Science.gov

Sample records for coli produces tailor-made

  1. Template electrosynthesis of tailored-made helical nanoswimmers.

    PubMed

    Li, Jinxing; Sattayasamitsathit, Sirilak; Dong, Renfeng; Gao, Wei; Tam, Ryan; Feng, Xiaomiao; Ai, Stephen; Wang, Joseph

    2014-08-21

    We demonstrate a template electrosynthesis for large-scale low-cost preparation of remarkably small magnetically driven tailored-made helical nanoswimmers that display efficient propulsion behavior and hold considerable promise for future miniature devices in the human body. PMID:24126904

  2. Tailor-made force fields for crystal-structure prediction.

    PubMed

    Neumann, Marcus A

    2008-08-14

    A general procedure is presented to derive a complete set of force-field parameters for flexible molecules in the crystalline state on a case-by-case basis. The force-field parameters are fitted to the electrostatic potential as well as to accurate energies and forces generated by means of a hybrid method that combines solid-state density functional theory (DFT) calculations with an empirical van der Waals correction. All DFT calculations are carried out with the VASP program. The mathematical structure of the force field, the generation of reference data, the choice of the figure of merit, the optimization algorithm, and the parameter-refinement strategy are discussed in detail. The approach is applied to cyclohexane-1,4-dione, a small flexible ring. The tailor-made force field obtained for cyclohexane-1,4-dione is used to search for low-energy crystal packings in all 230 space groups with one molecule per asymmetric unit, and the most stable crystal structures are reoptimized in a second step with the hybrid method. The experimental crystal structure is found as the most stable predicted crystal structure both with the tailor-made force field and the hybrid method. The same methodology has also been applied successfully to the four compounds of the fourth CCDC blind test on crystal-structure prediction. For the five aforementioned compounds, the root-mean-square deviations between lattice energies calculated with the tailor-made force fields and the hybrid method range from 0.024 to 0.053 kcal/mol per atom around an average value of 0.034 kcal/mol per atom. PMID:18642947

  3. Shiga Toxin Producing Escherichia coli.

    PubMed

    Bryan, Allen; Youngster, Ilan; McAdam, Alexander J

    2015-06-01

    Shiga toxin-producing Escherichia coli (STEC) is among the common causes of foodborne gastroenteritis. STEC is defined by the production of specific toxins, but within this pathotype there is a diverse group of organisms. This diversity has important consequences for understanding the pathogenesis of the organism, as well as for selecting the optimum strategy for diagnostic testing in the clinical laboratory. This review includes discussions of the mechanisms of pathogenesis, the range of manifestations of infection, and the several different methods of laboratory detection of Shiga toxin-producing E coli. PMID:26004641

  4. Site-Selective Acylations with Tailor-Made Catalysts.

    PubMed

    Huber, Florian; Kirsch, Stefan F

    2016-04-18

    The acylation of alcohols catalyzed by N,N-dimethylamino pyridine (DMAP) is, despite its widespread use, sometimes confronted with substrate-specific problems: For example, target compounds with multiple hydroxy groups may show insufficient selectivity for one hydroxyl, and the resulting product mixtures are hardly separable. Here we describe a concept that aims at tailor-made catalysts for the site-specific acylation. To this end, we introduce a catalyst library where each entry is constructed by connecting a variable and readily tuned peptide scaffold with a catalytically active unit based on DMAP. For selected examples, we demonstrate how library screening leads to the identification of optimized catalysts, and the substrates of interest can be converted with a markedly enhanced site-selectivity compared with only DMAP. Furthermore, substrate-optimized catalysts of this type can be used to selectively convert "their" substrate in the presence of structurally similar compounds, an important requisite for reactions with mixtures of substances. PMID:26970553

  5. Tailor-made polyamide membranes for water desalination.

    PubMed

    Choi, Wansuk; Gu, Joung-Eun; Park, Sang-Hee; Kim, Seyong; Bang, Joona; Baek, Kyung-Youl; Park, Byoungnam; Lee, Jong Suk; Chan, Edwin P; Lee, Jung-Hyun

    2015-01-27

    Independent control of the extrinsic and intrinsic properties of the polyamide (PA) selective layer is essential for designing thin-film composite (TFC) membranes with performance characteristics required for water purification applications besides seawater desalination. Current commercial TFC membranes fabricated via the well-established interfacial polymerization (IP) approach yield materials that are far from ideal because their layer thickness, surface roughness, polymer chemistry, and network structure cannot be separately tailored. In this work, tailor-made PA-based desalination membranes based on molecular layer-by-layer (mLbL) assembly are presented. The mLbL technique enables the construction of an ultrathin and highly cross-linked PA selective layer in a precisely and independently controlled manner. The mLbL-assembled TFC membranes exhibit significant enhancements in performance compared to their IP-assembled counterparts. A maximum sodium chloride rejection of 98.2% is achieved along with over 2.5 times higher water flux than the IP-assembled counterpart. More importantly, this work demonstrates the broad applicability of mLbL in fabricating a variety of PA-based TFC membranes with nanoscale control of the selective layer thickness and roughness independent of the specific polyamide chemistry. PMID:25548959

  6. Advanced bacterial polyhydroxyalkanoates: towards a versatile and sustainable platform for unnatural tailor-made polyesters.

    PubMed

    Park, Si Jae; Kim, Tae Wan; Kim, Min Kyung; Lee, Sang Yup; Lim, Sung-Chul

    2012-01-01

    Polyhydroxyalkanoates (PHAs) are biopolyesters that generally consist of 3-, 4-, 5-, and 6-hydroxycarboxylic acids, which are accumulated as carbon and energy storage materials in many bacteria in limited growth conditions with excess carbon sources. Due to the diverse substrate specificities of PHA synthases, the key enzymes for PHA biosynthesis, PHAs with different material properties have been synthesized by incorporating different monomer components with differing compositions. Also, engineering PHA synthases using in vitro-directed evolution and site-directed mutagenesis facilitates the synthesis of PHA copolymers with novel material properties by broadening the spectrum of monomers available for PHA biosynthesis. Based on the understanding of metabolism of PHA biosynthesis, recombinant bacteria have been engineered to produce different types of PHAs by expressing heterologous PHA biosynthesis genes, and by creating and enhancing the metabolic pathways to efficiently generate precursors for PHA monomers. Recently, the PHA biosynthesis system has been expanded to produce unnatural biopolyesters containing 2-hydroxyacid monomers such as glycolate, lactate, and 2-hydroxybutyrate by employing natural and engineered PHA synthases. Using this system, polylactic acid (PLA), one of the major commercially-available bioplastics, can be synthesized from renewable resources by direct fermentation of recombinant bacteria. In this review, we discuss recent advances in the development of the PHA biosynthesis system as a platform for tailor-made polyesters with novel material properties. PMID:22137963

  7. Candida bombicola as a platform organism for the production of tailor-made biomolecules.

    PubMed

    Roelants, Sophie L K W; Saerens, Karen M J; Derycke, Thibaut; Li, Bing; Lin, Yao-Cheng; Van de Peer, Yves; De Maeseneire, Sofie L; Van Bogaert, Inge N A; Soetaert, Wim

    2013-09-01

    The yeast Candida bombicola is capable of producing high amounts (400 g/L) of the biosurfactant sophorolipids. The genetic makeup of this industrially important yeast has recently been uncovered and molecular manipulation techniques have been developed. Hence, all tools for the development of new bioprocesses with C. bombicola are now available. As a proof of concept, the production of two totally different molecules was aimed for: the bioplastic polyhydroxyalkanoate (PHA) and a new-to-nature cellobioselipid-biosurfactant. Integration of the new functionalities at genomic loci necessary for sophorolipid production safeguards the new biomolecules from sophorolipid contamination, while taking advantage of the regulation of the sophorolipid gene cluster. A maximum yield of 2.0% wt/dwt PHA was obtained; furthermore, this is the first time cellobioselipid synthesis by a non-natural producer is reported. We here provided proof of concept that C. bombicola can be transformed into a platform organism for the production of tailor-made biomolecules. PMID:23475585

  8. Shiga toxin-producing Escherichia coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In United States, it is estimated that non-O157 Shiga toxin-producing Escherichia coli (STEC) cause more illnesses than STEC O157:H7, and the majority of cases of non-O157 STEC infections is due to serogroups O26, O45, O103, O111, O121, and O145, referred to as the top six non-O157 STEC. The diseas...

  9. Development of Skill Standards and a Tailor-made Education System in TOSHIBA

    NASA Astrophysics Data System (ADS)

    Harashima, Shuji

    Software development for embedded systems such as cellular phone and digital TV systems has become larger in scale while development times have become shorter. More over, the necessary technologies are required to respond more rapidly in line with movements in the sales climate for these products. In such a business environment, skill enhancement for software engineers is highly important. In this paper, we explain a tailor-made education system based on skill standards.

  10. Autoantibodies to tailor-made panels of tumor-associated antigens in breast carcinoma.

    PubMed

    Piura, Ettie; Piura, Benjamin

    2011-01-01

    Autoantibodies (AAbs) to tumor-associated antigens (TAAs) have been identified in the sera of cancer patients. In a previous review published in this journal, we have focused on recent knowledge related to circulating AAbs to individual TAAs in breast carcinoma. This review will focus on recent knowledge related to AAb assays to tailor-made panels of TAAs in breast carcinoma. So far, AAb assays to the following tailor-made panels of TAAs have been assessed in breast carcinoma: (1) p53, c-myc, HER2, NY-ESO-1, BRCA2, and MUC1, (2) IMP1, p62, Koc, p53, c-MYC, cyclin B1, and survivin, (3) PPIA, PRDX2, FKBP52, HSP-60, and MUC1, (4) MUC1, HER2, p53, and IGFBP2, (5) p53, HER2, IGFBP-2, and TOPO2α, (6) survivin and livin, (7) ASB-9, SERAC1, and RELT, and (8) p16, p53, and c-myc. Assessment of serum AAbs to a tailor-made panel of TAAs provides better sensitivity to diagnosis of breast carcinoma than measuring serum AAbs to a single TAA. Nevertheless, measurement of serum AAbs to a panel of TAAs for screening and early diagnosis of breast carcinoma is still investigational and should be carried out along with traditional diagnostic studies. PMID:21423545

  11. Non-O157 Shiga toxin-producing Escherichia coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shiga toxin-producing Escherichia coli (STEC), also known as verocytotoxin-producing E. coli, are important food-borne pathogens responsible for outbreaks of hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS). STEC that cause HC and HUS are also referred to as enterohemorrhagic E. coli (E...

  12. Development of Thermophilic Tailor-Made Enzyme Mixtures for the Bioconversion of Agricultural and Forest Residues

    PubMed Central

    Karnaouri, Anthi; Matsakas, Leonidas; Topakas, Evangelos; Rova, Ulrika; Christakopoulos, Paul

    2016-01-01

    Even though the main components of all lignocellulosic feedstocks include cellulose, hemicellulose, as well as the protective lignin matrix, there are some differences in structure, such as in hardwoods and softwoods, which may influence the degradability of the materials. Under this view, various types of biomass might require a minimal set of enzymes that has to be tailor-made. Partially defined complex mixtures that are currently commercially used are not adapted to efficiently degrade different materials, so novel enzyme mixtures have to be customized. Development of these cocktails requires better knowledge about the specific activities involved, in order to optimize hydrolysis. The role of filamentous fungus Myceliophthora thermophila and its complete enzymatic repertoire for the bioconversion of complex carbohydrates has been widely proven. In this study, four core cellulases (MtCBH7, MtCBH6, MtEG5, and MtEG7), in the presence of other four “accessory” enzymes (mannanase, lytic polyssacharide monooxygenase MtGH61, xylanase, MtFae1a) and β-glucosidase MtBGL3, were tested as a nine-component cocktail against one model substrate (phosphoric acid swollen cellulose) and four hydrothermally pretreated natural substrates (wheat straw as an agricultural waste, birch, and spruce biomass, as forest residues). Synergistic interactions among different enzymes were determined using a suitable design of experiments methodology. The results suggest that for the hydrolysis of the pure substrate (PASC), high proportions of MtEG7 are needed for efficient yields. MtCBH7 and MtEG7 are enzymes of major importance during the hydrolysis of pretreated wheat straw, while MtCBH7 plays a crucial role in case of spruce. Cellobiohydrolases MtCBH6 and MtCBH7 act in combination and are key enzymes for the hydrolysis of the hardwood (birch). Optimum combinations were predicted from suitable statistical models which were able to further increase hydrolysis yields, suggesting that

  13. Development of Thermophilic Tailor-Made Enzyme Mixtures for the Bioconversion of Agricultural and Forest Residues.

    PubMed

    Karnaouri, Anthi; Matsakas, Leonidas; Topakas, Evangelos; Rova, Ulrika; Christakopoulos, Paul

    2016-01-01

    Even though the main components of all lignocellulosic feedstocks include cellulose, hemicellulose, as well as the protective lignin matrix, there are some differences in structure, such as in hardwoods and softwoods, which may influence the degradability of the materials. Under this view, various types of biomass might require a minimal set of enzymes that has to be tailor-made. Partially defined complex mixtures that are currently commercially used are not adapted to efficiently degrade different materials, so novel enzyme mixtures have to be customized. Development of these cocktails requires better knowledge about the specific activities involved, in order to optimize hydrolysis. The role of filamentous fungus Myceliophthora thermophila and its complete enzymatic repertoire for the bioconversion of complex carbohydrates has been widely proven. In this study, four core cellulases (MtCBH7, MtCBH6, MtEG5, and MtEG7), in the presence of other four "accessory" enzymes (mannanase, lytic polyssacharide monooxygenase MtGH61, xylanase, MtFae1a) and β-glucosidase MtBGL3, were tested as a nine-component cocktail against one model substrate (phosphoric acid swollen cellulose) and four hydrothermally pretreated natural substrates (wheat straw as an agricultural waste, birch, and spruce biomass, as forest residues). Synergistic interactions among different enzymes were determined using a suitable design of experiments methodology. The results suggest that for the hydrolysis of the pure substrate (PASC), high proportions of MtEG7 are needed for efficient yields. MtCBH7 and MtEG7 are enzymes of major importance during the hydrolysis of pretreated wheat straw, while MtCBH7 plays a crucial role in case of spruce. Cellobiohydrolases MtCBH6 and MtCBH7 act in combination and are key enzymes for the hydrolysis of the hardwood (birch). Optimum combinations were predicted from suitable statistical models which were able to further increase hydrolysis yields, suggesting that tailor-made

  14. myADS-arXiv -- a Tailor-made, Open Access, Virtual Journal

    NASA Astrophysics Data System (ADS)

    Henneken, E.; Kurtz, M. J.; Eichhorn, G.; Accomazzi, A.; Grant, C. S.; Thompson, D.; Bohlen, E.; Murray, S. S.

    2007-10-01

    The myADS-arXiv service provides the scientific community with a one stop shop for staying up-to-date with a researcher's field of interest. The service provides a powerful and unique filter on the enormous amount of bibliographic information added to the ADS on a daily basis. It also provides a complete view of the most relevant papers available in the subscriber's field of interest. With this service, the subscriber will get to know the latest developments, popular trends and the most important papers. This makes the service not only unique from a technical point of view, but also from a content point of view. On this poster we will argue why myADS-arXiv is a tailor-made, open access, virtual journal and we will illustrate its unique character.

  15. New tailor-made bio-organoclays for the remediation of olive mill waste water

    NASA Astrophysics Data System (ADS)

    Calabrese, Ilaria; Gelardi, Giulia; Merli, Marcello; Rytwo, Giora; Sciascia, Luciana; Liria Turco Liveri, Maria

    2013-12-01

    A systematic study aimed at obtaining new organoclays for the treatment of Olive Mill Waste water (OMW) has been performed. Several organoclays have been prepared by loading different amounts of the biocompatible surfactant Tween20 onto the K10 montmorillonite (MMT). Complementary kinetic and equilibrium studies on the adsorption of the Tween20 onto the MMT have been carried out and the characterization of the new tailor-made bio-materials has been performed by means of the XRD and FT-IR measurements. Finally the prepared bio-organoclays have been successfully applied for the OMW remediation and they proved to be highly effective in decreasing the organic content (OC) to an extent that depends on both the amount of loaded surfactant and the experimental protocols applied.

  16. Exploitation of desilylation chemistry in tailor-made functionalization on diverse surfaces

    PubMed Central

    Fu, Yongchun; Chen, Songjie; Kuzume, Akiyoshi; Rudnev, Alexander; Huang, Cancan; Kaliginedi, Veerabhadrarao; Baghernejad, Masoud; Hong, Wenjing; Wandlowski, Thomas; Decurtins, Silvio; Liu, Shi-Xia

    2015-01-01

    Interface engineering to attain a uniform and compact self-assembled monolayer at atomically flat surfaces plays a crucial role in the bottom-up fabrication of organic molecular devices. Here we report a promising and operationally simple approach for modification/functionalization not only at ultraflat single-crystal metal surfaces, M(111) (M=Au, Pt, Pd, Rh and Ir) but also at the highly oriented pyrolytic graphite surface, upon efficient in situ cleavage of trimethylsilyl end groups of the molecules. The obtained self-assembled monolayers are ultrastable within a wide potential window. The carbon–surface bonding on various substrates is confirmed by shell-isolated nanoparticle-enhanced Raman spectroscopy. Application of this strategy in tuning surface wettability is also demonstrated. The most valuable finding is that a combination of the desilylation with the click chemistry represents an efficient method for covalent and tailor-made functionalization of diverse surfaces. PMID:25758661

  17. Tailor-Made Pore Surface Engineering in Covalent Organic Frameworks: Systematic Functionalization for Performance Screening.

    PubMed

    Huang, Ning; Krishna, Rajamani; Jiang, Donglin

    2015-06-10

    Imine-linked covalent organic frameworks (COFs) were synthesized to bear content-tunable, accessible, and reactive ethynyl groups on the walls of one-dimensional pores. These COFs offer an ideal platform for pore-wall surface engineering aimed at anchoring diverse functional groups ranging from hydrophobic to hydrophilic units and from basic to acidic moieties with controllable loading contents. This approach enables the development of various tailor-made COFs with systematically tuned porosities and functionalities while retaining the crystallinity. We demonstrate that this strategy can be used to efficiently screen for suitable pore structures for use as CO2 adsorbents. The pore-surface-engineered walls exhibit an enhanced affinity for CO2, resulting in COFs that can capture and separate CO2 with high performance. PMID:26028183

  18. Tailor-made anion-exchange membranes for salinity gradient power generation using reverse electrodialysis.

    PubMed

    Guler, Enver; Zhang, Yali; Saakes, Michel; Nijmeijer, Kitty

    2012-11-01

    Reverse electrodialysis (RED) or blue energy is a non-polluting, sustainable technology for generating power from the mixing of solutions with different salinity, that is, seawater and river water. A concentrated salt solution (e.g., seawater) and a diluted salt solution (e.g., river water) are brought into contact through an alternating series of polymeric anion-exchange membranes (AEMs) and cation-exchange membranes (CEMs), which are either selective for anions or cations. Currently available ion-exchange membranes are not optimized for RED, whereas successful RED operation notably depends on the used ion-exchange membranes. We designed such ion-exchange membranes and for the first time we show the performance of tailor-made membranes in RED. More specifically, we focus on the development of AEMs because these are much more complex to prepare. Herein we propose a safe and more environmentally friendly method and use halogenated polyethers, such as polyepichlorohydrin (PECH) as the starting material. A tertiary diamine (1,4-diazabicyclo[2.2.2]octane, DABCO) was used to introduce the ion-exchange groups by amination and for simultaneous cross-linking of the polymer membrane. Area resistances of the series of membranes ranged from 0.82 to 2.05 Ω cm² and permselectivities from 87 to 90 %. For the first time we showed that tailor-made ion-exchange membranes can be applied in RED. Depending on the properties and especially membrane thickness, application of these membranes in RED resulted in a high power density of 1.27 W m⁻², which exceeds the power output obtained with the commercially available AMX membranes. This shows the potential of the design of ion-exchange membranes for a viable blue energy process. PMID:23109486

  19. Dry particle coating of polymer particles for tailor-made product properties

    SciTech Connect

    Blümel, C. Schmidt, J. Dielesen, A. Sachs, M. Winzer, B. Peukert, W. Wirth, K.-E.

    2014-05-15

    Disperse polymer powders with tailor-made particle properties are of increasing interest in industrial applications such as Selective Laser Beam Melting processes (SLM). This study focuses on dry particle coating processes to improve the conductivity of the insulating polymer powder in order to assemble conductive devices. Therefore PP particles were coated with Carbon Black nanoparticles in a dry particle coating process. This process was investigated in dependence of process time and mass fraction of Carbon Black. The conductivity of the functionalized powders was measured by impedance spectroscopy. It was found that there is a dependence of process time, respectively coating ratio and conductivity. The powder shows higher conductivities with increasing number of guest particles per host particle surface area, i.e. there is a correlation between surface functionalization density and conductivity. The assembled composite particles open new possibilities for processing distinct polymers such as PP in SLM process. The fundamentals of the dry particle coating process of PP host particles with Carbon Black guest particles as well as the influence on the electrical conductivity will be discussed.

  20. Dry particle coating of polymer particles for tailor-made product properties

    NASA Astrophysics Data System (ADS)

    Blümel, C.; Schmidt, J.; Dielesen, A.; Sachs, M.; Winzer, B.; Peukert, W.; Wirth, K.-E.

    2014-05-01

    Disperse polymer powders with tailor-made particle properties are of increasing interest in industrial applications such as Selective Laser Beam Melting processes (SLM). This study focuses on dry particle coating processes to improve the conductivity of the insulating polymer powder in order to assemble conductive devices. Therefore PP particles were coated with Carbon Black nanoparticles in a dry particle coating process. This process was investigated in dependence of process time and mass fraction of Carbon Black. The conductivity of the functionalized powders was measured by impedance spectroscopy. It was found that there is a dependence of process time, respectively coating ratio and conductivity. The powder shows higher conductivities with increasing number of guest particles per host particle surface area, i.e. there is a correlation between surface functionalization density and conductivity. The assembled composite particles open new possibilities for processing distinct polymers such as PP in SLM process. The fundamentals of the dry particle coating process of PP host particles with Carbon Black guest particles as well as the influence on the electrical conductivity will be discussed.

  1. Serum-free transfection of CHO-cells with tailor-made unilamellar vesicles

    PubMed Central

    Sevcsik, Eva; Vorauer-Uhl, Karola; Lohner, Karl; Katinger, Hermann; Kunert, Renate

    2007-01-01

    At present, a number of transfection techniques are available to introduce foreign DNA into cells, but still minimal intrusion or interference with normal cell physiology, low toxicity, reproducibility, cost efficiency and successful creation of stable transfectants are highly desirable properties for improved transfection techniques. For all previous transfection experiments done in our labs, using serum-free cultivated host cell lines, an efficiency value of ∼0.1% for selection of stable cell lines has not been exceeded, consequently we developed and improved a transfection system based on defined liposomes, so-called large unilamellar vesicles, consisting of different lipid compositions to facilitate clone selection and increase the probability for creation of recombinant high-production clones. DNA and DOTAP/DOPE or CHEMS/DOPE interact by electrostatic means forming so-called lipoplexes (Even-Chen and Barenholz 2000) and the lipofection efficiency of those lipoplexes has been determined via confocal microscopy. In addition, the expression of the EGFP was determined by FACS to investigate transient as well as stable transfection and the transfection efficiency of a selection of different commercially available transfection reagents and kits has been compared to our tailor-made liposomes. PMID:19003008

  2. Tailor-made asymmetric PVDF hollow fibers for soluble gas removal

    SciTech Connect

    Li, K.; Kong, J.F.; Wang, D.; Teo, W.K.

    1999-06-01

    Tailor-made polyvinylidene fluoride (PVDF) asymmetric hollow-fiber membranes and their membrane modules were employed for soluble gas removal, such as H{sub 2}S from waste gas streams. This study focused on the techniques of fabricating and characterizing the PVDF asymmetric hollow-fiber membranes and their membrane modules for removal of H{sub 2}S using an aqueous solution containing 10% NaOH. A laminar parabolic velocity profile was used to characterize the flow of the H{sub 2}S gas mixture in the hollow-fiber lumen. Effects of operating conditions and the morphological structures of the membranes on the membrane`s coefficient, k{sub AM}, were examined both theoretically and experimentally. The capabilities of the hollow-fiber membranes developed for removal of H{sub 2}S from waste gas streams were evaluated and compared with conventional symmetric hydrophobic hollow-fiber membranes, such as polypropylene. An analysis of H{sub 2}S transfer across the more developed PVDF membranes reveals that the membrane`s coefficient, k{sub AM}, evaluated from its structure parameters, such as the effective surface porosity and mean radius, agreed well with the experimental data obtained from absorption experiments.

  3. Material efficiency: from top-down steering to tailor-made governance.

    PubMed

    Cramer, Jacqueline

    2013-03-13

    Material efficiency is one of the major challenges facing our society in the twenty-first century. Research can help to understand how we can make the transition towards a material-efficient society. This study focuses on the role of the government in such transition processes. Use is made of literature in the field of public administration and innovation literature, particularly transition management. On the basis of three Dutch examples (plastics, e-waste and bio-energy), the complex system change towards a material-efficient society will be reflected upon. These case studies underline the need for a tailor-made governance approach instead of a top-down government approach to enhance material efficiency in practice. The role of the government is not restricted to formulating policies and then leaving it up to other actors to implement these policies. Instead, it is a continuous interplay between the different actors during the whole implementation process. As such, the government's role is to steer the development in the desired direction and orchestrate the process from beginning to end. In order to govern with a better compass, scientifically underpinned guiding principles and indicators are needed. This is a challenge for researchers both in public administration and in transition management. PMID:23359735

  4. Infection by verocytotoxin-producing Escherichia coli.

    PubMed Central

    Karmali, M A

    1989-01-01

    Verocytotoxin (VT)-producing Escherichia coli (VTEC) are a newly recognized group of enteric pathogens which are increasingly being recognized as common causes of diarrhea in some geographic settings. Outbreak studies indicate that most patients with VTEC infection develop mild uncomplicated diarrhea. However, a significant risk of two serious and potentially life-threatening complications, hemorrhagic colitis and the hemolytic uremic syndrome, makes VTEC infection a public health problem of serious concern. The main reservoirs of VTEC appear to be the intestinal tracts of animals, and foods of animal (especially bovine) origin are probably the principal sources for human infection. The term VT refers to a family of subunit exotoxins with high biological activity. Individual VTEC strains elaborate one or both of at least two serologically distinct, bacteriophage-mediated VTs (VT1 and VT2) which are closely related to Shiga toxin and are thus also referred to as Shiga-like toxins. The holotoxins bind to cells, via their B subunits, to a specific receptor which is probably the glycolipid, globotriosyl ceramide (Gb3). Binding is followed by internalization of the A subunit, which, after it is proteolytically nicked and reduced to the A1 fragment, inhibits protein synthesis in mammalian cells by inactivating 60S ribosomal subunits through selective structural modification of 28S ribosomal ribonucleic acid. The mechanism of VTEC diarrhea is still controversial, and the relative roles of locally acting VT and "attaching and effacing adherence" of VTEC to the mucosa have yet to be resolved. There is increasing evidence that hemolytic uremic syndrome and possibly hemorrhagic colitis result from the systemic action of VT on vascular endothelial cells. The role of antitoxic immunity in preventing the systemic complications of VTEC infection is being explored. Antibiotics appear to be contraindicated in the treatment of VTEC infection. The most common VTEC serotype associated

  5. Tailor-Made Distribution of Nanoparticles in Blend Structure toward Outstanding Electromagnetic Interference Shielding.

    PubMed

    Biswas, Sourav; Kar, Goutam Prasanna; Bose, Suryasarathi

    2015-11-18

    Engineering blend structure with tailor-made distribution of nanoparticles is the prime requisite to obtain materials with extraordinary properties. Herein, a unique strategy of distributing nanoparticles in different phases of a blend structure has resulted in >99% blocking of incoming electromagnetic (EM) radiation. This is accomplished by designing a ternary polymer blend structure using polycarbonate (PC), poly(vinylidene fluoride) (PVDF), and poly(methyl methacrylate) (PMMA) to simultaneously improve the structural, electrical, and electromagnetic interference shielding (EMI). The blend structure was made conducting by preferentially localizing the multi-wall nanotubes (MWNTs) in the PVDF phase. By taking advantage of "π-π stacking" MWNTs was noncovalently modified with an imidazolium based ionic liquid (IL). Interestingly, the enhanced dispersion of IL-MWNTs in PVDF improved the electrical conductivity of the blends significantly. While one key requisite to attenuate EM radiation (i.e., electrical conductivity) was achieved using MWNTs, the magnetic properties of the blend structure was tuned by introducing barium ferrite (BaFe) nanoparticles, which can interact with the incoming EM radiation. By suitably modifying the surface of BaFe nanoparticles, we can tailor their localization under the macroscopic processing condition. The precise localization of BaFe nanoparticles in the PC phase, due to nucleophilic substitution reaction, and the MWNTs in the PVDF phase not only improved the conductivity but also facilitated in absorption of the incoming microwave radiation due to synergetic effect from MWNT and BaFe. The shielding effectiveness (SE) was measured in X and Ku band, and an enhanced SE of -37 dB was noted at 18 GHz frequency. PMMA, which acted as an interfacial modifier in PC/PVDF blends further, resulting in a significant enhancement in the mechanical properties besides retaining high SE. This study opens a new avenue in designing mechanically strong

  6. Non-O157 Shiga toxin-producing Escherichia coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shiga toxin-producing Escherichia coli (STEC) O157:H7 is a leading cause of food-borne illness in the United States; however, recent reports have shown that non-O157 STEC serogroups contribute to more illnesses than O157:H7. Illness caused by non-O157 STEC strains are generally less severe than tho...

  7. Non-O157 Shiga Toxin-Producing E. coli Associated with Muscle Foods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Escherichia coli strains that produce Shiga toxins, referred to as Shiga toxin-producing E. coli (STEC) or verotoxigenic E. coli (VTEC), cause hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS). E. coli O157:H7 is the most common cause of STEC infection; however, numerous non-O157 STECs b...

  8. Non-O157 Shiga toxin-producing Escherichia coli: detection and characterization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Escherichia coli strains that produce Shiga toxins, referred to as Shiga toxin-producing E. coli (STEC) or verotoxigenic E. coli (VTEC) are important food-borne pathogens that cause hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS). E. coli O157:H7 is a common cause of STEC infection; ho...

  9. Tailor-made rehabilitation approach using multiple types of hybrid assistive limb robots for acute stroke patients: A pilot study.

    PubMed

    Fukuda, Hiroyuki; Morishita, Takashi; Ogata, Toshiyasu; Saita, Kazuya; Hyakutake, Koichi; Watanabe, Junko; Shiota, Etsuji; Inoue, Tooru

    2016-01-01

    This article investigated the feasibility of a tailor-made neurorehabilitation approach using multiple types of hybrid assistive limb (HAL) robots for acute stroke patients. We investigated the clinical outcomes of patients who underwent rehabilitation using the HAL robots. The Brunnstrom stage, Barthel index (BI), and functional independence measure (FIM) were evaluated at baseline and when patients were transferred to a rehabilitation facility. Scores were compared between the multiple-robot rehabilitation and single-robot rehabilitation groups. Nine hemiplegic acute stroke patients (five men and four women; mean age 59.4 ± 12.5 years; four hemorrhagic stroke and five ischemic stroke) underwent rehabilitation using multiple types of HAL robots for 19.4 ± 12.5 days, and 14 patients (six men and eight women; mean age 63.2 ± 13.9 years; nine hemorrhagic stroke and five ischemic stroke) underwent rehabilitation using a single type of HAL robot for 14.9 ± 8.9 days. The multiple-robot rehabilitation group showed significantly better outcomes in the Brunnstrom stage of the upper extremity, BI, and FIM scores. To the best of the authors' knowledge, this is the first pilot study demonstrating the feasibility of rehabilitation using multiple exoskeleton robots. The tailor-made rehabilitation approach may be useful for the treatment of acute stroke. PMID:26478988

  10. Playing and listening to tailor-made notched music: cortical plasticity induced by unimodal and multimodal training in tinnitus patients.

    PubMed

    Pape, Janna; Paraskevopoulos, Evangelos; Bruchmann, Maximilian; Wollbrink, Andreas; Rudack, Claudia; Pantev, Christo

    2014-01-01

    BACKGROUND. The generation and maintenance of tinnitus are assumed to be based on maladaptive functional cortical reorganization. Listening to modified music, which contains no energy in the range of the individual tinnitus frequency, can inhibit the corresponding neuronal activity in the auditory cortex. Music making has been shown to be a powerful stimulator for brain plasticity, inducing changes in multiple sensory systems. Using magnetoencephalographic (MEG) and behavioral measurements we evaluated the cortical plasticity effects of two months of (a) active listening to (unisensory) versus (b) learning to play (multisensory) tailor-made notched music in nonmusician tinnitus patients. Taking into account the fact that uni- and multisensory trainings induce different patterns of cortical plasticity we hypothesized that these two protocols will have different affects. RESULTS. Only the active listening (unisensory) group showed significant reduction of tinnitus related activity of the middle temporal cortex and an increase in the activity of a tinnitus-coping related posterior parietal area. CONCLUSIONS. These findings indicate that active listening to tailor-made notched music induces greater neuroplastic changes in the maladaptively reorganized cortical network of tinnitus patients while additional integration of other sensory modalities during training reduces these neuroplastic effects. PMID:24895541

  11. Playing and Listening to Tailor-Made Notched Music: Cortical Plasticity Induced by Unimodal and Multimodal Training in Tinnitus Patients

    PubMed Central

    Rudack, Claudia

    2014-01-01

    Background. The generation and maintenance of tinnitus are assumed to be based on maladaptive functional cortical reorganization. Listening to modified music, which contains no energy in the range of the individual tinnitus frequency, can inhibit the corresponding neuronal activity in the auditory cortex. Music making has been shown to be a powerful stimulator for brain plasticity, inducing changes in multiple sensory systems. Using magnetoencephalographic (MEG) and behavioral measurements we evaluated the cortical plasticity effects of two months of (a) active listening to (unisensory) versus (b) learning to play (multisensory) tailor-made notched music in nonmusician tinnitus patients. Taking into account the fact that uni- and multisensory trainings induce different patterns of cortical plasticity we hypothesized that these two protocols will have different affects. Results. Only the active listening (unisensory) group showed significant reduction of tinnitus related activity of the middle temporal cortex and an increase in the activity of a tinnitus-coping related posterior parietal area. Conclusions. These findings indicate that active listening to tailor-made notched music induces greater neuroplastic changes in the maladaptively reorganized cortical network of tinnitus patients while additional integration of other sensory modalities during training reduces these neuroplastic effects. PMID:24895541

  12. Pathogenesis of Shiga-toxin producing escherichia coli.

    PubMed

    Melton-Celsa, Angela; Mohawk, Krystle; Teel, Louise; O'Brien, Alison

    2012-01-01

    Shiga toxin (Stx)-producing Escherichia coli (STEC) are food-borne pathogens that cause hemorrhagic colitis and a serious sequela, the hemolytic uremic syndrome (HUS). The largest outbreaks of STEC are due to a single E. coli serotype, O157:H7, although non-O157 serotypes also cause the same diseases. Two immunologically distinct Stxs are found in E. coli, Stx1 and Stx2. The Stxs are AB₅ toxins that halt protein synthesis in the host cell, a process that may lead to an apoptotic cell death. Stx-mediated damage to renal glomerular endothelial cells is hypothesized as the precipitating event for HUS. A subset of STEC referred to as the enterohemorrhagic E. coli has the capacity to intimately attach to and efface intestinal epithelial cells, a pathology called the A/E lesion. The A/E lesion is mediated by the adhesin intimin, its bacterially encoded receptor, Tir, and effectors secreted through a type III secretion system. The proteins needed for the A/E lesion are encoded within a large pathogenicity island called the locus of enterocyte effacement or LEE. There are several animal models for STEC infection, but no one model fully represents the spectrum of STEC illness. Currently there is no cure for STEC infection, and therapies are based mainly on alleviating symptoms. However, chimeric or humanized monoclonal antibodies have been developed that neutralize the Stxs, and those therapies may be able to prevent the development of HUS in an STEC-infected patient. PMID:21915773

  13. Shiga Toxin (Verotoxin)-Producing Escherichia coli in Japan.

    PubMed

    Terajima, Jun; Iyoda, Sunao; Ohnishi, Makoto; Watanabe, Haruo

    2014-10-01

    A series of outbreaks of infection with Shiga toxin (verocytotoxin)-producing Escherichia coli or enterohemorrhagic E. coli (EHEC) O157:H7 occurred in Japan in 1996, the largest outbreak occurring in primary schools in Sakai City, Osaka Prefecture, where more than 7,500 cases were reported. Although the reason for the sudden increase in the number of reports of EHEC isolates in 1996 is not known, the number of reports has grown to more than 3,000 cases per year since 1996, from an average of 105 reports each year during the previous 5-year period (1991-1995). Despite control measures instituted since 1996, including designating Shiga toxin-producing E. coli infection as a notifiable disease, and nationwide surveillance effectively monitoring the disease, the number of reports remains high, around 3,800 cases per year. Serogroup O157 predominates over other EHEC serogroups, but isolation frequency of non-O157 EHEC has gone up slightly over the past few years. Non-O157 EHEC has recently caused outbreaks where consumption of a raw beef dish was the source of the infection, and some fatal cases occurred. Laboratory surveillance comprised prefectural and municipal public health institutes, and the National Institute of Infectious Diseases has contributed to finding not only multiprefectural outbreaks but recognizing sporadic cases that could have been missed as an outbreak without the aid of molecular subtyping of EHEC isolates. This short overview presents recent information on the surveillance of EHEC infections in Japan. PMID:26104366

  14. Metabolic engineering of Escherichia coli to produce zeaxanthin.

    PubMed

    Li, Xi-Ran; Tian, Gui-Qiao; Shen, Hong-Jie; Liu, Jian-Zhong

    2015-04-01

    Zeaxanthin is a high-value carotenoid that is used in nutraceuticals, cosmetics, food, and animal feed industries. Zeaxanthin is chemically synthesized or purified from microorganisms as a natural product; however, increasing demand requires development of alternative sources such as heterologous biosynthesis by recombinant bacteria. For this purpose, we molecularly engineered Escherichia coli to optimize the synthesis of zeaxanthin from lycopene using fusion protein-mediated substrate channeling as well as by the introduction of tunable intergenic regions. The tunable intergenic regions approach was more efficient compared with protein fusion for coordinating expression of lycopene β-cyclase gene crtY and β-carotene 3-hydroxylase gene crtZ. The influence of the substrate channeling effect suggests that the reaction catalyzed by CrtZ is the rate-limiting step in zeaxanthin biosynthesis. Then Pantoea ananatis, Pantoea agglomerans and Haematococcus pluvialis crtZ were compared. Because P. ananatis crtZ is superior to that of P. agglomerans or H. pluvialis for zeaxanthin production, we used it to generate a recombinant strain of E. coli BETA-1 containing pZSPBA-2(P37-crtZPAN) that produced higher amounts of zeaxanthin (11.95 ± 0.21 mg/g dry cell weight) than other engineered E. coli strains described in the literature. PMID:25533633

  15. Beta-Lactamase Producing Escherichia coli Isolates in Imported and Locally Produced Chicken Meat from Ghana

    PubMed Central

    Rasmussen, Mette Marie; Opintan, Japheth A.; Frimodt-Møller, Niels; Styrishave, Bjarne

    2015-01-01

    The use of antibiotics in food animals is of public health concern, because resistant zoonotic pathogens can be transmitted to humans. Furthermore, global trade with food may rapidly spread multi-resistant pathogens between countries and even continents. The purpose of the study was to investigate whether imported chicken meat and meat from locally reared chicken are potential sources for human exposure to multi resistant Escherichia coli isolates. 188 samples from imported and locally produced chicken meat were sampled and analyzed. 153 bacteria isolates were successfully cultured and identified as E. coli using MALDI-ToF. Of these 109 isolates were from meat whereas the remaining 44 were isolated from the cloaca of locally reared live chickens. Antimicrobial susceptibility test was done on the identified E. coli isolates. Additionally, beta-lactamases production (ESBL and/or AmpC) were phenotypically confirmed on all isolates showing resistance to cefpodoxime. Beta-lactamase producing (BLP) E. coli meat isolates were further genotyped. Antimicrobial resistance to four antibiotic markers with highest resistance was detected more frequently in isolates from local chickens compared to imported chickens (tetracycline 88.9% vs. 57.5%, sulphonamide 75.0% vs. 46.6%, ampicillin 69.4% vs. 61.6% and trimethoprim 66.7% vs. 38.4%). Beta-lactamase production was found in 29 E. coli meat isolates, with 56.9% of them being multiple drug resistant (≥ 3). The predominant phylogroup identified was B1 followed by A and D, with similar distribution among the isolates from meat of locally reared chickens and imported chickens. Beta-lactamase producing genotype blaCTX-M-15 (50%; 10/20) was the most frequently drug resistant gene detected. More BLP E. coli isolates were found in imported chicken meat compared to locally reared chickens, demonstrating that these isolates may be spreading through food trade. In conclusion, both imported and locally produced chicken meats are potential

  16. Public Health Microbiology of Shiga Toxin-Producing Escherichia coli.

    PubMed

    Caprioli, Alfredo; Scavia, Gaia; Morabito, Stefano

    2014-12-01

    Shiga toxin-producing Escherichia coli (STEC) strains are the only pathogenic group of E. coli that has a definite zoonotic origin, with ruminants and, in particular, cattle being recognized as the major reservoir. Most human STEC infections are food borne, but the routes of transmission include direct contact with animals and a variety of environment-related exposures. Therefore, STEC public health microbiology spans the fields of medical, veterinary, food, water, and environmental microbiology, requiring a "One Health" perspective and laboratory scientists with the ability to work effectively across disciplines. Public health microbiology laboratories play a central role in the surveillance of STEC infections, as well as in the preparedness for responding to outbreaks and in providing scientific evidence for the implementation of prevention and control measures. This article reviews (i) how the integration of surveillance of STEC infections and monitoring of these pathogens in animal reservoirs and potential food vehicles may contribute to their control; (ii) the role of reference laboratories, in both the public health and veterinary and food sectors; and (iii) the public health perspectives, including those related to regulatory issues in both the European Union and the United States. PMID:26104435

  17. Characterisation of the thermoluminescence (TL) properties of tailor-made Ge-doped silica glass fibre for applications in medical radiation therapy dosimetry

    NASA Astrophysics Data System (ADS)

    Zahaimi, N. A.; Zin, H.; Mahdiraji, G. A.; Rahman, A. L. Abdul; Bradley, D. A.; Rahman, A. T. Abdul

    2014-11-01

    We have investigated the characterisation of new fabricated material Ge doped silica glass thermoluminescence TL dosimeter (Photonic Research Centre, University of Malaya) for medical radiation dosimetry at therapy energy. Previously, the dosimeter has been studied to provide ideal dosimetry system, suitable to ensure an accurate delivery of radiation doses to tumour tissue while minimising the amount of radiation administrated to healthy tissue. Both energies of photon and electron were used in this experiment for a dose range of 1 to 5 Gy. The various sizes of core diameter Ge doped silica glass (120, 241, 362, 483 and 604 μm) were exposed by using linear accelerator at Pantai Medical Centre. For both energies, the optical fibres were found to produce a flat response to a fixed photon and electron doses to within 4% (S.D) of the mean of the TL distribution. In terms of dose response, the fibres provide linear response over the range investigated, from a fraction of 1-5 Gy. The finding shows 120 μm fibres have 1.82 greater dose response than 604 pm fibres irradiated at 6 MV photon with a fixed dose of 3 Gy. While for electron energy 12 MeV, the response shows 120 μm fibres have 1.58 greater dose response compared to 604 μm fibres. The good responses are suitable to make these tailor-made doped silica fibres a promising TL material for use as a dosimetric system in medical radiation therapy.

  18. Identification of a Glycoprotein Produced by Enterotoxigenic Escherichia coli

    PubMed Central

    Lindenthal, Christoph; Elsinghorst, Eric A.

    1999-01-01

    Enterotoxigenic Escherichia coli (ETEC) strain H10407 is capable of invading epithelial cell lines derived from the human ileocecum and colon in vitro. Two separate chromosomally encoded invasion loci (tia and tib) have been cloned from this strain. These loci direct nonadherent and noninvasive laboratory strains of E. coli to adhere to and invade cultured human intestinal epithelial cells. The tib locus directs the synthesis of TibA, a 104-kDa outer membrane protein that is directly correlated with the adherence and invasion phenotypes. TibA is synthesized as a 100-kDa precursor (preTibA) that must be modified for biological activity. Outer membranes of recombinant E. coli expressing TibA or preTibA were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and blotted to nitrocellulose. The presence of glycoproteins was detected by oxidization of carbohydrates with periodate and labeling with hydrazide-conjugated digoxigenin. Only TibA could be detected as a glycoprotein. Complementation experiments with tib deletion mutants of ETEC strain H10407 demonstrate that the TibA glycoprotein is expressed in H10407, that the entire tib locus is required for TibA synthesis, and that TibA is the only glycoprotein produced by H10407. Protease treatment of intact H10407 cells removes the carbohydrates on TibA, suggesting that they are surface exposed. TibA shows homology with AIDA-I from diffuse-adhering E. coli and with pertactin precursor from Bordetella pertussis. Both pertactin and AIDA-I are members of the autotransporter family of outer membrane proteins and are afimbrial adhesins that play an important role in the virulence of these organisms. Analysis of the predicted TibA amino acid sequence indicates that TibA is also an autotransporter. Analysis of the tib locus DNA sequence revealed an open reading frame with similarity to RfaQ, a glycosyltransferase. The product of this tib locus open reading frame is proposed to be responsible for Tib

  19. Identification of a glycoprotein produced by enterotoxigenic Escherichia coli.

    PubMed

    Lindenthal, C; Elsinghorst, E A

    1999-08-01

    Enterotoxigenic Escherichia coli (ETEC) strain H10407 is capable of invading epithelial cell lines derived from the human ileocecum and colon in vitro. Two separate chromosomally encoded invasion loci (tia and tib) have been cloned from this strain. These loci direct nonadherent and noninvasive laboratory strains of E. coli to adhere to and invade cultured human intestinal epithelial cells. The tib locus directs the synthesis of TibA, a 104-kDa outer membrane protein that is directly correlated with the adherence and invasion phenotypes. TibA is synthesized as a 100-kDa precursor (preTibA) that must be modified for biological activity. Outer membranes of recombinant E. coli expressing TibA or preTibA were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and blotted to nitrocellulose. The presence of glycoproteins was detected by oxidization of carbohydrates with periodate and labeling with hydrazide-conjugated digoxigenin. Only TibA could be detected as a glycoprotein. Complementation experiments with tib deletion mutants of ETEC strain H10407 demonstrate that the TibA glycoprotein is expressed in H10407, that the entire tib locus is required for TibA synthesis, and that TibA is the only glycoprotein produced by H10407. Protease treatment of intact H10407 cells removes the carbohydrates on TibA, suggesting that they are surface exposed. TibA shows homology with AIDA-I from diffuse-adhering E. coli and with pertactin precursor from Bordetella pertussis. Both pertactin and AIDA-I are members of the autotransporter family of outer membrane proteins and are afimbrial adhesins that play an important role in the virulence of these organisms. Analysis of the predicted TibA amino acid sequence indicates that TibA is also an autotransporter. Analysis of the tib locus DNA sequence revealed an open reading frame with similarity to RfaQ, a glycosyltransferase. The product of this tib locus open reading frame is proposed to be responsible for Tib

  20. Engineering the glucansucrase GTFR enzyme reaction and glycosidic bond specificity: toward tailor-made polymer and oligosaccharide products.

    PubMed

    Hellmuth, Hendrik; Wittrock, Sabine; Kralj, Slavko; Dijkhuizen, Lubbert; Hofer, Bernd; Seibel, Jürgen

    2008-06-24

    Two long-standing questions about glucansucrases (EC 2.4.1.5) are how they control oligosaccharide versus polysaccharide synthesis and how they direct their glycosidic linkage specificity. This information is required for the production of tailor-made saccharides. Mutagenesis promises to be an effective tool for enzyme engineering approaches for altering the regioselectivity and acceptor substrate specificity. Therefore, we chose the most conserved motif around the transition state stabilizer in glucansucrases for a random mutagenesis of the glucansucrase GTFR of Streptococcus oralis, yielding different variants with altered reaction specificity. Modifications at position S628 achieved by saturation mutagenesis guided the reaction toward the synthesis of short chain oligosaccharides with a drastically increased yield of isomaltose (47%) or leucrose (64%). Alternatively, GTFR variant R624G/V630I/D717A exhibited a drastic switch in regioselectivity from a dextran type with mainly alpha-1,6-glucosidic linkages to a mutan type polymer with predominantly alpha-1,3-glucosidic linkages. Targeted modifications demonstrated that both mutations near the transition state stabilizer, R624G and V630I, are contributing to this alteration. It is thus shown that mutagenesis can guide the transglycosylation reaction of glucansucrase enzymes toward the synthesis of (a) various short chain oligosaccharides or (b) novel polymers with completely altered linkages, without compromising their high transglycosylation activity and efficiency. PMID:18512955

  1. Shiga Toxin-Producing Escherichia coli (STEC) in Fresh Produce--A Food Safety Dilemma.

    PubMed

    Feng, Peter

    2014-08-01

    Produce contains high levels of mixed microflora, including coliforms and Escherichia coli, but occasionally pathogens may also be present. Enterotoxigenic E. coli and Shigatoxin-producing E. coli (STEC) have been isolated from various produce types, especially spinach. The presence of STEC in produce is easily detected by PCR for the Shiga toxin (Stx) gene, stx, but this is insufficient for risk analysis. STEC comprises hundreds of serotypes that include known pathogenic serotypes and strains that do not appear to cause severe illness. Moreover, Stx without a binding factor like intimin (encoded by eae) is deemed to be insufficient to cause severe disease. Hence, risk analyses require testing for other virulence or serotype-specific genes. Multiplex PCR enables simultaneous testing of many targets, but, in a mixed flora sample, not all targets detected may be coming from the same cell. The need to isolate and confirm STEC in produce is critical, but it is time- and labor-intensive due to the complexity of the group. Studies showed that only a handful of STEC strains in produce have eae, and most belonged to recognized pathogenic serotypes so are of definite health risks. Several eae-negative strains belonged to serotypes O113:H21 and O91:H21 that historically have caused severe illness and may also be of concern. Most of the other STEC strains in produce, however, are only partially serotyped or are unremarkable serotypes carrying putative virulence factors, whose role in pathogenesis is uncertain, thus making it difficult to assess the health risks of these STEC strains. PMID:26104197

  2. Escherichia coli produces linoleic acid during late stationary phase.

    PubMed Central

    Rabinowitch, H D; Sklan, D; Chace, D H; Stevens, R D; Fridovich, I

    1993-01-01

    Escherichia coli produces linoleic acid in the late stationary phase. This was the case whether the cultures were grown aerobically or anaerobically on a supplemented glucose-salts medium. The linoleic acid was detected by thin-layer chromatography and was measured as the methyl ester by gas chromatography. The linoleic acid methyl ester was identified by its mass spectrum. Lipids extracted from late-stationary-phase cells generated thiobarbituric acid-reactive carbonyl products when incubated with a free radical initiator. In contrast, extracts from log-phase or early-stationary-phase cells failed to do so, in accordance with the presence of polyunsaturated fatty acid only in the stationary-phase cells. PMID:8366020

  3. Simultaneous Detection of Enteropathogenic E. coli and Shiga Toxin-Producing E. coli by Polymerase Chain Reaction

    NASA Astrophysics Data System (ADS)

    Alhaj, N.; Mariana, N. S.; Raha, A. R.; Ishak, Z.

    A PCR for detection of two categories of diarrheagenic Escherichia coli was developed. This method proved to be specific and rapid in detecting virulence genes from enteropathogenic E. coli (EPEC) (eae and bfp) and Shiga toxin-producing E. coli (STEC) (stx1, stx2 and eae) from seventy isolates of various sources. Present results confirm that it is possible and feasible to perform a simultaneous amplification of the virulence genes from two categories of diarrheagenic E. coli (STEC, EPEC) and that this technique becoming a novel diagnostic tool for future water food-borne outbreaks studies.

  4. Virulence Potential of Activatable Shiga Toxin 2d–Producing Escherichia coli Isolates from Fresh Produce

    PubMed Central

    Melton-Celsa, Angela R.; O'Brien, Alison D.; Feng, Peter C. H.

    2016-01-01

    Shiga toxin (Stx)–producing Escherichia coli (STEC) strains are food- and waterborne pathogens that are often transmitted via beef products or fresh produce. STEC strains cause both sporadic infections and outbreaks, which may result in hemorrhagic colitis and hemolytic uremic syndrome. STEC strains may elaborate Stx1, Stx2, and/or subtypes of those toxins. Epidemiological evidence indicates that STEC that produce subtypes Stx2a, Stx2c, and/or Stx2d are more often associated with serious illness. The Stx2d subtype becomes more toxic to Vero cells after incubation with intestinal mucus or elastase, a process named “activation.” Stx2d is not generally found in the E. coli serotypes most commonly connected to STEC outbreaks. However, STEC strains that are stx2d positive can be isolated from foods, an occurrence that gives rise to the question of whether those food isolates are potential human pathogens. In this study, we examined 14 STEC strains from fresh produce that were stx2d positive and found that they all produced the mucus-activatable Stx2d and that a subset of the strains tested were virulent in streptomycin-treated mice. PMID:26555533

  5. Virulence Potential of Activatable Shiga Toxin 2d-Producing Escherichia coli Isolates from Fresh Produce.

    PubMed

    Melton-Celsa, Angela R; O'Brien, Alison D; Feng, Peter C H

    2015-11-01

    Shiga toxin (Stx)-producing Escherichia coli (STEC) strains are food- and waterborne pathogens that are often transmitted via beef products or fresh produce. STEC strains cause both sporadic infections and outbreaks, which may result in hemorrhagic colitis and hemolytic uremic syndrome. STEC strains may elaborate Stx1, Stx2, and/or subtypes of those toxins. Epidemiological evidence indicates that STEC that produce subtypes Stx2a, Stx2c, and/or Stx2d are more often associated with serious illness. The Stx2d subtype becomes more toxic to Vero cells after incubation with intestinal mucus or elastase, a process named "activation." Stx2d is not generally found in the E. coli serotypes most commonly connected to STEC outbreaks. However, STEC strains that are stx2d positive can be isolated from foods, an occurrence that gives rise to the question of whether those food isolates are potential human pathogens. In this study, we examined 14 STEC strains from fresh produce that were stx2d positive and found that they all produced the mucus-activatable Stx2d and that a subset of the strains tested were virulent in streptomycin-treated mice. PMID:26555533

  6. Resistance of various shiga toxin-producing Escherichia coli to electrolyzed oxidizing water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The resistance of thirty two strains of Escherichia coli O157:H7 and six major serotypes of non-O157 Shiga toxin- producing E. coli (STEC) plus E. coli O104 was tested against Electrolyzed oxidizing (EO) water using two different methods; modified AOAC 955.16 sequential inoculation method and minim...

  7. Enhancing Inhibition-Induced Plasticity in Tinnitus – Spectral Energy Contrasts in Tailor-Made Notched Music Matter

    PubMed Central

    Stein, Alwina; Engell, Alva; Lau, Pia; Wunderlich, Robert; Junghoefer, Markus; Wollbrink, Andreas; Bruchmann, Maximilian; Rudack, Claudia; Pantev, Christo

    2015-01-01

    Chronic tinnitus seems to be caused by reduced inhibition among frequency selective neurons in the auditory cortex. One possibility to reduce tinnitus perception is to induce inhibition onto over-activated neurons representing the tinnitus frequency via tailor-made notched music (TMNM). Since lateral inhibition is modifiable by spectral energy contrasts, the question arises if the effects of inhibition-induced plasticity can be enhanced by introducing increased spectral energy contrasts (ISEC) in TMNM. Eighteen participants suffering from chronic tonal tinnitus, pseudo randomly assigned to either a classical TMNM or an ISEC-TMNM group, listened to notched music for three hours on three consecutive days. The music was filtered for both groups by introducing a notch filter centered at the individual tinnitus frequency. For the ISEC-TMNM group a frequency bandwidth of 3/8 octaves on each side of the notch was amplified, additionally, by about 20 dB. Before and after each music exposure, participants rated their subjectively perceived tinnitus loudness on a visual analog scale. During the magnetoencephalographic recordings, participants were stimulated with either a reference tone of 500 Hz or a test tone with a carrier frequency representing the individual tinnitus pitch. Perceived tinnitus loudness was significantly reduced after TMNM exposure, though TMNM type did not influence the loudness ratings. Tinnitus related neural activity in the N1m time window and in the so called tinnitus network comprising temporal, parietal and frontal regions was reduced after TMNM exposure. The ISEC-TMNM group revealed even enhanced inhibition-induced plasticity in a temporal and a frontal cortical area. Overall, inhibition of tinnitus related neural activity could be strengthened in people affected with tinnitus by increasing spectral energy contrast in TMNM, confirming the concepts of inhibition-induced plasticity via TMNM and spectral energy contrasts. PMID:25951605

  8. Impact of Spectral Notch Width on Neurophysiological Plasticity and Clinical Effectiveness of the Tailor-Made Notched Music Training.

    PubMed

    Wunderlich, Robert; Lau, Pia; Stein, Alwina; Engell, Alva; Wollbrink, Andreas; Rudack, Claudia; Pantev, Christo

    2015-01-01

    Tinnitus, the ringing in the ears that is unrelated to any external source, causes a significant loss in quality of life, involving sleep disturbance and depression for 1 to 3% of the general population. While in the first place tinnitus may be triggered by damage to the inner ear cells, the neural generators of subjective tinnitus are located in central regions of the nervous system. A loss of lateral inhibition, tonotopical reorganization and a gain-increase in response to the sensory deprivation result in hypersensitivity and hyperactivity in certain regions of the auditory cortex. In the tailor-made notched music training (TMNMT) patients listen to music from which the frequency spectrum of the tinnitus has been removed. This evokes strong lateral inhibition from neurons tuned to adjacent frequencies onto the neurons involved in the tinnitus percept. A reduction of tinnitus loudness and tinnitus-related neural activity was achieved with TMNMT in previous studies. As the effect of lateral inhibition depends on the bandwidth of the notch, in the current study we altered the notch width to find the most effective notch width for TMNMT. We compared 1-octave notch width with ½-octave and ¼-octave. Participants chose their favorite music for the training that included three month of two hours daily listening. The outcome was measured by means of standardized questionnaires and magnetoencephalography. We found a general reduction of tinnitus distress in all administered tinnitus questionnaires after the training. Additionally, tinnitus-related neural activity was reduced after the training. Nevertheless, notch width did not have an influence on the behavioral or neural effects of TMNMT. This could be due to a non-linear resolution of lateral inhibition in high frequencies. PMID:26406446

  9. Enhancing inhibition-induced plasticity in tinnitus--spectral energy contrasts in tailor-made notched music matter.

    PubMed

    Stein, Alwina; Engell, Alva; Lau, Pia; Wunderlich, Robert; Junghoefer, Markus; Wollbrink, Andreas; Bruchmann, Maximilian; Rudack, Claudia; Pantev, Christo

    2015-01-01

    Chronic tinnitus seems to be caused by reduced inhibition among frequency selective neurons in the auditory cortex. One possibility to reduce tinnitus perception is to induce inhibition onto over-activated neurons representing the tinnitus frequency via tailor-made notched music (TMNM). Since lateral inhibition is modifiable by spectral energy contrasts, the question arises if the effects of inhibition-induced plasticity can be enhanced by introducing increased spectral energy contrasts (ISEC) in TMNM. Eighteen participants suffering from chronic tonal tinnitus, pseudo randomly assigned to either a classical TMNM or an ISEC-TMNM group, listened to notched music for three hours on three consecutive days. The music was filtered for both groups by introducing a notch filter centered at the individual tinnitus frequency. For the ISEC-TMNM group a frequency bandwidth of 3/8 octaves on each side of the notch was amplified, additionally, by about 20 dB. Before and after each music exposure, participants rated their subjectively perceived tinnitus loudness on a visual analog scale. During the magnetoencephalographic recordings, participants were stimulated with either a reference tone of 500 Hz or a test tone with a carrier frequency representing the individual tinnitus pitch. Perceived tinnitus loudness was significantly reduced after TMNM exposure, though TMNM type did not influence the loudness ratings. Tinnitus related neural activity in the N1m time window and in the so called tinnitus network comprising temporal, parietal and frontal regions was reduced after TMNM exposure. The ISEC-TMNM group revealed even enhanced inhibition-induced plasticity in a temporal and a frontal cortical area. Overall, inhibition of tinnitus related neural activity could be strengthened in people affected with tinnitus by increasing spectral energy contrast in TMNM, confirming the concepts of inhibition-induced plasticity via TMNM and spectral energy contrasts. PMID:25951605

  10. Impact of Spectral Notch Width on Neurophysiological Plasticity and Clinical Effectiveness of the Tailor-Made Notched Music Training

    PubMed Central

    Wunderlich, Robert; Lau, Pia; Stein, Alwina; Engell, Alva; Wollbrink, Andreas; Rudack, Claudia; Pantev, Christo

    2015-01-01

    Tinnitus, the ringing in the ears that is unrelated to any external source, causes a significant loss in quality of life, involving sleep disturbance and depression for 1 to 3% of the general population. While in the first place tinnitus may be triggered by damage to the inner ear cells, the neural generators of subjective tinnitus are located in central regions of the nervous system. A loss of lateral inhibition, tonotopical reorganization and a gain-increase in response to the sensory deprivation result in hypersensitivity and hyperactivity in certain regions of the auditory cortex. In the tailor-made notched music training (TMNMT) patients listen to music from which the frequency spectrum of the tinnitus has been removed. This evokes strong lateral inhibition from neurons tuned to adjacent frequencies onto the neurons involved in the tinnitus percept. A reduction of tinnitus loudness and tinnitus-related neural activity was achieved with TMNMT in previous studies. As the effect of lateral inhibition depends on the bandwidth of the notch, in the current study we altered the notch width to find the most effective notch width for TMNMT. We compared 1-octave notch width with ½-octave and ¼-octave. Participants chose their favorite music for the training that included three month of two hours daily listening. The outcome was measured by means of standardized questionnaires and magnetoencephalography. We found a general reduction of tinnitus distress in all administered tinnitus questionnaires after the training. Additionally, tinnitus-related neural activity was reduced after the training. Nevertheless, notch width did not have an influence on the behavioral or neural effects of TMNMT. This could be due to a non-linear resolution of lateral inhibition in high frequencies. PMID:26406446

  11. Controlling the Vaterite CaCO3 Crystal Pores. Design of Tailor-Made Polymer Based Microcapsules by Hard Templating.

    PubMed

    Feoktistova, Natalia; Rose, Juergen; Prokopović, Vladimir Z; Vikulina, Anna S; Skirtach, Andre; Volodkin, Dmitry

    2016-05-01

    The spherical vaterite CaCO3 microcrystals are nowadays widely used as sacrificial templates for fabrication of various microcarriers made of biopolymers (e.g., proteins, nucleic acids, enzymes) due to porous structure and mild template elimination conditions. Here, we demonstrated for the first time that polymer microcarriers with tuned internal nanoarchitecture can be designed by employing the CaCO3 crystals of controlled porosity. The layer-by-layer deposition has been utilized to assemble shell-like (hollow) and matrix-like (filled) polymer capsules due to restricted and free polymer diffusion through the crystal pores, respectively. The crystal pore size in the range of few tens of nanometers can be adjusted without any additives by variation of the crystal preparation temperature in the range 7-45 °C. The temperature-mediated growth mechanism is explained by the Ostwald ripening of nanocrystallites forming the crystal secondary structure. Various techniques including SEM, AFM, CLSM, Raman microscopy, nitrogen adsorption-desorption, and XRD have been employed for crystal and microcapsule analysis. A three-dimensional model is introduced to describe the crystal internal structure and predict the pore cutoff and available surface for the pore diffusing molecules. Inherent biocompatibility of CaCO3 and a possibility to scale the porosity in the size range of typical biomacromolecules make the CaCO3 crystals extremely attractive tools for template assisted designing tailor-made biopolymer-based architectures in 2D to 3D targeted at drug delivery and other bioapplications. PMID:27052835

  12. Tailor-made tricalcium phosphate bone implant directly fabricated by a three-dimensional ink-jet printer.

    PubMed

    Igawa, Kazuyo; Mochizuki, Manabu; Sugimori, Osamu; Shimizu, Koutaro; Yamazawa, Kenji; Kawaguchi, Hiroshi; Nakamura, Kozo; Takato, Tsuyoshi; Nishimura, Ryouhei; Suzuki, Shigeki; Anzai, Masahiro; Chung, Ung-il; Sasaki, Nobuo

    2006-01-01

    Rapid prototyping (RP) is a molding technique that builds a three-dimensional (3D) model from computer-aided design (CAD) data. We fabricated new tailor-made bone implants (TIs) from alpha-tricalcium phosphate powder using an RP ink-jet printer based on computed tomography (CT) data, and evaluated their safety and efficacy. CT data of the skulls of seven beagle dogs were obtained and converted to CAD data, and bone defects were virtually made in the skull bilaterally. TIs were designed to fit the defects and were fabricated using the 3D ink-jet printer with six horizontal cylindrical holes running through the implants, designed for possible facilitation of vascular invasion and bone regeneration. As a control, hydroxyapatite implants (HIs) were cut manually from porous hydroxyapatite blocks. Then, craniectomy was performed to create real skull defects, and TIs and HIs were implanted. After implantation, CT was performed regularly, and the animals were euthanized at 24 weeks. No major side effects were observed. CT analysis showed narrowing of the cylindrical holes; bony bridging between the implants and the temporal bone was observed only for TIs. Histological analysis revealed substantial new bone formation inside the cylindrical holes in the TIs, while mainly connective tissues invaded the porous structures in HIs. Bone marrow was observed only in TIs. Osteoclasts were seen to resorb regenerated bone from inside the cylindrical holes and to invade and probably resorb the TIs. These data suggest that TIs are a safe and effective bone substitute, possessing osteoconductivity comparable with that of HIs. PMID:17171402

  13. Characterization of CTX-M-14-producing Escherichia coli from food-producing animals

    PubMed Central

    Liao, Xiao-Ping; Xia, Jing; Yang, Lei; Li, Liang; Sun, Jian; Liu, Ya-Hong; Jiang, Hong-Xia

    2015-01-01

    Bacterial resistance to the third-generation cephalosporin antibiotics has become a major concern for public health. This study was aimed to determine the characteristics and distribution of blaCTX-M-14, which encodes an extended-spectrum β-lactamase, in Escherichia coli isolated from Guangdong Province, China. A total of 979 E. coli isolates isolated from healthy or diseased food-producing animals including swine and avian were examined for blaCTX-M-14 and then the blaCTX-M-14 -positive isolates were detected by other resistance determinants [extended-spectrum β-lactamase genes, plasmid-mediated quinolone resistance, rmtB, and floR] and analyzed by phylogenetic grouping analysis, PCR-based plasmid replicon typing, multilocus sequence typing, and plasmid analysis. The genetic environments of blaCTX-M-14 were also determined by PCR. The results showed that fourteen CTX-M-14-producing E. coli were identified, belonging to groups A (7/14), B1 (4/14), and D (3/14). The most predominant resistance gene was blaTEM (n = 8), followed by floR (n = 7), oqxA (n = 3), aac(6′)-1b-cr (n = 2), and rmtB (n = 1). Plasmids carrying blaCTX-M-14 were classified to IncK, IncHI2, IncHI1, IncN, IncFIB, IncF or IncI1, ranged from about 30 to 200 kb, and with insertion sequence of ISEcp1, IS26, or ORF513 located upstream and IS903 downstream of blaCTX-M-14. The result of multilocus sequence typing showed that 14 isolates had 11 STs, and the 11 STs belonged to five groups. Many of the identified sequence types are reported to be common in E. coli isolates associated with extraintestinal infections in humans, suggesting possible transmission of blaCTX-M-14 between animals and humans. The difference in the flanking sequences of blaCTX-M-14 between the 2009 isolates and the early ones suggests that the resistance gene context continues to evolve in E. coli of food producing animals. PMID:26528278

  14. An approach to the construction of tailor-made amphiphilic peptides that strongly and selectively bind to hairpin RNA targets.

    PubMed

    Lee, Su Jin; Hyun, Soonsil; Kieft, Jeffrey S; Yu, Jaehoon

    2009-02-18

    strategies that can be used to prepare peptides that both strongly and selectively target hairpin RNAs. Specifically, the findings indicate that tailor-made amphiphilic peptide ligands against certain hairpin RNAs can be obtained if the RNA target possesses a deep groove in which both the hydrophobic and hydrophilic spheres of the peptide interact. PMID:19199621

  15. Comparison of non-O157 Shiga toxin-producing E. coli detection systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Category: methodology improvements Objective: To identify strengths and weaknesses of commercial Shiga toxin-producing E. coli detection systems and kits in a side by side fashion. Experimental Design: Three commercial Shiga toxin-producing E. coli detection tests (BAX, GDS, and GeneDisc) and two t...

  16. Expansion of Shiga Toxin–Producing Escherichia coli by Use of Bovine Antibiotic Growth Promoters

    PubMed Central

    Kim, Jong-Chul; Chui, Linda; Wang, Yang; Shen, Jianzhong

    2016-01-01

    Antibiotics are routinely used in food-producing animals to promote growth and prevent infectious diseases. We investigated the effects of bovine antibiotic growth promoters (bAGPs) on the propagation and spread of Shiga toxin (Stx)–encoding phages in Escherichia coli. Co-culture of E. coli O157:H7 and other E. coli isolated from cattle in the presence of sublethal concentrations of bAGPs significantly increased the emergence of non-O157, Stx-producing E. coli by triggering the SOS response system in E. coli O157:H7. The most substantial mediation of Stx phage transmission was induced by oxytetracyline and chlortetracycline, which are commonly used in agriculture. bAGPs may therefore contribute to the expansion of pathogenic Stx-producing E. coli. PMID:27088186

  17. Expansion of Shiga Toxin-Producing Escherichia coli by Use of Bovine Antibiotic Growth Promoters.

    PubMed

    Kim, Jong-Chul; Chui, Linda; Wang, Yang; Shen, Jianzhong; Jeon, Byeonghwa

    2016-05-01

    Antibiotics are routinely used in food-producing animals to promote growth and prevent infectious diseases. We investigated the effects of bovine antibiotic growth promoters (bAGPs) on the propagation and spread of Shiga toxin (Stx)-encoding phages in Escherichia coli. Co-culture of E. coli O157:H7 and other E. coli isolated from cattle in the presence of sublethal concentrations of bAGPs significantly increased the emergence of non-O157, Stx-producing E. coli by triggering the SOS response system in E. coli O157:H7. The most substantial mediation of Stx phage transmission was induced by oxytetracyline and chlortetracycline, which are commonly used in agriculture. bAGPs may therefore contribute to the expansion of pathogenic Stx-producing E. coli. PMID:27088186

  18. Comparison of extended spectrum β-lactamases-producing Escherichia coli with non-ESBLs-producing E.coli: drug-resistance and virulence

    PubMed Central

    Li, Sha; Qu, Yan; Hu, Dan; Shi, Yong-xin

    2012-01-01

    BACKGROUND: The virulent factors of Escherichia coli (E.coli) play an important role in the process of pathopoiesis. The study aimed to compare drug-resistant genes and virulence genes between extended spectrum β-lactamases (ESBLs)-producing E.coli and non-ESBLs-producing E.coli to provide a reference for physicians in management of hospital infection. METHODS: From October 2010 to August 2011, 96 drug-resistant strains of E.coli isolated were collected from the specimens in Qingdao Municipal Hospital, Qingdao, China. These bacteria strains were divided into a ESBLs-producing group and a non-ESBLs-producing group. Drug sensitivity tests were performed using the Kirby-Bauer (K-B) method. Disinfectant gene, qacEΔ1-sull and 8 virulence genes (CNF2, hlyA, eaeA, VT1, est, bfpA, elt, and CNF1) were tested by polymerase chain reaction (PCR). RESULTS: Among the 96 E.coli isolates, the ESBLs-producing E.coli comprised 46 (47.9%) strains and the non-ESBLs-producing E.coli consisted of 50 (52.1%) strains. The detection rates of multiple drug-resistant strain, qacEΔ1-sull, CNF2, hlyA, eaeA,VT1, est, bfpA, elt, and CNF1 in 46 ESBLs-producing E.coli isolates were 89.1%, 76.1%, 6.5%, 69.6%, 69.6%, 89.1%, 10.9%, 26.1%, 8.7%, and 19.6%, respectively. In the non-ESBLs-producing E.coli strains, the positive rates of multiple drug-resistant strain, qacEΔ1-sull, CNF2, hlyA, eaeA, VT1, est, bfpA, elt, and CNF1 were 62.0%, 80.0%, 16.0%, 28.0%, 64.0%, 38.0%, 6.0%, 34.0%, 10.0%, and 24.0%, respectively. The difference in the detection rates of multiple drug-resistant strain, hlyA and VT1 between the ESBLs-producing E.coli strains and the non-ESBLs-producing E.coli strains was statistically significant (P<0.05). CONCLUSION: The positive rate of multiple drug-resistant strains is higher in the ESBLs-producing strains than in the non-ESBLs-producing strains. The expression of some virulence genes hlyA and VT1 varies between the ESBLs-producing strains and the non-ESBLs-producing strains

  19. Successful treatment of ctx-m ESBL producing Escherichia coli relapsing pyelonephritis with long term pivmecillinam.

    PubMed

    Nicolle, Lindsay E; Mulvey, Michael R

    2007-01-01

    Oral therapy options for pyelonephritis caused by ESBL producing E. coli are limited. We describe a woman with relapsing pyelonephritis due to a CTX-M ESBL E. coli who was cured with a prolonged course of pivmecillinam. This suggests pivmecillinam may be effective treatment for selected patients with pyelonephritis with these organisms. PMID:17654359

  20. 77 FR 31975 - Shiga Toxin-Producing Escherichia coli in Certain Raw Beef Products

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-31

    ...The Food Safety and Inspection Service (FSIS) is confirming that it will implement routine verification testing for six Shiga toxin-producing Escherichia coli (STEC), in addition to E. coli O157:H7, in raw beef manufacturing trimmings beginning June 4, 2012. FSIS is also responding to comments on the final determination published September 20, 2011, in the Federal Register regarding the June......

  1. Complete genome sequence and comparison of two Shiga toxin-producing Escherichia coli O104 isolates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shiga toxin-producing Escherichia coli (STEC) O104 strains have been associated with sporadic cases of illness and have caused outbreaks associated with milk and sprouts. E. coli O104:H21 caused an outbreak associated with milk in the U.S. in 1994. In this study, next generation sequencing techno...

  2. Surveillance for Shiga Toxin–producing Escherichia coli, Michigan, 2001–2005

    PubMed Central

    Manning, Shannon D.; Madera, Robbie T.; Schneider, William; Dietrich, Stephen E.; Khalife, Walid; Brown, William; Whittam, Thomas S.; Somsel, Patricia

    2007-01-01

    A surveillance system used different detection methods to estimate prevalence of Shiga toxin–producing Escherichia coli during 2003–2005 and 2001–2002. More non-O157 serotypes were detected by enzyme immunoassay than by evaluation of non-sorbitol–fermenting E. coli isolates. We therefore recommend use of enzyme immunoassay and culture-based methods. PMID:17479902

  3. Translocation and thermal inactivation of Shiga-toxin producing Escherichia coli in non-intact beef

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We compared translocation of genetically-marked strains of serotype O157:H7 Escherichia coli (ECOH) to non-O157:H7 Shiga-Toxin producing Escherichia coli (STEC) following blade tenderization of beef subprimals and the subsequent lethality of these pathogens following cooking of steaks prepared from ...

  4. Detection methods and intervention strategies for shiga toxin-producing E. coli in beef

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shiga toxin-producing E. coli (STEC) are commonly associated with ruminants and are found throughout processing steps during harvest. Until recently, the beef industry had focused its efforts on E. coli O157:H7. The announcement that in addition to O157:H7, FSIS intended to start regulating six mo...

  5. Detection and isolation of shiga toxin-producing Escherichia coli (STEC) O104 from sprouts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    E. coli O157:H7 and non-O157 Shiga toxin-producing E. coli (STEC) are food-borne pathogens responsible for severe outbreaks of hemorrhagic colitis, which can lead to hemolytic uremic syndrome and/or death. STEC strains belonging to serogroup O104 have been associated with sporadic cases of illness a...

