotoxin produced by the organism stimulates endogenous phospholipase A2 resulting in liberation of arachidonic acid and prostaglandin formation. The studies presented in this report were designated to evaluate the mechanism for endotoxin to stimulate phospholipase A2 using human endometrial fibroblasts. Exposure of the fibroblasts to endotoxin from Escherichia coli in the presence of ({sup 32}P) phosphate increased {sup 32}P-labeling of phosphatidic acid (PA) and phosphatidyl-inositol (PI) in a dose-dependent and a time-dependent manners. The PA labeling occurred without a measurable lag time. These findings demonstrate that the endotoxin stimulates phosphoinositide metabolism in human endometrial fibroblasts by a receptor-mediated mechanism. Membrane phosphoinositide turnover stimulated by endotoxin results in cytosolic Ca{sup 2+} increment, liberation of arachidonic acid, which may be involved in the initiation of parturition.

  20. Resurrecting inactive antimicrobial peptides from the lipopolysaccharide trap.

    PubMed

    Mohanram, Harini; Bhattacharjya, Surajit

    2014-01-01

    Host defense antimicrobial peptides (AMPs) are a promising source of antibiotics for the treatment of multiple-drug-resistant pathogens. Lipopolysaccharide (LPS), the major component of the outer leaflet of the outer membrane of Gram-negative bacteria, functions as a permeability barrier against a variety of molecules, including AMPs. Further, LPS or endotoxin is the causative agent of sepsis killing 100,000 people per year in the United States alone. LPS can restrict the activity of AMPs inducing aggregations at the outer membrane, as observed for frog AMPs, temporins, and also in model AMPs. Aggregated AMPs, "trapped" by the outer membrane, are unable to traverse the cell wall, causing their inactivation. In this work, we show that these inactive AMPs can overcome LPS-induced aggregations while conjugated with a short LPS binding ?-boomerang peptide motif and become highly bactericidal. The generated hybrid peptides exhibit activity against Gram-negative and Gram-positive bacteria in high-salt conditions and detoxify endotoxin. Structural and biophysical studies establish the mechanism of action of these peptides in LPS outer membrane. Most importantly, this study provides a new concept for the development of a potent broad-spectrum antibiotic with efficient outer membrane disruption as the mode of action. PMID:24419338

  1. Lipopolysaccharides of Salmonella T Mutants

    PubMed Central

    Wheat, R. W.; Berst, M.; Ruschmann, E.; Lderitz, O.; Westphal, O.

    1967-01-01

    The composition of lipopolysaccharides derived from various Salmonella T forms was studied. All T1-form lipopolysaccharides examined contained 14 to 22% each of both d-galactose and pentose in addition to 4 to 9% each of ketodeoxyoctonic acid, heptose, d-glucosamine, and d-glucose. The pentose was identified as d-ribose. The T2-form lipopolysaccharide examined did not contain a significant amount of pentose, nor more than the usual amounts of d-galactose. Periodate oxidation of T1 (lipo) polysaccharides followed by NaBH4 reduction revealed that ribose was almost quantitatively protected, galactose was destroyed, and threitol and mannose were newly formed. The latter two products probably originated from 4-linked galactose and heptose, respectively. Ribose and galactose were found in specific precipitates of T1 lipopolysaccharide with anti-T1 antiserum but were not found in specific precipitates of alkali-treated T1 lipopolysaccharide and of Freeman degraded polysaccharide with anti-T1 serum Ribose and galactose are present in these degraded preparations in the form of nondialyzable polymers. The T1-form mutant lipopolysaccharides lacked the O-specific sugars constituting the side-chains in the wild-type antigens. They did not produce the soluble O-specific haptenic polysaccharide known to be accumulated in RI strains. With these properties, T1 lipopolysaccharides resemble RII lipopolysaccharides. Like RII degraded polysaccharides, T1-degraded polysaccharides also contained glucosamine. Furthermore, strong cross-reactions were found to exist between T1 and RII lipopolysaccharides in both hemagglutination inhibition assays and in precipitation tests. It is proposed that T1 lipopolysaccharides represent RII lipopolysaccharides to which polymers consisting of ribose and galactose are attached. PMID:6057795

  2. Altered Toll-like Receptor 2-mediated Endotoxin Tolerance Is Related to Diminished Interferon ? Production

    PubMed Central

    Zaric, Svetislav S.; Coulter, Wilson A.; Shelburne, Charles E.; Fulton, Catherine R.; Zaric, Marija S.; Scott, Aaron; Lappin, Mark J.; Fitzgerald, Denise C.; Irwin, Christopher R.; Taggart, Clifford C.

    2011-01-01

    Induction of endotoxin tolerance leads to a reduced inflammatory response after repeated challenge by LPS and is important for resolution of inflammation and prevention of tissue damage. Enterobacterial LPS is recognized by the TLR4 signaling complex, whereas LPS of some non-enterobacterial organisms is capable of signaling independently of TLR4 utilizing TLR2-mediated signal transduction instead. In this study we report that Porphyromonas gingivalis LPS, a TLR2 agonist, fails to induce a fully endotoxin tolerant state in a human monocytic cell line (THP-1) and mouse bone marrow-derived macrophages. In contrast to significantly decreased production of human IL-8 and TNF-? and, in mice, keratinocyte-derived cytokine (KC), macrophage inflammatory protein-2 (MIP-2), and TNF-? after repeated challenge with Escherichia coli LPS, cells repeatedly exposed to P. gingivalis LPS responded by producing less TNF-? but sustained elevated secretion of IL-8, KC, and MIP-2. Furthermore, in endotoxin-tolerant cells, production of IL-8 is controlled at the signaling level and correlates well with NF-?B activation, whereas TNF-? expression is blocked at the gene transcription level. Interferon ? plays an important role in attenuation of chemokine expression in endotoxin-tolerized cells as shown in interferon regulatory factor-3 knock-out mice. In addition, human gingival fibroblasts, commonly known not to display LPS tolerance, were found to be tolerant to repeated challenge by LPS if pretreated with interferon ?. The data suggest that the inability of the LPS-TLR2 complex to induce full endotoxin tolerance in monocytes/macrophages is related to diminished production of interferon ? and may partly explain the involvement of these LPS isoforms in the pathogenesis of chronic inflammatory diseases. PMID:21705332

  3. First Evidence for a Covalent Linkage between Enterobacterial Common Antigen and Lipopolysaccharide in Shigella sonnei Phase II ECALPS*

    PubMed Central

    Gozdziewicz, Tomasz K.; Lugowski, Czeslaw; Lukasiewicz, Jolanta

    2014-01-01

    Enterobacterial common antigen (ECA) is expressed by Gram-negative bacteria belonging to Enterobacteriaceae, including emerging drug-resistant pathogens such as Escherichia coli, Klebsiella pneumoniae, and Proteus spp. Recent studies have indicated the importance of ECA for cell envelope integrity, flagellum expression, and resistance of enteric bacteria to acetic acid and bile salts. ECA, a heteropolysaccharide built from the trisaccharide repeating unit, →3)-α-d-Fucp4NAc-(1→4)-β-d-ManpNAcA-(1→4)-α-d-GlcpNAc-(1→, occurs as a cyclic form (ECACYC), a phosphatidylglycerol (PG)-linked form (ECAPG), and an endotoxin/lipopolysaccharide (LPS)-associated form (ECALPS). Since the discovery of ECA in 1962, the structures of ECAPG and ECACYC have been completely elucidated. However, no direct evidence has been presented to support a covalent linkage between ECA and LPS; only serological indications of co-association have been reported. This is paradoxical, given that ECA was first identified based on the capacity of immunogenic ECALPS to elicit antibodies cross-reactive with enterobacteria. Using a simple isolation protocol supported by serological tracking of ECA epitopes and NMR spectroscopy and mass spectrometry, we have succeeded in the first detection, isolation, and complete structural analysis of poly- and oligosaccharides of Shigella sonnei phase II ECALPS. ECALPS consists of the core oligosaccharide substituted with one to four repeating units of ECA at the position occupied by the O-antigen in the case of smooth S. sonnei phase I. These data represent the first structural evidence for the existence of ECALPS in the half-century since it was first discovered and provide insights that could prove helpful in further structural analyses and screening of ECALPS among Enterobacteriaceae species. PMID:24324266

  4. Human endothelial cell-based assay for endotoxin as sensitive as the conventional Limulus Amebocyte Lysate assay.

    PubMed

    Unger, Ronald E; Peters, Kirsten; Sartoris, Anne; Freese, Christian; Kirkpatrick, C James

    2014-03-01

    Endotoxin, also known as lipopolysaccharide (LPS) produced by bacteria can be present in any liquid or on any biomaterial even if the material is sterile. Endotoxin in mammals can cause fever, inflammation, cell and tissue damage and irreversible septic shock and death. In the body, endothelial cells making up the blood vasculature and endothelial cells in vitro rapidly react to minute amounts of endotoxin resulting in a rapid induction of the cell adhesion molecule E-selectin. In this study we have used immunofluorescent staining to evaluate the expression of E-selectin on human microvascular endothelial cells from the skin (HDMEC) and human umbilical vein endothelial cells (HUVEC) exposed to various concentrations of LPS. In addition, the sensitivity of detection was compared with the most widely used assay for the presence of endotoxin, the Limulus Amebocyte Lysate assay (LAL). The detection of E-selectin on endothelial cells in the presence of LPS for 4 h was found to be at least as sensitive in detecting the same concentration using the LAL assay. A cell adhesion molecule-enzyme immunosorbent assay was also developed and used to quantify LPS using the endothelial cell model. A comparison of LAL and the immunofluorescent staining method was carried out with solutions, nanoparticles, biomaterial extracts and endothelial cells grown directly on biomaterials. Under all conditions, the endothelial/E-selectin model system was positive for the test samples that were positive by LAL. Thus, we propose the use of this highly sensitive, rapid, reproducible assay for the routine testing of endotoxin in all steps in the manufacturing process of materials destined for use in humans. This can give a rapid feedback and localization of bacterial contamination sources with the LAL being reserved for the testing of the final product. PMID:24456607

  5. Endotoxins and inflammation in hemodialysis patients.

    PubMed

    El-Koraie, Ahmed F; Naga, Yasmine S; Saaran, Amina M; Farahat, Nahla G; Hazzah, Walaa A

    2013-07-01

    Long-term endotoxin challenge may promote frequent complications in dialysis patients, namely malnutrition, chronic inflammation, and atherosclerosis, which are recognized as the so-called MIA syndrome. Circulating soluble vascular cell adhesion molecule-1 (sVCAM-1) levels may be used to determine the stage of atherosclerosis. This study aimed to assess endotoxin level in hemodialysis (HD) patients and its role in inducing inflammation. The study was conducted on 50 HD patients, chosen from four dialysis centers in Alexandria. Serum blood samples were collected for the determination of albumin and C-reactive protein (CRP), and whole blood samples were used for the measurement of hemoglobin level. A heparinized whole blood sample was taken postdialysis for endotoxin assay by limulus amebocyte lysate test, and in addition to sVCAM-1 was estimated using enzyme-linked immunosorbent assay. The mean endotoxin level was 76.30?pg/mL;80% exhibited values higher than 60?pg/mL. Half the studied patients had CRP values that exceeded the upper limit of the laboratory reference range (<6.0?mg/L). A statistically significant correlation was found between endotoxin and CRP levels (r?=?0.47, P?=?0.001). The mean pre-HD level of VCAM was 1851.00?ng/mL, while the mean post-HD level was 2829.00?ng/mL with statistically significant correlation (r?=?0.354, P?=?0.012) and it also correlated significantly with endotoxin as well as CRP levels. Endotoxemia may play an important role in the aggravation of endothelial dysfunction in HD patients as indicated by the post-HD rise in sVCAM-1. PMID:23231033

  6. Application of quartz tuning forks for detection of endotoxins and Gram-negative bacterial cells by monitoring of Limulus Amebocyte Lysate coagulation.

    PubMed

    Cha?upniak, Andrzej; Waszczuk, Karol; Ha?ubek-G?uchowska, Katarzyna; Piasecki, Tomasz; Gotszalk, Teodor; Rybka, Jacek

    2014-08-15

    Endotoxins, pyrogens of bacterial origin, are a significant threat in many areas of life. Currently, the test most commonly used for endotoxin level determination is LAL (Limulus Amebocyte Lysate) assay. This paper presents application of commercially available low-frequency piezoelectric tuning forks (QTFs) for endotoxin detection. Measurement of the decrease in the QTF oscillation amplitude provides information about the viscosity changes, occurring in the tested sample upon addition of LAL. That method was used to determine the concentrations of endotoxins and bacterial cells (E. coli O157:H19). The relevance of the obtained results was confirmed using a commercially available colorimetric LAL assay. The constructed system can detect bacterial endotoxins in the range of 0.001-5EU/ml and bacterial cells in the range of 10(2)-10(7)CFU/ml. The presented technique requires very simple sample preparation and the sensor response is obtained using compact, portable readout electronics. The single test cost is low compared to commercial endotoxin assays and other novel systems based on micromechanical sensors. PMID:24632139

  7. Longitudinal study of dust and airborne endotoxin in the home.

    PubMed

    Park, J H; Spiegelman, D L; Burge, H A; Gold, D R; Chew, G L; Milton, D K

    2000-11-01

    To characterize the seasonal variability of endotoxin levels, we measured endotoxin in dust from the bed, bedroom floor, and kitchen floor in 20 homes, and in air from the bedroom in 15 of the homes. All homes were located in the greater Boston, Massachusetts, area and were sampled each month from April 1995 to June 1996. Outdoor air was collected at two locations. We found greater within-home than between-home variance for bedroom floor, kitchen floor, and airborne endotoxin. However, the reverse was true for bed dust endotoxin. Thus, studies using single measurements of dust endotoxin are most likely to reliably distinguish between homes if bed dust is sampled. Dust endotoxin levels were not significantly associated with airborne endotoxin. Airborne endotoxin was significantly (p = 0. 04) and positively associated with absolute humidity in a mixed-effect model adjusting for a random home effect and fixed effect of sampling month and home characteristics. This finding implies that indoor humidity may be an important factor controlling endotoxin exposure. We found a significant (p < 0.05) seasonal effect in kitchen floor dust (spring > fall) and bedroom airborne endotoxin (spring > winter), but not in the other indoor samples. We found significant seasonal pattern in outdoor airborne endotoxin (summer > winter). PMID:11102291

  8. Lack of endotoxin-induced hyporesponsiveness to U46619 in isolated neonatal porcine pulmonary but not mesenteric arteries.

    PubMed

    Prez-Vizcano, F; Villamor, E; Fernandez del Pozo, B; Moro, M; Tamargo, J

    1996-01-01

    The effects of endotoxin from Escherichia coli on the vasoconstrictor responses to noradrenaline (10 nM-100 microM) and the thromboxane A2 analog U46619 (100 pM-1 microM) were evaluated on isolated pulmonary and mesenteric arteries from neonatal piglets. Incubation for 20 h with endotoxin (1 microgram ml-1) induced a decrease in the contractile responses to noradrenaline in both arteries (p < 0.05) which was inhibited by NG-nitro-L-arginine-methyl ester (L-NAME, 100 microM). Endotoxin-treated mesenteric arteries also showed a reduction of the maximal contractions induced by U46619 (p < 0.05) and this effect was inhibited by L-NAME. In contrast, the contractile responses to U46619 were similar in control and endotoxin-treated pulmonary arteries. In endothelium-denuded pulmonary rings, endotoxin was also unable to modify the contractile responses to U46619. In pulmonary rings, the contractions induced by U46619 (100 nM) were much less sensitive to sodium nitroprusside, 8-bromo-cyclic GMP or dipyridamole than those induced by 10 microM noradrenaline. In conclusion, endotoxin-treated pulmonary arteries exhibited decreased responses to noradrenaline due to enhanced nitric oxide release but not to the thromboxane A2 analog U46619. This lack of hyporesponsiveness to U46619 in pulmonary arteries may be attributed to a relative insensitivity to nitric oxide. The absence of pulmonary hyporesponsiveness to U46619 may explain why pulmonary hypertension occurs in septic shock despite Ca(2+)-independent nitric oxide synthase induction in the lung. PMID:8924522

  9. Removal of endotoxin from dairy wastewater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The efficacy of various treatments on removing endotoxin (ET) from wastewater was tested by using the treated water to induce a systemic reaction via intratracheal inoculation (20 ml/goat, 6 goats/group). Treatments (T1-T7) of wastewater were as follows: 1) autoclaved 15 min, centrifuged and contain...

  10. Endotoxins in Environmental and Clinical Samples Assessed by GC-Tandem MS

    NASA Astrophysics Data System (ADS)

    Szponar, Bogumila

    Bacteria appeared on the Earth millions years before us and human evolution was triggered by the constant presence of pathogenic and symbiotic microorganisms in our surroundings. Interplay occurred between higher organism and microbial consortia residing in the host organs and on the epithelial surfaces; another natural space of bacteria-human interaction is the indoor environment where we spend the majority of our lifetime. Indoor microbial exposure affects our well-being and can result in respiratory symptoms, such as allergies and asthma, since both dead and live microorganisms and their cell constituents, including lipopolysaccharides (LPS, endotoxins), interact with our immune system. Thus, there is a demand for robust tools for qualitative and quantitative determination of the microbial communities that we are exposed to.

  11. Lipopolysaccharide Sequestrants: Structural Correlates of Activity and Toxicity in Novel Acylhomospermines

    PubMed Central

    Miller, Kelly A.; Kumar, E.V.K. Suresh; Wood, Stewart J.; Cromer, Jens R.; Datta, Apurba; David*, Sunil A.

    2005-01-01

    Lipopolysaccharides (LPS), otherwise termed ‘endotoxins’, are outer-membrane constituents of Gram-negative bacteria. Lipopolysaccharides play a key role in the pathogenesis of ‘Septic Shock’, a major cause of mortality in the critically ill patient. Therapeutic options aimed at limiting downstream systemic inflammatory processes by targeting lipopolysaccharide do not exist at the present time. We have defined the pharmacophore necessary for small molecules to specifically bind and neutralize LPS and, using animal models of sepsis, have shown that the sequestration of circulatory LPS by small molecules is a therapeutically viable strategy. In this paper, the interactions of a series of acylated homologated spermine compounds with lipopolysaccharide (LPS) have been characterized. The optimal acyl chain length for effective sequestration of LPS was identified to be C16 for the mono-acyl compounds. The most promising of these compounds, 4e, binds LPS with an ED50 of 1.37 μM. Nitric oxide production in murine J774A.1 cells, as well as TNF-α in human blood, are inhibited in a dose-dependent manner by 4e at concentrations orders of magnitude lower than toxic doses. Administration of 4e to d-galactosamine-sensitized mice challenged with supralethal doses of LPS provided significant protection against lethality. Potent anti-endotoxic activity, low toxicity, and ease of synthesis render this class of compounds candidate endotoxin-sequestering agents of potential significant therapeutic value. PMID:15801849

  12. Modification of the chemical composition and structure of the US Reference Standard Endotoxin (RSE) by /sup 60/Co radiation

    SciTech Connect

    Csako, G.; Tsai, C.M.; Slomiany, B.L.; Herp, A.; Elin, R.J.

    1986-03-01

    A highly purified bacterial lipopolysaccharide (LPS) preparation was exposed in water to megadoses of ionizing radiation from a /sup 60/Co source. As evidenced by electrophoresis, the radiation treatment progressively degraded the lipopolysaccharide molecules by removing first the O-side chain units and then components of the R-core. Chemical analysis of the irradiated (LPS) preparations showed that, in accord with the structural changes, the most profound effects of ionizing radiation occurred in the hydrophilic oligo/polysaccharide moieties (R-core and O-side chain). Progressively higher doses of radiation degraded the simple sugars in decreasing order of galactose, galactosamine, glucosamine, glucose, and heptose. The R-core component 2-keto-3-deoxyoctonate was the most resistant sugar derivative to ionizing radiation. Due to its central position in the LPS aggregates in water, even at comparatively high doses of radiation the hydrophobic lipid A moiety of endotoxin was less affected than the sugar components. Of the fatty acids of lipid A, however, either partial conversion of beta-hydroxymyristic acid into myristic acid or selective loss of the former occurred. The observed structural and chemical changes of LPS are consistent with the effect of active oxygen radicals of radiolysis. In addition, the extensive physicochemical changes explain the altered biological reactivity of radiation-treated endotoxins.

  13. Single-trial conditioning in a human taste-endotoxin paradigm induces conditioned odor aversion but not cytokine responses.

    PubMed

    Grigoleit, Jan-Sebastian; Kullmann, Jennifer S; Winkelhaus, Anne; Engler, Harald; Wegner, Alexander; Hammes, Florian; Oberbeck, Reiner; Schedlowski, Manfred

    2012-02-01

    Immunological responses to bacterial endotoxin can be behaviorally conditioned in rodents. However, it is unclear whether an acute systemic inflammatory response can be behaviorally conditioned in humans. Thus, in a double-blind placebo-controlled study, 20 healthy, male subjects received either a single injection of lipopolysaccharide (LPS) or saline together with a novel tasting beverage (conditioned stimulus, CS). Five days later, all subjects received a saline injection and were re-exposed to the CS. Blood was drawn prior to as well as 0.5, 1.5, 3, 4, 6, and 24 h after LPS administration or CS re-exposure. Endotoxin administration led to transient increases in plasma concentrations of interleukin (IL)-6, IL-10, and tumor necrosis factor (TNF)-α and to a significant rise in body temperature. Sole presentation of the CS during evocation did induce neither alterations in body temperature nor changes in plasma cytokine levels. However, subjects in the experimental group rated the smell of the CS significantly more aversive compared to the control group. Employing endotoxin as a US in a single trial taste-immune conditioning paradigm in humans shows a behaviorally conditioned smell aversion but no learned alterations in cytokine levels. PMID:21925260

  14. Solution NMR studies provide structural basis for endotoxin pattern recognition by the innate immune receptor CD14

    SciTech Connect

    Albright, Seth; Chen Bin; Holbrook, Kristen; Jain, Nitin U.

    2008-04-04

    CD14 functions as a key pattern recognition receptor for a diverse array of Gram-negative and Gram-positive cell-wall components in the host innate immune response by binding to pathogen-associated molecular patterns (PAMPs) at partially overlapping binding site(s). To determine the potential contribution of CD14 residues in this pattern recognition, we have examined using solution NMR spectroscopy, the binding of three different endotoxin ligands, lipopolysaccharide, lipoteichoic acid, and a PGN-derived compound, muramyl dipeptide to a {sup 15}N isotopically labeled 152-residue N-terminal fragment of sCD14 expressed in Pichia pastoris. Mapping of NMR spectral changes upon addition of ligands revealed that the pattern of residues affected by binding of each ligand is partially similar and partially different. This first direct structural observation of the ability of specific residue combinations of CD14 to differentially affect endotoxin binding may help explain the broad specificity of CD14 in ligand recognition and provide a structural basis for pattern recognition. Another interesting finding from the observed spectral changes is that the mode of binding may be dynamically modulated and could provide a mechanism for binding endotoxins with structural diversity through a common binding site.

  15. Effect of chronic ethanol feeding on endotoxin-induced hepatic injury: role of adhesion molecules on leukocytes and hepatic sinusoid.

    PubMed

    Ohki, E; Kato, S; Ohgo, H; Mizukami, T; Fukuda, M; Tamai, H; Okamura, Y; Matsumoto, M; Suzuki, H; Yokoyama, H; Ishii, H

    1998-05-01

    Endotoxin is postulated to be an important aggravating factor for alcoholic liver disease. We have previously reported that rats fed ethanol are more vulnerable to endotoxin-induced liver damage, and hepatic microcirculatory disturbance plays an important role for this liver damage by observation with an intravital microscopy. In this study, we have investigated the role of adhesion molecules in endotoxin-induced microcirculatory disturbance in chronic ethanol-fed rats. Male Wistar rats were pair-fed with ethanol liquid diet (ethanol group) or an isocaloric control diet (control group) for 6 weeks. Leukocyte adherence to the hepatic sinusoid by stimulation with lipopolysaccharides (1 mg/kg of body weight) was observed by an inverted fluorescence microscopy equipped with a silicon-intensified target camera and was found to be enhanced in ethanol-fed rats. Tumor necrosis factor-alpha and GRO/CINC-1 (rat counterpart of interleukin-8) was increased in the blood in these animals. Subsequent expression of adhesion molecules, LFA-1 beta-chain on leukocytes were demonstrated by flow cytometry, which suggests a possible involvement of leukocyte adherence to the hepatic damage in ethanol-fed animals. Preadministration of anti-rat LFA-1 beta-chain monoclonal antibody effectively suppressed leukocyte adherence to the hepatic sinusoid. These results suggest that the enhanced sequestration of neutrophils to the liver with these adhesion molecules may play a significant role in the pathogenesis of alcoholic liver disease. PMID:9622389

  16. TLR4 activation of TRPC6-dependent calcium signaling mediates endotoxin-induced lung vascular permeability and inflammation.

    PubMed

    Tauseef, Mohammad; Knezevic, Nebojsa; Chava, Koteswara R; Smith, Monica; Sukriti, Sukriti; Gianaris, Nicholas; Obukhov, Alexander G; Vogel, Stephen M; Schraufnagel, Dean E; Dietrich, Alexander; Birnbaumer, Lutz; Malik, Asrar B; Mehta, Dolly

    2012-10-22

    Lung vascular endothelial barrier disruption and the accompanying inflammation are primary pathogenic features of acute lung injury (ALI); however, the basis for the development of both remains unclear. Studies have shown that activation of transient receptor potential canonical (TRPC) channels induces Ca(2+) entry, which is essential for increased endothelial permeability. Here, we addressed the role of Toll-like receptor 4 (TLR4) intersection with TRPC6-dependent Ca(2+) signaling in endothelial cells (ECs) in mediating lung vascular leakage and inflammation. We find that the endotoxin (lipopolysaccharide; LPS) induces Ca(2+) entry in ECs in a TLR4-dependent manner. Moreover, deletion of TRPC6 renders mice resistant to endotoxin-induced barrier dysfunction and inflammation, and protects against sepsis-induced lethality. TRPC6 induces Ca(2+) entry in ECs, which is secondary to the generation of diacylglycerol (DAG) induced by LPS. Ca(2+) entry mediated by TRPC6, in turn, activates the nonmuscle myosin light chain kinase (MYLK), which not only increases lung vascular permeability but also serves as a scaffold to promote the interaction of myeloid differentiation factor 88 and IL-1R-associated kinase 4, which are required for NF-?B activation and lung inflammation. Our findings suggest that TRPC6-dependent Ca(2+) entry into ECs, secondary to TLR4-induced DAG generation, participates in mediating both lung vascular barrier disruption and inflammation induced by endotoxin. PMID:23045603

  17. TLR4 activation of TRPC6-dependent calcium signaling mediates endotoxin-induced lung vascular permeability and inflammation

    PubMed Central

    Tauseef, Mohammad; Knezevic, Nebojsa; Chava, Koteswara R.; Smith, Monica; Sukriti, Sukriti; Gianaris, Nicholas; Obukhov, Alexander G.; Vogel, Stephen M.; Schraufnagel, Dean E.; Dietrich, Alexander; Birnbaumer, Lutz; Malik, Asrar B.

    2012-01-01

    Lung vascular endothelial barrier disruption and the accompanying inflammation are primary pathogenic features of acute lung injury (ALI); however, the basis for the development of both remains unclear. Studies have shown that activation of transient receptor potential canonical (TRPC) channels induces Ca2+ entry, which is essential for increased endothelial permeability. Here, we addressed the role of Toll-like receptor 4 (TLR4) intersection with TRPC6-dependent Ca2+ signaling in endothelial cells (ECs) in mediating lung vascular leakage and inflammation. We find that the endotoxin (lipopolysaccharide; LPS) induces Ca2+ entry in ECs in a TLR4-dependent manner. Moreover, deletion of TRPC6 renders mice resistant to endotoxin-induced barrier dysfunction and inflammation, and protects against sepsis-induced lethality. TRPC6 induces Ca2+ entry in ECs, which is secondary to the generation of diacylglycerol (DAG) induced by LPS. Ca2+ entry mediated by TRPC6, in turn, activates the nonmuscle myosin light chain kinase (MYLK), which not only increases lung vascular permeability but also serves as a scaffold to promote the interaction of myeloid differentiation factor 88 and IL-1Rassociated kinase 4, which are required for NF-?B activation and lung inflammation. Our findings suggest that TRPC6-dependent Ca2+ entry into ECs, secondary to TLR4-induced DAG generation, participates in mediating both lung vascular barrier disruption and inflammation induced by endotoxin. PMID:23045603

  18. Contribution of tumor necrosis factor-alpha and glucocorticoid in hydrazine sulfate-mediated protection against endotoxin lethality.

    PubMed

    Johnson, D C; Freudenberg, M A; Jia, F; Gonzalez, J C; Galanos, C; Morrison, D C; Silverstein, R

    1994-05-01

    Hydrazine sulfate pretreatment has previously been shown in our laboratory to protect normal mice against endotoxin and D-galactosamine-sensitized mice against both exogenous tumor necrosis factor (TNF) and endotoxin. An intact pituitary is required for manifestation of the protective effects. Further, we have demonstrated that hydrazine sulfate pretreatment specifically modulates the TNF response to lipopolysaccharide (LPS) in mouse macrophages in vitro. This in vivo study was performed to test whether a reduced TNF response and/or increased glucocorticoid response may contribute to hydrazine sulfate protection against LPS-induced lethality in vivo. The results presented here establish that hydrazine sulfate pretreatment selectively attenuates circulating TNF levels following LPS challenge. Moreover, adrenalectomy abrogates hydrazine sulfate protection but does not prevent hydrazine sulfate attenuation of circulating TNF levels in response to LPS. Hydrazine sulfate-mediated protection is, however, restored permissively by corticosterone. Thus, the mechanism by which hydrazine sulfate protects against LPS lethality in adrenalectomized mice includes TNF modulation in response to endotoxin, as well as a pivotal requirement for glucocorticoid. PMID:7982269

  19. Anti-CD14 mAb treatment provides therapeutic benefit after in vivo exposure to endotoxin

    PubMed Central

    Schimke, Jan; Mathison, John; Morgiewicz, Janice; Ulevitch, Richard J.

