Science.gov

Sample records for colibactin genomic island

  1. Escherichia coli ClbS is a colibactin resistance protein.

    PubMed

    Bossuet-Greif, Nadège; Dubois, Damien; Petit, Claude; Tronnet, Sophie; Martin, Patricia; Bonnet, Richard; Oswald, Eric; Nougayrède, Jean-Philippe

    2016-03-01

    The genomic pks island codes for the biosynthetic machinery that produces colibactin, a peptide-polyketide metabolite. Colibactin is a genotoxin that contributes to the virulence of extra-intestinal pathogenic Escherichia coli and promotes colorectal cancer. In this work, we examined whether the pks-encoded clbS gene of unknown function could participate in the self-protection of E. coli-producing colibactin. A clbS mutant was not impaired in the ability to inflict DNA damage in HeLa cells, but the bacteria activated the SOS response and ceased to replicate. This autotoxicity phenotype was markedly enhanced in a clbS uvrB double mutant inactivated for DNA repair by nucleotide excision but was suppressed in a clbS clbA double mutant unable to produce colibactin. In addition, ectopic expression of clbS protected infected HeLa cells from colibactin. Thus, ClbS is a resistance protein blocking the genotoxicity of colibactin both in the procaryotic and the eucaryotic cells. PMID:26560421

  2. Gut Symbionts from Distinct Hosts Exhibit Genotoxic Activity via Divergent Colibactin Biosynthesis Pathways

    PubMed Central

    Vizcaino, Maria I.; Crawford, Jason M.

    2014-01-01

    Secondary metabolites produced by nonribosomal peptide synthetase (NRPS) or polyketide synthase (PKS) pathways are chemical mediators of microbial interactions in diverse environments. However, little is known about their distribution, evolution, and functional roles in bacterial symbionts associated with animals. A prominent example is colibactin, a largely unknown family of secondary metabolites produced by Escherichia coli via a hybrid NRPS-PKS biosynthetic pathway that inflicts DNA damage upon eukaryotic cells and contributes to colorectal cancer and tumor formation in the mammalian gut. Thus far, homologs of this pathway have only been found in closely related Enterobacteriaceae, while a divergent variant of this gene cluster was recently discovered in a marine alphaproteobacterial Pseudovibrio strain. Herein, we sequenced the genome of Frischella perrara PEB0191, a bacterial gut symbiont of honey bees and identified a homologous colibactin biosynthetic pathway related to those found in Enterobacteriaceae. We show that the colibactin genomic island (GI) has conserved gene synteny and biosynthetic module architecture across F. perrara, Enterobacteriaceae, and the Pseudovibrio strain. Comparative metabolomics analyses of F. perrara and E. coli further reveal that these two bacteria produce related colibactin pathway-dependent metabolites. Finally, we demonstrate that F. perrara, like E. coli, causes DNA damage in eukaryotic cells in vitro in a colibactin pathway-dependent manner. Together, these results support that divergent variants of the colibactin biosynthetic pathway are widely distributed among bacterial symbionts, producing related secondary metabolites and likely endowing its producer with functional capabilities important for diverse symbiotic associations. PMID:25527542

  3. Gut symbionts from distinct hosts exhibit genotoxic activity via divergent colibactin biosynthesis pathways.

    PubMed

    Engel, Philipp; Vizcaino, Maria I; Crawford, Jason M

    2015-02-01

    Secondary metabolites produced by nonribosomal peptide synthetase (NRPS) or polyketide synthase (PKS) pathways are chemical mediators of microbial interactions in diverse environments. However, little is known about their distribution, evolution, and functional roles in bacterial symbionts associated with animals. A prominent example is colibactin, a largely unknown family of secondary metabolites produced by Escherichia coli via a hybrid NRPS-PKS biosynthetic pathway that inflicts DNA damage upon eukaryotic cells and contributes to colorectal cancer and tumor formation in the mammalian gut. Thus far, homologs of this pathway have only been found in closely related Enterobacteriaceae, while a divergent variant of this gene cluster was recently discovered in a marine alphaproteobacterial Pseudovibrio strain. Herein, we sequenced the genome of Frischella perrara PEB0191, a bacterial gut symbiont of honey bees and identified a homologous colibactin biosynthetic pathway related to those found in Enterobacteriaceae. We show that the colibactin genomic island (GI) has conserved gene synteny and biosynthetic module architecture across F. perrara, Enterobacteriaceae, and the Pseudovibrio strain. Comparative metabolomics analyses of F. perrara and E. coli further reveal that these two bacteria produce related colibactin pathway-dependent metabolites. Finally, we demonstrate that F. perrara, like E. coli, causes DNA damage in eukaryotic cells in vitro in a colibactin pathway-dependent manner. Together, these results support that divergent variants of the colibactin biosynthetic pathway are widely distributed among bacterial symbionts, producing related secondary metabolites and likely endowing its producer with functional capabilities important for diverse symbiotic associations. PMID:25527542

  4. The Genotoxin Colibactin Is a Determinant of Virulence in Escherichia coli K1 Experimental Neonatal Systemic Infection

    PubMed Central

    McCarthy, Alex J.; Martin, Patricia; Cloup, Emilie; Stabler, Richard A.

    2015-01-01

    Escherichia coli strains expressing the K1 capsule are a major cause of sepsis and meningitis in human neonates. The development of these diseases is dependent on the expression of a range of virulence factors, many of which remain uncharacterized. Here, we show that all but 1 of 34 E. coli K1 neonatal isolates carried clbA and clbP, genes contained within the pks pathogenicity island and required for the synthesis of colibactin, a polyketide-peptide genotoxin that causes genomic instability in eukaryotic cells by induction of double-strand breaks in DNA. Inactivation of clbA and clbP in E. coli A192PP, a virulent strain of serotype O18:K1 that colonizes the gastrointestinal tract and translocates to the blood compartment with very high frequency in experimental infection of the neonatal rat, significantly reduced the capacity of A192PP to colonize the gut, engender double-strand breaks in DNA, and cause invasive, lethal disease. Mutation of clbA, which encodes a pleiotropic enzyme also involved in siderophore synthesis, impacted virulence to a greater extent than mutation of clbP, encoding an enzyme specific to colibactin synthesis. Restoration of colibactin gene function by complementation reestablished the fully virulent phenotype. We conclude that colibactin contributes to the capacity of E. coli K1 to colonize the neonatal gastrointestinal tract and to cause invasive disease in the susceptible neonate. PMID:26150540

  5. The Genotoxin Colibactin Is a Determinant of Virulence in Escherichia coli K1 Experimental Neonatal Systemic Infection.

    PubMed

    McCarthy, Alex J; Martin, Patricia; Cloup, Emilie; Stabler, Richard A; Oswald, Eric; Taylor, Peter W

    2015-09-01

    Escherichia coli strains expressing the K1 capsule are a major cause of sepsis and meningitis in human neonates. The development of these diseases is dependent on the expression of a range of virulence factors, many of which remain uncharacterized. Here, we show that all but 1 of 34 E. coli K1 neonatal isolates carried clbA and clbP, genes contained within the pks pathogenicity island and required for the synthesis of colibactin, a polyketide-peptide genotoxin that causes genomic instability in eukaryotic cells by induction of double-strand breaks in DNA. Inactivation of clbA and clbP in E. coli A192PP, a virulent strain of serotype O18:K1 that colonizes the gastrointestinal tract and translocates to the blood compartment with very high frequency in experimental infection of the neonatal rat, significantly reduced the capacity of A192PP to colonize the gut, engender double-strand breaks in DNA, and cause invasive, lethal disease. Mutation of clbA, which encodes a pleiotropic enzyme also involved in siderophore synthesis, impacted virulence to a greater extent than mutation of clbP, encoding an enzyme specific to colibactin synthesis. Restoration of colibactin gene function by complementation reestablished the fully virulent phenotype. We conclude that colibactin contributes to the capacity of E. coli K1 to colonize the neonatal gastrointestinal tract and to cause invasive disease in the susceptible neonate. PMID:26150540

  6. The colibactin warhead crosslinks DNA

    PubMed Central

    Vizcaino, Maria I.; Crawford, Jason M.

    2015-01-01

    Members of the human microbiota are increasingly being correlated to human health and disease states, but the majority of the underlying microbial metabolites that regulate host-microbe interactions remain largely unexplored. Select strains of E. coli present in the human colon have been linked to initiating inflammation-induced colorectal cancer through an unknown small molecule-mediated process. The responsible nonribosomal peptide-polyketide hybrid pathway encodes “colibactin,” a largely uncharacterized family of small molecules. Genotoxic small molecules from this pathway capable of initiating cancer formation have remained elusive due to their high instability. Guided by metabolomic analyses, here we employ a combination of NMR spectroscopy and bioinformatics-guided isotopic labeling studies to characterize the colibactin warhead, an unprecedented substituted spirobicyclic structure. The warhead crosslinks duplex DNA in vitro, providing direct experimental evidence for colibactin’s DNA-damaging activity. The data support unexpected models for both colibactin biosynthesis and its mode of action. PMID:25901819

  7. The colibactin warhead crosslinks DNA

    NASA Astrophysics Data System (ADS)

    Vizcaino, Maria I.; Crawford, Jason M.

    2015-05-01

    Members of the human microbiota are increasingly being correlated to human health and disease states, but the majority of the underlying microbial metabolites that regulate host-microbe interactions remain largely unexplored. Select strains of Escherichia coli present in the human colon have been linked to the initiation of inflammation-induced colorectal cancer through an unknown small-molecule-mediated process. The responsible non-ribosomal peptide-polyketide hybrid pathway encodes ‘colibactin’, which belongs to a largely uncharacterized family of small molecules. Genotoxic small molecules from this pathway that are capable of initiating cancer formation have remained elusive due to their high instability. Guided by metabolomic analyses, here we employ a combination of NMR spectroscopy and bioinformatics-guided isotopic labelling studies to characterize the colibactin warhead, an unprecedented substituted spirobicyclic structure. The warhead crosslinks duplex DNA in vitro, providing direct experimental evidence for colibactin's DNA-damaging activity. The data support unexpected models for both colibactin biosynthesis and its mode of action.

  8. IslandViewer update: Improved genomic island discovery and visualization.

    PubMed

    Dhillon, Bhavjinder K; Chiu, Terry A; Laird, Matthew R; Langille, Morgan G I; Brinkman, Fiona S L

    2013-07-01

    IslandViewer (http://pathogenomics.sfu.ca/islandviewer) is a web-accessible application for the computational prediction and analysis of genomic islands (GIs) in bacterial and archaeal genomes. GIs are clusters of genes of probable horizontal origin and are of high interest because they disproportionately encode virulence factors and other adaptations of medical, environmental and industrial interest. Many computational tools exist for the prediction of GIs, but three of the most accurate methods are available in integrated form via IslandViewer: IslandPath-DIMOB, SIGI-HMM and IslandPick. IslandViewer GI predictions are precomputed for all complete microbial genomes from National Center for Biotechnology Information, with an option to upload other genomes and/or perform customized analyses using different settings. Here, we report recent changes to the IslandViewer framework that have vastly improved its efficiency in handling an increasing number of users, plus better facilitate custom genome analyses. Users may also now overlay additional annotations such as virulence factors, antibiotic resistance genes and pathogen-associated genes on top of current GI predictions. Comparisons of GIs between user-selected genomes are now facilitated through a highly requested side-by-side viewer. IslandViewer improvements aim to provide a more flexible interface, coupled with additional highly relevant annotation information, to aid analysis of GIs in diverse microbial species. PMID:23677610

  9. Genomic Flatlining in the Endangered Island Fox.

    PubMed

    Robinson, Jacqueline A; Ortega-Del Vecchyo, Diego; Fan, Zhenxin; Kim, Bernard Y; vonHoldt, Bridgett M; Marsden, Clare D; Lohmueller, Kirk E; Wayne, Robert K

    2016-05-01

    Genetic studies of rare and endangered species often focus on defining and preserving genetically distinct populations, especially those having unique adaptations [1, 2]. Much less attention is directed at understanding the landscape of deleterious variation, an insidious consequence of geographic isolation and the inefficiency of natural selection to eliminate harmful variants in small populations [3-5]. With population sizes of many vertebrates decreasing and isolation increasing through habitat fragmentation and loss, understanding the extent and nature of deleterious variation in small populations is essential for predicting and enhancing population persistence. The Channel Island fox (Urocyon littoralis) is a dwarfed species that inhabits six of California's Channel Islands and is derived from the mainland gray fox (U. cinereoargenteus). These isolated island populations have persisted for thousands of years at extremely small population sizes [6, 7] and, consequently, are a model for testing ideas about the accumulation of deleterious variation in small populations under natural conditions. Analysis of complete genome sequence data from island foxes shows a dramatic decrease in genome-wide variation and a sharp increase in the homozygosity of deleterious variants. The San Nicolas Island population has a near absence of variation, demonstrating a unique genetic flatlining that is punctuated by heterozygosity hotspots, enriched for olfactory receptor genes and other genes with high levels of ancestral variation. These findings question the generality of the small-population paradigm that maintains substantial genetic variation is necessary for short- and long-term persistence. PMID:27112291

  10. The Floating (Pathogenicity) Island: A Genomic Dessert.

    PubMed

    Novick, Richard P; Ram, Geeta

    2016-02-01

    Among the prokaryotic genomic islands (GIs) involved in horizontal gene transfer (HGT) are the classical pathogenicity islands, including the integrative and conjugative elements (ICEs), the gene-transfer agents (GTAs), and the staphylococcal pathogenicity islands (SaPIs), the primary focus of this review. While the ICEs and GTAs mediate HGT autonomously, the SaPIs are dependent on specific phages. The ICEs transfer primarily their own DNA, the GTAs exclusively transfer unlinked host DNA, and the SaPIs combine the capabilities of both. Thus the SaPIs derive their importance from the genes they carry (their genetic cargo) and the genes they move. They act not only as versatile high-frequency mobilizers but also as mediators of phage interference and consequently are major benefactors of their host bacteria. PMID:26744223

  11. Genomic Island Identification Software v 1.0

    Energy Science and Technology Software Center (ESTSC)

    2014-08-25

    Genomic islands are key mobile DNA elements in bacterial evolution, that can distinguish pathogenic strains from each other, or distinguish pathogenic strains from non-pathogenic strains. Their detection in genomes is a challenging problem. We present 3 main software components that attack the island detection problem on two different bases: 1) the preference of islands to insert in chromosomal tRNA or tmRNA genes (islander.pl), and 2) islands’ sporadic occurrence among closely related strains. The latter principlemore » is employed in both an algorithm (learnedPhyloblocks.pl) and a visualization method (panGenome.pl). Component islander.pl finds islands based on their preference for a particular target gene type. We annotate each tRNA and tmRNA gene, find fragments of each such gene as candidates for the distal ends of islands, and filter candidates to remove false positives. Component learnedPhyloblocks.pl uses islands found by islander.pl and other methods as a training set to find new islands. Reference genomes are aligned using mugsy, then the “phylotypes” or patterns of occurrence in the reference set are determined for each position in the target genome, and those phylotypes most enriched in the training set of islands are followed to detect yet more islands. Component panGenome.pl produces a big-data visualization of the chromosomally-ordered “pan-genome”, that includes every gene of every reference genome (x-axis, pan-genome order; y-axis, reference genomes; color-coding, gene presence/absence etc.), islands appearing as dark patches.« less

  12. Genomic Island Identification Software v 1.0

    SciTech Connect

    None, None

    2014-08-25

    Genomic islands are key mobile DNA elements in bacterial evolution, that can distinguish pathogenic strains from each other, or distinguish pathogenic strains from non-pathogenic strains. Their detection in genomes is a challenging problem. We present 3 main software components that attack the island detection problem on two different bases: 1) the preference of islands to insert in chromosomal tRNA or tmRNA genes (islander.pl), and 2) islands’ sporadic occurrence among closely related strains. The latter principle is employed in both an algorithm (learnedPhyloblocks.pl) and a visualization method (panGenome.pl). Component islander.pl finds islands based on their preference for a particular target gene type. We annotate each tRNA and tmRNA gene, find fragments of each such gene as candidates for the distal ends of islands, and filter candidates to remove false positives. Component learnedPhyloblocks.pl uses islands found by islander.pl and other methods as a training set to find new islands. Reference genomes are aligned using mugsy, then the “phylotypes” or patterns of occurrence in the reference set are determined for each position in the target genome, and those phylotypes most enriched in the training set of islands are followed to detect yet more islands. Component panGenome.pl produces a big-data visualization of the chromosomally-ordered “pan-genome”, that includes every gene of every reference genome (x-axis, pan-genome order; y-axis, reference genomes; color-coding, gene presence/absence etc.), islands appearing as dark patches.

  13. Genome Island: A Virtual Science Environment in Second Life

    ERIC Educational Resources Information Center

    Clark, Mary Anne

    2009-01-01

    Mary Anne CLark describes the organization and uses of Genome Island, a virtual laboratory complex constructed in Second Life. Genome Island was created for teaching genetics to university undergraduates but also provides a public space where anyone interested in genetics can spend a few minutes, or a few hours, interacting with genetic…

  14. Oral tolerance failure upon neonatal gut colonization with Escherichia coli producing the genotoxin colibactin.

    PubMed

    Secher, Thomas; Payros, Delphine; Brehin, Camille; Boury, Michele; Watrin, Claude; Gillet, Marion; Bernard-Cadenat, Isabelle; Menard, Sandrine; Theodorou, Vassilia; Saoudi, Abdelhadi; Olier, Maiwenn; Oswald, Eric

    2015-06-01

    The intestinal barrier controls the balance between tolerance and immunity to luminal antigens. When this finely tuned equilibrium is deregulated, inflammatory disorders can occur. There is a concomitant increase, in urban populations of developed countries, of immune-mediated diseases along with a shift in Escherichia coli population from the declining phylogenetic group A to the newly dominant group B2, including commensal strains producing a genotoxin called colibactin that massively colonized the gut of neonates. Here, we showed that mother-to-offspring early gut colonization by colibactin-producing E. coli impairs intestinal permeability and enhances the transepithelial passage of luminal antigen, leading to an increased immune activation. Functionally, this was accompanied by a dramatic increase in local and systemic immune responses against a fed antigen, decreased regulatory T cell population, tolerogenic dendritic cells, and enhanced mucosal delayed-type hypersensitivity response. Conversely, the abolition of colibactin expression by mutagenesis abrogates the alteration of oral tolerance induced by neonatal colonization by E. coli. In conclusion, the vertical colonization by E. coli producing the genotoxin colibactin enhances intestinal translocation and subsequently alters oral tolerance. Thus, early colonization by E. coli from the newly dominant phylogenetic group B2, which produces colibactin, may represent a risk factor for the development of immune-mediated diseases. PMID:25824839

  15. Oral Tolerance Failure upon Neonatal Gut Colonization with Escherichia coli Producing the Genotoxin Colibactin

    PubMed Central

    Secher, Thomas; Payros, Delphine; Brehin, Camille; Boury, Michele; Watrin, Claude; Gillet, Marion; Bernard-Cadenat, Isabelle; Menard, Sandrine; Theodorou, Vassilia; Saoudi, Abdelhadi; Olier, Maiwenn

    2015-01-01

    The intestinal barrier controls the balance between tolerance and immunity to luminal antigens. When this finely tuned equilibrium is deregulated, inflammatory disorders can occur. There is a concomitant increase, in urban populations of developed countries, of immune-mediated diseases along with a shift in Escherichia coli population from the declining phylogenetic group A to the newly dominant group B2, including commensal strains producing a genotoxin called colibactin that massively colonized the gut of neonates. Here, we showed that mother-to-offspring early gut colonization by colibactin-producing E. coli impairs intestinal permeability and enhances the transepithelial passage of luminal antigen, leading to an increased immune activation. Functionally, this was accompanied by a dramatic increase in local and systemic immune responses against a fed antigen, decreased regulatory T cell population, tolerogenic dendritic cells, and enhanced mucosal delayed-type hypersensitivity response. Conversely, the abolition of colibactin expression by mutagenesis abrogates the alteration of oral tolerance induced by neonatal colonization by E. coli. In conclusion, the vertical colonization by E. coli producing the genotoxin colibactin enhances intestinal translocation and subsequently alters oral tolerance. Thus, early colonization by E. coli from the newly dominant phylogenetic group B2, which produces colibactin, may represent a risk factor for the development of immune-mediated diseases. PMID:25824839

  16. IslandViewer 3: more flexible, interactive genomic island discovery, visualization and analysis

    PubMed Central

    Dhillon, Bhavjinder K.; Laird, Matthew R.; Shay, Julie A.; Winsor, Geoffrey L.; Lo, Raymond; Nizam, Fazmin; Pereira, Sheldon K.; Waglechner, Nicholas; McArthur, Andrew G.; Langille, Morgan G.I.; Brinkman, Fiona S.L.

    2015-01-01

    IslandViewer (http://pathogenomics.sfu.ca/islandviewer) is a widely used web-based resource for the prediction and analysis of genomic islands (GIs) in bacterial and archaeal genomes. GIs are clusters of genes of probable horizontal origin, and are of high interest since they disproportionately encode genes involved in medically and environmentally important adaptations, including antimicrobial resistance and virulence. We now report a major new release of IslandViewer, since the last release in 2013. IslandViewer 3 incorporates a completely new genome visualization tool, IslandPlot, enabling for the first time interactive genome analysis and gene search capabilities using synchronized circular, horizontal and vertical genome views. In addition, more curated virulence factors and antimicrobial resistance genes have been incorporated, and homologs of these genes identified in closely related genomes using strict filters. Pathogen-associated genes have been re-calculated for all pre-computed complete genomes. For user-uploaded genomes to be analysed, IslandViewer 3 can also now handle incomplete genomes, with an improved queuing system on compute nodes to handle user demand. Overall, IslandViewer 3 represents a significant new version of this GI analysis software, with features that may make it more broadly useful for general microbial genome analysis and visualization. PMID:25916842

  17. IslandViewer 3: more flexible, interactive genomic island discovery, visualization and analysis.

    PubMed

    Dhillon, Bhavjinder K; Laird, Matthew R; Shay, Julie A; Winsor, Geoffrey L; Lo, Raymond; Nizam, Fazmin; Pereira, Sheldon K; Waglechner, Nicholas; McArthur, Andrew G; Langille, Morgan G I; Brinkman, Fiona S L

    2015-07-01

    IslandViewer (http://pathogenomics.sfu.ca/islandviewer) is a widely used web-based resource for the prediction and analysis of genomic islands (GIs) in bacterial and archaeal genomes. GIs are clusters of genes of probable horizontal origin, and are of high interest since they disproportionately encode genes involved in medically and environmentally important adaptations, including antimicrobial resistance and virulence. We now report a major new release of IslandViewer, since the last release in 2013. IslandViewer 3 incorporates a completely new genome visualization tool, IslandPlot, enabling for the first time interactive genome analysis and gene search capabilities using synchronized circular, horizontal and vertical genome views. In addition, more curated virulence factors and antimicrobial resistance genes have been incorporated, and homologs of these genes identified in closely related genomes using strict filters. Pathogen-associated genes have been re-calculated for all pre-computed complete genomes. For user-uploaded genomes to be analysed, IslandViewer 3 can also now handle incomplete genomes, with an improved queuing system on compute nodes to handle user demand. Overall, IslandViewer 3 represents a significant new version of this GI analysis software, with features that may make it more broadly useful for general microbial genome analysis and visualization. PMID:25916842

  18. Genomic islands of speciation in Anopheles gambiae.

    PubMed

    Turner, Thomas L; Hahn, Matthew W; Nuzhdin, Sergey V

    2005-09-01

    The African malaria mosquito, Anopheles gambiae sensu stricto (A. gambiae), provides a unique opportunity to study the evolution of reproductive isolation because it is divided into two sympatric, partially isolated subtaxa known as M form and S form. With the annotated genome of this species now available, high-throughput techniques can be applied to locate and characterize the genomic regions contributing to reproductive isolation. In order to quantify patterns of differentiation within A. gambiae, we hybridized population samples of genomic DNA from each form to Affymetrix GeneChip microarrays. We found that three regions, together encompassing less than 2.8 Mb, are the only locations where the M and S forms are significantly differentiated. Two of these regions are adjacent to centromeres, on Chromosomes 2L and X, and contain 50 and 12 predicted genes, respectively. Sequenced loci in these regions contain fixed differences between forms and no shared polymorphisms, while no fixed differences were found at nearby control loci. The third region, on Chromosome 2R, contains only five predicted genes; fixed differences in this region were also verified by direct sequencing. These "speciation islands" remain differentiated despite considerable gene flow, and are therefore expected to contain the genes responsible for reproductive isolation. Much effort has recently been applied to locating the genes and genetic changes responsible for reproductive isolation between species. Though much can be inferred about speciation by studying taxa that have diverged for millions of years, studying differentiation between taxa that are in the early stages of isolation will lead to a clearer view of the number and size of regions involved in the genetics of speciation. Despite appreciable levels of gene flow between the M and S forms of A. gambiae, we were able to isolate three small regions of differentiation where genes responsible for ecological and behavioral isolation are likely to be located. We expect reproductive isolation to be due to changes at a small number of loci, as these regions together contain only 67 predicted genes. Concentrating future mapping experiments on these regions should reveal the genes responsible for reproductive isolation between forms. PMID:16076241

  19. On detection and assessment of statistical significance of Genomic Islands

    PubMed Central

    Chatterjee, Raghunath; Chaudhuri, Keya; Chaudhuri, Probal

    2008-01-01

    Background Many of the available methods for detecting Genomic Islands (GIs) in prokaryotic genomes use markers such as transposons, proximal tRNAs, flanking repeats etc., or they use other supervised techniques requiring training datasets. Most of these methods are primarily based on the biases in GC content or codon and amino acid usage of the islands. However, these methods either do not use any formal statistical test of significance or use statistical tests for which the critical values and the P-values are not adequately justified. We propose a method, which is unsupervised in nature and uses Monte-Carlo statistical tests based on randomly selected segments of a chromosome. Such tests are supported by precise statistical distribution theory, and consequently, the resulting P-values are quite reliable for making the decision. Results Our algorithm (named Design-Island, an acronym for Detection of Statistically Significant Genomic Island) runs in two phases. Some 'putative GIs' are identified in the first phase, and those are refined into smaller segments containing horizontally acquired genes in the refinement phase. This method is applied to Salmonella typhi CT18 genome leading to the discovery of several new pathogenicity, antibiotic resistance and metabolic islands that were missed by earlier methods. Many of these islands contain mobile genetic elements like phage-mediated genes, transposons, integrase and IS elements confirming their horizontal acquirement. Conclusion The proposed method is based on statistical tests supported by precise distribution theory and reliable P-values along with a technique for visualizing statistically significant islands. The performance of our method is better than many other well known methods in terms of their sensitivity and accuracy, and in terms of specificity, it is comparable to other methods. PMID:18380895

  20. Expression analysis of the colibactin gene cluster coding for a novel polyketide in Escherichia coli.

    PubMed

    Homburg, Stefan; Oswald, Eric; Hacker, Jörg; Dobrindt, Ulrich

    2007-10-01

    The recently described hybrid nonribosomal peptide-polyketide colibactin, found in various Escherichia coli strains, invokes a cytopathic effect in HeLa cells upon cocultivation with these bacteria. However, not much is known so far about the transcriptional organization of the colibactin genes (clb) or the regulation of their transcription. Here, the operon structure of the colibactin gene cluster of E. coli strain Nissle 1917 was investigated by means of reverse transcriptase (RT)-PCR and seven transcripts were found of which four are transcribed polycistronically. The polycistrons comprise the genes clbC to clbG, clbI to clbN, clbO to clbP, and clbR to clbA and span 6.3, 23.3, 3.9, and 0.9 kb, respectively. Furthermore, transcript levels for different cultivation conditions were determined by RT-PCR of the whole cluster as well as by luciferase reporter gene assays of the genes clbA, clbB, clbQ, and clbR. RT-PCR revealed an overall increased transcription in shaking cultures as well as of the genes clbA to clbH in general. Luciferase reporter gene fusions indicated an influence of the carbon source on clb gene expression. PMID:17714479

  1. A genomic island linked to ecotype divergence in Atlantic cod.

    PubMed

    Hemmer-Hansen, Jakob; Nielsen, Einar E; Therkildsen, Nina O; Taylor, Martin I; Ogden, Rob; Geffen, Audrey J; Bekkevold, Dorte; Helyar, Sarah; Pampoulie, Christophe; Johansen, Torild; Carvalho, Gary R

    2013-05-01

    The genomic architecture underlying ecological divergence and ecological speciation with gene flow is still largely unknown for most organisms. One central question is whether divergence is genome-wide or localized in 'genomic mosaics' during early stages when gene flow is still pronounced. Empirical work has so far been limited, and the relative impacts of gene flow and natural selection on genomic patterns have not been fully explored. Here, we use ecotypes of Atlantic cod to investigate genomic patterns of diversity and population differentiation in a natural system characterized by high gene flow and large effective population sizes, properties which theoretically could restrict divergence in local genomic regions. We identify a genomic region of strong population differentiation, extending over approximately 20 cM, between pairs of migratory and stationary ecotypes examined at two different localities. Furthermore, the region is characterized by markedly reduced levels of genetic diversity in migratory ecotype samples. The results highlight the genomic region, or 'genomic island', as potentially associated with ecological divergence and suggest the involvement of a selective sweep. Finally, we also confirm earlier findings of localized genomic differentiation in three other linkage groups associated with divergence among eastern Atlantic populations. Thus, although the underlying mechanisms are still unknown, the results suggest that 'genomic mosaics' of differentiation may even be found under high levels of gene flow and that marine fishes may provide insightful model systems for studying and identifying initial targets of selection during ecological divergence. PMID:23611647

  2. Patterns and architecture of genomic islands in marine bacteria

    PubMed Central

    2012-01-01

    Background Genomic Islands (GIs) have key roles since they modulate the structure and size of bacterial genomes displaying a diverse set of laterally transferred genes. Despite their importance, GIs in marine bacterial genomes have not been explored systematically to uncover possible trends and to analyze their putative ecological significance. Results We carried out a comprehensive analysis of GIs in 70 selected marine bacterial genomes detected with IslandViewer to explore the distribution, patterns and functional gene content in these genomic regions. We detected 438 GIs containing a total of 8152 genes. GI number per genome was strongly and positively correlated with the total GI size. In 50% of the genomes analyzed the GIs accounted for approximately 3% of the genome length, with a maximum of 12%. Interestingly, we found transposases particularly enriched within Alphaproteobacteria GIs, and site-specific recombinases in Gammaproteobacteria GIs. We described specific Homologous Recombination GIs (HR-GIs) in several genera of marine Bacteroidetes and in Shewanella strains among others. In these HR-GIs, we recurrently found conserved genes such as the β-subunit of DNA-directed RNA polymerase, regulatory sigma factors, the elongation factor Tu and ribosomal protein genes typically associated with the core genome. Conclusions Our results indicate that horizontal gene transfer mediated by phages, plasmids and other mobile genetic elements, and HR by site-specific recombinases play important roles in the mobility of clusters of genes between taxa and within closely related genomes, modulating the flexible pool of the genome. Our findings suggest that GIs may increase bacterial fitness under environmental changing conditions by acquiring novel foreign genes and/or modifying gene transcription and/or transduction. PMID:22839777

  3. Mobilization of Genomic Islands of Staphylococcus aureus by Temperate Bacteriophage

    PubMed Central

    Moon, Bo Youn; Park, Joo Youn; Robinson, D. Ashley; Thomas, Jonathan C.; Park, Yong Ho; Thornton, Justin A.; Seo, Keun Seok

    2016-01-01

    The virulence of Staphylococcus aureus, in both human and animal hosts, is largely influenced by the acquisition of mobile genetic elements (MGEs). Most S. aureus strains carry a variety of MGEs, including three genomic islands (νSaα, νSaβ, νSaγ) that are diverse in virulence gene content but conserved within strain lineages. Although the mobilization of pathogenicity islands, phages and plasmids has been well studied, the mobilization of genomic islands is poorly understood. We previously demonstrated the mobilization of νSaβ by the adjacent temperate bacteriophage ϕSaBov from strain RF122. In this study, we demonstrate that ϕSaBov mediates the mobilization of νSaα and νSaγ, which are located remotely from ϕSaBov, mostly to recipient strains belonging to ST151. Phage DNA sequence analysis revealed that chromosomal DNA excision events from RF122 were highly specific to MGEs, suggesting sequence-specific DNA excision and packaging events rather than generalized transduction by a temperate phage. Disruption of the int gene in ϕSaBov did not affect phage DNA excision, packaging, and integration events. However, disruption of the terL gene completely abolished phage DNA packing events, suggesting that the primary function of temperate phage in the transfer of genomic islands is to allow for phage DNA packaging by TerL and that transducing phage particles are the actual vehicle for transfer. These results extend our understanding of the important role of bacteriophage in the horizontal transfer and evolution of genomic islands in S. aureus. PMID:26953931

  4. Mobilization of Genomic Islands of Staphylococcus aureus by Temperate Bacteriophage.

    PubMed

    Moon, Bo Youn; Park, Joo Youn; Robinson, D Ashley; Thomas, Jonathan C; Park, Yong Ho; Thornton, Justin A; Seo, Keun Seok

    2016-01-01

    The virulence of Staphylococcus aureus, in both human and animal hosts, is largely influenced by the acquisition of mobile genetic elements (MGEs). Most S. aureus strains carry a variety of MGEs, including three genomic islands (νSaα, νSaβ, νSaγ) that are diverse in virulence gene content but conserved within strain lineages. Although the mobilization of pathogenicity islands, phages and plasmids has been well studied, the mobilization of genomic islands is poorly understood. We previously demonstrated the mobilization of νSaβ by the adjacent temperate bacteriophage ϕSaBov from strain RF122. In this study, we demonstrate that ϕSaBov mediates the mobilization of νSaα and νSaγ, which are located remotely from ϕSaBov, mostly to recipient strains belonging to ST151. Phage DNA sequence analysis revealed that chromosomal DNA excision events from RF122 were highly specific to MGEs, suggesting sequence-specific DNA excision and packaging events rather than generalized transduction by a temperate phage. Disruption of the int gene in ϕSaBov did not affect phage DNA excision, packaging, and integration events. However, disruption of the terL gene completely abolished phage DNA packing events, suggesting that the primary function of temperate phage in the transfer of genomic islands is to allow for phage DNA packaging by TerL and that transducing phage particles are the actual vehicle for transfer. These results extend our understanding of the important role of bacteriophage in the horizontal transfer and evolution of genomic islands in S. aureus. PMID:26953931

  5. Genomic islands predict functional adaptation in marine actinobacteria

    SciTech Connect

    Penn, Kevin; Jenkins, Caroline; Nett, Markus; Udwary, Daniel; Gontang, Erin; McGlinchey, Ryan; Foster, Brian; Lapidus, Alla; Podell, Sheila; Allen, Eric; Moore, Bradley; Jensen, Paul

    2009-04-01

    Linking functional traits to bacterial phylogeny remains a fundamental but elusive goal of microbial ecology 1. Without this information, it becomes impossible to resolve meaningful units of diversity and the mechanisms by which bacteria interact with each other and adapt to environmental change. Ecological adaptations among bacterial populations have been linked to genomic islands, strain-specific regions of DNA that house functionally adaptive traits 2. In the case of environmental bacteria, these traits are largely inferred from bioinformatic or gene expression analyses 2, thus leaving few examples in which the functions of island genes have been experimentally characterized. Here we report the complete genome sequences of Salinispora tropica and S. arenicola, the first cultured, obligate marine Actinobacteria 3. These two species inhabit benthic marine environments and dedicate 8-10percent of their genomes to the biosynthesis of secondary metabolites. Despite a close phylogenetic relationship, 25 of 37 secondary metabolic pathways are species-specific and located within 21 genomic islands, thus providing new evidence linking secondary metabolism to ecological adaptation. Species-specific differences are also observed in CRISPR sequences, suggesting that variations in phage immunity provide fitness advantages that contribute to the cosmopolitan distribution of S. arenicola 4. The two Salinispora genomes have evolved by complex processes that include the duplication and acquisition of secondary metabolite genes, the products of which provide immediate opportunities for molecular diversification and ecological adaptation. Evidence that secondary metabolic pathways are exchanged by Horizontal Gene Transfer (HGT) yet are fixed among globally distributed populations 5 supports a functional role for their products and suggests that pathway acquisition represents a previously unrecognized force driving bacterial diversification

  6. Methyl-CpG island-associated genome signature tags

    DOEpatents

    Dunn, John J

    2014-05-20

    Disclosed is a method for analyzing the organismic complexity of a sample through analysis of the nucleic acid in the sample. In the disclosed method, through a series of steps, including digestion with a type II restriction enzyme, ligation of capture adapters and linkers and digestion with a type IIS restriction enzyme, genome signature tags are produced. The sequences of a statistically significant number of the signature tags are determined and the sequences are used to identify and quantify the organisms in the sample. Various embodiments of the invention described herein include methods for using single point genome signature tags to analyze the related families present in a sample, methods for analyzing sequences associated with hyper- and hypo-methylated CpG islands, methods for visualizing organismic complexity change in a sampling location over time and methods for generating the genome signature tag profile of a sample of fragmented DNA.

  7. Islander: A database of precisely mapped genomic islands in tRNA and tmRNA genes

    SciTech Connect

    Hudson, Corey M.; Lau, Britney Y.; Williams, Kelly P.

    2014-11-05

    Genomic islands are mobile DNAs that are major agents of bacterial and archaeal evolution. Integration into prokaryotic chromosomes usually occurs site-specifically at tRNA or tmRNA gene (together, tDNA) targets, catalyzed by tyrosine integrases. This splits the target gene, yet sequences within the island restore the disrupted gene; the regenerated target and its displaced fragment precisely mark the endpoints of the island. We applied this principle to search for islands in genomic DNA sequences. Our algorithm identifies tDNAs, finds fragments of those tDNAs in the same replicon and removes unlikely candidate islands through a series of filters. A search for islands in 2168 whole prokaryotic genomes produced 3919 candidates. The website Islander (recently moved to http://bioinformatics.sandia.gov/islander/) presents these precisely mapped candidate islands, the gene content and the island sequence. The algorithm further insists that each island encode an integrase, and attachment site sequence identity is carefully noted; therefore, the database also serves in the study of integrase site-specificity and its evolution.

  8. Comparative metabolomics and structural characterizations illuminate colibactin pathway-dependent small molecules.

    PubMed

    Vizcaino, Maria I; Engel, Philipp; Trautman, Eric; Crawford, Jason M

    2014-07-01

    The gene cluster responsible for synthesis of the unknown molecule "colibactin" has been identified in mutualistic and pathogenic Escherichia coli. The pathway endows its producer with a long-term persistence phenotype in the human bowel, a probiotic activity used in the treatment of ulcerative colitis, and a carcinogenic activity under host inflammatory conditions. To date, functional small molecules from this pathway have not been reported. Here we implemented a comparative metabolomics and targeted structural network analyses approach to identify a catalog of small molecules dependent on the colibactin pathway from the meningitis isolate E. coli IHE3034 and the probiotic E. coli Nissle 1917. The structures of 10 pathway-dependent small molecules are proposed based on structural characterizations and network relationships. The network will provide a roadmap for the structural and functional elucidation of a variety of other small molecules encoded by the pathway. From the characterized small molecule set, in vitro bacterial growth inhibitory and mammalian CNS receptor antagonist activities are presented. PMID:24932672

  9. Islander: A database of precisely mapped genomic islands in tRNA and tmRNA genes

    DOE PAGESBeta

    Hudson, Corey M.; Lau, Britney Y.; Williams, Kelly P.

    2014-11-05

    Genomic islands are mobile DNAs that are major agents of bacterial and archaeal evolution. Integration into prokaryotic chromosomes usually occurs site-specifically at tRNA or tmRNA gene (together, tDNA) targets, catalyzed by tyrosine integrases. This splits the target gene, yet sequences within the island restore the disrupted gene; the regenerated target and its displaced fragment precisely mark the endpoints of the island. We applied this principle to search for islands in genomic DNA sequences. Our algorithm identifies tDNAs, finds fragments of those tDNAs in the same replicon and removes unlikely candidate islands through a series of filters. A search for islandsmore » in 2168 whole prokaryotic genomes produced 3919 candidates. The website Islander (recently moved to http://bioinformatics.sandia.gov/islander/) presents these precisely mapped candidate islands, the gene content and the island sequence. The algorithm further insists that each island encode an integrase, and attachment site sequence identity is carefully noted; therefore, the database also serves in the study of integrase site-specificity and its evolution.« less

  10. Variation in genomic islands contribute to genome plasticity in cupriavidus metallidurans

    PubMed Central

    2012-01-01

    Background Different Cupriavidus metallidurans strains isolated from metal-contaminated and other anthropogenic environments were genotypically and phenotypically compared with C. metallidurans type strain CH34. The latter is well-studied for its resistance to a wide range of metals, which is carried for a substantial part by its two megaplasmids pMOL28 and pMOL30. Results Comparative genomic hybridization (CGH) indicated that the extensive arsenal of determinants involved in metal resistance was well conserved among the different C. metallidurans strains. Contrary, the mobile genetic elements identified in type strain CH34 were not present in all strains but clearly showed a pattern, although, not directly related to a particular biotope nor location (geographical). One group of strains carried almost all mobile genetic elements, while these were much less abundant in the second group. This occurrence was also reflected in their ability to degrade toluene and grow autotrophically on hydrogen gas and carbon dioxide, which are two traits linked to separate genomic islands of the Tn4371-family. In addition, the clear pattern of genomic islands distribution allowed to identify new putative genomic islands on chromosome 1 and 2 of C. metallidurans CH34. Conclusions Metal resistance determinants are shared by all C. metallidurans strains and their occurrence is apparently irrespective of the strain's isolation type and place. Cupriavidus metallidurans strains do display substantial differences in the diversity and size of their mobile gene pool, which may be extensive in some (including the type strain) while marginal in others. PMID:22443515

  11. The phn Island: A New Genomic Island Encoding Catabolism of Polynuclear Aromatic Hydrocarbons

    PubMed Central

    Hickey, William J.; Chen, Shicheng; Zhao, Jiangchao

    2012-01-01

    Bacteria are key in the biodegradation of polycyclic aromatic hydrocarbons (PAH), which are widespread environmental pollutants. At least six genotypes of PAH degraders are distinguishable via phylogenies of the ring-hydroxylating dioxygenase (RHD) that initiates bacterial PAH metabolism. A given RHD genotype can be possessed by a variety of bacterial genera, suggesting horizontal gene transfer (HGT) is an important process for dissemination of PAH-degrading genes. But, mechanisms of HGT for most RHD genotypes are unknown. Here, we report in silico and functional analyses of the phenanthrene-degrading bacterium Delftia sp. Cs1-4, a representative of the phnAFK2 RHD group. The phnAFK2 genotype predominates PAH degrader communities in some soils and sediments, but, until now, their genomic biology has not been explored. In the present study, genes for the entire phenanthrene catabolic pathway were discovered on a novel ca. 232 kb genomic island (GEI), now termed the phn island. This GEI had characteristics of an integrative and conjugative element with a mobilization/stabilization system similar to that of SXT/R391-type GEI. But, it could not be grouped with any known GEI, and was the first member of a new GEI class. The island also carried genes predicted to encode: synthesis of quorum sensing signal molecules, fatty acid/polyhydroxyalkanoate biosynthesis, a type IV secretory system, a PRTRC system, DNA mobilization functions and >50 hypothetical proteins. The 50% G + C content of the phn gene cluster differed significantly from the 66.7% G + C level of the island as a whole and the strain Cs1-4 chromosome, indicating a divergent phylogenetic origin for the phn genes. Collectively, these studies added new insights into the genetic elements affecting the PAH biodegradation capacity of microbial communities specifically, and the potential vehicles of HGT in general. PMID:22493593

  12. Identification of a perchlorate reduction genomic island with novel regulatory and metabolic genes.

    PubMed

    Melnyk, Ryan A; Engelbrektson, Anna; Clark, Iain C; Carlson, Hans K; Byrne-Bailey, Kathy; Coates, John D

    2011-10-01

    A comparative analysis of the genomes of four dissimilatory (per)chlorate-reducing bacteria has revealed a genomic island associated with perchlorate reduction. In addition to the characterized metabolic genes for perchlorate reductase and chlorite dismutase, the island contains multiple conserved uncharacterized genes possibly involved in electron transport and regulation. PMID:21856823

  13. Islander: a database of integrative islands in prokaryotic genomes, the associated integrases and their DNA site specificities.

    PubMed

    Mantri, Yogita; Williams, Kelly P

    2004-01-01

    Prokaryotic chromosomes often contain islands, such as temperate phages or pathogenicity islands, delivered by site-specific integrases. Integration usually occurs within a tRNA or tmRNA gene, splitting the gene, yet sequences within the island restore the disrupted gene. The regenerated RNA gene and the displaced fragment of that gene thus mark the endpoints of the island. We applied this principle to search for islands in genomic DNA sequences. Our algorithm generates a list of tRNA and tmRNA genes, uses each as the query for a BLAST search of the starting DNA and removes unlikely hits through a series of filters. A search for islands in 106 whole bacterial genomes produced 143 candidates, with the search itself providing an estimate of three false candidates among these. Preliminary phylogenetic analysis of the associated integrases reduced this set to 89 cases of independently evolved site specificity, which showed strong bias for the tmRNA gene. The website Islander (http://www.indiana.edu/ approximately islander) presents the candidate islands in GenBank-style files and correlates integrase phylogeny with site specificity. PMID:14681358

  14. Genomic analysis of Pseudomonas putida: genes in a genome island are crucial for nicotine degradation

    PubMed Central

    Tang, Hongzhi; Yao, Yuxiang; Wang, Lijuan; Yu, Hao; Ren, Yiling; Wu, Geng; Xu, Ping

    2012-01-01

    Nicotine is an important chemical compound in nature that has been regarded as an environmental toxicant causing various preventable diseases. Several bacterial species are adapted to decompose this heterocyclic compound, including Pseudomonas and Arthrobacter. Pseudomonas putida S16 is a bacterium that degrades nicotine through the pyrrolidine pathway, similar to that present in animals. The corresponding late steps of the nicotine degradation pathway in P. putida S16 was first proposed and demonstrated to be from 2,5-dihydroxy-pyridine through the intermediates N-formylmaleamic acid, maleamic acid, maleic acid, and fumaric acid. Genomics of strain S16 revealed that genes located in the largest genome island play a major role in nicotine degradation and may originate from other strains, as suggested by the constructed phylogenetic tree and the results of comparative genomic analysis. The deletion of gene hpo showed that this gene is essential for nicotine degradation. This study defines the mechanism of nicotine degradation. PMID:22530095

  15. Genome Sequences of Poaceae-Associated Gemycircularviruses from the Pacific Ocean Island of Tonga.

    PubMed

    Male, Maketalena F; Kami, Viliami; Kraberger, Simona; Varsani, Arvind

    2015-01-01

    We sampled and analyzed 43 Poaceae plants from the Pacific Ocean island of Tonga for the presence of circular DNA viruses. From these samples, we recovered three gemycircularvirus genomes, which share >99% identity, from Brachiaria deflexa (n = 2) and sugarcane (n = 1). These genomes share <61% genome-wide identity with other gemycircularvirus sequences in public databases. PMID:26472826

  16. Adaptive introgression between Anopheles sibling species eliminates a major genomic island but not reproductive isolation

    PubMed Central

    Clarkson, Chris S.; Weetman, David; Essandoh, John; Yawson, Alexander E.; Maslen, Gareth; Manske, Magnus; Field, Stuart G.; Webster, Mark; Antão, Tiago; MacInnis, Bronwyn; Kwiatkowski, Dominic; Donnelly, Martin J.

    2014-01-01

    Adaptive introgression can provide novel genetic variation to fuel rapid evolutionary responses, though it may be counterbalanced by potential for detrimental disruption of the recipient genomic background. We examine the extent and impact of recent introgression of a strongly selected insecticide-resistance mutation (Vgsc-1014F) located within one of two exceptionally large genomic islands of divergence separating the Anopheles gambiae species pair. Here we show that transfer of the Vgsc mutation results in homogenization of the entire genomic island region (~1.5% of the genome) between species. Despite this massive disruption, introgression is clearly adaptive with a dramatic rise in frequency of Vgsc-1014F and no discernable impact on subsequent reproductive isolation between species. Our results show (1) how resilience of genomes to massive introgression can permit rapid adaptive response to anthropogenic selection and (2) that even extreme prominence of genomic islands of divergence can be an unreliable indicator of importance in speciation. PMID:24963649

  17. Adaptive introgression between Anopheles sibling species eliminates a major genomic island but not reproductive isolation.

    PubMed

    Clarkson, Chris S; Weetman, David; Essandoh, John; Yawson, Alexander E; Maslen, Gareth; Manske, Magnus; Field, Stuart G; Webster, Mark; Antão, Tiago; MacInnis, Bronwyn; Kwiatkowski, Dominic; Donnelly, Martin J

    2014-01-01

    Adaptive introgression can provide novel genetic variation to fuel rapid evolutionary responses, though it may be counterbalanced by potential for detrimental disruption of the recipient genomic background. We examine the extent and impact of recent introgression of a strongly selected insecticide-resistance mutation (Vgsc-1014F) located within one of two exceptionally large genomic islands of divergence separating the Anopheles gambiae species pair. Here we show that transfer of the Vgsc mutation results in homogenization of the entire genomic island region (~1.5% of the genome) between species. Despite this massive disruption, introgression is clearly adaptive with a dramatic rise in frequency of Vgsc-1014F and no discernable impact on subsequent reproductive isolation between species. Our results show (1) how resilience of genomes to massive introgression can permit rapid adaptive response to anthropogenic selection and (2) that even extreme prominence of genomic islands of divergence can be an unreliable indicator of importance in speciation. PMID:24963649

  18. Draft Genome of Rhodococcus rhodochrous TRN7, Isolated from the Coast of Trindade Island, Brazil.

    PubMed

    Rodrigues, Edmo M; Pylro, Victor S; Dobbler, Priscila T; Victoria, Filipe; Roesch, Luiz F W; Tótola, Marcos R

    2016-01-01

    Here, we present a draft genome and annotation of Rhodococcus rhodochrous TRN7, isolated from Trindade Island, Brazil, which will provide genetic data to benefit the understanding of its metabolism. PMID:26941155

  19. Draft Genome of Rhodococcus rhodochrous TRN7, Isolated from the Coast of Trindade Island, Brazil

    PubMed Central

    Rodrigues, Edmo M.; Pylro, Victor S.; Dobbler, Priscila T.; Victoria, Filipe

    2016-01-01

    Here, we present a draft genome and annotation of Rhodococcus rhodochrous TRN7, isolated from Trindade Island, Brazil, which will provide genetic data to benefit the understanding of its metabolism. PMID:26941155

  20. Mitochondrial Genomes Suggest Rapid Evolution of Dwarf California Channel Islands Foxes (Urocyon littoralis)

    PubMed Central

    Hofman, Courtney A.; Rick, Torben C.; Hawkins, Melissa T. R.; Funk, W. Chris; Ralls, Katherine; Boser, Christina L.; Collins, Paul W.; Coonan, Tim; King, Julie L.; Morrison, Scott A.; Newsome, Seth D.; Sillett, T. Scott; Fleischer, Robert C.; Maldonado, Jesus E.

    2015-01-01

    Island endemics are typically differentiated from their mainland progenitors in behavior, morphology, and genetics, often resulting from long-term evolutionary change. To examine mechanisms for the origins of island endemism, we present a phylogeographic analysis of whole mitochondrial genomes from the endangered island fox (Urocyon littoralis), endemic to California’s Channel Islands, and mainland gray foxes (U. cinereoargenteus). Previous genetic studies suggested that foxes first appeared on the islands >16,000 years ago, before human arrival (~13,000 cal BP), while archaeological and paleontological data supported a colonization >7000 cal BP. Our results are consistent with initial fox colonization of the northern islands probably by rafting or human introduction ~9200–7100 years ago, followed quickly by human translocation of foxes from the northern to southern Channel Islands. Mitogenomes indicate that island foxes are monophyletic and most closely related to gray foxes from northern California that likely experienced a Holocene climate-induced range shift. Our data document rapid morphological evolution of island foxes (in ~2000 years or less). Despite evidence for bottlenecks, island foxes have generated and maintained multiple mitochondrial haplotypes. This study highlights the intertwined evolutionary history of island foxes and humans, and illustrates a new approach for investigating the evolutionary histories of other island endemics. PMID:25714775

  1. Mitochondrial genomes suggest rapid evolution of dwarf California Channel Islands foxes (Urocyon littoralis).

    PubMed

    Hofman, Courtney A; Rick, Torben C; Hawkins, Melissa T R; Funk, W Chris; Ralls, Katherine; Boser, Christina L; Collins, Paul W; Coonan, Tim; King, Julie L; Morrison, Scott A; Newsome, Seth D; Sillett, T Scott; Fleischer, Robert C; Maldonado, Jesus E

    2015-01-01

    Island endemics are typically differentiated from their mainland progenitors in behavior, morphology, and genetics, often resulting from long-term evolutionary change. To examine mechanisms for the origins of island endemism, we present a phylogeographic analysis of whole mitochondrial genomes from the endangered island fox (Urocyon littoralis), endemic to California's Channel Islands, and mainland gray foxes (U. cinereoargenteus). Previous genetic studies suggested that foxes first appeared on the islands >16,000 years ago, before human arrival (~13,000 cal BP), while archaeological and paleontological data supported a colonization >7000 cal BP. Our results are consistent with initial fox colonization of the northern islands probably by rafting or human introduction ~9200-7100 years ago, followed quickly by human translocation of foxes from the northern to southern Channel Islands. Mitogenomes indicate that island foxes are monophyletic and most closely related to gray foxes from northern California that likely experienced a Holocene climate-induced range shift. Our data document rapid morphological evolution of island foxes (in ~2000 years or less). Despite evidence for bottlenecks, island foxes have generated and maintained multiple mitochondrial haplotypes. This study highlights the intertwined evolutionary history of island foxes and humans, and illustrates a new approach for investigating the evolutionary histories of other island endemics. PMID:25714775

  2. Genomic islands of speciation separate cichlid ecomorphs in an East African crater lake.

    PubMed

    Malinsky, Milan; Challis, Richard J; Tyers, Alexandra M; Schiffels, Stephan; Terai, Yohey; Ngatunga, Benjamin P; Miska, Eric A; Durbin, Richard; Genner, Martin J; Turner, George F

    2015-12-18

    The genomic causes and effects of divergent ecological selection during speciation are still poorly understood. Here we report the discovery and detailed characterization of early-stage adaptive divergence of two cichlid fish ecomorphs in a small (700 meters in diameter) isolated crater lake in Tanzania. The ecomorphs differ in depth preference, male breeding color, body shape, diet, and trophic morphology. With whole-genome sequences of 146 fish, we identified 98 clearly demarcated genomic "islands" of high differentiation and demonstrated the association of genotypes across these islands with divergent mate preferences. The islands contain candidate adaptive genes enriched for functions in sensory perception (including rhodopsin and other twilight-vision-associated genes), hormone signaling, and morphogenesis. Our study suggests mechanisms and genomic regions that may play a role in the closely related mega-radiation of Lake Malawi. PMID:26680190

  3. GI-SVM: A sensitive method for predicting genomic islands based on unannotated sequence of a single genome.

    PubMed

    Lu, Bingxin; Leong, Hon Wai

    2016-02-01

    Genomic islands (GIs) are clusters of functionally related genes acquired by lateral genetic transfer (LGT), and they are present in many bacterial genomes. GIs are extremely important for bacterial research, because they not only promote genome evolution but also contain genes that enhance adaption and enable antibiotic resistance. Many methods have been proposed to predict GI.But most of them rely on either annotations or comparisons with other closely related genomes. Hence these methods cannot be easily applied to new genomes. As the number of newly sequenced bacterial genomes rapidly increases, there is a need for methods to detect GI based solely on sequences of a single genome. In this paper, we propose a novel method, GI-SVM, to predict GIs given only the unannotated genome sequence. GI-SVM is based on one-class support vector machine (SVM), utilizing composition bias in terms of k-mer content. From our evaluations on three real genomes, GI-SVM can achieve higher recall compared with current methods, without much loss of precision. Besides, GI-SVM allows flexible parameter tuning to get optimal results for each genome. In short, GI-SVM provides a more sensitive method for researchers interested in a first-pass detection of GI in newly sequenced genomes. PMID:26907990

  4. A Novel Method to Predict Genomic Islands Based on Mean Shift Clustering Algorithm

    PubMed Central

    de Brito, Daniel M.; Maracaja-Coutinho, Vinicius; de Farias, Savio T.; Batista, Leonardo V.; do Rêgo, Thaís G.

    2016-01-01

    Genomic Islands (GIs) are regions of bacterial genomes that are acquired from other organisms by the phenomenon of horizontal transfer. These regions are often responsible for many important acquired adaptations of the bacteria, with great impact on their evolution and behavior. Nevertheless, these adaptations are usually associated with pathogenicity, antibiotic resistance, degradation and metabolism. Identification of such regions is of medical and industrial interest. For this reason, different approaches for genomic islands prediction have been proposed. However, none of them are capable of predicting precisely the complete repertory of GIs in a genome. The difficulties arise due to the changes in performance of different algorithms in the face of the variety of nucleotide distribution in different species. In this paper, we present a novel method to predict GIs that is built upon mean shift clustering algorithm. It does not require any information regarding the number of clusters, and the bandwidth parameter is automatically calculated based on a heuristic approach. The method was implemented in a new user-friendly tool named MSGIP—Mean Shift Genomic Island Predictor. Genomes of bacteria with GIs discussed in other papers were used to evaluate the proposed method. The application of this tool revealed the same GIs predicted by other methods and also different novel unpredicted islands. A detailed investigation of the different features related to typical GI elements inserted in these new regions confirmed its effectiveness. Stand-alone and user-friendly versions for this new methodology are available at http://msgip.integrativebioinformatics.me. PMID:26731657

  5. Host and invader impact of transfer of the clc genomic island into Pseudomonas aeruginosa PAO1

    PubMed Central

    Gaillard, Muriel; Pernet, Nataskha; Vogne, Christelle; Hagenbchle, Otto; van der Meer, Jan Roelof

    2008-01-01

    Genomic islands, large potentially mobile regions of bacterial chromosomes, are a major contributor to bacteria evolution. Here, we investigated the fitness cost and phenotypic differences between the bacterium Pseudomonas aeruginosa PAO1 and a derivative carrying one integrated copy of the clc element, a 103-kb genomic island [and integrative and conjugative element (ICE)] originating in Pseudomonas sp. strain B13 and a close relative of genomic islands found in clinical and environmental isolates of P. aeruginosa. By using a combination of whole genome transcriptome profiling, phenotypic arrays, competition experiments, and biofilm formation studies, only few differences became apparent, such as reduced biofilm growth and fourfold stationary phase repression of genes involved in acetoin metabolism in PAO1 containing the clc element. In contrast, PAO1 carrying the clc element acquired the capacity to grow on 3-chlorobenzoate and 2-aminophenol as sole carbon and energy substrates. No fitness loss >1% was detectable in competition experiments between PAO1 and PAO1 carrying the clc element. The genes from the clc element were not silent in PAO1, and excision was observed, although transfer of clc from PAO1 to other recipient bacteria was reduced by two orders of magnitude. Our results indicate that newly acquired mobile DNA not necessarily invoke an important fitness cost on their host. Absence of immediate detriment to the host may have contributed to the wide distribution of genomic islands like clc in bacterial genomes. PMID:18448680

  6. A Novel Method to Predict Genomic Islands Based on Mean Shift Clustering Algorithm.

    PubMed

    de Brito, Daniel M; Maracaja-Coutinho, Vinicius; de Farias, Savio T; Batista, Leonardo V; do Rêgo, Thaís G

    2016-01-01

    Genomic Islands (GIs) are regions of bacterial genomes that are acquired from other organisms by the phenomenon of horizontal transfer. These regions are often responsible for many important acquired adaptations of the bacteria, with great impact on their evolution and behavior. Nevertheless, these adaptations are usually associated with pathogenicity, antibiotic resistance, degradation and metabolism. Identification of such regions is of medical and industrial interest. For this reason, different approaches for genomic islands prediction have been proposed. However, none of them are capable of predicting precisely the complete repertory of GIs in a genome. The difficulties arise due to the changes in performance of different algorithms in the face of the variety of nucleotide distribution in different species. In this paper, we present a novel method to predict GIs that is built upon mean shift clustering algorithm. It does not require any information regarding the number of clusters, and the bandwidth parameter is automatically calculated based on a heuristic approach. The method was implemented in a new user-friendly tool named MSGIP--Mean Shift Genomic Island Predictor. Genomes of bacteria with GIs discussed in other papers were used to evaluate the proposed method. The application of this tool revealed the same GIs predicted by other methods and also different novel unpredicted islands. A detailed investigation of the different features related to typical GI elements inserted in these new regions confirmed its effectiveness. Stand-alone and user-friendly versions for this new methodology are available at http://msgip.integrativebioinformatics.me. PMID:26731657

  7. Genomic islands link secondary metabolism to functional adaptation in marine Actinobacteria

    PubMed Central

    Penn, Kevin; Jenkins, Caroline; Nett, Markus; Udwary, Daniel W.; Gontang, Erin A.; McGlinchey, Ryan P.; Foster, Brian; Lapidus, Alla; Podell, Sheila; Allen, Eric E.; Moore, Bradley S.; Jensen, Paul R.

    2009-01-01

    Genomic islands have been shown to harbor functional traits that differentiate ecologically distinct populations of environmental bacteria. A comparative analysis of the complete genome sequences of the marine Actinobacteria Salinispora tropica and S. arenicola reveals that 75% of the species-specific genes are located in 21 genomic islands. These islands are enriched in genes associated with secondary metabolite biosynthesis providing evidence that secondary metabolism is linked to functional adaptation. Secondary metabolism accounts for 8.8% and 10.9% of the genes in the S. tropica and S. arenicola genomes, respectively, and represents the major functional category of annotated genes that differentiates the two species. Genomic islands harbor all 25 of the species-specific biosynthetic pathways, the majority of which occur in S. arenicola and may contribute to the cosmopolitan distribution of this species. Genome evolution is dominated by gene duplication and acquisition, which in the case of secondary metabolism provide immediate opportunities for the production of new bioactive products. Evidence that secondary metabolic pathways are exchanged horizontally, coupled with prior evidence for fixation among globally distributed populations, supports a functional role and suggests that the acquisition of natural product biosynthetic gene clusters represents a previously unrecognized force driving bacterial diversification. Species-specific differences observed in CRISPR (clustered regularly interspaced short palindromic repeat) sequences suggest that S. arenicola may possess a higher level of phage immunity, while a highly duplicated family of polymorphic membrane proteins provides evidence of a new mechanism of marine adaptation in Gram-positive bacteria. PMID:19474814

  8. CRISPR-based screening of genomic island excision events in bacteria

    PubMed Central

    Selle, Kurt; Klaenhammer, Todd R.; Barrangou, Rodolphe

    2015-01-01

    Genomic analysis of Streptococcus thermophilus revealed that mobile genetic elements (MGEs) likely contributed to gene acquisition and loss during evolutionary adaptation to milk. Clustered regularly interspaced short palindromic repeats–CRISPR-associated genes (CRISPR-Cas), the adaptive immune system in bacteria, limits genetic diversity by targeting MGEs including bacteriophages, transposons, and plasmids. CRISPR-Cas systems are widespread in streptococci, suggesting that the interplay between CRISPR-Cas systems and MGEs is one of the driving forces governing genome homeostasis in this genus. To investigate the genetic outcomes resulting from CRISPR-Cas targeting of integrated MGEs, in silico prediction revealed four genomic islands without essential genes in lengths from 8 to 102 kbp, totaling 7% of the genome. In this study, the endogenous CRISPR3 type II system was programmed to target the four islands independently through plasmid-based expression of engineered CRISPR arrays. Targeting lacZ within the largest 102-kbp genomic island was lethal to wild-type cells and resulted in a reduction of up to 2.5-log in the surviving population. Genotyping of Lac− survivors revealed variable deletion events between the flanking insertion-sequence elements, all resulting in elimination of the Lac-encoding island. Chimeric insertion sequence footprints were observed at the deletion junctions after targeting all of the four genomic islands, suggesting a common mechanism of deletion via recombination between flanking insertion sequences. These results established that self-targeting CRISPR-Cas systems may direct significant evolution of bacterial genomes on a population level, influencing genome homeostasis and remodeling. PMID:26080436

  9. Comparative genomic analysis of two Burkholderia glumae strains from different geographic origins reveals a high degree of plasticity in genome structure associated with genomic islands.