  6. Pathogenic Escherichia coli producing Extended-Spectrum β-Lactamases isolated from surface water and wastewater

    PubMed Central

    Franz, Eelco; Veenman, Christiaan; van Hoek, Angela H. A. M.; Husman, Ana de Roda; Blaak, Hetty

    2015-01-01

    To assess public health risks from environmental exposure to Extended-Spectrum β-Lactamases (ESBL)-producing bacteria, it is necessary to have insight in the proportion of relative harmless commensal variants and potentially pathogenic ones (which may directly cause disease). In the current study, 170 ESBL-producing E. coli from Dutch wastewater (n = 82) and surface water (n = 88) were characterized with respect to ESBL-genotype, phylogenetic group, resistance phenotype and virulence markers associated with enteroaggregative E. coli (EAEC), enteroinvasive E. coli (EIEC), enteropathogenic E. coli (EPEC), enterotoxigenic E. coli (ETEC), extraintesinal E. coli (ExPEC), and Shiga toxin-producing E. coli (STEC). Overall, 17.1% of all ESBL-producing E. coli were suspected pathogenic variants. Suspected ExPECs constituted 8.8% of all ESBL-producing variants and 8.3% were potential gastrointestinal pathogens (4.1% EAEC, 1.8% EPEC, 1.2% EIEC, 1.2% ETEC, no STEC). Suspected pathogens were significantly associated with ESBL-genotype CTX-M-15 (X2 = 14.7, P < 0.001) and phylogenetic group B2 (X2 = 23.5, P < 0.001). Finally, 84% of the pathogenic ESBL-producing E. coli isolates were resistant to three or more different classes of antibiotics. In conclusion, this study demonstrates that the aquatic environment is a potential reservoir of E. coli variants that combine ESBL-genes, a high level of multi-drug resistance and virulence factors, and therewith pose a health risk to humans upon exposure. PMID:26399418

  7. Pathogenic Escherichia coli producing Extended-Spectrum β-Lactamases isolated from surface water and wastewater.

    PubMed

    Franz, Eelco; Veenman, Christiaan; van Hoek, Angela H A M; de Roda Husman, Ana; Blaak, Hetty

    2015-01-01

    To assess public health risks from environmental exposure to Extended-Spectrum β-Lactamases (ESBL)-producing bacteria, it is necessary to have insight in the proportion of relative harmless commensal variants and potentially pathogenic ones (which may directly cause disease). In the current study, 170 ESBL-producing E. coli from Dutch wastewater (n = 82) and surface water (n = 88) were characterized with respect to ESBL-genotype, phylogenetic group, resistance phenotype and virulence markers associated with enteroaggregative E. coli (EAEC), enteroinvasive E. coli (EIEC), enteropathogenic E. coli (EPEC), enterotoxigenic E. coli (ETEC), extraintesinal E. coli (ExPEC), and Shiga toxin-producing E. coli (STEC). Overall, 17.1% of all ESBL-producing E. coli were suspected pathogenic variants. Suspected ExPECs constituted 8.8% of all ESBL-producing variants and 8.3% were potential gastrointestinal pathogens (4.1% EAEC, 1.8% EPEC, 1.2% EIEC, 1.2% ETEC, no STEC). Suspected pathogens were significantly associated with ESBL-genotype CTX-M-15 (X(2) = 14.7, P < 0.001) and phylogenetic group B2 (X(2) = 23.5, P < 0.001). Finally, 84% of the pathogenic ESBL-producing E. coli isolates were resistant to three or more different classes of antibiotics. In conclusion, this study demonstrates that the aquatic environment is a potential reservoir of E. coli variants that combine ESBL-genes, a high level of multi-drug resistance and virulence factors, and therewith pose a health risk to humans upon exposure. PMID:26399418

  8. Properties of a Clostridium thermocellum Endoglucanase Produced in Escherichia coli.

    PubMed

    Schwarz, W H; Gräbnitz, F; Staudenbauer, W L

    1986-06-01

    A cellulase gene of Clostridium thermocellum was transferred to Escherichia coli by molecular cloning with bacteriophage lambda and plasmid vectors and shown to be indentical with the celA gene. The celA gene product was purified from extracts of plasmid-bearing E. coli cells by heat treatment and chromatography on DEAE-Trisacryl. It was characterized as a thermophilic endo-beta-1,4-glucanase, the properties of which closely resemble those of endoglucanase A previously isolated from C. thermocellum supernatants. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis the enzyme purified from E. coli exhibited two protein bands with molecular weights of 49,000 and 52,000. It had a temperature optimum at 75 degrees C and was stable for several hours at 60 degrees C. Endoglucanase activity was optimal between pH 5.5 and 6.5. The enzyme was insensitive against end product inhibition by glucose and cellobiose and remarkably resistant to the denaturing effects of detergents and organic solvents. It was capable of degrading, in addition to cellulosic substrates, glucans with alternating beta-1,4 and beta-1,3 linkages such as barley beta-glucan and lichenan. PMID:16347088

  9. Modulation of host cell signalling by enteropathogenic and Shiga toxin-producing Escherichia coli.

    PubMed

    Kresse, A U; Guzmán, C A; Ebel, F

    2001-09-01

    The majority of Escherichia coli strains are harmless symbionts in the intestinal tract. However, there are several pathogenic forms, which are responsible for various diseases in humans and live stock. In this review we discuss the interactions between Shiga toxin-producing E. coli and enteropathogenic E. coli and their target host cells, describing their strategies to activate specific cellular signalling pathways which lead to subversion of critical physiological functions. We mainly concentrate on those pathogenic mechanisms that are dependent on a functional type III secretion system, but we also briefly discuss additional factors that contribute to the specific pathogenic profiles of Shiga toxin-producing E. coli and enreropathogenic E. coli. PMID:11680788

  10. Prevalence and diversity of enterotoxigenic Escherichia coli strains in fresh produce.

    PubMed

    Feng, Peter C H; Reddy, Shanker P

    2014-05-01

    Analysis of fresh produce showed that enterotoxigenic Escherichia coli (ETEC) strains are most often found in cilantro and parsley, with prevalence rates of approximately 0.3%. Some ETEC strains also carried Shiga toxigenic E. coli (STEC) genes but had no STEC adherence factors, which are essential to cause severe human illness. Most ETEC strains in produce carried stable toxin and/or labile toxin genes but belonged to unremarkable serotypes that have not been reported to have caused human illnesses. PMID:24780338

  11. Multidrug resistant AmpC β-lactamase producing Escherichia coli isolated from a paediatric hospital

    PubMed Central

    Jameel, Noor-ul-Ain; Ejaz, Hasan; Zafar, Aizza; Amin, Hafsa

    2014-01-01

    Objective : The objective of the study was to observe the antimicrobial resistance of AmpC β-lactamase producing E. coli. Methods: Six hundred and seventy E. coli were isolated from 20,257 various pathological samples collected from The Children’s Hospital and Institute of Child Health, Lahore, Pakistan. The isolates showed resistance to ceftazidime which were further examined for AmpC β-lactamase activity by Disc Potentiation method. Results: There were 670 isolates of E. coli out of which 85 (12.6%) were AmpC β-lactamase producers. Risk factors like intravenous line (76.5%), endotracheal tube (22.4%), surgery (12.9%) and urinary catheters (7.1%) were found to be associated with infection caused by AmpC β-lactamase producing E. coli. Antimicrobial resistance pattern revealed that AmpC producing E. coli were highly resistant to co-amoxiclav, ceftazidime, cefotaxime, cefuroxime, cefixime, ceftriaxone and cefoxitin (100% each). Least resistance was observed against sulbactam-cefoperazone (14.1%), cefepime (7.1%), piperacillin-tazobactam (5.9%) and none of the isolates were resistant to imipenem and meropenem. Conclusion: The minimum use of invasive devices and strict antibiotic policies can reduce the spread of AmpC β-lactamase producing E. coli. PMID:24639857

  12. Antibacterial Activity of Some Plant Extracts Against Extended- Spectrum Beta-Lactamase Producing Escherichia coli Isolates

    PubMed Central

    Saeidi, Saeide; Amini Boroujeni, Negar; Ahmadi, Hassan; Hassanshahian, Mehdi

    2015-01-01

    Background: The extended-spectrum beta-lactamase (ESBL) -producing Escherichia coli isolates make many serious infections, especially urinary tract infections. Objectives: The purpose of this study was to determine the antibacterial activities of some natural plant extracts against ESBL-producing E. coli isolates, which harbor the TEM gene in urine samples of the patients who have urinary tract infections. Materials and Methods: Evaluation has to be exactly determined for both methods of disk diffusion test and polymerase chain reaction (PCR), separately. We evaluated 120 strains of E. coli isolates from the urine culture of the patients in Boo-Ali Hospital (Zahedan, south-eastern Iran) who were suffering from urinary tract infections. The ESBL-producing E. coli isolates were evaluated by disk diffusion test and PCR through TEM gene detection. The minimal inhibitory concentration (MIC) of commonly used antibiotics including ceftazidime, ceftriaxon, amikacin, gentamicin and ciprofloxacin along with the MIC of the alcoholic extract of different natural plants including Myrtus communis L (Myrtaceae), Amaranthus retraflexus (Amaranthaceae), Cyminum cuminum L (Apiaceae), Marrubium vulgare (Laminaceae) and Peganum. harmala (Zygrophyllaceae) against the ESBL-producing E. coli isolates, which harbor the TEM genes, were determined using the microdulition method. Results: Results of this study showed that in disk diffusion method, 80 samples of E. coli produced ESBLs. In PCR method, the TEM gene distribution in the isolated ESBL-producing organisms was 50 (41.6%). Amikacin was the most effective anti-bacterial agent and ciprofloxacin was the least effective against E. coli isolates. All the natural plant extracts mentioned above, especially P. harmala, were effective against the selected isolates of ESBL-producing E. coli. The most frequent ESBL rate producing E. coli isolates (32 out of 50) had MIC of 2.5 mg/mL in ethanol extract of P. harmala. Conclusions: The alcoholic

  13. Molecular epidemiology of Escherichia coli producing extended-spectrum beta-lactamases isolated in Rome, Italy.

    PubMed

    Carattoli, Alessandra; García-Fernández, Aurora; Varesi, Paola; Fortini, Daniela; Gerardi, Serena; Penni, Adriano; Mancini, Carlo; Giordano, Alessandra

    2008-01-01

    Escherichia coli strains producing extended-spectrum beta-lactamases (ESBLs) are a major problem in many different hospitals worldwide, causing outbreaks as well as sporadic infections. The prevalence of Escherichia coli ESBL producers was analyzed in a surveillance study performed on the population attending the Policlinico Umberto I, the largest university hospital in Rome, Italy. We also investigated genotypes, pathogenicity islands, and plasmids in the ESBL-positive E. coli isolates as further markers that are useful in describing the epidemiology of the infections. In this survey, 163 nonreplicate isolates of Escherichia coli were isolated from patients from 86 different wards, and 28 were confirmed as ESBL producers. A high prevalence (26/28) of CTX-M-15 producers was observed within the bacterial population circulating in this hospital, and the dissemination of this genetic trait was associated with the spread of related strains; however, these do not have the characteristics of a single epidemic clone spreading. The dissemination was also linked to horizontal transfer among the prevalent E. coli genotypes of multireplicon plasmids showing FIA, FIB, and FII replicons in various combinations, which are well adapted to the E. coli species. The analysis of related bacteria suggests a probable interpatient transmission occurring in several wards, causing small outbreaks. PMID:17959756

  14. Coenzyme B12 can be produced by engineered Escherichia coli under both anaerobic and aerobic conditions.

    PubMed

    Ko, Yeounjoo; Ashok, Somasundar; Ainala, Satish Kumar; Sankaranarayanan, Mugesh; Chun, Ah Yeong; Jung, Gyoo Yeol; Park, Sunghoon

    2014-12-01

    Coenzyme B12 (Vitamin B12 ) is one of the most complex biomolecules and an essential cofactor required for the catalytic activity of many enzymes. Pseudomonas denitrificans synthesizes coenzyme B12 in an oxygen-dependent manner using a pathway encoded by more than 25 genes that are located in six different operons. Escherichia coli, a robust and suitable host for metabolic engineering was used to produce coenzyme B12 . These genes were cloned into three compatible plasmids and expressed heterologously in E. coli BL21 (DE3). Real-time PCR, SDS-PAGE analysis and bioassay showed that the recombinant E. coli expressed the coenzyme B12 synthetic genes and successfully produced coenzyme B12 . However, according to the quantitative determination by inductively coupled plasma-mass spectrometry, the amount of coenzyme B12 produced by the recombinant E. coli (0.21 ± 0.02 μg/g cdw) was approximately 13-fold lower than that by P. denitrificans (2.75 ± 0.22 μg/g cdw). Optimization of the culture conditions to improve the production of coenzyme B12 by the recombinant E. coli was successful, and the highest titer (0.65 ± 0.03 μg/g cdw) of coenzyme B12 was obtained. Interestingly, although the synthesis of coenzyme B12 in P. denitrificans is strictly oxygen-dependent, the recombinant E. coli could produce coenzyme B12 under anaerobic conditions. PMID:25146562

  15. Prevalence and characterization of verotocytoxin producing Escherichia coli O157 from diarrhoea patients in Morogoro, Tanzania.

    PubMed

    Rajii, M A; Minga, U M; Machang'u, R S

    2008-07-01

    Escherichia coli O157:H7 is an important agent of haemorrhagic colitis and haemolytic uraemic syndrome in children less than five years old and elderly people. The objective of this study was to investigate the prevalence of verotocytoxin producing E. coli 0157 (VTEC O157) among human patients with diarrhoea in Morogoro, Tanzania. Faecal samples originating from 275 human patients with diarrhoea were screened for presence of E. coli O157:H7. A total of 96 E. coli isolate were identified. Of these, 10 isolates were grouped into sorbitol non-fermenting and glucuronide negative and 49 isolates were sorbitol positive and glucuronide positive. The remaining 37 were sorbitol negative and glucuronide positive. Using the polymerase chain reaction techniques, a total often verotocytocin producing E. coli isolated in this study were used. The overall two (15%) and one (7%) of the isolated of E. coli possessed both attaching and effacing (eae A) and enterohemolysin (ehly) A genes respectively. Other enterobacterial agents including Pseudomonas spp, Proteus spp and coliforms were also isolated. The VTEC O157 isolates were 100% resistant to oxytetracycline, chloramphenicol, streptomycin, and amoxyclav. In conclusion, the isolation of diarrhoeaogenic E. coli O157:H7 in this region suggests that the pathogen is an important aetiology of acute gastroenteritis in Tanzania. There is therefore, need to improve sewage and refuse disposal system, the provision of safe potable water, sanitation, personal hygiene and health education in order to reduce infection with this and other enteric pathogens. PMID:19024340

  16. Characterization of non-Shiga-toxin-producing Escherichia coli O157 strains isolated from dogs.

    PubMed

    Bentancor, A; Vilte, D A; Rumi, M V; Carbonari, C C; Chinen, I; Larzábal, M; Cataldi, A; Mercado, E C

    2010-01-01

    Shiga toxin-negative Escherichia coli O157 strains of various H types have been associated with diarrhea in children and are considered potentially pathogenic for humans. In this study, we describe non-Shiga toxin-producing E. coli O157 E. coli strains previously obtained from dogs in Argentina. Different E. coli phylogenetic lineages corresponding to flagellar types H16, H29 and H45 were identified. E. coli serotypes O157:H16 and O157:H45 contained intimin subtypes epsilon and alpha 1, respectively. Serotype O157:H45 carried the bfp gene encoding the bundle-forming pilus. Localized adherence-like patterns to HEp-2 cells were observed in O157:H16 strains, while O157:H45 adhered in a typical localized pattern. A total of eight different XbaI-pulse field electrophoresis patterns with more than 74 % similarity were identified among the nine E. coli O157:H16 strains. Our data emphasized the fact that dogs may harbor human pathogenic E. coli O157 which do not correspond to Shiga toxin-producing strains and whose potential human health hazard should not be underestimated. PMID:20461294

  17. Use of Photopolymerization for Genotyping Shiga Toxin-Producing Escherichia coli Recovered from Produce Production Regions in California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shiga toxin-producing Escherichia coli (STEC) is a leading cause of foodborne illness worldwide. To evaluate better methods to rapidly detect and genotype STEC strains, the present study employed the use of ampliPHOX, a novel colorimetric detection method based on photopolymerization, for pathogen ...

  18. Clinical spectrum of Shiga toxin-producing Escherichia coli (STEC) in adults and children.

    PubMed

    Appleman, Stephanie Simon; Ascher, David; Park, Choong

    2009-01-01

    This report describes the clinical spectrum of disease among a series of pediatric and adult patients with symptoms of gastroenteritis that subsequently tested positive for Shiga toxin-producing Escherichia coli in their stool. All diarrheal stools (n = 1712) between July 2005 and November 2006 were tested with Premier EHEC (Meridian Bioscience, Cincinnati, OH). A total of 1.6% patients (27/1712) tested positive and 41% of patients had non-0157 E. coli, which can cause moderate disease requiring hospitalization. Cases of non-0157 E. coli would have been missed without testing for Shiga toxin. All bloody stools, and perhaps all stools, should be tested for Shiga toxin. PMID:18648077

  19. Prevalence and behavior of multidrug-resistant shiga toxin-producing Escherichia coli, enteropathogenic E. coli and enterotoxigenic E. coli on coriander.

    PubMed

    Gómez-Aldapa, Carlos A; Segovia-Cruz, Jesús A; Cerna-Cortes, Jorge F; Rangel-Vargas, Esmeralda; Salas-Rangel, Laura P; Gutiérrez-Alcántara, Eduardo J; Castro-Rosas, Javier

    2016-10-01

    The prevalence and behavior of multidrug-resistant diarrheagenic Escherichia coli pathotypes on coriander was determined. One hundred coriander samples were collected from markets. Generic E. coli were determined using the most probable number procedure. Diarrheagenic E. coli pathotypes (DEPs) were identified using two multiplex polymerase chain reaction procedures. Susceptibility to sixteen antibiotics was tested for the isolated DEPs strains by standard test. The behavior of multidrug-resistant DEPs isolated from coriander was determined on coriander leaves and chopped coriander at 25°± 2 °C and 3°± 2 °C. Generic E. coli and DEPs were identified, respectively, in 43 and 7% of samples. Nine DEPs strains were isolated from positive coriander samples. The identified DEPs included Shiga toxin-producing E. coli (STEC, 4%) enterotoxigenic E. coli (ETEC, 2%) and enteropathogenic E. coli (EPEC, 1%). All isolated DEPs strains exhibited multi-resistance to antibiotics. On inoculated coriander leaves stored at 25°± 2 °C or 3°± 2 °C, no growth was observed for multidrug-resistant DEPs strains. However, multidrug-resistant DEPs strains grew in chopped coriander: after 24 h at 25° ± 2 °C, DEPs strains had grown to approximately 3 log CFU/g. However, at 3°± 2 °C the bacterial growth was inhibited. To the best of our knowledge, this is the first report of the presence and behavior of multidrug-resistant STEC, ETEC and EPEC on coriander and chopped coriander. PMID:27375249

  20. A graphene oxide-peptide fluorescence sensor tailor-made for simple and sensitive detection of matrix metalloproteinase 2.

    PubMed

    Feng, Duan; Zhang, Yangyang; Feng, Tingting; Shi, Wen; Li, Xiaohua; Ma, Huimin

    2011-10-14

    A graphene oxide-peptide based fluorescence sensor has been developed for matrix metalloproteinase 2 (MMP2), and its applicability has been demonstrated by monitoring the concentration of MMP2 secreted by HeLa cells, revealing that HeLa cells with a density of 5.48 × 10(5) cells per mL can produce 22 nM in cell culture media in 24 h. PMID:21892449

  1. Tailor-Made Zinc-Finger Transcription Factors Activate FLO11 Gene Expression with Phenotypic Consequences in the Yeast Saccharomyces cerevisiae

    PubMed Central

    Shieh, Jia-Ching; Cheng, Yu-Che; Su, Mao-Chang; Moore, Michael; Choo, Yen; Klug, Aaron

    2007-01-01

    Cys2His2 zinc fingers are eukaryotic DNA-binding motifs, capable of distinguishing different DNA sequences, and are suitable for engineering artificial transcription factors. In this work, we used the budding yeast Saccharomyces cerevisiae to study the ability of tailor-made zinc finger proteins to activate the expression of the FLO11 gene, with phenotypic consequences. Two three-finger peptides were identified, recognizing sites from the 5′ UTR of the FLO11 gene with nanomolar DNA-binding affinity. The three-finger domains and their combined six-finger motif, recognizing an 18-bp site, were fused to the activation domain of VP16 or VP64. These transcription factor constructs retained their DNA-binding ability, with the six-finger ones being the highest in affinity. However, when expressed in haploid yeast cells, only one three-finger recombinant transcription factor was able to activate the expression of FLO11 efficiently. Unlike in the wild-type, cells with such transcriptional activation displayed invasive growth and biofilm formation, without any requirement for glucose depletion. The VP16 and VP64 domains appeared to act equally well in the activation of FLO11 expression, with comparable effects in phenotypic alteration. We conclude that the functional activity of tailor-made transcription factors in cells is not easily predicted by the in vitro DNA-binding activity. PMID:17710146

  2. Assessment of tailor-made prevention of atherosclerosis with folic acid supplementation: randomized, double-blind, placebo-controlled trials in each MTHFR C677T genotype.

    PubMed

    Miyaki, Koichi; Murata, Mitsuru; Kikuchi, Haruhito; Takei, Izumi; Nakayama, Takeo; Watanabe, Kiyoaki; Omae, Kazuyuki

    2005-01-01

    This study aimed at assessing the effect of folic acid supplementation quantitatively in each MTHFR C677T genotype and considered the efficiency of tailor-made prevention of atherosclerosis. Study design was genotype-stratified, randomized, double-blind, placebo-controlled trials. The setting was a Japanese company in the chemical industry. Subjects were 203 healthy men after exclusion of those who took folic acid or drugs known to effect folic acid metabolism. Intervention was folic acid 1 mg/day p.o. for 3 months. The primary endpoint was plasma total homocysteine level (tHcy). In all three genotypes, there were significant tHcy decreases. The greatest decrease was in the TT homozygote [6.61 (3.47-9.76) micromol/l] compared with other genotypes [CC: 2.59 (1.81-3.36), CT: 2.64 (2.16-3.13)], and there was a significant trend between the mutated allele number and the decrease. The tHcy were significantly lowered in all the genotypes, but the amount of the decrease differed significantly in each genotype, which was observed at both 1 and 3 months. Using these time-series data, the largest benefit obtained by the TT homozygote was appraised as 2.4 times compared with the CC homozygote. Taking into account the high allele frequency of this SNP, this quantitative assessment should be useful when considering tailor-made prevention of atherosclerosis with folic acid. PMID:15895286

  3. Tailor-made heart simulation predicts the effect of cardiac resynchronization therapy in a canine model of heart failure.

    PubMed

    Panthee, Nirmal; Okada, Jun-ichi; Washio, Takumi; Mochizuki, Youhei; Suzuki, Ryohei; Koyama, Hidekazu; Ono, Minoru; Hisada, Toshiaki; Sugiura, Seiryo

    2016-07-01

    Despite extensive studies on clinical indices for the selection of patient candidates for cardiac resynchronization therapy (CRT), approximately 30% of selected patients do not respond to this therapy. Herein, we examined whether CRT simulations based on individualized realistic three-dimensional heart models can predict the therapeutic effect of CRT in a canine model of heart failure with left bundle branch block. In four canine models of failing heart with dyssynchrony, individualized three-dimensional heart models reproducing the electromechanical activity of each animal were created based on the computer tomographic images. CRT simulations were performed for 25 patterns of three ventricular pacing lead positions. Lead positions producing the best and the worst therapeutic effects were selected in each model. The validity of predictions was tested in acute experiments in which hearts were paced from the sites identified by simulations. We found significant correlations between the experimentally observed improvement in ejection fraction (EF) and the predicted improvements in ejection fraction (P<0.01) or the maximum value of the derivative of left ventricular pressure (P<0.01). The optimal lead positions produced better outcomes compared with the worst positioning in all dogs studied, although there were significant variations in responses. Variations in ventricular wall thickness among the dogs may have contributed to these responses. Thus CRT simulations using the individualized three-dimensional heart models can predict acute hemodynamic improvement, and help determine the optimal positions of the pacing lead. PMID:26973218

  4. Emergence of uropathogenic extended-spectrum beta lactamases-producing Escherichia coli strains in the community.

    PubMed

    Marijan, Tatjana; Vranes, Jasmina; Bedenić, Branka; Mlinarić-Dzepina, Ana; Plecko, Vanda; Kalenić, Smilja

    2007-03-01

    The aim of this study was to determine the virulence characteristics and resistance pattern of the extended-spectrum/lactamases (ESBLs)-producing Escherichia coli strains isolated from urine of outpatients in the Zagreb region during a five-month period, and to compare them with the non ESBLs-producing E. coli strains isolated in the same period. Out of 2451 E. coli strains isolated from urine of nonhospitalized patients with significant bacteriuria, a total of 39 ESBLs-producing strains (1.59%) were detected by a double-disk diffusion technique and by the broth-dilution minimal inhibitory concentration reduction method. The 45 non ESBLs-producing strains were randomly chosen, and phenotype of the two groups of strains was characterized and compared. Serogroup O4, hemolysin production, expression of P- and type 1 fimbriae as well as resistance to gentamicin and amikacin were significantly more prevalent characteristics among the ESBLs-producing strains than among non ESBLs-producing strains (p < 0.01), while higher prevalence of trimethoprim-sulfamethoxazole resistance among ESBLs-producing strains was not statistically significant (p > 0.05). Chromosomal DNA analysis by pulsed-field gel electrophoresis exhibited a great genomic similarity among ESBLs-producing strains and revealed that those highly virulent and resistant E. coli strains isolated from urine of outpatients in the Zagreb region had a clonal propagation. PMID:17598406

  5. Does complement kill E. coli by producing transmural pores?

    PubMed Central

    Born, J; Bhakdi, S

    1986-01-01

    Three lines of evidence are presented to indicate that C5b-9 kills serum-sensitive E. coli K 12 cells by generating functional pores across the outer and inner bacterial membrane. First, viable cells carrying C5b-8 complexes are impermeable to o-nitrophenyl-beta-D-galactoside (ONPG), but lose viability and become permeable to this marker upon post-treatment with purified C9 in the absence of lysozyme. Cells killed with colicin E1 or gentamicin are also impermeable to ONPG but take up the marker if they are post-treated with lysozyme-free serum. Second, killing by C5b-9 is highly effective, deposition of only a small number of complexes being lethal. This has been demonstrated in experiments where viable cells carrying 2000-4000 C5b-7 complexes per CFU were permitted to multiply in broth culture, and the daughter generations subsequently treated with purified C8 and C9. Fifty percent killing was observed in the fifth to sixth generation, corresponding to a dilution of C5b-7 complexes to 50-100 molecules/CFU. In the presence of 2 mM EDTA, further dilution of C5b-7 down to 8-30 complexes/CFU still caused 50% killing of daughter cells. Third, treatment of C5b-7 cells with purified CC8 and C9 results in the release of intracellular K+, which commences immediately after addition of C8/C9. This was shown in experiments where C5b-7 cells were packed to high density in saline, post-treated with C8 + C9, and K+ directly measured in the cell supernatants. Based on these results, we propose that C5b-9 pores deposited in the outer bacterial membrane periodically fuse with the inner membrane, the transmural pores thus generated permitting rapid K+ efflux, with cell death ensuing through the collapse of membrane potential. PMID:3530981

  6. Thermal inactivation of Escherichia coli 0157:H7 (ECOH) and non-0157 Shiga toxin-producing E.coli (STEC)in mechanically tenderized veal

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We quantified thermal destruction of Shiga toxin-producing Escherichia coli O157:H7 (ECOH) and Shiga toxin-producing non-O157 E. coli (STEC) cells within mechanically tenderized veal cutlets following cooking on an electric skillet. For each of five trials, flattened veal cutlets (ca. 71.6 g; ca. 1/...

  7. Rapid, Multiplexed Characterization of Shiga Toxin-Producing Escherichia coli (STEC) Isolates Using Suspension Array Technology

    PubMed Central

    Carter, John M.; Lin, Andrew; Clotilde, Laurie; Lesho, Matthew

    2016-01-01

    Molecular methods have emerged as the most reliable techniques to detect and characterize pathogenic Escherichia coli. These molecular techniques include conventional single analyte and multiplex PCR, PCR followed by microarray detection, pulsed-field gel electrophoresis (PFGE), and whole genome sequencing. The choice of methods used depends upon the specific needs of the particular study. One versatile method involves detecting serogroup-specific markers by hybridization or binding to encoded microbeads in a suspension array. This molecular serotyping method has been developed and adopted for investigating E. coli outbreaks. The major advantages of this technique are the ability to simultaneously serotype E. coli and detect the presence of virulence and pathogenicity markers. Here, we describe the development of a family of multiplex molecular serotyping methods for Shiga toxin-producing E. coli, compare their performance to traditional serotyping methods, and discuss the cost-benefit balance of these methods in the context of various food safety objectives. PMID:27242670

  8. Rapid, Multiplexed Characterization of Shiga Toxin-Producing Escherichia coli (STEC) Isolates Using Suspension Array Technology.

    PubMed

    Carter, John M; Lin, Andrew; Clotilde, Laurie; Lesho, Matthew

    2016-01-01

    Molecular methods have emerged as the most reliable techniques to detect and characterize pathogenic Escherichia coli. These molecular techniques include conventional single analyte and multiplex PCR, PCR followed by microarray detection, pulsed-field gel electrophoresis (PFGE), and whole genome sequencing. The choice of methods used depends upon the specific needs of the particular study. One versatile method involves detecting serogroup-specific markers by hybridization or binding to encoded microbeads in a suspension array. This molecular serotyping method has been developed and adopted for investigating E. coli outbreaks. The major advantages of this technique are the ability to simultaneously serotype E. coli and detect the presence of virulence and pathogenicity markers. Here, we describe the development of a family of multiplex molecular serotyping methods for Shiga toxin-producing E. coli, compare their performance to traditional serotyping methods, and discuss the cost-benefit balance of these methods in the context of various food safety objectives. PMID:27242670

  9. Molecular epidemiology of VIM-1 producing Escherichia coli from Germany referred to the National Reference Laboratory.

    PubMed

    Kaase, Martin; Pfennigwerth, Niels; Lange, Felix; Anders, Agnes; Gatermann, Sören G

    2015-10-01

    The distribution of carbapenemase genes in Escherichia coli strains isolated between September 2009 and May 2013 in Germany was investigated. Out of 192 isolates with carbapenemase production OXA-48 was found in 44.8%, VIM-1 in 18.8%, NDM-1 in 11.5% and KPC-2 in 6.8%. Patients with VIM-1 producing E. coli (n=36) differed from patients with OXA-48 by an older age, less frequent mention of travel history and an increased proportion of clinical over screening specimens. These data might indicate that introduction from abroad is of minor importance for VIM-1 producing E. coli compared to other carbapenemases. Multilocus sequence typing revealed that E. coli with VIM-1 were mostly multiclonal, emphasizing the role of horizontal gene transfer in its spread. Susceptibility testing of VIM-1 producing E. coli demonstrated aztreonam susceptibility in 55.6%. Among non-β-lactams susceptibility rates of >90% were observed for amikacin, tigecycline, colistin, fosfomycin and nitrofurantoin. PMID:26321009

  10. Fecal Colonization with Extended-Spectrum Beta-Lactamase and AmpC-Producing Escherichia coli

    PubMed Central

    El Mahdy, Taghrid S.; Shibl, Atef M.

    2016-01-01

    Background. Extended-spectrum β-lactamases (ESβLs) and AmpC β-lactamases cause β-lactam resistance in Escherichia coli. Fecal colonization by ESβL- and/or AmpC-positive E. coli is a source of nosocomial infections. Methods. In order to investigate inpatient fecal colonization by ESβLs and AmpC, antibiotic sensitivity tests were conducted and minimum inhibitory concentrations (MICs) were determined using the disk diffusion method and E-test, respectively. Characterization of ESβL and AmpC was performed using E-test strips, and a set of PCRs and DNA sequence analyses were used to characterize the ESβL and AmpC genes. Results. The whole collection of E. coli isolates (n = 50) was sensitive to imipenem, tigecycline, colistin, and fosfomycin, while 26% of the isolates showed reduced susceptibility to ceftazidime (MIC ≥ 4 μg/mL). ESβL was phenotypically identified in 26% (13/50) of cases, while AmpC activity was detected in two ESβL-producing E. coli isolates. All ESβL-producing E. coli were positive for the CTX-M gene, eleven isolates carried blaCTX-M-15, and two isolates carried blaCTX-M-14 gene. Two CTX-M-positive E. coli isolates carried blaCMY-2. Conclusions. The alimentary tract is a significant reservoir for ESβL- and/or AmpC-producing E. coli, which may lead to nosocomial infection. PMID:27340657

  11. Fecal Colonization with Extended-Spectrum Beta-Lactamase and AmpC-Producing Escherichia coli.

    PubMed

    Al-Agamy, Mohamed H; El Mahdy, Taghrid S; Shibl, Atef M

    2016-01-01

    Background. Extended-spectrum β-lactamases (ESβLs) and AmpC β-lactamases cause β-lactam resistance in Escherichia coli. Fecal colonization by ESβL- and/or AmpC-positive E. coli is a source of nosocomial infections. Methods. In order to investigate inpatient fecal colonization by ESβLs and AmpC, antibiotic sensitivity tests were conducted and minimum inhibitory concentrations (MICs) were determined using the disk diffusion method and E-test, respectively. Characterization of ESβL and AmpC was performed using E-test strips, and a set of PCRs and DNA sequence analyses were used to characterize the ESβL and AmpC genes. Results. The whole collection of E. coli isolates (n = 50) was sensitive to imipenem, tigecycline, colistin, and fosfomycin, while 26% of the isolates showed reduced susceptibility to ceftazidime (MIC ≥ 4 μg/mL). ESβL was phenotypically identified in 26% (13/50) of cases, while AmpC activity was detected in two ESβL-producing E. coli isolates. All ESβL-producing E. coli were positive for the CTX-M gene, eleven isolates carried bla CTX-M-15, and two isolates carried bla CTX-M-14 gene. Two CTX-M-positive E. coli isolates carried bla CMY-2. Conclusions. The alimentary tract is a significant reservoir for ESβL- and/or AmpC-producing E. coli, which may lead to nosocomial infection. PMID:27340657

  12. Metabolic evolution of Escherichia coli strains that produce organic acids

    DOEpatents

    Grabar, Tammy; Gong, Wei; Yocum, R Rogers

    2014-10-28

    This invention relates to the metabolic evolution of a microbial organism previously optimized for producing an organic acid in commercially significant quantities under fermentative conditions using a hexose sugar as sole source of carbon in a minimal mineral medium. As a result of this metabolic evolution, the microbial organism acquires the ability to use pentose sugars derived from cellulosic materials for its growth while retaining the original growth kinetics, the rate of organic acid production and the ability to use hexose sugars as a source of carbon. This invention also discloses the genetic change in the microorganism that confers the ability to use both the hexose and pentose sugars simultaneously in the production of commercially significant quantities of organic acids.

  13. Quantitative PCR measurements of Escherichia coli including shiga toxin-producing E. coli (STEC) in animal feces and environmental waters.

    PubMed

    Ahmed, W; Gyawali, P; Toze, S

    2015-03-01

    Quantitative PCR (qPCR) assays were used to determine the concentrations of E. coli including shiga toxin-producing E. coli (STEC) associated virulence genes (eaeA, stx1, stx2, and hlyA) in ten animal species (fecal sources) and environmental water samples in Southeast Queensland, Australia. The mean Log10 concentrations and standard deviations of E. coli 23S rRNA across fecal sources ranged from 1.3 ± 0.1 (horse) to 6.3 ± 0.4 (cattle wastewater) gene copies at a test concentration of 10 ng of DNA. The differences in mean concentrations of E. coli 23S rRNA gene copies among fecal source samples were significantly different from each other (P < 0.0001). Among the virulence genes, stx2 (25%, 95% CI, 17-33%) was most prevalent among fecal sources, followed by eaeA (19%, 95% CI, 12-27%), stx1 (11%, 95% CI, 5%-17%) and hlyA (8%, 95% CI, 3-13%). The Log10 concentrations of STEC virulence genes in cattle wastewater samples ranged from 3.8 to 5.0 gene copies at a test concentration of 10 ng of DNA. Of the 18 environmental water samples tested, three (17%) were positive for eaeA and two (11%) samples were also positive for the stx2 virulence genes. The data presented in this study will aid in the estimation of quantitative microbial risk assessment (QMRA) from fecal pollution of domestic and wild animals in drinking/recreational water catchments. PMID:25648758

  14. Effect of the food matrix on pressure resistance of Shiga-toxin producing Escherichia coli.

    PubMed

    Li, Hui; Garcia-Hernandez, Rigoberto; Driedger, Darcy; McMullen, Lynn M; Gänzle, Michael

    2016-08-01

    The pressure resistance of Shiga-toxin producing Escherichia coli (STEC) depends on food matrix. This study compared the resistance of two five-strain E. coli cocktails, as well as the pressure resistant strain E. coli AW1.7, to hydrostatic pressure application in bruschetta, tzatziki, yoghurt and ground beef at 600 MPa, 20 °C for 3 min and during post-pressure survival at 4 °C. Pressure reduced STEC in plant and dairy products by more than 5 logs (cfu/ml) but not in ground beef. The pH affected the resistance of STEC to pressure as well as the post-pressure survival. E. coli with food constituents including calcium, magnesium, glutamate, caffeic acid and acetic acid were treated at 600 MPa, 20 °C. All compounds exhibited a protective effect on E. coli. The antimicrobial compounds ethanol and phenylethanol enhanced the inactivation by pressure. Calcium and magnesium also performed protective effects on E. coli during storage. Glutamate, glutamine or glutathione did not significantly influence the post-pressure survival over 12 days. Preliminary investigation on cell membrane was further performed through the use of fluorescence probe 1-N-phenylnaphthylamine. Pressure effectively permeabilised cell membrane, whereas calcium showed no effects on membrane permeabilisation. PMID:27052707

  15. A Tailor-Made City

    ERIC Educational Resources Information Center

    Kahama, Clement George

    1975-01-01

    Dodoma, future capital of Tanzania, is one of the first planned attempts at integrating man in his environment. The four principle elements of the Master Plan include: the residential communities, the national capital central spine, the system of open spaces and the transportation network. (BT)

  16. Teacher Training, Tailor-Made

    ERIC Educational Resources Information Center

    Newman, Katherine

    2009-01-01

    Family Partnerships for Achievement is not a course typical of most master's programs in education. The course was designed with one overriding goal: to prepare teachers to be effective in the Boston Public Schools (BPS). This goal drives every aspect of the Boston Teacher Residency (BTR), a district-based program for teacher training and…

  17. Development of a Multiplex PCR Assay for Detection of Shiga Toxin-Producing Escherichia coli, Enterohemorrhagic E. coli, and Enteropathogenic E. coli Strains

    PubMed Central

    Botkin, Douglas J.; Galli, Lucía; Sankarapani, Vinoth; Soler, Michael; Rivas, Marta; Torres, Alfredo G.

    2012-01-01

    Escherichia coli O157:H7 and other pathogenic E. coli strains are enteric pathogens associated with food safety threats and which remain a significant cause of morbidity and mortality worldwide. In the current study, we investigated whether enterohemorrhagic E. coli (EHEC), Shiga toxin-producing E. coli (STEC), and enteropathogenic E. coli (EPEC) strains can be rapidly and specifically differentiated with multiplex PCR (mPCR) utilizing selected biomarkers associated with each strain’s respective virulence genotype. Primers were designed to amplify multiple intimin (eae) and long polar fimbriae (lpfA) variants, the bundle-forming pilus gene bfpA, and the Shiga toxin-encoding genes stx1 and stx2. We demonstrated consistent amplification of genes specific to the prototype EHEC O157:H7 EDL933 (lpfA1-3, lpfA2-2, stx1, stx2, and eae-γ) and EPEC O127:H6 E2348/69 (eae-α, lpfA1-1, and bfpA) strains using the optimized mPCR protocol with purified genomic DNA (gDNA). A screen of gDNA from isolates in a diarrheagenic E. coli collection revealed that the mPCR assay was successful in predicting the correct pathotype of EPEC and EHEC clones grouped in the distinctive phylogenetic disease clusters EPEC1 and EHEC1, and was able to differentiate EHEC1 from EHEC2 clusters. The assay detection threshold was 2 × 104 CFU per PCR reaction for EHEC and EPEC. mPCR was also used to screen Argentinean clinical samples from hemolytic uremic syndrome and diarrheal patients, resulting in 91% sensitivity and 84% specificity when compared to established molecular diagnostic procedures. In conclusion, our mPCR methodology permitted differentiation of EPEC, STEC and EHEC strains from other pathogenic E. coli; therefore, the assay becomes an additional tool for rapid diagnosis of these organisms. PMID:22919600

  18. Virulence factors of verocytotoxin-producing Escherichia coli isolated from raw meats.

    PubMed Central

    Piérard, D; Van Damme, L; Moriau, L; Stevens, D; Lauwers, S

    1997-01-01

    PCR for verocytotoxin-producing Escherichia coli (VTEC) was positive in 4.6% of 2,440 raw meat samples; only beef, sheep, and venison samples were positive. None of the isolated VTEC strains belonged to serogroup O157. Additional virulence factors were detected in only a minority of strains, suggesting that most of these meat VTEC isolates are not pathogenic. PMID:9361444

  19. Development of an automated multiplexed immunomagnetic separation system for isolating Shiga toxin-producing Escherichia coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years, non-O157 Shiga toxin-producing Escherichia coli(STEC) have become an emerging problem. Efforts have been devoted to facilitating and speeding their detection, however, their isolation from high background microbiota foods remains problematic. To solve this problem, immunomagnetic se...

  20. Identification and evolution of Shiga Toxin-producing Escherichia coli O157 genetic subtypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    INTRODUCTION Cattle are a major reservoir for Shiga toxin-producing Escherichia coli O157 (STEC O157) and harbour multiple genetic subtypes that do not all associate with human disease. A lack of genome sequence has hindered investigations on the evolution of human- and/or cattle-associated subtype...

  1. Thermal inactivation of non-0157:H7 Shigatoxin producing Escherichia coli(STEC) on catfish fillets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Non-O157:H7 Shiga toxin-producing Escherichia coli (non-O157 STEC) strains have emerged as foodborne pathogens caused numerous foodborne illness outbreaks worldwide. Seafood (fish) consumption has significantly increased in recent years and it could be more common for STEC outbreaks due to non-O15...

  2. Evaluation of beef trim sampling methods for detection of Shiga toxin-producing Escherichia coli (STEC)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Presence of Shiga toxin-producing Escherichia coli (STEC) is a major concern in ground beef. Several methods for sampling beef trim prior to grinding are currently used in the beef industry. The purpose of this study was to determine the efficacy of the sampling methods for detecting STEC in beef ...

  3. Characterization of shiga toxin subtypes and virulence genes in Porcine shiga toxin-producing Escherichia coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Similar to ruminants, swine have been shown to be a reservoir for Shiga toxin-producing Escherichia coli (STEC), and pork products have been linked with outbreaks associated with STEC O157 and O111:H-. STEC strains, isolated in a previous study from fecal samples of late-finisher pigs, belonged to a...

  4. Shiga toxin-producing escherichia coli: detection, differentiation, and implications for food safety

    Technology Transfer Automated Retrieval System (TEKTRAN)

    All unprocessed food products typically harbor microorganisms. Some foods and the components that go into food production may contain pathogenic microorganisms such as Shiga toxin-producing Escherichia coli (STECs). When consumed, these STECs can cause serious illness or even death. In 2011, an out...

  5. A 7-plex microbead-based immunoassay for serotyping Shiga toxin-producing Escherichia coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Serotyping of Shiga toxin-producing Escherichia coli (STEC) has been contingent upon the availability of antisera. Here we describe a 7-plex microbead-based immunoassay to simultaneously serotype seven STEC (i.e., belonging to serogroups O26, O45, O103, O111, O121, O145, and O157) by the Luminex xMA...

  6. Epidemiology of Shiga toxin-producing Escherichia coli (STEC) in finishing swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Every year, approximately 200,000 cases of illness are estimated to be associated with Shiga toxin-producing Escherichia coli (STEC) in the United States. STEC strains are one of the leading causes of hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS) in humans. Many STEC outbreaks are a...

  7. Growth of non-0157:H7 shiga-toxin producing Escherichia coli on catfish fillets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shiga-toxin producing Escherichia coli (STECs) are emerging pathogens which have been involved in numerous foodborne illness outbreaks. In this study the ability of a multi-isolate cocktail of STEC serovars O26:H11, O45:H2, O103:H2, O111:NM, O121:H19, and O145:RM to grow on catfish fillets at refri...

  8. Hyperspectral imaging for identifying non-O157 shiga toxin-producing escherichia coli (STEC) serotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new non-destructive imaging method was investigated as an automated presumptive colony screening technique to rapidly detect and accurately identify pathogenic non-O157 Shiga-toxin producing Escherichia coli (STEC) serotypes on agar plates. Although traditional culture methods are still the “gold ...

  9. Classification of shiga toxin-producing escherichia coli (STEC) serotypes with hyperspectral microscope imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Non-O157:H7 Shiga toxin-producing Escherichia coli (STEC) strains such as O26, O45, O103, O111, O121 and O145 are recognized as serious outbreak to cause human illness due to their toxicity. Since a conventional microbiological method for cell counting is laborious and time-consuming process, optica...

  10. A comparative genomics approach for biomarker candidate discovery among shiga toxin-producing Escherichia coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shiga toxin-producing Escherichia coli (STEC) O157:H7 and non-O157 serogroups are a common cause of outbreaks of human illness; however, few studies have systematically collected and verified reliable biomarkers to enable detection and differentiation of highly pathogenic STEC. The goal of this stu...

  11. CHARACTERIZATION OF SHIGA TOXIN-PRODUCING ESCHERICHIA COLI STRAINS ISOLATED FROM SWINE FECES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shiga toxin-producing E. coli (STEC, 219 strains) isolated from swine feces belonging to different serogroups were characterized to determine their virulence gene and antibiotic resistance profiles, as well as acid tolerance. Twenty-nine out of 219 (13 percent) of the isolates harbored the stx1 gen...

  12. Phage Types and Genotypes of Shiga Toxin-Producing Escherichia coli O157 in Finland

    PubMed Central

    Saari, Marjut; Cheasty, Thomas; Leino, Kirsikka; Siitonen, Anja

    2001-01-01

    This study examined Shiga toxin-producing Escherichia coli (STEC) O157, using phage typing, pulsed-field gel electrophoresis, and typing of Shiga toxin variant genes by PCR with restriction fragment length polymorphism in an epidemiological survey of STEC O157 isolated from humans in Finland between 1990 and 1999. PMID:11230443

  13. Shiga toxin-producing Escherichia coli in swine: the public health perspective

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shiga toxin-producing Escherichia coli (STEC) strains are food-borne pathogens that are an important public health concern. STEC infection is associated with severe clinical diseases in humans, including hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS), which can lead to kidney failure ...

  14. Shiga toxin-producing Escherichia coli: importance, outbreaks, and characterization methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shiga toxin-producing Escherichia coli (STEC) is an enteric pathogen known to cause human gastrointestinal illnesses with diverse clinical manifestations. The varying disease severity, such as the onset of the hemolytic uremic syndrome, has been associated with certain serotypes of STEC and with th...

  15. Effect of stress on non-O157 Shiga toxin-producing Escherichia coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Non-O157 Shiga toxin-producing E. coli (non-O157 STEC) have emerged as important food-borne pathogens worldwide. Non-O157 STEC serogroups O26, O45, O103, O111, O121, and O145 have been declared as adulterants in beef by the USDA Food Safety and Inspection Service. While documentation is limited, tre...

  16. Real-time isothermal detection of Shiga toxin-producing Escherichia coli using recombinase polymerase amplification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shiga toxin (Stx) producing E. coli (STEC) are a major family of foodborne pathogens of immense public health, zoonotic and economic significance in the US and worldwide. To date, there are no published reports on use of recombinase polymerase amplification (RPA) for STEC detection. The primary goal...

  17. Gamma radiation inactivation of non-0157:H7 shiga-toxin producing Escherichia coli in foods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Non-O157:H7 serovars of shiga-toxin producing Escherichia coli are emerging foodborne pathogens that have been associated with illness outbreaks and food product recalls on a global basis. Ionizing (gamma) radiation is a nonthermal food safety intervention technology that has been approved for use i...

  18. Thermal inactivation of Shiga toxin-producing Escherichia coli cells within veal cordon bleu

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We evaluated the fate of Shiga toxin-producing Escherichia coli (STEC) within mechanically tenderized veal cordon bleu steaks following cooking on a flat-surface, non-stick griddle. Pre-flattened veal cutlets (ca. 75 g; ca. 0.34 cm thick) were purchased from a local vendor and both faces were surfac...

  19. Bacteriocins Produced by L. Fermentum and L. Acidophilus Can Inhibit Cephalosporin Resistant E. Coli.

    PubMed Central

    Riaz, Saba; Kashif Nawaz, Syed; Hasnain, Shahida

    2010-01-01

    Reemerging infections occur due to resistant bacteria. Such infections create restrictions for clinicians and microbiologists in drug selection. Such problems demand new strategies for solution. Use of bacteriocins for this purpose may be fruitful. In the present research work, the inhibitory effects of bactericins on cephalosporin resistant Escherichia coli are used as model system for the control of antibiotic resistant pathogenic bacteria. Cephalosporin resistant Escherichia coli strain was isolated from pus by using conventional methodology. For bacteriocin production, Lactobacilli strains were selected by using selective media. Out of seventy two strains isolated from yogurt, fecal materials of human, chick, parrot and cat, only two strains (strain 45 and strain 52) were found to produce bacteriocins having antimicrobial potential against cephalosporin resistant Escherichia coli. Biochemical characterization showed that strain 45 belonged to group of Lactobacillus fermentum and strain 52 to Lactobacillus acidophilus. Both strains showed maximum growth at 25°C and 35°C respectively. Suitable pH was 5.5 and 6.0 for Lactobacillus fermentum and Lactobacillus acidophilus respectively. Bacteriocins produced by both strains were found stable at 50, 75 and 100°C for 60min. Function of bacteriocin was also not disturbed due to change in pH. These findings suggest that bacteriocin produced by Lactobacillus fermentum and Lactobacillus acidophilus can be used for the infection control of cephalosporin resistant Escherichia coli. PMID:24031540

  20. Emergence of Carbapenemase-Producing Escherichia coli Isolated from Companion Animals in Algeria.

    PubMed

    Yousfi, Massilia; Touati, Abdelaziz; Mairi, Assia; Brasme, Lucien; Gharout-Sait, Alima; Guillard, Thomas; De Champs, Christophe

    2016-06-01

    The emergence and worldwide spread of carbapenemase-producing Enterobacteriaceae is of great concern to public health. The aim of this study was to investigate the occurrence of carbapenemase-producing Escherichia coli in companion animals in Algeria. Two hundred fecal samples were obtained from healthy and diseased dogs and cats in one veterinary office and private owners in Bejaia city, Algeria, during November 2014 to March 2015. Isolates were screened by polymerase chain reaction for the presence of carbapenemase, acquired plasmidic AmpC (pAmpC) and extended-spectrum beta-lactamase genes. Five carbapenemase-producing E. coli isolates were detected including four OXA-48-producing isolates and one isolate producing NDM-5. Coexpression of ESBL and pAmpC genes was observed in these isolates. Phylogenetic grouping revealed that these isolates belonged to A and D phylogroups. The results of this study show that carbapenemase-producing E. coli spread to the companion animals in Algeria. PMID:26741510

  1. Emission of ESBL/AmpC-producing Escherichia coli from pig fattening farms to surrounding areas.

    PubMed

    von Salviati, Christina; Laube, Henriette; Guerra, Beatriz; Roesler, Uwe; Friese, Anika

    2015-01-30

    The presence of ESBL/AmpC-producing Escherichia coli in livestock such as pigs has been known for some time. However, to date there is little information about the transmission of these resistant bacteria between pig farms and their surroundings. Thus, the aim of this study was to explore this topic by investigating seven German pig fattening farms. Samples from outside (including ground surfaces, ambient air, slurry and digestate from biogas plants) and, in parallel, from inside the pig barns (including pig feces, dust, barn air, flies and mice feces) were examined for ESBL/AmpC-producing E. coli and selected isolates were compared by pulsed-field gel electrophoresis (PFGE) analysis. 14/17 (82.4%) slurry samples and three of four samples of digestate from biogas plants tested positive for ESBL/AmpC-producing E. coli. In the vicinity of the pig barns these resistant bacteria were detected in 14/87 (16.1%) boot swabs taken from various ground surfaces and in 2/36 (6%) ambient air samples. Inside the pig barns, 6/63 (9.5%) barn air samples and a small proportion of flies and mice feces samples were ESBL/AmpC-positive. PFGE analysis proved fecal emission as well as a possible spread via flies, as identical ESBL-E. coli isolates were detected in slurry and on fertilized fields, as well as in flies and pooled feces from inside the barn and slurry. Contaminated slurry presented the major emission source for ESBL/AmpC-producing E. coli in the pig fattening farms, but a spread via the airborne route or via different vectors also seems possible. PMID:25465658

  2. First Report of Klebsiella pneumoniae-Carbapenemase-3-Producing Escherichia coli ST479 in Poland

    PubMed Central

    Ojdana, Dominika; Sacha, Paweł; Olszańska, Dorota; Majewski, Piotr; Wieczorek, Piotr; Jaworowska, Jadwiga; Sieńko, Anna; Jurczak, Anna; Tryniszewska, Elżbieta

    2015-01-01

    An increase in the antibiotic resistance among members of the Enterobacteriaceae family has been observed worldwide. Multidrug-resistant Gram-negative rods are increasingly reported. The treatment of infections caused by Escherichia coli and other Enterobacteriaceae has become an important clinical problem associated with reduced therapeutic possibilities. Antimicrobial carbapenems are considered the last line of defense against multidrug-resistant Gram-negative bacteria. Unfortunately, an increase of carbapenem resistance due to the production of Klebsiella pneumoniae carbapenemase (KPC) enzymes has been observed. In this study we describe the ability of E. coli to produce carbapenemase enzymes based on the results of the combination disc assay with boronic acid performed according to guidelines established by the European Community on Antimicrobial Susceptibility Testing (EUCAST) and the biochemical Carba NP test. Moreover, we evaluated the presence of genes responsible for the production of carbapenemases (blaKPC, blaVIM, blaIMP, blaOXA-48) and genes encoding other β-lactamases (blaSHV, blaTEM, blaCTX-M) among E. coli isolate. The tested isolate of E. coli that possessed the blaKPC-3 and blaTEM-34 genes was identified. The tested strain exhibited susceptibility to colistin (0.38 μg/mL) and tigecycline (1 μg/mL). This is the first detection of blaKPC-3 in an E. coli ST479 in Poland. PMID:26339599

  3. First Report of Klebsiella pneumoniae-Carbapenemase-3-Producing Escherichia coli ST479 in Poland.

    PubMed

    Ojdana, Dominika; Sacha, Paweł; Olszańska, Dorota; Majewski, Piotr; Wieczorek, Piotr; Jaworowska, Jadwiga; Sieńko, Anna; Jurczak, Anna; Tryniszewska, Elżbieta

    2015-01-01

    An increase in the antibiotic resistance among members of the Enterobacteriaceae family has been observed worldwide. Multidrug-resistant Gram-negative rods are increasingly reported. The treatment of infections caused by Escherichia coli and other Enterobacteriaceae has become an important clinical problem associated with reduced therapeutic possibilities. Antimicrobial carbapenems are considered the last line of defense against multidrug-resistant Gram-negative bacteria. Unfortunately, an increase of carbapenem resistance due to the production of Klebsiella pneumoniae carbapenemase (KPC) enzymes has been observed. In this study we describe the ability of E. coli to produce carbapenemase enzymes based on the results of the combination disc assay with boronic acid performed according to guidelines established by the European Community on Antimicrobial Susceptibility Testing (EUCAST) and the biochemical Carba NP test. Moreover, we evaluated the presence of genes responsible for the production of carbapenemases (bla KPC, bla VIM, bla IMP, bla OXA-48) and genes encoding other β-lactamases (bla SHV, bla TEM, bla CTX-M) among E. coli isolate. The tested isolate of E. coli that possessed the bla KPC-3 and bla TEM-34 genes was identified. The tested strain exhibited susceptibility to colistin (0.38 μg/mL) and tigecycline (1 μg/mL). This is the first detection of bla KPC-3 in an E. coli ST479 in Poland. PMID:26339599

  4. Commensal E. coli Stx2 lysogens produce high levels of phages after spontaneous prophage induction

    PubMed Central

    Iversen, Hildegunn; L' Abée-Lund, Trine M.; Aspholm, Marina; Arnesen, Lotte P. S.; Lindbäck, Toril

    2015-01-01

    Enterohemorrhagic E. coli (EHEC) is a food-borne pathogen that causes disease ranging from uncomplicated diarrhea to life-threatening hemolytic uremic syndrome (HUS) and nervous system complications. Shiga toxin 2 (Stx2) is the major virulence factor of EHEC and is critical for development of HUS. The genes encoding Stx2 are carried by lambdoid bacteriophages and the toxin production is tightly linked to the production of phages during lytic cycle. It has previously been suggested that commensal E. coli could amplify the production of Stx2-phages and contribute to the severity of disease. In this study we examined the susceptibility of commensal E. coli strains to the Stx2-converting phage ϕ734, isolated from a highly virulent EHEC O103:H25 (NIPH-11060424). Among 38 commensal E. coli strains from healthy children below 5 years, 15 were lysogenized by the ϕ734 phage, whereas lytic infection was not observed. Three of the commensal E. coli ϕ734 lysogens were tested for stability, and appeared stable and retained the phage for at least 10 cultural passages. When induced to enter lytic cycle by H2O2 treatment, 8 out of 13 commensal lysogens produced more ϕ734 phages than NIPH-11060424. Strikingly, five of them even spontaneously (non-induced) produced higher levels of phage than the H2O2 induced NIPH-11060424. An especially high frequency of HUS (60%) was seen among children infected by NIPH-11060424 during the outbreak in 2006. Based on our findings, a high Stx2 production by commensal E. coli lysogens cannot be ruled out as a contributor to the high frequency of HUS during this outbreak. PMID:25692100

  5. Commensal E. coli Stx2 lysogens produce high levels of phages after spontaneous prophage induction.

    PubMed

    Iversen, Hildegunn; L' Abée-Lund, Trine M; Aspholm, Marina; Arnesen, Lotte P S; Lindbäck, Toril

    2015-01-01

    Enterohemorrhagic E. coli (EHEC) is a food-borne pathogen that causes disease ranging from uncomplicated diarrhea to life-threatening hemolytic uremic syndrome (HUS) and nervous system complications. Shiga toxin 2 (Stx2) is the major virulence factor of EHEC and is critical for development of HUS. The genes encoding Stx2 are carried by lambdoid bacteriophages and the toxin production is tightly linked to the production of phages during lytic cycle. It has previously been suggested that commensal E. coli could amplify the production of Stx2-phages and contribute to the severity of disease. In this study we examined the susceptibility of commensal E. coli strains to the Stx2-converting phage ϕ734, isolated from a highly virulent EHEC O103:H25 (NIPH-11060424). Among 38 commensal E. coli strains from healthy children below 5 years, 15 were lysogenized by the ϕ734 phage, whereas lytic infection was not observed. Three of the commensal E. coli ϕ734 lysogens were tested for stability, and appeared stable and retained the phage for at least 10 cultural passages. When induced to enter lytic cycle by H2O2 treatment, 8 out of 13 commensal lysogens produced more ϕ734 phages than NIPH-11060424. Strikingly, five of them even spontaneously (non-induced) produced higher levels of phage than the H2O2 induced NIPH-11060424. An especially high frequency of HUS (60%) was seen among children infected by NIPH-11060424 during the outbreak in 2006. Based on our findings, a high Stx2 production by commensal E. coli lysogens cannot be ruled out as a contributor to the high frequency of HUS during this outbreak. PMID:25692100

  6. Molecular characterization of multiresistant Escherichia coli producing or not extended-spectrum β-lactamases

    PubMed Central

    2013-01-01

    Background The prevalence and type of plasmids, resistance genes and integrons carried by two collections of multiresistant E. coli producing or not extended-spectrum β-lactamases have been compared. Rep-PCR was used to determine the clonal relationship of the organisms. Plasmids were classified according to their incompatibility. Class 1 and Class 2 integrons and antibiotic resistance genes were analysed by PCR and sequencing. Results Both collections of organisms contained a large diversity of unrelated strains with some clones distributed in both groups of isolates. Large plasmids were identified in the two groups of organisms. Plasmids with replicons repK and repColE were more frequent among ESBL-producing isolates, while repFIA, repFII and repA/C replicons were more frequent in isolates lacking ESBL. Conjugative plasmids with repK and repA/C replicons coded for CTX-M-14 and CMY-2 β-lactamases, respectively. No significant differences were observed in the distribution of class 1 and class 2 integrons among multiresistant E. coli producing or not ESBL, and dfrA17-ant(3″)-Ie was the cassette arrangement most commonly found. Conclusions In the concrete temporal and geographical context of this study, multiresistant E. coli producing ESBL or other mechanisms of resistance were largely clonally diverse and present some differences in the types of harboured plasmids. Still, some clones were found in both ESBL-producing and –lacking isolates. PMID:23586437

  7. Biofilm-Forming Abilities of Shiga Toxin-Producing Escherichia coli Isolates Associated with Human Infections

    PubMed Central

    Vogeleer, Philippe; Tremblay, Yannick D. N.; Jubelin, Grégory; Jacques, Mario

    2015-01-01

    Forming biofilms may be a survival strategy of Shiga toxin-producing Escherichia coli to enable it to persist in the environment and the food industry. Here, we evaluate and characterize the biofilm-forming ability of 39 isolates of Shiga toxin-producing Escherichia coli isolates recovered from human infection and belonging to seropathotypes A, B, or C. The presence and/or production of biofilm factors such as curli, cellulose, autotransporter, and fimbriae were investigated. The polymeric matrix of these biofilms was analyzed by confocal microscopy and by enzymatic digestion. Cell viability and matrix integrity were examined after sanitizer treatments. Isolates of the seropathotype A (O157:H7 and O157:NM), which have the highest relative incidence of human infection, had a greater ability to form biofilms than isolates of seropathotype B or C. Seropathotype A isolates were unique in their ability to produce cellulose and poly-N-acetylglucosamine. The integrity of the biofilms was dependent on proteins. Two autotransporter genes, ehaB and espP, and two fimbrial genes, z1538 and lpf2, were identified as potential genetic determinants for biofilm formation. Interestingly, the ability of several isolates from seropathotype A to form biofilms was associated with their ability to agglutinate yeast in a mannose-independent manner. We consider this an unidentified biofilm-associated factor produced by those isolates. Treatment with sanitizers reduced the viability of Shiga toxin-producing Escherichia coli but did not completely remove the biofilm matrix. Overall, our data indicate that biofilm formation could contribute to the persistence of Shiga toxin-producing Escherichia coli and specifically seropathotype A isolates in the environment. PMID:26712549

  8. Prevalence and characteristics of intimin-producing Escherichia coli strains isolated from healthy chickens in Korea.

    PubMed

    Oh, J-Y; Kang, M-S; An, B-K; Shin, E-G; Kim, M-J; Kim, Y-J; Kwon, Y-K

    2012-10-01

    Virulent Escherichia coli strains have commonly been associated with diarrheal illness in humans and animals. Typical enteropathogenic Escherichia coli (EPEC) with intimin gene (eaeA) and E. coli adherence factor plasmid, or atypical EPEC with only eaeA have been implicated in human cases. In the present study, we investigated the prevalence of virulence-associated genes including eaeA in the E. coli strains isolated from cloacal specimens of 184 chicken flocks in 7 provinces in Korea between 2009 and 2010. When 7 virulence genes (VT1, VT2, LT, and ST for enterotoxigenic E. coli; eaeA and bfpA for enteropathogenic E. coli; and aggR for enteroaggregative E. coli) were screened by multiplex PCR, a total of 30 E. coli strains carrying only the eaeA gene were detected from 184 flocks that were identified as atypical enteropathogenic Escherichia coli (aEPEC). The aEPEC strains were analyzed by eae subtyping, phylogenetic grouping PCR, and serotyping. Twelve (40%) of 30 aEPEC strains possessed an eae-β subtype, followed by θ (30%), ε (16.7%), and β1 (13.3%). Eight (26.7%) of 30 aEPEC strains were designated into the phylogenetic group A. Two (6.7%) and 3 (10%) aEPEC strains were classified into the phylogenetic group B2 and D, respectively. A total of 15 (50%) aEPEC strains were serotyped to groups O24, O25, O26, O71, O80, O103, and O157, and the remaining strains were nontypeable. In analyzing the genetic diversity among the 30 aEPEC isolates by the pulsed-field gel electrophoresis method with XbaI-digestion, the pulsed-field gel electrophoresis profiling produced 20 different patterns, but isolates within the same group did not show clear geographic or breed relationships. Our data indicate that healthy chickens may constitute an important natural reservoir of aEPEC strains, and suggest that transmission to humans could not be excluded. PMID:22991525

  9. Isolation of an Escherichia coli K4 kfoC mutant over-producing capsular chondroitin

    PubMed Central

    2010-01-01

    Background Chondroitin sulphate is a complex polysaccharide having important structural and protective functions in animal tissues. Extracted from animals, this compound is used as a human anti-inflammatory drug. Among bacteria, Escherichia coli K4 produces a capsule containing a non-sulphate chondroitin and its development may provide an efficient and cheap fermentative production of the polysaccharide. Results A random N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis was performed on E. coli K4 to isolate mutants showing an increased production of chondroitin. Several mutants were isolated, one of which, here named VZ15, produced about 80% more chondroitin than the wild type E. coli. We found that the mutant has a missense mutation in the codon 313 of kfoC, the gene encoding chondroitin polymerase (K4CP), with a change from arginine to glutamine. A docking analysis to explain the increased productivity of the K4CP enzyme is presented. Conclusion The enhanced chondroitin production by the E. coli K4 mutant reported here shows the validity of the strain improvement strategy for more cost-friendly fermentative processes in the production of this pharmaceutically important but so-far expensive polysaccharide. PMID:20478023

  10. Quantitative detection of E. coli, E. coli O157 and other shiga toxin producing E. coli in water samples using a culture method combined with real-time PCR.

    PubMed

    Heijnen, Leo; Medema, Gertjan

    2006-12-01

    Recent water related outbreaks of shiga toxin producing E. coli O157 have resulted in increased attention of the water industry to this potentially deadly pathogen. Current methods to detect E. coli O157 and its virulence genes are laborious and time-consuming. Specificity, sensitivity and simple use of a real-time PCR method makes it an attractive alternative for the detection of STEC E. coli O157. This study describes the development and application of real-time PCR methods for the detection of E. coli O157, shiga toxin genes (Stx1 and Stx2) and E. coli. The specificity of the methods was confirmed by performing colony-PCR assays on characterized bacterial isolates, demonstrating the applicability of these assays as rapid tests to confirm the presence of E. coli or E. coli O157 colonies on culture plates. Sensitive culture-PCR methods were developed by combining culture enrichment with real-time PCR detection. This rapid method allowed detection of low concentrations of E. coli O157 in the presence of high concentrations of non-O157-E. coli (1:104). Culture-PCR methods were applied to 27 surface water and 4 wastewater samples. E. coli O157 and both Stx genes were detected in two wastewater samples, whereas only E. coli O157 was detected in two surface water samples. Culture-PCR methods were not influenced by matrix effects and also enabled quantitative (MPN) detection of E. coli in these samples. PMID:17176819

  11. The discovery of cholera - like enterotoxins produced by Escherichia coli causing secretory diarrhoea in humans

    PubMed Central

    Sack, R. Bradley

    2011-01-01

    Non-vibrio cholera has been recognized as a clinical entity for as long as cholera was known to be caused by Vibrio cholerae. Until 1968, the aetiologic agent of this syndrome was not known. Following a series of studies in patients with non-vibrio cholera it was found that these patients had large concentrations of Escherichia coli in the small bowel and stools which produced cholera toxin-like enterotoxins, and had fluid and electrolyte transport abnormalities in the small bowel similar to patients with documented cholera. Furthermore, these patients developed antibodies to the cholera-like enterotoxin. Later studies showed that these strains, when fed to volunteers produced a cholera-like disease and that two enterotoxins were found to be produced by these organisms: a heat-labile enterotoxin (LT) which is nearly identical to cholera toxin, and a heat-stable enterotoxin (ST), a small molecular weight polypeptide. E. coli that produced one or both of these enterotoxins were designated enterotoxigenic E. coli (ETEC). ETEC are now known not only to cause a severe cholera-like illness, but to be the most common bacterial cause of acute diarrhoea in children in the developing world, and to be the most common cause of travellers’ diarrhoea in persons who visit the developing world. PMID:21415491

  12. Tailor-made ion-imprinted polymer based on functionalized graphene oxide for the preconcentration and determination of trace copper in food samples.

    PubMed

    Liu, Yan; Qiu, Jian; Liu, Zhanchao; Ni, Liang; Jiang, Yinhua; Gong, Chongying; Meng, Xiangguo; Liu, Fangfang; Zhong, Guoxing

    2016-04-01

    A tailor-made Cu(II) ion-imprinted polymer based on large-surface-area graphene oxide sheets has been synthesized for the preconcentration and determination of trace copper from food samples by solid-phase extraction. Attributed to the ultrahigh surface area and hydrophilicity of graphene oxide, the Cu(II) ion-imprinted polymer prepared by the surface ion-imprinting technique exhibited a high binding capacity and a fast adsorption rate under the optimized experimental conditions. In the static adsorption experiments, the maximum adsorption capacity of Cu(II) ion-imprinted polymer is 109.38 mg/g at 25°C, which is much higher than that of the nonimprinted polymer (32.12 mg/g). Meanwhile, the adsorption is very rapid and equilibrium is reached after approximately 30 min. The adsorption mechanism is found to follow Langmuir adsorption model and the pseudo-second-order adsorption process. The Cu(II) ion-imprinted polymer was used for extracting and detecting Cu(II) in food samples combined with graphite flame atomic adsorption spectrometry with high recoveries in the range of 97.6-103.3%. The relative standard deviation and limit of detection of the method were evaluated as 1.2% and 0.37 μg/L, respectively. The results showed that the novel absorbent can be utilized as an effective material for the selective enrichment and determination of Cu(II) from food samples. PMID:26841822

  13. Extended-Spectrum-β-Lactamase-Producing Escherichia coli as Intestinal Colonizers in the German Community

    PubMed Central

    Nickel, Silke; Pfeifer, Yvonne; Eller, Christoph; Krupa, Elzbieta; Lehner-Reindl, Verena; Höller, Christiane

    2014-01-01

    We determined the presence of extended-spectrum-β-lactamase (ESBL)-producing Escherichia coli among 3,344 study participants from the German community. Intestinal colonization was detected in 211 persons (6.3%), without significant differences among the different age groups. The majority (95.2%) of isolates harbored CTX-M-type ESBL, with CTX-M-15 (46%) and CTX-M-1 (24.2%) as the most common types. The finding of ESBL producers and one isolate additionally producing carbapenemase OXA-244 indicates a risk of dissemination of resistant bacteria outside the hospitals. PMID:24295972

  14. Occurrence of generic Escherichia coli, E. coli O157 and Salmonella spp. in water and sediment from leafy green produce farms and streams on the Central California coast.

    PubMed

    Benjamin, Lisa; Atwill, Edward R; Jay-Russell, Michele; Cooley, Michael; Carychao, Diana; Gorski, Lisa; Mandrell, Robert E

    2013-07-01

    Irrigation with water of poor microbiological quality can elevate levels of bacteria on produce. This study aimed to identify climate and management variables associated with generic Escherichia coli in irrigation water on leafy green produce farms and to measure the prevalence of E. coli O157 and Salmonella spp. in irrigation and non-irrigation water sources on these farms. Water and sediment samples collected from various points along irrigation systems, as well as from streams and ponds on farms on the Central California coast between May 27th, 2008 and October 26th, 2010 were cultured for generic E. coli (MPN/100 mL or cfu 100 g) (n=436), E. coli O157 (n=437), and (n=163) Salmonella. Variables were based on grower's management practices, landscape features in proximity to samples (e.g., distance to roads and ranches/livestock), and climate data accessed from an online database. Negative binomial regression models were constructed to test associations between generic E. coli (MPN/100 mL) in water from farms and variables. Arithmetic mean concentration of E. coli for water, not including those from Moore swabs, and sediment samples, was 7.1×10(2) MPN/100 mL and 1.0×10(4) cfu/100 g, respectively. Matched by collection day, E. coli concentration in sediment (cfu/100 g) was typically 10- to 1000-fold higher than the overlying water (MPN/100 mL) for these irrigation systems. Generic E. coli concentration (MPN/100 mL) increased by 60.1% for each 1m/s increase in wind speed and decreased by 3% for each 10 m increase in the distance between the sample location and rangeland. Moore swabs detected a higher proportion of E. coli O157 (13.8%) positive water samples compared to grab samples (1.8%); 1.7% of sediment samples had detectable levels of this pathogen. Interestingly, season was not significantly associated with E. coli O157 presence in water or sediments from produce farms or water sources with public access. Salmonella was detected in 6% (6/96) water and 4.3% (3

  15. Inactivation of shiga toxin-producing Escherichia coli in lean ground beef by gamma irradiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Non-O157 serovars of Shiga Toxin-producing Escherichia coli (STEC) are now responsible for over 60% of STEC induced illnesses. The majority of illnesses caused by non-O157:H7 STEC have been due to serogroups O26, O121, O103, O45, O111, and O145, “the big/top six”, which are now considered adulterant...

  16. Interstitial nephritis in rats produced by E. coli in adjuvant: immunological findings.

    PubMed Central

    Sherlock, J E

    1977-01-01

    An increased incidence and severity of interstitial nephritis was produced in F344/fmai rats immunized with E. coli 022 in pertussis vaccine for 12-15 months. Migration of peritoneal exudate cells from immunized animals was inhibited by syngeneic kidney antigens. One out of twenty-eight immunized animals developed anti-TBM antibodies. In this model, interstitial nephritis develops in association with cell-mediated immunity to kidney tissue. PMID:342152

  17. Multidrug Resistant CTX-M-Producing Escherichia coli: A Growing Threat among HIV Patients in India

    PubMed Central

    Padmavathy, Kesavaram; Padma, Krishnan; Rajasekaran, Sikhamani

    2016-01-01

    Extended Spectrum β-Lactamases (ESBLs) confer resistance to third-generation cephalosporins and CTX-M types have emerged as the most prominent ESBLs worldwide. This study was designed to determine the prevalence of CTX-M positive ESBL-producing urinary E. coli isolates from HIV patients and to establish the association of multidrug resistance, phylogeny, and virulence profile with CTX-M production. A total of 57 ESBL producers identified among 76 E. coli strains isolated from HIV patients from South India were screened for blaCTX-M, AmpC production, multidrug resistance, and nine virulence associated genes (VAGs), fimH, pap, afa/dra, sfa/foc, iutA, fyuA, iroN, usp, and kpsMII. The majority (70.2%) of the ESBL producers harbored blaCTX-M and were AmpC coproducers. Among the CTX-M producers, 47.5% were found to be UPEC, 10% harbored as many as 7 VAGs, and 45% possessed kpsMII. Multidrug resistance (CIPRSXTRGENR) was significantly more common among the CTX-M producers compared to the nonproducers (70% versus 41.2%). However, 71.4% of the multidrug resistant CTX-M producers exhibited susceptibility to nitrofurantoin thereby making it an effective alternative to cephalosporins/fluoroquinolones. The emergence of CTX-M-producing highly virulent, multidrug resistant uropathogenic E. coli is of significant public health concern in countries like India with a high burden of HIV/AIDS. PMID:27123344

  18. Multidrug Resistant CTX-M-Producing Escherichia coli: A Growing Threat among HIV Patients in India.

    PubMed

    Padmavathy, Kesavaram; Padma, Krishnan; Rajasekaran, Sikhamani

    2016-01-01

    Extended Spectrum β-Lactamases (ESBLs) confer resistance to third-generation cephalosporins and CTX-M types have emerged as the most prominent ESBLs worldwide. This study was designed to determine the prevalence of CTX-M positive ESBL-producing urinary E. coli isolates from HIV patients and to establish the association of multidrug resistance, phylogeny, and virulence profile with CTX-M production. A total of 57 ESBL producers identified among 76 E. coli strains isolated from HIV patients from South India were screened for bla CTX-M, AmpC production, multidrug resistance, and nine virulence associated genes (VAGs), fimH, pap, afa/dra, sfa/foc, iutA, fyuA, iroN, usp, and kpsMII. The majority (70.2%) of the ESBL producers harbored bla CTX-M and were AmpC coproducers. Among the CTX-M producers, 47.5% were found to be UPEC, 10% harbored as many as 7 VAGs, and 45% possessed kpsMII. Multidrug resistance (CIP(R)SXT(R)GEN(R)) was significantly more common among the CTX-M producers compared to the nonproducers (70% versus 41.2%). However, 71.4% of the multidrug resistant CTX-M producers exhibited susceptibility to nitrofurantoin thereby making it an effective alternative to cephalosporins/fluoroquinolones. The emergence of CTX-M-producing highly virulent, multidrug resistant uropathogenic E. coli is of significant public health concern in countries like India with a high burden of HIV/AIDS. PMID:27123344

  19. A PCR-ELISA for detecting Shiga toxin-producing Escherichia coli.

    PubMed

    Ge, Beilei; Zhao, Shaohua; Hall, Robert; Meng, Jianghong

    2002-03-01

    A sensitive and specific PCR-ELISA was developed to detect Escherichia coli O157:H7 and other Shiga toxin-producing E. coli (STEC) in food. The assay was based on the incorporation of digoxigenin-labeled dUTP and a biotin-labeled primer specific for Shiga toxin genes during PCR amplification. The labeled PCR products were bound to streptavidin-coated wells of a microtiter plate and detected by an ELISA. The specificity of the PCR was determined using 39 bacterial strains, including STEC, enteropathogenic E. coli, E. coli K12, and Salmonella. All of the STEC strains were positive, and non-STEC organisms were negative. The ELISA detecting system was able to increase the sensitivity of the PCR assay by up to 100-fold, compared with a conventional gel electrophoresis. The detection limit of the PCR-ELISA was 0.1-10 CFU dependent upon STEC serotypes, and genotypes of Shiga toxins. With the aid of a simple DNA extraction system, PrepMan, the PCR-ELISA was able to detect ca. 10(5) CFU of STEC per gram of ground beef without any culture enrichment. The entire procedure took about 6 h. Because of its microtiter plate format, PCR-ELISA is particularly suitable for large-scale screening and compatible with future automation. PMID:11909738

  20. Extended spectrum betalactamase producing Enteroaggregative Escherichia coli from young children in Iran

    PubMed Central

    Khoshvaght, Hakimeh; Zeighami, Habib

    2014-01-01

    Aim The aim of this study was to investigate the frequency of betalactamase producing EAEC isolates among young children with diarrhea in Zanjan, Iran. Background Entero aggregative Escherichia coli (EAEC) is an emerging enteric pathogen associated with acute and persistent diarrhea and the evolution and spread of acquired extended spectrum betalactamases (ESBLs) among these strains has become a serious problem in the management of infectious diseases in developing countries. Patients and methods During the period from March 2011 to January 2012, 140 isolates of E. coli from diarrheal children aged 0–60 months and 90 isolates from age-matched controls without diarrhea were investigated for EAEC using PCR. Antimicrobial susceptibility testing was performed as CLSI guidelines and betalactamase genes, including bla TEM, bla CTX-M, bla IMP, bla VIM and bla NDM-1 investigated in EAEC isolates. Results In this study, EAEC was detected with slightly higher frequency in children with (8%) than in children without (4.6%) diarrhea (P > 0.05). Diarrheagenic E. coli exhibited high level resistance to aztreonam (80.7%), amoxicillin (74.4%) and tetracycline (69.3%). Also, 86.4% of E. coli isolates were resistant to at least three different classes of antimicrobial agents and considered as multidrug resistance. Molecular characterization of betalactamase genes showed that bla TEM was the most frequently isolated betalactamase. It was detected in 78.9% of ESBL producing EAEC isolates. Also, the frequency of bla CTX-M was 63.1% (12/19) and 8 (42.1%) isolates carried the bla TEM and bla CTX-M, simultaneously. None MBL producing EAEC was detected in our study. Conclusion Our results indicate that ESBLs especially bla TEM and bla CTX-M are widespread among EAEC isolates and appropriate surveillance and control measures are essential to prevent further dissemination of betalactamases in our country. PMID:24834305

  1. Molecular Diversity and Plasmid Analysis of KPC-Producing Escherichia coli.

    PubMed

    Chavda, Kalyan D; Chen, Liang; Jacobs, Michael R; Bonomo, Robert A; Kreiswirth, Barry N

    2016-07-01

    The emergence and spread of Klebsiella pneumoniae carbapenemase (KPC) among Enterobacteriaceae presents a major public health threat to the world. Although not as common as in K. pneumoniae, KPC is also found in Escherichia coli strains. Here, we genetically characterized 9 carbapenem-resistant E. coli strains isolated from six hospitals in the United States and completely sequenced their blaKPC-harboring plasmids. The nine strains were isolated from different geographical locations and belonged to 8 different E. coli sequence types. Seven blaKPC-harboring plasmids belonged to four different known incompatibility groups (IncN, -FIA, -FIIK2, and -FIIK1) and ranged in size from ∼16 kb to ∼241 kb. In this analysis, we also identified two plasmids that have novel replicons: (i) pBK28610, which is similar to p34978-3 with an insertion of Tn4401b, and (ii) pBK31611, which does not have an apparent homologue in the GenBank database. Moreover, we report the emergence of a pKP048-like plasmid, pBK34397, in E. coli in the United States. Meanwhile, we also found examples of interspecies spread of blaKPC plasmids, as pBK34592 is identical to pBK30683, isolated from K. pneumoniae In addition, we discovered examples of acquisition (pBK32602 acquired an ∼46-kb fragment including a novel replication gene, along with Tn4401b and other resistance genes) and/or loss (pKpQIL-Ec has a 14.5-kb deletion compared to pKpQIL-10 and pBK33689) of DNA, demonstrating the plasticity of these plasmids and their rapid evolution in the clinic. Overall, our study shows that the spread of blaKPC-producing E. coli is largely due to horizontal transfer of blaKPC-harboring plasmids and related mobile elements into diverse genetic backgrounds. PMID:27114279

  2. Combining transcranial direct current stimulation and tailor-made notched music training to decrease tinnitus-related distress--a pilot study.

    PubMed

    Teismann, Henning; Wollbrink, Andreas; Okamoto, Hidehiko; Schlaug, Gottfried; Rudack, Claudia; Pantev, Christo

    2014-01-01

    The central auditory system has a crucial role in tinnitus generation and maintenance. Curative treatments for tinnitus do not yet exist. However, recent attempts in the therapeutic application of both acoustic stimulation/training procedures and electric/magnetic brain stimulation techniques have yielded promising results. Here, for the first time we combined tailor-made notched music training (TMNMT) with transcranial direct current stimulation (tDCS) in an effort to modulate TMNMT efficacy in the treatment of 32 patients with tonal tinnitus and without severe hearing loss. TMNMT is characterized by regular listening to so-called notched music, which is generated by digitally removing the frequency band of one octave width centered at the individual tinnitus frequency. TMNMT was applied for 10 subsequent days (2.5 hours of daily treatment). During the initial 5 days of treatment and the initial 30 minutes of TMNMT sessions, tDCS (current strength: 2 mA; anodal (N = 10) vs. cathodal (N = 11) vs. sham (N = 11) groups) was applied simultaneously. The active electrode was placed on the head surface over left auditory cortex; the reference electrode was put over right supra-orbital cortex. To evaluate treatment outcome, tinnitus-related distress and perceived tinnitus loudness were assessed using standardized tinnitus questionnaires and a visual analogue scale. The results showed a significant treatment effect reflected in the Tinnitus Handicap Questionnaire that was largest after 5 days of treatment. This effect remained significant at the end of follow-up 31 days after treatment cessation. Crucially, tDCS did not significantly modulate treatment efficacy--it did not make a difference whether anodal, cathodal, or sham tDCS was applied. Possible explanations for the findings and functional modifications of the experimental design for future studies (e.g. the selection of control conditions) are discussed. PMID:24587113

  3. Multiple-functional capsule catalysts: a tailor-made confined reaction environment for the direct synthesis of middle isoparaffins from syngas.

    PubMed

    He, Jingjiang; Liu, Zhenlin; Yoneyama, Yoshiharu; Nishiyama, Norikazu; Tsubaki, Noritatsu

    2006-11-01

    A capsule catalyst for isoparaffin synthesis based on Fischer-Tropsch reaction was designed by coating a H-ZSM-5 membrane onto the surface of the pre-shaped Co/SiO(2) pellet. Morphological and chemical analysis showed that the capsule catalyst had a core-shell structure. A compact, integral shell of H-ZSM-5 crystallized firmly on the Co/SiO(2) substrate without crack. Syngas passed through the zeolite membrane to reach the Co/SiO(2) catalyst to be converted, and all hydrocarbons formed with straight chain structure must enter the zeolite channels to undergo hydrocracking as well as isomerization in this tailor-made confined reaction environment. A narrow, anti-Anderson-Schultz-Flory law product distribution was observed on these capsule catalysts. Contrary to a mechanical mixture of H-ZSM-5 and Co/SiO(2), C(10+) hydrocarbons were suppressed completely on this novel capsule catalyst, and the selectivity of middle isoparaffins was considerably improved. The carbon number distribution of the products depended on the thickness of the zeolite membrane, and it was possible to selectively synthesize specified distillates, such as gasoline-range, or heavier hydrocarbons from syngas directly, by simply adjusting the thickness of the zeolite membrane of the capsule catalyst. This kind of capsule catalysts can be extended to various consecutive reaction systems as the shell and core components are independent catalysts for different reactions. At the same time, shape selectivity and space-confined effects can be expected for the reactant, intermediates and product of the sequential reactions. PMID:16850512

  4. Tailor-Made Stable Zr(IV)-Based Metal-Organic Frameworks for Laser Desorption/Ionization Mass Spectrometry Analysis of Small Molecules and Simultaneous Enrichment of Phosphopeptides.