    1998-01-01

    The presence of endotoxin from Gram-negative bacteria signals the innate immune system to up-regulate bacterial clearance and/or killing mechanisms. Paradoxically, such responses also contribute to septic shock, a clinical problem occurring with high frequency in Gram-negative septicemia. CD14 is a receptor for endotoxin (lipopolysaccharide, LPS) and is thought to have an essential role in innate immune responses to infection and thereby in the development of septic shock. Using a novel rabbit model of endotoxic shock produced by multiple exposures to endotoxin, we show that anti-rabbit CD14 mAb, which blocks LPS-CD14 binding, protects against organ injury and death even when the antibody is administered after initial exposures to LPS. In contrast, anti-rabbit tumor necrosis factor mAb treatment fails to protect when administered after LPS injections. These results support the concept that anti-CD14 treatment provides a new therapeutic window for the prevention of pathophysiologic changes that result from cumulative exposures to LPS during septic shock in man. PMID:9811894

  20. Identification of single nucleotide polymorphisms in hematopoietic cell transplant patients affecting early recognition of, and response to, endotoxin

    PubMed Central

    Guinan, Eva C; Palmer, Christine D; Mancuso, Christy J; Brennan, Lisa; Stoler-Barak, Liat; Kalish, Leslie A; Suter, Eugenie E; Gallington, Leighanne C; Huhtelin, David P; Mansilla, Maria; Schumann, Ralf R; Murray, Jeffrey C; Weiss, Jerrold; Levy, Ofer

    2014-01-01

    Hematopoietic cell transplant (HCT) is a life-saving therapy for many malignant and non-malignant bone marrow diseases. Associated morbidities are often due to transplant-related toxicities and infections, exacerbated by regimen-induced immune suppression and systemic incursion of bacterial products. Patients undergoing myeloablative conditioning for HCT become endotoxemic and display blood/plasma changes consistent with lipopolysaccharide (LPS)-induced systemic innate immune activation. Herein, we addressed whether patients scheduled for HCT display differences in recognition/response to LPS ex vivo traceable to specific single nucleotide polymorphisms (SNPs). Two SNPs of LPS binding protein (LBP) were associated with changes in plasma LBP levels, with one LBP SNP also associating with differences in efficiency of extraction and transfer of endotoxin to myeloid differentiation factor-2 (MD-2), a step needed for activation of TLR4. None of the examined SNPs of CD14, bactericidal/permeability-increasing protein (BPI), TLR4 or MD-2 were associated with corresponding protein plasma levels or endotoxin delivery to MD-2, but CD14 and BPI SNPs significantly associated with differences in LPS-induced TNF-? release ex vivo and infection frequency, respectively. These findings suggest that specific LBP, CD14 and BPI SNPs might be contributory assessments in studies where clinical outcome may be affected by host response to endotoxin and bacterial infection. PMID:24107515

  1. Rutin improves endotoxin-induced acute lung injury via inhibition of iNOS and VCAM-1 expression.

    PubMed

    Huang, Yi-Chun; Horng, Chi-Ting; Chen, Shyan-Tarng; Lee, Shiuan-Shinn; Yang, Ming-Ling; Lee, Chien-Ying; Kuo, Wu-Hsien; Yeh, Chung-Hsin; Kuan, Yu-Hsiang

    2016-02-01

    Endotoxins exist anywhere including in water pools, dust, humidifier systems, and machining fluids. The major causal factor is endotoxins in many serious diseases, such as fever, sepsis, multi-organ failure, meningococcemia, and severe morbidities like neurologic disability, or hearing loss. Endotoxins are also called lipopolysaccharide (LPS) and are important pathogens of acute lung injury (ALI). Rutin has potential beneficial effects including anti-inflammation, antioxidation, anti-hyperlipidemia, and anti-platelet aggregation. Pre-treatment with rutin inhibited LPS-induced neutrophil infiltration in the lungs. LPS-induced expression of vascular cell adhesion molecule (VCAM)-1 and inducible nitric oxide synthase (iNOS) was suppressed by rutin, but there was no influence on expression of intercellular adhesion molecule-1 and cyclooxygenase-2. In addition, activation of the nuclear factor (NF)κB was reduced by rutin. Furthermore, we found that the inhibitory concentration of rutin on expression of VCAM-1 and iNOS was similar to NFκB activation. In conclusion, rutin is a potential protective agent for ALI via inhibition of neutrophil infiltration, expression of VCAM-1 and iNOS, and NFκB activation. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 185-191, 2016. PMID:25080890

  2. Airborne endotoxin in fine particulate matter in Beijing

    NASA Astrophysics Data System (ADS)

    Guan, Tianjia; Yao, Maosheng; Wang, Junxia; Fang, Yanhua; Hu, Songhe; Wang, Yan; Dutta, Anindita; Yang, Junnan; Wu, Yusheng; Hu, Min; Zhu, Tong

    2014-11-01

    Endotoxin is an important biological component of particulate matter (PM) which, upon inhalation, can induce adverse health effects, and also possibly complicate the diseases in combination with other pollutants. From 1 March 2012 to 27 February 2013 we collected air samples using quartz filters daily for the quantification of airborne endotoxin and also fine PM (PM2.5) in Beijing, China. The geometric means for endotoxin concentration and the fraction of endotoxin in PM were 0.65 EU/m3 (range: 0.10-75.02) and 10.25 EU/mg PM2.5 (range: 0.38-1627.29), respectively. The endotoxin concentrations were shown to vary greatly with seasons, typically with high values in the spring and winter seasons. Temperature and relative humidity, as well as concentrations of sulfur dioxide and nitrogen oxides were found to be significantly correlated with airborne endotoxin concentrations (p < 0.05). Additionally, positive correlations were also detected between endotoxin concentrations and natural sources of Na+, K+, Mg2+, and F-, while negative correlations were observed between endotoxin concentrations and anthropogenic sources of P, Co, Zn, As, and Tl. Oxidative potential analysis revealed that endotoxin concentrations were positively correlated with reactive oxygen species (ROS), but not dithiothreitol (DTT) of PM. This study provided the first continuous time series of airborne endotoxin concentrations in Beijing, and identifies its potential associations with atmospheric factors. The information developed here can assist in the assessment of health effects of air pollution in Beijing.

  3. Monocytes from Depressed Patients Display an Altered Pattern of Response to Endotoxin Challenge

    PubMed Central

    Lisi, Lucia; Camardese, Giovanni; Treglia, Mariangela; Tringali, Giuseppe; Carrozza, Cinzia; Janiri, Luigi; Russo, Cinzia Dello; Navarra, Pierluigi

    2013-01-01

    It is now well established that major depression is accompanied and characterized by altered responses of the immune-inflammatory system. In this study we investigated the pro-inflammatory activation of monocytes isolated from depressed patients as a parameter not influenced by such confounds as the time of day, the nutritional and exercise status or the age and gender of patients. Monocytes from depressed patients and from healthy controls were isolated in vitro; after 24-h incubation under basal conditions, cells were exposed for 24-h to 100 ng/ml of endotoxin (bacterial lipopolysaccharide, LPS). We found that monocytes from drug-free depressed patients and controls release the same amounts of prostaglandin E2 (PGE2) under basal conditions, whereas monocytes from patients are dramatically less reactive to LPS (8.62-fold increase vs previous 24 hrs) compared to healthy controls (123.3-fold increase vs previous 24 hrs). Such blunted prostanoid production was paralleled by a reduction in COX-2 gene expression, whereas other pro-inflammatory mediators, namely interleukin-1? (IL-1 ?) and -6 (IL-6) showed a trend to increased gene expression. The above changes were not associated to increased levels of circulating glucocorticoids. After 8 months of antidepressive drug treatment, the increase in PGE2 production after the endotoxin challenge was partially restored, whereas the increase in IL-1 ? and -6 levels observed at baseline was completely abolished. In conclusion, our findings show that the reactivity of monocytes from depressed patients might be considered as a marker of the immune-inflammatory disorders associated to depression, although the lack of paired healthy controls at follow-up does not allow to conclude that monocyte reactivity to endotoxin is also a marker of treatment outcome. PMID:23300980

  4. Effect of spaceflight on ability of monocytes to respond to endotoxins of gram-negative bacteria.

    PubMed

    Kaur, Indreshpal; Simons, Elizabeth R; Kapadia, Asha S; Ott, C Mark; Pierson, Duane L

    2008-10-01

    Astronauts live and work in relatively crowded, confined environments on the Space Shuttle and the International Space Station. They experience a unique set of stressors that contribute to a diminishment of many immune responses. This study investigated the ability of the shuttle crew members' monocytes to respond to gram-negative endotoxin that they could encounter during infections. Blood specimens were collected from 20 crew members and 15 control subjects 10 days before launch, 3 to 4 h after landing, and 15 days after landing and from crew members during their annual medical examination at 6 to 12 months after landing. When challenged with gram-negative endotoxin, the crew member's monocytes collected at all three time points produced lower levels of interleukin-6 (IL-6) and IL-1beta and higher levels of IL-1ra and IL-8 compared to those of control subjects. Cytokines were assessed by measuring the number of cells positive for intracellular cytokines. These values returned to normal 6 to 12 months after landing, except for IL-1ra, which was still higher (five- to sixfold) than in controls. This phenomenon was accompanied by an increased expression of Toll-like receptor 4 and decreased expression of CD14 on the crew members' monocytes at all time points. There were also increased levels of the lipopolysaccharide binding protein in the plasma of the crew members 3 to 4 h and 15 days after landing. This study shows that spaceflight-associated factors (in-flight and preflight) modulate the response of monocytes to gram-negative endotoxins. PMID:18768671

  5. Effect of Spaceflight on Ability of Monocytes To Respond to Endotoxins of Gram-Negative Bacteria?

    PubMed Central

    Kaur, Indreshpal; Simons, Elizabeth R.; Kapadia, Asha S.; Ott, C. Mark; Pierson, Duane L.

    2008-01-01

    Astronauts live and work in relatively crowded, confined environments on the Space Shuttle and the International Space Station. They experience a unique set of stressors that contribute to a diminishment of many immune responses. This study investigated the ability of the shuttle crew members' monocytes to respond to gram-negative endotoxin that they could encounter during infections. Blood specimens were collected from 20 crew members and 15 control subjects 10 days before launch, 3 to 4 h after landing, and 15 days after landing and from crew members during their annual medical examination at 6 to 12 months after landing. When challenged with gram-negative endotoxin, the crew member's monocytes collected at all three time points produced lower levels of interleukin-6 (IL-6) and IL-1? and higher levels of IL-1ra and IL-8 compared to those of control subjects. Cytokines were assessed by measuring the number of cells positive for intracellular cytokines. These values returned to normal 6 to 12 months after landing, except for IL-1ra, which was still higher (five- to sixfold) than in controls. This phenomenon was accompanied by an increased expression of Toll-like receptor 4 and decreased expression of CD14 on the crew members' monocytes at all time points. There were also increased levels of the lipopolysaccharide binding protein in the plasma of the crew members 3 to 4 h and 15 days after landing. This study shows that spaceflight-associated factors (in-flight and preflight) modulate the response of monocytes to gram-negative endotoxins. PMID:18768671

  6. Analusis by 252Cf plasma desorption mass spectrometry of Bordetella pertussis endotoxin after nitrous deamination

    NASA Astrophysics Data System (ADS)

    Deprun, C.; Karibian, D.; Caroff, M.

    1993-07-01

    Endotoxic lipopolysaccharides (LPSs) are the major components of Gram-negative bacterial outer membrane. Like many amphipathic molecules, they pose problems of heterogeneity, purity, solubility, and aggregation. Nevertheless, PDMS has recently have been applied to unmodified endotoxins composed of LPS having uip to five sugar units in their saccharide chain. The B. Pertussis LPSs, most of which have a dodecasaccharide domain, ahve been analysed by classical methods and the masses of the separate lipid and saccharide domains determined after rupture of the bond linking them. However, the acid treatment employed for these and most chemical analyses can also modify structures in the vicinity of the bond. In order to investigate this biologically-important region, the endotoxin was treated to nitrous deamination, which shortens the saccharide chain to five sugars, but preserves the acid-labile region of the LPS. The PDM spectrum of this derivative, which required new conditions for its desorption, confirmed the structure analysis and demonstrated the presence of at least four molecular species.

  7. Rhein prevents endotoxin-induced acute kidney injury by inhibiting NF-?B activities

    PubMed Central

    Yu, Chen; Qi, Dong; Sun, Ju-Feng; Li, Peng; Fan, Hua-Ying

    2015-01-01

    This study aimed to explore the effect and mechanisms of rhein on sepsis-induced acute kidney injury by injecting lipopolysaccharide (LPS) and cecal ligation and puncture (CLP) in vivo, and on LPS-induced HK-2 cells in vitro. For histopathological analysis, rhein effectively attenuated the severity of renal injury. Rhein could significantly decrease concentration of BUN and SCr and level of TNF-? and IL-1? in two different mouse models of experimental sepsis. Moreover, rhein could markedly attenuate circulating leukocyte infiltration and enhance phagocytic activity of macrophages partly impaired at 12?h after CLP. Rhein could enhance cell viability and suppresse the release of MCP-1 and IL-8 in LPS-stimulated HK-2 cells Furthermore, rhein down regulated the expression of phosphorylated NF-?B p65, I?B? and IKK? stimulated by LPS both in vivo and in vitro. All these results suggest that rhein has protective effects on endotoxin-induced kidney injury. The underlying mechanism of rhein on anti-endotoxin kidney injury may be closely related with its anti-inflammatory and immunomodulatory properties by decreasing NF-?B activation through restraining the expression and phosphorylation of the relevant proteins in NF-?B signal pathway, hindering transcription of NF-?B p65.These evidence suggest that rhein has a potential application to treat endotoxemia-associated acute kidney injury. PMID:26149595

  8. Uropathogenic Escherichia coli.

    PubMed

    Mobley, Harry L T; Donnenberg, Michael S; Hagan, Erin C

    2009-08-01

    The urinary tract is among the most common sites of bacterial infection, and Escherichia coli is by far the most common species infecting this site. Individuals at high risk for symptomatic urinary tract infection (UTI) include neonates, preschool girls, sexually active women, and elderly women and men. E. coli that cause the majority of UTIs are thought to represent only a subset of the strains that colonize the colon. E. coli strains that cause UTIs are termed uropathogenic E. coli (UPEC). In general, UPEC strains differ from commensal E. coli strains in that the former possess extragenetic material, often on pathogenicity-associated islands (PAIs), which code for gene products that may contribute to bacterial pathogenesis. Some of these genes allow UPEC to express determinants that are proposed to play roles in disease. These factors include hemolysins, secreted proteins, specific lipopolysaccharide and capsule types, iron acquisition systems, and fimbrial adhesions. The current dogma of bacterial pathogenesis identifies adherence, colonization, avoidance of host defenses, and damage to host tissues as events vital for achieving bacterial virulence. These considerations, along with analysis of the E. coli CFT073, UTI89, and 536 genomes and efforts to identify novel virulence genes should advance the field significantly and allow for the development of a comprehensive model of pathogenesis for uropathogenic E. coli.Further study of the adaptive immune response to UTI will be especially critical to refine our understanding and treatment of recurrent infections and to develop vaccines. PMID:26443763

  9. Lipopolysaccharides in diazotrophic bacteria

    PubMed Central

    Serrato, Rodrigo V.

    2014-01-01

    Biological nitrogen fixation (BNF) is a process in which the atmospheric nitrogen (N2) is transformed into ammonia (NH3) by a select group of nitrogen-fixing organisms, or diazotrophic bacteria. In order to furnish the biologically useful nitrogen to plants, these bacteria must be in constant molecular communication with their host plants. Some of these molecular plant-microbe interactions are very specific, resulting in a symbiotic relationship between the diazotroph and the host. Others are found between associative diazotrophs and plants, resulting in plant infection and colonization of internal tissues. Independent of the type of ecological interaction, glycans, and glycoconjugates produced by these bacteria play an important role in the molecular communication prior and during colonization. Even though exopolysaccharides (EPS) and lipochitooligosaccharides (LCO) produced by diazotrophic bacteria and released onto the environment have their importance in the microbe-plant interaction, it is the lipopolysaccharides (LPS), anchored on the external membrane of these bacteria, that mediates the direct contact of the diazotroph with the host cells. These molecules are extremely variable among the several species of nitrogen fixing-bacteria, and there are evidences of the mechanisms of infection being closely related to their structure. PMID:25232535

  10. Diet-induced obesity attenuates endotoxin-induced cognitive deficits.

    PubMed

    Setti, Sharay E; Littlefield, Alyssa M; Johnson, Samantha W; Kohman, Rachel A

    2015-03-15

    Activation of the immune system can impair cognitive function, particularly on hippocampus dependent tasks. Several factors such as normal aging and prenatal experiences can modify the severity of these cognitive deficits. One additional factor that may modulate the behavioral response to immune activation is obesity. Prior work has shown that obesity alters the activity of the immune system. Whether diet-induced obesity (DIO) influences the cognitive deficits associated with inflammation is currently unknown. The present study explored whether DIO alters the behavioral response to the bacterial endotoxin, lipopolysaccharide (LPS). Female C57BL/6J mice were fed a high-fat (60% fat) or control diet (10% fat) for a total of five months. After consuming their respective diets for four months, mice received an LPS or saline injection and were assessed for alterations in spatial learning. One month later, mice received a second injection of LPS or saline and tissue samples were collected to assess the inflammatory response within the periphery and central nervous system. Results showed that LPS administration impaired spatial learning in the control diet mice, but had no effect in DIO mice. This lack of a cognitive deficit in the DIO female mice is likely due to a blunted inflammatory response within the brain. While cytokine production within the periphery (i.e., plasma, adipose, and spleen) was similar between the DIO and control mice, the DIO mice failed to show an increase in IL-6 and CD74 in the brain following LPS administration. Collectively, these data indicate that DIO can reduce aspects of the neuroinflammatory response as well as blunt the behavioral reaction to an immune challenge. PMID:25542778

  11. Interception of the endotoxin-induced arterial hyporeactivity to vasoconstrictors

    PubMed Central

    Zhang, Shuang; Cui, Ningren; Li, Shanshan; Guo, Lei; Wu, Yang; Zhu, Daling; Jiang, Chun

    2014-01-01

    Septic shock is a severe pathophysiologic condition characterized by vasodilation, hypotension, hypoperfusion, tissue hypoxia, multiple organ failure and death. It is unclear what causes the septic vasodilation that may result from general dysfunction of vascular smooth muscles (VSMs) or selective disruption of vasomotor balances in VSMs. The latter could be due to enhanced vasorelaxation and/or depressed vasoconstriction. Understanding these may lead to pharmacological interventions to septic vasodilation. Therefore, we performed studies in isolated and perfused mesenteric arterial rings. A 20-h exposure of the rings to lipopolysaccharide (LPS, 1μg/ml) led to hyporeactivity to phenylephrine (PE). However, the responses of the LPS-treated rings to high concentrations of KCl (60mM) and ATP remained comparable to control rings, suggesting that contractility of VSMs is retained. The hyporeactivity was marginally affected by atropine, indomethacin and L-NAME, suggesting that endothelium-dependent vasorelaxation does not play a major role. In addition to PE, the LPS-treated rings were hyporeactive to dopamine, histamine and angiotensin II. They showed intermediate hyporeactivity to the thromboxane-A2 receptor agonist U46619. Little hyporeactivity to endothelin-1 (ET-1), serotonin (5-HT) and vasopressin was found. ET-1-induced vasoconstriction occurred without endothelium, whereas the effect of serotonin was endothelium dependent. Although rings were hyporeactive to some of the vasopressors, their vasoconstriction effects were significantly potentiated by PE co-application. Taken together, these data suggest that the endotoxin-induced vasodilation may not result from general dysfunction of VSMs, neither from the endothelium-dependent vasorelaxation. The promising vascular response to various vasoconstrictors found in this study warrants further investigations of therapeutic potentials of these agents. PMID:24792896

  12. Isolation, characterization, and biological properties of an endotoxin-like material from the gram-positive organism Listeria monocytogenes.

    PubMed Central

    Wexler, H; Oppenheim, J D

    1979-01-01

    The bacterial component responsible for the induction of transient cold agglutinin syndrome in rabbits after intravenous injection of heat-killed Listeria monocytogenes type 4B has been purified and biologically and chemically characterized. A purified immunoglobulin M cold agglutinin was prepared from high-titer sera resulting from the immunization of rabbits with heat-killed L. monocytogenes type 4B and was subsequently used to monitor the purification of the bacterial component responsible for its induction. The bacterial component was isolated from a hot phenol-water extract of lyophilized L. monocytogenes type 4B by multiple molecular sieve chromatography. Upon chemical analysis the purified material was found to be strikingly similar in chemical composition to gram-negative lipopolysaccharide endotoxins. The material contained 15% total fatty acid (of which 50% was beta-hydroxymyristic acid), 40 to 45% neutral sugar (glucose, galactose, and rhamnose), 11.5% amino sugar, 12% uronic acid, 2.5% 2-keto-3-deoxyoctonic acid, 2% heptose, 0.87% phosphorus, and 1.6% amino acid, thereby accounting for 85 to 90% of the weight of the component. Electron micrographs of the purified material were similar to those of lipopolysaccharide preparations from gram-negative organisms. The purified material exist in aqueous solutions as large aggregates, but can be dissociated into a single smaller subunit (3.1S) by dialysis against sodium dodecyl sulfate buffer. The listerial component was toxic and pyrogenic to rabbits, producing symptoms typical of gram-negative endotoxins. Activity in the limulus lysate gelation assay and in the carbocyanine dye assay provides a further link of this material with classical gram-negative endotoxins. Images PMID:110684

  13. Citric Acid Effects on Brain and Liver Oxidative Stress in Lipopolysaccharide-Treated Mice

    PubMed Central

    Youness, Eman R.; Mohammed, Nadia A.; Morsy, Safaa M. Youssef; Omara, Enayat A.; Sleem, Amany A.

    2014-01-01

    Abstract Citric acid is a weak organic acid found in the greatest amounts in citrus fruits. This study examined the effect of citric acid on endotoxin-induced oxidative stress of the brain and liver. Mice were challenged with a single intraperitoneal dose of lipopolysaccharide (LPS; 200 ?g/kg). Citric acid was given orally at 1, 2, or 4?g/kg at time of endotoxin injection and mice were euthanized 4?h later. LPS induced oxidative stress in the brain and liver tissue, resulting in marked increase in lipid peroxidation (malondialdehyde [MDA]) and nitrite, while significantly decreasing reduced glutathione, glutathione peroxidase (GPx), and paraoxonase 1 (PON1) activity. Tumor necrosis factor-alpha (TNF-?) showed a pronounced increase in brain tissue after endotoxin injection. The administration of citric acid (12?g/kg) attenuated LPS-induced elevations in brain MDA, nitrite, TNF-?, GPx, and PON1 activity. In the liver, nitrite was decreased by 1?g/kg citric acid. GPx activity was increased, while PON1 activity was decreased by citric acid. The LPS-induced liver injury, DNA fragmentation, serum transaminase elevations, caspase-3, and inducible nitric oxide synthase expression were attenuated by 12?g/kg citric acid. DNA fragmentation, however, increased after 4?g/kg citric acid. Thus in this model of systemic inflammation, citric acid (12?g/kg) decreased brain lipid peroxidation and inflammation, liver damage, and DNA fragmentation. PMID:24433072

  14. CD14 and lipopolysaccharide binding protein expression in a rat model of alcoholic liver disease.

    PubMed Central

    Su, G. L.; Rahemtulla, A.; Thomas, P.; Klein, R. D.; Wang, S. C.; Nanji, A. A.

    1998-01-01

    Lipopolysaccharide-binding protein (LBP) and CD14 play key intermediary roles in the activation of cells by endotoxin. As endotoxin has been postulated to participate in promoting pathological liver injury in alcoholic liver disease, we investigated the role of LBP and CD14 in alcoholic liver injury. Rats were fed intragastrically ethanol or dextrose and either medium-chain triglycerides, corn oil, or fish oil for 4 weeks. Kupffer cells, endothelial cells, and hepatocytes were isolated. LBP and CD14 mRNA levels were measured in liver and individual cell types. The highest levels of LBP and CD14 mRNA levels in the liver were found in the fish oil/ethanol group, which was also the group with the greatest degree of pathological injury and inflammation. CD14 mRNA levels were also significantly elevated in groups fed unsaturated fatty acids with dextrose. CD14 expression was localized to the Kupffer cells and LBP expression to the hepatocytes. Expression of CD14 mRNA was also found in nonmyeloid cells in the two experimental groups (fish oil/ethanol and corn oil/ethanol) that had liver necrosis and inflammation. Our results suggest that enhanced LBP and CD14 expression correlates with the presence of pathological liver injury in alcoholic liver injury. Furthermore, unsaturated fatty acids may prime cells to respond to endotoxin by enhancing CD14 expression. Images Figure 1 Figure 2 Figure 3 Figure 7 Figure 8 PMID:9502426

  15. De novo designed lipopolysaccharide binding peptides: structure based development of antiendotoxic and antimicrobial drugs.

    PubMed

    Bhattacharjya, S

    2010-01-01

    Lipopolysaccharide (LPS), the glycolipid of the outer membrane of Gram-negative bacteria, is critically involved in health and diseases. LPS facilitates the survival of pathogens by imposing a permeability barrier against antibiotics and antimicrobial peptides. LPS, also termed as endotoxin, functions as a potent inducer of innate immunity. Interception of endotoxin in systemic circulation by immune cells e.g. macrophages is essential to mount surveillance against invading microbes. However, a hyper-activated immune response may lead to the overwhelming production of tissue damaging cytokines TNF-?, IL-1, IL-6 and free radicals that may cause multiple organ failures or septic shock syndromes. The sepsis or septic shock is the major cause of mortality; 120,000 deaths/year occur in the United States alone, in the intensive care units. To-date, no therapeutic is available to combat sepsis mediated lethality. Furthermore, bacterial resistance against commonly used antibiotics has been increasing at an alarming rate necessitating a search for antibacterial agents with novel mode of actions. LPS could be a valid drug target for the development of antiendotoxic and antimicrobial compounds. In this article, recent advances in structural basis of LPS recognition by its receptor proteins and mode of actions of antimicrobial peptides defensins and cathelicidins are reviewed. Our research has identified, through de novo design, antimicrobial and endotoxin interacting ?-boomerang peptides. Structure-activity correlations (SAR) of these peptides have been discussed, highlighting future design to achieve potent LPS neutralizing molecules. PMID:20629624

  16. Relation of structure to function for the US reference standard endotoxin after exposure to /sup 60/Co radiation, Interim report, September 1984-December 1985

    SciTech Connect

    Suba, E.A.; Elin, R.J.

    1986-01-01

    The structure and function of the highly purified U.S. reference standard endotoxin (RSE) were studied after exposure to ionizing radiation from a /sup 60/Co source. With increasing doses of radiation, the trilaminar ribbon-like structure of untreated endotoxin exhibited focal swelling, after which only spherical particles were seen by electron microscopy. These morphological changes were paralleled by the respective loss of O-side chain-repeating units and pieces of the R-core from the lipopolysaccharide molecules, as demonstrated by electrophoresis. The biologic function of the irradiated endotoxin was assessed with a variety of tests. At higher doses of radiation, a direct relation was observed between the degradation of the molecular and supramolecular structure and the loss of biologic function. At lower doses of radiation, however, there was variability among the functional assays in their rate of change with progressive irradiation of the RSE. The results suggest that the carbohydrate moiety plays an important role both in determining the supramolecular structure and in modulating certain biologic activities of bacterial endotoxins.

  17. The fecal flora of various strains of mice. Its bearing on their susceptibility to endotoxin.

    PubMed

    SCHAEDLER, R W; DUBOS, R J

    1962-06-01

    Adult mice from seven different colonies were studied with regard to (a) the numbers and types of bacteria that could be cultivated from their stools; (b) their resistance to the lethal effect of endotoxins prepared from three strains of Gram-negative bacilli. See PDF for Structure In six of the seven colonies, the stools yielded large numbers of various types of lactobacilli, enterococci, and Gram-negative bacilli. Most animals in these colonies died within 48 hours following injection of endotoxin. The other mouse colony (NCS) has been maintained for the past three years at the Rockefeller Institute under exacting sanitary conditions; it is free of many types of common mouse pathogens. The stool flora of NCS mice yielded very large numbers of viable lactobacilli (10(9) per gm), representing at least three different morphological types. In contrast, it contained only few enterococci and Gram-negative bacilli (less than 10(6) per gm). Moreover, E. coli, Proteus sp., and Pseudomonas sp. could not be recovered from the stools under normal conditions. NCS mice proved resistant to the lethal effect of endotoxins. These characteristics of the NCS colony prevailed whether the animals were housed continuously in individual cages on wire grids, or grouped continuously in large cages with wood shavings as litter. However, the composition of the bacterial flora could be rapidly and profoundly altered by a variety of unrelated disturbances such as sudden changes in environmental temperature, crowding in cages, handling of the animals, administration of antibacterial drugs, etc. The first effect of the change was a marked decrease in the numbers of lactobacilli and commonly an increase in the numbers of Gram-negative bacilli and enterococci. When tested 3 weeks after these disturbances some NCS animals were found to have become susceptible to the lethal effects of endotoxin. PMID:14497916

  18. Effect of vasopressors on organ blood flow during endotoxin shock in pigs

    SciTech Connect

    Breslow, M.J.; Miller, C.F.; Parker, S.D.; Walman, A.T.; Traystman, R.J.

    1987-02-01

    A volume-resuscitated porcine endotoxin shock model was used to evaluate the effect on organ blood flow of increasing systemic arterial blood pressure with vasopressors. Administration of 0.05-0.2 mg/kg of Escherichia coli endotoxin (E) reduced mean arterial blood pressure (MAP) to 50 mmHg, decreased systemic vascular resistance to 50% of control, and did not change cardiac output or heart rate. Blood flow measured with radiolabeled microspheres to brain, kidney, spleen, and skeletal muscle was reduced during endotoxin shock, but blood flow to left ventricle, small and large intestine, and stomach remained at pre-endotoxin levels throughout the study period. Four groups of animals were used to evaluate the effect of vasopressor therapy. Vasopressors were administered starting 60 min after E exposure, and the dose of each was titrated to increase MAP to 75 mmHg. Despite the increase in MAP, brain blood flow did not increase in any group. Norepinephrine alone increased blood flow to the left ventricle. The dose of norepinephrine required to increase MAP by 20-25 mmHg during E shock was 30 times the does required for a similar increase in MAP in animals not receiving E. The authors conclude 1) that hypotension in the fluid resuscitated porcine E shock model is primarily the result of peripheral vasodilatation, 2) that the vascular response to vasoconstrictors in this model is markedly attenuated following E administration, 3) that blood pressure elevation with norepinephrine, dopamine, and phenylephrine neither decreases blood flow to any organs nor increases blood flow to organs with reduced flow, and 4) that norepinephrine, dopamine, and phenylephrine affect regional blood flow similarly in this model.