    PubMed

    Francis, Felix; Kim, Joohyun; Ramaraj, Thiru; Farmer, Andrew; Rush, Milton C; Ham, Jong Hyun

    2013-04-01

    Burkholderia glumae is the major causal agent of bacterial panicle blight of rice, a growing disease problem in global rice production. To better understand its genome-scale characteristics, the genome of the highly virulent B. glumae strain 336gr-1 isolated from Louisiana, USA was sequenced using the Illumina Genome Analyser II system. De novo assembled 336gr-1 contigs were aligned and compared with the previously sequenced genome of B. glumae strain BGR1, which was isolated from an infected rice plant in South Korea. Comparative analysis of the whole genomes of B. glumae 336gr-1 and B. glumae BGR1 revealed numerous unique genomic regions present only in one of the two strains. These unique regions contained accessory genes including mobile elements and phage-related genes, and some of the unique regions in B. glumae BGR1 corresponded to predicted genomic islands. In contrast, little variation was observed in known and potential virulence genes between the two genomes. The considerable amount of plasticity largely based on accessory genes and genome islands observed from the comparison of the genomes of these two strains of B. glumae may explain the versatility of this bacterial species in various environmental conditions and geographic locations. PMID:23563926

  10. Contribution of the thermotolerance genomic island to increased thermal tolerance in Cronobacter strains.

    PubMed

    Orieskova, Maria; Kajsik, Michal; Szemes, Tomas; Holy, Ondrej; Forsythe, Stephen; Turna, Jan; Drahovska, Hana

    2016-03-01

    Cronobacter spp. are opportunistic pathogens associated with serious infections in neonates. Increased stress tolerance, including the thermotolerance of some Cronobacter strains, can promote their survival in production facilities and thus raise the possibility of contamination of dried infant formula which has been identified as a potential source of infection. Some Cronobacter strains contain a genomic island, which might be responsible for increased thermotolerance. By analysis of Cronobacter sequenced genomes this determinant was found to be present in only 49/73 Cronobacter sakazakii strains and in 9/14 Cronobacter malonaticus strains. The island was also found in 16/17 clinical isolates originating from two hospitals. Two configurations of the locus were detected; the first one with the size of 18 kbp containing the thrB-Q genes and a shorter version (6 kbp) harbouring only the thrBCD and thrOP genes. Strains containing the thermotolerance island survived significantly better at 58 °C comparing to a C. sakazakii isogenic mutant lacking the island and strains with the longer version of the island were 2-10 times more tolerant than those with the shortened sequence. The function of the genomic island was further confirmed by its cloning into a low-copy vector and transforming it into the isogenic mutant. Different levels of rpoS, encoding for stress-response sigma factor, expression were also associated with variability in strain thermotolerance. PMID:26748923

  11. Genomic Islands in Pathogenic Filamentous Fungus Aspergillus fumigatus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We present the genome sequences of a new clinical isolate, CEA10, of an important human pathogen, Aspergillus fumigatus, and two closely related, but rarely pathogenic species, Neosartorya fischeri NRRL181 and Aspergillus clavatus NRRL1. Comparative genomic analysis of CEA10 with the recently sequen...

  12. A Hybrid Approach for CpG Island Detection in the Human Genome

    PubMed Central

    Yang, Cheng-Hong; Lin, Yu-Da; Chiang, Yi-Cheng; Chuang, Li-Yeh

    2016-01-01

    Background CpG islands have been demonstrated to influence local chromatin structures and simplify the regulation of gene activity. However, the accurate and rapid determination of CpG islands for whole DNA sequences remains experimentally and computationally challenging. Methodology/Principal Findings A novel procedure is proposed to detect CpG islands by combining clustering technology with the sliding-window method (PSO-based). Clustering technology is used to detect the locations of all possible CpG islands and process the data, thus effectively obviating the need for the extensive and unnecessary processing of DNA fragments, and thus improving the efficiency of sliding-window based particle swarm optimization (PSO) search. This proposed approach, named ClusterPSO, provides versatile and highly-sensitive detection of CpG islands in the human genome. In addition, the detection efficiency of ClusterPSO is compared with eight CpG island detection methods in the human genome. Comparison of the detection efficiency for the CpG islands in human genome, including sensitivity, specificity, accuracy, performance coefficient (PC), and correlation coefficient (CC), ClusterPSO revealed superior detection ability among all of the test methods. Moreover, the combination of clustering technology and PSO method can successfully overcome their respective drawbacks while maintaining their advantages. Thus, clustering technology could be hybridized with the optimization algorithm method to optimize CpG island detection. Conclusion/Significance The prediction accuracy of ClusterPSO was quite high, indicating the combination of CpGcluster and PSO has several advantages over CpGcluster and PSO alone. In addition, ClusterPSO significantly reduced implementation time. PMID:26727213

  13. An Atypical Orphan Carbohydrate-NRPS Genomic Island Encodes a Novel Lytic Transglycosylase

    PubMed Central

    Guo, Xun; Crawford, Jason M.

    2014-01-01

    SUMMARY Microbial genome sequencing platforms have produced a deluge of orphan biosynthetic pathways suspected of biosynthesizing new small molecules with pharmacological relevance. Genome synteny analysis provides an assessment of genomic island content, which is enriched in natural product gene clusters. Here we identified an atypical orphan carbohydrate-nonribosomal peptide synthetase (NRPS) genomic island in Photorhabdus luminescens using genome synteny analysis. Heterologous expression of the pathway led to the characterization of five new oligosaccharide metabolites with lysozyme inhibitory activities. The oligosaccharides harbor a 1,6-anhydro-β-D-N-acetyl-glucosamine (Glc-NAc) moiety, a rare structural feature for natural products. Gene deletion analysis and biochemical reconstruction of oligosaccharide production led to the discovery that a hypothetical protein in the pathway is a novel lytic transglycosylase responsible for bicyclic sugar formation. The example presented here supports a notion where targeting select genomic islands with a reduced reliance on known protein homologies could enhance the discovery of new metabolic chemistry and biology. PMID:25219963

  14. Complete Genome Sequence of Papaya Ringspot Virus Isolated from Genetically Modified Papaya in Hainan Island, China.

    PubMed

    Zhao, Guangyuan; Yan, Pu; Shen, Wentao; Tuo, Decai; Li, Xiaoying; Zhou, Peng

    2015-01-01

    The complete genome sequence (10,326 nucleotides) of a papaya ringspot virus isolate infecting genetically modified papaya in Hainan Island of China was determined through reverse transcription (RT)-PCR. The virus shares 92% nucleotide sequence identity with the isolate that is unable to infect PRSV-resistant transgenic papaya. PMID:26358610

  15. Phage-mediated horizontal transfer of a Staphylococcus aureus virulence-associated genomic island

    PubMed Central

    Moon, Bo Youn; Park, Joo Youn; Hwang, Sun Yung; Robinson, D. Ashley; Thomas, Jonathan C.; Fitzgerald, J. Ross; Park, Yong Ho; Seo, Keun Seok

    2015-01-01

    Staphylococcus aureus is a major pathogen of humans and animals. The capacity of S. aureus to adapt to different host species and tissue types is strongly influenced by the acquisition of mobile genetic elements encoding determinants involved in niche adaptation. The genomic islands νSaα and νSaβ are found in almost all S. aureus strains and are characterized by extensive variation in virulence gene content. However the basis for the diversity and the mechanism underlying mobilization of the genomic islands between strains are unexplained. Here, we demonstrated that the genomic island, νSaβ, encoding an array of virulence factors including staphylococcal superantigens, proteases, and leukotoxins, in addition to bacteriocins, was transferrable in vitro to human and animal strains of multiple S. aureus clones via a resident prophage. The transfer of the νSaβ appears to have been accomplished by multiple conversions of transducing phage particles carrying overlapping segments of the νSaβ. Our findings solve a long-standing mystery regarding the diversification and spread of the genomic island νSaβ, highlighting the central role of bacteriophages in the pathogenic evolution of S. aureus. PMID:25891795

  16. Complete Genome Sequence of Papaya Ringspot Virus Isolated from Genetically Modified Papaya in Hainan Island, China

    PubMed Central

    Zhao, Guangyuan; Shen, Wentao; Tuo, Decai; Li, Xiaoying

    2015-01-01

    The complete genome sequence (10,326 nucleotides) of a papaya ringspot virus isolate infecting genetically modified papaya in Hainan Island of China was determined through reverse transcription (RT)-PCR. The virus shares 92% nucleotide sequence identity with the isolate that is unable to infect PRSV-resistant transgenic papaya. PMID:26358610

  17. Genomic evaluation, breed identification, and population structure of North American, English and Island Guernsey dairy cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic evaluations of dairy cattle in the United States have been available for Brown Swiss, Holsteins, and Jerseys since 2009 and for Ayrshires since 2013. As of February 2015, 2,281 Guernsey bulls and cows had genotypes from collaboration between the United States, Canada, England, and the island...

  18. Genomic Evidence for Island Population Conversion Resolves Conflicting Theories of Polar Bear Evolution

    PubMed Central

    Cahill, James A.; Green, Richard E.; Fulton, Tara L.; Stiller, Mathias; Jay, Flora; Ovsyanikov, Nikita; Salamzade, Rauf; St. John, John; Stirling, Ian; Slatkin, Montgomery; Shapiro, Beth

    2013-01-01

    Despite extensive genetic analysis, the evolutionary relationship between polar bears (Ursus maritimus) and brown bears (U. arctos) remains unclear. The two most recent comprehensive reports indicate a recent divergence with little subsequent admixture or a much more ancient divergence followed by extensive admixture. At the center of this controversy are the Alaskan ABC Islands brown bears that show evidence of shared ancestry with polar bears. We present an analysis of genome-wide sequence data for seven polar bears, one ABC Islands brown bear, one mainland Alaskan brown bear, and a black bear (U. americanus), plus recently published datasets from other bears. Surprisingly, we find clear evidence for gene flow from polar bears into ABC Islands brown bears but no evidence of gene flow from brown bears into polar bears. Importantly, while polar bears contributed <1% of the autosomal genome of the ABC Islands brown bear, they contributed 6.5% of the X chromosome. The magnitude of sex-biased polar bear ancestry and the clear direction of gene flow suggest a model wherein the enigmatic ABC Island brown bears are the descendants of a polar bear population that was gradually converted into brown bears via male-dominated brown bear admixture. We present a model that reconciles heretofore conflicting genetic observations. We posit that the enigmatic ABC Islands brown bears derive from a population of polar bears likely stranded by the receding ice at the end of the last glacial period. Since then, male brown bear migration onto the island has gradually converted these bears into an admixed population whose phenotype and genotype are principally brown bear, except at mtDNA and X-linked loci. This process of genome erosion and conversion may be a common outcome when climate change or other forces cause a population to become isolated and then overrun by species with which it can hybridize. PMID:23516372

  19. Genomic evidence for island population conversion resolves conflicting theories of polar bear evolution.

    PubMed

    Cahill, James A; Green, Richard E; Fulton, Tara L; Stiller, Mathias; Jay, Flora; Ovsyanikov, Nikita; Salamzade, Rauf; St John, John; Stirling, Ian; Slatkin, Montgomery; Shapiro, Beth

    2013-01-01

    Despite extensive genetic analysis, the evolutionary relationship between polar bears (Ursus maritimus) and brown bears (U. arctos) remains unclear. The two most recent comprehensive reports indicate a recent divergence with little subsequent admixture or a much more ancient divergence followed by extensive admixture. At the center of this controversy are the Alaskan ABC Islands brown bears that show evidence of shared ancestry with polar bears. We present an analysis of genome-wide sequence data for seven polar bears, one ABC Islands brown bear, one mainland Alaskan brown bear, and a black bear (U. americanus), plus recently published datasets from other bears. Surprisingly, we find clear evidence for gene flow from polar bears into ABC Islands brown bears but no evidence of gene flow from brown bears into polar bears. Importantly, while polar bears contributed <1% of the autosomal genome of the ABC Islands brown bear, they contributed 6.5% of the X chromosome. The magnitude of sex-biased polar bear ancestry and the clear direction of gene flow suggest a model wherein the enigmatic ABC Island brown bears are the descendants of a polar bear population that was gradually converted into brown bears via male-dominated brown bear admixture. We present a model that reconciles heretofore conflicting genetic observations. We posit that the enigmatic ABC Islands brown bears derive from a population of polar bears likely stranded by the receding ice at the end of the last glacial period. Since then, male brown bear migration onto the island has gradually converted these bears into an admixed population whose phenotype and genotype are principally brown bear, except at mtDNA and X-linked loci. This process of genome erosion and conversion may be a common outcome when climate change or other forces cause a population to become isolated and then overrun by species with which it can hybridize. PMID:23516372

  20. "Islands of Divergence" in the Atlantic Cod Genome Represent Polymorphic Chromosomal Rearrangements.

    PubMed

    Sodeland, Marte; Jorde, Per Erik; Lien, Sigbjørn; Jentoft, Sissel; Berg, Paul R; Grove, Harald; Kent, Matthew P; Arnyasi, Mariann; Olsen, Esben Moland; Knutsen, Halvor

    2016-01-01

    In several species genetic differentiation across environmental gradients or between geographically separate populations has been reported to center at "genomic islands of divergence," resulting in heterogeneous differentiation patterns across genomes. Here, genomic regions of elevated divergence were observed on three chromosomes of the highly mobile fish Atlantic cod (Gadus morhua) within geographically fine-scaled coastal areas. The "genomic islands" extended at least 5, 9.5, and 13 megabases on linkage groups 2, 7, and 12, respectively, and coincided with large blocks of linkage disequilibrium. For each of these three chromosomes, pairs of segregating, highly divergent alleles were identified, with little or no gene exchange between them. These patterns of recombination and divergence mirror genomic signatures previously described for large polymorphic inversions, which have been shown to repress recombination across extensive chromosomal segments. The lack of genetic exchange permits divergence between noninverted and inverted chromosomes in spite of gene flow. For the rearrangements on linkage groups 2 and 12, allelic frequency shifts between coastal and oceanic environments suggest a role in ecological adaptation, in agreement with recently reported associations between molecular variation within these genomic regions and temperature, oxygen, and salinity levels. Elevated genetic differentiation in these genomic regions has previously been described on both sides of the Atlantic Ocean, and we therefore suggest that these polymorphisms are involved in adaptive divergence across the species distributional range. PMID:26983822

  1. Adaptation in Toxic Environments: Arsenic Genomic Islands in the Bacterial Genus Thiomonas

    PubMed Central

    Freel, Kelle C.; Krueger, Martin C.; Farasin, Julien; Brochier-Armanet, Céline; Barbe, Valérie; Andrès, Jeremy; Cholley, Pierre-Etienne; Dillies, Marie-Agnès; Jagla, Bernd; Koechler, Sandrine; Leva, Yann; Magdelenat, Ghislaine; Plewniak, Frédéric; Proux, Caroline; Coppée, Jean-Yves; Bertin, Philippe N.; Heipieper, Hermann J.; Arsène-Ploetze, Florence

    2015-01-01

    Acid mine drainage (AMD) is a highly toxic environment for most living organisms due to the presence of many lethal elements including arsenic (As). Thiomonas (Tm.) bacteria are found ubiquitously in AMD and can withstand these extreme conditions, in part because they are able to oxidize arsenite. In order to further improve our knowledge concerning the adaptive capacities of these bacteria, we sequenced and assembled the genome of six isolates derived from the Carnoulès AMD, and compared them to the genomes of Tm. arsenitoxydans 3As (isolated from the same site) and Tm. intermedia K12 (isolated from a sewage pipe). A detailed analysis of the Tm. sp. CB2 genome revealed various rearrangements had occurred in comparison to what was observed in 3As and K12 and over 20 genomic islands (GEIs) were found in each of these three genomes. We performed a detailed comparison of the two arsenic-related islands found in CB2, carrying the genes required for arsenite oxidation and As resistance, with those found in K12, 3As, and five other Thiomonas strains also isolated from Carnoulès (CB1, CB3, CB6, ACO3 and ACO7). Our results suggest that these arsenic-related islands have evolved differentially in these closely related Thiomonas strains, leading to divergent capacities to survive in As rich environments. PMID:26422469

  2. Adaptation in Toxic Environments: Arsenic Genomic Islands in the Bacterial Genus Thiomonas.

    PubMed

    Freel, Kelle C; Krueger, Martin C; Farasin, Julien; Brochier-Armanet, Céline; Barbe, Valérie; Andrès, Jeremy; Cholley, Pierre-Etienne; Dillies, Marie-Agnès; Jagla, Bernd; Koechler, Sandrine; Leva, Yann; Magdelenat, Ghislaine; Plewniak, Frédéric; Proux, Caroline; Coppée, Jean-Yves; Bertin, Philippe N; Heipieper, Hermann J; Arsène-Ploetze, Florence

    2015-01-01

    Acid mine drainage (AMD) is a highly toxic environment for most living organisms due to the presence of many lethal elements including arsenic (As). Thiomonas (Tm.) bacteria are found ubiquitously in AMD and can withstand these extreme conditions, in part because they are able to oxidize arsenite. In order to further improve our knowledge concerning the adaptive capacities of these bacteria, we sequenced and assembled the genome of six isolates derived from the Carnoulès AMD, and compared them to the genomes of Tm. arsenitoxydans 3As (isolated from the same site) and Tm. intermedia K12 (isolated from a sewage pipe). A detailed analysis of the Tm. sp. CB2 genome revealed various rearrangements had occurred in comparison to what was observed in 3As and K12 and over 20 genomic islands (GEIs) were found in each of these three genomes. We performed a detailed comparison of the two arsenic-related islands found in CB2, carrying the genes required for arsenite oxidation and As resistance, with those found in K12, 3As, and five other Thiomonas strains also isolated from Carnoulès (CB1, CB3, CB6, ACO3 and ACO7). Our results suggest that these arsenic-related islands have evolved differentially in these closely related Thiomonas strains, leading to divergent capacities to survive in As rich environments. PMID:26422469

  3. Draft Genome Sequence of Halostagnicola sp. A56, an Extremely Halophilic Archaeon Isolated from the Andaman Islands.

    PubMed

    Kanekar, Sagar P; Saxena, Neha; Pore, Soham D; Arora, Preeti; Kanekar, P P; Dhakephalkar, P K

    2015-01-01

    The first draft genome of Halostagnicola sp. A56, isolated from the Andaman Islands is reported here. The A56 genome comprises 3,178,490 bp in 26 contigs with a G+C content of 60.8%. The genome annotation revealed that A56 could have potential applications for the production of polyhydroxyalkanoate or bioplastics. PMID:26564049

  4. Complete mitochondrial genomes of Tuatara endemic to different islands of New Zealand.

    PubMed

    Mohandesan, Elmira; Subramanian, Sankar; Millar, Craig D; Lambert, David M

    2015-02-01

    Tuatara are the sister taxon to the Squamata (including lizards and snakes) and are regarded as the most distinctive surviving reptilian genus. They are currently inhabits on offshore islands around New Zealand and have been recognized as a species in need of active conservation management. In this study, we report a total number of five nearly complete mitochondrial genomes, which were sequenced by Sanger and Next Generation DNA sequencing methods. Our phylogenomic analysis revealed distinct clustering of tuatara populations from the north and south islands of New Zealand. PMID:24156717

  5. Genomic tests of the species-pump hypothesis: Recent island connectivity cycles drive population divergence but not speciation in Caribbean crickets across the Virgin Islands.

    PubMed

    Papadopoulou, Anna; Knowles, L Lacey

    2015-06-01

    Harnessing the power of genomic scans, we test the debated "species pump" hypothesis that implicates repeated cycles of island connectivity and isolation as drivers of divergence. This question has gone understudied given the limited resolution of past molecular markers for studying such dynamic phenomena. With an average of 32,000 SNPs from the genome of 136 individuals from 10 populations of a Caribbean flightless ground cricket species (Amphiacusta sanctaecrucis) and a complementary set of statistical approaches, we infer a stepping-stone colonization model and high levels of genetic differentiation across the Virgin Islands, which have been periodically interconnected until 8 ka. Estimates of divergence times from models based on the site frequency spectrum coincide with a period of repeated connection and fragmentation of the islands at 75-130 ka. These results are consistent with a role of island connectivity cycles in promoting genomic divergence and indicate that the genetic distinctiveness of island populations has persisted despite subsequent and extended interisland connections identified from bathymetric data. We discuss these findings in the broader context of Caribbean biogeography, and more specifically why high levels of genomic divergence across the Virgin Islands associated with repeated connectivity cycles do not actually translate into species diversification. PMID:25903255

  6. Islands of Divergence” in the Atlantic Cod Genome Represent Polymorphic Chromosomal Rearrangements

    PubMed Central

    Sodeland, Marte; Jorde, Per Erik; Lien, Sigbjørn; Jentoft, Sissel; Berg, Paul R.; Grove, Harald; Kent, Matthew P.; Arnyasi, Mariann; Olsen, Esben Moland; Knutsen, Halvor

    2016-01-01

    In several species genetic differentiation across environmental gradients or between geographically separate populations has been reported to center at “genomic islands of divergence,” resulting in heterogeneous differentiation patterns across genomes. Here, genomic regions of elevated divergence were observed on three chromosomes of the highly mobile fish Atlantic cod (Gadus morhua) within geographically fine-scaled coastal areas. The “genomic islands” extended at least 5, 9.5, and 13 megabases on linkage groups 2, 7, and 12, respectively, and coincided with large blocks of linkage disequilibrium. For each of these three chromosomes, pairs of segregating, highly divergent alleles were identified, with little or no gene exchange between them. These patterns of recombination and divergence mirror genomic signatures previously described for large polymorphic inversions, which have been shown to repress recombination across extensive chromosomal segments. The lack of genetic exchange permits divergence between noninverted and inverted chromosomes in spite of gene flow. For the rearrangements on linkage groups 2 and 12, allelic frequency shifts between coastal and oceanic environments suggest a role in ecological adaptation, in agreement with recently reported associations between molecular variation within these genomic regions and temperature, oxygen, and salinity levels. Elevated genetic differentiation in these genomic regions has previously been described on both sides of the Atlantic Ocean, and we therefore suggest that these polymorphisms are involved in adaptive divergence across the species distributional range. PMID:26983822

  7. Complete Genome Sequence of Salmonella enterica Serovar Typhimurium Strain YU15 (Sequence Type 19) Harboring the Salmonella Genomic Island 1 and Virulence Plasmid pSTV

    PubMed Central

    Calva, Edmundo; Puente, José L.; Zaidi, Mussaret B.

    2016-01-01

    The complete genome of Salmonella enterica subsp. enterica serovar Typhimurium sequence type 19 (ST19) strain YU15, isolated in Yucatán, Mexico, from a human baby stool culture, was determined using PacBio technology. The chromosome contains five intact prophages and the Salmonella genomic island 1 (SGI1). This strain carries the Salmonella virulence plasmid pSTV. PMID:27081132

  8. Comparative analysis of Klebsiella pneumoniae genomes identifies a phospholipase D family protein as a novel virulence factor

    PubMed Central

    2014-01-01

    Background Klebsiella pneumoniae strains are pathogenic to animals and humans, in which they are both a frequent cause of nosocomial infections and a re-emerging cause of severe community-acquired infections. K. pneumoniae isolates of the capsular serotype K2 are among the most virulent. In order to identify novel putative virulence factors that may account for the severity of K2 infections, the genome sequence of the K2 reference strain Kp52.145 was determined and compared to two K1 and K2 strains of low virulence and to the reference strains MGH 78578 and NTUH-K2044. Results In addition to diverse functions related to host colonization and virulence encoded in genomic regions common to the four strains, four genomic islands specific for Kp52.145 were identified. These regions encoded genes for the synthesis of colibactin toxin, a putative cytotoxin outer membrane protein, secretion systems, nucleases and eukaryotic-like proteins. In addition, an insertion within a type VI secretion system locus included sel1 domain containing proteins and a phospholipase D family protein (PLD1). The pld1 mutant was avirulent in a pneumonia model in mouse. The pld1 mRNA was expressed in vivo and the pld1 gene was associated with K. pneumoniae isolates from severe infections. Analysis of lipid composition of a defective E. coli strain complemented with pld1 suggests an involvement of PLD1 in cardiolipin metabolism. Conclusions Determination of the complete genome of the K2 reference strain identified several genomic islands comprising putative elements of pathogenicity. The role of PLD1 in pathogenesis was demonstrated for the first time and suggests that lipid metabolism is a novel virulence mechanism of K. pneumoniae. PMID:24885329

  9. Compositional searching of CpG islands in the human genome

    NASA Astrophysics Data System (ADS)

    Luque-Escamilla, Pedro Luis; Martínez-Aroza, José; Oliver, José L.; Gómez-Lopera, Juan Francisco; Román-Roldán, Ramón

    2005-06-01

    We report on an entropic edge detector based on the local calculation of the Jensen-Shannon divergence with application to the search for CpG islands. CpG islands are pieces of the genome related to gene expression and cell differentiation, and thus to cancer formation. Searching for these CpG islands is a major task in genetics and bioinformatics. Some algorithms have been proposed in the literature, based on moving statistics in a sliding window, but its size may greatly influence the results. The local use of Jensen-Shannon divergence is a completely different strategy: the nucleotide composition inside the islands is different from that in their environment, so a statistical distance—the Jensen-Shannon divergence—between the composition of two adjacent windows may be used as a measure of their dissimilarity. Sliding this double window over the entire sequence allows us to segment it compositionally. The fusion of those segments into greater ones that satisfy certain identification criteria must be achieved in order to obtain the definitive results. We find that the local use of Jensen-Shannon divergence is very suitable in processing DNA sequences for searching for compositionally different structures such as CpG islands, as compared to other algorithms in literature.

  10. Particle Swarm Optimization with Reinforcement Learning for the Prediction of CpG Islands in the Human Genome

    PubMed Central

    Chuang, Li-Yeh; Huang, Hsiu-Chen; Lin, Ming-Cheng; Yang, Cheng-Hong

    2011-01-01

    Background Regions with abundant GC nucleotides, a high CpG number, and a length greater than 200 bp in a genome are often referred to as CpG islands. These islands are usually located in the 5? end of genes. Recently, several algorithms for the prediction of CpG islands have been proposed. Methodology/Principal Findings We propose here a new method called CPSORL to predict CpG islands, which consists of a complement particle swarm optimization algorithm combined with reinforcement learning to predict CpG islands more reliably. Several CpG island prediction tools equipped with the sliding window technique have been developed previously. However, the quality of the results seems to rely too much on the choices that are made for the window sizes, and thus these methods leave room for improvement. Conclusions/Significance Experimental results indicate that CPSORL provides results of a higher sensitivity and a higher correlation coefficient in all selected experimental contigs than the other methods it was compared to (CpGIS, CpGcluster, CpGProd and CpGPlot). A higher number of CpG islands were identified in chromosomes 21 and 22 of the human genome than with the other methods from the literature. CPSORL also achieved the highest coverage rate (3.4%). CPSORL is an application for identifying promoter and TSS regions associated with CpG islands in entire human genomic. When compared to CpGcluster, the islands predicted by CPSORL covered a larger region in the TSS (12.2%) and promoter (26.1%) region. If Alu sequences are considered, the islands predicted by CPSORL (Alu) covered a larger TSS (40.5%) and promoter (67.8%) region than CpGIS. Furthermore, CPSORL was used to verify that the average methylation density was 5.33% for CpG islands in the entire human genome. PMID:21738602

  11. Self-regulating genomic island encoding tandem regulators confers chromatic acclimation to marine Synechococcus.

    PubMed

    Sanfilippo, Joseph E; Nguyen, Adam A; Karty, Jonathan A; Shukla, Animesh; Schluchter, Wendy M; Garczarek, Laurence; Partensky, Frédéric; Kehoe, David M

    2016-05-24

    The evolutionary success of marine Synechococcus, the second-most abundant phototrophic group in the marine environment, is partly attributable to this group's ability to use the entire visible spectrum of light for photosynthesis. This group possesses a remarkable diversity of light-harvesting pigments, and most of the group's members are orange and pink because of their use of phycourobilin and phycoerythrobilin chromophores, which are attached to antennae proteins called phycoerythrins. Many strains can alter phycoerythrin chromophore ratios to optimize photon capture in changing blue-green environments using type IV chromatic acclimation (CA4). Although CA4 is common in most marine Synechococcus lineages, the regulation of this process remains unexplored. Here, we show that a widely distributed genomic island encoding tandem master regulators named FciA (for type four chromatic acclimation island) and FciB plays a central role in controlling CA4. FciA and FciB have diametric effects on CA4. Interruption of fciA causes a constitutive green light phenotype, and interruption of fciB causes a constitutive blue light phenotype. These proteins regulate all of the molecular responses occurring during CA4, and the proteins' activity is apparently regulated posttranscriptionally, although their cellular ratio appears to be critical for establishing the set point for the blue-green switch in ecologically relevant light environments. Surprisingly, FciA and FciB coregulate only three genes within the Synechococcus genome, all located within the same genomic island as fciA and fciB These findings, along with the widespread distribution of strains possessing this island, suggest that horizontal transfer of a small, self-regulating DNA region has conferred CA4 capability to marine Synechococcus throughout many oceanic areas. PMID:27152022

  12. Heritability and genome-wide linkage analysis of migraine in the genetic isolate of Norfolk Island.

    PubMed

    Cox, Hannah C; Lea, Rod A; Bellis, Claire; Nyholt, Dale R; Dyer, Thomas D; Haupt, Larisa M; Charlesworth, Jac; Matovinovic, Elizabeth; Blangero, John; Griffiths, Lyn R

    2012-02-15

    Migraine is a common neurovascular disorder with a complex envirogenomic aetiology. In an effort to identify migraine susceptibility genes, we conducted a study of the isolated population of Norfolk Island, Australia. A large portion of the permanent inhabitants of Norfolk Island are descended from 18th Century English sailors involved in the infamous mutiny on the Bounty and their Polynesian consorts. In total, 600 subjects were recruited including a large pedigree of 377 individuals with lineage to the founders. All individuals were phenotyped for migraine using International Classification of Headache Disorders-II criterion. All subjects were genotyped for a genome-wide panel of microsatellite markers. Genotype and phenotype data for the pedigree were analysed using heritability and linkage methods implemented in the programme SOLAR. Follow-up association analysis was performed using the CLUMP programme. A total of 154 migraine cases (25%) were identified indicating the Norfolk Island population is high-risk for migraine. Heritability estimation of the 377-member pedigree indicated a significant genetic component for migraine (h(2)=0.53, P=0.016). Linkage analysis showed peaks on chromosome 13q33.1 (P=0.003) and chromosome 9q22.32 (P=0.008). Association analysis of the key microsatellites in the remaining 223 unrelated Norfolk Island individuals showed evidence of association, which strengthen support for the linkage findings (P≤0.05). In conclusion, a genome-wide linkage analysis and follow-up association analysis of migraine in the genetic isolate of Norfolk Island provided evidence for migraine susceptibility loci on chromosomes 9q22.22 and 13q33.1. PMID:22197687

  13. Island-Model Genomic Selection for Long-Term Genetic Improvement of Autogamous Crops.

    PubMed

    Yabe, Shiori; Yamasaki, Masanori; Ebana, Kaworu; Hayashi, Takeshi; Iwata, Hiroyoshi

    2016-01-01

    Acceleration of genetic improvement of autogamous crops such as wheat and rice is necessary to increase cereal production in response to the global food crisis. Population and pedigree methods of breeding, which are based on inbred line selection, are used commonly in the genetic improvement of autogamous crops. These methods, however, produce a few novel combinations of genes in a breeding population. Recurrent selection promotes recombination among genes and produces novel combinations of genes in a breeding population, but it requires inaccurate single-plant evaluation for selection. Genomic selection (GS), which can predict genetic potential of individuals based on their marker genotype, might have high reliability of single-plant evaluation and might be effective in recurrent selection. To evaluate the efficiency of recurrent selection with GS, we conducted simulations using real marker genotype data of rice cultivars. Additionally, we introduced the concept of an "island model" inspired by evolutionary algorithms that might be useful to maintain genetic variation through the breeding process. We conducted GS simulations using real marker genotype data of rice cultivars to evaluate the efficiency of recurrent selection and the island model in an autogamous species. Results demonstrated the importance of producing novel combinations of genes through recurrent selection. An initial population derived from admixture of multiple bi-parental crosses showed larger genetic gains than a population derived from a single bi-parental cross in whole cycles, suggesting the importance of genetic variation in an initial population. The island-model GS better maintained genetic improvement in later generations than the other GS methods, suggesting that the island-model GS can utilize genetic variation in breeding and can retain alleles with small effects in the breeding population. The island-model GS will become a new breeding method that enhances the potential of genomic selection in autogamous crops, especially bringing long-term improvement. PMID:27115872

  14. Island-Model Genomic Selection for Long-Term Genetic Improvement of Autogamous Crops

    PubMed Central

    Yabe, Shiori; Yamasaki, Masanori; Ebana, Kaworu; Hayashi, Takeshi; Iwata, Hiroyoshi

    2016-01-01

    Acceleration of genetic improvement of autogamous crops such as wheat and rice is necessary to increase cereal production in response to the global food crisis. Population and pedigree methods of breeding, which are based on inbred line selection, are used commonly in the genetic improvement of autogamous crops. These methods, however, produce a few novel combinations of genes in a breeding population. Recurrent selection promotes recombination among genes and produces novel combinations of genes in a breeding population, but it requires inaccurate single-plant evaluation for selection. Genomic selection (GS), which can predict genetic potential of individuals based on their marker genotype, might have high reliability of single-plant evaluation and might be effective in recurrent selection. To evaluate the efficiency of recurrent selection with GS, we conducted simulations using real marker genotype data of rice cultivars. Additionally, we introduced the concept of an “island model” inspired by evolutionary algorithms that might be useful to maintain genetic variation through the breeding process. We conducted GS simulations using real marker genotype data of rice cultivars to evaluate the efficiency of recurrent selection and the island model in an autogamous species. Results demonstrated the importance of producing novel combinations of genes through recurrent selection. An initial population derived from admixture of multiple bi-parental crosses showed larger genetic gains than a population derived from a single bi-parental cross in whole cycles, suggesting the importance of genetic variation in an initial population. The island-model GS better maintained genetic improvement in later generations than the other GS methods, suggesting that the island-model GS can utilize genetic variation in breeding and can retain alleles with small effects in the breeding population. The island-model GS will become a new breeding method that enhances the potential of genomic selection in autogamous crops, especially bringing long-term improvement. PMID:27115872

  15. Gene Islands Integrated into tRNAGly Genes Confer Genome Diversity on a Pseudomonas aeruginosa Clone

    PubMed Central

    Larbig, Karen D.; Christmann, Andreas; Johann, André; Klockgether, Jens; Hartsch, Thomas; Merkl, Rainer; Wiehlmann, Lutz; Fritz, Hans-Joachim; Tümmler, Burkhard

    2002-01-01

    Intraclonal genome diversity of Pseudomonas aeruginosa was studied in one of the most diverse mosaic regions of the P. aeruginosa chromosome. The ca. 110-kb large hypervariable region located near the lipH gene in two members of the predominant P. aeruginosa clone C, strain C and strain SG17M, was sequenced. In both strains the region consists of an individual strain-specific gene island of 111 (strain C) or 106 (SG17M) open reading frames (ORFs) and of a 7-kb stretch of clone C-specific sequence of 9 ORFs. The gene islands are integrated into conserved tRNAGly genes and have a bipartite structure. The first part adjacent to the tRNA gene consists of strain-specific ORFs encoding metabolic functions and transporters, the majority of which have homologs of known function in other eubacteria, such as hemophores, cytochrome c biosynthesis, or mercury resistance. The second part is made up mostly of ORFs of yet-unknown function. Forty-seven of these ORFs are mutual homologs with a pairwise amino acid sequence identity of 35 to 88% and are arranged in the same order in the two gene islands. We hypothesize that this novel type of gene island derives from mobile elements which, upon integration, endow the recipient with strain-specific metabolic properties, thus possibly conferring on it a selective advantage in its specific habitat. PMID:12426355

  16. Genomics in research and health care with Aboriginal and Torres Strait Islander peoples.

    PubMed

    McWhirter, Rebekah; Nicol, Dianne; Savulescu, Julian

    2015-01-01

    Genomics is increasingly becoming an integral component of health research and clinical care. The perceived difficulties associated with genetic research involving Aboriginal and Torres Strait Islander people mean that they have largely been excluded as research participants. This limits the applicability of research findings for Aboriginal and Torres Strait Islander patients. Emergent use of genomic technologies and personalised medicine therefore risk contributing to an increase in existing health disparities unless urgent action is taken. To allow the potential benefits of genomics to be more equitably distributed, and minimise potential harms, we recommend five actions: (1) ensure diversity of participants by implementing appropriate protocols at the study design stage; (2) target diseases that disproportionately affect disadvantaged groups; (3) prioritise capacity building to promote Indigenous leadership across research professions; (4) develop resources for consenting patients or participants from different cultural and linguistic backgrounds; and (5) integrate awareness of issues relating to Indigenous people into the governance structures, formal reviews, data collection protocols and analytical pipelines of health services and research projects. PMID:26507135

  17. Two novel Salmonella genomic island 1 variants in Proteus mirabilis isolates from swine farms in China.

    PubMed

    Lei, Chang-Wei; Zhang, An-Yun; Liu, Bi-Hui; Wang, Hong-Ning; Yang, Li-Qin; Guan, Zhong-Bin; Xu, Chang-Wen; Zhang, Dong-Dong; Yang, Yong-Qiang

    2015-07-01

    Four different Salmonella genomic island 1 (SGI1) variants, including two novel variants, were characterized in one Salmonella enterica serovar Rissen sequence type ST1917 isolate and three Proteus mirabilis isolates from swine farms in China. One novel variant was derived from SGI1-B with the backbone gene S021 disrupted by a 12.72-kb IS26 composite transposon containing the dfrA17-aadA5 cassettes and macrolide inactivation gene cluster mphA-mrx-mphR. The other one was an integron-free SGI1 and contained a 183-bp truncated S025 next to IS6100 and S044. PMID:25918148

  18. AbaR-Type Genomic Islands in Non-baumannii Acinetobacter Species Isolates from South Korea

    PubMed Central

    Kim, Dae Hun

    2015-01-01

    To investigate the presence and structure of AbaR-type genomic islands (GIs) in non-Acinetobacter baumannii isolates, a total of 155 non-baumannii Acinetobacter isolates from a South Korean hospital were analyzed. GIs were found in three Acinetobacter nosocomialis and two Acinetobacter seifertii isolates. Their structures were similar to those in A. baumannii isolates from Asian countries, including South Korea. The existence of AbaR-type GIs in non-baumannii Acinetobacter isolates is believed to be due to interspecies transfer of GI. PMID:26100696

  19. Molecular Characteristics of Salmonella Genomic Island 1 in Proteus mirabilis Isolates from Poultry Farms in China

    PubMed Central

    Lei, Chang-Wei; Zhang, An-Yun; Liu, Bi-Hui; Guan, Zhong-Bin; Xu, Chang-Wen; Xia, Qing-Qing; Cheng, Han; Zhang, Dong-Dong

    2014-01-01

    Six out of the 64 studied Proteus mirabilis isolates from 11 poultry farms in China contained Salmonella genomic island 1 (SGI1). PCR mapping showed that the complete nucleotide sequences of SGI1s ranged from 33.2 to 42.5 kb. Three novel variants, SGI1-W, SGI1-X, and SGI1-Y, have been characterized. Resistance genes lnuF, dfrA25, and qnrB2 were identified in SGI1 for the first time. PMID:25267683

  20. Linking the Epigenome to the Genome: Correlation of Different Features to DNA Methylation of CpG Islands

    PubMed Central

    Wrzodek, Clemens; Büchel, Finja; Hinselmann, Georg; Eichner, Johannes; Mittag, Florian; Zell, Andreas

    2012-01-01

    DNA methylation of CpG islands plays a crucial role in the regulation of gene expression. More than half of all human promoters contain CpG islands with a tissue-specific methylation pattern in differentiated cells. Still today, the whole process of how DNA methyltransferases determine which region should be methylated is not completely revealed. There are many hypotheses of which genomic features are correlated to the epigenome that have not yet been evaluated. Furthermore, many explorative approaches of measuring DNA methylation are limited to a subset of the genome and thus, cannot be employed, e.g., for genome-wide biomarker prediction methods. In this study, we evaluated the correlation of genetic, epigenetic and hypothesis-driven features to DNA methylation of CpG islands. To this end, various binary classifiers were trained and evaluated by cross-validation on a dataset comprising DNA methylation data for 190 CpG islands in HEPG2, HEK293, fibroblasts and leukocytes. We achieved an accuracy of up to 91% with an MCC of 0.8 using ten-fold cross-validation and ten repetitions. With these models, we extended the existing dataset to the whole genome and thus, predicted the methylation landscape for the given cell types. The method used for these predictions is also validated on another external whole-genome dataset. Our results reveal features correlated to DNA methylation and confirm or disprove various hypotheses of DNA methylation related features. This study confirms correlations between DNA methylation and histone modifications, DNA structure, DNA sequence, genomic attributes and CpG island properties. Furthermore, the method has been validated on a genome-wide dataset from the ENCODE consortium. The developed software, as well as the predicted datasets and a web-service to compare methylation states of CpG islands are available at http://www.cogsys.cs.uni-tuebingen.de/software/dna-methylation/. PMID:22558141

  1. Genome-Wide CpG Island Profiling of Intraductal Papillary Mucinous Neoplasms of the Pancreas

    PubMed Central

    Hong, Seung-Mo; Omura, Noriyuki; Vincent, Audrey; Li, Ang; Knight, Spencer; Yu, Jun; Hruban, Ralph H.; Goggins, Michael

    2011-01-01

    Purpose Intraductal papillary mucinous neoplasms (IPMNs) are precursors to infiltrating pancreatic ductal adenocarcinomas. Widespread epigenetic alterations are characteristic of many cancers, yet few studies have systematically analyzed epigenetic alterations of neoplastic precursors. Our goal was to perform genome-wide CpG island methylation profiling to identify aberrantly methylated loci in IPMNs. Experimental Design We compared the CpG island methylation profiles of 6 IPMNs to normal primary pancreatic duct samples using methylation CpG island amplification (MCA) and Agilent CpG island microarray (MCAM) analysis. When selected 13 genes identified as differentially methylated by MCAM for methylation-specific PCR (MSP) analysis in an independent set of IPMNs and normal pancreas samples and performed expression analysis of selected genes. Results We identified 2,259 loci as differentially methylated in at least one of 6 IPMNs including 245 genes hypermethylated in IPMNs with high-grade dysplasia compared to normal pancreatic duct samples. Eleven of 13 genes evaluated by MSP were more commonly methylated in 61 IPMNs than in 43 normal pancreas samples. Several genes, (BNIP3, PTCHD2, SOX17, NXPH1, EBF3), were significantly more likely to be methylated in IPMNs with high-grade than with lower-grade dysplasia. One gene, Sox17, demonstrated loss of protein expression by immunohistochemistry in 22% (19 of 88) of IPMNs. The most specific marker, BNIP3, was not methylated in any IPMNs with low-grade dysplasia or in normal pancreas samples. Conclusions IPMNs undergo extensive aberrant CpG island hypermethylation. The detection of genes selectively methylated in high-grade IPMNs such as BNIP3 may have utility in the clinical evaluation of IPMNs. PMID:22173550

  2. Campylobacter fetus Subspecies Contain Conserved Type IV Secretion Systems on Multiple Genomic Islands and Plasmids

    PubMed Central

    van der Graaf–van Bloois, Linda; Miller, William G.; Yee, Emma; Gorkiewicz, Gregor; Forbes, Ken J.; Zomer, Aldert L.; Wagenaar, Jaap A.; Duim, Birgitta

    2016-01-01

    The features contributing to differences in pathogenicity of the Campylobacter fetus subspecies are unknown. Putative factors involved in pathogenesis are located in genomic islands that encode a type IV secretion system (T4SS) and fic domain (filamentation induced by cyclic AMP) proteins, which may disrupt host cell processes. In the genomes of 27 C. fetus strains, three phylogenetically-different T4SS-encoding regions (T4SSs) were identified: one was located in both the chromosome and in extra-chromosomal plasmids; one was located exclusively in the chromosome; and one exclusively in extra-chromosomal plasmids. We observed that C. fetus strains can contain multiple T4SSs and that homologous T4SSs can be present both in chromosomal genomic islands (GI) and on plasmids in the C. fetus strains. The GIs of the chromosomally located T4SS differed mainly by the presence of fic genes, insertion sequence elements and phage-related or hypothetical proteins. Comparative analysis showed that T4SS sequences, inserted in the same locations, were conserved in the studied C. fetus genomes. Using phylogenetic analysis of the T4SSs, it was shown that C. fetus may have acquired the T4SS regions from other Campylobacter species by horizontal gene transfer. The identified T4SSs and fic genes were found in Cff and Cfv strains, although the presence of T4SSs and fic genes were significantly associated with Cfv strains. The T4SSs and fic genes could not be associated with S-layer serotypes or geographical origin of the strains. PMID:27049518

  3. Diversity of the Abundant pKLC102/PAGI-2 Family of Genomic Islands in Pseudomonas aeruginosa▿ †

    PubMed Central

    Klockgether, Jens; Würdemann, Dieco; Reva, Oleg; Wiehlmann, Lutz; Tümmler, Burkhard

    2007-01-01

    The known genomic islands of Pseudomonas aeruginosa clone C strains are integrated into tRNALys (pKLC102) or tRNAGly (PAGI-2 and PAGI-3) genes and differ from their core genomes by distinctive tetranucleotide usage patterns. pKLC102 and the related island PAPI-1 from P. aeruginosa PA14 were spontaneously mobilized from their host chromosomes at frequencies of 10% and 0.3%, making pKLC102 the most mobile genomic island known with a copy number of 30 episomal circular pKLC102 molecules per cell. The incidence of islands of the pKLC102/PAGI-2 type was investigated in 71 unrelated P. aeruginosa strains from diverse habitats and geographic origins. pKLC102- and PAGI-2-like islands were identified in 50 and 31 strains, respectively, and 15 and 10 subtypes were differentiated by hybridization on pKLC102 and PAGI-2 macroarrays. The diversity of PAGI-2-type islands was mainly caused by one large block of strain-specific genes, whereas the diversity of pKLC102-type islands was primarily generated by subtype-specific combination of gene cassettes. Chromosomal loss of PAGI-2 could be documented in sequential P. aeruginosa isolates from individuals with cystic fibrosis. PAGI-2 was present in most tested Cupriavidus metallidurans and Cupriavidus campinensis isolates from polluted environments, demonstrating the spread of PAGI-2 across habitats and species barriers. The pKLC102/PAGI-2 family is prevalent in numerous beta- and gammaproteobacteria and is characterized by high asymmetry of the cDNA strands. This evolutionarily ancient family of genomic islands retained its oligonucleotide signature during horizontal spread within and among taxa. PMID:17194795

  4. Versatile insertion plasmids for targeted genome manipulations in bacteria: isolation, deletion, and rescue of the pathogenicity island LEE of the Escherichia coli O157:H7 genome.

    PubMed Central

    Pósfai, G; Koob, M D; Kirkpatrick, H A; Blattner, F R

    1997-01-01

    A system of versatile insertion plasmids was constructed that permits efficient delivery of the target sites of an ultra-rare-cutting endonuclease and the recombinase FLP into preselected sites of the bacterial genome. With the help of this system, the pathogenicity island LEE of the Escherichia coli O157:H7 genome was excised and isolated in vitro, deleted in vivo, rescued as a plasmid, and transferred into another strain. PMID:9209066

  5. Transferable Antibiotic Resistance Elements in Haemophilus influenzae Share a Common Evolutionary Origin with a Diverse Family of Syntenic Genomic Islands

    PubMed Central

    Mohd-Zain, Zaini; Turner, Sarah L.; Cerdeño-Tárraga, Ana M.; Lilley, Andrew K.; Inzana, Thomas J.; Duncan, A. Jane; Harding, Rosalind M.; Hood, Derek W.; Peto, Timothy E.; Crook, Derrick W.

    2004-01-01

    Transferable antibiotic resistance in Haemophilus influenzae was first detected in the early 1970s. After this, resistance spread rapidly worldwide and was shown to be transferred by a large 40- to 60-kb conjugative element. Bioinformatics analysis of the complete sequence of a typical H. influenzae conjugative resistance element, ICEHin1056, revealed the shared evolutionary origin of this element. ICEHin1056 has homology to 20 contiguous sequences in the National Center for Biotechnology Information database. Systematic comparison of these homologous sequences resulted in identification of a conserved syntenic genomic island consisting of up to 33 core genes in 16 β- and γ-Proteobacteria. These diverse genomic islands shared a common evolutionary origin, insert into tRNA genes, and have diverged widely, with G+C contents ranging from 40 to 70% and amino acid homologies as low as 20 to 25% for shared core genes. These core genes are likely to account for the conjugative transfer of the genomic islands and may even encode autonomous replication. Accessory gene clusters were nestled among the core genes and encode the following diverse major attributes: antibiotic, metal, and antiseptic resistance; degradation of chemicals; type IV secretion systems; two-component signaling systems; Vi antigen capsule synthesis; toxin production; and a wide range of metabolic functions. These related genomic islands include the following well-characterized structures: SPI-7, found in Salmonella enterica serovar Typhi; PAP1 or pKLC102, found in Pseudomonas aeruginosa; and the clc element, found in Pseudomonas sp. strain B13. This is the first report of a diverse family of related syntenic genomic islands with a deep evolutionary origin, and our findings challenge the view that genomic islands consist only of independently evolving modules. PMID:15547285

  6. Transfer of the methicillin resistance genomic island among staphylococci by conjugation.

    PubMed

    Ray, M D; Boundy, S; Archer, G L

    2016-05-01

    Methicillin resistance creates a major obstacle for treatment of Staphylococcus aureus infections. The resistance gene, mecA, is carried on a large (20 kb to > 60 kb) genomic island, staphylococcal cassette chromosome mec (SCCmec), that excises from and inserts site-specifically into the staphylococcal chromosome. However, although SCCmec has been designated a mobile genetic element, a mechanism for its transfer has not been defined. Here we demonstrate the capture and conjugative transfer of excised SCCmec. SCCmec was captured on pGO400, a mupirocin-resistant derivative of the pGO1/pSK41 staphylococcal conjugative plasmid lineage, and pGO400::SCCmec (pRM27) was transferred by filter-mating into both homologous and heterologous S. aureus recipients representing a range of clonal complexes as well as S. epidermidis. The DNA sequence of pRM27 showed that SCCmec had been transferred in its entirety and that its capture had occurred by recombination between IS257/431 elements present on all SCCmec types and pGO1/pSK41 conjugative plasmids. The captured SCCmec excised from the plasmid and inserted site-specifically into the chromosomal att site of both an isogenic S. aureus and a S. epidermidis recipient. These studies describe a means by which methicillin resistance can be environmentally disseminated and a novel mechanism, IS-mediated recombination, for the capture and conjugative transfer of genomic islands. PMID:26822382

  7. Identification of novel DNA fragments and partial sequence of a genomic island specific of Brucella pinnipedialis.

    PubMed

    Maquart, Marianne; Fardini, Yann; Zygmunt, Michel S; Cloeckaert, Axel

    2008-11-25

    Since the 1990s, Brucella strains have been isolated from a wide variety of marine mammals and were recently recognized as two different species, i.e. Brucella pinnipedialis for pinniped isolates and Brucella ceti for cetacean isolates. The aim of this study was to identify specific DNA fragments of marine mammal Brucella strains using a previously described infrequent restriction site-PCR (IRS-PCR) method but with three new couples of restriction enzymes applied on a larger panel of marine mammal Brucella isolates (n=74) and one human isolate from New Zealand likely from marine mammal origin. This study revealed five DNA fragments specific of Brucella strains isolated from marine mammals. Among them two new DNA fragments were specific of B. pinnipedialis but were not detected in hooded seal isolates. DNA fragment I identified in the previous IRS-PCR study and fragment VI of this study were located on a cloned and sequenced 6kb SacI fragment. Its nucleotide sequence revealed that it is likely part of a putative genomic island. Sequence analysis showed that it carries four ORFs coding for putative metabolic functions. Although hooded seal isolates are classified within B. pinnipedialis it was shown in this study that they do not carry this genomic island and this raises the question about their evolutionary history within B. pinnipedialis. PMID:18514443

  8. Characterization of genomic island 3 and genetic variability of Chilean field strains of Brucella abortus.

    PubMed

    Cspedes, Sandra; Salgado, Paulina; Valenzuela, Patricio; Vidal, Roberto; Oate, Angel A

    2011-07-01

    One of the capabilities developed by bacteria is the ability to gain large fragments of DNA from other bacteria or to lose portions of their own genomes. Among these exchangeable fragments are the genomic islands (GIs). Nine GIs have been identified in Brucella, and genomic island 3 (GI-3) is shared by two pathogenic species, B. melitensis and B. abortus. GI-3 encodes mostly unknown proteins. One of the aims of this study was to perform pulsed-field gel electrophoresis (PFGE) on field isolates of B. abortus from Chile to determine whether these isolates are clonally related. Furthermore, we focused on the characterization of GI-3, studying its organization and the genetic conservation of the GI-3 sequence using techniques such as tiling-path PCR (TP-PCR) and restriction fragment length polymorphism-PCR (RFLP-PCR). Our results, after PFGE was performed on 69 field isolates of B. abortus from Chile, showed that the strains were genetically homogeneous. To increase the power of genetic discrimination among these strains, we used multiple locus variable-number tandem-repeat (VNTR) analysis with 16 loci (MLVA-16). The results obtained by MLVA-16 showed that the strains of B. abortus were genetically heterogeneous and that most of them clustered according to their geographic origin. Of the genetic loci studied, panel 2B was the one describing the highest diversity in the analysis, as well as locus Bruce19 in panel 2A. In relation to the study of GI-3, our experimental analysis by TP-PCR identified and confirmed that GI-3 is present in all wild strains of B. abortus, demonstrating the high stability of gene cluster GI-3 in Chilean field strains. PMID:21543580

  9. Characterization of Genomic Island 3 and Genetic Variability of Chilean Field Strains of Brucella abortus▿

    PubMed Central

    Céspedes, Sandra; Salgado, Paulina; Valenzuela, Patricio; Vidal, Roberto; Oñate, Angel A.

    2011-01-01

    One of the capabilities developed by bacteria is the ability to gain large fragments of DNA from other bacteria or to lose portions of their own genomes. Among these exchangeable fragments are the genomic islands (GIs). Nine GIs have been identified in Brucella, and genomic island 3 (GI-3) is shared by two pathogenic species, B. melitensis and B. abortus. GI-3 encodes mostly unknown proteins. One of the aims of this study was to perform pulsed-field gel electrophoresis (PFGE) on field isolates of B. abortus from Chile to determine whether these isolates are clonally related. Furthermore, we focused on the characterization of GI-3, studying its organization and the genetic conservation of the GI-3 sequence using techniques such as tiling-path PCR (TP-PCR) and restriction fragment length polymorphism-PCR (RFLP-PCR). Our results, after PFGE was performed on 69 field isolates of B. abortus from Chile, showed that the strains were genetically homogeneous. To increase the power of genetic discrimination among these strains, we used multiple locus variable-number tandem-repeat (VNTR) analysis with 16 loci (MLVA-16). The results obtained by MLVA-16 showed that the strains of B. abortus were genetically heterogeneous and that most of them clustered according to their geographic origin. Of the genetic loci studied, panel 2B was the one describing the highest diversity in the analysis, as well as locus Bruce19 in panel 2A. In relation to the study of GI-3, our experimental analysis by TP-PCR identified and confirmed that GI-3 is present in all wild strains of B. abortus, demonstrating the high stability of gene cluster GI-3 in Chilean field strains. PMID:21543580

  10. Complete Genome Sequence of Salmonella enterica Serovar Typhimurium Strain YU15 (Sequence Type 19) Harboring the Salmonella Genomic Island 1 and Virulence Plasmid pSTV.

    PubMed

    Silva, Claudia; Calva, Edmundo; Puente, José L; Zaidi, Mussaret B; Vinuesa, Pablo

    2016-01-01

    The complete genome ofSalmonella entericasubsp.entericaserovar Typhimurium sequence type 19 (ST19) strain YU15, isolated in Yucatán, Mexico, from a human baby stool culture, was determined using PacBio technology. The chromosome contains five intact prophages and theSalmonellagenomic island 1 (SGI1). This strain carries theSalmonellavirulence plasmid pSTV. PMID:27081132

  11. Functional analysis of a lipolytic protein encoded in phytoplasma phage based genomic island.

    PubMed

    Gedvilaite, Alma; Jomantiene, Rasa; Dabrisius, Jonas; Norkiene, Milda; Davis, Robert E

    2014-01-01

    Wall-less bacteria known as phytoplasmas are obligate transkingdom parasites and pathogens of plants and insect vectors. These unusual bacteria possess some of the smallest genomes known among pathogenic bacteria, and have never been successfully isolated in artificial culture. Disease symptoms induced by phytoplasmas in infected plants include abnormal growth and often severe yellowing of leaves, but mechanisms involved in phytoplasma parasitism and pathogenicity are little understood. A phage based genomic island (sequence variable mosaic, SVM) in the genome of Malaysian periwinkle yellows (MPY) phytoplasma harbors a gene encoding membrane-targeted proteins, including a putative phospholipase (PL), potentially important in pathogen-host interactions. Since some phytoplasmal disease symptoms could possibly be accounted for, at least in part, by damage and/or degradation of host cell membranes, we hypothesize that the MPY phytoplasma putative PL is an active enzyme. To test this hypothesis, functional analysis of the MPY putative pl gene-encoded protein was carried out in vitro after its expression in bacterial and yeast hosts. The results demonstrated that the heterologously expressed phytoplasmal putative PL is an active lipolytic enzyme and could possibly act as a pathogenicity factor in the plant, and/or insect, host. PMID:24168924

  12. Draft Genome of Shewanella frigidimarina Ag06-30, a Marine Bacterium Isolated from Potter Peninsula, King George Island, Antarctica

    PubMed Central

    Parmeciano Di Noto, Gisela; Vázquez, Susana C.; MacCormack, Walter P.; Iriarte, Andrés

    2016-01-01

    We present the draft genome of Shewanella frigidimarina Ag06-30, a marine bacterium from King George Island, Antarctica, which encodes the carbapenemase SFP-1. The assembly contains 4,799,218 bp (G+C content 41.24%). This strain harbors several mobile genetic elements that provide insight into lateral gene transfer and bacterial plasticity and evolution. PMID:27151790

  13. Why Close a Bacterial Genome? The Plasmid of Alteromonas Macleodii HOT1A3 is a Vector for Inter-Specific Transfer of a Flexible Genomic Island

    PubMed Central

    Fadeev, Eduard; De Pascale, Fabio; Vezzi, Alessandro; Hübner, Sariel; Aharonovich, Dikla; Sher, Daniel

    2016-01-01

    Genome sequencing is rapidly becoming a staple technique in environmental and clinical microbiology, yet computational challenges still remain, leading to many draft genomes which are typically fragmented into many contigs. We sequenced and completely assembled the genome of a marine heterotrophic bacterium, Alteromonas macleodii HOT1A3, and compared its full genome to several draft genomes obtained using different reference-based and de novo methods. In general, the de novo assemblies clearly outperformed the reference-based or hybrid ones, covering >99% of the genes and representing essentially all of the gene functions. However, only the fully closed genome (∼4.5 Mbp) allowed us to identify the presence of a large, 148 kbp plasmid, pAM1A3. While HOT1A3 belongs to A. macleodii, typically found in surface waters (“surface ecotype”), this plasmid consists of an almost complete flexible genomic island (fGI), containing many genes involved in metal resistance previously identified in the genomes of Alteromonas mediterranea (“deep ecotype”). Indeed, similar to A. mediterranea, A. macleodii HOT1A3 grows at concentrations of zinc, mercury, and copper that are inhibitory for other A. macleodii strains. The presence of a plasmid encoding almost an entire fGI suggests that wholesale genomic exchange between heterotrophic marine bacteria belonging to related but ecologically different populations is not uncommon. PMID:27014193

  14. Genomic diversity and differentiation of a managed island wild boar population.

    PubMed

    Iacolina, L; Scandura, M; Goedbloed, D J; Alexandri, P; Crooijmans, R P M A; Larson, G; Archibald, A; Apollonio, M; Schook, L B; Groenen, M A M; Megens, H-J

    2016-01-01

    The evolution of island populations in natural systems is driven by local adaptation and genetic drift. However, evolutionary pathways may be altered by humans in several ways. The wild boar (WB) (Sus scrofa) is an iconic game species occurring in several islands, where it has been strongly managed since prehistoric times. We examined genomic diversity at 49 803 single-nucleotide polymorphisms in 99 Sardinian WBs and compared them with 196 wild specimens from mainland Europe and 105 domestic pigs (DP; 11 breeds). High levels of genetic variation were observed in Sardinia (80.9% of the total number of polymorphisms), which can be only in part associated to recent genetic introgression. Both Principal Component Analysis and Bayesian clustering approach revealed that the Sardinian WB population is highly differentiated from the other European populations (FST=0.126-0.138), and from DP (FST=0.169). Such evidences were mostly unaffected by an uneven sample size, although clustering results in reference populations changed when the number of individuals was standardized. Runs of homozygosity (ROHs) pattern and distribution in Sardinian WB are consistent with a past expansion following a bottleneck (small ROHs) and recent population substructuring (highly homozygous individuals). The observed effect of a non-random selection of Sardinian individuals on diversity, FST and ROH estimates, stressed the importance of sampling design in the study of structured or introgressed populations. Our results support the heterogeneity and distinctiveness of the Sardinian population and prompt further investigations on its origins and conservation status. PMID:26243137

  15. Complete chloroplast genome of Prunus yedoensis Matsum.(Rosaceae), wild and endemic flowering cherry on Jeju Island, Korea.

    PubMed

    Cho, Myong-Suk; Hyun Cho, Chung; Yeon Kim, Su; Su Yoon, Hwan; Kim, Seung-Chul

    2016-09-01

    The complete chloroplast genome sequences of the wild flowering cherry, Prunus yedoensis Matsum., which is native and endemic to Jeju Island, Korea, is reported in this study. The genome size is 157 786 bp in length with 36.7% GC content, which is composed of LSC region of 85 908 bp, SSC region of 19 120 bp and two IR copies of 26 379 bp each. The cp genome contains 131 genes, including 86 coding genes, 8 rRNA genes and 37 tRNA genes. The maximum likelihood analysis was conducted to verify a phylogenetic position of the newly sequenced cp genome of P. yedoensis using 11 representatives of complete cp genome sequences within the family Rosaceae. The genus Prunus exhibited monophyly and the result of the phylogenetic relationship agreed with the previous phylogenetic analyses within Rosaceae. PMID:26329800

  16. Visualization of sequence and structural features of genomes and chromosome fragments. Application to CpG islands, Alu sequences and whole genomes.

    PubMed

    Subirana, Juan A; Anokian, Ezequiel

    2011-03-01

    A very simple new program is presented (G-SQUARES). It is useful in order to visualize the composition and basic structural features of whole genomes and selected chromosome regions. The frequency of all dimer and tetramer sequences is reported. Overall structural features are calculated, such as the tendency for alternation. A direct visual comparison among different sequences is easily available. Furthermore, the features which are visualized indicate further studies which should be carried out. Examples are presented on Alu sequences, CpG islands, whole eukaryotic and bacterial genomes. PMID:21167919

  17. Genomic islands of divergence and their consequences for the resolution of spatial structure in an exploited marine fish

    PubMed Central

    Bradbury, Ian R; Hubert, Sophie; Higgins, Brent; Bowman, Sharen; Borza, Tudor; Paterson, Ian G; Snelgrove, Paul V R; Morris, Corey J; Gregory, Robert S; Hardie, David; Hutchings, Jeffrey A; Ruzzante, Daniel E; Taggart, Christopher T; Bentzen, Paul

    2013-01-01

    As populations diverge, genomic regions associated with adaptation display elevated differentiation. These genomic islands of adaptive divergence can inform conservation efforts in exploited species, by refining the delineation of management units, and providing genomic tools for more precise and effective population monitoring and the successful assignment of individuals and products. We explored heterogeneity in genomic divergence and its impact on the resolution of spatial population structure in exploited populations of Atlantic cod, Gadus morhua, using genome wide expressed sequence derived single nucleotide polymorphisms in 466 individuals sampled across the range. Outlier tests identified elevated divergence at 5.2% of SNPs, consistent with directional selection in one-third of linkage groups. Genomic regions of elevated divergence ranged in size from a single position to several cM. Structuring at neutral loci was associated with geographic features, whereas outlier SNPs revealed genetic discontinuities in both the eastern and western Atlantic. This fine-scale geographic differentiation enhanced assignment to region of origin, and through the identification of adaptive diversity, fundamentally changes how these populations should be conserved. This work demonstrates the utility of genome scans for adaptive divergence in the delineation of stock structure, the traceability of individuals and products, and ultimately a role for population genomics in fisheries conservation. PMID:23745137

  18. Genomic diversity and differentiation of a managed island wild boar population

    PubMed Central

    Iacolina, L; Scandura, M; Goedbloed, D J; Alexandri, P; Crooijmans, R P M A; Larson, G; Archibald, A; Apollonio, M; Schook, L B; Groenen, M A M; Megens, H-J

    2016-01-01

    The evolution of island populations in natural systems is driven by local adaptation and genetic drift. However, evolutionary pathways may be altered by humans in several ways. The wild boar (WB) (Sus scrofa) is an iconic game species occurring in several islands, where it has been strongly managed since prehistoric times. We examined genomic diversity at 49 803 single-nucleotide polymorphisms in 99 Sardinian WBs and compared them with 196 wild specimens from mainland Europe and 105 domestic pigs (DP; 11 breeds). High levels of genetic variation were observed in Sardinia (80.9% of the total number of polymorphisms), which can be only in part associated to recent genetic introgression. Both Principal Component Analysis and Bayesian clustering approach revealed that the Sardinian WB population is highly differentiated from the other European populations (FST=0.126–0.138), and from DP (FST=0.169). Such evidences were mostly unaffected by an uneven sample size, although clustering results in reference populations changed when the number of individuals was standardized. Runs of homozygosity (ROHs) pattern and distribution in Sardinian WB are consistent with a past expansion following a bottleneck (small ROHs) and recent population substructuring (highly homozygous individuals). The observed effect of a non-random selection of Sardinian individuals on diversity, FST and ROH estimates, stressed the importance of sampling design in the study of structured or introgressed populations. Our results support the heterogeneity and distinctiveness of the Sardinian population and prompt further investigations on its origins and conservation status. PMID:26243137

  19. Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated Pseudomonas stutzeri A1501

    PubMed Central

    Yan, Yongliang; Yang, Jian; Dou, Yuetan; Chen, Ming; Ping, Shuzhen; Peng, Junping; Lu, Wei; Zhang, Wei; Yao, Ziying; Li, Hongquan; Liu, Wei; He, Sheng; Geng, Lizhao; Zhang, Xiaobing; Yang, Fan; Yu, Haiying; Zhan, Yuhua; Li, Danhua; Lin, Zhanglin; Wang, Yiping; Elmerich, Claudine; Lin, Min; Jin, Qi

    2008-01-01

    The capacity to fix nitrogen is widely distributed in phyla of Bacteria and Archaea but has long been considered to be absent from the Pseudomonas genus. We report here the complete genome sequencing of nitrogen-fixing root-associated Pseudomonas stutzeri A1501. The genome consists of a single circular chromosome with 4,567,418 bp. Comparative genomics revealed that, among 4,146 protein-encoding genes, 1,977 have orthologs in each of the five other Pseudomonas representative species sequenced to date. The genome contains genes involved in broad utilization of carbon sources, nitrogen fixation, denitrification, degradation of aromatic compounds, biosynthesis of polyhydroxybutyrate, multiple pathways of protection against environmental stress, and other functions that presumably give A1501 an advantage in root colonization. Genetic information on synthesis, maturation, and functioning of nitrogenase is clustered in a 49-kb island, suggesting that this property was acquired by lateral gene transfer. New genes required for the nitrogen fixation process have been identified within the nif island. The genome sequence offers the genetic basis for further study of the evolution of the nitrogen fixation property and identification of rhizosphere competence traits required in the interaction with host plants; moreover, it opens up new perspectives for wider application of root-associated diazotrophs in sustainable agriculture. PMID:18495935

  20. Isolation by environment in White-breasted Nuthatches (Sitta carolinensis) of the Madrean Archipelago sky islands: a landscape genomics approach.