    PubMed

    Chen, Lianfang; Ou, Junjie; Wang, Hongwei; Liu, Zhongshan; Ye, Mingliang; Zou, Hanfa

    2016-08-10

    Although thousands of metal-organic frameworks (MOFs) have been fabricated and widely applied in gas storage/separations, adsorption, catalysis, and so on, few kinds of MOFs have been used as adsorption materials while simultaneously serving as matrixes to analyze small molecules for laser desorption/ionization mass spectrometry (LDI-MS). Herein, a new concept is introduced to design and synthesize MOFs as both adsorption materials and matrixes according to the structure of ligands and common matrixes. The proof of concept design was demonstrated by selection of 2,5-pyridinedicarboxylic acid (PDC) and 2,5-dihydroxyterephthalic acid (DHT) as ligands for synthesis of MOFs. Two Zr(IV)-based MOFs of UiO-66-PDC and UiO-66-(OH)2 were synthesized and applied for the first time as new matrixes for analysis of small molecules by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Both of them showed low matrix interferences, high ionization efficiency, and good reproducibility when used as matrixes. A variety of small molecules, including saccharides, amino acids, nucleosides, peptides, alkaline drugs, and natural products, were analyzed. In addition, UiO-66-(OH)2 exhibited potential for application in the quantitative determination of glucose and pyridoxal 5'-phosphate. Furthermore, thanks to its intrinsically large surface area and highly ordered pores, UiO-66-(OH)2 also showed sensitive and specific enrichment of phosphopeptides prior to MS analysis. These results demonstrated that this strategy can be used to efficiently screen tailor-made MOFs as matrixes to analyze small molecules by MALDI-TOF-MS. PMID:27427857

  5. Molecular insights into the unique phenotypes exhibited by super shed shiga toxin producing Escherichia coli O157

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shiga toxin producing Escherichia coli (STEC) serovar O157:H7 is a major foodborne pathogen that can cause bloody diarrhea and life threatening hemolytic uremic syndrome in humans. Asymptomatic cattle are colonized with E. coli O157:H7 at the mucosal interface of the recto-anal junction (RAJ). Sup...

  6. The polymorphic aggregative phenotype of Shiga toxin-producing Escherichia coli O111 depends on rpoS and curli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Escherichia coli O111 is an emerging non-O157:H7 Shiga toxin-producing E. coli (STEC). We previously reported that outbreak and environmental, but not sporadic case, strains of STEC O111 share a distinct aggregation phenotype (M. E. Diodati, A. H. Bates, M. B. Cooley, S. Walker, R. E. Mandrell, and ...

  7. The Polymorphic Aggregative Phenotype of Shiga Toxin-producing Escherichia coli O111 Depends on RpoS and Curli.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Escherichia coli O111 is an emerging non-O157:H7 Shiga toxin-producing E. coli (STEC). We previously reported that outbreak and environmental, but not sporadic case, strains of STEC O111 share a distinct aggregation phenotype (M. E. Diodati, A. H. Bates, M. B. Cooley, S. Walker, R. E. Mandrell, and ...

  8. Phylogeny of Shiga toxin-producing Escherichia coli O157 isolated from cattle and clinically ill humans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cattle are a major reservoir for Shiga toxin-producing Escherichia coli O157 (STEC O157) and harbor multiple genetic subtypes that do not all associate with human disease. STEC O157 evolved from an E. coli O55:H7 progenitor, however, a lack of genome sequence has hindered investigations on the dive...

  9. Media composition and incubation temperature affect Congo red dye affinity of Shiga toxin-producing Escherichia coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Escherichia coli biofilm formation is dependent on curli fimbriae and cellulose, and the expression of both varies among Shiga toxin-producing E. coli (STEC). Curli and cellulose expression are often identified by their affinity for Congo red dye (CR) but media composition and incubation...

  10. Occurrence of Escherichia coli, noroviruses, and F-specific coliphages in fresh market-ready produce.

    PubMed

    Allwood, Paul B; Malik, Yashpal S; Maherchandani, Sunil; Vought, Kevin; Johnson, Lee-Ann; Braymen, Craig; Hedberg, Craig W; Goyal, Sagar M

    2004-11-01

    Forty samples of fresh produce collected from retail food establishments were examined to determine the occurrence of Escherichia coli, F-specific coliphages, and noroviruses. An additional six samples were collected from a restaurant undergoing investigation for a norovirus outbreak. Nineteen (48%) of the retail samples and all outbreak samples were preprocessed (cut, shredded, chopped, or peeled) at or before the point of purchase. Reverse transcription-PCR, with the use of primers JV 12 and JV 13, failed to detect norovirus RNA in any of the samples. All six outbreak samples and 13 (33%) retail samples were positive for F-specific coliphages (odds ratio undefined, P = 0.003). Processed retail samples appeared more likely to contain F-specific coliphages than unprocessed samples (odds ratio 3.8; 95% confidence interval 0.8 to 20.0). Only two (5.0%) retail samples were positive for E. coli; outbreak samples were not tested for E. coli. The results of this preliminary survey suggest that F-specific coliphages could be useful conservative indicators of fecal contamination of produce and its associated virological risks. Large-scale surveys should be conducted to confirm these findings. PMID:15553617

  11. Detection of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli in Market-Ready Chickens in Zambia

    PubMed Central

    Chishimba, K.; Hang'ombe, B. M.; Muzandu, K.; Mshana, S. E.; Matee, M. I.; Nakajima, C.; Suzuki, Y.

    2016-01-01

    The frequent administering of antibiotics in the treatment of poultry diseases may contribute to emergence of antimicrobial-resistant strains. The objective of this study was to detect the presence of extended-spectrum β-lactamase- (ESBL-) producing Escherichia coli in poultry in Zambia. A total of 384 poultry samples were collected and analyzed for ESBL-producing Escherichia coli. The cultured E. coli isolates were subjected to antimicrobial susceptibility tests and the polymerase chain reaction for detection of blaCTX-M, blaSHV, and blaTEM genes. Overall 20.1%, 77/384, (95% CI; 43.2–65.5%) of total samples analyzed contained ESBL-producing Escherichia coli. The antimicrobial sensitivity test revealed that 85.7% (66/77; CI: 75.7–92) of ESBL-producing E. coli isolates conferred resistance to beta-lactam and other antimicrobial agents. These results indicate that poultry is a potential reservoir for ESBL-producing Escherichia coli. The presence of ESBL-producing Escherichia coli in poultry destined for human consumption requires strengthening of the antibiotic administering policy. This is important as antibiotic administration in food animals is gaining momentum for improved animal productivity in developing countries such as Zambia. PMID:27190518

  12. Detection of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli in Market-Ready Chickens in Zambia.

    PubMed

    Chishimba, K; Hang'ombe, B M; Muzandu, K; Mshana, S E; Matee, M I; Nakajima, C; Suzuki, Y

    2016-01-01

    The frequent administering of antibiotics in the treatment of poultry diseases may contribute to emergence of antimicrobial-resistant strains. The objective of this study was to detect the presence of extended-spectrum β-lactamase- (ESBL-) producing Escherichia coli in poultry in Zambia. A total of 384 poultry samples were collected and analyzed for ESBL-producing Escherichia coli. The cultured E. coli isolates were subjected to antimicrobial susceptibility tests and the polymerase chain reaction for detection of bla CTX-M, bla SHV, and bla TEM genes. Overall 20.1%, 77/384, (95% CI; 43.2-65.5%) of total samples analyzed contained ESBL-producing Escherichia coli. The antimicrobial sensitivity test revealed that 85.7% (66/77; CI: 75.7-92) of ESBL-producing E. coli isolates conferred resistance to beta-lactam and other antimicrobial agents. These results indicate that poultry is a potential reservoir for ESBL-producing Escherichia coli. The presence of ESBL-producing Escherichia coli in poultry destined for human consumption requires strengthening of the antibiotic administering policy. This is important as antibiotic administration in food animals is gaining momentum for improved animal productivity in developing countries such as Zambia. PMID:27190518

  13. Detection of ESBL- and AmpC-producing E. coli isolates from urinary tract infections

    PubMed Central

    Shayan, Sara; Bokaeian, Mohammad

    2015-01-01

    Background: Extended-spectrum β-lactamases (ESBLs) and AmpC enzymes have been observed in virtually all species of the family Enterobacteriaceae. The β-lactamase producing bacteria cause many serious infections, including urinary tract infections. These enzymes are predominantly plasmid mediated. There are no recommended guidelines for detection of this resistance mechanism and there is a need to address this issue as much as the detection of ESBLs. This study was undertaken to characterize ESBL and AmpC producers among Escherichia coli by polymerase chain reaction (PCR), which were initially screened by phenotypic method. Materials and Methods: A total of 90 isolates of E. coli were recovered from the urinary tract during a 7-month period, and were screened for ESBLs and AmpC production by disk diffusion test using cefoxitin (30 μg) disks and confirmed by combined disk diffusion test using phenyl boronic acid. The presence of genes encoding CIT, FOX, and TEM was detected by PCR. Results: On disk diffusion test, 59 of 90 isolates were resistant to third generation of cephalosporins; of these 37 (62.7%) and 3 (5%) were ESBL and AmpC producers, respectively. PCR showed that 29 (49.1%) and 3 (5%) were positive for blaTEM and blaCMY-2, respectively. Conclusion: ESBL- and AmpC-producing E. coli isolates cause significant resistance to cephalosporin. There is a need for a correct and reliable phenotypic test to identify AmpC β-lactamases and to discriminate between AmpC and ESBL producers. This work showed that boronic acid can differentiate ESBL enzymes from AmpC enzymes. PMID:26605249

  14. Prevalence of β-Lactamase Producing Escherichia coli from Retail Meat in Turkey.

    PubMed

    Pehlivanlar Önen, Sevda; Aslantaş, Özkan; Şebnem Yılmaz, Ebru; Kürekci, Cemil

    2015-09-01

    Extended spectrum β-lactamase (ESBL) and plasmid-mediated AmpC β-lactamase (pAmpC) producing Escherichia coli have been shown to be present in humans and animals representing a significant problem worldwide. This study aimed to search the presence of ESBL and/or AmpC-producing E. coli in retail meats (chicken and beef) in Turkey. A total of 88 β-lactamase-producing E. coli were isolated from chicken (n = 81/100) and beef meat (n = 7/100) samples and their susceptibility to several antimicrobials were tested using disc diffusion method. E. coli isolates were further characterized for their phylogenetic groups. β-Lactamase encoding (blaTEM , blaSHV , blaOXA , blaCTX-M , and blaAmpC ) and quinolone resistance genes (qnrA, qnrB, qnrS, qepA, and acc(6')-Ib-cr) were also secreened by polymerase chain reaction (PCR). However, in regard to β-lactamase genes, 84 of 88 isolates were positive for blaCTX-M-1 (n = 39), blaCTX-M-3 (n = 5), blaCTX-M-15 (n = 4), blaTEM-1b (n = 2), blaSHV-12 (n = 1), blaCTX-M-1 /blaTEM-1b (n = 10), blaCTX-M-1 /blaTEM-1b /blaSHV-5 (n = 1), blaCTX-M-1 /blaCMY-2 (n = 1) and blaTEM-1b /blaCMY-2 (n = 6), blaCTX-M-15 /blaSHV-12 (n = 1), blaCTX-M-15 /blaTEM-1b (n = 1), blaTEM-1b /blaSHV-12 (n = 1), and blaCMY-2 (n = 12) genes. Resistance to cefuroxime (75.6% and 85.7%), nalidixic acid (89% and 85.7%), tetracycline (91.4% and 100%), streptomycin (40.2% and 100%), and trimethoprim-sulfamethoxazole (36.6% and 85.7%) was observed among strains isolated from chicken and beef, respectively. However, all isolates were found to be susceptible to amikacin, imipenem, and cefepime. Resistance to ampicillin and cefoxitin was significantly linked to blaCMY-2 gene, while there was a significant correlation between CTX-M type ESBL and antimicrobial resistance to cefuroxime and streptomycin (P < 0.05). The results of this study suggest that raw chicken retail meats are highly contaminated with ESBL-producing E. coli implementing a great risk to human health in

  15. Clonal diversity of Shiga toxin-producing Escherichia coli O103:H2/H(-) in Germany.

    PubMed

    Prager, Rita; Liesegang, Almut; Voigt, W; Rabsch, W; Fruth, Angelika; Tschäpe, H

    2002-07-01

    Shiga toxin producing Escherichia coli O103:H2/H(-) belong to the third most frequently isolated EHEC serotypes in Germany following isolates of O157:H7/H(-) and O26:H11/H(-). A total of 145 respective E. coli 103 isolates from single cases of diarrhoea and haemolytic uremic syndrome (HUS) in 1997-2000 were characterised by a range of molecular subtyping methods (PFGE, P-gene profiling, ribotyping, electrotyping) and phage typing in order to analyse their genetic relatedness and the practicability for new epidemiological tracing back. All isolates cluster into a distinct EHEC subgroup and reveal a high clonal diversity together with a considerable stability. Since strains of this serotype rank up to the third most frequently isolated EHEC in Germany a large population of this serotype, and therefore, a great supply of such strains may exist in this country. PMID:12798005

  16. Promising Nucleic Acid Lateral Flow Assay Plus PCR for Shiga Toxin-Producing Escherichia coli.

    PubMed

    Terao, Yoshitaka; Takeshita, Kana; Nishiyama, Yasutaka; Morishita, Naoki; Matsumoto, Takashi; Morimatsu, Fumiki

    2015-08-01

    Shiga toxin (Stx)-producing Escherichia coli (STEC) is a frequent cause of foodborne infections, and methods for rapid and reliable detection of STEC are needed. A nucleic acid lateral flow assay (NALFA) plus PCR was evaluated for detecting STEC after enrichment. When cell suspensions of 45 STEC strains, 14 non-STEC strains, and 13 non-E. coli strains were tested with the NALFA plus PCR, all of the STEC strains yielded positive results, and all of the non-STEC and non-E. coli strains yielded negative results. The lower detection limit for the STEC strains ranged from 0.1 to 1 pg of genomic DNA (about 20 to 200 CFU) per test, and the NALFA plus PCR was able to detect Stx1- and Stx2-producing E. coli strains with similar sensitivities. The ability of the NALFA plus PCR to detect STEC in enrichment cultures of radish sprouts, tomato, raw ground beef, and beef liver inoculated with 10-fold serially diluted STEC cultures was comparable to that of a real-time PCR assay (at a level of 100 to 100,000 CFU/ml in enrichment culture). The bacterial inoculation test in raw ground beef revealed that the lower detection limit of the NALFA plus PCR was also comparable to that obtained with a real-time PCR assay that followed the U.S. Department of Agriculture guidelines. Although further evaluation is required, these results suggest that the NALFA plus PCR is a specific and sensitive method for detecting STEC in a food manufacturing plant. PMID:26219371

  17. Molecular characterization and phylogeny of Shiga toxin-producing E. coli (STEC) from imported beef meat in Malaysia.

    PubMed

    Abuelhassan, Nawal Nouridaim; Mutalib, Sahilah Abdul; Gimba, Fufa Ido; Yusoff, Wan Mohtar

    2016-09-01

    This study aimed at determining the presence and characterization of Escherichia coli and Shiga toxin-producing E. coli (STEC) from imported frozen beef meats. Seventy-four (74) frozen imported beef meat samples from two countries, India (42 samples) and Australia (32 samples), were collected and tested for E. coli. These samples were purchased from the frozen meat sections of five different supermarkets in different locations in Selangor, Malaysia, from April 2012 to October 2014. A total of 222 E. coli strains were isolated from the meat samples; 126 strains were isolated from country A (India), and 96 E. coli strains were from country of origin B (Australia), respectively. A total of 70 E. coli strains were identified and characterized. All E. coli strains were isolated into Fluorocult medium and identified using API 20E kit. All selected E. coli strains were characterized for Shiga toxin genes (stx1 and stx2). All biochemically identified E. coli in this study were further subjected to molecular detection through polymerase chain reaction (PCR) amplification and characterization using 16S ribosomal RNA (rRNA) gene of Shiga toxin-producing E. coli. Of the 70 E. coli strains, 11 strains were positive for both Shiga toxin genes (stx1 and stx2) and 11 (11/70) strains were positive for stx1 gene, while 25 (25/70) strains were positive for stx2 gene. The analysis of 16S rRNA gene of all the E. coli isolates in this study was successfully sequenced and analyzed, and based on sequence data obtained, a phylogenetic tree of the 16S rRNA gene was performed using Clustal W programme in MEGA 6.06 software. Phylogenetic tree showed that the E. coli isolates in our study cluster with the strain of E. coli isolated in other countries, which further confirm that the isolates of E. coli in this study are similar to those obtained in other studies. As a result, all the strains obtained in this study proved to be a strain of pathogenic E. coli, which may cause a serious outbreak

  18. Fusion tags for protein solubility, purification and immunogenicity in Escherichia coli: the novel Fh8 system

    PubMed Central

    Costa, Sofia; Almeida, André; Castro, António; Domingues, Lucília

    2014-01-01

    Proteins are now widely produced in diverse microbial cell factories. The Escherichia coli is still the dominant host for recombinant protein production but, as a bacterial cell, it also has its issues: the aggregation of foreign proteins into insoluble inclusion bodies is perhaps the main limiting factor of the E. coli expression system. Conversely, E. coli benefits of cost, ease of use and scale make it essential to design new approaches directed for improved recombinant protein production in this host cell. With the aid of genetic and protein engineering novel tailored-made strategies can be designed to suit user or process requirements. Gene fusion technology has been widely used for the improvement of soluble protein production and/or purification in E. coli, and for increasing peptide’s immunogenicity as well. New fusion partners are constantly emerging and complementing the traditional solutions, as for instance, the Fh8 fusion tag that has been recently studied and ranked among the best solubility enhancer partners. In this review, we provide an overview of current strategies to improve recombinant protein production in E. coli, including the key factors for successful protein production, highlighting soluble protein production, and a comprehensive summary of the latest available and traditionally used gene fusion technologies. A special emphasis is given to the recently discovered Fh8 fusion system that can be used for soluble protein production, purification, and immunogenicity in E. coli. The number of existing fusion tags will probably increase in the next few years, and efforts should be taken to better understand how fusion tags act in E. coli. This knowledge will undoubtedly drive the development of new tailored-made tools for protein production in this bacterial system. PMID:24600443

  19. An in vitro combined antibiotic/antibody treatment eliminates toxicity from Shiga toxin-producing E. coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Treating Shiga toxin-producing Escherichia coli (STEC) gastrointestinal infections is a difficult endeavor. The utility of antibiotics as an STEC treatment is controversial since antibiotic resistance among STEC isolates is widespread and certain antibiotics dramatically increase express...

  20. Behavior of shiga toxin-producing Escherichia coli, enteroinvasive E. coli, enteropathogenic E. coli and enterotoxigenic E. coli strains on whole and sliced jalapeño and serrano peppers.

    PubMed

    Gómez-Aldapa, Carlos A; Rangel-Vargas, Esmeralda; Gordillo-Martínez, Alberto J; Castro-Rosas, Javier

    2014-06-01

    The behavior of enterotoxigenic Escherichia coli (ETEC), enteropathogenic E. coli (EPEC), enteroinvasive E. coli (EIEC) and non-O157 shiga toxin-producing E. coli (non-O157-STEC) on whole and slices of jalapeño and serrano peppers as well as in blended sauce at 25 ± 2 °C and 3 ± 2 °C was investigated. Chili peppers were collected from markets of Pachuca city, Hidalgo, Mexico. On whole serrano and jalapeño stored at 25 ± 2 °C or 3 ± 2 °C, no growth was observed for EPEC, ETEC, EIEC and non-O157-STEC rifampicin resistant strains. After twelve days at 25 ± 2 °C, on serrano peppers all diarrheagenic E. coli pathotypes (DEP) strains had decreased by a total of approximately 3.7 log, whereas on jalapeño peppers the strains had decreased by approximately 2.8 log, and at 3 ± 2 °C they decreased to approximately 2.5 and 2.2 log respectively, on serrano and jalapeño. All E. coli pathotypes grew onto sliced chili peppers and in blended sauce: after 24 h at 25 ± 2 °C, all pathotypes had grown to approximately 3 and 4 log CFU on pepper slices and sauce, respectively. At 3 ± 2 °C the bacterial growth was inhibited. PMID:24549200

  1. Metabolic design of a platform Escherichia coli strain producing various chorismate derivatives.

    PubMed

    Noda, Shuhei; Shirai, Tomokazu; Oyama, Sachiko; Kondo, Akihiko

    2016-01-01

    A synthetic metabolic pathway suitable for the production of chorismate derivatives was designed in Escherichia coli. An L-phenylalanine-overproducing E. coli strain was engineered to enhance the availability of phosphoenolpyruvate (PEP), which is a key precursor in the biosynthesis of aromatic compounds in microbes. Two major reactions converting PEP to pyruvate were inactivated. Using this modified E.coli as a base strain, we tested our system by carrying out the production of salicylate, a high-demand aromatic chemical. The titer of salicylate reached 11.5 g/L in batch culture after 48 h cultivation in a 2-liter jar fermentor, and the yield from glucose as the sole carbon source exceeded 40% (mol/mol). In this test case, we found that pyruvate was synthesized primarily via salicylate formation and the reaction converting oxaloacetate to pyruvate. In order to demonstrate the generality of our designed strain, we employed this platform for the production of each of 7 different chorismate derivatives. Each of these industrially important chemicals was successfully produced to levels of 1-3g/L in test tube-scale culture. PMID:26654797

  2. Detection of five Shiga toxin-producing Escherichia coli genes with multiplex PCR.

    PubMed

    Son, Insook; Binet, Rachel; Maounounen-Laasri, Anna; Lin, Andrew; Hammack, Thomas S; Kase, Julie A

    2014-06-01

    Escherichia coli serogroup O157 is the pathogen most commonly associated with foodborne disease outbreaks, but epidemiological studies suggest that non-O157 Shiga toxin-producing E. coli (STEC) is a major player as well. The ten most clinically relevant STECs belong to serogroups O26, O103, O111, O145, O157, O91, O113, O128, O45, and O121; but emerging strains, such as O104:H4 that was identified with the 2011 German outbreak, could become more prevalent in the future. A 75-min conventional multiplex PCR assay, IS-5P, targeting the four virulence factors stx1, stx2, eae, and ehxA plus the O157:H7-specific +93 uidA single nucleotide polymorphism was developed to better assess the potential pathogenicity of STEC isolates. All 212 STEC DNAs showed one to five amplification products, while the non-E. coli DNA did not react to this multiplex PCR assay. Enrichment broths obtained from baby spinach, alfalfa sprouts, and cilantro artificially inoculated with O26, O103, and O121 STECs reacted positively to the multiplex assay. Unlike the current FDA BAM 5P PCR, designed for the specific detection of O157:H7, IS-5P will identify potentially harmful O157:H7 and non-O157 STECs so they can be removed from the nation's food supply. PMID:24549195

  3. Epidemiological factors associated with ESBL- and non ESBL-producing E. coli causing urinary tract infection in general practice.

    PubMed

    Hertz, Frederik Boëtius; Schønning, Kristian; Rasmussen, Steen Christian; Littauer, Pia; Knudsen, Jenny Dahl; Løbner-Olesen, Anders; Frimodt-Møller, Niels

    2016-01-01

    The purpose of the study was to evaluate how use of antibiotics precedes the presence of ESBL-producing E.coli in general practice. The authors performed a triple-case-control study where three case groups were individually compared to a single control group of uninfected individuals. Urine samples were prospectively collected and retrospective statistical analyses were done. This study included 98 cases with urinary tract infection (UTI) caused by ESBL-producing E. coli, 174 with antibiotic-resistant (non-ESBL) E. coli, 177 with susceptible E. coli and 200 with culture negative urine samples. Case groups had significantly higher use of antibiotics than the control group within 30 days before infection (p < 0.0001). The ESBL group had significantly more hospital admissions than the other case groups (p < 0.05). Hospital admission was an independent risk factor for community onset UTI by ESBL-producing E. coli. Exposure to antibiotics was a risk factor for UTI with E. coli, while prior antibiotic usage was not an indisputable predictor for infection with ESBL-producing E.coli in general practice. PMID:26523346

  4. Carriage of Escherichia coli Producing CTX-M-Type Extended-Spectrum β-Lactamase in Healthy Vietnamese Individuals.

    PubMed

    Bui, Thi Mai Huong; Hirai, Itaru; Ueda, Shuhei; Bui, Thi Kim Ngan; Hamamoto, Kouta; Toyosato, Takehiko; Le, Danh Tuyen; Yamamoto, Yoshimasa

    2015-10-01

    Healthy carriage of CTX-M-type extended-spectrum β-lactamase (ESBL)-producing Escherichia coli was examined by thrice collecting fecal samples from the same 199 healthy Vietnamese subjects every 6 months. Using pulsed-field gel electrophoresis (PFGE), identical PFGE patterns throughout the three samplings were not observed, although prevalence of E. coli in the subjects was around 50% in the three samplings. Our results suggested a short carriage period of the CTX-M-type ESBL-producing E. coli in healthy Vietnamese subjects. PMID:26195526

  5. PL3 Amidase, a Tailor-made Lysin Constructed by Domain Shuffling with Potent Killing Activity against Pneumococci and Related Species.

    PubMed

    Blázquez, Blas; Fresco-Taboada, Alba; Iglesias-Bexiga, Manuel; Menéndez, Margarita; García, Pedro

    2016-01-01

    that the structure/function-based domain shuffling approach is a successful method to construct tailor-made endolysins with higher bactericidal activities than their parental enzymes. PMID:27516758

  6. PL3 Amidase, a Tailor-made Lysin Constructed by Domain Shuffling with Potent Killing Activity against Pneumococci and Related Species

    PubMed Central

    Blázquez, Blas; Fresco-Taboada, Alba; Iglesias-Bexiga, Manuel; Menéndez, Margarita; García, Pedro

    2016-01-01

    that the structure/function-based domain shuffling approach is a successful method to construct tailor-made endolysins with higher bactericidal activities than their parental enzymes. PMID:27516758

  7. Six Novel O Genotypes from Shiga Toxin-Producing Escherichia coli.

    PubMed

    Iguchi, Atsushi; Iyoda, Sunao; Seto, Kazuko; Nishii, Hironobu; Ohnishi, Makoto; Mekata, Hirohisa; Ogura, Yoshitoshi; Hayashi, Tetsuya

    2016-01-01

    Serotyping is one of the typing techniques used to classify strains within the same species. O-serogroup diversification shows a strong association with the genetic diversity of O-antigen biosynthesis genes. In a previous study, based on the O-antigen biosynthesis gene cluster (O-AGC) sequences of 184 known Escherichia coli O serogroups (from O1 to O187), we developed a comprehensive and practical molecular O serogrouping (O genotyping) platform using a polymerase chain reaction (PCR) method, named E. coli O-genotyping PCR. Although, the validation assay using the PCR system showed that most of the tested strains were successfully classified into one of the O genotypes, it was impossible to classify 6.1% (35/575) of the strains, suggesting the presence of novel O genotypes. In this study, we conducted sequence analysis of O-AGCs from O-genotype untypeable Shiga toxin-producing E. coli (STEC) strains and identified six novel O genotypes; OgN1, OgN8, OgN9, OgN10, OgN12 and OgN31, with unique wzx and/or wzy O-antigen processing gene sequences. Additionally, to identify these novel O-genotypes, we designed specific PCR primers. A screen of O genotypes using O-genotype untypeable strains showed 13 STEC strains were classified into five novel O genotypes. The O genotyping at the molecular level of the O-AGC would aid in the characterization of E. coli isolates and will assist future studies in STEC epidemiology and phylogeny. PMID:27242776

  8. Six Novel O Genotypes from Shiga Toxin-Producing Escherichia coli

    PubMed Central

    Iguchi, Atsushi; Iyoda, Sunao; Seto, Kazuko; Nishii, Hironobu; Ohnishi, Makoto; Mekata, Hirohisa; Ogura, Yoshitoshi; Hayashi, Tetsuya

    2016-01-01

    Serotyping is one of the typing techniques used to classify strains within the same species. O-serogroup diversification shows a strong association with the genetic diversity of O-antigen biosynthesis genes. In a previous study, based on the O-antigen biosynthesis gene cluster (O-AGC) sequences of 184 known Escherichia coli O serogroups (from O1 to O187), we developed a comprehensive and practical molecular O serogrouping (O genotyping) platform using a polymerase chain reaction (PCR) method, named E. coli O-genotyping PCR. Although, the validation assay using the PCR system showed that most of the tested strains were successfully classified into one of the O genotypes, it was impossible to classify 6.1% (35/575) of the strains, suggesting the presence of novel O genotypes. In this study, we conducted sequence analysis of O-AGCs from O-genotype untypeable Shiga toxin-producing E. coli (STEC) strains and identified six novel O genotypes; OgN1, OgN8, OgN9, OgN10, OgN12 and OgN31, with unique wzx and/or wzy O-antigen processing gene sequences. Additionally, to identify these novel O-genotypes, we designed specific PCR primers. A screen of O genotypes using O-genotype untypeable strains showed 13 STEC strains were classified into five novel O genotypes. The O genotyping at the molecular level of the O-AGC would aid in the characterization of E. coli isolates and will assist future studies in STEC epidemiology and phylogeny. PMID:27242776

  9. Roasting coffee beans produces compounds that induce prophage lambda in E. coli and are mutagenic in E. coli and S. typhimurium.

    PubMed

    Kosugi, A; Nagao, M; Suwa, Y; Wakabayashi, K; Sugimura, T

    1983-03-01

    Freshly brewed blended coffee, instant coffee and instant caffeine-free coffee induced prophage lambda in lysogenic E. coli K12, strain GY5027. Because coffee prepared from green beans by the same extraction method as used for freshly brewed blended coffee had no prophage-inducing activity, this activity may be attributed to compounds produced in the roasting process. Roasting also produced compounds that were mutagenic in S. typhimurium TA100 and E. coli WP2 uvrA/pKM101. PMID:6220221

  10. Distribution, Numbers, and Diversity of ESBL-Producing E. coli in the Poultry Farm Environment

    PubMed Central

    Blaak, Hetty; van Hoek, Angela H. A. M.; Hamidjaja, Raditijo A.; van der Plaats, Rozemarijn Q. J.; Kerkhof-de Heer, Lianne; de Roda Husman, Ana Maria; Schets, Franciska M.

    2015-01-01

    This study aimed to discern the contribution of poultry farms to the contamination of the environment with ESBL-producing Escherichia coli and therewith, potentially to the spread of these bacteria to humans and other animals. ESBL-producing E. coli were detected at all investigated laying hen farms (n = 5) and broiler farms (n = 3) in 65% (46/71) and 81% (57/70) of poultry faeces samples, respectively. They were detected in rinse water and run-off water (21/26; 81%), other farm animals (11/14; 79%), dust (21/35; 60%), surface water adjacent to farms (20/35; 57%), soil (48/87; 55%), on flies (11/73; 15%), and in barn air (2/33; 6%). The highest prevalence and concentrations in the outdoor environment were observed in soil of free-range areas at laying hen farms (100% of samples positive, geometric mean concentration 2.4×104 cfu/kg), and surface waters adjacent to broiler farms during, or shortly after, cleaning between production rounds (91% of samples positive, geometric mean concentration 1.9×102 cfu/l). The diversity of ESBL-producing E. coli variants with respect to sequence type, phylogenetic group, ESBL-genotype and antibiotic resistance profile was high, especially on broiler farms where on average 16 different variants were detected, and the average Simpson’s Indices of diversity (SID; 1–D) were 0.93 and 0.94 among flock and environmental isolates respectively. At laying hen farms on average nine variants were detected, with SIDs of 0.63 (flock isolates) and 0.77 (environmental isolates). Sixty percent of environmental isolates were identical to flock isolates at the same farm. The highest proportions of ‘flock variants’ were observed in dust (94%), run-off gullies (82%), and barn air (67%), followed by surface water (57%), soil (56%), flies (50%) and other farm animals (35%).The introduction of ESBL-producing E. coli from poultry farms to the environment may pose a health risk if these bacteria reach places where people may become exposed. PMID

  11. Virulence Properties and Serotypes of Shiga Toxin-Producing Escherichia coli from Healthy Australian Cattle

    PubMed Central

    Hornitzky, Michael A.; Vanselow, Barbara A.; Walker, Keith; Bettelheim, Karl A.; Corney, Bruce; Gill, Paul; Bailey, Graham; Djordjevic, Steven P.

    2002-01-01

    The virulence properties and serotypes of complex Shiga toxin-producing Escherichia coli (cSTEC) were determined in two studies of healthy cattle in eastern Australia. In the first, a snapshot study, 84 cSTEC isolates were recovered from 37 of 1,692 (2.2%) fecal samples collected from slaughter-age cattle from 72 commercial properties. The second, a longitudinal study of three feedlots and five pasture beef properties, resulted in the recovery of 118 cSTEC isolates from 104 animals. Of the 70 serotypes identified, 38 had not previously been reported. PMID:12450875

  12. Inactivation of Escherichia coli ATCC 11775 in fresh produce using atmospheric pressure cold plasma

    NASA Astrophysics Data System (ADS)

    Bermudez-Aguirre, Daniela; Wemlinger, Erik; Barbosa-Canovas, Gustavo; Pedrow, Patrick; Garcia-Perez, Manuel

    2011-10-01

    Food-borne outbreaks are associated with the presence of pathogenic bacteria in food products such as fresh produce. One of the target microorganisms is Escherichia coli which exhibits resistance to being inactivated with conventional disinfection methods for vegetables. Atmospheric pressure cold plasma (APCP) was tested to disinfect three vegetables with challenge surfaces, lettuce, carrots and tomatoes. The produce was inoculated with the bacteria to reach an initial microbial concentration of 107 cfu/g. Vegetables were initially exposed to the APCP discharges from a needle array at 5.7 kV RMS in argon, processing times of 0.5, 3 and 5 min. Initial results indicate that microbial decontamination is effective on the lettuce (1.2 log reduction) when compared with other vegetables. To claim disinfection, a 3 log reduction or more is needed, which makes APCP treatment very promising technology for decontamination of produce. We propose that with method refinements full disinfection can be achieved using APCP.

  13. Validation of pepperoni process for control of Shiga toxin-producing Escherichia coli.

    PubMed

    Glass, Kathleen A; Kaspar, Charles W; Sindelar, Jeffrey J; Milkowski, Andrew L; Lotz, Brian M; Kang, Jihun; Faith, Nancy G; Enache, Elena; Kataoka, A I; Henry, Craig

    2012-05-01

    The objective of this study was to compare the survival of non-O157 Shiga toxin-producing Escherichia coli (STEC) with E. coli O157:H7 during pepperoni production. Pepperoni batter was inoculated with 7 log CFU/g of a seven-strain STEC mixture, including strains of serotypes O26, O45, O103, O111, O121, O145, and O157. Sausages were fermented to pH ≤4.8, heated at 53.3°C for 1 h, and dried for up to 20 days. STEC strains were enumerated at designated intervals on sorbitol MacConkey (SMAC) and Rainbow (RA) agars; enrichments were completed in modified EC (mEC) broth and nonselective tryptic soy broth (TSB). When plated on SMAC, total E. coli populations decreased 2.6 to 3.5 log after the 1-h heating step at 53.3°C, and a 4.9- to 5-log reduction was observed after 7 days of drying. RA was more sensitive in recovering survivors; log reductions on it were 1.9 to 2.6, 3.8 to 4.2, and 4.6 to 5.3 at the end of cook, and at day 7 and day 14 of drying, respectively. When numbers were less than the limit of detection by direct plating on days 14 and 20 of drying (representing a 5-log kill), no more than one of three samples in each experiment was positive by enrichment with mEC broth; however, STEC strains were recovered in TSB enrichment. Freezing the 7-day dried sausage for 2 to 3 weeks generated an additional 1- to 1.5-log kill. Confirmation by PCR revealed that O103 and O157 had the greatest survival during pepperoni productions, but all serotypes except O111 and O121 were occasionally recovered during drying. This study suggests that non-O157 STEC s trains have comparable or less ability than E. coli O157 to survive the processing steps involved in the manufacture of pepperoni. Processes suitable for control of E. coli O157 will similarly inactivate the other STEC strains tested in this study. PMID:22564931

  14. Emergence of Escherichia coli Sequence Type 131 Isolates Producing KPC-2 Carbapenemase in China

    PubMed Central

    Cai, Jia Chang; Zhang, Rong; Hu, Yan Yan; Zhou, Hong Wei

    2014-01-01

    Twenty-two KPC-2-producing Escherichia coli isolates were obtained from three hospitals in Hangzhou, China, from 2007 to 2011. One isolate, with OmpC porin deficiency, exhibited high-level carbapenem resistance. Pulsed-field gel electrophoresis showed that few isolates were indistinguishable or closely related. Multilocus sequence typing indicated that sequence type 131 (ST131) was the predominant type (9 isolates, 40.9%), followed by ST648 (5 isolates), ST405 (2 isolates), ST38 (2 isolates), and 4 single STs, ST69, ST2003, ST2179, and ST744. Phylogenetic analysis indicated that 9 group B2 isolates belonged to ST131, and 5 of 11 group D isolates belonged to ST648. Only one group B1 isolate and one group A isolate were identified. A representative plasmid (pE1) was partially sequenced, and a 7,788-bp DNA fragment encoding Tn3 transposase, Tn3 resolvase, ISKpn8 transposase, KPC-2, and ISKpn6-like transposase was obtained. The blaKPC-2-surrounding sequence was amplified by a series of primers. The PCR results showed that 13 isolates were consistent with the genetic environment in pE1. It is the first report of rapid emergence of KPC-2-producing E. coli ST131 in China. The blaKPC-2 gene of most isolates was located on a similar genetic structure. PMID:24323475

  15. Shiga Toxin-Producing Escherichia coli O157, England and Wales, 1983-2012.

    PubMed

    Adams, Natalie L; Byrne, Lisa; Smith, Geraldine A; Elson, Richard; Harris, John P; Salmon, Roland; Smith, Robert; O'Brien, Sarah J; Adak, Goutam K; Jenkins, Claire

    2016-04-01

    We evaluated clinical Shiga toxin-producing Escherichia coli O157 infections in England and Wales during 1983-2012 to describe changes in microbiological and surveillance methods. A strain replacement event was captured; phage type (PT) 2 decreased to account for just 3% of cases by 2012, whereas PT8 and PT21/28 strains concurrently emerged, constituting almost two thirds of cases by 2012. Despite interventions to control and reduce transmission, incidence remained constant. However, sources of infection changed over time; outbreaks caused by contaminated meat and milk declined, suggesting that interventions aimed at reducing meat cross-contamination were effective. Petting farm and school and nursery outbreaks increased, suggesting the emergence of other modes of transmission and potentially contributing to the sustained incidence over time. Studies assessing interventions and consideration of policies and guidance should be undertaken to reduce Shiga toxin-producing E. coli O157 infections in England and Wales in line with the latest epidemiologic findings. PMID:26982243

  16. Shiga Toxin–Producing Escherichia coli O157, England and Wales, 1983–2012

    PubMed Central

    Byrne, Lisa; Smith, Geraldine A.; Elson, Richard; Harris, John P.; Salmon, Roland; Smith, Robert; O’Brien, Sarah J.; Adak, Goutam K.; Jenkins, Claire

    2016-01-01

    We evaluated clinical Shiga toxin–producing Escherichia coli O157 infections in England and Wales during 1983–2012 to describe changes in microbiological and surveillance methods. A strain replacement event was captured; phage type (PT) 2 decreased to account for just 3% of cases by 2012, whereas PT8 and PT21/28 strains concurrently emerged, constituting almost two thirds of cases by 2012. Despite interventions to control and reduce transmission, incidence remained constant. However, sources of infection changed over time; outbreaks caused by contaminated meat and milk declined, suggesting that interventions aimed at reducing meat cross-contamination were effective. Petting farm and school and nursery outbreaks increased, suggesting the emergence of other modes of transmission and potentially contributing to the sustained incidence over time. Studies assessing interventions and consideration of policies and guidance should be undertaken to reduce Shiga toxin–producing E. coli O157 infections in England and Wales in line with the latest epidemiologic findings. PMID:26982243

  17. CTX-M-15-type extended-spectrum beta-lactamases-producing Escherichia coli from wild birds in Germany.

    PubMed

    Guenther, Sebastian; Grobbel, Mirjam; Beutlich, Janine; Bethe, Astrid; Friedrich, Nicole D; Goedecke, Andreas; Lübke-Becker, Antina; Guerra, Beatriz; Wieler, Lothar H; Ewers, Christa

    2010-10-01

    The isolation of Escherichia coli from wild birds in Germany revealed the occurrence of four CTX-M-15-producing strains from four different birds (2.3% of 172 isolates). CTX-M producers were recovered from two Eurasian Blackbirds, one Rock Pigeon and a Greater White-fronted Goose. All CTX-M-producing E. coli revealed a clonal relationship as determined by pulsed-field gel electrophoresis (PFGE) and were assigned to multilocus sequence type (ST) 648. Our findings suggest the emergence of a new clone with epidemiological importance and strengthen the role of wild bird species other than waterfowl as possible reservoirs of ESBL-producing Enterobacteriaceae. PMID:23766249

  18. Selective recovery by different culture methods of Shiga toxin-producing Escherichia coli genotypes from a major produce production region in California(Abstract)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The higher consumption of fresh fruits and vegetables in the United States has corresponded to an increase in the number of outbreaks. More than 45% of the leafy greens-associated outbreaks of Shiga toxin-producing Escherichia coli (STEC) O157:H7 have been linked to produce from California’s central...

  19. A new immunoassay for detecting all subtypes of Shiga toxins produced by Shiga toxin-producing E. coli in ground beef

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background Shiga toxin (Stx) is a common virulence factor of all Shiga toxin producing E. coli (STEC) that cause a wide spectrum of disease, including hemorrhagic colitis and hemolytic uremic syndrome (HUS). Although several commercial kits are available for detection of Stx produced by STEC, none o...

  20. Identification and characterization of microcin S, a new antibacterial peptide produced by probiotic Escherichia coli G3/10.

    PubMed

    Zschüttig, Anke; Zimmermann, Kurt; Blom, Jochen; Goesmann, Alexander; Pöhlmann, Christoph; Gunzer, Florian

    2012-01-01

    Escherichia coli G3/10 is a component of the probiotic drug Symbioflor 2. In an in vitro assay with human intestinal epithelial cells, E. coli G3/10 is capable of suppressing adherence of enteropathogenic E. coli E2348/69. In this study, we demonstrate that a completely novel class II microcin, produced by probiotic E. coli G3/10, is responsible for this behavior. We named this antibacterial peptide microcin S (MccS). Microcin S is coded on a 50.6 kb megaplasmid of E. coli G3/10, which we have completely sequenced and annotated. The microcin S operon is about 4.7 kb in size and is comprised of four genes. Subcloning of the genes and gene fragments followed by gene expression experiments enabled us to functionally characterize all members of this operon, and to clearly identify the nucleotide sequences encoding the microcin itself (mcsS), its transport apparatus and the gene mcsI conferring self immunity against microcin S. Overexpression of cloned mcsI antagonizes MccS activity, thus protecting indicator strain E. coli E2348/69 in the in vitro adherence assay. Moreover, growth of E. coli transformed with a plasmid containing mcsS under control of an araC PBAD activator-promoter is inhibited upon mcsS induction. Our data provide further mechanistic insight into the probiotic behavior of E. coli G3/10. PMID:22479389

  1. Diversity and relatedness of Shiga toxin-producing Escherichia coli and Campylobacter jejuni between farms in a dairy catchment.

    PubMed

    Irshad, H; Cookson, A L; Ross, C M; Jaros, P; Prattley, D J; Donnison, A; McBRIDE, G; Marshall, J; French, N P

    2016-05-01

    The aim of this study was to examine the population structure, transmission and spatial relationship between genotypes of Shiga toxin-producing Escherichia coli (STEC) and Campylobacter jejuni, on 20 dairy farms in a defined catchment. Pooled faecal samples (n = 72) obtained from 288 calves were analysed by real-time polymerase chain reaction (rtPCR) for E. coli serotypes O26, O103, O111, O145 and O157. The number of samples positive for E. coli O26 (30/72) was high compared to E. coli O103 (7/72), O145 (3/72), O157 (2/72) and O111 (0/72). Eighteen E. coli O26 and 53 C. jejuni isolates were recovered from samples by bacterial culture. E. coli O26 and C. jejuni isolates were genotyped using pulsed-field gel electrophoresis and multilocus sequence typing, respectively. All E. coli O26 isolates could be divided into four clusters and the results indicated that E. coli O26 isolates recovered from calves on the same farm were more similar than isolates recovered from different farms in the catchment. There were 11 different sequence types of C. jejuni isolated from the cattle and 22 from water. An analysis of the population structure of C. jejuni isolated from cattle provided evidence of clustering of genotypes within farms, and among groups of farms separated by road boundaries. PMID:26593403

  2. Identification and Characterization of Microcin S, a New Antibacterial Peptide Produced by Probiotic Escherichia coli G3/10

    PubMed Central

    Zschüttig, Anke; Zimmermann, Kurt; Blom, Jochen; Goesmann, Alexander; Pöhlmann, Christoph; Gunzer, Florian

    2012-01-01

    Escherichia coli G3/10 is a component of the probiotic drug Symbioflor 2. In an in vitro assay with human intestinal epithelial cells, E. coli G3/10 is capable of suppressing adherence of enteropathogenic E. coli E2348/69. In this study, we demonstrate that a completely novel class II microcin, produced by probiotic E. coli G3/10, is responsible for this behavior. We named this antibacterial peptide microcin S (MccS). Microcin S is coded on a 50.6 kb megaplasmid of E. coli G3/10, which we have completely sequenced and annotated. The microcin S operon is about 4.7 kb in size and is comprised of four genes. Subcloning of the genes and gene fragments followed by gene expression experiments enabled us to functionally characterize all members of this operon, and to clearly identify the nucleotide sequences encoding the microcin itself (mcsS), its transport apparatus and the gene mcsI conferring self immunity against microcin S. Overexpression of cloned mcsI antagonizes MccS activity, thus protecting indicator strain E. coli E2348/69 in the in vitro adherence assay. Moreover, growth of E. coli transformed with a plasmid containing mcsS under control of an araC PBAD activator-promoter is inhibited upon mcsS induction. Our data provide further mechanistic insight into the probiotic behavior of E. coli G3/10. PMID:22479389

  3. Characterization of Shiga Toxin Subtypes and Virulence Genes in Porcine Shiga Toxin-Producing Escherichia coli.

    PubMed

    Baranzoni, Gian Marco; Fratamico, Pina M; Gangiredla, Jayanthi; Patel, Isha; Bagi, Lori K; Delannoy, Sabine; Fach, Patrick; Boccia, Federica; Anastasio, Aniello; Pepe, Tiziana

    2016-01-01

    Similar to ruminants, swine have been shown to be a reservoir for Shiga toxin-producing Escherichia coli (STEC), and pork products have been linked with outbreaks associated with STEC O157 and O111:H-. STEC strains, isolated in a previous study from fecal samples of late-finisher pigs, belonged to a total of 56 serotypes, including O15:H27, O91:H14, and other serogroups previously associated with human illness. The isolates were tested by polymerase chain reaction (PCR) and a high-throughput real-time PCR system to determine the Shiga toxin (Stx) subtype and virulence-associated and putative virulence-associated genes they carried. Select STEC strains were further analyzed using a Minimal Signature E. coli Array Strip. As expected, stx 2e (81%) was the most common Stx variant, followed by stx 1a (14%), stx 2d (3%), and stx 1c (1%). The STEC serogroups that carried stx 2d were O15:H27, O159:H16 and O159:H-. Similar to stx 2a and stx 2c, the stx 2d variant is associated with development of hemorrhagic colitis and hemolytic uremic syndrome, and reports on the presence of this variant in STEC strains isolated from swine are lacking. Moreover, the genes encoding heat stable toxin (estIa) and enteroaggregative E. coli heat stable enterotoxin-1 (astA) were commonly found in 50 and 44% of isolates, respectively. The hemolysin genes, hlyA and ehxA, were both detected in 7% of the swine STEC strains. Although the eae gene was not found, other genes involved in host cell adhesion, including lpfAO113 and paa were detected in more than 50% of swine STEC strains, and a number of strains also carried iha, lpfAO26, lpfAO157, fedA, orfA, and orfB. The present work provides new insights on the distribution of virulence factors among swine STEC strains and shows that swine may carry Stx1a-, Stx2e-, or Stx2d-producing E. coli with virulence gene profiles associated with human infections. PMID:27148249

  4. Characterization of Shiga toxin subtypes and virulence genes in porcine Shiga toxin-producing Escherichia coli

    DOE PAGESBeta

    Baranzoni, Gian Marco; Fratamico, Pina M.; Gangiredla, Jayanthi; Patel, Isha; Bagi, Lori K.; Delannoy, Sabine; Fach, Patrick; Boccia, Federica; Anastasio, Aniello; Pepe, Tiziana

    2016-04-21

    Similar to ruminants, swine have been shown to be a reservoir for Shiga toxin-producing Escherichia coli (STEC), and pork products have been linked with outbreaks associated with STEC O157 and O111:H-. STEC strains, isolated in a previous study from fecal samples of late-finisher pigs, belonged to a total of 56 serotypes, including O15:H27, O91:H14, and other serogroups previously associated with human illness. The isolates were tested by polymerase chain reaction (PCR) and a high-throughput real-time PCR system to determine the Shiga toxin (Stx) subtype and virulence-associated and putative virulence-associated genes they carried. Select STEC strains were further analyzed using amore » Minimal Signature E. coli Array Strip. As expected, stx2e (81%) was the most common Stx variant, followed by stx1a (14%), stx2d (3%), and stx1c (1%). The STEC serogroups that carried stx2d were O15:H27, O159:H16 and O159:H-. Similar to stx2a and stx2c, the stx2d variant is associated with development of hemorrhagic colitis and hemolytic uremic syndrome, and reports on the presence of this variant in STEC strains isolated from swine are lacking. Moreover, the genes encoding heat stable toxin (estIa) and enteroaggregative E. coli heat stable enterotoxin-1 (astA) were commonly found in 50 and 44% of isolates, respectively. The hemolysin genes, hlyA and ehxA, were both detected in 7% of the swine STEC strains. Although the eae gene was not found, other genes involved in host cell adhesion, including lpfAO113 and paa were detected in more than 50% of swine STEC strains, and a number of strains also carried iha, lpfAO26, lpfAO157, fedA, orfA, and orfB. Furthermore, the present work provides new insights on the distribution of virulence factors among swine STEC strains and shows that swine may carry Stx1a-, Stx2e-, or Stx2d-producing E. coli with virulence gene profiles associated with human infections.« less

  5. Characterization of Shiga Toxin Subtypes and Virulence Genes in Porcine Shiga Toxin-Producing Escherichia coli

    PubMed Central

    Baranzoni, Gian Marco; Fratamico, Pina M.; Gangiredla, Jayanthi; Patel, Isha; Bagi, Lori K.; Delannoy, Sabine; Fach, Patrick; Boccia, Federica; Anastasio, Aniello; Pepe, Tiziana

    2016-01-01

    Similar to ruminants, swine have been shown to be a reservoir for Shiga toxin-producing Escherichia coli (STEC), and pork products have been linked with outbreaks associated with STEC O157 and O111:H-. STEC strains, isolated in a previous study from fecal samples of late-finisher pigs, belonged to a total of 56 serotypes, including O15:H27, O91:H14, and other serogroups previously associated with human illness. The isolates were tested by polymerase chain reaction (PCR) and a high-throughput real-time PCR system to determine the Shiga toxin (Stx) subtype and virulence-associated and putative virulence-associated genes they carried. Select STEC strains were further analyzed using a Minimal Signature E. coli Array Strip. As expected, stx2e (81%) was the most common Stx variant, followed by stx1a (14%), stx2d (3%), and stx1c (1%). The STEC serogroups that carried stx2d were O15:H27, O159:H16 and O159:H-. Similar to stx2a and stx2c, the stx2d variant is associated with development of hemorrhagic colitis and hemolytic uremic syndrome, and reports on the presence of this variant in STEC strains isolated from swine are lacking. Moreover, the genes encoding heat stable toxin (estIa) and enteroaggregative E. coli heat stable enterotoxin-1 (astA) were commonly found in 50 and 44% of isolates, respectively. The hemolysin genes, hlyA and ehxA, were both detected in 7% of the swine STEC strains. Although the eae gene was not found, other genes involved in host cell adhesion, including lpfAO113 and paa were detected in more than 50% of swine STEC strains, and a number of strains also carried iha, lpfAO26, lpfAO157, fedA, orfA, and orfB. The present work provides new insights on the distribution of virulence factors among swine STEC strains and shows that swine may carry Stx1a-, Stx2e-, or Stx2d-producing E. coli with virulence gene profiles associated with human infections. PMID:27148249

  6. Clonal spread and interspecies transmission of clinically relevant ESBL-producing Escherichia coli of ST410--another successful pandemic clone?

    PubMed

    Schaufler, Katharina; Semmler, Torsten; Wieler, Lothar H; Wöhrmann, Michael; Baddam, Ramani; Ahmed, Niyaz; Müller, Kerstin; Kola, Axel; Fruth, Angelika; Ewers, Christa; Guenther, Sebastian

    2016-01-01

    Clinically relevant extended-spectrum beta-lactamase (ESBL)-producing multi-resistant Escherichia coli have been on the rise for years. Initially restricted to mostly a clinical context, recent findings prove their prevalence in extraclinical settings independent of the original occurrence of antimicrobial resistance in the environment. To get further insights into the complex ecology of potentially clinically relevant ESBL-producing E. coli, 24 isolates from wild birds in Berlin, Germany, and 40 ESBL-producing human clinical E. coli isolates were comparatively analyzed. Isolates of ST410 occurred in both sample groups (six). In addition, three ESBL-producing E. coli isolates of ST410 from environmental dog feces and one clinical dog isolate were included. All 10 isolates were clonally analyzed showing almost identical macrorestriction patterns. They were chosen for whole-genome sequencing revealing that the whole-genome content of these 10 E. coli isolates showed a very high genetic similarity, differing by low numbers of single nucleotide polymorphisms only. This study gives initial evidence for a recent interspecies transmission of a new successful clone of ST410 E. coli between wildlife, humans, companion animals and the environment. The results underline the zoonotic potential of clinically relevant multi-resistant bacteria found in the environment as well as the mandatory nature of the 'One Health' approach. PMID:26656065

  7. Occurrence of Escherichia coli, Campylobcter, Salmonella and Shiga-Toxin Producing E. coli in Norwegian Primary Strawberry Production

    PubMed Central

    Johannessen, Gro S.; Eckner, Karl F.; Heiberg, Nina; Monshaugen, Marte; Begum, Mumtaz; Økland, Marianne; Høgåsen, Helga R.

    2015-01-01

    The aim of this study was to investigate the bacteriological quality of strawberries at harvest and to study risk factors such as irrigation water, soil and picker’s hand cleanliness. Four farms were visited during the harvest season in 2012. Samples of strawberries, irrigation water, soil and hand swabs were collected and analyzed for E. coli, Campylobacter, Salmonella and STEC Although fecal indicators and pathogens were found in environmental samples, only one of 80 samples of strawberries was positive for E. coli (1.0 log10 cfu/g) and pathogens were not detected in any of the strawberry samples. The water samples from all irrigation sources were contaminated with E. coli in numbers ranging from 0 to 3.3 log10 cfu/g. Campylobacter (8/16 samples) and Salmonella (1/16 samples) were isolated from samples with high numbers of E. coli. The water samples collected from a lake had lower numbers of E. coli than the samples from rivers and a stream. The present study indicated continuous background contamination in the primary production environment. Although the background contamination was not reflected on the strawberries tested here, the results must be interpreted with caution due to the limited number of samples. PMID:26090606

  8. Occurrence of Escherichia coli, Campylobcter, Salmonella and Shiga-Toxin Producing E. coli in Norwegian Primary Strawberry Production.

    PubMed

    Johannessen, Gro S; Eckner, Karl F; Heiberg, Nina; Monshaugen, Marte; Begum, Mumtaz; Økland, Marianne; Høgåsen, Helga R

    2015-06-01

    The aim of this study was to investigate the bacteriological quality of strawberries at harvest and to study risk factors such as irrigation water, soil and picker's hand cleanliness. Four farms were visited during the harvest season in 2012. Samples of strawberries, irrigation water, soil and hand swabs were collected and analyzed for E. coli, Campylobacter, Salmonella and STEC Although fecal indicators and pathogens were found in environmental samples, only one of 80 samples of strawberries was positive for E. coli (1.0 log10 cfu/g) and pathogens were not detected in any of the strawberry samples. The water samples from all irrigation sources were contaminated with E. coli in numbers ranging from 0 to 3.3 log10 cfu/g. Campylobacter (8/16 samples) and Salmonella (1/16 samples) were isolated from samples with high numbers of E. coli. The water samples collected from a lake had lower numbers of E. coli than the samples from rivers and a stream. The present study indicated continuous background contamination in the primary production environment. Although the background contamination was not reflected on the strawberries tested here, the results must be interpreted with caution due to the limited number of samples. PMID:26090606

  9. Prevalence of extended-spectrum β-lactamase-producing Escherichia coli on Bavarian dairy and beef cattle farms.

    PubMed

    Schmid, A; Hörmansdorfer, S; Messelhäusser, U; Käsbohrer, A; Sauter-Louis, C; Mansfeld, R

    2013-05-01

    Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli strains are believed to be widely distributed among humans and animals; however, to date, there are only few studies that support this assumption on a regional or countrywide scale. Therefore, a study was designed to assess the prevalence of ESBL-producing E. coli in dairy cows and beef cattle in the southern part of Bavaria, Germany. The study population included 30 mixed dairy and beef cattle farms and 15 beef cattle farms. Fecal samples, boot swabs, and dust samples were analyzed for ESBL-producing E. coli using selective media. PCR was performed to screen for CTX-M and ampC resistance genes. A total of 598 samples yielded 196 (32.8%) that contained ESBL-producing E. coli, originating from 39 (86.7%) of 45 farms. Samples obtained from mixed farms were significantly more likely to be ESBL-producing E. coli positive than samples from beef cattle farms (fecal samples, P < 0.001; boot swabs, P = 0.014; and dust samples, P = 0.041). A total of 183 isolates (93.4%) of 196 ESBL-producing E. coli-positive strains harbored CTX-M genes, CTX-M group 1 being the most frequently found group. Forty-six additional isolates contained ampC genes, and 5 of the 46 isolates expressed a blaCMY-2 gene. The study shows that ESBL-producing E. coli strains are commonly found on Bavarian dairy and beef cattle farms. Moreover, to our knowledge, this is the first report of the occurrence of blaCMY-2 in cattle in Germany. PMID:23455336

  10. Whole genome sequencing of diverse Shiga toxin-producing and non-producing Escherichia coli strains reveals a variety of virulence and novel antibiotic resistance plasmids.

    PubMed

    Losada, Liliana; DebRoy, Chitrita; Radune, Diana; Kim, Maria; Sanka, Ravi; Brinkac, Lauren; Kariyawasam, Subhashinie; Shelton, Daniel; Fratamico, Pina M; Kapur, Vivek; Feng, Peter C H

    2016-01-01

    The genomes of a diverse set of Escherichia coli, including many Shiga toxin-producing strains of various serotypes were determined. A total of 39 plasmids were identified among these strains, and many carried virulence or putative virulence genes of Shiga toxin-producing E. coli strains, virulence genes for other pathogenic E. coli groups, and some had combinations of these genes. Among the novel plasmids identified were eight that carried resistance genes to aminoglycosides, carbapenems, penicillins, cephalosporins, chloramphenicol, dihydrofolate reductase inhibitors, sulfonamides, tetracyclines and resistance to heavy metals. Two of the plasmids carried six of these resistance genes and two novel IncHI2 plasmids were also identified. The results of this study showed that plasmids carrying diverse resistance and virulence genes of various pathogenic E. coli groups can be found in E. coli strains and serotypes regardless of the isolate's source and therefore, is consistent with the premise that these mobile elements carrying these traits may be broadly disseminated among E. coli. PMID:26746359

  11. Comparative Genomics and stx Phage Characterization of LEE-Negative Shiga Toxin-Producing Escherichia coli

    PubMed Central

    Steyert, Susan R.; Sahl, Jason W.; Fraser, Claire M.; Teel, Louise D.; Scheutz, Flemming; Rasko, David A.

    2012-01-01

    Infection by Escherichia coli and Shigella species are among the leading causes of death due to diarrheal disease in the world. Shiga toxin-producing E. coli (STEC) that do not encode the locus of enterocyte effacement (LEE-negative STEC) often possess Shiga toxin gene variants and have been isolated from humans and a variety of animal sources. In this study, we compare the genomes of nine LEE-negative STEC harboring various stx alleles with four complete reference LEE-positive STEC isolates. Compared to a representative collection of prototype E. coli and Shigella isolates representing each of the pathotypes, the whole genome phylogeny demonstrated that these isolates are diverse. Whole genome comparative analysis of the 13 genomes revealed that in addition to the absence of the LEE pathogenicity island, phage-encoded genes including non-LEE encoded effectors, were absent from all nine LEE-negative STEC genomes. Several plasmid-encoded virulence factors reportedly identified in LEE-negative STEC isolates were identified in only a subset of the nine LEE-negative isolates further confirming the diversity of this group. In combination with whole genome analysis, we characterized the lambdoid phages harboring the various stx alleles and determined their genomic insertion sites. Although the integrase gene sequence corresponded with genomic location, it was not correlated with stx variant, further highlighting the mosaic nature of these phages. The transcription of these phages in different genomic backgrounds was examined. Expression of the Shiga toxin genes, stx1 and/or stx2, as well as the Q genes, were examined with quantitative reverse transcriptase polymerase chain reaction assays. A wide range of basal and induced toxin induction was observed. Overall, this is a first significant foray into the genome space of this unexplored group of emerging and divergent pathogens. PMID:23162798

  12. Genotypes and phenotypes of Shiga toxin-producing Escherichia coli (STEC) in Abeokuta, Southwestern Nigeria

    PubMed Central

    Olowe, Olugbenga Adekunle; Aboderin, Bukola W; Idris, Olayinka O; Mabayoje, Victor O; Opaleye, Oluyinka O; Adekunle, O Catherine; Olowe, Rita Ayanbolade; Akinduti, Paul Akinniyi; Ojurongbe, Olusola

    2014-01-01

    Purpose To characterize the prevalence of hemolytic Shiga toxin-producing Escherichia coli (STEC) with a multidrug-resistant pattern in different age groups in Abeokuta, Nigeria. Methods Nonrepetitive E. coli isolates were collected from 202 subjects with or without evidence of diarrhea. Each isolate was biochemically identified and antimicrobial susceptibility testing was performed using the disk diffusion method. A sorbitol fermentation test of all the E. coli isolates was done and the minimum inhibitory concentration of suspected STEC was measured by the standard broth microdilution method to determine antibiotic resistance. The genotypes of stx1, stx2, and hlyA were determined by polymerase chain reaction assay. Results The majority of subjects were aged ≥40 years (41.6%) and were female (61.9%). Of the 202 subjects, 86.1% had STEC isolates (P<0.05). A high rate of STEC isolates resistant to amoxicillin (90.6%), cefotaxime (77.7%), and cefuroxime (75.7%) was observed. Resistance to amoxicillin, gentamicin, and cefotaxime was demonstrated with a minimum inhibitory concentration >16 μg/mL in 13.9%, 11.4%, and 10.4% of the isolates, respectively. The prevalence of stx1, stx2, and hlyA was 13.9%, 6.9%, and 2.0%, respectively; 5.5% of stx1 were in the 0–10-year-old age group, 3.5% of stx2 were aged ≥40 and above, and 1.0% of the hlyA isolates were in the 0–10-year-old age group. Conclusion The prevalence of virulent STEC is a public health concern. The use of polymerase chain reaction assay should aid quick detection of this virulent serotype and help curb the severe epidemic of human diseases associated with STEC infections. PMID:25342913

  13. Phylogenetic and Molecular Analysis of Food-Borne Shiga Toxin-Producing Escherichia coli

    PubMed Central

    Hauser, Elisabeth; Mellmann, Alexander; Semmler, Torsten; Stoeber, Helen; Wieler, Lothar H.; Karch, Helge; Kuebler, Nikole; Fruth, Angelika; Harmsen, Dag; Weniger, Thomas; Tietze, Erhard

    2013-01-01

    Seventy-five food-associated Shiga toxin-producing Escherichia coli (STEC) strains were analyzed by molecular and phylogenetic methods to describe their pathogenic potential. The presence of the locus of proteolysis activity (LPA), the chromosomal pathogenicity island (PAI) PAI ICL3, and the autotransporter-encoding gene sabA was examined by PCR. Furthermore, the occupation of the chromosomal integration sites of the locus of enterocyte effacement (LEE), selC, pheU, and pheV, as well as the Stx phage integration sites yehV, yecE, wrbA, z2577, and ssrA, was analyzed. Moreover, the antibiotic resistance phenotypes of all STEC strains were determined. Multilocus sequence typing (MLST) was performed, and sequence types (STs) and sequence type complexes (STCs) were compared with those of 42 hemolytic-uremic syndrome (HUS)-associated enterohemorrhagic E. coli (HUSEC) strains. Besides 59 STs and 4 STCs, three larger clusters were defined in this strain collection. Clusters A and C consist mostly of highly pathogenic eae-positive HUSEC strains and some related food-borne STEC strains. A member of a new O26 HUS-associated clone and the 2011 outbreak strain E. coli O104:H4 were found in cluster A. Cluster B comprises only eae-negative food-borne STEC strains as well as mainly eae-negative HUSEC strains. Although food-borne strains of cluster B were not clearly associated with disease, serotypes of important pathogens, such as O91:H21 and O113:H21, were in this cluster and closely related to the food-borne strains. Clonal analysis demonstrated eight closely related genetic groups of food-borne STEC and HUSEC strains that shared the same ST and were similar in their virulence gene composition. These groups should be considered with respect to their potential for human infection. PMID:23417002

  14. Phylogenetic and molecular analysis of food-borne shiga toxin-producing Escherichia coli.

    PubMed

    Hauser, Elisabeth; Mellmann, Alexander; Semmler, Torsten; Stoeber, Helen; Wieler, Lothar H; Karch, Helge; Kuebler, Nikole; Fruth, Angelika; Harmsen, Dag; Weniger, Thomas; Tietze, Erhard; Schmidt, Herbert

    2013-04-01

    Seventy-five food-associated Shiga toxin-producing Escherichia coli (STEC) strains were analyzed by molecular and phylogenetic methods to describe their pathogenic potential. The presence of the locus of proteolysis activity (LPA), the chromosomal pathogenicity island (PAI) PAI ICL3, and the autotransporter-encoding gene sabA was examined by PCR. Furthermore, the occupation of the chromosomal integration sites of the locus of enterocyte effacement (LEE), selC, pheU, and pheV, as well as the Stx phage integration sites yehV, yecE, wrbA, z2577, and ssrA, was analyzed. Moreover, the antibiotic resistance phenotypes of all STEC strains were determined. Multilocus sequence typing (MLST) was performed, and sequence types (STs) and sequence type complexes (STCs) were compared with those of 42 hemolytic-uremic syndrome (HUS)-associated enterohemorrhagic E. coli (HUSEC) strains. Besides 59 STs and 4 STCs, three larger clusters were defined in this strain collection. Clusters A and C consist mostly of highly pathogenic eae-positive HUSEC strains and some related food-borne STEC strains. A member of a new O26 HUS-associated clone and the 2011 outbreak strain E. coli O104:H4 were found in cluster A. Cluster B comprises only eae-negative food-borne STEC strains as well as mainly eae-negative HUSEC strains. Although food-borne strains of cluster B were not clearly associated with disease, serotypes of important pathogens, such as O91:H21 and O113:H21, were in this cluster and closely related to the food-borne strains. Clonal analysis demonstrated eight closely related genetic groups of food-borne STEC and HUSEC strains that shared the same ST and were similar in their virulence gene composition. These groups should be considered with respect to their potential for human infection. PMID:23417002

  15. A longitudinal study of Vero cytotoxin producing Escherichia coli in cattle calves in Sri Lanka.

    PubMed Central

    Tokhi, A. M.; Peiris, J. S.; Scotland, S. M.; Willshaw, G. A.; Smith, H. R.; Cheasty, T.

    1993-01-01

    Two cohorts of 10 and 16 calves were followed at weekly or fortnightly intervals from 4-28 and 1-9 weeks respectively to determine whether natural infection by Vero cytotoxin (VT) producing Escherichia coli (VTEC) occurred. Ninety-one of 171 (53%) faecal specimens were VTEC positive and 20-80% of animals at any given time excreted VTEC. Of 104 VTEC strains studied further, 6 different serogroups (O 22.H16; O 25.H5; O 49.H-; O 86.H26; O 88.H25; O 153.H12) and an untypable strain (O? .H21) were identified. All strains belonging to the same serotype had identical profiles of reactivity with DNA probes to toxins VT1 or 2, LTI or II and a probe (CVD419) derived from a plasmid carried by enterohaemorrhagic Escherichia coli O 157.H7. Four of these serotypes were found in the faecal flora of the calves, taken as a group, throughout the 4-month study period. Sixty percent of the strains hybridized with the probe for VT1, 4% with the probe for VT2, and 36% with both probes. Faecal VTEC were significantly associated with overt diarrhoeal illness in animals < 10 weeks of age, but no characteristic profile of markers (serotype or hybridization pattern) in E. coli isolates was associated with diarrhoea. A serological response to VT1 was detected in some animals, but faecal VT1 VTEC excretion persisted in spite of seroconversion. VT1 seroconversion was not associated with diarrhoea. A serological response to VT2 was not detected even in those animals excreting VT2 VTEC in the faeces. PMID:8472764

  16. 2′-Deoxyribonolactone lesion produces G→A transitions in Escherichia coli

    PubMed Central

    Faure, Virginie; Constant, Jean-François; Dumy, Pascal; Saparbaev, Murat

    2004-01-01

    2′-Deoxyribonolactone (dL) is a C1′-oxidized abasic site damage generated by a radical attack on DNA. Numerous genotoxic agents have been shown to produce dL including UV and γ-irradiation, ene-dye antibiotics etc. At present the biological consequences of dL present in DNA have been poorly documented, mainly due to the lack of method for introducing the lesion in oligonucleotides. We have recently designed a synthesis of dL which allowed investigation of the mutagenicity of dL in Escherichia coli by using a genetic reversion assay. The lesion was site-specifically incorporated in a double-stranded bacteriophage vector M13G*1, which detects single-base-pair substitutions at position 141 of the lacZα gene by a change in plaque color. In E.coli JM105 the dL-induced reversion frequency was 4.7 × 10–5, similar to that of the classic abasic site 2′-deoxyribose (dR). Here we report that a dL residue in a duplex DNA codes mainly for thymidine. The processing of dL in vivo was investigated by measuring lesion-induced mutation frequencies in DNA repair deficient E.coli strains. We showed a 32-fold increase in dL-induced reversion rate in AP endonuclease deficient (xth nfo) mutant compared with wild-type strain, indicating that the Xth and Nfo AP endonucleases participate in dL repair in vivo. PMID:15159441

  17. Shiga Toxin-Producing Escherichia coli O104:H4: a New Challenge for Microbiology

    PubMed Central

    Muniesa, Maite; Hammerl, Jens A.; Hertwig, Stefan; Appel, Bernd

    2012-01-01

    In 2011, Germany experienced the largest outbreak with a Shiga toxin-producing Escherichia coli (STEC) strain ever recorded. A series of environmental and trace-back and trace-forward investigations linked sprout consumption with the disease, but fecal-oral transmission was also documented. The genome sequences of the pathogen revealed a clonal outbreak with enteroaggregative E. coli (EAEC). Some EAEC virulence factors are carried on the virulence plasmid pAA. From an unknown source, the epidemic strains acquired a lambdoid prophage carrying the gene for the Shiga toxin. The resulting strains therefore possess two different mobile elements, a phage and a plasmid, contributing essential virulence genes. Shiga toxin is released by decaying bacteria in the gut, migrates through the intestinal barrier, and is transported via the blood to target organs, like the kidney. In a mouse model, probiotic bifidobacteria interfered with transport of the toxin through the gut mucosa. Researchers explored bacteriophages, bacteriocins, and low-molecular-weight inhibitors against STEC. Randomized controlled clinical trials of enterohemorrhagic E. coli (EHEC)-associated hemolytic uremic syndrome (HUS) patients found none of the interventions superior to supportive therapy alone. Antibodies against one subtype of Shiga toxin protected pigs against fatal neurological infection, while treatment with a toxin receptor decoy showed no effect in a clinical trial. Likewise, a monoclonal antibody directed against a complement protein led to mixed results. Plasma exchange and IgG immunoadsoprtion ameliorated the condition in small uncontrolled trials. The epidemic O104:H4 strains were resistant to all penicillins and cephalosporins but susceptible to carbapenems, which were recommended for treatment. PMID:22504816

  18. Draft Genome Sequence of Escherichia coli Strain VKPM B-10182, Producing the Enzyme for Synthesis of Cephalosporin Acids

    PubMed Central

    Mardanov, Andrey V.; Eldarov, Mikhail A.; Sklyarenko, Anna V.; Dumina, Maria V.; Beletsky, Alexey V.; Yarotsky, Sergey V.

    2014-01-01

    Escherichia coli strain VKPM B-10182, obtained by chemical mutagenesis from E. coli strain ATCC 9637, produces cephalosporin acid synthetase employed in the synthesis of β-lactam antibiotics, such as cefazolin. The draft genome sequence of strain VKPM B-10182 revealed 32 indels and 1,780 point mutations that might account for the improvement in antibiotic synthesis that we observed. PMID:25414512

  19. Extended-Spectrum Beta-Lactamases Producing E. coli in Wildlife, yet Another Form of Environmental Pollution?

    PubMed Central

    Guenther, Sebastian; Ewers, Christa; Wieler, Lothar H.

    2011-01-01

    Wildlife is normally not exposed to clinically used antimicrobial agents but can acquire antimicrobial resistant bacteria through contact with humans, domesticated animals and the environment, where water polluted with feces seems to be the most important vector. Escherichia coli, an ubiquitous commensal bacterial species colonizing the intestinal tract of mammals and birds, is also found in the environment. Extended-spectrum beta-lactamases producing E. coli (ESBL-E. coli) represent a major problem in human and veterinary medicine, particular in nosocomial infections. Additionally an onset of community-acquired ESBL-E. coli infections and an emergence in livestock farming has been observed in recent years, suggesting a successful transmission as well as persistence of ESBL-E. coli strains outside clinical settings. Another parallel worldwide phenomenon is the spread of ESBL-E. coli into the environment beyond human and domesticated animal populations, and this seems to be directly influenced by antibiotic practice. This might be a collateral consequence of the community-onset of ESBL-E. coli infections but can result (a) in a subsequent colonization of wild animal populations which can turn into an infectious source or even a reservoir of ESBL-E. coli, (b) in a contribution of wildlife to the spread and transmission of ESBL-E. coli into fragile environmental niches, (c) in new putative infection cycles between wildlife, domesticated animals and humans, and (d) in problems in the medical treatment of wildlife. This review aims to summarize the current knowledge on ESBL-E. coli in wildlife, in turn underlining the need for more large scale investigations, in particular sentinel studies to monitor the impact of multiresistant bacteria on wildlife. PMID:22203818

  20. Purification and characterization of a Shigella conjugate vaccine, produced by glycoengineering Escherichia coli.

    PubMed

    Ravenscroft, Neil; Haeuptle, Micha A; Kowarik, Michael; Fernandez, Fabiana S; Carranza, Paula; Brunner, Andreas; Steffen, Michael; Wetter, Michael; Keller, Sacha; Ruch, Corina; Wacker, Michael

    2016-01-01

    Shigellosis remains a major cause of diarrheal disease in developing countries and causes substantial morbidity and mortality in children. Glycoconjugate vaccines consisting of bacterial surface polysaccharides conjugated to carrier proteins are the most effective vaccines for controlling invasive bacterial infections. Nevertheless, the development of a multivalent conjugate vaccine to prevent Shigellosis has been hampered by the complex manufacturing process as the surface polysaccharide for each strain requires extraction, hydrolysis, chemical activation and conjugation to a carrier protein. The use of an innovative biosynthetic Escherichia coli glycosylation system substantially simplifies the production of glycoconjugates. Herein, the Shigella dysenteriae type 1 (Sd1) O-polysaccharide is expressed and its functional assembly on an E. coli glycosyl carrier lipid is demonstrated by HPLC analysis and mass spectrometry. The polysaccharide is enzymatically conjugated to specific asparagine residues of the carrier protein by co-expression of the PglB oligosaccharyltransferase and the carrier protein exotoxin A (EPA) from Pseudomonas aeruginosa. The extraction and purification of the Shigella glycoconjugate (Sd1-EPA) and its detailed characterization by the use of physicochemical methods including NMR and mass spectrometry is described. The report shows for the first time that bioconjugation provides a newly developed and improved approach to produce an Sd1 glycoconjugate that can be characterized using state-of-the-art techniques. In addition, this generic process together with the analytical methods is ideally suited for the production of additional Shigella serotypes, allowing the development of a multivalent Shigella vaccine. PMID:26353918

  1. Shiga Toxin-Producing Escherichia Coli Isolated From Lettuce Samples in Tehran, Iran

    PubMed Central

    Mazaheri, Somayeh; Salmanzadeh Ahrabi, Siavosh; Aslani, Mohammad Mahdi

    2014-01-01

    Background: During the last decade, the prevalence of foodborne diseases due to contaminated food as well as the outbreaks of diseases due to Shiga toxin-producing Escherichia coli (STEC) strains has increased. Objectives: The aim of this study was to evaluate the prevalence and antibiotic resistance pattern of STEC strains in lettuce samples. Since lettuce is used as a raw vegetable in salads, the rates of infections caused by this vegetable are high. Materials and Methods: A total of 100 samples collected from Tehran, Iran, were transported to the laboratory, homogenized by a stomacher in E. coli broth containing cefixime, and cultured on MacConkey agar medium. Their DNA was extracted by boiling method and polymerase chain reaction (PCR) was performed, using five primers targeting the stx1, stx2, fliCh7, rbfO157, and eaeA genes. Susceptibility testing against ampicillin, imipenem, cephalosporin, tetracycline, aminoglycosides, chloramphenicol and quinolones was performed using disk diffusion method. Results: Eight samples were positive for presence of STEC strains, three contained stx1, five contained stx2, and one sample was positive for presence of both rbfO157 and fliCh7. They were susceptible to all the antibiotics except for ampicillin and tetracycline. Conclusions: This study indicated the contamination of lettuce by STEC strains and its possible role as the source of infection. Resistance to both tetracycline and ampicillin may be considered as an emergency alarm for a multidrug resistance of STEC strains. PMID:25774272

  2. Tailor-made Au@Ag core-shell nanoparticle 2D arrays on protein-coated graphene oxide with assembly enhanced antibacterial activity

    NASA Astrophysics Data System (ADS)

    Wang, Huiqiao; Liu, Jinbin; Wu, Xuan; Tong, Zhonghua; Deng, Zhaoxiang

    2013-05-01

    Water-dispersible two-dimensional (2D) assemblies of Au@Ag core-shell nanoparticles are obtained through a highly selective electroless silver deposition on pre-assembled gold nanoparticles on bovine serum albumin (BSA)-coated graphene oxide (BSA-GO). While neither BSA-GO nor AuNP-decorated BSA-GO shows any antibacterial ability, the silver-coated GO@Au nanosheets (namely GO@Au@Ag) exhibit an enhanced antibacterial activity against Gram-negative Escherichia coli (E. coli) bacteria, superior to unassembled Au@Ag nanoparticles and even ionic Ag. Such an improvement may be attributed to the increased local concentration of silver nanoparticles around a bacterium and a polyvalent interaction with the bacterial surface. In addition, the colloidal stability of this novel nano-antimicrobial against the formation of random nanoparticle aggregates guarantees a minimized activity loss of the Au@Ag nanoparticles. The antibacterial efficacy of GO@Au@Ag is less sensitive to the existence of Cl-, in comparison with silver ions, providing another advantage for wound dressing applications. Our research unambiguously reveals a strong and very specific interaction between the GO@Au@Ag nanoassembly and E. coli, which could be an important clue toward a rational design, synthesis and assembly of innovative and highly active antibacterial nanomaterials.