  19. Effect of Sodium Butyrate on Growth Performance and Response to Lipopolysaccharide in Weanling Pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two experiments were conducted to determine the effects of dietary sodium butyrate on growth performance and response to E. coli. lipopolysaccharide (LPS) in weanling pigs. In the first 28 d experiment, 180 pigs (initial BW 6.3 kg) were fed 0, 0.05, 0.1, 0.2, and 0.4% sodium butyrate, or 110 mg/kg d...

  20. Pathophysiology of endotoxin tolerance: mechanisms and clinical consequences

    PubMed Central

    2013-01-01

    Endotoxin tolerance was first described in a study that exposed animals to a sublethal dose of bacterial endotoxin. The animals subsequently survived a lethal injection of endotoxin. This refractory state is associated with the innate immune system and, in particular, with monocytes and macrophages, which act as the main participants. Several mechanisms are involved in the control of endotoxin tolerance; however, a full understanding of this phenomenon remains elusive. A number of recent reports indicate that clinical examples of endotoxin tolerance include not only sepsis but also diseases such as cystic fibrosis and acute coronary syndrome. In these pathologies, the risk of new infections correlates with a refractory state. This review integrates the molecular basis and clinical implications of endotoxin tolerance in various pathologies. PMID:24229432

  1. Endotoxin Inhalation Alters Lung Development in Neonatal Mice

    PubMed Central

    Kulhankova, Katarina; George, Caroline L.S.; Kline, Joel N.; Darling, Melissa; Thorne, Peter S.

    2012-01-01

    Background Childhood asthma is a significant public health problem. Epidemiologic evidence suggests an association between childhood asthma exacerbations and early life exposure to environmental endotoxin. Although the pathogenesis of endotoxin-induced adult asthma is well studied, questions remain about the impact of environmental endotoxin on pulmonary responsiveness in early life. Methods We developed a murine model of neonatal/juvenile endotoxin exposures approximating those in young children and evaluated the lungs inflammatory and remodeling responses. Results Persistent lung inflammation induced by the inhalation of endotoxin in early life was demonstrated by the influx of inflammatory cells and pro-inflammatory mediators to the airways and resulted in abnormal alveolarization. Conclusions Results of this study advance the understanding of the impact early life endotoxin inhalation has on the lower airways, and demonstrates the importance of an experimental design that approximates environmental exposures as they occur in young children. PMID:22576659

  2. Immuno-Stimulatory Activity of Escherichia coli Mutants Producing Kdo2-Monophosphoryl-Lipid A or Kdo2-Pentaacyl-Monophosphoryl-Lipid A

    PubMed Central

    Wang, Biwen; Han, Yaning; Li, Ye; Li, Yanyan; Wang, Xiaoyuan

    2015-01-01

    Lipid A is the active center of lipopolysaccharide which also known as endotoxin. Monophosphoryl-lipid A (MPLA) has less toxicity but retains potent immunoadjuvant activity; therefore, it can be developed as adjuvant for improving the strength and duration of the immune response to antigens. However, MPLA cannot be chemically synthesized and can only be obtained by hydrolyzing lipopolysaccharide (LPS) purified from Gram-negative bacteria. Purifying LPS is difficult and time-consuming and can damage the structure of MPLA. In this study, Escherichia coli mutant strains HWB01 and HWB02 were constructed by deleting several genes and integrating Francisella novicida gene lpxE into the chromosome of E. coli wild type strain W3110. Compared with W3110, HWB01 and HWB02 synthesized very short LPS, Kdo2-monophosphoryl-lipid A (Kdo2-MPLA) and Kdo2-pentaacyl-monophosphoryl-lipid A (Kdo2-pentaacyl-MPLA), respectively. Structural changes of LPS in the outer membranes of HWB01 and HWB02 increased their membrane permeability, surface hydrophobicity, auto-aggregation ability and sensitivity to some antibiotics, but the abilities of these strains to activate the TLR4/MD-2 receptor of HKE-Blue hTLR4 cells were deceased. Importantly, purified Kdo2-MPLA and Kdo2-pentaacyl-MPLA differed from wild type LPS in their ability to stimulate the mammalian cell lines THP-1 and RAW264.7. The purification of Kdo2-MPLA and Kdo2-pentaacyl-MPLA from HWB01 and HWB02, respectively, is much easier than the purification of LPS from W3110, and these lipid A derivatives could be important tools for developing future vaccine adjuvants. PMID:26710252

  3. Detection of endotoxin in cases of equine colic.

    PubMed

    King, J N; Gerring, E L

    1988-09-01

    The Limulus amoebocyte lysate assay was used to test for the presence of endotoxin in 37 clinical cases of equine colic. Positive plasma titres were detected in 10 cases and the presence of endotoxin was significantly correlated with a high heart rate, a high packed cell volume and a poor prognosis. High levels of endotoxin were detected in gut contents taken from several sites in the gastrointestinal tract of normal horses. PMID:3188348

  4. Predictors of airborne endotoxin concentrations in inner city homes.

    PubMed

    Mazique, D; Diette, G B; Breysse, P N; Matsui, E C; McCormack, M C; Curtin-Brosnan, J; Williams, D L; Peng, R D; Hansel, N N

    2011-05-01

    Few studies have assessed in home factors which contribute to airborne endotoxin concentrations. In 85 inner city Baltimore homes, we found no significant correlation between settled dust and airborne endotoxin concentrations. Certain household activities and characteristics, including frequency of dusting, air conditioner use and type of flooring, explained 36-42% of the variability of airborne concentrations. Measurements of both airborne and settled dust endotoxin concentrations may be needed to fully characterize domestic exposure in epidemiologic investigations. PMID:21429483

  5. Effects of endotoxin on monoamine metabolism in the rat.

    NASA Technical Reports Server (NTRS)

    Pohorecky, L. A.; Wurtman, R. J.; Taam, D.; Fine, J.

    1972-01-01

    Examination of effects of administered endotoxin on catecholamine metabolism in the rat brain, sympathetic neurons, and adrenal medulla. It is found that endotoxin, administered intraperitoneally, lowers the norepinephrine content in peripheral sympathetic neurons and the brain, and the catecholamine content in the adrenal medulla. It also accelerates the disappearance of H3-norepinephrine from all these tissues. It is therefore suggested that the effects of endotoxin on body temperature may be mediated in part by central non-adrenergic neurons.

  6. Predictors of Endotoxin Levels in U.S. Housing

    PubMed Central

    Thorne, Peter S.; Cohn, Richard D.; Mav, Deepak; Arbes, Samuel J.; Zeldin, Darryl C.

    2009-01-01

    Background The relationship of domestic endotoxin exposure to allergy and asthma has been widely investigated. However, few studies have evaluated predictors of household endotoxin, and none have done so for multiple locations within homes and on a national scale. Objectives We assayed 2,552 house dust samples in a nationwide study to understand the predictors of household endotoxin in bedroom floors, family room floors, beds, kitchen floors, and family room sofas. Methods Reservoir house dust from five locations within homes was assayed for endotoxin and demographic and housing information was assessed through questionnaire and onsite evaluation of 2,456 residents of 831 homes selected to represent national demographics. We performed repeated-measures analysis of variance (rANOVA) for 37 candidate variables to identify independent predictors of endotoxin. Meteorologic data were obtained for each primary sampling unit and tested as predictors of indoor endotoxin to determine if wetter or warmer microclimates were associated with higher endotoxin levels. Results Weighted geometric mean endotoxin concentration ranged from 18.7 to 80.5 endotoxin units (EU)/mg for the five sampling locations, and endotoxin load ranged from 4,160 to 19,500 EU/m2. Bivariate analyses and rANOVA demonstrated that major predictors of endotoxin concentration were sampling location in the home, census division, educational attainment, presence of children, current dog ownership, resident-described problems with cockroaches, food debris, cockroach stains, and evidence of smoking observed by field staff. Low household income entered the model if educational attainment was removed. Conclusion Increased endotoxin in household reservoir dust is principally associated with poverty, people, pets, household cleanliness, and geography. PMID:19479019

  7. Inhibition of endothelium-dependent vasodilation by Escherichia coli endotoxemia.

    PubMed

    Parker, J L; Myers, P R; Zhong, Q; Kim, K; Adams, H R

    1994-12-01

    To test the hypothesis that release of endothelium-derived relaxing factor/nitric oxide is inhibited by Gram-negative lipopolysaccharide (LPS; endotoxin), we examined endothelium-independent and endothelium-dependent vasodilator agents in aortic vascular smooth muscle isolated from guinea pigs 4 h after injection of saline (controls) or induction of Escherichia coli endotoxemia. LPS significantly inhibited vasodilator responses to the endothelium-dependent agonists acetylcholine (ACh; 10(-10)-10(-5) M) and ADP (10(-8)-10(-5) M). However, LPS did not affect vasodilator responses to the endothelium-independent agonist nitroprusside (10(-10)-10(-4) M). The nitric oxide synthase (NOS) inhibitor N gamma-nitro-L-arginine methyl ester (L-NAME) inhibited the vasodilator response to ACh; whereas, the cyclooxygenase inhibitor indomethacin (INDO) did not reduce vasodilator effects of ACh. Neither L-NAME nor INDO affected the vasodilator effects of nitroprusside in LPS or control vessels. In contrast, L-NAME converted the vasodilator action of ADP to a vasoconstrictor response that was blocked individually by INDO and the thromboxane synthase inhibitor dazoxiben, suggesting that ADP releases NO and also the vasoconstrictor and platelet aggregating eicosanoid thromboxane A2. These findings suggest that acute (4 h) endotoxemia inhibits function of the constitutive isoform of NOS in vascular endothelial cells. Since L-NAME unmasked a vasoconstrictor action of the endogenous purinoceptor agonist ADP, pharmacologic agents that inhibit NOS may exacerbate LPS-induced inhibition of endothelial NOS; this series of events could lead to diminution of vasodilator reserves and perhaps to augmentation of platelet aggregation during Gram-negative sepsis. PMID:7538038

  8. Nanoparticle-Drug Bioconjugate as Dual Functional Affinity Ligand for Rapid Point-of-Care Detection of Endotoxin in Water and Serum.

    PubMed

    Kalita, Prasanta; Dasgupta, Anshuman; Sritharan, Venkataraman; Gupta, Shalini

    2015-11-01

    Endotoxin or lipopolysaccharide (LPS) is a major constituent of the Gram-negative bacterial cell wall that causes a life-threatening disorder called septicemia resulting from the unregulated activation of the innate immune system. We demonstrate a simple and robust drug-assisted dot blot bioassay for endotoxin detection that can be used right by the critically ill patients' bedside. Target LPS molecules are trapped from serum or water on glass substrates via long-chain alkyls and tagged with reporter gold nanoparticles (NPs) preconjugated to an antibiotic drug called polymyxin B sulfate (PMB). A post-silver-enhancement step enables signal visibility to the bare eye over a wide and clinically relevant concentration range of 50 fg/mL-50 ng/mL, allowing effortless diagnosis of sepsis at various stages, from early sepsis to septic shock. PMID:26496415

  9. Oil composition of high-fat diet affects metabolic inflammation differently in connection with endotoxin receptors in mice.

    PubMed

    Laugerette, Fabienne; Furet, Jean-Pierre; Debard, Cyrille; Daira, Patricia; Loizon, Emmanuelle; Glon, Alain; Soulage, Christophe O; Simonet, Claire; Lefils-Lacourtablaise, Jennifer; Bernoud-Hubac, Nathalie; Bodennec, Jacques; Peretti, Nol; Vidal, Hubert; Michalski, Marie-Caroline

    2012-02-01

    Low-grade inflammation observed in obesity is a risk factor for cardiovascular disease. Recent studies revealed that this would be linked to gut-derived endotoxemia during fat digestion in high-fat diets, but nothing is known about the effect of lipid composition. The study was designed to test the impact of oil composition of high-fat diets on endotoxin metabolism and inflammation in mice. C57/Bl6 mice were fed for 8 wk with chow or isocaloric isolipidic diets enriched with oils differing in fatty acid composition: milk fat, palm oil, rapeseed oil, or sunflower oil. In vitro, adipocytes (3T3-L1) were stimulated or not with lipopolysaccharide (LPS; endotoxin) and incubated with different fatty acids. In mice, the palm group presented the highest level of IL-6 in plasma (P < 0.01) together with the highest expression in adipose tissue of IL-1? and of LPS-sensing TLR4 and CD14 (P < 0.05). The higher inflammation in the palm group was correlated with a greater ratio of LPS-binding protein (LBP)/sCD14 in plasma (P < 0.05). The rapeseed group resulted in higher sCD14 than the palm group, which was associated with lower inflammation in both plasma and adipose tissue despite higher plasma endotoxemia. Taken together, our results reveal that the palm oil-based diet resulted in the most active transport of LPS toward tissues via high LBP and low sCD14 and the greatest inflammatory outcomes. In contrast, a rapeseed oil-based diet seemed to result in an endotoxin metabolism driven toward less inflammatory pathways. This shows that dietary fat composition can contribute to modulate the onset of low-grade inflammation through the quality of endotoxin receptors. PMID:22094473

  10. A rapid highly-sensitive endotoxin detection system.

    PubMed

    Ong, Keat G; Leland, Joshua M; Zeng, Kefeng; Barrett, Gary; Zourob, Mohammed; Grimes, Craig A

    2006-06-15

    This paper presents a rapid, highly-sensitive, and low-cost method of endotoxin quantification based on the use of stress-responsive magnetoelastic sensors, that monitor the gel formation (viscosity change) of the Limulus Amoebocyte Lysate (LAL) assay in response to endotoxin. Ribbon-like magnetoelastic sensors, 12.7 mm x 6 mm x 28 microm, were immersed in a LAL assay after mixing with test samples of variable endotoxin concentration, and the decrease in resonance amplitude of the sensor was recorded as a function of time. Experimental results show excellent correlation between endotoxin concentration and the maximum clot rate, determined by taking the minimum point of the first derivative of the amplitude-time curve, as well as the clotting-time, defined as the time that corresponds to the maximum clot rate. Using a LAL gel-clot assay with a sensitivity of 0.06 EU/ml (EU: endotoxin unit), the magnetoelastic sensor based technology can detect the presence of endotoxin at 0.0105 EU/ml in test requiring approximately 20 min. Unlike optical methods used for determining endotoxin concentration, the color of the test solution does not impact the magnetoelastic sensor measurement. Due to the small size of the sensor reader electronics and low cost, the magnetoelastic sensor based endotoxin detection system is ideally suited for wide-spread use in endotoxin screening for sepsis prevention. PMID:16356707

  11. Endotoxin removal and prevention for pre-clinical biologics production.

    PubMed

    Serdakowski London, Anne; Kerins, Brendan; Tschantz, William R; Eisfeld, Jochen; Mackay, Kasey

    2012-12-01

    The removal of endotoxin from protein solutions and its prevention are key to the success of recombinant protein production due to the possible pyogenic response in mammals caused by contaminated samples. In the pre-clinical situation, protein production is often carried out in a non-good manufacturing practice (GMP) setting, utilizing bacterial DNA for transient transfection and non-validated cleaning techniques. Here, we present our findings evaluating various options for endotoxin removal, and propose strategies for endotoxin prevention with emphasis on chromatographic separations, endotoxin-removing membranes and on-column wash strategies. PMID:23081824

  12. Endotoxin toxicity in rats with 6-sulfanilamidoindazole arthritis.

    PubMed Central

    Miller, M L; Samuelson, C O; Ward, J R; Hiramoto, R N

    1979-01-01

    Seven oral administrations of 6-sulfanilamidoindazole (6-SAI) to 10- to 12-month-old rats sensitized the animals to endotoxin, with dosages as small as 2.5 microgram causing death in 80% of animals. Endotoxin in a dosage of 3,000 microgram was not lethal for nonmedicated control animals. 6-SAI-treated 1-month-old rats were not as sensitive to endotoxin as aged animals. The sulfonamide-induced sensitivity to endotoxin could not be passively transferred and could not be explained by blockade of the reticuloendothelial system or impairment of endotoxin detoxification. 6-SAI administration was associated with both depletion of liver glycogen and lowering of blood glucose concentration without changes in blood lactic acid concentration. Disseminated intravascular coagulation is believed to be involved in the pathogenesis of shock and death as evidenced by: (i) concomitant decreases in plasma fibrinogen concentration and elevations in fibrin degradation products after endotoxin challenge; (ii) protection against lethal actions of endotoxin by pretreatment with heparin. Treatment of 6-SAI-medicated rats with glucocorticoids before endotoxin challenge protected the animals against lethal doses of endotoxin and prevented deposition of fibrin thrombi in the glomerular capillaries. PMID:383619

  13. Role of endotoxemia in cardiovascular dysfunction and mortality. Escherichia coli and Staphylococcus aureus challenges in a canine model of human septic shock.

    PubMed Central

    Natanson, C; Danner, R L; Elin, R J; Hosseini, J M; Peart, K W; Banks, S M; MacVittie, T J; Walker, R I; Parrillo, J E

    1989-01-01

    Using different types of bacteria and a canine model simulating human septic shock, we investigated the role of endotoxin in cardiovascular dysfunction and mortality. Either Escherichia coli (a microorganism with endotoxin) or Staphylococcus aureus (a microorganism without endotoxin) were placed in an intraperitoneal clot in doses of viable or formalin-killed bacteria. Cardiovascular function of conscious animals was studied using simultaneous radionuclide heart scans and thermodilution cardiac outputs. Serial plasma endotoxin levels were measured. S. aureus produced a pattern of reversible cardiovascular dysfunction over 7-10 d that was concordant (P less than 0.01) with that of E. coli. Although this cardiovascular pattern was not altered by formalin killing (S. aureus and E. coli), formalin-killed organisms produced a lower mortality and less myocardial depression (P less than 0.01). S. aureus, compared to E. coli, produced higher postmortem concentrations of microorganisms and higher mortality (P less than 0.025). E. coli produced significant endotoxemia (P less than 0.01), though viable organisms (versus nonviable) resulted in higher endotoxin blood concentrations (P less than 0.05). Significant endotoxemia did not occur with S. aureus. Thus, in the absence of endotoxemia, S. aureus induced the same cardiovascular abnormalities of septic shock as E. coli. These findings indicate that structurally and functionally distinct microorganisms, with or without endotoxin, can activate a common pathway resulting in similar cardiovascular injury and mortality. PMID:2642920

  14. Removal of lipopolysaccharides from protein-lipopolysaccharide complexes by nonflammable solvents.

    PubMed

    Lin, Miao-Fang; Williams, Christie; Murray, Michael V; Ropp, Philip A

    2005-02-25

    During the recovery of recombinant proteins from gram negative bacteria, many of the methods used to extract proteins from cells release lipopolysaccharides (LPS, endotoxin) along with the protein of interest. In many instances, LPS will co-purify with the target protein due to specific or non-specific protein-LPS interactions. We have investigated the ability of alkanediols to effect the separation of LPS from protein-LPS complexes while the complexes are immobilized on ion exchange chromatographic resins. Proteins were complexed with fluorescently labeled LPS and bound to ion exchange resin. Alkanediol washes of the resins were preformed and the proteins eluted. Column eluates were monitored for LPS and protein by fluorescence and UV spectroscopy, respectively. Alkanediols were effective agents for dissociating LPS from protein-LPS complexes. The efficiency of LPS removal increased with increasing alkanediol chain length. The 1,2-alkanediol isomers were more effective than terminal alkanediol isomers in the separation of LPS from protein-LPS complexes, while the separation of LPS from protein-LPS complexes was more efficient on cation exchangers than on anion exchangers. In addition, it was noted during these investigations that the 1,2-alkanediols increased the retention time of the proteins on the ion exchange resins. Alkanediols provide a safer alternative to the use of other organics such as alcohols or acetonitrile for the separation of LPS from protein due to their lower toxicity and decreased inflammability. In addition, they are less costly than many of the detergents that have been used for similar purposes. PMID:15664347

  15. Milk thistle extract and silymarin inhibit lipopolysaccharide induced lamellar separation of hoof explants in vitro.

    PubMed

    Reisinger, Nicole; Schaumberger, Simone; Nagl, Veronika; Hessenberger, Sabine; Schatzmayr, Gerd

    2014-10-01

    The pathogenesis of laminitis is not completely identified and the role of endotoxins (lipopolysaccharides, LPS) in this process remains unclear. Phytogenic substances, like milk thistle (MT) and silymarin, are known for their anti-inflammatory and antioxidant properties and might therefore have the potential to counteract endotoxin induced effects on the hoof lamellar tissue. The aim of our study was to investigate the influence of endotoxins on lamellar tissue integrity and to test if MT and silymarin are capable of inhibiting LPS-induced effects in an in vitro/ex vivo model. In preliminary tests, LPS neutralization efficiency of these phytogenics was determined in an in vitro neutralization assay. Furthermore, tissue explants gained from hooves of slaughter horses were tested for lamellar separation after incubation with different concentrations of LPS. By combined incubation of explants with LPS and either Polymyxin B (PMB; positive control), MT or silymarin, the influence of these substances on LPS-induced effects was assessed. In the in vitro neutralization assay, MT and silymarin reduced LPS concentrations by 64% and 75%, respectively, in comparison PMB reduced 98% of the LPS concentration. In hoof explants, LPS led to a concentration dependent separation. Accordantly, separation force was significantly decreased by 10 g/mL LPS. PMB, MT and silymarin could significantly improve tissue integrity of explants incubated with 10 g/mL LPS. This study showed that LPS had a negative influence on the structure of hoof explants in vitro. MT and silymarin reduced endotoxin activity and inhibited LPS-induced effects on the lamellar tissue. Hence, MT and silymarin might be used to support the prevention of laminitis and should be further evaluated for this application. PMID:25290524

  16. Milk Thistle Extract and Silymarin Inhibit Lipopolysaccharide Induced Lamellar Separation of Hoof Explants in Vitro

    PubMed Central

    Reisinger, Nicole; Schaumberger, Simone; Nagl, Veronika; Hessenberger, Sabine; Schatzmayr, Gerd

    2014-01-01

    The pathogenesis of laminitis is not completely identified and the role of endotoxins (lipopolysaccharides, LPS) in this process remains unclear. Phytogenic substances, like milk thistle (MT) and silymarin, are known for their anti-inflammatory and antioxidant properties and might therefore have the potential to counteract endotoxin induced effects on the hoof lamellar tissue. The aim of our study was to investigate the influence of endotoxins on lamellar tissue integrity and to test if MT and silymarin are capable of inhibiting LPS-induced effects in an in vitro/ex vivo model. In preliminary tests, LPS neutralization efficiency of these phytogenics was determined in an in vitro neutralization assay. Furthermore, tissue explants gained from hooves of slaughter horses were tested for lamellar separation after incubation with different concentrations of LPS. By combined incubation of explants with LPS and either Polymyxin B (PMB; positive control), MT or silymarin, the influence of these substances on LPS-induced effects was assessed. In the in vitro neutralization assay, MT and silymarin reduced LPS concentrations by 64% and 75%, respectively, in comparison PMB reduced 98% of the LPS concentration. In hoof explants, LPS led to a concentration dependent separation. Accordantly, separation force was significantly decreased by 10 g/mL LPS. PMB, MT and silymarin could significantly improve tissue integrity of explants incubated with 10 g/mL LPS. This study showed that LPS had a negative influence on the structure of hoof explants in vitro. MT and silymarin reduced endotoxin activity and inhibited LPS-induced effects on the lamellar tissue. Hence, MT and silymarin might be used to support the prevention of laminitis and should be further evaluated for this application. PMID:25290524

  17. Expression of lipopolysaccharide binding protein and its receptor CD14 in experimental alcoholic liver disease

    PubMed Central

    Zuo, Guo-Qing; Gong, Jian-Ping; Liu, Chang-An; Li, Shen-Wei; Wu, Xin-Chuan; Yang, Kang; Li, Yue

    2001-01-01

    AIM: To evaluate the relationship between the expression of lipopolysaccharides (LPS) binding protein (LBP) and CD14 mRNA and the severity of liver injury in alcohol-fed rats. METHODS: Twenty Wistar rats were divided into two groups: ethanol-fed group (group E) and control group (group C). Group E was fed with ethanol (5-12 gkgd) and group C received dextrose instead of ethanol. Rats of the two groups were sacrificed at 4 wk and 8 wk. Levels of endotoxin and alanine transaminase (ALT) in blood were measured, and liver pathology was observed under light and electronic microscopy. Expressions of LBP and CD14 mRNA in liver tissues were determined by RT-PCR analysis. RESULTS: Plasma endotoxin levels were increased more significantly in group E (129 21) ngL and (187 35) ngL at 4 and 8 wk than in control rats (48 9) ngL and (53 11) ngL, respectively (P < 0.05). Mean values of plasma ALT levels were (1867 250) nkatL and (2450 367) nkatL in Group E. The values were increased more dramatically in ethanol-fed rats than in Group C after 4 and 8 wk. In liver section from ethanol-fed rats, there were marked pathological changes (steatosis, cell infiltration and necrosis). In ethanol-fed rats, ethanol administration led to a significant increase in LBP and CD14 mRNA levels compared with the control group (P < 0.05). CONCLUSION: Ethanol administration led to a significant increase in endotoxin levels in serum and LBP and CD14 mRNA expressions in liver tissues. The increase of LBP and CD14 mRNA expression might wake the liver more sensitive to endotoxin and liver injury. PMID:11854912

  18. Anti-inflammatory effect of desoxo-narchinol-A isolated from Nardostachys jatamansi against lipopolysaccharide.

    PubMed

    Shin, Joon Yeon; Bae, Gi-Sang; Choi, Sun-Bok; Jo, Il-Joo; Kim, Dong-Goo; Lee, Dong-Sung; An, Ren-Bo; Oh, Hyuncheol; Kim, Youn-Chul; Shin, Yong Kook; Jeong, Hyun-Woo; Song, Ho-Joon; Park, Sung-Joo

    2015-12-01

    We previously reported that Nardostachys jatamansi (NJ) exhibits anti-inflammatory activity against lipopolysaccharide (LPS). However, the active compound in NJ is unknown. Therefore, here, we examined the effects of desoxo-narchinol-A (DN) isolated from NJ against LPS-induced inflammation. To demonstrate the anti-inflammatory effect of DN against LPS, we used two models; murine endotoxin shock model for in vivo model, and peritoneal macrophage responses for in vitro. In endotoxin shock model, DN was administrated intraperitoneally 1h before LPS challenge, then we evaluated mice survival rates and organ damages. Pretreatment with DN (0.05mg/kg, 0.1mg/kg, or 0.5mg/kg) dramatically reduced mortality in a murine LPS-induced endotoxin shock model. Furthermore, DN inhibited tissue injury and production of pro-inflammatory cytokines, such as interleukin (IL)-1?, IL-6, and tumor necrosis factor alpha (TNF-?), in the liver and lung. In in vitro macrophage model, we examined the inflammatory mediators and regulatory mechanisms such as mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B (NF-?B). DN inhibited the production of inflammatory mediators, such as inducible nitric oxide synthase (iNOS) and its derivative nitric oxide (NO), cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), IL-1?, IL-6 and TNF-? and H3 protein acetylation in murine peritoneal macrophages. DN also inhibited p38 activation, but not extracellular signal-regulated kinase (ERK), c-jun NH2-terminal kinase (JNK), and NF-?B. These results suggest that DN from NJ exhibits protective effects against LPS-induced endotoxin shock and inflammation through p38 deactivation. PMID:26371857

  19. Infusion of freshly isolated autologous bone marrow derived mononuclear cells prevents endotoxin-induced lung injury in an ex-vivo perfused swine model

    PubMed Central

    2013-01-01

    Introduction The acute respiratory distress syndrome (ARDS), affects up to 150,000 patients per year in the United States. We and other groups have demonstrated that bone marrow derived mesenchymal stromal stem cells prevent ARDS induced by systemic and local administration of endotoxin (lipopolysaccharide (LPS)) in mice. Methods A study was undertaken to determine the effects of the diverse populations of bone marrow derived cells on the pathophysiology of ARDS, using a unique ex-vivo swine preparation, in which only the ventilated lung and the liver are perfused with autologous blood. Six experimental groups were designated as: 1) endotoxin alone, 2) endotoxin + total fresh whole bone marrow nuclear cells (BMC), 3) endotoxin + non-hematopoietic bone marrow cells (CD45 neg), 4) endotoxin + hematopoietic bone marrow cells (CD45 positive), 5) endotoxin + buffy coat and 6) endotoxin + in vitro expanded swine CD45 negative adherent allogeneic bone marrow cells (cultured CD45neg). We measured at different levels the biological consequences of the infusion of the different subsets of cells. The measured parameters were: pulmonary vascular resistance (PVR), gas exchange (PO2), lung edema (lung wet/dry weight), gene expression and serum concentrations of the pro-inflammatory cytokines IL-1?, TNF-? and IL-6. Results Infusion of freshly purified autologous total BMCs, as well as non-hematopoietic CD45(-) bone marrow cells significantly reduced endotoxin-induced pulmonary hypertension and hypoxemia and reduced the lung edema. Also, in the groups that received BMCs and cultured CD45neg we observed a decrease in the levels of IL-1? and TNF-? in plasma. Infusion of hematopoietic CD45(+) bone marrow cells or peripheral blood buffy coat cells did not protect against LPS-induced lung injury. Conclusions We conclude that infusion of freshly isolated autologous whole bone marrow cells and the subset of non-hematopoietic cells can suppress the acute humoral and physiologic responses induced by endotoxemia by modulating the inflammatory response, mechanisms that do not involve engraftment or trans-differentiation of the cells. These observations may have important implications for the design of future cell therapies for ARDS. PMID:23497755

  20. Regional blood flow during continuous low-dose endotoxin infusion

    SciTech Connect

    Fish, R.E.; Lang, C.H.; Spitzer, J.A.