    PubMed

    Manthey, Joseph D; Moyle, Robert G

    2015-07-01

    Understanding landscape processes driving patterns of population genetic differentiation and diversity has been a long-standing focus of ecology and evolutionary biology. Gene flow may be reduced by historical, ecological or geographic factors, resulting in patterns of isolation by distance (IBD) or isolation by environment (IBE). Although IBE has been found in many natural systems, most studies investigating patterns of IBD and IBE in nature have used anonymous neutral genetic markers, precluding inference of selection mechanisms or identification of genes potentially under selection. Using landscape genomics, the simultaneous study of genomic and ecological landscapes, we investigated the processes driving population genetic patterns of White-breasted Nuthatches (Sitta carolinensis) in sky islands (montane forest habitat islands) of the Madrean Archipelago. Using more than 4000 single nucleotide polymorphisms and multiple tests to investigate the relationship between genetic differentiation and geographic or ecological distance, we identified IBE, and a lack of IBD, among sky island populations of S. carolinensis. Using three tests to identify selection, we found 79 loci putatively under selection; of these, seven matched CDS regions in the Zebra Finch. The loci under selection were highly associated with climate extremes (maximum temperature of warmest month and minimum precipitation of driest month). These results provide evidence for IBE - disentangled from IBD - in sky island vertebrates and identify potential adaptive genetic variation. PMID:26037653

  1. Genome-wide SNP analysis reveals population structure and demographic history of the ryukyu islanders in the southern part of the Japanese archipelago.

    PubMed

    Sato, Takehiro; Nakagome, Shigeki; Watanabe, Chiaki; Yamaguchi, Kyoko; Kawaguchi, Akira; Koganebuchi, Kae; Haneji, Kuniaki; Yamaguchi, Tetsutaro; Hanihara, Tsunehiko; Yamamoto, Ken; Ishida, Hajime; Mano, Shuhei; Kimura, Ryosuke; Oota, Hiroki

    2014-11-01

    The Ryukyu Islands are located to the southwest of the Japanese archipelago. Archaeological evidence has revealed the existence of prehistoric cultural differentiation between the northern Ryukyu islands of Amami and Okinawa, and the southern Ryukyu islands of Miyako and Yaeyama. To examine a genetic subdivision in the Ryukyu Islands, we conducted genome-wide single nucleotide polymorphism typing of inhabitants from the Okinawa Islands, the Miyako Islands, and the Yaeyama Islands. Principal component and cluster analyses revealed genetic differentiation among the island groups, especially between Okinawa and Miyako. No genetic affinity was observed between aboriginal Taiwanese and any of the Ryukyu populations. The genetic differentiation observed between the inhabitants of the Okinawa Islands and the Miyako Islands is likely to have arisen due to genetic drift rather than admixture with people from neighboring regions. Based on the observed genetic differences, the divergence time between the inhabitants of Okinawa and Miyako islands was dated to the Holocene. These findings suggest that the Pleistocene inhabitants, whose bones have been found on the southern Ryukyu Islands, did not make a major genetic contribution, if any, to the present-day inhabitants of the southern Ryukyu Islands. PMID:25086001

  2. A novel family of integrases associated with prophages and genomic islands integrated within the tRNA-dihydrouridine synthase A (dusA) gene.

    PubMed

    Farrugia, Daniel N; Elbourne, Liam D H; Mabbutt, Bridget C; Paulsen, Ian T

    2015-05-19

    Genomic islands play a key role in prokaryotic genome plasticity. Genomic islands integrate into chromosomal loci such as transfer RNA genes and protein coding genes, whilst retaining various cargo genes that potentially bestow novel functions on the host organism. A gene encoding a putative integrase was identified at a single site within the 5' end of the dusA gene in the genomes of over 200 bacteria. This integrase was discovered to be a component of numerous genomic islands, which appear to share a target site within the dusA gene. dusA encodes the tRNA-dihydrouridine synthase A enzyme, which catalyses the post-transcriptional reduction of uridine to dihydrouridine in tRNA. Genomic islands encoding homologous dusA-associated integrases were found at a much lower frequency within the related dusB and dusC genes, and non-dus genes. Excision of these dusA-associated islands from the chromosome as circularized intermediates was confirmed by polymerase chain reaction. Analysis of the dusA-associated islands indicated that they were highly diverse, with the integrase gene representing the only universal common feature. PMID:25883135

  3. A novel family of integrases associated with prophages and genomic islands integrated within the tRNA-dihydrouridine synthase A (dusA) gene

    PubMed Central

    Farrugia, Daniel N.; Elbourne, Liam D. H.; Mabbutt, Bridget C.; Paulsen, Ian T.

    2015-01-01

    Genomic islands play a key role in prokaryotic genome plasticity. Genomic islands integrate into chromosomal loci such as transfer RNA genes and protein coding genes, whilst retaining various cargo genes that potentially bestow novel functions on the host organism. A gene encoding a putative integrase was identified at a single site within the 5′ end of the dusA gene in the genomes of over 200 bacteria. This integrase was discovered to be a component of numerous genomic islands, which appear to share a target site within the dusA gene. dusA encodes the tRNA-dihydrouridine synthase A enzyme, which catalyses the post-transcriptional reduction of uridine to dihydrouridine in tRNA. Genomic islands encoding homologous dusA-associated integrases were found at a much lower frequency within the related dusB and dusC genes, and non-dus genes. Excision of these dusA-associated islands from the chromosome as circularized intermediates was confirmed by polymerase chain reaction. Analysis of the dusA-associated islands indicated that they were highly diverse, with the integrase gene representing the only universal common feature. PMID:25883135

  4. Genome-wide Association Study of Biochemical Traits in Korčula Island, Croatia

    PubMed Central

    Zemunik, Tatijana; Boban, Mladen; Lauc, Gordan; Janković, Stipan; Rotim, Krešimir; Vatavuk, Zoran; Benčić, Goran; Đogaš, Zoran; Boraska, Vesna; Torlak, Vesela; Sušac, Jelena; Zobić, Ivana; Rudan, Diana; Pulanić, Dražen; Modun, Darko; Mudnić, Ivana; Gunjača, Grgo; Budimir, Danijela; Hayward, Caroline; Vitart, Veronique; Wright, Alan F.; Campbell, Harry; Rudan, Igor

    2009-01-01

    Aim To identify genetic variants underlying biochemical traits – total cholesterol, low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides, uric acid, albumin, and fibrinogen, in a genome-wide association study in an isolated population where rare variants of larger effect may be more easily identified. Methods The study included 944 adult inhabitants of the island of Korčula, as a part of a larger DNA-based genetic epidemiological study in 2007. Biochemical measurements were performed in a single laboratory with stringent internal and external quality control procedures. Examinees were genotyped using Human Hap370CNV chip by Illumina, with a genome-wide scan containing 346 027 single nucleotide polymorphisms (SNP). Results A total of 31 SNPs were associated with 7 investigated traits at the level of P < 1.00 × 10−5. Nine of SNPs implicated the role of SLC2A9 in uric acid regulation (P = 4.10 × 10−6-2.58 × 10−12), as previously found in other populations. All 22 remaining associations fell into the P = 1.00 × 10−5-1.00 × 10−6 significance range. One of them replicated the association between cholesteryl ester transfer protein (CETP) and HDL, and 7 associations were more than 100 kilobases away from the closest known gene. Nearby SNPs, rs4767631 and rs10444502, in gene kinase suppressor of ras 2 (KSR2) on chromosome 12 were associated with LDL cholesterol levels, and rs10444502 in the same gene with total cholesterol levels. Similarly, rs2839619 in gene PBX/knotted 1 homeobox 1 (PKNOX1) on chromosome 21 was associated with total and LDL cholesterol levels. The remaining 9 findings implied possible associations between phosphatidylethanolamine N-methyltransferase (PEMT) gene and total cholesterol; USP46, RAP1GDS1, and ZCCHC16 genes and triglycerides; BCAT1 and SLC14A2 genes and albumin; and NR3C2, GRIK2, and PCSK2 genes and fibrinogen. Conclusion Although this study was underpowered for most of the reported associations to reach formal threshold of genome-wide significance under the assumption of independent multiple testing, replications of previous findings and consistency of association between the identified variants and more than one studied trait make such findings interesting for further functional follow-up studies. Changed allele frequencies in isolate population may contribute to identifying variants that would not be easily identified in much larger samples in outbred populations. PMID:19260141

  5. A Second Actin-Like MamK Protein in Magnetospirillum magneticum AMB-1 Encoded Outside the Genomic Magnetosome Island

    PubMed Central

    Pereira, Sandrine; Pignol, David; Wu, Long-Fei; Ginet, Nicolas

    2010-01-01

    Magnetotactic bacteria are able to swim navigating along geomagnetic field lines. They synthesize ferromagnetic nanocrystals that are embedded in cytoplasmic membrane invaginations forming magnetosomes. Regularly aligned in the cytoplasm along cytoskeleton filaments, the magnetosome chain effectively forms a compass needle bestowing on bacteria their magnetotactic behaviour. A large genomic island, conserved among magnetotactic bacteria, contains the genes potentially involved in magnetosome formation. One of the genes, mamK has been described as encoding a prokaryotic actin-like protein which when it polymerizes forms in the cytoplasm filamentous structures that provide the scaffold for magnetosome alignment. Here, we have identified a series of genes highly similar to the mam genes in the genome of Magnetospirillum magneticum AMB-1. The newly annotated genes are clustered in a genomic islet distinct and distant from the known magnetosome genomic island and most probably acquired by lateral gene transfer rather than duplication. We focused on a mamK-like gene whose product shares 54.5% identity with the actin-like MamK. Filament bundles of polymerized MamK-like protein were observed in vitro with electron microscopy and in vivo in E. coli cells expressing MamK-like-Venus fusions by fluorescence microscopy. In addition, we demonstrate that mamK-like is transcribed in AMB-1 wild-type and ?mamK mutant cells and that the actin-like filamentous structures observed in the ?mamK strain are probably MamK-like polymers. Thus MamK-like is a new member of the prokaryotic actin-like family. This is the first evidence of a functional mam gene encoded outside the magnetosome genomic island. PMID:20161777

  6. Symbiosis island shuffling with abundant insertion sequences in the genomes of extra-slow-growing strains of soybean bradyrhizobia.

    PubMed

    Iida, Takayuki; Itakura, Manabu; Anda, Mizue; Sugawara, Masayuki; Isawa, Tsuyoshi; Okubo, Takashi; Sato, Shusei; Chiba-Kakizaki, Kaori; Minamisawa, Kiwamu

    2015-06-15

    Extra-slow-growing bradyrhizobia from root nodules of field-grown soybeans harbor abundant insertion sequences (ISs) and are termed highly reiterated sequence-possessing (HRS) strains. We analyzed the genome organization of HRS strains with the focus on IS distribution and symbiosis island structure. Using pulsed-field gel electrophoresis, we consistently detected several plasmids (0.07 to 0.4 Mb) in the HRS strains (NK5, NK6, USDA135, 2281, USDA123, and T2), whereas no plasmids were detected in the non-HRS strain USDA110. The chromosomes of the six HRS strains (9.7 to 10.7 Mb) were larger than that of USDA110 (9.1 Mb). Using MiSeq sequences of 6 HRS and 17 non-HRS strains mapped to the USDA110 genome, we found that the copy numbers of ISRj1, ISRj2, ISFK1, IS1632, ISB27, ISBj8, and IS1631 were markedly higher in HRS strains. Whole-genome sequencing showed that the HRS strain NK6 had four small plasmids (136 to 212 kb) and a large chromosome (9,780 kb). Strong colinearity was found between 7.4-Mb core regions of the NK6 and USDA110 chromosomes. USDA110 symbiosis islands corresponded mainly to five small regions (S1 to S5) within two variable regions, V1 (0.8 Mb) and V2 (1.6 Mb), of the NK6 chromosome. The USDA110 nif gene cluster (nifDKENXSBZHQW-fixBCX) was split into two regions, S2 and S3, where ISRj1-mediated rearrangement occurred between nifS and nifB. ISs were also scattered in NK6 core regions, and ISRj1 insertion often disrupted some genes important for survival and environmental responses. These results suggest that HRS strains of soybean bradyrhizobia were subjected to IS-mediated symbiosis island shuffling and core genome degradation. PMID:25862225

  7. CpG islands of hepatitis B virus genome isolated from Chinese patients.

    PubMed

    Hou, Zhiwei; Huang, Jihua; Zhong, Chengyao; Li, Lianbing; Xie, Qingdong; Ma, Mingfu; Han, Tingting; Wang, Degang; Maldonado, Martin; Xu, Lan; Huang, Tianhua; Zhong, Ying

    2015-05-01

    There are differences in the distribution and length of HBV CpG islands and the viral mutations contribute greatly to the development of HBV-related diseases. However, little is known regarding the effects of such difference and mutations in HBV genotypes B and C sequences on the regulation of HBV gene expression and their clinical outcomes. To study the distribution, length and genetic trait of CpG islands in normal and mutant sequences of HBV genotypes B and C, 320 HBV isolates from Chinese patients were retrieved from GenBank. Programs CLUSTALX 1.83 and MethPrimer were employed to perform multiple sequence alignments and to predict CpG islands, respectively. 72.0% genotype B isolates contained three conventional CpG islands, and 76.1% genotype C only contained CpG islands II and III. 14.6% genotype B and 7.5% genotype C contained three novel CpG islands. In genotype B, lengths of conventional CpG islands between normal and mutant isolates exhibited substantial variations, but in genotype C, those were relatively stable. CpG island II could be "truncated" or "split". "Truncated" region mutations were associated with structural and functional abnormalities of HBV genes. Rate of "split" CpG island II in genotype B was much higher than that in genotype C. In the majority of isolates from HCC and HBV-ACLF, genotype C lacked CpG island I and novel islands. Distribution, length and genetic trait of CpG islands in HBV genotypes B and C might affect their methylation status, and further affect regulation of HBV gene expression, leading to different clinical outcomes. PMID:25688883

  8. AT-rich islands in genomic DNA as a novel target for AT-specific DNA-reactive antitumor drugs.

    PubMed

    Woynarowski, J M; Trevino, A V; Rodriguez, K A; Hardies, S C; Benham, C J

    2001-11-01

    Interstrand cross-links at T(A/T)4A sites in cellular DNA are associated with hypercytotoxicity of an anticancer drug, bizelesin. Here we evaluated whether these lethal effects reflect targeting critical genomic regions. An in silico analysis of human sequences showed that T(A/T)4A motifs are on average scarce and scattered. However, significantly higher local motif densities were identified in distinct minisatellite regions (200-1000 base pairs of approximately 85-100% AT), herein referred to as "AT islands." Experimentally detected bizelesin lesions agree with these in silico predictions. Actual bizelesin adducts clustered within the model AT island naked DNA, whereas motif-poor sequences were only sparsely adducted. In cancer cells, bizelesin produced high levels of lesions (approximately 4.7-7.1 lesions/kilobase pair/microM drug) in several prominent AT islands, compared with markedly lower lesion levels in several motif-poor loci and in bulk cellular DNA (approximately 0.8-1.3 and approximately 0.9 lesions/kilobase pair/microM drug, respectively). The identified AT islands exhibit sequence attributes of matrix attachment regions (MARs), domains that organize DNA loops on the nuclear matrix. The computed "MAR potential" and propensity for supercoiling-induced duplex destabilization (both predictive of strong MARs) correlate with the total number of bizelesin binding sites. Hence, MAR-like AT-rich non-coding domains can be regarded as a novel class of critical targets for anticancer drugs. PMID:11487576

  9. Vibrio cholerae VttRA and VttRB Regulatory Influences Extend beyond the Type 3 Secretion System Genomic Island

    PubMed Central

    Chaand, Mudit

    2013-01-01

    A subset of non-O1/non-O139 serogroup strains of Vibrio cholerae cause disease using type 3 secretion system (T3SS)-mediated mechanisms. An ∼50-kb genomic island carries genes encoding the T3SS structural apparatus, effector proteins, and two transmembrane transcriptional regulators, VttRA and VttRB, which are ToxR homologues. Previous experiments demonstrated that VttRA and VttRB are necessary for colonization in vivo and promote bile-dependent T3SS gene expression in vitro. To better understand the scope of genes that are potential targets of VttRA and VttRB regulation, we performed deep RNA sequencing using O39 serogroup strain AM-19226 and derivatives carrying deletions in vttRA and vttRB grown in bile. Comparison of the transcript profiles from ΔvttRA and ΔvttRB mutant strains to the isogenic parent strain confirmed that VttRA and VttRB regulate expression of some T3SS island genes and provided additional information about relative expression levels and operon organization. Interestingly, the data also suggested that additional genes, located outside the T3SS island and encoding functions involved in motility, chemotaxis, type 6 secretion, transcriptional regulation, and stress responses, may also by regulated by VttRA and VttRB. We verified transcript levels for selected genes by quantitative reverse transcription (RT)-PCR and then focused additional studies on motility and biofilm formation. The results suggest that VttRA and VttRB act as part of a complex transcriptional network that coordinates virulence gene expression with multiple cellular phenotypes. VttRA and VttRB therefore represent horizontally acquired transcriptional regulators with the ability to influence global gene expression in addition to modulating gene expression within the T3SS genomic island. PMID:23524608

  10. Complete Genome Sequences of Five Chrysodeixis chalcites Nucleopolyhedrovirus Genotypes from a Canary Islands Isolate

    PubMed Central

    Bernal, Alexandra; Williams, Trevor; Muñoz, Delia; Caballero, Primitivo

    2013-01-01

    The Chrysodeixis chalcites single nucleopolyhedrovirus (ChchSNPV) infects and kills C. chalcites larvae, an important pest of banana crops in the Canary Islands. Five genotypes present in the most prevalent and widespread isolate in the Canary Islands were sequenced, providing genetic data relevant to the genotypic and phenotypic diversity of this virus. PMID:24158555

  11. Complete Genome Sequences of Five Chrysodeixis chalcites Nucleopolyhedrovirus Genotypes from a Canary Islands Isolate.

    PubMed

    Bernal, Alexandra; Williams, Trevor; Muñoz, Delia; Caballero, Primitivo; Simón, Oihane

    2013-01-01

    The Chrysodeixis chalcites single nucleopolyhedrovirus (ChchSNPV) infects and kills C. chalcites larvae, an important pest of banana crops in the Canary Islands. Five genotypes present in the most prevalent and widespread isolate in the Canary Islands were sequenced, providing genetic data relevant to the genotypic and phenotypic diversity of this virus. PMID:24158555

  12. A multiresistance megaplasmid pLG1 bearing a hylEfm genomic island in hospital Enterococcus faecium isolates.

    PubMed

    Laverde Gomez, Jenny A; van Schaik, Willem; Freitas, Ana R; Coque, Teresa M; Weaver, Keith E; Francia, Maria Victoria; Witte, Wolfgang; Werner, Guido

    2011-02-01

    Enterococcus faecium is considered to be a nosocomial pathogen with increasing medical importance. The putative virulence factor, hyl(Efm), encoding a putative hyaluronidase, is enriched among the hospital-associated polyclonal subpopulation of E. faecium.. The hyl(Efm) gene is described to be part of a genomic island and was recently identified to be plasmid-located. Here, we present a description of the structure, localization, and distribution of the putative pathogenicity factor hyl(Efm) and its putative island among 39 clinical isolates and elucidate the composition and host range of pLG1, a hyl(Efm) multiresistance plasmid of approximately 281.02kb. The hyl(Efm) gene was located within a 17,824-bp element highly similar to the putative genomic island (GI) structure that had been previously described. This genomic region was conserved among 39 hyl(Efm)-positive strains with variation in a specific region downstream of hyl(Efm) in 18 strains. The putative hyl(Efm) was located on large plasmids (150-350kb) in 37 strains. pLG1 could be horizontally transferred into four different E. faecium recipient strains (n=4) but not into E. faecalis (n=3). Sequencing of pLG1 resolved putative plasmid replication, conjugation, and maintenance determinants as well as a pilin gene cluster, carbon uptake and utilization genes, heavy metal and antibiotic resistance clusters. The hyl(Efm) transferable plasmid pLG1 bears additional putative pathogenicity factors and antibiotic resistance genes. These findings suggest horizontal gene transfer of virulence factors and antibiotic resistance gene clusters by a single genetic event (conjugative transfer) which might be triggered by heavy antibiotic use common in health care units where E. faecium is increasingly prevalent. PMID:20951641

  13. Genome-wide CpG island methylation and intergenic demethylation propensities vary among different tumor sites

    PubMed Central

    Lee, Seung-Tae; Wiemels, Joseph L.

    2016-01-01

    The epigenetic landscape of cancer includes both focal hypermethylation and broader hypomethylation in a genome-wide manner. By means of a comprehensive genomic analysis on 6637 tissues of 21 tumor types, we here show that the degrees of overall methylation in CpG island (CGI) and demethylation in intergenic regions, defined as ‘backbone’, largely vary among different tumors. Depending on tumor type, both CGI methylation and backbone demethylation are often associated with clinical, epidemiological and biological features such as age, sex, smoking history, anatomic location, histological type and grade, stage, molecular subtype and biological pathways. We found connections between CGI methylation and hypermutability, microsatellite instability, IDH1 mutation, 19p gain and polycomb features, and backbone demethylation with chromosomal instability, NSD1 and TP53 mutations, 5q and 19p loss and long repressive domains. These broad epigenetic patterns add a new dimension to our understanding of tumor biology and its clinical implications. PMID:26464434

  14. Origins of cattle on Chirikof Island, Alaska, elucidated from genome-wide SNP genotypes.

    PubMed

    Decker, J E; Taylor, J F; Kantanen, J; Millbrooke, A; Schnabel, R D; Alexander, L J; MacNeil, M D

    2016-06-01

    Feral livestock may harbor genetic variation of commercial, scientific, historical or esthetic value. The origins and uniqueness of feral cattle on Chirikof Island, Alaska, are uncertain. The island is now part of the Alaska Maritime Wildlife Refuge and Federal wildlife managers want grazing to cease, presumably leading to demise of the cattle. Here we characterize the cattle of Chirikof Island relative to extant breeds and discern their origins. Our analyses support the inference that Yakut cattle from Russia arrived first on Chirikof Island, then ~120 years ago the first European taurine cattle were introduced to the island, and finally a large wave of Hereford cattle were introduced on average 40 years ago. In addition, this mixture of European and East-Asian cattle is unique compared with other North American breeds and we find evidence that natural selection in the relatively harsh environment of Chirikof Island has further impacted their genetic architecture. These results provide an objective basis for decisions regarding conservation of the Chirikof Island cattle. PMID:26860198

  15. Complete Genome Sequence and Comparative Genomic Analysis of Mycobacterium massiliense JCM 15300 in the Mycobacterium abscessus Group Reveal a Conserved Genomic Island MmGI-1 Related to Putative Lipid Metabolism

    PubMed Central

    Nakanaga, Kazue; Nakata, Noboru; Kazumi, Yuko; Maeda, Shinji; Makino, Masahiko; Hoshino, Yoshihiko; Kuroda, Makoto

    2014-01-01

    Mycobacterium abscessus group subsp., such as M. massiliense, M. abscessus sensu stricto and M. bolletii, are an environmental organism found in soil, water and other ecological niches, and have been isolated from respiratory tract infection, skin and soft tissue infection, postoperative infection of cosmetic surgery. To determine the unique genetic feature of M. massiliense, we sequenced the complete genome of M. massiliense type strain JCM 15300 (corresponding to CCUG 48898). Comparative genomic analysis was performed among Mycobacterium spp. and among M. abscessus group subspp., showing that additional -oxidation-related genes and, notably, the mammalian cell entry (mce) operon were located on a genomic island, M. massiliense Genomic Island 1 (MmGI-1), in M. massiliense. In addition, putative anaerobic respiration system-related genes and additional mycolic acid cyclopropane synthetase-related genes were found uniquely in M. massiliense. Japanese isolates of M. massiliense also frequently possess the MmGI-1 (14/44, approximately 32%) and three unique conserved regions (26/44; approximately 60%, 34/44; approximately 77% and 40/44; approximately 91%), as well as isolates of other countries (Malaysia, France, United Kingdom and United States). The well-conserved genomic island MmGI-1 may play an important role in high growth potential with additional lipid metabolism, extra factors for survival in the environment or synthesis of complex membrane-associated lipids. ORFs on MmGI-1 showed similarities to ORFs of phylogenetically distant M. avium complex (MAC), suggesting that horizontal gene transfer or genetic recombination events might have occurred within MmGI-1 among M. massiliense and MAC. PMID:25503461

  16. A large genomic island allows Neisseria meningitidis to utilize propionic acid, with implications for colonization of the human nasopharynx

    PubMed Central

    Catenazzi, Maria Chiara E; Jones, Helen; Wallace, Iain; Clifton, Jacqueline; Chong, James P J; Jackson, Matthew A; Macdonald, Sandy; Edwards, James; Moir, James W B

    2014-01-01

    Neisseria meningitidis is an important human pathogen that is capable of killing within hours of infection. Its normal habitat is the nasopharynx of adult humans. Here we identify a genomic island (the prp gene cluster) in N. meningitidis that enables this species to utilize propionic acid as a supplementary carbon source during growth, particularly under nutrient poor growth conditions. The prp gene cluster encodes enzymes for a methylcitrate cycle. Novel aspects of the methylcitrate cycle in N. meningitidis include a propionate kinase which was purified and characterized, and a putative propionate transporter. This genomic island is absent from the close relative of N. meningitidis, the commensal Neisseria lactamica, which chiefly colonizes infants not adults. We reason that the possession of the prp genes provides a metabolic advantage to N. meningitidis in the adult oral cavity, which is rich in propionic acid-generating bacteria. Data from classical microbiological and sequence-based microbiome studies provide several lines of supporting evidence that N. meningitidis colonization is correlated with propionic acid generating bacteria, with a strong correlation between prp-containing Neisseria and propionic acid generating bacteria from the genus Porphyromonas, and that this may explain adolescent/adult colonization by N. meningitidis. PMID:24910087

  17. Stability of a Pseudomonas putida KT2440 bacteriophage-carried genomic island and its impact on rhizosphere fitness.

    PubMed

    Quesada, Jose M; Soriano, María Isabel; Espinosa-Urgel, Manuel

    2012-10-01

    The stability of seven genomic islands of Pseudomonas putida KT2440 with predicted potential for mobilization was studied in bacterial populations associated with the rhizosphere of corn plants by multiplex PCR. DNA rearrangements were detected for only one of them (GI28), which was lost at high frequency. This genomic island of 39.4 kb, with 53 open reading frames, shows the characteristic organization of genes belonging to tailed phages. We present evidence indicating that it corresponds to the lysogenic state of a functional bacteriophage that we have designated Pspu28. Integrated and rarely excised forms of Pspu28 coexist in KT2440 populations. Pspu28 is self-transmissible, and an excisionase is essential for its removal from the bacterial chromosome. The excised Pspu28 forms a circular element that can integrate into the chromosome at a specific location, att sites containing a 17-bp direct repeat sequence. Excision/insertion of Pspu28 alters the promoter sequence and changes the expression level of PP_1531, which encodes a predicted arsenate reductase. Finally, we show that the presence of Pspu28 in the lysogenic state has a negative effect on bacterial fitness in the rhizosphere under conditions of intraspecific competition, thus explaining why clones having lost this mobile element are recovered from that environment. PMID:22843519

  18. The Master Activator of IncA/C Conjugative Plasmids Stimulates Genomic Islands and Multidrug Resistance Dissemination

    PubMed Central

    Luo, Peng; Rodrigue, Sébastien; Burrus, Vincent

    2014-01-01

    Dissemination of antibiotic resistance genes occurs mostly by conjugation, which mediates DNA transfer between cells in direct contact. Conjugative plasmids of the IncA/C incompatibility group have become a substantial threat due to their broad host-range, the extended spectrum of antimicrobial resistance they confer, their prevalence in enteric bacteria and their very efficient spread by conjugation. However, their biology remains largely unexplored. Using the IncA/C conjugative plasmid pVCR94ΔX as a prototype, we have investigated the regulatory circuitry that governs IncA/C plasmids dissemination and found that the transcriptional activator complex AcaCD is essential for the expression of plasmid transfer genes. Using chromatin immunoprecipitation coupled with exonuclease digestion (ChIP-exo) and RNA sequencing (RNA-seq) approaches, we have identified the sequences recognized by AcaCD and characterized the AcaCD regulon. Data mining using the DNA motif recognized by AcaCD revealed potential AcaCD-binding sites upstream of genes involved in the intracellular mobility functions (recombination directionality factor and mobilization genes) in two widespread classes of genomic islands (GIs) phylogenetically unrelated to IncA/C plasmids. The first class, SGI1, confers and propagates multidrug resistance in Salmonella enterica and Proteus mirabilis, whereas MGIVmi1 in Vibrio mimicus belongs to a previously uncharacterized class of GIs. We have demonstrated that through expression of AcaCD, IncA/C plasmids specifically trigger the excision and mobilization of the GIs at high frequencies. This study provides new evidence of the considerable impact of IncA/C plasmids on bacterial genome plasticity through their own mobility and the mobilization of genomic islands. PMID:25340549

  19. The master activator of IncA/C conjugative plasmids stimulates genomic islands and multidrug resistance dissemination.

    PubMed

    Carraro, Nicolas; Matteau, Dominick; Luo, Peng; Rodrigue, Sébastien; Burrus, Vincent

    2014-10-01

    Dissemination of antibiotic resistance genes occurs mostly by conjugation, which mediates DNA transfer between cells in direct contact. Conjugative plasmids of the IncA/C incompatibility group have become a substantial threat due to their broad host-range, the extended spectrum of antimicrobial resistance they confer, their prevalence in enteric bacteria and their very efficient spread by conjugation. However, their biology remains largely unexplored. Using the IncA/C conjugative plasmid pVCR94ΔX as a prototype, we have investigated the regulatory circuitry that governs IncA/C plasmids dissemination and found that the transcriptional activator complex AcaCD is essential for the expression of plasmid transfer genes. Using chromatin immunoprecipitation coupled with exonuclease digestion (ChIP-exo) and RNA sequencing (RNA-seq) approaches, we have identified the sequences recognized by AcaCD and characterized the AcaCD regulon. Data mining using the DNA motif recognized by AcaCD revealed potential AcaCD-binding sites upstream of genes involved in the intracellular mobility functions (recombination directionality factor and mobilization genes) in two widespread classes of genomic islands (GIs) phylogenetically unrelated to IncA/C plasmids. The first class, SGI1, confers and propagates multidrug resistance in Salmonella enterica and Proteus mirabilis, whereas MGIVmi1 in Vibrio mimicus belongs to a previously uncharacterized class of GIs. We have demonstrated that through expression of AcaCD, IncA/C plasmids specifically trigger the excision and mobilization of the GIs at high frequencies. This study provides new evidence of the considerable impact of IncA/C plasmids on bacterial genome plasticity through their own mobility and the mobilization of genomic islands. PMID:25340549

  20. Pyrosequencing-based comparative genome analysis of the nosocomial pathogen Enterococcus faecium and identification of a large transferable pathogenicity island

    PubMed Central

    2010-01-01

    Background The Gram-positive bacterium Enterococcus faecium is an important cause of nosocomial infections in immunocompromized patients. Results We present a pyrosequencing-based comparative genome analysis of seven E. faecium strains that were isolated from various sources. In the genomes of clinical isolates several antibiotic resistance genes were identified, including the vanA transposon that confers resistance to vancomycin in two strains. A functional comparison between E. faecium and the related opportunistic pathogen E. faecalis based on differences in the presence of protein families, revealed divergence in plant carbohydrate metabolic pathways and oxidative stress defense mechanisms. The E. faecium pan-genome was estimated to be essentially unlimited in size, indicating that E. faecium can efficiently acquire and incorporate exogenous DNA in its gene pool. One of the most prominent sources of genomic diversity consists of bacteriophages that have integrated in the genome. The CRISPR-Cas system, which contributes to immunity against bacteriophage infection in prokaryotes, is not present in the sequenced strains. Three sequenced isolates carry the esp gene, which is involved in urinary tract infections and biofilm formation. The esp gene is located on a large pathogenicity island (PAI), which is between 64 and 104 kb in size. Conjugation experiments showed that the entire esp PAI can be transferred horizontally and inserts in a site-specific manner. Conclusions Genes involved in environmental persistence, colonization and virulence can easily be aquired by E. faecium. This will make the development of successful treatment strategies targeted against this organism a challenge for years to come. PMID:20398277

  1. Draft Genome Sequences of Sarcina ventriculi Strains Isolated from Wild Japanese Macaques in Yakushima Island.

    PubMed

    Ushida, Kazunari; Tsuchida, Sayaka; Ogura, Yoshitoshi; Hayashi, Tetsuya; Sawada, Akiko; Hanya, Goro

    2016-01-01

    We report the draft genome sequences of Sarcina ventriculi strains 14 and 17, both isolated from feces of wild Yakushima macaques (Macaca fuscata yakui). These genomic sequences will be helpful for the phylogenetic consideration of the family Clostridiaceae and understanding of the contribution of intestinal microbiota to the survival of Yakushima macaques. PMID:26847899

  2. Draft Genome Sequences of Sarcina ventriculi Strains Isolated from Wild Japanese Macaques in Yakushima Island

    PubMed Central

    Tsuchida, Sayaka; Ogura, Yoshitoshi; Hayashi, Tetsuya; Sawada, Akiko; Hanya, Goro

    2016-01-01

    We report the draft genome sequences of Sarcina ventriculi strains 14 and 17, both isolated from feces of wild Yakushima macaques (Macaca fuscata yakui). These genomic sequences will be helpful for the phylogenetic consideration of the family Clostridiaceae and understanding of the contribution of intestinal microbiota to the survival of Yakushima macaques. PMID:26847899

  3. Contrasting chromatin organization of CpG islands and exons in the human genome

    PubMed Central

    2010-01-01

    Background CpG islands and nucleosome-free regions are both found in promoters. However, their association has never been studied. On the other hand, DNA methylation is absent in promoters but is enriched in gene bodies. Intragenic nucleosomes and their modifications have been recently associated with RNA splicing. Because the function of intragenic DNA methylation remains unclear, I explored the possibility of its involvement in splicing regulation. Results Here I show that CpG islands were associated not only with methylation-free promoters but also with nucleosome-free promoters. Nucleosome-free regions were observed only in promoters containing a CpG island. However, the DNA sequences of CpG islands predicted the opposite pattern, implying a limitation of sequence programs for the determination of nucleosome occupancy. In contrast to the methylation-and nucleosome-free states of CpG-island promoters, exons were densely methylated at CpGs and packaged into nucleosomes. Exon-enrichment of DNA methylation was specifically found in spliced exons and in exons with weak splice sites. The enrichment patterns were less pronounced in initial exons and in non-coding exons, potentially reflecting a lower need for their splicing. I also found that nucleosomes, DNA methylation, and H3K36me3 marked the exons of transcripts with low, medium, and high gene expression levels, respectively. Conclusions Human promoters containing a CpG island tend to remain nucleosome-free as well as methylation-free. In contrast, exons demonstrate a high degree of methylation and nucleosome occupancy. Exonic DNA methylation seems to function together with exonic nucleosomes and H3K36me3 for the proper splicing of transcripts with different expression levels. PMID:20602769

  4. A Genomic Island Defines Subspecies-Specific Virulence Features of the Host-Adapted Pathogen Campylobacter fetus subsp. venerealis▿ †

    PubMed Central

    Gorkiewicz, Gregor; Kienesberger, Sabine; Schober, Caroline; Scheicher, Sylvia R.; Gülly, Christian; Zechner, Rudolf; Zechner, Ellen L.

    2010-01-01

    The pathogen Campylobacter fetus comprises two subspecies, C. fetus subsp. fetus and C. fetus subsp. venerealis. Although these taxa are highly related on the genome level, they are adapted to distinct hosts and tissues. C. fetus subsp. fetus infects a diversity of hosts, including humans, and colonizes the gastrointestinal tract. In contrast, C. fetus subsp. venerealis is largely restricted to the bovine genital tract, causing epidemic abortion in these animals. In light of their close genetic relatedness, the specific niche preferences make the C. fetus subspecies an ideal model system to investigate the molecular basis of host adaptation. In this study, a subtractive-hybridization approach was applied to the genomes of the subspecies to identify different genes potentially underlying this specificity. The comparison revealed a genomic island uniquely present in C. fetus subsp. venerealis that harbors several genes indicative of horizontal transfer and that encodes the core components necessary for bacterial type IV secretion. Macromolecular transporters of this type deliver effector molecules to host cells, thereby contributing to virulence in various pathogens. Mutational inactivation of the putative secretion system confirmed its involvement in the pathogenicity of C. fetus subsp. venerealis. PMID:19897645

  5. CpGIMethPred: computational model for predicting methylation status of CpG islands in human genome.

    PubMed

    Zheng, Hao; Wu, Hongwei; Li, Jinping; Jiang, Shi-Wen

    2013-01-01

    DNA methylation is an inheritable chemical modification of cytosine, and represents one of the most important epigenetic events. Computational prediction of the DNA methylation status can be employed to speed up the genome-wide methylation profiling, and to identify the key features that are correlated with various methylation patterns. Here, we develop CpGIMethPred, the support vector machine-based models to predict the methylation status of the CpG islands in the human genome under normal conditions. The features for prediction include those that have been previously demonstrated effective (CpG island specific attributes, DNA sequence composition patterns, DNA structure patterns, distribution patterns of conserved transcription factor binding sites and conserved elements, and histone methylation status) as well as those that have not been extensively explored but are likely to contribute additional information from a biological point of view (nucleosome positioning propensities, gene functions, and histone acetylation status). Statistical tests are performed to identify the features that are significantly correlated with the methylation status of the CpG islands, and principal component analysis is then performed to decorrelate the selected features. Data from the Human Epigenome Project (HEP) are used to train, validate and test the predictive models. Specifically, the models are trained and validated by using the DNA methylation data obtained in the CD4 lymphocytes, and are then tested for generalizability using the DNA methylation data obtained in the other 11 normal tissues and cell types. Our experiments have shown that (1) an eight-dimensional feature space that is selected via the principal component analysis and that combines all categories of information is effective for predicting the CpG island methylation status, (2) by incorporating the information regarding the nucleosome positioning, gene functions, and histone acetylation, the models can achieve higher specificity and accuracy than the existing models while maintaining a comparable sensitivity measure, (3) the histone modification (methylation and acetylation) information contributes significantly to the prediction, without which the performance of the models deteriorate, and, (4) the predictive models generalize well to different tissues and cell types. The developed program CpGIMethPred is freely available at http://users.ece.gatech.edu/~hzheng7/CGIMetPred.zip. PMID:23369266

  6. Interactions of Neuropathogenic Escherichia coli K1 (RS218) and Its Derivatives Lacking Genomic Islands with Phagocytic Acanthamoeba castellanii and Nonphagocytic Brain Endothelial Cells

    PubMed Central

    Yousuf, Farzana Abubakar; Yousuf, Zuhair; Iqbal, Junaid; Siddiqui, Ruqaiyyah; Khan, Hafsa; Khan, Naveed Ahmed

    2014-01-01

    Here we determined the role of various genomic islands in E. coli K1 interactions with phagocytic A. castellanii and nonphagocytic brain microvascular endothelial cells. The findings revealed that the genomic islands deletion mutants of RS218 related to toxins (peptide toxin, α-hemolysin), adhesins (P fimbriae, F17-like fimbriae, nonfimbrial adhesins, Hek, and hemagglutinin), protein secretion system (T1SS for hemolysin), invasins (IbeA, CNF1), metabolism (D-serine catabolism, dihydroxyacetone, glycerol, and glyoxylate metabolism) showed reduced interactions with both A. castellanii and brain microvascular endothelial cells. Interestingly, the deletion of RS218-derived genomic island 21 containing adhesins (P fimbriae, F17-like fimbriae, nonfimbrial adhesins, Hek, and hemagglutinin), protein secretion system (T1SS for hemolysin), invasins (CNF1), metabolism (D-serine catabolism) abolished E. coli K1-mediated HBMEC cytotoxicity in a CNF1-independent manner. Therefore, the characterization of these genomic islands should reveal mechanisms of evolutionary gain for E. coli K1 pathogenicity. PMID:24818136

  7. A Hypervariable 130-Kilobase Genomic Region of Magnetospirillum gryphiswaldense Comprises a Magnetosome Island Which Undergoes Frequent Rearrangements during Stationary Growth

    PubMed Central

    Ullrich, Susanne; Kube, Michael; Schübbe, Sabrina; Reinhardt, Richard; Schüler, Dirk

    2005-01-01

    Genes involved in magnetite biomineralization are clustered in the genome of the magnetotactic bacterium Magnetospirillum gryphiswaldense. We analyzed a 482-kb genomic fragment, in which we identified an approximately 130-kb region representing a putative genomic “magnetosome island” (MAI). In addition to all known magnetosome genes, the MAI contains genes putatively involved in magnetosome biomineralization and numerous genes with unknown functions, as well as pseudogenes, and it is particularly rich in insertion elements. Substantial sequence polymorphism of clones from different subcultures indicated that this region undergoes frequent rearrangements during serial subcultivation in the laboratory. Spontaneous mutants affected in magnetosome formation arise at a frequency of up to 10−2 after prolonged storage of cells at 4°C or exposure to oxidative stress. All nonmagnetic mutants exhibited extended and multiple deletions in the MAI and had lost either parts of or the entire mms and mam gene clusters encoding magnetosome proteins. The mutations were polymorphic with respect to the sites and extents of deletions, but all mutations were found to be associated with the loss of various copies of insertion elements, as revealed by Southern hybridization and PCR analysis. Insertions and deletions in the MAI were also found in different magnetosome-producing clones, indicating that parts of this region are not essential for the magnetic phenotype. Our data suggest that the genomic MAI undergoes frequent transposition events, which lead to subsequent deletion by homologous recombination under physiological stress conditions. This can be interpreted in terms of adaptation to physiological stress and might contribute to the genetic plasticity and mobilization of the magnetosome island. PMID:16237001

  8. Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands.

    PubMed

    Vercoe, Reuben B; Chang, James T; Dy, Ron L; Taylor, Corinda; Gristwood, Tamzin; Clulow, James S; Richter, Corinna; Przybilski, Rita; Pitman, Andrew R; Fineran, Peter C

    2013-04-01

    In prokaryotes, clustered regularly interspaced short palindromic repeats (CRISPRs) and their associated (Cas) proteins constitute a defence system against bacteriophages and plasmids. CRISPR/Cas systems acquire short spacer sequences from foreign genetic elements and incorporate these into their CRISPR arrays, generating a memory of past invaders. Defence is provided by short non-coding RNAs that guide Cas proteins to cleave complementary nucleic acids. While most spacers are acquired from phages and plasmids, there are examples of spacers that match genes elsewhere in the host bacterial chromosome. In Pectobacterium atrosepticum the type I-F CRISPR/Cas system has acquired a self-complementary spacer that perfectly matches a protospacer target in a horizontally acquired island (HAI2) involved in plant pathogenicity. Given the paucity of experimental data about CRISPR/Cas-mediated chromosomal targeting, we examined this process by developing a tightly controlled system. Chromosomal targeting was highly toxic via targeting of DNA and resulted in growth inhibition and cellular filamentation. The toxic phenotype was avoided by mutations in the cas operon, the CRISPR repeats, the protospacer target, and protospacer-adjacent motif (PAM) beside the target. Indeed, the natural self-targeting spacer was non-toxic due to a single nucleotide mutation adjacent to the target in the PAM sequence. Furthermore, we show that chromosomal targeting can result in large-scale genomic alterations, including the remodelling or deletion of entire pre-existing pathogenicity islands. These features can be engineered for the targeted deletion of large regions of bacterial chromosomes. In conclusion, in DNA-targeting CRISPR/Cas systems, chromosomal interference is deleterious by causing DNA damage and providing a strong selective pressure for genome alterations, which may have consequences for bacterial evolution and pathogenicity. PMID:23637624

  9. History Shaped the Geographic Distribution of Genomic Admixture on the Island of Puerto Rico

    PubMed Central

    Via, Marc; Gignoux, Christopher R.; Roth, Lindsey A.; Fejerman, Laura; Galanter, Joshua; Choudhry, Shweta; Toro-Labrador, Gladys; Viera-Vera, Jorge; Oleksyk, Taras K.; Beckman, Kenneth; Ziv, Elad; Risch, Neil

    2011-01-01

    Contemporary genetic variation among Latin Americans human groups reflects population migrations shaped by complex historical, social and economic factors. Consequently, admixture patterns may vary by geographic regions ranging from countries to neighborhoods. We examined the geographic variation of admixture across the island of Puerto Rico and the degree to which it could be explained by historic and social events. We analyzed a census-based sample of 642 Puerto Rican individuals that were genotyped for 93 ancestry informative markers (AIMs) to estimate African, European and Native American ancestry. Socioeconomic status (SES) data and geographic location were obtained for each individual. There was significant geographic variation of ancestry across the island. In particular, African ancestry demonstrated a decreasing East to West gradient that was partially explained by historical factors linked to the colonial sugar plantation system. SES also demonstrated a parallel decreasing cline from East to West. However, at a local level, SES and African ancestry were negatively correlated. European ancestry was strongly negatively correlated with African ancestry and therefore showed patterns complementary to African ancestry. By contrast, Native American ancestry showed little variation across the island and across individuals and appears to have played little social role historically. The observed geographic distributions of SES and genetic variation relate to historical social events and mating patterns, and have substantial implications for the design of studies in the recently admixed Puerto Rican population. More generally, our results demonstrate the importance of incorporating social and geographic data with genetics when studying contemporary admixed populations. PMID:21304981

  10. Adaptive divergence despite strong genetic drift: genomic analysis of the evolutionary mechanisms causing genetic differentiation in the island fox (Urocyon littoralis).

    PubMed

    Funk, W Chris; Lovich, Robert E; Hohenlohe, Paul A; Hofman, Courtney A; Morrison, Scott A; Sillett, T Scott; Ghalambor, Cameron K; Maldonado, Jesus E; Rick, Torben C; Day, Mitch D; Polato, Nicholas R; Fitzpatrick, Sarah W; Coonan, Timothy J; Crooks, Kevin R; Dillon, Adam; Garcelon, David K; King, Julie L; Boser, Christina L; Gould, Nicholas; Andelt, William F

    2016-05-01

    The evolutionary mechanisms generating the tremendous biodiversity of islands have long fascinated evolutionary biologists. Genetic drift and divergent selection are predicted to be strong on islands and both could drive population divergence and speciation. Alternatively, strong genetic drift may preclude adaptation. We conducted a genomic analysis to test the roles of genetic drift and divergent selection in causing genetic differentiation among populations of the island fox (Urocyon littoralis). This species consists of six subspecies, each of which occupies a different California Channel Island. Analysis of 5293 SNP loci generated using Restriction-site Associated DNA (RAD) sequencing found support for genetic drift as the dominant evolutionary mechanism driving population divergence among island fox populations. In particular, populations had exceptionally low genetic variation, small Ne (range = 2.1-89.7; median = 19.4), and significant genetic signatures of bottlenecks. Moreover, islands with the lowest genetic variation (and, by inference, the strongest historical genetic drift) were most genetically differentiated from mainland grey foxes, and vice versa, indicating genetic drift drives genome-wide divergence. Nonetheless, outlier tests identified 3.6-6.6% of loci as high FST outliers, suggesting that despite strong genetic drift, divergent selection contributes to population divergence. Patterns of similarity among populations based on high FST outliers mirrored patterns based on morphology, providing additional evidence that outliers reflect adaptive divergence. Extremely low genetic variation and small Ne in some island fox populations, particularly on San Nicolas Island, suggest that they may be vulnerable to fixation of deleterious alleles, decreased fitness and reduced adaptive potential. PMID:26992010

  11. Genome-wide CpG island methylation analysis implicates novel genes in the pathogenesis of renal cell carcinoma

    PubMed Central

    Ricketts, Christopher J; Morris, Mark R; Gentle, Dean; Brown, Michael; Wake, Naomi; Woodward, Emma R; Clarke, Noel; Latif, Farida

    2012-01-01

    In order to identify novel candidate tumor suppressor genes (TSGs) implicated in renal cell carcinoma (RCC), we performed genome-wide methylation profiling of RCC using the HumanMethylation27 BeadChips to assess methylation at >14,000 genes. Two hundred and twenty hypermethylated probes representing 205 loci/genes were identified in genomic CpG islands. A subset of TSGs investigated in detail exhibited frequent tumor methylation, promoter methylation associated transcriptional silencing and reactivation after demethylation in RCC cell lines and downregulation of expression in tumor tissue (e.g., SLC34A2 specifically methylated in 63% of RCC, OVOL1 in 40%, DLEC1 in 20%, TMPRSS2 in 26%, SST in 31% and BMP4 in 35%). As OVOL1, a putative regulator of c-Myc transcription, and SST (somatostatin) had not previously been linked to cancer and RCC, respectively, we (1) investigated their potential relevance to tumor growth by RNAi knockdown and found significantly increased anchorage-independent growth and (2) demonstrated that OVOL1 knockdown increased c-Myc mRNA levels. PMID:22430804

  12. Gene-rich islands for fiber development in the cotton genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton fiber is an economically important seed trichome and the world's leading natural fiber used in the manufacture of textiles. As a step towards elucidating the genomic organization and distribution of gene networks responsible for cotton fiber development, we investigated the distribution of f...

  13. Genome-scale detection of hypermethylated CpG islands in circulating cell-free DNA of hepatocellular carcinoma patients.

    PubMed

    Wen, Lu; Li, Jingyi; Guo, Huahu; Liu, Xiaomeng; Zheng, Shengmin; Zhang, Dafang; Zhu, Weihua; Qu, Jianhui; Guo, Limin; Du, Dexiao; Jin, Xiao; Zhang, Yuhao; Gao, Yun; Shen, Jie; Ge, Hao; Tang, Fuchou; Huang, Yanyi; Peng, Jirun

    2015-11-01

    Despite advances in DNA methylome analyses of cells and tissues, current techniques for genome-scale profiling of DNA methylation in circulating cell-free DNA (ccfDNA) remain limited. Here we describe a methylated CpG tandems amplification and sequencing (MCTA-Seq) method that can detect thousands of hypermethylated CpG islands simultaneously in ccfDNA. This highly sensitive technique can work with genomic DNA as little as 7.5 pg, which is equivalent to 2.5 copies of the haploid genome. We have analyzed a cohort of tissue and plasma samples (n = 151) of hepatocellular carcinoma (HCC) patients and control subjects, identifying dozens of high-performance markers in blood for detecting small HCC (≤ 3 cm). Among these markers, 4 (RGS10, ST8SIA6, RUNX2 and VIM) are mostly specific for cancer detection, while the other 15, classified as a novel set, are already hypermethylated in the normal liver tissues. Two corresponding classifiers have been established, combination of which achieves a sensitivity of 94% with a specificity of 89% for the plasma samples from HCC patients (n = 36) and control subjects including cirrhosis patients (n = 17) and normal individuals (n = 38). Notably, all 15 alpha-fetoprotein-negative HCC patients were successfully identified. Comparison between matched plasma and tissue samples indicates that both the cancer and noncancerous tissues contribute to elevation of the methylation markers in plasma. MCTA-Seq will facilitate the development of ccfDNA methylation biomarkers and contribute to the improvement of cancer detection in a clinical setting. PMID:26516143

  14. Genome-scale detection of hypermethylated CpG islands in circulating cell-free DNA of hepatocellular carcinoma patients

    PubMed Central

    Wen, Lu; Li, Jingyi; Guo, Huahu; Liu, Xiaomeng; Zheng, Shengmin; Zhang, Dafang; Zhu, Weihua; Qu, Jianhui; Guo, Limin; Du, Dexiao; Jin, Xiao; Zhang, Yuhao; Gao, Yun; Shen, Jie; Ge, Hao; Tang, Fuchou; Huang, Yanyi; Peng, Jirun

    2015-01-01

    Despite advances in DNA methylome analyses of cells and tissues, current techniques for genome-scale profiling of DNA methylation in circulating cell-free DNA (ccfDNA) remain limited. Here we describe a methylated CpG tandems amplification and sequencing (MCTA-Seq) method that can detect thousands of hypermethylated CpG islands simultaneously in ccfDNA. This highly sensitive technique can work with genomic DNA as little as 7.5 pg, which is equivalent to 2.5 copies of the haploid genome. We have analyzed a cohort of tissue and plasma samples (n = 151) of hepatocellular carcinoma (HCC) patients and control subjects, identifying dozens of high-performance markers in blood for detecting small HCC (≤ 3 cm). Among these markers, 4 (RGS10, ST8SIA6, RUNX2 and VIM) are mostly specific for cancer detection, while the other 15, classified as a novel set, are already hypermethylated in the normal liver tissues. Two corresponding classifiers have been established, combination of which achieves a sensitivity of 94% with a specificity of 89% for the plasma samples from HCC patients (n = 36) and control subjects including cirrhosis patients (n = 17) and normal individuals (n = 38). Notably, all 15 alpha-fetoprotein-negative HCC patients were successfully identified. Comparison between matched plasma and tissue samples indicates that both the cancer and noncancerous tissues contribute to elevation of the methylation markers in plasma. MCTA-Seq will facilitate the development of ccfDNA methylation biomarkers and contribute to the improvement of cancer detection in a clinical setting. PMID:26516143

  15. Genome-wide analysis of the salmonella Fis regulon and its regulatory mechanism on pathogenicity islands.

    PubMed

    Wang, Hui; Liu, Bin; Wang, Quan; Wang, Lei

    2013-01-01

    Fis, one of the most important nucleoid-associated proteins, functions as a global regulator of transcription in bacteria that has been comprehensively studied in Escherichia coli K12. Fis also influences the virulence of Salmonella enterica and pathogenic E. coli by regulating their virulence genes, however, the relevant mechanism is unclear. In this report, using combined RNA-seq and chromatin immunoprecipitation (ChIP)-seq technologies, we first identified 1646 Fis-regulated genes and 885 Fis-binding targets in the S. enterica serovar Typhimurium, and found a Fis regulon different from that in E. coli. Fis has been reported to contribute to the invasion ability of S. enterica. By using cell infection assays, we found it also enhances the intracellular replication ability of S. enterica within macrophage cell, which is of central importance for the pathogenesis of infections. Salmonella pathogenicity islands (SPI)-1 and SPI-2 are crucial for the invasion and survival of S. enterica in host cells. Using mutation and overexpression experiments, real-time PCR analysis, and electrophoretic mobility shift assays, we demonstrated that Fis regulates 63 of the 94 Salmonella pathogenicity island (SPI)-1 and SPI-2 genes, by three regulatory modes: i) binds to SPI regulators in the gene body or in upstream regions; ii) binds to SPI genes directly to mediate transcriptional activation of themselves and downstream genes; iii) binds to gene encoding OmpR which affects SPI gene expression by controlling SPI regulators SsrA and HilD. Our results provide new insights into the impact of Fis on SPI genes and the pathogenicity of S. enterica. PMID:23717649

  16. The pheV phenylalanine tRNA gene Klebsiella pneumoniae clinical isolates is an integration hotspot for possible niche-adaptation genomic islands.

    PubMed

    Chen, Nan; Ou, Hong-Yu; van Aartsen, Jon Jurriaan; Jiang, XiaoFei; Li, Min; Yang, ZeHua; Wei, QuHao; Chen, XiaoYun; He, Xinyi; Deng, Zixin; Rajakumar, Kumar; Lu, Yuan

    2010-03-01

    Horizontally acquired genomic islands may allow bacteria to conquer and colonize previously uncharted niches. Four Klebsiella pneumoniae tRNA gene insertion hotspots (arg6, asn34, met56, and pheV) in 101 clinical isolates derived from blood, sputum, wound, bile or urine specimens were screened by long-range PCR for the presence or absence of integrated islands. The pheV phenylalanine tRNA gene was the most frequently occupied site and harbored at least three entirely distinct types of islands: (1) KpGI-1, a 3.7 kb island coding for four proteins, three of which showed high similarity to two hypothetical proteins and a Gcn5-related N-acetyltransferase in Salmonella enterica, (2) KpGI-2, a 6.4 kb island coding for five proteins including a truncated phage-like integrase, two helicase-related proteins, and a homolog of the functionally elusive Fic protein, and (3) KpGI-3, a 12.6 kb island which carried seven fimbriae-related genes, first identified in MGH78578. Consistent with the niche-adaptation hypothesis, KpGI-1-like islands which coded for the putative acetyltransferase were significantly over-represented in sputum isolates as compared to urine (P < 0.001), blood (P < 0.05) or bile (P < 0.05) derived isolates. Despite the unique nature of KpGI-2, likely homologs of orf5_KpGI-2 that coded for Fic were also found at undefined locations in six other clinical isolates, though none possessed the other KpGI-2 genes. We propose that the pheV-associated islands described in this study may contribute to fine tuning and adaptation of K. pneumoniae strains toward preferred infection and/or colonization pathways. PMID:19921332

  17. Structure of a short-chain dehydrogenase/reductase (SDR) within a genomic island from a clinical strain of Acinetobacter baumannii

    PubMed Central

    Shah, Bhumika S.; Tetu, Sasha G.; Harrop, Stephen J.; Paulsen, Ian T.; Mabbutt, Bridget C.

    2014-01-01

    Over 15% of the genome of an Australian clinical isolate of Acinetobacter baumannii occurs within genomic islands. An uncharacterized protein encoded within one island feature common to this and other International Clone II strains has been studied by X-ray crystallography. The 2.4 Å resolution structure of SDR-WM99c reveals it to be a new member of the classical short-chain dehydrogenase/reductase (SDR) superfamily. The enzyme contains a nucleotide-binding domain and, like many other SDRs, is tetrameric in form. The active site contains a catalytic tetrad (Asn117, Ser146, Tyr159 and Lys163) and water molecules occupying the presumed NADP cofactor-binding pocket. An adjacent cleft is capped by a relatively mobile helical subdomain, which is well positioned to control substrate access. PMID:25286932

  18. Emergence of Extensively Drug-Resistant Proteus mirabilis Harboring a Conjugative NDM-1 Plasmid and a Novel Salmonella Genomic Island 1 Variant, SGI1-Z.

    PubMed

    Qin, Shangshang; Qi, Hui; Zhang, Qijing; Zhao, Di; Liu, Zhen-Zhen; Tian, Hao; Xu, Lijuan; Xu, Hui; Zhou, Mengmeng; Feng, Xianju; Liu, Hong-Min

    2015-10-01

    Acquisition of blaNDM-1 in bacterial species, such as Proteus mirabilis that is intrinsically resistant to tetracycline, tigecycline and colistin, will make clinical treatment extremely difficult. Here, we characterized an NDM-1-producing clinical isolate of P. mirabilis (PM58) that displayed an extensively drug-resistant (XDR) phenotype, susceptible only to aztreonam. Molecular analysis revealed that PM58 harbored both a conjugative NDM-1 plasmid and a novel Salmonella genomic island 1 variant on chromosome. PMID:26195511

  19. Structure of a short-chain dehydrogenase/reductase (SDR) within a genomic island from a clinical strain of Acinetobacter baumannii

    SciTech Connect

    Shah, Bhumika S. Tetu, Sasha G.; Harrop, Stephen J.; Paulsen, Ian T.; Mabbutt, Bridget C.

    2014-09-25

    The structure of a short-chain dehydrogenase encoded within genomic islands of A. baumannii strains has been solved to 2.4 Å resolution. This classical SDR incorporates a flexible helical subdomain. The NADP-binding site and catalytic side chains are identified. Over 15% of the genome of an Australian clinical isolate of Acinetobacter baumannii occurs within genomic islands. An uncharacterized protein encoded within one island feature common to this and other International Clone II strains has been studied by X-ray crystallography. The 2.4 Å resolution structure of SDR-WM99c reveals it to be a new member of the classical short-chain dehydrogenase/reductase (SDR) superfamily. The enzyme contains a nucleotide-binding domain and, like many other SDRs, is tetrameric in form. The active site contains a catalytic tetrad (Asn117, Ser146, Tyr159 and Lys163) and water molecules occupying the presumed NADP cofactor-binding pocket. An adjacent cleft is capped by a relatively mobile helical subdomain, which is well positioned to control substrate access.

  20. Genomic islands of divergence in hybridizing Heliconius butterflies identified by large-scale targeted sequencing

    PubMed Central

    Nadeau, Nicola J.; Whibley, Annabel; Jones, Robert T.; Davey, John W.; Dasmahapatra, Kanchon K.; Baxter, Simon W.; Quail, Michael A.; Joron, Mathieu; ffrench-Constant, Richard H.; Blaxter, Mark L.; Mallet, James; Jiggins, Chris D.

    2012-01-01

    Heliconius butterflies represent a recent radiation of species, in which wing pattern divergence has been implicated in speciation. Several loci that control wing pattern phenotypes have been mapped and two were identified through sequencing. These same gene regions play a role in adaptation across the whole Heliconius radiation. Previous studies of population genetic patterns at these regions have sequenced small amplicons. Here, we use targeted next-generation sequence capture to survey patterns of divergence across these entire regions in divergent geographical races and species of Heliconius. This technique was successful both within and between species for obtaining high coverage of almost all coding regions and sufficient coverage of non-coding regions to perform population genetic analyses. We find major peaks of elevated population differentiation between races across hybrid zones, which indicate regions under strong divergent selection. These ‘islands’ of divergence appear to be more extensive between closely related species, but there is less clear evidence for such islands between more distantly related species at two further points along the ‘speciation continuum’. We also sequence fosmid clones across these regions in different Heliconius melpomene races. We find no major structural rearrangements but many relatively large (greater than 1 kb) insertion/deletion events (including gain/loss of transposable elements) that are variable between races. PMID:22201164

  1. Metapopulation dominance and genomic-island acquisition of Bradyrhizobium with superior catabolic capabilities.

    PubMed

    Hollowell, Amanda C; Regus, John U; Turissini, David; Gano-Cohen, Kelsey A; Bantay, Roxanne; Bernardo, Andrew; Moore, Devora; Pham, Jonathan; Sachs, Joel L

    2016-04-27

    Root nodule-forming rhizobia exhibit a bipartite lifestyle, replicating in soil and also within plant cells where they fix nitrogen for legume hosts. Host control models posit that legume hosts act as a predominant selective force on rhizobia, but few studies have examined rhizobial fitness in natural populations. Here, we genotyped and phenotyped Bradyrhizobium isolates across more than 800 km of the native Acmispon strigosus host range. We sequenced chromosomal genes expressed under free-living conditions and accessory symbiosis loci expressed in planta and encoded on an integrated 'symbiosis island' (SI). We uncovered a massive clonal expansion restricted to the Bradyrhizobium chromosome, with a single chromosomal haplotype dominating populations, ranging more than 700 km, and acquiring 42 divergent SI haplotypes, none of which were spatially widespread. For focal genotypes, we quantified utilization of 190 sole-carbon sources relevant to soil fitness. Chromosomal haplotypes that were both widespread and dominant exhibited superior growth on diverse carbon sources, whereas these patterns were not mirrored among SI haplotypes. Abundance, spatial range and catabolic superiority of chromosomal, but not symbiosis genotypes suggests that fitness in the soil environment, rather than symbiosis with hosts, might be the key driver of Bradyrhizobium dominance. PMID:27122562

  2. Antimicrobial resistance and virulence determinants in European Salmonella genomic island 1-positive Salmonella enterica isolates from different origins.

    PubMed

    Beutlich, Janine; Jahn, Silke; Malorny, Burkhard; Hauser, Elisabeth; Hühn, Stephan; Schroeter, Andreas; Rodicio, Maria Rosario; Appel, Bernd; Threlfall, John; Mevius, Dik; Helmuth, Reiner; Guerra, Beatriz

    2011-08-15

    Salmonella genomic island 1 (SGI1) contains a multidrug resistance region conferring the ampicillin-chloramphenicol-streptomycin-sulfamethoxazole-tetracycline resistance phenotype encoded by bla(PSE-1), floR, aadA2, sul1, and tet(G). Its increasing spread via interbacterial transfer and the emergence of new variants are important public health concerns. We investigated the molecular properties of SGI1-carrying Salmonella enterica serovars selected from a European strain collection. A total of 38 strains belonging to S. enterica serovar Agona, S. enterica serovar Albany, S. enterica serovar Derby, S. enterica serovar Kentucky, S. enterica serovar Newport, S. enterica serovar Paratyphi B dT+, and S. enterica serovar Typhimurium, isolated between 2002 and 2006 in eight European countries from humans, animals, and food, were subjected to antimicrobial susceptibility testing, molecular typing methods (XbaI pulsed-field gel electrophoresis [PFGE], plasmid analysis, and multilocus variable-number tandem-repeat analysis [MLVA]), as well as detection of resistance and virulence determinants (PCR/sequencing and DNA microarray analysis). Typing experiments revealed wide heterogeneity inside the strain collection and even within serovars. PFGE analysis distinguished a total of 26 different patterns. In contrast, the characterization of the phenotypic and genotypic antimicrobial resistance revealed serovar-specific features. Apart from the classical SGI1 organization found in 61% of the strains, seven different variants were identified with antimicrobial resistance properties associated with SGI1-A (S. Derby), SGI1-C (S. Derby), SGI1-F (S. Albany), SGI1-L (S. Newport), SGI1-K (S. Kentucky), SGI1-M (S. Typhimurium), and, eventually, a novel variant similar to SGI1-C with additional gentamicin resistance encoded by aadB. Only minor serovar-specific differences among virulence patterns were detected. In conclusion, the SGI1 carriers exhibited pathogenetic backgrounds comparable to the ones published for susceptible isolates. However, because of their multidrug resistance, they may be more relevant in clinical settings. PMID:21705546

  3. Genomic islands 1 and 2 play key roles in the evolution of extensively drug-resistant ST235 isolates of Pseudomonas aeruginosa

    PubMed Central

    Scott, Martin; Worden, Paul; Huntington, Peter; Hudson, Bernard; Karagiannis, Thomas; Charles, Ian G.; Djordjevic, Steven P.