  3. Characterization of Shiga toxin – producing Escherichia coli infections in beef feeder calves and the effectiveness of a prebiotic in alleviating Shiga toxin - producing Escherichia coli infections

    PubMed Central

    2013-01-01

    Background In the less-sensitive mouse model, Shiga toxin-producing Escherichia coli (STEC) challenges result in shedding that reflect the amount of infection and the expression of virulence factors such as Shiga toxins (Stx). The purpose of this study was to characterize the contribution of STEC diversity and Stx expression to shedding in beef feeder calves and to evaluate the effectiveness of a prebiotic, Celmanax®, to alleviate STEC shedding. Fecal samples were collected from calves at entry and after 35 days in the feedlot in spring and summer. STECs were evaluated using selective media, biochemical profile, serotyping and Stx detection. Statistical analysis was performed using repeated measures ANOVA and logistic regression. Results At entry, non-O157 STEC were dominant in shedding calves. In spring, 21%, 14% and 14% of calves acquired O157, non-O157 and mixed STEC infections, respectively. In contrast, 45%, 48% and 46% of calves in summer acquired O157, non-O157 and mixed STEC infections, respectively. Treatment with a prebiotic, Celmanax®, in spring significantly reduced 50% of the O157 STEC infections, 50% of the non-O157 STEC infections and 36% of the STEC co-infections (P = 0.037). In summer, there was no significant effect of the prebiotic on STEC infections. The amount of shedding at entry was significantly related to the number and type of STECs present and Stx expression (r2 = 0.82). The same relationship was found for shedding at day 35 (r2 = 0.85), but it was also related to the number and type of STECs present at entry. Stx - producing STEC infections resulted in 100 to 1000 × higher shedding in calves compared with Stx-negative STECs. Conclusions STEC infections in beef feeder calves reflect the number and type of STECs involved in the infection and STEC expression of Stx. Application of Celmanax® reduced O157 and non-O157 STEC shedding by calves but further research is required to determine appropriate dosages to manage STEC

  4. Risk Factors for Sporadic Shiga Toxin–producing Escherichia coli Infections in Children, Argentina1

    PubMed Central

    Rivas, Marta; Sosa-Estani, Sergio; Rangel, Josefa; Caletti, Maria G.; Vallés, Patricia; Roldán, Carlos D.; Balbi, Laura; Marsano de Mollar, Maria C.; Amoedo, Diego; Miliwebsky, Elizabeth; Chinen, Isabel; Hoekstra, Robert M.; Mead, Paul

    2008-01-01

    We evaluated risk factors for sporadic Shiga toxin–producing Escherichia coli (STEC) infection among children in Argentina. We conducted a prospective case–control study in 2 sites and enrolled 150 case-patients and 299 controls. The median age of case-patients was 1.8 years; 58% were girls. Serotype O157:H7 was the most commonly isolated STEC. Exposures associated with infection included eating undercooked beef, living in or visiting a place with farm animals, and contact with a child <5 years of age with diarrhea. Protective factors included the respondent reporting that he or she always washed hands after handling raw beef and the child eating more than the median number of fruits and vegetables. Many STEC infections in children could be prevented by avoiding consumption of undercooked beef, limiting exposure to farm animals and their environment, not being exposed to children with diarrhea, and washing hands after handling raw beef. PMID:18439359

  5. Emergence of KPC-2-producing Escherichia coli isolates in an urban river in Harbin, China.

    PubMed

    Xu, Guofeng; Jiang, Yue; An, Wei; Wang, Hongdong; Zhang, Xiuying

    2015-09-01

    Three KPC-2-producing Escherichia coli (E1, E2, and E3) were recovered from water samples of an urban river in the city of Harbin, China. Antimicrobial susceptibility was determined by broth microdilution. Molecular characterization and genetic relatedness of the isolates were determined by polymerase chain reaction (PCR), pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST) and PCR-directed phylotyping. Plasmids were analyzed by conjugation, S1-PFGE, Southern blotting and PCR-based replicon typing (PBRT). The genetic environment of the bla KPC-2 gene was determined using PCR and sequencing. PCR analyses revealed that the E1 isolate carried the bla KPC-2, bla CMY-2, bla TEM-1, bla CTX-M-14, and qnrB2 genes and belonged to sequence type ST410, phylogenetic type A; the E2 isolate was assigned to ST131-B2 and carried the bla KPC-2, bla TEM-1, bla CTX-M-3, bla DHA-1, aac(6')-Ib-cr, and qnrS1 genes; while the E3 isolate was of ST648-D and possessed bla KPC-2, bla TEM-1, bla OXA-1, bla CTX-M-15, armA, and aac(6')-Ib-cr genes. PFGE demonstrated that each of the three KPC-2-producing E. coli isolates exhibited an individual XbaI patterns. The bla KPC-2 gene was located on plasmids of 60-140 kb with IncA/C, IncN, or non-typeable replicon types. The genetic environment of bla KPC-2 of the three strains was consistent with the genetic structure of bla KPC-2 on the plasmid pKP048. PMID:26149956

  6. Real-time isothermal detection of Shiga toxin-producing Escherichia coli using recombinase polymerase amplification.

    PubMed

    Murinda, Shelton E; Ibekwe, A Mark; Zulkaffly, Syaizul; Cruz, Andrew; Park, Stanley; Razak, Nur; Paudzai, Farah Md; Ab Samad, Liana; Baquir, Khairul; Muthaiyah, Kokilah; Santiago, Brenna; Rusli, Amirul; Balkcom, Sean

    2014-07-01

    Shiga toxin-producing Escherichia coli (STEC) are a major family of foodborne pathogens of public health, zoonotic, and economic significance in the United States and worldwide. To date, there are no published reports on use of recombinase polymerase amplification (RPA) for STEC detection. The primary goal of this study was to assess the potential application of RPA in detection of STEC. This study focused on designing and evaluating RPA primers and fluorescent probes for isothermal (39°C) detection of STEC. Compatible sets of candidate primers and probes were designed for detection of Shiga toxin 1 and 2 (Stx1 and 2), respectively. The sets were evaluated for specificity and sensitivity against STEC (n=12) of various stx genotypes (stx1/stx2, stx1, or stx2, respectively), including non-Stx-producing E. coli (n=28) and other genera (n=7). The primers and probes that were designed targeted amplification of the subunit A moiety of stx1 and stx2. The assay detected STEC in real time (within 5-10 min at 39°C) with high sensitivity (93.5% vs. 90%; stx1 vs. stx2), specificity (99.1% vs. 100%; stx1 vs. stx2), and predictive value (97.9% for both stx1 vs. stx2). Limits of detection of ∼ 5-50 colony-forming units/mL were achieved in serially diluted cultures grown in brain heart infusion broth. This study successfully demonstrated for the first time that RPA can be used for isothermal real-time detection of STEC. PMID:24749488

  7. EMERGENCY ROOM: AN UNRECOGNIZED SOURCE OF EXTENDED-SPECTRUM β-LACTAMASE PRODUCING ESCHERICHIA COLI AND KLEBSIELLA PNEUMONIAE.

    PubMed

    Pornsinchai, Pornsook; Chongtrakool, Piriyaporn; Diraphat, Pornphan; Siripanichgon, Kanokrat; Malathum, Kumthorn

    2015-01-01

    Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae are the leading causes of hospital-associated infections, but community-acquired cases are increasingly being reported. This study determined the prevalence of ESBL-producing E. coli and K. pneumoniae carriers, their bla genes and risk factors of 452 patients admitted to the emergency room (ER) of Ramathibodi Hospital, Mahidol University, Bangkok, Thailand between April and August 2011. Prevalence of ESBL-producing E. coli and K. pneumoniae from rectal swabs was 16.5% and 1.0%, respectively. Factors associated with ESBL-producing carriers were a previous history of hospital admission (p = 0.001) and visits to health care facilities (p = 0.002) during the previous 3 months. All ESBL-producing isolates were susceptible to imipenem, meropenem and ertapenem. The majority (78%) of ESBL-producing E. coli isolates showed very high resistance to cefotaxime and ceftriaxone (MIC50 and MIC90 > 256 µg/ml). ESBL-producing E. coli harbored chromosomal blaTEM (96%), blaCTX-M (70%) and blaSHV (1%), while 8%, 73% and 3%, respectively, were located on plasmid. The prevalence of these genes in ESBL-producing K. pneumoniae was 75%, 50% and 25%, respectively on chromosome; and 100%, 25% and 50%, respectively on plasmid. Nucleotide sequence analysis revealed that these bla genes were of the type blaTEM-1' blaTEM-116' blaCTX-M-15' blaCTX-M-161' blaSHV-12, blaSHV-28 and blaSHV-148. Detailed epidemiologic and clinical characteristics of ER patients with history of prior hospital visits should be carried out to identify the ESBL-producing organisms they have acquired in order to institute appropriate treatment for these patients as well as control measures against further dissemination of these life-threatening organisms. PMID:26513905

  8. Whole genome sequencing of diverse Shiga toxin-producing and non-producing Escherichia coli strains reveals a variety of virulence and novel antibiotic resistance plasmids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genomes of a diverse set of Shiga toxin-producing E. coli strains and the presence of 38 plasmids among all the isolates were determined. Among the novel plasmids found, there were eight that encoded resistance genes to antibiotics, including aminoglycosides, carbapenems, penicillins, cephalosp...

  9. Heat resistance in extended-spectrum beta-lactamase-producing Escherichia coli may favor environmental survival in a hospital setting.

    PubMed

    Boll, Erik J; Frimodt-Møller, Jakob; Olesen, Bente; Krogfelt, Karen A; Struve, Carsten

    2016-06-01

    Nosocomial infections caused by extended-spectrum β-lactamase (ESBL)-producing Escherichia coli are a major concern worldwide. There is an urgent need to identify bacterial factors promoting survival and persistence of these organisms in the nosocomial environment. Here, we describe the presence of a gene cluster, containing the Clp ATPase ClpK, within a collection of Danish ESBL-producing E. coli isolates. The cluster conferred thermoprotection upon the isolates, and thus might facilitate survival on medical devices exposed to semi-high temperatures in a hospital setting. PMID:26946311

  10. Detection of shiga-toxin producing E. coli (STEC) in leafy greens sold at local retail markets in Alexandria, Egypt.

    PubMed

    Khalil, Rowaida K S; Gomaa, Mohamed A E; Khalil, Mahmoud I M

    2015-03-16

    Leafy green vegetables, a popular and an indispensable ingredient of the daily menus of Egyptians' diets, currently presents a great concern in terms of microbiological hazards. To the best of our knowledge, this is the first report that provides scientific evidence for prevalence of shiga-toxigenic Escherichia coli (STEC) in leafy greens sold at open air local retail markets and superstores in the Egyptian environment. A total of 486 conventional and organic leafy green samples that are eaten raw were collected from different areas in Alexandria, evaluated for total E. coli counts (ECCs), and screened for E. coli O157:H7 using conventional and molecular methods. Recovery of E. coli (≥10(2)CFU/g) from all studied types of leafy greens was indicative of fecal contamination. Total ECCs in conventional samples ranged from 5.47 to 2.56 log CFU/g. Based on their inability to ferment sorbitol on CT-SMAC media, 26 presumptive E. coli O157 isolates were detected in 71.4% (270/378) of the studied conventional samples. From all studied organic samples, only 2 types (organic cabbage and parsley, 16.7%) were contaminated with presumptive E. coli O157. All 28 isolates were further serotyped as E. coli O157 by latex agglutination test, and biochemically confirmed as E. coli. Multiplex PCR assays confirmed the ability of 21.4% (6/28) of the E. coli O157 strains to produce shiga-toxins (Stxs), and their virulence markers were as follows: stx1, 66.6% (4/6); stx2, 50% (3/6); stx1/stx2, 16.7% (1/6); eaeA, 83.3% (5/6); and hlyA, 16.7% (1/6). Only 2 strains recovered from conventional and organic parsley could possibly be classified as E. coli O157:H7 based on the presence of stx-genes (either stx1 or stx2 or both). Results of the present research highlight that high E. coli loads, together with recovery of STEC O157 isolates could pose serious health risks to the produce consumers. This emphasizes the urgent need for health authorities to value and utilize the existing knowledge to

  11. Molecular characterization of integrons in clinical isolates of betalactamase-producing Escherichia coli and Klebsiella pneumoniae in Iran.

    PubMed

    Zeighami, Habib; Haghi, Fakhri; Hajiahmadi, Fahimeh

    2015-06-01

    Integrons are considered to play a significant role in the evolution and spread of antibiotic resistance genes. A total of 349 clinical isolates of Escherichia coli and Klebsiella pneumoniae were investigated for molecular characterization of integrons and betalactamases. Antimicrobial susceptibility testing was also performed as the Clinical and Laboratory Standards Institute (CLSI) guidelines. The frequency of extended spectrum betalactamases (ESBL) or metallo-betalactamases (MBL)-producing isolates, patient demographics, and the susceptibility to various antimicrobial agents were described. BlaCTX-M was the most frequently detected betalactamase in all isolates. Moreover, MBL producing K. pneumoniae carried blaIMP and blaVIM at 100 and 41·6%, respectively but no MBL-positive E. coli was detected. Class 1 integrons were more frequent among E. coli and K. pneumoniae isolates in comparison with class 2 integrons and the frequency of intI2 in K. pneumoniae was significantly higher than E. coli isolates. Five different resistance gene arrays were identified among class 1 integrons. Dihydrofolate reductase (dfrA) and aminoglycoside adenyltransferase (aad) gene cassettes were found to be predominant in the class 1 integrons. These results indicate that class 1 integrons are widespread among ESBL-producing isolates of K. pneumoniae and E. coli and appropriate surveillance and control measures are essential to prevent further dissemination of these elements among Enterobacteriaceae in our country. PMID:24571248

  12. Comparable High Rates of Extended-Spectrum-Beta-Lactamase-Producing Escherichia coli in Birds of Prey from Germany and Mongolia

    PubMed Central

    Guenther, Sebastian; Aschenbrenner, Katja; Stamm, Ivonne; Bethe, Astrid; Semmler, Torsten; Stubbe, Annegret; Stubbe, Michael; Batsajkhan, Nyamsuren; Glupczynski, Youri; Wieler, Lothar H.; Ewers, Christa

    2012-01-01

    Frequent contact with human waste and liquid manure from intensive livestock breeding, and the increased loads of antibiotic-resistant bacteria that result, are believed to be responsible for the high carriage rates of ESBL-producing E. coli found in birds of prey (raptors) in Central Europe. To test this hypothesis against the influence of avian migration, we initiated a comparative analysis of faecal samples from wild birds found in Saxony-Anhalt in Germany and the Gobi-Desert in Mongolia, regions of dissimilar human and livestock population characteristics and agricultural practices. We sampled a total of 281 wild birds, mostly raptors with primarily north-to-south migration routes. We determined antimicrobial resistance, focusing on ESBL production, and unravelled the phylogenetic and clonal relatedness of identified ESBL-producing E. coli isolates using multi-locus sequence typing (MLST) and macrorestriction analyses. Surprisingly, the overall carriage rates (approximately 5%) and the proportion of ESBL-producers among E. coli (Germany: 13.8%, Mongolia: 10.8%) were similar in both regions. Whereas blaCTX-M-1 predominated among German isolates (100%), blaCTX-M-9 was the most prevalent in Mongolian isolates (75%). We identified sequence types (STs) that are well known in human and veterinary clinical ESBL-producing E. coli (ST12, ST117, ST167, ST648) and observed clonal relatedness between a Mongolian avian ESBL-E. coli (ST167) and a clinical isolate of the same ST that originated in a hospitalised patient in Europe. Our data suggest the influence of avian migratory species in the transmission of ESBL-producing E. coli and challenge the prevailing assumption that reducing human influence alone invariably leads to lower rates of antimicrobial resistance. PMID:23300857

  13. Evaluation of eight agar media for the isolation of shiga toxin-Producing Escherichia coli.

    PubMed

    Gill, Alexander; Huszczynski, George; Gauthier, Martine; Blais, Burton

    2014-01-01

    The growth characteristics of 96 shiga toxin-producing Escherichia coli (STEC) strains representing 36 different O-types (including priority O types O26, O45, O103, O111, O121, O145 and O157) on commercial and in-house agar media were studied. The ability of the strains to grow on agar media with varying selective supplement formulations was evaluated using MacConkey Agar (MAC); Rainbow® Agar O157 (RBA); Rainbow® Agar O157 with manufacturer-recommended selective supplements (RBA-NT); Rainbow® Agar O157 with USDA-recommended selective supplements (RBA-USDA); CHROMagar STEC™ (CH STEC); Tryptone Bile agar containing cefixime and tellurite (TBA-CT); Tryptone Bile agar containing cefixime, tellurite, eosin and methylene blue (TBA-EM); and VTEC agar. All of the strains were able to grow on MAC, RBA and VTEC agar, whereas a number of strains (including some non-O157 priority O types) were unable to grow on the highly selective media CH STEC, RBA-NT, RBA-USDA, TBA-EM and TBA-CT. Only RBA-NT and CH STEC exhibited significant inhibition of background flora from ground beef enrichment. Significant inhibition of background flora from beef trim enrichment was observed with RBA-NT, RBA-USDA, CH STEC, TBA-EM and VTEC agar. With exception of E. coli O157, several different colony morphologies were observed on the differential plating media among strains of the same O type, indicating that this colony morphology is not a reliable means of identifying target STEC. These results suggest that an approach to maximize the recovery of target STEC from beef enrichment cultures is dual plating on lesser (RBA, MAC, VTEC agar) and more highly (RBA-NT, CH STEC) selective agars. PMID:24211606

  14. Temperature- and medium-dependent secretion of proteins by Shiga toxin-producing Escherichia coli.

    PubMed Central

    Ebel, F; Deibel, C; Kresse, A U; Guzmán, C A; Chakraborty, T

    1996-01-01

    Infections due to Shiga toxin-producing Escherichia coli (STEC) are responsible for severe diarrheal disease in humans and livestock, and these bacteria have recently emerged as a leading cause of renal failure in children. In this study, we have examined medium- and temperature-dependent production of secreted proteins from a STEC O26 serotype strain. Growth of bacteria in Luria broth led to the detection of secreted polypeptides of 104, 55, 54, and 37 kDa (p104, p55, p54, and p37, respectively). When grown in serum-free tissue culture medium, only p104, p37 and two additional polypeptides of 25 and 22 kDa (p25 and p22) were present in supernatant fluids. Production of these polypeptides was growth temperature dependent and induced in cultures grown at 37 degrees C. N-terminal amino acid sequencing revealed that p104 was homologous to the secreted p110 of enteropathogenic Escherichia coli (EPEC), and both proteins belong to a family of secreted proteins in pathogenic bacteria of which the immunoglobulin A protease of Neisseria gonorrhoeae is the prototype. The N-terminal amino acid sequences of p55 and p54 were unique to the STEC strain, while p37 and p25 were found to be highly homologous to the similarly sized EspA and EspB proteins, previously detected in culture supernatants of EPEC. Molecular cloning and sequencing of STEC espB alleles from two different serotypes showed that the encoded polypeptides were about 80% homologous. A monoclonal antibody raised against STEC EspB also cross-reacted with its EPEC analog and allowed us to demonstrate medium- and temperature-dependent production of this important virulence factor in STEC and EPEC strains of differing serotypes. PMID:8890194

  15. Acid resistance and molecular characterization of Escherichia coli O157:H7 and different Non-O157 shiga toxin-producing E. coli serogroups

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to compare the acid resistance (AR) of non-O157 Shiga toxin-producing Escherichia coli (STEC) strains belonging to serogroups O26, O45, O103, O104, O111, O121, and O145 with O157:H7 STEC isolated from various sources in 400 mM acetic acid solutions (AAS) at pH 3.2 and...

  16. Acid Resistance and molecular characterization of Escherichia coli O157:H7 and different non-O157 Shiga toxin-producing E. coli serogroups

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to compare the acid resistance (AR) of seven non-O157 Shiga toxin-producing E. coli (STEC) strains belonging to serogroups O26, O45, O103, O104, O111, O121 and O145 with O157:H7 STEC isolated from various sources in 400 mM acetic acid solutions (AAS) at pH 3.2 and 30°...

  17. Virulence characteristics of Shiga toxin-producing Escherichia coli from raw meats and clinical samples.

    PubMed

    Hoang Minh, Son; Kimura, Etsuko; Hoang Minh, Duc; Honjoh, Ken-ichi; Miyamoto, Takahisa

    2015-03-01

    Shiga toxin producing Escherichia coli (STEC) are dangerous foodborne pathogens. Foods are considered as important sources for STEC infection in human. In this study, STEC contamination of raw meats was investigated and the virulence factors of 120 clinical STEC strains characterized. STEC was detected in 4.4% of tested samples. Among 25 STEC strains from meats, five strains (20%) were positive for the eae gene, which encodes intimin, an important binding protein of pathogenic STEC. The remaining strains (80%) were eae-negative. However, 28% of them possessed the saa gene, which encodes STEC agglutinating adhesin. The ehxA gene encoding for enterohemolysin was found in 75% of the meat strains and the subAB gene, the product is of which subtilase cytotoxin, was found in 32% of these strains. The stx2a gene, a subtype of Shiga toxin gene (stx), was the most prevalent subtype among the identified meat STEC bacteria. None of the meat STEC was O157:H7 serotype. Nevertheless, 92% of them produced Shiga toxin (Stx). Among 120 clinical STEC strains, 30% and 70% strains harbored single and multiple stx subtypes, respectively. Most clinical STEC bacteria possessed eae (90.8%) and ehxA (96.7%) genes and 92.5% of them showed Stx productivity. Our study shows that some raw meat samples contain non-O157 STEC bacteria and some strains have virulence factors similar to those of clinical strains. PMID:25644201

  18. Amp C beta-lactamase-producing Escherichia coli in neonatal meningitis: diagnostic and therapeutic challenge.

    PubMed

    Fakioglu, E; Queenan, A M; Bush, K; Jenkins, S G; Herold, B C

    2006-08-01

    Antibiotic resistance is a global health priority. Major defenses for Gram-negative bacteria are beta-lactamase enzymes, which have co-evolved with the development and increasing utilization of new antibiotics. Bacteria harboring the plasmid-mediated AmpC enzymes are increasingly prevalent among adult patients, but have not previously been reported in neonates. Early-onset neonatal meningitis caused by an AmpC beta-lactamase-producing Escherichia coli is described for the first time; the plasmid was identified as a transferable CMY-2 family beta-lactamase. Limited experience with newer antibiotics and pharmacokinetics in neonates presents a therapeutic challenge. Currently, there are no Clinical Laboratory Standards Institute (CLSI) recommendations for detecting AmpC nor is the optimal treatment for AmpC-producing organisms known. Thus, it is imperative that clinicians have a high index of suspicion when antimicrobial susceptibility patterns are inconsistent. Development of better microbiology screening tests to rapidly detect resistance is essential. Additionally, pharmacokinetic studies with newer antibiotics in neonates are warranted. PMID:16871223

  19. Pathogenesis and Diagnosis of Shiga Toxin-Producing Escherichia coli Infections

    PubMed Central

    Paton, James C.; Paton, Adrienne W.

    1998-01-01

    Since their initial recognition 20 years ago, Shiga toxin-producing Escherichia coli (STEC) strains have emerged as an important cause of serious human gastrointestinal disease, which may result in life-threatening complications such as hemolytic-uremic syndrome. Food-borne outbreaks of STEC disease appear to be increasing and, when mass-produced and mass-distributed foods are concerned, can involve large numbers of people. Development of therapeutic and preventative strategies to combat STEC disease requires a thorough understanding of the mechanisms by which STEC organisms colonize the human intestinal tract and cause local and systemic pathological changes. While our knowledge remains incomplete, recent studies have improved our understanding of these processes, particularly the complex interaction between Shiga toxins and host cells, which is central to the pathogenesis of STEC disease. In addition, several putative accessory virulence factors have been identified and partly characterized. The capacity to limit the scale and severity of STEC disease is also dependent upon rapid and sensitive diagnostic procedures for analysis of human samples and suspect vehicles. The increased application of advanced molecular technologies in clinical laboratories has significantly improved our capacity to diagnose STEC infection early in the course of disease and to detect low levels of environmental contamination. This, in turn, has created a potential window of opportunity for future therapeutic intervention. PMID:9665978

  20. Bactericidal Effect of Selected Antidiarrhoeal Medicinal Plants on Intracellular Heat-Stable Enterotoxin-Producing Escherichia coli

    PubMed Central

    Birdi, Tannaz J.; Brijesh, S.; Daswani, Poonam G.

    2014-01-01

    Diarrhoeal diseases due to enterotoxigenic Escherichia coli continue to be a cause of global concern. Medicinal plants have been gaining popularity as promising antidiarrhoeal agents. In the present study, four antidiarrhoeal plants, viz. Aegle marmelos, Cyperus rotundus, Psidium guajava and Zingiber officinale were screened against a heat-stable toxin-producing enterotoxigenic E. coli strain. Decoctions of these plants were studied for their effect on intracellular killing of the bacterial strain using murine monocytic cell line, J774. [3H] thymidine release assay was used to evaluate the apoptotic/necrotic effect. All plants at concentrations <1% enhanced intracellular killing of the bacteria by J774 cells. However, at higher concentrations, the decoctions induced apoptosis in J774 cells. The study demonstrates that these plants could control diarrhoea caused by heat-stable toxin-producing enterotoxigenic E. coli through their immunomodulatory effect. PMID:25035535

  1. Molecular characterization and antibiotic susceptibility pattern of caprine Shiga toxin producing-Escherichia coli (STEC) isolates from India

    PubMed Central

    Mahanti, A.; Samanta, I.; Bandyopadhyay, S.; Joardar, S. N.

    2015-01-01

    The present study was conducted to detect the occurrence, serotype, genotype, phylogenetic relationship and antimicrobial resistance pattern of STEC from healthy goats of West Bengal, India. From the 125 faecal samples collected from healthy goats, 245 isolates were identified as Escherichia coli. The E. coli harbouring any gene for Shiga toxins (stx1/stx2) was detected in 36 (14.7%) of the 245 E. coli isolates. These STEC strains belonged to 22 different serogroups (O2, O5, O20, O21, O22, O25, O41, O44, O45, O60, O71, O76, O84, O85, O87, O91, O103, O112, O113, O120, O156, and O158) and three were untypeable. The stx1 and stx2 was detected in 26 (72.2%) and 21 (58.3%) of Shiga toxin producing-E. coli (STEC) isolates, respectively. Further, E. coli harbouring eaeA only (Enteropathogenic E. coli) and ehxA was detected in 22 (61.1%) and 28 (77.7%) isolates, respectively. Whereas the saa was present in 8 (22.2%) E. coli isolates. The subtyping of the 26 E. coli strains possessing stx1 showed that 73.% (19/26) of these isolates were positive for stx1C subtype. Of the 21 isolates with the stx2 gene, 42.8% (9/21) were positive for stx2C, and 38.1% (8/21) were positive for stx2d gene. The phylogenetic analysis of STEC strains after RAPD reveals eight major clusters. However, no serogroup specific cluster was observed. Resistance was observed most frequently to erythromycin (80.5%), amikacin (52.7%), cephalothin (50%), kanamycin (41.6%), neomycin (36.1%) and gentamycin (36.1%) and less frequently to norfloxacin (2.7%), enrofloxacin (2.7%), and ciprofloxacin (2.7%). Multidrug resistance was observed in eleven STEC isolates. PMID:27175147

  2. Multidrug-Resistant and Extended Spectrum Beta-Lactamase-Producing Escherichia coli in Dutch Surface Water and Wastewater

    PubMed Central

    Blaak, Hetty; Lynch, Gretta; Italiaander, Ronald; Hamidjaja, Raditijo A.; Schets, Franciska M.; de Roda Husman, Ana Maria

    2015-01-01

    Objective The goal of the current study was to gain insight into the prevalence and concentrations of antimicrobial resistant (AMR) Escherichia coli in Dutch surface water, and to explore the role of wastewater as AMR contamination source. Methods The prevalence of AMR E. coli was determined in 113 surface water samples obtained from 30 different water bodies, and in 33 wastewater samples obtained at five health care institutions (HCIs), seven municipal wastewater treatment plants (mWWTPs), and an airport WWTP. Overall, 846 surface water and 313 wastewater E. coli isolates were analysed with respect to susceptibility to eight antimicrobials (representing seven different classes): ampicillin, cefotaxime, tetracycline, ciprofloxacin, streptomycin, sulfamethoxazole, trimethoprim, and chloramphenicol. Results Among surface water isolates, 26% were resistant to at least one class of antimicrobials, and 11% were multidrug-resistant (MDR). In wastewater, the proportions of AMR/MDR E. coli were 76%/62% at HCIs, 69%/19% at the airport WWTP, and 37%/27% and 31%/20% in mWWTP influents and effluents, respectively. Median concentrations of MDR E. coli were 2.2×102, 4.0×104, 1.8×107, and 4.1×107 cfu/l in surface water, WWTP effluents, WWTP influents and HCI wastewater, respectively. The different resistance types occurred with similar frequencies among E. coli from surface water and E. coli from municipal wastewater. By contrast, among E. coli from HCI wastewater, resistance to cefotaxime and resistance to ciprofloxacin were significantly overrepresented compared to E. coli from municipal wastewater and surface water. Most cefotaxime-resistant E. coliisolates produced ESBL. In two of the mWWTP, ESBL-producing variants were detected that were identical with respect to phylogenetic group, sequence type, AMR-profile, and ESBL-genotype to variants from HCI wastewater discharged onto the same sewer and sampled on the same day (A1/ST23/CTX-M-1, B23/ST131/CTX-M-15, D2/ST405/CTX

  3. Low intestinal colonization of Escherichia coli clone ST131 producing CTX-M-15 in Jordanian infants.

    PubMed

    Badran, E F; Din, R A Qamer; Shehabi, A A

    2016-02-01

    Over a period of 3 years' study (2012-2014), a total of 518 faecal samples were collected and cultured to isolate Escherichia coli. Of these, 338 (65.3 %) E. coli isolates were recovered from infants, and 142/338 (42 %) were multidrug-resistant (MDR) to ≥ 3 drug classes using the antimicrobial susceptibility disc diffusion method. A total of 125/142 (88 %) of E. coli isolates were extended-spectrum β-lactamase (ESBL) producers. blaCTX-M-15 types were observed in 80/125 (64 %) of the isolates, and 60/80 (75 %) were positive for blaCTX-M-15. Out of 338 E. coli isolates, 9 (2.6 %) were positive for ST131/O25b clone and each isolate was associated with several plasmids of different sizes (1-21.2 kb). The identities of these nine isolates were confirmed by sequencing for presence of pabB (347 bp) and trpA (427 bp) genes. This study demonstrates low prevalence rate of the highly virulent E. coli ST131 clone producing blaCTX-M-15 in the intestines of Jordanian infants. PMID:26690259

  4. Distribution and detection of Shiga toxin-producing Escherichia coli (STEC) during an industrial grinding process of beef trim

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During the grinding and packaging processes, it is important to understand how Shiga toxin-producing Escherichia coli (STEC) would be distributed and how well it could be detected in beef trim. This study is important because it shows what would happen if contaminated meat is allowed into a commerc...

  5. Shiga toxin-producing E. coli (STEC) in swine: prevalence over the finishing period and characterization of the STEC isolates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This descriptive longitudinal study was conducted to investigate the fecal shedding of Shiga toxin-producing E. coli (STEC) in finishing swine and to characterize the swine STEC isolates that were recovered. Three cohorts of finishing swine (n=50/cohort; total 150 pigs) were included in the longitu...

  6. Immersion in antimicrobial solutions reduces Salmonella enterica and Shiga toxin-producing Escherichia coli on beef cheek meat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to determine the effect of immersing beef cheek meat in antimicrobial solutions on the reduction of O157:H7 Shiga toxin–producing Escherichia coli (STEC), non-O157:H7 STEC, and Salmonella enterica. Beef cheek meat was inoculated with O157:H7 STEC, non-O157:H7 STEC, an...

  7. Current and near-market intervention strategies for reducing Shiga Toxin-producing Escherichia coli (STEC) shedding in cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cattle can naturally contain foodborne pathogenic bacteria such as Shiga Toxin-Producing E. coli (STEC). These foodborne pathogenic bacteria are a threat to public health through contamination of foods and water supplies. In order to reduce human exposures and resultant illnesses, research has foc...

  8. Incidence and tracking of Escherichia coli O157:H7 in a major produce production region in California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fresh vegetables have become associated with outbreaks caused by Escherichia coli O157:H7 (EcO157). Between 1995-2006, 22 produce outbreaks were documented in the United States, with nearly half traced to lettuce or spinach grown in California. Outbreaks between 2002 and 2006 induced investigations ...

  9. Virulence gene profiles of shiga toxin-producing Escherichia coli isolated from fecal samples of finishing swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shiga toxin-producing Escherichia coli (STEC) are important pathogens responsible for food-borne outbreaks and serious illness including hemorrhagic colitis and hemolytic uremic syndrome. Certain STEC serogroups may cause edema disease in swine; and similar to cattle, swine have been shown to be a ...

  10. Characterization of Shiga toxin-producing Escherichia coli associated with two multi-state foodborne outbreaks in 2006

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the fall of 2006 two multi-state outbreaks of E. coli serotype O157:H7 infection occurred that involved contaminated spinach and contaminated lettuce. In this study, we compare 7 Shiga toxin-producing isolates associated with those two outbreaks to a collection of food, environmental, and animal ...

  11. Molecular characterization of shiga toxin-producing E. coli (STEC) from finishing swine in a longitudinal study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shiga toxin-producing E. coli (STEC) infections are a critical public health concern because they can cause severe clinical outcomes, such as hemolytic uremic syndrome, in humans. Determining the presence or absence of virulence genes is essential in assessing the potential pathogenicity of STEC str...

  12. Rapid O serogroup identification of the six clinically relevant Shiga toxin-producing Escherichia coli by antibody microarray

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Antibody array was developed for the detection of the top six non-O157 Shiga toxin-producing Escherichia coli O serogroups. Sensitivity of the array was 10**5 CFU, and the limit of detection of serogroups in ground beef was 1-10 CFU following 12 h of enrichment. The array utilized a minimal amount...

  13. Mathematical modeling of growth of non-O157 Shiga Toxin-producing Escherichia coli in raw ground beef

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to investigate the growth of Shiga toxin-producing Escherichia coli (STEC, including serogroups O45, O103, O111, O121, and O145) in raw ground beef and to develop mathematical models to describe the bacterial growth under different temperature conditions. Three prima...

  14. Shiga toxin-producing E. coli: update on methods and tools for rapid detection, identification, and isolation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shiga toxin-producing Escherichia coli (STEC) serotype O157:H7 and many non-O157 serogroups are important food-borne pathogens that have been linked to numerous outbreaks and sporadic cases of gastrointestinal illness and hemolytic uremic syndrome worldwide. Cattle and other ruminants, as well as o...

  15. Classification of non-O157 shiga toxin-producing escherichia coli(STEC) serotypes with hyperspectral microscope imaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Non-O157 Shiga toxin-producing Escherichia coli (STEC) strains such as O26, O45, O103, O111, O121 and O145 are recognized as serious outbreak to cause human illness due to their toxicity. A conventional microbiological method for cell counting is laborious and needs long time for the results. Since ...

  16. Outbreak of non-O157 Shiga toxin-producing Escherichia coli infection from consumption of beef sausage.

    PubMed

    Ethelberg, Steen; Smith, Birgitte; Torpdahl, Mia; Lisby, Morten; Boel, Jeppe; Jensen, Tenna; Nielsen, Eva Møller; Mølbak, Kåre

    2009-04-15

    We describe an outbreak of Shiga toxin-producing Escherichia coli O26:H11 infection in 20 patients (median age, 2 years). The source of the infection was an organic fermented beef sausage. The source was discovered by using credit card information to obtain and compare customer transaction records from the computer systems of supermarkets. PMID:19272017

  17. Genotypic Characterization of Shiga Toxin-Producing Escherichia coli (STEC) Strains Recovered from Farm Animal Feces in Mexico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Technical Abstract and Interpretive Summary: Provide electronically in Word. Sixty-three strains of Shiga toxin-producing Escherichia coli (STEC) were recovered from farm animal feces in distinct regions in the Culiacan Valley, an important agricultural region in Mexico for horticultural crops that...

  18. Effect of curli expression and hydrophobicity of E. coli O157:H7 on attachment to fresh produce surfaces

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aim: To investigate the effect of curli expression on cell hydrophobicity, biofilm formation, and attachment to cut and intact fresh produce surfaces. Methods and Results: Five E. coli O157:H7 strains were evaluated for curli expression, hydrophobicity, biofilm formation, and attachment of E. co...

  19. Thermal inactivation of non-0157:H7 shiga-toxin producing Escherichia coli (STEC) in catfish fillets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Non-O157:H7 Shiga-toxin producing Escherichia coli (STECs) are emerging pathogens which have been involved in numerous foodborne illness outbreaks. It is not unusual for STEC associated foodborne illness outbreaks to be associated with consumption of fish in many countries. In this study catfish fi...

  20. Inactivation of a diverse set of shiga toxin-producing Escherichia coli in ground beef by high pressure processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shiga Toxin-Producing Escherichia coli (STEC) are frequently implicated in foodborne illness outbreaks and recalls of ground beef. In this study we determined the High Pressure Processing (HPP) D-10 value (the processing conditions needed to reduce the microbial population by 1 log) of 39 individua...

  1. Methods for detection, isolation, and identification of Non-O157 shiga toxin-producing Escherichia coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Non-O157 Shiga toxin producing E. coli (STEC) have been increasingly associated with human infections in the U.S. and worldwide, and it is estimated that in the U.S. non-O157 STEC cause more than twice the number of infections overall compared to STEC O157:H7. The Centers for Disease Control and Pr...

  2. Rapid detection of E. coli produced shiga-like toxins by lateral flow immunoassay in multiple food matrices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shiga toxigenic E. coli (STEC) produce shiga-like toxins (Stx) that can cause human disease and death. The STEC serotype O157:H7 is a well-recognized foodborne contaminant and effective detection methods have been established. However, the emergence of non-O157 STEC strains has necessitated the deve...

  3. Thermal inactivation of Shiga toxin-producing Escherichia coli within cubed beef steaks following cooking on a griddle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to quantify thermal inactivation of Shiga toxin-producing Escherichia coli (STEC) cells within knitted/cubed beef steaks following cooking on a non-stick griddle. Both faces of each beef cutlet (ca. 64 g; ca. 8.5 cm L X 10.5 cm W X 0.75 cm H) were surface inoculated (...

  4. Control of shiga toxin-producing Escherichia coli (STEC) in raw, fermented, and further processed non-intact beef

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Illnesses due to Shiga toxin-producing Escherichia coli (STEC) have been linked to undercooked ground beef and on occasion to non-intact beef as well. As such, the USDA Food Safety and Inspection Service (FSIS) now considers strains of serotype O157:H7 and strains from a subset of six non-O157:H7 se...

  5. Occurrence of generic E. coli, E. coli O157:H7 and Salmonella spp. in water and sediment from leafy green produce farms and streams on the Central California coast

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation with water of poor microbiological quality can elevate levels of bacteria on produce. This study aimed to identify climate and management covariates associated with generic E. coli in irrigation water on leafy green produce farms and to measure the prevalence of E. coli O157:H7 and Salmon...

  6. Inactivation of Shiga toxin-producing Escherichia coli O104:H4 using cold atmospheric pressure plasma.

    PubMed

    Baier, Matthias; Janssen, Traute; Wieler, Lothar H; Ehlbeck, Jörg; Knorr, Dietrich; Schlüter, Oliver

    2015-09-01

    From cultivation to the end of the post-harvest chain, heat-sensitive fresh produce is exposed to a variety of sources of pathogenic microorganisms. If contaminated, effective gentle means of sanitation are necessary to reduce bacterial pathogen load below their infective dose. The occurrence of rare or new serotypes raises the question of their tenacity to inactivation processes. In this study the antibacterial efficiency of cold plasma by an atmospheric pressure plasma-jet was examined against the Shiga toxin-producing outbreak strain Escherichia coli O104:H4. Argon was transformed into non-thermal plasma at a power input of 8 W and a gas flow of 5 L min(-1). Basic tests were performed on polysaccharide gel discs, including the more common E. coli O157:H7 and non-pathogenic E. coli DSM 1116. At 5 mm treatment distance and 10(5) cfu cm(-2) initial bacterial count, plasma reduced E. coli O104:H4 after 60 s by 4.6 ± 0.6 log, E. coli O157:H7 after 45 s by 4.5 ± 0.6 log, and E. coli DSM 1116 after 30 s by 4.4 ± 1.1 log. On the surface of corn salad leaves, gentle plasma application at 17 mm reduced 10(4) cfu cm(-2) of E. coli O104:H4 by 3.3 ± 1.1 log after 2 min, whereas E. coli O157:H7 was inactivated by 3.2 ± 1.1 log after 60 s. In conclusion, plasma treatment has the potential to reduce pathogens such as E. coli O104:H4 on the surface of fresh produce. However, a serotype-specific adaptation of the process parameters is required. PMID:25782617

  7. Surveillance of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli in Dairy Cattle Farms in the Nile Delta, Egypt

    PubMed Central

    Braun, Sascha D.; Ahmed, Marwa F. E.; El-Adawy, Hosny; Hotzel, Helmut; Engelmann, Ines; Weiß, Daniel; Monecke, Stefan; Ehricht, Ralf

    2016-01-01

    Introduction: Industrial livestock farming is a possible source of multi-resistant Gram-negative bacteria, including producers of extended spectrum beta-lactamases (ESBLs) conferring resistance to 3rd generation cephalosporins. Limited information is currently available on the situation of ESBL producers in livestock farming outside of Western Europe. A surveillance study was conducted from January to May in 2014 in four dairy cattle farms in different areas of the Nile delta, Egypt. Materials and Methods: In total, 266 samples were collected from 4 dairy farms including rectal swabs from clinically healthy cattle (n = 210), and environmental samples from the stalls (n = 56). After 24 h pre-enrichment in buffered peptone water, all samples were screened for 3rd generation cephalosporin-resistant Escherichia coli using Brilliance™ ESBL agar. Suspected colonies of putatively ESBL-producing E. coli were sub-cultured and subsequently genotypically and phenotypically characterized. Susceptibility testing using the VITEK-2 system was performed. All suspect isolates were genotypically analyzed using two DNA-microarray based assays: CarbDetect AS-1 and E. coli PanType AS-2 kit (ALERE). These tests allow detection of a multitude of genes and their alleles associated with resistance toward carbapenems, cephalosporins, and other frequently used antibiotics. Serotypes were determined using the E. coli SeroGenotyping AS-1 kit (ALERE). Results: Out of 266 samples tested, 114 (42.8%) ESBL-producing E. coli were geno- and phenotypically identified. 113 of 114 phenotypically 3rd generation cephalosporin-resistant isolates harbored at least one of the ESBL resistance genes covered by the applied assays [blaCTX-M15 (n = 105), blaCTX-M9 (n = 1), blaTEM (n = 90), blaSHV (n = 1)]. Alarmingly, the carbapenemase genes blaOXA-48 (n = 5) and blaOXA-181 (n = 1) were found in isolates that also were phenotypically resistant to imipenem and meropenem. Using the array-based serogenotyping

  8. Comparative pathogenicity of Escherichia coli O157 and intimin-negative non-O157 Shiga toxin-producing E coli strains in neonatal pigs.

    PubMed

    Dean-Nystrom, Evelyn A; Melton-Celsa, Angela R; Pohlenz, Joachim F L; Moon, Harley W; O'Brien, Alison D

    2003-11-01

    We compared the pathogenicity of intimin-negative non-O157:H7 Shiga toxin (Stx)-producing Escherichia coli (STEC) O91:H21 and O104:H21 strains with the pathogenicity of intimin-positive O157:H7 and O157:H(-) strains in neonatal pigs. We also examined the role of Stx2d-activatable genes and the large hemolysin-encoding plasmid of O91:H21 strain B2F1 in the pathogenesis of STEC disease in pigs. We found that all E. coli strains that made wild-type levels of Stx caused systemic illness and histological lesions in the brain and intestinal crypts, whereas none of the control Stx-negative E. coli strains evoked comparable central nervous system signs or intestinal lesions. By contrast, the absence of intimin, hemolysin, or motility had little impact on the overall pathogenesis of systemic disease during STEC infection. The most striking differences between pigs inoculated with non-O157 STEC strains and pigs inoculated with O157 STEC strains were the absence of attaching and effacing intestinal lesions in pigs inoculated with non-O157:H7 strains and the apparent association between the level of Stx2d-activatable toxin produced by an STEC strain and the severity of lesions. PMID:14573674

  9. Persistence of Escherichia coli O157:H7 in major leafy green producing soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Persistence of Escherichia coli O157:H7 in 32 (16 organically managed and 16 conventionally managed) soils from California (CA) and Arizona (AZ) was investigated. Results showed that the longest survival (ttd, time needed to reach detection limit, 100 CFU/g dry soil) of E. coli O157:H7 was observed ...

  10. Development of biphasic medium for detection of Shiga toxin producing E. coli using Tetrahymena thermophila

    Technology Transfer Automated Retrieval System (TEKTRAN)

    E. coli O157 has long been the leading cause of major foodborne STEC outbreaks but recently non-O157 STECs are increasingly implicated. Selective media for E. coli O157 are commercially available but none detect non-O157 STEC. Currently, regulatory agencies screen for non-O157 STECs by enriching foo...

  11. Development of a faster method for detection of Shiga toxin producing E. coli using Tetrahymena thermophila

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While most STEC outbreaks are caused by E. coli O157, non-O157 STECs are increasingly being implicated. Selective agar for E. coli O157 is commercially available but none detect non-O157 STEC. Currently, regulatory agencies screen for non-O157 STECs by enriching foods overnight, spreading aliquots o...

  12. Cluster investigation of mixed O76:H19 Shiga toxin-producing Escherichia coli and atypical enteropathogenic E. coli infection in a Spanish household.

    PubMed

    Sánchez, S; Cenoz, M García; Martín, C; Beristain, X; Llorente, M T; Herrera-León, S

    2014-05-01

    A Spanish household was identified through a Public Health follow up on a Shiga toxin-producing Escherichia coli (STEC)-positive 14-month-old girl reporting bloody diarrhoea, with the four household members experiencing either symptomatic or asymptomatic STEC and/or atypical enteropathogenic E. coli (aEPEC) shedding. In total, two different O76:H19 STEC strains and six aEPEC strains belonging to multiple serotypes were isolated and characterized in the household during a 5-month period. Prolonged asymptomatic shedding of O76:H19 STEC and O51:H49 aEPEC was detected in two family members. Although there was no conclusive evidence, consumption of vegetables fertilized with sheep manure was the suspected source of infection. This study highlights the risk of cross-infections posed by prolonged asymptomatic carriage and close household contact between family members, and illustrates the importance of molecular epidemiology in understanding disease clusters. PMID:23906309

  13. Oral treatment options for ambulatory patients with urinary tract infections caused by extended-spectrum-beta-lactamase-producing Escherichia coli.

    PubMed

    Auer, Simon; Wojna, Alexandra; Hell, Markus

    2010-09-01

    An increase in extended-spectrum-beta-lactamase (ESBL)-producing Escherichia coli has been observed in outpatient settings. Consequently, 100 ESBL-positive E. coli isolates from ambulatory patients with clinically confirmed urinary tract infections were collected by a single laboratory between October 2004 and January 2008. Antimicrobial susceptibility testing was carried out using the oral antibiotics fosfomycin, pivmecillinam, and nitrofurantoin and the parenteral antibiotic ertapenem. Susceptibility rates indicate that fosfomycin (97%), nitrofurantoin (94%), and pivmecillinam (85%) could be considered important oral treatment options. PMID:20585127

  14. Fecal carriage of extended-spectrum β-lactamases and AmpC-producing Escherichia coli in a Libyan community

    PubMed Central

    2014-01-01

    Background Extended-spectrum β-lactamases (ESBLs), including the AmpC type, are important mechanisms of resistance among Enterobacteriaeceae. CTX-M type extended-spectrum β- lactamases, of which there are now over 90 variants, are distributed globally, yet appear to vary in regional distribution. AmpC β-lactamases hydrolyze third generation cephalosporins, but are resistant to inhibition by clavulanate or other β-lactamase inhibitors in vitro. Fecal carriage and rates of colonization by bacteria harboring these resistance mechanisms have been reported in patients with community-acquired infections and in healthy members of their households. Expression of these ESBLs compromises the efficacy of current antibacterial therapies, potentially increasing the seriousness of hospital- and community-acquired Escherichia coli (E. coli) infections. To investigate the occurrence of ESBL-producing E. coli in human fecal flora isolated from two pediatric populations residing in the Libyan cities Zleiten and Abou El Khoms. Isolates were further studied to characterize genes encoding β-lactam resistance, and establish genetic relationships. Methods Antibiotic resistance profiles of phenotypically characterized E. coli isolates recovered from the stools of 243 Libyan children during two surveillance periods in 2001 and 2007 were determined by the disk diffusion method. ESBL-screening was performed using the cephalosporin/clavulanate double synergy disc method, and the AmpC-phenotype was confirmed by the aminophenyl-boronic acid test. ESBL genes were molecularly characterized. Phylogenetic group and multilocus sequence typing (MLST) were determined for ESBL-producing isolates and PFGE was performed to compare banding profiles of some dominant strains. Results ESBLs were identified in 13.4% (18/134) of E. coli isolates, and nine isolates (6.7%) demonstrated AmpC activity; all 18 isolates contained a CTX-M gene. Three CTX-M gene families (CTX-M-1, n = 9; CTX-M-15, n = 8

  15. Phylogeny and phenotypes of clinical and environmental Shiga toxin-producing Escherichia coli O174.

    PubMed

    Zhang, Wenlan; Nadirk, Julia; Kossow, Annelene; Bielaszewska, Martina; Leopold, Shana R; Witten, Anika; Fruth, Angelika; Karch, Helge; Ammon, Andrea; Mellmann, Alexander

    2014-04-01

    Shiga toxin (Stx)-producing Escherichia coli (STEC) of serogroup O174 are human pathogenic intimin gene (eae)-negative STEC. To facilitate diagnosis and subtyping, we genotypically and phenotypically characterized 25 STEC O174 isolates from humans with different clinical outcomes and from animals and the environment. fliC genotyping resulted in four different genotypes (fliCH2 : n = 5; fliCH8 : n = 8; fliCH21 : n = 11; fliCH46 : n = 1). Twenty-three strains were motile expressing the corresponding H antigen; two non-motile isolates possessed fliCH8 . The stx genotypes and non-stx virulence loci, including toxins, serine-proteases and adhesins correlated well with serotypes but showed no differences with respect to the isolates' origins. Multilocus sequence typing identified seven sequence types that correlated with serotypes. Core gene typing further specified the four serotypes, including a previously unknown O174:H46 combination, and revealed distant relationships of the different serotypes within serogroup O174 and in relation to other haemolytic uremic syndrome (HUS)-associated STEC. Only serotype O174:H21 was associated with HUS. Differences in virulence factors and in the adherence capacity of STEC O174 corroborated this separation into four distinct groups. Our study provides a basis for O174 subtyping, unravels considerable genotypic and phenotypic heterogeneity and sheds light to potential environmental and animal reservoirs. PMID:24034719

  16. Control of Shigatoxin-producing Escherichia coli in cheese by dairy bacterial strains.

    PubMed

    Callon, Cécile; Arliguie, Céline; Montel, Marie-Christine

    2016-02-01

    Bio-preservation could be a valuable way to control Shigatoxin-producing Escherichia coli (STEC) in cheese. To this end, 41 strains were screened for their inhibitory potential on model cheese curd and on pasteurized and raw milk uncooked pressed cheeses. Strains of Lactococcus lactis, Lactococcus garvieae, Leuconostoc pseudomesenteroides, Leuconostoc citreum, Lactobacillus sp, Carnobacterium mobile, Enterococcus faecalis, Enterococcus faecium, Macrococcus caseolyticus and Hafnia alvei reduced STEC O26:H11 counts by 1.4-2.5 log cfu g(-1) and to a lesser extent STEC O157:H7 counts in pasteurized milk cheeses. Some strains can act in synergy to inhibit STEC in raw milk uncooked pressed cheeses. Inhibitory associations had no adverse effect on the sensory characteristics of these cheeses. The association of H. alvei, Lactobacillus plantarum and Lc. lactis was the most inhibitory: after inoculation of this consortium into milk, STEC O26:H11 and O157:H7, inoculated at 2 log cfu ml(-1), were reduced by up to 3 log cfu g(-1) in ripened cheese. Inhibition in cheese cannot be predicted from H2O2 production in BHI medium, decreased pH or milk reduction. It is not clear what role the rapid decrease in pH during the first 6 h may play in the inhibition. Further studies will be needed to determine the nature of the inhibition. PMID:26678131

  17. Shiga toxin-producing Escherichia coli in swine: the public health perspective

    PubMed Central

    Tseng, Marion; Fratamico, Pina M.; Manning, Shannon D.; Funk, Julie A.

    2014-01-01

    Shiga toxin-producing Escherichia coli (STEC) strains are food-borne pathogens that are an important public health concern. STEC infection is associated with severe clinical diseases in human beings, including hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS), which can lead to kidney failure and death. Cattle are the most important STEC reservoir. However, a number of STEC outbreaks and HUS cases have been attributed to pork products. In swine, STEC strains are known to be associated with edema disease. Nevertheless, the relationship between STEC of swine origin and human illness has yet to be determined. This review critically summarizes epidemiologic and biological studies of swine STEC. Several epidemiologic studies conducted in multiple regions of the world have demonstrated that domestic swine can carry and shed STEC. Moreover, animal studies have demonstrated that swine are susceptible to STEC O157:H7 infection and can shed the bacterium for 2 months. A limited number of molecular epidemiologic studies, however, have provided conflicting evidence regarding the relationship between swine STEC and human illness. The role that swine play in STEC transmission to people and the contribution to human disease frequency requires further evaluation. PMID:24397985

  18. Survival of Shiga toxin-producing Escherichia coli and Stx bacteriophages in moisture enhanced beef.

    PubMed

    Langsrud, Solveig; Heir, Even; Rode, Tone Mari

    2014-07-01

    Moisture enhancement of meat through injection is a technology to improve the sensory properties and the weight of meat. However, the technology may increase the risk of food borne infections. Shiga toxin-producing Escherichia coli (STEC) or bacteriophages carrying cytotoxin genes (Shiga toxin genes, stx), which is normally only present on the surface of intact beef, may be transferred to the inner parts of the muscle during the injection process. Pathogens and bacteriophages surviving the storage period may not be eliminated in the cooking process since many consumers prefer undercooked beef. Measures to increase the microbial food safety of moisture enhanced beef may include sterilization or washing of the outer surface of the meat before injection, avoiding recycling of marinade and addition of antimicrobial agents to the marinade. This paper reviews the literature regarding microbial safety of moisture enhanced beef with special emphasis on STEC and Stx bacteriophages. Also, results from a European Union research project, ProSafeBeef (Food-CT-16 2006-36241) are presented. PMID:24134920

  19. Antibiotic resistance and integrons in Shiga toxin-producing Escherichia coli (STEC)

    PubMed Central

    Colello, Rocío; Etcheverría, Analía I.; Conza, Jose A. Di; Gutkind, Gabriel O.; Padola, Nora L.

    2015-01-01

    Shiga toxin-producing Escherichia coli (STEC) cause hemorrhagic colitis (HC) and hemolytic-uremic syndrome in humans (HUS). Cattle are the main reservoir of STEC and transmission to humans occurs through contaminated food and water. Antibiotics are used in pig production systems to combat disease and improve productivity and play a key role in the dissemination of antibiotic resistance genes to the bacteria. Integrons have been identified in resistant bacteria allowing for the acquisition and dissemination of antibiotic resistance genes. STEC strains isolated from humans and animals have developed antibiotic resistance. In our laboratory, 21 non-157 STEC strains isolated from pigs were analyzed to detect class 1 and 2 integrons by PCR. Eight carried integrons, 7 of them harbored intl2. In another study 545 STEC strains were also analyzed for the presence of intl1 and intl2 . Strains carrying intl1 belonged to isolates from environment (n = 1), chicken hamburger (n = 2), dairy calves (n = 4) and pigs (n = 8). Two strains isolated from pigs harbored intl2 and only one intl1 / intl2 , highlighting the presence of intl2 in pigs. The selection for multiresistant strains may contribute to the emergence of antibiotic resistant pathogens and facilitate the spreading of the mobile resistance elements to other bacteria. PMID:26221083

  20. Optimizing Escherichia coli as a protein expression platform to produce Mycobacterium tuberculosis immunogenic proteins

    PubMed Central

    2013-01-01

    Background A number of valuable candidates as tuberculosis vaccine have been reported, some of which have already entered clinical trials. The new vaccines, especially subunit vaccines, need multiple administrations in order to maintain adequate life-long immune memory: this demands for high production levels and degree of purity. Results In this study, TB10.4, Ag85B and a TB10.4-Ag85B chimeric protein (here-after referred as full) - immunodominant antigens of Mycobacterium tuberculosis - were expressed in Escherichia coli and purified to homogeneity. The rational design of expression constructs and optimization of fermentation and purification conditions allowed a marked increase in solubility and yield of the recombinant antigens. Indeed, scaling up of the process guaranteed mass production of all these three antigens (2.5-25 mg of pure protein/L cultivation broth). Quality of produced soluble proteins was evaluated both by mass spectrometry to assess the purity of final preparations, and by circular dichroism spectroscopy to ascertain the protein conformation. Immunological tests of the different protein products demonstrated that when TB10.4 was fused to Ag85B, the chimeric protein was more immunoreactive than either of the immunogenic protein alone. Conclusions We reached the goal of purifying large quantities of soluble antigens effective in generating immunological response against M. tuberculosis by a robust, controlled, scalable and economically feasible production process. PMID:24252280

  1. Improved traceability of Shiga-toxin-producing Escherichia coli using CRISPRs for detection and typing.

    PubMed

    Delannoy, Sabine; Beutin, Lothar; Fach, Patrick

    2016-05-01

    Among strains of Shiga-toxin-producing Escherichia coli (STEC), seven serogroups (O26, O45, O103, O111, O121, O145, and O157) are frequently associated with severe clinical illness in humans. The development of methods for their reliable detection from complex samples such as food has been challenging thus far, and is currently based on the PCR detection of the major virulence genes stx1, stx2, and eae, and O-serogroup-specific genes. However, this approach lacks resolution. Moreover, new STEC serotypes are continuously emerging worldwide. For example, in May 2011, strains belonging to the hitherto rarely detected STEC serotype O104:H4 were identified as causative agents of one of the world's largest outbreak of disease with a high incidence of hemorrhagic colitis and hemolytic uremic syndrome in the infected patients. Discriminant typing of pathogens is crucial for epidemiological surveillance and investigations of outbreaks, and especially for tracking and tracing in case of accidental and deliberate contamination of food and water samples. Clustered regularly interspaced short palindromic repeats (CRISPRs) are composed of short, highly conserved DNA repeats separated by unique sequences of similar length. This distinctive sequence signature of CRISPRs can be used for strain typing in several bacterial species including STEC. This review discusses how CRISPRs have recently been used for STEC identification and typing. PMID:26449676

  2. Classification of Shiga toxin-producing escherichia coli (STEC) serotypes with hyperspectral microscope imagery

    NASA Astrophysics Data System (ADS)

    Park, Bosoon; Windham, William R.; Ladely, Scott R.; Gurram, Prudhvi; Kwon, Heesung; Yoon, Seung-Chul; Lawrence, Kurt C.; Narang, Neelam; Cray, William C.

    2012-05-01

    Non-O157:H7 Shiga toxin-producing Escherichia coli (STEC) strains such as O26, O45, O103, O111, O121 and O145 are recognized as serious outbreak to cause human illness due to their toxicity. A conventional microbiological method for cell counting is laborious and needs long time for the results. Since optical detection method is promising for realtime, in-situ foodborne pathogen detection, acousto-optical tunable filters (AOTF)-based hyperspectral microscopic imaging (HMI) method has been developed for identifying pathogenic bacteria because of its capability to differentiate both spatial and spectral characteristics of each bacterial cell from microcolony samples. Using the AOTF-based HMI method, 89 contiguous spectral images could be acquired within approximately 30 seconds with 250 ms exposure time. From this study, we have successfully developed the protocol for live-cell immobilization on glass slides to acquire quality spectral images from STEC bacterial cells using the modified dry method. Among the contiguous spectral imagery between 450 and 800 nm, the intensity of spectral images at 458, 498, 522, 546, 570, 586, 670 and 690 nm were distinctive for STEC bacteria. With two different classification algorithms, Support Vector Machine (SVM) and Sparse Kernel-based Ensemble Learning (SKEL), a STEC serotype O45 could be classified with 92% detection accuracy.

  3. Prospective Validation of Cessation of Contact Precautions for Extended-Spectrum β-Lactamase–Producing Escherichia coli1

    PubMed Central

    Frei, Reno; Schwahn, Friedbert; Tomic, Milanka; Conzelmann, Martin; Stranden, Anne; Widmer, Andreas F.

    2016-01-01

    After contact precautions were discontinued, we determined nosocomial transmission of extended-spectrum β-lactamase (ESBL)–producing Escherichia coli by screening hospital patients who shared rooms with ESBL-producing E. coli–infected or –colonized patients. Transmission rates were 2.6% and 8.8% at an acute-care and a geriatric/rehabilitation hospital, respectively. Prolonged contact was associated with increased transmission. PMID:27191171

  4. Clonal dissemination of highly virulent extended-spectrum beta-lactamase-producing Escherichia coli strains isolated from the urine of non-hospitalised patients in Zagreb region.

    PubMed

    Vranes, Jasmina; Marijan, Tatjana; Bedenic, Branka; Mlinaric-Dzepina, Ana; Katic, Stjepan; Kalenic, Smilja

    2008-02-01

    Recent data suggest that extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli is an emergent cause of urinary tract infections in non-hospitalised patients in different countries. The aim of this study was to characterise ESBL-producing E. coli strains isolated from the urine of outpatients in the Zagreb region of Croatia. During the 5-month study period, a total of 2451 E. coli strains were isolated from the urine of non-hospitalised patients with significant bacteriuria. A total of 39 ESBL-producing E. coli strains (1.59%) were collected and characterised. PMID:17936594

  5. Sequential necrotizing fasciitis caused by the monomicrobial pathogens Streptococcus equisimilis and extended-spectrum beta-lactamase-producing Escherichia coli.

    PubMed

    Endo, Akiko; Matsuoka, Ryosuke; Mizuno, Yasushi; Doi, Asako; Nishioka, Hiroaki

    2016-08-01

    Necrotizing fasciitis is a rapidly progressing bacterial infection of the superficial fascia and subcutaneous tissue that is associated with a high mortality rate and is caused by a single species of bacteria or polymicrobial organisms. Escherichia coli is rarely isolated from patients with monomicrobial disease. Further, there are few reports of extended-spectrum beta-lactamase (ESBL)-producing E. coli associated with necrotizing fasciitis. We report here our treatment of an 85-year-old man who was admitted because of necrotizing fasciitis of his right thigh. Streptococcus equisimilis was detected as a monomicrobial pathogen, and the infection was cured by amputation of the patient's right leg and the administration of antibiotics. However, 5 days after discontinuing antibiotic therapy, he developed necrotizing fasciitis on his right upper limb and died. ESBL-producing E. coli was the only bacterial species isolated from blood and skin cultures. This case demonstrates that ESBL-producing E. coli can cause monomicrobial necrotizing fasciitis, particularly during hospitalization and that a different bacterial species can cause disease shortly after a previous episode. PMID:26912298

  6. Comparison of Enrichment Broths for Supporting Growth of Shiga Toxin-Producing Escherichia coli.

    PubMed

    Stromberg, Zachary R; Lewis, Gentry L; Marx, David B; Moxley, Rodney A

    2015-08-01

    Detection of Shiga toxin-producing Escherichia coli (STEC) in complex sample matrices remains challenging. In an attempt to improve detection, nonselective and selective enrichment broths were compared as follows: (1) trypticase soy broth (TSB) was compared with TSB plus novobiocin, vancomycin, rifampicin, bile salts, and potassium tellurite (TSB-NVRBT) for supporting growth of STEC in pure culture; (2) E. coli broth (EC), TSB, and TSB plus bile salts (mTSB) were compared for enrichment of STEC O26, O45, O103, O104, O111, O121, O145, and O157 (STEC-8) in inoculated cattle fecal samples; (3) EC, TSB, and mTSB were compared for the detection of STEC-8 in inoculated cattle fecal samples. Fecal samples were inoculated with wild-type STEC-8 or nalidixic acid- or rifampicin-resistant derivatives of the same strains at 100, 1000, or 10,000 colony-forming units per gram (CFU/g) of feces. In pure culture, the mean STEC CFU/mL following enrichment in TSB was 1.17 log10 greater than that in TSB-NVRBT (P < 0.05). In inoculated fecal samples, EC enrichment yielded growth of STEC-8 (6.42 log10 CFU/g) that was significantly greater than in TSB (6.23 log10 CFU/g; P < 0.05), and numerically but not significantly greater than in mTSB (6.37 log10 CFU/g; P = 0.60). Wild-type STEC strains were detected in 43.8 % (21/48) of the samples enriched in EC and mTSB compared to 27.1 % (13/48) of the samples enriched in TSB (P = 0.15). Overall, STEC grew significantly better when enriched in EC compared to TSB. Modification of TSB by the addition of bile salts improved the growth and detection of STEC compared to TSB alone. PMID:25917502

  7. [Susceptibility of ESBL-producing Escherichia coli and Klebsiella pneumoniae to various antibacterial agents].

    PubMed

    Nakamura, Tatsuya; Komatsu, Masaru

    2005-02-01

    With the increasing use of broad-spectrum antibacterial agents, the increase in various drug-resistant bacterial strains has become a concern in recent years. Especially, the development of drug-resistance by Enterobacteriaceae which significantly affects therapy and prognosis in sepsis and lower gastrointestinal post-operative infection. The extended spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae strains isolated in the Surveillance Program of Bacterial Resistance in Kinki region of Japan (SBRK) were supplied between November 2000 and March 2003. The susceptibilities of them to 16 kinds of antimicrobial agents were investigated. The number of them was 48 strains consisting of 36 Escherichia coli strains (75%) and 12 Klebsiella pneumoniae strains (25%). Our focus was on carbapenem and the new quinolone antibacterial agents. Among the 16 major antibacterial agents examined, carbapenem had low MIC50/90 values. Meropenem had a MIC50/90 of 0.03/0.06microg/ml, followed by biapenem (0.12/0.5), imipenem (0.25/0.5) and panipenem (0.25/0.5). Among cephem, ceftazidime had the lowest MIC50 at 4 microg/ml. All four of the cephem agents had a MIC90 of greater than 128microg/ml. Among beta-lactamase inhibitors, tazobactam/piperacillin had the lowest MIC50 at 4 microg/ml, and sulbactam/cefoperazone had a MIC50 of 32 microg/ml. Among the new quinolones, prulifloxacin had the lowest MIC50 at 1 microg/ml, and the other drugs had a MIC50 of 2 microg/ml. The resistance rate of ciprofloxacin was 61.1% in E. coli and 16.6% in K. pneumoniae. Comparison of drug-sensitivity to cephem by ESBL-gene type revealed that cefpirome, cefepime and cefozopran had higher MIC50/90 values against the CTX-M group with a MIC50 of greater than 128microg/ml. Ceftazidime and aztreonam had higher MIC50/90 values against the TEM/SHV group than those against the CTX-M group. In the CTX-M group, the MIC50 was 4 and 16microg/ml, respectively. PMID:15847220

  8. Presence of Multidrug-Resistant Shiga Toxin-Producing Escherichia coli, Enteropathogenic E. coli and Enterotoxigenic E. coli, on Raw Nopalitos (Opuntia ficus-indica L.) and in Nopalitos Salads from Local Retail Markets in Mexico.

    PubMed

    Gómez-Aldapa, Carlos A; Cerna-Cortes, Jorge F; Rangel-Vargas, Esmeralda; Torres-Vitela, Mdel Refugio; Villarruel-López, Angelica; Gutiérrez-Alcántara, Eduardo J; Castro-Rosas, Javier

    2016-05-01

    The presence of multidrug-resistant pathogenic bacteria in food is a significant public health concern. Diarrheagenic Escherichia coli pathotypes (DEPs) are foodborne bacteria. In Mexico, DEPs have been associated with diarrheal illness. There is no information about the presence of multidrug-resistant DEPs on fresh vegetables and in cooked vegetable salads in Mexico. "Nopalitos" (Opuntia ficus-indica L.) is a Cactacea extensively used as a fresh green vegetable throughout Mexico. The presence of generic E. coli and multidrug-resistant DEPs on raw whole and cut nopalitos and in nopalitos salad samples was determined. One hundred raw whole nopalitos (without prickles) samples, 100 raw nopalitos cut into small square samples, and 100 cooked nopalitos salad samples were collected from markets. Generic E. coli was determined using the most probable number procedures. DEPs were identified using two multiplex polymerase chain reaction procedures. Susceptibility to 16 antibiotics was tested for the isolated DEP strains by standard test. Of the 100 whole nopalitos samples, 100 cut nopalitos samples, and 100 nopalitos salad samples, generic E. coli and DEPs were identified, respectively, in 80% and 10%, 74% and 10%, and 64% and 8%. Eighty-two DEP strains were isolated from positive nopalitos samples. The identified DEPs included Shiga toxin-producing E. coli (STEC), enteropathogenic E. coli (EPEC), and enterotoxigenic E. coli (ETEC). All isolated strains exhibited resistance to at least six antibiotics. To the best of our knowledge, this is the first report of the presence of multidrug-resistant and antibiotic resistance profiles of STEC, ETEC, and EPEC on raw nopalitos and in nopalitos salads in Mexico. PMID:26954710

  9. HlyF Produced by Extraintestinal Pathogenic Escherichia coli Is a Virulence Factor That Regulates Outer Membrane Vesicle Biogenesis.

    PubMed

    Murase, Kazunori; Martin, Patricia; Porcheron, Gaëlle; Houle, Sébastien; Helloin, Emmanuelle; Pénary, Marie; Nougayrède, Jean-Philippe; Dozois, Charles M; Hayashi, Tetsuya; Oswald, Eric

    2016-03-01

    Escherichia coli can cause extraintestinal infections in humans and animals. The hlyF gene is epidemiologically associated with virulent strains of avian pathogenic E. coli and human neonatal meningitis-associated E. coli. We demonstrated that culture supernatants of E. coli expressing HlyF induced autophagy in eukaryotic cells. This phenotype coincided with an enhanced production of outer membrane vesicles (OMVs) by bacteria expressing HlyF. The HlyF protein displays a predicted catalytic domain of the short-chain dehydrogenase/reductase superfamily. This conserved domain was involved the ability of HlyF to promote the production of OMVs. The increased production of OMVs was associated with the release of toxins. hlyF was shown to be expressed during extraintestinal infection and to play a role in the virulence of extraintestinal pathogenic E. coli in a chicken model of colibacillosis. This is the first evidence that pathogenic bacteria produce a virulence factor directly involved in the production of OMVs. PMID:26494774

  10. Escherichia coli Common Pilus (ECP) Targets Arabinosyl Residues in Plant Cell Walls to Mediate Adhesion to Fresh Produce Plants*

    PubMed Central

    Rossez, Yannick; Holmes, Ashleigh; Lodberg-Pedersen, Henriette; Birse, Louise; Marshall, Jacqueline; Willats, William G. T.; Toth, Ian K.; Holden, Nicola J.

    2014-01-01

    Outbreaks of verotoxigenic Escherichia coli are often associated with fresh produce. However, the molecular basis to adherence is unknown beyond ionic lipid-flagellum interactions in plant cell membranes. We demonstrate that arabinans present in different constituents of plant cell walls are targeted for adherence by E. coli common pilus (ECP; or meningitis-associated and temperature-regulated (Mat) fimbriae) for E. coli serotypes O157:H7 and O18:K1:H7. l-Arabinose is a common constituent of plant cell wall that is rarely found in other organisms, whereas ECP is widespread in E. coli and other environmental enteric species. ECP bound to oligosaccharides of at least arabinotriose or longer in a glycan array, plant cell wall pectic polysaccharides, and plant glycoproteins. Recognition overlapped with the antibody LM13, which binds arabinanase-sensitive pectic epitopes, and showed a preferential affinity for (1→5)-α-linked l-arabinosyl residues and longer chains of arabinan as demonstrated with the use of arabinan-degrading enzymes. Functional adherence in planta was mediated by the adhesin EcpD in combination with the structural subunit, EcpA, and expression was demonstrated with an ecpR–GFP fusion and ECP antibodies. Spinach was found to be enriched for ECP/LM13 targets compared with lettuce. Specific recognition of arabinosyl residues may help explain the persistence of E. coli in the wider environment and association of verotoxigenic E. coli with some fresh produce plants by exploitation of a glycan found only in plant, not animal, cells. PMID:25320086

  11. First Characterization of CTX-M-15-Producing Escherichia coli ST131 and ST405 Clones Causing Community-Onset Infections in South America▿

    PubMed Central

    Ruiz, Sory J.; Montealegre, Maria Camila; Ruiz-Garbajosa, Patricia; Correa, Adriana; Briceño, David F.; Martinez, Ernesto; Rosso, Fernando; Muñoz, Martin; Quinn, John P.; Cantón, Rafael; Villegas, Maria Virginia

    2011-01-01

    CTX-M-15-producing Escherichia coli has emerged worldwide as an important pathogen associated with community-onset infections, but in South America reports are scarce. We document the presence of CTX-M-15-producing E. coli of the international ST131 and ST405 clones in Colombia and present the first molecular characterization of these isolates in South America. PMID:21325548

  12. O-antigen and virulence profiling of Shiga toxin-producing Escherichia coli by a rapid and cost-effective DNA microarray colorimetric method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shiga toxin-producing Escherichia coli (STEC) is a leading cause of foodborne illness worldwide. To evaluate better methods to rapidly detect and genotype Shiga toxin-producing Escherichia coli strains, the present study evaluated the use of the ampliPHOX colorimetric detection technology, based on ...

  13. Current status of extended spectrum β-lactamase-producing Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis in Okinawa prefecture, Japan.

    PubMed

    Nakama, Rika; Shingaki, Aoi; Miyazato, Hiroko; Higa, Rikako; Nagamoto, Chota; Hamamoto, Kouta; Ueda, Shuhei; Hachiman, Teruyuki; Touma, Yuki; Miyagi, Kazufumi; Kawahara, Ryuji; Toyosato, Takehiko; Hirai, Itaru

    2016-05-01

    Enterobacteriaceae producing extended spectrum β-lactamase (ESBL) are distributed worldwide. In this study, 114 ESBL-producing Enterobacteriaceae were isolated by analyzing 1672 clinical isolates of Enterobacteriaceae collected from an Okinawa prefectural hospital in Japan between June 2013 and July 2014. The overall prevalence of ESBL-producing Enterobacteriaceae was 6.8%; the prevalence of different bacterial species among the ESBL-producing isolates was as follows: 11.5% Escherichia coli (90 of 783 isolates), 6.2% Klebsiella pneumoniae (19 of 307 isolates), and 11.1% Proteus mirabilis (5 of 45 isolates). The ESBL types blaCTX-M-1, -3, -15, -2, -14, -27, and mutants of blaSHV-1 were detected. Among them, blaCTX-M-15 (33.3%), blaCTX-M-14 (27.8%) and blaCTX-M-27 (33.3%) were dominant in the E. coli isolates, whereas a blaSHV mutant which possessed four mutations (Tyr7Phe, Leu35Gln, Gly238Ser and Glu240Lys) in the amino acid sequence of SHV-1 dominated in the K. pneumoniae isolates (11 of 19, 57.9%). The pandemic E. coli ST131 clone was found to constitute 3.3% of the overall examined isolates and 62.2% of the ESBL-producing E. coli isolates. Our results suggest that the genetic combination of blaCTX-M, and blaSHV and antibiotics-resistant profile were different from that in other regions such as other areas of Japan, Asia, Europe, and North America, especially in the ESBL-producing K. pneumoniae isolates and in the E. coli B2-O25b-ST131 isolates possessing blaCTX-M-15 (40.7% of the E. coli B2-O25b-ST131 isolates). Taken together, our results indicate that the ESBL-producing Enterobacteriaceae in Okinawa, Japan, might be of a unique nature. PMID:26898665

  14. Presence of ESBL/AmpC -Producing Escherichia coli in the Broiler Production Pyramid: A Descriptive Study

    PubMed Central

    Dierikx, Cindy M.; van der Goot, Jeanet A.; Smith, Hilde E.; Kant, Arie; Mevius, Dik J.

    2013-01-01

    Broilers and broiler meat products are highly contaminated with extended spectrum beta-lactamase (ESBL) or plasmid-mediated AmpC beta-lactamase producing Escherichia coli and are considered to be a source for human infections. Both horizontal and vertical transmission might play a role in the presence of these strains in broilers. As not much is known about the presence of these strains in the whole production pyramid, the epidemiology of ESBL/AmpC-producing E. coli in the Dutch broiler production pyramid was examined. Cloacal swabs of Grandparent stock (GPS) birds (one−/two-days (breed A and B), 18 and 31 weeks old (breed A)), one-day old Parent stock birds (breed A and B) and broiler chickens of increasing age (breed A) were selectively cultured to detect ESBL/AmpC-producing isolates. ESBL/AmpC-producing isolates were found at all levels in the broiler production pyramid in both broiler breeds examined. Prevalence was already relatively high at the top of the broiler production pyramid. At broiler farms ESBL/AmpC producing E. coli were still present in the environment of the poultry house after cleaning and disinfection. Feed samples taken in the poultry house also became contaminated with ESBL/AmpC producing E. coli after one or more production weeks. The prevalence of ESBL/AmpC-positive birds at broiler farms increased within the first week from 0–24% to 96–100% independent of the use of antibiotics and stayed 100% until slaughter. In GPS breed A, prevalence at 2 days, 18 weeks and 31 weeks stayed below 50% except when beta-lactam antibiotics were administered. In that case prevalence increased to 100%. Interventions minimizing ESBL/AmpC contamination in broilers should focus on preventing horizontal and vertical spread, especially in relation to broiler production farms. PMID:24244401

  15. Phage biocontrol of enteropathogenic and shiga toxin-producing Escherichia coli in meat products.

    PubMed

    Tomat, David; Migliore, Leonel; Aquili, Virginia; Quiberoni, Andrea; Balagué, Claudia

    2013-01-01

    Ten bacteriophages were isolated from faeces and their lytic effects assayed on 103 pathogenic and non-pathogenic Enterobacteriaceae. Two phages (DT1 and DT6) were selected based on their host ranges, and their lytic effects on pathogenic E. coli strains inoculated on pieces of beef were determined. We evaluated the reductions of viable cells of Escherichia coli O157:H7 and non-O157 Shiga toxigenic E. coli strains on meat after exposure to DT6 at 5 and 24°C for 3, 6, and 24 h and the effect of both phages against an enteropathogenic E. coli strain. Significant viable cell reductions, compared to controls without phages, at both temperatures were observed, with the greatest decrease taking place within the first hours of the assays. Reductions were also influenced by phage concentration, being the highest concentrations, 1.7 × 10(10) plaque forming units per milliliter (PFU/mL) for DT1 and 1.4 × 10(10) PFU/mL for DT6, the most effective. When enteropathogenic E. coli and Shiga toxigenic E. coli (O157:H7) strains were tested, we obtained viable cell reductions of 0.67 log (p = 0.01) and 0.77 log (p = 0.01) after 3 h incubation and 0.80 log (p = 0.01) and 1.15 log (p = 0.001) after 6 h. In contrast, all nonpathogenic E. coli strains as well as other enterobacteria tested were resistant. In addition, phage cocktail was evaluated on two strains and further reductions were observed. However, E. coli bacteriophage insensitive mutants (BIMs) emerged in meat assays. BIMs isolated from meat along with those isolated by using the secondary culture method were tested to evaluate resistance phenotype stability and reversion. They presented low emergence frequencies (6.5 × 10(-7)-1.8 × 10(-6)) and variable stability and reversion. Results indicate that isolated phages were stable on storage, negative for all the virulence factors assayed, presented lytic activity for different E. coli virotypes and could be useful in reducing Shiga toxigenic E. coli and enteropathogenic E

  16. Phage biocontrol of enteropathogenic and shiga toxin-producing Escherichia coli in meat products

    PubMed Central

    Tomat, David; Migliore, Leonel; Aquili, Virginia; Quiberoni, Andrea; Balagué, Claudia

    2013-01-01

    Ten bacteriophages were isolated from faeces and their lytic effects assayed on 103 pathogenic and non-pathogenic Enterobacteriaceae. Two phages (DT1 and DT6) were selected based on their host ranges, and their lytic effects on pathogenic E. coli strains inoculated on pieces of beef were determined. We evaluated the reductions of viable cells of Escherichia coli O157:H7 and non-O157 Shiga toxigenic E. coli strains on meat after exposure to DT6 at 5 and 24°C for 3, 6, and 24 h and the effect of both phages against an enteropathogenic E. coli strain. Significant viable cell reductions, compared to controls without phages, at both temperatures were observed, with the greatest decrease taking place within the first hours of the assays. Reductions were also influenced by phage concentration, being the highest concentrations, 1.7 × 1010 plaque forming units per milliliter (PFU/mL) for DT1 and 1.4 × 1010 PFU/mL for DT6, the most effective. When enteropathogenic E. coli and Shiga toxigenic E. coli (O157:H7) strains were tested, we obtained viable cell reductions of 0.67 log (p = 0.01) and 0.77 log (p = 0.01) after 3 h incubation and 0.80 log (p = 0.01) and 1.15 log (p = 0.001) after 6 h. In contrast, all nonpathogenic E. coli strains as well as other enterobacteria tested were resistant. In addition, phage cocktail was evaluated on two strains and further reductions were observed. However, E. coli bacteriophage insensitive mutants (BIMs) emerged in meat assays. BIMs isolated from meat along with those isolated by using the secondary culture method were tested to evaluate resistance phenotype stability and reversion. They presented low emergence frequencies (6.5 × 10−7–1.8 × 10−6) and variable stability and reversion. Results indicate that isolated phages were stable on storage, negative for all the virulence factors assayed, presented lytic activity for different E. coli virotypes and could be useful in reducing Shiga toxigenic E. coli and enteropathogenic E

  17. Hygiene quality and presence of ESBL-producing Escherichia coli in raw food diets for dogs

    PubMed Central

    Nilsson, Oskar

    2015-01-01

    Background Raw food diets are popular among some dog owners, even though there are concerns regarding the infectious disease risk and public health implications. Hence, the two aims of this study were to investigate the hygiene quality of raw food diets for dogs in the Swedish market and if Escherichia coli with transferable resistance to extended spectrum cephalosporins (ESC) was present in such products. Methods Samples of raw food diets were suspended and further diluted in 0.9% saline. Appropriate dilutions were 1) cultured on Petrifilm™SEC to quantify the amount of E. coli in the samples and 2) mixed with cefotaxime to a final concentration of 1 mg/L and cultured on Petrifilm™SEC to quantify the amount of ESC-resistant E. coli in the samples. Furthermore, undiluted suspensions were mixed 1:1 with double strength MacConkey broth with cefotaxime, enriched overnight and finally cultured on MacConkey agar with cefotaxime (1 mg/L). Suspected ESC-resistant E. coli were screened by PCR for genes encoding extended spectrum beta lactamases and plasmid-mediated AmpC and their susceptibility to a panel of antimicrobials was performed by broth microdilution using VetMIC GN-mo. Results Escherichia coli was isolated from all samples (n=39) and ESC-resistant E. coli was isolated from nine samples (23%). All ESC-resistant E. coli were PCR-positive for the bla CMY-2 group and only one of them was also resistant to a non-beta-lactam antibiotic. Conclusion The results of this study indicate that raw food diets could be a source of ESC-resistant E. coli to dogs and highlight the need for maintaining good hygiene when handling these products to prevent infection. PMID:26490763

  18. Virulence repertoire of Shiga toxin-producing Escherichia coli (STEC) and enterotoxigenic Escherichia coli (ETEC) from diarrhoeic lambs of Arunachal Pradesh, India.