    1986-01-01

    Escherichia coli endotoxin (ET) was administered to adult rats by continuous IV infusion from a subcutaneously implanted osmotic pump (Alzet). Cardiac output and regional blood flow were determined by the radiolabeled microsphere method after 6 and 30 hr of ET or saline infusion. Cardiac output (CO) of ET rats was not different from time-matched controls, whereas arterial pressure was 13% lower after 30 hr of infusion. After both 6 and 30 hr of ET, pancreatic blood flow and percentage of cardiac output were lower than in controls. Estimated portal venous flow was decreased at each time point, and an increased hepatic arterial flow (significant after 30 hr) resulted in an unchanged total hepatic blood flow. Blood flow to most other tissues, including epididymal fat, muscle, kidneys, adrenals, and gastrointestinal tract, was similar between treatments. Maintenance of blood flow to metabolically important tissues indicates that the previously reported alterations in in vitro cellular metabolism are not due to tissue hypoperfusion. Earlier observations of in vitro myocardial dysfunction, coexistent with the significant impairment in pancreatic flow, raise the possibility that release of a myocardial depressant factor occurs not only in profound shock but also under less severe conditions of sepsis and endotoxemia.

  1. The origin of 8-amino-3,8-dideoxy-D-manno-octulosonic acid (Kdo8N) in the lipopolysaccharide of Shewanella oneidensis.

    PubMed

    Gattis, Samuel G; Chung, Hak Suk; Trent, M Stephen; Raetz, Christian R H

    2013-03-29

    Lipopolysaccharide (LPS; endotoxin) is an essential component of the outer monolayer of nearly all Gram-negative bacteria. LPS is composed of a hydrophobic anchor, known as lipid A, an inner core oligosaccharide, and a repeating O-antigen polysaccharide. In nearly all species, the first sugar bridging the hydrophobic lipid A and the polysaccharide domain is 3-deoxy-d-manno-octulosonic acid (Kdo), and thus it is critically important for LPS biosynthesis. Modifications to lipid A have been shown to be important for resistance to antimicrobial peptides as well as modulating recognition by the mammalian innate immune system. Therefore, lipid A derivatives have been used for development of vaccine strains and vaccine adjuvants. One derivative that has yet to be studied is 8-amino-3,8-dideoxy-d-manno-octulosonic acid (Kdo8N), which is found exclusively in marine bacteria of the genus Shewanella. Using bioinformatics, a candidate gene cluster for Kdo8N biosynthesis was identified in Shewanella oneidensis. Expression of these genes recombinantly in Escherichia coli resulted in lipid A containing Kdo8N, and in vitro assays confirmed their proposed enzymatic function. Both the in vivo and in vitro data were consistent with direct conversion of Kdo to Kdo8N prior to its incorporation into the Kdo8N-lipid A domain of LPS by a metal-dependent oxidase followed by a glutamate-dependent aminotransferase. To our knowledge, this oxidase is the first enzyme shown to oxidize an alcohol using a metal and molecular oxygen, not NAD(P)(+). Creation of an S. oneidensis in-frame deletion strain showed increased sensitivity to the cationic antimicrobial peptide polymyxin as well as bile salts, suggesting a role in outer membrane integrity. PMID:23413030

  2. ORIGIN AND PROPERTIES OF NATURALLY OCCURRING HAPTEN FROM ESCHERICHIA COLI

    PubMed Central

    Anacker, R. L.; Finkelstein, R. A.; Haskins, W. T.; Landy, M.; Milner, K. C.; Ribi, E.; Stashak, P. W.

    1964-01-01

    Anacker, R. L. (National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratory, Hamilton, Mont.), R. A. Finkelstein, W. T. Haskins, M. Landy, K. C. Milner, E. Ribi, and P. W. Stashak. Origin and properties of naturally occurring hapten from Escherichia coli. J. Bacteriol. 88:1705–1720. 1964.—Haptens found in preparations of endotoxin and in fractions of disrupted cells, particularly one termed “native hapten,” which appeared to be associated with the protoplasm of cells rather than with cell walls, have been further investigated with a view to establishing their origin and composition as well as their host-reactive properties. For this purpose, cells from a smooth strain of Escherichia coli O111:B4 were either extracted directly or disrupted and separated into cell-wall and protoplasmic fractions. Haptens were obtained by gel filtration of endotoxins, by trichloroacetic acid extraction of protoplasm, and by a mild acid hydrolysis of endotoxin. Several lines of evidence indicated that native hapten originated in the protoplasm rather than by autolysis or degradation of cell-wall endotoxin during procedures employed in disruption. In gel diffusion and quantitative precipitin tests, no hapten was identical with endotoxin, but native hapten was serologically the most complex of the haptens and precipitated the most antibody. Native and acid haptens, on a weight basis, fixed about 1% of the quantity of complement fixed by homologous endotoxin. Haptens did not stimulate the production of antibodies in mice or rabbits and did not elicit endotoxic host reactions. Chemically, native hapten differed from endotoxin and from acid hapten in that it lacked phosphorus, heptose, long-chain fatty acids, and 2-keto-3-deoxyoctonate. These substances did not appear to be determinants of antigenic specificity, but they may provide necessary bonds for assembling hapten-like units into fully antigenic and toxic macromolecules. Images PMID:14240961

  3. Airborne Endotoxin Concentrations in Homes Burning Biomass Fuel

    PubMed Central

    Semple, Sean; Devakumar, Delan; Fullerton, Duncan G.; Thorne, Peter S.; Metwali, Nervana; Costello, Anthony; Gordon, Stephen B.; Manandhar, Dharma S.; Ayres, Jon G.

    2010-01-01

    Background About half of the world’s population is exposed to smoke from burning biomass fuels at home. The high airborne particulate levels in these homes and the health burden of exposure to this smoke are well described. Burning unprocessed biological material such as wood and dried animal dung may also produce high indoor endotoxin concentrations. Objective In this study we measured airborne endotoxin levels in homes burning different biomass fuels. Methods Air sampling was carried out in homes burning wood or dried animal dung in Nepal (n = 31) and wood, charcoal, or crop residues in Malawi (n = 38). Filters were analyzed for endotoxin content expressed as airborne endotoxin concentration and endotoxin per mass of airborne particulate. Results Airborne endotoxin concentrations were high. Averaged over 24 hr in Malawian homes, median concentrations of total inhalable endotoxin were 24 endotoxin units (EU)/m3 in charcoal-burning homes and 40 EU/m3 in wood-burning homes. Short cooking-time samples collected in Nepal produced median values of 43 EU/m3 in wood-burning homes and 365 EU/m3 in dung-burning homes, suggesting increasing endotoxin levels with decreasing energy levels in unprocessed solid fuels. Conclusions Airborne endotoxin concentrations in homes burning biomass fuels are orders of magnitude higher than those found in homes in developed countries where endotoxin exposure has been linked to respiratory illness in children. There is a need for work to identify the determinants of these high concentrations, interventions to reduce exposure, and health studies to examine the effects of these sustained, near-occupational levels of exposure experienced from early life. PMID:20308032

  4. In vitro toxicity and interactions of environmental contaminants (Arochlor 1254 and mercury) and immunomodulatory agents (lipopolysaccharide and cortisol) on thymocytes from lake trout (Salvelinus namaycush)

    USGS Publications Warehouse

    Miller, Gregory G.; Sweet, Leonard I.; Adams, Jean V.; Omann, Geneva M.; Passino-Reader, Dora R.; Meier, Peter G.

    2002-01-01

    The immunotoxicity of chemical combinations commonly encountered by the lake trout (Salvelinus namaycush) immune system was the focus of this study. It was hypothesised that combinations of an environmental contaminant (mercuric chloride or Aroclor 1254) and an immunomodulatory agent (bacterial endotoxin or cortisol) might interact to produce a greater toxicity than that of the environmental contaminant alone at concentrations typically encountered in piscine blood and other tissues. Thus lake trout thymocytes were isolated and treated with mercuric chloride or Aroclor 1254 in the presence and absence of cortisol or lipopolysaccharide. Incubations were performed for 6 or 20h at 4A?C or 10A?C. Lipopolysaccharide did not affect the toxicity of either contaminant. In contrast, cortisol enhanced the toxicity of both environmental contaminants. Hence, stressors that lead to increased cortisol production, but not lipopolysaccharide directly, may increase the toxicity of mercury and Aroclor 1254 to lake trout thymocytes.

  5. Differences in cytokine response and induction of nitric oxide synthase in endotoxin-resistant and endotoxin-sensitive mice after intravenous gram-negative infection.

    PubMed

    Evans, T J; Strivens, E; Carpenter, A; Cohen, J

    1993-06-01

    Previous reports have suggested that the endotoxin-resistant C3H/HeJ strain of mouse is more susceptible to infection than is the endotoxin-sensitive parent strain, C3H/HeN, although they have never been compared in an i.v. model of sepsis. We therefore have used these mouse strains in an i.v. model of Gram-negative sepsis to compare their sensitivities to infection, their cytokine responses, and the levels of induction of the enzyme nitric oxide synthase assayed in their livers. By using i.v. infection with Escherichia coli we have found that both strains are approximately equally sensitive to this organism, despite the C3H/HeJ mice having a markedly attenuated TNF-alpha response. IFN-gamma levels after infection were identical in the two strains; the levels of nitric oxide synthase induced in their livers were about fourfold greater in the C3H/HeJ mice. This difference could not be explained by differences in bacterial load. These experiments suggest that factors other than TNF-alpha are important in determining outcome from Gram-negative sepsis and that TNF-alpha is not a major factor in the induction of hepatic nitric oxide synthase after infection in vivo. PMID:7684416

  6. General effect of endotoxin on glucocorticoid receptors in mammalian tissues

    SciTech Connect

    Stith, R.D.; McCallum, R.E.

    1986-01-01

    Considering the ubiquitous nature of glucocorticoid actions and the fact that endotoxin inhibits glucocorticoid action in the liver, we proposed to examine whether endotoxin affected extrahepatic actions of glucocorticoids. Fasted C57BL/6J mice were injected intraperitoneally with endotoxin (LD50) at 0800 and were killed 6 h later. Control mice were injected with an equal volume of saline. /sup 3/H-dexamethasone binding, measured by a new cytosol exchange assay utilizing molybdate plus dithiothreitol, in liver, kidney, skeletal muscle, spleen, lung, and heart tissue was significantly lower in treated than in control mice. The equilibrium dissociation constants were not significantly different, but the number of available binding sites in each tissue was reduced by endotoxin treatment. Phosphoenolpyruvate carboxykinase activity was significantly reduced in liver but not in kidney. Endotoxin treatment lowered glycogen content in liver but not in skeletal muscle. The reduction observed in the a form of liver glycogen synthase due to endotoxin was not seen in skeletal muscle glycogen synthase a. These data support the proposal that endotoxin or a mediator of its action inhibits systemic glucocorticoid action. The results also emphasize the central role of the liver in the metabolic disturbances of the endotoxin-treated mouse.

  7. EFFECTS OF LIME (CAO) ON THE ENDOTOXIN LEVELS OF BIOSOLIDS

    EPA Science Inventory

    Lime addition is a common practice for treating biosolids in order to meet EPA 503 requirements for land application. Since this treatment kills the majority of microorganisms, will it increase the level of endotoxins present in biosolids? And, if endotoxin levels are increased, ...

  8. Evaluation of endotoxin retention by adsorptive-based filtration media.

    PubMed

    O'Brien, Thomas P; Conway, Robert; Chen, Hsiao-Lin; Buckland, Kim

    2007-01-01

    Control of endotoxin contamination is an important issue in pharmaceutical and bioprocess manufacturing. Endotoxins can contaminate process intermediates used in pharmaceutical formulations, aqueous- and non-aqueous-based CIP fluids used in equipment and vial cleaning, and process fluids such as buffers used for chromatographic elution, diafiltration, and suspension of therapeutic protein-based drugs. A study was undertaken to evaluate the effectiveness of adsorptive-based depth and membrane filtration media in removing suspended endotoxin. The following variables were examined in order to determine their effects on endotoxin reduction: absorptive media type, residence time (flux), challenge solution pH, and interferences in endotoxin reduction as the result of challenge solution composition-water for injection, process buffer, and the presence of protein. The endotoxin removal capacities of the various media studied were also determined. The results of the study demonstrated differences in the effect on endotoxin removal of the variables evaluated. In addition, the results provide a strategy for conducting studies to select and validate an appropriate adsorptive filter media for control of endotoxin contamination. PMID:17479715

  9. Endotoxin Exposure Is a Risk Factor for Asthma

    PubMed Central

    Thorne, Peter S.; Kulhnkov, Katarina; Yin, Ming; Cohn, Richard; Arbes, Samuel J.; Zeldin, Darryl C.

    2005-01-01

    Background: Although research has shown that early life exposure to household endotoxin protects against development of allergies, studies are less clear on the relationship between household endotoxin exposure and prevalence of wheezing and asthma. We as- sayed 2,552 house dust samples in a representative nationwide sam- ple to explore relationships between endotoxin exposures and risk factors for asthma, asthma symptoms, and medication use. Methods: House dust was vacuum-sampled from five locations within homes and assayed for endotoxin. Health, demographic, and housing information was assessed through questionnaire and on-site evaluation of 2,456 residents of 831 homes selected to represent the demographics of the United States. Results: Endotoxin concentration (EU/mg) and load (EU/m2) were highly correlated (r = 0.730.79). Geometric mean endotoxin concentrations were as follows (in EU/mg): bedroom floors, 35.3 (5th95th percentile, 5.0260); bedding, 18.7 (2.0142); family room floors, 63.9 (11.5331); sofas, 44.8 (6.4240); and kitchen floors, 80.5 (9.8512). Multivariate analysis demonstrated significant relationships between increasing endotoxin levels and diagnosed asthma, asthma symptoms in the past year, current use of asthma medications, and wheezing among residents of the homes. These relationships were strongest for bedroom floor and bedding dust and were observed in adults only. Modeling the joint effect of bedding and bedroom floor endotoxin on recent asthma symptoms yielded an adjusted odds ratio of 2.83 (95% confidence interval, 1.017.87). When stratified by allergy status, allergic subjects with higher endotoxin exposure were no more likely to have diagnosed asthma or asthma symptoms than nonallergic subjects. Conclusion: This study demonstrates that household endotoxin exposure is a significant risk factor for increased asthma prevalence. PMID:16141442

  10. Studies with Radioactive Endotoxin I. Clearance of 51Cr-Labelled Endotoxin from the Blood of Calves

    PubMed Central

    Maxie, M. G.; Valli, V. E. O.; McSherry, B. J.; Truscott, R. B.; Robinson, G. A.

    1974-01-01

    The clearance of 51Cr-labelled Pseudomonas endotoxin from the blood was studied in calves in a nontolerant and in an endotoxin-tolerant state. Calves were rendered tolerant to the toxic effects of the endotoxin by four daily intravenous injections of endotoxin at the dose rate of 5 g/kg body weight. Clearance of a small amount of 51Cr-endotoxin from the blood of nontolerant calves was almost complete within three minutes of injection and was not significantly faster in tolerant calves. The lungs and liver were the major organs involved in clearance of endotoxin from the blood. The 51Cr label was slowly excreted by the kidneys. Neither platelets nor leukocytes were demonstrated to participate in endotoxin clearance in calves. 51CrCl3 was injected into control calves. Relative to the distribution and loss of labelled endotoxin, the 51CrCl3 was cleared slowly from the blood, was distributed uniformly throughout the body and was excreted rapidly. ImagesFig. 11. PMID:4279754

  11. Detection of O antigens in Escherichia coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipopolysaccharide on the surface of Escherichia coli constitute the O antigens, which are important virulence factors that are targets of both the innate and adaptive immune system and play a major role in host-pathogen interactions. O antigens that are responsible for antigenic specificity of the ...

  12. Lipopolysaccharide, central in vivo biogenic amine variations, and anhedonia.

    PubMed

    Borowski, T; Kokkinidis, L; Merali, Z; Anisman, H

    1998-12-01

    Systemic administration of lipopolysaccharide (LPS), a non-specific activator of proinflammatory cytokine release from macrophages, provokes sickness characterized by anorexia, soporific effects, and disturbances of locomotor activity and exploration. In addition, endotoxin treatment may provoke an anhedonic response. Assessment of anhedonia in appetitive paradigms, however, is compromised by the anorexia provoked by the treatment. The present investigation assessed the anhedonic effects of LPS on rewarding lateral hypothalamic brain stimulation. Using a simultaneous discrimination, current titration procedure in the assessment of intracranial self-stimulation (ICSS), it was found that acute systemic administration of LPS (50 microg, 100 microg or 200 microg) reduced ICSS during the ascending sequence of current presentations, but had little effect on responding to a series of descending currents. In a parallel experiment, peripheral administration of LPS (100 microg) increased in vivo dopamine (DA) efflux from the nucleus accumbens, a region thought to be involved in goal-directed responding to positively reinforcing stimuli. It is suggested that LPS alters ICSS in a manner different than that observed following stressor exposure or peripheral IL-2 treatment. Furthermore, LPS may engender an anhedonic effect (possibly secondary to sickness), and the decline of responding reflects the relation between the cost of responding given in the face of sickness and the reward received for responding. PMID:9875707

  13. Lipopolysaccharide-induced inflammatory liver injury in mice.

    PubMed

    Hamesch, K; Borkham-Kamphorst, E; Strnad, P; Weiskirchen, R

    2015-04-01

    The intraperitoneal application of lipopolysaccharide (LPS) alone or in combination with other hepatotoxins is an experimental model for inducing systemic and hepatic inflammation in rodents applied worldwide. The endotoxin is recognized by the LPS-binding protein. This complex binds together with the lymphocyte antigen 96 (MD2) and the pattern-recognition receptor CD14 to members of the toll-like receptor family. The activated receptor complex in turn transduces signals to well characterized intracellular cascades that result in a multifaceted network of intracellular responses ending in inflammation. The most prominent among these is the activation of the NF-κB pathway and the production of a multitude of inflammatory cytokines. Although the application of LPS is in general easy to perform, unintended variations in preparation of the injection solution or in handling of the animals might affect the reproducibility or the outcome of a specific experiment. Here, we present a well-standardized protocol that allows for an induction of highly reproducible acute hepatic inflammation in mice. Furthermore, examples of appropriate readouts for the resulting inflammatory response are given. PMID:25835737

  14. Visualization and analysis of lipopolysaccharide distribution in binary phospholipid bilayers

    SciTech Connect

    Henning, Maria Florencia; Sanchez, Susana; Bakas, Laura; Departamento de Ciencias Biologicas, Facultad de Ciencias Exactas, UNLP, Calles 47 y 115, 1900 La Plata

    2009-05-22

    Lipopolysaccharide (LPS) is an endotoxin released from the outer membrane of Gram-negative bacteria during infections. It have been reported that LPS may play a role in the outer membrane of bacteria similar to that of cholesterol in eukaryotic plasma membranes. In this article we compare the effect of introducing LPS or cholesterol in liposomes made of dipalmitoylphosphatidylcholine/dioleoylphosphatidylcholine on the solubilization process by Triton X-100. The results show that liposomes containing LPS or cholesterol are more resistant to solubilization by Triton X-100 than the binary phospholipid mixtures at 4 {sup o}C. The LPS distribution was analyzed on GUVs of DPPC:DOPC using FITC-LPS. Solid and liquid-crystalline domains were visualized labeling the GUVs with LAURDAN and GP images were acquired using a two-photon microscope. The images show a selective distribution of LPS in gel domains. Our results support the hypothesis that LPS could aggregate and concentrate selectively in biological membranes providing a mechanism to bring together several components of the LPS-sensing machinery.

  15. Low Endotoxic Potential of Legionella pneumophila Lipopolysaccharide due to Failure of Interaction with the Monocyte Lipopolysaccharide Receptor CD14

    PubMed Central

    Neumeister, B.; Faigle, M.; Sommer, M.; Zhringer, U.; Stelter, F.; Menzel, R.; Schtt, C.; Northoff, H.

    1998-01-01

    Legionella pneumophila, a gram-negative bacterium causing Legionnaires disease and Pontiac fever, was shown to be highly reactive in in vitro gelation of Limulus lysate but not able to induce fever and the local Shwartzman reaction in rabbits and mice. We analyzed the capacity of purified L. pneumophila lipopolysaccharide (LPS-Lp) to induce activation of the human monocytic cell line Mono Mac 6, as revealed by secretion of proinflammatory cytokines and desensitization to subsequent LPS stimulation. We showed that despite normal reactivity of LPS-Lp in the Limulus amoebocyte lysate assay, induction of cytokine secretion in Mono Mac 6 cells and desensitization to an endotoxin challenge required LPS-Lp concentrations 1,000 times higher than for LPS of Salmonella enterica serovar Minnesota. Therefore, we examined the interaction of LPS-Lp with the LPS receptor CD14. We demonstrated that LPS-Lp did not bind to membrane-bound CD14 expressed on transfected CHO cells, nor did it react with soluble CD14. Our results suggest that the low endotoxic potential of LPS-Lp is due to a failure of interaction with the LPS receptor CD14. PMID:9712761

  16. Intestinal radiation syndrome: sepsis and endotoxin

    SciTech Connect

    Geraci, J.P.; Jackson, K.L.; Mariano, M.S.

    1985-03-01

    Rats were whole-body irradiated with 8-MeV cyclotron-produced neutrons and /sup 137/Cs ..gamma.. rays to study the role of enteric bacteria and endotoxin in the intestinal radiation syndrome. Decrease in intestinal weight was used as an index of radiation-induced breakdown of the mucosa. Neutron and ..gamma..-ray doses that were sublethal for intestinal death resulted in a dose-dependent decrease in intestinal weight, reaching minimal values 2 to 3 days after exposure, followed by recovery within 5 days after irradiation. Neutron and photon doses that caused intestinal death resulted in greater mucosal breakdown with little or no evidence of mucosal recovery. The presence of fluid in the intestine and diarrhea, but not bacteremia or endotoxemia, were related to mucosal breakdown and recovery. Neither sepsis nor endotoxin could be detected in liver samples taken at autopsy from animals which died a short time earlier from intestinal injury. These results suggest that overt sepsis and endotoxemia do not play a significant role in the intestinal radiation syndrome.

  17. Endotoxin release and cytokine production in acute and chronic meningococcaemia

    PubMed Central

    Prins, J M; Lauw, F N; Derkx, B H F; Speelman, P; Kuijper, E J; Dankert, J; Van Deventer, S J H

    1998-01-01

    Chronic meningococcaemia is a relatively benign manifestation of meningococcal disease. Whether bacterial virulence factors are responsible for this benign course has not been studied. We compared the in vitro endotoxin-liberating ability and cytokine-inducing potential of 31 Neisseria meningitidis isolates obtained from children with acute septic shock with that of nine isolates obtained from patients with chronic meningococcaemia and 12 isolates obtained from carriers with respiratory symptoms. The median endotoxin level released in vitro after 3 h of incubation was significantly higher for isolates causing septic shock compared with isolates from the other two groups (P = 0.01 and 0.02, Mann–Whitney test). This was not explained by differences in bacterial growth rate in vitro. The median IL-6 levels in whole blood ex vivo after 4 h of incubation were also significantly lower for isolates causing chronic meningococcaemia (P = 0.04, Mann–Whitney test). The endotoxin and cytokine levels measured on admission in the 31 children with acute meningococcal septic shock showed a 1000-fold variation. No relationship was established between the amount of endotoxin released by the causative microorganisms in vitro and the endotoxin or cytokine levels in the corresponding 31 children. These results suggest a diminished bacterial virulence for isolates causing chronic meningococcaemia. However, other factors than the endotoxin-releasing potential of the microorganism involved are responsible for the wide variation in endotoxin and therefore cytokine levels in patients with acute meningococcal septic shock. PMID:9822279

  18. Streptomycetes in house dust: associations with housing characteristics and endotoxin

    PubMed Central

    Johansson, Elisabet; Vesper, Stephen; Levin, Linda; LeMasters, Grace; Grinshpun, Sergey; Reponen, Tiina

    2011-01-01

    In addition to mold, indoor bioaerosols also contain bacterial components that may have implications for human health. Endotoxin is a cell wall component in Gram-negative bacteria present at varying levels indoors that has been found to have respiratory health implications. Streptomyces is a large genus of Gram-positive bacteria, and some species have been shown to produce inflammatory reactions in vitro and in vivo. The aim of this study was to determine predictors of streptomycetes levels in house dust, and to compare the variation in streptomycetes levels with that in endotoxin levels. Dust was collected by floor vacuuming from 178 homes in the Cincinnati metropolitan area. streptomycetes levels were measured by quantitative PCR and endotoxin was assayed by the Limulus Amebocyte Lysate method. Associations between home characteristics and bacterial contaminants, expressed as concentration and load, were investigated through multiple regression analyses. The presence of two or more dogs was a strong predictor of both streptomycetes and endotoxin levels. Season of dust collection and levels of outdoor molds were predictors of streptomycetes but not endotoxin levels. In contrast, number of inhabitants was a significant predictor of endotoxin load only. Neither streptomycetes nor endotoxin levels were associated with metrics of moisture damage. PMID:21204988

  19. Influence of sample preservation on endotoxin measurement in water.

    PubMed

    O'Toole, J; Sinclair, M; Jeavons, T; Leder, K

    2009-01-01

    Appropriate preservation of a range of water types prior to analysis for endotoxin was investigated, including sample storage and addition of sodium thiosulphate. Biologically active endotoxin in water samples was assayed using a chromogenic Limulus Amoebocyte Lysate (LAL) assay. Statistical analysis of measured mean endotoxin levels obtained for samples with and without sodium thiosulphate showed no significant difference in results. There was a 44% mean decline in the concentration of detectable endotoxin in water samples stored at -80 degrees C for 4 weeks compared with samples stored at 4 degrees C and analysed within 24 hours. Freezing of water samples at -80 degrees C in pyrogen-free containers for 4 weeks or longer, then thawing may lead to considerable endotoxin loss; however the addition of sodium thiosulphate to water samples interferes minimally with the LAL assay. These results provide methodological information that can be used to assist researchers in future water endotoxin monitoring studies. The validation and standardisation of water sample preservation protocols are necessary, given the likely increase in the quantification of endotoxin levels in a variety of water sources and the use of such results for health effect determinations. PMID:19759464

  20. Endotoxin Elimination in Patients with Septic Shock: An Observation Study.

    PubMed

    Adamik, Barbara; Zielinski, Stanislaw; Smiechowicz, Jakub; Kbler, Andrzej

    2015-12-01

    To evaluate the effectiveness of endotoxin elimination with an adsorption column in patients with septic shock and endotoxemia. The elimination therapy was guided by a new bedside method of measuring endotoxin activity (EA). Intensive care unit (ICU) patients with septic shock and suspected Gram-negative infection were consecutively added to the study group within the first 24h. Endotoxin elimination was performed using hemoperfusion with the Alteco LPS Adsorber. The primary endpoint was improvement in organ function within the first 24h of treatment. A secondary objective was to assess the usefulness of a new method of measuring EA to help guide endotoxin elimination therapy. Out of 64 patients 18 had a high baseline EA [0.70 EA units (0.66-0.77)]. Those patients had endotoxin elimination treatment in addition to conventional medical therapy. At 24h after endotoxin elimination, the EA had decreased to 0.56 EA units (0.43-0.77), (p=0.005); MAP increased from 69 (62-80) to 80mm Hg (68-88), (p=0.002), and noradrenaline use decreased from 0.28 (0.15-0.80) to 0.1?g/kg/min (0.00-0.70) at the same time (p=0.04). The SOFA score had decreased from 11 (9-15) to 9 (7-14) points 24h after endotoxin elimination (p=0.01) with a median delta SOFA -2 points. Endotoxin elimination did not have a significant effect on the ICU length of stay or ICU mortality. Effective endotoxin elimination resulted in a significant improvement in hemodynamic parameters and of organ function. The application of the EA assay was useful for the bedside monitoring of endotoxemia in critically ill ICU patients. PMID:26093653

  1. The Immunobiology of TLR4 Agonists: From Endotoxin Tolerance to Immunoadjuvants

    PubMed Central

    Bohannon, Julia K.; Hernandez, Antonio; Enkhbaatar, Perenlei; Adams, William L.; Sherwood, Edward R.