    2016-01-01

    Pseudomonas aeruginosa are noscomially acquired, opportunistic pathogens that pose a major threat to the health of burns patients and the immunocompromised. We sequenced the genomes of P. aeruginosa isolates RNS_PA1, RNS_PA46 and RNS_PAE05, which displayed resistance to almost all frontline antibiotics, including gentamicin, piperacillin, timentin, meropenem, ceftazidime and colistin. We provide evidence that the isolates are representatives of P. aeruginosa sequence type (ST) 235 and carry Tn6162 and Tn6163 in genomic islands 1 (GI1) and 2 (GI2), respectively. GI1 disrupts the endA gene at precisely the same chromosomal location as in P. aeruginosa strain VR-143/97, of unknown ST, creating an identical CA direct repeat. The class 1 integron associated with Tn6163 in GI2 carries a blaGES-5–aacA4–gcuE15–aphA15 cassette array conferring resistance to carbapenems and aminoglycosides. GI2 is flanked by a 12 nt direct repeat motif, abuts a tRNA-gly gene, and encodes proteins with putative roles in integration, conjugative transfer as well as integrative conjugative element-specific proteins. This suggests that GI2 may have evolved from a novel integrative conjugative element. Our data provide further support to the hypothesis that genomic islands play an important role in de novo evolution of multiple antibiotic resistance phenotypes in P. aeruginosa. PMID:26962050

  4. Testing models of speciation from genome sequences: divergence and asymmetric admixture in Island South-East Asian Sus species during the Plio-Pleistocene climatic fluctuations

    PubMed Central

    Frantz, Laurent A F; Madsen, Ole; Megens, Hendrik-Jan; Groenen, Martien A M; Lohse, Konrad

    2014-01-01

    In many temperate regions, ice ages promoted range contractions into refugia resulting in divergence (and potentially speciation), while warmer periods led to range expansions and hybridization. However, the impact these climatic oscillations had in many parts of the tropics remains elusive. Here, we investigate this issue using genome sequences of three pig (Sus) species, two of which are found on islands of the Sunda-shelf shallow seas in Island South-East Asia (ISEA). A previous study revealed signatures of interspecific admixture between these Sus species (Genome biology,14, 2013, R107). However, the timing, directionality and extent of this admixture remain unknown. Here, we use a likelihood-based model comparison to more finely resolve this admixture history and test whether it was mediated by humans or occurred naturally. Our analyses suggest that interspecific admixture between Sunda-shelf species was most likely asymmetric and occurred long before the arrival of humans in the region. More precisely, we show that these species diverged during the late Pliocene but around 23% of their genomes have been affected by admixture during the later Pleistocene climatic transition. In addition, we show that our method provides a significant improvement over D-statistics which are uninformative about the direction of admixture. PMID:25294645

  5. Genomic islands 1 and 2 play key roles in the evolution of extensively drug-resistant ST235 isolates of Pseudomonas aeruginosa.

    PubMed

    Roy Chowdhury, Piklu; Scott, Martin; Worden, Paul; Huntington, Peter; Hudson, Bernard; Karagiannis, Thomas; Charles, Ian G; Djordjevic, Steven P

    2016-03-01

    Pseudomonas aeruginosa are noscomially acquired, opportunistic pathogens that pose a major threat to the health of burns patients and the immunocompromised. We sequenced the genomes of P. aeruginosa isolates RNS_PA1, RNS_PA46 and RNS_PAE05, which displayed resistance to almost all frontline antibiotics, including gentamicin, piperacillin, timentin, meropenem, ceftazidime and colistin. We provide evidence that the isolates are representatives of P. aeruginosa sequence type (ST) 235 and carry Tn6162 and Tn6163 in genomic islands 1 (GI1) and 2 (GI2), respectively. GI1 disrupts the endA gene at precisely the same chromosomal location as in P. aeruginosa strain VR-143/97, of unknown ST, creating an identical CA direct repeat. The class 1 integron associated with Tn6163 in GI2 carries a blaGES-5-aacA4-gcuE15-aphA15 cassette array conferring resistance to carbapenems and aminoglycosides. GI2 is flanked by a 12 nt direct repeat motif, abuts a tRNA-gly gene, and encodes proteins with putative roles in integration, conjugative transfer as well as integrative conjugative element-specific proteins. This suggests that GI2 may have evolved from a novel integrative conjugative element. Our data provide further support to the hypothesis that genomic islands play an important role in de novo evolution of multiple antibiotic resistance phenotypes in P. aeruginosa. PMID:26962050

  6. Whole-genome bisulfite sequencing maps from multiple human tissues reveal novel CpG islands associated with tissue-specific regulation

    PubMed Central

    Mendizabal, Isabel; Yi, Soojin V.

    2016-01-01

    CpG islands (CGIs) are one of the most widely studied regulatory features of the human genome, with critical roles in development and disease. Despite such significance and the original epigenetic definition, currently used CGI sets are typically predicted from DNA sequence characteristics. Although CGIs are deeply implicated in practical analyses of DNA methylation, recent studies have shown that such computational annotations suffer from inaccuracies. Here we used whole-genome bisulfite sequencing from 10 diverse human tissues to identify a comprehensive, experimentally obtained, single-base resolution CGI catalog. In addition to the unparalleled annotation precision, our method is free from potential bias due to arbitrary sequence features or probe affinity differences. In addition to clarifying substantial false positives in the widely used University of California Santa Cruz (UCSC) annotations, our study identifies numerous novel epigenetic loci. In particular, we reveal significant impact of transposable elements on the epigenetic regulatory landscape of the human genome and demonstrate ubiquitous presence of transcription initiation at CGIs, including alternative promoters in gene bodies and non-coding RNAs in intergenic regions. Moreover, coordinated DNA methylation and chromatin modifications mark tissue-specific enhancers at novel CGIs. Enrichment of specific transcription factor binding from ChIP-seq supports mechanistic roles of CGIs on the regulation of tissue-specific transcription. The new CGI catalog provides a comprehensive and integrated list of genomic hotspots of epigenetic regulation. PMID:26512062

  7. Whole-genome bisulfite sequencing maps from multiple human tissues reveal novel CpG islands associated with tissue-specific regulation.

    PubMed

    Mendizabal, Isabel; Yi, Soojin V

    2016-01-01

    CpG islands (CGIs) are one of the most widely studied regulatory features of the human genome, with critical roles in development and disease. Despite such significance and the original epigenetic definition, currently used CGI sets are typically predicted from DNA sequence characteristics. Although CGIs are deeply implicated in practical analyses of DNA methylation, recent studies have shown that such computational annotations suffer from inaccuracies. Here we used whole-genome bisulfite sequencing from 10 diverse human tissues to identify a comprehensive, experimentally obtained, single-base resolution CGI catalog. In addition to the unparalleled annotation precision, our method is free from potential bias due to arbitrary sequence features or probe affinity differences. In addition to clarifying substantial false positives in the widely used University of California Santa Cruz (UCSC) annotations, our study identifies numerous novel epigenetic loci. In particular, we reveal significant impact of transposable elements on the epigenetic regulatory landscape of the human genome and demonstrate ubiquitous presence of transcription initiation at CGIs, including alternative promoters in gene bodies and non-coding RNAs in intergenic regions. Moreover, coordinated DNA methylation and chromatin modifications mark tissue-specific enhancers at novel CGIs. Enrichment of specific transcription factor binding from ChIP-seq supports mechanistic roles of CGIs on the regulation of tissue-specific transcription. The new CGI catalog provides a comprehensive and integrated list of genomic hotspots of epigenetic regulation. PMID:26512062

  8. AsaGEI2b: a new variant of a genomic island identified in the Aeromonas salmonicida subsp. salmonicida JF3224 strain isolated from a wild fish in Switzerland.

    PubMed

    Emond-Rheault, Jean-Guillaume; Vincent, Antony T; Trudel, Mélanie V; Frey, Joachim; Frenette, Michel; Charette, Steve J

    2015-07-01

    Aeromonas salmonicida subsp. salmonicida is the causal agent of furunculosis in salmonids. We recently identified a group of genomic islands (AsaGEI) in this bacterium. AsaGEI2a, one of these genomic islands, has almost exclusively been identified in isolates from North America. To date, Aeromonas salmonicida subsp. salmonicida JF3224, a strain isolated from a wild brown trout (Salmo trutta) caught in Switzerland, was the only European isolate that appeared to bear AsaGEI2a. We analyzed the genome of JF3224 and showed that the genomic island in JF3224 is a new variant of AsaGEI, which we have called AsaGEI2b. While AsaGEI2b shares the same integrase gene and insertion site as AsaGEI2a, it is very different in terms of many other features. Additional genomic investigations combined with PCR genotyping revealed that JF3224 is sensitive to growth at 25°C, leading to insertion sequence-dependent rearrangement of the locus on the pAsa5 plasmid that encodes a type three secretion system, which is essential for the virulence of the bacterium. The analysis of the JF3224 genome confirmed that AsaGEIs are accurate indicators of the geographic origins of A. salmonicida subsp. salmonicida isolates and is another example of the susceptibility of the pAsa5 plasmid to DNA rearrangements. PMID:26048417

  9. Characterization of Salmonella enterica serovar Typhimurium isolates harboring a chromosomally encoded CMY-2 beta-lactamase gene located on a multidrug resistance genomic island.

    PubMed

    Shahada, Francis; Sekizuka, Tsuyoshi; Kuroda, Makoto; Kusumoto, Masahiro; Ohishi, Daiki; Matsumoto, Atsuko; Okazaki, Hizuru; Tanaka, Kiyoshi; Uchida, Ikuo; Izumiya, Hidemasa; Watanabe, Haruo; Tamamura, Yukino; Iwata, Taketoshi; Akiba, Masato

    2011-09-01

    Since 2004, extended-spectrum cephalosporin (ESC)-resistant Salmonella enterica serovar Typhimurium (S. Typhimurium) isolates have been detected from cattle in the northern major island of Japan, Hokkaido. Resistance to ESCs was found to be mediated by CMY-2 type β-lactamase among 22 epidemiologically unrelated isolates showing indistinguishable pulsed-field gel electrophoresis patterns. Southern blot analysis using I-CeuI-digested genomic DNA demonstrated that the CMY-2 β-lactamase gene (bla(CMY-2)) was integrated in a 2.5-Mb chromosomal fragment. Genetic analysis of S. Typhimurium isolate L-3553 indicated that bla(CMY-2) was located on a unique 125-kb genomic island, GI-VII-6, which consists of 140 open reading frames. Pairwise alignment of GI-VII-6 and Escherichia coli plasmid pAR060302 (size, 167 kb) revealed that a large proportion of GI-VII-6 (99%) shows a high sequence similarity (>99%) with pAR060302. GI-VII-6 contains 11 antimicrobial resistance genes including sul1, qacEΔ1, aadA2, and dfrA12 in the aadA2 region; sugE1 and bla(CMY-2) in the bla(CMY-2) region; and sul2, strA, strB, tet(A), and floR in the floR region. Two directly repeated IS26 copies were present at both ends of GI-VII-6. Junction regions of GI-VII-6 were flanked by an 8-bp direct repeat, indicating that GI-VII-6 was acquired by transposition involving IS26 transposase. PCR scanning revealed that the overall structure of GI-VII-6 was almost identical in the 22 isolates. Phylogenetic analysis suggested that S. Typhimurium isolates harboring GI-VII-6 belong to a different genomic lineage than other whole-genome-sequenced S. Typhimurium strains. These data indicate that a particular clone of S. Typhimurium harboring GI-VII-6 has spread among the cattle population in Hokkaido, Japan. PMID:21709089

  10. A genomic island integrated into recA of Vibrio cholerae contains a divergent recA and provides multi-pathway protection from DNA damage

    PubMed Central

    Rapa, Rita A; Islam, Atiqul; Monahan, Leigh G; Mutreja, Ankur; Thomson, Nicholas; Charles, Ian G; Stokes, Harold W; Labbate, Maurizio

    2015-01-01

    Lateral gene transfer (LGT) has been crucial in the evolution of the cholera pathogen, Vibrio cholerae. The two major virulence factors are present on two different mobile genetic elements, a bacteriophage containing the cholera toxin genes and a genomic island (GI) containing the intestinal adhesin genes. Non-toxigenic V. cholerae in the aquatic environment are a major source of novel DNA that allows the pathogen to morph via LGT. In this study, we report a novel GI from a non-toxigenic V. cholerae strain containing multiple genes involved in DNA repair including the recombination repair gene recA that is 23% divergent from the indigenous recA and genes involved in the translesion synthesis pathway. This is the first report of a GI containing the critical gene recA and the first report of a GI that targets insertion into a specific site within recA. We show that possession of the island in Escherichia coli is protective against DNA damage induced by UV-irradiation and DNA targeting antibiotics. This study highlights the importance of genetic elements such as GIs in the evolution of V. cholerae and emphasizes the importance of environmental strains as a source of novel DNA that can influence the pathogenicity of toxigenic strains. PMID:24889424

  11. A genomic island integrated into recA of Vibrio cholerae contains a divergent recA and provides multi-pathway protection from DNA damage.

    PubMed

    Rapa, Rita A; Islam, Atiqul; Monahan, Leigh G; Mutreja, Ankur; Thomson, Nicholas; Charles, Ian G; Stokes, Harold W; Labbate, Maurizio

    2015-04-01

    Lateral gene transfer (LGT) has been crucial in the evolution of the cholera pathogen, Vibrio cholerae. The two major virulence factors are present on two different mobile genetic elements, a bacteriophage containing the cholera toxin genes and a genomic island (GI) containing the intestinal adhesin genes. Non-toxigenic V. cholerae in the aquatic environment are a major source of novel DNA that allows the pathogen to morph via LGT. In this study, we report a novel GI from a non-toxigenic V. cholerae strain containing multiple genes involved in DNA repair including the recombination repair gene recA that is 23% divergent from the indigenous recA and genes involved in the translesion synthesis pathway. This is the first report of a GI containing the critical gene recA and the first report of a GI that targets insertion into a specific site within recA. We show that possession of the island in Escherichia coli is protective against DNA damage induced by UV-irradiation and DNA targeting antibiotics. This study highlights the importance of genetic elements such as GIs in the evolution of V. cholerae and emphasizes the importance of environmental strains as a source of novel DNA that can influence the pathogenicity of toxigenic strains. PMID:24889424

  12. The master regulator of IncA/C plasmids is recognized by the Salmonella Genomic island SGI1 as a signal for excision and conjugal transfer

    PubMed Central

    Kiss, János; Papp, Péter Pál; Szabó, Mónika; Farkas, Tibor; Murányi, Gábor; Szakállas, Erik; Olasz, Ferenc

    2015-01-01

    The genomic island SGI1 and its variants, the important vehicles of multi-resistance in Salmonella strains, are integrative elements mobilized exclusively by the conjugative IncA/C plasmids. Integration and excision of the island are carried out by the SGI1-encoded site-specific recombinase Int and the recombination directionality factor Xis. Chromosomal integration ensures the stable maintenance and vertical transmission of SGI1, while excision is the initial step of horizontal transfer, followed by conjugation and integration into the recipient. We report here that SGI1 not only exploits the conjugal apparatus of the IncA/C plasmids but also utilizes the regulatory mechanisms of the conjugation system for the exact timing and activation of excision to ensure efficient horizontal transfer. This study demonstrates that the FlhDC-family activator AcaCD, which regulates the conjugation machinery of the IncA/C plasmids, serves as a signal of helper entry through binding to SGI1 xis promoter and activating SGI1 excision. Promoters of int and xis genes have been identified and the binding site of the activator has been located by footprinting and deletion analyses. We prove that expression of xis is activator-dependent while int is constitutively expressed, and this regulatory mechanism is presumably responsible for the efficient transfer and stable maintenance of SGI1. PMID:26209134

  13. The complete mitochondrial genome of the gnomefish Scombrops boops (Teleostei, Perciformes, Scombropidae) from the Pacific Ocean off the Japanese Islands.

    PubMed

    Tsunashima, Tadasuke; Itoi, Shiro; Abe, Koko; Takigawa, Tomoyuki; Inoue, Satoshi; Kozen, Takahiro; Ono, Naoto; Noguchi, Shunsuke; Nakai, Shizuko; Takai, Noriyuki; Huang, Ming-Chih; Sugita, Haruo

    2016-01-01

    The complete mitochondrial genome of the gnomefish Scombrops boops was determined by a PCR-based method. The total length of mitochondrial DNA (mtDNA) was 16,517 bp, including 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes and one control region. The mitochondrial gene arrangement of the gnomefish mtDNA was identical to those of typical teleosts. This is the first report of the complete mitochondrial genome of a member of the Scombropidae family and will be useful for the development of molecular tools for ecological research. PMID:25484172

  14. The Biphenyl- and 4-Chlorobiphenyl-Catabolic Transposon Tn4371, a Member of a New Family of Genomic Islands Related to IncP and Ti Plasmids

    PubMed Central

    Toussaint, Ariane; Merlin , Christophe; Monchy, Sébastien; Benotmane, M. Abderrafi; Leplae, Raphaël; Mergeay, Max; Springael, Dirk

    2003-01-01

    The nucleotide sequence of the biphenyl catabolic transposon Tn4371 has been completed and analyzed. It confirmed that the element has a mosaic structure made of several building blocks. In addition to previously identified genes coding for a tyrosine recombinase related to phage integrases and for biphenyl degradation enzymes very similar to those of Achromobacter georgiopolitanum KKS102, Tn4371 carries many plasmid-related genes involved in replication, partition, and other, as-yet-unknown, plasmid functions. One gene cluster contains most of the genes required to express a type IV secretion-mating pair formation apparatus coupled with a TraG ATPase, all of which are related to those found on IncP and Ti plasmids. Orthologues of all Tn4371 plasmid-related genes and of the tyrosine recombinase gene were found, with a very similar organization, in the chromosome of Ralstonia solanacearum and on the yet-to-be-determined genomic sequences of Erwinia chrysanthemi and Azotobacter vinelandii. In each of these chromosomal segments, conserved segments were separated by different groups of genes, which also differed from the Tn4371 bph genes. The conserved blocks of genes were also identified, in at least two copies, in the chromosome of Ralstonia metallidurans CH34. Tn4371 thus appears to represent a new family of potentially mobile genomic islands with a broad host range since they reside in a wide range of soil proteobacteria, including plant pathogens. PMID:12902278

  15. Genomic evaluation, breed identification, and population structure of Guernsey cattle from North America, England and Guernsey Island

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic evaluations of dairy cattle in the United States have been available for Brown Swiss, Holsteins, and Jerseys since 2009 and for Ayrshire since 2013. As of January 2015, 2,263 Guernsey bulls and cows had genotypes from collaboration between the United States, Canada, England and the Isle of G...

  16. A role for Tn6029 in the evolution of the complex antibiotic resistance gene loci in genomic island 3 in enteroaggregative hemorrhagic Escherichia coli O104:H4.

    PubMed

    Roy Chowdhury, Piklu; Charles, Ian G; Djordjevic, Steven P

    2015-01-01

    In enteroaggregative hemorrhagic Escherichia coli (EAHEC) O104 the complex antibiotic resistance gene loci (CRL) found in the region of divergence 1 (RD1) within E. coli genomic island 3 (GI3) contains blaTEM-1, strAB, sul2, tet(A)A, and dfrA7 genes encoding resistance to ampicillin, streptomycin, sulfamethoxazole, tetracycline and trimethoprim respectively. The precise arrangement of antibiotic resistance genes and the role of mobile elements that drove the evolutionary events and created the CRL have not been investigated. We used a combination of bioinformatics and iterative BLASTn searches to determine the micro-evolutionary events that likely led to the formation of the CRL in GI3 using the closed genome sequences of EAHEC O104:H4 strains 2011C-3493 and 2009EL-2050 and high quality draft genomes of EAHEC E. coli O104:H4 isolates from sporadic cases not associated with the initial outbreak. Our analyses indicate that the CRL in GI3 evolved from a progenitor structure that contained an In2-derived class 1 integron in a Tn21/Tn1721 hybrid backbone. Within the hybrid backbone, a Tn6029-family transposon, identified here as Tn6029C abuts the sul1 gene in the 3'-Conserved Segment (-CS) of a class 1 integron generating a unique molecular signature that has only previously been observed in pASL01a, a small plasmid found in commensal E. coli in West Africa. From this common progenitor, independent IS26-mediated events created two novel transposons identified here as Tn6029D and Tn6222 in 2011C-3493 and 2009EL-2050 respectively. Analysis of RD1 within GI3 reveals IS26 has played a crucial role in the assembly of regions within the CRL. PMID:25675217

  17. Extensively drug-resistant pseudomonas aeruginosa isolates containing blaVIM-2 and elements of Salmonella genomic island 2: a new genetic resistance determinant in Northeast Ohio.

    PubMed

    Perez, Federico; Hujer, Andrea M; Marshall, Steven H; Ray, Amy J; Rather, Philip N; Suwantarat, Nuntra; Dumford, Donald; O'Shea, Patrick; Domitrovic, T Nicholas J; Salata, Robert A; Chavda, Kalyan D; Chen, Liang; Kreiswirth, Barry N; Vila, Alejandro J; Haussler, Susanne; Jacobs, Michael R; Bonomo, Robert A

    2014-10-01

    Carbapenems are a mainstay of treatment for infections caused by Pseudomonas aeruginosa. Carbapenem resistance mediated by metallo-β-lactamases (MBLs) remains uncommon in the United States, despite the worldwide emergence of this group of enzymes. Between March 2012 and May 2013, we detected MBL-producing P. aeruginosa in a university-affiliated health care system in northeast Ohio. We examined the clinical characteristics and outcomes of patients, defined the resistance determinants and structure of the genetic element harboring the blaMBL gene through genome sequencing, and typed MBL-producing P. aeruginosa isolates using pulsed-field gel electrophoresis (PFGE), repetitive sequence-based PCR (rep-PCR), and multilocus sequence typing (MLST). Seven patients were affected that were hospitalized at three community hospitals, a long-term-care facility, and a tertiary care center; one of the patients died as a result of infection. Isolates belonged to sequence type 233 (ST233) and were extensively drug resistant (XDR), including resistance to all fluoroquinolones, aminoglycosides, and β-lactams; two isolates were nonsusceptible to colistin. The blaMBL gene was identified as blaVIM-2 contained within a class 1 integron (In559), similar to the cassette array previously detected in isolates from Norway, Russia, Taiwan, and Chicago, IL. Genomic sequencing and assembly revealed that In559 was part of a novel 35-kb region that also included a Tn501-like transposon and Salmonella genomic island 2 (SGI2)-homologous sequences. This analysis of XDR strains producing VIM-2 from northeast Ohio revealed a novel recombination event between Salmonella and P. aeruginosa, heralding a new antibiotic resistance threat in this region's health care system. PMID:25070102

  18. Extensive amplification of GI-VII-6, a multidrug resistance genomic island of Salmonella enterica serovar Typhimurium, increases resistance to extended-spectrum cephalosporins.

    PubMed

    Lee, Ken-Ichi; Kusumoto, Masahiro; Sekizuka, Tsuyoshi; Kuroda, Makoto; Uchida, Ikuo; Iwata, Taketoshi; Okamoto, Susumu; Yabe, Kimiko; Inaoka, Takashi; Akiba, Masato

    2015-01-01

    GI-VII-6 is a chromosomally integrated multidrug resistance genomic island harbored by a specific clone of Salmonella enterica serovar Typhimurium (S.Typhimurium). It contains a gene encoding CMY-2 β-lactamase (bla CMY-2), and therefore contributes to extended-spectrum cephalosporin resistance. To elucidate the significance of GI-VII-6 on adaptive evolution, spontaneous mutants of S. Typhimurium strain L-3553 were selected on plates containing cefotaxime (CTX). The concentrations of CTX were higher than its minimum inhibition concentration to the parent strain. The mutants appeared on the plates containing 12.5 and 25 mg/L CTX at a frequency of 10(-6) and 10(-8), respectively. No colonies were observed at higher CTX concentrations. The copy number of bla CMY-2 increased up to 85 per genome in the mutants, while the parent strain contains one copy of that in the chromosome. This elevation was accompanied by increased amount of transcription. The bla CMY-2 copy number in the mutants drastically decreased in the absence of antimicrobial selection pressure. Southern hybridization analysis and short-read mapping indicated that the entire 125 kb GI-VII-6 or parts of it were tandemly amplified. GI-VII-6 amplification occurred at its original position, although it also transposed to other locations in the genome in some mutants, including an endogenous plasmid in some of the mutants, leading to the amplification of GI-VII-6 at different loci. Insertion sequences were observed at the junction of the amplified regions in the mutants, suggesting their significant roles in the transposition and amplification. Plasmid copy number in the selected mutants was 1.4 to 4.4 times higher than that of the parent strain. These data suggest that transposition and amplification of the bla CMY-2-containing region, along with the copy number variation of the plasmid, contributed to the extensive amplification of bla CMY-2 and increased resistance to CTX. PMID:25713569

  19. Extensive amplification of GI-VII-6, a multidrug resistance genomic island of Salmonella enterica serovar Typhimurium, increases resistance to extended-spectrum cephalosporins

    PubMed Central

    Lee, Ken-ichi; Kusumoto, Masahiro; Sekizuka, Tsuyoshi; Kuroda, Makoto; Uchida, Ikuo; Iwata, Taketoshi; Okamoto, Susumu; Yabe, Kimiko; Inaoka, Takashi; Akiba, Masato

    2015-01-01

    GI-VII-6 is a chromosomally integrated multidrug resistance genomic island harbored by a specific clone of Salmonella enterica serovar Typhimurium (S.Typhimurium). It contains a gene encoding CMY-2 β-lactamase (blaCMY−2), and therefore contributes to extended-spectrum cephalosporin resistance. To elucidate the significance of GI-VII-6 on adaptive evolution, spontaneous mutants of S. Typhimurium strain L-3553 were selected on plates containing cefotaxime (CTX). The concentrations of CTX were higher than its minimum inhibition concentration to the parent strain. The mutants appeared on the plates containing 12.5 and 25 mg/L CTX at a frequency of 10−6 and 10−8, respectively. No colonies were observed at higher CTX concentrations. The copy number of blaCMY−2 increased up to 85 per genome in the mutants, while the parent strain contains one copy of that in the chromosome. This elevation was accompanied by increased amount of transcription. The blaCMY−2 copy number in the mutants drastically decreased in the absence of antimicrobial selection pressure. Southern hybridization analysis and short-read mapping indicated that the entire 125 kb GI-VII-6 or parts of it were tandemly amplified. GI-VII-6 amplification occurred at its original position, although it also transposed to other locations in the genome in some mutants, including an endogenous plasmid in some of the mutants, leading to the amplification of GI-VII-6 at different loci. Insertion sequences were observed at the junction of the amplified regions in the mutants, suggesting their significant roles in the transposition and amplification. Plasmid copy number in the selected mutants was 1.4 to 4.4 times higher than that of the parent strain. These data suggest that transposition and amplification of the blaCMY−2-containing region, along with the copy number variation of the plasmid, contributed to the extensive amplification of blaCMY−2 and increased resistance to CTX. PMID:25713569

  20. Sequence-Based Characterization of Tn5801-Like Genomic Islands in Tetracycline-Resistant Staphylococcus pseudintermedius and Other Gram-positive Bacteria from Humans and Animals

    PubMed Central

    de Vries, Lisbeth E.; Hasman, Henrik; Jurado Rabadán, Sonia; Agersø, Yvonne

    2016-01-01

    Antibiotic resistance in pathogens is often associated with mobile genetic elements, such as genomic islands (GI) including integrative and conjugative elements (ICEs). These can transfer resistance genes within and between bacteria from humans and/or animals. The aim of this study was to investigate whether Tn5801-like GIs carrying the tetracycline resistance gene, tet(M), are common in Staphylococcus pseudintermedius from pets, and to do an overall sequences-based characterization of Tn5801-like GIs detected in Gram-positive bacteria from humans and animals. A total of 27 tetracycline-resistant S. pseudintermedius isolates from Danish pets (1998–2005) were screened for tet(M) by PCR. Selected isolates (13) were screened for GI- or ICE-specific genes (intTn5801 or xisTn916) and their tet(M) gene was sequenced (Sanger-method). Long-range PCR mappings and whole-genome-sequencing (Illumina) were performed for selected S. pseudintermedius-isolates (seven and three isolates, respectively) as well as for human S. aureus isolates (seven and one isolates, respectively) and one porcine Enterococcus faecium isolate known to carry Tn5801-like GIs. All 27 S. pseudintermedius were positive for tet(M). Out of 13 selected isolates, seven contained Tn5801-like GIs and six contained Tn916-like ICEs. Two different Tn5801-like GI types were detected among S. pseudintermedius (Tn5801 and GI6287) - both showed high similarity compared to GenBank sequences from human pathogens. Two distinct Tn5801-like GI types were detected among the porcine E. faecium and human S. aureus isolates (Tn6014 and GI6288). Tn5801-like GIs were detected in GenBank-sequences from Gram-positive bacteria of human, animal or food origin worldwide. Known Tn5801-like GIs were divided into seven types. The results showed that Tn5801-like GIs appear to be relatively common in tetracycline-resistant S. pseudintermedius in Denmark. Almost identical Tn5801-like GIs were identified in different Gram-positive species of pet and human origin, suggesting that horizontal transfer of these elements has occurred between S. pseudintermedius from pets and human pathogens, including S. aureus. PMID:27199912

  1. Genetic analysis of environmental strains of the plant pathogen Phytophthora capsici reveals heterogeneous repertoire of effectors and possible effector evolution via genomic island.

    PubMed

    Iribarren, María Josefina; Pascuan, Cecilia; Soto, Gabriela; Ayub, Nicolás Daniel

    2015-11-01

    Phytophthora capsici is a virulent oomycete pathogen of many vegetable crops. Recently, it has been demonstrated that the recognition of the RXLR effector AVR3a1 of P. capsici (PcAVR3a1) triggers a hypersensitive response and plays a critical role in mediating non-host resistance. Here, we analyzed the occurrence of PcAVR3a1 in 57 isolates of P. capsici derived from globe squash, eggplant, tomato and bell pepper cocultivated in a small geographical area. The occurrence of PcAVR3a1 in environmental strains of P. capsici was confirmed by PCR in only 21 of these pathogen isolates. To understand the presence-absence pattern of PcAVR3a1 in environmental strains, the flanking region of this gene was sequenced. PcAVR3a1 was found within a genetic element that we named PcAVR3a1-GI (PcAVR3a1 genomic island). PcAVR3a1-GI was flanked by a 22-bp direct repeat, which is related to its site-specific recombination site. In addition to the PcAVR3a1 gene, PcAVR3a1-GI also encoded a phage integrase probably associated with the excision and integration of this mobile element. Exposure to plant induced the presence of an episomal circular intermediate of PcAVR3a1-GI, indicating that this mobile element is functional. Collectively, these findings provide evidence of PcAVR3a1 evolution via mobile elements in environmental strains of Phytophthora. PMID:26443834

  2. CpG island chromatin

    PubMed Central

    Blackledge, Neil P

    2011-01-01

    The majority of mammalian gene promoters are encompassed within regions of the genome called CpG islands that have an elevated level of non-methylated CpG dinucleotides. Despite over 20 years of study, the precise mechanisms by which CpG islands contribute to regulatory element function remain poorly understood. Recently it has been demonstrated that specific histone modifying enzymes are recruited directly to CpG islands through recognition of non-methylated CpG dinucleotide sequence. These enzymes then impose unique chromatin architecture on CpG islands that distinguish them from the surrounding genome. In the context of this work we discuss how CpG island elements may contribute to the function of gene regulatory elements through the utilization of chromatin and epigenetic processes. PMID:20935486

  3. Early Strains of Multidrug-Resistant Salmonella enterica Serovar Kentucky Sequence Type 198 from Southeast Asia Harbor Salmonella Genomic Island 1-J Variants with a Novel Insertion Sequence

    PubMed Central

    Le Hello, Simon; Weill, François-Xavier; Guibert, Véronique; Praud, Karine; Cloeckaert, Axel

    2012-01-01

    Salmonella genomic island 1 (SGI1) is a 43-kb integrative mobilizable element that harbors a great diversity of multidrug resistance gene clusters described in numerous Salmonella enterica serovars and also in Proteus mirabilis. The majority of SGI1 variants contain an In104-derivative complex class 1 integron inserted between resolvase gene res and open reading frame (ORF) S044 in SGI1. Recently, the international spread of ciprofloxacin-resistant S. enterica serovar Kentucky sequence type 198 (ST198) containing SGI1-K variants has been reported. A retrospective study was undertaken to characterize ST198 S. Kentucky strains isolated before the spread of the epidemic ST198-SGI1-K population in Africa and the Middle East. Here, we characterized 12 ST198 S. Kentucky strains isolated between 1969 and 1999, mainly from humans returning from Southeast Asia (n = 10 strains) or Israel (n = 1 strain) or from meat in Egypt (n = 1 strain). All these ST198 S. Kentucky strains did not belong to the XbaI pulsotype X1 associated with the African epidemic clone but to pulsotype X2. SGI1-J subgroup variants containing different complex integrons with a partial transposition module and inserted within ORF S023 of SGI1 were detected in six strains. The SGI1-J4 variant containing a partially deleted class 1 integron and thus showing a narrow resistance phenotype to sulfonamides was identified in two epidemiologically unrelated strains from Indonesia. The four remaining strains harbored a novel SGI1-J variant, named SGI1-J6, which contained aadA2, floR2, tetR(G)-tetA(G), and sul1 resistance genes within its complex integron. Moreover, in all these S. Kentucky isolates, a novel insertion sequence related to the IS630 family and named ISSen5 was found inserted upstream of the SGI1 complex integron in ORF S023. Thus, two subpopulations of S. Kentucky ST198 independently and exclusively acquired the SGI1 during the 1980s and 1990s. Unlike the ST198-X1 African epidemic subpopulation, the ST198-X2 subpopulation mainly from Asia harbors variants of the SGI1-J subgroup that are encountered mainly in the Far East, as previously described for S. enterica serovars Emek and Virchow. PMID:22802251

  4. Characterization of a Resistance-Nodulation-Cell Division Transporter System Associated with the syr-syp Genomic Island of Pseudomonas syringae pv. syringae

    PubMed Central

    Kang, Hyojeung; Gross, Dennis C.

    2005-01-01

    A tripartite resistance-nodulation-cell division (RND) transporter system, called the PseABC efflux system, was identified at the left border of the syr-syp genomic island of Pseudomonas syringae pv. syringae strain B301D. The PseABC efflux system was located within a 5.7-kb operon that encodes an outer membrane protein (PseA), a periplasmic membrane fusion protein (PseB), and an RND-type cytoplasmic membrane protein (PseC). The PseABC efflux system exhibited amino acid homology to a putative RND efflux system of Ralstonia solanacearum, with identities of 48% for PseA, 51% for PseB, and 61% for PseC. A nonpolar mutation within the pseC gene was generated by nptII insertional mutagenesis. The resultant mutant strain showed a larger reduction in syringopeptin secretion (67%) than in syringomycin secretion (41%) compared to parental strain B301D (P < 0.05). A ?-glucuronidase assay with a pseA::uidA reporter construct indicated that the GacS/GacA two-component system controls expression of the pseA gene. Quantitative real-time reverse transcription-PCR was used to determine transcript levels of the syringomycin (syrB1) and syringopeptin (sypA) synthetase genes in strain B301D-HK4 (a pseC mutant). The expression of the sypA gene by mutant strain B301D-HK4 corresponded to approximately 13% of that by parental strain B301D, whereas the syrB1 gene expression by mutant strain B301D-HK4 was nearly 61% (P < 0.05). In addition, the virulence of mutant strain B301D-HK4 for immature cherry fruits was reduced by about 58% compared to parental strain B301D (P < 0.05). Although the resistance of mutant strain B301D-HK4 to any antibiotic used in this study was not reduced compared to parental strain B301D, a drug-supersensitive acrB mutant of Escherichia coli showed two- to fourfold-increased resistance to acriflavine, erythromycin, and tetracycline upon heterologous expression of the pseA, pseB, and pseC genes (pseABC efflux genes). The PseABC efflux system is the first RND transporter system described for P. syringae, and it has an important role in secretion of syringomycin and syringopeptin. PMID:16151087

  5. Salmonella genomic island 1-J variants associated with change in the antibiotic resistance gene cluster in multidrug-resistant Salmonella enterica serovar Virchow isolated from humans, Taiwan, 2004-2006.

    PubMed

    Chu, C; Doublet, B; Lee, Y-L; Cloeckaert, A; Chiou, C-S; Chen, S-W; Lin, C-W; Chiu, C-H

    2012-01-01

    Salmonella genomic island 1 (variant SGI1-J3) has been previously identified in multi-drug resistant (MDR) Salmonella enterica serovar Virchow isolated from humans in 1994. In this study, antimicrobial resistance, genotypes and genetic relationship were investigated in 96 S. Virchow isolates collected from humans in 2004-2006. XbaI-PFGE analysis separated 96 isolates into two main related clusters, I and II, which consisted of four major pulsotypes differing in prevalence by year. The majority of isolates were MDR to chloramphenicol, sulfonamide, trimethoprim and tetracyclines associated with antimicrobial resistance genes dfrA1, floR2, sulI and tet(G) of variant SGI1-J3. Among nine variants, we determined two novel variants, SGI1-J4 and -J5, which have undergone different homologous recombinational events resulting in partial deletions of the MDR region. The first one contained an empty integron structure and the second presented a deletion extending from the IS6100 element to the adjacent SGI1 backbone. SGI1-J3 is largely encountered in clonally related MDR S. Virchow isolates collected from humans, which spread vertically. The genomic island SGI1 appears to be largely responsible for the diversity of MDR phenotypes among S. Virchow isolates in Taiwan. PMID:21615827

  6. Draft genome of Leisingera aquaemixtae CECT 8399T, a member of the Roseobacter clade isolated from a junction of fresh and ocean water in Jeju Island, South Korea

    PubMed Central

    Rodrigo-Torres, Lidia; Pujalte, María J.; Arahal, David R.

    2016-01-01

    We report the draft genome sequence and annotation of Leisingera aquaemixtae CECT 8399T (DDBJ/EMBL/GenBank accession number CYSR00000000) which comprises 4,614,060 bp, 4313 protein coding genes, 54 tRNA coding genes and 7 rRNA coding genes. General findings of the annotated genome, such as pigment indigoidine operon, phenylacetate oxidation genes or predictable number of replicons, are commented in comparison to other Leisingera species. Average Nucleotide Identity between available genomes of type strains of species of Leisingera and Phaeobacter genera has been calculated to evaluate its current classification. PMID:26981415

  7. The genome sequence of Sea-Island cotton (Gossypium barbadense) provides insights into the allopolyploidization and development of superior spinnable fibres

    PubMed Central

    Yuan, Daojun; Tang, Zhonghui; Wang, Maojun; Gao, Wenhui; Tu, Lili; Jin, Xin; Chen, Lingling; He, Yonghui; Zhang, Lin; Zhu, Longfu; Li, Yang; Liang, Qiqi; Lin, Zhongxu; Yang, Xiyan; Liu, Nian; Jin, Shuangxia; Lei, Yang; Ding, Yuanhao; Li, Guoliang; Ruan, Xiaoan; Ruan, Yijun; Zhang, Xianlong

    2015-01-01

    Gossypium hirsutum contributes the most production of cotton fibre, but G. barbadense is valued for its better comprehensive resistance and superior fibre properties. However, the allotetraploid genome of G. barbadense has not been comprehensively analysed. Here we present a high-quality assembly of the 2.57 gigabase genome of G. barbadense, including 80,876 protein-coding genes. The double-sized genome of the A (or At) (1.50 Gb) against D (or Dt) (853 Mb) primarily resulted from the expansion of Gypsy elements, including Peabody and Retrosat2 subclades in the Del clade, and the Athila subclade in the Athila/Tat clade. Substantial gene expansion and contraction were observed and rich homoeologous gene pairs with biased expression patterns were identified, suggesting abundant gene sub-functionalization occurred by allopolyploidization. More specifically, the CesA gene family has adapted differentially temporal expression patterns, suggesting an integrated regulatory mechanism of CesA genes from At and Dt subgenomes for the primary and secondary cellulose biosynthesis of cotton fibre in a “relay race”-like fashion. We anticipate that the G. barbadense genome sequence will advance our understanding the mechanism of genome polyploidization and underpin genome-wide comparison research in this genus. PMID:26634818

  8. The genome sequence of Sea-Island cotton (Gossypium barbadense) provides insights into the allopolyploidization and development of superior spinnable fibres.

    PubMed

    Yuan, Daojun; Tang, Zhonghui; Wang, Maojun; Gao, Wenhui; Tu, Lili; Jin, Xin; Chen, Lingling; He, Yonghui; Zhang, Lin; Zhu, Longfu; Li, Yang; Liang, Qiqi; Lin, Zhongxu; Yang, Xiyan; Liu, Nian; Jin, Shuangxia; Lei, Yang; Ding, Yuanhao; Li, Guoliang; Ruan, Xiaoan; Ruan, Yijun; Zhang, Xianlong

    2015-01-01

    Gossypium hirsutum contributes the most production of cotton fibre, but G. barbadense is valued for its better comprehensive resistance and superior fibre properties. However, the allotetraploid genome of G. barbadense has not been comprehensively analysed. Here we present a high-quality assembly of the 2.57 gigabase genome of G. barbadense, including 80,876 protein-coding genes. The double-sized genome of the A (or At) (1.50 Gb) against D (or Dt) (853?Mb) primarily resulted from the expansion of Gypsy elements, including Peabody and Retrosat2 subclades in the Del clade, and the Athila subclade in the Athila/Tat clade. Substantial gene expansion and contraction were observed and rich homoeologous gene pairs with biased expression patterns were identified, suggesting abundant gene sub-functionalization occurred by allopolyploidization. More specifically, the CesA gene family has adapted differentially temporal expression patterns, suggesting an integrated regulatory mechanism of CesA genes from At and Dt subgenomes for the primary and secondary cellulose biosynthesis of cotton fibre in a "relay race"-like fashion. We anticipate that the G. barbadense genome sequence will advance our understanding the mechanism of genome polyploidization and underpin genome-wide comparison research in this genus. PMID:26634818

  9. Galapagos Islands

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This true-color image of the Galapagos Islands was acquired on March 12, 2002, by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite. The Galapagos Islands, which are part of Ecuador, sit in the Pacific Ocean about 1000 km (620 miles) west of South America. As the three craters on the largest island (Isabela Island) suggest, the archipelago was created by volcanic eruptions, which took place millions of years ago. Unlike most remote islands in the Pacific, the Galapagos have gone relatively untouched by humans over the past few millennia. As a result, many unique species have continued to thrive on the islands. Over 95 percent of the islands' reptile species and nearly three quarters of its land bird species cannot be found anywhere else in the world. Two of the more well known are the Galapagos giant tortoise and marine iguanas. The unhindered evolutionary development of the islands' species inspired Charles Darwin to begin The Origin of Species eight years after his visit there. To preserve the unique wildlife on the islands, the Ecuadorian government made the entire archipelago a national park in 1959. Each year roughly 60,000 tourists visit these islands to experience what Darwin did over a century and a half ago. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  10. The Genomic Island SGI1, Containing the Multiple Antibiotic Resistance Region of Salmonella enterica Serovar Typhimurium DT104 or Variants of It, Is Widely Distributed in Other S. enterica Serovars

    PubMed Central

    Levings, Renee S.; Lightfoot, Diane; Partridge, Sally R.; Hall, Ruth M.; Djordjevic, Steven P.

    2005-01-01

    The global dissemination of the multiply-antibiotic-resistant Salmonella enterica serovar Typhimurium DT104 clone with the resistance genes located in a class 1 integron, here designated In104, within genomic island SGI1 is a significant public health issue. Here, we have shown that SGI1 and variants of it carrying different combinations of resistance genes are found in several Salmonella enterica serovars. These are serovars Cerro, Derby, Dusseldorf, Infantis, Kiambu, and Paratyphi B dT+ isolated from human infections and serovar Emek from sewage effluent. Two new variants, SGI1-I and SGI1-J, both of which include the dfrA1-orfC cassette array, were identified. PMID:15968049

  11. Akpatok Island

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Akpatok Island lies in Ungava Bay in northern Quebec, Canada. Accessible only by air, Akpatok Island rises out of the water as sheer cliffs that soar 500 to 800 feet (150 to 243 m) above the sea surface. The island is an important sanctuary for cliff-nesting seabirds. Numerous ice floes around the island attract walrus and whales, making Akpatok a traditional hunting ground for native Inuit people. This image was acquired by Landsat 7's Enhanced Thematic Mapper plus (ETM+) sensor on January 22, 2001. Image provided by the USGS EROS Data Center Satellite Systems Branch

  12. Genome Sequence of Paenibacillus polymyxa Strain CICC 10580, Isolated from the Fruit of Noni (Morinda citrifolia L.) Grown in the Paracel Islands.

    PubMed

    Xu, Youqiang; Liu, Yang; Yao, Su; Li, Jinxia; Cheng, Chi

    2014-01-01

    Noni is a plant reported to have nutritional and therapeutic properties. Paenibacillus polymyxa CICC 10580 is a strain that was isolated from the fruit of noni and showed comprehensive antagonistic activity against many pathogens. Its genome was sequenced and assembled (6.10 Mb). The coding sequences (CDSs) correlated with antagonistic activity were annotated. PMID:25169860

  13. Island Hopping

    ERIC Educational Resources Information Center

    Bennett, Gayle

    2009-01-01

    At some institutions, it may feel as though faculty live on one island and advancement staff on another. The islands form part of an archipelago, and they exchange ambassadors and send emissaries occasionally, but interactions are limited. It may even seem as though the two groups speak different languages, deal in different currencies, and abide…

  14. Anatahan Island

    Atmospheric Science Data Center

    2013-04-19

    ... the Philippine Sea plate creates a series of island arc volcanoes and the Earth's deepest ocean trench. Anatahan had no known ... Mariana of Austria, the widow of Spanish King Philip IV. Japan took control of the Mariana Islands in 1914 (the first year of World War ...

  15. Genomic analysis of a pathogenicity island in uropathogenic Escherichia coli CFT073: distribution of homologous sequences among isolates from patients with pyelonephritis, cystitis, and Catheter-associated bacteriuria and from fecal samples.

    PubMed

    Guyer, D M; Kao, J S; Mobley, H L

    1998-09-01

    Urinary tract infection is the most frequently diagnosed kidney and urologic disease and Escherichia coli is by far the most common etiologic agent. Uropathogenic strains have been shown to contain blocks of DNA termed pathogenicity islands (PAIs) which contribute to their virulence. We have defined one of these regions of DNA within the chromosome of a highly virulent E. coli strain, CFT073, isolated from the blood and urine of a woman with acute pyelonephritis. The 57,988-bp stretch of DNA has characteristics which define PAIs, including a size greater than 30 kb, the presence of insertion sequences, distinct segmentation of K-12 and J96 origin, GC content (42.9%) different from that of total genomic DNA (50.8%), and the presence of virulence genes (hly and pap). Within this region, we have identified 44 open reading frames; of these 44, 10 are homologous to entries in the complete K-12 genome sequence, 4 are nearly identical to the sequences of E. coli J96 encoding the HlyA hemolysin, 11 encode P fimbriae, and 19 show no homology to J96 or K-12 entries. To determine whether sequences found within the junctions of the PAI of CFT073 were common to other uropathogenic strains of E. coli, 11 probes were isolated along the length of the PAI and were hybridized to dot blots of genomic DNA isolated from clinical isolates (67 from patients with acute pyelonephritis, 38 from patients with cystitis, 49 from patients with catheter-associated bacteriuria, and 27 from fecal samples). These sequences were found significantly more often in strains associated with the clinical syndromes of acute pyelonephritis (79%) and cystitis (82%) than in those associated with catheter-associated bacteriuria (58%) and in fecal strains (22%) (P < 0.001). From these regions, we have identified a putative iron transport system and genes other than hly and pap that may contribute to the virulent phenotype of uropathogenic E. coli strains. PMID:9712795

  16. Identifying Pathogenicity Islands in Bacterial Pathogenomics Using Computational Approaches

    PubMed Central

    Che, Dongsheng; Hasan, Mohammad Shabbir; Chen, Bernard

    2014-01-01

    High-throughput sequencing technologies have made it possible to study bacteria through analyzing their genome sequences. For instance, comparative genome sequence analyses can reveal the phenomenon such as gene loss, gene gain, or gene exchange in a genome. By analyzing pathogenic bacterial genomes, we can discover that pathogenic genomic regions in many pathogenic bacteria are horizontally transferred from other bacteria, and these regions are also known as pathogenicity islands (PAIs). PAIs have some detectable properties, such as having different genomic signatures than the rest of the host genomes, and containing mobility genes so that they can be integrated into the host genome. In this review, we will discuss various pathogenicity island-associated features and current computational approaches for the identification of PAIs. Existing pathogenicity island databases and related computational resources will also be discussed, so that researchers may find it to be useful for the studies of bacterial evolution and pathogenicity mechanisms. PMID:25437607

  17. The Genome Sequence of the Tomato-Pathogenic Actinomycete Clavibacter michiganensis subsp. michiganensis NCPPB382 Reveals a Large Island Involved in Pathogenicity▿ †

    PubMed Central

    Gartemann, Karl-Heinz; Abt, Birte; Bekel, Thomas; Burger, Annette; Engemann, Jutta; Flügel, Monika; Gaigalat, Lars; Goesmann, Alexander; Gräfen, Ines; Kalinowski, Jörn; Kaup, Olaf; Kirchner, Oliver; Krause, Lutz; Linke, Burkhard; McHardy, Alice; Meyer, Folker; Pohle, Sandra; Rückert, Christian; Schneiker, Susanne; Zellermann, Eva-Maria; Pühler, Alfred; Eichenlaub, Rudolf; Kaiser, Olaf; Bartels, Daniela

    2008-01-01

    Clavibacter michiganensis subsp. michiganensis is a plant-pathogenic actinomycete that causes bacterial wilt and canker of tomato. The nucleotide sequence of the genome of strain NCPPB382 was determined. The chromosome is circular, consists of 3.298 Mb, and has a high G+C content (72.6%). Annotation revealed 3,080 putative protein-encoding sequences; only 26 pseudogenes were detected. Two rrn operons, 45 tRNAs, and three small stable RNA genes were found. The two circular plasmids, pCM1 (27.4 kbp) and pCM2 (70.0 kbp), which carry pathogenicity genes and thus are essential for virulence, have lower G+C contents (66.5 and 67.6%, respectively). In contrast to the genome of the closely related organism Clavibacter michiganensis subsp. sepedonicus, the genome of C. michiganensis subsp. michiganensis lacks complete insertion elements and transposons. The 129-kb chp/tomA region with a low G+C content near the chromosomal origin of replication was shown to be necessary for pathogenicity. This region contains numerous genes encoding proteins involved in uptake and metabolism of sugars and several serine proteases. There is evidence that single genes located in this region, especially genes encoding serine proteases, are required for efficient colonization of the host. Although C. michiganensis subsp. michiganensis grows mainly in the xylem of tomato plants, no evidence for pronounced genome reduction was found. C. michiganensis subsp. michiganensis seems to have as many transporters and regulators as typical soil-inhabiting bacteria. However, the apparent lack of a sulfate reduction pathway, which makes C. michiganensis subsp. michiganensis dependent on reduced sulfur compounds for growth, is probably the reason for the poor survival of C. michiganensis subsp. michiganensis in soil. PMID:18192381

  18. The genome sequence of the tomato-pathogenic actinomycete Clavibacter michiganensis subsp. michiganensis NCPPB382 reveals a large island involved in pathogenicity.

    PubMed

    Gartemann, Karl-Heinz; Abt, Birte; Bekel, Thomas; Burger, Annette; Engemann, Jutta; Flügel, Monika; Gaigalat, Lars; Goesmann, Alexander; Gräfen, Ines; Kalinowski, Jörn; Kaup, Olaf; Kirchner, Oliver; Krause, Lutz; Linke, Burkhard; McHardy, Alice; Meyer, Folker; Pohle, Sandra; Rückert, Christian; Schneiker, Susanne; Zellermann, Eva-Maria; Pühler, Alfred; Eichenlaub, Rudolf; Kaiser, Olaf; Bartels, Daniela

    2008-03-01

    Clavibacter michiganensis subsp. michiganensis is a plant-pathogenic actinomycete that causes bacterial wilt and canker of tomato. The nucleotide sequence of the genome of strain NCPPB382 was determined. The chromosome is circular, consists of 3.298 Mb, and has a high G+C content (72.6%). Annotation revealed 3,080 putative protein-encoding sequences; only 26 pseudogenes were detected. Two rrn operons, 45 tRNAs, and three small stable RNA genes were found. The two circular plasmids, pCM1 (27.4 kbp) and pCM2 (70.0 kbp), which carry pathogenicity genes and thus are essential for virulence, have lower G+C contents (66.5 and 67.6%, respectively). In contrast to the genome of the closely related organism Clavibacter michiganensis subsp. sepedonicus, the genome of C. michiganensis subsp. michiganensis lacks complete insertion elements and transposons. The 129-kb chp/tomA region with a low G+C content near the chromosomal origin of replication was shown to be necessary for pathogenicity. This region contains numerous genes encoding proteins involved in uptake and metabolism of sugars and several serine proteases. There is evidence that single genes located in this region, especially genes encoding serine proteases, are required for efficient colonization of the host. Although C. michiganensis subsp. michiganensis grows mainly in the xylem of tomato plants, no evidence for pronounced genome reduction was found. C. michiganensis subsp. michiganensis seems to have as many transporters and regulators as typical soil-inhabiting bacteria. However, the apparent lack of a sulfate reduction pathway, which makes C. michiganensis subsp. michiganensis dependent on reduced sulfur compounds for growth, is probably the reason for the poor survival of C. michiganensis subsp. michiganensis in soil. PMID:18192381

  19. Devon Island

    Atmospheric Science Data Center

    2013-04-17

    article title:  Mars Researchers Rendezvous on Remote Arctic Island   ... each summer since 1999, researchers from NASA's Haughton-Mars Project and the Mars Society reside at this "polar desert" location to study the geologic and ...

  20. Island of Okinawa, Japan

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The island of Okinawa, (26.5N, 128.0E) largest of the Ryukyu Islands, Japan. The Ryukyu island group lies south of the main home islands of Japan in an arc towards the Chinese island Republic of Taiwan. As is typical throughout the Japanese home islands, intense urban development can be observed all over the island in this near vertical view.

  1. Two types of genetic carrier, the IncP genomic island and the novel IncP-1β plasmid, for the aac(2')-IIa gene that confers kasugamycin resistance in Acidovorax avenae ssp. avenae.

    PubMed

    Yoshii, Atsushi; Omatsu, Tsutomu; Katayama, Yukie; Koyama, Satoshi; Mizutani, Tetsuya; Moriyama, Hiromitsu; Fukuhara, Toshiyuki

    2015-04-01

    A unique aminoglycoside antibiotic, kasugamycin (KSM), has been used to control many plant bacterial and fungal diseases in several countries. The emergence of KSM-resistant Acidovorax avenae ssp. avenae and Burkholderia glumae, which cause rice bacterial brown stripe and rice bacterial grain and seedling rot, respectively, is a serious threat for the effective control of these diseases. Previously, we have identified the aac(2')-IIa gene, encoding a KSM 2'-N-acetyltransferase, from both KSM-resistant pathogens. Although all KSM-resistant isolates from both species possess the aac(2')-IIa gene, only A. avenae strain 83 showed higher resistance than other strains. In this research, kinetic analysis indicates that an amino acid substitution from serine to threonine at position 146 of AAC(2')-IIa in strain 83 is not involved in this increased resistance. Whole draft genome analysis of A. avenae 83 shows that the aac(2')-IIa gene is carried by the novel IncP-1β plasmid pAAA83, whereas the genetic carrier of other strains, the IncP genomic island, is inserted into their chromosomes. The difference in the nucleotides of the promoter region of aac(2')-IIa between strain 83 and other strains indicates an additional transcription start site and results in the increased transcription of aac(2')-IIa in strain 83. Moreover, biological characterization of pAAA83 demonstrates that it can be transferred by conjugation and maintained in the host cells. These results demonstrate that acquisition of the aac(2')-IIa gene takes place in at least two ways and that the gene module, which includes aac(2')-IIa and the downstream gene, may be an important unit for the dissemination of antibiotic resistance. PMID:25131295

  2. Complete Nucleotide Sequence of a 43-Kilobase Genomic Island Associated with the Multidrug Resistance Region of Salmonella enterica Serovar Typhimurium DT104 and Its Identification in Phage Type DT120 and Serovar Agona

    PubMed Central

    Boyd, David; Peters, Geoffrey A.; Cloeckaert, Axel; Boumedine, Karim Sidi; Chaslus-Dancla, Elisabeth; Imberechts, Hein; Mulvey, Michael R.

    2001-01-01

    This study describes the characterization of the recently described Salmonella genomic island 1 (SGI1) (D. A. Boyd, G. A. Peters, L.-K. Ng, and M. R. Mulvey, FEMS Microbiol. Lett. 189:285–291, 2000), which harbors the genes associated with the ACSSuT phenotype in a Canadian isolate of Salmonella enterica serovar Typhimurium DT104. A 43-kb region has been completely sequenced and found to contain 44 predicted open reading frames (ORFs) which comprised ∼87% of the total sequence. Fifteen ORFs did not show any significant homology to known gene sequences. A number of ORFs show significant homology to plasmid-related genes, suggesting, at least in part, a plasmid origin for the SGI1, although some with homology to phage-related genes were identified. The SGI1 was identified in a number of multidrug-resistant DT120 and S. enterica serovar Agona strains with similar antibiotic-resistant phenotypes. The G+C content suggests a potential mosaic structure for the SGI1. Emergence of the SGI1 in serovar Agona strains is discussed. PMID:11544236

  3. Island biology: looking towards the future.

    PubMed

    Kueffer, Christoph; Drake, Donald R; Fernández-Palacios, José María

    2014-10-01

    Oceanic islands are renowned for the profound scientific insights that their fascinating biotas have provided to biologists during the past two centuries. Research presented at Island Biology 2014-an international conference, held in Honolulu, Hawaii (7-11 July 2014), which attracted 253 presenters and 430 participants from at least 35 countries(1)-demonstrated that islands are reclaiming a leading role in ecology and evolution, especially for synthetic studies at the intersections of macroecology, evolution, community ecology and applied ecology. New dynamics in island biology are stimulated by four major developments. We are experiencing the emergence of a truly global and comprehensive island research community incorporating previously neglected islands and taxa. Macroecology and big-data analyses yield a wealth of global-scale synthetic studies and detailed multi-island comparisons, while other modern research approaches such as genomics, phylogenetic and functional ecology, and palaeoecology, are also dispersing to islands. And, increasingly tight collaborations between basic research and conservation management make islands places where new conservation solutions for the twenty-first century are being tested. Islands are home to a disproportionate share of the world's rare (and extinct) species, and there is an urgent need to develop increasingly collaborative and innovative research to address their conservation requirements. PMID:25339655

  4. Pathogenicity island mobility and gene content.

    SciTech Connect

    Williams, Kelly Porter

    2013-10-01

    Key goals towards national biosecurity include methods for analyzing pathogens, predicting their emergence, and developing countermeasures. These goals are served by studying bacterial genes that promote pathogenicity and the pathogenicity islands that mobilize them. Cyberinfrastructure promoting an island database advances this field and enables deeper bioinformatic analysis that may identify novel pathogenicity genes. New automated methods and rich visualizations were developed for identifying pathogenicity islands, based on the principle that islands occur sporadically among closely related strains. The chromosomally-ordered pan-genome organizes all genes from a clade of strains; gaps in this visualization indicate islands, and decorations of the gene matrix facilitate exploration of island gene functions. A %E2%80%9Clearned phyloblocks%E2%80%9D method was developed for automated island identification, that trains on the phylogenetic patterns of islands identified by other methods. Learned phyloblocks better defined termini of previously identified islands in multidrug-resistant Klebsiella pneumoniae ATCC BAA-2146, and found its only antibiotic resistance island.

  5. Island Panoramic

    A panoramic view taken from an island in the Yellowstone River.  Upstream is to the right side of the picture while downstream is to the left.  The middle of the picture looks straight across to the descending right bank. ...

  6. An homolog of the Frz Phosphoenolpyruvate:carbohydrate phosphoTransferase System of extraintestinal pathogenic Escherichia coli is encoded on a genomic island in specific lineages of Streptococcus agalactiae.

    PubMed

    Patron, Kévin; Gilot, Philippe; Camiade, Emilie; Mereghetti, Laurent

    2015-06-01

    We identified a Streptococcus agalactiae metabolic region (fru2) coding for a Phosphoenolpyruvate:carbohydrate phosphoTransferase System (PTS) homologous to the Frz system of extraintestinal pathogenic Escherichia coli strains. The Frz system is involved in environmental sensing and regulation of the expression of adaptation and virulence genes in E. coli. The S. agalactiae fru2 region codes three subunits of a PTS transporter of the fructose-mannitol family, a transcriptional activator of PTSs of the MtlR family, an allulose-6 phosphate-3-epimerase, a transaldolase and a transketolase. We demonstrated that all these genes form an operon. The fru2 operon is present in a 17494-bp genomic island. We analyzed by multilocus sequence typing a population of 492 strains representative of the S. agalactiae population and we showed that the presence of the fru2 operon is linked to the phylogeny of S. agalactiae. The fru2 operon is always present within strains of clonal complexes CC 1, CC 7, CC 10, CC 283 and singletons ST 130 and ST 288, but never found in other CCs and STs. Our results indicate that the fru2 operon was acquired during the evolution of the S. agalactiae species from a common ancestor before the divergence of CC 1, CC 7, CC 10, CC 283, ST 130 and ST 288. As S. agalactiae strains of CC 1 and CC 10 are frequently isolated from adults with invasive disease, we hypothesize that the S. agalactiae Fru2 system senses the environment to allow the bacterium to adapt to new conditions encountered during the infection of adults. PMID:25733487

  7. Streamlined Island

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-514, 15 October 2003

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) picture shows a streamlined island in Marte Vallis, a large outflow channel system that crosses the 180oW meridian between the Elysium and Amazonis regions of Mars. The flow patterns on the floor of Marte Vallis might be the remains of lava flows or mud flows. Marte is the Spanish word for Mars. Most of the largest valleys on the red planet are named for 'Mars' in various languages. This island is located near 21.8oN, 175.3oW. The picture covers an area 3 km (1.9 mi) wide and is illuminated by sunlight from the lower left.

  8. AT islands - their nature and potential for anticancer strategies.

    PubMed

    Woynarowski, Jan M

    2004-03-01

    The human genome contains a unique class of domains, referred to as AT islands, which consist typically of 200-1000 bp long tracts of up to 100% A/T DNA. The significance of AT islands as potential targets for chemotherapeutic intervention stems from two main aspects. First, AT islands are inherently unstable (expandable) minisatellites that are found in various known loci of genomic instability, such as AT-rich fragile sites. Second, AT islands are involved in the organization of the genomic DNA on the nuclear matrix by acting as scaffold/matrix attachment regions, S/MARs. DNA duplexes of AT islands are unusually flexible and prone to base unpairing, which are crucial MAR attributes. Various AT islands show high binding affinity for isolated nuclear matrices and associate with the nuclear matrix in the cell. The cellular MAR function of AT islands may differ in cancer and normal cells. The abnormally expanded AT islands in the FRA16B fragile site in leukemic CEM cells act as strong, permanent MARs, while their unexpanded counterparts in normal cells are loop localized. Given their instability and involvement in the remodeling of the nuclear architecture, AT islands may be a factor in cancerous phenotypes. AT islands are preferentially targeted by the extremely potent DNA-alkylating antitumor drugs, bizelesin and U78779. High lethality of lesions in AT islands is consistent with the critical role of MAR domains in DNA replication. The abnormal structure/function of AT islands, such as their expansion and acquired strong MAR properties, may sensitize cancer cells to AT island targeting drugs. PMID:15032671

  9. Folly Island Tidal Lines

    Lines of debris from tidal action on Folly Island. Folly Island, a preserve owned by the Maine Coast Heritage Trust, is about 7 acres. It is located in Bartlett Narrows, along the western coast of Mount Desert Island....

  10. Folly Island Panorama

    A panorama from Folly Island. Folly Island, a preserve owned by the Maine Coast Heritage Trust, is about 7 acres. It is located in Bartlett Narrows, along the western coast of Mount Desert Island....

  11. Folly Island Tidal Lines

    Lines of debris from tidal action on Folly Island. Folly Island, a preserve owned by the Maine Coast Heritage Trust, is about 7 acres. It is located in Bartlett Narrows, along the western coast of Mount Desert Island....