    PubMed

    Bandyopadhyay, Samiran; Mahanti, Achintya; Samanta, I; Dutta, T K; Ghosh, Monoj K; Bera, A K; Bandyopadhyay, Subhasis; Bhattacharya, D

    2011-03-01

    A total of 107 faecal samples were collected from diarrhoeic lambs of high altitude terrains (2,000 to 5,000 m above the mean sea level) of Tawang and West Kameng districts of Arunachal Pradesh, India. Total 234 Escherichia coli were isolated and further subjected to PCR for the study of virulence repertoire characteristics of Shiga toxin-producing E. coli (STEC) and enterotoxigenic E. coli (ETEC). Out of the 234 isolated E. coli, 32% were found positive for STEC, and 9% were carrying virulence gene for ETEC. The isolated STEC serogroups were O159, O127, O120, O113, O60, O30, O25, O8 and O2. Of all the 74 STEC strains, PCR showed that 18% isolates carried stx ( 1 ), 26% possessed stx ( 2 ) and 47% produced positive amplicon for both. Other virulent attributes like intimin (eaeA), enterohaemolysin (ehxA) and STEC auto-agglutinating adhesin (saa) were present in 18%, 43% and 44% of the isolates, respectively. The isolated ETEC serogroups were O172, O170, O159, O146, O127, O120, O113, O86, O75, O60, O30, O25, O8, O2, OR and OUT. Of the 22 ETEC-positive isolates, 23%, 18% and 4.5% possessed the gene only for LT, STa and STb, respectively, whereas 54% carried genes for both LT and STb. Some serogroups of E. coli like O159, O127, O120, O113, O60, O30, O25, O8 and O2 possessed genes for both Shiga toxin and enterotoxin. This study is the first report of ETEC isolation from diarrhoeic lambs in India. The moderately high proportion of STEC and ETEC in the diarrhoeic lambs implicated that these animals are important reservoir of STEC and ETEC. This is really a grave concern for the 'brokpas' and nomads (shepherds) who share a close relationship with this animals for their livelihood. This study also indicates that ETEC may be a major cause for frequent diarrhoeal episodes in lambs of this region. PMID:21104315

  19. Effect of Ceftriaxone on the Outcome of Murine Pyelonephritis Caused by Extended-Spectrum-β-Lactamase-Producing Escherichia coli

    PubMed Central

    Tratselas, A.; Simitsopoulou, M.; Giannakopoulou, A.; Dori, I.; Saoulidis, S.; Kollios, K.; Papaioannidou, P.; Pournaras, S.

    2014-01-01

    Urinary tract infections (UTIs) due to extended-spectrum-β-lactamase (ESBL)-producing Enterobacteriaceae in children are becoming more frequent, and they are commonly treated initially with a second- or third-generation cephalosporin. We developed a murine model of ascending UTI caused by ESBL-producing Escherichia coli. Using this model, we investigated the renal bacterial burden, interleukin-6 (IL-6) expression, and histopathological alterations caused by ESBL- and non-ESBL-producing bacteria after 1, 2, or 6 days with or without ceftriaxone therapy. The renal bacterial burden, IL-6 concentration, and histological inflammatory lesions were not significantly different between mice infected with ESBL- and non-ESBL-producing bacteria without treatment at any of the time points examined. Following ceftriaxone administration, the bacterial burden was eliminated in the kidneys of mice infected with ESBL- and non-ESBL-producing bacteria on the 6th postinfection day. The histological analysis demonstrated that among mice treated with ceftriaxone, those infected with ESBL-producing bacteria had more profound renal alterations than those infected with non-ESBL-producing bacteria on the 6th day (P < 0.001). In comparison, microbiological outcomes did not differ significantly between mice infected with ESBL- and non-ESBL-producing bacteria at any of the time points examined. The effectiveness of ceftriaxone in mice with UTIs due to ESBL-producing E. coli may have therapeutic implications; it is, however, hampered by limited activity on the histopathological lesions, a finding that needs further investigation. PMID:25224003

  20. O157:H7 and O104:H4 Vero/Shiga toxin-producing Escherichia coli outbreaks: respective role of cattle and humans

    PubMed Central

    2012-01-01

    An enteroaggregative Verotoxin (Vtx)-producing Escherichia coli strain of serotype O104:H4 has recently been associated with an outbreak of haemolytic-uremic syndrome and bloody diarrhoea in humans mainly in Germany, but also in 14 other European countries, USA and Canada. This O104:H4 E. coli strain has often been described as an enterohaemorrhagic E. coli (EHEC), i.e. a Vtx-producing E. coli with attaching and effacing properties. Although both EHEC and the German O104:H4 E. coli strains indeed produce Vtx, they nevertheless differ in several other virulence traits, as well as in epidemiological characteristics. For instance, the primary sources and vehicles of typical EHEC infections in humans are ruminants, whereas no animal reservoir has been identified for enteroaggregative E. coli (EAggEC). The present article is introduced by a brief overview of the main characteristics of Vtx-producing E. coli and EAggEC. Thereafter, the O104:H4 E. coli outbreak is compared to typical EHEC outbreaks and the virulence factors and host specificity of EHEC and EAggEC are discussed. Finally, a renewed nomenclature of Vtx-producing E. coli is proposed to avoid more confusion in communication during future outbreaks and to replace the acronym EHEC that only refers to a clinical condition. PMID:22330148

  1. Conventional curing practices reduce generic Escherichia coli and Salmonella spp. on dry bulb onions produced with contaminated irrigation water.

    PubMed

    Emch, Alexander W; Waite-Cusic, Joy G

    2016-02-01

    Food Safety Modernization Act (FSMA) has emphasized microbial risks associated with irrigation water. Treasure Valley (eastern Oregon/western Idaho) has the highest yield of dry bulb onions in the country; however, their irrigation water is often non-compliant with current industry and proposed federal standards for fresh produce. Conventional curing practices may provide a mechanism to mitigate irrigation water quality to comply with FSMA regulations. Dry bulb onions were grown in Owyhee silt loam and Semiahmoo muck soils in greenhouses and irrigated with water containing a cocktail of rifampicin-resistant generic Escherichia coli and Salmonella spp. (4.80 log CFU/ml). To mimic conventional practices, mature onions remained undisturbed in soil without irrigation for 12 days prior to being lifted and cured for 16 additional days. Surviving generic E. coli and Salmonella spp. were selectively enumerated on using standard plating (Hektoen Enteric Agar with rifampicin; HE + rif) or most probable number (lactose broth with rifampicin; HE + rif) methods. Generic E. coli and Salmonella spp. on onions decreased 0.19-0.26 log CFU/g·d during the initial 12 days of finishing. At lifting, generic E. coli and Salmonella spp. had been reduced to <1 CFU/g and persisted through the end of curing. This study demonstrates conventional curing practices as an effective mitigation strategy for dry bulb onions produced with water of poor microbiological quality. PMID:26678128

  2. [Cephalosporin-Acid Synthetase of Escherichia coli Strain VKPM B-10182: Genomic Context, Gene Identification, Producer Strain Production].

    PubMed

    Eldarov M, A; Sklyarenko, A V; Mardanov, A V; Beletsky, A V; Zhgun, A A; Dumina, M V; Medvedeva, N V; Satarova, D E; Ravin, N V; Yarockii, S V

    2015-01-01

    An enzyme of cephalosporin-acid synthetase produced by the E. coli strain VKPM B-10182 has specificity for the synthesis of β-lactam antibiotics of the cephalosporin acids class (cefazolin, cefalotin, cefezole etc.). A comparison of the previously determined genomic sequence of E. coli VKPM B-10182 with a genome of the parent E. coli strain ATCC 9637 was performed. Multiple mutations indicating the long selection history of the strain were detected, including mutations in the genes of RNase and β-lactamases that could enhance the level of enzyme synthesis and reduce the degree of degradation of the synthesized cephalosporin acids. The CASA gene--a direct homolog of the penicillin G-acylase gene--was identified by bioinformatics methods. The homology of the gene was confirmed by gene cloning and the expression and determination of its enzymatic activity in the reaction of cefazolin synthesis. The CASA gene was isolated and cloned into the original expression vector, resulting in an effective E. coli BL2l(DE3) pMD0107 strain producing CASA. PMID:26596082

  3. Single Chain Variable Fragments Produced in Escherichia coli against Heat-Labile and Heat-Stable Toxins from Enterotoxigenic E. coli

    PubMed Central

    Andrade, Fernanda B.; Nepomuceno, Roberto; Silva, Anderson; Munhoz, Danielle D.; Yamamoto, Bruno B.; Luz, Daniela; Abreu, Patrícia A. E.; Horton, Denise S. P. Q.; Elias, Waldir P.; Ramos, Oscar H. P.; Piazza, Roxane M. F.

    2015-01-01

    Background Diarrhea is a prevalent pathological condition frequently associated to the colonization of the small intestine by enterotoxigenic Escherichia coli (ETEC) strains, known to be endemic in developing countries. These strains can produce two enterotoxins associated with the manifestation of clinical symptoms that can be used to detect these pathogens. Although several detection tests have been developed, minimally equipped laboratories are still in need of simple and cost-effective methods. With the aim to contribute to the development of such diagnostic approaches, we describe here two mouse hybridoma-derived single chain fragment variable (scFv) that were produced in E. coli against enterotoxins of ETEC strains. Methods and Findings Recombinant scFv were developed against ETEC heat-labile toxin (LT) and heat-stable toxin (ST), from previously isolated hybridoma clones. This work reports their design, construction, molecular and functional characterization against LT and ST toxins. Both antibody fragments were able to recognize the cell-interacting toxins by immunofluorescence, the purified toxins by ELISA and also LT-, ST- and LT/ST-producing ETEC strains. Conclusion The developed recombinant scFvs against LT and ST constitute promising starting point for simple and cost-effective ETEC diagnosis. PMID:26154103

  4. Inactivation of Shiga toxin-producing Escherichia coli in lean ground beef by gamma irradiation.

    PubMed

    Sommers, Christopher; Rajkowski, Kathleen T; Scullen, O Joseph; Cassidy, Jennifer; Fratamico, Pina; Sheen, Shiowshuh

    2015-08-01

    In this study the radiation resistance of 40 Shiga Toxin-Producing Escherichia coli (STEC) isolates which contained various combinations of the shiga toxin 1 (stx1), shiga toxin 2 (stx2), intimin (eae), and hemolysin (ehx) genes were determined. The STEC were suspended in lean ground beef and irradiated at 4 °C. D10 values, the radiation dose needed to reduce 1 log (90%) of a microorganism, ranged from 0.16 to 0.48 kGy, with a mean of 0.31 kGy for the 40 isolates. Isolates associated with illness outbreaks had a mean D10 of 0.27 kGy, while non-outbreak isolates had a mean D10 of 0.36 kGy (p < 0.05). The presence or absence of stx1, stx2, or both stx1 and 2 had no affect on D10 (p > 0.05). The presence (0.30 kGy) or absence (0.35 kGy) of ehx had no affect on D10 (p > 0.05). However, the mean D10 of isolates lacking eae (0.37 kGy) were significantly higher than those containing eae (0.27 kGy) (p < 0.05). There was no difference in D10 for isolates lacking eae regardless of whether or not they were associated with a foodborne illness outbreak (p > 0.05). It may be possible to use some of the STEC isolates which lacked eae, ehx, or both (D10 > 0.30) as avirulent surrogates in food irradiation research. The data presented in this study provides risk assessors data for metagenomic analysis as well as food and radiation processors with valuable information to control of STEC in meat. PMID:25846936

  5. Shiga toxin-producing Escherichia coli in beef retail markets from Argentina

    PubMed Central

    Brusa, Victoria; Aliverti, Virginia; Aliverti, Florencia; Ortega, Emanuel E.; de la Torre, Julian H.; Linares, Luciano H.; Sanz, Marcelo E.; Etcheverría, Analía I.; Padola, Nora L.; Galli, Lucía; Peral García, Pilar; Copes, Julio; Leotta, Gerardo A.

    2013-01-01

    Shiga toxin-producing Escherichia coli (STEC) are foodborne pathogens that cause mild or serious diseases and can lead to people death. This study reports the prevalence and characteristics of STEC O157 and non-O157 in commercial ground beef and environmental samples, including meat table, knife, meat mincing machine, and manipulator hands (n = 450) obtained from 90 retail markets over a nine-month period. The STEC isolates were serotyped and virulence genes as stx (Shiga toxin), rfbO157] (O157 lipopolysaccharide), fliCH7 (H7 flagellin), eae (intimin), ehxA (enterohemolysin) and saa (STEC autoagglutinating adhesin), were determined. STEC O157 were identified in 23 (25.5%) beef samples and 16 (4.4%) environmental samples, while STEC non-O157 were present in 47 (52.2%) and 182 (50.5%), respectively. Among 54 strains isolated, 17 were STEC O157:H7 and 37 were STEC non-O157. The prevalent genotype for O157 was stx2/eae/ehxA/fliCH7 (83.4%), and for STEC non-O157 the most frequent ones were stx1/stx2/saa/ehxA (29.7%); stx2 (29.7%); and stx2/saa/ehxA (27%). None of the STEC non-O157 strains were eae-positive. Besides O157:H7, other 20 different serotypes were identified, being O8:H19, O178:H19, and O174:H28 the prevalent. Strains belonging to the same serotype could be isolated from different sources of the same retail market. Also, the same serotype could be detected in different stores. In conclusion, screening techniques are increasingly sensitive, but the isolation of STEC non-O157 is still a challenge. Moreover, with the results obtained from the present work, although more studies are needed, cross-contamination between meat and the environment could be suspected. PMID:23346554

  6. Detection, Characterization, and Typing of Shiga Toxin-Producing Escherichia coli

    PubMed Central

    Parsons, Brendon D.; Zelyas, Nathan; Berenger, Byron M.; Chui, Linda

    2016-01-01

    Shiga toxin-producing Escherichia coli (STEC) are responsible for gastrointestinal diseases reported in numerous outbreaks around the world. Given the public health importance of STEC, effective detection, characterization and typing is critical to any medical laboratory system. While non-O157 serotypes account for the majority of STEC infections, frontline microbiology laboratories may only screen for STEC using O157-specific agar-based methods. As a result, non-O157 STEC infections are significantly under-reported. This review discusses recent advances on the detection, characterization and typing of STEC with emphasis on work performed at the Alberta Provincial Laboratory for Public Health (ProvLab). Candidates for the detection of all STEC serotypes include chromogenic agars, enzyme immunoassays (EIA) and quantitative real time polymerase chain reaction (qPCR). Culture methods allow further characterization of isolates, whereas qPCR provides the greatest sensitivity and specificity, followed by EIA. The virulence gene profiles using PCR arrays and stx gene subtypes can subsequently be determined. Different non-O157 serotypes exhibit markedly different virulence gene profiles and a greater prevalence of stx1 than stx2 subtypes compared to O157:H7 isolates. Finally, recent innovations in whole genome sequencing (WGS) have allowed it to emerge as a candidate for the characterization and typing of STEC in diagnostic surveillance isolates. Methods of whole genome analysis such as single nucleotide polymorphisms and k-mer analysis are concordant with epidemiological data and standard typing methods, such as pulsed-field gel electrophoresis and multiple-locus variable number tandem repeat analysis while offering additional strain differentiation. Together these findings highlight improved strategies for STEC detection using currently available systems and the development of novel approaches for future surveillance. PMID:27148176

  7. Mammalian nitrate biosynthesis: mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysaccharide.

    PubMed Central

    Stuehr, D J; Marletta, M A

    1985-01-01

    Escherichia coli lipopolysaccharide (LPS)-induced nitrate biosynthesis was studied in LPS-sensitive C3H/He and LPS-resistant C3H/HeJ mice. Intraperitoneal injection of 15 micrograms of LPS led to a temporary 5- to 6-fold increase in blood nitrate concentration in the C3H/He strain. Levels of nitrate excreted in the urine were also increased. In contrast, no increase was observed in the C3H/HeJ strain with LPS injections up to 175 micrograms. Furthermore, thioglycolate-elicited peritoneal macrophages from C3H/He, but not from C3H/HeJ mice, produced nitrite (60%) and nitrate (40%) when cultured with LPS (10 micrograms/ml). T-lymphocyte addition/depletion experiments showed the presence of T cells enhanced this response. However, LPS did not cause nitrite or nitrate production in cultures of spleen lymphocytes from either strain. LPS-induced nitrate synthesis was also observed with nude mice and CBA/N mice, indicating that neither functional T lymphocytes nor LPS-responsive B lymphocytes were required for the response in vivo. This was consistent with the in vitro results showing macrophages alone were competent. Mycobacterium bovis infection of C3H/He and C3H/HeJ mice resulted in a large increase in nitrate production over the course of the infection for both strains, suggesting T-lymphocyte-mediated activation of macrophages as a potent stimulus for nitrate biosynthesis. The synthesis of nitrite is significant in that it can directly participate in the endogenous formation of nitrosamines and may also be involved in some aspect of the chemistry of cytotoxicity. PMID:3906650

  8. [Epidemiological analysis of Shiga toxin-producing Escherichia coli O157 isolates from familial infection].

    PubMed

    Taguchi, M; Seto, K; Kobayashi, K

    2000-02-01

    A total of 201 Shiga toxin-producing Escherichia coli (STEC) O157:H7 isolates from 22 epidemiologically unrelated familial infections in Osaka were analyzed by various epidemiological markers, such as Shiga toxin (STx) typing, antimicrobial resistant patterns, colicine typing, plasmid profiles and pulsed-field gel electrophoresis (PFGE) typing. There were two cases where different type strains were detected in a family (family No. 21 and 22). In the family No. 21, three different strains were isolated from a 5-year-old male infant; one identical with that from his mother, and the others different in 4 markers except STx type. In the family No. 22, two kinds of strain were detected in a 48-year-old father; one identical with those from other members of the family, and the other different in STx, plasmid profile and PFGE types. These facts showed the possibility of a simultaneous double infection from the common sources of infectious factors or a successive reinfection with different types of the agents. Identical marker strains were detected from 8 out of 12 familial infection cases from July to September. Although infectious sources of these cases are not yet clearly identified, these results of epidemiological markers analysis indicate a probable circulation of the common contaminated foodstuffs. A combined use of phenotypic and genotypic tests were shown to be useful for the epidemiological analysis. Further, it seemed necessary to examine epidemiological markers of more than one strain in familial infection or identical facilities generation cases. And also a collective analysis of the relating factors such as biological markers of the causative agents, the list of eaten foodstuffs, and successive outbreaks of the patients was thought most important. PMID:10741000

  9. Diverse Virulence Gene Content of Shiga Toxin-Producing Escherichia coli from Finishing Swine

    PubMed Central

    Fratamico, Pina M.; Bagi, Lori; Delannoy, Sabine; Fach, Patrick; Manning, Shannon D.; Funk, Julie A.

    2014-01-01

    Shiga toxin-producing Escherichia coli (STEC) infections are a critical public health concern because they can cause severe clinical outcomes, such as hemolytic uremic syndrome, in humans. Determining the presence or absence of virulence genes is essential in assessing the potential pathogenicity of STEC strains. Currently, there is limited information about the virulence genes carried by swine STEC strains; therefore, this study was conducted to examine the presence and absence of 69 virulence genes in STEC strains recovered previously from finishing swine in a longitudinal study. A subset of STEC strains was analyzed by pulsed-field gel electrophoresis (PFGE) to examine their genetic relatedness. Swine STEC strains (n = 150) were analyzed by the use of a high-throughput real-time PCR array system, which included 69 virulence gene targets. Three major pathotypes consisted of 16 different combinations of virulence gene profiles, and serotypes were determined in the swine STEC strains. The majority of the swine STEC strains (n = 120) belonged to serotype O59:H21 and carried the same virulence gene profile, which consisted of 9 virulence genes: stx2e, iha, ecs1763, lpfAO113, estIa (STa), ehaA, paa, terE, and ureD. The eae, nleF, and nleH1-2 genes were detected in one swine STEC strain (O49:H21). Other genes encoding adhesins, including iha, were identified (n = 149). The PFGE results demonstrated that swine STEC strains from pigs raised in the same finishing barn were closely related. Our results revealed diverse virulence gene contents among the members of the swine STEC population and enhance understanding of the dynamics of transmission of STEC strains among pigs housed in the same barn. PMID:25107960

  10. Mammalian nitrate biosynthesis: mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysaccharide

    SciTech Connect

    Stuehr, D.J.; Marletta, M.A.

    1985-11-01

    Escherichia coli lipopolysaccharide (LPS)-induced nitrate biosynthesis was studied in LPS-sensitive C3H/He and LPS-resistant C3H/HeJ mice. Intraperitoneal injection of 15 ..mu..g of LPS led to a temporary 5- to 6-fold increase in blood nitrate concentration in the C3H/He strain. Levels of nitrate excreted in the urine were also increased. In contrast, no increase was observed in the C3H/HeJ strain with LPS injections up to 175 ..mu..g. Furthermore, thioglycolate-elicited peritoneal macrophages from C3H/He, but not from C3H/HeJ mice, produced nitrite (60%) and nitrate (40%) when cultured with LPS (10 ..mu..g/ml). T-lymphocyte addition/depletion experiments showed the presence of T cells enhanced this response. However, LPS did not cause nitrite or nitrate production in cultures of spleen lymphocytes from either strain. LPS-induced nitrate synthesis was also observed with nude mice and CBA/N mice, indicating that neither functional T lymphocytes nor LPS-responsive B lymphocytes were required for the response in vivo. This was consistent with the in vitro results showing macrophages alone were competent. Mycobacterium bovis infection of C3H/He and C3H/HeJ mice resulted in a large increase in nitrate production over the course of the infection for both strains, suggesting T-lymphocyte-mediated activation of macrophages as a potent stimulus for nitrate biosynthesis. The synthesis of nitrite is significant in that it can directly participate in the endogenous formation of nitrosamines and may also be involved in some aspect of the chemistry of cytotoxicity.

  11. Unacceptably High Error Rates in Vitek 2 Testing of Cefepime Susceptibility in Extended-Spectrum-β-Lactamase-Producing Escherichia coli

    PubMed Central

    Rhodes, Nathaniel J.; Richardson, Chad L.; Heraty, Ryan; Liu, Jiajun; Malczynski, Michael; Qi, Chao

    2014-01-01

    While a lack of concordance is known between gold standard MIC determinations and Vitek 2, the magnitude of the discrepancy and its impact on treatment decisions for extended-spectrum-β-lactamase (ESBL)-producing Escherichia coli are not. Clinical isolates of ESBL-producing E. coli were collected from blood, tissue, and body fluid samples from January 2003 to July 2009. Resistance genotypes were identified by PCR. Primary analyses evaluated the discordance between Vitek 2 and gold standard methods using cefepime susceptibility breakpoint cutoff values of 8, 4, and 2 μg/ml. The discrepancies in MICs between the methods were classified per convention as very major, major, and minor errors. Sensitivity, specificity, and positive and negative predictive values for susceptibility classifications were calculated. A total of 304 isolates were identified; 59% (179) of the isolates carried blaCTX-M, 47% (143) carried blaTEM, and 4% (12) carried blaSHV. At a breakpoint MIC of 8 μg/ml, Vitek 2 produced a categorical agreement of 66.8% and exhibited very major, major, and minor error rates of 23% (20/87 isolates), 5.1% (8/157 isolates), and 24% (73/304), respectively. The sensitivity, specificity, and positive and negative predictive values for a susceptibility breakpoint of 8 μg/ml were 94.9%, 61.2%, 72.3%, and 91.8%, respectively. The sensitivity, specificity, and positive and negative predictive values for a susceptibility breakpoint of 2 μg/ml were 83.8%, 65.3%, 41%, and 93.3%, respectively. Vitek 2 results in unacceptably high error rates for cefepime compared to those of agar dilution for ESBL-producing E. coli. Clinicians should be wary of making treatment decisions on the basis of Vitek 2 susceptibility results for ESBL-producing E. coli. PMID:24752253

  12. Houseflies (Musca domestica) as Vectors for Extended-Spectrum β-Lactamase-Producing Escherichia coli on Spanish Broiler Farms.

    PubMed

    Solà-Ginés, Marc; González-López, Juan José; Cameron-Veas, Karla; Piedra-Carrasco, Nuria; Cerdà-Cuéllar, Marta; Migura-Garcia, Lourdes

    2015-06-01

    Flies may act as potential vectors for the spread of resistant bacteria to different environments. This study was intended to evaluate the presence of Escherichia coli strains resistant to cephalosporins in flies captured in the areas surrounding five broiler farms. Phenotypic and molecular characterization of the resistant population was performed by different methods: MIC determination, pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and phylotyping. The presence of extended-spectrum beta-lactamase (ESBL) genes, their plasmid location, and the mobile genetic elements involved in their mobilization were studied. Additionally, the presence of 35 genes associated with virulence was evaluated. Out of 682 flies captured, 42 yielded ESBL-producing E. coli. Of these isolates, 23 contained bla(CTX-M-1), 18 contained bla(CTX-M-14), and 1 contained bla(CTX-M-9). ESBL genes were associated mainly with the presence of the IncI1 and IncFIB replicons. Additionally, all the strains were multiresistant, and five of them also harbored qnrS. Identical PFGE profiles were found for E. coli isolates obtained from flies at different sampling times, indicating a persistence of the same clones in the farm environment over months. According to their virulence genes, 81% of the isolates were considered avian-pathogenic E. coli (APEC) and 29% were considered extraintestinal pathogenic E. coli (ExPEC). The entrance of flies into broiler houses constitutes a considerable risk for colonization of broilers with multidrug-resistant E. coli. ESBLs in flies reflect the contamination status of the farm environment. Additionally, this study demonstrates the potential contribution of flies to the dissemination of virulence and resistance genes into different ecological niches. PMID:25795670

  13. CTX-M-producing Escherichia coli in Lithuania: associations between sites of infection, coresistance, and phylogenetic groups.

    PubMed

    Giedraitienė, Agnė; Vitkauskienė, Astra; Ašmonienė, Virginija; Plančiūnienė, Rita; Simonytė, Sandrita; Pavilonis, Alvydas; Arlet, Guillaume

    2013-01-01

    Increasing resistance of Escherichia coli (E. coli) to antibiotics, especially to the third-generation cephalosporins, has prompted studies on widespread resistance genes such as blaCTX-M and differentiation of E. coli to phylogenetic groups. The aim of this study was to determine the associations between the CTX-M type and the phylogenetic group, the site of infection, and coresistance in Lithuanian E. coli isolates producing β-lactamases. MATERIAL AND METHODS. A total of 90 E. coli ESBL strains were recovered from the lower respiratory tract, the urinary tract, sterile body sites, wounds, and other body sites between 2008 and 2012. The E. coli isolates resistant to at least 2 antibiotics with different modes of action along with resistance to cefotaxime were considered as multiresistant. The blaCTX-M, blaTEM, blaOXA-1, and blaSHV genes, the phylogenetic groups, and the resistance profiles were analyzed. RESULTS. Of the 90 isolates, 84 (93.3%) were classified as multiresistant and 6 (6.6%) as resistant. The blaCTX-M-15 gene was the most prevalent gene followed by the blaCTX-M-14 and blaCTX-M-92 genes. The logistic regression analysis revealed the associations between CTX-M-15 and resistance to ceftriaxone, between CTX-M-14 and resistance to cefoxitin, aztreonam, ampicillin/sulbactam, ticarcillin/clavulanic acid, and tobramycin, and between CTX-M-92 and resistance to cefepime, piperacillin/tazobactam, gentamicin, and tobramycin. CONCLUSIONS. The results of this study showed a significant association between CTX-M-15, CTX-M-14, and CTX-M-92 β-lactamases and resistance to some antibiotics as well as CTX‑M-14 β-lactamase and phylogenetic group A in the Lithuanian population. The associations between the CTX-M type and the site of infection were not determined. PMID:24589574

  14. Houseflies (Musca domestica) as Vectors for Extended-Spectrum β-Lactamase-Producing Escherichia coli on Spanish Broiler Farms

    PubMed Central

    Solà-Ginés, Marc; González-López, Juan José; Cameron-Veas, Karla; Piedra-Carrasco, Nuria; Cerdà-Cuéllar, Marta

    2015-01-01

    Flies may act as potential vectors for the spread of resistant bacteria to different environments. This study was intended to evaluate the presence of Escherichia coli strains resistant to cephalosporins in flies captured in the areas surrounding five broiler farms. Phenotypic and molecular characterization of the resistant population was performed by different methods: MIC determination, pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and phylotyping. The presence of extended-spectrum beta-lactamase (ESBL) genes, their plasmid location, and the mobile genetic elements involved in their mobilization were studied. Additionally, the presence of 35 genes associated with virulence was evaluated. Out of 682 flies captured, 42 yielded ESBL-producing E. coli. Of these isolates, 23 contained blaCTX-M-1, 18 contained blaCTX-M-14, and 1 contained blaCTX-M-9. ESBL genes were associated mainly with the presence of the IncI1 and IncFIB replicons. Additionally, all the strains were multiresistant, and five of them also harbored qnrS. Identical PFGE profiles were found for E. coli isolates obtained from flies at different sampling times, indicating a persistence of the same clones in the farm environment over months. According to their virulence genes, 81% of the isolates were considered avian-pathogenic E. coli (APEC) and 29% were considered extraintestinal pathogenic E. coli (ExPEC). The entrance of flies into broiler houses constitutes a considerable risk for colonization of broilers with multidrug-resistant E. coli. ESBLs in flies reflect the contamination status of the farm environment. Additionally, this study demonstrates the potential contribution of flies to the dissemination of virulence and resistance genes into different ecological niches. PMID:25795670

  15. Molecular Characterization of Enterotoxin-Producing Escherichia coli Collected in 2011–2012, Russia

    PubMed Central

    Kartsev, Nikolay N.; Fursova, Nadezhda K.; Pachkunov, Dmitry M.; Bannov, Vasiliy A.; Eruslanov, Boris V.; Svetoch, Edward A.; Dyatlov, Ivan A.

    2015-01-01

    Enterotoxin-producing Escherichia coli (ETEC) are one of the main causative agents of diarrhea in children especially in developing countries and travel diarrhoea in adults. Pathogenic properties of ETEC associated with their ability to produce a heat-stable (ST) and/or heat-labile (LT) enterotoxins, as well as adhesins providing bacterial adhesion to intestinal epithelial cells. This study presents the molecular characterization of the ETEC isolates collected from the Central and Far-Eastern regions of Russia in 2011–2012. It was shown that all ETEC under study (n=18) had the heat-labile enterotoxin-coding operon elt, and had no the genes of the heat-stable enterotoxin operon est. DNA sequencing revealed two types of nucleotide exchanges in the eltB gene coding subunit B of LT in isolates collected from Cherepovets city (Central region, Russia) and Vladivostok city (Far-East region, Russia). Only one ETEC strain carried genes cfaA, cfaB, cfaC and cfaD coding adhesion factor CFA/I. Expression of LT in four ETEC isolates in the agglutination reaction was detected using a latex test-system. The isolates were assigned to serogroups O142 (n = 6), О6 (n = 4), О25 (n = 5), О26 (n = 2), and O115 (n = 1). Genotyping showed that they belonged to an earlier described sequence-type ST4 (n = 3) as well as to 11 novel sequence-types ST1043, ST1312, ST3697, ST3707, ST3708, ST3709, ST3710, ST3755, ST3756, ST3757 and ST4509. The ETEC isolates displayed different levels of antimicrobial resistance. Eight isolates were resistant to only one drug, three isolates—to two drugs, one isolate—to three drugs, two isolates—to four antibacterials, and only one isolate to each of the five, six and ten antibacterials simultaneously. Genetic determinants of the resistance to beta-lactams and other classes of antibacterials on the ETEC genomes were identified. There are blaTEM (n = 10), blaCTX-M-15 (n = 1), class 1 integron (n = 3) carrying resistance cassettes to aminoglycosides and

  16. Molecular Characterization of Enterotoxin-Producing Escherichia coli Collected in 2011-2012, Russia.

    PubMed

    Kartsev, Nikolay N; Fursova, Nadezhda K; Pachkunov, Dmitry M; Bannov, Vasiliy A; Eruslanov, Boris V; Svetoch, Edward A; Dyatlov, Ivan A

    2015-01-01

    Enterotoxin-producing Escherichia coli (ETEC) are one of the main causative agents of diarrhea in children especially in developing countries and travel diarrhoea in adults. Pathogenic properties of ETEC associated with their ability to produce a heat-stable (ST) and/or heat-labile (LT) enterotoxins, as well as adhesins providing bacterial adhesion to intestinal epithelial cells. This study presents the molecular characterization of the ETEC isolates collected from the Central and Far-Eastern regions of Russia in 2011-2012. It was shown that all ETEC under study (n=18) had the heat-labile enterotoxin-coding operon elt, and had no the genes of the heat-stable enterotoxin operon est. DNA sequencing revealed two types of nucleotide exchanges in the eltB gene coding subunit B of LT in isolates collected from Cherepovets city (Central region, Russia) and Vladivostok city (Far-East region, Russia). Only one ETEC strain carried genes cfaA, cfaB, cfaC and cfaD coding adhesion factor CFA/I. Expression of LT in four ETEC isolates in the agglutination reaction was detected using a latex test-system. The isolates were assigned to serogroups O142 (n = 6), О6 (n = 4), О25 (n = 5), О26 (n = 2), and O115 (n = 1). Genotyping showed that they belonged to an earlier described sequence-type ST4 (n = 3) as well as to 11 novel sequence-types ST1043, ST1312, ST3697, ST3707, ST3708, ST3709, ST3710, ST3755, ST3756, ST3757 and ST4509. The ETEC isolates displayed different levels of antimicrobial resistance. Eight isolates were resistant to only one drug, three isolates-to two drugs, one isolate-to three drugs, two isolates-to four antibacterials, and only one isolate to each of the five, six and ten antibacterials simultaneously. Genetic determinants of the resistance to beta-lactams and other classes of antibacterials on the ETEC genomes were identified. There are blaTEM (n = 10), blaCTX-M-15 (n = 1), class 1 integron (n = 3) carrying resistance cassettes to aminoglycosides and

  17. Evaluaiton of a novel antimicrobial solution and its potential for control E. coli O157:H7, non-O157:H7 shiga toxin-producing E. coli, Salmononella spp., and Listeria monocytogenes on beef

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The goal of this study was to evaluate the efficacy of a novel antimicrobial solution made with chitosan, lauric arginate ester, and organic acids on Escherichia coli O157:H7, Salmonella spp., Listeria monocytogenes, and non-O157 shiga toxin-producing E. coli cocktails and to test its potential to b...

  18. Extended-Spectrum-β-Lactamase-Producing Escherichia coli as a Cause of Pediatric Infections: Report of a Neonatal Intensive Care Unit Outbreak Due to a CTX-M-14-Producing Strain

    PubMed Central

    Oteo, Jesús; Cercenado, Emilia; Fernández-Romero, Sara; Saéz, David; Padilla, Belén; Zamora, Elena; Cuevas, Oscar; Bautista, Verónica

    2012-01-01

    Little information is available about pediatric infections caused by extended-spectrum-β-lactamase (ESBL)-producing Escherichia coli. We characterized an outbreak caused by a CTX-M-14-producing E. coli isolate in a neonatal intensive care unit (NICU) and studied other infections caused by ESBL-producing E. coli in non-NICU pediatric units. All children ≤4 years old who were infected or colonized by ESBL-producing E. coli isolates between January 2009 and September 2010 were included. Molecular epidemiology was studied by phylogroup analysis, pulsed-field gel electrophoresis (PFGE), and multilocus sequence typing. Antibiotic resistance genes were analyzed by PCR and sequencing. Plasmids were studied by PFGE with S1 nuclease digestion and by incompatibility group analysis using a PCR-based replicon-typing scheme. Of the ESBL-producing E. coli isolates colonizing or infecting the 30 newborns, identical PFGE results were observed for 21 (70%) isolates, which were classified as CTX-M-14-producing E. coli of ST23 phylogroup A. blaCTX-M-14a was linked to ISEcp1 and was carried on an ∼80-bp IncK plasmid. A smaller ongoing outbreak due to SHV-12-producing ST131 E. coli was also identified in the same NICU. Fifteen additional infections with ESBL-producing E. coli were identified in non-NICU pediatric units, but none was caused by the CTX-M-14-producing E. coli epidemic clone. Overall, CTX-M-14 (71.1%), CTX-M-15 (13.3%), and SHV-12 (13.3%) were the most important ESBLs causing pediatric infections in this study. Infections of newborns with CTX-M-14-producing E. coli were caused by both clonal and nonclonal isolates. PMID:21986825

  19. Broad and efficient control of major foodborne pathogenic strains of Escherichia coli by mixtures of plant-produced colicins.

    PubMed

    Schulz, Steve; Stephan, Anett; Hahn, Simone; Bortesi, Luisa; Jarczowski, Franziska; Bettmann, Ulrike; Paschke, Anne-Katrin; Tusé, Daniel; Stahl, Chad H; Giritch, Anatoli; Gleba, Yuri

    2015-10-01

    Enterohemorrhagic Escherichia coli (EHEC) is one of the leading causes of bacterial enteric infections worldwide, causing ∼100,000 illnesses, 3,000 hospitalizations, and 90 deaths annually in the United States alone. These illnesses have been linked to consumption of contaminated animal products and vegetables. Currently, other than thermal inactivation, there are no effective methods to eliminate pathogenic bacteria in food. Colicins are nonantibiotic antimicrobial proteins, produced by E. coli strains that kill or inhibit the growth of other E. coli strains. Several colicins are highly effective against key EHEC strains. Here we demonstrate very high levels of colicin expression (up to 3 g/kg of fresh biomass) in tobacco and edible plants (spinach and leafy beets) at costs that will allow commercialization. Among the colicins examined, plant-expressed colicin M had the broadest antimicrobial activity against EHEC and complemented the potency of other colicins. A mixture of colicin M and colicin E7 showed very high activity against all major EHEC strains, as defined by the US Department of Agriculture/Food and Drug Administration. Treatments with low (less than 10 mg colicins per L) concentrations reduced the pathogenic bacterial load in broth culture by 2 to over 6 logs depending on the strain. In experiments using meats spiked with E. coli O157:H7, colicins efficiently reduced the population of the pathogen by at least 2 logs. Plant-produced colicins could be effectively used for the broad control of pathogenic E. coli in both plant- and animal-based food products and, in the United States, colicins could be approved using the generally recognized as safe (GRAS) regulatory approval pathway. PMID:26351689

  20. Susceptibility of various oral antibacterial agents against extended spectrum β-lactamase producing Escherichia coli and Klebsiella pneumoniae.

    PubMed

    Nakamura, Tatsuya; Komatsu, Masaru; Yamasaki, Katsutoshi; Fukuda, Saori; Higuchi, Takeshi; Ono, Tamotsu; Nishio, Hisaaki; Sueyoshi, Noriyuki; Kida, Kaneyuki; Satoh, Kaori; Toda, Hirofumi; Toyokawa, Masahiro; Nishi, Isao; Sakamoto, Masako; Akagi, Masahiro; Mizutani, Tetsu; Nakai, Isako; Kofuku, Tomomi; Orita, Tamaki; Zikimoto, Takuya; Natsume, Seiko; Wada, Yasunao

    2014-01-01

    With the increase in extended spectrum β-lactamase (ESBL)-producing bacteria in the community, cases are often seen in which treatment of infectious diseases with oral antimicrobial agents is difficult. Therefore, we measured the antimicrobial activities of 14 currently available oral antimicrobial agents against ESBL-producing Escherichia coli and Klebsiella pneumoniae. Based on the standard of the Clinical and Laboratory Standards Institute (CLSI), E. coli showed high susceptibility rates of 99.4% to faropenem (FRPM). In terms of fluoroquinolones, the susceptibility rate of E. coli to levofloxacin (LVFX) was low at 32.2%, whereas it showed a good susceptibility rate of 93.1% to sitafloxacin (STFX). With respect to other antimicrobial agents, susceptibility rates to fosfomycin (FOM) and colistin (CL) were more than 90% each, whereas rates of the two antimicrobial agents expected as therapeutic agents, minocycline (MINO) and sulfamethoxazole-trimethoprim (ST), were low at 62.4% and 44.3%, respectively. Based on the CLSI standard, K. pneumoniae showed high susceptibility rates to ceftibuten (CETB) (91.89%), LVFX (86.49%), and STFX (94.6%), indicating that K. pneumoniae showed higher rates than those of E. coli, particularly to fluoroquinolones. Comparison of susceptibility rates according to E. coli genotype showed that many antimicrobial agents existed to which the CTX-M-9 group showed high susceptibility rates. However, there were many agents to which the CTX-M-1 group showed low susceptibility rates, particularly to CETB (51.1%) and LVFX (17.0%). Although there was no significant difference by genotype between FRPM, STFX, and FOM, a significant difference was observed between LVFX, MINO, and ST. Antibiotic-resistant bacteria with highly pathogenic strains have spread in the community, appropriate use of oral antimicrobial agents is required. PMID:24462425

  1. Broad and efficient control of major foodborne pathogenic strains of Escherichia coli by mixtures of plant-produced colicins

    PubMed Central

    Schulz, Steve; Stephan, Anett; Hahn, Simone; Bortesi, Luisa; Jarczowski, Franziska; Bettmann, Ulrike; Paschke, Anne-Katrin; Tusé, Daniel; Stahl, Chad H.; Giritch, Anatoli; Gleba, Yuri

    2015-01-01

    Enterohemorrhagic Escherichia coli (EHEC) is one of the leading causes of bacterial enteric infections worldwide, causing ∼100,000 illnesses, 3,000 hospitalizations, and 90 deaths annually in the United States alone. These illnesses have been linked to consumption of contaminated animal products and vegetables. Currently, other than thermal inactivation, there are no effective methods to eliminate pathogenic bacteria in food. Colicins are nonantibiotic antimicrobial proteins, produced by E. coli strains that kill or inhibit the growth of other E. coli strains. Several colicins are highly effective against key EHEC strains. Here we demonstrate very high levels of colicin expression (up to 3 g/kg of fresh biomass) in tobacco and edible plants (spinach and leafy beets) at costs that will allow commercialization. Among the colicins examined, plant-expressed colicin M had the broadest antimicrobial activity against EHEC and complemented the potency of other colicins. A mixture of colicin M and colicin E7 showed very high activity against all major EHEC strains, as defined by the US Department of Agriculture/Food and Drug Administration. Treatments with low (less than 10 mg colicins per L) concentrations reduced the pathogenic bacterial load in broth culture by 2 to over 6 logs depending on the strain. In experiments using meats spiked with E. coli O157:H7, colicins efficiently reduced the population of the pathogen by at least 2 logs. Plant-produced colicins could be effectively used for the broad control of pathogenic E. coli in both plant- and animal-based food products and, in the United States, colicins could be approved using the generally recognized as safe (GRAS) regulatory approval pathway. PMID:26351689

  2. Biodiesel production from different algal oil using immobilized pure lipase and tailor made rPichia pastoris with Cal A and Cal B genes.

    PubMed

    Bharathiraja, B; Ranjith Kumar, R; PraveenKumar, R; Chakravarthy, M; Yogendran, D; Jayamuthunagai, J

    2016-08-01

    In this investigation, oil extraction was performed in marine macroalgae Gracilaria edulis, Enteromorpha compressa and Ulva lactuca. The algal biomass was characterized by Scanning Electron Microscopy and Fourier Transform-Infra Red Spectroscopy. Six different pre-treatment methods were carried out to evaluate the best method for maximum oil extraction. Optimization of extraction parameters were performed and high oil yield was obtained at temperature 55°C, time 150min, particle size 0.10mm, solvent-to-solid ratio 6:1 and agitation rate 500rpm. After optimization, 9.5%, 12.18% and 10.50 (g/g) of oil extraction yield was achieved from the respective algal biomass. The rate constant for extraction was obtained as first order kinetics, by differential method. Stable intracellular Cal A and Cal B lipase producing recombinant Pichia pastoris was constructed and used as biocatalyst for biodiesel production. Comparative analysis of lipase activity and biodiesel yield was made with immobilized Candida antarctica lipase. PMID:26906444

  3. Characterization of Escherichia coli-Producing Extended-Spectrum β-Lactamase (ESBL) Isolated from Chicken Slaughterhouses in South Korea.

    PubMed

    Lim, Jong-Soo; Choi, Da-Som; Kim, Young-Jo; Chon, Jung-Whan; Kim, Hong-Seok; Park, Hyun-Jung; Moon, Jin-San; Wee, Sung-Hwan; Seo, Kun-Ho

    2015-09-01

    In South Korea, few reports have indicated the occurrence and characteristics of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli in food-producing animals, particularly in poultry slaughterhouses. In this study, we investigated the occurrence and antibiotic resistance of ESBL-producing E. coli from whole chicken carcasses (n=156) and fecal samples (n=39) of chickens obtained from 2 slaughterhouses. Each sample enriched in buffered peptone water was cultured on MacConkey agar with 2 mg/L cefotaxime and ESBL agar. ESBL production and antibiotic susceptibility were determined using the Trek Diagnostics system. The ESBL genotypes were determined by polymerase chain reaction (PCR) using the bla(SHV), bla(TEM), and bla(CTX-M) gene sequences. Subtyping using a repetitive sequence-based PCR system (DiversiLab™) and multilocus sequence typing (MLST) were used to assess the interspecific biodiversity of isolates. Sixty-two ESBL-producing E. coli isolates were obtained from 156 samples (39.7%). No bla(SHV) genes were detected in any of the isolates, whereas all contained the bla(TEM) gene. Twenty-five strains (40.3%) harbored the CTX-M group 1 gene. The most prevalent MLST sequence type (ST) was ST 93 (14.5%), followed by ST 117 (9.7%) and ST 2303 (8.1%). This study reveals a high occurrence and β-lactams resistance rate of E. coli in fecal samples and whole chickens collected from slaughterhouses in South Korea. PMID:26219023

  4. Characterization of Shiga Toxin-Producing Escherichia coli O157 Isolates from Bovine Carcasses.

    PubMed

    Fontcuberta, M; Planell, R; Torrents, A; Sabaté, S; Gonzalez, R; Ramoneda, M; de Simón, M

    2016-08-01

    The main purpose of this study was to determine the prevalence of Escherichia coli O157 on bovine carcasses before and after chilling at a large slaughterhouse located in the city of Barcelona, Spain, to assess the effectiveness of dry chilling on reducing E. coli O157 contamination of carcasses. In addition, the study characterized the E. coli O157 strains isolated in terms of virulence factors, antibiotic susceptibility, and their genetic diversity. Individual bovine carcasses were sampled before (n = 300) and after (n = 300) chilling over an 8-month period. Positive samples for E. coli O157 were subjected to virulence screening by PCR (stx1, stx2, and eaeA genes and the fliCH7 gene), antimicrobial susceptibility testing, and molecular typing by pulsed-field gel electrophoresis. A total of 9.7% (29 of 300) of the nonrefrigerated carcasses examined and 2.3% (7 of 300) of the refrigerated carcasses were positive for E. coli O157. All the isolates were serotype O157:H7, 92% (33 of 36) carried the stx1, stx2, and eaeA genes, and 8% (3 of 36) carried the stx2 and eaeA genes. Antimicrobial susceptibility testing showed a high degree of resistance: 29 strains (81%) were resistant to at least 1 antimicrobial of the 12 antimicrobials tested; 69% (25 of 36) were resistant to 4 or more antimicrobials. Molecular typing by pulsed-field gel electrophoresis found a high diversity of genetic types, implying little cross-contamination in the slaughterhouse. This study confirms that E. coli O157:H7 is present on the carcasses slaughtered in Spain, although its prevalence is reduced by the dry chilling process used. The recovered isolates showed potential pathogenesis and a high degree of multidrug resistance, confirming the importance of bovine meat monitoring. PMID:27497130

  5. Phylogenomic approaches to determine the zoonotic potential of Shiga toxin-producing Escherichia coli (STEC) isolated from Zambian dairy cattle

    PubMed Central

    Mainda, Geoffrey; Lupolova, Nadejda; Sikakwa, Linda; Bessell, Paul R.; Muma, John B.; Hoyle, Deborah V.; McAteer, Sean P.; Gibbs, Kirsty; Williams, Nicola J.; Sheppard, Samuel K.; La Ragione, Roberto M.; Cordoni, Guido; Argyle, Sally A.; Wagner, Sam; Chase-Topping, Margo E.; Dallman, Timothy J.; Stevens, Mark P.; Bronsvoort, Barend M. deC.; Gally, David L.

    2016-01-01

    This study assessed the prevalence and zoonotic potential of Shiga toxin-producing Escherichia coli (STEC) sampled from 104 dairy units in the central region of Zambia and compared these with isolates from patients presenting with diarrhoea in the same region. A subset of 297 E. coli strains were sequenced allowing in silico analyses of phylo- and sero-groups. The majority of the bovine strains clustered in the B1 ‘commensal’ phylogroup (67%) and included a diverse array of serogroups. 11% (41/371) of the isolates from Zambian dairy cattle contained Shiga toxin genes (stx) while none (0/73) of the human isolates were positive. While the toxicity of a subset of these isolates was demonstrated, none of the randomly selected STEC belonged to key serogroups associated with human disease and none encoded a type 3 secretion system synonymous with typical enterohaemorrhagic strains. Positive selection for E. coli O157:H7 across the farms identified only one positive isolate again indicating this serotype is rare in these animals. In summary, while Stx-encoding E. coli strains are common in this dairy population, the majority of these strains are unlikely to cause disease in humans. However, the threat remains of the emergence of strains virulent to humans from this reservoir. PMID:27220895

  6. Molecular epidemiological view on Shiga toxin-producing Escherichia coli causing human disease in Germany: Diversity, prevalence, and outbreaks.

    PubMed

    Fruth, Angelika; Prager, Rita; Tietze, Erhard; Rabsch, Wolfgang; Flieger, Antje

    2015-10-01

    Infections by intestinal pathogenic Escherichia coli (E. coli) are among those causing a high mortality and morbidity due to diarrheal disease and post infection sequelae worldwide. Since introduction of the Infection Protection Act in Germany 2001, these pathogens rank third among bacterial infections of the gastrointestinal tract. As a major pathovar Shiga toxin-producing E. coli (STEC) which include enterohemorrhagic E. coli (EHEC) play a leading role in occurrence of sporadic cases and disease outbreaks. An outstanding example is the large outbreak in spring 2011 caused by EHEC/EAEC O104:H4. To monitor and trace back STEC infections, national surveillance programs have been implemented including activities of the German National Reference Centre for Salmonella and other Enteric Bacterial Pathogens (NRC). This review highlights advances in our understanding of STEC in the last 20 years of STEC surveillance by the NRC. Here important characteristics of STEC strains from human infections and outbreaks in Germany between 1997 and 2013 are summarized. PMID:26372529

  7. Enhancing isomaltulose production by recombinant Escherichia coli producing sucrose isomerase: culture medium optimization containing agricultural wastes and cell immobilization.

    PubMed

    Li, Sha; Xu, Hong; Yu, Jianguang; Wang, Yanyuan; Feng, Xiaohai; Ouyang, Pingkai

    2013-10-01

    Isomaltulose is a structural isomer of sucrose commercially used in food industries. In this work, recombinant Escherichia coli producing sucrose isomerase (SIase) was used to convert sucrose into isomaltulose. To develop an economical industrial medium, untreated cane molasses (10.63 g l⁻¹), yeast extract (25.93 g l⁻¹), and corn steep liquor (10.45 g l⁻¹) were used as main culture compositions for SIase production. The relatively high SIase activity (14.50 ± 0.11 U mg DCW⁻¹) was obtained by the recombinant cells. To the best of our knowledge, this is the first investigation on SIase production by engineered E. coli using untreated cane molasses. The recombinant E. coli cells expressing the SIase gene were immobilized in calcium alginate gel in order to improve the efficiency of recycling. The immobilization was most effective with 2 % (w/v) sodium alginate and 3 % (w/v) calcium chloride. The optimal initial biomass for immobilization was 20 % (w/v, wet wt.), with a hardening time of 8 h for cell immobilization. The immobilized E. coli cells exhibited good stability for 30 batches with the productivity of 0.45 g isomaltulose g pellet⁻¹ h⁻¹. A continuous isomaltulose formation process using a column reactor remained stable for 40 days with 83 ± 2 % isomaltulose yield, which would be beneficial for economical production of isomaltulose. PMID:23300051

  8. Phylogenomic approaches to determine the zoonotic potential of Shiga toxin-producing Escherichia coli (STEC) isolated from Zambian dairy cattle.

    PubMed

    Mainda, Geoffrey; Lupolova, Nadejda; Sikakwa, Linda; Bessell, Paul R; Muma, John B; Hoyle, Deborah V; McAteer, Sean P; Gibbs, Kirsty; Williams, Nicola J; Sheppard, Samuel K; La Ragione, Roberto M; Cordoni, Guido; Argyle, Sally A; Wagner, Sam; Chase-Topping, Margo E; Dallman, Timothy J; Stevens, Mark P; Bronsvoort, Barend M deC; Gally, David L

    2016-01-01

    This study assessed the prevalence and zoonotic potential of Shiga toxin-producing Escherichia coli (STEC) sampled from 104 dairy units in the central region of Zambia and compared these with isolates from patients presenting with diarrhoea in the same region. A subset of 297 E. coli strains were sequenced allowing in silico analyses of phylo- and sero-groups. The majority of the bovine strains clustered in the B1 'commensal' phylogroup (67%) and included a diverse array of serogroups. 11% (41/371) of the isolates from Zambian dairy cattle contained Shiga toxin genes (stx) while none (0/73) of the human isolates were positive. While the toxicity of a subset of these isolates was demonstrated, none of the randomly selected STEC belonged to key serogroups associated with human disease and none encoded a type 3 secretion system synonymous with typical enterohaemorrhagic strains. Positive selection for E. coli O157:H7 across the farms identified only one positive isolate again indicating this serotype is rare in these animals. In summary, while Stx-encoding E. coli strains are common in this dairy population, the majority of these strains are unlikely to cause disease in humans. However, the threat remains of the emergence of strains virulent to humans from this reservoir. PMID:27220895

  9. Shiga Toxin-Producing Escherichia coli Isolated from Bovine Mastitic Milk: Serogroups, Virulence Factors, and Antibiotic Resistance Properties

    PubMed Central

    Momtaz, Hassan; Safarpoor Dehkordi, Farhad; Taktaz, Taghi; Rezvani, Amir; Yarali, Sajad

    2012-01-01

    The aim of this study was to detect the virulence factors, serogroups, and antibiotic resistance properties of Shiga toxin-producing Escherichia coli, by using 268 bovine mastitic milk samples which were diagnosed using California Mastitis Test. After E. coli identification, PCR assays were developed for detection of different virulence genes, serogroups, and antibiotic resistance genes of Escherichia coli. The antibiotic resistance pattern was studied using disk diffusion method. Out of 268 samples, 73 (27.23%) were positive for Escherichia coli, and, out of 73 positive samples, 15 (20.54%) were O26 and 11 (15.06%) were O157 so they were the highest while O111 was not detected in any sample so it was the lowest serogroup. Out of 73 STEC strains, 11 (15.06%) and 36 (49.31%) were EHEC and AEEC, respectively. All of the EHEC strains had stx1, eaeA, and ehly, virulence genes, while in AEEC strains stx1 had the highest prevalence (77.77%), followed by eaeA (55.55%). Totally, aadA1 (65.95%) had the highest while blaSHV (6.38%) had the lowest prevalence of antibiotic resistance genes. The disk diffusion method showed that the STEC strains had the highest resistance to penicillin (100%), followed by tetracycline (57.44%), while resistance to cephalothin (6.38%) was the lowest. PMID:23213293

  10. Emergence of an NDM-5-producing clinical Escherichia coli isolate in Egypt.

    PubMed

    Soliman, Ahmed M; Khalifa, Hazim O; Ahmed, Ashraf M; Shimamoto, Toshi; Shimamoto, Tadashi

    2016-07-01

    The first occurrence of New Delhi metallo-β-lactamase 5 (NDM-5), carried on an IncI1-Iγ-type plasmid of >93kb in a multidrug-resistant Escherichia coli strain in Kafr El-Sheikh, Egypt, is reported. The strain was isolated from a wound pus swab from a patient diagnosed with a fracture of the right femur. This E. coli strain was found to belong to sequence type (ST) 5018 and also to carry other resistance genes, including blaCTX-M-15, blaCMY-42, blaOXA-1, and aac(6')-Ib-cr. PMID:27173077

  11. Prevalence of Class D Carbapenemases among Extended-Spectrum β-Lactamases Producing Escherichia coli Isolates from Educational Hospitals in Shahrekord

    PubMed Central

    Damavandi, Mohammad-Sadegh; Latif Pour, Mohammad

    2016-01-01

    Introduction Extended-spectrum β-lactamases (ESBLs) are a set of plasmid-borne, various and quickly evolving enzymes that are a main therapeutic issue now-a-days for inpatient and outpatient treatment. Aim The aim of this study was to determine multi-drug resistance (MDR) and ESBLs producing E. coli strains, prevalence of class D Carbapenemases among ESBLs producing Escherichia coli isolates from educational hospitals in Shahrekord, Iran. Materials and Methods Uropathogenic Escherichia coli strains were isolated from patients with Urinary Tract Infections (UTIs). The agar disc diffusion test was used to characterize the antimicrobial sensitivity of the E. coli isolates. The ESBL positive strains were identified by phenotypic double-disk synergy test, by third-generation cephalosporin in combination with or without clavulanic acid. Multiplex PCR was carried out for detection of the three families of OXA-type carbapenamases including OXA-23, OXA-24, and OXA-48 in E. coli strains. Results All bacterial isolates were susceptible to meropenem. Ninety isolates produced ESBL, 55 E. coli isolates from inpatients, and 35 isolates from outpatients, with a significant association (p< 0.05). The prevalence of OXA-23, OXA-24, and OXA-48 in the ESBLs producing isolates was respectively 21%, 18%, and 11% for inpatients, and 10%, 8%, and 6% for outpatients. Conclusion ESBL-producing E. coli isolates are also a major threat in the clinical setting. The findings of this study indicated the high occurrence of ESBLs and multiple antibiotic resistance in E. coli isolates. PMID:27462579

  12. Epidemiology of Shiga toxin producing Escherichia coli in Australia, 2000-2010

    PubMed Central

    2012-01-01

    Background Shiga toxin-producing Escherichia coli (STEC) are an important cause of gastroenteritis in Australia and worldwide and can also result in serious sequelae such as haemolytic uraemic syndrome (HUS). In this paper we describe the epidemiology of STEC in Australia using the latest available data. Methods National and state notifications data, as well as data on serotypes, hospitalizations, mortality and outbreaks were examined. Results For the 11 year period 2000 to 2010, the overall annual Australian rate of all notified STEC illness was 0.4 cases per 100,000 per year. In total, there were 822 STEC infections notified in Australia over this period, with a low of 1 notification in the Australian Capital Territory (corresponding to a rate of 0.03 cases per 100,000/year) and a high of 413 notifications in South Australia (corresponding to a rate of 2.4 cases per 100,000/year), the state with the most comprehensive surveillance for STEC infection in the country. Nationally, 71.2% (504/708) of STEC infections underwent serotype testing between 2001 and 2009, and of these, 58.0% (225/388) were found to be O157 strains, with O111 (13.7%) and O26 (11.1%) strains also commonly associated with STEC infections. The notification rate for STEC O157 infections Australia wide between 2001-2009 was 0.12 cases per 100,000 per year. Over the same 9 year period there were 11 outbreaks caused by STEC, with these outbreaks generally being small in size and caused by a variety of serogroups. The overall annual rate of notified HUS in Australia between 2000 and 2010 was 0.07 cases per 100,000 per year. Both STEC infections and HUS cases showed a similar seasonal distribution, with a larger proportion of reported cases occurring in the summer months of December to February. Conclusions STEC infections in Australia have remained fairly steady over the past 11 years. Overall, the incidence and burden of disease due to STEC and HUS in Australia appears comparable or lower than

  13. Characterization of Shiga toxin-producing Escherichia coli isolated from healthy pigs in China

    PubMed Central

    2014-01-01

    Background Shiga toxin-producing Escherichia coli (STEC) is recognized as an important human diarrheal pathogen. Swine plays an important role as a carrier of this pathogen. In this study we determined the prevalence and characteristics of STEC from healthy swine collected between May 2011 and August 2012 from 3 cities/provinces in China. Results A total of 1003 samples, including 326 fecal, 351 small intestinal contents and 326 colon contents samples, was analyzed. Two hundred and fifty five samples were stx-positive by PCR and 93 STEC isolates were recovered from 62 stx-positive samples. Twelve O serogroups and 19 O:H serotypes including 6 serotypes (O100:H20/[H20], O143:H38/[H38], O87:H10, O172:H30/[H30], O159:H16, O9:H30/[H30]) rarely found in swine and ruminants were identified. All 93 STEC isolates harbored stx2 only, all of which were stx2e subtype including 1 isolate being a new variant of stx2e. 53.76%, 15.05% and 2.15% STEC isolates carried astA, hlyA and ehxA respectively. Four STEC isolates harbored the high-pathogenicity island. Of the 15 adherence-associated genes tested, 13 (eae, efa1, iha, lpfAO113, lpfAO157/OI-154, lpfAO157/OI-141, toxB, saa, F4, F5, F6, F17 or F41) were all absent while 2 (paa and F18) were present in 7 and 4 STEC isolates respectively. The majority of the isolates were resistant to tetracycline (79.57%), nalidixic acid (78.49%), trimethoprim-sulfamethoxazole (73.12%) and kanamycin (55.91%). The STEC isolates were divided into 63 pulsed-field gel electrophoresis patterns and 21 sequence types (STs). Isolates of the same STs generally showed the same or similar drug resistance patterns. A higher proportion of STEC isolates from Chongqing showed multidrug resistance with one ST (ST3628) resistant to 14 antimicrobials. Conclusions Our results indicate that swine is a significant reservoir of STEC strains in China. Based on comparison by serotypes and sequence types with human strains and presence of virulence genes, the swine STEC

  14. A mutant phosphofructokinase produces a futile cycle during gluconeogenesis in Escherichia coli.

    PubMed Central

    Torres, J C; Guixé, V; Babul, J

    1997-01-01

    Strains of Escherichia coli bearing different forms of phosphofructokinase were used to assess the occurrence of futile cycling in cell resuspensions supplied with glycerol as gluconeogenic carbon source. A model was used to simulate results of different kinds of experiments for different levels of futile cycle. The main predictions of the model were experimentally confirmed in a strain with a mutant phosphofructokinase-2 (phosphofructokinase-2*) which is not inhibited by MgATP. The intracellular fructose 1, 6-bisphosphate concentration reaches significantly higher levels in the mutant-bearing strain than in strains with either phosphofructokinase-1 or -2. Also, this strain showed a higher rate and level of in vivo radioactive labelling of fructose 1, 6-bisphosphate, from a trace of [U-14C]glucose supplied during gluconeogenesis, indicating higher kinase activity in these conditions. Cell resuspensions of the mutant-bearing strain produced higher levels of radioactively labelled CO2 when supplied with [U-14C]glycerol as the only carbon source. Simultaneously, fewer glycerol carbons were incorporated into HClO4-insoluble macromolecules. Finally, radioactive CO2 output was measured in resuspensions supplied with glycerol as the major carbon source with traces of either [1-14C]glucose or [6-14C]glucose. It was found that, whereas in the strains with either of the wild-type phosphofructokinase isoenzymes, radioactive CO2 output from [1-14C]glucose was higher than with [6-14C]glucose, the reverse is found for the strain with phosphofructokinase-2*. This result also agrees with the corresponding prediction of the model. Using the radioactivity flux rates predicted by the model, an explanation linking the futile cycle to the differential labelling of CO2 is advanced. Finally, on the basis of these results it is proposed that strains bearing phosphofructokinase-2* sustain higher rates of futile cycling during gluconeogenesis than strains bearing either of the wild

  15. Shiga toxin-producing Escherichia coli in beef retail markets from Argentina.

    PubMed

    Brusa, Victoria; Aliverti, Virginia; Aliverti, Florencia; Ortega, Emanuel E; de la Torre, Julian H; Linares, Luciano H; Sanz, Marcelo E; Etcheverría, Analía I; Padola, Nora L; Galli, Lucía; Peral García, Pilar; Copes, Julio; Leotta, Gerardo A

    2012-01-01

    Shiga toxin-producing Escherichia coli (STEC) are foodborne pathogens that cause mild or serious diseases and can lead to people death. This study reports the prevalence and characteristics of STEC O157 and non-O157 in commercial ground beef and environmental samples, including meat table, knife, meat mincing machine, and manipulator hands (n = 450) obtained from 90 retail markets over a nine-month period. The STEC isolates were serotyped and virulence genes as stx (Shiga toxin), rfb(O157)] (O157 lipopolysaccharide), fliC(H7) (H7 flagellin), eae (intimin), ehxA (enterohemolysin) and saa (STEC autoagglutinating adhesin), were determined. STEC O157 were identified in 23 (25.5%) beef samples and 16 (4.4%) environmental samples, while STEC non-O157 were present in 47 (52.2%) and 182 (50.5%), respectively. Among 54 strains isolated, 17 were STEC O157:H7 and 37 were STEC non-O157. The prevalent genotype for O157 was stx(2)/eae/ehxA/fliC(H7) (83.4%), and for STEC non-O157 the most frequent ones were stx(1)/stx(2)/saa/ehxA (29.7%); stx(2) (29.7%); and stx(2)/saa/ehxA (27%). None of the STEC non-O157 strains were eae-positive. Besides O157:H7, other 20 different serotypes were identified, being O8:H19, O178:H19, and O174:H28 the prevalent. Strains belonging to the same serotype could be isolated from different sources of the same retail market. Also, the same serotype could be detected in different stores. In conclusion, screening techniques are increasingly sensitive, but the isolation of STEC non-O157 is still a challenge. Moreover, with the results obtained from the present work, although more studies are needed, cross-contamination between meat and the environment could be suspected. PMID:23346554

  16. Comparison of host response mechanisms evoked by extended spectrum beta lactamase (ESBL)- and non-ESBL-producing uropathogenic E. coli

    PubMed Central

    2013-01-01

    Background Infections caused by extended spectrum beta-lactamases (ESBL)-producing bacteria have been emerging worldwide and the majority of ESBL-producing E. coli strains are isolated from patients with urinary tracts infections. The purpose of this study was to compare the host-response mechanisms in human polymorphonucleated leukocytes (PMN) and renal epithelial cells when stimulated by ESBL- or non-ESBL-producing uropathogenic E. coli (UPEC) isolates. The host-pathogen interaction of these ESBL-producing strains in the urinary tract is not well studied. Results The ability of ESBL strains to evoke ROS-production from PMN cells was significantly higher than that of the non-ESBL strains. The growth of ESBL strains was slightly suppressed in the presence of PMN compared to non-ESBL strains after 30 min and 2 h, but the opposite was observed after 5 and 6 h. The number of migrating PMN was significantly higher in response to ESBL strains compared to non-ESBL strains. Stimulation of A498 cells with ESBL strains elicited lower production of IL-6 and IL-8 compared to non-ESBL strains. Conclusion Significant differences in host-response mechanisms were identified when host cells were stimulated by ESBL- or non-ESBL producing strains. The obtained results on the early interactions of ESBL-producing strains with the host immune system may provide valuable information for management of these infections. PMID:24059789

  17. Identification and Characterization of a Novel Genomic Island Integrated at selC in Locus of Enterocyte Effacement-Negative, Shiga Toxin-Producing Escherichia coli

    PubMed Central

    Schmidt, H.; Zhang, W.-L.; Hemmrich, U.; Jelacic, S.; Brunder, W.; Tarr, P. I.; Dobrindt, U.; Hacker, J.; Karch, H.

    2001-01-01

    The selC tRNA gene is a common site for the insertion of pathogenicity islands in a variety of bacterial enteric pathogens. We demonstrate here that Escherichia coli that produces Shiga toxin 2d and does not harbor the locus of enterocyte effacement (LEE) contains, instead, a novel genomic island. In one representative strain (E. coli O91:H− strain 4797/97), this island is 33,014 bp long and, like LEE in E. coli O157:H7, is integrated 15 bp downstream of selC. This E. coli O91:H− island contains genes encoding a novel serine protease, termed EspI; an adherence-associated locus, similar to iha of E. coli O157:H7; an E. coli vitamin B12 receptor (BtuB); an AraC-type regulatory module; and four homologues of E. coli phosphotransferase proteins. The remaining sequence consists largely of complete and incomplete insertion sequences, prophage sequences, and an intact phage integrase gene that is located directly downstream of the chromosomal selC. Recombinant EspI demonstrates serine protease activity using pepsin A and human apolipoprotein A-I as substrates. We also detected Iha-reactive protein in outer membranes of a recombinant clone and 10 LEE-negative, Shiga toxin-producing E. coli (STEC) strains by immunoblot analysis. Using PCR analysis of various STEC, enteropathogenic E. coli, enterotoxigenic E. coli, enteroaggregative E. coli, uropathogenic E. coli, and enteroinvasive E. coli strains, we detected the iha homologue in 59 (62%) of 95 strains tested. In contrast, espI and btuB were present in only two (2%) and none of these strains, respectively. We conclude that the newly described island occurs exclusively in a subgroup of STEC strains that are eae negative and contain the variant stx2d gene. PMID:11598060

  18. Production and regulation of functional amyloid curli fimbriae by Shiga toxin-producing Escherichia coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Functional amyloid, in the form of adhesive fimbrial proteins termed curli, was first described in Salmonella and Escherichia coli. Curli fibers adhere to various host cells and structural proteins, interact with components of the host immune system, and participate in biofilm formation. Shiga toxin...

  19. Non-O157 Shiga toxin Producing Escherichia coli in United States Beef Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Escherichia coli O157:H7 is classified as an adulterant in U.S. beef. Its presence is rigorously monitored. However, numerous non-O157 STEC have been associated with disease. The six most common non-O157 STEC associated with disease in the U.S. have been identified by the CDC as O26, O45, O103, O...

  20. Cold Plasma Inactivates Salmonella and Escherichia coli O157:H7 on Fresh Produce

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This presentation will summarize recent advances in cold plasma technology at the USDA’s Eastern Regional Research Center. Cold plasma generated in a gliding arc was applied to outbreak strains of Escherichia coli O157:H7 and Salmonella Stanley inoculated on the surfaces of golden delicious apples. ...

  1. Long-Term Sentinel Surveillance for Enterotoxigenic Escherichia coli and Non-O157 Shiga Toxin-Producing E. coli in Minnesota

    PubMed Central

    Medus, Carlota; Besser, John M.; Juni, Billie A.; Koziol, Bonnie; Lappi, Victoria; Smith, Kirk E.; Hedberg, Craig W.

    2016-01-01

    Background. Enterotoxigenic Escherichia coli (ETEC) and non-O157 Shiga toxin-producing E. coli (STEC) are not detected by conventional culture methods. The prevalence of ETEC infections in the United States is unknown, and recognized cases are primarily associated with foreign travel. Gaps remain in our understanding of STEC epidemiology. Methods. Two sentinel surveillance sites were enrolled: an urban health maintenance organization laboratory (Laboratory A) and a rural hospital laboratory (Laboratory B). Residual sorbitol MacConkey (SMAC) plates from stool cultures performed at Laboratory A (1996–2006) and Laboratory B (2000–2008) were collected. Colony sweeps from SMAC plates were tested for genes encoding STEC toxins stx1 and stx2 (1996–2008) and ETEC heat-labile and heat-stable toxins eltB, estA 1, 2 and 3 (2000–2008) by polymerase chain reaction (PCR)-based assays. Results. In Laboratory A, a bacterial pathogen was identified in 7.0% of 21 970 specimens. During 1996–2006, Campylobacter was the most common bacterial pathogen (2.7% of cultures), followed by Salmonella (1.2%), Shigella (1.0%), and STEC (0.9%). Among STEC (n = 196), O157 was the most common serogroup (31%). During 2000–2006, ETEC (1.9%) was the second most common bacterial pathogen after Campylobacter (2.6%). In Laboratory B, of 19 293 specimens tested, a bacterial pathogen was identified for 5.5%, including Campylobacter (2.1%), STEC (1.3%), Salmonella (1.0%), and ETEC (0.8%). Among STEC (n = 253), O157 was the leading serogroup (35%). Among ETEC cases, 61% traveled internationally. Conclusions. Enterotoxigenic E. coli and STEC infections were as common as most other enteric bacterial pathogens, and ETEC may be detected more frequently by culture-independent multiplex PCR diagnostic methods. A high proportion of ETEC cases were domestically acquired. PMID:26913288

  2. Incidence of Extended-Spectrum-β-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae Isolates That Test Susceptible to Cephalosporins and Aztreonam by the Revised CLSI Breakpoints

    PubMed Central

    Condon, Susan; Schwartz, Rebecca M.; Ginocchio, Christine C.

    2014-01-01

    The incidence of aztreonam and cephalosporin susceptibility, determined using the revised CLSI breakpoints, for extended-spectrum-β-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae isolates was evaluated. Our analysis showed that results for aztreonam and/or ≥1 cephalosporin were reported as susceptible or intermediate for 89.2% of ESBL-producing E coli isolates (569/638 isolates) and 67.7% of ESBL-producing K. pneumoniae isolates (155/229 isolates). PMID:24789185

  3. Characteristics of CTX-M Extended-Spectrum β-Lactamase-Producing Escherichia coli Strains Isolated from Multiple Rivers in Southern Taiwan.

    PubMed

    Chen, Po-An; Hung, Chih-Hsin; Huang, Ping-Chih; Chen, Jung-Ren; Huang, I-Fei; Chen, Wan-Ling; Chiou, Yee-Hsuan; Hung, Wan-Yu; Wang, Jiun-Ling; Cheng, Ming-Fang

    2016-03-01

    Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli sequence type ST131 has emerged as the leading cause of community-acquired urinary tract infections and bacteremia worldwide. Whether environmental water is a potential reservoir of these strains remains unclear. River water samples were collected from 40 stations in southern Taiwan from February to August 2014. PCR assay and multilocus sequence typing (MLST) analysis were conducted to determine the CTX-M group and sequence type, respectively. In addition, we identified the seasonal frequency of ESBL-producing E. coli strains and their geographical relationship with runoffs from livestock and poultry farms between February and August 2014. ESBL-producing E. coli accounted for 30% of the 621 E. coli strains isolated from river water in southern Taiwan. ESBL-producing E. coli ST131 was not detected among the isolates. The most commonly detected strain was E. coli CTX-M group 9. Among the 92 isolates selected for MLST analysis, the most common ESBL-producing clonal complexes were ST10 and ST58. The proportion of ESBL-producing E. coli was significantly higher in areas with a lower river pollution index (P = 0.025) and regions with a large number of chickens being raised (P = 0.013). ESBL-producing E. coli strains were commonly isolated from river waters in southern Taiwan. The most commonly isolated ESBL-producing clonal complexes were ST10 and ST58, which were geographically related to chicken farms. ESBL-producing E. coli ST131, the major clone causing community-acquired infections in Taiwan and worldwide, was not detected in river waters. PMID:26773082

  4. Occurrence of ESBL-Producing Escherichia coli in Livestock and Farm Workers in Mecklenburg-Western Pomerania, Germany

    PubMed Central

    Dahms, Carmen; Hübner, Nils-Olaf; Kossow, Annelene; Mellmann, Alexander; Dittmann, Kathleen; Kramer, Axel

    2015-01-01

    In recent years, extended-spectrum β-lactamases (ESBL) producing bacteria have been found in livestock, mainly as asymptomatic colonizers. The zoonotic risk for people working in close contact to animal husbandry has still not been completely assessed. Therefore, we investigated the prevalence of ESBL-producing Escherichia spp. in livestock animals and workers to determine the potential risk for an animal-human cross-transmission.In Mecklenburg-Western Pomerania, northeast Germany, inguinal swabs of 73 individuals with livestock contact from 23 different farms were tested for ESBL-producing Escherichia spp. Two pooled fecal samples per farm of animal origin from 34 different farms (17 pig farms, 11 cattle farms, 6 poultry farms) as well as cloacal swabs of 10 randomly selected broilers or turkeys were taken at each poultry farm. For identification, selective chromogenic agar was used after an enrichment step. Phenotypically ESBL-producing isolates (n = 99) were tested for CTX-M, OXA, SHV and TEM using PCR, and isolates were further characterized using multilocus sequence typing (MLST). In total, 61 diverse isolates from different sources and/or different MLST/PCR results were acquired. Five farm workers (three from cattle farms and two from pig farms) harbored ESBL-producing E. coli. All human isolates harbored the CTX-M β-lactamase; TEM and OXA β-lactamases were additionally detected in two, resp. one, isolates. ESBL-producing Escherichia spp. were found in fecal samples at pig (15/17), cattle (6/11) and poultry farms (3/6). In total, 70.6% (24/36) of the tested farms were ESBL positive. Furthermore, 9 out of 60 cloacal swabs turned out to be ESBL positive. All isolated ESBL-producing bacteria from animal sources were E. coli, except for one E. hermanii isolate. CTX-M was the most prevalent β-lactamase at cattle and pig farms, while SHV predominated in poultry. One human isolate shared an identical MLST sequence type (ST) 3891 and CTX-M allele to the isolate

  5. Surveillance of ESBL producing multidrug resistant Escherichia coli in a teaching hospital in India

    PubMed Central

    Rath, Shakti; Dubey, Debasmita; Sahu, Mahesh C.; Padhy, Rabindra N

    2014-01-01

    Objective To record nosocomial and community-acquired accounts of antibiotic resistance in Escherichia coli (E. coli) strains, isolated from clinical samples of a teaching hospital by surveillance, over a period of 39 months (November 2009-January 2013). Methods Clinical samples from nosocomial sources, i.e., wards and cabins, intensive care unit (ICU) and neonatal intensive care unit (NICU), and community (outpatient department, OPD) sources of the hospital, were used for isolating strains of E. coli, which were subjected for testing for production of ‘extended spectrum beta-lactamase’-(ESBL) enzyme as well as determining antibiotic sensitivity pattern with 23 antibiotics. Results Of the total 1642 (100%) isolates, 810 (49.33%) strains were from OPD and 832 (50.66%) were from hospital settings. Occurrence of infectious E. coli strains increased in a mathematical progression in community sources, but in nosocomial infections, such values remained almost constant in each quarter. A total of 395 (24.05%) ESBL strains were isolated from the total 810 isolates of community; of the total of 464 (28.25%) isolates of wards and cabins, 199 (12.11%) were ESBL strains; and among the total of 368 (22.41%) isolates of ICU and NICU, ESBLs were 170 (10.35%); the total nosocomial ESBL isolates, 369 (22.47%) were from the nosocomial total of 832 (50.66%) isolates. Statistically, it was confirmed that ESBL strains were equally distributed in community or hospital units. Antibiogram of 23 antibiotics revealed progressive increases of drug-resistance against each antibiotic with the maximum resistance values were recorded against gentamicin: 92% and 79%, oxacillin: 94% and 69%, ceftriaxone: 85% and 58%, and norfloxacin 97% and 69% resistance, in nosocomial and community isolates, respectively. Conclusions This study revealed the daunting state of occurrence of multidrug resistant E. coli and its infection dynamics in both community and hospital settings.

  6. Feed Fermentation with Reuteran- and Levan-Producing Lactobacillus reuteri Reduces Colonization of Weanling Pigs by Enterotoxigenic Escherichia coli.

    PubMed

    Yang, Yan; Galle, Sandra; Le, Minh Hong Anh; Zijlstra, Ruurd T; Gänzle, Michael G

    2015-09-01

    This study determined the effect of feed fermentation with Lactobacillus reuteri on growth performance and the abundance of enterotoxigenic Escherichia coli (ETEC) in weanling piglets. L. reuteri strains produce reuteran or levan, exopolysaccharides that inhibit ETEC adhesion to the mucosa, and feed fermentation was conducted under conditions supporting exopolysaccharide formation and under conditions not supporting exopolysaccharide formation. Diets were chosen to assess the impact of organic acids and the impact of viable L. reuteri bacteria. Fecal samples were taken throughout 3 weeks of feeding; at the end of the 21-day feeding period, animals were euthanized to sample the gut digesta. The feed intake was reduced in pigs fed diets containing exopolysaccharides; however, feed efficiencies did not differ among the diets. Quantification of L. reuteri by quantitative PCR (qPCR) detected the two strains used for feed fermentation throughout the intestinal tract. Quantification of E. coli and ETEC virulence factors by qPCR demonstrated that fermented diets containing reuteran significantly (P < 0.05) reduced the copy numbers of genes for E. coli and the heat-stable enterotoxin in feces compared to those achieved with the control diet. Any fermented feed significantly (P < 0.05) reduced the abundance of E. coli and the heat-stable enterotoxin in colonic digesta at 21 days; reuteran-containing diets reduced the copy numbers of the genes for E. coli and the heat-stable enterotoxin below the detection limit in samples from the ileum, the cecum, and the colon. In conclusion, feed fermentation with L. reuteri reduced the level of colonization of weaning piglets with ETEC, and feed fermentation supplied concentrations of reuteran that may specifically contribute to the effect on ETEC. PMID:26070673

  7. Real-Time PCR Assay for Detection and Differentiation of Shiga Toxin-Producing Escherichia coli from Clinical Samples

    PubMed Central

    Klein, Eileen J.; Galanakis, Emmanouil; Thomas, Anita A.; Stapp, Jennifer R.; Rich, Shannon; Buccat, Anne Marie; Tarr, Phillip I.