    2014-01-01

    Lipopolysaccharide (LPS, endotoxin) is a structural component of the Gram negative outer membrane. The lipid A moiety of LPS binds to the LPS receptor complex expressed by leukocytes, endothelial cells and parenchymal cells and is the primary component of Gram negative bacteria that is recognized by the immune system. Activation of the LPS receptor complex by native lipid A induces robust cytokine production, leukocyte activation and inflammation, which is beneficial for clearing bacterial infections at the local level but can cause severe systemic inflammation and shock at higher challenge doses. Interestingly, prior exposure to LPS renders the host resistant to shock caused by subsequent LPS challenge, a phenomenon known as endotoxin tolerance. Treatment with lipid A has also been shown to augment the host response to infection and to serve as a potent vaccine adjuvant. However, the side effects associated with the pronounced inflammatory response limits the use of native lipid A as a clinical immunomodulator. More recently, analogs of lipid A have been developed that possess attenuated pro-inflammatory activity but retain attractive immunomodulatory properties. The lipid A analog monophosphoryl lipid A (MPLA) exhibits approximately 1/1000th of the toxicity of native lipid A but retains potent immunoadjuvant activity. As such, MPLA is currently employed as an adjuvant in several human vaccine preparations. Due to the potency of lipid A analogs as immunoadjuvants, numerous laboratories are actively working to identify and develop new lipid A mimetics and to optimize their efficacy and safety. Based on those characteristics, lipid A analogs represent an attractive family of immunomodulators. PMID:23989337

  2. FXR agonist GW4064 alleviates endotoxin-induced hepatic inflammation by repressing macrophage activation

    PubMed Central

    Yao, Jun; Zhou, Chun-Suo; Ma, Xiong; Fu, Bai-Qing; Tao, Li-Sheng; Chen, Miao; Xu, Ya-Ping

    2014-01-01

    AIM: To examine the effect of farnesoid X receptor (FXR) activation by GW4064 on endotoxin-induced hepatic inflammation in nonalcoholic fatty liver disease (NAFLD) and the underlying mechanism. METHODS: Six-week-old male C57BL/6 mice were fed a normal diet or a high-fat (HF) diet for 8 wk. HF diet-fed mice were intraperitoneally injected with GW4064 (30 mg/kg) or DMSO (vehicle) once daily for a week and then sacrificed after lipopolysaccharide (LPS, 50 ?g/mouse) administration. Hepatic inflammation, levels of the macrophage marker F4/80, and apoptosis were measured at the end of the study. Additionally, the expression of proinflammatory genes involved in NAFLD (interleukin-6, interleukin-1?, interferon-?, MCP-1) were analyzed by real-time PCR in the murine macrophage cell line RAW 264.7 cultured with or without GW4064 (2 ?mol/L) before treatment with LPS. RESULTS: In patients with NAFLD, the expression of FXR was detected by immunohistochemical staining and the relation between FXR expression and NAFLD activity score (NAS) was analyzed. Activation of FXR by GW4064 alleviated hepatic inflammation induced by endotoxin in a murine NAFLD model fed an HF diet as reflected by reduced serum levels of aspartate aminotransferase and alanine aminotransferase. Apoptosis and proinflammatory cytokine levels in liver tissues were also reduced by GW4064, and GW4064 could reduce induction of proinflammatory cytokines by LPS in vitro. FXR levels were reduced in patients with non-alcoholic steatohepatitis compared with healthy controls and were negatively correlated with NAS. CONCLUSION: FXR activation attenuates LPS-induced hepatic inflammation in murine NAFLD by reducing expression of proinflammatory cytokines in macrophages. PMID:25339829

  3. Vitamin E protects against bacterial endotoxin-induced increase of plasma corticosterone and brain glutamate in the rat.

    PubMed

    al-Shabanah, O A; Mostafa, Y H; Hassan, M T; Khairaldin, A A; al-Sawaf, H A

    1996-04-01

    Plasma corticosterone (CS) and brain free aminoacids were determined in male rats 2 hr after acute exposure to bacterial endotoxin stress BES (2.0 mg/kg i.p. of lipopolysaccharide, LPS). A significant increase in the levels of plasma CS and brain taurine (Tau), aspartate (As), glutamate (Glu), glycine (Gly) and valine (Val) was observed following BES. When vitamin E (alpha-tocopherol acetate AT) was given orally (0.25 gm/kg/day) 4 days before induction of BES, the plasma CS as well as the brain Glu levels were significantly reduced to the control values. These results indicate that plasma CS and brain Glu may be involved in the mechanisms by which AT protects against the neurotoxicity of BES. PMID:8733831

  4. Endotoxin-Induced Tryptophan Degradation along the Kynurenine Pathway: The Role of Indolamine 2,3-Dioxygenase and Aryl Hydrocarbon Receptor-Mediated Immunosuppressive Effects in Endotoxin Tolerance and Cancer and Its Implications for Immunoparalysis

    PubMed Central

    Wirthgen, Elisa; Hoeflich, Andreas

    2015-01-01

    The degradation of tryptophan (TRP) along the kynurenine pathway plays a crucial role as a neuro- and immunomodulatory mechanism in response to inflammatory stimuli, such as lipopolysaccharides (LPS). In endotoxemia or sepsis, an enhanced activation of the rate-limiting enzyme indoleamine 2,3-dioxygenase (IDO) is associated with a higher mortality risk. It is assumed that IDO induced immunosuppressive effects provoke the development of a protracted compensatory hypoinflammatory phase up to a complete paralysis of the immune system, which is characterized by an endotoxin tolerance. However, the role of IDO activation in the development of life-threatening immunoparalysis is still poorly understood. Recent reports described the impact of inflammatory IDO activation and aryl hydrocarbon receptor- (AhR-) mediated pathways on the development of LPS tolerance and immune escape of cancer cells. These immunosuppressive mechanisms offer new insights for a better understanding of the development of cellular dysfunctions in immunoparalysis. This review provides a comprehensive update of significant biological functions of TRP metabolites along the kynurenine pathway and the complex regulation of LPS-induced IDO activation. In addition, the review focuses on the role of IDO-AhR-mediated immunosuppressive pathways in endotoxin tolerance and carcinogenesis revealing the significance of enhanced IDO activity for the establishment of life-threatening immunoparalysis in sepsis. PMID:26881062

  5. Bacteriostatic effect of serum: role of antibody to lipopolysaccharide.

    PubMed Central

    Fitzgerald, S P; Rogers, H J

    1980-01-01

    Previous work has shown that antibody and transferrin, acting together, exert a bacteriostatic effect on certain pathogenic Escherichia coli. This effect may be due to the ability of the antibody to interfere with the release of the iron chelator, enterochelin, from the bacterial cell. Enterochelin is essential for the transport of iron from transferrin to the bacterial cell. The nature of the bacterial antigen against which the antibody is directed has now been determined by means of adsorption experiments. It was found that absorption of serum either with hear-killed cells of E. coli O111 or with Boivin antigen abolished the bacteriostatic effect. A monosaccharide, which proved to be colitose (3,6-dideoxy-L-galactose), was isolated after acetic acid hydrolysis of the Boivin antigen. Colitose is the terminal monosaccharide of the O-specific side chain of the lipopolysaccharide from E. coli O111. This monosaccharide abolished the bacteriostatic effect of both whole serum and mixtures of antibody and iron-binding proteins. When administered by the intraperitoneal route, it reduced the resistance of mice to subsequent infection with E. coli O111. This ability of colitose to interfere with antibacterial mechanisms is in accord with published immunochemical studies. PMID:6991411

  6. Determinants that increase the serum resistance of Escherichia coli.

    PubMed Central

    Taylor, P W; Robinson, M K

    1980-01-01

    The rfb locus, determining biosynthesis of O8-specific lipopolysaccharide side chains, was transferred to a rough mutant of Escherichia coli; recombinants producing a complete lipopolysaccharide were more resistant to the complement-mediated bactericidal action of human serum than the rough recipient. Inheritance of the his-linked genes for K27 antigen production did not alter the response to serum. The serum resistance of strains carrying O8 side chains, but not of strains with incomplete lipopolysaccharides, was further increased by inheritance of plasmids R1 and NR1.20 PMID:6995340

  7. Mouse monoclonal antibodies reactive with J5 lipopolysaccharide exhibit extensive serological cross-reactivity with a variety of gram-negative bacteria.

    PubMed Central

    Nelles, M J; Niswander, C A

    1984-01-01

    We describe two mouse monoclonal antibodies reactive with lipopolysaccharide derived from the J5 mutant of Escherichia coli O111:B4. These antibodies react with purified lipopolysaccharide derived from rough mutants of E. coli and Salmonella typhimurium and also with lipopolysaccharide associated with both smooth- and rough-phenotype, gram-negative bacteria. Both antibodies appear to bind determinants present in the lipopolysaccharide core region, and this reactivity is inhibited in the presence of polymyxin B. Although their patterns of reactivity differ, both antibodies exhibit extensive serological cross-reactivity with a variety of gram-negative bacteria. Reagents of this type should prove useful in animal models to delineate the requisite affinity, epitope specificity, immunoglobulin class, etc., needed for the prevention and treatment of gram-negative bacteremia. PMID:6209222

  8. Estrogen receptor ? mediates the effects of notoginsenoside R1 on endotoxin-induced inflammatory and apoptotic responses in H9c2 cardiomyocytes.

    PubMed

    Zhong, Lei; Zhou, Xing-Lu; Liu, Yan-Song; Wang, Yi-Min; Ma, Fei; Guo, Bao-Liang; Yan, Zhao-Qi; Zhang, Qing-Yuan

    2015-07-01

    Estrogen receptors (ERs) are important for preventing endotoxin-induced myocardial dysfunction. Therefore, plant-derived phytoestrogens, which target ERs may also affect endotoxin-induced toxicity in cardiomyocytes. Our previous study revealed that notoginsenoside-R1 (NG-R1), a predominant phytoestrogen from Panax notoginseng, protects against cardiac dysfunction. However, the effects of NG-R1 on cardiomyocytes and the precise cellular/molecular mechanisms underlying its action remain to be elucidated. In the present study, pretreatment with NG-R1 suppressed the lipopolysaccharide (LPS)-induced degradation of inhibitor of nuclear factor-?B (NF-?B) ?, the activation of NF-?B and caspase-3, and the subsequent myocardial inflammatory and apoptotic responses in H9c2 cardiomyocytes. An increase in the mRNA and protein expression of ER? was also observed in the NG-R1-treated cardiomyocytes. However, the expression pattern of ER? remained unaltered. Furthermore, the cardioprotective properties of NG-R1 against LPS-induced apoptosis and the inflammatory response in cardiomyocytes were attenuated by ICI 182780, a non-selective ER? antagonist, and methyl-piperidino-pyrazole, a selective ER? antagonist. These findings suggested that NG-R1 reduced endotoxin-induced cardiomyocyte apoptosis and the inflammatory response via the activation of ER?. Therefore, NG-R1 exerted direct anti-inflammatory and anti-apoptotic effects on the cardiomyocytes, representing a potent agent for the treatment of myocardial inflammation during septic shock. PMID:25738436

  9. MiR-146a activates WAVE2 expression and enhances phagocytosis in lipopolysaccharide-stimulated RAW264.7 macrophages

    PubMed Central

    Cao, Zhongwei; Yao, Qunyan; Zhang, Shuncai

    2015-01-01

    MiR-146a has been shown to play a critical role in cell immunity and phagocytosis, processes that require rearrangement of the cytoskeleton. However, the detailed mechanism by which miR-146a regulates these events remains elusive. Here, we used luciferase reporter and protein assays to show that the cytoskeleton-regulatingprotein verprolin-homologous protein 2 (WAVE2), is a direct target of miR-146a. MiR-146a overexpression resulted in a decrease in WAVE2 protein expression under endotoxin-free culture conditions. Unexpectedly, however, miR-146a activated rather than repressed the expression of WAVE2 in macrophage RAW264.7 cells when cultured continuously in the presence of endotoxin. Furthermore, we demonstrated that miR-146a induced WAVE2 expression and enhanced phagocytosis in lipopolysaccharide-stimulated RAW264.7 macrophages. Our study suggests that lipopolysaccharide- induced miR146a indirectly activates WAVE2 expression; thus, facilitating cytoskeletal reorganization and phagocytosis in lipopolysaccharide-stimulated macrophages. PMID:26396677

  10. Men and women differ in inflammatory and neuroendocrine responses to endotoxin but not in the severity of sickness symptoms.

    PubMed

    Engler, Harald; Benson, Sven; Wegner, Alexander; Spreitzer, Ingo; Schedlowski, Manfred; Elsenbruch, Sigrid

    2016-02-01

    Impaired mood and increased anxiety represent core symptoms of sickness behavior that are thought to be mediated by pro-inflammatory cytokines. Moreover, excessive inflammation seems to be implicated in the development of mood/affective disorders. Although women are known to mount stronger pro-inflammatory responses during infections and are at higher risk to develop depressive and anxiety disorders compared to men, experimental studies on sex differences in sickness symptoms are scarce. Thus, the present study aimed at comparing physiological and psychological responses to endotoxin administration between men and women. Twenty-eight healthy volunteers (14 men, 14 women) were intravenously injected with a low dose (0.4ng/kg) of lipopolysaccharide (LPS) and plasma concentrations of cytokines and neuroendocrine factors as well as negative state emotions were measured before and until six hours after LPS administration. Women exhibited a more profound pro-inflammatory response with significantly higher increases in tumor necrosis factor (TNF)-? and interleukin (IL)-6. In contrast, the LPS-induced increase in anti-inflammatory IL-10 was significantly higher in men. The cytokine alterations were accompanied by changes in neuroendocrine factors known to be involved in inflammation regulation. Endotoxin injection induced a significant increase in noradrenaline, without evidence for sex differences. The LPS-induced increase in cortisol was significantly higher in woman, whereas changes in dehydroepiandrosterone were largely comparable. LPS administration also increased secretion of prolactin, but only in women. Despite these profound sex differences in inflammatory and neuroendocrine responses, men and women did not differ in endotoxin-induced alterations in mood and state anxiety or non-specific sickness symptoms. This suggests that compensatory mechanisms exist that counteract the more pronounced inflammatory response in women, preventing an exaggerated sickness response. Disturbance of these compensatory mechanisms by environmental factors such as stress may promote the development of affective disorders in women. PMID:26291403

  11. Enhancing the selective extracellular location of a recombinant E. coli domain antibody by management of fermentation conditions.

    PubMed

    Voulgaris, Ioannis; Finka, Gary; Uden, Mark; Hoare, Mike

    2015-10-01

    The preparation of a recombinant protein using Escherichia coli often involves a challenging primary recovery sequence. This is due to the inability to secrete the protein to the extracellular space without a significant degree of cell lysis. This results in the release of nucleic acids, leading to a high viscosity, difficulty to clarify, broth and also to contamination with cell materials such as lipopolysaccharides and host cell proteins. In this paper, we present different fermentation strategies to facilitate the recovery of a V H domain antibody (13.1 kDa) by directing it selectively to the extracellular space and changing the balance between domain antibody to nucleic acid release. The manipulation of the cell growth rate in order to increase the outer cell membrane permeability gave a small ~1.5-fold improvement in released domain antibody to nucleic acid ratio without overall loss of yield. The introduction during fermentation of release agents such as EDTA gave no improvement in the ratio of released domain antibody to nucleic acid and a loss of overall productivity. The use of polyethyleneimine (PEI) during fermentation was with the aim to (a) permeabilise the outer bacterial membrane to release selectively domain antibody and (b) remove selectively by precipitation nucleic acids released during cell lysis. This strategy resulted in up to ~4-fold increase in the ratio of domain antibody to soluble nucleic acid with no reduction in domain antibody overall titre. In addition, a reduction in host cell protein contamination was achieved and there was no increase in endotoxin levels. Similar results were demonstrated with a range of other antibody products prepared in E. coli. PMID:26184976

  12. Role of cardiac- and myeloid-MyD88 signaling in endotoxin shock – a study with tissue-specific deletion models

    PubMed Central

    Feng, Yan; Zou, Lin; Chen, Chan; Li, Dan; Chao, Wei

    2014-01-01

    BACKGROUND Myeloid differentiation factor 88 (MyD88) is an adaptor molecule critical for host innate immunity. Studies have shown that signaling via MyD88 contributes to cytokine storm, cardiac dysfunction, and high mortality during endotoxin shock. However, the specific contribution of MyD88 signaling of immune and cardiac origins to endotoxin shock remains unknown. METHODS Tissue-specific MyD88 deletion models Cre recombinase transgenic mice with α-myosin heavy chain (α-MHC) or lysozyme M promoters were cross-bred with MyD88-loxP (MyD88fl/fl) mice, respectively, to generate cardiomyocyte- (α-MHC-MyD88−/−) or myeloid-specific (Lyz-MyD88−/−) MyD88 deletion models and their respective MyD88fl/fl littermates. Endotoxin shock model Mice were subjected to 15 mg/kg lipopolysaccharide (intra-peritoneal injection). Cardiac function was measured by echocardiography and cytokines by multiplex assay and quantitative reverse transcription-polymerase chain reaction (qRT-PCR). RESULTS α-MHC-MyD88−/− mice had 61% and 87% reduction in MyD88 gene and protein expression in cardiomyocytes, respectively, whereas Lyz-MyD88−/− had 73% and 67% decrease, respectively, in macrophages (n=3/group). Following lipopolysaccharide treatment, the two groups of MyD88fl/fl littermates had 46% (n=10) and 60% (n=15) of mortality, respectively. Both α-MHC- MyD88−/− and Lyz-MyD88−/− mice had markedly improved survival. Compared to the MyD88fl/fl littermates, Lyz-MyD88−/− mice had warmer body temperature, attenuated systemic and cardiac inflammatory cytokine production, and significantly improved cardiac function, whereas α-MHC-MyD88−/− mice had decreased myocardial inducible nitric oxide synthase (iNOS) induction and modestly preserved cardiac function. CONCLUSIONS Both cardiomyocyte- and myeloid-MyD88 signaling play a role in cardiac dysfunction and mortality during endotoxin shock. Myeloid MyD88 signaling plays a predominant role in systemic and cardiac inflammation following endotoxin challenge. PMID:25089642

  13. [Effect of clindamycin on stimulation of cell adhesion molecules by endotoxins and enterotoxin of Bacteroides fragilis strains].

    PubMed

    Meisel-Mikołajczyk, F; Rokosz, A; Kot, K; Zawidzka, E; Malchar, C; Nowaczyk, M; Górski, A

    2001-01-01

    The influence of clindamycin on expression of B. fragilis endotoxins (LPS) and enterotoxin stimulated cell adhesion molecules: ICAM-1, VCAM-1 and E-selectin on HMEC-1 (human microvascular endothelial cell line) was tested. Lipopolysaccharides from four Bacteroides fragilis strains: one nonenterotoxigenic (NTBF) and three enterotoxigenic (ETBF) were extracted by hot phenol-water method and purified. B. fragilis enterotoxin was prepared according to the method described by van Tassel et al. (1992). All bacterial preparations were used for stimulation at concentration 10 micrograms/ml. Clindamycin was used in concentration of 2 micrograms/ml. The influence of antimicrobial agent on the endotoxins and enterotoxin stimulation and expression of adhesion molecules was tested by ELISA, using monoclonal mouse anti-human antibodies (Genzyme, USA). Peroxidase-conjugated rabbit anti-mouse immunoglobulins (DAKO A/S Denmark) and OPD (Sigma USA) were used. The coloured reaction product was measured by reading the absorbance at 492 nm in SPECTRA II reader (SLT, Austria). It was observed that clindamycin influenced the expression of cell adhesion molecules on resting cell line. HMEC-1 cells stimulated with Bacteroides fragilis LPS preparations have suppressive effect on ICAM-1 expression. ICAM-1 expression was augmented when stimulated with Tox 1 and Tox 2 preparations. Clindamycin augmented the VCAM-1 expression in tests with all bacterial preparations. All used bacterial preparations of Bacteroides fragilis LPS and enterotoxin enhanced the expression of E-selectin with exception of LPS of NTBF strain. PMID:11757424

  14. Transcriptional regulation of the rat sperm-associated antigen 11e (Spag 11e) gene during endotoxin challenge.

    PubMed

    Biswas, Barnali; Yenugu, Suresh

    2014-10-01

    The lipopolysaccharide (LPS) inducible expression of antimicrobial proteins of the Sperm-Associated Antigen 11 (Spag11) family is dependent on nuclear factor-?B (NF-?B) activation and epigenetic factors. However, the regulatory mechanisms that govern their gene expression during endotoxin challenge are unknown. In this study, we demonstrate that the Spag11e gene upstream sequence contains binding sites for androgen receptor (AR), NF-?B, nuclear factor-1, E-twenty-six and activator protein 2. The role of these transcription factors in inducing Spag11e gene during LPS challenge was analysed by measuring luciferase activity in HEK cells transiently transfected with deletion constructs that lacked one or more of the binding sites. Deletion of AR-binding site resulted in loss of luciferase activity and no further decrease was observed when progressive deletions of the other transcription factor binding sites were made. Mutations in AR or NF-?B binding site resulted in loss of luciferase activity. Electrophoretic gel-mobility shift assays indicated that AR and NF-?B proteins bind to the synthesised radio-labelled oligomers used as probes and the mobility shifted when respective antibodies were added. Results of this study indicate the direct involvement of AR and NF-?B in LPS-induced Spag11e expression, thereby expanding our understanding of antimicrobial gene expression during endotoxin challenge. PMID:24777385

  15. Protective effect of aescin from the seeds of Aesculus hippocastanum on liver injury induced by endotoxin in mice.

    PubMed

    Jiang, Na; Xin, Wenyu; Wang, Tian; Zhang, Leiming; Fan, Huaying; Du, Yuan; Li, Chong; Fu, Fenghua

    2011-11-15

    To investigate the effect and underlying mechanism of aescin on acute liver injury induced by endotoxin, liver injury was established by injecting lipopolysaccharide (LPS) in mice. Animals were assigned to seven groups: the control group and groups treated with LPS (40 mg/kg), aescin (3.6 mg/kg), LPS plus dexamethasone (4 mg/kg) and LPS plus aescin (0.9, 1.8 or 3.6 mg/kg). Hepatic histopathological changes were examined under a light microscope. Activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum were determined. Levels of tumor necrosis factor-? (TNF-?), interleukin-1? (IL-1?), nitric oxide (NO) and antioxidative parameters in liver homogenate were measured. Glucocorticoid receptor (GR), 11 beta-hydroxysteroid dehydrogenase type 1 (11?-HSD1) and 11 beta-hydroxysteroid dehydrogenase type 2 (11?-HSD2) expressions in liver were determined by western blotting. Treatment with escin could inhibit immigration of inflammatory cells, alleviate the degree of necrosis, and decrease serum ALT and AST activities. Aescin also down-regulated levels of inflammation mediators (TNF-?, IL-1? and NO) and 11?-HSD2 expression in liver, up-regulated GR expression, enhanced endogenous antioxidative capacity, but have no obvious effect on 11?-HSD1 expression in liver. The findings suggest aescin has protective effects on endotoxin-induced liver injury, and the underlying mechanisms were associated with its anti-inflammatory effects, up-regulating GR expression, down-regulating 11?-HSD2 experssion, and antixoidation. PMID:21802269

  16. Aspirin-triggered resolvin D1 down-regulates inflammatory responses and protects against endotoxin-induced acute kidney injury

    SciTech Connect

    Chen, Jiao; Shetty, Sreerama; Zhang, Ping; Gao, Rong; Hu, Yuxin; Wang, Shuxia; Li, Zhenyu; Fu, Jian

    2014-06-01

    The presence of endotoxin in blood can lead to acute kidney injury (AKI) and septic shock. Resolvins, the endogenous lipid mediators derived from docosahexaenoic acid, have been reported to exhibit potent anti-inflammatory action. Using a mouse model of lipopolysaccharide (LPS)-induced AKI, we investigated the effects of aspirin-triggered resolvin D1 (AT-RvD1) on inflammatory kidney injury. Administration of AT-RvD1 1 h after LPS challenge protected the mice from kidney injury as indicated by the measurements of blood urea nitrogen, serum creatinine, and morphological alterations associated with tubular damage. The protective effects were evidenced by decreased neutrophil infiltration in the kidney indicating reduction in inflammation. AT-RvD1 treatment restored kidney cell junction protein claudin-4 expression, which was otherwise reduced after LPS challenge. AT-RvD1 treatment inhibited endotoxin-induced NF-κB activation and suppressed LPS-induced ICAM-1 and VCAM-1 expression in the kidney. Moreover, AT-RvD1 treatment markedly decreased LPS-induced IL-6 level in the kidney and blocked IL-6-mediated signaling including STAT3 and ERK phosphorylation. Our findings demonstrate that AT-RvD1 is a potent anti-inflammatory mediator in LPS-induced kidney injury, and AT-RvD1 has therapeutic potential against AKI during endotoxemia.

  17. Impact of TREM-2 gene silencing on inflammatory response of endotoxin-induced acute lung injury in mice.

    PubMed

    Liu, Dai; Dong, Yanting; Liu, Zhuola; Niu, Bo; Wang, Yaowei; Gao, Xiaoling

    2014-09-01

    Acute lung injury (ALI) is one of the critical clinical respiratory diseases, of which infection is the main cause and the first risk factor. This study investigated the impact of triggering receptor of myeloid cells expression (TREM)-2 gene silencing on inflammatory response of endotoxin-induced ALI in mice. Lentivirus-mediated TREM-2-shRNA was transfected into healthy male C57BL/6 mice, and the lipopolysaccharide-induced ALI model was established. The immunohistochemistry, immunofluorescence, fluorescence quantitative PCR, western blot, and ELISA were applied to detect the pathological changes of lung tissue and expressions of TREM-2, tumor necrosis factor-? (TNF-?), and interleukin 10 (IL-10) in bronchoalveolar lavage fluid. The lentivirus group, saline control group, ALI model group, blank control group, and negative control group were set up at the same time. Results found that, in lentivirus group, the pathological change of lung tissue was significantly lighter than ALI model group (P < 0.05), and the expression of TREM-2 was significantly reduced compared with all control groups (P < 0.05). The levels of TNF-? and IL-10 were significantly increased than all control groups (P < 0.05), while above indexes in negative control group and blank control group showed no significant difference with ALI group (P > 0.05). This study indicates that TREM-2 has a protective effect on inflammatory response of endotoxin-induced ALI in mice, which has provided new potential targets for prevention and treatment of ALI. PMID:24916365

  18. Intestinal Alkaline Phosphatase Detoxifies Lipopolysaccharide and Prevents Inflammation in Response to the Gut Microbiota

    PubMed Central

    Bates, Jennifer M.; Akerlund, Janie; Mittge, Erika; Guillemin, Karen

    2009-01-01

    SUMMARY Vertebrates harbor abundant lipopolysaccharide (LPS) or endotoxin in their gut microbiota. Here we demonstrate that the brush border enzyme intestinal alkaline phosphatase (Iap), which dephosphorylates LPS, is induced during establishment of the microbiota and plays a crucial role in promoting mucosal tolerance to gut bacteria in zebrafish. We demonstrate that Iap deficient animals are hypersensitive to LPS toxicity through a mechanism mediated by Myd88 and Tumor Necrosis Factor Receptor (Tnfr). We further show that the endogenous microbiota establish the normal homeostatic level of neutrophils in the intestine through a process involving Myd88 and Tnfr. Iap deficient animals exhibit excessive intestinal neutrophil influx, similar to wild type animals exposed to LPS. When reared germ-free, however, the intestines of Iap deficient animals are devoid of neutrophils, demonstrating that Iap functions to prevent inflammatory responses to resident gut bacteria. PMID:18078689

  19. Endotoxin (LPS) increases mesenteric vascular resistance (MVR) and bacterial translocation (BT).

    PubMed

    Navaratnam, R L; Morris, S E; Traber, D L; Flynn, J; Woodson, L; Linares, H; Herndon, D N

    1990-09-01

    Endotoxemia is responsible for many of the pathophysiologic alterations that occur with Gram-negative sepsis. We utilized a chronic ovine model to determine the hemodynamic disturbances in the gastrointestinal tract during endotoxemia. Sheep with indwelling arterial, venous, and pulmonary arterial catheters were used. An ultrasonic flow probe was placed on the cephalic mesenteric artery. The animals were subjected to: 1) Ringer's lactate infusion (sham n = 6); or 2) 1.5 mcg/kg E. coli endotoxin (n = 6) over over a period of one half hour and were monitored for 48 hours. They were then sacrificed and specimens of mesenteric lymph node, liver, spleen, kidney, and lung obtained for bacteriologic cultures and histologic analysis. Sheep receiving endotoxin showed more than 50% reduction in the mesenteric blood flow. Mesenteric vascular resistance increased while non-mesenteric systemic vascular resistance decreased. The increase in the total systemic vascular resistance, noted during endotoxemia, was thus likely due to the increase in the mesenteric vascular resistance. At autopsy there were positive cultures for microorganism in the mesenteric lymph nodes in six out of six sheep with endotoxemia as compared to one out of six of control. Thus the vasoconstriction in the mesenteric areas may have resulted in bacterial translocation from the GI tract. PMID:2213944

  20. The Transfer of Endotoxin Induced Immunity from Hens to Poults

    PubMed Central

    Truscott, R. B.; Friars, G. W.

    1972-01-01

    Turkey hens were vaccinated six times with Salmonella typhimurium endotoxin prior to and during their egg production cycle. The resultant poults possessed a significant degree of immunity to challenge with S. typhimurium. PMID:4258548

  1. Interactions between chensinin-1, a natural antimicrobial peptide derived from Rana chensinensis, and lipopolysaccharide.