  12. Island Formation: Constructing a Coral Island

    ERIC Educational Resources Information Center

    Austin, Heather; Edd, Amelia

    2009-01-01

    The process of coral island formation is often difficult for middle school students to comprehend. Coral island formation is a dynamic process, and students should have the opportunity to experience this process in a synergistic context. The authors provide instructional guidelines for constructing a coral island. Students play an interactive role…

  13. Site-Specific Mobilization of Vinyl Chloride Respiration Islands by a Mechanism Common in Dehalococcoides

    PubMed Central

    2011-01-01

    Background Vinyl chloride is a widespread groundwater pollutant and Group 1 carcinogen. A previous comparative genomic analysis revealed that the vinyl chloride reductase operon, vcrABC, of Dehalococcoides sp. strain VS is embedded in a horizontally-acquired genomic island that integrated at the single-copy tmRNA gene, ssrA. Results We targeted conserved positions in available genomic islands to amplify and sequence four additional vcrABC -containing genomic islands from previously-unsequenced vinyl chloride respiring Dehalococcoides enrichments. We identified a total of 31 ssrA-specific genomic islands from Dehalococcoides genomic data, accounting for 47 reductive dehalogenase homologous genes and many other non-core genes. Sixteen of these genomic islands contain a syntenic module of integration-associated genes located adjacent to the predicted site of integration, and among these islands, eight contain vcrABC as genetic 'cargo'. These eight vcrABC -containing genomic islands are syntenic across their ~12 kbp length, but have two phylogenetically discordant segments that unambiguously differentiate the integration module from the vcrABC cargo. Using available Dehalococcoides phylogenomic data we estimate that these ssrA-specific genomic islands are at least as old as the Dehalococcoides group itself, which in turn is much older than human civilization. Conclusions The vcrABC -containing genomic islands are a recently-acquired subset of a diverse collection of ssrA-specific mobile elements that are a major contributor to strain-level diversity in Dehalococcoides, and may have been throughout its evolution. The high similarity between vcrABC sequences is quantitatively consistent with recent horizontal acquisition driven by ~100 years of industrial pollution with chlorinated ethenes. PMID:21635780

  14. Evidence for metaviromic islands in marine phages

    PubMed Central

    Mizuno, Carolina Megumi; Ghai, Rohit; Rodriguez-Valera, Francisco

    2014-01-01

    Metagenomic islands (MGIs) have been defined as genomic regions in prokaryotic genomes that under-recruit from metagenomes where most of the same genome recruits at close to 100% identity over most of its length. The presence of MGIs in prokaryotes has been associated to the diversity of concurrent lineages that vary at this level to disperse the predatory pressure of phages that, reciprocally, maintain high clonal diversity in the population and improve ecosystem performance. This was proposed as a Constant-Diversity (C-D) model. Here we have investigated the regions of phage genomes under-recruiting in a metavirome constructed with a sample from the same habitat where they were retrieved. Some of the genes found to under-recruit are involved in host recognition as would be expected from the C-D model. Furthermore, the recruitment of intragenic regions known to be involved in molecular recognition also had a significant under-recruitment compared to the rest of the gene. However, other genes apparently disconnected from the recognition process under-recruited often, specifically the terminases involved in packaging of the phage genome in the capsid and a few others. In addition, some highly related phage genomes (at nucleotide sequence level) had no metaviromic islands (MVIs). We speculate that the latter might be generalist phages with broad infection range that do not require clone specific lineages. PMID:24550898

  15. Engineering a Reduced Escherichia coli Genome

    PubMed Central

    Kolisnychenko, Vitaliy; Plunkett, Guy; Herring, Christopher D.; Fehr, Tams; Psfai, Jnos; Blattner, Frederick R.; Psfai, Gyrgy

    2002-01-01

    Our goal is to construct an improved Escherichia coli to serve both as a better model organism and as a more useful technological tool for genome science. We developed techniques for precise genomic surgery and applied them to deleting the largest K-islands of E. coli, identified by comparative genomics as recent horizontal acquisitions to the genome. They are loaded with cryptic prophages, transposons, damaged genes, and genes of unknown function. Our method leaves no scars or markers behind and can be applied sequentially. Twelve K-islands were successfully deleted, resulting in an 8.1% reduced genome size, a 9.3% reduction of gene count, and elimination of 24 of the 44 transposable elements of E. coli. These are particularly detrimental because they can mutagenize the genome or transpose into clones being propagated for sequencing, as happened in 18 places of the draft human genome sequence. We found no change in the growth rate on minimal medium, confirming the nonessential nature of these islands. This demonstration of feasibility opens the way for constructing a maximally reduced strain, which will provide a clean background for functional genomics studies, a more efficient background for use in biotechnology applications, and a unique tool for studies of genome stability and evolution. [Sequence data described in this paper have been submitted to the DNA Data Bank of Japan, European Molecular Biology Laboratory, and GenBank databases under accession nos. AF402780, AF402779, and AF406953, respectively.] PMID:11932248

  16. AnnotateGenomicRegions: a web application

    PubMed Central

    2014-01-01

    Background Modern genomic technologies produce large amounts of data that can be mapped to specific regions in the genome. Among the first steps in interpreting the results is annotation of genomic regions with known features such as genes, promoters, CpG islands etc. Several tools have been published to perform this task. However, using these tools often requires a significant amount of bioinformatics skills and/or downloading and installing dedicated software. Results Here we present AnnotateGenomicRegions, a web application that accepts genomic regions as input and outputs a selection of overlapping and/or neighboring genome annotations. Supported organisms include human (hg18, hg19), mouse (mm8, mm9, mm10), zebrafish (danRer7), and Saccharomyces cerevisiae (sacCer2, sacCer3). AnnotateGenomicRegions is accessible online on a public server or can be installed locally. Some frequently used annotations and genomes are embedded in the application while custom annotations may be added by the user. Conclusions The increasing spread of genomic technologies generates the need for a simple-to-use annotation tool for genomic regions that can be used by biologists and bioinformaticians alike. AnnotateGenomicRegions meets this demand. AnnotateGenomicRegions is an open-source web application that can be installed on any personal computer or institute server. AnnotateGenomicRegions is available at: http://cru.genomics.iit.it/AnnotateGenomicRegions. PMID:24564446

  17. Pathogenicity Islands in Bacterial Pathogenesis

    PubMed Central

    Schmidt, Herbert; Hensel, Michael

    2004-01-01

    In this review, we focus on a group of mobile genetic elements designated pathogenicity islands (PAI). These elements play a pivotal role in the virulence of bacterial pathogens of humans and are also essential for virulence in pathogens of animals and plants. Characteristic molecular features of PAI of important human pathogens and their role in pathogenesis are described. The availability of a large number of genome sequences of pathogenic bacteria and their benign relatives currently offers a unique opportunity for the identification of novel pathogen-specific genomic islands. However, this knowledge has to be complemented by improved model systems for the analysis of virulence functions of bacterial pathogens. PAI apparently have been acquired during the speciation of pathogens from their nonpathogenic or environmental ancestors. The acquisition of PAI not only is an ancient evolutionary event that led to the appearance of bacterial pathogens on a timescale of millions of years but also may represent a mechanism that contributes to the appearance of new pathogens within a human life span. The acquisition of knowledge about PAI, their structure, their mobility, and the pathogenicity factors they encode not only is helpful in gaining a better understanding of bacterial evolution and interactions of pathogens with eukaryotic host cells but also may have important practical implications such as providing delivery systems for vaccination, tools for cell biology, and tools for the development of new strategies for therapy of bacterial infections. PMID:14726454

  18. ClbP Is a Prototype of a Peptidase Subgroup Involved in Biosynthesis of Nonribosomal Peptides*

    PubMed Central

    Dubois, Damien; Baron, Olivier; Cougnoux, Antony; Delmas, Julien; Pradel, Nathalie; Boury, Michèle; Bouchon, Bernadette; Bringer, Marie-Agnès; Nougayrède, Jean-Philippe; Oswald, Eric; Bonnet, Richard

    2011-01-01

    The pks genomic island of Escherichia coli encodes polyketide (PK) and nonribosomal peptide (NRP) synthases that allow assembly of a putative hybrid PK-NRP compound named colibactin that induces DNA double-strand breaks in eukaryotic cells. The pks-encoded machinery harbors an atypical essential protein, ClbP. ClbP crystal structure and mutagenesis experiments revealed a serine-active site and original structural features compatible with peptidase activity, which was detected by biochemical assays. Ten ClbP homologs were identified in silico in NRP genomic islands of closely and distantly related bacterial species. All tested ClbP homologs were able to complement a clbP-deficient E. coli mutant. ClbP is therefore a prototype of a new subfamily of extracytoplasmic peptidases probably involved in the maturation of NRP compounds. Such peptidases will be powerful tools for the manipulation of NRP biosynthetic pathways. PMID:21795676

  19. Barrier Island Hazard Mapping.

    ERIC Educational Resources Information Center

    Pilkey, Orrin H.; Neal, William J.

    1980-01-01

    Describes efforts to evaluate and map the susceptibility of barrier islands to damage from storms, erosion, rising sea levels and other natural phenomena. Presented are criteria for assessing the safety and hazard potential of island developments. (WB)

  20. Overwash on Assateague Island

    Overwash on Assateague Island. Overwash occurs when waves overtop the main sand dune and redistribute the sand along new patterns. Overwash has contributed to the gradual movement of Assateague Island to the south....

  1. Arctic ice islands

    SciTech Connect

    Sackinger, W.M.; Jeffries, M.O.; Lu, M.C.; Li, F.C.

    1988-01-01

    The development of offshore oil and gas resources in the Arctic waters of Alaska requires offshore structures which successfully resist the lateral forces due to moving, drifting ice. Ice islands are floating, a tabular icebergs, up to 60 meters thick, of solid ice throughout their thickness. The ice islands are thus regarded as the strongest ice features in the Arctic; fixed offshore structures which can directly withstand the impact of ice islands are possible but in some locations may be so expensive as to make oilfield development uneconomic. The resolution of the ice island problem requires two research steps: (1) calculation of the probability of interaction between an ice island and an offshore structure in a given region; and (2) if the probability if sufficiently large, then the study of possible interactions between ice island and structure, to discover mitigative measures to deal with the moving ice island. The ice island research conducted during the 1983-1988 interval, which is summarized in this report, was concerned with the first step. Monte Carlo simulations of ice island generation and movement suggest that ice island lifetimes range from 0 to 70 years, and that 85% of the lifetimes are less then 35 years. The simulation shows a mean value of 18 ice islands present at any time in the Arctic Ocean, with a 90% probability of less than 30 ice islands. At this time, approximately 34 ice islands are known, from observations, to exist in the Arctic Ocean, not including the 10-meter thick class of ice islands. Return interval plots from the simulation show that coastal zones of the Beaufort and Chukchi Seas, already leased for oil development, have ice island recurrences of 10 to 100 years. This implies that the ice island hazard must be considered thoroughly, and appropriate safety measures adopted, when offshore oil production plans are formulated for the Alaskan Arctic offshore. 132 refs., 161 figs., 17 tabs.

  2. Falkland Islands, UK

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This view of the Falkland Islands (52.0S, 58.5W) was taken with a dual camera mount. Compare this scene with STS048-109-043 to analyze the unique properties of each film type. Seldom seen cloud free, the Falkland Islands lie off the southern coast of Argentina. The cold Falklands Ocean Current keeps the islands chilly, ideal for sheep herding and fishing, the two main industries. Colonies of seals and penguins also thrive on the islands.

  3. Diomede Islands, Bering Straight

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Diomede Islands consisting of the western island Big Diomede (also known as Imaqliq, Nunarbuk or Ratmanov Island), and the eastern island Little Diomede (also known as Krusenstern Island or Inaliq), are two rocky islands located in the middle of the Bering Strait between Russia and Alaska. The islands are separated by an international border and the International Date Line which is approximately 1.5 km from each island; you can look from Alaska into tomorrow in Russia. At the closest land approach between the United States, which controls Little Diomede, and Russia, which controls Big Diomede, they are 3 km apart. Little Diomede Island constitutes the Alaskan City of Diomede, while Big Diomede Island is Russia's easternmost point. The first European to reach the islands was the Russian explorer Semyon Dezhnev in 1648. The text of the 1867 treaty finalizing the sale of Alaska uses the islands to designate the border between the two nations.

    The image was acquired July 8, 2000, covers an area of 13.5 x 10.8 km, and is located at 65.8 degrees north latitude, 169 degrees west longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  4. Overwash on Assateague Island

    Overwash on Assateague Island. When waves wash over the main sand dune on the island, that creates a phenomenon called overwash, where the sand is moved along the path of the wave. Overwash has contributed to the gradual movement of Assateague Island to the south....

  5. Bouvet Island near Antarctica

    Atmospheric Science Data Center

    2013-04-16

    ... the island is visible within a relatively clear area of open ocean. In the lower right image, the island is partially obscured by ... Steep cliffs surrounding most sides of the island also made access difficult, and after various attempts, a landing was made in 1822 by an ...

  6. Distinguishing Microbial Genome Fragments Based on Their Composition: Evolutionary and Comparative Genomic Perspectives

    PubMed Central

    Perry, Scott C.; Beiko, Robert G.

    2010-01-01

    It is well known that patterns of nucleotide composition vary within and among genomes, although the reasons why these variations exist are not completely understood. Between-genome compositional variation has been exploited to assign environmental shotgun sequences to their most likely originating genomes, whereas within-genome variation has been used to identify recently acquired genetic material such as pathogenicity islands. Recent sequence assignment techniques have achieved high levels of accuracy on artificial data sets, but the relative difficulty of distinguishing lineages with varying degrees of relatedness, and different types of genomic sequence, has not been examined in depth. We investigated the compositional differences in a set of 774 sequenced microbial genomes, finding rapid divergence among closely related genomes, but also convergence of compositional patterns among genomes with similar habitats. Support vector machines were then used to distinguish all pairs of genomes based on genome fragments 500 nucleotides in length. The nearly 300,000 accuracy scores obtained from these trials were used to construct general models of distinguishability versus taxonomic and compositional indices of genomic divergence. Unusual genome pairs were evident from their large residuals relative to the fitted model, and we identified several factors including genome reduction, putative lateral genetic transfer, and habitat convergence that influence the distinguishability of genomes. The positional, compositional, and functional context of a fragment within a genome has a strong influence on its likelihood of correct classification, but in a way that depends on the taxonomic and ecological similarity of the comparator genome. PMID:20333228

  7. Positive correlations between genomic %AT and genome size within strains of bacterial species.

    PubMed

    Bohlin, Jon; Sekse, Camilla; Skjerve, Eystein; Brynildsrud, Ola

    2014-06-01

    Genomic %AT has been found to correlate negatively with genome size in microbes. While microbes with large genomes are often GC rich and free living, AT-rich bacteria tend to be host associated with smaller genomes. With over 2000 fully sequenced and assembled microbial genomes available, we explored the relationship among genomic %AT, genome size, relative entropy (a measure associated with genetic drift) and fraction of genome islands (GIs) in microbial species with the genomes of more than 10 strains available. A negative correlation with genome size was found in six out of 12 phylogenetic groups and subphyla and a positive correlation in only two. At the species level, we found a trend of positive correlations between genomic %AT and genome size in eight out of 20 species, while only four showed a negative correlation. Estimated chromosomal fractions of GIs were found to correlate positively with genome size in the strains of 14 out of 18 species and genomic %AT in the strains of seven species (two correlated negatively). Although GIs explain most of the observed positive correlations between genomic %AT and size, Chlamydia trachomatis seem to be an exception; therefore, these findings needs to be further explored. PMID:24983532

  8. Great Ape Genomics

    PubMed Central

    Wall, Jeffrey D.

    2013-01-01

    The great ape families are the species most closely related to our own, comprising chimpanzees, bonobos, gorillas, and orangutans. They live exclusively in tropical rainforests in Central Africa and the islands of Southeast Asia. Due to their close evolutionary relationship with humans, great apes share many cognitive, physiological, and morphological similarities with humans. The members of the great ape family make obvious models to facilitate the further understanding about humans' biology and history. This review will discuss how the recent addition of genome-wide data from great apes has furthered humans' understanding of these species and humanity, especially in the realm of evolutionary genetics. PMID:24174434

  9. Ober's Island, One of the Review Islands on Rainy Lake, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Ober's Island, One of the Review Islands on Rainy Lake, bounded on the south by The Hawk Island and on the north by The Crow Island. These islands are located seven miles east of Ranier, Minnesota, three miles west of Voyageur National Park, and one mile south of the international border of the United States of America and Canada. The legal description of Mallard Island is Lot 6, Section 19, T-17-N, R-22-W, Koochiching County, Minnesota, Ranier, Koochiching County, MN

  10. Cancer Genomics

    PubMed Central

    Mardis, Elaine

    2015-01-01

    Modern cancer genomics has emerged from the combination of the Human Genome Reference, massively parallel sequencing, and the comparison of tumor to normal DNA sequences, revealing novel insights into the cancer genome and its amazing diversity. Recent developments in applying our knowledge of cancer genomics have focused on the utility of these data for clinical applications. The emergent results of this translation into the clinical setting already are changing the clinical care and monitoring of cancer patients. PMID:26937274

  11. Hydrologic data for Block Island, Rhode Island

    USGS Publications Warehouse

    Burns, Emily

    1993-01-01

    This report was compiled as part of a study to assess the hydrogeology and the quality and quantity of fresh ground water on Block Island, Rhode Island. Hydrologic data were collected on Block Island during 1988-91. The data are pre- sented in illustrations and tables. Data collec- ted include precipitation, surfae-water, ground- water, lithologic, and well-construction and dis- charge information. Precipitation data include total monthly precipitation values from 11 rain gages and water-quality analyses of 14 precipi- tation samples from one station. Surface-water data include water-level measurements at 12 ponds, water-quality data for five ponds, and field specific-conductance measurements at 56 surface- water sites (streams, ponds, and springs). Ground- water data include water-level measurements at 159 wells, water-quality data at 150 wells, and field specific-conductance data at 52 wells. Lithologic logs for 375 wells and test borings, and construc- tion and location data for 570 wells, springs, and test borings are included. In addition, the data set contains data on water quality of water samples, collected by the Rhode Island Department of Health during 1976-91, from Fresh and Sands Ponds and from wells at the Block Island Water Company well field north of Sands Pond.

  12. Stewart Head from Folly Island

    Stewart Head, as seen from Folly Island. Folly Island, a preserve owned by the Maine Coast Heritage Trust, is about 7 acres. It is located in Bartlett Narrows, along the western coast of Mount Desert Island. ...

  13. Microbial Lifestyle and Genome Signatures

    PubMed Central

    Dutta, Chitra; Paul, Sandip

    2012-01-01

    Microbes are known for their unique ability to adapt to varying lifestyle and environment, even to the extreme or adverse ones. The genomic architecture of a microbe may bear the signatures not only of its phylogenetic position, but also of the kind of lifestyle to which it is adapted. The present review aims to provide an account of the specific genome signatures observed in microbes acclimatized to distinct lifestyles or ecological niches. Niche-specific signatures identified at different levels of microbial genome organization like base composition, GC-skew, purine-pyrimidine ratio, dinucleotide abundance, codon bias, oligonucleotide composition etc. have been discussed. Among the specific cases highlighted in the review are the phenomena of genome shrinkage in obligatory host-restricted microbes, genome expansion in strictly intra-amoebal pathogens, strand-specific codon usage in intracellular species, acquisition of genome islands in pathogenic or symbiotic organisms, discriminatory genomic traits of marine microbes with distinct trophic strategies, and conspicuous sequence features of certain extremophiles like those adapted to high temperature or high salinity. PMID:23024607

  14. Complete genome sequence and genomic characterization of Microcystis panniformis FACHB 1757 by third-generation sequencing.

    PubMed

    Zhang, Jun-Yi; Guan, Rui; Zhang, Hu-Jun; Li, Hua; Xiao, Peng; Yu, Gong-Liang; Du, Lei; Cao, De-Min; Zhu, Bing-Chuan; Li, Ren-Hui; Lu, Zu-Hong

    2016-01-01

    The cyanobacterial genus Microcystis is well known as the main group that forms harmful blooms in water. A strain of Microcystis, M. panniformis FACHB1757, was isolated from Meiliang Bay of Lake Taihu in August 2011. The whole genome was sequenced using PacBio RS II sequencer with 48-fold coverage. The complete genome sequence with no gaps contained a 5,686,839 bp chromosome and a 38,683 bp plasmid, which coded for 6,519 and 49 proteins, respectively. Comparison with strains of M. aeruginosa and some other water bloom-forming cyanobacterial species revealed large-scale structure rearrangement and length variation at the genome level along with 36 genomic islands annotated genome-wide, which demonstrates high plasticity of the M. panniformis FACHB1757 genome and reveals that Microcystis has a flexible genome evolution. PMID:26823957

  15. Back to Treasure Island

    ERIC Educational Resources Information Center

    Shriki, Atara

    2011-01-01

    In this article, the author presents the Treasure Island problem and some inquiry activities derived from the problem. Trying to find where pirates buried a treasure leads to a surprising answer, multiple solutions, and a discussion of problem solving. The Treasure Island problem is an example of an inquiry activity that can be implemented in…

  16. Basaltic island sand provenance

    SciTech Connect

    Marsaglia, K.M. . Dept. of Geological Sciences)

    1992-01-01

    The Hawaiian Islands are an ideal location to study basaltic sand provenance in that they are a series of progressively older basaltic shield volcanoes with arid to humid microclimates. Sixty-two sand samples were collected from beaches on the islands of Hawaii, Maui, Oahu and Kauai and petrographically analyzed. The major sand components are calcareous bioclasts, volcanic lithic fragments, and monomineralic grains of dense minerals and plagioclase. Proportions of these components vary from island to island, with bioclastic end members being more prevalent on older islands exhibiting well-developed fringing reef systems and volcanic end members more prevalent on younger, volcanically active islands. Climatic variations across the island of Hawaii are reflected in the percentage of weathered detritus, which is greater on the wetter, northern side of the island. The groundmass of glassy, basaltic lithics is predominantly black tachylite, with lesser brown sideromelane; microlitic and lathwork textures are more common than holohyaline vitric textures. Other common basaltic volcanic lithic fragments are holocrystalline aggregates of silt-sized pyroxene or olivine, opaque minerals and plagioclase. Sands derived from alkalic lavas are texturally and compositionally indistinguishable from sands derived from tholeiitic lavas. Although Hawaiian basaltic sands overlap in composition with magmatic arc-derived sands in terms of their relative QFL, QmPK and LmLvLs percentages, they are dissimilar in that they lack felsic components and are more enriched in lathwork volcanic lithic fragments, holocrystalline volcanic lithic fragments, and dense minerals.

  17. Marine and Island Ecology.

    ERIC Educational Resources Information Center

    Stephens, Lawrence J.; And Others

    1988-01-01

    Describes an ecology course which provides students with an opportunity to observe aquatic and terrestrial life in the Bahamas. States that students learn scientific methodology by measuring physical and chemical aspects of the island habitats. Provides information on the island, course description and objectives, transportation, facilities, and

  18. Back to Treasure Island

    ERIC Educational Resources Information Center

    Shriki, Atara

    2011-01-01

    In this article, the author presents the Treasure Island problem and some inquiry activities derived from the problem. Trying to find where pirates buried a treasure leads to a surprising answer, multiple solutions, and a discussion of problem solving. The Treasure Island problem is an example of an inquiry activity that can be implemented in

  19. Channel Islands rare plants

    USGS Publications Warehouse

    McEachern, K.

    1999-01-01

    Database contains information on 65 rare plant taxa on six islands from archive searches and field surveys, including population location, size and extent 1920-1999, population and habitat conditions, census data, phenological information, associated species. USGS-BRD, Channel Islands Field Station, Ventura, CA.

  20. Barnacles on Folly Island

    Barnacles on a rock on Folly Island. Barnacles are crustaceans, related to lobsters and crabs, that often live in tidal zones. Once they become adults, they anchor themselves to a hard surface and filter feed. Folly Island, a preserve owned by the Maine Coast Heritage Trust, is about 7 acres. It is ...

  1. Islands in a Storm.

    ERIC Educational Resources Information Center

    Vail, Kathleen

    1995-01-01

    Smith Island in the Chesapeake Bay is actually a group of three islands: Ewell, Rhodes Point, and Tylerton. Dwindling enrollment jeopardizes the community's two schools that contain grades one through seven. The school board believes they can give the sixth and seventh graders at Ewell and Tylerton a better education on the mainland. (MLF)

  2. Rhode Island Seafloor

    This photograph is of the seafloor on the Rhode Island coast and shows a skate on a fine-grained, likely silty or muddy seafloor. This photograph was collected to support research and management activities (e.g., wind farms and fisheries) along the Rhode Island inner continental shelf....

  3. Marine and Island Ecology.

    ERIC Educational Resources Information Center

    Stephens, Lawrence J.; And Others

    1988-01-01

    Describes an ecology course which provides students with an opportunity to observe aquatic and terrestrial life in the Bahamas. States that students learn scientific methodology by measuring physical and chemical aspects of the island habitats. Provides information on the island, course description and objectives, transportation, facilities, and…

  4. Whole-Genome Plasticity among Mycobacterium avium Subspecies: Insights from Comparative Genomic Hybridizations†

    PubMed Central

    Wu, Chia-wei; Glasner, Jeremy; Collins, Michael; Naser, Saleh; Talaat, Adel M.

    2006-01-01

    Infection with Mycobacterium avium subsp. paratuberculosis causes Johne's disease in cattle and is also implicated in cases of Crohn's disease in humans. Another closely related strain, M. avium subsp. avium, is a health problem for immunocompromised patients. To understand the molecular pathogenesis of M. avium subspecies, we analyzed the genome contents of isolates collected from humans and domesticated or wildlife animals. Comparative genomic hybridizations indicated distinct lineages for each subspecies where the closest genomic relatedness existed between M. avium subsp. paratuberculosis isolates collected from human and clinical cow samples. Genomic islands (n = 24) comprising 846 kb were present in the reference M. avium subsp. avium strain but absent from 95% of M. avium subsp. paratuberculosis isolates. Additional analysis identified a group of 18 M. avium subsp. paratuberculosis-associated islands comprising 240 kb that were absent from most of the M. avium subsp. avium isolates. Sequence analysis of DNA regions flanking the genomic islands identified three large inversions in addition to several small inversions that could play a role in regulation of gene expression. Analysis of genes encoded in the genomic islands reveals factors that are probably important for various mechanisms of virulence. Overall, M. avium subsp. avium isolates displayed a higher level of genomic diversity than M. avium subsp. paratuberculosis isolates. Among M. avium subsp. paratuberculosis isolates, those from wildlife animals displayed the highest level of genomic rearrangements that were not observed in other isolates. The presented findings will affect the future design of diagnostics and vaccines for Johne's and Crohn's diseases and provide a model for genomic analysis of closely related bacteria. PMID:16385061

  5. Genome Sequences of Two Pathogenic Streptococcus agalactiae Isolates from the One-Humped Camel Camelus dromedarius

    PubMed Central

    de Villiers, Etienne P.; Younan, Mario; Andersson, Göran; Tettelin, Herve; Riley, David R.; Jores, Joerg; Bongcam-Rudloff, Erik; Bishop, Richard P.

    2013-01-01

    Streptococcus agalactiae causes a range of clinical syndromes in camels (Camelus dromedarius). We report the genome sequences of two S. agalactiae isolates that induce abscesses in Kenyan camels. These genomes provide novel data on the composition of the S. agalactiae “pan genome” and reveal the presence of multiple genomic islands. PMID:23868134

  6. Ober's Island: The Mallard Ober's Island, One of the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Ober's Island: The Mallard - Ober's Island, One of the Review Islands on Rainy Lake, bounded on the south by The Hawk Island and on the north by The Crow Island. These islands are located seven miles east of Ranier, Minnesota, three miles west of Voyageur National Park, and one mile south of the international border of the United States of America and Canada. The legal description of Mallard Island is Lot 6, Section 19, T-17-N, R-22-W, Koochiching County, Minnesota, Ranier, Koochiching County, MN

  7. Cognitive Constraints and Island Effects

    ERIC Educational Resources Information Center

    Hofmeister, Philip; Sag, Ivan A.

    2010-01-01

    Competence-based theories of island effects play a central role in generative grammar, yet the graded nature of many syntactic islands has never been properly accounted for. Categorical syntactic accounts of island effects have persisted in spite of a wealth of data suggesting that island effects are not categorical in nature and that…

  8. Cognitive Constraints and Island Effects

    ERIC Educational Resources Information Center

    Hofmeister, Philip; Sag, Ivan A.

    2010-01-01

    Competence-based theories of island effects play a central role in generative grammar, yet the graded nature of many syntactic islands has never been properly accounted for. Categorical syntactic accounts of island effects have persisted in spite of a wealth of data suggesting that island effects are not categorical in nature and that

  9. Ten years of bacterial genome sequencing: comparative-genomics-based discoveries.

    PubMed

    Binnewies, Tim T; Motro, Yair; Hallin, Peter F; Lund, Ole; Dunn, David; La, Tom; Hampson, David J; Bellgard, Matthew; Wassenaar, Trudy M; Ussery, David W

    2006-07-01

    It has been more than 10 years since the first bacterial genome sequence was published. Hundreds of bacterial genome sequences are now available for comparative genomics, and searching a given protein against more than a thousand genomes will soon be possible. The subject of this review will address a relatively straightforward question: "What have we learned from this vast amount of new genomic data?" Perhaps one of the most important lessons has been that genetic diversity, at the level of large-scale variation amongst even genomes of the same species, is far greater than was thought. The classical textbook view of evolution relying on the relatively slow accumulation of mutational events at the level of individual bases scattered throughout the genome has changed. One of the most obvious conclusions from examining the sequences from several hundred bacterial genomes is the enormous amount of diversity--even in different genomes from the same bacterial species. This diversity is generated by a variety of mechanisms, including mobile genetic elements and bacteriophages. An examination of the 20 Escherichia coli genomes sequenced so far dramatically illustrates this, with the genome size ranging from 4.6 to 5.5 Mbp; much of the variation appears to be of phage origin. This review also addresses mobile genetic elements, including pathogenicity islands and the structure of transposable elements. There are at least 20 different methods available to compare bacterial genomes. Metagenomics offers the chance to study genomic sequences found in ecosystems, including genomes of species that are difficult to culture. It has become clear that a genome sequence represents more than just a collection of gene sequences for an organism and that information concerning the environment and growth conditions for the organism are important for interpretation of the genomic data. The newly proposed Minimal Information about a Genome Sequence standard has been developed to obtain this information. PMID:16773396

  10. Small islands adrift

    NASA Astrophysics Data System (ADS)

    Petherick, Anna

    2015-07-01

    With the charismatic former president of the Maldives, Mohamed Nasheed, behind bars on a widely derided terrorism charge, Anna Petherick asks whether small island states can really make themselves heard in Paris.

  11. Belcher Islands, Canada

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Belcher Islands are an archipelago in Hudson Bay in Canada, belonging to the territory of Nunavit. The hamlet of Sanikiluaq is on the north coast of Flaherty Island. Over 1500 islands make up the archipelago. The folded sedimentary and volcanic rocks making up the islands are Proterozoic in age between 0.5 and 2.5 billion years old.

    The image mosaic was acquired 18 September 2006, covers an area of 45.7 x 113.3 km, and is located near 56.1 degrees north latitude, 79.4 degrees west longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  12. The Island Approach.

    ERIC Educational Resources Information Center

    Schroder, Peter C.

    1994-01-01

    Proposes the study of islands to develop a method of integrating sustainable development with sound resource management that can be extrapolated to more complex, highly populated continental coastal areas. (MDH)

  13. Island Watershed Activity.

    ERIC Educational Resources Information Center

    Benson, Rod

    2003-01-01

    Describes a 90-minute "Island Watershed" activity to help earth science students understand the concept of the water cycle. Introduces a surface waters unit appropriate for students in grades 7-10. Includes watershed project guidelines. (Author/KHR)

  14. Melville Island, Australia

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Melville Island, just off the coast of Darwin, Northern Territory, Australia (11.5S, 131.0E) is a sparsely inhabited tropical island with heavy woodland concentrations. The widespread and prominant smoke plumes were most likely set to renew pasture under open canopy woodland. Soil erosion is almost non- existant as can be seen by the clear and clean river flow. The offshore sediments are coastal current borne deposits from King Sound to the west.

  15. Development of Pabelokan Island

    SciTech Connect

    Powell, D.R.

    1982-01-01

    Pertamina and Iiapco has an expanding complex of offshore production platforms in the S.E. Sumatra contract area of the Java Sea. One of the requirements for this complex is a treatment facility for water to be used in secondary recovery operations. Because of the water quality required, the water treatment system is substantially larger than that normally used off shore. Instead of constructing one or more platforms for the treatment system, a small coral island named Pabelokan Island has been utilized for this purpose. Although the water treatment system is the primary reason for the base, other facilities were co-located to centralize electric power generation, living quarters and recreation facilities, and facilities for storage and maintenance of offshore equipment. Future plans for the island include a gas-liquids recovery system. This work describes the island facilities, and provides a case study in responsible planning and construction techniques in the development of a coral island for use as an offshore base. The experience gained should be useful in the planning of other coral islands for similar purpose.

  16. Effects of island geometry in postdeposition island growth

    NASA Astrophysics Data System (ADS)

    Tataru, Oana; Family, Fereydoon; Amar, Jacques G.

    2000-11-01

    The results of kinetic Monte Carlo simulations of a realistic model of postdeposition island growth that takes into account the spatial extent of islands are presented. Simulations were carried out on one- and two-dimensional substrates for different values of the critical island size i and were compared with previous results for a point-island model. The use of a realistic island geometry results in enhanced island aggregation and coalescence. This leads to an increase in the average island size S as well as the exponent z describing the dependence of S on coverage. The shape of the island-size distribution for i=3 also changes dramatically due to the existence of ``magic'' islands.

  17. Aquaculture Genomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genomics chapter covers the basics of genome mapping and sequencing and the current status of several relevant species. The chapter briefly describes the development and use of (cDNA, BAC, etc.) libraries for mapping and obtaining specific sequence information. Other topics include comparative ...

  18. Grass genomes

    PubMed Central

    Bennetzen, Jeffrey L.; SanMiguel, Phillip; Chen, Mingsheng; Tikhonov, Alexander; Francki, Michael; Avramova, Zoya

    1998-01-01

    For the most part, studies of grass genome structure have been limited to the generation of whole-genome genetic maps or the fine structure and sequence analysis of single genes or gene clusters. We have investigated large contiguous segments of the genomes of maize, sorghum, and rice, primarily focusing on intergenic spaces. Our data indicate that much (>50%) of the maize genome is composed of interspersed repetitive DNAs, primarily nested retrotransposons that insert between genes. These retroelements are less abundant in smaller genome plants, including rice and sorghum. Although 5- to 200-kb blocks of methylated, presumably heterochromatic, retrotransposons flank most maize genes, rice and sorghum genes are often adjacent. Similar genes are commonly found in the same relative chromosomal locations and orientations in each of these three species, although there are numerous exceptions to this collinearity (i.e., rearrangements) that can be detected at the levels of both the recombinational map and cloned DNA. Evolutionarily conserved sequences are largely confined to genes and their regulatory elements. Our results indicate that a knowledge of grass genome structure will be a useful tool for gene discovery and isolation, but the general rules and biological significance of grass genome organization remain to be determined. Moreover, the nature and frequency of exceptions to the general patterns of grass genome structure and collinearity are still largely unknown and will require extensive further investigation. PMID:9482817

  19. Population Genomics of Infectious and Integrated Wolbachia pipientis Genomes in Drosophila ananassae

    PubMed Central

    Choi, Jae Young; Bubnell, Jaclyn E.; Aquadro, Charles F.

    2015-01-01

    Coevolution between Drosophila and its endosymbiont Wolbachia pipientis has many intriguing aspects. For example, Drosophila ananassae hosts two forms of W. pipientis genomes: One being the infectious bacterial genome and the other integrated into the host nuclear genome. Here, we characterize the infectious and integrated genomes of W. pipientis infecting D. ananassae (wAna), by genome sequencing 15 strains of D. ananassae that have either the infectious or integrated wAna genomes. Results indicate evolutionarily stable maternal transmission for the infectious wAna genome suggesting a relatively long-term coevolution with its host. In contrast, the integrated wAna genome showed pseudogene-like characteristics accumulating many variants that are predicted to have deleterious effects if present in an infectious bacterial genome. Phylogenomic analysis of sequence variation together with genotyping by polymerase chain reaction of large structural variations indicated several wAna variants among the eight infectious wAna genomes. In contrast, only a single wAna variant was found among the seven integrated wAna genomes examined in lines from Africa, south Asia, and south Pacific islands suggesting that the integration occurred once from a single infectious wAna genome and then spread geographically. Further analysis revealed that for all D. ananassae we examined with the integrated wAna genomes, the majority of the integrated wAna genomic regions is represented in at least two copies suggesting a double integration or single integration followed by an integrated genome duplication. The possible evolutionary mechanism underlying the widespread geographical presence of the duplicate integration of the wAna genome is an intriguing question remaining to be answered. PMID:26254486

  20. An Enterotoxin-Bearing Pathogenicity Island in Staphylococcus epidermidis.

    PubMed

    Madhusoodanan, Jyoti; Seo, Keun Seok; Remortel, Brian; Park, Joo Youn; Hwang, Sun Young; Fox, Lawrence K; Park, Yong Ho; Deobald, Claudia F; Wang, Dan; Liu, Song; Daugherty, Sean C; Gill, Ann Lindley; Bohach, Gregory A; Gill, Steven R

    2011-04-01

    Cocolonization of human mucosal surfaces causes frequent encounters between various staphylococcal species, creating opportunities for the horizontal acquisition of mobile genetic elements. The majority of Staphylococcus aureus toxins and virulence factors are encoded on S. aureus pathogenicity islands (SaPIs). Horizontal movement of SaPIs between S. aureus strains plays a role in the evolution of virulent clinical isolates. Although there have been reports of the production of toxic shock syndrome toxin 1 (TSST-1), enterotoxin, and other superantigens by coagulase-negative staphylococci, no associated pathogenicity islands have been found in the genome of Staphylococcus epidermidis, a generally less virulent relative of S. aureus. We show here the first evidence of a composite S. epidermidis pathogenicity island (SePI), the product of multiple insertions in the genome of a clinical isolate. The taxonomic placement of S. epidermidis strain FRI909 was confirmed by a number of biochemical tests and multilocus sequence typing. The genome sequence of this strain was analyzed for other unique gene clusters and their locations. This pathogenicity island encodes and expresses staphylococcal enterotoxin C3 (SEC3) and staphylococcal enterotoxin-like toxin L (SElL), as confirmed by quantitative reverse transcription-PCR (qRT-PCR) and immunoblotting. We present here an initial characterization of this novel pathogenicity island, and we establish that it is stable, expresses enterotoxins, and is not obviously transmissible by phage transduction. We also describe the genome sequence, excision, replication, and packaging of a novel bacteriophage in S. epidermidis FRI909, as well as attempts to mobilize the SePI element by this phage. PMID:21317317

  1. Controls of barrier island morphology

    SciTech Connect

    Henderson, V.; Pilkey, O.H.; Keysworth, A.

    1988-08-01

    A study of 530 barrier islands from around the world has been made to determine broad physical and geologic controls on island occurrence and morphology. A total of 74 island chains, consisting of three or more islands each, was included in the investigation. Data for the study were derived from geologic and topographic maps and navigation charts. Environmental parameters considered include wind direction and velocity, mean significant wave height and storm-wave height, and tidal range. Island parameters include length, width, elevation, shape, volume, inlet width, tidal delta length, shoreface slope, coastal plain slope, and continental shelf slope. Most island chains (42%) occur along Amero-trailing edges of continents. Marginal seacoasts are second in importance (32%), and 22% of all island chains are found on collision coasts. Most islands (70%) are found in microtidal (< 2 m mean tide range) environments, with only 1% of individual islands occurring under macrotidal conditions (> 4 m mean tide range). According to the second-order coastal classification of Inman and Nordstrom, most barrier islands are found on either mountainous (32%) or wide shelf plains (32%). Next in importance are barrier islands on deltaic coasts (15%). Tidal range does not seem to play a strong role in determining island length (or inlet frequency). Islands are mostly less than 20 km in length, regardless of tidal range, although virtually all long islands (> 20 km) are found on microtidal coasts.

  2. A CPG ISLAND AT THE PROMOTER OF THE PDE8B GENE IS METHYLATED IN PLACENTA AND HYDATIDIFORM MOLES, BUT NOT IN CONTROL DNA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: We used a genome-wide CpG methylation screen, restriction landmark genome scanning (RLGS) to identify CpG islands that have altered methylation in complete hydatidiform moles (CHM), compared to control genomic DNA. Because CHM are diploid, but of uniparental parental inheritance and uniq...

  3. Deoxyribonucleic acid methylation profiling of single human blastocysts by methylated CpG-island amplification coupled with CpG-island microarray

    PubMed Central

    Huntriss, John; Hemmings, Karen; Baskaran, Praveen; Hazelwood, Lee; Elder, Kay; Virtanen, Carl; Miller, David; Picton, Helen M.

    2015-01-01

    Objective To study whether methylated CpG-island (CGI) amplification coupled with microarray (MCAM) can be used to generate DNA (deoxyribonucleic acid) methylation profiles from single human blastocysts. Design A pilot microarray study with methylated CpG-island amplification applied to human blastocyst genomic DNA and hybridized on CpG-island microarrays. Setting University research laboratory. Patient(s) Five cryopreserved sibling 2-pronuclear zygotes that were surplus to requirements for clinical treatment by in vitro fertilization were donated with informed consent from a patient attending Bourn Hall Clinic, Cambridge, United Kingdom. Intervention(s) None. Main Outcome Measure(s) Successful generation of genome-wide DNA methylation profiles at CpG islands from individual human blastocysts, with common genomic regions of DNA methylation identified between embryos. Result(s) Between 472 and 734 CpG islands were methylated in each blastocyst, with 121 CpG islands being commonly methylated in all 5 blastocysts. A further 159 CGIs were commonly methylated in 4 of the 5 tested blastocysts. Methylation was observed at a number of CGIs within imprinted-gene, differentially methylated regions (DMRs), including placental and preimplantation-specific DMRs. Conclusion(s) The MCAM method is capable of providing comprehensive DNA methylation data in individual human blastocysts. PMID:25914096

  4. Tracing Lifestyle Adaptation in Prokaryotic Genomes

    PubMed Central

    Altermann, Eric

    2012-01-01

    Lifestyle adaptation of microbes due to changes in their ecological niches or acquisition of new environments is a major driving force for genetic changes in their respective genomes. Moving into more specialized niches often results in the acquisition of new gene sets via horizontal gene transfer to utilize previously unavailable metabolites, while genetic ballast is shed by gene loss and/or gene inactivation. In some cases, larger genome rearrangements can be observed, such as the incorporation of whole genetic islands, providing a range of new phenotypic capabilities. Until recently these changes could not be comprehensively followed and identified due to the lack of complete microbial genome sequences. The advent of high-throughput DNA sequencing has dramatically changed the scientific landscape and today microbial genomes have become increasingly abundant. Currently, more than 2,900 genomes are published and more than 11,000 genome projects are listed in the Genomes Online Database‡. Although this wealth of information provides many new opportunities to assess microbial functionality, it also creates a new array of challenges when a comparison between multiple microbial genomes is required. Here, functional genome distribution (FGD) is introduced, analyzing the diversity between microbes based on their predicted ORFeome. FGD is therefore a comparative genomics approach, emphasizing the assessments of gene complements. To further facilitate the comparison between two or more genomes, degrees of amino-acid similarities between ORFeomes can be visualized in the Artemis comparison tool, graphically depicting small and large scale genome rearrangements, insertion and deletion events, and levels of similarity between individual open reading frames. FGD provides a new tool for comparative microbial genomics and the interpretation of differences in the genetic makeup of bacteria. PMID:22363326

  5. Heron Island, Australia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Heron Island is located at the sourthern end of Australia's 2,050 km-long Great Barrier Reef. Surrounded by coral reef and home to over 1000 species of fish, scuba divers and scientists alike are drawn to the island's resort and research station. The true-color image above was taken by Space Imaging's Ikonos satellite with a resolution of 4 meters per pixel-high enough to see individual boats tied up at the small marina. The narrow channel leading from the marina to the ocean was blasted and dredged decades ago, before the island became a national park. Since then the Australian government has implemented conservation measures, such as limiting the number of tourists and removing or recycling, instead of incinerating, all trash. One of the applications of remote sensing data from Ikonos is environmental monitoring, including studies of coral reef health. For more information about the island, read Heron Island. Image by Robert Simmon, based on data copyright Space Imaging

  6. Antarctic Genomics

    PubMed Central

    Clarke, Andrew; Cockell, Charles S.; Convey, Peter; Detrich III, H. William; Fraser, Keiron P. P.; Johnston, Ian A.; Methe, Barbara A.; Murray, Alison E.; Peck, Lloyd S.; Römisch, Karin; Rogers, Alex D.

    2004-01-01

    With the development of genomic science and its battery of technologies, polar biology stands on the threshold of a revolution, one that will enable the investigation of important questions of unprecedented scope and with extraordinary depth and precision. The exotic organisms of polar ecosystems are ideal candidates for genomic analysis. Through such analyses, it will be possible to learn not only the novel features that enable polar organisms to survive, and indeed thrive, in their extreme environments, but also fundamental biological principles that are common to most, if not all, organisms. This article aims to review recent developments in Antarctic genomics and to demonstrate the global context of such studies. PMID:18629155

  7. 11. VIEW NORTH, WOODLYNNE AVENUE ISLAND FROM 130 SOUTH ISLAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. VIEW NORTH, WOODLYNNE AVENUE ISLAND FROM 130 SOUTH ISLAND - White Horse Pike Rond Point, Intersection of Crescent Boulevard (U.S. Route 130), White Horse Pike (U.S. Route 30), & Clay Avenue, Collingswood, Camden County, NJ

  8. Prediction of CpG-island function: CpG clustering vs. sliding-window methods

    PubMed Central

    2010-01-01

    Background Unmethylated stretches of CpG dinucleotides (CpG islands) are an outstanding property of mammal genomes. Conventionally, these regions are detected by sliding window approaches using %G + C, CpG observed/expected ratio and length thresholds as main parameters. Recently, clustering methods directly detect clusters of CpG dinucleotides as a statistical property of the genome sequence. Results We compare sliding-window to clustering (i.e. CpGcluster) predictions by applying new ways to detect putative functionality of CpG islands. Analyzing the co-localization with several genomic regions as a function of window size vs. statistical significance (p-value), CpGcluster shows a higher overlap with promoter regions and highly conserved elements, at the same time showing less overlap with Alu retrotransposons. The major difference in the prediction was found for short islands (CpG islets), often exclusively predicted by CpGcluster. Many of these islets seem to be functional, as they are unmethylated, highly conserved and/or located within the promoter region. Finally, we show that window-based islands can spuriously overlap several, differentially regulated promoters as well as different methylation domains, which might indicate a wrong merge of several CpG islands into a single, very long island. The shorter CpGcluster islands seem to be much more specific when concerning the overlap with alternative transcription start sites or the detection of homogenous methylation domains. Conclusions The main difference between sliding-window approaches and clustering methods is the length of the predicted islands. Short islands, often differentially methylated, are almost exclusively predicted by CpGcluster. This suggests that CpGcluster may be the algorithm of choice to explore the function of these short, but putatively functional CpG islands. PMID:20500903

  9. Maintenance of biodiversity on islands.

    PubMed

    Chisholm, Ryan A; Fung, Tak; Chimalakonda, Deepthi; O'Dwyer, James P

    2016-04-27

    MacArthur and Wilson's theory of island biogeography predicts that island species richness should increase with island area. This prediction generally holds among large islands, but among small islands species richness often varies independently of island area, producing the so-called 'small-island effect' and an overall biphasic species-area relationship (SAR). Here, we develop a unified theory that explains the biphasic island SAR. Our theory's key postulate is that as island area increases, the total number of immigrants increases faster than niche diversity. A parsimonious mechanistic model approximating these processes reproduces a biphasic SAR and provides excellent fits to 100 archipelago datasets. In the light of our theory, the biphasic island SAR can be interpreted as arising from a transition from a niche-structured regime on small islands to a colonization-extinction balance regime on large islands. The first regime is characteristic of classic deterministic niche theories; the second regime is characteristic of stochastic theories including the theory of island biogeography and neutral theory. The data furthermore confirm our theory's key prediction that the transition between the two SAR regimes should occur at smaller areas, where immigration is stronger (i.e. for taxa that are better dispersers and for archipelagos that are less isolated). PMID:27122558

  10. Complete Genome Sequence of Salmonella enterica Serovar Typhimurium Strain SO3 (Sequence Type 302) Isolated from a Baby with Meningitis in Mexico

    PubMed Central

    Puente, José L.; Calva, Edmundo; Zaidi, Mussaret B.

    2016-01-01

    The complete genome of Salmonella enterica serovar Typhimurium strain SO3 (sequence type 302), isolated from a fatal meningitis infection in Mexico, was determined using PacBio technology. The chromosome hosts six complete prophages and is predicted to harbor 51 genomic islands, including 13 pathogenicity islands (SPIs). It carries the Salmonella virulence plasmid (pSTV). PMID:27103717

  11. Complete Genome Sequence of Salmonella enterica Serovar Typhimurium Strain SO3 (Sequence Type 302) Isolated from a Baby with Meningitis in Mexico.

    PubMed

    Vinuesa, Pablo; Puente, José L; Calva, Edmundo; Zaidi, Mussaret B; Silva, Claudia

    2016-01-01

    The complete genome of ITALIC! Salmonella entericaserovar Typhimurium strain SO3 (sequence type 302), isolated from a fatal meningitis infection in Mexico, was determined using PacBio technology. The chromosome hosts six complete prophages and is predicted to harbor 51 genomic islands, including 13 pathogenicity islands (SPIs). It carries the ITALIC! Salmonellavirulence plasmid (pSTV). PMID:27103717

  12. Contextual view of Treasure Island from Yerba Buena Island, showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Contextual view of Treasure Island from Yerba Buena Island, showing Palace of Fine and Decorative Arts (Building 3), far right, Hall of Transportation (Building 2), middle, and The Administration Building (Building 1), far left, Port of Trade Winds is in foreground, camera facing northwest - Golden Gate International Exposition, Treasure Island, San Francisco, San Francisco County, CA

  13. Archaeoastronomy of Easter Island

    NASA Astrophysics Data System (ADS)

    Edwards, Edmundo

    Astronomer priests or "skywatchers" on Easter Island lived in stone towers that were used as observatories and built stone markers in the periphery that indicated the heliacal rising of certain stars that served to indicate the arrival of marine birds, turtles, the offshore fishing season, and times for planting and harvest. Petroglyphs related to such sites depict outriggers, fishhooks, pelagic fish, and turtles and supposedly represented a star map. In this chapter, we analyze a set of such skywatchers dwellings, and stone markers located upon the North coast of Easter Island that have astronomic orientations, its related petroglyphs, and the relations between these directions with their yearly activities and their ritual calendar.

  14. Sakhalin Island terrain intelligence

    USGS Publications Warehouse

    U.S. Geological Survey Military Geology Branch

    1943-01-01

    This folio of maps and explanatory tables outlines the principal terrain features of Sakhalin Island. Each map and table is devoted to a specialized set of problems; together they cover the subjects of terrain appreciation, climate, rivers, water supply, construction materials, suitability for roads, suitability for airfields, fuels and other mineral resources, and geology. In most cases, the map of the island is divided into two parts: N. of latitude 50° N., Russian Sakhalin, and south of latitude 50° N., Japanese Sakhalin or Karafuto. These maps and data were compiled by the United States Geological Survey during the period from March to September, 1943.

  15. Long Island Solar Farm

    SciTech Connect

    Anders, R.

    2013-05-01

    The Long Island Solar Farm (LISF) is a remarkable success story, whereby very different interest groups found a way to capitalize on unusual circumstances to develop a mutually beneficial source of renewable energy. The uniqueness of the circumstances that were necessary to develop the Long Island Solar Farm make it very difficult to replicate. The project is, however, an unparalleled resource for solar energy research, which will greatly inform large-scale PV solar development in the East. Lastly, the LISF is a superb model for the process by which the project developed and the innovation and leadership shown by the different players.

  16. Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database.

    PubMed

    Winsor, Geoffrey L; Griffiths, Emma J; Lo, Raymond; Dhillon, Bhavjinder K; Shay, Julie A; Brinkman, Fiona S L

    2016-01-01

    The Pseudomonas Genome Database (http://www.pseudomonas.com) is well known for the application of community-based annotation approaches for producing a high-quality Pseudomonas aeruginosa PAO1 genome annotation, and facilitating whole-genome comparative analyses with other Pseudomonas strains. To aid analysis of potentially thousands of complete and draft genome assemblies, this database and analysis platform was upgraded to integrate curated genome annotations and isolate metadata with enhanced tools for larger scale comparative analysis and visualization. Manually curated gene annotations are supplemented with improved computational analyses that help identify putative drug targets and vaccine candidates or assist with evolutionary studies by identifying orthologs, pathogen-associated genes and genomic islands. The database schema has been updated to integrate isolate metadata that will facilitate more powerful analysis of genomes across datasets in the future. We continue to place an emphasis on providing high-quality updates to gene annotations through regular review of the scientific literature and using community-based approaches including a major new Pseudomonas community initiative for the assignment of high-quality gene ontology terms to genes. As we further expand from thousands of genomes, we plan to provide enhancements that will aid data visualization and analysis arising from whole-genome comparative studies including more pan-genome and population-based approaches. PMID:26578582

  17. Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database

    PubMed Central

    Winsor, Geoffrey L.; Griffiths, Emma J.; Lo, Raymond; Dhillon, Bhavjinder K.; Shay, Julie A.; Brinkman, Fiona S. L.

    2016-01-01

    The Pseudomonas Genome Database (http://www.pseudomonas.com) is well known for the application of community-based annotation approaches for producing a high-quality Pseudomonas aeruginosa PAO1 genome annotation, and facilitating whole-genome comparative analyses with other Pseudomonas strains. To aid analysis of potentially thousands of complete and draft genome assemblies, this database and analysis platform was upgraded to integrate curated genome annotations and isolate metadata with enhanced tools for larger scale comparative analysis and visualization. Manually curated gene annotations are supplemented with improved computational analyses that help identify putative drug targets and vaccine candidates or assist with evolutionary studies by identifying orthologs, pathogen-associated genes and genomic islands. The database schema has been updated to integrate isolate metadata that will facilitate more powerful analysis of genomes across datasets in the future. We continue to place an emphasis on providing high-quality updates to gene annotations through regular review of the scientific literature and using community-based approaches including a major new Pseudomonas community initiative for the assignment of high-quality gene ontology terms to genes. As we further expand from thousands of genomes, we plan to provide enhancements that will aid data visualization and analysis arising from whole-genome comparative studies including more pan-genome and population-based approaches. PMID:26578582

  18. Salt Marshes at Chincoteague Island

    Salt marshes at Chincoteague Island. The salt marshes that make up Chincoteague Island are important habitat for migrating waterfowl. In addition, they serve an important role in protecting inland ecosystems and communities from oceanic storms....

  19. Mosquito Point at Chincoteague Island

    Salt marshes at Mosquito Point of Chincoteague Island. The salt marshes that make up Chincoteague Island are important habitat for migrating waterfowl. In addition, they serve an important role in protecting inland ecosystems and communities from oceanic storms....

  20. Genome Sequence of Bradyrhizobium tropiciagri Strain CNPSo 1112T, Isolated from a Root Nodule of Neonotonia wightii.

    PubMed

    Delamuta, Jakeline Renata Maron; Gomes, Douglas Fabiano; Ribeiro, Renan Augusto; Chueire, Ligia Maria Oliveira; Souza, Renata Carolini; Almeida, Luiz Gonzaga Paula; Vasconcelos, Ana Tereza Ribeiro; Hungria, Mariangela

    2015-01-01

    CNPSo 1112(T) is a nitrogen-fixing symbiont of perennial soybean, a tropical legume forage. Its draft genome indicates a large genome with a circular chromosome and 9,554 coding sequences (CDSs). Operons of nodulation, nitrogen fixation, and uptake hydrogenase were present in the symbiotic island, and the genome encompasses several CDSs of stress tolerance. PMID:26679591

  1. Genome Sequence of Bradyrhizobium tropiciagri Strain CNPSo 1112T, Isolated from a Root Nodule of Neonotonia wightii

    PubMed Central

    Delamuta, Jakeline Renata Marçon; Gomes, Douglas Fabiano; Ribeiro, Renan Augusto; Chueire, Ligia Maria Oliveira; Souza, Renata Carolini; Almeida, Luiz Gonzaga Paula; Vasconcelos, Ana Tereza Ribeiro

    2015-01-01

    CNPSo 1112T is a nitrogen-fixing symbiont of perennial soybean, a tropical legume forage. Its draft genome indicates a large genome with a circular chromosome and 9,554 coding sequences (CDSs). Operons of nodulation, nitrogen fixation, and uptake hydrogenase were present in the symbiotic island, and the genome encompasses several CDSs of stress tolerance. PMID:26679591

  2. Genome Sequence of Vibrio cholerae Strain O1 Ogawa El Tor, Isolated in Mexico, 2013

    PubMed Central

    Hernández-Monroy, Irma; López-Martínez, Irma; Ortiz-Alcántara, Joanna; González-Durán, Elizabeth; Ruiz-Matus, Cuitláhuac; Kuri-Morales, Pablo; Ramírez-González, José Ernesto

    2014-01-01

    We present the draft genome sequence of Vibrio cholerae InDRE 3140 recovered in 2013 during a cholera outbreak in Mexico. The genome showed the Vibrio 7th pandemic islands VSP1 and VSP2, the pathogenic islands VPI-1 and VPI-2, the integrative and conjugative element SXT/R391 (ICE-SXT), and both prophages CTXφ and RS1φ. PMID:25359919

  3. Genome Sequence of Vibrio cholerae Strain O1 Ogawa El Tor, Isolated in Mexico, 2013.

    PubMed

    Díaz-Quiñonez, José Alberto; Hernández-Monroy, Irma; López-Martínez, Irma; Ortiz-Alcántara, Joanna; González-Durán, Elizabeth; Ruiz-Matus, Cuitláhuac; Kuri-Morales, Pablo; Ramírez-González, José Ernesto

    2014-01-01

    We present the draft genome sequence of Vibrio cholerae InDRE 3140 recovered in 2013 during a cholera outbreak in Mexico. The genome showed the Vibrio 7th pandemic islands VSP1 and VSP2, the pathogenic islands VPI-1 and VPI-2, the integrative and conjugative element SXT/R391 (ICE-SXT), and both prophages CTXφ and RS1φ. PMID:25359919

  4. HEAT ISLAND REDUCTION STRATEGIES GUIDEBOOK

    EPA Science Inventory

    This heat island reduction strategies guidebook provides an overview of urban heat islands and steps communities can take to reduce them. In particular, this guidebook provides background basics and answers the questions: What is a heat island? What are its impacts?" "What ar...

  5. HEAT ISLAND REDUCTION STRATEGIES GUIDEBOOK

    EPA Science Inventory

    This heat island reduction strategies guidebook provides an overview of urban heat islands and steps communities can take to reduce them. In particular, this guidebook provides background basics and answers the questions: “What is a heat island?” “What are its impacts?" "What ar...

  6. Pediatrics in the Marshall Islands

    SciTech Connect

    Dungy, C.I.; Morgan, B.C.; Adams, W.H.

    1984-01-01

    The delivery of health care to children living on isolated island communities presents unique challenges to health professionals. An evolved method of providing longitudinal services to infants and children residing on islands of the Marshall Island chain - a central Pacific portion of the Micronesian archipelago - is presented. The difficulties associated with provision of comprehensive health care in a vast ocean area are discussed.

  7. Pathogenicity Island-Directed Transfer of Unlinked Chromosomal Virulence Genes

    PubMed Central

    Chen, John; Ram, Geeta; Penadés, José R.; Brown, Stuart; Novick, Richard P.

    2014-01-01

    Summary In recent decades, the notorious pathogen Staphylococcus aureus has become progressively more contagious, more virulent and more resistant to antibiotics. This implies a rather dynamic evolutionary capability, representing a remarkable level of genomic plasticity, most probably maintained by horizontal gene transfer. Here we report that the staphylococcal pathogenicity islands have a dual role in gene transfer: they not only mediate their own transfer, but they can independently direct the transfer of unlinked chromosomal segments containing virulence genes. While transfer of the island itself requires specific helper phages, transfer of unlinked chromosomal segments does not, so that potentially any pac-type phage will serve. These results reveal that SaPIs can increase the horizontal exchange of accessory genes associated with disease, and may shape pathogen genomes beyond the confines of their attachment sites. PMID:25498143

  8. Genomics of Rapid Incipient Speciation in Sympatric Threespine Stickleback.

    PubMed

    Marques, David A; Lucek, Kay; Meier, Joana I; Mwaiko, Salome; Wagner, Catherine E; Excoffier, Laurent; Seehausen, Ole

    2016-02-01

    Ecological speciation is the process by which reproductively isolated populations emerge as a consequence of divergent natural or ecologically-mediated sexual selection. Most genomic studies of ecological speciation have investigated allopatric populations, making it difficult to infer reproductive isolation. The few studies on sympatric ecotypes have focused on advanced stages of the speciation process after thousands of generations of divergence. As a consequence, we still do not know what genomic signatures of the early onset of ecological speciation look like. Here, we examined genomic differentiation among migratory lake and resident stream ecotypes of threespine stickleback reproducing in sympatry in one stream, and in parapatry in another stream. Importantly, these ecotypes started diverging less than 150 years ago. We obtained 34,756 SNPs with restriction-site associated DNA sequencing and identified genomic islands of differentiation using a Hidden Markov Model approach. Consistent with incipient ecological speciation, we found significant genomic differentiation between ecotypes both in sympatry and parapatry. Of 19 islands of differentiation resisting gene flow in sympatry, all were also differentiated in parapatry and were thus likely driven by divergent selection among habitats. These islands clustered in quantitative trait loci controlling divergent traits among the ecotypes, many of them concentrated in one region with low to intermediate recombination. Our findings suggest that adaptive genomic differentiation at many genetic loci can arise and persist in sympatry at the very early stage of ecotype divergence, and that the genomic architecture of adaptation may facilitate this. PMID:26925837

  9. Genomics of Rapid Incipient Speciation in Sympatric Threespine Stickleback

    PubMed Central

    Marques, David A.; Lucek, Kay; Meier, Joana I.; Mwaiko, Salome; Wagner, Catherine E.; Excoffier, Laurent; Seehausen, Ole

    2016-01-01

    Ecological speciation is the process by which reproductively isolated populations emerge as a consequence of divergent natural or ecologically-mediated sexual selection. Most genomic studies of ecological speciation have investigated allopatric populations, making it difficult to infer reproductive isolation. The few studies on sympatric ecotypes have focused on advanced stages of the speciation process after thousands of generations of divergence. As a consequence, we still do not know what genomic signatures of the early onset of ecological speciation look like. Here, we examined genomic differentiation among migratory lake and resident stream ecotypes of threespine stickleback reproducing in sympatry in one stream, and in parapatry in another stream. Importantly, these ecotypes started diverging less than 150 years ago. We obtained 34,756 SNPs with restriction-site associated DNA sequencing and identified genomic islands of differentiation using a Hidden Markov Model approach. Consistent with incipient ecological speciation, we found significant genomic differentiation between ecotypes both in sympatry and parapatry. Of 19 islands of differentiation resisting gene flow in sympatry, all were also differentiated in parapatry and were thus likely driven by divergent selection among habitats. These islands clustered in quantitative trait loci controlling divergent traits among the ecotypes, many of them concentrated in one region with low to intermediate recombination. Our findings suggest that adaptive genomic differentiation at many genetic loci can arise and persist in sympatry at the very early stage of ecotype divergence, and that the genomic architecture of adaptation may facilitate this. PMID:26925837

  10. Magnetic-island formation

    SciTech Connect

    Boozer, A.H.

    1983-08-01

    The response of a finite conductivity plasma to resonant magnetic perturbations is studied. The equations, which are derived for the time development of magnetic islands, help one interpret the singular currents which occur under the assumption of perfect plasma conductivity. The relation to the Rutherford regime of resistive instabilities is given.

  11. Kiritimati, Kiribati (Christmas Island)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Pronounced 'Ki-ris-mas,' Kiritimati Island has a large infilled lagoon that gives it the largest land area (125 square miles, 321 square km) of any atoll in the world. Captain Cook named the atoll Christmas Island when he arrived on Christmas Eve in 1777. Used for nuclear testing in the 1950s and 1960s, the island is now valued for its marine and wildlife resources. It is particularly important as a seabird nesting site-with an estimated 6 million birds using or breeding on the island, including several million Sooty Terns. Rainfall on Kiritimati is linked to El Nino patterns, with long droughts experienced between the wetter El Nino years. This image is based on a mosaic of four digital photographs taken on 16 January 2002 from the Space Station Alpha as part of the Crew Earth Observations Project. The underlying data have 10 meter spatial resolution. Coral reefs are one of the areas selected as a scientific theme for this project (see also the recent Earth Observatory article, Mapping the Decline of Coral Reefs. The mosaic, based on images ISS004-ESC-6249 to 6252, was provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth.

  12. Hawaii's Sugar Islands.

    ERIC Educational Resources Information Center

    Hawaiian Sugar Planters' Association, Aiea, HI.

    A warm and sunny subtropical climate helps make Hawaii an important sugar producer. History records that sugarcane was already present when Captain James Cook discovered the islands in 1778, and that the first successful sugarcane plantation was started in 1835 by Ladd and Company at Koloa. The first recorded export of Hawaiian sugar was in 1837,…

  13. Atsena Otie Key Island

    Atsena Otie Key is one of thirteen islands on Florida's Gulf Coast that make up Cedar Keys National Wildlife Refuge. Nearby waters support a multi-million dollar clam-farming industry. USGS documented pre-oil coastal conditions near the Refuge with baseline petrochemical measurements and aerial phot...

  14. Pine Island Bay

    Atmospheric Science Data Center

    2013-04-16

    ... latitude, 102°W longitude) sometime between November 4 and 12, 2001. Images of the glacier were acquired by the Multi-angle Imaging ... decades. The newly hatched berg represents nearly seven years of ice outflow from Pine Island Glacier released to the ocean in a single ...

  15. Hawaii's Sugar Islands.

    ERIC Educational Resources Information Center

    Hawaiian Sugar Planters' Association, Aiea, HI.

    A warm and sunny subtropical climate helps make Hawaii an important sugar producer. History records that sugarcane was already present when Captain James Cook discovered the islands in 1778, and that the first successful sugarcane plantation was started in 1835 by Ladd and Company at Koloa. The first recorded export of Hawaiian sugar was in 1837,

  16. Plum Island Seafloor

    This photograph is of the seafloor off the Plum Island coast and shows spider crabs on seabed characterized by coarse sand, gravelly sediment and shell fragments. This photograph was collected as part of a collaborative seafloor mapping program between the USGS and the Connecticut Department of Envi...