    2015-01-01

    Timely accurate diagnosis of Shiga toxin-producing Escherichia coli (STEC) infections is important. We evaluated a laboratory-developed real-time PCR (LD-PCR) assay targeting stx1, stx2, and rfbEO157 with 2,386 qualifying stool samples submitted to the microbiology laboratory of a tertiary care pediatric center between July 2011 and December 2013. Broth cultures of PCR-positive samples were tested for Shiga toxins by enzyme immunoassay (EIA) (ImmunoCard STAT! enterohemorrhagic E. coli [EHEC]; Meridian Bioscience) and cultured in attempts to recover both O157 and non-O157 STEC. E. coli O157 and non-O157 STEC were detected in 35 and 18 cases, respectively. Hemolytic uremic syndrome (HUS) occurred in 12 patients (10 infected with STEC O157, one infected with STEC O125ac, and one with PCR evidence of STEC but no resulting isolate). Among the 59 PCR-positive STEC specimens from 53 patients, only 29 (54.7%) of the associated specimens were toxin positive by EIA. LD-PCR differentiated STEC O157 from non-O157 using rfbEO157, and LD-PCR results prompted successful recovery of E. coli O157 (n = 25) and non-O157 STEC (n = 8) isolates, although the primary cultures and toxin assays were frequently negative. A rapid “mega”-multiplex PCR (FilmArray gastrointestinal panel; BioFire Diagnostics) was used retrospectively, and results correlated with LD-PCR findings in 25 (89%) of the 28 sorbitol-MacConkey agar culture-negative STEC cases. These findings demonstrate that PCR is more sensitive than EIA and/or culture and distinguishes between O157 and non-O157 STEC in clinical samples and that E. coli O157:H7 remains the predominant cause of HUS in our institution. PCR is highly recommended for rapid diagnosis of pediatric STEC infections. PMID:25926491

  8. Feed Fermentation with Reuteran- and Levan-Producing Lactobacillus reuteri Reduces Colonization of Weanling Pigs by Enterotoxigenic Escherichia coli

    PubMed Central

    Yang, Yan; Galle, Sandra; Le, Minh Hong Anh; Zijlstra, Ruurd T.

    2015-01-01

    This study determined the effect of feed fermentation with Lactobacillus reuteri on growth performance and the abundance of enterotoxigenic Escherichia coli (ETEC) in weanling piglets. L. reuteri strains produce reuteran or levan, exopolysaccharides that inhibit ETEC adhesion to the mucosa, and feed fermentation was conducted under conditions supporting exopolysaccharide formation and under conditions not supporting exopolysaccharide formation. Diets were chosen to assess the impact of organic acids and the impact of viable L. reuteri bacteria. Fecal samples were taken throughout 3 weeks of feeding; at the end of the 21-day feeding period, animals were euthanized to sample the gut digesta. The feed intake was reduced in pigs fed diets containing exopolysaccharides; however, feed efficiencies did not differ among the diets. Quantification of L. reuteri by quantitative PCR (qPCR) detected the two strains used for feed fermentation throughout the intestinal tract. Quantification of E. coli and ETEC virulence factors by qPCR demonstrated that fermented diets containing reuteran significantly (P < 0.05) reduced the copy numbers of genes for E. coli and the heat-stable enterotoxin in feces compared to those achieved with the control diet. Any fermented feed significantly (P < 0.05) reduced the abundance of E. coli and the heat-stable enterotoxin in colonic digesta at 21 days; reuteran-containing diets reduced the copy numbers of the genes for E. coli and the heat-stable enterotoxin below the detection limit in samples from the ileum, the cecum, and the colon. In conclusion, feed fermentation with L. reuteri reduced the level of colonization of weaning piglets with ETEC, and feed fermentation supplied concentrations of reuteran that may specifically contribute to the effect on ETEC. PMID:26070673

  9. Development of tailor-made glycidyl methacrylate-divinyl benzene copolymer for immobilization of D-amino acid oxidase from Aspergillus species strain 020 and its application in the bioconversion of cephalosporin C.

    PubMed

    Mujawar; Kotha; Rajan; Ponrathnam; Shewale

    1999-09-24

    A tailor-made glycidyl methacrylate-divinyl benzene (GMA-DVB) copolymer PC-3 was evolved by studying the effect of synthesis variables on binding and expression of D-amino acid oxidase (DAAO) from Aspergillus species strain 020. Almost quantitative binding (100%) and a high yield of immobilization per unit of enzyme loaded was achieved. Optimum pH, optimum temperature and K(m)95% was achieved by using 3% (w/v) solution of ceph C, 48 U of DAAO per g of ceph C, keeping dissolved oxygen level above 50%, maintaining the pH between 7.6 and 7.8 and temperature at 24 degrees C. The immobilized DAAO was used for 60 cycles in a stirred tank reactor. PMID:10704992

  10. Evolution of Shiga toxin-producing Escherichia coli O157: eight major lineages of human and cattle origin strain signature genotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cattle are a major reservoir for Shiga toxin-producing Escherichia coli O157 (STEC O157) and harbor genetic subtypes that do not all associate with human disease. STEC O157 evolved from an E. coli O55:H7 progenitor, however, depauperate nucleotide polymorphism discovery from cattle and human origin...

  11. Use of photopolymerization for the rapid and cost-effective identification of Shiga toxin-producing Escherichia coli on DNA microarrays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shiga toxin-producing Escherichia coli O157:H7 is a leading cause of foodborne illness worldwide. To evaluate better methods to rapidly detect and genotype E. coli O157 virulent strains, the present study explored the use of photopolymerization, a colorimetric and photoinduced signal amplification d...

  12. Aggregative adherence fimbriae I (AAF/I) mediate colonization of fresh produce and abiotic surface by Shiga toxigenic enteroaggregative Escherichia coli O104:H4

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Shiga toxigenic Escherichia coli O104:H4 bares the characteristics of both enterohemorrhagic (EHEC) and enteroaggregative (EAEC) E. coli. It produces plasmid encoded aggregative adherence fimbriae I (AAF/I) which mediate cell aggregation and biofilm formation in human intestine and promote Shiga...

  13. Updated molecular epidemiology of carbapenem-non-susceptible Escherichia coli in Taiwan: first identification of KPC-2 or NDM-1-producing E. coli in Taiwan

    PubMed Central

    2013-01-01

    Background The global spread and increasing incidence of carbapenem-resistant Enterobacteriaceae have resulted in treatment and public health concerns. Here, we present an investigation of the molecular mechanisms and clonality of carbapenem-non-susceptible Escherichia coli (CnSEC) based on a nationwide survey in Taiwan. Methods We collected 32 and 43 carbapenem-non-susceptible E. coli isolates in 2010 and 2012, respectively. The genes encoding cabapenemases and plasmidic AmpC-type and extended-spectrum β-lactamases (EBSLs) were analyzed by polymerase chain reaction (PCR). The major porin channels OmpF and OmpC were evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Molecular typing was performed with pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST). Results The resistance rates of CnSEC isolates to cefazolin, cefotaxime, cefoxitin, ceftazidime, and ertapenem were all 100%, and most (94.7%) isolates were CMY producers. The main mechanism of CnSEC in Taiwan is via plasmidic AmpC β-lactamase CMY-2 and DHA-1 in combination with the loss of OmpC/F. In 2010, one isolate was confirmed to harbor blaIMP-8; a KPC-2 producer and an NDM-1 producer were detected in 2012. No isolate had VIM- or OXA-carbapenemases. ST131 was the predominant ST type (33.3%). PFGE revealed no large cluster in CnSEC isolates in Taiwan. Conclusions The co-existence of plasmidic AmpC β-lactamase and outer membrane protein loss is the main mechanism for CnSEC in Taiwan. The emergence of KPC-2 and NDM-1 in 2012 and the predominance of ST131 warrant close monitoring and infection control. PMID:24354657

  14. An optical biosensor for detection of pathogen biomarkers from Shiga toxin-producing Escherichia coli in ground beef samples

    NASA Astrophysics Data System (ADS)

    Lamoureux, Loreen; Adams, Peter; Banisadr, Afsheen; Stromberg, Zachary; Graves, Steven; Montano, Gabriel; Moxley, Rodney; Mukundan, Harshini

    2014-03-01

    Shiga toxin-producing Escherichia coli (STEC) poses a serious threat to human health through the consumption of contaminated food products, particularly beef and produce. Early detection in the food chain, and discrimination from other non-pathogenic Escherichia coli (E. coli), is critical to preventing human outbreaks, and meeting current agricultural screening standards. These pathogens often present in low concentrations in contaminated samples, making discriminatory detection difficult without the use of costly, time-consuming methods (e.g. culture). Using multiple signal transduction schemes (including novel optical methods designed for amphiphiles), specific recognition antibodies, and a waveguide-based optical biosensor developed at Los Alamos National Laboratory, we have developed ultrasensitive detection methods for lipopolysaccharides (LPS), and protein biomarkers (Shiga toxin) of STEC in complex samples (e.g. beef lysates). Waveguides functionalized with phospholipid bilayers were used to pull down amphiphilic LPS, using methods (membrane insertion) developed by our team. The assay format exploits the amphiphilic biochemistry of lipoglycans, and allows for rapid, sensitive detection with a single fluorescent reporter. We have used a combination of biophysical methods (atomic force and fluorescence microscopy) to characterize the interaction of amphiphiles with lipid bilayers, to efficiently design these assays. Sandwich immunoassays were used for detection of protein toxins. Biomarkers were spiked into homogenated ground beef samples to determine performance and limit of detection. Future work will focus on the development of discriminatory antibodies for STEC serotypes, and using quantum dots as the fluorescence reporter to enable multiplex screening of biomarkers.

  15. Prevalence and Risk Factors associated with Extended Spectrum Beta Lactamase Producing Escherichia coli and Klebsiella pneumoniae Isolates in Hospitalized Patients in Kashan (Iran)

    PubMed Central

    Sharif, Mohammad Reza; Soltani, Babak; Moravveji, Alireza; Erami, Mahzad; Soltani, Nika

    2016-01-01

    Introduction Production of extended spectrum beta lactamase (ESBL) is an important mechanism of antimicrobial resistance in Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pneumoniae) isolates. This study was performed to determine the prevalence and risk factors associated with ESBL producing strains of E. coli and K. pneumoniae. Methods In this cross-sectional study, 250 strains (134 E. coli and 116 K. pneumoniae) were obtained, and ESBL producing isolates were detected by the combination disk test in Shahid Beheshti Hospital in Kashan, Iran, from February 2012 to June 2013. Antimicrobial resistance was screened by the disk diffusion method and was confirmed by E-test. Furthermore, risk factors of ESBL producing E. coli and K. pneumoniae microorganisms were determined. Data were analyzed by SPSS version 16, using descriptive statistics, chi-squared, independent-samples t-test, and logistic regression analysis. Results One hundred and two (40.8%) of all strains were ESBL producers, of which 54 (52.9%) were E. coli and 48 (47.1%) were K. pneumoniae (p = 0.86). Furthermore, 40.3% of E. coli and 41.4% of K. pneumoniae isolates were ESBL producers (p = 0.86). The most antimicrobial resistance was to ampicillin, and no imipenem resistance was detected. Risk factors for ESBL producing E. coli included admission duration exceeding 7 days (p = 0.011) and antibiotic use in the last month (p < 0.001), and the associated risk factor for ESBL producing K. pneumoniae was antibiotic use during the recent month (p = 0.002). Conclusion This study identified a relatively high prevalence of ESBL production among E. coli and K. pneumoniae strains. Furthermore, anti-bimicrobial use and admission duration were risk factors for ESBL producing isolates. Therefore, more comprehensive investigations are needed for the development of new strategies to control the dissemination of these microbes. PMID:27123215

  16. Hydrogen-producing Escherichia coli strains overexpressing lactose permease: FT-IR analysis of the lactose-induced stress.

    PubMed

    Grube, Mara; Dimanta, Ilze; Gavare, Marita; Strazdina, Inese; Liepins, Janis; Juhna, Talis; Kalnenieks, Uldis

    2014-01-01

    The lactose permease gene (lacY) was overexpressed in the septuple knockout mutant of Escherichia coli, previously engineered for hydrogen production from glucose. It was expected that raising the lactose transporter activity would elevate the intracellular lactose concentration, inactivate the lactose repressor, induce the lactose operon, and as a result stimulate overall lactose consumption and conversion. However, overexpression of the lactose transporter caused a considerable growth delay in the recombinant strain on lactose, resembling to some extent the "lactose killing" phenomenon. Therefore, the recombinant strain was subjected to selection on lactose-containing media. Selection on plates with 3% lactose yielded a strain with a decreased content of the recombinant plasmid but with an improved ability to grow and produce hydrogen on lactose. Macromolecular analysis of its biomass by means of Fourier transform-infrared spectroscopy demonstrated that increase of the cellular polysaccharide content might contribute to the adaptation of E. coli to lactose stress. PMID:23725289

  17. Isolation of verotoxin-producing Escherichia coli O-rough:K1:H7 from two patients with traveler's diarrhea.

    PubMed Central

    Vila, J; Vargas, M; Ruiz, J; Gallardo, F; Jimenez de Anta, M T; Gascón, J

    1997-01-01

    Two Escherichia coli O-rough:K1:H7 strains producing verotoxin 1 that were isolated from stool samples of two travelers with diarrhea who consulted our clinic after trips to the Indian Subcontinent and Central America were characterized. Both strains were sorbitol negative, the same phenotype presented by E. coli O157:H7, but in contrast they were beta-glucuronidase positive. Low-frequency restriction analysis of chromosomal DNA and pulsed-field gel electrophoresis and repetitive extragenic palindrome-PCR showed that both strains were epidemiologically related. The illness was self-limited in both cases but involved long-duration, watery diarrhea (10 to 50 days) accompanied by abdominal cramps and flatulence. This serotype should be taken into account as a possible cause of traveler's diarrhea. PMID:9276402

  18. Co-expression of ferrochelatase allows for complete heme incorporation into recombinant proteins produced in E. coli

    PubMed Central

    Sudhamsu, Jawahar; Kabir, Mariam; Airola, Michael V.; Patel, Bhumit A.; Yeh, Syun-Ru; Rousseau, Dennis L.; Crane, Brian R.

    2010-01-01

    Over-expression of heme binding proteins in E. coli often results in sub-optimal heme incorporation and the amount of heme-bound protein produced usually varies with the protein of interest. Complete heme incorporation is important for biochemical characterization, spectroscopy, structural studies, and for the production of homogeneous commercial proteins with high activity. We have determined that recombinant proteins expressed in E. coli often contain less than a full complement of heme because they rather are partially incorporated with free-base porphyrin. Porphyrin-incorporated proteins have similar spectral characteristics as the desired heme-loaded targets, and thus are difficult to detect, even in purified samples. We present a straightforward and inexpensive solution to this problem that involves the co-expression of native ferrochelatase with the protein of interest. The method is shown to be effective for proteins that contain either Cys- or His- ligated hemes. PMID:20303407

  19. Characterization of macrolide-resistant Campylobacter coli isolates from food-producing animals on farms across Japan during 2004.

    PubMed

    Harada, Kazuki; Asai, Tetsuo; Kojima, Akemi; Sameshima, Toshiya; Takahashi, Toshio

    2006-10-01

    We investigated the susceptibilities against 7 antimicrobial agents in Campylobacter jejuni and C. coli isolates from food-producing animals in 2004. In comparison with the results of past surveillance, no significant difference was observed in resistance rates against all of the antimicrobials tested in Campylobacter isolates. However, slight increase of erythromycin (EM) resistance was found in C. coli isolates from pigs. We examined the mutation of the 23S rRNA gene and their susceptibilities against azithromycin, tylosin, and lincomycin in 44 EM-resistant isolates and 28 susceptible isolates of porcine origin. All the EM-resistant isolates contained A2075G in the 23S rRNA gene and showed cross-resistance to azithromycin, tylosin, and lyncomycin. PMID:17085893

  20. Infections with verotoxin-producing escherichia coli O157:H7 and other serotypes, including the outbreak strain O104:H4.

    PubMed

    Buvens, G; Piérard, D

    2012-01-01

    Through the acquisition of mobile genetic elements, the normally harmless commensal Escherichia coli evolved into a highly adapted human pathogen. Pathogenic strains of E. coli are associated with urinary tract infections, sepsis/meningitis, and diarrhoea. At least six different diarrhoeagenic E. coli pathotypes have emerged during the past three decades as human pathogens of public health importance worldwide. In this review, we focus on the clinical features, pathogenic mechanisms, and diagnostic strategies of verotoxin-producing E. coli (VTEC) that are associated with sporadic cases and epidemics of gastrointestinal disease throughout the world. Recently, an E. coli strain of serotype O104:H4 combining verotoxin production with virulence factors of another pathotype, the enteroaggregative E. coli (EAEC), emerged as the cause of a severe outbreak in Europe. PMID:22480032

  1. Synthetic biology: Tailor-made genetic codes

    NASA Astrophysics Data System (ADS)

    Jewett, Michael C.; Noireaux, Vincent

    2016-04-01

    Expanding the range of amino acids polymerizable by ribosomes could enable new functionalities to be added to polypeptides. Now, the genetic code has been reprogrammed using a reconstituted in vitro translation system to enable synthesis of unnatural peptides with unmatched flexibility.

  2. Thermal inactivation of shiga toxin-producing 0157:H7 (ECOH) and non-0157:H7 shiga toxin-producing (STEC) Escherichia coli cells in wafers of ground beef

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Escherichia coli O157:H7 (ECOH) and six other highly pathogenic serotypes of Non-Shiga toxin producing E. coli (STEC) are adulterants in ground/non-intact raw beef. However, it is not known if validated thermal interventions for ECOH in raw beef would also be effective for inactivating STEC. The obj...

  3. Understanding the role of agricultural practices in the potential colonization and contamination by Escherichia coli in the rhizospheres of fresh produce.

    PubMed

    Habteselassie, Mussie Y; Bischoff, Marianne; Applegate, Bruce; Reuhs, Bradley; Turco, Ronald F

    2010-11-01

    To better protect consumers from exposure to produce contaminated with Escherichia coli, the potential transfer of E. coli from manure or irrigation water to plants must be better understood. We used E. coli strains expressing bioluminescence (E. coli O157:H7 lux) or multiantibiotic resistance (E. coli²(+)) in this study. These marked strains enabled us to visualize in situ rhizosphere colonization and metabolic activity and to track the occurrence and survival of E. coli in soil, rhizosphere, and phyllosphere. When radish and lettuce seeds were treated with E. coli O157:H7 lux and grown in an agar-based growth system, rapid bacterial colonization of the germinating seedlings and high levels of microbial activity were seen. Introduction of E. coli²(+) to soil via manure or via manure in irrigation water showed that E. coli could establish itself in the lettuce rhizosphere. Regardless of introduction method, 15 days subsequent to its establishment in the rhizosphere, E. coli²(+) was detected on the phyllosphere of lettuce at an average number of 2.5 log CFU/g. When E. coli²(+) was introduced 17 and 32 days postseeding to untreated soil (rather than the plant surface) via irrigation, it was detected at low levels (1.4 log CFU/g) on the lettuce phyllosphere 10 days later. While E. coli²(+) persisted in the bulk and rhizosphere soil throughout the study period (day 41), it was not detected on the external portions of the phyllosphere after 27 days. Overall, we find that E. coli is mobile in the plant system and responds to the rhizosphere like other bacteria. PMID:21219711

  4. Life on the outside: role of biofilms in environmental persistence of Shiga-toxin producing Escherichia coli

    PubMed Central

    Vogeleer, Philippe; Tremblay, Yannick D. N.; Mafu, Akier A.; Jacques, Mario; Harel, Josée

    2014-01-01

    Escherichia coli is a heterogeneous species that can be part of the normal flora of humans but also include strains of medical importance. Among pathogenic members, Shiga-toxin producing E. coli (STEC) are some of the more prominent pathogenic E. coli within the public sphere. STEC disease outbreaks are typically associated with contaminated beef, contaminated drinking water, and contaminated fresh produce. These water- and food-borne pathogens usually colonize cattle asymptomatically; cows will shed STEC in their feces and the subsequent fecal contamination of the environment and processing plants is a major concern for food and public safety. This is especially important because STEC can survive for prolonged periods of time outside its host in environments such as water, produce, and farm soil. Biofilms are hypothesized to be important for survival in the environment especially on produce, in rivers, and in processing plants. Several factors involved in biofilm formation such as curli, cellulose, poly-N-acetyl glucosamine, and colanic acid are involved in plant colonization and adherence to different surfaces often found in meat processing plants. In food processing plants, contamination of beef carcasses occurs at different stages of processing and this is often caused by the formation of STEC biofilms on the surface of several pieces of equipment associated with slaughtering and processing. Biofilms protect bacteria against several challenges, including biocides used in industrial processes. STEC biofilms are less sensitive than planktonic cells to several chemical sanitizers such as quaternary ammonium compounds, peroxyacetic acid, and chlorine compounds. Increased resistance to sanitizers by STEC growing in a biofilm is likely to be a source of contamination in the processing plant. This review focuses on the role of biofilm formation by STEC as a means of persistence outside their animal host and factors associated with biofilm formation. PMID:25071733

  5. Thermal inactivation of Escherichia coli O157:H7 and non-O157 shiga toxin-producing Escherichia coli cells in mechanically tenderized veal.

    PubMed

    Luchansky, John B; Porto-Fett, Anna C S; Shoyer, Bradley A; Thippareddi, Harshavardhan; Amaya, Jesus R; Lemler, Michael

    2014-07-01

    Preflattened veal cutlets (ca. 71.5 g, ca. 0.32 cm thick) were surface inoculated with ca. 6.8 log CFU/g of a multistrain cocktail of Escherichia coli O157:H7 (ECOH) or a cocktail made of single strains of serogroups O26, O45, O103, O104, O111, O121, and O145 of Shiga toxin-producing E. coli (STEC) cells and then were mechanically tenderized by passing once through a "Sir Steak" tenderizer. For each cooking time, in each of at least three trials, three inoculated and tenderized cutlets, with and without breading, were individually cooked in 15 or 30 ml of canola oil for 0.0, 0.75, 1.0, 1.25, 1.5, 1.75, or 2.25 min per side on an electric skillet set at 191.5°C. The temperatures of the meat and of the skillet were monitored and recorded using a type J thermocouple. Regardless of the breading or volume of oil used to cook the meat, the longer the cooking times, the higher was the internal temperature of the meat, along with a greater reduction of both ECOH and STEC. The average final internal temperature of the meat at the approximate geometric center ranged from 56.8 to 93.1°C. Microbial reductions of ca. 2.0 to 6.7 log CFU/g and ca. 2.6 to 6.2 log CFU/g were achieved for ECOH and STEC, respectively. Our data also revealed no differences in thermal inactivation of ECOH relative to the volume of oil used to cook nonbreaded cutlets. However, when cooking breaded cutlets, the use of more (30 ml) compared with less (15 ml) cooking oil resulted in greater reductions in pathogen numbers. To deliver about a 5.0-log reduction of ECOH and STEC, and to achieve the recommended internal temperature of 71.1°C, it was necessary to cook mechanically tenderized veal cutlets for at least 1.5 min per side on a preheated electric skillet set at 191.5°C and containing 15 ml of cooking oil. These data also established that cooking times and temperatures effective for inactivating serotype O157:H7 strains of E. coli in tenderized veal are equally effective against the additional six

  6. Atmospheric cold plasma inactivation of Escherichia coli, Salmonella enterica serovar Typhimurium and Listeria monocytogenes inoculated on fresh produce.

    PubMed

    Ziuzina, D; Patil, S; Cullen, P J; Keener, K M; Bourke, P

    2014-09-01

    Atmospheric cold plasma (ACP) represents a potential alternative to traditional methods for non-thermal decontamination of foods. In this study, the antimicrobial efficacy of a novel dielectric barrier discharge ACP device against Escherichia coli, Salmonella enterica Typhimurium and Listeria monocytogenes inoculated on cherry tomatoes and strawberries, was examined. Bacteria were spot inoculated on the produce surface, air dried and sealed inside a rigid polypropylene container. Samples were indirectly exposed (i.e. placed outside plasma discharge) to a high voltage (70 kVRMS) air ACP and subsequently stored at room temperature for 24 h. ACP treatment for 10, 60 and 120 s resulted in reduction of Salmonella, E. coli and L. monocytogenes populations on tomato to undetectable levels from initial populations of 3.1, 6.3, and 6.7 log10 CFU/sample, respectively. However, an extended ACP treatment time was necessary to reduce bacterial populations attached on the more complex surface of strawberries. Treatment time for 300 s resulted in reduction of E. coli, Salmonella and L. monocytogenes populations by 3.5, 3.8 and 4.2 log10 CFU/sample, respectively, and also effectively reduced the background microflora of tomatoes. PMID:24929725

  7. Clinical Epidemiology and Molecular Analysis of Extended-Spectrum-β-Lactamase-Producing Escherichia coli in Nepal: Characteristics of Sequence Types 131 and 648

    PubMed Central

    Sherchan, Jatan Bahadur; Miyoshi-Akiyama, Tohru; Ohmagari, Norio; Kirikae, Teruo; Nagamatsu, Maki; Tojo, Masayoshi; Ohara, Hiroshi; Sherchand, Jeevan B.; Tandukar, Sarmila

    2015-01-01

    Recently, CTX-M-type extended-spectrum-β-lactamase (ESBL)-producing Escherichia coli strains have emerged worldwide. In particular, E. coli with O antigen type 25 (O25) and sequence type 131 (ST131), which is often associated with the CTX-M-15 ESBL, has been increasingly reported globally; however, epidemiology reports on ESBL-producing E. coli in Asia are limited. Patients with clinical isolates of ESBL-producing E. coli in the Tribhuvan University teaching hospital in Kathmandu, Nepal, were included in this study. Whole-genome sequencing of the isolates was conducted to analyze multilocus sequence types, phylotypes, virulence genotypes, O25b-ST131 clones, and distribution of acquired drug resistance genes. During the study period, 105 patients with ESBL-producing E. coli isolation were identified, and the majority (90%) of these isolates were CTX-M-15 positive. The most dominant ST was ST131 (n = 54; 51.4%), followed by ST648 (n = 15; 14.3%). All ST131 isolates were identified as O25b-ST131 clones, subclone H30-Rx. Three ST groups (ST131, ST648, and non-ST131/648) were compared in further analyses. ST648 isolates had a proportionally higher resistance to non-β-lactam antibiotics and featured drug-resistant genes more frequently than ST131 or non-ST131/648 isolates. ST131 possessed the most virulence genes, followed by ST648. The clinical characteristics were similar among groups. More than 38% of ESBL-producing E. coli isolates were from the outpatient clinic, and pregnant patients comprised 24% of ESBL-producing E. coli cases. We revealed that the high resistance of ESBL-producing E. coli to multiple classes of antibiotics in Nepal is driven mainly by CTX-M-producing ST131 and ST648. Their immense prevalence in the communities is a matter of great concern. PMID:25824221

  8. Effect of high pressure treatment on the survival of Shiga toxin-producing Escherichia coli in strawberry puree.

    PubMed

    Hsu, HsinYun; Sheen, Shiowshuh; Sites, Joseph; Huang, Lihan; Wu, James Swi-Bea

    2014-06-01

    Most fresh produce, such as strawberries, receives minimal processing and is often eaten raw. Contamination of produce with pathogenic bacteria may occur during growth, harvest, processing, transportation, and storage (abuse temperature) and presents a serious public health risk. Strawberries have been implicated in an outbreak of Escherichia coli O157:H7 infection that sickened 15 people, including one death. Strawberries may also be contaminated by other serogroups of non-O157 Shiga toxin-producing E. coli (STEC), including O26, O45, O103, O111, O121 and O145, which have become known as the "Big Six" or "Top Six" non-O157 STECs. The objective of this research was to explore the potential application of high pressure processing (HPP) treatment to reduce or eliminate STECs in fresh strawberry puree (FSP). FSP, inoculated with a six-strain cocktail of the "Big Six" non-O157 STEC strains or a five-strain cocktail of E. coli O157:H7 in vacuum-sealed packages, were pressure-treated at 150, 250, 350, 450, 550, and 650 MPa (1 MPa = 10(6) N/m(2)) for 5, 15, and 30 min. HPP treatment, at 350 MPa for ≥5 min, significantly reduced STECs in FSP by about 6-log CFU/g from the initial cell population of ca. 8-log CFU/g. Cell rupture, observed by scanning electron microscopy (SEM), demonstrated that the HPP treatments can be potentially used to control both non-O157 and O157:H7 STECs in heat sensitive products. PMID:24549194

  9. Comparison of MALDI-TOF MS and AFLP for strain typing of ESBL-producing Escherichia coli.

    PubMed

    Veenemans, J; Welker, M; van Belkum, A; Saccomani, M C; Girard, V; Pettersson, A; Verhulst, C; Kluytmans-Vandenbergh, M; Kluytmans, J

    2016-05-01

    Typing of bacterial isolates using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) potentially provides an efficient on-site method to monitor the spread of antibiotic-resistant bacteria and rapidly detect outbreaks. We compared MALDI-MS typing results to those of amplified fragment length polymorphism (AFLP) in a collection of 52 ESBL-producing Escherichia coli, isolated in a Dutch nursing home with an on-going outbreak of ST131 E. coli. Specific MALDI types were defined based on spectral data from four replicate colony samples of isolates grown on Columbia agar using multivariate statistical procedures. Type-specific superspectra were computed for four E .coli MALDI-types and tested for the potential of rapid and automated typing. The effect of different incubation conditions on typing performance was tested by analysing five isolates incubated for 24 h and 48 h on five different media. Types defined based on MALDI spectra were largely in agreement with the AFLP results, although some MALDI types comprised of more than one AFLP type. In particular, isolates belonging to ST131 showed distinct mass patterns. The proportion of isolates correctly assigned was substantially lower for isolates incubated on Sabouraud-dextrose and Drigalski agars for 24 h, and for those incubated for 48 h (all media). Our results show that the identification of type-specific peaks potentially allows direct typing of isolates belonging to specific clonal lineages. Both incubation time and media affected type assignment, suggesting that there is a need for a careful standardization of incubation time and culturing conditions when developing MALDI-typing schemes for E. coli. PMID:26922068

  10. Phage-typing of Vero-cytotoxin (VT) producing Escherichia coli O157 isolated in the United Kingdom.

    PubMed Central

    Frost, J. A.; Smith, H. R.; Willshaw, G. A.; Scotland, S. M.; Gross, R. J.; Rowe, B.

    1989-01-01

    Vero-cytotoxin (VT) producing Escherichia coli serogroup O157 have been isolated from patients with diarrhoea, haemorrhagic colitis (HC) and haemolytic uraemic syndrome (HUS). A phage-typing scheme developed in Canada has been used to type 155 VT+ E. coli O157 serogroup isolated from sporadic infections in the UK since 1983, and 48 strains from HC or HUS outbreaks. Twelve phage types were identified of which three, types 49, 51 and 52, have not been found in North America. All strains carried a 60 x 10(6) plasmid and most VT1+VT2+ strains also had a 5 x 10(6) plasmid coding for colicin D production. The majority of strains producing both VT1 and VT2 belonged to phage type 1, or the related types 4, 8 and 14. Most strains producing only VT2 belonged to types 2 or 49. Four outbreaks were included in the survey. Three had strains of a single phage type while strains from the fourth outbreak were more variable. The distribution of phage types throughout the UK showed no marked geographical variations. PMID:2673827

  11. Prevalence of sorbitol non-fermenting Shiga toxin-producing Escherichia coli in Black Bengal goats on smallholdings.

    PubMed

    Gupta, M DAS; DAS, A; Islam, M Z; Biswas, P K

    2016-09-01

    A cross-sectional survey was carried out in Bangladesh with the sampling of 514 Black Bengal goats on smallholdings to determine the presence of sorbitol non-fermenting (SNF) Shiga toxin-producing E. coli (STEC). Swab samples collected from the recto-anal junction were plated onto cefixime and potassium tellurite added sorbitol MacConkey (CT-SMAC) agar, a selective medium for STEC O157 serogroup, where this serogroup and other SNF STEC produce colourless colonies. The SNF E. coli (SNF EC) isolates obtained from the survey were investigated by PCR for the presence of Shiga toxin-producing genes, stx1 and stx2, and two other virulence genes, eae and hlyA that code for adherence factor (intimin protein) and pore-forming cytolysin, respectively. The SNF EC isolates were also assessed for the presence of the rfbO157 gene to verify their identity to O157 serogroup. The results revealed that the proportions of goats carrying SNF EC isolates and stx1 and stx2 genes were 6·2% (32/514) [95% confidence interval (CI) 4·4-8·7)], 1·2% (95% CI 0·5-2·6) and 1·2% (95% CI 0·5-2·6), respectively. All the SNF STEC tested negative for rfbO157, hlyA and eae genes. The risk for transmission of STEC from Black Bengal goats to humans is low. PMID:27267779

  12. NDM-1-Producing Citrobacter freundii, Escherichia coli, and Acinetobacter baumannii Identified from a Single Patient in China

    PubMed Central

    Huang, Ying-Min; Zhong, Lan-lan; Zhang, Xue-Fei; Hu, Hang-tong; Li, Yu-qi; Yang, Xiao-rong; Feng, Lian-Qiang; Huang, Xi

    2015-01-01

    We identified New Delhi metallo-β-lactamase (NDM-1)-producing Citrobacter freundii GB032, Escherichia coli GB102, and Acinetobacter baumannii GB661 in urine and stool samples from a single patient in China. Plasmid profiling and Southern blotting indicated that blaNDM-1 from GB032 and that from GB102 were likely located on the same plasmid, while blaNDM-1 from GB661 was located on a very large (>400-kb) plasmid. This case underscores the broad host range of blaNDM-1 and its potential to spread between members of the family Enterobacteriaceae and A. baumannii. PMID:26055374

  13. Structural insight in the inhibition of adherence of F4 fimbriae producing enterotoxigenic Escherichia coli by llama single domain antibodies.

    PubMed

    Moonens, Kristof; Van den Broeck, Imke; Okello, Emmanuel; Pardon, Els; De Kerpel, Maia; Remaut, Han; De Greve, Henri

    2015-01-01

    Enterotoxigenic Escherichia coli that cause neonatal and post-weaning diarrhea in piglets express F4 fimbriae to mediate attachment towards host receptors. Recently we described how llama single domain antibodies (VHHs) fused to IgA, produced in Arabidopsis thaliana seeds and fed to piglets resulted in a progressive decline in shedding of F4 positive ETEC bacteria. Here we present the structures of these inhibiting VHHs in complex with the major adhesive subunit FaeG. A conserved surface, distant from the lactose binding pocket, is targeted by these VHHs, highlighting the possibility of targeting epitopes on single-domain adhesins that are non-involved in receptor binding. PMID:25828907

  14. Characterization of Multidrug Resistant Extended-Spectrum Beta-Lactamase-Producing Escherichia coli among Uropathogens of Pediatrics in North of Iran.

    PubMed

    Rezai, Mohammad Sadegh; Salehifar, Ebrahim; Rafiei, Alireza; Langaee, Taimour; Rafati, Mohammadreza; Shafahi, Kheironesa; Eslami, Gohar

    2015-01-01

    Escherichia coli remains as one of the most important bacteria causing infections in pediatrics and producing extended-spectrum beta-lactamases (ESBLs) making them resistant to beta-lactam antibiotics. In this study we aimed to genotype ESBL-producing E. coli isolates from pediatric patients for ESBL genes and determine their association with antimicrobial resistance. One hundred of the E. coli isolates were initially considered ESBL producing based on their MIC results. These isolates were then tested by polymerase chain reaction (PCR) for the presence or absence of CTX, TEM, SHV, GES, and VEB beta-lactamase genes. About 30.5% of isolated E. coli was ESBL-producing strain. The TEM gene was the most prevalent (49%) followed by SHV (44%), CTX (28%), VEB (8%), and GES (0%) genes. The ESBL-producing E. coli isolates were susceptible to carbapenems (66%) and amikacin (58%) and showed high resistance to cefixime (99%), colistin (82%), and ciprofloxacin (76%). In conclusion, carbapenems were the most effective antibiotics against ESBl-producing E. coli in urinary tract infection in North of Iran. The most prevalent gene is the TEM-type, but the other resistant genes and their antimicrobial resistance are on the rise. PMID:26064896

  15. Genetic Features of MCR-1-Producing Colistin-Resistant Escherichia coli Isolates in South Africa.

    PubMed

    Poirel, Laurent; Kieffer, Nicolas; Brink, Adrian; Coetze, Jennifer; Jayol, Aurélie; Nordmann, Patrice

    2016-07-01

    A series of colistin-resistant Escherichia coli clinical isolates was recovered from hospitalized and community patients in South Africa. Seven clonally unrelated isolates harbored the mcr-1 gene located on different plasmid backbones. Two distinct plasmids were fully sequenced, and identical 2,600-bp-long DNA sequences defining a mcr-1 cassette were identified. Promoter sequences responsible for the expression of mcr-1, deduced from the precise identification of the +1 transcription start site for mcr-1, were characterized. PMID:27161623

  16. Prevalence and Characteristics of the Epidemic Multiresistant Escherichia coli ST131 Clonal Group among Extended-Spectrum Beta-Lactamase-Producing E. coli Isolates in Copenhagen, Denmark

    PubMed Central

    Hansen, Dennis S.; Nilsson, Frida; Frimodt-Møller, Jakob; Leihof, Rikke Fleron; Struve, Carsten; Scheutz, Flemming; Johnston, Brian; Krogfelt, Karen A.; Johnson, James R.

    2013-01-01

    We report the characteristics of 115 extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli clinical isolates, from 115 unique Danish patients, over a 1-year study interval (1 October 2008 to 30 September 2009). Forty-four (38%) of the ESBL isolates represented sequence type 131 (ST13)1, from phylogenetic group B2. The remaining 71 isolates were from phylogenetic groups D (27%), A (22%), B1 (10%), and B2 (3%). Serogroup O25 ST131 isolates (n = 42; 95% of ST131) comprised 7 different K antigens, whereas two ST131 isolates were O16:K100:H5. Compared to non-ST131 isolates, ST131 isolates were associated positively with CTX-M-15 and negatively with CTX-M-1 and CTX-M-14. They also were associated positively with 11 virulence genes, including afa and dra (Dr family adhesins), the F10 papA allele (P fimbria variant), fimH (type 1 fimbriae), fyuA (yersiniabactin receptor), iha (adhesin siderophore), iutA (aerobactin receptor), kpsM II (group 2 capsules), malX (pathogenicity island marker), ompT (outer membrane protease), sat (secreted autotransporter toxin), and usp (uropathogenicity-specific protein) and negatively with hra (heat-resistant agglutinin) and iroN (salmochelin receptor). The consensus virulence gene profile (>90% prevalence) of the ST131 isolates included fimH, fyuA, malX, and usp (100% each), ompT and the F10 papA allele (95% each), and kpsM II and iutA (93% each). ST131 isolates were also positively associated with community acquisition, extraintestinal pathogenic E. coli (ExPEC) status, and the O25, K100, and H4 antigens. Thus, among ESBL E. coli isolates in Copenhagen, ST131 was the most prevalent clonal group, was community associated, and exhibited distinctive and comparatively extensive virulence profiles, plus a greater variety of capsular antigens than reported previously. PMID:23554186

  17. Crystal Diagnostics Xpress™ E7 STEC Kit for the Rapid Multiplex Detection of E. coli O157 and non-O157 Shiga toxin-producing E. coli.

    PubMed

    Zhao, Weidong; Stumpf, Curtis H; Bullard, Brian; Kuzenko, Stephanie; Niehaus, Gary D

    2015-01-01

    The Crystal Diagnostics (CDx) Xpress E7 STEC kit is a rapid and sensitive detection assay for the detection of Escherichia coli O157 and six non-O157 Shiga toxin-producing E. coli (serogroups O26, O45, O1O3, O111, O121, and O145, collectively referred to as STEC) at 1 CFU/325 g of raw ground beef and raw beef trim, or 200 g of spinach. The system comprises an automatic Crystal Diagnostics Xpress System Reader that integrates immunochemical and optical processes for the liquid crystal-based detection of microorganisms, a CDx BioCassette that incorporates antibody-coupled microspheres and liquid crystal for selective identification of the intended microbe, and additional commercially available components. The Crystal Diagnostics Xpress System(TM) combines proprietary liquid crystal technology with antibody-coated paramagnetic microspheres to selectively capture and detect STEC from food matrixes. The Xpress System expeditiously (9.5 h enrichment) provides the sensitivity and specificity of the U. S. Department of Agriculture Food Safety and Inspection Service and the U. S. Food and Drug Administration reference methods in screening as low as 1 STEC CFU/test portion. The inclusivity validation demonstrated detection of 53 of 54 STEC test strains. Shelf life testing of the antibody-coated microspheres and other Crystal Diagnostic consumables indicated that all materials were stable for a minimum of 3 months (ongoing), and lot-to-lot testing demonstrated consistent results between lots (data not shown). The internal and independent laboratory tests demonstrate that the method is rapid and sensitive for screening of the target STEC. PMID:26651567

  18. Recombinant L-Asparaginase from Zymomonas mobilis: A Potential New Antileukemic Agent Produced in Escherichia coli

    PubMed Central

    Pereira, Juliana Christina Castanheira Vicente; Costa-Amaral, Isabele Campos; da Costa, Elaine Sobral; Ribeiro, Maria Cecília Menks; Land, Marcelo Gerardin Poirot; Alves, Tito Lívio Moitinho; Larentis, Ariane Leites; Almeida, Rodrigo Volcan

    2016-01-01

    L-asparaginase is an enzyme used as a chemotherapeutic agent, mainly for treating acute lymphoblastic leukemia. In this study, the gene of L-asparaginase from Zymomonas mobilis was cloned in pET vectors, fused to a histidine tag, and had its codons optimized. The L-asparaginase was expressed extracellularly and intracellularly (cytoplasmically) in Escherichia coli in far larger quantities than obtained from the microorganism of origin, and sufficient for initial cytotoxicity tests on leukemic cells. The in silico analysis of the protein from Z. mobilis indicated the presence of a signal peptide in the sequence, as well as high identity to other sequences of L-asparaginases with antileukemic activity. The protein was expressed in a bioreactor with a complex culture medium, yielding 0.13 IU/mL extracellular L-asparaginase and 3.6 IU/mL intracellular L-asparaginase after 4 h of induction with IPTG. The cytotoxicity results suggest that recombinant L-asparaginase from Z. mobilis expressed extracellularly in E.coli has a cytotoxic and cytostatic effect on leukemic cells. PMID:27253887

  19. Recombinant L-Asparaginase from Zymomonas mobilis: A Potential New Antileukemic Agent Produced in Escherichia coli.

    PubMed

    Einsfeldt, Karen; Baptista, Isis Cavalcante; Pereira, Juliana Christina Castanheira Vicente; Costa-Amaral, Isabele Campos; Costa, Elaine Sobral da; Ribeiro, Maria Cecília Menks; Land, Marcelo Gerardin Poirot; Alves, Tito Lívio Moitinho; Larentis, Ariane Leites; Almeida, Rodrigo Volcan

    2016-01-01

    L-asparaginase is an enzyme used as a chemotherapeutic agent, mainly for treating acute lymphoblastic leukemia. In this study, the gene of L-asparaginase from Zymomonas mobilis was cloned in pET vectors, fused to a histidine tag, and had its codons optimized. The L-asparaginase was expressed extracellularly and intracellularly (cytoplasmically) in Escherichia coli in far larger quantities than obtained from the microorganism of origin, and sufficient for initial cytotoxicity tests on leukemic cells. The in silico analysis of the protein from Z. mobilis indicated the presence of a signal peptide in the sequence, as well as high identity to other sequences of L-asparaginases with antileukemic activity. The protein was expressed in a bioreactor with a complex culture medium, yielding 0.13 IU/mL extracellular L-asparaginase and 3.6 IU/mL intracellular L-asparaginase after 4 h of induction with IPTG. The cytotoxicity results suggest that recombinant L-asparaginase from Z. mobilis expressed extracellularly in E.coli has a cytotoxic and cytostatic effect on leukemic cells. PMID:27253887

  20. Nickel Promotes Biofilm Formation by Escherichia coli K-12 Strains That Produce Curli▿

    PubMed Central

    Perrin, Claire; Briandet, Romain; Jubelin, Gregory; Lejeune, Philippe; Mandrand-Berthelot, Marie-Andrée; Rodrigue, Agnès; Dorel, Corinne

    2009-01-01

    The survival of bacteria exposed to toxic compounds is a multifactorial phenomenon, involving well-known molecular mechanisms of resistance but also less-well-understood mechanisms of tolerance that need to be clarified. In particular, the contribution of biofilm formation to survival in the presence of toxic compounds, such as nickel, was investigated in this study. We found that a subinhibitory concentration of nickel leads Escherichia coli bacteria to change their lifestyle, developing biofilm structures rather than growing as free-floating cells. Interestingly, whereas nickel and magnesium both alter the global cell surface charge, only nickel promotes biofilm formation in our system. Genetic evidence indicates that biofilm formation induced by nickel is mediated by the transcriptional induction of the adhesive curli-encoding genes. Biofilm formation induced by nickel does not rely on efflux mechanisms using the RcnA pump, as these require a higher concentration of nickel to be activated. Our results demonstrate that the nickel-induced biofilm formation in E. coli is an adaptational process, occurring through a transcriptional effect on genes coding for adherence structures. The biofilm lifestyle is obviously a selective advantage in the presence of nickel, but the means by which it improves bacterial survival needs to be investigated. PMID:19168650

  1. High Throughput Quantitative Expression Screening and Purification Applied to Recombinant Disulfide-rich Venom Proteins Produced in E. coli

    PubMed Central

    Saez, Natalie J.; Nozach, Hervé; Blemont, Marilyne; Vincentelli, Renaud

    2014-01-01

    Escherichia coli (E. coli) is the most widely used expression system for the production of recombinant proteins for structural and functional studies. However, purifying proteins is sometimes challenging since many proteins are expressed in an insoluble form. When working with difficult or multiple targets it is therefore recommended to use high throughput (HTP) protein expression screening on a small scale (1-4 ml cultures) to quickly identify conditions for soluble expression. To cope with the various structural genomics programs of the lab, a quantitative (within a range of 0.1-100 mg/L culture of recombinant protein) and HTP protein expression screening protocol was implemented and validated on thousands of proteins. The protocols were automated with the use of a liquid handling robot but can also be performed manually without specialized equipment. Disulfide-rich venom proteins are gaining increasing recognition for their potential as therapeutic drug leads. They can be highly potent and selective, but their complex disulfide bond networks make them challenging to produce. As a member of the FP7 European Venomics project (www.venomics.eu), our challenge is to develop successful production strategies with the aim of producing thousands of novel venom proteins for functional characterization. Aided by the redox properties of disulfide bond isomerase DsbC, we adapted our HTP production pipeline for the expression of oxidized, functional venom peptides in the E. coli cytoplasm. The protocols are also applicable to the production of diverse disulfide-rich proteins. Here we demonstrate our pipeline applied to the production of animal venom proteins. With the protocols described herein it is likely that soluble disulfide-rich proteins will be obtained in as little as a week. Even from a small scale, there is the potential to use the purified proteins for validating the oxidation state by mass spectrometry, for characterization in pilot studies, or for sensitive

  2. Steps toward high specific activity labeling of biomolecules for therapeutic application: preparation of precursor [(188)Re(H(2)O)(3)(CO)(3)](+) and synthesis of tailor-made bifunctional ligand systems.

    PubMed

    Schibli, Roger; Schwarzbach, Rolf; Alberto, Roger; Ortner, Kirstin; Schmalle, Helmut; Dumas, Cécile; Egli, André; Schubiger, P August

    2002-01-01

    Two kit preparations of the organometallic precursor [(188)Re(H(2)O)(3)(CO)(3)](+) in aqueous media are presented. Method A uses gaseous carbon monoxide and amine borane (BH(3).NH(3)) as the reducing agent. In method B CO(g) is replaced by K(2)[H(3)BCO(2)] that releases carbon monoxide during hydrolysis. Both procedures afford the desired precursor in yields >85% after 10 min at 60 degrees C. HPLC and TLC analyses revealed 7 +/- 3% of unreacted (188)ReO(4)(-) and <5% of colloidal (188)ReO(2). Solutions of up to 14 GBq/mL Re-188 have been successfully carbonylated with these two methods. The syntheses of two tailor-made bifunctional ligand systems for the precursor [(188)Re(H(2)O)(3)(CO)(3)](+) are presented. The tridentate chelates consist of a bis[imidazol-2-yl]methylamine or an iminodiacetic acid moiety, respectively. Both types of ligand systems have been prepared with alkyl spacers of different length and a pendent primary amino or carboxylic acid functionality, enabling the amidic linkage to biomolecules. The tridentate coordination of the ligands to the rhenium-tricarbonyl core could be elucidated on the macroscopic level by X-ray structure analyses and 1D and 2D NMR experiments of two representative model complexes. On the nca level, the ligands allow labeling yields >95% with [(188)Re(H(2)O)(3)(CO)(3)](+) under mild reaction conditions (PBS buffer, 60 degrees C, 60 min) at ligand concentrations between 5 x 10(-4) M and 5 x 10(-5) M. Thus, specific activities of 22-220 GBq pe micromol of ligand could be achieved. Incubation of the corresponding Re-188 complexes in human serum at 37 degrees C revealed stabilities between 80 +/- 4% and 45 +/- 10% at 24 h, respectively, and 63 +/- 3% and 34 +/- 3% at 48 h postincubation in human serum depending on the chelating system. Decomposition product was mainly (188)ReO(4)(-). The routine kit-preparation of the precursor [(188)Re(H(2)O)(3)(CO)(3)](+) in combination with tailor-made ligand systems enables the

  3. Evaluation of a loop-mediated isothermal amplification suite for the rapid, reliable, and robust detection of Shiga toxin-producing Escherichia coli in produce.

    PubMed

    Wang, Fei; Yang, Qianru; Qu, Yinzhi; Meng, Jianghong; Ge, Beilei

    2014-04-01

    Shiga toxin-producing Escherichia coli (STEC) strains are a leading cause of produce-associated outbreaks in the United States. Rapid, reliable, and robust detection methods are needed to better ensure produce safety. We recently developed a loop-mediated isothermal amplification (LAMP) suite for STEC detection. In this study, the STEC LAMP suite was comprehensively evaluated against real-time quantitative PCR (qPCR) using a large panel of bacterial strains (n = 156) and various produce items (several varieties of lettuce, spinach, and sprouts). To simulate real-world contamination events, produce samples were surface inoculated with a low level (1.2 to 1.8 CFU/25 g) of individual STEC strains belonging to seven serogroups (O26, O45, O103, O111, O121, O145, and O157) and held at 4°C for 48 h before testing. Six DNA extraction methods were also compared using produce enrichment broths. All STEC targets and their subtypes were accurately detected by the LAMP suite. The detection limits were 1 to 20 cells per reaction in pure culture and 10(5) to 10(6) CFU per 25 g (i.e., 10(3) to 10(4) CFU per g) in produce, except for strains harboring the stx2c, eae-β, and eae-θ subtypes. After 6 to 8 h of enrichment, the LAMP suite achieved accurate detection of low levels of STEC strains of various stx2 and eae subtypes in lettuce and spinach varieties but not in sprouts. A similar trend of detection was observed for qPCR. The PrepMan Ultra sample preparation reagent yielded the best results among the six DNA extraction methods. This research provided a rapid, reliable, and robust method for detecting STEC in produce during routine sampling and testing. The challenge with sprouts detection by both LAMP and qPCR calls for special attention to further analysis. PMID:24509927

  4. Evaluation of a Loop-Mediated Isothermal Amplification Suite for the Rapid, Reliable, and Robust Detection of Shiga Toxin-Producing Escherichia coli in Produce

    PubMed Central

    Wang, Fei; Yang, Qianru; Qu, Yinzhi; Meng, Jianghong

    2014-01-01

    Shiga toxin-producing Escherichia coli (STEC) strains are a leading cause of produce-associated outbreaks in the United States. Rapid, reliable, and robust detection methods are needed to better ensure produce safety. We recently developed a loop-mediated isothermal amplification (LAMP) suite for STEC detection. In this study, the STEC LAMP suite was comprehensively evaluated against real-time quantitative PCR (qPCR) using a large panel of bacterial strains (n = 156) and various produce items (several varieties of lettuce, spinach, and sprouts). To simulate real-world contamination events, produce samples were surface inoculated with a low level (1.2 to 1.8 CFU/25 g) of individual STEC strains belonging to seven serogroups (O26, O45, O103, O111, O121, O145, and O157) and held at 4°C for 48 h before testing. Six DNA extraction methods were also compared using produce enrichment broths. All STEC targets and their subtypes were accurately detected by the LAMP suite. The detection limits were 1 to 20 cells per reaction in pure culture and 105 to 106 CFU per 25 g (i.e., 103 to 104 CFU per g) in produce, except for strains harboring the stx2c, eae-β, and eae-θ subtypes. After 6 to 8 h of enrichment, the LAMP suite achieved accurate detection of low levels of STEC strains of various stx2 and eae subtypes in lettuce and spinach varieties but not in sprouts. A similar trend of detection was observed for qPCR. The PrepMan Ultra sample preparation reagent yielded the best results among the six DNA extraction methods. This research provided a rapid, reliable, and robust method for detecting STEC in produce during routine sampling and testing. The challenge with sprouts detection by both LAMP and qPCR calls for special attention to further analysis. PMID:24509927

  5. Immunoproteomic Analysis To Identify Shiga Toxin-Producing Escherichia coli Outer Membrane Proteins Expressed during Human Infection

    PubMed Central

    Montero, David; Orellana, Paz; Gutiérrez, Daniela; Araya, Daniela; Salazar, Juan Carlos; Prado, Valeria; Oñate, Ángel; del Canto, Felipe

    2014-01-01

    Shiga-toxin producing Escherichia coli (STEC) is the etiologic agent of acute diarrhea, dysentery, and hemolytic-uremic syndrome (HUS). There is no approved vaccine for STEC infection in humans, and antibiotic use is contraindicated, as it promotes Shiga toxin production. In order to identify STEC-associated antigens and immunogenic proteins, outer membrane proteins (OMPs) were extracted from STEC O26:H11, O103, O113:H21, and O157:H7 strains, and commensal E. coli strain HS was used as a control. SDS-PAGE, two-dimensional-PAGE analysis, Western blot assays using sera from pediatric HUS patients and controls, and matrix-assisted laser desorption ionization–tandem time of flight analyses were used to identify 12 immunogenic OMPs, some of which were not reactive with control sera. Importantly, seven of these proteins have not been previously reported to be immunogenic in STEC strains. Among these seven proteins, OmpT and Cah displayed IgG and IgA reactivity with sera from HUS patients. Genes encoding these two proteins were present in a majority of STEC strains. Knowledge of the antigens produced during infection of the host and the immune response to those antigens will be important for future vaccine development. PMID:25156722

  6. Combined Effect of High-Pressure Treatments and Bacteriocin-Producing Lactic Acid Bacteria on Inactivation of Escherichia coli O157:H7 in Raw-Milk Cheese

    PubMed Central

    Rodriguez, Eva; Arques, Juan L.; Nuñez, Manuel; Gaya, Pilar; Medina, Margarita

    2005-01-01

    The effect of high-pressure (HP) treatments combined with bacteriocins of lactic acid bacteria (LAB) produced in situ on the survival of Escherichia coli O157:H7 in cheese was investigated. Cheeses were manufactured from raw milk inoculated with E. coli O157:H7 at approximately 105 CFU/ml. Seven different bacteriocin-producing LAB were added at approximately 106 CFU/ml as adjuncts to the starter. Cheeses were pressurized on day 2 or 50 at 300 MPa for 10 min or 500 MPa for 5 min, at 10°C in both cases. After 60 days, E. coli O157:H7 counts in cheeses manufactured without bacteriocin-producing LAB and not pressurized were 5.1 log CFU/g. A higher inactivation of E. coli O157:H7 was achieved in cheeses without bacteriocin-producing LAB when 300 MPa was applied on day 50 (3.8-log-unit reduction) than if applied on day 2 (1.3-log-unit reduction). Application of 500 MPa eliminated E. coli O157:H7 in 60-day-old cheeses. Cheeses made with bacteriocin-producing LAB and not pressurized showed a slight reduction of the pathogen. Pressurization at 300 MPa on day 2 and addition of lacticin 481-, nisin A-, bacteriocin TAB 57-, or enterocin AS-48-producing LAB were synergistic and reduced E. coli O157:H7 counts to levels below 2 log units in 60-day-old cheeses. Pressurization at 300 MPa on day 50 and addition of nisin A-, bacteriocin TAB 57-, enterocin I-, or enterocin AS-48-producing LAB completely inactivated E. coli O157:H7 in 60-day-old cheeses. The application of reduced pressures combined with bacteriocin-producing LAB is a feasible procedure to improve cheese safety. PMID:16000741

  7. Purification and characterization of the Bacillus subtilis levanase produced in Escherichia coli.

    PubMed Central

    Wanker, E; Huber, A; Schwab, H

    1995-01-01

    The enzyme levanase encoded by the sacC gene from Bacillus subtilis was overexpressed in Escherichia coli with the strong, inducible tac promoter. The enzyme was purified from crude E. coli cell lysates by salting out with ammonium sulfate and chromatography on DEAE-Sepharose CL-6B, S-Sepharose, and MonoQ-Sepharose. The purified protein had an apparent molecular mass of 75,000 Da in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, which is in agreement with that expected from the nucleotide sequence. Levanase was active on levan, inulin, and sucrose with Km values of 1.2 microM, 6.8 mM, and 65 mM, respectively. The pH optimum of the enzyme acting on inulin was 5.5, and the temperature optimum was 55 degrees C. Levanase was rapidly inactivated at 60 degrees C, but activity could be retained for longer times by adding fructose or glycerol. The enzyme activity was completely inactivated by Ag+ and Hg2+ ions, indicating that a sulfhydryl group is involved. A ratio of sucrase to inulinase activity of 1.2 was found for the purified enzyme with substrate concentrations of 50 mg/ml. The mechanism of enzyme action was investigated. No liberation of fructo-oligomers from inulin and levan could be observed by thin-layer chromatography and size exclusion chromatography-low-angle laser light scattering-interferometric differential refractive index techniques. This indicates that levanase is an exoenzyme acting by the single-chain mode. PMID:7646030

  8. Reduction of extended-spectrum-β-lactamase- and AmpC-β-lactamase-producing Escherichia coli through processing in two broiler chicken slaughterhouses.

    PubMed

    Pacholewicz, Ewa; Liakopoulos, Apostolos; Swart, Arno; Gortemaker, Betty; Dierikx, Cindy; Havelaar, Arie; Schmitt, Heike

    2015-12-23

    Whilst broilers are recognised as a reservoir of extended-spectrum-β-lactamase (ESBL)- and AmpC-β-lactamase (AmpC)-producing Escherichia coli, there is currently limited knowledge on the effect of slaughtering on its concentrations on poultry meat. The aim of this study was to establish the concentration of ESBL/AmpC producing E. coli on broiler chicken carcasses through processing. In addition the changes in ESBL/AmpC producing E. coli concentrations were compared with generic E. coli and Campylobacter. In two slaughterhouses, the surface of the whole carcasses was sampled after 5 processing steps: bleeding, scalding, defeathering, evisceration and chilling. In total, 17 batches were sampled in two different slaughterhouses during the summers of 2012 and 2013. ESBL/AmpC producing E. coli was enumerated on MacConkey agar with 1mg/l cefotaxime, and the ESBL/AmpC phenotypes and genotypes were characterised. The ESBL/AmpC producing E. coli concentrations varied significantly between the incoming batches in both slaughterhouses. The concentrations on broiler chicken carcasses were significantly reduced during processing. In Slaughterhouse 1, all subsequent processing steps reduced the concentrations except evisceration which led to a slight increase that was statistically not significant. The changes in concentration between processing steps were relatively similar for all sampled batches in this slaughterhouse. In contrast, changes varied between batches in Slaughterhouse 2, and the overall reduction through processing was higher in Slaughterhouse 2. Changes in ESBL/AmpC producing E. coli along the processing line were similar to changes in generic E. coli in both slaughterhouses. The effect of defeathering differed between ESBL/AmpC producing E. coli and Campylobacter. ESBL/AmpC producing E. coli decreased after defeathering, whereas Campylobacter concentrations increased. The genotypes of ESBL/AmpC producing E. coli (blaCTX-M-1, blaSHV-12, blaCMY-2, blaTEM-52c

  9. Molecular Characterization of Shiga Toxin-Producing Escherichia coli Isolated from Ruminant and Donkey Raw Milk Samples and Traditional Dairy Products in Iran

    PubMed Central

    Momtaz, Hassan; Farzan, Rahil; Rahimi, Ebrahim; Safarpoor Dehkordi, Farhad; Souod, Negar

    2012-01-01

    The aims of the current study were to detect the virulence factors and antibiotic resistance of Shiga toxin-producing E. coli, in animal milk and dairy products in Iran. After E. coli dentification with culture method, PCR assay were developed for detection of pathogenic genes, serotypes and antibiotic resistance genes of E. coli. Results showed that out of 719 samples, 102 (14.18%) were confirmed to be positive for E. coli and out of 102 positive samples, 17.64% were O26 and 13.72% were O157 and 1.96% were O91 and 1.96% were O145 serotypes. Totally, the prevalence of stx1 and papA genes were the highest while the prevalence of sfaS and fyuA were the lowest in the positive samples. PCR results showed that tetA, tetB were the highest (64.70%) and aac(3)-IV were the lowest (27.45%) antibiotic resistant genes in E. coli positive samples. Our study indicated that the isolated E. coli trains in these regions had a highest antibiotic resistance to tetracycline (58.82%) and the lowest to nitrofurantoin (3.92%). tetA gene and E. coli O157 serotype had highest and aac(3)-IV gene, and E. coli O145 serotype had a lowest frequency rates of antibiotics resistance genes, in the region. PMID:22919299

  10. Diversity of Escherichia coli strains producing extended-spectrum beta-lactamases in Spain: second nationwide study.

    PubMed

    Díaz, Miguel A; Hernández-Bello, José R; Rodríguez-Baño, Jesús; Martínez-Martínez, Luis; Calvo, Jorge; Blanco, Jorge; Pascual, Alvaro

    2010-08-01

    The prevalence of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli (ESBLEC) in Spain increased 8-fold from 2000 to 2006. ESBL type, clonal relationship, antimicrobial susceptibility, and clinical data about infections caused by ESBLEC are evaluated in a second nationwide study developed in 2006. From 1008 clinical isolates obtained over 2 months from 44 hospitals, 254 were used for further analysis. ESBL production was evaluated by synergy testing, PCR, and sequencing. Antimicrobial activity was evaluated by microdilution. The clonal relationship was evaluated by repetitive extragenic palindromic-PCR (REP-PCR). The O25b subtype and the new afa operon FM955459 were determined by triplex PCR in isolates producing CTX-M-15. Multilocus sequence typing was performed on these isolates. A total of 72% of all ESBLs were of the CTX-M type, 26.8% were of the SHV type, and 1.2% were of the TEM type. The most prevalent ESBLs were CTX-M-14 (119 isolates), SHV-12 (68 isolates), CTX-M-15 (37 isolates), and CTX-M-9 (21 isolates). By REP-PCR, 214 clones were detected. All but five CTX-M-15 ESBLEC isolates corresponded to the international O25b/ST131 clone. This clone had not been detected in the first study (published in 2000). Epidemiological and clinical features were studied in 304 representative patients. A total of 60% of the patients were older than 60 and had nonfatal underlying diseases, and 55% had recently received antibiotics. Urinary tract infections accounted for 71% of cases, and 9% were bacteremic. There has been a significant increase in the prevalence of ESBLEC in Spain, with most of these strains being CTX-M-producing isolates, including the pandemic O25b-ST131. SHV-12-producing E. coli remains an important cause of community-acquired infection. PMID:20519460

  11. Diversity of Escherichia coli Strains Producing Extended-Spectrum β-Lactamases in Spain: Second Nationwide Study ▿

    PubMed Central

    Díaz, Miguel A.; Hernández-Bello, José R.; Rodríguez-Baño, Jesús; Martínez-Martínez, Luis; Calvo, Jorge; Blanco, Jorge; Pascual, Alvaro

    2010-01-01

    The prevalence of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli (ESBLEC) in Spain increased 8-fold from 2000 to 2006. ESBL type, clonal relationship, antimicrobial susceptibility, and clinical data about infections caused by ESBLEC are evaluated in a second nationwide study developed in 2006. From 1008 clinical isolates obtained over 2 months from 44 hospitals, 254 were used for further analysis. ESBL production was evaluated by synergy testing, PCR, and sequencing. Antimicrobial activity was evaluated by microdilution. The clonal relationship was evaluated by repetitive extragenic palindromic-PCR (REP-PCR). The O25b subtype and the new afa operon FM955459 were determined by triplex PCR in isolates producing CTX-M-15. Multilocus sequence typing was performed on these isolates. A total of 72% of all ESBLs were of the CTX-M type, 26.8% were of the SHV type, and 1.2% were of the TEM type. The most prevalent ESBLs were CTX-M-14 (119 isolates), SHV-12 (68 isolates), CTX-M-15 (37 isolates), and CTX-M-9 (21 isolates). By REP-PCR, 214 clones were detected. All but five CTX-M-15 ESBLEC isolates corresponded to the international O25b/ST131 clone. This clone had not been detected in the first study (published in 2000). Epidemiological and clinical features were studied in 304 representative patients. A total of 60% of the patients were older than 60 and had nonfatal underlying diseases, and 55% had recently received antibiotics. Urinary tract infections accounted for 71% of cases, and 9% were bacteremic. There has been a significant increase in the prevalence of ESBLEC in Spain, with most of these strains being CTX-M-producing isolates, including the pandemic O25b-ST131. SHV-12-producing E. coli remains an important cause of community-acquired infection. PMID:20519460

  12. Characterization of Fosfomycin Resistant Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolates from Human and Pig in Taiwan

    PubMed Central

    Tseng, Sung-Pin; Wang, Sheng-Fan; Kuo, Cheng-Yu; Huang, Jun-Wei; Hung, Wei-Chun; Ke, Guan-Ming; Lu, Po-Liang

    2015-01-01

    To investigate the efficacy of fosfomycin against extended-spectrum β-lactamases (ESBL) producing Escherichia coli in Taiwan and the resistance mechanisms and characterization of human and pig isolates, we analyzed 145 ESBL-producing isolates collected from two hospitals (n = 123) and five farms (n = 22) in Taiwan from February to May, 2013. Antimicrobial susceptibilities were determined. Clonal relatedness was determined by PFGE and multi-locus sequence typing. ESBLs, ampC, and fosfomycin resistant genes were detected by PCR, and their flanking regions were determined by PCR mapping and sequencing. The fosfomycin resistant mechanisms, including modification of the antibiotic target (MurA), functionless transporters (GlpT and UhpT) and their regulating genes such as uhpA, cyaA, and ptsI, and antibiotic inactivation by enzymes (FosA and FosC), were examined. The size and replicon type of plasmids carrying fosfomycin resistant genes were analyzed. Our results revealed the susceptibility rates of fosfomycin were 94% for human ESBL-producing E. coli isolates and 77% for pig isolates. The PFGE analysis revealed 79 pulsotypes. No pulsotype was found existing in both human and pig isolates. Three pulsotypes were distributed among isolates from two hospitals. ISEcp1 carrying blaCTX-M-group 9 was the predominant transposable elements of the ESBL genes. Among the thirteen fosfomycin resistant isolates, functionless transporters were identified in 9 isolates. Three isolates contained novel amino acid substitutions (Asn67Ile, Phe151Ser and Trp164Ser, Val146Ala and His159Tyr, respectively) in MurA (the target of fosfomycin). Four isolates had fosfomycin modified enzyme (fosA3) in their plasmids. The fosA3 gene was harboured in an IncN-type plasmid (101 kbp) in the three pig isolates and an IncB/O-type plasmid (113 kbp) in the human isolate. In conclusion, we identified that 6% and 23% of the ESBL-producing E. coli from human and pigs were resistant to fosfomycin, respectively

  13. Characterization of enteropathogenic and Shiga toxin-producing Escherichia coli in cattle and deer in a shared agroecosystem

    PubMed Central

    Singh, Pallavi; Sha, Qiong; Lacher, David W.; Del Valle, Jacquelyn; Mosci, Rebekah E.; Moore, Jennifer A.; Scribner, Kim T.; Manning, Shannon D.

    2015-01-01

    Shiga toxin-producing Escherichia coli (STEC) is an important foodborne pathogen. Cattle are suggested to be an important reservoir for STEC; however, these pathogens have also been isolated from other livestock and wildlife. In this study we sought to investigate transmission of STEC, enterohemorrhagic E. coli (EHEC) and enteropathogenic E. coli (EPEC) between cattle and white-tailed deer in a shared agroecosystem. Cattle feces were collected from 100 animals in a Michigan dairy farm in July 2012, while 163 deer fecal samples were collected during two sampling periods (March and June). The locations of deer fecal pellets were recorded via geographic information system mapping and microsatellite multi-locus genotyping was used to link the fecal samples to individual deer at both time points. Following subculture to sorbitol MacConkey agar and STEC CHROMagar, the pathogens were characterized by serotyping, stx profiling, and PCR-based fingerprinting; multilocus sequence typing (MLST) was performed on a subset. STEC and EHEC were cultured from 12 to 16% of cattle, respectively, and EPEC was found in 36%. Deer were significantly less likely to have a pathogen in March vs. June where the frequency of STEC, EHEC, and EPEC was 1, 6, and 22%, respectively. PCR fingerprinting and MLST clustered the cattle- and deer-derived strains together in a phylogenetic tree. Two STEC strains recovered from both animal species shared MLST and fingerprinting profiles, thereby providing evidence of interspecies transmission and highlighting the importance of wildlife species in pathogen shedding dynamics and persistence in the environment and cattle herds. PMID:25883908

  14. Usability and Performance of CHROMagar STEC Medium in Detection of Shiga Toxin-Producing Escherichia coli Strains

    PubMed Central

    Siitonen, Anja; Kaukoranta, Suvi-Sirkku

    2012-01-01

    The performance and usability of CHROMagar STEC medium (CHROMagar Microbiology, Paris, France) for routine detection of Shiga toxin-producing Escherichia coli (STEC) strains were examined. The ability of the medium to selectively propagate STEC strains differing by their serotypes and virulence genes was studied with a collection of diarrheagenic E. coli isolates (n = 365) consisting of 49 different serotypes and with non-STEC and other bacterial isolates (n = 264). A total of 272 diarrheagenic E. coli (75.0%) isolates covering 24 different serotypes grew on CHROMagar STEC. The highest detection sensitivities were observed within the STEC serogroups O26 (90.0%), O111 (100.0%), O121 (100.0%), O145 (100.0%), and O157 (84.9%), and growth on CHROMagar STEC was highly associated with the presence of the tellurite resistance gene (terD). The specificity of the medium was 98.9%. In addition, CHROMagar STEC was used in parallel with a Shiga toxin-detecting immunoassay (Ridaquick Verotoxin/O157 Combi; R-biopharm, Darmstadt, Germany) to screen fecal specimens (n = 47) collected from patients suffering from hemorrhagic diarrhea. Positive growth on CHROMagar STEC was confirmed by the Premier EHEC enzyme immunoassay (Meridian Bioscience, Inc., Cincinnati, OH), and discrepant results between the two screening methods were confirmed by stx gene-detecting PCR. All 16 of the 47 stool samples that showed positive growth on CHROMagar STEC were also positive in the confirmatory tests. CHROMagar STEC proved to be an interesting option for STEC screening, allowing good detection sensitivity and specificity and permitting strain isolation for further outbreak investigations when required. PMID:22933601

  15. Psychiatric Symptoms in Patients with Shiga Toxin-Producing E. coli O104:H4 Induced Haemolytic-Uraemic Syndrome

    PubMed Central

    Eberlein, Christian K.; Kielstein, Jan T.; Bleich, Stefan

    2014-01-01

    Background In May 2011 an outbreak of Shiga toxin-producing enterohaemorrhagic E. coli (STEC) O104:H4 in Northern Germany led to a high number of in-patients, suffering from post-enteritis haemolytic-uraemic syndrome (HUS) and often severe affection of the central nervous system. To our knowledge so far only neurological manifestations have been described systematically in literature. Aim To examine psychiatric symptoms over time and search for specific symptom clusters in affected patients. Methods 31 in-patients suffering from E. coli O104:H4 associated HUS, were examined and followed up a week during the acute hospital stay. Psychopathology was assessed by clinical interview based on the AMDP Scale, the Brief Symptom Inventory and the Clinical Global Impressions Scale. Results At baseline mental disorder due to known physiological condition (ICD-10 F06.8) was present in 58% of the examined patients. Patients suffered from various manifestations of cognitive impairment (n = 27) and hallucinations (n = 4). Disturbances of affect (n = 28) included severe panic attacks (n = 9). Psychiatric disorder was significantly associated with higher age (p<0.0001), higher levels of C-reactive protein (p<0.05), and positive family history of heart disease (p<0.05). Even within the acute hospital stay with a median follow up of 7 days, symptoms improved markedly over time (p <0.0001). Conclusions Aside from severe neurological symptoms the pathology in E.coli O104:H4 associated HUS frequently includes particular psychiatric disturbances. Long term follow up has to clarify whether or not these symptoms subside. PMID:25007072

  16. Emergence of a Multidrug-Resistant Shiga Toxin-Producing Enterotoxigenic Escherichia coli Lineage in Diseased Swine in Japan.

    PubMed

    Kusumoto, Masahiro; Hikoda, Yuna; Fujii, Yuki; Murata, Misato; Miyoshi, Hirotsugu; Ogura, Yoshitoshi; Gotoh, Yasuhiro; Iwata, Taketoshi; Hayashi, Tetsuya; Akiba, Masato

    2016-04-01

    EnterotoxigenicEscherichia coli(ETEC) and Shiga toxin-producingE. coli(STEC) are important causes of diarrhea and edema disease in swine. The majority of swine-pathogenicE. colistrains belong to a limited range of O serogroups, including O8, O138, O139, O141, O147, O149, and O157, which are the most frequently reported strains worldwide. However, the circumstances of ETEC and STEC infections in Japan remain unknown; there have been few reports on the prevalence or characterization of swine-pathogenicE. coli In the present study, we determined the O serogroups of 967E. coliisolates collected between 1991 and 2014 from diseased swine in Japan, and we found that O139, O149, O116, and OSB9 (O serogroup ofShigella boydiitype 9) were the predominant serogroups. We further analyzed these four O serogroups using pulsed-field gel electrophoresis (PFGE), multilocus sequence typing, and virulence factor profiling. Most of the O139 and O149 strains formed serogroup-specific PFGE clusters (clusters I and II, respectively), whereas the O116 and OSB9 strains were grouped together in the same cluster (cluster III). All of the cluster III strains belonged to a single sequence type (ST88) and carried genes encoding both enterotoxin and Shiga toxin. This PFGE cluster III/ST88 lineage exhibited a high level of multidrug resistance (to a median of 10 antimicrobials). Notably, these bacteria were resistant to fluoroquinolones. Thus, this lineage should be considered a significant risk to animal production due to the toxigenicity and antimicrobial resistance of these bacteria. PMID:26865687

  17. Shiga toxin-producing Escherichia coli (STEC): Zoonotic risks associated with psittacine pet birds in home environments.

    PubMed

    Chiacchio, R M Gioia-Di; Cunha, M P V; Sturn, R M; Moreno, L Z; Moreno, A M; Pereira, C B P; Martins, F H; Franzolin, M R; Piazza, R M F; Knöbl, T

    2016-02-29

    Psittacidae are frequentely bred as pets worldwide, but little is known about the zoonotic risks of these animals. The objective of this study was to investigate the presence of Shiga toxin-producing Escherichia coli (STEC) in the feces of psittacine birds housed as pets. A total of 171 fecal samples (67 cockatiels, 59 budgerigars, and 45 agapornis) were cultured. Forty-two (E. coli) strains were identified, and the presence of the eae, stx1, and stx2 genes was determined using PCR. The antimicrobial resistance profiles of the STEC strains were determined using the disk diffusion method and phylogenetic analysis according to the new Clermont phylotyping method. Using these methods, 19.4% (8/42) of the STEC strains were determined to be positive for the eae and stx2 genes. The results revealed a STEC frequency of 4.6% in the birds (8/171), with a percentage of 8.47% in budgerigars (5/59), 4.47% in cockatiels (3/67), and 0% in agapornis (0/45). None of the STEC isolates belonged to the O157 serogroup. Most of the strains were classified as sensitive to the 18 antibiotics tested. None of the strains exhibited a multiresistance profile. In the phylogenetic analysis, two strains were classified as non-typeable, three were classified as B2, two were classified as F, and one was classified as Clade I. Seven of the eight STEC strains showed a clonal profile using AFLP. E. coli strains that are stx2(+) plus eae(+) are usually associated with severe human diseases such as hemorrhagic colitis and hemolytic-uremic syndrome. The STEC-positive results indicate the zoonotic risk of breeding psittacidae in home environments. PMID:26854341

  18. Risk of Escherichia coli O157:H7, Non-O157 Shiga Toxin-Producing Escherichia coli, and Campylobacter spp. in Food Animals and Their Products in Qatar.

    PubMed

    Mohammed, Hussni O; Stipetic, Korana; Salem, Ahmed; McDonough, Patrick; Chang, Yung Fu; Sultan, Ali

    2015-10-01

    Escherichia coli O157:H7, non-O157 E. coli, and Campylobacter spp. are among the top-ranked pathogens that threaten the safety of food supply systems around the world. The associated risks and predisposing factors were investigated in a dynamic animal population using a repeat-cross-sectional study design. Animal and environmental samples were collected from dairy and camel farms, chicken processing plants, and abattoirs and analyzed for the presence of these pathogens using a combination of bacterial enrichment and real-time PCR tests without culture confirmation. Data on putative risk factors were also collected and analyzed. E. coli O157:H7 was detected by PCR at higher levels in sheep and camel feces than in cattle feces (odds ratios [OR], 6.8 and 21.1, respectively). Although the genes indicating E. coli O157:H7 were detected at a relatively higher rate (4.3%) in fecal samples from dairy cattle, they were less common in milk and udder swabs from the same animals (1 and 2%, respectively). Among the food adulterants, E. coli O103 was more common in cattle fecal samples, whereas O26 was more common in sheep feces and O45 in camel feces compared with cattle (OR, 2.6 and 3.1, respectively). The occurrence of E. coli in the targeted populations differed by the type of sample and season of the year. Campylobacter jejuni and Campylobacter coli were more common in sheep and camel feces than in cattle feces. Most of the survey and surveillance of E. coli focused on serogroup O157 as a potential foodborne hazard; however, based on the PCR results, non-O157 Shiga toxin-producing E. coli serotypes appeared to be more common, and efforts should be made to include them in food safety programs. PMID:26408129

  19. High Prevalence of Escherichia coli-Producing CTX-M-15 Extended-Spectrum Beta-Lactamases in Poultry and Human Clinical Isolates in Romania.

    PubMed

    Maciuca, Iuliana E; Williams, Nicola J; Tuchilus, Cristina; Dorneanu, Olivia; Guguianu, Eleonora; Carp-Carare, Catalin; Rimbu, Cristina; Timofte, Dorina

    2015-12-01

    Use of antibiotics in food animals may contribute to development and spread of resistant organisms, particularly so in some countries. The aim of this study was two-fold; first, to establish the prevalence of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli in chicken production in a region within Romania. Second, to study the relatedness of ESBL-producing E. coli isolates recovered from broilers, abattoir workers where the chickens were slaughtered and from the human clinical specimens from two regional hospitals. The results indicated a very high (69%) rate of carriage of ESBL and AmpC-producing E. coli in chickens with 36% CTX-M producers. Sequencing showed that chickens in Romania have the highest worldwide prevalence (53%) of blaCTX-M-15 reported in poultry E. coli isolates. The majority (53%) of the extended-spectrum cephalosporin-resistant E. coli carried plasmid-mediated blaampC genes, mostly blaCMY-2 type, one of the highest prevalences reported in Europe. The predominant CTX-M type found in the human clinical E. coli isolates was blaCTX-M-15 and most isolates coharbored blaOXA-1, blaTEM, and aac(6')-ib-cr. The majority (60%) of the human clinical isolates belonged to the pandemic virulent clone B2-ST131. The clonal relationship between broiler and the human CTX-M-producing E. coli isolates was assessed by macrorestriction pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST), which indicated strain diversity with no common STs found between human and poultry isolates. Moreover, IncI1 was the most prevalent replicon found in broiler ESBL-producing E. coli isolates and also in transconjugants, indicating that plasmids and not clonal spread may play a role in the transfer of blaCTX-M genes. This study identifies a high prevalence of ESBL-producing E. coli from broiler chickens in Romania with a high occurrence incidence of blaCTX-M-15, which reflects the main ESBL type found in human E. coli infections in this

  20. Internalization and thermal susceptibility of Shiga toxin-producing Escherichia coli (STEC) in marinated beef products.