    PubMed

    Dong, Weibing; Sun, Yue; Shang, Dejing

    2015-12-01

    Lipopolysaccharide (LPS) plays a critical role in the pathogenesis of sepsis caused by gram-negative bacterial infections. Therefore, LPS-neutralizing molecules would have important clinical applications. Chensinin-1, a novel antimicrobial peptide with atypical structural features, was found in the skin secretions of the Chinese brown frog Rana chensinensis. To understand the role of LPS in the bacterial susceptibility to chensinin-1 and to investigate its anti-endotoxin effects, the interactions of chensinin-1 with LPS were investigated in this study using circular dichroism, in situ IR, isothermal titration calorimetry, and zeta potential. This study is the first to use in situ IR spectroscopy to evaluate the secondary structural changes of this peptide. The capacity of chensinin-1 to block the LPS-dependent cytokine secretion of macrophages was also investigated. Our results show that chensinin-1 can form α-helical structures in LPS suspensions. LPS can affect the antimicrobial activity of chensinin-1, and chensinin-1 was able to mitigate the effects of LPS. These data may facilitate the development of antimicrobial peptides with potent antimicrobial and anti-endotoxin activities. PMID:26340228

  2. Lipopolysaccharide Inhibits the Channel Activity of the P2X7 Receptor

    PubMed Central

    Leiva-Salcedo, Elias; Coddou, Claudio; Rodrguez, Felipe E.; Penna, Antonello; Lopez, Ximena; Neira, Tanya; Fernndez, Ricardo; Imarai, Mnica; Rios, Miguel; Escobar, Jorge; Montoya, Margarita; Huidobro-Toro, J. Pablo; Escobar, Alejandro; Acua-Castillo, Claudio

    2011-01-01

    The purinergic P2X7 receptor (P2X7R) plays an important role during the immune response, participating in several events such as cytokine release, apoptosis, and necrosis. The bacterial endotoxin lipopolysaccharide (LPS) is one of the strongest stimuli of the immune response, and it has been shown that P2X7R activation can modulate LPS-induced responses. Moreover, a C-terminal binding site for LPS has been proposed. In order to evaluate if LPS can directly modulate the activity of the P2X7R, we tested several signaling pathways associated with P2X7R activation in HEK293 cells that do not express the TLR-4 receptor. We found that LPS alone was unable to induce any P2X7R-related activity, suggesting that the P2X7R is not directly activated by the endotoxin. On the other hand, preapplication of LPS inhibited ATP-induced currents, intracellular calcium increase, and ethidium bromide uptake and had no effect on ERK activation in HEK293 cells. In splenocytes-derived T-regulatory cells, in which ATP-induced apoptosis is driven by the P2X7R, LPS inhibited ATP-induced apoptosis. Altogether, these results demonstrate that LPS modulates the activity of the P2X7R and suggest that this effect could be of physiological relevance. PMID:21941410

  3. Lipopolysaccharide inhibits the channel activity of the P2X7 receptor.

    PubMed

    Leiva-Salcedo, Elias; Coddou, Claudio; Rodrguez, Felipe E; Penna, Antonello; Lopez, Ximena; Neira, Tanya; Fernndez, Ricardo; Imarai, Mnica; Rios, Miguel; Escobar, Jorge; Montoya, Margarita; Huidobro-Toro, J Pablo; Escobar, Alejandro; Acua-Castillo, Claudio

    2011-01-01

    The purinergic P2X7 receptor (P2X7R) plays an important role during the immune response, participating in several events such as cytokine release, apoptosis, and necrosis. The bacterial endotoxin lipopolysaccharide (LPS) is one of the strongest stimuli of the immune response, and it has been shown that P2X7R activation can modulate LPS-induced responses. Moreover, a C-terminal binding site for LPS has been proposed. In order to evaluate if LPS can directly modulate the activity of the P2X7R, we tested several signaling pathways associated with P2X7R activation in HEK293 cells that do not express the TLR-4 receptor. We found that LPS alone was unable to induce any P2X7R-related activity, suggesting that the P2X7R is not directly activated by the endotoxin. On the other hand, preapplication of LPS inhibited ATP-induced currents, intracellular calcium increase, and ethidium bromide uptake and had no effect on ERK activation in HEK293 cells. In splenocytes-derived T-regulatory cells, in which ATP-induced apoptosis is driven by the P2X7R, LPS inhibited ATP-induced apoptosis. Altogether, these results demonstrate that LPS modulates the activity of the P2X7R and suggest that this effect could be of physiological relevance. PMID:21941410

  4. Arteriolar reactivity of endotoxin-tolerant rats after hemorrhage and reinfusion.

    PubMed

    Baker, C H; Sutton, E T; Price, J M

    1995-12-01

    Adrenergic and endothelium-dependent arteriolar reactivity are greatly reduced in hemorrhagic shock. However, development of tolerance to endotoxin may prevent the decrease. The reactivity of cremaster muscle arterioles was tested in pentobarbital-anesthetized endotoxin-tolerant (ENDT-T) and nontolerant control rats. Tolerance was developed by sublethal intraperitoneal injections of Escherichia coli endotoxin for 4 days (n = 9). Controls received saline (n = 9). Mean arterial pressure (MAP), arteriolar diameter-response curves to topical norepinephrine (NE) (10-9M to 10-3M) and responses to 10-3M acetylcholine (ACh) were obtained as follows 1) at control, 2) following hemorrhage to 40 mmHg. 3) after uptake of 25% of bled volume with the remainder infused, and 4) at 240 min post-hemorrhage. The A1, A2, and A3 arterioles were constricted following hemorrhage in the ENDT-T group and in the saline group. After reinfusion and in late shock, vessel diameters remained constricted. MAP increased to control levels (106 +/- 5 and 101 +/- 4 mmHg, respectively) following re-infusion in both groups but in late shock it decreased until death in the nontolerant group and decreased only minimally (96 +/- 4 mmHg) in the ENDT-T group. The nontolerant group NE ED50 increased from pre-hemorrhage to late shock (p < .05). The ENDT-T group ED50 was unchanged. The bleeding volumes of the two groups were not different. The survival time of the nontolerant group was 234 +/- 36 min, whereas the ENDT-T group all survived and were sacrificed at 427 +/- 30 min. The response to endothelium-dependent ACH vasodilation in late shock was significantly reduced in the saline group but was unchanged in the ENDT-T group. Alpha 1 receptor activity was maintained in both groups. Alpha 2 receptor activity was attenuated pre-hemorrhage and at 240 min post-hemorrhage in ENDT-T rats. In late shock, alpha 2 receptor activity was attenuated in nontolerant rats. The development of endotoxin tolerance prevents the loss of arteriolar responsiveness to NE and ACh. ENDT-T rats have attenuated alpha 2 receptor activity but not alpha 1 receptor activity. PMID:8608404

  5. E. Coli

    MedlinePLUS

    ... E. coli is short for the medical term Escherichia coli . The strange thing about these bacteria and lots ... cause a very serious infection. Someone who has E. coli infection may have these symptoms: bad stomach cramps and ...

  6. Influence of endotoxin-induced fever on the pharmacokinetics of theophylline in the rabbit model.

    PubMed

    Prince, R A; Johnson, J A; Weinberger, M M

    1989-01-01

    To assess fever-induced changes in theophylline pharmacokinetics in the rabbit model, six healthy, male, New Zealand white rabbits were studied using a randomized, matched-pair design. In treatment 1, 15 mg/kg of theophylline was infused into the left marginal ear vein, and several blood samples were collected from the opposite ear for 10 hours. Treatment 2 was conducted in an identical manner, except 20 to 40 micrograms/kg of Escherichia coli endotoxin was injected into the left marginal ear vein to induce fever. The majority of the rabbits had slight decreases in the slowest disposition rate constant and increases in the volume of distribution at steady state; however, total body clearance was only minimally (5%) changed. No statistically significant differences were noted between these values (Hotelling T2 = 0.32). Given the sample and methods, fever apparently does not affect theophylline pharmacokinetics. PMID:2671956

  7. Endotoxin removed from hemoglobin solution using polymyxin-B immobilized fibre (PMX-F) followed by a new turbidometric endotoxin assay.

    PubMed

    Tani, T; Chang, T M; Kodama, M; Tsuchiya, M

    1992-01-01

    Endotoxin contamination in modified hemoglobin can result in side effects. Accurate measurement and effective elimination of endotoxin are important in producing safe hemoglobin preparation. A new turbidometric endotoxin assay (Toxinometer) was studied, in which absorbance of wavelength was applied at 660 nm. This method is not affected by the presence of hemoglobin in solution. This way, toxinometer can accurately measure endotoxin concentration in hemoglobin solution. For the elimination of endotoxin, polymyxin-B immobilized fiber (PMX-F) was studied in-vitro and compared with commercial materials. The PMX-F was found to be a convenient and less expensive approach. PMID:1391464

  8. An Anti-Interleukin-2 Receptor Drug Attenuates T- Helper 1 Lymphocytes-Mediated Inflammation in an Acute Model of Endotoxin-Induced Uveitis

    PubMed Central

    Navea, Amparo; Almansa, Inmaculada; Muriach, Mara; Bosch-Morell, Francisco

    2014-01-01

    The aim of the present study was to evaluate the anti-inflammatory efficacy of Daclizumab, an anti-interleukin-2 receptor drug, in an experimental uveitis model upon a subcutaneous injection of lipopolysaccharide into Lewis rats, a valuable model for ocular acute inflammatory processes. The integrity of the blood-aqueous barrier was assessed 24 h after endotoxin-induced uveitis by evaluating two parameters: cell count and protein concentration in aqueous humors. The histopathology of all the ocular structures (cornea, lens, sclera, choroid, retina, uvea, and anterior and posterior chambers) was also considered. Enzyme-linked immunosorbent assays of the aqueous humor samples were performed to quantify the levels of the different chemokine and cytokine proteins. Similarly, a biochemical analysis of oxidative stress-related markers was also assessed. The inflammation observed in the anterior chamber of the eyes when Daclizumab was administered with endotoxin was largely prevented since the aqueous humor protein concentration substantially lowered concomitantly with a significant reduction in the uveal and vitreous histopathological grading. Th1 lymphocytes-related cytokines, such as Interleukin-2 and Interferon-?, also significantly reduced with related anti-oxidant systems recovery. Daclizumab treatment in endotoxin-induced uveitis reduced Th1 lymphocytes-related cytokines, such as Interleukin-2 and Interferon gamma, by about 6070% and presented a preventive role in endotoxin-induced oxidative stress. This antioxidant protective effect of Daclizumab may be related to several of the observed Daclizumab effects in our study, including IL-6 cytokine regulatory properties and a substantial concomitant drop in INF?. Concurrently, Daclizumab treatment triggered a significant reduction in both the uveal histopathological grading and protein concentration in aqueous humors, but not in cellular infiltration. PMID:24595020

  9. Cow allergen (Bos d2) and endotoxin concentrations are higher in the settled dust of homes proximate to industrial-scale dairy operations

    PubMed Central

    Williams, D' Ann L; McCormack, Meredith C; Matsui, Elizabeth C; Diette, Gregory B; McKenzie, Shawn E; Geyh, Alison S; Breysse, Patrick N

    2016-01-01

    Airborne contaminants produced by industrial agricultural facilities contain chemical and biological compounds that can impact the health of residents living in close proximity. Settled dust can be a reservoir for these contaminants and can influence long-term exposures. In this study, we sampled the indoor- and outdoor-settled dust from 40 homes that varied in proximity to industrial-scale dairies (ISD; industrial-scale dairy, a term used in this paper to describe a large dairy farm and adjacent waste sprayfields, concentrated animal feeding operation or animal feeding operation, that uses industrial processes) in the Yakima Valley, Washington. We analyzed settled dust samples for cow allergen (Bos d2, a cow allergen associated with dander, hair, sweat and urine, it is a member of the lipocalin family of allergens associated with mammals), mouse allergen (Mus m1; major mouse allergen, a mouse urinary allergen, in the lipocalin family), dust mite allergens (Der p1 (Dermatophagoides pteronissinus 1) and Der f1 (Dermatophagoides farinae 1)), and endotoxin (a component of the cell walls of gram negative bacteria, lipopolysaccharide, which can be found in air and dust and can produce a strong inflammatory response). A concentration gradient was observed for Bos d2 and endotoxin measured in outdoor-settled dust samples based on proximity to ISD. Indoor-settled dust concentrations of Bos d2 and endotoxin were also highest in proximal homes. While the associated health effects of exposure to cow allergen in settled dust is unknown, endotoxin at concentrations observed in these proximal homes (100 EU/mg) has been associated with increased negative respiratory health effects. These findings document that biological contaminants emitted from ISDs are elevated in indoor- and outdoor-settled dust samples at homes close to these facilities and extend to as much as three miles (4.8 km) away. PMID:25138294

  10. Endotoxin-induced cytokine gene expression in vivo. II. Regulation of tumor necrosis factor and interleukin-1 alpha/beta expression and suppression.

    PubMed Central

    Ulich, T. R.; Guo, K. Z.; Irwin, B.; Remick, D. G.; Davatelis, G. N.

    1990-01-01

    Tumor necrosis factor alpha (TNF alpha) mRNA is present in a preformed intracellular pool in the spleen, liver, and small bowel of naive rats. Endotoxin (Salmonella typhus lipopolysaccharide) injected intravenously induces little or no increase in whole-organ TNF mRNA levels at 15', 30', 1 degree, 2 degrees, or 4 degrees, whereas serum TNF levels are markedly elevated at 1 and 2 hours. Dexamethasone pretreatment of rats suppresses LPS-induced serum TNF concentrations, but does not suppress TNF mRNA levels in the spleen or bowel. Tachyphylaxis experiments demonstrate that a second injection of endotoxin 2 hours after an initial injection fails to induce a second peak of serum TNF, although TNF mRNA levels in the spleen and bowel remain at the levels found in naive rats. Corynebacterium parvum upregulates endotoxin-induced serum TNF release and intravenous injection of IL-1 induces the release of serum TNF but neither alters whole-organ TNF mRNA levels. Interleukin-1 alpha (IL-1 alpha) mRNA was not constitutively detected in whole-organ RNA preparations of the spleen, liver, and small bowel of naive rats. Endotoxin induces IL-1 alpha mRNA most easily appreciated in the spleen beginning at 1 hour, peaking at 2 to 4 hours, and disappearing by 6 hours. Interleukin-1 beta (IL-1 beta) mRNA was not constitutively detected in the organs examined or was present in small amounts. Endotoxin induces IL-1 beta mRNA beginning at 0.5 hours, peaking at 1 hour, and disappearing by 6 hours. Dexamethasone pretreatment prevents the LPS-induced appearance of IL-1 alpha mRNA and suppresses but does not completely inhibit the appearance of IL-1 beta mRNA. C. parvum upregulates endotoxin-induced IL-1 mRNA expression. Intravenous injection of TNF or IL-1 both induce IL-1 mRNA expression. In conclusion, TNF mRNA is constitutively expressed and TNF mRNA levels as analyzed in whole-organ RNA preparations do not change in concert with serum TNF protein levels during conditions of endotoxemia, dexamethasone treatment, tachyphylaxis, priming with C. parvum, or after injection of IL-1. In contrast, IL-1 mRNA expression during endotoxemia, dexamethasone treatment, priming with C. parvum, or after injection of TNF or IL-1 shows clear increases and decreases in whole-organ RNA preparations. Images Figure 2 Figure 3 Figure 4 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 PMID:2240164

  11. Endotoxin removal using a synthetic adsorbent of crystalline calcium silicate hydrate.

    PubMed

    Zhang, John P; Wang, Qun; Smith, Timothy R; Hurst, William E; Sulpizio, Thomas

    2005-01-01

    A synthetic adsorbent of crystalline calcium silicate hydrate, the product LRA by Advanced Minerals Corp., has been studied for endotoxin removal from aqueous solutions. This adsorbent removes endotoxin effectively, and the removal is greatly enhanced by the presence of an electrolyte such as NaCl, Tris-HCl, or Na2HPO4. It has an endotoxin removal capacity as high as 6 million endotoxin units (EU) per gram. Its endotoxin removal kinetics is fast, and for instance, over 99.9% endotoxin in a 5000 EU/mL solution was removed by mixing for 2 min at an adsorbent usage of 10 g/L. Using the chromatographic column method to treat a 5000 EU/mL solution, an endotoxin log-reduction factor of 6.2 was achieved with a single pass. This adsorbent also demonstrated significantly better performance when compared to many commonly used endotoxin removal agents, such as ActiClean Etox Endotoxin Removal Resin, Affi-Prep Polymyxin Support, Detroxi-Gel Endotoxin Removing Gel, Q Sepharose Fast Flow Media, and Sigma Endotoxin Removal Solution. Furthermore, it demonstrated a high selective removal of endotoxin from a solution of lambda DNA. This adsorbent provides opportunities for developing disposable, scaleable, and cost-effective methods for endotoxin reduction in many biotechnological and pharmaceutical processes. PMID:16080705

  12. Role of bacterial adherence and the mucus barrier on bacterial translocation: effects of protein malnutrition and endotoxin in rats.

    PubMed Central

    Katayama, M; Xu, D; Specian, R D; Deitch, E A

    1997-01-01

    OBJECTIVE: The purpose of the study was to investigate the potential relations between mucosal bacterial adherence, intestinal mucus and mucin content, and bacterial translocation. SUMMARY BACKGROUND DATA: The attachment of bacteria to mucosal surfaces is the initial event in the pathogenesis of most bacterial infections that originate at mucosal surfaces, such as the gut. The intestinal mucus layer appears to function as a defensive barrier limiting micro-organisms present in the intestinal lumen from colonizing enterocytes. Consequently, studies focusing on the biology of bacterial adherence to the intestinal mucosa likely are to be important in clarifying the pathogenesis of gut origin sepsis. METHODS: To explore the relations between intestinal bacterial adherence, mucus bacterial binding, and bacterial translocation, two models were used. One (protein malnutrition) in which profound alterations in intestinal morphology occurs in the absence of significant translocation and one (endotoxin challenge) in which bacterial translocation occurs and intestinal morphology is relatively normal. RESULTS: Protein malnutrition was not associated with bacterial translocation and measurement of enteroadherent, mucosally associated bacterial population levels documented that the total number of gram-negative enteric bacilli adherent to the ileum and cecum was less in the protein-malnourished rats than in the normally nourished animals (p < 0.01). Furthermore, there was an inverse relation between the duration of protein malnutrition and bacterial adherence to the intestinal mucosa (r = 0.62, p < 0.002). In contrast, after endotoxin challenge, the level of enteroadherent bacteria was increased and bacterial translocation was observed. The binding of Escherichia coli to immobilized ileal mucus in vitro was decreased significantly in protein-malnourished rats, whereas E. coli binding to insoluble ileal mucus was increased in the rats receiving endotoxin. CONCLUSIONS: This study indicates that the adherence of bacteria to the intestinal mucosal surface is an important factor in bacterial translocation, that intestinal mucus modulates bacterial adherence, and that increased levels of mucosally associated bacteria are associated with a loss intestinal barrier function to bacteria. PMID:9060589

  13. ?-Cyclodextrin-polyurethane copolymer adsorbent for selective removal of endotoxin from DNA solution.

    PubMed

    Sakata, Masayo; Uezono, Koji; Kimura, Kasane; Todokoro, Masami

    2013-12-01

    Copolymer particles for removal of endotoxins (lipopolysaccharides, LPSs) were prepared by suspension copolymerization of ?-cyclodextrin (CyD) and 1,6-hexamethylenediisocyanate. The LPS-removing activity of the copolymer particles was compared with that of poly(?-lysine)-immobilized Cellufine (cationic adsorbent) or polystyrene particles (hydrophobic adsorbent) by a batch method. When DNA was present in solution with LPSs under physiological conditions (pH 6.0, ionic strength of ? = 0.05-0.8), LPS-removing activity of the cationic or hydrophobic adsorbent was unsatisfactory because both the DNA and the LPSs were adsorbed onto each adsorbent. By contrast, the copolymer particles with ?-CyD cavity (CyD content: 14-20 mol%) could selectively remove LPSs from a DNA solution (50 ?g ml(-1), pH 6.0, and ? = 0.05-0.2) containing LPSs (15 EU ml(-1)) without the adsorption of DNA. The residual concentration of LPSs in the treated DNA solution was below 0.1 EU ml(-1), and the recovery of DNA was 99%. PMID:23969015

  14. Effects of the immunomodulator, VGX-1027, in endotoxin-induced uveitis in Lewis rats

    PubMed Central

    Mangano, K; Sardesai, N Y; Quattrocchi, C; Mazzon, E; Cuzzocrea, S; Bendtzen, K; Meroni, P L; Kim, J J; Nicoletti, F

    2008-01-01

    Background and purpose: VGX-1027 is a novel, low molecular weight, immunomodulatory compound that has shown efficacy against a variety of immuno-inflammatory disease models in animals including autoimmune diabetes in NOD mice, collagen-induced arthritis and chemically induced inflammatory colitis. Here, we have studied the effects of VGX-1027 on the development of endotoxin-induced uveitis (EIU) in male Lewis rats, as a model of inflammatory ocular diseases in humans. Experimental approach: EIU was induced by a single footpad injection of 200??g lipopolysaccharide (LPS). Groups of rats were treated with either VGX-1027 (25?mg?kg?1) or its vehicle at different time points (30?min, 6?h or 12?h) after the challenge with LPS or, as positive control, with dexamethasone. The rats were killed within 16?h after LPS challenge, and the eyes and aqueous humor were collected to study serological, immunological and histological signs of EIU. Key results: The rats treated with VGX-1027 within 6?h after LPS challenge exhibited milder clinical, histological and laboratory signs of EIU than those treated with vehicle. Conclusion and implications: This study provides the first evidence that systemic treatment with VGX-1027 counteracts the uveitis-inducing effect of LPS in rats and suggests that this drug may have potential in the treatment of immuno-inflammatory conditions of the eye in humans. PMID:18776919

  15. Endotoxin promotes adverse effects of amorphous silica nanoparticles on lung epithelial cells in vitro.

    PubMed

    Shi, Yongli; Yadav, Santosh; Wang, Feng; Wang, He

    2010-01-01

    Amorphous silica engineered nanoparticles (ENP) are used for drug delivery and food additive under current regulations. Although the adverse effects of amorphous silica ENP may be negligible, contamination by bacterium products may enhance the toxic potential of these so-called safe products. Lipopolysaccharide (LPS), an endotoxin component generated by gram-negative bacteria, is a potential contaminant of amorphous silica ENP due to its ubiquitous presence in the environment. The combined effects of amorphous silica ENP and LPS are therefore of particular concern. In this study, A549 cells were exposed to amorphous silica ENP in combination with LPS for comparison with the cells treated with ENP. Measurements of MTT assay and lactate dehydrogenase (LDH) activity indicated that the toxicity of amorphous silica ENP was low but co-treatment of the cells with LPS significantly enhanced this toxicity. Decreased cell viability and increased LDH activity release occurred earlier and at lower concentration levels in co-treated cells. Co-treatment of LPS with amorphous silica ENP might also enhance the increase in oxidative stress produced by amorphous silica ENP. However, there were no detectable changes in nitric oxide generation and 8-hydroxy-2-deoxy guanosine formation in the cells treated with either ENP or ENP plus LPS, indicating low effect on oxidative DNA damage. These results showed that LPS may enhance the oxidative stress induced by amorphous silica ENP to initiate cytotoxicity of these engineered nanoparticles. PMID:20391117

  16. Hepatic prolactin binding is rapidly altered by endotoxin in lactating mice

    SciTech Connect

    Carr, J.K.; Keefer, L.M.; Cohen, J.C.

    1987-09-21

    Endotoxin or lipopolysaccharide (LPS), a component of the outer membrane of gram-negative bacteria, produces profound physiologic changes in most mammals. The effects of LPS on ovine prolactin (oPRL) binding by hepatic membranes of lactating mice is explored in this report. Specific /sup 125/I-oPRL binding by liver membranes from LPS-responder C3HfB/HeN mice increased two-fold within fifteen minutes of the injection of LPS, while no change was observed in the non-responder C3H/HeJ mice. Specific /sup 125/I-insulin binding did not change. Scatchard analysis of equilibrium binding of oPRL to C3HfB/HeN liver membranes indicated that within fifteen minutes of LPS injection, a receptor of differing binding affinity appears and then disappears by one hour post-injection. The authors propose that these rapid alterations in the specific binding of oPRL by liver membranes from LPS-injected, lactating C3HfB/HeN mice are due to the transient creation or unmasking of a novel class of PRL receptor. 32 references, 6 figures.

  17. Endotoxin, epinephrine, and ellagic acid effects on the radiation-sensitized walker 256 rat carcinosarcoma.

    PubMed

    Contreras, M D; Bale, W F

    1968-10-01

    A radiation exposure of 1500 R to the Walker 256 rat tumor was found to sensitize this tumor to the effect of a sublethal dose of endotoxin (Sarratia marcescens lipopolysaccharide) given 2 days later so that complete or almost complete destruction of the tumor resulted. Histological. study showed rapidly developing massive necrosis of tumor tissue. Tracer experiments with 131I-labeled antibody to rat fibrin indicated an absence of blood circulation in the treated tumor. These results suggest that the lesion may be secondary to blood coagulation occurring in the vascular bed of the tumor. Apparently identical lesions were also produced by epinephrine and ellagic acid, alone or in combination. It is known that even untreated tumors are often the site of fibrin deposition. Presumably radiation, by injury to tumor cells, enhances the release of coagulation-producing substances into the vascular bed. It is postulated that the effect of subsequent treatment with the drugs listed above is produced by circulatory stasis induced in the tumor. This may be associated with Hageman factor activation or release of platelet factor 3. PMID:17387937

  18. Phorbol ester, but not endotoxin, desensitizes mannan-induced glycogenolysis in the perfused rat liver.

    PubMed

    Kimura, K; Hamada, M; Moriyama, M; Kannan, Y; Shiota, M; Sakurada, K; Musashi, M; Sugano, T

    1996-09-01

    Mannan, a ligand for the mannose/N-acetylglucosamine (GlcNAc) receptor, induces suppression of oxygen consumption and increases glucose production in the perfused rat liver, and repeated infusion of mannan causes desensitization of the responses. In this study, we examined whether activation of Kupffer cells by endotoxin and phorbol ester alters the glycogenolytic responses to mannan. Infusion of lipopolysaccharide (LPS, 10 micrograms/ ml) in the perfusate failed to inhibit the responses to mannan. Intravenous administration of LPS (1 mg/kg) 6 and 24 h before perfusion did not desensitize the responses to mannan, suggesting that the responses through mannose/GlcNAc receptors in the liver are retained even after activation of Kupffer cells by LPS. In contrast, prior infusion of phorbol 12-myristate 13-acetate (PMA, 100 nM) in vitro abolished the glycogenolytic responses to subsequently infused mannan, but not that to norepinephrine (100 nM), while prior infusions of 4-alpha-phorbol 12,13-didecanoate (100 nM), A23187 (50 nM), or forskolin (1 microM) had no effect on the mannan-induced responses. H-7, an inhibitor of protein kinase C, reduced the glycogenolytic responses to mannan, while it failed to restore the desensitization. These results suggest that protein kinase C may be involved in the process of glycogenolysis by mannan, but is unlikely to be involved in the homologous desensitization of the responses. PMID:8902610

  19. Top-Down Strategies for the Structural Elucidation of Intact Gram-negative Bacterial Endotoxins

    PubMed Central

    O’Brien, John P.; Needham, Brittany D.; Brown, Dusty B.; Trent, M. Stephen

    2014-01-01

    Re-modelling of lipopolysaccharides, which are the primary constituent of the outer cell membrane of Gram-negative bacteria, modulates pathogenesis and resistance to microbials. Reported herein is the characterization of intact Gram-negative bacterial lipooligosaccharides (LOS) via a new strategy utilizing online liquid chromatography (LC) coupled with ultraviolet photodissociation (UVPD) mass spectrometry. Compared to collision-based MS/MS methods, UVPD and UVPD/HCD promoted a greater array of cleavages within both the glycan and lipid moieties, including C-C, C-N, C-O cleavages in the acyl chains as well as glycosidic and cross-ring cleavages, thus providing the most far-reaching structural characterization of LOS. This LC-MS/MS strategy affords a robust analytical method to structurally characterize complex mixtures of bacterial endotoxins that maintains the integrity of the core oligosaccharide and lipid A domains of LOS, providing direct feedback about the cell envelope architectures and LOS modification strategies involved in resistance host innate immune defense. PMID:25386333

  20. Endotoxin tolerance alleviates experimental acute liver failure via inhibition of high mobility group box 1

    PubMed Central

    Yang, Nai-Bin; Ni, Shun-Lan; Li, Shan-Shan; Zhang, Sai-Nan; Hu, Dan-Ping; Lu, Ming-Qin

    2015-01-01

    High mobility group box 1 (HMGB1) has been widely reported to mediate damage caused by inflammatory responses. The aim of our study is to investigate the role of HMGB1 in endotoxin tolerance (ET) alleviating inflammation of acute liver failure (ALF) rats and its possible signaling mechanism. To mimic ET, male Sprague-Dawley rats were pretreated with low dose of lipopolysaccharide (LPS) (0.1 mg/kg once a day intraperitoneally for consecutive five days) before subsequent ALF induction. ALF was induced by intraperitoneal administration of D-GalN/LPS. ET induced by LPS pretreatment significantly improved the survival rate of ALF rats. Moreover, after ALF induction, ET+ALF rats exhibited lower serum enzyme (ALT, AST and TBiL) levels, lower production of inflammatory cytokines (IL-6, TNF-a and HMGB1) and more minor liver histopathological damage than ALF rats. ET+ALF rats showed enhanced expression levels of HMGB1, decreased levels of STAT1 and p-STAT1, augmented expression of SOCS1 in liver tissues than ALF rats. These results indicated that ET induced by low-dose LPS pretreatment may alleviate inflammation and liver injury in experimental acute liver failure rats mainly through inhibition of hepatic HMGB1 translocation and release. PMID:26464648

  1. Defective prostaglandin synthesis by C3H/HeJ mouse macrophages stimulated with endotoxin preparations.

    PubMed Central

    Wahl, L M; Rosenstreich, D L; Glode, L M; Sandberg, A L; Mergenhagen, S E

    1979-01-01

    Macrophages obtained from C3H/HeN mice produced significant amounts of prostaglandin E when exposed to phenol-extracted lipopolysaccharides (LPS), whereas macrophages from C3H/HeJ mice were unresponsive. The lipid A fraction from phenol-extracted LPS was an effective inducer or prostaglandin synthesis by macrophages from C3H/HeN mice. The polysaccharide portion of the LPS molecule had no effect. In contrast, the C3H/HeJ macrophages did not produce prostaglandin E in response to the lipid A moiety of phenol-extracted LPS. LPS prepared by butanol extraction stimulated the production of prostaglandin E by macrophages from both C3H/HeN and C3H/HeJ mice. The component of butanol-extracted LPS that stimulated the C3H/HeJ macrophages was shown to be a lipid A-associated protein. Further studies demonstrated a correlation between prostaglandin production by the macrophages of these two strains of mice in response to butanol- and phenol-extracted LPS and the lethal effects of the endotoxin preparations. PMID:422236

  2. Endothelin B receptors preserve renal blood flow in a normotensive model of endotoxin-induced acute kidney dysfunction.