  17. Block Island Seafloor

    This photograph is of the seafloor off the Block Island coast and shows a rock crab and several shrimp on a boulder that is covered with bryozoans. Shell fragments and other coarse grained sediment can be seen in the background (upper left corner). This photograph was collected to support research a...

  18. Multidecadal shoreline changes of atoll islands in the Marshall Islands

    NASA Astrophysics Data System (ADS)

    Ford, M.

    2012-12-01

    Atoll islands are considered highly vulnerable to the impacts of continued sea level rise. One of the most commonly predicted outcomes of continued sea level rise is widespread and chronic shoreline erosion. Despite the widespread implications of predicted erosion, the decadal scale changes of atoll island shorelines are poorly resolved. The Marshall Islands is one of only four countries where the majority of inhabited land is comprised of reef and atoll islands. Consisting of 29 atolls and 5 mid-ocean reef islands, the Marshall Islands are considered highly vulnerable to the impacts of sea level rise. A detailed analysis of shoreline change on over 300 islands on 10 atolls was undertaken using historic aerial photos (1945-1978) and modern high resolution satellite imagery (2004-2012). Results highlight the complex and dynamic nature of atoll islands, with significant shifts in shoreline position observed over the period of analysis. Results suggest shoreline accretion is the dominant mode of change on the islands studied, often associated with a net increase in vegetated island area. However, considerable inter- and intra-atoll variability exists with regards to shoreline stability. Findings are discussed with respect to island morphodynamics and potential hazard mitigation and planning responses within atoll settings.

  19. The human genome: a multifractal analysis

    PubMed Central

    2011-01-01

    Background Several studies have shown that genomes can be studied via a multifractal formalism. Recently, we used a multifractal approach to study the genetic information content of the Caenorhabditis elegans genome. Here we investigate the possibility that the human genome shows a similar behavior to that observed in the nematode. Results We report here multifractality in the human genome sequence. This behavior correlates strongly on the presence of Alu elements and to a lesser extent on CpG islands and (G+C) content. In contrast, no or low relationship was found for LINE, MIR, MER, LTRs elements and DNA regions poor in genetic information. Gene function, cluster of orthologous genes, metabolic pathways, and exons tended to increase their frequencies with ranges of multifractality and large gene families were located in genomic regions with varied multifractality. Additionally, a multifractal map and classification for human chromosomes are proposed. Conclusions Based on these findings, we propose a descriptive non-linear model for the structure of the human genome, with some biological implications. This model reveals 1) a multifractal regionalization where many regions coexist that are far from equilibrium and 2) this non-linear organization has significant molecular and medical genetic implications for understanding the role of Alu elements in genome stability and structure of the human genome. Given the role of Alu sequences in gene regulation, genetic diseases, human genetic diversity, adaptation and phylogenetic analyses, these quantifications are especially useful. PMID:21999602

  20. Magnetic Island Induced Bootstrap Current on Island Dynamics in Tokamaks

    SciTech Connect

    Spong, Donald A; Shaing, K. C.

    2006-02-01

    When a magnetic island is embedded in toroidally symmetric tokamaks, the toroidal symmetry in |B| is broken [K. C. Shaing, Phys. Rev. Lett. 87, 245003 (2001)] . Here, B is the magnetic field. This broken symmetry induces an additional bootstrap current density in the vicinity of the island. It is illustrated that this island induced bootstrap current density modifies the island evolution equation and imposes a lower limit on the absolute value of the tearing mode stability parameter |{Delta}{prime}| for the island to be unstable. This lower limit depends on the local poloidal plasma beta {beta}{sub p}, the ratio of the plasma pressure to the poloidal magnetic field pressure. If {beta}{sub p} is high enough, the magnetic island is stable. This mechanism provides an alternative route to stabilize the island.

  1. Magnetic island induced bootstrap current on island dynamics in tokamaks

    SciTech Connect

    Shaing, K.C.; Spong, D.A.

    2006-02-15

    When a magnetic island is embedded in toroidally symmetric tokamaks, the toroidal symmetry in |B| is broken [K. C. Shaing, Phys. Rev. Lett. 87, 245003 (2001)]. Here, B is the magnetic field. This broken symmetry induces an additional bootstrap current density in the vicinity of the island. It is illustrated that this island induced bootstrap current density modifies the island evolution equation and imposes a lower limit on the absolute value of the tearing mode stability parameter {delta}{sup '} for the island to be unstable. This lower limit depends on the local poloidal plasma beta {beta}{sub p}, the ratio of the plasma pressure to the poloidal magnetic field pressure. If {beta}{sub p} is high enough, the magnetic island is stable. This mechanism provides an alternative route to stabilize the island.

  2. Principal facts for gravity stations in the Rat Islands and Delarof Islands and Tanaga Island, Alaska

    USGS Publications Warehouse

    Healey, D.L.

    1975-01-01

    Gravity observations were made both east and west of the international dateline in the Aleutian Islands during 1970. A total of 280 gravity observations were made in the Rat Islands to the west and the Delarof Islands and Tanaga Island to the east. The principal facts and explanatory information for these data are included herein. These data have not been adjusted to the 1971 International Gravity Standardization Network datum.

  3. Genome databases

    SciTech Connect

    Courteau, J.

    1991-10-11

    Since the Genome Project began several years ago, a plethora of databases have been developed or are in the works. They range from the massive Genome Data Base at Johns Hopkins University, the central repository of all gene mapping information, to small databases focusing on single chromosomes or organisms. Some are publicly available, others are essentially private electronic lab notebooks. Still others limit access to a consortium of researchers working on, say, a single human chromosome. An increasing number incorporate sophisticated search and analytical software, while others operate as little more than data lists. In consultation with numerous experts in the field, a list has been compiled of some key genome-related databases. The list was not limited to map and sequence databases but also included the tools investigators use to interpret and elucidate genetic data, such as protein sequence and protein structure databases. Because a major goal of the Genome Project is to map and sequence the genomes of several experimental animals, including E. coli, yeast, fruit fly, nematode, and mouse, the available databases for those organisms are listed as well. The author also includes several databases that are still under development - including some ambitious efforts that go beyond data compilation to create what are being called electronic research communities, enabling many users, rather than just one or a few curators, to add or edit the data and tag it as raw or confirmed.

  4. 78 FR 58880 - Safety Zone; Catawba Island Club Wedding Event, Catawba Island Club, Catawba Island, OH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-25

    ... DHS Department of Homeland Security FR Federal Register NPRM Notice of Proposed Rulemaking TFR... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Catawba Island Club Wedding Event, Catawba Island Club, Catawba Island, OH ACTION: Temporary final rule. SUMMARY: The Coast Guard is...

  5. Genome Informatics

    PubMed Central

    Winslow, Raimond L.; Boguski, Mark S.

    2005-01-01

    This article reviews recent advances in genomics and informatics relevant to cardiovascular research. In particular, we review the status of (1) whole genome sequencing efforts in human, mouse, rat, zebrafish, and dog; (2) the development of data mining and analysis tools; (3) the launching of the National Heart, Lung, and Blood Institute Programs for Genomics Applications and Proteomics Initiative; (4) efforts to characterize the cardiac transcriptome and proteome; and (5) the current status of computational modeling of the cardiac myocyte. In each instance, we provide links to relevant sources of information on the World Wide Web and critical appraisals of the promises and the challenges of an expanding and diverse information landscape. PMID:12750305

  6. Listeria Genomics

    NASA Astrophysics Data System (ADS)

    Cabanes, Didier; Sousa, Sandra; Cossart, Pascale

    The opportunistic intracellular foodborne pathogen Listeria monocytogenes has become a paradigm for the study of host-pathogen interactions and bacterial adaptation to mammalian hosts. Analysis of L. monocytogenes infection has provided considerable insight into how bacteria invade cells, move intracellularly, and disseminate in tissues, as well as tools to address fundamental processes in cell biology. Moreover, the vast amount of knowledge that has been gathered through in-depth comparative genomic analyses and in vivo studies makes L. monocytogenes one of the most well-studied bacterial pathogens. This chapter provides an overview of progress in the exploration of genomic, transcriptomic, and proteomic data in Listeria spp. to understand genome evolution and diversity, as well as physiological aspects of metabolism used by bacteria when growing in diverse environments, in particular in infected hosts.

  7. LOUISIANA BARRIER ISLAND EROSION STUDY.

    USGS Publications Warehouse

    Sallenger,, Asbury H., Jr.; Penland, Shea; Williams, S. Jeffress; Suter, John R.

    1987-01-01

    During 1986, the U. S. Geological Survey and the Louisiana Geological Survey began a five-year cooperative study focused on the processes which cause erosion of barrier islands. These processes must be understood in order to predict future erosion and to better manage our coastal resources. The study area includes the Louisiana barrier islands which serve to protect 41% of the nation's wetlands. These islands are eroding faster than any other barrier islands in the United States, in places greater than 20 m/yr. The study is divided into three parts: geological development of barrier islands, quantitative processes of barrier island erosion and applications of results. The study focuses on barrier islands in Louisiana although many of the results are applicable nationwide.

  8. Complete nucleotide sequence analysis of a Dengue-1 virus isolated on Easter Island, Chile.

    PubMed

    Cáceres, C; Yung, V; Araya, P; Tognarelli, J; Villagra, E; Vera, L; Fernández, J

    2008-01-01

    Dengue-1 viruses responsible for the dengue fever outbreak in Easter Island in 2002 were isolated from acute-phase sera of dengue fever patients. In order to analyze the complete genome sequence, we designed primers to amplify contiguous segments across the entire sequence of the viral genome. RT-PCR products obtained were cloned, and complete nucleotide and deduced amino acid sequences were determined. This report constitutes the first complete genetic characterization of a DENV-1 isolate from Chile. Phylogenetic analysis shows that an Easter Island isolate is most closely related to Pacific DENV-1 genotype IV viruses. PMID:18815724

  9. Landscapes of Santa Rosa Island, Channel Islands National Park, California

    USGS Publications Warehouse

    Schumann, R. Randall; Minor, Scott A.; Muhs, Daniel R.; Pigati, Jeffery S.

    2014-01-01

    Santa Rosa Island (SRI) is the second-largest of the California Channel Islands. It is one of 4 east–west aligned islands forming the northern Channel Islands chain, and one of the 5 islands in Channel Islands National Park. The landforms, and collections of landforms called landscapes, of Santa Rosa Island have been created by tectonic uplift and faulting, rising and falling sea level, landslides, erosion and deposition, floods, and droughts. Landscape features, and areas delineating groups of related features on Santa Rosa Island, are mapped, classified, and described in this paper. Notable landscapes on the island include beaches, coastal plains formed on marine terraces, sand dunes, and sand sheets. In this study, the inland physiography has been classified into 4 areas based on relief and degree of fluvial dissection. Most of the larger streams on the island occupy broad valleys that have been filled with alluvium and later incised to form steep- to vertical-walled arroyos, or barrancas, leaving a relict floodplain above the present channel. A better understanding of the processes and mechanisms that created these landscapes enhances visitors’ enjoyment of their surroundings and contributes to improving land and resource management strategies in order to optimize and balance the multiple goals of conservation, preservation, restoration, and visitor experience.

  10. Genome Sequence and Comparative Genome Analysis of Lactobacillus casei: Insights into Their Niche-Associated Evolution

    PubMed Central

    Cai, Hui; Thompson, Rebecca; Budinich, Mateo F.; Broadbent, Jeff R.

    2009-01-01

    Lactobacillus casei is remarkably adaptable to diverse habitats and widely used in the food industry. To reveal the genomic features that contribute to its broad ecological adaptability and examine the evolution of the species, the genome sequence of L. casei ATCC 334 is analyzed and compared with other sequenced lactobacilli. This analysis reveals that ATCC 334 contains a high number of coding sequences involved in carbohydrate utilization and transcriptional regulation, reflecting its requirement for dealing with diverse environmental conditions. A comparison of the genome sequences of ATCC 334 to L. casei BL23 reveals 12 and 19 genomic islands, respectively. For a broader assessment of the genetic variability within L. casei, gene content of 21 L. casei strains isolated from various habitats (cheeses, n = 7; plant materials, n = 8; and human sources, n = 6) was examined by comparative genome hybridization with an ATCC 334-based microarray. This analysis resulted in identification of 25 hypervariable regions. One of these regions contains an overrepresentation of genes involved in carbohydrate utilization and transcriptional regulation and was thus proposed as a lifestyle adaptation island. Differences in L. casei genome inventory reveal both gene gain and gene decay. Gene gain, via acquisition of genomic islands, likely confers a fitness benefit in specific habitats. Gene decay, that is, loss of unnecessary ancestral traits, is observed in the cheese isolates and likely results in enhanced fitness in the dairy niche. This study gives the first picture of the stable versus variable regions in L. casei and provides valuable insights into evolution, lifestyle adaptation, and metabolic diversity of L. casei. PMID:20333194

  11. The Salmonella Pathogenicity Island 13 contributes to pathogenesis in streptomycin pre-treated mice but not in day-old chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonella Enteritidis (S. Enteritidis) is a human and animal pathogen that causes gastroenteritis characterized by inflammatory diarrhea and occasionally an invasive systemic infection. Salmonella pathogenicity islands (SPIs) are horizontally acquired genomic segments known to contribute to Salmone...

  12. Genome cartography: charting the apicomplexan genome

    PubMed Central

    Kissinger, Jessica C.; DeBarry, Jeremy

    2011-01-01

    Genes reside in particular genomic contexts that can be mapped at many levels. Historically, genetic maps were used primarily to locate genes. Recent technological advances in genome sequence determination have made the analysis and comparison of whole genomes possible and increasingly tractable. If we shift our focus from gene content (the inventory of genes contained within a genome), to genome composition and organization, what do we see? This review examines what has been learned about the evolution of the apicomplexan genome and the significance and impact of genomic location on our understanding of the eukaryotic genome and parasite biology. PMID:21764378

  13. GENOME MAPPING

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genome maps can be thought of much like road maps except that, instead of traversing across land, they traverse across the chromosomes of an organism. Genetic markers serve as `landmarks¿ along the chromosome and provide researchers information as to how close they may be to a gene or region of int...

  14. Charge Islands Through Tunneling

    NASA Technical Reports Server (NTRS)

    Robinson, Daryl C.

    2002-01-01

    It has been recently reported that the electrical charge in a semiconductive carbon nanotube is not evenly distributed, but rather it is divided into charge "islands." This paper links the aforementioned phenomenon to tunneling and provides further insight into the higher rate of tunneling processes, which makes tunneling devices attractive. This paper also provides a basis for calculating the charge profile over the length of the tube so that nanoscale devices' conductive properties may be fully exploited.

  15. Leyte Island, Philippines

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The effects of Tropical Storm Thelma in November 1991, three weeks prior to the taking of this photo can still be seen on Leyte, (10.5N, 125.0E). Flash floods and mud slides triggered by the heavy rainfall and aggravated by logging operations on the mountain slopes, added to the general destruction caused by the storm. Fresh water runoff (lens) into the ocean are still evident as numerous bright semi circles around the island perimeter.

  16. Comparative Whole-Genome Mapping To Determine Staphylococcus aureus Genome Size, Virulence Motifs, and Clonality

    PubMed Central

    Pantrang, Madhulatha; Stahl, Buffy; Briska, Adam M.; Stemper, Mary E.; Wagner, Trevor K.; Zentz, Emily B.; Callister, Steven M.; Lovrich, Steven D.; Henkhaus, John K.; Dykes, Colin W.

    2012-01-01

    Despite being a clonal pathogen, Staphylococcus aureus continues to acquire virulence and antibiotic-resistant genes located on mobile genetic elements such as genomic islands, prophages, pathogenicity islands, and the staphylococcal chromosomal cassette mec (SCCmec) by horizontal gene transfer from other staphylococci. The potential virulence of a S. aureus strain is often determined by comparing its pulsed-field gel electrophoresis (PFGE) or multilocus sequence typing profiles to that of known epidemic or virulent clones and by PCR of the toxin genes. Whole-genome mapping (formerly optical mapping), which is a high-resolution ordered restriction mapping of a bacterial genome, is a relatively new genomic tool that allows comparative analysis across entire bacterial genomes to identify regions of genomic similarities and dissimilarities, including small and large insertions and deletions. We explored whether whole-genome maps (WGMs) of methicillin-resistant S. aureus (MRSA) could be used to predict the presence of methicillin resistance, SCCmec type, and Panton-Valentine leukocidin (PVL)-producing genes on an S. aureus genome. We determined the WGMs of 47 diverse clinical isolates of S. aureus, including well-characterized reference MRSA strains, and annotated the signature restriction pattern in SCCmec types, arginine catabolic mobile element (ACME), and PVL-carrying prophage, PhiSa2 or PhiSa2-like regions on the genome. WGMs of these isolates accurately characterized them as MRSA or methicillin-sensitive S. aureus based on the presence or absence of the SCCmec motif, ACME and the unique signature pattern for the prophage insertion that harbored the PVL genes. Susceptibility to methicillin resistance and the presence of mecA, SCCmec types, and PVL genes were confirmed by PCR. A WGM clustering approach was further able to discriminate isolates within the same PFGE clonal group. These results showed that WGMs could be used not only to genotype S. aureus but also to identify genetic motifs in MRSA that may predict virulence. PMID:22915603

  17. Islands of the Arctic

    NASA Astrophysics Data System (ADS)

    Overpeck, Jonathan

    2004-02-01

    Few environments on Earth are changing more dramatically than the Arctic. Sea ice retreat and thinning is unprecedented in the period of the satellite record. Surface air temperatures are the warmest in centuries. The biology of Arctic lakes is changing like never before in millennia. Everything is pointing to the meltdown predicted by climate model simulations for the next 100 years. At the same time, the Arctic remains one of the most pristine and beautiful places on Earth. For both those who know the Arctic and those who want to know it, this book is worth its modest price. There is much more to the Arctic than its islands, but there's little doubt that Greenland and the major northern archipelagos can serve as a great introduction to the environment and magnificence of the Arctic. The book uses the islands of the Arctic to give a good introduction to what the Arctic environment is all about. The first chapter sets the stage with an overview of the geography of the Arctic islands, and this is followed by chapters that cover many key aspects of the Arctic: the geology (origins), weather and climate, glaciers, ice sheets, sea ice, permafrost and other frozen ground issues, coasts, rivers, lakes, animals, people, and environmental impacts. The material is pitched at a level well suited for the interested layperson, but the book will also appeal to those who study the science of the Arctic.

  18. Draft Genome Sequence of the Commercial Biocontrol Strain Pantoea agglomerans P10c

    PubMed Central

    Rezzonico, Fabio; Blom, Jochen; Goesmann, Alexander; Abelli, Azzurra; Kron Morelli, Roberto; Vanneste, Joël L.; Duffy, Brion

    2015-01-01

    We report here the draft genome sequence of the biocontrol strain Pantoea agglomerans P10c, composed of a draft chromosome and two plasmids: the 559-kb large Pantoea plasmid 1 (pPag3) and a 182-kb plasmid (pPag1). A genomic island containing pantocin A biosynthesis genes was identified. PMID:26659685

  19. Genomic and comparative genomic analyses of Rickettsia heilongjiangensis provide insight into its evolution and pathogenesis.

    PubMed

    Duan, Changsong; Xiong, Xiaolu; Qi, Yong; Gong, Wenping; Jiao, Jun; Wen, Bohai

    2014-08-01

    Rickettsia heilongjiangensis, the causative agent of far eastern spotted fever, is an obligate intracellular gram-negative bacterium that belongs to the spotted fever group rickettsiae. To understand the evolution and pathogenesis of R. heilongjiangensis, we analyzed its genome and compared it with other rickettsial genomes available in GenBank. The R. heilongjiangensis chromosome contains 1333 genes, including 1297 protein coding genes and 36 RNA coding genes. The genome also contains 121 pseudogenes, 54 insertion sequences, and 39 tandem repeats. Sixteen genes encoding the major components of the type IV secretion systems were identified in the R. heilongjiangensis genome. In total, 37 β-barrel outer membrane proteins were predicted in the genome, eight of which have been previously confirmed to be outer membrane proteins. In addition, 266 potential virulence factor genes, seven partially deleted antibiotic resistance genes, and a genomic island were identified in the genome. The codon usage in the genome is compatible with its low GC content, and the amino acid usage shows apparent bias. A comparative genomic analysis showed that R. heilongjiangensis and R. japonica share one unique fragment that may be a target sequence for a diagnostic assay. The orthologs of 37 genes of R. heilongjiangensis were found in pathogenic R. rickettsii str. Sheila Smith but not in non-pathogenic R. rickettsii str. Iowa, which may explain why R. heilongjiangensis is pathogenic. Pan-genome analysis showed that R. heilongjiangensis and 42 other rickettsiae strains share 693 core genes with a pan-genome size of 4837 genes. The pan-genome-based phylogeny showed that R. heilongjiangensis was closely related to R. japonica. PMID:24924907

  20. The Genome of the "Great Speciator" Provides Insights into Bird Diversification.

    PubMed

    Cornetti, Luca; Valente, Luis M; Dunning, Luke T; Quan, Xueping; Black, Richard A; Hébert, Olivier; Savolainen, Vincent

    2015-09-01

    Among birds, white-eyes (genus Zosterops) have diversified so extensively that Jared Diamond and Ernst Mayr referred to them as the "great speciator." The Zosterops lineage exhibits some of the fastest rates of species diversification among vertebrates, and its members are the most prolific passerine island colonizers. We present a high-quality genome assembly for the silvereye (Zosterops lateralis), a white-eye species consisting of several subspecies distributed across multiple islands. We investigate the genetic basis of rapid diversification in white-eyes by conducting genomic analyses at varying taxonomic levels. First, we compare the silvereye genome with those of birds from different families and searched for genomic features that may be unique to Zosterops. Second, we compare the genomes of different species of white-eyes from Lifou island (South Pacific), using whole genome resequencing and restriction site associated DNA. Third, we contrast the genomes of two subspecies of silvereye that differ in plumage color. In accordance with theory, we show that white-eyes have high rates of substitutions, gene duplication, and positive selection relative to other birds. Below genus level, we find that genomic differentiation accumulates rapidly and reveals contrasting demographic histories between sympatric species on Lifou, indicative of past interspecific interactions. Finally, we highlight genes possibly involved in color polymorphism between the subspecies of silvereye. By providing the first whole-genome sequence resources for white-eyes and by conducting analyses at different taxonomic levels, we provide genomic evidence underpinning this extraordinary bird radiation. PMID:26338191

  1. 32 CFR 935.62 - Island Attorney.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Island Attorney. 935.62 Section 935.62 National... WAKE ISLAND CODE Judiciary § 935.62 Island Attorney. There is an Island Attorney, appointed by the General Counsel as needed. The Island Attorney shall serve at the pleasure of the General Counsel....

  2. Personal genomics services: whose genomes?

    PubMed

    Gurwitz, David; Bregman-Eschet, Yael

    2009-07-01

    New companies offering personal whole-genome information services over the internet are dynamic and highly visible players in the personal genomics field. For fees currently ranging from US$399 to US$2500 and a vial of saliva, individuals can now purchase online access to their individual genetic information regarding susceptibility to a range of chronic diseases and phenotypic traits based on a genome-wide SNP scan. Most of the companies offering such services are based in the United States, but their clients may come from nearly anywhere in the world. Although the scientific validity, clinical utility and potential future implications of such services are being hotly debated, several ethical and regulatory questions related to direct-to-consumer (DTC) marketing strategies of genetic tests have not yet received sufficient attention. For example, how can we minimize the risk of unauthorized third parties from submitting other people's DNA for testing? Another pressing question concerns the ownership of (genotypic and phenotypic) information, as well as the unclear legal status of customers regarding their own personal information. Current legislation in the US and Europe falls short of providing clear answers to these questions. Until the regulation of personal genomics services catches up with the technology, we call upon commercial providers to self-regulate and coordinate their activities to minimize potential risks to individual privacy. We also point out some specific steps, along the trustee model, that providers of DTC personal genomics services as well as regulators and policy makers could consider for addressing some of the concerns raised below. PMID:19259127

  3. Personal genomics services: whose genomes?

    PubMed Central

    Gurwitz, David; Bregman-Eschet, Yael

    2009-01-01

    New companies offering personal whole-genome information services over the internet are dynamic and highly visible players in the personal genomics field. For fees currently ranging from US$399 to US$2500 and a vial of saliva, individuals can now purchase online access to their individual genetic information regarding susceptibility to a range of chronic diseases and phenotypic traits based on a genome-wide SNP scan. Most of the companies offering such services are based in the United States, but their clients may come from nearly anywhere in the world. Although the scientific validity, clinical utility and potential future implications of such services are being hotly debated, several ethical and regulatory questions related to direct-to-consumer (DTC) marketing strategies of genetic tests have not yet received sufficient attention. For example, how can we minimize the risk of unauthorized third parties from submitting other people's DNA for testing? Another pressing question concerns the ownership of (genotypic and phenotypic) information, as well as the unclear legal status of customers regarding their own personal information. Current legislation in the US and Europe falls short of providing clear answers to these questions. Until the regulation of personal genomics services catches up with the technology, we call upon commercial providers to self-regulate and coordinate their activities to minimize potential risks to individual privacy. We also point out some specific steps, along the trustee model, that providers of DTC personal genomics services as well as regulators and policy makers could consider for addressing some of the concerns raised below. PMID:19259127

  4. Late colonization of Easter Island.

    PubMed

    Hunt, Terry L; Lipo, Carl P

    2006-03-17

    Easter Island (Rapa Nui) provides a model of human-induced environmental degradation. A reliable chronology is central to understanding the cultural, ecological, and demographic processes involved. Radiocarbon dates for the earliest stratigraphic layers at Anakena, Easter Island, and analysis of previous radiocarbon dates imply that the island was colonized late, about 1200 A.D. Substantial ecological impacts and major cultural investments in monumental architecture and statuary thus began soon after initial settlement. PMID:16527931

  5. Pediatrics in the Marshall Islands.

    PubMed

    Dungy, C I; Morgan, B C; Adams, W H

    1984-01-01

    The delivery of health care to children living on isolated island communities presents unique challenges to health professionals. An evolved method of providing longitudinal services to infants and children residing on islands of the Marshall Island chain--a central Pacific portion of the Micronesian archipelago--is presented. The difficulties associated with provision of comprehensive health care in a vast ocean area are discussed. PMID:6418429

  6. Citrus Genomics

    PubMed Central

    Talon, Manuel; Gmitter Jr., Fred G.

    2008-01-01

    Citrus is one of the most widespread fruit crops globally, with great economic and health value. It is among the most difficult plants to improve through traditional breeding approaches. Currently, there is risk of devastation by diseases threatening to limit production and future availability to the human population. As technologies rapidly advance in genomic science, they are quickly adapted to address the biological challenges of the citrus plant system and the world's industries. The historical developments of linkage mapping, markers and breeding, EST projects, physical mapping, an international citrus genome sequencing project, and critical functional analysis are described. Despite the challenges of working with citrus, there has been substantial progress. Citrus researchers engaged in international collaborations provide optimism about future productivity and contributions to the benefit of citrus industries worldwide and to the human population who can rely on future widespread availability of this health-promoting and aesthetically pleasing fruit crop. PMID:18509486

  7. Genome engineering.

    PubMed

    Carr, Peter A; Church, George M

    2009-12-01

    For more than 50 years, those engineering genetic material have pursued increasingly challenging targets. During that time, the tools and resources available to the genetic engineer have grown to encompass new extremes of both scale and precision, opening up new opportunities in genome engineering. Today, our capacity to generate larger de novo assemblies of DNA is increasing at a rapid pace (with concomitant decreases in manufacturing cost). We are also witnessing potent demonstrations of the power of merging randomness and selection with engineering approaches targeting large numbers of specific sites within genomes. These developments promise genetic engineering with unprecedented levels of design originality and offer new avenues to expand both our understanding of the biological world and the diversity of applications for societal benefit. PMID:20010598

  8. Adaptation and diversification on islands.

    PubMed

    Losos, Jonathan B; Ricklefs, Robert E

    2009-02-12

    Charles Darwin's travels on HMS Beagle taught him that islands are an important source of evidence for evolution. Because many islands are young and have relatively few species, evolutionary adaptation and species proliferation are obvious and easy to study. In addition, the geographical isolation of many islands has allowed evolution to take its own course, free of influence from other areas, resulting in unusual faunas and floras, often unlike those found anywhere else. For these reasons, island research provides valuable insights into speciation and adaptive radiation, and into the relative importance of contingency and determinism in evolutionary diversification. PMID:19212401

  9. Island biogeography of the Anthropocene.

    PubMed

    Helmus, Matthew R; Mahler, D Luke; Losos, Jonathan B

    2014-09-25

    For centuries, biogeographers have examined the factors that produce patterns of biodiversity across regions. The study of islands has proved particularly fruitful and has led to the theory that geographic area and isolation influence species colonization, extinction and speciation such that larger islands have more species and isolated islands have fewer species (that is, positive species-area and negative species-isolation relationships). However, experimental tests of this theory have been limited, owing to the difficulty in experimental manipulation of islands at the scales at which speciation and long-distance colonization are relevant. Here we have used the human-aided transport of exotic anole lizards among Caribbean islands as such a test at an appropriate scale. In accord with theory, as anole colonizations have increased, islands impoverished in native species have gained the most exotic species, the past influence of speciation on island biogeography has been obscured, and the species-area relationship has strengthened while the species-isolation relationship has weakened. Moreover, anole biogeography increasingly reflects anthropogenic rather than geographic processes. Unlike the island biogeography of the past that was determined by geographic area and isolation, in the Anthropocene--an epoch proposed for the present time interval--island biogeography is dominated by the economic isolation of human populations. PMID:25254475

  10. Cognitive Constraints and Island Effects

    PubMed Central

    Hofmeister, Philip; Sag, Ivan A.

    2012-01-01

    Competence-based theories of island effects play a central role in generative grammar, yet the graded nature of many syntactic islands has never been properly accounted for. Categorical syntactic accounts of island effects have persisted in spite of a wealth of data suggesting that island effects are not categorical in nature and that non-structural manipulations that leave island structures intact can radically alter judgments of island violations. We argue here, building on work by Deane, Kluender, and others, that processing factors have the potential to account for this otherwise unexplained variation in acceptability judgments. We report the results of self-paced reading experiments and controlled acceptability studies which explore the relationship between processing costs and judgments of acceptability. In each of the three self-paced reading studies, the data indicate that the processing cost of different types of island violations can be significantly reduced to a degree comparable to that of non-island filler-gap constructions by manipulating a single non-structural factor. Moreover, this reduction in processing cost is accompanied by significant improvements in acceptability. This evidence favors the hypothesis that island-violating constructions involve numerous processing pressures that aggregate to drive processing difficulty above a threshold so that a perception of unacceptability ensues. We examine the implications of these findings for the grammar of filler-gap dependencies.* PMID:22661792

  11. Ancient genomics

    PubMed Central

    Der Sarkissian, Clio; Allentoft, Morten E.; Ávila-Arcos, María C.; Barnett, Ross; Campos, Paula F.; Cappellini, Enrico; Ermini, Luca; Fernández, Ruth; da Fonseca, Rute; Ginolhac, Aurélien; Hansen, Anders J.; Jónsson, Hákon; Korneliussen, Thorfinn; Margaryan, Ashot; Martin, Michael D.; Moreno-Mayar, J. Víctor; Raghavan, Maanasa; Rasmussen, Morten; Velasco, Marcela Sandoval; Schroeder, Hannes; Schubert, Mikkel; Seguin-Orlando, Andaine; Wales, Nathan; Gilbert, M. Thomas P.; Willerslev, Eske; Orlando, Ludovic

    2015-01-01

    The past decade has witnessed a revolution in ancient DNA (aDNA) research. Although the field's focus was previously limited to mitochondrial DNA and a few nuclear markers, whole genome sequences from the deep past can now be retrieved. This breakthrough is tightly connected to the massive sequence throughput of next generation sequencing platforms and the ability to target short and degraded DNA molecules. Many ancient specimens previously unsuitable for DNA analyses because of extensive degradation can now successfully be used as source materials. Additionally, the analytical power obtained by increasing the number of sequence reads to billions effectively means that contamination issues that have haunted aDNA research for decades, particularly in human studies, can now be efficiently and confidently quantified. At present, whole genomes have been sequenced from ancient anatomically modern humans, archaic hominins, ancient pathogens and megafaunal species. Those have revealed important functional and phenotypic information, as well as unexpected adaptation, migration and admixture patterns. As such, the field of aDNA has entered the new era of genomics and has provided valuable information when testing specific hypotheses related to the past. PMID:25487338

  12. Genome-wide study of correlations between genomic features and their relationship with the regulation of gene expression

    PubMed Central

    Kravatsky, Yuri V.; Chechetkin, Vladimir R.; Tchurikov, Nikolai A.; Kravatskaya, Galina I.

    2015-01-01

    The broad class of tasks in genetics and epigenetics can be reduced to the study of various features that are distributed over the genome (genome tracks). The rapid and efficient processing of the huge amount of data stored in the genome-scale databases cannot be achieved without the software packages based on the analytical criteria. However, strong inhomogeneity of genome tracks hampers the development of relevant statistics. We developed the criteria for the assessment of genome track inhomogeneity and correlations between two genome tracks. We also developed a software package, Genome Track Analyzer, based on this theory. The theory and software were tested on simulated data and were applied to the study of correlations between CpG islands and transcription start sites in the Homo sapiens genome, between profiles of protein-binding sites in chromosomes of Drosophila melanogaster, and between DNA double-strand breaks and histone marks in the H. sapiens genome. Significant correlations between transcription start sites on the forward and the reverse strands were observed in genomes of D. melanogaster, Caenorhabditis elegans, Mus musculus, H. sapiens, and Danio rerio. The observed correlations may be related to the regulation of gene expression in eukaryotes. Genome Track Analyzer is freely available at http://ancorr.eimb.ru/. PMID:25627242

  13. Genomic Avenue to Avian Colisepticemia

    PubMed Central

    Huja, Sagi; Oren, Yaara; Trost, Eva; Brzuszkiewicz, Elzbieta; Biran, Dvora; Blom, Jochen; Goesmann, Alexander; Gottschalk, Gerhard; Hacker, Jörg

    2015-01-01

    ABSTRACT Here we present an extensive genomic and genetic analysis of Escherichia coli strains of serotype O78 that represent the major cause of avian colisepticemia, an invasive infection caused by avian pathogenic Escherichia coli (APEC) strains. It is associated with high mortality and morbidity, resulting in significant economic consequences for the poultry industry. To understand the genetic basis of the virulence of avian septicemic E. coli, we sequenced the entire genome of a clinical isolate of serotype O78—O78:H19 ST88 isolate 789 (O78-9)—and compared it with three publicly available APEC O78 sequences and one complete genome of APEC serotype O1 strain. Although there was a large variability in genome content between the APEC strains, several genes were conserved, which are potentially critical for colisepticemia. Some of these genes are present in multiple copies per genome or code for gene products with overlapping function, signifying their importance. A systematic deletion of each of these virulence-related genes identified three systems that are conserved in all septicemic strains examined and are critical for serum survival, a prerequisite for septicemia. These are the plasmid-encoded protein, the defective ETT2 (E. coli type 3 secretion system 2) type 3 secretion system ETT2sepsis, and iron uptake systems. Strain O78-9 is the only APEC O78 strain that also carried the regulon coding for yersiniabactin, the iron binding system of the Yersinia high-pathogenicity island. Interestingly, this system is the only one that cannot be complemented by other iron uptake systems under iron limitation and in serum. PMID:25587010

  14. Reunion Island Volcano Erupts

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On January 16, 2002, lava that had begun flowing on January 5 from the Piton de la Fournaise volcano on the French island of Reunion abruptly decreased, marking the end of the volcano's most recent eruption. These false color MODIS images of Reunion, located off the southeastern coast of Madagascar in the Indian Ocean, were captured on the last day of the eruption (top) and two days later (bottom). The volcano itself is located on the southeast side of the island and is dark brown compared to the surrounding green vegetation. Beneath clouds (light blue) and smoke, MODIS detected the hot lava pouring down the volcano's flanks into the Indian Ocean. The heat, detected by MODIS at 2.1 um, has been colored red in the January 16 image, and is absent from the lower image, taken two days later on January 18, suggesting the lava had cooled considerably even in that short time. Earthquake activity on the northeast flank continued even after the eruption had stopped, but by January 21 had dropped to a sufficiently low enough level that the 24-hour surveillance by the local observatory was suspended. Reunion is essentially all volcano, with the northwest portion of the island built on the remains of an extinct volcano, and the southeast half built on the basaltic shield of 8,630-foot Piton de la Fournaise. A basaltic shield volcano is one with a broad, gentle slope built by the eruption of fluid basalt lava. Basalt lava flows easily across the ground remaining hot and fluid for long distances, and so they often result in enormous, low-angle cones. The Piton de la Fournaise is one of Earth's most active volcanoes, erupting over 150 times in the last few hundred years, and it has been the subject of NASA research because of its likeness to the volcanoes of Mars. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  15. Islands of the Arctic

    NASA Astrophysics Data System (ADS)

    Dowdeswell, Julian; Hambrey, Michael

    2002-11-01

    The Arctic islands are characterized by beautiful mountains and glaciers, in which the wildlife lives in delicate balance with its environment. It is a fragile region with a long history of exploration and exploitation that is now experiencing rapid environmental change. All of these themes are explored in Islands of the Arctic, a richly illustrated volume with superb photographs from the Canadian Arctic archipelago, Greenland, Svalbard and the Russian Arctic. It begins with the various processes shaping the landscape: glaciers, rivers and coastal processes, the role of ice in the oceans and the weather and climate. Julian Dowdeswell and Michael Hambrey describe the flora and fauna in addition to the human influences on the environment, from the sustainable approach of the Inuit, to the devastating damage inflicted by hunters and issues arising from the presence of military security installations. Finally, they consider the future prospects of the Arctic islands Julian Dowdeswell is Director of the Scott Polar Research Institute and Professor of Physical Geography at 0he University of Cambridge. He received the Polar Medal from Queen Elizabeth for his contributions to the study of glacier geophysics and the Gill Memorial Award from the Royal Geographical Society. He is chair of the Publications Committee of the International Glaciological Society and head of the Glaciers and Ice Sheets Division of the International Commission for Snow and Ice. Michael Hambrey is Director of the Centre for Glaciology at the University of Wales, Aberystwyth. A past recipient of the Polar Medal, he was also given the Earth Science Editors' Outstanding Publication Award for Glaciers (Cambridge University Press). Hambrey is also the author of Glacial Environments (British Columbia, 1994).

  16. Island colonization and evolution of the insular woody habit in Echium L. (Boraginaceae).

    PubMed Central

    Böhle, U R; Hilger, H H; Martin, W F

    1996-01-01

    Numerous island-inhabiting species of predominantly herbaceous angiosperm genera are woody shrubs or trees. Such "insular woodiness" is strongly manifested in the genus Echium, in which the continental species of circummediterranean distribution are herbaceous, whereas endemic species of islands along the Atlantic coast of north Africa are woody perennial shrubs. The history of 37 Echium species was traced with 70 kb of noncoding DNA determined from both chloroplast and nuclear genomes. In all, 239 polymorphic positions with 137 informative sites, in addition to 27 informative indels, were found. Island-dwelling Echium species are shown to descend from herbaceous continental ancestors via a single island colonization event that occurred < 20 million years ago. Founding colonization appears to have taken place on the Canary Islands, from which the Madeira and Cape Verde archipelagos were invaded. Colonization of island habitats correlates with a recent origin of perennial woodiness from herbaceous habit and was furthermore accompanied by intense speciation, which brought forth remarkable diversity of forms among contemporary island endemics. We argue that the origin of insular woodiness involved response to counter-selection of inbreeding depression in founding island colonies. Images Fig. 1 Fig. 3 PMID:8876207

  17. Island colonization and evolution of the insular woody habit in Echium L. (Boraginaceae).

    PubMed

    Böhle, U R; Hilger, H H; Martin, W F

    1996-10-15

    Numerous island-inhabiting species of predominantly herbaceous angiosperm genera are woody shrubs or trees. Such "insular woodiness" is strongly manifested in the genus Echium, in which the continental species of circummediterranean distribution are herbaceous, whereas endemic species of islands along the Atlantic coast of north Africa are woody perennial shrubs. The history of 37 Echium species was traced with 70 kb of noncoding DNA determined from both chloroplast and nuclear genomes. In all, 239 polymorphic positions with 137 informative sites, in addition to 27 informative indels, were found. Island-dwelling Echium species are shown to descend from herbaceous continental ancestors via a single island colonization event that occurred < 20 million years ago. Founding colonization appears to have taken place on the Canary Islands, from which the Madeira and Cape Verde archipelagos were invaded. Colonization of island habitats correlates with a recent origin of perennial woodiness from herbaceous habit and was furthermore accompanied by intense speciation, which brought forth remarkable diversity of forms among contemporary island endemics. We argue that the origin of insular woodiness involved response to counter-selection of inbreeding depression in founding island colonies. PMID:8876207

  18. Three Mile Island

    SciTech Connect

    Wood, M.S.; Shultz, S.M.

    1988-01-01

    This bibliography is divided into the following categories: Accident Overviews, Sequence and Causes; International Commentary and Reaction; Emergency Preparedness and Disaster Planning; Health Effects; Radioactive Releases and the Environment; Accident Investigations/Commissions; Nuclear Industry: Safety, Occupational, and Financial Issues; Media and Communications; Cleanup; Sociopolitical Response and Commentary; Restart; Legal Ramifications; Federal Documents: President's Commission on the Accident at Three Mile Island; Federal Documents: Nuclear Regulatory Commission; Federal Documents: United States Department of Energy; Federal Documents: Miscellaneous Reports; Pennsylvania State Documents; Federal and State Hearings; and Popular Literature.

  19. Urban heat island

    NASA Technical Reports Server (NTRS)

    Kim, Hongsuk H.

    1991-01-01

    The phenomenon of urban heat island was investigated by the use of LANDSAT Thematic Mapper data sets collected over the metropolitan area of Washington DC (U.S.). By combining the retrieved spectral albedos and temperatures, urban modification on radiation budgets of five surface categories were analyzed. The surface radiation budget imagery of the area show that urban heating is attributable to a large heat flux from the rapidly heating surfaces of asphalt, bare soil and short grass. In summer, symptoms of diurnal heating begin to appear by mid morning and can be about 10 degrees warmer than nearby woodlands in summer.

  20. Pine Island Glacier, Antarctica

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This pair of MISR images of the Pine Island Glacier in western Antarctica was acquired on December 12, 2000 during Terra orbit 5246. At left is a conventional, true-color image from the downward-looking (nadir) camera. The false-color image at right is a composite of red band data taken by the MISR forward 60-degree, nadir, and aftward 60-degree cameras, displayed in red, green, and blue colors, respectively. Color variations in the left (true-color) image highlight spectral differences. In the multi-angle composite, on the other hand, color variations act as a proxy for differences in the angular reflectance properties of the scene. In this representation, clouds show up as light purple. Blue to orange gradations on the surface indicate a transition in ice texture from smooth to rough. For example, the bright orange 'carrot-like' features are rough crevasses on the glacier's tongue. In the conventional nadir view, the blue ice labeled 'rough crevasses' and 'smooth blue ice' exhibit similar coloration, but the multi-angle composite reveals their different textures, with the smoother ice appearing dark purple instead of orange. This could be an indicator of different mechanisms by which this ice is exposed. The multi-angle view also reveals subtle roughness variations on the frozen sea ice between the glacier and the open water in Pine Island Bay.

    To the left of the 'icebergs' label are chunks of floating ice. Additionally, smaller icebergs embedded in the frozen sea ice are visible below and to the right of the label. These small icebergs are associated with dark streaks. Analysis of the illumination geometry suggests that these streaks are surface features, not shadows. Wind-driven motion and thinning of the sea ice in the vicinity of the icebergs is one possible explanation.

    Recently, Robert Bindschadler, a glaciologist at the NASA Goddard Space Flight Center discovered in Landsat 7 imagery a newly-formed crack traversing the Pine Island Glacier. This crack is visible as an off-vertical dark line in the MISR nadir view. In the multi-angle composite, the crack and other stress fractures show up very clearly in bright orange. Radar observations of Pine Island Glacier in the 1990's showed the glacier to be shrinking, and the newly discovered crack is expected to eventually lead to the calving of a major iceberg.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  1. 19. New York Connecting Railroad: Randalls Island Viaduct. Randalls Island, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. New York Connecting Railroad: Randalls Island Viaduct. Randalls Island, New York Co., NY. Sec. 4207, MP 8.54. - Northeast Railroad Corridor, Amtrak Route between New Jersey/New York & New York/Connecticut State Lines, New York County, NY

  2. 15. New York Connecting Railroad: Wards Island Viaduct. Wards Island, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. New York Connecting Railroad: Wards Island Viaduct. Wards Island, New York Co., NY. Sec. 4207, MP 7.65. - Northeast Railroad Corridor, Amtrak Route between New Jersey/New York & New York/Connecticut State Lines, New York County, NY

  3. Keystone Island Flap: Effects of Islanding on Vascularity

    PubMed Central

    Nottle, Tim; Mills, John

    2016-01-01

    Background: Based on his clinical observations the “red dot sign” and hyperemic flare, Behan has advocated the superior vascularity of the island flap design for at least 2 decades. The aim of this study was to determine whether (1) surgical islanding of a flap alters the vascularity or blood supply of the flap and (2) these changes in blood supply explain Behan’s clinical observations of “red dot sign” and hyperemic flare. Methods: Patients undergoing local island fasciocutaneous flaps or anterolateral thigh fasciocutaneous free flaps were recruited for this trial from a single institution over a 10-month period (September 2013 to July 2014). Three adjacent specimens of skin and subcutaneous fat (control, non-island, and island) were harvested from each patient at various stages of their surgery for histological assessment. A pathologist reviewed randomized specimens for microvascular variables, including arteriole wall thickness, arteriole diameter, venule wall thickness, and venule diameter. Results: Thirteen patients (with 14 sets of specimen) were recruited for this study. When compared with the control state, both arteriole diameter and venule diameter in island flaps were significantly increased. Conclusions: These results validate Behan’s clinical observations of “red dot sign” and hyperemic flare. Further studies are required to directly compare island and non-island flap designs. PMID:27014546

  4. Islands and Non-islands in Native and Heritage Korean

    PubMed Central

    Kim, Boyoung; Goodall, Grant

    2016-01-01

    To a large extent, island phenomena are cross-linguistically invariable, but English and Korean present some striking differences in this domain. English has wh-movement and Korean does not, and while both languages show sensitivity to wh-islands, only English has island effects for adjunct clauses. Given this complex set of differences, one might expect Korean/English bilinguals, and especially heritage Korean speakers (i.e., early bilinguals whose L2 became their dominant language during childhood) to be different from native speakers, since heritage speakers have had more limited exposure to Korean, may have had incomplete acquisition and/or attrition, and may show significant transfer effects from the L2. Here we examine islands in heritage speakers of Korean in the U.S. Through a series of four formal acceptability experiments comparing these heritage speakers with native speakers residing in Korea, we show that the two groups are remarkably similar. Both show clear evidence for wh-islands and an equally clear lack of adjunct island effects. Given the very different linguistic environment that the heritage speakers have had since early childhood, this result lends support to the idea that island phenomena are largely immune to environmental influences and stem from deeper properties of the processor and/or grammar. Similarly, it casts some doubt on recent proposals that islands are learned from the input. PMID:26913017

  5. Islands and Non-islands in Native and Heritage Korean.

    PubMed

    Kim, Boyoung; Goodall, Grant

    2016-01-01

    To a large extent, island phenomena are cross-linguistically invariable, but English and Korean present some striking differences in this domain. English has wh-movement and Korean does not, and while both languages show sensitivity to wh-islands, only English has island effects for adjunct clauses. Given this complex set of differences, one might expect Korean/English bilinguals, and especially heritage Korean speakers (i.e., early bilinguals whose L2 became their dominant language during childhood) to be different from native speakers, since heritage speakers have had more limited exposure to Korean, may have had incomplete acquisition and/or attrition, and may show significant transfer effects from the L2. Here we examine islands in heritage speakers of Korean in the U.S. Through a series of four formal acceptability experiments comparing these heritage speakers with native speakers residing in Korea, we show that the two groups are remarkably similar. Both show clear evidence for wh-islands and an equally clear lack of adjunct island effects. Given the very different linguistic environment that the heritage speakers have had since early childhood, this result lends support to the idea that island phenomena are largely immune to environmental influences and stem from deeper properties of the processor and/or grammar. Similarly, it casts some doubt on recent proposals that islands are learned from the input. PMID:26913017

  6. Genome informatics and vaccine targets in Corynebacterium urealyticum using two whole genomes, comparative genomics, and reverse vaccinology

    PubMed Central

    2015-01-01

    Background Corynebacterium urealyticum is an opportunistic pathogen that normally lives on skin and mucous membranes in humans. This high Gram-positive bacteria can cause acute or encrusted cystitis, encrusted pyelitis, and pyelonephritis in immunocompromised patients. The bacteria is multi-drug resistant, and knowledge about the genes that contribute to its virulence is very limited. Two complete genome sequences were used in this comparative genomic study: C. urealyticum DSM 7109 and C. urealyticum DSM 7111. Results We used comparative genomics strategies to compare the two strains, DSM 7109 and DSM 7111, and to analyze their metabolic pathways, genome plasticity, and to predict putative antigenic targets. The genomes of these two strains together encode 2,115 non-redundant coding sequences, 1,823 of which are common to both genomes. We identified 188 strain-specific genes in DSM 7109 and 104 strain-specific genes in DSM 7111. The high number of strain-specific genes may be a result of horizontal gene transfer triggered by the large number of transposons in the genomes of these two strains. Screening for virulence factors revealed the presence of the spaDEF operon that encodes pili forming proteins. Therefore, spaDEF may play a pivotal role in facilitating the adhesion of the pathogen to the host tissue. Application of the reverse vaccinology method revealed 19 putative antigenic proteins that may be used in future studies as candidate drug or vaccine targets. Conclusions The genome features and the presence of virulence factors in genomic islands in the two strains of C. urealyticum provide insights in the lifestyle of this opportunistic pathogen and may be useful in developing future therapeutic strategies. PMID:26041051

  7. Whole-Genome Sequence of the Microcin E492-Producing Strain Klebsiella pneumoniae RYC492.

    PubMed

    Marcoleta, Andrés; Gutiérrez-Cortez, Sergio; Maturana, Daniel; Monasterio, Octavio; Lagos, Rosalba

    2013-01-01

    Here, we report the draft genome sequence of the Gram-negative strain Klebsiella pneumoniae RYC492, which produces the amyloid-forming and antibacterial peptide microcin E492. The sequenced genome consists of a 5,095,761-bp assembled open chromosome where the gene cluster for microcin production is located in a putative 31-kb genomic island flanked by sequence repeats and containing a putative integrase-coding gene. PMID:23661477

  8. Whole-Genome Sequence of the Microcin E492-Producing Strain Klebsiella pneumoniae RYC492

    PubMed Central

    Marcoleta, Andrés; Gutiérrez-Cortez, Sergio; Maturana, Daniel; Monasterio, Octavio

    2013-01-01

    Here, we report the draft genome sequence of the Gram-negative strain Klebsiella pneumoniae RYC492, which produces the amyloid-forming and antibacterial peptide microcin E492. The sequenced genome consists of a 5,095,761-bp assembled open chromosome where the gene cluster for microcin production is located in a putative 31-kb genomic island flanked by sequence repeats and containing a putative integrase-coding gene. PMID:23661477

  9. Complete mitochondrial genome of the Greek marsh frog Pelophylax cretensis (Anura, Ranidae).

    PubMed

    Hofman, Sebastian; Pabijan, Maciej; Osikowski, Artur; Szymura, Jacek M

    2016-05-01

    We sequenced the complete mitochondrial genome of the Greek marsh frog Pelophylax cretensis, a water frog species endemic to the island of Crete. The genome sequence was 17,829 bp in size, and the gene order and contents were identical to those of previously reported mitochondrial genomes of other water frog species. This is the first complete mitogenome (i.e. including control region) described for western Palaearctic water frogs. PMID:25329260

  10. Rain on small tropical islands

    NASA Astrophysics Data System (ADS)

    Sobel, A. H.; Burleyson, C. D.; Yuter, S. E.

    2011-04-01

    A high-resolution rainfall climatology based on observations from the Tropical Rainfall Measuring Mission's Precipitation Radar (PR) instrument is used to evaluate the influence of small tropical islands on climatological rainfall. Islands with areas between one hundred and several thousand km2 are considered in both the Indo-Pacific Maritime Continent and Caribbean regions. Annual mean climatological (1997-2007) rainfall over each island is compared with that over the surrounding ocean region, and the difference is expressed as a percentage. In addition to total rainfall, rain frequency and intensity are also analyzed. Results are stratified into two 12 h halves of the diurnal cycle as well as eight 3 h periods, and also by a measure of each island's topographic relief. In both regions, there is a clear difference between larger islands (areas of a few hundred km2 or greater) and smaller ones. Both rain frequency and total rainfall are significantly enhanced over larger islands compared to the surrounding ocean. For smaller islands the enhancement is either negligibly small, statistically insignificant, or, in the case of Caribbean rain frequency, negative. The enhancement in total rainfall over larger islands is partly attributable to greater frequency and partly to greater intensity. A diurnal cycle in island enhancement is evident in frequency but not intensity, except over small Caribbean islands where the converse is true. For the larger islands, higher orography is associated with greater rainfall enhancements. The orographic effect is larger (percentagewise) in the Caribbean than in the Maritime Continent. Orographic precipitation enhancement manifests more strongly as increased frequency of precipitation rather than increased intensity and is present at night as well as during the day. The lack of a clear diurnal cycle in orographic enhancement suggests that much of the orographic rainfall enhancement is attributable to mechanically forced upslope flow rather than elevated surface heating.

  11. Opportunity at 'Cook Islands'

    NASA Technical Reports Server (NTRS)

    2009-01-01

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings during the 1,825th Martian day, or sol, of Opportunity's surface mission (March 12, 2009). North is at the top.

    The rover had driven half a meter (1.5 feet) earlier on Sol 1825 to fine-tune its location for placing its robotic arm onto an exposed patch of outcrop including a target area informally called 'Cook Islands.' On the preceding sol, Opportunity turned around to drive frontwards and then drove 4.5 meters (15 feet) toward this outcrop. The tracks from the SOl 1824 drive are visible near the center of this view at about the 11 o'clock position. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches). Opportunity had previously been driving backward as a strategy to redistribute lubrication in a wheel drawing more electrical current than usual.

    The outcrop exposure that includes 'Cook Islands' is visible just below the center of the image.

    The terrain in this portion of Mars' Meridiani Planum region includes dark-toned sand ripples and lighter-toned bedrock.

    This view is presented as a cylindrical projection with geometric seam correction.

  12. Enjebi Island dose assessment

    SciTech Connect

    Robison, W.L.; Conrado, C.L.; Phillips, W.A.

    1987-07-01

    We have updeated the radiological dose assessment for Enjebi Island at Enewetak Atoll using data derived from analysis of food crops grown on Enjebi. This is a much more precise assessment of potential doses to people resettling Enjebi Island than the 1980 assessment in which there were no data available from food crops on Enjebi. Details of the methods and data used to evaluate each exposure pathway are presented. The terrestrial food chain is the most significant potential exposure pathway and /sup 137/Cs is the radionuclide responsible for most of the estimated dose over the next 50 y. The doses are calculated assuming a resettlement date of 1990. The average wholebody maximum annual estimated dose equivalent derived using our diet model is 166 mremy;the effective dose equivalent is 169 mremy. The estimated 30-, 50-, and 70-y integral whole-body dose equivalents are 3.5 rem, 5.1 rem, and 6.2 rem, respectively. Bone-marrow dose equivalents are only slightly higher than the whole-body estimates in each case. The bone-surface cells (endosteal cells) receive the highest dose, but they are a less sensitive cell population and are less sensitive to fatal cancer induction than whole body and bone marrow. The effective dose equivalents for 30, 50, and 70 y are 3.6 rem, 5.3 rem, and 6.6 rem, respectively. 79 refs., 17 figs., 24 tabs

  13. Number of CpG islands and genes in human and mouse.

    PubMed Central

    Antequera, F; Bird, A

    1993-01-01

    Estimation of gene number in mammals is difficult due to the high proportion of noncoding DNA within the nucleus. In this study, we provide a direct measurement of the number of genes in human and mouse. We have taken advantage of the fact that many mammalian genes are associated with CpG islands whose distinctive properties allow their physical separation from bulk DNA. Our results suggest that there are approximately 45,000 CpG islands per haploid genome in humans and 37,000 in the mouse. Sequence comparison confirms that about 20% of the human CpG islands are absent from the homologous mouse genes. Analysis of a selection of genes suggests that both human and mouse are losing CpG islands over evolutionary time due to de novo methylation in the germ line followed by CpG loss through mutation. This process appears to be more rapid in rodents. Combining the number of CpG islands with the proportion of island-associated genes, we estimate that the total number of genes per haploid genome is approximately 80,000 in both organisms. Images Fig. 1 PMID:7505451

  14. Salt Marshes at Chincoteague Island

    Salt marshes at Chincoteague Island. The salt marshes that make up Chincoteague Island are important habitat for migrating waterfowl. In addition, they serve an important role in protecting inland ecosystems and communities from oceanic storms. Mosquito point can be seen in the background where the ...

  15. Tidal Pool on Folly Island

    A tidal pool on Folly Island. Tidal pools are small pools of water that are left when the tide recedes. Because these pools have water more or less permanently, distinct ecosystems can develop separate from the surrounding beach. Folly Island, a preserve owned by the Maine Coast Heritage Trust, is a...

  16. Murre Colony on Prince Island

    A breeding colony of California common murres (Uria aalge californica) on Prince Island off San Miguel Island off Southern California. Ecologists Josh Adams and Jonathan Felis of the USGS Western Ecological Research Center shot this and other high-resolution digital telephotos from a research vessel...

  17. Discovery of hantavirus circulating among Rattus rattus in French Mayotte island, Indian Ocean.

    PubMed

    Filippone, Claudia; Castel, Guillaume; Murri, Séverine; Beaulieux, Frédérik; Ermonval, Myriam; Jallet, Corinne; Wise, Emma L; Ellis, Richard J; Marston, Denise A; McElhinney, Lorraine M; Fooks, Anthony R; Desvars, Amélie; Halos, Lénaı G; Vourc'h, Gwenaël; Marianneau, Philippe; Tordo, Noël

    2016-05-01

    Hantaviruses are emerging zoonotic viruses that cause human diseases. In this study, sera from 642 mammals from La Réunion and Mayotte islands (Indian Ocean) were screened for the presence of hantaviruses by molecular analysis. None of the mammals from La Réunion island was positive, but hantavirus genomic RNA was discovered in 29/160 (18 %) Rattus rattus from Mayotte island. The nucleoprotein coding region was sequenced from the liver and spleen of all positive individuals allowing epidemiological and intra-strain variability analyses. Phylogenetic analysis based on complete coding genomic sequences showed that this Murinae-associated hantavirus is a new variant of Thailand virus. Further studies are needed to investigate hantaviruses in rodent hosts and in Haemorrhagic Fever with Renal Syndrome (HFRS) human cases. PMID:26932442

  18. CpG Island Chromatin Is Shaped by Recruitment of ZF-CxxC Proteins

    PubMed Central

    Blackledge, Neil P.; Thomson, John P.; Skene, Peter J.

    2013-01-01

    Most mammalian gene promoters are embedded within genomic regions called CpG islands, characterized by elevated levels of nonmethylated CpG dinucleotides. Here, we describe recent work demonstrating that CpG islands act as specific nucleation sites for the zinc finger CxxC domain–containing proteins CFP1 and KDM2A. Importantly, both CFP1 and KDM2A are associated with enzymatic activities that modulate specific histone lysine methylation marks. The action of these zinc finger CxxC domain proteins therefore imposes a defined chromatin architecture on CpG islands that distinguishes these important regulatory elements from the surrounding genome. The functional consequence of this CpG island–directed chromatin environment is discussed. PMID:24186071

  19. Island tameness: living on islands reduces flight initiation distance

    PubMed Central

    Cooper, William E.; Pyron, R. Alexander; Garland, Theodore

    2014-01-01

    One of Darwin's most widely known conjectures is that prey are tame on remote islands, where mammalian predators are absent. Many species appear to permit close approach on such islands, but no comparative studies have demonstrated reduced wariness quantified as flight initiation distance (FID; i.e. predator–prey distance when the prey begins to flee) in comparison with mainland relatives. We used the phylogenetic comparative method to assess influence of distance from the mainland and island area on FID of 66 lizard species. Because body size and predator approach speed affect predation risk, we included these as independent variables. Multiple regression showed that FID decreases as distance from mainland increases and is shorter in island than mainland populations. Although FID increased as area increased in some models, collinearity made it difficult to separate effects of area from distance and island occupancy. FID increases as SVL increases and approach speed increases; these effects are statistically independent of effects of distance to mainland and island occupancy. Ordinary least-squares models fit the data better than phylogenetic regressions, indicating little or no phylogenetic signal in residual FID after accounting for the independent variables. Our results demonstrate that island tameness is a real phenomenon in lizards. PMID:24403345

  20. Island tameness: living on islands reduces flight initiation distance.

    PubMed

    Cooper, William E; Pyron, R Alexander; Garland, Theodore

    2014-02-22

    One of Darwin's most widely known conjectures is that prey are tame on remote islands, where mammalian predators are absent. Many species appear to permit close approach on such islands, but no comparative studies have demonstrated reduced wariness quantified as flight initiation distance (FID; i.e. predator-prey distance when the prey begins to flee) in comparison with mainland relatives. We used the phylogenetic comparative method to assess influence of distance from the mainland and island area on FID of 66 lizard species. Because body size and predator approach speed affect predation risk, we included these as independent variables. Multiple regression showed that FID decreases as distance from mainland increases and is shorter in island than mainland populations. Although FID increased as area increased in some models, collinearity made it difficult to separate effects of area from distance and island occupancy. FID increases as SVL increases and approach speed increases; these effects are statistically independent of effects of distance to mainland and island occupancy. Ordinary least-squares models fit the data better than phylogenetic regressions, indicating little or no phylogenetic signal in residual FID after accounting for the independent variables. Our results demonstrate that island tameness is a real phenomenon in lizards. PMID:24403345

  1. 2. Light tower, view west towards Squirrel Island, south and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Light tower, view west towards Squirrel Island, south and east sides - Ram Island Light Station, Ram Island, south of Ocean Point & just north of Fisherman Island, marking south side of Fisherman Island Passage, Ocean Point, Lincoln County, ME

  2. Internal parasites of possums (Trichosurus vulpecula) from Kawau Island, Chatham Island and Stewart Island.

    PubMed

    Stankiewicz, M; Heath, D D; Cowan, P E

    1997-12-01

    As part of a search for pathogens that might be useful agents for biological control of possums, the three largest offshore islands of New Zealand that still have possums were surveyed to determine the pathogens present in these isolated populations. Brushtail possums from Kawau Island (n = 158), Chatham Island (n = 214) and Stewart Island (n = 194) were examined for internal parasites. Possums from Kawau Island were infected with Eimeria spp. (16.7%), Bertiella trichosuri (5.2%) and Purustrongyloides trichosuri (15.5%). No Paraustrostrongylus trichosuri or Trichostrongylus spp. were found. Possums from Chatham Island were infected with Eimeria spp. (10.9%). Bertiella trichosuri (3.6%), T colubriformis (6.6%), T retortaeformis (1%) and T. vitrinus (0.5%). No Parastrongyloides or Paraustrostrongylus spp. were found. Possums from Stewart Island were infected only with Eimeria spp. (4.6%). Because of their paucity of some parasites, the opportunity exists to use these offshore islands to study the introduction and spread of a parasite into a possum population, and what technology would be required to bring it to hyperendemicity. PMID:16031999

  3. Reconstructing Austronesian population history in Island Southeast Asia.

    PubMed

    Lipson, Mark; Loh, Po-Ru; Patterson, Nick; Moorjani, Priya; Ko, Ying-Chin; Stoneking, Mark; Berger, Bonnie; Reich, David

    2014-01-01

    Austronesian languages are spread across half the globe, from Easter Island to Madagascar. Evidence from linguistics and archaeology indicates that the 'Austronesian expansion,' which began 4,000-5,000 years ago, likely had roots in Taiwan, but the ancestry of present-day Austronesian-speaking populations remains controversial. Here, we analyse genome-wide data from 56 populations using new methods for tracing ancestral gene flow, focusing primarily on Island Southeast Asia. We show that all sampled Austronesian groups harbour ancestry that is more closely related to aboriginal Taiwanese than to any present-day mainland population. Surprisingly, western Island Southeast Asian populations have also inherited ancestry from a source nested within the variation of present-day populations speaking Austro-Asiatic languages, which have historically been nearly exclusive to the mainland. Thus, either there was once a substantial Austro-Asiatic presence in Island Southeast Asia, or Austronesian speakers migrated to and through the mainland, admixing there before continuing to western Indonesia. PMID:25137359

  4. Comprehensive analysis of CpG islands in human chromosomes 21 and 22

    NASA Astrophysics Data System (ADS)

    Takai, Daiya; Jones, Peter A.