    PubMed

    Pokharel, S; Brooks, J C; Martin, J N; Echeverry, A; Parks, A R; Corliss, B; Brashears, M M

    2016-06-01

    This study evaluated the internalization and cooking susceptibility of seven individual Escherichia coli (STEC) serogroups in surface-inoculated (10(5)log CFU/cm(2)) and vacuum tumbled marinated (30 or 60 min) bottom sirloin steaks. After storage for 14 days (0 to 2°C), flaps were cooked to various endpoint temperatures (55, 60, 65, and 71°C) for evaluation of pathogen survival by direct plating or rapid PCR based detection (BAX®). Direct plating of cooked samples yielded no enumerable plates. The data indicate varied internalization, translocation, and heat susceptibility patterns among serogroups. Using the rapid PCR based detection method O26, O103, and O111 were detected in flaps after cooking to 55 and 60°C, while O157:H7 survived in flaps cooked to 60 and 65°C. However, STEC O145 was the only serogroup that survived in all cooking temperatures. Serogroup O121 was not detected by plating or PCR in any cooked products. Intriguingly, STEC serogroups can be internalized during marination and the internalized pathogens vary in thermal susceptibility. PMID:26900979

  1. [Four infants with upper urinary tract infection due to extended-spectrum bata lactamase (ESBL)-producing Escherichia coli].

    PubMed

    Hibino, Satoshi; Fukuchi, Kunihiko; Abe, Yoshifusa; Hoshino, Akihiro; Sakurai, Shunsuke; Mikawa, Takeshi; Fuke, Toshiya; Yoshida, Koichiro; Itabashi, Kazuo

    2011-09-01

    Bacteria producing extended-spectrum beta lactamase (ESBL) are detected mainly in adult urinary specimens, and are believed to cause hospital-acquired infection due to their resistance to many drugs. The incidence of community-acquired infection due to such bacteria is increasing, but few cases of infant upper urinary tract infection (UUTI) have been reported in Japan. We treated four infants with UUTI caused by ESBL-producing Escherichia coli, as determined by genotyping. Using medical records, we retrospectively evaluated the clinical course, antibiotic use and efficacy, antimicrobial susceptibility results, and the presence of underlying disease. One of the four had been previously hospitalized for occult bacteremia. Two developed UUTI after antibiotic treatment, indicating that previous antibiotic use may have been a risk factor in these cases. We could not identify the infection route in all cases. Two of the four had bilateral vesicoureteral reflux (VUR). Renal scintigraphy was done in three. Although an initial dimercaptosuccinic acid (DMSA) defect was detected in all four, only one had renal scarring. E. coli isolates from all four showed PCR signals for blaCTX-M-; one isolate positive for the blaCTX-M3 group and three positive for blaCTX-M14. Antimicrobial susceptibility test results showed all isolates to be resistant to cephalosporins, but discrepancies existed between antimicrobial susceptibility results and actual clinical efficacy. Clinically, cefazolin (CEZ) was effective in two subjects and ceftazidime (CAZ) effective in one. Panipenem/betamipron (PAPM/BP) was effective in one. None of the four developed sepsis or meningitis. Post hospitalization antibiotic prophylaxis showed that none of the four has had UUTI recur. Japan's ESBL-producing bacterial infection incidence is increasing, so medical professionals should watch for such UUTI even in first-case occurrence in infants. PMID:22117375

  2. Monte Carlo simulation for evaluation of the efficacy of carbapenems and new quinolones against ESBL-producing Escherichia coli.

    PubMed

    Nakamura, Tatsuya; Shimizu, Chihiro; Kasahara, Mayumi; Okuda, Kazuyuki; Nakata, Chiyo; Fujimoto, Hiroko; Okura, Hiroe; Komatsu, Masaru; Shimakawa, Kouichi; Sueyoshi, Noriyuki; Ura, Toshiro; Satoh, Kaori; Toyokawa, Masahiro; Wada, Yasunao; Orita, Tamaki; Kofuku, Tomomi; Yamasaki, Katsutoshi; Sakamoto, Masako; Nishio, Hisaaki; Kinoshita, Shohiro; Takahashi, Hakuo

    2009-02-01

    Extended-spectrum beta-lactamase (ESBL)-producing bacteria are known to be resistant to penicillins, cephalosporins, and monobactams because of their substrate specificity, and these bacteria are sensitive only to a narrow range of antimicrobial agents. The present study was undertaken to evaluate the efficacy of carbapenems and the new quinolones against ESBL-producing Escherichia coli, using a Monte Carlo simulation based on the pharmacokinetic/pharmacodynamic (PK/PD) theory. The time above MIC (TAM, %) served as the PK/PD parameter for carbapenems, with the target level set at 40%. The AUC/MIC served as the PK/PD parameter for the new quinolones, with the target level set at more than 125. In the analysis of drug sensitivity, the MIC50 of all carbapenems other than imipenem was low (0.03 microg/ml), while the MIC50 of the new quinolones was higher (1-2 microg/ml). The probability of achieving the PK/PD target with carba penems after two doses at the usual dose level, as determined by the Monte Carlo simulation, was high for each of the carbapenems tested (99.0% for biapenem, 99.60% for meropenem, and 95.03% for doripenem), except for imipenem. Among the new quinolones, the highest probability of achieving the PK/PD target was obtained with pazufloxacin (42.90%). Thus, the results of the present study have revealed that carbapenems are effective at the regular dose and can be used as the first-choice antibiotics for ESBL-producing E. coli because the resistance ratios for carbapenems are low compared to those of the new quinolones. PMID:19280294

  3. Aggregative adherence fimbriae I (AAF/I) mediate colonization of fresh produce and abiotic surface by Shiga toxigenic enteroaggregative Escherichia coli O104:H4.

    PubMed

    Nagy, Attila; Xu, Yunfeng; Bauchan, Gary R; Shelton, Daniel R; Nou, Xiangwu

    2016-07-16

    The Shiga toxigenic Escherichia coli O104:H4 isolated during the 2011 European outbreak expresses Shiga toxin 2a and possess virulence genes associated with the enteroaggregative E. coli (EAEC) pathotype. It produces plasmid encoded aggregative adherence fimbriae I (AAF/I) which mediate cell aggregation and biofilm formation in human intestine and promote Shiga-toxin adsorption, but it is not clear whether the AAF/I fimbriae are involved in the colonization and biofilm formation on food and environmental matrices such as the surface of fresh produce. We deleted the gene encoding for the AAF/I fimbriae main subunit (AggA) from an outbreak associated E. coli O104:H4 strain, and evaluated the role of AAF/I fimbriae in the adherence and colonization of E. coli O104:H4 to spinach and abiotic surfaces. The deletion of aggA did not affect the adherence of E. coli O104:H4 to these surfaces. However, it severely diminished the colonization and biofilm formation of E. coli O104:H4 on these surfaces. Strong aggregation and biofilm formation on spinach and abiotic surfaces were observed with the wild type strain but not the isogenic aggA deletion mutant, suggesting that AAF/I fimbriae play a crucial role in persistence of O104:H4 cells outside of the intestines of host species, such as on the surface of fresh produce. PMID:27099984

  4. Shiga toxin-producing Escherichia coli O157:H7 in milk and milk products in Ogun State, Nigeria.

    PubMed

    Ivbade, Akhigbe; Ojo, Olufemi Ernest; Dipeolu, Morenike Atinuke

    2014-01-01

    Shiga toxin producing Escherichia coli (STEC) O157 is a major cause of food-borne illnesses in humans. This study investigated the presence of STEC O157 in milk and milk products in Ogun State, Nigeria. Of a total of 202 samples 10 (5%) were positive for STEC O157 including 1 (2%) of 50 raw milk samples, 3 (6%) of 50 samples of fresh local cheese, 1 (2%) of 50 samples of fried local cheese and 5 (9.6%) of 52 fermented milk samples. There was no significant difference (p>0.05) in the prevalence of STEC O157 among the sample types. Of 10 isolates, shiga toxin 1 gene (stx1) was detected only in 2 samples (20%), shiga toxin 2 (stx2) was extracted only in 6 samples (60%), stx1 /stx2 in 2 samples (20.0%), intimin gene (eaeA) in 5 samples (50%), and enterohaemolysin (E-hlyA) gene was isolated in 7 (70%) samples. Rates of resistance of the STEC O157 isolates were: amoxicillin/clavulanic acid 100%, ampicillin 100%, chloramphenicol 60%, nalidixic acid 20%, norfloxacin 10%, streptomycin 30%, sulphamethoxazole/trimethprim 20%, and tetracycline 90%. The isolates were all susceptible to ciprofloxacin and neomycin. The presence of virulent multidrug resistant E. coli O157 strains in milk and milk products as revealed by this study unveils a risk of human exposure to these potentially fatal pathogens following consumption of contaminated products. PMID:25273960

  5. Identification of an NDM-5-producing Escherichia coli Sequence Type 167 in a Neonatal Patient in China.

    PubMed

    Zhu, Yuan-Qi; Zhao, Jing-Yi; Xu, Cha; Zhao, Hui; Jia, Nan; Li, Yan-Nian

    2016-01-01

    Emergence of New Delhi metallo-β-lactamase-producing Enterobacteriaceae has become a challenging threat to public health. Two carbapenem-resistant Escherichia coli, strain QD28 and QD29, were recovered from the aspirating sputum of a neonate and the urine of an adult in a Chinese hospital in 2013. Molecular typing revealed that both isolates belonged to the sequence type 167, but they were clonally diverse. Both isolates exhibited resistance to carbapenems, cephalosporins, ciprofloxacin, gentamicin, piperacillin-tazobactam and trimethoprim-sulfamethoxazole. In addition, strain QD28 was also resistant to aztreonam, and strain QD29 was resistant to amikacin, fosfomycin and minocycline. Antimicrobial resistance gene screening revealed that strain QD28 harbored aac(6')-Ib, blaCTX-M-14, blaNDM-5, blaTEM-1 and sul1 genes, and strain QD29 harbored aac(6')-Ib, blaCTX-M-3, blaNDM-5, blaTEM-1, rmtB, sul1 and sul2 genes. The blaNDM-5 gene was found to be located on a 46-kb plasmid in two isolates, and further sequence analysis showed that this plasmid was highly similar to the previously reported IncX3 plasmid pNDM-MGR194 in India. This is the first identification of blaNDM-5-carrying E. coli in the neonatal infection. PMID:27406405

  6. Approaches to treatment of emerging Shiga toxin-producing Escherichia coli infections highlighting the O104:H4 serotype.

    PubMed

    Rahal, Elias A; Fadlallah, Sukayna M; Nassar, Farah J; Kazzi, Natalie; Matar, Ghassan M

    2015-01-01

    Shiga toxin-producing Escherichia coli (STEC) are a group of diarrheagenic bacteria associated with foodborne outbreaks. Infection with these agents may result in grave sequelae that include fatality. A large number of STEC serotypes has been identified to date. E. coli serotype O104:H4 is an emerging pathogen responsible for a 2011 outbreak in Europe that resulted in over 4000 infections and 50 deaths. STEC pathogenicity is highly reliant on the production of one or more Shiga toxins that can inhibit protein synthesis in host cells resulting in a cytotoxicity that may affect various organ systems. Antimicrobials are usually avoided in the treatment of STEC infections since they are believed to induce bacterial cell lysis and the release of stored toxins. Some antimicrobials have also been reported to enhance toxin synthesis and production from these organisms. Various groups have attempted alternative treatment approaches including the administration of toxin-directed antibodies, toxin-adsorbing polymers, probiotic agents and natural remedies. The utility of antibiotics in treating STEC infections has also been reconsidered in recent years with certain modalities showing promise. PMID:25853096

  7. Identification of an NDM-5-producing Escherichia coli Sequence Type 167 in a Neonatal Patient in China

    PubMed Central

    Zhu, Yuan-qi; Zhao, Jing-yi; Xu, Cha; Zhao, Hui; Jia, Nan; Li, Yan-nian

    2016-01-01

    Emergence of New Delhi metallo-β-lactamase-producing Enterobacteriaceae has become a challenging threat to public health. Two carbapenem-resistant Escherichia coli, strain QD28 and QD29, were recovered from the aspirating sputum of a neonate and the urine of an adult in a Chinese hospital in 2013. Molecular typing revealed that both isolates belonged to the sequence type 167, but they were clonally diverse. Both isolates exhibited resistance to carbapenems, cephalosporins, ciprofloxacin, gentamicin, piperacillin-tazobactam and trimethoprim-sulfamethoxazole. In addition, strain QD28 was also resistant to aztreonam, and strain QD29 was resistant to amikacin, fosfomycin and minocycline. Antimicrobial resistance gene screening revealed that strain QD28 harbored aac(6′)-Ib, blaCTX-M-14, blaNDM-5, blaTEM-1 and sul1 genes, and strain QD29 harbored aac(6′)-Ib, blaCTX-M-3, blaNDM-5, blaTEM-1, rmtB, sul1 and sul2 genes. The blaNDM-5 gene was found to be located on a 46-kb plasmid in two isolates, and further sequence analysis showed that this plasmid was highly similar to the previously reported IncX3 plasmid pNDM-MGR194 in India. This is the first identification of blaNDM-5-carrying E. coli in the neonatal infection. PMID:27406405

  8. Defining pathogenic verocytotoxin-producing Escherichia coli (VTEC) from cases of human infection in the European Union, 2007-2010.

    PubMed

    Messens, W; Bolton, D; Frankel, G; Liebana, E; McLAUCHLIN, J; Morabito, S; Oswald, E; Threlfall, E J

    2015-06-01

    During 2007-2010, 13 545 confirmed human verocytotoxin (VT)-producing Escherichia coli (VTEC) infections were reported in the European Union, including 777 haemolytic uraemic syndrome (HUS) cases. Clinical manifestations were reported for 53% of cases, 64% of which presented with diarrhoea alone and 10% with HUS. Isolates from 85% of cases were not fully serotyped and could not be classified on the basis of the Karmali seropathotype concept. There is no single or combination of phenotypic or genetic marker(s) that fully define 'pathogenic' VTEC. Isolates which contain the vtx2 (verocytotoxin 2) gene in combination with the eae (intimin-encoding) gene or aaiC (secreted protein of enteroaggregative E. coli) and aggR (plasmid-encoded regulator) genes have been associated with a higher risk of more severe illness. A molecular approach targeting genes encoding VT and other virulence determinants is thus proposed to allow an assessment of the potential severity of disease that may be associated with a given VTEC isolate. PMID:25921781

  9. Prevalence of enteropathogenic and shiga toxin-producing Escherichia coli among children with and without diarrhoea in Iran.

    PubMed

    Alikhani, M Yousef; Mirsalehian, Akbar; Fatollahzadeh, Bahram; Pourshafie, Mohammad R; Aslani, M Mehdi

    2007-03-01

    The aim of the study was to determine the rates of detection of enteropathogenic Escherichia coli (EPEC) and Shiga toxin-producing E. coli (STEC) strains among children in two randomly-selected populations in Iran. In total, 1,292 randomly-selected faecal samples from children aged less than 10 years were screened for EPEC and STEC. Of the 1,292 cases participated in the study, 184 had diarrhoea, and 1,108 were healthy/asymptomatic children. The conventional culture method and slide agglutination with 12 different commercial EPEC antisera were used for the detection of EPEC. The colony sweep polymyxin-B extraction method, non-sorbitol fermentation (NSF) phenotype, and slide agglutination with O157: H7 antisera were used for the screening and detection of STEC. Of EPEC belonging to 11 different serogroups, 0111 and 0127 were most commonly found in 36.4% of the diarrhoeal cases and 7.2% of the asymptomatic children. A significant association (p<0.05) was found between isolation of EPEC and diarrhoea. 8.7% of the diarrhoeal cases and 2% of children without diarrhoea were infected with STEC, but none of the isolates belonged to the 0157:H7 serotype. A significant association (p<0.05) was found between STEC and diarrhoeal cases. Based on these findings, it can be concluded that different EPEC serogroups may be agents of endemic infantile diarrhoea, and STEC strains are an important enteropathogen among young children. PMID:17615908

  10. Approaches to treatment of emerging Shiga toxin-producing Escherichia coli infections highlighting the O104:H4 serotype

    PubMed Central

    Rahal, Elias A.; Fadlallah, Sukayna M.; Nassar, Farah J.; Kazzi, Natalie; Matar, Ghassan M.

    2015-01-01

    Shiga toxin-producing Escherichia coli (STEC) are a group of diarrheagenic bacteria associated with foodborne outbreaks. Infection with these agents may result in grave sequelae that include fatality. A large number of STEC serotypes has been identified to date. E. coli serotype O104:H4 is an emerging pathogen responsible for a 2011 outbreak in Europe that resulted in over 4000 infections and 50 deaths. STEC pathogenicity is highly reliant on the production of one or more Shiga toxins that can inhibit protein synthesis in host cells resulting in a cytotoxicity that may affect various organ systems. Antimicrobials are usually avoided in the treatment of STEC infections since they are believed to induce bacterial cell lysis and the release of stored toxins. Some antimicrobials have also been reported to enhance toxin synthesis and production from these organisms. Various groups have attempted alternative treatment approaches including the administration of toxin-directed antibodies, toxin-adsorbing polymers, probiotic agents and natural remedies. The utility of antibiotics in treating STEC infections has also been reconsidered in recent years with certain modalities showing promise. PMID:25853096

  11. Differences in Extended-Spectrum Beta-Lactamase Producing Escherichia coli Virulence Factor Genes in the Baltic Sea Region

    PubMed Central

    Balode, Arta; Makarova, Mariia; Huik, Kristi; Kõljalg, Siiri; Kaftyreva, Lidia; Miciuleviciene, Jolanta; Naaber, Paul; Rööp, Tiiu; Toompere, Karolin; Suzhaeva, Ludmila; Sepp, Epp

    2014-01-01

    The aim of this study was to compare the prevalence of different virulence factor (VF) genes in extended-spectrum beta-lactamase (ESBL) producing Escherichia coli strains isolated from the Baltic Sea region. A total of 432 strains of phenotypically ESBL positive E. coli were collected from 20 institutions located in Estonia, Latvia, Lithuania, and the region of St. Petersburg in Russia from January to May 2012 and analyzed for phylogenetic group and prevalence of 23 VF genes. The strains were collected from clinical material (urine, blood, wound, and respiratory tract). Bacterial isolates were compared according to phylogenetic group, clinical material, and geographical origin. Most of the VF genes were concentrated within phylogenetic group B2 and/or D. When comparing strains isolated from different countries, it was found that strains originating from Estonia and Latvia belonged mainly to group B2 and strains from Lithuania and Russia mainly to groups B2 and D. The P-fimbrial adhesin gene papEF was more prevalent in Russian strains, colicin gene cvaC in Lithuanian strains, and capsular gene kpsMTII in Latvian strains; serum resistant gene traT was less prevalent in Estonian strains. The regional differences of VF genes remained statistically significant after taking into account the phylogenetic distribution in the countries. PMID:25250320

  12. Differences in extended-spectrum beta-lactamase producing Escherichia coli virulence factor genes in the Baltic Sea region.

    PubMed

    Lillo, Jana; Pai, Kristiine; Balode, Arta; Makarova, Mariia; Huik, Kristi; Kõljalg, Siiri; Ivanova, Marina; Kaftyreva, Lidia; Miciuleviciene, Jolanta; Naaber, Paul; Parv, Kristel; Pavelkovich, Anastasia; Rööp, Tiiu; Toompere, Karolin; Suzhaeva, Ludmila; Sepp, Epp

    2014-01-01

    The aim of this study was to compare the prevalence of different virulence factor (VF) genes in extended-spectrum beta-lactamase (ESBL) producing Escherichia coli strains isolated from the Baltic Sea region. A total of 432 strains of phenotypically ESBL positive E. coli were collected from 20 institutions located in Estonia, Latvia, Lithuania, and the region of St. Petersburg in Russia from January to May 2012 and analyzed for phylogenetic group and prevalence of 23 VF genes. The strains were collected from clinical material (urine, blood, wound, and respiratory tract). Bacterial isolates were compared according to phylogenetic group, clinical material, and geographical origin. Most of the VF genes were concentrated within phylogenetic group B2 and/or D. When comparing strains isolated from different countries, it was found that strains originating from Estonia and Latvia belonged mainly to group B2 and strains from Lithuania and Russia mainly to groups B2 and D. The P-fimbrial adhesin gene papEF was more prevalent in Russian strains, colicin gene cvaC in Lithuanian strains, and capsular gene kpsMTII in Latvian strains; serum resistant gene traT was less prevalent in Estonian strains. The regional differences of VF genes remained statistically significant after taking into account the phylogenetic distribution in the countries. PMID:25250320

  13. Proteomic View of Interactions of Shiga Toxin-Producing Escherichia coli with the Intestinal Environment in Gnotobiotic Piglets

    PubMed Central

    Pieper, Rembert; Zhang, Quanshun; Clark, David J.; Parmar, Prashanth P.; Alami, Hamid; Suh, Moo-Jin; Kuntumalla, Srilatha; Braisted, John C.; Huang, Shih-Ting; Tzipori, Saul

    2013-01-01

    Background Shiga toxin (Stx)-producing Escherichia coli cause severe intestinal infections involving colonization of epithelial Peyer’s patches and formation of attachment/effacement (A/E) lesions. These lesions trigger leukocyte infiltration followed by inflammation and intestinal hemorrhage. Systems biology, which explores the crosstalk of Stx-producing Escherichia coli with the in vivo host environment, may elucidate novel molecular pathogenesis aspects. Methodology/Principal Findings Enterohemorrhagic E. coli strain 86–24 produces Shiga toxin-2 and belongs to the serotype O157:H7. Bacterial cells were scrapped from stationary phase cultures (the in vitro condition) and used to infect gnotobiotic piglets via intestinal lavage. Bacterial cells isolated from the piglets’ guts constituted the in vivo condition. Cell lysates were subjected to quantitative 2D gel and shotgun proteomic analyses, revealing metabolic shifts towards anaerobic energy generation, changes in carbon utilization, phosphate and ammonia starvation, and high activity of a glutamate decarboxylase acid resistance system in vivo. Increased abundance of pyridine nucleotide transhydrogenase (PntA and PntB) suggested in vivo shortage of intracellular NADPH. Abundance changes of proteins implicated in lipopolysaccharide biosynthesis (LpxC, ArnA, the predicted acyltransferase L7029) and outer membrane (OM) assembly (LptD, MlaA, MlaC) suggested bacterial cell surface modulation in response to activated host defenses. Indeed, there was evidence for interactions of innate immunity-associated proteins secreted into the intestines (GP340, REG3-γ, resistin, lithostathine, and trefoil factor 3) with the bacterial cell envelope. Significance Proteomic analysis afforded insights into system-wide adaptations of strain 86–24 to a hostile intestinal milieu, including responses to limited nutrients and cofactor supplies, intracellular acidification, and reactive nitrogen and oxygen species-mediated stress

  14. Isolation and Characteristics of Shiga Toxin 2f-Producing Escherichia coli among Pigeons in Kyushu, Japan

    PubMed Central

    Murakami, Koichi; Etoh, Yoshiki; Ichihara, Sachiko; Maeda, Eriko; Takenaka, Shigeyuki; Horikawa, Kazumi; Narimatsu, Hiroshi; Kawano, Kimiko; Kawamura, Yoshiaki; Ito, Kenitiro

    2014-01-01

    An increasing number of Shiga toxin 2f-producing Escherichia coli (STEC2f) infections in humans are being reported in Europe, and pigeons have been suggested as a reservoir for the pathogen. In Japan, there is very little information regarding carriage of STEC2f by pigeons, prompting the need for further investigation. We collected 549 samples of pigeon droppings from 14 locations in Kyushu, Japan, to isolate STEC2f and to investigate characteristics of the isolates. Shiga toxin stx2f gene fragments were detected by PCR in 16 (2.9%) of the 549 dropping samples across four of the 14 locations. We obtained 23 STEC2f-isolates from seven of the original samples and from three pigeon dropping samples collected in an additional sampling experiment (from a total of seven locations across both sampling periods). Genotypic and phenotypic characteristics were then examined for selected isolates from each of 10 samples with pulsed-field gel electrophoresis profiles. Eight of the stx2f gene fragments sequenced in this study were homologous to others that were identified in Europe. Some isolates also contained virulence-related genes, including lpfAO26, irp2, and fyuA, and all of the 10 selected isolates maintained the eae, astA, and cdt genes. Moreover, five of the 10 selected isolates contained sfpA, a gene that is restricted to Shiga toxin-producing E. coli O165:H2 and sorbitol-fermenting Shiga toxin-producing E. coli O157:NM. We document serotypes O152:HNM, O128:HNM, and O145:H34 as STEC2f, which agrees with previous studies on pigeons and humans. Interestingly, O119:H21 was newly described as STEC2f. O145:H34, with sequence type 722, was described in a German study in humans and was also isolated in the current study. These results revealed that Japanese zoonotic STEC2f strains harboring several virulence-related factors may be of the same clonal complexes as some European strains. These findings provide useful information for public health-related disease management

  15. Genotype Cluster Analysis in Pathogenic Escherichia coli Isolates Producing Different CDT Types

    PubMed Central

    Javadi, Maryam; Oloomi, Mana; Bouzari, Saeid

    2016-01-01

    Diarrheagenic and uropathogenic E. coli types are mainly characterized by the expression of distinctive bacterial virulent factors. stx1, stx2 (Shiga toxins), and cdt (cytolethal distending toxin) genes have been acquired by horizontal gene transfer. Some virulent genes such as espP (serine protease), etpD (part of secretion pathway), and katP (catalase-peroxidase), or sfpA gene (Sfp fimbriae), are on plasmids and the others like fliC (flagellin) and the fimH gene (fimbriae type-I) are located on chromosome. Genomic pathogenicity islands (PAIs) carry some virulent genes such as hly gene. To determine the existence of virulence genes in cdt clinical isolates, genes including stx1, stx2, cdt, hly, espP, katP, sfpA, etpD, fliC, and fimH were assessed by Polymerase Chain Reaction (PCR). The most prevalent isolates for etpD and katP genes were 85.7% in cdtII. katP gene was also observed 83.3% in cdtI. However, in 42.85% of cdtIII isolates, espP gene was the most detected. Moreover, hly gene was also the most prominent gene in cdtIII (71.42%). sfpA gene was observed in 66.6% of cdtV. stx1 gene was detected in 100% of cdtII, cdtIV, and cdtV types. Presence and pattern of virulence genes were considered among cdt positive isotypes and used for their clustering and profiling. PMID:27042356

  16. An Influenza A/H1N1/2009 Hemagglutinin Vaccine Produced in Escherichia coli

    PubMed Central

    Aguilar-Yáñez, José M.; Portillo-Lara, Roberto; Mendoza-Ochoa, Gonzalo I.; García-Echauri, Sergio A.; López-Pacheco, Felipe; Bulnes-Abundis, David; Salgado-Gallegos, Johari; Lara-Mayorga, Itzel M.; Webb-Vargas, Yenny; León-Angel, Felipe O.; Rivero-Aranda, Ramón E.; Oropeza-Almazán, Yuriana; Ruiz-Palacios, Guillermo M.; Zertuche-Guerra, Manuel I.; DuBois, Rebecca M.; White, Stephen W.; Schultz-Cherry, Stacey; Russell, Charles J.; Alvarez, Mario M.

    2010-01-01

    Background The A/H1N1/2009 influenza pandemic made evident the need for faster and higher-yield methods for the production of influenza vaccines. Platforms based on virus culture in mammalian or insect cells are currently under investigation. Alternatively, expression of fragments of the hemagglutinin (HA) protein in prokaryotic systems can potentially be the most efficacious strategy for the manufacture of large quantities of influenza vaccine in a short period of time. Despite experimental evidence on the immunogenic potential of HA protein constructs expressed in bacteria, it is still generally accepted that glycosylation should be a requirement for vaccine efficacy. Methodology/Principal Findings We expressed the globular HA receptor binding domain, referred to here as HA63–286-RBD, of the influenza A/H1N1/2009 virus in Escherichia coli using a simple, robust and scalable process. The recombinant protein was refolded and purified from the insoluble fraction of the cellular lysate as a single species. Recombinant HA63–286-RBD appears to be properly folded, as shown by analytical ultracentrifugation and bio-recognition assays. It binds specifically to serum antibodies from influenza A/H1N1/2009 patients and was found to be immunogenic, to be capable of triggering the production of neutralizing antibodies, and to have protective activity in the ferret model. Conclusions/Significance Projections based on our production/purification data indicate that this strategy could yield up to half a billion doses of vaccine per month in a medium-scale pharmaceutical production facility equipped for bacterial culture. Also, our findings demonstrate that glycosylation is not a mandatory requirement for influenza vaccine efficacy. PMID:20661476

  17. Glycoprotein receptors for a heat-stable enterotoxin (STh) produced by enterotoxigenic Escherichia coli.

    PubMed Central

    Hirayama, T; Wada, A; Iwata, N; Takasaki, S; Shimonishi, Y; Takeda, Y

    1992-01-01

    Glycoprotein receptors for heat-stable enterotoxin STh of enterotoxigenic Escherichia coli in the rat intestinal cell membrane were identified and characterized. Incubation of rat intestinal cell membranes with radioiodinated N-5-azidonitrobenzoyl-STh[5-19] (125I-ANB-STh[5-19]) followed by photolysis resulted in specific radiolabeling of two distinct proteins with M(r)s of 200,000 (designated STR-200A and STR-200B). STR-200A was found to be composed of two molecules of a protein with an M(r) of 70,000 (70-kDa protein), whereas STR-200B was composed of two different protein molecules with M(r)s of 53,000 (53-kDa protein) and 77,000 (77-kDa protein). These proteins showed no guanylate cyclase activity. The 70-kDa protein was labeled most with 125I-ANB-STh[5-19], suggesting that STR-200A is the main receptor protein in the rat intestinal cell membrane. The carbohydrate moieties of STR-200A and STR-200B were examined by enzymatic deglycosylation. The 70-kDa protein of STR-200A was found to contain N-linked high-mannose-type and/or hybrid-type oligosaccharides, and results suggested that it possesses at least three N glycosylation sites. The 53-kDa protein of STR-200B was found to have an N-linked complex-type oligosaccharide side chain. The deglycosylated 70-kDa protein retained activity for binding to STh, suggesting that the carbohydrate moieties of these receptor proteins are not important for binding with STh. Images PMID:1328055

  18. Triton X-100 enhances the solubility and secretion ratio of aggregation-prone pullulanase produced in Escherichia coli.

    PubMed

    Duan, Xuguo; Zou, Chun; Wu, Jing

    2015-10-01

    The pullulanase from Bacillus deramificans is an industrially useful starch-debranching enzyme that is difficult to produce in large quantities. In this study, B. deramificans pullulanase was found to be an aggregation-prone protein that can be solubilized from the insoluble fraction by surfactants in vitro. Studying the effects of various surfactants on pullulanase production in Escherichia coli in shake flasks revealed that optimal pullulanase production could be obtained by adding 0.5% Triton X-100 during the later period of fermentation. A modified fed-batch fermentation strategy was then applied to the production of pullulanase in a 3-L fermentor. When supplemented with 0.5% Triton X-100 at 40 h, the maximal extracellular pullulanase production and secretion ratio were 812.4 U mL(-1) and 86.0%, which were 46.2- and 47.8-fold that of the control, respectively. PMID:26188556

  19. Assessment of Shiga Toxin-Producing Escherichia coli O157 Illnesses Prevented by Recalls of Beef Products.

    PubMed

    Seys, Scott A; Sampedro, Fernando; Hedberg, Craig W

    2015-09-01

    Beef product recall data from 2005 through 2012 associated with Shiga toxin-producing Escherichia coli (STEC) O157 contamination were used to develop quantitative models to estimate the number of illnesses prevented by recalls. The number of illnesses prevented was based on the number of illnesses that occurred relative to the number of pounds consumed, then extrapolated to the number of pounds of recalled product recovered. A simulation using a Program Evaluation and Review Technique (PERT) probability distribution with illness-related recalls estimated 204 (95% credible interval, 117-333) prevented STEC O157 illnesses from 2005 through 2012. Recalls not associated with illnesses had more recalled product recovered and prevented an estimated 83 additional STEC O157 illnesses. Accounting for underdiagnosis resulted in an estimated total of 7500 STEC O157 illnesses prevented over 8 years. This study demonstrates that recalls, although reactive in nature, are an important tool for averting further exposure and illnesses. PMID:26218894

  20. Binding of Soluble Natural Ligands to a Soluble Human T-Cell Receptor Fragment Produced in Escherichia coli

    NASA Astrophysics Data System (ADS)

    Hilyard, Katherine L.; Reyburn, Hugh; Chung, Shan; Bell, John I.; Strominger, Jack L.

    1994-09-01

    An Escherichia coli expression system has been developed to produce milligram quantities of the variable domains of a human T-cell receptor from a cytotoxic T cell that recognizes the HLA-A2-influenza matrix peptide complex as a single polypeptide chain. The recombinant protein was purified by metal-chelate chromatography and then refolded in a redox buffer system. The refolded protein was shown to directly bind both Staphylococcus aureus enterotoxin B and the major histocompatibility complex protein-peptide complex using a BIAcore biosensor. Thus this preparation of a single-chain, variable-domain, T-cell receptor fragment can bind both of its natural ligands and some of it is therefore a functional fragment of the receptor molecule.

  1. Ambler Class A Extended-Spectrum Beta-Lactamase-Producing Escherichia coli and Klebsiella spp. in Canadian Hospitals

    PubMed Central

    Mulvey, Michael R.; Bryce, Elizabeth; Boyd, David; Ofner-Agostini, Marianna; Christianson, Sara; Simor, Andrew E.; Paton, Shirley

    2004-01-01

    This report describes a study carried out to gain baseline information on the molecular characteristics of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli and Klebsiella spp. in Canada. A total of 29,323 E. coli and 5,156 Klebsiella sp. isolates were screened at 12 participating sites. Of these, 505 clinically significant, nonrepeat isolates displaying reduced susceptibility to the NCCLS-recommended beta-lactams were submitted to a central laboratory over a 1-year period ending on 30 September 2000. A total of 116 isolates were confirmed to be ESBL producers. PCR and sequence analysis revealed the presence of TEM-11 (n = 1), TEM-12 (n = 1), TEM-29 (n = 1), TEM-52 (n = 4), CTX-M-13 (n = 1), CTX-M-14 (n = 15), CTX-M-15 (n = 11), SHV-2 (n = 2), SHV-2a (n = 12), SHV-5 (n = 6), SHV-12 (n = 45), and SHV-30 (n = 2). Five novel beta-lactamases were identified and designated TEM-115 (n = 2), TEM-120 (n = 1), SHV-40 (n = 2), SHV-41 (n = 4), and SHV-42 (n = 1). In addition, no molecular mechanism was identified for five isolates displaying an ESBL phenotype. Macrorestriction analysis of all ESBL isolates was conducted, as was restriction fragment length polymorphism analysis of plasmids harboring ESBLs. Although a “clonal” distribution of isolates was observed at some individual sites, there was very little evidence suggesting intrahospital spread. In addition, examples of identical or closely related plasmids that were identified at geographically distinct sites across Canada are given. However, there was considerable diversity with respect to plasmid types observed. PMID:15047521

  2. The Polymorphic Aggregative Phenotype of Shiga Toxin-Producing Escherichia coli O111 Depends on RpoS and Curli

    PubMed Central

    Diodati, M. E.; Bates, A. H.; Miller, W. G.; Carter, M. Q.; Zhou, Y.

    2015-01-01

    Escherichia coli O111 is an emerging non-O157:H7 serotype of Shiga toxin-producing E. coli (STEC). We previously reported that outbreak and environmental, but not sporadic-case, strains of STEC O111 share a distinct aggregation phenotype (M. E. Diodati, A. H. Bates, M. B. Cooley, S. Walker, R. E. Mandrell, and M. T. Brandl, Foodborne Pathog Dis 12:235−243, 2015, http://dx.doi.org/10.1089/fpd.2014.1887). We show here the natural occurrence of nonaggregative variants in single STEC O111 strains. These variants do not produce curli fimbriae and lack RpoS function but synthesize cellulose. The deletion of csgBAC or rpoS in an aggregative outbreak strain abolished aggregate formation, which was rescued when curli biogenesis or RpoS function, respectively, was restored. Complementation of a nonaggregative variant with RpoS also conferred curli production and aggregation. These observations were supported by Western blotting with an anti-CsgA antibody. Immunomicroscopy revealed that curli were undetectable on the cells of the nonaggregative variant and the RpoS mutant but were present in large quantities in the intercellular matrix of the assemblages formed by aggregative strains. Sequence analysis of rpoS in the aggregative strain and its variant showed a single substitution of threonine for asparagine at amino acid 124. Our results indicate that the multicellular behavior of STEC O111 is RpoS dependent via positive regulation of curli production. Aggregation may confer a fitness advantage in O111 outbreak strains under stressful conditions in hydrodynamic environments along the food production chain and in the host, while the occurrence of nonaggregative variants may allow the cell population to adapt to conditions benefiting a planktonic lifestyle. PMID:26712542

  3. [Hemolytic uremic syndrome in children of Mendoza, Argentina: association with Shiga toxin-producing Escherichia coli infection].

    PubMed

    Rivas, M; Balbi, L; Miliwebsky, E S; García, B; Tous, M I; Leardini, N A; Prieto, M A; Chillemi, G M; de Principi, M E

    1998-01-01

    Shiga toxin-producing Escherichia coli (STEC) has been associated with pathogenesis of hemolytic uremic syndrome (HUS) worldwide. The aim of the present study was to characterize the HUS cases reported in Mendoza and to determine their association with STEC infection. From July 1994 through June 1996 thirty-six patients with HUS were admitted to Hospital Pediátrico "Dr. HJ Notti" (Mean age 22.8 +/- 14.9 months, 44% females). The children developed HUS following an acute diarrheal illness in 94.4% of the cases. Bloody diarrhea was observed in 83.3% of them. Antimicrobial therapy had been administered to 69.4% of the patients. Most of the patients were well-nourished (88.9%), belong to middle-low socioeconomical condition (91.7%), from urban areas (72.2%) and they were mostly assisted during summer and the beginning of autumn. The acute stage of the disease occurred with presentation of pallor (100%), edema (25%), anuria (38.9%), oliguria (41.7%), hemolytic anemia (97.2%), thrombocytopenia (86.1%) and neurological involvement (41.7%). Twenty-five of them presented the full clinical syndrome. Peritoneal dialysis were performed in 50% and packed blood cell transfusion in 88.9%. The mean days of hospitalization was 15.1 +/- 9.2 [range 1-32]. A 91.7% of the patients recovered renal function, two developed chronic renal failure and one died. Cumulative evidence of STEC infection was found in 19 (86.4%) of 22 HUS patients. STEC O157:H7, biotype C was found in 8 (36.4%). The prevalent Stx type was Stx2 in STEC, free fecal Stx (STMF) and Stx-neutralizing antibodies (a-Stx). In Mendoza, as in the rest of Argentina E. coli O157:H7, biotype C, Stx2 producer is the most frequently detected pathogen in HUS cases. PMID:9674201

  4. Adherence of curli producing Shiga-toxigenic Escherichia coli to baby spinach leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cellular appendages, such as curli fibers have been suggested to be involved in STEC persistence in fresh produce as these curli are critical in biofilm formation and adherence to animal cells. We determined the role of curli in attachment of STEC on spinach leaves. The curli expression by wild-ty...

  5. Clinical and Molecular Characteristics of Extended-Spectrum- β-Lactamase-Producing Escherichia coli Causing Bacteremia in the Rotterdam Area, Netherlands ▿

    PubMed Central

    van der Bij, Akke K.; Peirano, Gisele; Goessens, Wil H. F.; van der Vorm, Eric R.; van Westreenen, M.; Pitout, Johann D. D.

    2011-01-01

    We investigated the clinical and molecular characteristics of bacteremia caused by extended-spectrum-β-lactamase (ESBL)-producing Escherichia coli over a 2-year period (2008 to 2009) in the Rotterdam region (including 1 teaching hospital and 2 community hospitals) of Netherlands. The majority of patients presented with community onset urinary and intra-abdominal infections, with an increase in prevalence during 2009. The majority of E. coli isolates produced CTX-M-15, and 4 sequence types (ST38, ST131, ST405, and ST648) predominated. There were significant differences in clinical and molecular characteristics between the 2 community hospitals. PMID:21502612

  6. First initial community-acquired meningitis due to extended-spectrum beta-lactamase producing Escherichia coli complicated with multiple aortic mycotic aneurysms.

    PubMed

    Weyrich, Pierre; Ettahar, Nicolas; Legout, Laurence; Meybeck, Agnes; Leroy, Olivier; Senneville, Eric

    2012-01-01

    We report the first case of extended-spectrum beta-lactamase producing E. coli community-acquired meningitis complicated with multiple aortic mycotic aneurysms. Because of the acute aneurysm expansion with possible impending rupture on 2 abdominal CT scan, the patient underwent prompt vascular surgery and broad spectrum antibiotic therapy but he died of a hemorrhagic shock. Extended-spectrum beta-lactamase producing E. coli was identified from both blood and cerebrospinal fluid culture before vascular treatment. The present case report does not however change the guidelines of Gram negative bacteria meningitis in adults. PMID:22321435

  7. Activation of glyoxylate pathway without the activation of its related gene in succinate-producing engineered Escherichia coli.

    PubMed

    Zhu, Li-Wen; Li, Xiao-Hong; Zhang, Lei; Li, Hong-Mei; Liu, Jian-Hua; Yuan, Zhan-Peng; Chen, Tao; Tang, Ya-Jie

    2013-11-01

    For the first time, glyoxylate pathway in the biosynthesis of succinate was activated without the genetic manipulations of any gene related with glyoxylate pathway. Furthermore, the inactivation of succinate biosynthesis by-products genes encoding acetate kinase (ackA) and phosphotransacetylase (pta) was proven to be the key factor to activate glyoxylate pathway in the metabolically engineered Escherichia coli under anaerobic conditions. In order to enhance the succinate biosynthesis specifically, the genes (i.e., ldhA, ptsG, ackA-pta, focA-pflB, adhE) that disrupt by-products biosynthesis pathways were combinatorially deleted, while the E. coli malate dehydrogenase (MDH) was overexpression. The highest succinate production of 150.78 mM was obtained with YJ003 (ΔldhA, ptsG, ackA-pta), which were 5-folds higher than that obtained with wild type control strain DY329 (25.13 mM). For further understand the metabolic response as a result of several genetic manipulations, an anaerobic stoichiometric model that takes into account the glyoxylate pathway have successfully been implemented to estimate the intracellular fluxes in various recombinant E. coli. The fraction to the glyoxylate pathway from OAA in DY329 was 0 and 31% in YJ003, which indicated that even without the absence of the iclR mutation; the glyoxylate pathway was also activated by deleting the by-products biosynthetic genes, and to be responsible for the higher succinate yields. For further strengthen glyoxylate pathway, a two-stage fed-batch fermentation process was developed by using a 600 g l(-1) glucose feed to achieve a cell growth rate of 0.07 h(-1) in aerobic fermentation, and using a 750 g l(-1) glucose feed to maintain the residual glucose concentration around 40 g l(-1) when its residual level decreased to 10gl(-1) in anaerobic fermentation. The best mutant strain YJ003/pTrc99A-mdh produces final succinate concentration of 274 mM by fed-batch culture, which was 10-folds higher than that obtained

  8. Detection of Healthcare-Related Extended-Spectrum Beta-Lactamase-Producing Escherichia coli Transmission Events Using Combined Genetic and Phenotypic Epidemiology

    PubMed Central

    Boers, Stefan A.; Jansen, Ruud; Hays, John P.; Goessens, Wil H. F.; Vos, Margreet C.

    2016-01-01

    Background Since the year 2000 there has been a sharp increase in the prevalence of healthcare-related infections caused by extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli. However, the high community prevalence of ESBL-producing E. coli isolates means that many E. coli typing techniques may not be suitable for detecting E. coli transmission events. Therefore, we investigated if High-throughput MultiLocus Sequence Typing (HiMLST) and/or Raman spectroscopy were suitable techniques for detecting recent E. coli transmission events. Methods This study was conducted from January until December 2010 at Erasmus University Medical Center, Rotterdam, the Netherlands. Isolates were typed using HiMLST and Raman spectroscopy. A genetic cluster was defined as two or more patients carrying identical isolates. We used predefined definitions for epidemiological relatedness to assess healthcare-related transmission. Results We included 194 patients; strains of 112 patients were typed using HiMLST and strains of 194 patients were typed using Raman spectroscopy. Raman spectroscopy identified 16 clusters while HiMLST identified 10 clusters. However, no healthcare-related transmission events were detected. When combining data from both typing techniques, we identified eight clusters (n = 34 patients), as well as 78 patients with a non-cluster isolate. However, we could not detect any healthcare-related transmission in these 8 clusters. Conclusions Although clusters were genetically detected using HiMLST and Raman spectroscopy, no definite epidemiological relationships could be demonstrated which makes the possibility of healthcare-related transmission events highly unlikely. Our results suggest that typing of ESBL-producing E. coli using HiMLST and/or Raman spectroscopy is not helpful in detecting E. coli healthcare-related transmission events. PMID:27463231

  9. Development of indole-3-acetic acid-producing Escherichia coli by functional expression of IpdC, AspC, and Iad1.

    PubMed

    Romasi, Elisa Friska; Lee, Jinho

    2013-12-01

    Biosynthesis of indole-3-acetic acid (IAA) via the indole-3-pyruvic acid pathway involves three kinds of enzymes; aminotransferase encoded by aspC, indole-3-pyruvic acid decarboxylase encoded by ipdC, and indole-3-acetic acid dehydrogenase encoded by iad1. The ipdC from Enterobacter cloacae ATCC 13047, aspC from Escherichia coli, and iad1 from Ustilago maydis were cloned and expressed under the control of the tac and sod promoters in E. coli. According to SDS-PAGE and enzyme activity, IpdC and Iad1 showed good expression under the control of P(tac), whereas AspC was efficiently expressed by P(sod) originating from Corynebacterium glutamicum. The activities of IpdC, AspC, and Iad1 from the crude extracts of recombinant E. coli Top 10 were 215.6, 5.7, and 272.1 nmol/min/mg-protein, respectively. The recombinant E. coli DH5α expressing IpdC, AspC, and Iad1 produced about 1.1 g/l of IAA and 0.13 g/l of tryptophol (TOL) after 48 h of cultivation in LB medium with 2 g/l tryptophan. To improve IAA production, a tnaA gene mediating indole formation from tryptophan was deleted. As a result, E. coli IAA68 with expression of the three genes produced 1.8 g/l of IAA, which is a 1.6- fold increase compared with wild-type DH5α harboring the same plasmids. Moreover, the complete conversion of tryptophan to IAA was achieved by E. coli IAA68. Finally, E. coli IAA68 produced 3.0 g/l of IAA after 24 h cultivation in LB medium supplemented with 4 g/l of tryptophan. PMID:24043123

  10. High Rate of Per Oral Mecillinam Treatment Failure in Community-Acquired Urinary Tract Infections Caused by ESBL-Producing Escherichia coli

    PubMed Central

    Søraas, Arne; Sundsfjord, Arnfinn; Jørgensen, Silje Bakken; Liestøl, Knut; Jenum, Pål A.

    2014-01-01

    A population-based study was performed to investigate the efficacy of mecillinam treatment of community-acquired urinary tract infections (CA-UTI) caused by extended-spectrum β-lactamase (ESBL) producing Escherichia coli. The study was conducted in South-Eastern Norway. Data from patients with CA-UTI caused by ESBL-producing and non-producing (random controls) E. coli were collected through interviews, questionnaires, medical records and the Norwegian Prescription Database. Treatment failure was defined as a new antibiotic prescription appropriate for UTI prescribed within two weeks after the initial antimicrobial therapy. Multivariable logistic regression analysis was performed to identify treatment agents and patient- or bacterial traits associated with treatment failure. A total of 343 patients (mean age 59) were included, of which 158 (46%) were treated with mecillinam. Eighty-one patients (24%, mean age 54) had infections caused by ESBL producing E. coli, and 41 of these patients (51%) received mecillinam as the primary treatment. Mecillinam treatment failure was observed in 18 (44%) of patients infected by ESBL-producing strains and in 16 (14%) of patients with a CA-UTI caused by ESBL non-producing strains. Multivariable analysis showed that ESBL status (odds ratio (OR) 3.2, 95% confidence interval (CI) 1.3–7.8, p = 0.009) and increased MIC of mecillinam (OR 2.0 for each doubling value of MIC, CI 1.4–3.0, p<0.001) were independently associated with mecillinam treatment failure. This study showed a high rate of mecillinam treatment failure in CA-UTIs caused by ESBL producing E. coli. The high failure rate could not be explained by the increased MIC of mecillinam alone. Further studies addressing the use of mecillinam against ESBL-producing E. coli, with emphasis on optimal dosing and combination therapy with β-lactamase inhibitors, are warranted. PMID:24454943

  11. Isolation of Shiga Toxin-Producing Escherichia coli from Ground Beef Using Multiple Combinations of Enrichment Broths and Selective Agars.

    PubMed

    Brusa, Victoria; Piñeyro, Pablo E; Galli, Lucía; Linares, Luciano H; Ortega, Emanuel E; Padola, Nora L; Leotta, Gerardo A

    2016-03-01

    Shiga toxin-producing Escherichia coli (STEC) are foodborne pathogens, and beef cattle are recognized as the principal reservoir. The aims of this study were (1) to identify the most sensitive combination of selective enrichment broths and agars for STEC isolation in artificially inoculated ground beef samples, and (2) to evaluate the most efficient combination(s) of methods for naturally contaminated ground beef samples. A total of 192 ground beef samples were artificially inoculated with STEC and non-stx bacterial strains. A combination of four enrichment broths and three agars were evaluated for sensitivity, specificity, and positive predictive value for STEC isolation from experimentally inoculated samples. Enrichments with either modified tryptic soy broth (mTSB) containing 8 mg/L novobiocin (mTSB-8) or modified Escherichia coli (mEC) broth followed by isolation in MacConkey agar were the most sensitive combinations for STEC isolation of artificially inoculated samples. Independently, both enrichments media followed by isolation in MacConkey were used to evaluate ground beef samples from 43 retail stores, yielding 65.1% and 58.1% stx-positive samples by RT-PCR, respectively. No difference was observed in the isolate proportions between these two methods (8/25 [32%] and 8/28 [28.6%]). Identical serotypes and stx genotypes were observed in STEC strains isolated from the same samples by either method. In this study, no single enrichment protocol was sufficient to detect all STEC in artificially inoculated samples and had considerable variation in detection ability with naturally contaminated samples. Moreover, none of the single or combinations of multiple isolation agars used were capable of identifying all STEC serogroups in either artificially inoculated or naturally occurring STEC-contaminated ground beef. Therefore, it may be prudent to conclude that there is no single method or combination of isolation methods capable of identifying all STEC serogroups

  12. Loop-Mediated Isothermal Amplification Assays for Detecting Shiga Toxin-Producing Escherichia coli in Ground Beef and Human Stools

    PubMed Central

    Wang, Fei; Jiang, Lin

    2012-01-01

    Shiga toxin-producing Escherichia coli (STEC), encompassing E. coli O157 and non-O157 STEC, is a significant cause of food-borne illnesses and deaths in the United States and worldwide. Shiga toxins (encoded by stx) and intimin (encoded by eae) are important virulence factors for STEC strains linked to severe human illnesses such as hemorrhagic colitis and hemolytic-uremic syndrome. In this study, the stx1, stx2, and eae genes were chosen as targets to design loop-mediated isothermal amplification (LAMP) assays for the rapid, specific, sensitive, and quantitative detection of STEC strains. The assay performances in pure culture and spiked ground beef and human stools were evaluated and compared with those of quantitative PCR (qPCR). No false-positive or false-negative results were observed among 90 bacterial strains used to evaluate assay specificity. The limits of detection for seven STEC strains of various serogroups (O26, O45, O103, O111, O121, O145, and O157) were approximately 1 to 20 CFU/reaction in pure culture and 103 to 104 CFU/g in spiked ground beef, which were comparable to the results of qPCR. Standard curves generated suggested good linear relationships between STEC cell numbers and LAMP turbidity signals. When applied in ground beef samples spiked with two low levels (1 to 2 and 10 to 20 CFU/25 g) of STEC cultures, the LAMP assays achieved accurate detection after 6 to 8 h enrichment. The assays also consistently detected STEC in human stool specimens spiked with 103 or 104 CFU/0.5 g stool after 4 h enrichment, while qPCR required 4 to 6 h. In conclusion, the LAMP assays developed in this study may facilitate rapid and reliable identification of STEC contaminations in high-risk food commodities and also facilitate prompt diagnosis of STEC infections in clinical laboratories. PMID:22031701

  13. Activities of beta-lactam antibiotics against Escherichia coli strains producing extended-spectrum beta-lactamases.

    PubMed

    Jacoby, G A; Carreras, I

    1990-05-01

    Seven extended-spectrum beta-lactamases related to TEM and four enzymes derived from SHV-1 were transferred to a common Escherichia coli host so that the activity of a variety of beta-lactams could be tested in a uniform genetic environment. For most derivatives, penicillinase activity was 10% or less than that of strains making TEM-1, TEM-2, or SHV-1 beta-lactamase, suggesting that reduced catalytic efficiency accompanied the broader substrate spectrum. Despite this deficit, resistance to aztreonam, carumonam, cefdinir, cefepime, cefixime, cefmenoxime, cefotaxime, cefotiam, cefpirome, cefpodoxime, ceftazidime, ceftibuten, ceftizoxime, ceftriaxone, cefuroxime, and E1040 was enhanced. For strains producing TEM-type enzymes, however, MICs of carumonam, cefepime, cefmenoxime, cefotiam, cefpirome, and ceftibuten were 8 micrograms/ml or less. Susceptibilities of cefmetazole, cefotetan, cefoxitin, flomoxef, imipenem, meropenem, moxalactam, temocillin, FCE 22101, and Sch 34343 were unaffected. FCE 22101, imipenem, meropenem, and Sch 34343 were inhibitory for all strains at 1 microgram/ml or less. In E. coli an OmpF- porin mutation in combination with an extended-spectrum beta-lactamase enhanced resistance to many of these agents, but generally by only fourfold. Hyperproduction of chromosomal AmpC beta-lactamase increased resistance to 7-alpha-methoxy beta-lactams but not that to temocillin. When tested at 8 micrograms/ml, clavulanate was more potent than sulbactam or tazobactam in overcoming resistance to ampicillin, while cefoperazone-sulbactam was more active than ticarcillin-clavulanate or piperacillin-tazobactam, especially against TEM-type extended-spectrum beta-lactamases. PMID:2193623

  14. Purification and characterization of lipopolysaccharides from six strains of non-O157 Shiga toxin-producing Escherichia coli.

    PubMed

    Stromberg, Loreen R; Stromberg, Zachary R; Banisadr, Afsheen; Graves, Steven W; Moxley, Rodney A; Mukundan, Harshini

    2015-09-01

    Certain Shiga toxin-producing Escherichia coli (STEC) are virulent human pathogens that are most often acquired through contaminated food. The United States Department of Agriculture, Food Safety and Inspection Service has declared several serogroups of STEC as adulterants in non-intact raw beef products. Hence, sensitive and specific tests for the detection of these STEC are a necessity for implementation in food safety programs. E. coli serogroups are identified by their respective O-antigen moiety on the lipopolysaccharide (LPS) macromolecule. We propose that the development of O-antigen-specific immunological assays can facilitate simple and rapid discriminatory detection of STEC in beef. However, the resources (antigens and antibodies) required for such development are not readily available. To overcome this, we extracted and characterized LPS and O-antigen from six STEC strains. Using hot phenol extraction, we isolated the LPS component from each strain and purified it using a series of steps to eliminate proteins, nucleic acids, and lipid A antigens. Antigens and crude LPS extracts were characterized using gel electrophoresis, immunoblotting, and modified Western blotting with commercially available antibodies, thus assessing the serogroup specificity and sensitivity of available ligands as well. The results indicate that, while many commercially available antibodies bind LPS, their activities and specificities are highly variable, and often not as specific as those required for serogroup discrimination. This variability could be minimized by the production of antibodies specific for the O-antigen. Additionally, the antigens generated from this study provide a source of characterized LPS and O-antigen standards for six serogroups of STEC. PMID:26093258

  15. Purification and characterization of Streptococcus sobrinus dextranase produced in recombinant Escherichia coli and sequence analysis of the dextranase gene.

    PubMed Central

    Wanda, S Y; Curtiss, R

    1994-01-01

    The plasmid (pYA902) with the dextranase (dex) gene of Streptococcus sobrinus UAB66 (serotype g) produces a C-terminal truncated dextranase enzyme (Dex) with a multicomplex mass form which ranges from 80 to 130 kDa. The Escherichia coli-produced enzyme was purified and characterized, and antibodies were raised in rabbits. Purified dextranase has a native-form molecular mass of 160 to 260 kDa and specific activity of 4,000 U/mg of protein. Potential immunological cross-reactivity between dextranase and the SpaA protein specified by various recombinant clones was studied by using various antisera and Western blot (immunoblot) analysis. No cross-reactivity was observed. Optimal pH (5.3) and temperature (39 degrees C) and the isoelectric points (3.56, 3.6, and 3.7) were determined and found to be similar to those for dextranase purified from S. sobrinus. The dex DNA restriction map was determined, and several subclones were obtained. The nucleotide sequence of the dex gene was determined by using subclones pYA993 and pYA3009 and UAB66 chromosomal DNA. The open reading frame for dex was 4,011 bp, ending with a stop codon TAA. A ribosome-binding site and putative promoter preceding the start codon were identified. The deduced amino acid sequence of Dex revealed the presence of a signal peptide of 30 amino acids. The cleavage site for the signal sequence was determined by N-terminal amino acid sequence analysis for Dex produced in E. coli chi 2831(pYA902). The C terminus consists of a serine- and threonine-rich region followed by the peptide LPKTGD, 3 charged amino acids, 19 amino acids with a strongly hydrophobic character, and a charged pentapeptide tail, which are proposed to correspond to the cell wall-spanning region, the LPXTGX consensus sequence, and the membrane-anchoring domains of surface-associated proteins of gram-positive cocci. Images PMID:8021165

  16. Anaerobic respiration in engineered Escherichia coli with an internal electron acceptor to produce fuel ethanol.

    PubMed

    Peterson, Joy Doran; Ingram, Lonnie O

    2008-03-01

    Environmental concerns and unease with U.S. dependence on foreign oil have renewed interest in converting biomass into fuel ethanol. The volume of plant matter available makes lignocellulose conversion to ethanol desirable, although no one isolated organism has been shown to break bonds in lignocellulose and efficiently metabolize resulting sugars into one product. This work reviews directed engineering coupled with metabolic evolution resulting in microbial biocatalysts that produce up to 45 g L(-1) ethanol in 48 hours in a simple mineral salts medium and that convert various compounds of lignocellulosic materials to ethanol. Mutations contributing to ethanologenesis are discussed along with adding enzymatic capabilities to existing biocatalysts in order to decrease the commercial enzymes required to reduce plant matter into fermentable sugars. PMID:18378606

  17. Genotypic characterization of non-O157 Shiga toxin-producing Escherichia coli in beef abattoirs of Argentina.

    PubMed

    Masana, M O; D'Astek, B A; Palladino, P M; Galli, L; Del Castillo, L L; Carbonari, C; Leotta, G A; Vilacoba, E; Irino, K; Rivas, M

    2011-12-01

    The non-O157 Shiga toxin-producing Escherichia coli (STEC) contamination in carcasses and feces of 811 bovines in nine beef abattoirs from Argentina was analyzed during a period of 17 months. The feces of 181 (22.3%) bovines were positive for non-O157 STEC, while 73 (9.0%) of the carcasses showed non-O157 STEC contamination. Non-O157 STEC strains isolated from feces (227) and carcasses (80) were characterized. The main serotypes identified were O178:H19, O8:H19, O130:H11, and O113:H21, all of which have produced sporadic cases of hemolytic-uremic syndrome in Argentina and worldwide. Twenty-two (7.2%) strains carried a fully virulent stx/eae/ehxA genotype. Among them, strains of serotypes O103:[H2], O145:NM, and O111:NM represented 4.8% of the isolates. Xba I pulsed-field gel electrophoresis pattern analysis showed 234 different patterns, with 76 strains grouped in 30 clusters. Nine of the clusters grouped strains isolated from feces and from carcasses of the same or different bovines in a lot, while three clusters were comprised of strains distributed in more than one abattoir. Patterns AREXSX01.0157, AREXBX01.0015, and AREXPX01.0013 were identified as 100% compatible with the patterns of one strain isolated from a hemolytic-uremic syndrome case and two strains previously isolated from beef medallions, included in the Argentine PulseNet Database. In this survey, 4.8% (39 of 811) of the bovine carcasses appeared to be contaminated with nonO157 STEC strains potentially capable of producing sporadic human disease, and a lower proportion (0.25%) with strains able to produce outbreaks of severe disease. PMID:22186039

  18. Amikacin therapy for urinary tract infections caused by extended-spectrum β-lactamase-producing Escherichia coli

    PubMed Central

    Cho, Sung-Yeon; Choi, Su-Mi; Park, Sun Hee; Lee, Dong-Gun; Choi, Jung-Hyun; Yoo, Jin-Hong

    2016-01-01

    Background/Aims: The number of urinary tract infections (UTIs) caused by extended-spectrum β-lactamase-producing Escherichia coli (ESBL-EC) is increasing. In an outpatient setting, there are limited therapeutic options to treat ESBL-producing pathogens. We evaluated the outcomes of amikacin outpatient parenteral antibiotic therapy (OPAT) for UTIs caused by ESBL-EC in patients not pre-treated with carbapenem. Methods: We retrospectively evaluated the outcomes of amikacin OPAT for UTIs caused by ESBL-EC. Results: From November 2011 to October 2012, eight females, who could not be hospitalized for carbapenem treatment, were treated with amikacin OPAT for nine episodes of non-bacteremic ESBL-EC UTIs. Seven of the eight patients had one or more comorbidities. Of the nine UTI cases, three had symptomatic lower UTIs and six had non-bacteremic upper UTIs. In all of the cases, symptomatic and laboratory improvements were observed following amikacin OPAT. One patient showed a delayed relapse with bilateral microabscesses 3 weeks after treatment cessation; however, a clinical and microbiological cure was eventually reached. All of the patients were able to tolerate amikacin OPAT without any significant nephrotoxicity or ototoxicity. Conclusions: Amikacin OPAT represents a feasible therapeutic option for non-bacteremic UTIs caused by ESBL-EC in settings with limited resources. PMID:26767869

  19. Characterization of a deep-sea sediment metagenomic clone that produces water-soluble melanin in Escherichia coli.

    PubMed

    Huang, Yali; Lai, Xintian; He, Xiaocui; Cao, Lixiang; Zeng, Zhirui; Zhang, Jiong; Zhou, Shining

    2009-01-01

    To access to the microbial genetic resources of deep-sea sediment by a culture-independent approach, the sediment DNA was extracted and cloned into fosmid vector (pCC1FOS) generating a library of 39,600 clones with inserts of 24-45 kb. The clone fss6 producing red-brown pigment was isolated and characterized. The pigment was identified as melanin according to its physico-chemical characteristics. Subcloning and sequences analyses of fss6 demonstrated that one open reading frame (ORF2) was responsible for the pigment production. The deduced protein from ORF2 revealed significant amino acid similarity to the 4-hydroxyphenylpyruvate dioxygenase (HPPD) from deep-sea bacteria Idiomarina loihiensis. Further study demonstrated that the production of melanin was correlated with homogentistic acid (HGA). The p-hydroxyphenylpyruvate produced by the Escherichia coli host was converted to HGA through the oxidation reaction of introduced HPPD. The results demonstrate that expression of DNA extracted directly from the environment might generate applicable microbial gene products. The construction and analysis of the metagenomic library from deep-sea sediment contributed to our understanding for the reservoir of unexploited deep-sea microorganisms. PMID:18648877

  20. Virulence Profiles of Bacteremic Extended-Spectrum β-Lactamase-Producing Escherichia coli: Association with Epidemiological and Clinical Features

    PubMed Central

    Rodríguez-Baño, Jesús; Mingorance, Jesús; Fernández-Romero, Natalia; Serrano, Lara; López-Cerero, Lorena; Pascual, Alvaro

    2012-01-01

    There is scarce data about the importance of phylogroups and virulence factors (VF) in bloodstream infections (BSI) caused by extended-spectrum β-lactamase-producing Escherichia coli (ESBLEC). A prospective multicenter Spanish cohort including 191 cases of BSI due to ESBLEC was studied. Phylogroups and 25 VF genes were investigated by PCR. ESBLEC were classified into clusters according to their virulence profiles. The association of phylogropus, VF, and clusters with epidemiological features were studied using multivariate analysis. Overall, 57.6%, 26.7%, and 15.7% of isolates belonged to A/B1, D and B2 phylogroups, respectively. By multivariate analysis (adjusted OR [95% CI]), virulence cluster C2 was independently associated with urinary tract source (5.05 [0.96–25.48]); cluster C4 with sources other than urinary of biliary tract (2.89 [1.05–7.93]), and cluster C5 with BSI in non-predisposed patients (2.80 [0.99–7.93]). Isolates producing CTX-M-9 group ESBLs and from phylogroup D predominated among cluster C2 and C5, while CTX-M-1 group of ESBL and phylogroup B2 predominantes among C4 isolates. These results suggest that host factors and previous antimicrobial use were more important than phylogroup or specific VF in the occurrence of BSI due to ESBLEC. However, some associations between virulence clusters and some specific epidemiological features were found. PMID:22970186

  1. A New Immunoassay for Detecting All Subtypes of Shiga Toxins Produced by Shiga Toxin-Producing E. coli in Ground Beef

    PubMed Central

    He, Xiaohua; Kong, Qiulian; Patfield, Stephanie; Skinner, Craig; Rasooly, Reuven

    2016-01-01

    Background Shiga toxin (Stx) is a common virulence factor of all Shiga toxin producing E. coli (STEC) that cause a wide spectrum of disease, including hemorrhagic colitis and hemolytic uremic syndrome (HUS). Although several commercial kits are available for detection of Stx produced by STEC, none of them are capable of recognizing all subtypes of Stxs, which include three subtypes of Stx1 and seven subtypes of Stx2. Methods and Findings New monoclonal and polyclonal antibodies against Stx1 and Stx2 were developed. A universal sandwich ELISA capable of detecting all known subtypes of Stx1 and Stx2 was established using a pool of newly developed antibodies. To precisely monitor the sensitivity of the assay for each subtype of Stxs, recombinant toxoids were created and used as standards in ELISAs. Because of the high affinity of the antibodies incorporated, the ELISA assay is highly sensitive with a limit of detection for the different subtypes of Stx1a and Stx2a between 10 and 50 pg/mL in phosphate buffered saline (PBS). The assay was also able to identify STEC based on the production of Stxs using the supernatants of culture fluids or even single colonies on agar plates without lengthy enrichment in liquid medium. When applied to ground beef samples, this newly developed ELISA was capable of distinguishing beef samples spiked with a single bacterial cell. Conclusions A highly sensitive and universal assay for all subtypes of Stx1 and Stx2 was developed. It has significantly improved upon the current technologies by avoiding false negative results due to the narrow detection range of the assay. The assay developed in this study can be useful for prompt detection of new and emerging serotypes and screening ground beef samples for contamination of STEC at an early stage in the food supply chain, thus avoiding the need for possible recall. PMID:26824247

  2. Interactive effects of temperature, pH, and water activity on the growth kinetics of Shiga toxin-producing Escherichia coli O104:H4 3.

    PubMed

    Juneja, Vijay K; Mukhopadhyay, Sudarsan; Ukuku, Dike; Hwang, Cheng-An; Wu, Vivian C H; Thippareddi, Harshavardhan

    2014-05-01

    The risk of non-O157 Shiga toxin-producing Escherichia coli strains has become a growing public health concern. Several studies characterized the behavior of E. coli O157:H7; however, no reports on the influence of multiple factors on E. coli O104:H4 are available. This study examined the effects and interactions of temperature (7 to 46°C), pH (4.5 to 8.5), and water activity (aw ; 0.95 to 0.99) on the growth kinetics of E. coli O104:H4 and developed predictive models to estimate its growth potential in foods. Growth kinetics studies for each of the 23 variable combinations from a central composite design were performed. Growth data were used to obtain the lag phase duration (LPD), exponential growth rate, generation time, and maximum population density (MPD). These growth parameters as a function of temperature, pH, and aw as controlling factors were analyzed to generate second-order response surface models. The results indicate that the observed MPD was dependent on the pH, aw, and temperature of the growth medium. Increasing temperature resulted in a concomitant decrease in LPD. Regression analysis suggests that temperature, pH, and aw significantly affect the LPD, exponential growth rate, generation time, and MPD of E. coli O104:H4. A comparison between the observed values and those of E. coli O157:H7 predictions obtained by using the U. S. Department of Agriculture Pathogen Modeling Program indicated that E. coli O104:H4 grows faster than E. coli O157:H7. The developed models were validated with alfalfa and broccoli sprouts. These models will provide risk assessors and food safety managers a rapid means of estimating the likelihood that the pathogen, if present, would grow in response to the interaction of the three variables assessed. PMID:25198132

  3. Acid Resistance and Molecular Characterization of Escherichia coli O157:H7 and Different Non-O157 Shiga Toxin-Producing E. coli Serogroups.

    PubMed

    Kim, Gwang-Hee; Breidt, Frederick; Fratamico, Pina; Oh, Deog-Hwan

    2015-10-01

    The objective of this study was to compare the acid resistance (AR) of non-O157 Shiga toxin-producing Escherichia coli (STEC) strains belonging to serogroups O26, O45, O103, O104, O111, O121, and O145 with O157:H7 STEC isolated from various sources in 400 mM acetic acid solutions (AAS) at pH 3.2 and 30 °C for 25 min with or without glutamic acid. Furthermore, the molecular subgrouping of the STEC strains was analyzed with the repetitive sequence-based PCR (rep-PCR) method using a DiversiLab(TM) system. Results for a total of 52 strains ranged from 0.31 to 5.45 log reduction CFU/mL in the absence of glutamic acid and 0.02 to 0.33 CFU/mL in the presence of glutamic acid except for B447 (O26:H11), B452 (O45:H2), and B466 (O104:H4) strains. Strains belonging to serogroups O111, O121, and O103 showed higher AR than serotype O157:H7 strains in the absence of glutamic acid. All STEC O157:H7 strains exhibited a comparable DNA pattern with more than 95% similarity in the rep-PCR results, as did the strains belonging to serogroups O111 and O121. Surprisingly, the DNA pattern of B458 (O103:H2) was similar to that of O157:H7 strains with 82% similarity, and strain B458 strain showed the highest AR to AAS among the O103 strains with 0.44 log reduction CFU/mL without glutamic acid. In conclusion, STEC serotypes isolated from different sources exhibited diverse AR and genetic subtyping patterns. Results indicated that some non-O157 STEC strains may have higher AR than STEC O157:H7 strains under specific acidic conditions, and the addition of glutamic acid provided enhanced protection against exposure to AAS. PMID:26375176

  4. Antimicrobial resistance in faecal Escherichia coli isolates from farmed red deer and wild small mammals. Detection of a multiresistant E. coli producing extended-spectrum beta-lactamase.

    PubMed

    Alonso, C A; González-Barrio, D; Tenorio, Carmen; Ruiz-Fons, F; Torres, C

    2016-04-01

    Eighty-nine Escherichia coli isolates recovered from faeces of red deer and small mammals, cohabiting the same area, were analyzed to determine the prevalence and mechanisms of antimicrobial resistance and molecular typing. Antimicrobial resistance was detected in 6.7% of isolates, with resistances to tetracycline and quinolones being the most common. An E. coli strain carrying blaCTX-M-1 as well as other antibiotic resistant genes included in an unusual class 1 integron (Intl1-dfrA16-blaPSE-1-aadA2-cmlA1-aadA1-qacH-IS440-sul3-orf1-mef(B)Δ-IS26) was isolated from a deer. The blaCTX-M-1 gene was transferred by conjugation and transconjugants also acquired an IncN plasmid. This strain was typed as ST224, which seems to be well adapted to both clinical and environmental settings. The phylogenetic distribution of the 89 strains varied depending on the animal host. This work reveals low antimicrobial resistance levels among faecal E. coli from wild mammals, which reflects a lower selective pressure affecting these bacteria, compared to livestock. However, it is remarkable the detection of a multi-resistant ESBL-E. coli with an integron carrying clinically relevant antibiotic-resistance genes, which can contribute to the dissemination of resistance determinants among different ecosystems. PMID:27012919

  5. Risk Factors for Salmonella, Shiga Toxin-Producing Escherichia coli and Campylobacter Occurrence in Primary Production of Leafy Greens and Strawberries

    PubMed Central

    Ceuppens, Siele; Johannessen, Gro S.; Allende, Ana; Tondo, Eduardo César; El-Tahan, Fouad; Sampers, Imca; Jacxsens, Liesbeth; Uyttendaele, Mieke

    2015-01-01

    The microbiological sanitary quality and safety of leafy greens and strawberries were assessed in the primary production in Belgium, Brazil, Egypt, Norway and Spain by enumeration of Escherichia coli and detection of Salmonella, Shiga toxin-producing E. coli (STEC) and Campylobacter. Water samples were more prone to containing pathogens (54 positives out of 950 analyses) than soil (16/1186) and produce on the field (18/977 for leafy greens and 5/402 for strawberries). The prevalence of pathogens also varied markedly according to the sampling region. Flooding of fields increased the risk considerably, with odds ratio (OR) 10.9 for Salmonella and 7.0 for STEC. A significant association between elevated numbers of generic E. coli and detection of pathogens (OR of 2.3 for STEC and 2.7 for Salmonella) was established. Generic E. coli was found to be a suitable index organism for Salmonella and STEC, but to a lesser extent for Campylobacter. Guidelines on frequency of sampling and threshold values for E. coli in irrigation water may differ from region to region. PMID:26295251

  6. Risk Factors for Salmonella, Shiga Toxin-Producing Escherichia coli and Campylobacter Occurrence in Primary Production of Leafy Greens and Strawberries.

    PubMed

    Ceuppens, Siele; Johannessen, Gro S; Allende, Ana; Tondo, Eduardo César; El-Tahan, Fouad; Sampers, Imca; Jacxsens, Liesbeth; Uyttendaele, Mieke

    2015-08-01

    The microbiological sanitary quality and safety of leafy greens and strawberries were assessed in the primary production in Belgium, Brazil, Egypt, Norway and Spain by enumeration of Escherichia coli and detection of Salmonella, Shiga toxin-producing E. coli (STEC) and Campylobacter. Water samples were more prone to containing pathogens (54 positives out of 950 analyses) than soil (16/1186) and produce on the field (18/977 for leafy greens and 5/402 for strawberries). The prevalence of pathogens also varied markedly according to the sampling region. Flooding of fields increased the risk considerably, with odds ratio (OR) 10.9 for Salmonella and 7.0 for STEC. A significant association between elevated numbers of generic E. coli and detection of pathogens (OR of 2.3 for STEC and 2.7 for Salmonella) was established. Generic E. coli was found to be a suitable index organism for Salmonella and STEC, but to a lesser extent for Campylobacter. Guidelines on frequency of sampling and threshold values for E. coli in irrigation water may differ from region to region. PMID:26295251

  7. Epidemiology and clinical outcomes of bloodstream infections caused by extended-spectrum β-lactamase-producing Escherichia coli in patients with cancer.

    PubMed

    Ha, Young Eun; Kang, Cheol-In; Cha, Min Kyeong; Park, So Yeon; Wi, Yu Mi; Chung, Doo Ryeon; Peck, Kyong Ran; Lee, Nam Yong; Song, Jae-Hoon

    2013-11-01

    Patients with cancer can be vulnerable to infection with antimicrobial-resistant pathogens such as extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae. A cohort study was performed to evaluate the epidemiology and impact of ESBL-producing Escherichia coli (ESBL-EC) bacteraemia on the outcomes of adult patients with cancer. During the 2.5-year study period, a total of 350 cases of E. coli bacteraemia were documented in cancer patients, of which 95 (27.1%) were due to ESBL-EC. Significant factors associated with ESBL-EC bacteraemia were liver disease, immunosuppressant use, recent surgery, and prior use of cephalosporins or fluoroquinolones. The overall 30-day mortality rate was 14.9% (52/350), and the mortality rate was higher in patients with ESBL-EC than in those without ESBL-EC (22.1% vs.12.2%; P=0.02). Multivariate analysis showed that ESBL-EC was an independent risk factor for mortality (odds ratio=3.01, 95% confidence interval 1.45-6.28; P=0.003), along with the presence of septic shock, mechanical ventilation, the severity of underlying diseases, and pneumonia as a source of bacteraemia. Of the 69 isolates in which ESBLs and their molecular relationships were studied, 68 (98.6%) produced CTX-M-type and 51 (73.9%) produced CTX-M-14 and/or CTX-M-15. Twenty-four sequence types (STs) were identified among CTX-M-14- and CTX-M-15-producing E. coli isolates, with ST131 being the most prevalent (12/51; 23.5%). In conclusion, this study confirms that CTX-M-producing E. coli and ST131, which have been shown to be an emerging public health threat, are widely prevalent in cancer patients and can adversely affect the outcome of E. coli bacteraemia in these patients. PMID:24071027

  8. Effects of environmental parameters on the dual-species biofilms formed by Escherichia coli O157:H7 and Ralstonia insidiosa, a strong biofilm producer isolated from a fresh-cut produce processing plant.

    PubMed

    Liu, Nancy T; Nou, Xiangwu; Bauchan, Gary R; Murphy, Charles; Lefcourt, Alan M; Shelton, Daniel R; Lo, Y Martin

    2015-01-01

    Biofilm-forming bacteria resident to food processing facilities are a food safety concern due to the potential of biofilms to harbor foodborne bacterial pathogens. When cultured together, Ralstonia insidiosa, a strong biofilm former frequently isolated from produce processing environments, has been shown to promote the incorporation of Escherichia coli O157:H7 into dual-species biofilms. In this study, interactions between E. coli O157:H7 and R. insidiosa were examined under different incubating conditions. Under static culture conditions, the incorporation of E. coli O157:H7 into biofilms with R. insidiosa was not significantly affected by either low incubating temperature (10°C) or by limited nutrient availability. Greater enhancement of E. coli O157:H7 incorporation in dual-species biofilms was observed by using a continuous culture system with limited nutrient availability. Under the continuous culture conditions used in this study, E coli O157:H7 cells showed a strong tendency of colocalizing with R. insidiosa on a glass surface at the early stage of biofilm formation. As the biofilms matured, E coli O157:H7 cells were mostly found at the bottom layer of the dual-species biofilms, suggesting an effective protection by R. insidiosa in the mature biofilms. PMID:25581186

  9. Characterization of shiga toxin-producing Escherichia coli recovered from domestic animals to determine stx variants, virulence genes, and cytotoxicity in mammalian cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shiga toxin-producing Escherichia coli (STEC) can cause foodborne illnesses ranging from diarrhea to severe diseases such as hemorrhagic colitis (HC), and hemolytic uremic syndrome (HUS) in humans. In this study, we determined virulence genes, stx subtypes and we evaluated the cytotoxicity in mammal...

  10. DNA sequence and analysis of a 90.1 kb virulence plasmid in shiga toxin-producing Escherichia coli (STEC) O145:NM 83-75

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shiga toxin-producing Escherichia coli (STEC) belonging to serogroup O145 are important emerging food-borne pathogens responsible for sporadic cases and outbreaks of hemorrhagic colitis and hemolytic uremic syndrome. A large plasmid carried by STEC O145:NM strain 83-75 and named pO145-NM was sequen...

  11. An environmental shiga toxin-producing escherichia coli O145 clonal population exhibits high-level phenotypic variation that includes virulence traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shiga toxin-producing Escherichia coli (STEC) serotype O145 is one of the major non-O157 serotypes associated with severe human disease. Here we examined the genetic diversity, population structure, virulence potential, and antibiotic resistance profile of environmental O145 strains isolated from a ...

  12. Genetically marked strains of Shiga toxin-producing E. coli O157:H7 and non-O157 for detection and modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Shiga toxin-producing E. coli (STEC) are among the most important foodborne pathogens in the United States and worldwide. STEC O157:H7 is isolated from about half of all STEC-induced diarrheal disease in North America, while non-O157 STEC account for the remaining isolates. Thus, the U...

  13. Predicting the presence of non-O157 Shiga toxin-producing Escherichia coli in ground beef by using molecular tests for Shiga toxins, intimin, and O serogroups

    Technology Transfer Automated Retrieval System (TEKTRAN)

    When 3,972 ground beef enrichments with 6 confirmed to contain a non-O157 Shiga toxin-producing intimin-positive Escherichia coli isolate were tested for Shiga toxin, intimin, and O group (O26,045, O103, O111, O121, and O145) genes, 183 potential positives and only 2 of the 6 confirmed positives wer...

  14. Growth characteristics of Shiga toxin-producing Escherichia coli (STEC) stressed by chlorine, sodium chloride, acid, and starvation on lettuce and cantaloupe

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shiga toxin producing Escherichia coli (STEC) is one of the major foodborne pathogens causing serious illnesses, leading to hospitalizations in the United States. Bacteria that are exposed to environmental stresses during food processing may exhibit different growth patterns in subsequent growth env...