    PubMed

    Nitescu, Nicoletta; Grimberg, Elisabeth; Ricksten, Sven-Erik; Herlitz, Hans; Guron, Gregor

    2008-03-01

    The aim was to investigate the role of endothelin 1 receptor subtypes in the early renal response to lipopolysaccharide (LPS) during normotensive endotoxemia with acute kidney dysfunction. Endotoxemia was induced in thiobutabarbital-anesthetized rats (n = 9 per group) by infusion of LPS (dosage, 1 mg/kg per hour i.v.). The study groups (1) sham-saline, (2) LPS-saline, (3) LPS-BQ123, (4) LPS-BQ788 and (5) LPS-BQ123 + BQ788 received isotonic saline, the ETA receptor antagonist BQ-123 (dosage, 30 nmol/kg per minute i.v.), and/or the ETB receptor antagonist BQ-788 (dosage, 30 nmol/kg per minute i.v.) before and during 2 h of LPS infusion. Renal clearance measurements, renal blood flow (RBF), and cortical and outer medullary perfusion (laser-Doppler flowmetry) and oxygen tension (Clark-type microelectrodes) were analyzed throughout. Before LPS administration, there were no significant differences between groups in glomerular filtration rate (GFR), RBF, or in cortical (CLDF) and outer medullary perfusion. However, mean arterial pressure (MAP) was elevated in LPS-BQ788 group compared with LPS-BQ123 + BQ788 group (P < 0.05). In saline-treated rats, endotoxin induced an approximate 35% reduction in GFR (P < 0.05), without significant effects on MAP, RBF, or on CLDF and cortical PO2. In addition, LPS increased outer medullary perfusion and PO2 (P < 0.05). The fractional urinary excretion rates of sodium, potassium, and water were not significantly different in LPS-saline group compared with sham-saline group. Neither selective nor combined ETA and ETB receptor blockade improved GFR. In BQ-788-infused rats, endotoxin produced marked reductions in RBF (-18% +/- 4% [P < 0.05]) and CLDF (-18% +/- 2% [P < 0.05]). Similarly, endotoxin decreased RBF (-14% +/- 3% [P < 0.05]) and CLDF (-10% +/- 2% [P < 0.05]) in LPS-BQ123 + BQ788 group. Endotoxin reduced MAP (-22% +/- 4% [P < 0.05]) in BQ-123-treated rats but did not significantly influence MAP in other groups. We conclude that in early normotensive endotoxemia, ETB receptors exert a renal vasodilator influence and contribute to maintain normal RBF. PMID:17693943

  3. Endotoxin increases pulmonary vascular protein permeability in the dog

    SciTech Connect

    Welsh, C.H.; Dauber, I.M.; Weil, J.V.

    1986-10-01

    Endotoxin increases pulmonary vascular permeability consistently in some species but fails to reliably cause injury in the dog. We wondered whether this phenomenon depended on the method of injury assessment, as others have relied on edema measurement; we quantified injury by monitoring the rate of extravascular protein accumulation. /sup 113m/In-labeled protein and /sup 99m/Tc-labeled erythrocytes were injected into anesthetized dogs and monitored by an externally placed lung probe. A protein leak index, the rate of extravascular protein accumulation, was derived from the rate of increase in lung protein counts corrected for changes in intravascular protein activity. After administration of Salmonella enteriditis endotoxin (4 micrograms/kg), the protein leak index was elevated 2.5-fold (41.1 +/- 4.6 X 10(-4) min-1) compared with control (16.0 +/- 2.8 X 10(-4) min-1). In contrast, wet-to-dry weight ratios failed to increase after endotoxin (4.6 +/- 0.8 vs. control values of 4.2 +/- 0.5 g/g dry bloodless lung). However, we observed that endotoxin increased lung dry weight (per unit body weight), which may have attenuated the change in wet-to-dry weight ratios. To determine whether low microvascular pressures following endotoxin attenuated edema formation, we increased pulmonary arterial wedge pressures in five dogs by saline infusion, which caused an increase in wet-to-dry weight ratios following endotoxin but no change in the five controls. We conclude that low dose endotoxin causes pulmonary vascular protein leak in the dog while edema formation is minimal or absent.

  4. ALLERGEN PROVOCATION AUGMENTS ENDOTOXIN-INDUCED NASAL INFLAMMATION IN ATOPIC ASTHMATICS

    EPA Science Inventory

    Background: Recent epidemiologic and in vivo studies have suggested that inhaled endotoxin plays an important role in asthma pathogenesis.
    Objective: The present study examines the effect of nasal allergen provocation on subsequent endotoxin challenges in subjects with atopi...

  5. LOW-DOSE AIRBORNE ENDOTOXIN EXPOSURE ENHANCES BRONCHIAL RESPONSIVENESS TO INHALED ALLERGEN IN ATOPIC ASTHMATICS

    EPA Science Inventory

    Endotoxin exposure has been associated with both protection against development of TH2-immune responses during childhood and exacerbation of asthma in persons who already have allergic airway inflammation.1 Occupational and experimental inhalation exposures to endotoxin have been...

  6. Poly(adp-ribose) synthetase inhibition reduces bacterial translocation in rats after endotoxin challenge.

    PubMed

    Taner, A S; Cinel, I; Ozer, L; Onde, U; Taner, D; Koksoy, C

    2001-08-01

    We investigated whether 3-aminobenzamide (3-AB), a poly(ADP-ribose) synthetase (PARS) inhibitor, reduces bacterial translocation (BT) after intraperitoneal endotoxin administration. Wistar rats were randomized to receive intraperitoneal saline (control, n = 6); endotoxin (n = 8); 3-AB (n = 6); and 3-AB plus endotoxin (n = 8). Six hours later, to evaluate the endotoxin-related intestinal injury and BT, tissue and blood samples were collected. Administration of intraperitoneal endotoxin caused severe intestinal injury and BT to mesenteric lymph nodes. PARS inhibition with 3-AB completely prevented endotoxin-induced BT. No colony-forming bacteria was isolated from the samples obtained from 3-AB-pretreated animals under endotoxin challenge. Treatment with 3-AB significantly reduced the endotoxin-induced intestinal mucosal injury. The inhibition of PARS by its blocker 3-aminobenzamide during endotoxemia prevents bacterial translocation and intestinal injury in rats. PARS activation may provide a novel therapeutic approach in reducing gut barrier failure seen in endotoxemia. PMID:11508870

  7. Increased expression of p38 MAPK in human bronchial epithelium after lipopolysaccharide exposure.

    PubMed

    Roos-Engstrand, E; Wallin, A; Bucht, A; Pourazar, J; Sandström, T; Blomberg, A

    2005-05-01

    Bacterial endotoxin (lipopolysaccharides (LPS)) is normally present in the wall of Gram-negative bacteria and has potent pro-inflammatory properties. Exposure to LPS has been shown to induce neutrophilic airway inflammation in humans. The aim of this investigation was to study the early inflammatory responses to LPS exposure in human airway mucosa in vivo. In total, 15 healthy nonsmoking volunteers participated. Bronchoscopy was performed on two separate occasions, 3 h after saline inhalation and after inhalation of 50 mug LPS in saline. Endobronchial mucosal biopsy specimens were taken and stained immunohistochemically using a panel of monoclonal antibodies directed against mitogen-activated protein kinases (MAPKs), transcription factors, cytokines, adhesion molecules and inflammatory cells. Expression of p38 MAPK increased as a consequence of LPS exposure, as determined by both total epithelial staining and nuclear location. These two responses were strongly associated. Epithelial expression of interleukin-8 showed a tendency towards a significant increase after LPS compared to saline. Epithelial mast cell numbers were increased after LPS, whereas neutrophil numbers were unchanged. Inhalation of lipopolysaccharide induced activation of the bronchial epithelium, as demonstrated 3 h after exposure by increased expression of p38 mitogen-activated protein kinase and interleukin-8, and may represent early regulatory steps in the subsequent development of a neutrophilic bronchial inflammation. PMID:15863635

  8. Ragweed pollen extract intensifies lipopolysaccharide-induced priming of NLRP3 inflammasome in human macrophages

    PubMed Central

    Varga, Aliz; Budai, Marietta M; Milesz, Sndor; Bcsi, Attila; T?zsr, Jzsef; Benk?, Szilvia

    2013-01-01

    Ragweed pollen extract (RWE) possesses intrinsic NADPH oxidase activity that induces oxidative stress by initiating the production of intracellular reactive oxygen species (ROS). The ROS are important contributors to the manifestation of allergic inflammation; furthermore, concomitant exposure to an allergen and an endotoxin trigger a stronger inflammatory response. One of the main pro-inflammatory cytokines produced in inflammatory responses is interleukin-1? (IL-1?), and its production is associated with caspase-1-containing inflammasome complexes. Intracellular ROS have been implicated in NLRP3 inflammasome-mediated IL-1? production, therefore, we aimed to study whether RWE influences the function of NLRP3 inflammasome. Here we describe that, in the presence of NADPH, RWE significantly elevates lipopolysaccharide-induced IL-1? production of THP-1 cells as well as human primary macrophages and dendritic cells. We also demonstrate that increased IL-1? production is mediated through NLRP3 inflammasome in THP-1 macrophages. We provide evidence that RWE elevates cytosolic ROS level in these cells, and ROS inhibitors abolish IL-1? production. Furthermore, we show that RWE enhances lipopolysaccharide-induced gene transcription/expression of pro-IL-1? and key components of the inflammasome via a ROS-dependent mechanism. PMID:23278511

  9. E. Coli

    MedlinePLUS

    ... Skiing, Snowboarding, Skating Crushes What's a Booger? E. Coli KidsHealth > For Kids > E. Coli Print A A A Text Size What's in ... Do? What Can Kids Do? en español E. coli What Is It? E. coli is a common ...

  10. Deciphering the dual effect of lipopolysaccharides from plant pathogenic Pectobacterium

    PubMed Central

    Mohamed, Kettani-Halabi; Daniel, Tran; Aurlien, Dauphin; El-Maarouf-Bouteau, Hayat; Rafik, Errakhi; Arbelet-Bonnin, Delphine; Biligui, Bernadette; Florence, Val; Mustapha, Ennaji Moulay; Franois, Bouteau

    2015-01-01

    Lipopolysaccharides (LPS) are a component of the outer cell surface of almost all Gram-negative bacteria and play an essential role for bacterial growth and survival. Lipopolysaccharides represent typical microbe-associated molecular pattern (MAMP) molecules and have been reported to induce defense-related responses, including the expression of defense genes and the suppression of the hypersensitive response in plants. However, depending on their origin and the challenged plant, LPS were shown to have complex and different roles. In this study we showed that LPS from plant pathogens Pectobacterium atrosepticum and Pectobacterium carotovorum subsp. carotovorum induce common and different responses in A. thaliana cells when compared to those induced by LPS from non-phytopathogens Escherichia coli and Pseudomonas aeruginosa. Among common responses to both types of LPS are the transcription of defense genes and their ability to limit of cell death induced by Pectobacterium carotovorum subsp carotovorum. However, the differential kinetics and amplitude in reactive oxygen species (ROS) generation seemed to regulate defense gene transcription and be determinant to induce programmed cell death in response to LPS from the plant pathogenic Pectobacterium. These data suggest that different signaling pathways could be activated by LPS in A. thaliana cells. PMID:25760034

  11. Lipopolysaccharide mutants of Rhizobium meliloti are not defective in symbiosis

    SciTech Connect

    Clover, R.H.; Kieber, J.; Signer, E.R. )

    1989-07-01

    Mutants of Rhizobium meliloti selected primarily for bacteriophage resistance fall into 13 groups. Mutants in the four best-characterized groups (class A, lpsB, lpsC, and class D), which map to the rhizobial chromosome, appear to affect lipopolysaccharide (LPS) as judged by the reactivity with monoclonal antibodies and behavior on sodium dodecyl sulfate-polyacrylamide gels of extracted LPS. Mutations in all 13 groups, in an otherwise wild-type genetic background, are Fix{sup +} on alfalfa. This suggests that LPS does not play a major role in symbiosis. Mutations in lpsB, however, are Fix{sup {minus}} in one particular genetic background, evidently because of the cumulative effect of several independent background mutations. In addition, an auxotrophic mutation evidently equivalent to Escherichia coli carAB is Fix{sup {minus}} on alfalfa.

  12. Lipopolysaccharide concentrations during superflux dialysis using unfiltered bicarbonate dialysate.

    PubMed

    van Tellingen, Anne; Grooteman, Muriel P C; Pronk, Ronald; van Loon, Jenny; Vervloet, Marc G; ter Wee, Piet M; Nub, Menso J

    2002-01-01

    In the present report, the design of a new dialysate delivery system to produce low to moderately contaminated dialysate is described. In addition, the first data on bacterial counts and lipopolysaccharide (LPS) concentrations in both the dialysate and the blood during hemodialysis (HD) with superflux dialyzers are presented. In this prospective study, 37 patients were randomized into two consecutive periods of 12 weeks to HD with a high flux polysulfon (PS), a superflux PS, a superflux cellulosic tri-acetate (CTA) or a superflux CTA dialyzer with filtered dialysate (CTAf), resulting in 74 periods in which measurements were obtained. Filtered dialysate showed significantly lower bacterial counts, if compared with nonfiltered dialysate (p < 0.001). As for LPS, marked differences were not observed between filtered and nonfiltered dialysate, whereas mean plasma LPS concentrations were below the value of the dialysate at all time points (p < 0.001). Plasma LPS concentrations decreased significantly during HD with all four modalities (F 60: t0 0.032+/-0.005, t180 0.026+/-0.009 endotoxin units (EU)/ml, p = 0.001; F 500S, t0 0.031+/-0.004, t180 0.027+/-0.005 EU/ml, p = 0.001; Tricea 150G: t0 0.032+/-0.004, t180 0.025+/-0.005 EU/ml, p < 0.001; and Tricea 150Gf: t0 0.034+/-0.007, t180 0.025+/-0.006 EU/ml, p < 0.001). During HD with highly permeable dialyzers and moderately contaminated dialysate, plasma LPS concentrations decreased significantly, irrespective of the material used (PS or CTA), the flux characteristics of the devices (high flux or superflux), or the presence of a bacterial filter. PMID:12141468

  13. Lumican overexpression exacerbates lipopolysaccharide-induced renal injury in mice

    PubMed Central

    LU, XIAO-MEI; MA, LING; JIN, YU-NAN; YU, YAN-QIU

    2015-01-01

    The present study aimed to investigate the role of lumican in mice with endotoxin-induced acute renal failure (ARF). Lumican transgenic mice and wild-type mice were injected with lipopolysaccharide (LPS; 10 mg/kg) to establish a model of ARF. The mice were sacrificed at 24 h and the blood and renal tissue samples were collected. The value of serum creatinine (SCr) and blood urea nitrogen (BUN) were measured to determine renal function. An ELISA was used to determined the concentrations of renal cytokines, including tumor necrosis factor (TNF)?, interleukin (IL)-6, IL-4 and IL-10. The protein expression levels of Toll-like receptor (TLR4) and nuclear factor (NF)?B in renal tissues were assessed using western blot analysis. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling was performed to monitor apoptosis of renal tissue. Light microscopy and electron microscopy were used to observe structural changes in the renal tissues. Following the administration of LPS, the SCr and BUN values of mice in the lumican transgenic group were higher compared with those in the control group. The expression levels of renal TLR4, NF?B, TNF?, IL-6, IL-4 and IL-10 were upregulated in the lumican transgenic mice compared with those in the wild-type control group. Apoptosis was detected predominantly on the renal tubule. There was a significant difference in the optical density of apoptotic bodies between the control mice and the lumican transgenic mice. Light and electron microscopy demonstrated more severe renal tissue injury in the lumican transgenic mice compared with that in the control mice. In conclusion, LPS may cause excessive apoptosis in the renal tubular cells via the TLR4 signal transduction pathway, a decrease in the number of renal tubular cells and ARF. Lumican may be important in mice with LPS-induced ARF. PMID:26081832

  14. Prevention of cardiac damage induced by formyl-leurosine, a potent cytostatic agent, by radio-detoxified endotoxin (Tolerin) in dogs

    SciTech Connect

    Bertok, L.; Juhasz-Nagy, A.; Sotonyi, P.

    1984-08-01

    Radio-detoxified endotoxin (Tolerin), produced by /sup 60/Co-gamma irradiation of Escherichia coli 089 endotoxin, can protect dogs against the acute cardiotoxic side-effects of formyl-leurosine, a semi-synthetic Vinca derivative with promising antineoplastic potency. Formyl-leurosine induces a rapid decrease in arterial blood pressure and diminishes the contractile force of the myocardium in the anaesthetized dog. These responses indicate a direct pharmacologic relaxant effect of the drug on the heart and vasculature smooth muscle. The early cardiovascular depression is of short duration and is unaffected by Tolerin. Tolerin can prevent, however, the secondary, more dangerous phase of circulatory depression that is associated with the severe cardiotoxic manifestations of the drug, as demonstrated by hemodynamic and morphologic (light and electronmicroscopic) patterns.

  15. The action of low dose endotoxin on equine bowel motility.

    PubMed

    King, J N; Gerring, E L

    1991-01-01

    Post operative ileus (POI) is a common and serious complication of colic surgery in the horse. There is a high correlation between the incidence of POI and the presence of ischaemic bowel, suggesting a role for endotoxin. 0.1 micrograms/kg endotoxin was administered intravenously to six ponies with chronically implanted gastrointestinal electromechanical recording devices. It produced profound disruption of normal fasting bowel motility patterns, with an inhibition of gastric contraction amplitude and rate, left dorsal colon contraction product and small colon spike rate. In the small intestine an increase in abnormally arranged regular activity and a decrease in irregular activity was observed. There was no significant prolongation in stomach to anus transit time as assessed by the passage of plastic spheres. The bowel motility patterns induced by endotoxin could be mimicked by the intravenous infusion of PGE2 and less potently by PGI2 (prostacyclin), but not by PGF2 alpha. This study provides evidence that systematic endotoxin present in clinical cases of colic may play a role in the pathogenesis of equine ileus. The acute effects of endotoxin on bowel motility appear to be mediated indirectly by prostaglandins, and the inhibitory effects may be mediated mainly by PGE2. PMID:2015801

  16. Endotoxin Neutralization as a Biomonitor for Inflammatory Bowel Disease

    PubMed Central

    Champion, Keith; Chiu, Laura; Ferbas, John; Pepe, Michael

    2013-01-01

    Gram-negative bacterial endotoxin is a potent immunostimulant implicated in the development and/or progression of a variety of diseases. The mammalian immune system has both innate and adaptive immune responses to neutralize endotoxin. In this study, a system was developed to monitor bacterial exposure by measuring the extent and nature of endotoxin neutralization in plasma. In control patients, females had higher levels of endotoxin neutralization than males, mirroring clinical outcomes from bacterial infection and sepsis. In addition to the total amount of neutralization, we used inactivation techniques to elucidate the nature of this activity and develop a system to compare early and late immune responses. Using this method to monitor patients with inflammatory bowel disease, we found a more robust total response that relies more on long-term, adaptive components of the immune system and less on early, innate components. Our results indicate that endotoxin neutralization is a valuable method to discern inflammatory bowel disease patients from a control population. Additionally, the nature of neutralization may be valuable in monitoring disease severity and/or the role of medication. PMID:23826338

  17. Exposure to airborne endotoxins among sewer workers: an exploratory study.

    PubMed

    Duquenne, Philippe; Ambroise, Denis; Grner, Pierre; Clerc, Frdric; Greff-Mirguet, Guylaine

    2014-04-01

    Exploratory bioaerosol sampling was performed in order to assess exposure to airborne endotoxins during sewer work. Personal samples were collected in underground sewer pipes using 37-mm closed-face cassettes containing fibreglass filters (CFC-FG method) or polycarbonate filters (CFC-PC method). Endotoxins were quantified using the limulus amoebocyte lysate assay. Concentrations of airborne endotoxins at sewer workplaces (16-420 EU m(-3)) were higher than those measured outside the sewer network (0.6-122 EU m(-3)). Sewer worker exposure to airborne endotoxins depended on the workplace and on the tasks. Exposure levels were the highest for tasks involving agitation of water and matter, especially for 'chamber cleanup' and 'pipes cleanup' with a high-pressure water jet. Airborne endotoxin levels at the workplace tended to be higher when CFC-FG was used as the sampling method rather than CFC-PC. The adjusted mean of the measured concentrations for CFC-PC represents 57% of the mean observed with CFC-FG. The number of samples collected in the descriptive study was too low for drawing definitive conclusions and further exposure investigations are needed. Therefore, our exploratory study provides new exposure data for the insufficiently documented sewer working environment and it would be useful for designing larger exposures studies. PMID:24470536

  18. Evolution of endotoxin contamination during production of a therapeutic serum.

    PubMed

    Massaldi, Hugo; Morais, Victor

    2007-01-01

    A comparative bench-scale study of endotoxin contamination is presented for two common processes of immunoglobulin purification from equine plasma: ammonium sulphate fractionation of F(ab')2 fragments and caprylic acid precipitation of non-IgG proteins. To this end, both processes were carried out under normal sterile conditions, using sanitized material and equipment and optimal water quality in a clean but open environment. Stream samples, taken at different stages from each process, were analyzed for endotoxin content by the Limulus Amebocyte Lysate (LAL) test. It was found that exogenous contamination preferentially came from endotoxins already present in reagents and/or raw materials, whereas contamination from the environment was minimal. Endogenous endotoxin accumulation, concomitant with the concentration of proteins during processing, was found to be an important factor. With classic technology, blood extraction and sterilizing filtration are critical points for both processes. It is concluded that sterility is not a sufficient condition to obtain an endotoxin-free product. Only with proper sanitization of material, and by applying the caprylic acid purification process with a starting plasma below 4-5 EU/mL, would it be possible to achieve a final product within the norm. PMID:18047176

  19. Biliary secretion of endotoxin and pathogenesis of primary biliary cirrhosis.

    PubMed Central

    Sakisaka, S.; Koga, H.; Sasatomi, K.; Mimura, Y.; Kawaguchi, T.; Tanikawa, K.

    1997-01-01

    Previous studies suggested endotoxin, derived from the intestine through the portal blood to the liver, was predominantly metabolized by Kupffer cells. In the present study, fluorescent-labeled endotoxin injected into the rat portal vein was demonstrated not only in Kupffer cells but also in hepatocytes. Furthermore a great amount of labeled endotoxin was recovered in bile. In the livers of patients with primary biliary cirrhosis (PBC), immunohistochemistry demonstrated significant retention of endotoxin in the biliary epithelial cells, and treatment with ursodeoxycholic acid significantly reduced the retention in those cells. The study for detection of apoptosis demonstrated increased rates of apoptosis in hepatocytes and biliary epithelial cells in PBC liver, and the rate of apoptosis in biliary epithelial cells was significantly reduced after treatment with ursodeoxycholic acid. Immunohistochemistry in PBC liver demonstrated significant reduction of fluorescence intensity for a 7H6 antigen in biliary epithelial cells, indicating the increased paracellular permeability of bile ducts, because cellular immunolocalization of that antigen has been shown to be inversely correlated with the paracellular permeability of the tight junction. These results suggest that, in biliary epithelial cells, retention of endotoxin, increased apoptosis, and increased permeability of tight junctions may be involved in the pathogenesis of PBC. Images Figure 1 PMID:9626760

  20. Airborne endotoxin concentrations at a large open-lot dairy in southern Idaho

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Endotoxins are derived from Gram-negative bacteria and are a potential respiratory health risk for animals and humans. To determine the potential for endotoxin transport from a large open lot dairy, airborne endotoxin concentrations were determined at an upwind location (background) and five downwi...

  1. Correlations between endotoxin and clinical symptoms or radiolucent areas in infected root canals.

    PubMed

    Horiba, N; Maekawa, Y; Abe, Y; Ito, M; Matsumoto, T; Nakamura, H

    1991-04-01

    Samples were collected from the root canals of 30 teeth of patients with apical periodontitis and assayed for endotoxin content. The detection rates of endotoxin and endotoxin content were higher in symptomatic teeth, teeth with radiolucent areas, and teeth with exudation than in those without them. PMID:2052336

  2. Personal endotoxin exposure in a panel study of school children with asthma

    PubMed Central

    2011-01-01

    Background Endotoxin exposure has been associated with asthma exacerbations and increased asthma prevalence. However, there is little data regarding personal exposure to endotoxin in children at risk, or the relation of personal endotoxin exposure to residential or ambient airborne endotoxin. The relation between personal endotoxin and personal air pollution exposures is also unknown. Methods We characterized personal endotoxin exposures in 45 school children with asthma ages 9-18 years using 376 repeated measurements from a PM2.5 active personal exposure monitor. We also assayed endotoxin in PM2.5 samples collected from ambient regional sites (N = 97 days) and from a subset of 12 indoor and outdoor subject home sites (N = 109 and 111 days, respectively) in Riverside and Whittier, California. Endotoxin was measured using the Limulus Amoebocyte Lysate kinetic chromogenic assay. At the same time, we measured personal, home and ambient exposure to PM2.5 mass, elemental carbon (EC), and organic carbon (OC). To assess exposure relations we used both rank correlations and mixed linear regression models, adjusted for personal temperature and relative humidity. Results We found small positive correlations of personal endotoxin with personal PM2.5 EC and OC, but not personal PM2.5 mass or stationary site air pollutant measurements. Outdoor home, indoor home and ambient endotoxin were moderately to strongly correlated with each other. However, in mixed models, personal endotoxin was not associated with indoor home or outdoor home endotoxin, but was associated with ambient endotoxin. Dog and cat ownership were significantly associated with increased personal but not indoor endotoxin. Conclusions Daily fixed site measurements of endotoxin in the home environment may not predict daily personal exposure, although a larger sample size may be needed to assess this. This conclusion is relevant to short-term exposures involved in the acute exacerbation of asthma. PMID:21810249

  3. Metal ions potentiate microglia responsiveness to endotoxin.

    PubMed

    Rachmawati, Dessy; Peferoen, Laura A N; Vogel, Daphne Y S; Alsalem, Ins W A; Amor, Sandra; Bontkes, Hetty J; von Blomberg, B Mary E; Scheper, Rik J; van Hoogstraten, Ingrid M W

    2016-02-15

    Oral metal exposure has been associated with diverse adverse reactions, including neurotoxicity. We showed previously that dentally applied metals activate dendritic cells (MoDC) via TLR4 (Ni, Co, Pd) and TLR3 (Au). It is still unknown whether the low levels of dental metals reaching the brain can trigger local innate cells or prime them to become more responsive. Here we tested whether dentally applied metals (Cr, Fe, Co, Ni, Cu, Zn, Au, Hg) activate primary human microglia in vitro and, as a model, monocytic THP-1-cells, in high non-toxic as well as near-physiological concentrations. In addition the effects of 'near-physiological' metal exposure on endotoxin (LPS) responsiveness of these cells were evaluated. IL-8 and IL-6 production after 24h was used as read out. In high, non-toxic concentrations all transition metals except Cr induced IL-8 and IL-6 production in microglia, with Ni and Co providing the strongest stimulation. When using near-physiological doses (up to 10 the normal plasma concentration), only Zn and Cu induced significant IL-8 production. Of note, the latter metals also markedly potentiated LPS responsiveness of microglia and THP-1 cells. In conclusion, transition metals activate microglia similar to MoDCs. In near-physiological concentrations Zn and Cu are the most effective mediators of innate immune activation. A clear synergism between innate responses to Zn/Cu and LPS was observed, shedding new light on the possible relation between oral metal exposure and neurotoxicity. PMID:26857501

  4. Effect of endotoxin and radio-detoxified endotoxin on the serum T4 level of rats and response of their thyroid gland to exogenous TSH

    SciTech Connect

    Bertok, L.; Nagy, S.U.

    1984-12-01

    Experiments were performed to demonstrate that, while the shock-inducing dose of parent (toxic) endotoxin significantly decreases the serum T4 level of rats and inhibits the T4 response given to exogenous thyroid stimulating hormone (TSH), the radio-detoxified (/sup 60/Co-gamma, 150 kGy) endotoxin preparation does not inhibit the response to exogenous TSH. It also decreases serum T4 level to a lesser extent than untreated endotoxin.

  5. Innate immune activation in neonatal tracheal aspirates suggests endotoxin-driven inflammation

    PubMed Central

    Nathe, Katheryn E.; Mancuso, Christy J.; Parad, Richard; Van Marter, Linda J.; Martin, Camilia R.; Stoler-Barak, Liat; Philbin, Victoria J.; Phillips, Michele F.; Palmer, Christine D.; Levy, Ofer

    2012-01-01

    Background: Tracheal aspirates (TAs) from critically ill neonates accumulate bacterial endotoxin and demonstrate mobilization of endotoxin-binding proteins, but the potential bioactivity of endotoxin in TAs is unknown. We characterized innate immune activation in TAs of mechanically ventilated neonates. Methods: Innate immune activation in TAs of mechanically ventilated neonates was characterized using a targeted 84-gene quantitative real-time (qRT) PCR array. Protein expression of cytokines was confirmed by multiplex assay. Expression and localization of the endotoxin-inducible antimicrobial protein Calgranulin C (S100A12) was assessed by flow cytometry. Endotoxin levels were measured in TA supernatants using the Limulus amoebocyte lysate assay. Results: Analyses by qRT-PCR demonstrated expression of pattern recognition receptors, Toll-like receptor-nuclear factor ?B and inflammasome pathways, cytokines/chemokines and their receptors, and anti-infective proteins in TA cells. Endotoxin positivity increased with postnatal age. As compared with endotoxin-negative TAs, endotoxin-positive TAs demonstrated significantly greater tumor necrosis factor (TNF), interleukin (IL)-6, IL-10, and serpin peptidase inhibitor, clade E, member 1 (SERPINE1) mRNA, and IL-10, TNF, and IL-1? protein. Expression of S100A12 protein was localized to TA neutrophils. Conclusion: Correlation of endotoxin with TA inflammatory responses suggests endotoxin bioactivity and the possibility that endotoxin antagonists could mitigate pulmonary inflammation and its sequelae in this vulnerable population. PMID:22580716

  6. A Cytophaga species endotoxin as a putative agent of occupation-related lung disease.

    PubMed Central

    Flaherty, D K; Deck, F H; Hood, M A; Liebert, C; Singleton, F; Winzenburger, P; Bishop, K; Smith, L R; Bynum, L M; Witmer, W B

    1984-01-01

    A previous study suggested that a biologically active bacterial endotoxin was a putative agent of lung disease in a textile-producing facility. The endotoxin was isolated from the biomass growing in a chilled-water spray air humidification system. The bacterial flora of the air humidification system were isolated and taxonomically identified to the genus level. By using indirect immunofluorescence assays, a serologically reactive Cytophaga species was identified. A serologically reactive, biologically active (Limulus assay) endotoxin was purified from phenol extracts of the Cytophaga species. The endotoxin contained sugars, hexosamines, and lipids identical to those found in the humidifier biomass endotoxin. All subjects with biopsy-proven and suspected lung disease had antibodies directed toward the purified Cytophaga endotoxin. The data suggest that the Cytophaga endotoxin is the putative agent of lung disease in the textile facility. PMID:6360896

  7. Alteration and Restoration of Endotoxin Activity after Complexing with Plasma Proteins

    PubMed Central

    Rudbach, Jon A.; Johnson, Arthur G.