    2002-03-01

    CpG islands are useful markers for genes in organisms containing 5-methylcytosine in their genomes. In addition, CpG islands located in the promoter regions of genes can play important roles in gene silencing during processes such as X-chromosome inactivation, imprinting, and silencing of intragenomic parasites. The generally accepted definition of what constitutes a CpG island was proposed in 1987 by Gardiner-Garden and Frommer [Gardiner-Garden, M. & Frommer, M. (1987) J. Mol. Biol. 196, 261-282] as being a 200-bp stretch of DNA with a C+G content of 50% and an observed CpG/expected CpG in excess of 0.6. Any definition of a CpG island is somewhat arbitrary, and this one, which was derived before the sequencing of mammalian genomes, will include many sequences that are not necessarily associated with controlling regions of genes but rather are associated with intragenomic parasites. We have therefore used the complete genomic sequences of human chromosomes 21 and 22 to examine the properties of CpG islands in different sequence classes by using a search algorithm that we have developed. Regions of DNA of greater than 500 bp with a G+C equal to or greater than 55% and observed CpG/expected CpG of 0.65 were more likely to be associated with the 5' regions of genes and this definition excluded most Alu-repetitive elements. We also used genome sequences to show strong CpG suppression in the human genome and slight suppression in Drosophila melanogaster and Saccharomyces cerevisiae. This finding is compatible with the recent detection of 5-methylcytosine in Drosophila, and might suggest that S. cerevisiae has, or once had, CpG methylation.

  5. Structure, function, and evolution of the Thiomonas spp. genome.

    PubMed

    Arsène-Ploetze, Florence; Koechler, Sandrine; Marchal, Marie; Coppée, Jean-Yves; Chandler, Michael; Bonnefoy, Violaine; Brochier-Armanet, Céline; Barakat, Mohamed; Barbe, Valérie; Battaglia-Brunet, Fabienne; Bruneel, Odile; Bryan, Christopher G; Cleiss-Arnold, Jessica; Cruveiller, Stéphane; Erhardt, Mathieu; Heinrich-Salmeron, Audrey; Hommais, Florence; Joulian, Catherine; Krin, Evelyne; Lieutaud, Aurélie; Lièvremont, Didier; Michel, Caroline; Muller, Daniel; Ortet, Philippe; Proux, Caroline; Siguier, Patricia; Roche, David; Rouy, Zoé; Salvignol, Grégory; Slyemi, Djamila; Talla, Emmanuel; Weiss, Stéphanie; Weissenbach, Jean; Médigue, Claudine; Bertin, Philippe N

    2010-02-01

    Bacteria of the Thiomonas genus are ubiquitous in extreme environments, such as arsenic-rich acid mine drainage (AMD). The genome of one of these strains, Thiomonas sp. 3As, was sequenced, annotated, and examined, revealing specific adaptations allowing this bacterium to survive and grow in its highly toxic environment. In order to explore genomic diversity as well as genetic evolution in Thiomonas spp., a comparative genomic hybridization (CGH) approach was used on eight different strains of the Thiomonas genus, including five strains of the same species. Our results suggest that the Thiomonas genome has evolved through the gain or loss of genomic islands and that this evolution is influenced by the specific environmental conditions in which the strains live. PMID:20195515

  6. The clustering of CpG islands may constitute an important determinant of the 3D organization of interphase chromosomes.

    PubMed

    Gushchanskaya, Ekaterina S; Artemov, Artem V; Ulyanov, Sergey V; Logacheva, Maria D; Penin, Aleksey A; Kotova, Elena S; Akopov, Sergey B; Nikolaev, Lev G; Iarovaia, Olga V; Sverdlov, Eugene D; Gavrilov, Alexey A; Razin, Sergey V

    2014-07-01

    We used the 4C-Seq technique to characterize the genome-wide patterns of spatial contacts of several CpG islands located on chromosome 14 in cultured chicken lymphoid and erythroid cells. We observed a clear tendency for the spatial clustering of CpG islands present on the same and different chromosomes, regardless of the presence or absence of promoters within these CpG islands. Accordingly, we observed preferential spatial contacts between Sp1 binding motifs and other GC-rich genomic elements, including the DNA sequence motifs capable of forming G-quadruplexes. However, an anchor placed in a gene/CpG island-poor area formed spatial contacts with other gene/CpG island-poor areas on chromosome 14 and other chromosomes. These results corroborate the two-compartment model of the spatial organization of interphase chromosomes and suggest that the clustering of CpG islands constitutes an important determinant of the 3D organization of the eukaryotic genome in the cell nucleus. Using the ChIP-Seq technique, we mapped the genome-wide CTCF deposition sites in the chicken lymphoid and erythroid cells that were used for the 4C analysis. We observed a good correlation between the density of CTCF deposition sites and the level of 4C signals for the anchors located in CpG islands but not for an anchor located in a gene desert. It is thus possible that CTCF contributes to the clustering of CpG islands observed in our experiments. PMID:24736527

  7. The clustering of CpG islands may constitute an important determinant of the 3D organization of interphase chromosomes

    PubMed Central

    Gushchanskaya, Ekaterina S; Artemov, Artem V; Ulyanov, Sergey V; Logacheva, Maria D; Penin, Aleksey A; Kotova, Elena S; Akopov, Sergey B; Nikolaev, Lev G; Iarovaia, Olga V; Sverdlov, Eugene D; Gavrilov, Alexey A; Razin, Sergey V

    2014-01-01

    We used the 4C-Seq technique to characterize the genome-wide patterns of spatial contacts of several CpG islands located on chromosome 14 in cultured chicken lymphoid and erythroid cells. We observed a clear tendency for the spatial clustering of CpG islands present on the same and different chromosomes, regardless of the presence or absence of promoters within these CpG islands. Accordingly, we observed preferential spatial contacts between Sp1 binding motifs and other GC-rich genomic elements, including the DNA sequence motifs capable of forming G-quadruplexes. However, an anchor placed in a gene/CpG island-poor area formed spatial contacts with other gene/CpG island-poor areas on chromosome 14 and other chromosomes. These results corroborate the two-compartment model of the spatial organization of interphase chromosomes and suggest that the clustering of CpG islands constitutes an important determinant of the 3D organization of the eukaryotic genome in the cell nucleus. Using the ChIP-Seq technique, we mapped the genome-wide CTCF deposition sites in the chicken lymphoid and erythroid cells that were used for the 4C analysis. We observed a good correlation between the density of CTCF deposition sites and the level of 4C signals for the anchors located in CpG islands but not for an anchor located in a gene desert. It is thus possible that CTCF contributes to the clustering of CpG islands observed in our experiments. PMID:24736527

  8. Genomes on ice.

    PubMed

    Parkhill, Julian

    2016-03-01

    This month's Genome Watch discusses the analysis of a Helicobacter pylori genome from the preserved Copper-Age mummy known as the Iceman and how ancient genomes shed light on the history of bacterial pathogens. PMID:26853114

  9. Whole Genome Sequencing

    MedlinePlus

    ... you want to learn. Search form Search Whole Genome Sequencing You are here Home Testing & Services Testing ... the full story, click here . What is whole genome sequencing? Whole genome sequencing is the mapping out ...

  10. Marte Valles Crater 'Island'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    10 April 2004 Marte Valles is an outflow channel system that straddles 180oW longitude between the region south of Cerberus and far northwestern Amazonis. The floor of the Marte valleys have enigmatic platy flow features that some argue are formed by lava, others suggest they are remnants of mud flows. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows an island created in the middle of the main Marte Valles channel as fluid---whether lava or mud---flowed past two older meteor impact craters. The craters are located near 21.5oN, 175.3oW. The image covers an area about 3 km (1.9 mi) across. Sunlight illuminates the scene from the lower left.

  11. Anatahan Volcano, Mariana Islands

    NASA Technical Reports Server (NTRS)

    2008-01-01

    In the early hours of February 7, ASTER captured this nighttime thermal infrared image of an eruption of Anatahan Volcano in the central Mariana Islands. The summit of the volcano is bright indicating there is a very hot area there. Streaming to the west is an ash plume, visible by the red color indicating the presence of silicate-rich particles. Dark grey areas are clouds that appear colder than the ocean. Anatahan is a stratovolcano that started erupting in May 2003, forming a new crater.

    The image covers an area of 56.3 x 41.8 km, and is located 16 degrees north latitude and 145.6 degrees east longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  12. SRTM Anaglyph: Fiji Islands

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Sovereign Democratic Republic of the Fiji Islands, commonly known as Fiji, is an independent nation consisting of some 332 islands surrounding the Koro Sea in the South Pacific Ocean. This topographic image shows Viti Levu, the largest island in the group. With an area of 10,429 square kilometers (about 4000 square miles), it comprises more than half the area of the Fiji Islands. Suva, the capital city, lies on the southeast shore. The Nakauvadra, the rugged mountain range running from north to south, has several peaks rising above 900 meters (about 3000 feet). Mount Tomanivi, in the upper center, is the highest peak at 1324 meters (4341 feet). The distinct circular feature on the north shore is the Tavua Caldera, the remnant of a large shield volcano that was active about 4 million years ago. Gold has been mined on the margin of the caldera since the 1930s. The Nadrau plateau is the low relief highland in the center of the mountain range. The coastal plains in the west, northwest and southeast account for only 15 percent of Viti Levu's area but are the main centers of agriculture and settlement.

    This shaded relief anaglyph image was generated using preliminary topographic data from the Shuttle Radar Topography Mission. A computer-generated artificial light source illuminates the elevation data from the top (north) to produce a pattern of light and shadows. Slopes facing the light appear bright, while those facing away are shaded. The stereoscopic effect was created by first draping the shaded relief image back over the topographic data and then generating two differing perspectives, one for each eye. When viewed through special glasses, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter.

    This image was acquired by SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (about 200 feet) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

    Size: 192 km (119 miles) x 142 km (88 miles) Location: 17.8 deg. South lat., 178.0 deg. East lon. Orientation: North at top Date Acquired: February 19, 2000 Image: NASA/JPL/NIMA

  13. Genomic species are ecological species as revealed by comparative genomics in Agrobacterium tumefaciens.

    PubMed

    Lassalle, Florent; Campillo, Tony; Vial, Ludovic; Baude, Jessica; Costechareyre, Denis; Chapulliot, David; Shams, Malek; Abrouk, Danis; Lavire, Céline; Oger-Desfeux, Christine; Hommais, Florence; Guéguen, Laurent; Daubin, Vincent; Muller, Daniel; Nesme, Xavier

    2011-01-01

    The definition of bacterial species is based on genomic similarities, giving rise to the operational concept of genomic species, but the reasons of the occurrence of differentiated genomic species remain largely unknown. We used the Agrobacterium tumefaciens species complex and particularly the genomic species presently called genomovar G8, which includes the sequenced strain C58, to test the hypothesis of genomic species having specific ecological adaptations possibly involved in the speciation process. We analyzed the gene repertoire specific to G8 to identify potential adaptive genes. By hybridizing 25 strains of A. tumefaciens on DNA microarrays spanning the C58 genome, we highlighted the presence and absence of genes homologous to C58 in the taxon. We found 196 genes specific to genomovar G8 that were mostly clustered into seven genomic islands on the C58 genome-one on the circular chromosome and six on the linear chromosome-suggesting higher plasticity and a major adaptive role of the latter. Clusters encoded putative functional units, four of which had been verified experimentally. The combination of G8-specific functions defines a hypothetical species primary niche for G8 related to commensal interaction with a host plant. This supports that the G8 ancestor was able to exploit a new ecological niche, maybe initiating ecological isolation and thus speciation. Searching genomic data for synapomorphic traits is a powerful way to describe bacterial species. This procedure allowed us to find such phenotypic traits specific to genomovar G8 and thus propose a Latin binomial, Agrobacterium fabrum, for this bona fide genomic species. PMID:21795751

  14. 78 FR 48668 - PSEG Long Island LLC, Long Island Electric Utility Servco LLC, Long Island Power Authority, Long...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-09

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission PSEG Long Island LLC, Long Island Electric Utility Servco LLC, Long Island Power Authority, Long Island Lighting Company; Notice of Petition for Declaratory Order Take notice that on August 1, 2013, pursuant to Rule...

  15. Global Collembola on Deception Island.

    PubMed

    Greenslade, Penelope; Potapov, Mikhail; Russell, David; Convey, Peter

    2012-01-01

    Three new non-indigenous springtail species are recorded in recent collections made on Deception Island, South Shetland Islands, maritime Antarctic: Deuteraphorura (Deuteraphorura) cebennaria (Gisin) (Collembola: Onychiuridae), Mesaphorura macrochaeta Rusek (Tullbergiidae), and Proisotoma minuta Axelson (Isotomidae). One of these, D. (D.) cebennaria, is described. Additionally, two new indigenous species, Mesaphorura macrochaeta Rusek and Proisotoma minuta Axelson, are also recorded. The total number of Collembola species now known from the island is 14, comprised of eight native species and six non-indigenous species. This number of non-indigenous species recorded at Deception Island compares with only a single non-indigenous springtail recorded at any other maritime or continental Antarctic location. The reason underlying this high level of occurrence of non-indigenous species on Deception Island is likely to be a combination of the island's high level of human visitation and the presence of relatively benign terrestrial habitats associated with areas of geothermal activity. Two of the new records represent species recently assessed as being of the highest risk to become invaders in the less extreme environments of the subantarctic, thereby emphasising the importance and urgency of adopting and applying effective biosecurity measures to protect the unique and vulnerable ecosystems of this region. Also documented are the impacts on the soil fauna of the island from human trampling, which drastically reduced densities of both native and non-indigenous species to 1% of the abundance typical of non-trampled sites. PMID:23438196

  16. Global Collembola on Deception Island

    PubMed Central

    Greenslade, Penelope; Potapov, Mikhail; Russell, David; Convey, Peter

    2012-01-01

    Three new non-indigenous springtail species are recorded in recent collections made on Deception Island, South Shetland Islands, maritime Antarctic: Deuteraphorura (Deuteraphorura) cebennaria (Gisin) (Collembola: Onychiuridae), Mesaphorura macrochaeta Rusek (Tullbergiidae), and Proisotoma minuta Axelson (Isotomidae). One of these, D. (D.) cebennaria, is described. Additionally, two new indigenous species, Mesaphorura macrochaeta Rusek and Proisotoma minuta Axelson, are also recorded. The total number of Collembola species now known from the island is 14, comprised of eight native species and six non-indigenous species. This number of non-indigenous species recorded at Deception Island compares with only a single non-indigenous springtail recorded at any other maritime or continental Antarctic location. The reason underlying this high level of occurrence of non-indigenous species on Deception Island is likely to be a combination of the island's high level of human visitation and the presence of relatively benign terrestrial habitats associated with areas of geothermal activity. Two of the new records represent species recently assessed as being of the highest risk to become invaders in the less extreme environments of the subantarctic, thereby emphasising the importance and urgency of adopting and applying effective biosecurity measures to protect the unique and vulnerable ecosystems of this region. Also documented are the impacts on the soil fauna of the island from human trampling, which drastically reduced densities of both native and non-indigenous species to 1% of the abundance typical of non-trampled sites. PMID:23438196

  17. Genomic selection requires genomic control of inbreeding

    PubMed Central

    2012-01-01

    Background In the past, pedigree relationships were used to control and monitor inbreeding because genomic relationships among selection candidates were not available until recently. The aim of this study was to understand the consequences for genetic variability across the genome when genomic information is used to estimate breeding values and in managing the inbreeding generated in the course of selection on genome-enhanced estimated breeding values. Methods These consequences were measured by genetic gain, pedigree- and genome-based rates of inbreeding, and local inbreeding across the genome. Breeding schemes were compared by simulating truncation selection or optimum contribution selection with a restriction on pedigree- or genome-based inbreeding, and with selection using estimated breeding values based on genome- or pedigree-based BLUP. Trait information was recorded on full-sibs of the candidates. Results When the information used to estimate breeding values and to constrain rates of inbreeding were either both pedigree-based or both genome-based, rates of genomic inbreeding were close to the desired values and the identical-by-descent profiles were reasonably uniform across the genome. However, with a pedigree-based inbreeding constraint and genome-based estimated breeding values, genomic rates of inbreeding were much higher than expected. With pedigree-instead of genome-based estimated breeding values, the impact of the largest QTL on the breeding values was much smaller, resulting in a more uniform genome-wide identical-by-descent profile but genomic rates of inbreeding were still higher than expected based on pedigree relationships, because they measure the inbreeding at a neutral locus not linked to any QTL. Neutral loci did not exist here, where there were 100 QTL on each chromosome. With a pedigree-based inbreeding constraint and genome-based estimated breeding values, genomic rates of inbreeding substantially exceeded the value of its constraint. In contrast, with a genome-based inbreeding constraint and genome-based estimated breeding values, marker frequencies changed, but this change was limited by the inbreeding constraint at the marker position. Conclusions To control inbreeding, it is necessary to account for it on the same basis as what is used to estimate breeding values, i.e. pedigree-based inbreeding control with traditional pedigree-based BLUP estimated breeding values and genome-based inbreeding control with genome-based estimated breeding values. PMID:22898324

  18. Comparative Genomics and Transcriptomics of Propionibacterium acnes

    PubMed Central

    Brzuszkiewicz, Elzbieta; Weiner, January; Wollherr, Antje; Thürmer, Andrea; Hüpeden, Jennifer; Lomholt, Hans B.; Kilian, Mogens; Gottschalk, Gerhard; Daniel, Rolf; Mollenkopf, Hans-Joachim; Meyer, Thomas F.; Brüggemann, Holger

    2011-01-01

    The anaerobic Gram-positive bacterium Propionibacterium acnes is a human skin commensal that is occasionally associated with inflammatory diseases. Recent work has indicated that evolutionary distinct lineages of P. acnes play etiologic roles in disease while others are associated with maintenance of skin homeostasis. To shed light on the molecular basis for differential strain properties, we carried out genomic and transcriptomic analysis of distinct P. acnes strains. We sequenced the genome of the P. acnes strain 266, a type I-1a strain. Comparative genome analysis of strain 266 and four other P. acnes strains revealed that overall genome plasticity is relatively low; however, a number of island-like genomic regions, encoding a variety of putative virulence-associated and fitness traits differ between phylotypes, as judged from PCR analysis of a collection of P. acnes strains. Comparative transcriptome analysis of strains KPA171202 (type I-2) and 266 during exponential growth revealed inter-strain differences in gene expression of transport systems and metabolic pathways. In addition, transcript levels of genes encoding possible virulence factors such as dermatan-sulphate adhesin, polyunsaturated fatty acid isomerase, iron acquisition protein HtaA and lipase GehA were upregulated in strain 266. We investigated differential gene expression during exponential and stationary growth phases. Genes encoding components of the energy-conserving respiratory chain as well as secreted and virulence-associated factors were transcribed during the exponential phase, while the stationary growth phase was characterized by upregulation of genes involved in stress responses and amino acid metabolism. Our data highlight the genomic basis for strain diversity and identify, for the first time, the actively transcribed part of the genome, underlining the important role growth status plays in the inflammation-inducing activity of P. acnes. We argue that the disease-causing potential of different P. acnes strains is not only determined by the phylotype-specific genome content but also by variable gene expression. PMID:21738717

  19. Experimental Swap of Anopheles gambiae's Assortative Mating Preferences Demonstrates Key Role of X-Chromosome Divergence Island in Incipient Sympatric Speciation

    PubMed Central

    Aboagye-Antwi, Fred; Alhafez, Nahla; Weedall, Gareth D.; Brothwood, Jessica; Kandola, Sharanjit; Paton, Doug; Fofana, Abrahamane; Olohan, Lisa; Betancourth, Mauro Pazmiño; Ekechukwu, Nkiru E.; Baeshen, Rowida; Traorè, Sékou F.; Diabate, Abdoulaye; Tripet, Frédéric

    2015-01-01

    Although many theoretical models of sympatric speciation propose that genes responsible for assortative mating amongst incipient species should be associated with genomic regions protected from recombination, there are few data to support this theory. The malaria mosquito, Anopheles gambiae, is known for its sympatric cryptic species maintained by pre-mating reproductive isolation and its putative genomic islands of speciation, and is therefore an ideal model system for studying the genomic signature associated with incipient sympatric speciation. Here we selectively introgressed the island of divergence located in the pericentric region of the X chromosome of An. gambiae s.s. into its sister taxon An. coluzzii through 5 generations of backcrossing followed by two generations of crosses within the introgressed strains that resulted in An. coluzzii-like recombinant strains fixed for the M and S marker in the X chromosome island. The mating preference of recombinant strains was then tested by giving virgin recombinant individuals a choice of mates with X-islands matching and non-matching their own island type. We show through genetic analyses of transferred sperm that recombinant females consistently mated with matching island-type males thereby associating assortative mating genes with the X-island of divergence. Furthermore, full-genome sequencing confirmed that protein-coding differences between recombinant strains were limited to the experimentally swapped pericentromeric region. Finally, targeted-genome comparisons showed that a number of these unique differences were conserved in sympatric field populations, thereby revealing candidate speciation genes. The functional demonstration of a close association between speciation genes and the X-island of differentiation lends unprecedented support to island-of-speciation models of sympatric speciation facilitated by pericentric recombination suppression. PMID:25880677

  20. Ensembl Genomes 2016: more genomes, more complexity.

    PubMed

    Kersey, Paul Julian; Allen, James E; Armean, Irina; Boddu, Sanjay; Bolt, Bruce J; Carvalho-Silva, Denise; Christensen, Mikkel; Davis, Paul; Falin, Lee J; Grabmueller, Christoph; Humphrey, Jay; Kerhornou, Arnaud; Khobova, Julia; Aranganathan, Naveen K; Langridge, Nicholas; Lowy, Ernesto; McDowall, Mark D; Maheswari, Uma; Nuhn, Michael; Ong, Chuang Kee; Overduin, Bert; Paulini, Michael; Pedro, Helder; Perry, Emily; Spudich, Giulietta; Tapanari, Electra; Walts, Brandon; Williams, Gareth; Tello-Ruiz, Marcela; Stein, Joshua; Wei, Sharon; Ware, Doreen; Bolser, Daniel M; Howe, Kevin L; Kulesha, Eugene; Lawson, Daniel; Maslen, Gareth; Staines, Daniel M

    2016-01-01

    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent set of programmatic and interactive interfaces to a rich range of data including reference sequence, gene models, transcriptional data, genetic variation and comparative analysis. This paper provides an update to the previous publications about the resource, with a focus on recent developments. These include the development of new analyses and views to represent polyploid genomes (of which bread wheat is the primary exemplar); and the continued up-scaling of the resource, which now includes over 23 000 bacterial genomes, 400 fungal genomes and 100 protist genomes, in addition to 55 genomes from invertebrate metazoa and 39 genomes from plants. This dramatic increase in the number of included genomes is one part of a broader effort to automate the integration of archival data (genome sequence, but also associated RNA sequence data and variant calls) within the context of reference genomes and make it available through the Ensembl user interfaces. PMID:26578574

  1. Ensembl Genomes 2016: more genomes, more complexity

    PubMed Central

    Kersey, Paul Julian; Allen, James E.; Armean, Irina; Boddu, Sanjay; Bolt, Bruce J.; Carvalho-Silva, Denise; Christensen, Mikkel; Davis, Paul; Falin, Lee J.; Grabmueller, Christoph; Humphrey, Jay; Kerhornou, Arnaud; Khobova, Julia; Aranganathan, Naveen K.; Langridge, Nicholas; Lowy, Ernesto; McDowall, Mark D.; Maheswari, Uma; Nuhn, Michael; Ong, Chuang Kee; Overduin, Bert; Paulini, Michael; Pedro, Helder; Perry, Emily; Spudich, Giulietta; Tapanari, Electra; Walts, Brandon; Williams, Gareth; Tello–Ruiz, Marcela; Stein, Joshua; Wei, Sharon; Ware, Doreen; Bolser, Daniel M.; Howe, Kevin L.; Kulesha, Eugene; Lawson, Daniel; Maslen, Gareth; Staines, Daniel M.

    2016-01-01

    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent set of programmatic and interactive interfaces to a rich range of data including reference sequence, gene models, transcriptional data, genetic variation and comparative analysis. This paper provides an update to the previous publications about the resource, with a focus on recent developments. These include the development of new analyses and views to represent polyploid genomes (of which bread wheat is the primary exemplar); and the continued up-scaling of the resource, which now includes over 23 000 bacterial genomes, 400 fungal genomes and 100 protist genomes, in addition to 55 genomes from invertebrate metazoa and 39 genomes from plants. This dramatic increase in the number of included genomes is one part of a broader effort to automate the integration of archival data (genome sequence, but also associated RNA sequence data and variant calls) within the context of reference genomes and make it available through the Ensembl user interfaces. PMID:26578574

  2. Ensembl genomes 2016: more genomes, more complexity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent...

  3. Tracing the legacy of the early Hainan Islanders - a perspective from mitochondrial DNA

    PubMed Central

    2011-01-01

    Background Hainan Island is located around the conjunction of East Asia and Southeast Asia, and during the Last Glacial Maximum (LGM) was connected with the mainland. This provided an opportunity for the colonization of Hainan Island by modern human in the Upper Pleistocene. Whether the ancient dispersal left any footprints in the contemporary gene pool of Hainan islanders is debatable. Results We collected samples from 285 Li individuals and analyzed mitochondrial DNA (mtDNA) variations of hypervariable sequence I and II (HVS-I and II), as well as partial coding regions. By incorporating previously reported data, the phylogeny of Hainan islanders was reconstructed. We found that Hainan islanders showed a close relationship with the populations in mainland southern China, especially from Guangxi. Haplotype sharing analyses suggested that the recent gene flow from the mainland might play important roles in shaping the maternal pool of Hainan islanders. More importantly, haplogroups M12, M7e, and M7c1* might represent the genetic relics of the ancient population that populated this region; thus, 14 representative complete mtDNA genomes were further sequenced. Conclusions The detailed phylogeographic analyses of haplogroups M12, M7e, and M7c1* indicated that the early peopling of Hainan Island by modern human could be traced back to the early Holocene and/or even the late Upper Pleistocene, around 7 - 27 kya. These results correspond to both Y-chromosome and archaeological studies. PMID:21324107

  4. 27 CFR 9.170 - Long Island.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Long Island. 9.170 Section... Island. (a) Name. The name of the viticultural area described in this section is “Long Island.” (b) Approved maps. The appropriate maps for determining the boundary of the Long Island viticultural area...

  5. 21 CFR 808.89 - Rhode Island.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Rhode Island. 808.89 Section 808.89 Food and Drugs... and Local Exemptions § 808.89 Rhode Island. The following Rhode Island medical device requirements are... from preemption under section 521(b) of the act: Rhode Island General Laws, Section 5-49-2.1,...

  6. Natural hazards on the island of Hawaii

    USGS Publications Warehouse

    Peterson, D.W.; Mullineaux, D.R.

    1977-01-01

    The island of Hawaii and the other islands of the Hawaiian chain are products of volcanic eruptions. Lava flows from hundreds of thousands of eruptions through countless centuries have built the Hawaiian Islands. Some volcanoes on the island of Hawaii have been very active during historic time, and similar activity is expected to continue throughout the foreseeable future.

  7. Metabolic Syndrome in a Metapopulation of Croatian Island Isolates

    PubMed Central

    Kolčić, Ivana; Vorko-Jović, Ariana; Salzer, Branka; Smoljanović, Mladen; Kern, Josipa; Vuletić, Silvije

    2006-01-01

    Aim To investigate the prevalence and factors associated with the metabolic syndrome in 9 isolated populations on Adriatic islands, Croatia, and in the group of immigrants to these islands. Methods Random samples of 100 inhabitants from each village and 101 immigrants were collected during 2002 and 2003. Bivariate and multivariate methods were used in data analysis. Age, gender, village, diet, smoking habits, physical activity, education, occupational class, and personal genetic history (a pedigree-based estimate of the individual genome-wide heterozygosity level) were used as independent variables in logistic regression. Results A total of 343 (34%) examinees met criteria of the metabolic syndrome diagnosis, with significant differences in the prevalence among villages (P = 0.002). Metabolic syndrome was most frequently detected on Mljet island (53%), where all examinees exhibited fasting plasma glucose over 6.1 mmol/L. Examinees with metabolic syndrome were significantly older than those without it (median age 60.0 vs 53.0; P<0.001). Women were more frequently diagnosed than men (39% vs 28%; P<0.001). The highest prevalence of the metabolic syndrome was found in the autochthonous group, whereas the lowest proportion was recorded in the admixed group (39% vs 21%, respectively, P = 0.017). However, only age (odds ratio [OR], 1.06; 95% confidence intervals [CI], 1.03-1.08) and having a university degree (OR, 0.18; 95% CI 0.04-0.92) were significantly associated with metabolic syndrome in the regression model. Conclusion Metabolic syndrome was not associated with pedigree-based individual genome-wide heterozygosity estimate, after controlling for a number of confounding factors. More precise marker based genomic measures are needed to provide a clear answer whether metabolic syndrome development is influenced by the population genetic structure. PMID:16909456

  8. 46 CFR 7.80 - Tybee Island, GA to St. Simons Island, GA.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Tybee Island, GA to St. Simons Island, GA. 7.80 Section... BOUNDARY LINES Atlantic Coast § 7.80 Tybee Island, GA to St. Simons Island, GA. (a) A line drawn from the southernmost extremity of Savannah Beach on Tybee Island 255° true across Tybee Inlet to the shore of...

  9. Funding Opportunity: Genomic Data Centers

    Cancer.gov

    Funding Opportunity CCG, Funding Opportunity Center for Cancer Genomics, CCG, Center for Cancer Genomics, CCG RFA, Center for cancer genomics rfa, genomic data analysis network, genomic data analysis network centers,

  10. Draft Genome Sequence of the Polycyclic Aromatic Hydrocarbon-Degrading, Genetically Engineered Bioluminescent Bioreporter Pseudomonas fluorescens HK44

    SciTech Connect

    Chauhan, Archana; Layton, Alice; Williams, Daniel W; Smart, Abby E.; Ripp, Steven Anthony; Karpinets, Tatiana V; Brown, Steven D; Sayler, Gary Steven

    2011-01-01

    Pseudomonas fluorescens strain HK44 (DSM 6700) is a genetically engineered lux-based bioluminescent bioreporter. Here we report the draft genome sequence of strain HK44. Annotation of {approx}6.1 Mb sequence indicates that 30% of the traits are unique and distributed over 5 genomic islands, a prophage and two plasmids.

  11. West Nile virus in the British Virgin Islands.

    PubMed

    Anthony, S J; Garner, M M; Palminteri, L; Navarrete-Macias, I; Sanchez-Leon, M D; Briese, T; Daszak, P; Lipkin, W I

    2014-06-01

    West Nile virus (WNV) first emerged in the US in 1999 and has since spread across the Americas. Here, we report the continued expansion of WNV to the British Virgin Islands following its emergence in a flock of free-roaming flamingos. Histologic review of a single chick revealed lesions consistent with WNV infection, subsequently confirmed with PCR, immunohistochemistry and in situ hybridization. Full genome analysis revealed 99% sequence homology to strains circulating in the US over the past decade. This study highlights the need for rapid necropsy of wild bird carcasses to fully understand the impact of WNV on wild populations. PMID:24504904

  12. Synthesizing knowledge of ocean islands

    NASA Astrophysics Data System (ADS)

    Jefferson, Anne J.; Lees, Jonathan M.; McClinton, Tim

    2011-11-01

    AGU Chapman Conference on the Galápagos as a Laboratory for the Earth Sciences; Puerto Ayora, Galápagos, Ecuador, 25-30 July 2011 An inspiration for Darwin's theory of evolution, the Galápagos Islands and surrounding waters are a natural laboratory for a wide range of Earth science topics. The Galápagos are perfectly situated for geophysical and geochemical investigations of deep-Earth processes at a hot spot, and proximity to a spreading center allows exploration of hot spot-ridge interactions. Several highly active volcanoes show rapid deformation facilitating investigation of melt transport paths and volcanic structure. The islands exhibit a range of ages, eruptive styles, and climatic zones that allow analysis of hydrogeologic and geomorphic processes. The Galápagos Islands are a World Heritage Site and are an ideal setting for developing an integrated biological and geological understanding of ocean island evolution.

  13. The archaeoastronomy of Easter Island.

    NASA Astrophysics Data System (ADS)

    Liller, W.

    The orientations of the several hundred ancient stone monuments on Rapa Nui (Easter Island) have now been measured and analysed. The results indicate that approximately fifteen ceremonial platforms were carefully oriented solsticially or equinoctially.

  14. The Three Mile Island Disaster.

    ERIC Educational Resources Information Center

    Crosby, Emeral

    1980-01-01

    For the past decade, education has been experiencing meltdown, explosions, radiation leaks, heat pollution, and management crises, just like the Three Mile Island disaster. This article offers suggestions on how to deal with these problems. (Author/LD)

  15. Earthquake history of Rhode Island

    USGS Publications Warehouse

    von Hake, C. A.

    1976-01-01

    Only three shocks (intensity V or greater, Modified Moercalli Scale) have centered in Rhode Island, although several earthquakes in New England and the St.Lawerence Valley have been felt in the State.

  16. Wild Ponies on Assateague Island

    Wild ponies on Assateague Island. Wild ponies have lived on Assateague since the 1600s, although how they were introduced to Assateague is still debated. There are now around 300 or so wild ponies in Maryland and Virginia....

  17. Upolu Island, Western Samoa

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Island nations in the South Pacific Ocean experience natural disasters associated with typhoons, and with their proximity to the Pacific Ocean's 'Ring of Fire.' This radar image shows most of the northern coast of the island of Upolu in the nation of Western Samoa. Disaster managers use digital elevation models (DEMs) generated from radar data to assist in research toward disaster mitigation and management. Geologists also use DEM data of volcanic features, such as the line of circular craters in this image, to study eruption rates and volumes, and volcanic landform evolution. The capital of Western Samoa, Apia, is in the lower left of the image.

    Angular black areas in the image are areas where steep topography causes holes in the data; these holes can be filled in by collecting data at other look directions. Color represents topography and intensity represents across-section of the radar backscatter. Since rough areas return more of the incident signal, they appear brighter on the image than relatively smooth areas, such as the ocean surface , along the left side of the image.

    This image was acquired by the AIRborne Synthetic Aperture (AIRSAR) radar instrument aboard a DC-8 aircraft operated out of NASA's Dryden Flight Research Center. AIRSAR collects fully polarimetric data at three wavelengths; C-band (0.057 meter), L-band (0.25 meter) and P-band (0.68 meter). AIRSAR also collects cross-track and along track interferometric data that results in topographic measurements and motion detection, respectively.

    This image was collected during the Pacific Rim mission, a three-month mission from July to October 2000 that collected data at over 200 sites in eighteen countries and territories around the Pacific Rim. AIRSAR is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise,Washington, D.C.

    Size: 10 km (6.2 miles) x 63 km (37.3 miles) Location: 14.16 deg. North lat., 171.75 deg. West Orientation: North towards the left side of image Date Acquired: August 10, 2000

  18. Upolu Island, Western Samoa

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Island nations in the South Pacific Ocean experience natural disasters associated with typhoons, and with their proximity to the Pacific Ocean's 'Ring of Fire.' This radar image shows the western end of the island of Upolu in the nation of Western Samoa. Disaster managers use digital elevation models (DEMs) generated from radar data to assist in research toward disaster mitigation and management. Geologists also use DEM data of volcanic features, such as the circular craters in this image, to study eruption rates and volumes, and volcanic landform evolution.

    Black areas near the top of the image are areas where steep topography causes holes in the data; these holes can be filled in by collecting data at other look directions. Color represents topography and intensity represents across-section of the radar backscatter. Since rough areas return more of the incident signal, they appear brighter on the image than relatively smooth areas, such as the ocean surface at the top of the image.

    This image was acquired by the AIRborne Synthetic Aperture (AIRSAR) radar instrument aboard a DC-8 aircraft operated out of NASA's Dryden Flight Research Center. AIRSAR collects fully polarimetric data at three wavelengths; C-band (0.057 meter), L-band (0.25 meter) and P-band (0.68 meter). AIRSAR also collects cross-track and along track interferometric data that results in topographic measurements and motion detection, respectively.

    This image was collected during the Pacific Rim mission, a three-month mission from July to October 2000 that collected data at over 200 sites in eighteen countries and territories around the Pacific Rim. AIRSAR is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise,Washington, D.C.

    Size: 10 km (6.2 miles) x 10 km (6.2 miles) Location: 14.02 deg. North lat., 171.52 deg. West Orientation: North at top Date Acquired: August 10, 2000

  19. Magnetic island formation in tokamaks

    SciTech Connect

    Yoshikawa, S.

    1989-04-01

    The size of a magnetic island created by a perturbing helical field in a tokamak is estimated. A helical equilibrium of a current- carrying plasma is found in a helical coordinate and the helically flowing current in the cylinder that borders the plasma is calculated. From that solution, it is concluded that the helical perturbation of /approximately/10/sup /minus/4/ of the total plasma current is sufficient to cause an island width of approximately 5% of the plasma radius. 6 refs.

  20. DNA microarray analysis of genome dynamics in Yersinia pestis: insights into bacterial genome microevolution and niche adaptation.

    PubMed

    Zhou, Dongsheng; Han, Yanping; Song, Yajun; Tong, Zongzhong; Wang, Jin; Guo, Zhaobiao; Pei, Decui; Pang, Xin; Zhai, Junhui; Li, Min; Cui, Baizhong; Qi, Zhizhen; Jin, Lixia; Dai, Ruixia; Du, Zongmin; Bao, Jingyue; Zhang, Xiuqing; Yu, Jun; Wang, Jian; Huang, Peitang; Yang, Ruifu

    2004-08-01

    Genomics research provides an unprecedented opportunity for us to probe into the pathogenicity and evolution of the world's most deadly pathogenic bacterium, Yersinia pestis, in minute detail. In our present work, extensive microarray analysis in conjunction with PCR validation revealed that there are considerable genome dynamics, due to gene acquisition and loss, in natural populations of Y. pestis. We established a genomotyping system to group homologous isolates of Y. pestis, based on profiling or gene acquisition and loss in their genomes, and then drew an outline of parallel microevolution of the Y. pestis genome. The acquisition of a number of genomic islands and plasmids most likely induced Y. pestis to evolve rapidly from Yersinia pseudotuberculosis to a new, deadly pathogen. Horizontal gene acquisition also plays a key role in the dramatic evolutionary segregation of Y. pestis lineages (biovars and genomovars). In contrast to selective genome expansion by gene acquisition, genome reduction occurs in Y. pestis through the loss of DNA regions. We also theorized about the links between niche adaptation and genome microevolution. The transmission, colonization, and expansion of Y. pestis in the natural foci of endemic plague are parallel and directional and involve gradual adaptation to the complex of interactions between the environment, the hosts, and the pathogen itself. These adaptations are based on the natural selections against the accumulation of genetic changes within genome. Our data strongly support that the modern plague originated from Yunnan Province in China, due to the arising of biovar orientalis from biovar antiqua rather than mediaevalis. PMID:15262950

  1. Analysis of the products of genes encompassed by the theoretically predicted pathogenicity islands of Mycobacterium tuberculosis and Mycobacterium bovis.

    PubMed

    Zubrzycki, Igor Z

    2004-02-15

    Sequencing of the genomes of Mycobacterium tuberculosis and Mycobacterium bovis provides a unique opportunity to study the biology of these pathogens on the genomic level. The computational detection of anomalous gene clusters such as those encompassed by pathogenicity islands allows for a narrowing of the study into well-defined groups of genes. Pathogenicity islands of M. tuberculosis (strains H37Rv and CDC1551) as well as M. bovis genomes comprise a group of genes encoding proteins that have been shown to be of immunological importance. The cross-genomic comparison (M. tuberculosis vs M. bovis) resulted in the elucidation of unique proteins in M. tuberculosis. These proteins may play a significant role in the host recognition process. PMID:14748003

  2. Enabling functional genomics with genome engineering.

    PubMed

    Hilton, Isaac B; Gersbach, Charles A

    2015-10-01

    Advances in genome engineering technologies have made the precise control over genome sequence and regulation possible across a variety of disciplines. These tools can expand our understanding of fundamental biological processes and create new opportunities for therapeutic designs. The rapid evolution of these methods has also catalyzed a new era of genomics that includes multiple approaches to functionally characterize and manipulate the regulation of genomic information. Here, we review the recent advances of the most widely adopted genome engineering platforms and their application to functional genomics. This includes engineered zinc finger proteins, TALEs/TALENs, and the CRISPR/Cas9 system as nucleases for genome editing, transcription factors for epigenome editing, and other emerging applications. We also present current and potential future applications of these tools, as well as their current limitations and areas for future advances. PMID:26430154

  3. Enabling functional genomics with genome engineering

    PubMed Central

    Hilton, Isaac B.; Gersbach, Charles A.

    2015-01-01

    Advances in genome engineering technologies have made the precise control over genome sequence and regulation possible across a variety of disciplines. These tools can expand our understanding of fundamental biological processes and create new opportunities for therapeutic designs. The rapid evolution of these methods has also catalyzed a new era of genomics that includes multiple approaches to functionally characterize and manipulate the regulation of genomic information. Here, we review the recent advances of the most widely adopted genome engineering platforms and their application to functional genomics. This includes engineered zinc finger proteins, TALEs/TALENs, and the CRISPR/Cas9 system as nucleases for genome editing, transcription factors for epigenome editing, and other emerging applications. We also present current and potential future applications of these tools, as well as their current limitations and areas for future advances. PMID:26430154

  4. Genomic Species Are Ecological Species as Revealed by Comparative Genomics in Agrobacterium tumefaciens

    PubMed Central

    Lassalle, Florent; Campillo, Tony; Vial, Ludovic; Baude, Jessica; Costechareyre, Denis; Chapulliot, David; Shams, Malek; Abrouk, Danis; Lavire, Céline; Oger-Desfeux, Christine; Hommais, Florence; Guéguen, Laurent; Daubin, Vincent; Muller, Daniel; Nesme, Xavier

    2011-01-01

    The definition of bacterial species is based on genomic similarities, giving rise to the operational concept of genomic species, but the reasons of the occurrence of differentiated genomic species remain largely unknown. We used the Agrobacterium tumefaciens species complex and particularly the genomic species presently called genomovar G8, which includes the sequenced strain C58, to test the hypothesis of genomic species having specific ecological adaptations possibly involved in the speciation process. We analyzed the gene repertoire specific to G8 to identify potential adaptive genes. By hybridizing 25 strains of A. tumefaciens on DNA microarrays spanning the C58 genome, we highlighted the presence and absence of genes homologous to C58 in the taxon. We found 196 genes specific to genomovar G8 that were mostly clustered into seven genomic islands on the C58 genome—one on the circular chromosome and six on the linear chromosome—suggesting higher plasticity and a major adaptive role of the latter. Clusters encoded putative functional units, four of which had been verified experimentally. The combination of G8-specific functions defines a hypothetical species primary niche for G8 related to commensal interaction with a host plant. This supports that the G8 ancestor was able to exploit a new ecological niche, maybe initiating ecological isolation and thus speciation. Searching genomic data for synapomorphic traits is a powerful way to describe bacterial species. This procedure allowed us to find such phenotypic traits specific to genomovar G8 and thus propose a Latin binomial, Agrobacterium fabrum, for this bona fide genomic species. PMID:21795751

  5. Exploring Other Genomes: Bacteria.

    ERIC Educational Resources Information Center

    Flannery, Maura C.

    2001-01-01

    Points out the importance of genomes other than the human genome project and provides information on the identified bacterial genomes Pseudomonas aeuroginosa, Leprosy, Cholera, Meningitis, Tuberculosis, Bubonic Plague, and plant pathogens. Considers the computer's use in genome studies. (Contains 14 references.) (YDS)

  6. Navigating yeast genome maintenance with functional genomics.

    PubMed

    Measday, Vivien; Stirling, Peter C

    2016-03-01

    Maintenance of genome integrity is a fundamental requirement of all organisms. To address this, organisms have evolved extremely faithful modes of replication, DNA repair and chromosome segregation to combat the deleterious effects of an unstable genome. Nonetheless, a small amount of genome instability is the driver of evolutionary change and adaptation, and thus a low level of instability is permitted in populations. While defects in genome maintenance almost invariably reduce fitness in the short term, they can create an environment where beneficial mutations are more likely to occur. The importance of this fact is clearest in the development of human cancer, where genome instability is a well-established enabling characteristic of carcinogenesis. This raises the crucial question: what are the cellular pathways that promote genome maintenance and what are their mechanisms? Work in model organisms, in particular the yeastSaccharomyces cerevisiae, has provided the global foundations of genome maintenance mechanisms in eukaryotes. The development of pioneering genomic tools inS. cerevisiae, such as the systematic creation of mutants in all nonessential and essential genes, has enabled whole-genome approaches to identifying genes with roles in genome maintenance. Here, we review the extensive whole-genome approaches taken in yeast, with an emphasis on functional genomic screens, to understand the genetic basis of genome instability, highlighting a range of genetic and cytological screening modalities. By revealing the biological pathways and processes regulating genome integrity, these analyses contribute to the systems-level map of the yeast cell and inform studies of human disease, especially cancer. PMID:26323482

  7. Three Mile Island revisited

    SciTech Connect

    Lipford, B.L.; Cole, N.M.; Friderichs, T.J. )

    1991-01-01

    As a result of the accident in March 1979, the Three Mile Island Unit 2 (TMI-2) reactor vessel sustained significant internal damage. Approximately half of the reactor core suffered some degree of melting, with 10 to 20 tons of molten core material relocating inside the vessel and flowing down onto the reactor vessel's lower head. The resulting damage and the margin to failure of the lower head are of interest to the nuclear industry. In early 1988 the owner and operator of the TMI facility, had completed a large portion of the defueling work in the reactor core region and was preparing to remove the lower structural internals in order to defuel the area within the lower head. At that point the U.S. Nuclear Regulatory Commission's Office of Nuclear Regulatory Research (NRC-Res) in Washington, D.C., initiated a project to remove metallurgical specimens from the reactor vessel's lower head region. The goal was to determine the extent of damage to the pressure-retaining boundary in the lower head and to learn what happened during the accident.

  8. 33 CFR 80.717 - Tybee Island, GA to St. Simons Island, GA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-westernmost point on Sapelo Island to Wolf Island. (h) A north-south line (longitude 81°17.1′ W.) drawn from the south-easternmost point of Wolf Island to the northeasternmost point on Little St. Simons...

  9. 33 CFR 80.717 - Tybee Island, GA to St. Simons Island, GA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-westernmost point on Sapelo Island to Wolf Island. (h) A north-south line (longitude 81°17.1′ W.) drawn from the south-easternmost point of Wolf Island to the northeasternmost point on Little St. Simons...

  10. 33 CFR 80.717 - Tybee Island, GA to St. Simons Island, GA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-westernmost point on Sapelo Island to Wolf Island. (h) A north-south line (longitude 81°17.1′ W.) drawn from the south-easternmost point of Wolf Island to the northeasternmost point on Little St. Simons...

  11. 33 CFR 80.717 - Tybee Island, GA to St. Simons Island, GA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-westernmost point on Sapelo Island to Wolf Island. (h) A north-south line (longitude 81°17.1′ W.) drawn from the south-easternmost point of Wolf Island to the northeasternmost point on Little St. Simons...

  12. 33 CFR 80.717 - Tybee Island, GA to St. Simons Island, GA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-westernmost point on Sapelo Island to Wolf Island. (h) A north-south line (longitude 81°17.1′ W.) drawn from the south-easternmost point of Wolf Island to the northeasternmost point on Little St. Simons...

  13. 46 CFR 7.85 - St. Simons Island, GA to Little Talbot Island, FL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false St. Simons Island, GA to Little Talbot Island, FL. 7.85... BOUNDARY LINES Atlantic Coast § 7.85 St. Simons Island, GA to Little Talbot Island, FL. (a) A line drawn... Island Light. (b) A line drawn from the southernmost extremity of Amelia Island to latitude 30°29.4′...

  14. Bryophytes from Simeonof Island in the Shumagin Islands, southwestern Alaska

    USGS Publications Warehouse

    Schofield, W.B.; Talbot, S. S.; Talbot, S.L.

    2004-01-01

    Simeonof Island is located south of the Alaska Peninsula in the hyperoceanic sector of the middle boreal subzone. We examined the bryoflora of Simeonof Island to determine species composition in an area where no previous collections had been reported. This field study was conducted in sites selected to represent the spectrum of environmental variation within Simeonof Island. Data were analyzed using published reports to compare bryophyte distribution patterns at three levels, the Northern Hemisphere, North America, and Alaska. A total of 271 bryophytes were identified: 202 mosses and 69 liverworts. The annotated list of species for Simeonof Island expands the known range for many species and fills distribution gaps within Hulte??n's Western Pacific Coast district. Maps and notes on the distribution of 14 significant distribution records are presented. Compared with bryophyte distribution in the Northern Hemisphere, the bryoflora of Simeonof Island primarily includes taxa of boreal (55%), temperate (20%), arctic (10%), and cosmopolitan (8%) distribution; 6% of the moss flora are western North America endemics. A description of the bryophytes present in the vegetation and habitat types is provided as is a quantitative analysis of the most frequently occurring bryophytes in crowberry heath.

  15. Genome Maps, a new generation genome browser

    PubMed Central

    Medina, Ignacio; Salavert, Francisco; Sanchez, Rubén; de Maria, Alejandro; Alonso, Roberto; Escobar, Pablo; Bleda, Marta; Dopazo, Joaquín

    2013-01-01

    Genome browsers have gained importance as more genomes and related genomic information become available. However, the increase of information brought about by new generation sequencing technologies is, at the same time, causing a subtle but continuous decrease in the efficiency of conventional genome browsers. Here, we present Genome Maps, a genome browser that implements an innovative model of data transfer and management. The program uses highly efficient technologies from the new HTML5 standard, such as scalable vector graphics, that optimize workloads at both server and client sides and ensure future scalability. Thus, data management and representation are entirely carried out by the browser, without the need of any Java Applet, Flash or other plug-in technology installation. Relevant biological data on genes, transcripts, exons, regulatory features, single-nucleotide polymorphisms, karyotype and so forth, are imported from web services and are available as tracks. In addition, several DAS servers are already included in Genome Maps. As a novelty, this web-based genome browser allows the local upload of huge genomic data files (e.g. VCF or BAM) that can be dynamically visualized in real time at the client side, thus facilitating the management of medical data affected by privacy restrictions. Finally, Genome Maps can easily be integrated in any web application by including only a few lines of code. Genome Maps is an open source collaborative initiative available in the GitHub repository (https://github.com/compbio-bigdata-viz/genome-maps). Genome Maps is available at: http://www.genomemaps.org. PMID:23748955

  16. Genome Maps, a new generation genome browser.

    PubMed

    Medina, Ignacio; Salavert, Francisco; Sanchez, Rubén; de Maria, Alejandro; Alonso, Roberto; Escobar, Pablo; Bleda, Marta; Dopazo, Joaquín

    2013-07-01

    Genome browsers have gained importance as more genomes and related genomic information become available. However, the increase of information brought about by new generation sequencing technologies is, at the same time, causing a subtle but continuous decrease in the efficiency of conventional genome browsers. Here, we present Genome Maps, a genome browser that implements an innovative model of data transfer and management. The program uses highly efficient technologies from the new HTML5 standard, such as scalable vector graphics, that optimize workloads at both server and client sides and ensure future scalability. Thus, data management and representation are entirely carried out by the browser, without the need of any Java Applet, Flash or other plug-in technology installation. Relevant biological data on genes, transcripts, exons, regulatory features, single-nucleotide polymorphisms, karyotype and so forth, are imported from web services and are available as tracks. In addition, several DAS servers are already included in Genome Maps. As a novelty, this web-based genome browser allows the local upload of huge genomic data files (e.g. VCF or BAM) that can be dynamically visualized in real time at the client side, thus facilitating the management of medical data affected by privacy restrictions. Finally, Genome Maps can easily be integrated in any web application by including only a few lines of code. Genome Maps is an open source collaborative initiative available in the GitHub repository (https://github.com/compbio-bigdata-viz/genome-maps). Genome Maps is available at: http://www.genomemaps.org. PMID:23748955

  17. Pangenome Analysis of Burkholderia pseudomallei: Genome Evolution Preserves Gene Order despite High Recombination Rates.

    PubMed

    Spring-Pearson, Senanu M; Stone, Joshua K; Doyle, Adina; Allender, Christopher J; Okinaka, Richard T; Mayo, Mark; Broomall, Stacey M; Hill, Jessica M; Karavis, Mark A; Hubbard, Kyle S; Insalaco, Joseph M; McNew, Lauren A; Rosenzweig, C Nicole; Gibbons, Henry S; Currie, Bart J; Wagner, David M; Keim, Paul; Tuanyok, Apichai

    2015-01-01

    The pangenomic diversity in Burkholderia pseudomallei is high, with approximately 5.8% of the genome consisting of genomic islands. Genomic islands are known hotspots for recombination driven primarily by site-specific recombination associated with tRNAs. However, recombination rates in other portions of the genome are also high, a feature we expected to disrupt gene order. We analyzed the pangenome of 37 isolates of B. pseudomallei and demonstrate that the pangenome is 'open', with approximately 136 new genes identified with each new genome sequenced, and that the global core genome consists of 4568±16 homologs. Genes associated with metabolism were statistically overrepresented in the core genome, and genes associated with mobile elements, disease, and motility were primarily associated with accessory portions of the pangenome. The frequency distribution of genes present in between 1 and 37 of the genomes analyzed matches well with a model of genome evolution in which 96% of the genome has very low recombination rates but 4% of the genome recombines readily. Using homologous genes among pairs of genomes, we found that gene order was highly conserved among strains, despite the high recombination rates previously observed. High rates of gene transfer and recombination are incompatible with retaining gene order unless these processes are either highly localized to specific sites within the genome, or are characterized by symmetrical gene gain and loss. Our results demonstrate that both processes occur: localized recombination introduces many new genes at relatively few sites, and recombination throughout the genome generates the novel multi-locus sequence types previously observed while preserving gene order. PMID:26484663

  18. Pangenome Analysis of Burkholderia pseudomallei: Genome Evolution Preserves Gene Order despite High Recombination Rates

    PubMed Central

    Spring-Pearson, Senanu M.; Stone, Joshua K.; Doyle, Adina; Allender, Christopher J.; Okinaka, Richard T.; Mayo, Mark; Broomall, Stacey M.; Hill, Jessica M.; Karavis, Mark A.; Hubbard, Kyle S.; Insalaco, Joseph M.; McNew, Lauren A.; Rosenzweig, C. Nicole; Gibbons, Henry S.; Currie, Bart J.; Wagner, David M.; Keim, Paul; Tuanyok, Apichai

    2015-01-01

    The pangenomic diversity in Burkholderia pseudomallei is high, with approximately 5.8% of the genome consisting of genomic islands. Genomic islands are known hotspots for recombination driven primarily by site-specific recombination associated with tRNAs. However, recombination rates in other portions of the genome are also high, a feature we expected to disrupt gene order. We analyzed the pangenome of 37 isolates of B. pseudomallei and demonstrate that the pangenome is ‘open’, with approximately 136 new genes identified with each new genome sequenced, and that the global core genome consists of 4568±16 homologs. Genes associated with metabolism were statistically overrepresented in the core genome, and genes associated with mobile elements, disease, and motility were primarily associated with accessory portions of the pangenome. The frequency distribution of genes present in between 1 and 37 of the genomes analyzed matches well with a model of genome evolution in which 96% of the genome has very low recombination rates but 4% of the genome recombines readily. Using homologous genes among pairs of genomes, we found that gene order was highly conserved among strains, despite the high recombination rates previously observed. High rates of gene transfer and recombination are incompatible with retaining gene order unless these processes are either highly localized to specific sites within the genome, or are characterized by symmetrical gene gain and loss. Our results demonstrate that both processes occur: localized recombination introduces many new genes at relatively few sites, and recombination throughout the genome generates the novel multi-locus sequence types previously observed while preserving gene order. PMID:26484663

  19. One million served: Rhode Island`s recycling facility

    SciTech Connect

    Malloy, M.G.

    1997-11-01

    Rhode Island`s landfill and adjacent materials recovery facility (MRF) in Johnston, both owned by the quasi-public Rhode Island Resource Recovery Corp. (RIRRC, Johnston), serve the entire state. The $12-million recycling facility was built in 1989 next to the state`s sole landfill, the Central Landfill, which accepts only in-state trash. The MRF is operated for RIRRC by New England CRInc. (Hampton, N.H.), a unit of Waste Management, Inc. (WMI, Oak Brook, Ill.). It handles a wide variety of materials, from the usual newspaper, cardboard, and mixed containers to new streams such as wood waste, scrap metal, aseptic packaging (milk and juice boxes), and even textiles. State municipalities are in the process of adding many of these new recyclable streams into their curbside collection programs, all of which feed the facility.

  20. Terrestrial bird population trends on Aguiguan (Goat Island), Mariana Islands

    USGS Publications Warehouse

    Amidon, Fred; Camp, Richard J.; Marshall, Ann P.; Pratt, Thane K.; Williams, Laura; Radley, Paul; Cruz, Justine B.

    2014-01-01

    The island of Aguiguan is part of the Mariana archipelago and currently supports populations of four endemic species, including one endemic genus, Cleptornis. Bird population trends since 1982 were recently assessed on the neighbouring islands of Saipan, Tinian, and Rota indicating declines in some native species. Point-transect surveys were conducted in 2008 by the U.S. Fish and Wildlife Service to assess population densities and trends on Aguiguan. Densities for six of the nine native birds—White-throated Ground-dove Gallicolumba xanthonura, Collared Kingfisher Todiramphus chloris, Rufous Fantail Rhipidura rufifrons, Golden White-eye Cleptornis marchei, Bridled White-eye Zosterops conspicillatus and Micronesian Starling Aplonis opaca—and the non-native bird—Island Collared-dove Streptopelia bitorquata—were significantly greater in 2008 than in 1982. No differences in densities were detected among the surveys for Mariana Fruit-dove Ptilinopus roseicapilla, and Micronesian MyzomelaMyzomela rubratra. Three federally and locally listed endangered birds—Nightingale Reed-warbler Acrocephalus luscinius, Mariana Swiftlet Collocalia bartschi, and Micronesian Megapode Megapodius laperous)—were either not detected during the point-transect counts, the surveys were not appropriate for the species, or the numbers of birds detected were too small to estimate densities. The factors behind the increasing trends for some species are unknown but may be related to increased forest cover on the island since 1982. With declining trends for some native species on neighbouring islands, the increasing and stable trends on Aguiguan is good news for forest bird populations in the region, as Aguiguan populations can help support conservation efforts on other islands in the archipelago.

  1. JGI Fungal Genomics Program

    SciTech Connect

    Grigoriev, Igor V.

    2011-03-14

    Genomes of energy and environment fungi are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 50 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such 'parts' suggested by comparative genomics and functional analysis in these areas are presented here

  2. Genomic Encyclopedia of Fungi

    SciTech Connect

    Grigoriev, Igor

    2012-08-10

    Genomes of fungi relevant to energy and environment are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 150 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such parts suggested by comparative genomics and functional analysis in these areas are presented here.

  3. Photosymbiotic ascidians from Pari Island (Thousand Islands, Indonesia).

    PubMed

    Hirose, Euichi; Iskandar, Budhi Hascaryo; Wardiatno, Yusli

    2014-01-01

    Photosymbiotic ascidian fauna were surveyed in the subtidal zone off Pari Island in the Thousand Islands (Java Sea, Indonesia). Nine species were recorded: Didemnum molle, Trididemnum miniatum, Lissoclinum patella, L. punctatum, L. timorense, Diplosoma gumavirens, D. simile, D. simileguwa, and D. virens. All of these species have been previously recorded in the Ryukyu Archipelago, Japan. Diplosoma gumavirens and D. simileguwa were originally described from the Ryukyu Archipelago in 2009 and 2005, respectively, and all of the observed species are potentially widely distributed in Indo-West Pacific coral reefs. PMID:25061385

  4. Complete Genome Sequence of the Soybean Symbiont Bradyrhizobium japonicum Strain USDA6T.

    PubMed

    Kaneko, Takakazu; Maita, Hiroko; Hirakawa, Hideki; Uchiike, Nobukazu; Minamisawa, Kiwamu; Watanabe, Akiko; Sato, Shusei

    2011-01-01

    The complete nucleotide sequence of the genome of the soybean symbiont Bradyrhizobium japonicum strain USDA6T was determined. The genome of USDA6T is a single circular chromosome of 9,207,384 bp. The genome size is similar to that of the genome of another soybean symbiont, B. japonicum USDA110 (9,105,828 bp). Comparison of the whole-genome sequences of USDA6T and USDA110 showed colinearity of major regions in the two genomes, although a large inversion exists between them. A significantly high level of sequence conservation was detected in three regions on each genome. The gene constitution and nucleotide sequence features in these three regions indicate that they may have been derived from a symbiosis island. An ancestral, large symbiosis island, approximately 860 kb in total size, appears to have been split into these three regions by unknown large-scale genome rearrangements. The two integration events responsible for this appear to have taken place independently, but through comparable mechanisms, in both genomes. PMID:24710291

  5. Plant genomics: an overview.

    PubMed

    Campos-de Quiroz, Hugo

    2002-01-01

    Recent technological advancements have substantially expanded our ability to analyze and understand plant genomes and to reduce the gap existing between genotype and phenotype. The fast evolving field of genomics allows scientists to analyze thousand of genes in parallel, to understand the genetic architecture of plant genomes and also to isolate the genes responsible for mutations. Furthermore, whole genomes can now be sequenced. This review addresses these issues and also discusses ways to extract biological meaning from DNA data. Although genomic issuesare addressed from a plant perspective, this review provides insights into the genomic analyses of other organisms. PMID:12462991

  6. Thermal island destabilization and the Greenwald limit

    SciTech Connect

    White, R. B.; Gates, D. A.; Brennan, D. P.

    2015-02-15

    Magnetic reconnection is ubiquitous in the magnetosphere, the solar corona, and in toroidal fusion research discharges. In a fusion device, a magnetic island saturates at a width which produces a minimum in the magnetic energy of the configuration. At saturation, the modified current density profile, a function of the flux in the island, is essentially flat, the growth rate proportional to the difference in the current at the O-point and the X-point. Further modification of the current density profile in the island interior causes a change in the island stability and additional growth or contraction of the saturated island. Because field lines in an island are isolated from the outside plasma, an island can heat or cool preferentially depending on the balance of Ohmic heating and radiation loss in the interior, changing the resistivity and hence the current in the island. A simple model of island destabilization due to radiation cooling of the island is constructed, and the effect of modification of the current within an island is calculated. An additional destabilization effect is described, and it is shown that a small imbalance of heating can lead to exponential growth of the island. A destabilized magnetic island near the plasma edge can lead to plasma loss, and because the radiation is proportional to plasma density and charge, this effect can cause an impurity dependent density limit.

  7. Thermal island destabilization and the Greenwald limit

    NASA Astrophysics Data System (ADS)

    White, R. B.; Gates, D. A.; Brennan, D. P.

    2015-02-01

    Magnetic reconnection is ubiquitous in the magnetosphere, the solar corona, and in toroidal fusion research discharges. In a fusion device, a magnetic island saturates at a width which produces a minimum in the magnetic energy of the configuration. At saturation, the modified current density profile, a function of the flux in the island, is essentially flat, the growth rate proportional to the difference in the current at the O-point and the X-point. Further modification of the current density profile in the island interior causes a change in the island stability and additional growth or contraction of the saturated island. Because field lines in an island are isolated from the outside plasma, an island can heat or cool preferentially depending on the balance of Ohmic heating and radiation loss in the interior, changing the resistivity and hence the current in the island. A simple model of island destabilization due to radiation cooling of the island is constructed, and the effect of modification of the current within an island is calculated. An additional destabilization effect is described, and it is shown that a small imbalance of heating can lead to exponential growth of the island. A destabilized magnetic island near the plasma edge can lead to plasma loss, and because the radiation is proportional to plasma density and charge, this effect can cause an impurity dependent density limit.

  8. Is heterostyly rare on oceanic islands?

    PubMed Central

    Watanabe, Kenta; Sugawara, Takashi

    2015-01-01

    Heterostyly has been considered rare or absent on oceanic islands. However, there has been no comprehensive review on this issue. Is heterostyly truly rare on oceanic islands? What makes heterostyly rare on such islands? To answer these questions, we review the reproductive studies on heterostyly on oceanic islands, with special emphasis on the heterostylous genus Psychotria in the Pacific Ocean as a model system. Overall, not many reproductive studies have been performed on heterostylous species on oceanic islands. In Hawaiian Psychotria, all 11 species are thought to have evolved dioecy from distyly. In the West Pacific, three species on the oceanic Bonin and Lanyu Islands are distylous (Psychotria homalosperma, P. boninensis and P. cephalophora), whereas three species on the continental Ryukyu Islands show various breeding systems, such as distyly (P. serpens), dioecy (P. rubra) and monoecy (P. manillensis). On some other Pacific oceanic islands, possibilities of monomorphy have been reported. For many Psychotria species, breeding systems are unknown, although recent studies indicate that heterostylous species may occur on some oceanic islands. A shift from heterostyly to other sexual systems may occur on some oceanic islands. This tendency may also contribute to the rarity of heterostyly, in addition to the difficulty in colonization/autochthonous evolution of heterostylous species on oceanic islands. Further investigation of reproductive systems of Psychotria on oceanic islands using robust phylogenetic frameworks would provide new insights into plant reproduction on oceanic islands. PMID:26199401

  9. Late Quaternary climate change shapes island biodiversity.

    PubMed

    Weigelt, Patrick; Steinbauer, Manuel Jonas; Cabral, Juliano Sarmento; Kreft, Holger

    2016-04-01

    Island biogeographical models consider islands either as geologically static with biodiversity resulting from ecologically neutral immigration-extinction dynamics, or as geologically dynamic with biodiversity resulting from immigration-speciation-extinction dynamics influenced by changes in island characteristics over millions of years. Present climate and spatial arrangement of islands, however, are rather exceptional compared to most of the Late Quaternary, which is characterized by recurrent cooler and drier glacial periods. These climatic oscillations over short geological timescales strongly affected sea levels and caused massive changes in island area, isolation and connectivity, orders of magnitude faster than the geological processes of island formation, subsidence and erosion considered in island theory. Consequences of these oscillations for present biodiversity remain unassessed. Here we analyse the effects of present and Last Glacial Maximum (LGM) island area, isolation, elevation and climate on key components of angiosperm diversity on islands worldwide. We find that post-LGM changes in island characteristics, especially in area, have left a strong imprint on present diversity of endemic species. Specifically, the number and proportion of endemic species today is significantly higher on islands that were larger during the LGM. Native species richness, in turn, is mostly determined by present island characteristics. We conclude that an appreciation of Late Quaternary environmental change is essential to understand patterns of island endemism and its underlying evolutionary dynamics. PMID:27027291

  10. Dust Storm Hits Canary Islands

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A thick pall of sand and dust blew out from the Sahara Desert over the Atlantic Ocean yesterday (January 6, 2002), engulfing the Canary Islands in what has become one of the worst sand storms ever recorded there. In this scene, notice how the dust appears particularly thick in the downwind wake of Tenerife, the largest of the Canary Islands. Perhaps the turbulence generated by the air currents flowing past the island's volcanic peaks is churning the dust back up into the atmosphere, rather than allowing it to settle toward the surface. This true-color image was captured by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite, on January 7, 2002. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  11. Atmospheric suspensions of Russky Island

    NASA Astrophysics Data System (ADS)

    Golokhvast, Kirill S.; Nikiforov, P. A.; Chaika, V. V.