  15. Genotypic analyses of Shiga toxin-producing Escherichia coli O157 and non-O157 recovered from feces of domestic animals in rural farms in Mexico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shiga toxin-producing Escherichia coli (STEC) is a zoonotic enteric pathogen associated with human gastroenteritis worldwide. Cattle and small ruminants are important animal reservoirs of STEC. The present study investigated animal reservoirs for STEC in small rural farms in the Culiacan Valley, an...

  16. Mixed biofilm formation by Shiga toxin-producing Escherichia coli and Salmonella enterica serovar typhimurium enhanced bacterial resistance to sanitization due to extracellular polymeric substances

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shiga toxin–producing Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium are important foodborne pathogens capable of forming single-species biofilms or coexisting in multispecies biofilm communities. Bacterial biofilm cells are usually more resistant to sanitization than their pla...

  17. Comparison of antibody- versus pcr-based assays for serotyping shiga toxin-producing escherichia coli recovered from various cattle operations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Serotyping of Shiga toxin-producing Escherichia coli (STEC) strains is contingent upon the availability of quality antisera. In this study, the serogroup of 161 STEC strains typed by conventional antisera and isolated from the fecal samples of California cattle were compared to two newly developed ...

  18. Detection of Shiga toxin variants, virulence genes and the relationship to cytotoxicity in Shiga toxin-producing Escherichia coli (STEC) from domestic farm animals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shiga toxin-producing Escherichia coli (STEC) can cause foodborne illnesses ranging from diarrhea to life-threating diseases such as hemorrhagic colitis, and hemolytic uremic syndrome in humans. In this study, we determined virulence genes, stx subtypes and we evaluated the cytotoxicity in STEC stra...

  19. Genetically marked strains of Shiga toxin-producing O157:H7 and non-O157 Escherichia coli: Tools for detection and modelling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shiga toxin-producing E. coli (STEC) are among the most important foodborne pathogens in the United States and worldwide. Nearly half of all STEC-induced diarrheal disease in the United States is caused by STEC O157:H7 while non-O157 STEC account for the remaining illnesses. Thus, the USDA Food Safe...

  20. An environmental shiga toxin-producing Escherichia coli O145 clonal population exhibits high-level phenotypic variation that includes virulence traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shiga toxin-producing Escherichia coli (STEC) serotype O145 is one of the major non-O157 serotypes associated with severe human disease. Here we examined the genetic diversity, population structure, virulence potential, and antibiotic resistance profile of environmental O145 strains isolated from a ...

  1. The effect of deep frying or conventional oven cooking on inactivation of Shiga toxin-producing cells of Escherichia coli (STEC) in meatballs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated the effects deep frying or oven cooking on inactivation of Shiga toxin-producing cells of Escherichia coli (STEC) in meatballs. A finely-ground veal and/or a beef-pork-veal mixture were inoculated (ca. 7.0 log CFU/g) with an eight-strain, genetically-marked cocktail of rifampicin-res...

  2. Top-down proteomic identification of Shiga toxin 2 variants from Shiga toxin-producing Escherichia coli (STEC) using MALDI-TOF-TOF-MS/MS-PSD

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shiga toxin-producing Escherichia coli (STEC) are increasingly linked to severe outbreaks of foodborne illness throughout the world, e.g. Germany and France in 2011. STEC infections can result in bloody diarrhea, hemolytic uremic syndrome, kidney failure and death. New analytical techniques are ne...

  3. Comparison of Colony Hybridization to Phenotype Screening on Washed Sheep's Blood Agar for the Isolation of Shiga toxin Producing Escherichia coli from Complex Matrixes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose of study: Isolating Shiga toxin-producing Escherichia coli (STEC) from complex matrixes such as ground beef is a lengthy and laborious process. In our previous studies of STEC present in beef production, colony hybridization was used to identify suspect stx containing colonies for further c...

  4. Distinct PFGE and MLVA Genotypes of Shiga Toxin-Producing Escherichia coli (STEC)Recovered from Feces of Farm Animals in the Culiacan Valley, Mexico(Abstract)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shiga toxin-producing Escherichia coli (STEC) is a food- and water-borne pathogen that is known to cause human gastrointestinal illnesses. The major reservoirs for STEC are sheep and cattle feces. This study investigated the prevalence and genetic diversity of STEC genotypes from animal feces of rur...

  5. Detection and isolation of Shiga toxin-producing Escherichia coli (STEC) O104 and other STEC serogroups of public health concern

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Shiga toxin-producing Escherichia coli (STEC) are important food-borne pathogens that cause outbreaks and serious cases of food-borne illness. Methods for detection and isolation of STEC, particularly the non-O157 STEC, are needed to prevent their transmission through contaminated fo...

  6. Hyperspectral imaging of shiga toxin-producing escherichia coli serogroups O26, O45, O103, O111, O121, and O145 on Rainbow Agar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The U.S. Department of Agriculture, Food Safety Inspection Service has determined that six non-O157 Shiga toxin-producing Escherichia coli (STEC) serogroups (O26, O45, O103, O111, O121, and O145) are adulterants in raw beef. Isolate and phenotypic discrimination of non-O157 STEC is problematic due ...

  7. Survival and expression of acid resistance genes in Shiga toxin-producing Escherichia coli acid adapted in pineapple juice and exposed to synthetic gastric fluid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aims: The aim of this research was to examine relative transcriptional expression of acid resistance (AR) genes, rpoS, gadA and adiA, in O157:H7 and non-O157 Shiga toxin-producing Escherichia coli (STEC) serotypes after adaptation to pineapple juice (PJ) and subsequently to determine survival with e...

  8. Hyperspectral imaging for detection of non-O157 shiga-toxin producing escherichia coli(STEC) serogroups on spread plates of mixed cultures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated the feasibility of visible and near-infrared (VNIR) hyperspectral imaging for rapid presumptive-positive screening of six representative non-O157 Shiga-toxin producing Escherichia coli (STEC) serogroups (O26, O45, O103, O111, O121, and O145) on spread plates of mixed cultures. Althou...

  9. A polyclonal antibody based immunoassay detects seven subtypes of Shiga toxin 2 produced by escherichia coli in human and environmental samples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The increase of outbreaks and illnesses linked to Shiga toxin-producing Escherichia coli (STEC) has necessitated the development of effective detection methods for these pathogens in various matrices. The best way to determine if a bacterial strain is a STEC is to examine the production of Shiga tox...

  10. Canonical single nucleotide polymorphisms (SNPs) for high-resolution subtyping of Shiga-toxin producing Escherichia coli (STEC) O157:H7

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to develop a canonical SNP panel for subtyping of Shiga-toxin producing Escherichia coli (STEC). To this purpose, 906 putative SNPs were identified using resequencing tiling arrays. A subset of 391 SNPs was further screened using high-throughput TaqMan PCR against a d...

  11. Mathematical modeling and numerical analysis of the growth of Non-O157 shiga toxin-producing Escherichia coli in spinach leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to investigate the growth of non-O157 Shiga toxin-producing Escherichia coli (STEC) in spinach leaves and to develop kinetic models to describe the bacterial growth. Six serogroups of non-O157 STEC, including O26, O45, O103, O111, O121, and O145, were used in the growth stu...

  12. Genome sequencing and comparative genomics provides insights on the evolutionary dynamics and pathogenic potential of different H-Types of Shiga toxin-producing Escherichia coli O104

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Various Shiga toxin-producing Escherichia coli (STEC) O104 H-types including H4, H7, H21, and H¯ have been associated with sporadic cases of illness and have caused outbreaks globally. In the U.S., STEC O104:H21 caused an outbreak associated with milk in 1994. The aim of this work was to conduct a...

  13. Effect of high pressure impact on the survival of Shiga Toxin-producing Escherichia coli ('Big Six' and 0157) in ground beef

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High pressure processing (HPP) is a safe and effective technology for improving food safety while maintaining food quality attributes. Non-O157:H7 Shiga Toxin-producing Escherichia coli (STEC) have been increasingly implicated in foodborne illness outbreaks and recalls, and the USDA Food Safety Ins...

  14. Recovery of Shiga toxin-producing Escherichia coli 0157:H7 in tenderized veal cordon bleu following cooking on an electric skillet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The implication of veal products in several recalls due to contamination with Shiga toxin-producing Escherichia coli (STEC) and USDA FSIS verification sampling results revealing a higher percent positive rate of STEC in veal than in beef products provides justification for validating cooking practic...

  15. Evaluating the efficacy of three USDA-approved antimicrobial sprays for reducing surrogate Shiga toxin-producing cells of "Escherichia coli on bob veal carcasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shiga toxin-producing Escherichia coli (STEC) have recently been recognized as a problem for the veal industry, suggesting the need for effective antimicrobial intervention strategies throughout processing. Therefore, we evaluated the efficacy of lactic acid (4.5%), Citrilow™ (pH 1.2), and Beefxide®...

  16. Reduction of Escherichia coli O157:H7 and Salmonella on fresh-cut produce by caprylic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Caprylic acid (CA) was evaluated for reducing E. coli O157: H7 and Salmonella on spinach and lettuce leaves. Spinach, Romaine lettuce and Iceberg lettuce leaves were inoculated with a cocktail of five E. coli O157: H7 or Salmonella strains, air dried for 30 min, and then dipped in caprylic acid (10,...

  17. Antimicrobial Efficacy of a Lactic Acid and Citric Acid Blend against Shiga Toxin-Producing Escherichia coli, Salmonella, and Nonpathogenic Escherichia coli Biotype I on Inoculated Prerigor Beef Carcass Surface Tissue.

    PubMed

    Scott, Brittney R; Yang, Xiang; Geornaras, Ifigenia; Delmore, Robert J; Woerner, Dale R; Adler, Jeremy M; Belk, Keith E

    2015-12-01

    Studies were conducted to (i) determine whether inoculants of nonpathogenic Escherichia coli biotype I effectively served as surrogates for E. coli O157:H7, non-O157 Shiga toxin-producing E. coli, and Salmonella when prerigor beef carcass tissue was treated with a commercially available blend of lactic acid and citric acid (LCA) at a range of industry conditions of concentration, temperature, and pressure; (ii) determine the antimicrobial efficacy of LCA; and (iii) investigate the use of surrogates to validate a hot water and LCA sequential treatment as a carcass spray intervention in a commercial beef harvest plant. In an initial laboratory study, beef brisket tissue samples were left uninoculated or were inoculated (∼6 log CFU/cm(2)) on the adipose side with E. coli O157:H7 (5-strain mixture), non-O157 Shiga toxin-producing E. coli (12-strain mixture), Salmonella (6-strain mixture), or nonpathogenic E. coli (5-strain mixture). Samples were left untreated (control) or were treated with LCA, in a spray cabinet, at one of eight combinations of solution concentration (1.9 and 2.5%), solution temperature (43 and 60°C), and application pressure (15 and 30 lb/in(2)). In a second study, the E. coli surrogates were inoculated (∼6 log CFU/cm(2)) on beef carcasses in a commercial facility to validate the use of a hot water treatment (92.2 to 92.8°C, 13 to 15 lb/in(2)) followed by an LCA treatment (1.9%, 50 to 51.7°C, 13 to 15 lb/in(2), 10 s). In the in vitro study, surrogate and pathogen bacteria did not differ in their response to the tested LCA treatments. Treatment with LCA reduced (P < 0.05) inoculated populations by 0.9 to 1.5 log CFU/cm(2), irrespective of inoculum type. The hot water and LCA sequential treatments evaluated in the commercial facility reduced (P < 0.05) the inoculated nonpathogenic E. coli surrogates on carcasses by 3.7 log CFU/cm(2). This study therefore provides the meat industry with data for this sequential multiple hurdle system for the

  18. [Shiga toxin-producing Escherichia coli and regulatory implications in the field of Public Health in light of recent outbreaks in Europe].

    PubMed

    Marcotrigiano, Vincenzo; Lanzilotti, Carla; De Giglio, Osvalda; Caggiano, Giuseppina; Montagna, Maria Teresa; Napoli, Christian

    2015-01-01

    The increasingly widespread habit of consuming ready-to-eat foods, especially foods not subjected to heat treatment, has contributed to the occurrence of new outbreaks of foodborne illness. In 2011, outbreaks caused by Shiga toxin-producing Escherichia coli occurred in several European Union (EU) countries and this led to a legislative evolution on food safety at the EU level. This article outlines the recommendations made to ensure food safety within the food chains, especially in relation to foods potentially responsible for Escherichia coli VTEC infections, and focuses on measures adopted at EU level to ensure consumer protection. PMID:26519748

  19. [Surveillance of Antimicrobial Resistant Esherichia coli by Rectal Swab Method--Annual Change of Prevalence of Quinolone-resistant and ESBL Producing Strains from 2009 to 2013].

    PubMed

    Nasu, Yoshitsugu; Sako, Shinichi; Yano, Tomofumi; Kosaka, Noriko

    2015-09-01

    Although most of commonly used antimicrobial agents had been susceptible to Esherichia coli, recently there are a lot of reports concerning about community-acquired infection caused by resistant E. coli. The aim of this study is to define the prevalence of resistant E. coli in normal flora colonization by the rectal swab method. From June 2009 to December 2013, 251 male patients (50-85 year-old, median 68) planned to transrectal prostate biopsy participated in this study. Stools stuck on the glove at the digital examination were provided for culture specimen. Identification of E. coli and determination of MIC was performed by MicroScan WalkAway40plus (Siemens). Isolated E. coli were deemed quinolone-resistant strains when their MIC of levofloxacine was 4 μg/mL or above according to the breakpoint MIC by the CLSI criteria. ESBL producing ability was determined by the double disk method used by CVA contained ESBL definition disc (Eikenkagaku). Of the 251 study patients, 224 patients had positive cultures of E. coli. Twenty-four patients had quinolone-resistant strains and 9 patients had ESBL producing strains. The prevalence of quinolone-resistant strains in 2009, 2010, 2011, 2012 and 2013 were 5.9% (2 out of 34 strains), 13.5% (5 out of 37 strains), 12.5% (4 out of 32 strains), 9.0% (6 out of 67) and 13.0% (7 out of 54 strains), respectively. The prevalence of ESBL producing strains in 2009, 2010, 2011, 2012 and 2013 were 0% (0 out of 34 strains), 5.4% (2 out of 37 strains), 3.1% (1 out of 32 strains), 3.0% (2 out of 67 strains) and 7.4% (4 out of 54 strains), respectively. In 2013, the prevalence of antimicrobial resistant E. coli, both quinolone-resistant and ESBL producing strains, were increasing. We have to pay a close attention to the increase of resistant E. coli. PMID:26630790

  20. Properties of a glycogen like polysaccharide produced by a mutant of Escherichia coli lacking glycogen synthase and maltodextrin phosphorylase.

    PubMed

    Kwak, Ji-Yun; Kim, Min-Gyu; Kim, Young-Wan; Ban, Hyun-Seung; Won, Mi-Sun; Park, Jong-Tae; Park, Kwan-Hwa

    2016-01-20

    Escherichia coli mutant TBP38 lacks glycogen synthase (GlgA) and maltodextrin phosphorylase (MalP). When grown on maltose in fed-batch fermentation TBP38 accumulated more than 50-fold higher glycogen-type polysaccharide than its parental strain. The polysaccharides were extracted at different growth stages and migrated as one peak in size-exclusion chromatography. TBP38 produced polysaccharides ranging 2.6 × 10(6)-4.6 × 10(6)Da. A ratio of short side-chains (DP ≦ 12) in the polysaccharides was greater than 50%, and number-average degree of polymerization varied from 9.8 to 8.4. The polysaccharides showed 70-290 times greater water-solubility than amylopectin. Km values using porcine and human pancreatic α-amylases with polysaccharides were 2- to 4-fold larger than that of amylopectin. kcat values were similar for both α-amylases. The TBP38 polysaccharides had 40-60% lower digestibility to amyloglucosidase than amylopectin. Intriguingly, the polysaccharides showed strong immunostimulating effects on mouse macrophage cell comparable to lipopolysaccharides. The lipopolysaccharide contamination levels were too low to account for this effect. PMID:26572397

  1. Profiling of antimicrobial resistance and plasmid replicon types in β-lactamase producing Escherichia coli isolated from Korean beef cattle

    PubMed Central

    Shin, Seung Won; Jung, Myunghwan; Shin, Min-Kyung

    2015-01-01

    In this study, 78 isolates of Escherichia coli isolated from Korean beef cattle farms were investigated for the production of extended-spectrum β-lactamase (ESBL) and/or AmpC β-lactamase. In the disc diffusion test with ampicillin, amoxicillin, cephalothin, ceftiofur, cefotaxime, ceftazidime, and cefoxitin, 38.5% of the isolates showed resistance to all of ampicillin, amoxicillin, and cephalothin. The double disc synergy method revealed that none of the isolates produced ESBL or AmpC β-lactamases. DNA sequencing showed that all isolates encoded genes for TEM-1-type β-lactamase. Moreover, 78.2% of the isolates transferred the TEM-1-type β-lactamase gene via conjugation. In plasmid replicon typing of all donors, IncFIB and IncFIA were identified in 71.4% and 41.0% of plasmids, respectively. In transconjugants, IncFIB and IncFIA were the most frequent types detected (61.5% and 41.0%, respectively). Overall, the present study indicates that selection pressures of antimicrobials on β-lactamases in beef cattle may be low relative to other livestock animals in Korea. Moreover, to reduce selection pressure and dissemination of β-lactamase, the long-term surveillance of antimicrobial use in domestic beef cattle should be established. PMID:26119172

  2. Variable tellurite resistance profiles of clinically-relevant Shiga toxin-producing Escherichia coli (STEC) influence their recovery from foodstuffs.

    PubMed

    Kerangart, Stéphane; Douëllou, Thomas; Delannoy, Sabine; Fach, Patrick; Beutin, Lothar; Sergentet-Thévenot, Delphine; Cournoyer, Benoit; Loukiadis, Estelle

    2016-10-01

    Tellurite (Tel)-amended selective media and resistance (Tel-R) are widely used for detecting Shiga toxin-producing Escherichia coli (STEC) from foodstuffs. Tel-R of 81 O157 and non-O157 STEC strains isolated from animal, food and human was thus investigated. Variations of STEC tellurite minimal inhibitory concentration (MIC) values have been observed and suggest a multifactorial and variable tellurite resistome between strains. Some clinically-relevant STEC were found highly susceptible and could not be recovered using a tellurite-based detection scheme. The ter operon was highly prevalent among highly Tel-R STEC but was not always detected among intermediately-resistant strains. Many STEC serogroup strains were found to harbor sublines showing a gradient of MIC values. These Tel-R sublines showed statistically significant log negative correlations with increasing tellurite concentration. Whatever the tellurite concentration, the highest number of resistant sublines was observed for STEC belonging to the O26 serogroup. Variations in the number of these Tel-R sublines could explain the poor recovery of some STEC serogroups on tellurite-amended media especially from food products with low levels of contamination. Comparison of tellurite MIC values and distribution of virulence-related genes showed Tel-R and virulence to be related. PMID:27375242

  3. Prevalence and characteristics of Shiga toxin-producing Escherichia coli (STEC) from cattle in Korea between 2010 and 2011

    PubMed Central

    Kang, Eun; Hwang, Sun Young; Kwon, Ka Hee; Kim, Ki Yeon; Kim, Jae Hong

    2014-01-01

    A total of 156 Shiga-like toxin producing Escherichia coli (STEC) were isolated from fecal samples of Korean native (100/568, 18%) and Holstein dairy cattle (56/524, 11%) in Korea between September 2010 and July 2011. Fifty-two STEC isolates (33%) harbored both of shiga toxin1 (stx1) and shiga toxin2 (stx2) genes encoding enterohemolysin (EhxA) and autoagglutinating adhesion (Saa) were detected by PCR in 83 (53%) and 65 (42%) isolates, respectively. By serotyping, six STEC from native cattle and four STEC from dairy cattle were identified as O-serotypes (O26, O111, O104, and O157) that can cause human disease. Multilocus sequence typing and pulsed-field gel electrophoresis patterns highlighted the genetic diversity of the STEC strains and difference between strains collected during different years. Antimicrobial susceptibility tests showed that the multidrug resistance rate increased from 12% in 2010 to 42% in 2011. Differences between isolates collected in 2010 and 2011 may have resulted from seasonal variations or large-scale slaughtering in Korea performed to control a foot and mouth disease outbreak that occurred in early 2011. However, continuous epidemiologic studies will be needed to understand mechanisms. More public health efforts are required to minimize STEC infection transmitted via dairy products and the prevalence of these bacteria in dairy cattle. PMID:23820205

  4. N-Chlorotaurine, a Long-Lived Oxidant Produced by Human Leukocytes, Inactivates Shiga Toxin of Enterohemorrhagic Escherichia coli

    PubMed Central

    Eitzinger, Christian; Ehrlenbach, Silvia; Lindner, Herbert; Kremser, Leopold; Gottardi, Waldemar; Debabov, Dmitri; Anderson, Mark

    2012-01-01

    N-chlorotaurine (NCT), the main representative of long-lived oxidants produced by granulocytes and monocytes, is known to exert broad-spectrum microbicidal activity. Here we show that NCT directly inactivates Shiga toxin 2 (Stx2), used as a model toxin secreted by enterohemorrhagic Escherichia coli (EHEC). Bacterial growth and Stx2 production were both inhibited by 2 mM NCT. The cytotoxic effect of Stx2 on Vero cells was removed by ≥5.5 mM NCT. Confocal microscopy and FACS analyses showed that the binding of Stx2 to human kidney glomerular endothelial cells was inhibited, and no NCT-treated Stx2 entered the cytosol. Mass spectrometry displayed oxidation of thio groups and aromatic amino acids of Stx2 by NCT. Therefore, long-lived oxidants may act as powerful tools of innate immunity against soluble virulence factors of pathogens. Moreover, inactivation of virulence factors may contribute to therapeutic success of NCT and novel analogs, which are in development as topical antiinfectives. PMID:23139739

  5. An outbreak of Shiga toxin-producing Escherichia coli serogroup O157 linked to a lamb-feeding event.

    PubMed

    Rowell, S; King, C; Jenkins, C; Dallman, T J; Decraene, V; Lamden, K; Howard, A; Featherstone, C A; Cleary, P

    2016-09-01

    Fifteen confirmed cases and 15 possible cases of Shiga toxin-producing Escherichia coli (STEC) O157 phage type 21/28 were linked to direct contact with lambs at a 'Lambing Live' event in the North West of England between 29 March and 21 April 2014. Twenty-one (70%) of the cases were female, 23 (77%) were children aged <16 years, of whom 14 (46%) were in the 0-5 years age group. Five children developed haemolytic uraemic syndrome. Multilocus variable number tandem repeat analysis (MLVA) profiles on 14 human cases were indistinguishable, and 6/10 animal isolates had a MLVA profile identical to the outbreak profile. Whole-genome sequencing analysis revealed that all isolates, both human and animal, fell within a 5-single nucleotide polymorphism cluster indicating the isolates belonged to the same point source. On inspection of the premises, extensive and uncontrolled physical contact between visitors and animals was occuring within the animal pens and during bottle-feeding. Public areas were visibly contaminated with animal faeces. Information to visitors, and the infection control awareness demonstrated by staff, was inadequate. Managing the risk to visitors of STEC O157 infection at animal petting events and open farms requires implementation of stringent control measures by the operator, as outlined in the industry code of practice. Enforcement action is sometimes required to prevent high-risk activities taking place at both permanent and temporary attractions. PMID:27297133

  6. Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber.

    PubMed

    Xia, Xiao-Xia; Qian, Zhi-Gang; Ki, Chang Seok; Park, Young Hwan; Kaplan, David L; Lee, Sang Yup

    2010-08-10

    Spider dragline silk is a remarkably strong fiber that makes it attractive for numerous applications. Much has thus been done to make similar fibers by biomimic spinning of recombinant dragline silk proteins. However, success is limited in part due to the inability to successfully express native-sized recombinant silk proteins (250-320 kDa). Here we show that a 284.9 kDa recombinant protein of the spider Nephila clavipes is produced and spun into a fiber displaying mechanical properties comparable to those of the native silk. The native-sized protein, predominantly rich in glycine (44.9%), was favorably expressed in metabolically engineered Escherichia coli within which the glycyl-tRNA pool was elevated. We also found that the recombinant proteins of lower molecular weight versions yielded inferior fiber properties. The results provide insight into evolution of silk protein size related to mechanical performance, and also clarify why spinning lower molecular weight proteins does not recapitulate the properties of native fibers. Furthermore, the silk expression, purification, and spinning platform established here should be useful for sustainable production of natural quality dragline silk, potentially enabling broader applications. PMID:20660779

  7. Virulence profiling and genetic relatedness of Shiga toxin-producing Escherichia coli isolated from humans and ruminants.

    PubMed

    Askari Badouei, Mahdi; Jajarmi, Maziar; Mirsalehian, Akbar

    2015-02-01

    In the present study the occurrence, genotypic characteristics and relatedness of Shiga toxin-producing Escherichia coli (STEC) isolated from 235 fecal samples of diarrheic children (n=75), sheep (n=80), and cattle (n=80) were investigated. Overall, STEC was found in 4%, 61.2%, and 18.7% of diarrheic children, sheep and cattle, respectively. Three of the four STEC isolates from diarrheic children yielded the stx1/ehly profile. The predominant virulence profile of sheep isolates was stx1/ehly (85.2%), but cattle isolates were heterogeneous. Genetic relatedness and diversity of 36 selected isolates were analyzed by enterobacterial repetitive consensus sequences fingerprinting (ERIC) and phylogrouping. In total, 19 ERIC-types were observed in humans (n=2), sheep (n=5), and cattle (n=12) isolates. The majority of the sheep STEC were assigned into B1 phylogroup (83.3%), but cattle isolates belonged to different phylogroups with B1 predominance. Three human STEC isolates had the major characteristics of sheep isolates but revealed distinct fingerprint. These findings indicate that cattle can potentially carry a diverse group of STEC strains. PMID:25534186

  8. An In Vitro Combined Antibiotic-Antibody Treatment Eliminates Toxicity from Shiga Toxin-Producing Escherichia coli

    PubMed Central

    Skinner, Craig; Zhang, Guodong; Patfield, Stephanie

    2015-01-01

    Treating Shiga toxin-producing Escherichia coli (STEC) gastrointestinal infections is difficult. The utility of antibiotics for STEC treatment is controversial, since antibiotic resistance among STEC isolates is widespread and certain antibiotics dramatically increase the expression of Shiga toxins (Stxs), which are some of the most important virulence factors in STEC. Stxs contribute to life-threatening hemolytic uremic syndrome (HUS), which develops in considerable proportions of patients with STEC infections. Understanding the antibiotic resistance profiles of STEC isolates and the Stx induction potential of promising antibiotics is essential for evaluating any antibiotic treatment of STEC. In this study, 42 O157:H7 or non-O157 STEC isolates (including the “big six” serotypes) were evaluated for their resistance against 22 antibiotics by using an antibiotic array. Tigecycline inhibited the growth of all of the tested STEC isolates and also inhibited the production of Stxs (Stx2 in particular). In combination with neutralizing antibodies to Stx1 and Stx2, the tigecycline-antibody treatment fully protected Vero cells from Stx toxicity, even when the STEC bacteria and the Vero cells were cultured together. The combination of an antibiotic such as tigecycline with neutralizing antibodies presents a promising strategy for future STEC treatments. PMID:26100707

  9. Cell invasion and survival of Shiga toxin-producing Escherichia coli within cultured human intestinal epithelial cells.

    PubMed

    Cordeiro, Fabiana; da Silva, Rita Ifuoe K; Vargas-Stampe, Thaís L Z; Cerqueira, Aloysio M F; Andrade, João R C

    2013-08-01

    Shiga toxin-producing Escherichia coli (STEC) cause severe human infections and their virulence abilities are not fully understood. Cattle are a key reservoir, and the terminal rectum is the principal site of bacterial carriage. Most STEC possess a pathogenicity island termed the locus of enterocyte effacement (LEE). Nonetheless, LEE-negative STEC have been associated with disease. We found that invasion of LEE-positive and LEE-negative strains was higher for human enterocytic cell lines and for undifferentiated Caco-2 cells. Intracellular bacteria could be detected as early as 5 min after infection and transmission electron microscopy showed bacteria within membrane-bound vacuoles. STEC invasion depended on actin microfilaments and protein kinases. Scanning electron microscopy revealed that bacterial entry was not associated with membrane ruffling. Absence of macropinocytosis or actin rearrangement at the entry points suggests a zipper-like entry mechanism. Disruption of the tight junction by EGTA enhanced invasion of Caco-2 monolayers, and bacterial invasion mostly proceeded through the basolateral pole of enterocytes. STEC persisted within Caco-2 cells for up to 96 h without cell death and bacterial viability increased after 48 h, suggesting intracellular multiplication. The relatively harmless intracellular localization of STEC can be an efficient strategy to prevent its elimination from the bovine intestinal tract. PMID:23704791

  10. Risk of haemolytic uraemic syndrome caused by shiga-toxin-producing Escherichia coli infection in adult women in Japan.

    PubMed

    Fujii, J; Mizoue, T; Kita, T; Kishimoto, H; Joh, K; Nakada, Y; Ugajin, S; Naya, Y; Nakamura, T; Tada, Y; Okabe, N; Maruyama, Y; Saitoh, K; Kurozawa, Y

    2016-04-01

    Shiga-toxin-producing Escherichia coli (STEC) infections usually cause haemolytic uraemic syndrome (HUS) equally in male and female children. This study investigated the localization of globotriaosylceramide (Gb3) in human brain and kidney tissues removed from forensic autopsy cases in Japan. A fatal case was used as a positive control in an outbreak of diarrhoeal disease caused by STEC O157:H7 in a kindergarten in Urawa in 1990. Positive immunodetection of Gb3 was significantly more frequent in female than in male distal and collecting renal tubules. To correlate this finding with a clinical outcome, a retrospective analysis of the predictors of renal failure in the 162 patients of two outbreaks in Japan was performed: one in Tochigi in 2002 and the other in Kagawa Prefecture in 2005. This study concludes renal failure, including HUS, was significantly associated with female sex, and the odds ratio was 4·06 compared to male patients in the two outbreaks. From 2006 to 2009 in Japan, the risk factor of HUS associated with STEC infection was analysed. The number of males and females and the proportion of females who developed HUS were calculated by age and year from 2006 to 2009. In 2006, 2007 and 2009 in adults aged >20 years, adult women were significantly more at risk of developing HUS in Japan. PMID:26470913

  11. Geographic Divergence of Bovine and Human Shiga Toxin–Producing Escherichia coli O157:H7 Genotypes, New Zealand1

    PubMed Central

    Cookson, Adrian L.; Campbell, Donald M.; Duncan, Gail E.; Prattley, Deborah; Carter, Philip; Besser, Thomas E.; Shringi, Smriti; Hathaway, Steve; Marshall, Jonathan C.; French, Nigel P.

    2014-01-01

    Shiga toxin-producing Escherichia coli (STEC) O157:H7 is a zoonotic pathogen of public health concern worldwide. To compare the local and large-scale geographic distributions of genotypes of STEC O157:H7 isolates obtained from various bovine and human sources during 2008–2011, we used pulsed-field gel electrophoresis and Shiga toxin–encoding bacteriophage insertion (SBI) typing. Using multivariate methods, we compared isolates from the North and South Islands of New Zealand with isolates from Australia and the United States. The STEC O157:H7 population structure differed substantially between the 2 islands and showed evidence of finer scale spatial structuring, which is consistent with highly localized transmission rather than disseminated foodborne outbreaks. The distribution of SBI types differed markedly among isolates from New Zealand, Australia, and the United States. Our findings also provide evidence for the historic introduction into New Zealand of a subset of globally circulating STEC O157:H7 strains that have continued to evolve and be transmitted locally between cattle and humans. PMID:25568924

  12. Inactivation of a diverse set of shiga toxin-producing Escherichia coli in ground beef by high pressure processing.

    PubMed

    Sheen, Shiowshuh; Cassidy, Jennifer; Scullen, Butch; Sommers, Christopher

    2015-12-01

    Shiga toxin-producing Escherichia coli (STEC) are regularly implicated in foodborne illness outbreaks and recalls of ground beef. In this study we determined the High Pressure Processing (HPP) D10 value (the processing conditions needed to reduce the microbial population by 1 log) of 39 STEC isolates, including the "big six" serovars, O104 and O157:H7. STEC isolates included those isolated from animals and environmental sources in addition to those associated with illness in humans. Individual STEC were inoculated into 80% lean ground beef and treated with HPP (350 MPa, 4 °C, up to 40 min). The mean D10 was 9.74 min, with a range of 0.89-25.70 min. The D10 of the STEC involved in human illness was 9.25 vs. 10.40 min for those not involved in human illness (p > 0.05). The presence or absence of genes encoding virulence factors (e.g. Shiga toxin 1 or 2, intimin, or enterohemolysin) had no effect on the HPP D10 (p > 0.05). The high D10 of some STEC involved in human illness should be considered in selecting HPP processing parameters for ground beef. This study demonstrates the heterogeneity of STEC resistance to HPP. Risk assessors and the food industry can use this information to provide safer meat products to consumers. PMID:26338120

  13. Microbiological analysis of pre-packed sweet basil (Ocimum basilicum) and coriander (Coriandrum sativum) leaves for the presence of Salmonella spp. and Shiga toxin-producing E. coli.

    PubMed

    Delbeke, Stefanie; Ceuppens, Siele; Jacxsens, Liesbeth; Uyttendaele, Mieke

    2015-09-01

    Enteric pathogens, such as Salmonella spp. and pathogenic Escherichia coli, have been detected and associated with food borne outbreaks from (imported) fresh leafy herbs. Screening on imported herbs from South East Asian countries has been described. However, limited information on prevalence of these pathogens is available from other sourcing regions. Therefore, fresh pre-packed basil and coriander leaves from a Belgian trading company were investigated for the presence of Salmonella spp., Shiga toxin-producing E. coli (STEC), generic E. coli and coliforms. In total 592 samples were collected originating from Belgium, Israel and Cyprus during 2013-2014. Multiplex PCR followed by further culture confirmation was used for the detection of Salmonella spp. and STEC, whereas the Petrifilm Select E. coli and VRBL-agar were used, respectively, for the enumeration of E. coli and coliforms. Salmonella was detected in 10 out of 592 samples (25g) (1.7%; 5 from basil and 5 from coriander), of which two samples were sourced from Israel and eight from Cyprus. The presence of STEC was suspected in 11 out of 592 samples (25g) (1.9%; 3 basil and 8 coriander), due to the detection of stx and eae genes, of which one sample originated from Belgium, four from Israel and six from Cyprus. No STEC was isolated by culture techniques, but in three samples a serotype (O26, O103 or O111) with its most likely associated eae-variant (β or θ) was detected by PCR. Generic E. coli was enumerated in 108 out of 592 samples, whereby 55, 32 and 13 samples respectively between 10-100, 100-1000 and 1000-10,000cfu/g and 8 samples exceeding 10,000cfu/g. Coliforms were enumerated in all herb samples at variable levels ranging from 1.6 to 7.5logcfu/g. Further statistics indicate that the E. coli class (categorized by level) was significantly correlated with the presence of Salmonella (p<0.001) or STEC (p=0.019), while coliform counts were significant correlated with Salmonella (p<0.001), but not with

  14. Assessment of Shiga Toxin-Producing Escherichia coli Isolates from Wildlife Meat as Potential Pathogens for Humans▿

    PubMed Central

    Miko, Angelika; Pries, Karin; Haby, Sabine; Steege, Katja; Albrecht, Nadine; Krause, Gladys; Beutin, Lothar

    2009-01-01

    A total of 140 Shiga toxin-producing Escherichia coli (STEC) strains from wildlife meat (deer, wild boar, and hare) isolated in Germany between 1998 and 2006 were characterized with respect to their serotypes and virulence markers associated with human pathogenicity. The strains grouped into 38 serotypes, but eight O groups (21, 146, 128, 113, 22, 88, 6, and 91) and four H types (21, 28, 2, and 8) accounted for 71.4% and 75.7% of all STEC strains from game, respectively. Eighteen of the serotypes, including enterohemorrhagic E. coli (EHEC) O26:[H11] and O103:H2, were previously found to be associated with human illness. Genes linked to high-level virulence for humans (stx2, stx2d, and eae) were present in 46 (32.8%) STEC strains from game. Fifty-four STEC isolates from game belonged to serotypes which are frequently found in human patients (O103:H2, O26:H11, O113:H21, O91:H21, O128:H2, O146:H21, and O146:H28). These 54 STEC isolates were compared with 101 STEC isolates belonging to the same serotypes isolated from farm animals, from their food products, and from human patients. Within a given serotype, most STEC strains were similar with respect to their stx genotypes and other virulence attributes, regardless of origin. The 155 STEC strains were analyzed for genetic similarity by XbaI pulsed-field gel electrophoresis. O103:H2, O26:H11, O113:H21, O128:H2, and O146:H28 STEC isolates from game were 85 to 100% similar to STEC isolates of the same strains from human patients. By multilocus sequence typing, game EHEC O103:H2 strains were attributed to a clonal lineage associated with hemorrhagic diseases in humans. The results from our study indicate that game animals represent a reservoir for and a potential source of human pathogenic STEC and EHEC strains. PMID:19700552

  15. Subtilase contributes to the cytotoxicity of a Shiga toxin-producing Escherichia coli strain encoding three different toxins.

    PubMed

    Hauser, Elisabeth; Bruederle, Matthias; Reich, Carolin; Bruckbauer, Annette; Funk, Joschua; Schmidt, Herbert

    2016-01-18

    Food-borne Shiga toxin-producing Escherichia coli (STEC) O113:H21 strain TS18/08, that has previously been isolated from mixed minced meat, harbors the Shiga toxin (Stx) encoding allele stx2a, the plasmid-located subtilase cytotoxin encoding allele subAB1 and the cytolethal distending toxin type V encoding gene cdt-V. In the current study, it could be shown that each of these toxin genes was transcribed with different transcription levels at different time points by RT real time PCR under laboratory batch conditions in LB-broth. The transcription maximum for cdt-V and subAB1 was observed after 3h while stx2a transcription was highest after 6h of incubation. During this time the mean relationship of the amount of stx2a:subAB1:cdt-V transcripts was 1:26:100. Furthermore, isogenic stx2a and cdt-V chromosomal deletion mutants were constructed to measure the contribution of SubAB1 to the overall cytotoxicity of this strain. In this context, a further copy of stx2 was detected in this strain and was also deleted. Comparing the cytotoxicity of supernatants of the resulting mutant strains TS18/08-3 (Δstx2-1Δstx2-2Δcdt-V) and TS18/08-4 (Δstx2-1Δstx2-2Δcdt-VΔsubAB1) on Vero cells demonstrated a contribution of SubAB1 to the overall cytotoxic effect while the 4-fold isogenic deletion mutant did not show any cytotoxic effect and that was comparable to the non-toxic laboratory E. coli strain C600. The cytotoxic effect could be restored by complementation with the recombinant low copy plasmid pWSK29 harboring subAB1 under the control of its own promoter. In addition, the cytotoxicity of wild type strain TS18/08 to Vero cells was in the same range as the EHEC O157:H7 strain EDL933. Therefore, food-borne STEC O113:H21 strain TS18/08 can be considered as a putative human pathogen. PMID:26523884

  16. Phenotypic and Genotypic Characterization of Biofilm Forming Capabilities in Non-O157 Shiga Toxin-Producing Escherichia coli Strains

    PubMed Central

    Hofmann, Christopher S.; Cottrell, Bryan J.; Strobaugh Jr, Terence P.; Paoli, George C.; Nguyen, Ly-Huong; Yan, Xianghe

    2013-01-01

    The biofilm life style helps bacteria resist oxidative stress, desiccation, antibiotic treatment, and starvation. Biofilm formation involves a complex regulatory gene network controlled by various environmental signals. It was previously shown that prophage insertions in mlrA and heterogeneous mutations in rpoS constituted major obstacles limiting biofilm formation and the expression of extracellular curli fibers in strains of Escherichia coli serotype O157:H7. The purpose of this study was to test strains from other important serotypes of Shiga toxin-producing E. coli (STEC) (O26, O45, O103, O111, O113, O121, and O145) for similar regulatory restrictions. In a small but diverse collection of biofilm-forming and non-forming strains, mlrA prophage insertions were identified in only 4 of the 19 strains (serotypes O103, O113, and O145). Only the STEC O103 and O113 strains could be complemented by a trans-copy of mlrA to restore curli production and Congo red (CR) dye affinity. RpoS mutations were found in 5 strains (4 serotypes), each with low CR affinity, and the defects were moderately restored by a wild-type copy of rpoS in 2 of the 3 strains attempted. Fourteen strains in this study showed no or weak biofilm formation, of which 9 could be explained by prophage insertions or rpoS mutations. However, each of the remaining five biofilm-deficient strains, as well as the two O145 strains that could not be complemented by mlrA, showed complete or nearly complete lack of motility. This study indicates that mlrA prophage insertions and rpoS mutations do limit biofilm and curli expression in the non-serotype O157:H7 STEC but prophage insertions may not be as common as in serotype O157:H7 strains. The results also suggest that lack of motility provides a third major factor limiting biofilm formation in the non-O157:H7 STEC. Understanding biofilm regulatory mechanisms will prove beneficial in reducing pathogen survival and enhancing food safety. PMID:24386426

  17. Multicenter Retrospective Study of Cefmetazole and Flomoxef for Treatment of Extended-Spectrum-β-Lactamase-Producing Escherichia coli Bacteremia

    PubMed Central

    Yamamoto, Masaki; Nagao, Miki; Komori, Toshiaki; Fujita, Naohisa; Hayashi, Akihiko; Shimizu, Tsunehiro; Watanabe, Harumi; Doi, Shoichi; Tanaka, Michio; Takakura, Shunji; Ichiyama, Satoshi

    2015-01-01

    The efficacy of cefmetazole and flomoxef (CF) for the treatment of patients with extended-spectrum β-lactamase-producing Escherichia coli (ESBL-EC) bacteremia (ESBL-CF group) was compared with that of carbapenem treatment for ESBL-EC patients (ESBL-carbapenem group) and with that of CF treatment in patients with non-ESBL-EC bacteremia (non-ESBL-CF group). Adult patients treated for E. coli bacteremia in four hospitals were retrospectively evaluated. The 30-day mortality rates in patients belonging to the ESBL-CF, ESBL-carbapenem, and non-ESBL-CF groups were compared as 2 (empirical and definitive therapy) cohorts. The adjusted hazard ratios (aHRs) for mortality were calculated using Cox regression models with weighting according to the inverse probability of propensity scores for receiving CF or carbapenem treatment. The empirical-therapy cohort included 104 patients (ESBL-CF, 26; ESBL-carbapenem, 45; non-ESBL-CF, 33), and the definitive-therapy cohort included 133 patients (ESBL-CF, 59; ESBL-carbapenem, 54; non-ESBL-CF, 20). The crude 30-day mortality rates for patients in the ESBL-CF, ESBL-carbapenem, and non-ESBL-CF groups were, respectively, 7.7%, 8.9%, and 3.0% in the empirical-therapy cohort and 5.1%, 9.3%, and 5.0% in the definitve-therapy cohort. In patients without hematological malignancy and neutropenia, CF treatment for ESBL-EC patients was not associated with mortality compared with carbapenem treatment (empirical-therapy cohort: aHR, 0.87; 95% confidence interval [CI], 0.11 to 6.52; definitive therapy cohort: aHR, 1.04; CI, 0.24 to 4.49). CF therapy may represent an effective alternative to carbapenem treatment for patients with ESBL-EC bacteremia for empirical and definitive therapy in adult patients who do not have hematological malignancy and neutropenia. PMID:26100708

  18. Shiga Toxin-Producing Escherichia coli in Finland from 1990 through 1997: Prevalence and Characteristics of Isolates

    PubMed Central

    Keskimäki, Markku; Saari, Marjut; Heiskanen, Tarja; Siitonen, Anja

    1998-01-01

    During the past 10 years Shiga toxin-producing Escherichia coli (STEC) has emerged as one of the most important causes of food-borne infections in industrialized countries. In Finland, with a population of 5.1 million, however, only four STEC O157:H7 infections were identified from 1990 through 1995; the occurrence of non-O157 STEC infections was unknown. In 1996, we established a national prospective study to determine the prevalence of STEC serotypes in feces of Finns with bloody diarrhea. During this enhanced 1-year study period eight sporadic cases of STEC infection were found; of them, only two were indigenously acquired O157:H7 infections. In 1997, O157 infections increased dramatically, with O157 strains causing 51 of all 61 STEC infections. Altogether 14 non-O157:H7 STEC strains were found in Finland in the 1990s: O26:H11 (four strains), O26:HNM (HNM indicates nonmotile), O2:H29, O91:H21, O91:H40, O101:HNM, O107:H27, O157:HNM, O165:H25, OX3:H21, and Rough:H49. All O157:H7 and O26:H11 isolates produced enterohemolysin, but seven of the other STEC strains did not. Most (n = 63) of the 71 STEC strains isolated carried the stx2 gene only, five carried the stx1 gene only, and three carried both genes. The eaeA gene was detected in all other isolates except five non-O157 strains. There were seven distinct pulsed-field gel electrophoresis (PFGE) genotypes among 57 O157 strains and three distinct PFGE types among four O26:H11 strains. The main PFGE type was found among 65% of all O157 isolates. PMID:9817888

  19. Mouldy feed, mycotoxins and Shiga toxin - producing Escherichia coli colonization associated with Jejunal Hemorrhage Syndrome in beef cattle

    PubMed Central

    2011-01-01

    Background Both O157 and non-O157 Shiga toxin - producing Escherichia coli (STECs) cause serious human disease outbreaks through the consumption of contaminated foods. Cattle are considered the main reservoir but it is unclear how STECs affect mature animals. Neonatal calves are the susceptible age class for STEC infections causing severe enteritis. In an earlier study, we determined that mycotoxins and STECs were part of the disease complex for dairy cattle with Jejunal Hemorrhage Syndrome (JHS). For STECs to play a role in the development of JHS, we hypothesized that STEC colonization should also be evident in beef cattle with JHS. Aggressive medical and surgical therapies are effective for JHS, but rely on early recognition of clinical signs for optimal outcomes suggesting that novel approaches must be developed for managing this disease. The main objective of this study was to confirm that mouldy feeds, mycotoxins and STEC colonization were associated with the development of JHS in beef cattle. Results Beef cattle developed JHS after consuming feed containing several types of mycotoxigenic fungi including Fusarium poae, F. verticillioides, F. sporotrichioides, Penicillium roqueforti and Aspergillus fumigatus. Mixtures of STECs colonized the mucosa in the hemorrhaged tissues of the cattle and no other pathogen was identified. The STECs expressed Stx1 and Stx2, but more significantly, Stxs were also present in the blood collected from the lumen of the hemorrhaged jejunum. Feed extracts containing mycotoxins were toxic to enterocytes and 0.1% of a prebiotic, Celmanax Trademark, removed the cytotoxicity in vitro. The inclusion of a prebiotic in the care program for symptomatic beef calves was associated with 69% recovery. Conclusions The current study confirmed that STECs and mycotoxins are part of the disease complex for JHS in beef cattle. Mycotoxigenic fungi are only relevant in that they produce the mycotoxins deposited in the feed. A prebiotic, Celmanax

  20. Effect of the DnaK chaperone on the conformational quality of JCV VP1 virus-like particles produced in Escherichia coli.

    PubMed

    Saccardo, Paolo; Rodríguez-Carmona, Escarlata; Villaverde, Antonio; Ferrer-Miralles, Neus

    2014-01-01

    Protein nanoparticles such as virus-like particles (VLPs) can be obtained by recombinant protein production of viral capsid proteins and spontaneous self-assembling in cell factories. Contrarily to infective viral particles, VLPs lack infective viral genome while retaining important viral properties like cellular tropism and intracellular delivery of internalized molecules. These properties make VLPs promising and fully biocompatible nanovehicles for drug delivery. VLPs of human JC virus (hJCV) VP1 capsid protein produced in Escherichia coli elicit variable hemagglutination properties when incubated at different NaCl concentrations and pH conditions, being optimal at 200 mM NaCl and at pH range between 5.8 and 7.5. In addition, the presence or absence of chaperone DnaK in E. coli cells influence the solubility of recombinant VP1 and the conformational quality of this protein in the VLPs. The hemagglutination ability of hJCV VP1 VLPs contained in E. coli cell extracts can be modulated by buffer composition in the hemagglutination assay. It has been also determined that the production of recombinant hJCV VP1 in E. coli is favored by the absence of chaperone DnaK as observed by Western Blot analysis in different E. coli genetic backgrounds, indicating a proteolysis targeting role for DnaK. However, solubility is highly compromised in a DnaK(-) E. coli strain suggesting an important role of this chaperone in reduction of protein aggregates. Finally, hemagglutination efficiency of recombinant VP1 is directly related to the presence of DnaK in the producing cells. PMID:24574306

  1. Extensive Household Outbreak of Urinary Tract Infection and Intestinal Colonization due to Extended-Spectrum β-Lactamase–Producing Escherichia coli Sequence Type 131

    PubMed Central

    Madigan, Theresa; Johnson, James R.; Clabots, Connie; Johnston, Brian D.; Porter, Stephen B.; Slater, Billie S.; Banerjee, Ritu

    2015-01-01

    Background. Reasons for the successful global dissemination of multidrug-resistant Escherichia coli sequence type 131 (ST131) are undefined, but may include enhanced transmissibility or ability to colonize the intestine compared with other strains. Methods. We identified a household in which 2 young children had urinary tract infection (UTI) caused by an extended-spectrum β-lactamase (ESBL)–producing, multidrug-resistant ST131 E. coli strain. We assessed the prevalence of ST131 intestinal colonization among the 7 household members (6 humans, 1 dog). Fecal samples, collected 3 times over a 19-week period, were cultured selectively for E. coli. Isolates were characterized using clone-specific polymerase chain reaction to detect ST131 and its ESBL-associated H30Rx subclone, pulsed-field gel electrophoresis, extended virulence genotyping, and antimicrobial susceptibility testing. Results. In total, 8 different E. coli pulsotypes (strains) were identified. The index patient's urine isolate represented ST131-H30Rx strain 903. This was the most widely shared and persistent strain in the household, colonizing 5 individuals at each sampling. In contrast, the 7 non-ST131 strains were each found in only 1 or 2 household members at a time, with variable persistence. The ST131 strain was the only strain with both extensive virulence and antimicrobial resistance profiles. Conclusions. An ESBL-producing ST131-H30Rx strain caused UTI in 2 siblings, plus asymptomatic intestinal colonization in multiple other household members, and was the household's most extensively detected and persistent fecal E. coli strain. Efficient transmission and intestinal colonization may contribute to the epidemiologic success of the H30Rx subclone of E. coli ST131. PMID:25828998

  2. Fate of shiga-toxin producing 0157:H7 and non-0157:H7 Escherichia coli cells within blade-tenderized beef steaks after cooking on a commerical open-flame gas grill

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beef subprimals were inoculated on the lean side with about 3.5 or 5.5 log CFU/g of a five-strain mixture of rifampicin resistant (Rifr) Shiga toxin producing Escherichia coli O157:H7 (ECOH) and/or kanamycin resistant (Kanr) non-O157:H7 Shiga toxin producing E. coli (STEC) and then passed once throu...

  3. Plasmonic-based colorimetric and spectroscopic discrimination of acetic and butyric acids produced by different types of Escherichia coli through the different assembly structures formation of gold nanoparticles.

    PubMed

    La, Ju A; Lim, Sora; Park, Hyo Jeong; Heo, Min-Ji; Sang, Byoung-In; Oh, Min-Kyu; Cho, Eun Chul

    2016-08-24

    We present a plasmonic-based strategy for the colourimetric and spectroscopic differentiation of various organic acids produced by bacteria. The strategy is based on our discovery that particular concentrations of dl-lactic, acetic, and butyric acids induce different assembly structures, colours, and optical spectra of gold nanoparticles. We selected wild-type (K-12 W3110) and genetically-engineered (JHL61) Escherichia coli (E. coli) that are known to primarily produce acetic and butyric acid, respectively. Different assembly structures and optical properties of gold nanoparticles were observed when different organic acids, obtained after the removal of acid-producing bacteria, were mixed with gold nanoparticles. Moreover, at moderate cell concentrations of K-12 W3110 E. coli, which produce sufficient amounts of acetic acid to induce the assembly of gold nanoparticles, a direct estimate of the number of bacteria was possible based on time-course colour change observations of gold nanoparticle aqueous suspensions. The plasmonic-based colourimetric and spectroscopic methods described here may enable onsite testing for the identification of organic acids produced by bacteria and the estimation of bacterial numbers, which have applications in health and environmental sciences. PMID:27497013

  4. Epidemiology of Extended-Spectrum β-Lactamase Producing Escherichia coli in the Stools of Returning Japanese Travelers, and the Risk Factors for Colonization

    PubMed Central

    Yaita, Kenichiro; Aoki, Kotaro; Suzuki, Takumitsu; Nakaharai, Kazuhiko; Yoshimura, Yukihiro; Harada, Sohei; Ishii, Yoshikazu; Tachikawa, Natsuo

    2014-01-01

    Objective Travel overseas has recently been considered a risk factor for colonization with drug-resistant bacteria. The purpose of this study was to establish the epidemiology and risk factors associated with the acquisition of drug-resistant bacteria by Japanese travelers. Methods Between October 2011 and September 2012, we screened the stools of 68 Japanese returning travelers for extended-spectrum β-lactamase (ESBL) producing Escherichia coli. All specimens were sampled for clinical reasons. Based on the results, the participants were divided into an ESBL-producing E. coli positive group (18 cases; 26%) and an ESBL-producing E. coli negative group (50 cases; 74%), and a case-control study was performed. Microbiological analyses of ESBL-producing strains, including susceptibility tests, screening tests for metallo-β-lactamase, polymerase chain reaction amplification and sequencing of blaCTX-M genes, multilocus sequence typing, and whole genome sequencing, were also conducted. Results In a univariate comparison, travel to India was a risk factor (Odds Ratio 13.6, 95% Confidence Interval 3.0–75.0, p<0.0001). There were no statistical differences in the characteristics of the travel, such as backpacking, purpose of travel, interval between travel return and sampling stool, and duration of travel. Although 10 of 13 analyzed strains (77%) produced CTX-M-15, no ST131 clone was detected. Conclusion We must be aware of the possibilities of acquiring ESBL-producing E. coli during travel in order to prevent the spread of these bacteria not only in Japan but globally. PMID:24836896

  5. Emergence of Ertapenem Resistance in an Escherichia coli Clinical Isolate Producing Extended-Spectrum β-Lactamase AmpC▿

    PubMed Central

    Guillon, Hélène; Tande, Didier; Mammeri, Hedi

    2011-01-01

    Escherichia coli isolate MEV, responsible for a bloodstream infection, was resistant to penicillins, cephalosporins, and ertapenem. Molecular and biochemical characterization revealed the production of a novel, chromosome-borne, extended-spectrum AmpC (ESAC) β-lactamase with a Ser-282 duplication and increased carbapenemase activity. This study demonstrates for the first time that chromosome-borne ESAC β-lactamases can contribute to the emergence of ertapenem resistance in E. coli clinical isolates. PMID:21746958

  6. Clinical and molecular epidemiology of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in a long-term study from Japan.

    PubMed

    Chong, Y; Yakushiji, H; Ito, Y; Kamimura, T

    2011-01-01

    The detection rates of extended-spectrum β-lactamase (ESBL)-producing bacteria in Japan are very low (∼5%) compared with those obtained worldwide. Further, the current trend of these bacteria in Japan is not known, and few studies with longitudinal observations have been reported. To obtain epidemiologic data on ESBL-producing bacteria, their genotypic features, and their antibiotic resistance patterns in Japan, we analyzed bacterial isolates from hospitalized patients at our institution over the 7-year period from 2003 to 2009. Of 2,304 isolates, 202 (8.8%) were found to be ESBL producers, including Escherichia coli, Klebsiella pneumonia, and Proteus mirabilis. The detection rates of the ESBL-producing isolates gradually increased and reached 17.1% and 10.5% for the E. coli and K. pneumoniae strains, respectively, in 2009. Genotyping analysis showed that ∼90% of the ESBL-producing isolates carried the CTX-M genotype, in which the CTX-M-9 group was predominant, although the CTX-M-2 group is considered to be the main genotype in Japan; further, many of the strains produced multiple β-lactamases. The detection rates of ESBL-producing bacteria may tend to be high within a limited region in Japan. A countrywide survey is required to understand the trend for ESBL-producing bacteria at the national level. In addition, our findings suggest that the genotypes of the detected ESBL producers are similar to those exhibiting a successful nosocomial spread worldwide. PMID:20859753

  7. Use of a Chimeric Hsp70 to Enhance the Quality of Recombinant Plasmodium falciparum S-Adenosylmethionine Decarboxylase Protein Produced in Escherichia coli.

    PubMed

    Makhoba, Xolani Henry; Burger, Adélle; Coertzen, Dina; Zininga, Tawanda; Birkholtz, Lyn-Marie; Shonhai, Addmore

    2016-01-01

    S-adenosylmethionine decarboxylase (PfAdoMetDC) from Plasmodium falciparum is a prospective antimalarial drug target. The production of recombinant PfAdoMetDC for biochemical validation as a drug target is important. The production of PfAdoMetDC in Escherichia coli has been reported to result in unsatisfactory yields and poor quality product. The co-expression of recombinant proteins with molecular chaperones has been proposed as one way to improve the production of the former in E. coli. E. coli heat shock proteins DnaK, GroEL-GroES and DnaJ have previously been used to enhance production of some recombinant proteins. However, the outcomes were inconsistent. An Hsp70 chimeric protein, KPf, which is made up of the ATPase domain of E. coli DnaK and the substrate binding domain of P. falciparum Hsp70 (PfHsp70) has been previously shown to exhibit chaperone function when it was expressed in E. coli cells whose resident Hsp70 (DnaK) function was impaired. We proposed that because of its domain constitution, KPf would most likely be recognised by E. coli Hsp70 co-chaperones. Furthermore, because it possesses a substrate binding domain of plasmodial origin, KPf would be primed to recognise recombinant PfAdoMetDC expressed in E. coli. First, using site-directed mutagenesis, followed by complementation assays, we established that KPf with a mutation in the hydrophobic residue located in its substrate binding cavity was functionally compromised. We further co-expressed PfAdoMetDC with KPf, PfHsp70 and DnaK in E. coli cells either in the absence or presence of over-expressed GroEL-GroES chaperonin. The folded and functional status of the produced PfAdoMetDC was assessed using limited proteolysis and enzyme assays. PfAdoMetDC co-expressed with KPf and PfHsp70 exhibited improved activity compared to protein co-expressed with over-expressed DnaK. Our findings suggest that chimeric KPf may be an ideal Hsp70 co-expression partner for the production of recombinant plasmodial

  8. Use of a Chimeric Hsp70 to Enhance the Quality of Recombinant Plasmodium falciparum S-Adenosylmethionine Decarboxylase Protein Produced in Escherichia coli

    PubMed Central

    Makhoba, Xolani Henry; Burger, Adélle; Coertzen, Dina; Zininga, Tawanda; Birkholtz, Lyn-Marie; Shonhai, Addmore

    2016-01-01

    S-adenosylmethionine decarboxylase (PfAdoMetDC) from Plasmodium falciparum is a prospective antimalarial drug target. The production of recombinant PfAdoMetDC for biochemical validation as a drug target is important. The production of PfAdoMetDC in Escherichia coli has been reported to result in unsatisfactory yields and poor quality product. The co-expression of recombinant proteins with molecular chaperones has been proposed as one way to improve the production of the former in E. coli. E. coli heat shock proteins DnaK, GroEL-GroES and DnaJ have previously been used to enhance production of some recombinant proteins. However, the outcomes were inconsistent. An Hsp70 chimeric protein, KPf, which is made up of the ATPase domain of E. coli DnaK and the substrate binding domain of P. falciparum Hsp70 (PfHsp70) has been previously shown to exhibit chaperone function when it was expressed in E. coli cells whose resident Hsp70 (DnaK) function was impaired. We proposed that because of its domain constitution, KPf would most likely be recognised by E. coli Hsp70 co-chaperones. Furthermore, because it possesses a substrate binding domain of plasmodial origin, KPf would be primed to recognise recombinant PfAdoMetDC expressed in E. coli. First, using site-directed mutagenesis, followed by complementation assays, we established that KPf with a mutation in the hydrophobic residue located in its substrate binding cavity was functionally compromised. We further co-expressed PfAdoMetDC with KPf, PfHsp70 and DnaK in E. coli cells either in the absence or presence of over-expressed GroEL-GroES chaperonin. The folded and functional status of the produced PfAdoMetDC was assessed using limited proteolysis and enzyme assays. PfAdoMetDC co-expressed with KPf and PfHsp70 exhibited improved activity compared to protein co-expressed with over-expressed DnaK. Our findings suggest that chimeric KPf may be an ideal Hsp70 co-expression partner for the production of recombinant plasmodial

  9. Cyclic-di-GMP signalling and biofilm-related properties of the Shiga toxin-producing 2011 German outbreak Escherichia coli O104:H4

    PubMed Central

    Richter, Anja M; Povolotsky, Tatyana L; Wieler, Lothar H; Hengge, Regine

    2014-01-01

    In 2011, nearly 4,000 people in Germany were infected by Shiga toxin (Stx)-producing Escherichia coli O104:H4 with > 22% of patients developing haemolytic uraemic syndrome (HUS). Genome sequencing showed the outbreak strain to be related to enteroaggregative E. coli (EAEC), suggesting its high virulence results from EAEC-typical strong adherence and biofilm formation combined to Stx production. Here, we report that the outbreak strain contains a novel diguanylate cyclase (DgcX)—producing the biofilm-promoting second messenger c-di-GMP—that shows higher expression than any other known E. coli diguanylate cyclase. Unlike closely related E. coli, the outbreak strain expresses the c-di-GMP-controlled biofilm regulator CsgD and amyloid curli fibres at 37°C, but is cellulose-negative. Moreover, it constantly generates derivatives with further increased and deregulated production of CsgD and curli. Since curli fibres are strongly proinflammatory, with cellulose counteracting this effect, high c-di-GMP and curli production by the outbreak O104:H4 strain may enhance not only adherence but may also contribute to inflammation, thereby facilitating entry of Stx into the bloodstream and to the kidneys where Stx causes HUS. PMID:25361688

  10. [Prevalence and susceptibility patterns of extended-spectrum betalactamase-producing Escherichia coli and Klebsiella pneumoniae in a general university hospital in Beirut, Lebanon].

    PubMed

    Daoud, Z; Hakime, N

    2003-06-01

    Extended-spectrum betalactamases (ESBLs) are recognized worldwide as a problem in hospitalized patients. Their prevalence among clinical isolates of Enterobacteriaceae varies between countries and institutions. We studied the evolution of ESBL production by clinical isolates of Escherichia coli and Klebsiella pneumoniae and analyzed the patterns of susceptibility of these isolates to different antimicrobial agents in a general university hospital in Beirut. Of the 4299 isolates of E. coli and 1248 isolates of K. pneumoniae tested over the five years, 2.0% of the E. coli and 20.0% of K. pneumoniae were ESBL producing. A clear decrease in the susceptibility to all antibiotics was observed between 1999 and 2001, and no resistance to imipenem was detected. The isolates were distributed between the Intensive Care Unit (ICU), medical wards, outpatients, and other origins. The highest numbers were found in the ICU (E. coli 28.1% and K. pneumoniae 34.8%). Three phenotypes of resistance to cefotaxime and ceftazidime were observed on the basis of microbiological results. The present study was the first to assess the occurrence and susceptibility patterns of extended-spectrum betalactamase-producing Enterobacteriaceae in Lebanon. PMID:12973463

  11. Outbreak of Shiga toxin-producing Escherichia coli O111 infections associated with a correctional facility dairy - Colorado, 2010.

    PubMed

    2012-03-01

    On April 20, 2010, the Colorado Department of Public Health and Environment (CDPHE) was notified by correctional authorities regarding three inmates with bloody diarrhea at a minimum-security correctional facility. The facility, which houses approximately 500 inmates, is a designated work center where inmates are employed or receive vocational training. Approximately 70 inmates work at an onsite dairy, which provides milk to all state-run correctional facilities in Colorado. CDPHE immediately began an investigation and was later assisted by the High Plains Intermountain Center for Agricultural Health and Safety at Colorado State University and by CDC. This report describes the results of the investigation, which determined that the illnesses were caused by Shiga toxin-producing Escherichia coli O111 (STEC O111) infections. During April-July, 10 inmates at the facility received a diagnosis of laboratory-confirmed STEC O111 infection, and a retrospective prevalence study of 100 inmates found that, during March-April, 14 other inmates had experienced diarrheal illness suspected of being STEC O111 infection. Pulsed-field gel electrophoresis (PFGE) testing indicated that STEC O111 isolates from inmates matched STEC O111 isolates from cattle at the onsite dairy. An environmental investigation determined that inmates employed at the dairy might have acquired STEC O111 infection on the job or transported contaminated clothing or other items into the main correctional facility and kitchen, thereby exposing other inmates. To prevent similar outbreaks in correctional facilities, authorities should consult with public health officials to design and implement effective infection control measures. PMID:22398842

  12. Diversity of Shiga toxin-producing Escherichia coli in sheep flocks of Paraná State, southern Brazil.

    PubMed

    Martins, Fernando Henrique; Guth, Beatriz Ernestina Cabilio; Piazza, Roxane Maria; Leão, Sylvia Cardoso; Ludovico, Agostinho; Ludovico, Marilúcia Santos; Dahbi, Ghizlane; Marzoa, Juan; Mora, Azucena; Blanco, Jorge; Pelayo, Jacinta Sanchez

    2015-01-30

    Sheep constitute an important source of zoonotic pathogens as Shiga toxin-producing Escherichia coli (STEC). In this study, the prevalence, serotypes and virulence profiles of STEC were investigated among 130 healthy sheep from small and medium farms in southern Brazil. STEC was isolated from 65 (50%) of the tested animals and detected in all flocks. A total of 70 STEC isolates were characterized, and belonged to 23 different O:H serotypes, many of which associated with human disease, including hemolytic-uremic syndrome (HUS). Among the serotypes identified, O76:H19 and O65:H- were the most common, and O75:H14 and O169:H7 have not been previously reported in STEC strains. Most of the STEC isolates harbored only stx1, whereas the Stx2b subtype was the most common among those carrying stx2. Enterohemolysin (ehxA) and intimin (eae) genes were detected in 61 (87.1%) and four (5.7%) isolates, respectively. Genes encoding putative adhesins (saa, iha, lpfO113) and toxins (subAB and cdtV) were also observed. The majority of the isolates displayed virulence features related to pathogenesis of STEC, such as adherence to epithelial cells, high cytotoxicity and enterohemolytic activity. Ovine STEC isolates belonged mostly to phylogenetic group B1. PFGE revealed particular clones distributed in some farms, as well as variations in the degree of genetic similarity within serotypes examined. In conclusion, STEC are widely distributed in southern Brazilian sheep, and belonged mainly to serotypes that are not commonly reported in other regions, such as O76:H19 and O65:H-. A geographical variation in the distribution of STEC serotypes seems to occur in sheep. PMID:25465174

  13. Epidemiology and microbiology of Shiga toxin-producing Escherichia coli other than serogroup O157 in England, 2009-2013.

    PubMed

    Byrne, Lisa; Vanstone, Gemma L; Perry, Neil T; Launders, Naomi; Adak, Goutam K; Godbole, Gauri; Grant, Kathie A; Smith, Robin; Jenkins, Claire

    2014-09-01

    The implementation of direct testing of clinical faecal specimens for gastrointestinal (GI) pathogens by PCR offers a sensitive and comprehensive approach for the detection of Shiga toxin-producing Escherichia coli (STEC). The introduction of a commercial PCR assay, known as GI PCR, for the detection of GI pathogens at three frontline hospital laboratories in England between December 2012 and December 2013 led to a significant increase in detection of STEC other than serogroup O157 (non-O157 STEC). In 2013, 47 isolates were detected in England, compared with 57 in the preceding 4 years (2009-2012). The most common non-O157 STEC serogroup detected was O26 (23.2 %). A total of 47 (47.5 %) STEC isolates had stx2 only, 28 (28.3 %) carried stx1 and stx2, and the remaining 24 (24.2 %) had stx1 only. Stx2a (64.0 %) was the most frequently detected Stx2 subtype. The eae (intimin) gene was detected in 52 (52.5 %) non-O157 STEC isolates. Six strains of STEC O104 had aggR, but this gene was not detected in any other STEC serogroups in this study. Haemolytic ureamic syndrome was significantly associated with STEC strains possessing eae [odds ratio (OR) 5.845, P = 0.0235] and/or stx2a (OR 9.56, P = 0.0034) subtypes. A matched case-control analysis indicated an association between non-O157 STEC cases and contact with farm animals. Widespread implementation of the PCR approach in England will determine the true incidence of non-O157 STEC infection, highlight the burden in terms of morbidity and mortality, and facilitate the examination of risk factors to indicate whether there are niche risk exposures for particular strains. PMID:24928216

  14. Colonization of Beef Cattle by Shiga Toxin-Producing Escherichia coli during the First Year of Life: A Cohort Study.

    PubMed

    Mir, Raies A; Weppelmann, Thomas A; Elzo, Mauricio; Ahn, Soohyoun; Driver, J Danny; Jeong, KwangCheol Casey

    2016-01-01

    Each year Shiga toxin-producing Escherichia coli (STEC) are responsible for 2.8 million acute illnesses around the world and > 250,000 cases in the US. Lowering the prevalence of this pathogen in animal reservoirs has the potential to reduce STEC outbreaks in humans by controlling its entrance into the food chain. However, factors that modulate the colonization and persistence of STEC in beef cattle remain largely unidentified. This study evaluated if animal physiological factors such as age, breed, sex, and weight gain influenced the shedding of STEC in beef cattle. A cohort of beef calves (n = 260) from a multi-breed beef calf population was sampled every three months after birth to measure prevalence and concentration of STEC during the first year of life. Metagenomic analysis was also used to understand the association between the STEC colonization and the composition of gut microflora. This study identified that beef calves were more likely to shed STEC during the first 6 months and that STEC shedding decreased as the animal matured. Animal breed group, sex of the calf, and average weight gain were not significantly associated with STEC colonization. The metagenomic analysis revealed for the first time that STEC colonization was correlated with a lower diversity of gut microflora, which increases as the cattle matured. Given these findings, intervention strategies that segregate younger animals, more likely to be colonized by STEC from older animals that are ready to be harvested, could be investigated as a method to reduce zoonotic transmission of STEC from cattle to humans. PMID:26849041

  15. Public Health Investigation of Two Outbreaks of Shiga Toxin-Producing Escherichia coli O157 Associated with Consumption of Watercress.

    PubMed

    Jenkins, Claire; Dallman, Timothy J; Launders, Naomi; Willis, Caroline; Byrne, Lisa; Jorgensen, Frieda; Eppinger, Mark; Adak, Goutam K; Aird, Heather; Elviss, Nicola; Grant, Kathie A; Morgan, Dilys; McLauchlin, Jim

    2015-06-15

    An increase in the number of cases of Shiga toxin-producing Escherichia coli (STEC) O157 phage type 2 (PT2) in England in September 2013 was epidemiologically linked to watercress consumption. Whole-genome sequencing (WGS) identified a phylogenetically related cluster of 22 cases (outbreak 1). The isolates comprising this cluster were not closely related to any other United Kingdom strain in the Public Health England WGS database, suggesting a possible imported source. A second outbreak of STEC O157 PT2 (outbreak 2) was identified epidemiologically following the detection of outbreak 1. Isolates associated with outbreak 2 were phylogenetically distinct from those in outbreak 1. Epidemiologically unrelated isolates on the same branch as the outbreak 2 cluster included those from human cases in England with domestically acquired infection and United Kingdom domestic cattle. Environmental sampling using PCR resulted in the isolation of STEC O157 PT2 from irrigation water at one implicated watercress farm, and WGS showed this isolate belonged to the same phylogenetic cluster as outbreak 2 isolates. Cattle were in close proximity to the watercress bed and were potentially the source of the second outbreak. Transfer of STEC from the field to the watercress bed may have occurred through wildlife entering the watercress farm or via runoff water. During this complex outbreak investigation, epidemiological studies, comprehensive testing of environmental samples, and the use of novel molecular methods proved invaluable in demonstrating that two simultaneous outbreaks of STEC O157 PT2 were both linked to the consumption of watercress but were associated with different sources of contamination. PMID:25841005

  16. Subtilase cytotoxin produced by locus of enterocyte effacement-negative Shiga-toxigenic Escherichia coli induces stress granule formation.

    PubMed

    Tsutsuki, Hiroyasu; Yahiro, Kinnosuke; Ogura, Kohei; Ichimura, Kimitoshi; Iyoda, Sunao; Ohnishi, Makoto; Nagasawa, Sayaka; Seto, Kazuko; Moss, Joel; Noda, Masatoshi

    2016-07-01

    Subtilase cytotoxin (SubAB) is mainly produced by locus of enterocyte effacement (LEE)-negative strains of Shiga-toxigenic Escherichia coli (STEC). SubAB cleaves an endoplasmic reticulum (ER) chaperone, BiP/Grp78, leading to induction of ER stress. This stress causes activation of ER stress sensor proteins and induction of caspase-dependent apoptosis. We found that SubAB induces stress granules (SG) in various cells. Aim of this study was to explore the mechanism by which SubAB induced SG formation. Here, we show that SubAB-induced SG formation is regulated by activation of double-stranded RNA-activated protein kinase (PKR)-like endoplasmic reticulum kinase (PERK). The culture supernatant of STEC O113:H21 dramatically induced SG in Caco2 cells, although subAB knockout STEC O113:H21 culture supernatant did not. Treatment with phorbol 12-myristate 13-acetate (PMA), a protein kinase C (PKC) activator, and lysosomal inhibitors, NH4 Cl and chloroquine, suppressed SubAB-induced SG formation, which was enhanced by PKC and PKD inhibitors. SubAB attenuated the level of PKD1 phosphorylation. Depletion of PKCδ and PKD1 by siRNA promoted SG formation in response to SubAB. Furthermore, death-associated protein 1 (DAP1) knockdown increased basal phospho-PKD1(S916) and suppressed SG formation by SubAB. However, SG formation by an ER stress inducer, Thapsigargin, was not inhibited in PMA-treated cells. Our findings show that SubAB-induced SG formation is regulated by the PERK/DAP1 signalling pathway, which may be modulated by PKCδ/PKD1, and different from the signal transduction pathway that results in Thapsigargin-induced SG formation. PMID:26749168

  17. The epidemiology, microbiology and clinical impact of Shiga toxin-producing Escherichia coli in England, 2009-2012.

    PubMed

    Byrne, L; Jenkins, C; Launders, N; Elson, R; Adak, G K

    2015-12-01

    Between 1 January 2009 and 31 December 2012 in England, a total of 3717 cases were reported with evidence of Shiga toxin-producing E. coli (STEC) infection, and the crude incidence of STEC infection was 1·80/100 000 person-years. Incidence was highest in children aged 1-4 years (7·63/100 000 person-years). Females had a higher incidence of STEC than males [rate ratio (RR) 1·24, P < 0·001], and white ethnic groups had a higher incidence than non-white ethnic groups (RR 1·43, P < 0·001). Progression to haemolytic uraemic syndrome (HUS) was more frequent in females and children. Non-O157 STEC strains were associated with higher hospitalization and HUS rates than O157 STEC strains. In STEC O157 cases, phage type (PT) 21/28, predominantly indigenously acquired, was also associated with more severe disease than other PTs, as were strains encoding stx2 genes. Incidence of STEC was over four times higher in people residing in rural areas than urban areas (RR 4·39, P < 0·001). Exposure to livestock and/or their faeces was reported twice as often in cases living in rural areas than urban areas (P < 0·001). Environmental/animal contact remains an important risk factor for STEC transmission and is a significant driver in the burden of sporadic STEC infection. The most commonly detected STEC serogroup in England was O157. However, a bias in testing methods results in an unquantifiable under-ascertainment of non-O157 STEC infections. Implementation of PCR-based diagnostic methods designed to detect all STEC, to address this diagnostic deficit, is therefore important. PMID:25920912

  18. Shiga Toxin-Producing Escherichia coli in Plateau Pika (Ochotona curzoniae) on the Qinghai-Tibetan Plateau, China

    PubMed Central

    Bai, Xiangning; Zhang, Wang; Tang, Xinyuan; Xin, Youquan; Xu, Yanmei; Sun, Hui; Luo, Xuelian; Pu, Ji; Xu, Jianguo; Xiong, Yanwen; Lu, Shan

    2016-01-01

    Shiga toxin-producing Escherichia coli (STEC) are an emerging group of zoonotic pathogens. Ruminants are the natural reservoir of STEC. In this study we determined the prevalence and characteristics of the STEC in plateau pika (Ochotona curzoniae) on the Qinghai-Tibetan Plateau, China. A total of 1116 pika samples, including 294 intestinal contents samples, 317 fecal samples, and 505 intestinal contents samples, were collected from May to August in the years 2012, 2013, and 2015, respectively. Twenty-one samples (1.88%) yielded at least one STEC isolate; in total, 22 STEC isolates were recovered. Thirteen different O serogroups and 14 serotypes were identified. One stx1 subtype (stx1a) and three stx2 subtypes (stx2a, stx2b, and stx2d) were present in the STEC isolates. Fifteen, fourteen, and three STEC isolates harbored the virulence genes ehxA, subA, and astA, respectively. Adherence-associated genes iha and saa were, respectively, present in 72.73 and 68.18% of the STEC isolates. Twenty antibiotics were active against all the STEC isolates; all strains were resistant to penicillin G, and some to cephalothin or streptomycin. The 22 STEC isolates were divided into 16 pulsed-field gel electrophoresis patterns and 12 sequence types. Plateau pikas may play a role in the ongoing circulation of STEC in the Qinghai-Tibetan plateau. This study provides the first report on STEC in plateau pikas and new information about STEC reservoirs in wildlife. Based on the serotypes, virulence gene profiles and multi-locus sequence typing (MLST) analysis, the majority of these pika STECs may pose a low public health risk. PMID:27047483

  19. Application of Metagenomic Sequencing to Food Safety: Detection of Shiga Toxin-Producing Escherichia coli on Fresh Bagged Spinach

    PubMed Central

    Leonard, Susan R.; Mammel, Mark K.; Lacher, David W.

    2015-01-01

    Culture-independent diagnostics reduce the reliance on traditional (and slower) culture-based methodologies. Here we capitalize on advances in next-generation sequencing (NGS) to apply this approach to food pathogen detection utilizing NGS as an analytical tool. In this study, spiking spinach with Shiga toxin-producing Escherichia coli (STEC) following an established FDA culture-based protocol was used in conjunction with shotgun metagenomic sequencing to determine the limits of detection, sensitivity, and specificity levels and to obtain information on the microbiology of the protocol. We show that an expected level of contamination (∼10 CFU/100 g) could be adequately detected (including key virulence determinants and strain-level specificity) within 8 h of enrichment at a sequencing depth of 10,000,000 reads. We also rationalize the relative benefit of static versus shaking culture conditions and the addition of selected antimicrobial agents, thereby validating the long-standing culture-based parameters behind such protocols. Moreover, the shotgun metagenomic approach was informative regarding the dynamics of microbial communities during the enrichment process, including initial surveys of the microbial loads associated with bagged spinach; the microbes found included key genera such as Pseudomonas, Pantoea, and Exiguobacterium. Collectively, our metagenomic study highlights and considers various parameters required for transitioning to such sequencing-based diagnostics for food safety and the potential to develop better enrichment processes in a high-throughput manner not previously possible. Future studies will investigate new species-specific DNA signature target regimens, rational design of medium components in concert with judicious use of additives, such as antibiotics, and alterations in the sample processing protocol to enhance detection. PMID:26386062

  20. Shiga Toxin-Producing Escherichia coli in Plateau Pika (Ochotona curzoniae) on the Qinghai-Tibetan Plateau, China.

    PubMed

    Bai, Xiangning; Zhang, Wang; Tang, Xinyuan; Xin, Youquan; Xu, Yanmei; Sun, Hui; Luo, Xuelian; Pu, Ji; Xu, Jianguo; Xiong, Yanwen; Lu, Shan

    2016-01-01

    Shiga toxin-producing Escherichia coli (STEC) are an emerging group of zoonotic pathogens. Ruminants are the natural reservoir of STEC. In this study we determined the prevalence and characteristics of the STEC in plateau pika (Ochotona curzoniae) on the Qinghai-Tibetan Plateau, China. A total of 1116 pika samples, including 294 intestinal contents samples, 317 fecal samples, and 505 intestinal contents samples, were collected from May to August in the years 2012, 2013, and 2015, respectively. Twenty-one samples (1.88%) yielded at least one STEC isolate; in total, 22 STEC isolates were recovered. Thirteen different O serogroups and 14 serotypes were identified. One stx 1 subtype (stx 1a) and three stx 2 subtypes (stx 2a, stx 2b, and stx 2d) were present in the STEC isolates. Fifteen, fourteen, and three STEC isolates harbored the virulence genes ehxA, subA, and astA, respectively. Adherence-associated genes iha and saa were, respectively, present in 72.73 and 68.18% of the STEC isolates. Twenty antibiotics were active against all the STEC isolates; all strains were resistant to penicillin G, and some to cephalothin or streptomycin. The 22 STEC isolates were divided into 16 pulsed-field gel electrophoresis patterns and 12 sequence types. Plateau pikas may play a role in the ongoing circulation of STEC in the Qinghai-Tibetan plateau. This study provides the first report on STEC in plateau pikas and new information about STEC reservoirs in wildlife. Based on the serotypes, virulence gene profiles and multi-locus sequence typing (MLST) analysis, the majority of these pika STECs may pose a low public health risk. PMID:27047483