    1966-01-01

    Rudbach, Jon A. (The University of Michigan, Ann Arbor), and Arthur G. Johnson. Alteration of endotoxin activity after complexing with plasma proteins. J. Bacteriol. 92:892898. 1966.A substantial decrease in the ability of endotoxin to be precipitated by homologous antiserum and to cause fever occurred after incubation with human plasma or human plasma, Cohn fraction IV-1. The endotoxin, thus altered, also displayed decreased lethality for rabbits. These alterations in endotoxin activity could be restored when the endotoxin-plasma protein mixture was treated with a proteolytic enzyme, and the endotoxin was precipitated with ethyl alcohol. Inactivation of the antigenic and toxigenic properties of the endotoxin molecule by plasma is discussed as resulting from complexing with plasma proteins rather than from enzymatic degradation. Images PMID:5926756

  8. Endotoxin activity level and septic shock: a possible role for specific anti-endotoxin therapy?

    PubMed

    Monti, Gianpaola; Bottiroli, Maurizio; Pizzilli, Giacinto; Minnini, Maria; Terzi, Valeria; Vecchi, Irene; Gesu, Giovanni; Brioschi, Paolo; Vesconi, Sergio; Casella, Giampaolo

    2010-01-01

    Endotoxin activity (EA) plays an essential role in sepsis syndrome pathogenesis. There has been considerable interest in measuring and removing EA to predict and improve the morbidity and mortality of patients with sepsis. We performed a prospective study to assess the prevalence of EA in critically ill patients and its association with organ dysfunction and outcome, as well as in septic shock. EA (EAA(TM)) was measured within 24 h from onset of refractory septic shock in an intensive care unit. Our study demonstrated that EA level is independent from the type or the source of infection, but reflects the severity of illness in critically ill septic shock patients. Extracorporeal EA removal (PMX-HP) was assessed following our ICU clinical practice. PMX-HP seems to have better outcome, but further studies are required to verify this hypothesis. PMID:20519904

  9. Endotoxin-induced endothelial fibrosis is dependent on expression of transforming growth factors ?1 and ?2.

    PubMed

    Echeverra, Csar; Montorfano, Ignacio; Tapia, Pablo; Riedel, Claudia; Cabello-Verrugio, Claudio; Simon, Felipe

    2014-09-01

    During endotoxemia-induced inflammatory disease, bacterial endotoxins circulate in the bloodstream and interact with endothelial cells (ECs), inducing dysfunction of the ECs. We previously reported that endotoxins induce the conversion of ECs into activated fibroblasts. Through endotoxin-induced endothelial fibrosis, ECs change their morphology and their protein expression pattern, thereby suppressing endothelial markers and upregulating fibrotic proteins. The most commonly used fibrotic inducers are transforming growth factor ?1 (TGF-?1) and TGF-?2. However, whether TGF-?1 and TGF-?2 participate in endotoxin-induced endothelial fibrosis remains unknown. We have shown that the endotoxin-induced endothelial fibrosis process is dependent on the TGF-? receptor, ALK5, and the activation of Smad3, a protein that is activated by ALK5 activation, thus suggesting that endotoxin elicits TGF-? production to mediate endotoxin-induced endothelial fibrosis. Therefore, we investigated the dependence of endotoxin-induced endothelial fibrosis on the expression of TGF-?1 and TGF-?2. Endotoxin-treated ECs induced the expression and secretion of TGF-?1 and TGF-?2. TGF-?1 and TGF-?2 downregulation inhibited the endotoxin-induced changes in the endothelial marker VE-cadherin and in the fibrotic proteins ?-SMA and fibronectin. Thus, endotoxin induces the production of TGF-?1 and TGF-?2 as a mechanism to promote endotoxin-induced endothelial fibrosis. To the best of our knowledge, this is the first report showing that endotoxin induces endothelial fibrosis via TGF-? secretion, which represents an emerging source of vascular dysfunction. These findings contribute to understanding the molecular mechanism of endotoxin-induced endothelial fibrosis, which could be useful in the treatment of inflammatory diseases. PMID:24935972

  10. Integrating Murine Gene Expression Studies to Understand Obstructive Lung Disease Due to Chronic Inhaled Endotoxin

    PubMed Central

    Lai, Peggy S.; Hofmann, Oliver; Baron, Rebecca M.; Cernadas, Manuela; Meng, Quanxin Ryan; Bresler, Herbert S.; Brass, David M.; Yang, Ivana V.; Schwartz, David A.; Christiani, David C.; Hide, Winston

    2013-01-01

    Rationale Endotoxin is a near ubiquitous environmental exposure that that has been associated with both asthma and chronic obstructive pulmonary disease (COPD). These obstructive lung diseases have a complex pathophysiology, making them difficult to study comprehensively in the context of endotoxin. Genome-wide gene expression studies have been used to identify a molecular snapshot of the response to environmental exposures. Identification of differentially expressed genes shared across all published murine models of chronic inhaled endotoxin will provide insight into the biology underlying endotoxin-associated lung disease. Methods We identified three published murine models with gene expression profiling after repeated low-dose inhaled endotoxin. All array data from these experiments were re-analyzed, annotated consistently, and tested for shared genes found to be differentially expressed. Additional functional comparison was conducted by testing for significant enrichment of differentially expressed genes in known pathways. The importance of this gene signature in smoking-related lung disease was assessed using hierarchical clustering in an independent experiment where mice were exposed to endotoxin, smoke, and endotoxin plus smoke. Results A 101-gene signature was detected in three murine models, more than expected by chance. The three model systems exhibit additional similarity beyond shared genes when compared at the pathway level, with increasing enrichment of inflammatory pathways associated with longer duration of endotoxin exposure. Genes and pathways important in both asthma and COPD were shared across all endotoxin models. Mice exposed to endotoxin, smoke, and smoke plus endotoxin were accurately classified with the endotoxin gene signature. Conclusions Despite the differences in laboratory, duration of exposure, and strain of mouse used in three experimental models of chronic inhaled endotoxin, surprising similarities in gene expression were observed. The endotoxin component of tobacco smoke may play an important role in disease development. PMID:23675439

  11. Endotoxin-Induced Endothelial Fibrosis Is Dependent on Expression of Transforming Growth Factors ?1 and ?2

    PubMed Central

    Echeverra, Csar; Montorfano, Ignacio; Tapia, Pablo; Riedel, Claudia; Cabello-Verrugio, Claudio

    2014-01-01

    During endotoxemia-induced inflammatory disease, bacterial endotoxins circulate in the bloodstream and interact with endothelial cells (ECs), inducing dysfunction of the ECs. We previously reported that endotoxins induce the conversion of ECs into activated fibroblasts. Through endotoxin-induced endothelial fibrosis, ECs change their morphology and their protein expression pattern, thereby suppressing endothelial markers and upregulating fibrotic proteins. The most commonly used fibrotic inducers are transforming growth factor ?1 (TGF-?1) and TGF-?2. However, whether TGF-?1 and TGF-?2 participate in endotoxin-induced endothelial fibrosis remains unknown. We have shown that the endotoxin-induced endothelial fibrosis process is dependent on the TGF-? receptor, ALK5, and the activation of Smad3, a protein that is activated by ALK5 activation, thus suggesting that endotoxin elicits TGF-? production to mediate endotoxin-induced endothelial fibrosis. Therefore, we investigated the dependence of endotoxin-induced endothelial fibrosis on the expression of TGF-?1 and TGF-?2. Endotoxin-treated ECs induced the expression and secretion of TGF-?1 and TGF-?2. TGF-?1 and TGF-?2 downregulation inhibited the endotoxin-induced changes in the endothelial marker VE-cadherin and in the fibrotic proteins ?-SMA and fibronectin. Thus, endotoxin induces the production of TGF-?1 and TGF-?2 as a mechanism to promote endotoxin-induced endothelial fibrosis. To the best of our knowledge, this is the first report showing that endotoxin induces endothelial fibrosis via TGF-? secretion, which represents an emerging source of vascular dysfunction. These findings contribute to understanding the molecular mechanism of endotoxin-induced endothelial fibrosis, which could be useful in the treatment of inflammatory diseases. PMID:24935972

  12. Pantoea agglomerans: a mysterious bacterium of evil and good. Part II. Deleterious effects: Dust-borne endotoxins and allergens - focus on grain dust, other agricultural dusts and wood dust.

    PubMed

    Dutkiewicz, Jacek; Mackiewicz, Barbara; Lemieszek, Marta Kinga; Golec, Marcin; Skórska, Czesława; Góra-Florek, Anna; Milanowski, Janusz

    2016-03-01

    Pantoea agglomerans, a Gram-negative bacterium developing in a variety of plants as epiphyte or endophyte is particularly common in grain and grain dust, and has been identified by an interdisciplinary group from Lublin, eastern Poland, as a causative agent of work-related diseases associated with exposure to grain dust and other agricultural dusts. The concentration of P. agglomerans in grain as well as in the settled grain and flour dust was found to be high, ranging from 10(4) -10(8) CFU/g, while in the air polluted with grain or flour dust it ranged from 10(3) -10(5) CFU/m(3) and formed 73.2-96% of the total airborne Gram-negative bacteria. The concentration of P. agglomerans was also relatively high in the air of the facilities processing herbs and other plant materials, while it was lower in animal farms and in wood processing facilities. Pantoea agglomerans produces a biologically-potent endotoxin (cell wall lipopolysaccharide, LPS). The significant part of this endotoxin occurs in dusts in the form of virus-sized globular nanoparticles measuring 10-50 nm that could be described as the 'endotoxin super-macromolecules'. A highly significant relationship was found (R=0.804, P=0.000927) between the concentration of the viable P. agglomerans in the air of various agricultural and wood industry settings and the concentration of bacterial endotoxin in the air, as assessed by the Limulus test. Although this result may be interfered by the presence of endotoxin produced by other Gram-negative species, it unequivocally suggests the primary role of the P. agglomerans endotoxin as an adverse agent in the agricultural working environment, causing toxic pneumonitis (ODTS). Numerous experiments by the inhalation exposure of animals to various extracts of P. agglomerans strains isolated from grain dust, including endotoxin isolated with trichloroacetic acid (LPS-TCA), endotoxin nanoparticles isolated in sucrose gradient (VECN), and mixture of proteins and endotoxin obtained by extraction of bacterial mass in saline (CA-S), showed the ability of these extracts to evoke inflammatory and fibrotic changes in the lungs, to stimulate alveolar macrophages to produce superoxide anion (O2(-) ), interleukin-1 (IL-1) and chemotactic factors for other macrophages and neutrophils, and to increase the pulmonary concentrations of toll-like receptors and chemokines. The most potent properties showed the CA-S which may be attributed to the allergenic properties of P. agglomerans proteins enhanced by the presence of the autologous endotoxin. The results of these experiments are in accord with the clinical studies which revealed a high reactivity of the agricultural and grain industry workers to allergenic extracts of P. agglomerans, and the presence in these populations of hypersensitivity pneumonitis and asthma cases caused by this bacterium. P. agglomerans has been also identified as a potential causative agent of allergic dermatitis in farmers and of allergic pulmonary disorders in cattle. In conclusion, similar to the cotton industry, also in the grain industry and in agriculture, Pantoea agglomerans should be regarded as one of the major causative agents of work-related diseases, caused by the adverse effects of protein allergens and endotoxin produced by this bacterium. PMID:27007514

  13. Characteristics of lipopolysaccharide interaction with human peripheral-blood monocytes.

    PubMed Central

    Warner, S J; Savage, N; Mitchell, D

    1985-01-01

    The interaction between radioiodinated lipopolysaccharide from Escherichia coli 0111:B4 (125I-LPS) and human peripheral-blood monocytes was studied. The association of 125I-LPS with monocytes at 37 degrees C appeared to depend on binding to the cell membrane with subsequent internalization of the molecule, and was not saturable with time (up to 2 h) or 125I-LPS concentration (up to 10 micrograms/ml). There was no apparent difference in the behaviour of unlabelled LPS and 125I-LPS with respect to monocyte association. 125I-LPS association with monocytes was inhibited by LPS and O-polysaccharide from E. coli 0111:B4 and Salmonella typhi 0901, but not by lipid A or polymyxin B. We propose that the mechanism of human monocyte stimulation by LPS involves polysaccharide-dependent binding to the cell membrane followed by internalization of the LPS molecule. We were unable to demonstrate a specific LPS receptor such as that found on murine B-lymphocytes. PMID:3911946

  14. Identification of tumor necrosis factor as a transcriptional regulator of the phosphoenolpyruvate carboxykinase gene following endotoxin treatment of mice.

    PubMed Central

    Hill, M R; McCallum, R E

    1992-01-01

    The decreased synthesis of hepatic phosphoenolpyruvate carboxykinase (PEPCK), the rate-limiting enzyme of gluconeogenesis, that occurs during endotoxemia was shown previously in rats to occur at the transcriptional level. In the current study, the exogenous administration of human recombinant tumor necrosis factor (TNF), a proximal mediator of endotoxic shock, reduced the PEPCK transcription rate, mRNAPEPCK levels, and PEPCK enzyme activity in a time- and dose-dependent manner in CD-1 mice. Comparable amounts of circulating TNF were measured in mice 2 h after injection of human recombinant TNF (10(5) U) or a 50% lethal dose of Escherichia coli endotoxin (20 mg/kg). Direct action of TNF to decrease the PEPCK transcription rate was confirmed in vitro with H-4-II-E Reuber hepatoma cells, in which a dose-dependent inhibition of PEPCK transcription was observed with 1 to 100 U of TNF per ml. A role for TNF-elicited changes in PEPCK gene expression during endotoxemia was confirmed by the protective effect of rabbit polyclonal antibodies to recombinant murine TNF. C57BL/6 mice passively immunized with anti-TNF 4 h prior to endotoxin challenge exhibited normal PEPCK enzyme activity. Neutralization of circulating TNF with anti-TNF failed, however, to prevent the hypoglycemia commonly observed during endotoxemia, suggesting the participation of other mediators. Anti-TNF treatment reduced circulating interleukins 1 and 6 at 3 and 6 h after endotoxin treatment, respectively. These results suggest that during endotoxemia, the development of hypoglycemia is multifaceted and that several cytokines are most likely involved. The findings from the Reuber hepatoma cell model afford an opportunity in future work to map putative cytokine response elements in the PEPCK promoter responsible for perturbed hormonal regulation of the gene during endotoxemia. PMID:1398916

  15. Streptomycetes in house dust: associations with housing characteristics and endotoxin

    EPA Science Inventory

    In addition to mold, indoor bioaerosols also contain bacterial components that may have implications for human health. Endotoxin is a cell wall component in Gram-negative bacteria present at varying levels indoors that has been found to have respiratory health implications. Stre...

  16. Optimizing the extraction, storage, and analysis of airborne endotoxins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While the Limulus amebocyte lysate (LAL) assay is part of most procedures to assess airborne endotoxin exposure, there is no universally agreed upon standard procedure. The purpose of this study was to fill in additional knowledge gaps with respect to the extraction, storage, and analysis of endotox...

  17. Endotoxin-induced mortality in rats is reduced by nitrones

    SciTech Connect

    Hamburger, S.A.; McCay, P.B. )

    1989-12-01

    The goal of these investigations was to determine if nitrone spin-trapping agents can alter mortality associated with endotoxemia in the rat. Reactive free radicals attack nitrone spin-trapping agents forming relatively reactive, persistent free radical spin adducts. We administered 85 mM (10 ml/kg) of alpha-phenyl N-tert-butyl nitrone (PBN), alpha-4-pyridyl-N-oxide N-tert-butyl nitrone (4-POBN), 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), or vehicle (saline i.p.) 30 min before endotoxin (25 mg/kg i.p.) or vehicle to Sprague-Dawley (SD) or Holtzman virus-free (HVF) rats (n = 10-17/group). All vehicle-treated rats receiving endotoxin were dead by 1 day. At 7 days, 83% of PBN-treated SD, 42% of PBN- or POBN-treated HVF, and 25% of DMPO-treated HVF rats were alive. The difference in survival of PBN-treated animals between strains may reflect the higher susceptibility of HVF rats to endotoxin. The observed reduction in mortality may be related to the well-established capacity of spin-trapping agents to capture reactive free radicals that may be generated in target tissues in response to endotoxin, and that would otherwise react with cell components and produce tissue injury.

  18. The Endotoxin-Induced Neuroinflammation Model of Parkinson's Disease

    PubMed Central

    Tufekci, Kemal Ugur; Genc, Sermin; Genc, Kursad

    2011-01-01

    Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the progressive loss of dopaminergic (DA) neurons in the substantia nigra. Although the exact cause of the dopaminergic neurodegeneration remains elusive, recent postmortem and experimental studies have revealed an essential role for neuroinflammation that is initiated and driven by activated microglial and infiltrated peripheral immune cells and their neurotoxic products (such as proinflammatory cytokines, reactive oxygen species, and nitric oxide) in the pathogenesis of PD. A bacterial endotoxin-based experimental model of PD has been established, representing a purely inflammation-driven animal model for the induction of nigrostriatal dopaminergic neurodegeneration. This model, by itself or together with genetic and toxin-based animal models, provides an important tool to delineate the precise mechanisms of neuroinflammation-mediated dopaminergic neuron loss. Here, we review the characteristics of this model and the contribution of neuroinflammatory processes, induced by the in vivo administration of bacterial endotoxin, to neurodegeneration. Furthermore, we summarize the recent experimental therapeutic strategies targeting endotoxin-induced neuroinflammation to elicit neuroprotection in the nigrostriatal dopaminergic system. The potential of the endotoxin-based PD model in the development of an early-stage specific diagnostic biomarker is also emphasized. PMID:21331154

  19. [Endotoxins in gastroenterology--a medico-historical sketch].

    PubMed

    Knoke, M

    1984-01-01

    First descriptions of effects of intestinal bacterial endotoxins date from the middle of the 19th century (P. L. Panum et al.). The antitoxic function of the liver has been investigated by I. P. Pawlow in 1893. At the turn of the last century the theory of "auto-intoxication" (C. Bouchard, I. I. Metschnikoff et al.) was well known, but there were also first systematic studies of the facultatively pathogenic intestinal bacteria (T. Escherich, H. Tissier, J. Strasburger). In the twenties of our century V. van der Reis and L. Bogendoerfer worked out important fundamentals of human gastrointestinal microecology. Endotoxins as component of cellular wall of gram-negative bacteria are found by A. Boivin et al., J. W. Walker et al. First applicable proof for the detection of endotoxins was the pyrogen test with rabbits. The Limulus amoebocyte lysate test (J. Levin and F. B. Bang) has been employed as a more simple, rapid and sensitive method and was introduced in gastroenterology in a larger extent. Connections between endotoxinaemia and liver diseases, effects of endotoxins on gastrointestinal mucosa and on the course of shock are subjects of actual investigations. PMID:6389082

  20. Post-treatment with N-acetylcysteine ameliorates endotoxin shock-induced organ damage in conscious rats.

    PubMed

    Hsu, Bang-Gee; Lee, Ru-Ping; Yang, Fwu-Lin; Harn, Horng-Jyh; Chen, Hsing I

    2006-10-19

    N-acetylcysteine (NAC) is an antioxidant and cytoprotective agent with scavenging action against reactive oxygen species and inhibitory effects on pro-inflammatory cytokines. In a previous study, we found that pretreatment with NAC attenuated organ dysfunction and damage, reduced the production of free radicals, tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) following endotoxemia elicited by administration of lipopolysaccharide (LPS). In the present study, we tested the effects of post-treatment with NAC on the sepsis-induced change. Post-treatment imitates clinical therapeutic regimen with administration of drug after endotoxemia. Endotoxin shock was induced by intravenous injection of Klebsiella pneumoniae LPS (10 mg/kg) in conscious rats. Mean arterial pressure (MAP) and heart rate (HR) were continuously monitored for 48 h after LPS administration. NAC was given 20 min after LPS. Measurements of biochemical substances were taken to reflect organ functions. Biochemical factors included blood urea nitrogen (BUN), creatinine (Cre), lactate dehydrogenase (LDH), creatine phosphokinase (CPK), aspartate transferase (GOT), alanine transferase (GPT), TNF-alpha, interleukin-6 (IL-6), and interleukin-10 (IL-10). LPS significantly increased blood BUN, Cre, LDH, CPK, GOT, GPT, TNF-alpha, IL-6, IL-10 levels and HR, and decreased MAP. Post-treatment with NAC diminished the decrease in MAP, increased the HR, and decreased the markers of organ injury (BUN, Cre, LDH, CPK, GOT, GPT) and inflammatory biomarkers (TNF-alpha, IL-6, IL-10) after LPS. We conclude that post-treatment with NAC suppresses the release of plasma TNF-alpha, IL-6, and IL-10 in endotoxin shock, and decreases the markers of organ injury. These beneficial effects protect against LPS-induced kidney, heart and liver damage in conscious rats. The beneficial effects may suggest a potential chemopreventive effect of this compound after sepsis. PMID:16860347

  1. Endotoxin suppresses expression of apoprotein E by mouse macrophages in vivo and in culture: a biochemical and genetic study

    SciTech Connect

    Werb, Z.; Chin, J.R.

    1983-09-10

    The synthesis and secretion of apo-E, a component of plasma lipoproteins, are suppressed in mouse macrophages exposed to bacterial lipopolysaccharide endotoxin (LPS) in culture or in vivo. Control mouse macrophages contained intracellular immunofluorescent apo-E, and apo-E represented about 10% of secreted protein. After intraperitoneal injection of LPS, freshly lavaged macrophages neither contained intracellular apo-E nor secreted apo-E. The suppressive effects of LPS and apo-E synthesis in culture were selective, and secretion of many other major macrophage proteins was not affected. When then LPS-elicited macrosphages were cultured for 24-72 h in the absence of LPS, synthesis of apo-E was initiated. Treatment of bone marrow-derived or peritoneal macrophages in culture with less than 1 ng of LPS/ml inhibited apo-E synthesis and secretion by 18 h of treatment. Although LPS stimulates prostaglandin E/sub 2/ synthesis, prostaglandin E/sub 2/ itself did not suppress apo-E synthesis. Macrophages from C3H/HeJ (Lps/sup d//Lps/sup d/) mice, which are resistant to LPS, were neither primed for H/sub 2/O/sub 2/ production nor suppressed for apo-E synthesis in response to LPS in vivo (30 ..mu..g/mouse) or in culture (1..mu../ml), whereas macrophages from the co-isogenic C3H/HeN (Lps/sup n//Lps/sup n/) strain were induced for H/sub 2/O/sub 2/ secretion and had suppressed synthesis of apo-E. Because apo-E serves as a recognition determinant for the receptor-mediated clearance of lipoproteins, the decreased synthesis of apo-E after LPS treatment may in part explain the hyperlipoproteinemia associated with endotoxins in vivo.

  2. Protective phenotypes of club cells and alveolar macrophages are favored as part of endotoxin-mediated prevention of asthma.

    PubMed

    Garca, Luciana N; Leimgruber, Carolina; Uribe Echevarra, Elisa M; Acosta, Patricio L; Brahamian, Jorge M; Polack, Fernando P; Mir, Mara S; Quintar, Amado A; Sotomayor, Claudia E; Maldonado, Cristina A

    2015-07-01

    Atopic asthma is a chronic allergic disease that involves T-helper type 2 (Th2)-inflammation and airway remodeling. Bronchiolar club cells (CC) and alveolar macrophages (AM) are sentinel cells of airway barrier against inhaled injuries, where allergy induces mucous metaplasia of CC and the alternative activation of AM, which compromise host defense mechanisms and amplify Th2-inflammation. As there is evidence that high levels of environmental endotoxin modulates asthma, the goal of this study was to evaluate if the activation of local host defenses by Lipopolysaccharide (LPS) previous to allergy development can contribute to preserving CC and AM protective phenotypes. Endotoxin stimulus before allergen exposition reduced hallmarks of allergic inflammation including eosinophil influx, Interleukin-4 and airway hyperreactivity, while the T-helper type 1 related cytokines IL-12 and Interferon-? were enhanced. This response was accompanied by the preservation of the normal CC phenotype and the anti-allergic proteins Club Cell Secretory Protein (CCSP) and Surfactant-D, thereby leading to lower levels of CC metaplasia and preventing the increase of the pro-Th2 cytokine Thymic stromal lymphopoietin. In addition, classically activated alveolar macrophages expressing nitric oxide were promoted over the alternatively activated ones that expressed arginase-1. We verified that LPS induced a long-term overexpression of CCSP and the innate immune markers Toll-like receptor 4, and Tumor Necrosis Factor-?, changes that were preserved in spite of the allergen challenge. These results demonstrate that LPS pre-exposition modifies the local bronchioalveolar microenvironment by inducing natural anti-allergic mechanisms while reducing local factors that drive Th2 type responses, thus modulating allergic inflammation. PMID:25504013

  3. Recombinant Human Mitochondrial Transcription Factor A Stimulates Mitochondrial Biogenesis and ATP Synthesis, Improves Motor Function after MPTP, Reduces Oxidative Stress and Increases Survival after Endotoxin

    PubMed Central

    Thomas, Ravindar R.; Khan, Shaharyar M.; Portell, Francisco R.; Smigrodzki, Rafal M.; Bennett, James P.

    2010-01-01

    Recombinant human mitochondrial transcription factor A protein (rhTFAM) was evaluated for its acute effects on cultured cells and chronic effects in mice. Fibroblasts incubated with rhTFAM acutely increased respiration in a chloramphenicol-sensitive manner. SH-SY5Y cells showed rhTFAM concentration-dependent reduction of methylpyridinium (MPP+)-induced oxidative stress and increases in lowered ATP levels and viability. Mice treated with weekly i.v. rhTFAM showed increased mitochondrial gene copy number, complex I protein levels and ATP production rates; oxidative damage to proteins was decreased ~50%. rhTFAM treatment improved motor recovery rate after treatment with MPTP and dose-dependently improved survival in the lipopolysaccharide model of endotoxin sepsis. PMID:20727424

  4. Crystal structure of an endotoxin-neutralizing protein from the horseshoe crab, Limulus anti-LPS factor, at 1.5 A resolution.

    PubMed Central

    Hoess, A; Watson, S; Siber, G R; Liddington, R

    1993-01-01

    Lipopolysaccharide (LPS), or endotoxin, is the major mediator of septic shock, a serious complication of Gram-negative bacterial infections in humans. Molecules that bind LPS and neutralize its biological effects or enhance its clearance could have important clinical applications. Limulus anti-LPS factor (LALF) binds LPS tightly, and, in animal models, reduces mortality when administered before or after LPS challenge or bacterial infection. Here we present the high resolution structure of a recombinant LALF. It has a single domain consisting of three alpha-helices packed against a four-stranded beta-sheet. The wedge-shaped molecule has a striking charge distribution and amphipathicity that suggest how it can insert into membranes. The binding site for LPS probably involves an extended amphipathic loop, and we propose that two mammalian LPS-binding proteins will have a similar loop. The amphipathic loop structure may be used in the design of molecules with therapeutic properties against septic shock. Images PMID:8253062

  5. Determination of endotoxin in injectable antibiotic preparations by the chromogenic assay method using a Limulus reagent (Tachypleus hemocyte lysate) and a chromogenic substrate.

    PubMed Central

    Yano, S; Hotta, Y; Takahashi, S

    1986-01-01

    The effects of 50 antibiotics on the detection and determination of bacterial endotoxins by the chromogenic method using a Limulus reagent (Tachypleus hemocyte lysate) and a chromogenic substrate of p-nitroaniline derivatives were tested, and the antibiotic concentration for 50% inhibition of the chromogenic reaction in the presence of 0.5 ng of endotoxin (Escherichia coli 0111:B4) per ml was estimated. All the antibiotic preparations were depyrogenized by ultrafiltration treatment before they were subjected to the test. The reaction was conducted in the presence of a high concentration (0.5 M) of Tris buffer to constantly maintain the pH of the reaction mixture, and liberated p-nitroaniline was determined by high-pressure liquid chromatography. Several aminoglycosides (amikacin, bekanamycin, kanamycin, and streptomycin sulfate), bleomycin hydrochloride, and fosfomycin disodium showed no inhibition of the reaction up to 20 mg/ml. However, other antibiotics, including penicillins, cephalosporins, macrolides, and tetracyclines, inhibited the reaction concentration dependently. Polymyxin B sulfate was the most potent inhibitor, with less than 8 micrograms/ml for 50% inhibition. It was concluded that the chromogenic method can be applied to the detection and determination of endotoxin in most of the antibiotic preparations. An application of this method to carbenicillin disodium preparations was exemplified. PMID:3700595

  6. Airborne endotoxin concentrations at a large open-lot dairy in southern idaho.

    PubMed

    Dungan, Robert S; Leytem, April B

    2009-01-01

    Endotoxins are derived from gram-negative bacteria and are a potential respiratory health risk for animals and humans. To determine the potential for endotoxin transport from a large open-lot dairy, total airborne endotoxin concentrations were determined at an upwind location (background) and five downwind locations on three separate days. The downwind locations were situated at of the edge of the lot, 200 and 1390 m downwind from the lot, and downwind from a manure composting area and wastewater holding pond. When the wind was predominantly from the west, the average endotoxin concentration at the upwind location was 24 endotoxin units (EU) m(-3), whereas at the edge of the lot on the downwind side it was 259 EU m(-3). At 200 and 1390 m downwind from the edge of the lot, the average endotoxin concentrations were 168 and 49 EU m(-3), respectively. Average airborne endotoxin concentrations downwind from the composting site (36 EU m(-3)) and wastewater holding pond (89 EU m(-3)) and 1390 m from the edge of the lot were not significantly different from the upwind location. There were no significant correlations between ambient weather data collected and endotoxin concentrations over the experimental period. The downwind data show that the airborne endotoxin concentrations decreased exponentially with distance from the lot edge. Decreasing an individual's proximity to the dairy should lower their risk of airborne endotoxin exposure and associated health effects. PMID:19643758

  7. Rapid detection of bacterial endotoxins in drinking water and renovated wastewater.

    PubMed Central

    Jorgensen, J H; Lee, J C; Pahren, H R

    1976-01-01

    A pilot study was conducted to determine the feasibility of using the Limulus endotoxin assay to detect endotoxins in potable waters and from reclaimed advanced waste treatment (AWT) plant effluents. Water samples were tested using both Limulus lysates prepared in our laboratory and a commercial product, Difco Pyrotest. The Limulus assay procedure was easily adapted to the testing of water samples for endotoxin. Measured endotoxin concentrations varied fr