    2014-11-01

    The paper presents the first in the history of observations the results of studying of atmospheric suspensions contained in snowpacks of Russian Island (Vladivostok) , including the territory of campus of the Far Eastern Federal University (seasons 2011/2012-2013/2014 years). The distribution of airborne particles of different sizes and different genesis in differ by anthropogenic load districts of the island is revealed: the Far Eastern Federal University campus , the bridge over the Eastern Bosphorus Strait and the village Kanal. It is shown that in connection with the increase of anthropogenic load on the Russian island , its ecological condition deteriorates due to the rise in the atmosphere fractions of nano-and micro-sized particles.

  12. Recharge Data for Hawaii Island

    SciTech Connect

    Nicole Lautze

    2015-01-01

    Recharge data for Hawaii Island in shapefile format. The data are from the following sources: Whittier, R.B and A.I. El-Kadi. 2014. Human Health and Environmental Risk Ranking of On-Site Sewage Disposal systems for the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii – Final, Prepared for Hawaii Dept. of Health, Safe Drinking Water Branch by the University of Hawaii, Dept. of Geology and Geophysics. Oki, D. S. 1999. Geohydrology and Numerical Simulation of the Ground-Water Flow System of Kona, Island of Hawaii. U.S. Water-Resources Investigation Report: 99-4073. Oki, D. S. 2002. Reassessment of Ground-water Recharge and Simulated Ground-Water Availability for the Hawi Area of North Kohala, Hawaii. U.S. Geological Survey Water-Resources Investigation report 02-4006.

  13. Hawaii Island Groundwater Flow Model

    DOE Data Explorer

    Nicole Lautze

    2015-01-01

    Groundwater flow model for Hawaii Island. Data is from the following sources: Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume II – Island of Hawaii Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2008; and Whittier, R. and A.I. El-Kadi. 2014. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems For the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. September 2014.

  14. Genomic evidence of geographically widespread effect of gene flow from polar bears into brown bears

    PubMed Central

    Cahill, James A; Stirling, Ian; Kistler, Logan; Salamzade, Rauf; Ersmark, Erik; Fulton, Tara L; Stiller, Mathias; Green, Richard E; Shapiro, Beth

    2015-01-01

    Polar bears are an arctic, marine adapted species that is closely related to brown bears. Genome analyses have shown that polar bears are distinct and genetically homogeneous in comparison to brown bears. However, these analyses have also revealed a remarkable episode of polar bear gene flow into the population of brown bears that colonized the Admiralty, Baranof and Chichagof islands (ABC islands) of Alaska. Here, we present an analysis of data from a large panel of polar bear and brown bear genomes that includes brown bears from the ABC islands, the Alaskan mainland and Europe. Our results provide clear evidence that gene flow between the two species had a geographically wide impact, with polar bear DNA found within the genomes of brown bears living both on the ABC islands and in the Alaskan mainland. Intriguingly, while brown bear genomes contain up to 8.8% polar bear ancestry, polar bear genomes appear to be devoid of brown bear ancestry, suggesting the presence of a barrier to gene flow in that direction. PMID:25490862

  15. Genomic evidence of geographically widespread effect of gene flow from polar bears into brown bears.

    PubMed

    Cahill, James A; Stirling, Ian; Kistler, Logan; Salamzade, Rauf; Ersmark, Erik; Fulton, Tara L; Stiller, Mathias; Green, Richard E; Shapiro, Beth

    2015-03-01

    Polar bears are an arctic, marine adapted species that is closely related to brown bears. Genome analyses have shown that polar bears are distinct and genetically homogeneous in comparison to brown bears. However, these analyses have also revealed a remarkable episode of polar bear gene flow into the population of brown bears that colonized the Admiralty, Baranof and Chichagof islands (ABC islands) of Alaska. Here, we present an analysis of data from a large panel of polar bear and brown bear genomes that includes brown bears from the ABC islands, the Alaskan mainland and Europe. Our results provide clear evidence that gene flow between the two species had a geographically wide impact, with polar bear DNA found within the genomes of brown bears living both on the ABC islands and in the Alaskan mainland. Intriguingly, while brown bear genomes contain up to 8.8% polar bear ancestry, polar bear genomes appear to be devoid of brown bear ancestry, suggesting the presence of a barrier to gene flow in that direction. PMID:25490862

  16. (Meta)genomic insights into the pathogenome of Cellulosimicrobium cellulans

    PubMed Central

    Sharma, Anukriti; Gilbert, Jack A.; Lal, Rup

    2016-01-01

    Despite having serious clinical manifestations, Cellulosimicrobium cellulans remain under-reported with only three genome sequences available at the time of writing. Genome sequences of C. cellulans LMG16121, C. cellulans J36 and Cellulosimicrobium sp. strain MM were used to determine distribution of pathogenicity islands (PAIs) across C. cellulans, which revealed 49 potential marker genes with known association to human infections, e.g. Fic and VbhA toxin-antitoxin system. Oligonucleotide composition-based analysis of orthologous proteins (n = 791) across three genomes revealed significant negative correlation (P < 0.05) between frequency of optimal codons (Fopt) and gene G+C content, highlighting the G+C-biased gene conversion (gBGC) effect across Cellulosimicrobium strains. Bayesian molecular-clock analysis performed on three virulent PAI proteins (Fic; D-alanyl-D-alanine-carboxypeptidase; transposase) dated the divergence event at 300 million years ago from the most common recent ancestor. Synteny-based annotation of hypothetical proteins highlighted gene transfers from non-pathogenic bacteria as a key factor in the evolution of PAIs. Additonally, deciphering the metagenomic islands using strain MM’s genome with environmental data from the site of isolation (hot-spring biofilm) revealed (an)aerobic respiration as population segregation factor across the in situ cohorts. Using reference genomes and metagenomic data, our results highlight the emergence and evolution of PAIs in the genus Cellulosimicrobium. PMID:27151933

  17. (Meta)genomic insights into the pathogenome of Cellulosimicrobium cellulans.

    PubMed

    Sharma, Anukriti; Gilbert, Jack A; Lal, Rup

    2016-01-01

    Despite having serious clinical manifestations, Cellulosimicrobium cellulans remain under-reported with only three genome sequences available at the time of writing. Genome sequences of C. cellulans LMG16121, C. cellulans J36 and Cellulosimicrobium sp. strain MM were used to determine distribution of pathogenicity islands (PAIs) across C. cellulans, which revealed 49 potential marker genes with known association to human infections, e.g. Fic and VbhA toxin-antitoxin system. Oligonucleotide composition-based analysis of orthologous proteins (n = 791) across three genomes revealed significant negative correlation (P < 0.05) between frequency of optimal codons (Fopt) and gene G+C content, highlighting the G+C-biased gene conversion (gBGC) effect across Cellulosimicrobium strains. Bayesian molecular-clock analysis performed on three virulent PAI proteins (Fic; D-alanyl-D-alanine-carboxypeptidase; transposase) dated the divergence event at 300 million years ago from the most common recent ancestor. Synteny-based annotation of hypothetical proteins highlighted gene transfers from non-pathogenic bacteria as a key factor in the evolution of PAIs. Additonally, deciphering the metagenomic islands using strain MM's genome with environmental data from the site of isolation (hot-spring biofilm) revealed (an)aerobic respiration as population segregation factor across the in situ cohorts. Using reference genomes and metagenomic data, our results highlight the emergence and evolution of PAIs in the genus Cellulosimicrobium. PMID:27151933

  18. Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei

    PubMed Central

    Holden, Matthew T. G.; Titball, Richard W.; Peacock, Sharon J.; Cerdeo-Trraga, Ana M.; Atkins, Timothy; Crossman, Lisa C.; Pitt, Tyrone; Churcher, Carol; Mungall, Karen; Bentley, Stephen D.; Sebaihia, Mohammed; Thomson, Nicholas R.; Bason, Nathalie; Beacham, Ifor R.; Brooks, Karen; Brown, Katherine A.; Brown, Nat F.; Challis, Greg L.; Cherevach, Inna; Chillingworth, Tracy; Cronin, Ann; Crossett, Ben; Davis, Paul; DeShazer, David; Feltwell, Theresa; Fraser, Audrey; Hance, Zahra; Hauser, Heidi; Holroyd, Simon; Jagels, Kay; Keith, Karen E.; Maddison, Mark; Moule, Sharon; Price, Claire; Quail, Michael A.; Rabbinowitsch, Ester; Rutherford, Kim; Sanders, Mandy; Simmonds, Mark; Songsivilai, Sirirurg; Stevens, Kim; Tumapa, Sarinna; Vesaratchavest, Monkgol; Whitehead, Sally; Yeats, Corin; Barrell, Bart G.; Oyston, Petra C. F.; Parkhill, Julian

    2004-01-01

    Burkholderia pseudomallei is a recognized biothreat agent and the causative agent of melioidosis. This Gram-negative bacterium exists as a soil saprophyte in melioidosis-endemic areas of the world and accounts for 20% of community-acquired septicaemias in northeastern Thailand where half of those affected die. Here we report the complete genome of B. pseudomallei, which is composed of two chromosomes of 4.07 megabase pairs and 3.17 megabase pairs, showing significant functional partitioning of genes between them. The large chromosome encodes many of the core functions associated with central metabolism and cell growth, whereas the small chromosome carries more accessory functions associated with adaptation and survival in different niches. Genomic comparisons with closely and more distantly related bacteria revealed a greater level of gene order conservation and a greater number of orthologous genes on the large chromosome, suggesting that the two replicons have distinct evolutionary origins. A striking feature of the genome was the presence of 16 genomic islands (GIs) that together made up 6.1% of the genome. Further analysis revealed these islands to be variably present in a collection of invasive and soil isolates but entirely absent from the clonally related organism B. mallei. We propose that variable horizontal gene acquisition by B. pseudomallei is an important feature of recent genetic evolution and that this has resulted in a genetically diverse pathogenic species. PMID:15377794

  19. Brief Guide to Genomics: DNA, Genes and Genomes

    MedlinePlus

    ... A Brief Guide to Genomics DNA, Genes and Genomes Deoxyribonucleic acid (DNA) is the chemical compound that ... a deletion of thousands of bases. The Human Genome Project The Human Genome Project, which was led ...

  20. Integrating sequence, evolution and functional genomics in regulatory genomics

    PubMed Central

    Vingron, Martin; Brazma, Alvis; Coulson, Richard; van Helden, Jacques; Manke, Thomas; Palin, Kimmo; Sand, Olivier; Ukkonen, Esko

    2009-01-01

    With genome analysis expanding from the study of genes to the study of gene regulation, 'regulatory genomics' utilizes sequence information, evolution and functional genomics measurements to unravel how regulatory information is encoded in the genome. PMID:19226437

  1. The Big Island of Hawaii

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Boasting snow-covered mountain peaks and tropical forest, the Island of Hawaii, the largest of the Hawaiian Islands, is stunning at any altitude. This false-color composite (processed to simulate true color) image of Hawaii was constructed from data gathered between 1999 and 2001 by the Enhanced Thematic Mapper plus (ETM+) instrument, flying aboard the Landsat 7 satellite. The Landsat data were processed by the National Oceanographic and Atmospheric Administration (NOAA) to develop a landcover map. This map will be used as a baseline to chart changes in land use on the islands. Types of change include the construction of resorts along the coastal areas, and the conversion of sugar plantations to other crop types. Hawaii was created by a 'hotspot' beneath the ocean floor. Hotspots form in areas where superheated magma in the Earth's mantle breaks through the Earth's crust. Over the course of millions of years, the Pacific Tectonic Plate has slowly moved over this hotspot to form the entire Hawaiian Island archipelago. The black areas on the island (in this scene) that resemble a pair of sun-baked palm fronds are hardened lava flows formed by the active Mauna Loa Volcano. Just to the north of Mauna Loa is the dormant grayish Mauna Kea Volcano, which hasn't erupted in an estimated 3,500 years. A thin greyish plume of smoke is visible near the island's southeastern shore, rising from Kilauea-the most active volcano on Earth. Heavy rainfall and fertile volcanic soil have given rise to Hawaii's lush tropical forests, which appear as solid dark green areas in the image. The light green, patchy areas near the coasts are likely sugar cane plantations, pineapple farms, and human settlements. Courtesy of the NOAA Coastal Services Center Hawaii Land Cover Analysis project

  2. 3. Light tower, view northwest, south side Ram Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Light tower, view northwest, south side - Ram Island Light Station, Ram Island, south of Ocean Point & just north of Fisherman Island, marking south side of Fisherman Island Passage, Ocean Point, Lincoln County, ME

  3. 12. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. COMMANDING OFFICER'S OFFICE, FIRST FLOOR. DATED 1898. - Rock Island Arsenal, Building No. 360, Gillespie Avenue between Rodman Avenue & North Avenue, Rock Island, Rock Island County, IL

  4. 11. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. SOUTH AND EAST ELEVATIONS. ORIGINALLY PUBLISHED 1898. - Rock Island Arsenal, Building No. 360, Gillespie Avenue between Rodman Avenue & North Avenue, Rock Island, Rock Island County, IL

  5. WAKE ISLAND AIRFIELD TERMINAL, BUILDING 1502 LOOKING NORTHWEST AT SOUTHEAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WAKE ISLAND AIRFIELD TERMINAL, BUILDING 1502 LOOKING NORTHWEST AT SOUTHEAST CORNER OF LOBBY OF BUILDING (12/29/2007) - Wake Island Airfield, Terminal Building, West Side of Wake Avenue, Wake Island, Wake Island, UM

  6. WAKE ISLAND AIRFIELD TERMINAL, BUILDING 1502 LOOKING EAST WITH PHOTO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WAKE ISLAND AIRFIELD TERMINAL, BUILDING 1502 LOOKING EAST WITH PHOTO SCALE CENTERED ON BUILDING (12/30/2008) - Wake Island Airfield, Terminal Building, West Side of Wake Avenue, Wake Island, Wake Island, UM

  7. Critical island-size, stability and island morphology in nanoparticle island self-assembly

    NASA Astrophysics Data System (ADS)

    Amar, Jacques; Hubartt, Bradley

    2015-03-01

    The critical island-size, stability, and morphology of 2D colloidal Au nanoparticle (NP) islands formed at the toluene-air interface during drop-drying are studied using molecular dynamics and energetics calculations. Our calculations were carried out using an empirical potential which takes into account interactions between the dodecanethiol ligands and the toluene solvent, ligand-ligand interactions, and the van der Waals interaction between the Au cores. Good agreement with experimental results is obtained for the dependence of the critical island-size on NP diameter. Our results for the critical length-scale for smoothing via edge-diffusion are also consistent with the limited facet size and island-relaxation observed in experiments. The relatively high rate of NP diffusion on an island obtained in our simulations as well as the low calculated activation barrier for interlayer diffusion are also consistent with experimental observations that second-layer growth does not occur until after the first layer is complete. Supported by NSF CHE-1012896 and DMR-1410840

  8. Streamlined Islands in Ares Valles

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 10 June 2002) The Science Although liquid water is not stable on the surface of Mars today, there is substantial geologic evidence that large quantities of water once flowed across the surface in the distant past. Streamlined islands, shown here, are one piece of evidence for this ancient water. The tremendous force of moving water, possibly from a catastrophic flood, carved these teardrop-shaped islands within a much larger channel called Ares Valles. The orientation of the islands can be used as an indicator of the direction the water flowed. The islands have a blunt end that is usually associated with an obstacle, commonly an impact crater. The crater is resistant to erosion and creates a geologic barrier around which the water must flow. As the water flows past the obstacle, its erosive power is directed outward, leaving the area in the lee of the obstacle relatively uneroded. However, some scientists have also argued that the area in the lee of the obstacle might be a depositional zone, where material is dropped out of the water as it briefly slows. The ridges observed on the high-standing terrain in the leeward parts of the islands may be benches carved into the rock that mark the height of the water at various times during the flood, or they might be indicative of layering in the leeward rock. As the water makes its way downstream, the interference of the water flow by the obstacle is reduced, and the water that was diverted around the obstacle rejoins itself at the narrow end of the island. Therefore, the direction of the water flow is parallel to the orientation of the island, and the narrow end of the island points downstream. In addition to the streamlined islands, the channel floor exhibits fluting that is also suggestive of flowing water. The flutes (also known as longitudinal grooves) are also parallel to the direction of flow, indicating that the water flow was turbulent and probably quite fast, which is consistent with the hypothesized catastrophic floods that came through Ares Valles. The Story In symbolism only, these guppy-shaped islands and current-like flutes of land beside them may conjure up a mental image of a flowing Martian river. This picture would only be half-right. Scientifically, no fish ever swam this channel, but these landforms do reveal that catastrophic floods of rushing water probably patterned the land in just this way. Geologists who study flood areas believe that a tremendous force of moving water probably carved both the islands and the small, parallel, 'current-like' ridges around them. The blunt end of the islands (the 'heads' of the 'fish') are probably ancient impact craters that posed obstacles to the water as it rushed down the channel in torrents. Because a crater is resistant to erosion, it creates a geologic barrier around which the water must flow. As the water makes its way downstream, the crater's interference with the water flow is reduced, so the water that was diverted around the obstacle rejoins at the narrow end of the island (the 'tail' of the 'fish'). Therefore, from this information, you can tell that the water flowed from the southeast to the northwest. As a rule of thumb for the future, you can say that the narrow end of the island points downstream. The result may be the island behind the crater, but geologists disagree about the exact process by which the island forms. Some scientists argue that the erosive power of the water is directed outward, leaving the area behind, or in the lee of, the obstacle relatively untouched. Other scientists argue that the water slows when it encounters the crater obstacle, and small particles of sand and 'dirt' drop out of the water and are deposited in the lee. There's another small associated uncertainty too. Look closely at the edges of the islands and notice how the land is terraced. These ledges might mark the height of the water at various times during the flood . . . or they might be an indication that layering occurred. It all depends on your hypothesis. Like the streamlined islands, the current-like flutes are parallel to the direction of flow, indicating that the water flow was turbulent and probably quite fast, which is consistent with the hypothesis that catastrophic floods broke forth in this region, known as Ares Vallis. Ares Vallis is the region where Pathfinder landed to help understand the possible history of water on Mars. Geologists want to understand not only if there was a catastrophic flood, but why it happened. Both orbiters and landers can add to the information on hand, but some Earth examples might provide clues as well. On our planet, some glacial valleys have had major catastrophic floods that were caused by the sudden outburst and drainage of glacial lakes. The Channeled Scabland in Washington state is great Earthly example of a place where the sudden failure of a glacier ice dam spewed out water, leaving a system of large, dry channels with flutes similar to the ones seen in this image. Did something similar happen to cause this outburst on Mars? Hopefully, future studies of THEMIS and other images will help us understand the answer.

  9. Genome Instability in Lactobacillus rhamnosus GG

    PubMed Central

    Molenaar, Douwe; van IJcken, Wilfred; Venema, Koen

    2013-01-01

    We describe here a comparative genome analysis of three dairy product isolates of Lactobacillus rhamnosus GG (LGG) and the ATCC 53103 reference strain to the published genome sequence of L. rhamnosus GG. The analysis showed that in two of three isolates, major DNA segments were missing from the genomic islands LGGISL1,2. The deleted DNA segments consist of 34 genes in one isolate and 84 genes in the other and are flanked by identical insertion elements. Among the missing genes are the spaCBA genes, which encode pilin subunits involved in adhesion to mucus and persistence of the strains in the human intestinal tract. Subsequent quantitative PCR analyses of six commercial probiotic products confirmed that two more products contain a heterogeneous population of L. rhamnosus GG variants, including genotypes with or without spaC. These results underline the relevance for quality assurance and control measures targeting genome stability in probiotic strains and justify research assessing the effect of genetic rearrangements in probiotics on the outcome of in vitro and in vivo efficacy studies. PMID:23354703

  10. LONG ISLAND SOUND STUDY CCMP, 1994

    EPA Science Inventory

    The Comprehensive Conservation and Management Plan for Long Island Sound characterizes the priority problems affecting the Sound and identifies specific commitments and recommendations developed by the Long Island Sound Study (LISS) Management Conference. The CCMP provides a hist...

  11. Obesity and Native Hawaiians/Pacific Islanders

    MedlinePlus

    ... Population Profiles > Native Hawaiian/Other Pacific Islander > Obesity Obesity and Native Hawaiians/Pacific Islanders Native Hawaiians/Pacific ... data available at this time. HEALTH IMPACT OF OBESITY More than 80 percent of people with type ...

  12. Biodiversity on island chains: Neutral model simulations

    NASA Astrophysics Data System (ADS)

    Warren, Patrick B.

    2010-11-01

    A neutral ecology model is simulated on an island chain, in which neighboring islands can exchange individuals but only the first island is able to receive immigrants from a metacommunity. It is found by several measures that ? -diversity decreases along the chain. Subtle changes in taxon abundance distributions can be detected when islands in the chain are compared to diversity-matched single islands. The island chain is found to have unexpectedly rich dynamics. Significant ? -diversity correlations are found between islands in the chain, which are absent between diversity-matched single islands. The results potentially apply to human microbial biodiversity and biogeography and suggest that measurements of interindividual and intraindividual ? -diversity may give insights into microbial community assembly mechanisms.

  13. Bidding the CpG island goodbye

    PubMed Central

    2013-01-01

    Experiments on seven vertebrates suggest that identifying the locations of islands of non-methylated DNA provides more insights into evolutionarily-conserved epigenetic regulatory elements than studies of CpG islands. PMID:23467495

  14. Directed genome engineering for genome optimization.

    PubMed

    D'Halluin, Kathleen; Ruiter, Rene

    2013-01-01

    The ability to develop nucleases with tailor-made activities for targeted DNA double-strand break induction at will at any desired position in the genome has been a major breakthrough to make targeted genome optimization feasible in plants. The development of site specific nucleases for precise genome modification has expanded the repertoire of tools for the development and optimization of traits, already including mutation breeding, molecular breeding and transgenesis.Through directed genome engineering technology, the huge amount of information provided by genomics and systems biology can now more effectively be used for the creation of plants with improved or new traits, and for the dissection of gene functions. Although still in an early phase of deployment, its utility has been demonstrated for engineering disease resistance, herbicide tolerance, altered metabolite profiles, and for molecular trait stacking to allow linked transmission of transgenes. In this article, we will briefly review the different approaches for directed genome engineering with the emphasis on double strand break (DSB)-mediated engineering to-wards genome optimization for crop improvement and towards the acceleration of functional genomics. PMID:24166444

  15. 33 CFR 80.720 - St. Simons Island, GA to Amelia Island, FL.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false St. Simons Island, GA to Amelia Island, FL. 80.720 Section 80.720 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Island, GA to Amelia Island, FL. (a) A line drawn from St. Simons Light to the northernmost tank...

  16. 76 FR 2572 - Amendment of Class E Airspace; Kwajalein Island, Marshall Islands, RMI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-14

    ... part 71 by amending Class E airspace; Kwajalein Island, Marshall Islands, RMI (75 FR 61993... Kwajalein Island, Marshall Islands, RMI, as published in the Federal ] Register on October 7, 2010, FR Doc. 2010-25220, (75 FR 61933) on page 61994, column 1, is corrected as follows: Sec. 71.1 Paragraph...

  17. Energy Transition Initiative: Island Energy Snapshot - U.S. Virgin Islands (Fact Sheet)

    SciTech Connect

    Not Available

    2015-03-01

    This profile provides a snapshot of the energy landscape of the U.S. Virgin Islands (USVI) - St. Thomas, St. John, and St. Croix. The Virgin Islands archipelago makes up the northern portion of the Lesser Antilles and the western island group of the Leeward Islands, forming the border between the Atlantic Ocean and the Caribbean Sea.

  18. GENOMICS AND ENVIRONMENTAL RESEARCH

    EPA Science Inventory

    The impact of recently developed and emerging genomics technologies on environmental sciences has significant implications for human and ecological risk assessment issues. The linkage of data generated from genomics, transcriptomics, proteomics, metabalomics, and ecology can be ...

  19. Harvesting rice's dispensable genome.

    PubMed

    Wing, Rod A

    2015-01-01

    A rapid and cost-effective approach has been developed to harvest and map the dispensable genome, that is, population-level natural sequence variation within a species that is not present in static genome assemblies. PMID:26429765

  20. Pearl and Hermes Reef, Hawaiian Island Chain

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Pearl and Hermes Reef (28.0N, 176.0W) in the Hawaiian Island Chain, are seen with several small sandy islands, forming an atoll that caps a seamount on the long chain that extends some 1,500 miles northwestward from the more familiar Hawaiian Islands proper. Pearl and Hermes Reef lies about 100 miles southeast of Midway island. A reticulate network of coral patch reefs separates the lagoon into more or less isolated pools.

  1. 33 CFR 334.190 - Chesapeake Bay, in vicinity of Bloodsworth Island, MD, U.S. Navy.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...″; Bloodsworth Island, Pone Island, Northeast Island, and Adams Island. (2) The danger zone. All waters of... Bloodsworth Island, Pone Island, Northeast Island, Adams Island, or any Patuxent River Naval Air...

  2. 33 CFR 334.190 - Chesapeake Bay, in vicinity of Bloodsworth Island, MD, U.S. Navy.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...″; Bloodsworth Island, Pone Island, Northeast Island, and Adams Island. (2) The danger zone. All waters of... Bloodsworth Island, Pone Island, Northeast Island, Adams Island, or any Patuxent River Naval Air...

  3. Exploiting the genome

    SciTech Connect

    Block, S.; Cornwall, J.; Dyson, F.; Koonin, S.; Lewis, N.; Schwitters, R.

    1998-09-11

    In 1997, JASON conducted a DOE-sponsored study of the human genome project with special emphasis on the areas of technology, quality assurance and quality control, and informatics. The present study has two aims: first, to update the 1997 Report in light of recent developments in genome sequencing technology, and second, to consider possible roles for the DOE in the ''post-genomic" era, following acquisition of the complete human genome sequence.

  4. 32 CFR 935.61 - Wake Island Court.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Wake Island Court. 935.61 Section 935.61... REGULATIONS WAKE ISLAND CODE Judiciary § 935.61 Wake Island Court. (a) The trial judicial authority for Wake Island is vested in the Wake Island Court. (b) The Wake Island Court consists of one or more...

  5. Genetic structure of the Common Eider in the western Aleutian Islands prior to fox eradication

    USGS Publications Warehouse

    Sonsthagen, Sarah A.; Talbot, Sandra L.; Wilson, Robert E.; Petersen, Margaret R.; Williams, Jeffrey C.; Byrd, G. Vernon; McCracken, Kevin G.

    2013-01-01

    Since the late 18th century bird populations residing in the Aleutian Archipelago have been greatly reduced by introduced arctic foxes (Alopex lagopus). We analyzed data from microsatellite, nuclear intron, and mitochondrial (mtDNA) loci to examine the spatial genetic structure, demography, and gene flow among four Aleutian Island populations of the Common Eider (Somateria mollissima) much reduced by introduced foxes. In mtDNA, we found high levels of genetic structure within and between island groups (ΦST = 0.643), but we found no population subdivision in microsatellites or nuclear introns. Differences in genetic structure between the mitochondrial and nuclear genomes are consistent with the Common Eider's breeding and winter biology, as females are highly philopatric and males disperse. Nevertheless, significant differences between islands in the mtDNA of males and marginal significance (P =0.07) in the Z-linked locus Smo 1 suggest that males may also have some level of fidelity to island groups. Severe reduction of populations by the fox, coupled with females' high philopatry, may have left the genetic signature of a bottleneck effect, resulting in the high levels of genetic differentiation observed in mtDNA (ΦST = 0.460–0.807) between islands only 440 km apart. Reestablishment of the Common Eider following the fox's eradication was likely through recruitment from within the islands and bolstered by dispersal from neighboring islands, as suggested by the lack of genetic structure and asymmetry in gene flow between Attu and the other Near Islands.

  6. Ecology and Evolution: Islands of Change.

    ERIC Educational Resources Information Center

    Benz, Richard

    This book was designed for middle and junior high school science classes and focuses on island biogeography, ecology, and evolution. Sections include: (1) "Galapagos: Frame of Reference"; (2) "Ecology and Islands"; and (3) "Evolution." Nineteen standards-based activities use the Galapagos Islands as a running theme but are designed to help

  7. 27 CFR 9.68 - Merritt Island.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Merritt Island. 9.68... Merritt Island. (a) Name. The name of the viticultural area described in this section is “Merritt Island.” (b) Approved maps. The appropriate maps for determining the boundaries of the Merritt...

  8. 40 CFR 81.356 - Virgin Islands.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Virgin Islands. 81.356 Section 81.356... Islands. Virgin Islands—SO2 Designated area Does not meet primary standards Does not meet secondary standards Cannot be classified Better than national standards Virgin Islands AQCR: St. Croix (southern) 1...

  9. 40 CFR 81.432 - Virgin Islands.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Virgin Islands. 81.432 Section 81.432... Visibility Is an Important Value § 81.432 Virgin Islands. Area name Acreage Public Law establishing Federal land manager Virgin Islands NP 12,295 84-925 USDI-NPS...

  10. Maria Island Resource Package [and] Teacher's Guide.

    ERIC Educational Resources Information Center

    Tasmanian Education Dept., Hobart (Australia).

    This document presents a package of resources for planning a field trip to Maria Island, an island near Tasmania, Australia. A teacher's guide offers tips on organizing the school visit (bookings, accomodations, transport, what to bring to the island), pre-visit activities, on-site activities, and follow-up activities. Photographs, maps, a brief…

  11. MARINE BOTTOM COMMUNITIES OF BLOCK ISLAND WATERS

    EPA Science Inventory

    The sea has long been an integral part of Block Island's natural history, beginning when the rising sea surrounded the high spot on a Pleistocene terminal moraine that became Block Island. The southern New England continental shelf, which lies around Block Island, and the Great S...

  12. Ecology and Evolution: Islands of Change.

    ERIC Educational Resources Information Center

    Benz, Richard

    This book was designed for middle and junior high school science classes and focuses on island biogeography, ecology, and evolution. Sections include: (1) "Galapagos: Frame of Reference"; (2) "Ecology and Islands"; and (3) "Evolution." Nineteen standards-based activities use the Galapagos Islands as a running theme but are designed to help…

  13. Past, Present, Future Erosion at Locke Island

    SciTech Connect

    Bjornstad, Bruce N.

    2006-08-08

    This report describes and documents the erosion that has occurred along the northeast side of Locke Island over the last 10 to 20 years. The principal cause of this erosion is the massive Locke Island landslide complex opposite the Columbia River along the White Bluffs, which constricts the flow of the river and deflects the river's thalweg southward against the island.

  14. Ecology of Great Salt Pond, Block Island

    EPA Science Inventory

    Great Salt Pond is an island of estuarine water on Block Island, which sits in the middle of the Northwest Atlantic Continental Shelf. When the last continental glaciers retreated, they left a high spot on a terminal moraine. The rising sea from melting glaciers formed two island...

  15. The island-mainland species turnover relationship.

    PubMed

    Stuart, Yoel E; Losos, Jonathan B; Algar, Adam C

    2012-10-01

    Many oceanic islands are notable for their high endemism, suggesting that islands may promote unique assembly processes. However, mainland assemblages sometimes harbour comparable levels of endemism, suggesting that island biotas may not be as unique as is often assumed. Here, we test the uniqueness of island biotic assembly by comparing the rate of species turnover among islands and the mainland, after accounting for distance decay and environmental gradients. We modelled species turnover as a function of geographical and environmental distance for mainland (M-M) communities of Anolis lizards and Terrarana frogs, two clades that have diversified extensively on Caribbean islands and the mainland Neotropics. We compared mainland-island (M-I) and island-island (I-I) species turnover with predictions of the M-M model. If island assembly is not unique, then the M-M model should successfully predict M-I and I-I turnover, given geographical and environmental distance. We found that M-I turnover and, to a lesser extent, I-I turnover were significantly higher than predicted for both clades. Thus, in the first quantitative comparison of mainland-island species turnover, we confirm the long-held but untested assumption that island assemblages accumulate biodiversity differently than their mainland counterparts. PMID:22874754

  16. Transposable element islands facilitate adaptation to novel environments in an invasive species

    PubMed Central

    Schrader, Lukas; Kim, Jay W.; Ence, Daniel; Zimin, Aleksey; Klein, Antonia; Wyschetzki, Katharina; Weichselgartner, Tobias; Kemena, Carsten; Stökl, Johannes; Schultner, Eva; Wurm, Yannick; Smith, Christopher D.; Yandell, Mark; Heinze, Jürgen; Gadau, Jürgen; Oettler, Jan

    2014-01-01

    Adaptation requires genetic variation, but founder populations are generally genetically depleted. Here we sequence two populations of an inbred ant that diverge in phenotype to determine how variability is generated. Cardiocondyla obscurior has the smallest of the sequenced ant genomes and its structure suggests a fundamental role of transposable elements (TEs) in adaptive evolution. Accumulations of TEs (TE islands) comprising 7.18% of the genome evolve faster than other regions with regard to single-nucleotide variants, gene/exon duplications and deletions and gene homology. A non-random distribution of gene families, larvae/adult specific gene expression and signs of differential methylation in TE islands indicate intragenomic differences in regulation, evolutionary rates and coalescent effective population size. Our study reveals a tripartite interplay between TEs, life history and adaptation in an invasive species. PMID:25510865

  17. Transposable element islands facilitate adaptation to novel environments in an invasive species.

    PubMed

    Schrader, Lukas; Kim, Jay W; Ence, Daniel; Zimin, Aleksey; Klein, Antonia; Wyschetzki, Katharina; Weichselgartner, Tobias; Kemena, Carsten; Stökl, Johannes; Schultner, Eva; Wurm, Yannick; Smith, Christopher D; Yandell, Mark; Heinze, Jürgen; Gadau, Jürgen; Oettler, Jan

    2014-01-01

    Adaptation requires genetic variation, but founder populations are generally genetically depleted. Here we sequence two populations of an inbred ant that diverge in phenotype to determine how variability is generated. Cardiocondyla obscurior has the smallest of the sequenced ant genomes and its structure suggests a fundamental role of transposable elements (TEs) in adaptive evolution. Accumulations of TEs (TE islands) comprising 7.18% of the genome evolve faster than other regions with regard to single-nucleotide variants, gene/exon duplications and deletions and gene homology. A non-random distribution of gene families, larvae/adult specific gene expression and signs of differential methylation in TE islands indicate intragenomic differences in regulation, evolutionary rates and coalescent effective population size. Our study reveals a tripartite interplay between TEs, life history and adaptation in an invasive species. PMID:25510865

  18. The Genome of the “Great Speciator” Provides Insights into Bird Diversification

    PubMed Central

    Cornetti, Luca; Valente, Luis M.; Dunning, Luke T.; Quan, Xueping; Black, Richard A.; Hébert, Olivier; Savolainen, Vincent

    2015-01-01

    Among birds, white-eyes (genus Zosterops) have diversified so extensively that Jared Diamond and Ernst Mayr referred to them as the “great speciator.” The Zosterops lineage exhibits some of the fastest rates of species diversification among vertebrates, and its members are the most prolific passerine island colonizers. We present a high-quality genome assembly for the silvereye (Zosterops lateralis), a white-eye species consisting of several subspecies distributed across multiple islands. We investigate the genetic basis of rapid diversification in white-eyes by conducting genomic analyses at varying taxonomic levels. First, we compare the silvereye genome with those of birds from different families and searched for genomic features that may be unique to Zosterops. Second, we compare the genomes of different species of white-eyes from Lifou island (South Pacific), using whole genome resequencing and restriction site associated DNA. Third, we contrast the genomes of two subspecies of silvereye that differ in plumage color. In accordance with theory, we show that white-eyes have high rates of substitutions, gene duplication, and positive selection relative to other birds. Below genus level, we find that genomic differentiation accumulates rapidly and reveals contrasting demographic histories between sympatric species on Lifou, indicative of past interspecific interactions. Finally, we highlight genes possibly involved in color polymorphism between the subspecies of silvereye. By providing the first whole-genome sequence resources for white-eyes and by conducting analyses at different taxonomic levels, we provide genomic evidence underpinning this extraordinary bird radiation. PMID:26338191

  19. COMPARATIVE GENOMICS IN LEGUMES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The legume plant family will soon include three sequenced genomes. The majority of the gene-containing portions of the model legumes Medicago truncatula and Lotus japonicus have been sequenced in clone-by-clone projects, and the sequencing of the soybean genome is underway in a whole-genome shotgun ...

  20. Whole Genome Selection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whole genome selection (WGS) is an approach to using DNA markers that are distributed throughout the entire genome. Genes affecting most economically-important traits are distributed throughout the genome and there are relatively few that have large effects with many more genes with progressively sm...

  1. Birds are islands for parasites.

    PubMed

    Koop, Jennifer A H; DeMatteo, Karen E; Parker, Patricia G; Whiteman, Noah K

    2014-08-01

    Understanding the mechanisms driving the extraordinary diversification of parasites is a major challenge in evolutionary biology. Co-speciation, one proposed mechanism that could contribute to this diversity is hypothesized to result from allopatric co-divergence of host-parasite populations. We found that island populations of the Galápagos hawk (Buteo galapagoensis) and a parasitic feather louse species (Degeeriella regalis) exhibit patterns of co-divergence across variable temporal and spatial scales. Hawks and lice showed nearly identical population genetic structure across the Galápagos Islands. Hawk population genetic structure is explained by isolation by distance among islands. Louse population structure is best explained by hawk population structure, rather than isolation by distance per se, suggesting that lice tightly track the recent population histories of their hosts. Among hawk individuals, louse populations were also highly structured, suggesting that hosts serve as islands for parasites from an evolutionary perspective. Altogether, we found that host and parasite populations may have responded in the same manner to geographical isolation across spatial scales. Allopatric co-divergence is likely one important mechanism driving the diversification of parasites. PMID:25099959

  2. HISTORIC WETLANDS OF PRUDENCE ISLAND

    EPA Science Inventory

    Ten wetland sites around Narragansett Bay, Rhode Island have been selected for a multidisciplinary study. These wetland sites are being studied to develop indicators of "wetland health." The study includes assessing the ecological conditions of the wetlands in the past, and the c...

  3. UV - VIRGIN ISLANDS NATIONAL PARK

    EPA Science Inventory

    Brewer 144 is located in Virgin Islands NP, measuring ultraviolet solar radiation. Irradiance and column ozone are derived from this data. Ultraviolet solar radiation is measured with a Brewer Mark IV, single-monochrometer, spectrophotometer manufactured by SCI-TEC Instruments, I...

  4. The Manitoulin Island Space Program.

    ERIC Educational Resources Information Center

    Shaffer, Dianna

    1991-01-01

    Describes a space education program in rural Manitoulin Island, Ontario. Reports that gifted and talented students examined space exploration, built models, met with astronauts, and designed multimedia presentations. Explains that the students also hosted a one-day conference on space for students, teachers, and parents and later visited

  5. Destination: Marshall Islands. Video Guide.

    ERIC Educational Resources Information Center

    Legowski, Margaret

    This video guide was developed by the Peace Corps' Office of World Wise Schools. Activities that the guide describes are for use in a 3- to 5-day unit on one of the nations of Oceania, the Republic of the Marshall Islands. The activities are designed to provide students with opportunities to: (1) compare and contrast Marshallese and U.S. culture;

  6. tkt1, located on a novel pathogenicity island, is prevalent in avian and human extraintestinal pathogenic Escherichia coli

    PubMed Central

    2012-01-01

    Background Extraintestinal pathogenic Escherichia coli are important pathogens of human and animal hosts. Some human and avian extraintestinal pathogenic E. coli are indistinguishable on the basis of diseases caused, multilocus sequence and phylogenetic typing, carriage of large virulence plasmids and traits known to be associated with extraintestinal pathogenic E. coli virulence. Results The gene tkt1 identified by a previous signature-tagged transposon mutagenesis study, was found on a 16-kb genomic island of avian pathogenic Escherichia coli (APEC) O1, the first pathogenic Escherichia coli strain whose genome has been completely sequenced. tkt1 was present in 39.6% (38/96) of pathogenic Escherichia coli strains, while only 6.25% (3/48) of E. coli from the feces of apparently healthy chickens was positive. Further, tkt1 was predominantly present in extraintestinal pathogenic E. coli belonging to the B2 phylogenetic group, as compared to extraintestinal pathogenic E. coli of other phylogenetic groups. The tkt1-containing genomic island is inserted between the metE and ysgA genes of the E. coli K12 genome. Among different extraintestinal pathogenic E. coli of the B2 phylogenetic group, 61.7% of pathogenic Escherichia coli, 80.6% of human uropathogenic E.coli and 94.1% of human neonatal meningitis-causing E. coli, respectively, harbor a complete copy of this island; whereas, only a few avian fecal E. coli strains contained the complete island. Functional analysis showed that Tkt1 confers very little transketolase activity but is involved in peptide nitrogen metabolism. Conclusion These results suggest tkt1 and its corresponding genomic island are frequently associated with avian and human ExPEC and are involved in bipeptide metabolism. PMID:22471764

  7. Evolution: The Island of Misfit Mammoths.

    PubMed

    Roca, Alfred L

    2015-06-29

    The genomes of two woolly mammoths have been sequenced. One of the last survivors had reduced genetic diversity. Although divergent in their mitochondrial genomes, the mammoths had similar nuclear genomes, a finding germane to elephant conservation. PMID:26126277

  8. 33 CFR 334.1070 - San Francisco Bay between Treasure Island and Yerba Buena Island; naval restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Treasure Island and Yerba Buena Island; naval restricted area. 334.1070 Section 334.1070 Navigation and... RESTRICTED AREA REGULATIONS § 334.1070 San Francisco Bay between Treasure Island and Yerba Buena Island... Island, the north shore of Yerba Buena Island, and the connecting causeway, west of a line extending...

  9. Genomics and functional genomics with haloarchaea.

    PubMed

    Soppa, J; Baumann, A; Brenneis, M; Dambeck, M; Hering, O; Lange, C

    2008-09-01

    The first haloarchaeal genome was published in 2000 and today five genome sequences are available. Transcriptome and proteome analyses have been established for two and three haloarchaeal species, respectively, and more than 20 studies using these functional genomic approaches have been published in the last two years. These studies gave global overviews of metabolic regulation (aerobic and anaerobic respiration, phototrophy, carbon source usage), stress response (UV, X-rays, transition metals, osmotic and temperature stress), cell cycle-dependent transcript level regulation, and transcript half-lives. The only translatome analysis available for any prokaryotic species revealed that 10 and 20% of all transcripts are translationally regulated in Haloferax volcanii and Halobacterium salinarum, respectively. Very effective methods for the construction of in frame deletion mutants have been established recently for haloarchaea and are intensively used to unravel the biological roles of genes in this group. Bioinformatic analyses include both cross-genome comparisons as well as integration of genomic data with experimental results. The first systems biology approaches have been performed that used experimental data to construct predictive models of gene expression and metabolism, respectively. In this contribution the current status of genomics, functional genomics, and molecular genetics of haloarchaea is summarized and selected examples are discussed. PMID:18493745

  10. A genome blogger manifesto

    PubMed Central

    2012-01-01

    Cheap prices for genomic testing have revolutionized consumers’ access to personal genomics. Exploration of personal genomes poses significant challenges for customers wishing to learn beyond provider customer reports. A vibrant community has spontaneously appeared blogging experiences and data as a way to learn about their personal genomes. No set of values has publicly been described to date encapsulating ideals and code of conduct for this community. Here I present a first attempt to address this vacuum based on my own personal experiences as genome blogger. PMID:23587446

  11. Chromium and Genomic Stability

    PubMed Central

    Wise, Sandra S.; Wise, John Pierce

    2014-01-01

    Many metals serve as micronutrients which protect against genomic instability. Chromium is most abundant in its trivalent and hexavalent forms. Trivalent chromium has historically been considered an essential element, though recent data indicate that while it can have pharmacological effects and value, it is not essential. There are no data indicating that trivalent chromium promotes genomic stability and, instead may promote genomic instability. Hexavalent chromium is widely accepted as highly toxic and carcinogenic with no nutritional value. Recent data indicate that it causes genomic instability and also has no role in promoting genomic stability. PMID:22192535

  12. Complete Genome Sequence of Bradyrhizobium sp. Strain CCGE-LA001, Isolated from Field Nodules of the Enigmatic Wild Bean Phaseolus microcarpus.

    PubMed

    Servín-Garcidueñas, Luis E; Rogel, Marco A; Ormeño-Orrillo, Ernesto; Zayas-Del Moral, Alejandra; Sánchez, Federico; Martínez-Romero, Esperanza

    2016-01-01

    We present the complete genome sequence of Bradyrhizobium sp. strain CCGE-LA001, a nitrogen-fixing bacterium isolated from nodules of Phaseolus microcarpus. Strain CCGE-LA001 represents the first sequenced bradyrhizobial strain obtained from a wild Phaseolus sp. Its genome revealed a large and novel symbiotic island. PMID:26988045

  13. Linked selection and recombination rate variation drive the evolution of the genomic landscape of differentiation across the speciation continuum of Ficedula flycatchers

    PubMed Central

    Burri, Reto; Nater, Alexander; Kawakami, Takeshi; Mugal, Carina F.; Olason, Pall I.; Smeds, Linnea; Suh, Alexander; Dutoit, Ludovic; Bureš, Stanislav; Garamszegi, Laszlo Z.; Hogner, Silje; Moreno, Juan; Qvarnström, Anna; Ružić, Milan; Sæther, Stein-Are; Sætre, Glenn-Peter; Török, Janos; Ellegren, Hans

    2015-01-01

    Speciation is a continuous process during which genetic changes gradually accumulate in the genomes of diverging species. Recent studies have documented highly heterogeneous differentiation landscapes, with distinct regions of elevated differentiation (“differentiation islands”) widespread across genomes. However, it remains unclear which processes drive the evolution of differentiation islands; how the differentiation landscape evolves as speciation advances; and ultimately, how differentiation islands are related to speciation. Here, we addressed these questions based on population genetic analyses of 200 resequenced genomes from 10 populations of four Ficedula flycatcher sister species. We show that a heterogeneous differentiation landscape starts emerging among populations within species, and differentiation islands evolve recurrently in the very same genomic regions among independent lineages. Contrary to expectations from models that interpret differentiation islands as genomic regions involved in reproductive isolation that are shielded from gene flow, patterns of sequence divergence (dxy and relative node depth) do not support a major role of gene flow in the evolution of the differentiation landscape in these species. Instead, as predicted by models of linked selection, genome-wide variation in diversity and differentiation can be explained by variation in recombination rate and the density of targets for selection. We thus conclude that the heterogeneous landscape of differentiation in Ficedula flycatchers evolves mainly as the result of background selection and selective sweeps in genomic regions of low recombination. Our results emphasize the necessity of incorporating linked selection as a null model to identify genome regions involved in adaptation and speciation. PMID:26355005

  14. Complete Genome Sequence of Bradyrhizobium sp. Strain CCGE-LA001, Isolated from Field Nodules of the Enigmatic Wild Bean Phaseolus microcarpus

    PubMed Central

    Servín-Garcidueñas, Luis E.; Rogel, Marco A.; Ormeño-Orrillo, Ernesto; Zayas-del Moral, Alejandra; Sánchez, Federico

    2016-01-01

    We present the complete genome sequence of Bradyrhizobium sp. strain CCGE-LA001, a nitrogen-fixing bacterium isolated from nodules of Phaseolus microcarpus. Strain CCGE-LA001 represents the first sequenced bradyrhizobial strain obtained from a wild Phaseolus sp. Its genome revealed a large and novel symbiotic island. PMID:26988045

  15. Genomic Sequencing in Cancer

    PubMed Central

    Tuna, Musaffe; Amos, Christopher I.

    2013-01-01

    Genomic sequencing has provided critical insights into the etiology of both simple and complex diseases. The enormous reductions in cost for whole genome sequencing have allowed this technology to gain increasing use. Whole genome analysis has impacted research of complex diseases including cancer by allowing the systematic analysis of entire genomes in a single experiment, thereby facilitating the discovery of somatic and germline mutations, and identification of the function and impact of the insertions, deletions, and structural rearrangements, including translocations and inversions, in novel disease genes. Whole-genome sequencing can be used to provide the most comprehensive characterization of the cancer genome, the complexity of which we are only beginning to understand. Hence in this review, we focus on whole-genome sequencing in cancer. PMID:23178448

  16. Bacterial Genome Instability

    PubMed Central

    Darmon, Elise

    2014-01-01

    SUMMARY Bacterial genomes are remarkably stable from one generation to the next but are plastic on an evolutionary time scale, substantially shaped by horizontal gene transfer, genome rearrangement, and the activities of mobile DNA elements. This implies the existence of a delicate balance between the maintenance of genome stability and the tolerance of genome instability. In this review, we describe the specialized genetic elements and the endogenous processes that contribute to genome instability. We then discuss the consequences of genome instability at the physiological level, where cells have harnessed instability to mediate phase and antigenic variation, and at the evolutionary level, where horizontal gene transfer has played an important role. Indeed, this ability to share DNA sequences has played a major part in the evolution of life on Earth. The evolutionary plasticity of bacterial genomes, coupled with the vast numbers of bacteria on the planet, substantially limits our ability to control disease. PMID:24600039

  17. Barrier island bistability induced by biophysical interactions

    NASA Astrophysics Data System (ADS)

    Durán Vinent, Orencio; Moore, Laura J.

    2015-02-01

    Barrier islands represent about 10% of the world’s coastline, sustain rich ecosystems, host valuable infrastructure and protect mainland coasts from storms. Future climate-change-induced increases in the intensity and frequency of major hurricanes and accelerations in sea-level rise will have a significant impact on barrier islands--leading to increased coastal hazards and flooding--yet our understanding of island response to external drivers remains limited. Here, we find that island response is intrinsically bistable and controlled by previously unrecognized dynamics: the competing, and quantifiable, effects of storm erosion, sea-level rise, and the aeolian and biological processes that enable and drive dune recovery. When the biophysical processes driving dune recovery dominate, islands tend to be high in elevation and vulnerability to storms is minimized. Alternatively, when the effects of storm erosion dominate, islands may become trapped in a perpetual state of low elevation and maximum vulnerability to storms, even under mild storm conditions. When sea-level rise dominates, islands become unstable and face possible disintegration. This quantification of barrier island dynamics is supported by data from the Virginia Barrier Islands, USA and provides a broader context for considering island response to climate change and the likelihood of potentially abrupt transitions in island state.

  18. Comparative Genome Analysis Provides Insights into the Pathogenicity of Flavobacterium psychrophilum

    PubMed Central

    Castillo, Daniel; Christiansen, Rói Hammershaimb; Dalsgaard, Inger; Madsen, Lone; Espejo, Romilio

    2016-01-01

    Flavobacterium psychrophilum is a fish pathogen in salmonid aquaculture worldwide that causes cold water disease (CWD) and rainbow trout fry syndrome (RTFS). Comparative genome analyses of 11 F. psychrophilum isolates representing temporally and geographically distant populations were used to describe the F. psychrophilum pan-genome and to examine virulence factors, prophages, CRISPR arrays, and genomic islands present in the genomes. Analysis of the genomic DNA sequences were complemented with selected phenotypic characteristics of the strains. The pan genome analysis showed that F. psychrophilum could hold at least 3373 genes, while the core genome contained 1743 genes. On average, 67 new genes were detected for every new genome added to the analysis, indicating that F. psychrophilum possesses an open pan genome. The putative virulence factors were equally distributed among isolates, independent of geographic location, year of isolation and source of isolates. Only one prophage-related sequence was found which corresponded to the previously described prophage 6H, and appeared in 5 out of 11 isolates. CRISPR array analysis revealed two different loci with dissimilar spacer content, which only matched one sequence in the database, the temperate bacteriophage 6H. Genomic Islands (GIs) were identified in F. psychrophilum isolates 950106-1/1 and CSF 259–93, associated with toxins and antibiotic resistance. Finally, phenotypic characterization revealed a high degree of similarity among the strains with respect to biofilm formation and secretion of extracellular enzymes. Global scale dispersion of virulence factors in the genomes and the abilities for biofilm formation, hemolytic activity and secretion of extracellular enzymes among the strains suggested that F. psychrophilum isolates have a similar mode of action on adhesion, colonization and destruction of fish tissues across large spatial and temporal scales of occurrence. Overall, the genomic characterization and phenotypic properties may provide new insights to the mechanisms of pathogenicity in F. psychrophilum. PMID:27071075

  19. Comparative Genome Analysis Provides Insights into the Pathogenicity of Flavobacterium psychrophilum.

    PubMed

    Castillo, Daniel; Christiansen, Rói Hammershaimb; Dalsgaard, Inger; Madsen, Lone; Espejo, Romilio; Middelboe, Mathias

    2016-01-01

    Flavobacterium psychrophilum is a fish pathogen in salmonid aquaculture worldwide that causes cold water disease (CWD) and rainbow trout fry syndrome (RTFS). Comparative genome analyses of 11 F. psychrophilum isolates representing temporally and geographically distant populations were used to describe the F. psychrophilum pan-genome and to examine virulence factors, prophages, CRISPR arrays, and genomic islands present in the genomes. Analysis of the genomic DNA sequences were complemented with selected phenotypic characteristics of the strains. The pan genome analysis showed that F. psychrophilum could hold at least 3373 genes, while the core genome contained 1743 genes. On average, 67 new genes were detected for every new genome added to the analysis, indicating that F. psychrophilum possesses an open pan genome. The putative virulence factors were equally distributed among isolates, independent of geographic location, year of isolation and source of isolates. Only one prophage-related sequence was found which corresponded to the previously described prophage 6H, and appeared in 5 out of 11 isolates. CRISPR array analysis revealed two different loci with dissimilar spacer content, which only matched one sequence in the database, the temperate bacteriophage 6H. Genomic Islands (GIs) were identified in F. psychrophilum isolates 950106-1/1 and CSF 259-93, associated with toxins and antibiotic resistance. Finally, phenotypic characterization revealed a high degree of similarity among the strains with respect to biofilm formation and secretion of extracellular enzymes. Global scale dispersion of virulence factors in the genomes and the abilities for biofilm formation, hemolytic activity and secretion of extracellular enzymes among the strains suggested that F. psychrophilum isolates have a similar mode of action on adhesion, colonization and destruction of fish tissues across large spatial and temporal scales of occurrence. Overall, the genomic characterization and phenotypic properties may provide new insights to the mechanisms of pathogenicity in F. psychrophilum. PMID:27071075

  20. The island rule: made to be broken?

    PubMed Central

    Meiri, Shai; Cooper, Natalie; Purvis, Andy

    2007-01-01

    The island rule is a hypothesis whereby small mammals evolve larger size on islands while large insular mammals dwarf. The rule is believed to emanate from small mammals growing larger to control more resources and enhance metabolic efficiency, while large mammals evolve smaller size to reduce resource requirements and increase reproductive output. We show that there is no evidence for the existence of the island rule when phylogenetic comparative methods are applied to a large, high-quality dataset. Rather, there are just a few clade-specific patterns: carnivores; heteromyid rodents; and artiodactyls typically evolve smaller size on islands whereas murid rodents usually grow larger. The island rule is probably an artefact of comparing distantly related groups showing clade-specific responses to insularity. Instead of a rule, size evolution on islands is likely to be governed by the biotic and abiotic characteristics of different islands, the biology of the species in question and contingency. PMID:17986433

  1. Alternative energy technologies for the Caribbean islands

    SciTech Connect

    Pytlinski, J.T. )

    1992-01-01

    All islands in the Caribbean except Puerto Rico can be classified as developing islands. Of these islands, all except Trinidad and Tobago are oil importers. Uncertainties concerning uninterrupted oil supply and increasing oil prices causes economic, social and political instability and jeopardizes further development of these islands. The paper discusses the energy situation of the Caribbean islands and presents alternative energy options. Several alternative energy projects financed by local, federal and international organizations are presented. Present and future uses of alternative energy technologies are described in different islands. Barrier which handicap developing and implementing alternative energy sources in the Caribbean are discussed. The potential and possible applications of alternative energy technologies such as: solar-thermal energy, photovoltaics, wind energy, ocean thermal energy conversion (OTEC), ocean currents and tides energy, biomass, peat energy, municipal solid wastes, bioconversion, hydropower, geothermal energy, nuclear energy and energy conservation are discussed in detail as means to alleviate the energy situation in the Caribbean islands.

  2. Worldwide patterns of bird colouration on islands.

    PubMed

    Doutrelant, Claire; Paquet, Matthieu; Renoult, Julien P; Grégoire, Arnaud; Crochet, Pierre-André; Covas, Rita

    2016-05-01

    Island environments share distinctive characteristics that offer unique opportunities to investigate parallel evolution. Previous research has produced evidence of an island syndrome for morphological traits, life-history strategies and ecological niches, but little is known about the response to insularity of other important traits such as animal signals. Here, we tested whether birds' plumage colouration is part of the island syndrome. We analysed with spectrophotometry the colouration of 116 species endemic to islands and their 116 closest mainland relatives. We found a pattern of reduced brightness and colour intensity for both sexes on islands. In addition, we found a decrease in the number of colour patches on islands that, in males, was associated with a decrease in the number of same-family sympatric species. These results demonstrate a worldwide pattern of parallel colour changes on islands and suggest that a relaxation of selection on species recognition may be one of the mechanisms involved. PMID:26932367

  3. Shaded Relief Mosaic of Umnak Island, Aleutian Islands, Alaska

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image is a shaded relief mosaic of Umnak Island in Alaska's Aleutian Islands.

    It was created with Airsar data that was geocoded and combined into this mosaic as part of a NASA-funded Alaska Digital Elevation Model Project at the Alaska Synthetic Aperture Radar Facility (ASF) at the University of Alaska Geophysical Institute in Fairbanks, Alaska.

    Airsar collected the Alaska data as part of its PacRim 2000 Mission, which took the instrument to French Polynesia, American and Western Samoa, Fiji, New Zealand, Australia, New Guinea, Indonesia, Malaysia, Cambodia, Philippines, Taiwan, South Korea, Japan, Northern Marianas, Guam, Palau, Hawaii and Alaska. Airsar, part of NASA's Airborne Science Program, is managed for NASA's Earth Science Enterprise by JPL. JPL is a division of the California Institute of Technology in Pasadena.

  4. Generalized water-table map of Block Island, Rhode Island

    USGS Publications Warehouse

    Johnston, H.E.; Veeger, A.I.

    1994-01-01

    The map shows the altitude of water table surface above seal level in the glacial deposits that form Block Island. Because the sediments are only moderately permeable, the water table is close to the to the surface in most parts of the island, even in hilly areas. The map represents a generalized water-table configuration on the basis of data from many different sampling periods; because the data were collected at different times, they should not be used to determine a specific depth to water at a particular site. Water levels measured in 117 shallow wells (less than 35 feet deep) from June through September 1962 and from March through September 1988-90--periods when water levels were at about the same altitude above sea level--ranged from less than 1 to 24 feet below land surface and averaged about 6 feet below land surface.

  5. Enabling responsible public genomics.

    PubMed

    Conley, John M; Doerr, Adam K; Vorhaus, Daniel B

    2010-01-01

    As scientific understandings of genetics advance, researchers require increasingly rich datasets that combine genomic data from large numbers of individuals with medical and other personal information. Linking individuals' genetic data and personal information precludes anonymity and produces medically significant information--a result not contemplated by the established legal and ethical conventions governing human genomic research. To pursue the next generation of human genomic research and commerce in a responsible fashion, scientists, lawyers, and regulators must address substantial new issues, including researchers' duties with respect to clinically significant data, the challenges to privacy presented by genomic data, the boundary between genomic research and commerce, and the practice of medicine. This Article presents a new model for understanding and addressing these new challenges--a "public genomics" premised on the idea that ethically, legally, and socially responsible genomics research requires openness, not privacy, as its organizing principle. Responsible public genomics combines the data contributed by informed and fully consenting information altruists and the research potential of rich datasets in a genomic commons that is freely and globally available. This Article examines the risks and benefits of this public genomics model in the context of an ambitious genetic research project currently under way--the Personal Genome Project. This Article also (i) demonstrates that large-scale genomic projects are desirable, (ii) evaluates the risks and challenges presented by public genomics research, and (iii) determines that the current legal and regulatory regimes restrict beneficial and responsible scientific inquiry while failing to adequately protect participants. The Article concludes by proposing a modified normative and legal framework that embraces and enables a future of responsible public genomics. PMID:21243847

  6. Genome sequencing of a virulent avian Pasteurella multocida strain GX-Pm reveals the candidate genes involved in the pathogenesis.

    PubMed

    Yu, Chengjie; Sizhu, Suolang; Luo, Qingping; Xu, Xuewen; Fu, Lei; Zhang, Anding

    2016-04-01

    Pasteurella multocida (P. multocida) was first shown to be the causative agent of fowl cholera by Louis Pasteur in 1881. First genomic study was performed on an avirulent avian strain Pm70, and until 2013, two genomes of virulent avian strains X73 and P1059 were sequenced. Comparative genome study supplied important information for further study on the pathogenesis of fowl cholera. In the previous study, a capsular serotype A strain GX-Pm was isolated from the liver of a chicken, which died during an outbreak of fowl cholera in 2011. The strain showed multiple drug resistance and was highly virulent to chickens. Therefore, the present study performed the genome sequencing and a comparative genomic analysis to reveal the candidate genes involved in virulence of P. multocida. Sequenced draft genome sequence of GX-Pm was 2,292,886bp, contained 2941 protein-coding genes, 5 genomic islands, 4 IS elements and 2 prophage regions. Notability, all the predicted drug-resistance genes were included in predicted genomic islands. A comparative genome study on virulent avian strains P1059, X73 and GX-Pm with the avirulent avian strain Pm 70 indicated that 475 unique genes were only identified in either of virulent strains but absent in the avirulent strain. Among these genes, 20 genes were contained within genomes of all three virulent strains, including a few of putative virulence genes. Further characterization of the pathogenic functions of these genes would benefit the understanding of pathogenesis of fowl cholera. PMID:27033902

  7. Identification of the Pangenome and Its Components in 14 Distinct Aggregatibacter actinomycetemcomitans Strains by Comparative Genomic Analysis

    PubMed Central

    Kittichotirat, Weerayuth; Bumgarner, Roger E.; Asikainen, Sirkka; Chen, Casey

    2011-01-01

    Background Aggregatibacter actinomycetemcomitans is genetically heterogeneous and comprises distinct clonal lineages that may have different virulence potentials. However, limited information of the strain-to-strain genomic variations is available. Methodology/Principal Findings The genome sequences of 11 A. actinomycetemcomitans strains (serotypes a-f) were generated de novo, annotated and combined with three previously sequenced genomes (serotypes a-c) for comparative genomic analysis. Two major groups were identified; serotypes a, d, e, and f, and serotypes b and c. A serotype e strain was found to be distinct from both groups. The size of the pangenome was 3,301 genes, which included 2,034 core genes and 1,267 flexible genes. The number of core genes is estimated to stabilize at 2,060, while the size of the pangenome is estimated to increase by 16 genes with every additional strain sequenced in the future. Within each strain 16.7–29.4% of the genome belonged to the flexible gene pool. Between any two strains 0.4–19.5% of the genomes were different. The genomic differences were occasionally greater for strains of the same serotypes than strains of different serotypes. Furthermore, 171 genomic islands were identified. Cumulatively, 777 strain-specific genes were found on these islands and represented 61% of the flexible gene pool. Conclusions/Significance Substantial genomic differences were detected among A. actinomycetemcomitans strains. Genomic islands account for more than half of the flexible genes. The phenotype and virulence of A. actinomycetemcomitans may not be defined by any single strain. Moreover, the genomic variation within each clonal lineage of A. actinomycetemcomitans (as defined by serotype grouping) may be greater than between clonal lineages. The large genomic data set in this study will be useful to further examine the molecular basis of variable virulence among A. actinomycetemcomitans strains. PMID:21811606

  8. De novo methylation of the MyoD1 CpG island during the establishment of immortal cell lines.

    PubMed Central

    Jones, P A; Wolkowicz, M J; Rideout, W M; Gonzales, F A; Marziasz, C M; Coetzee, G A; Tapscott, S J

    1990-01-01

    CpG dinucleotides are unevenly distributed in the vertebrate genome. Bulk DNA is depleted of CpGs and most of the cytosines in the dinucleotide in this fraction are methylated. On the other hand, CpG islands, which are often associated with genes, are unmethylated at testable sites in all normal tissues with the exception of genes on the inactive X chromosome. We used Hpa II/Msp I analysis and ligation-mediated polymerase chain reaction to examine the methylation of the MyoD1 CpG island in adult mouse tissues, early cultures of mouse embryo cells, and immortal fibroblastic cell lines. The island was almost devoid of methylation at CCGG sites in adult mouse tissues and in low-passage mouse embryo fibroblasts. In marked contrast, the island was methylated in 10T 1/2 cells and in six other immortal cell lines showing that methylation of this CpG island had occurred during escape from senescence. The island became even more methylated in chemically transformed derivatives of 10T 1/2 cells. Thus, CpG islands not methylated in normal tissues may become modified to an abnormally high degree during immortalization and transformation. Images PMID:2385586

  9. Hydrogeology and water resources of Block Island, Rhode Island

    USGS Publications Warehouse

    Veeger, A.I.; Johnston, H.E.

    1994-01-01

    Ground water is present on Block Island as a lens of freshwater that overlies saltwater. Yields of 2 to 5 gallons per minute are obtainable throughout the island, and yields of 25 gallons per minute are possible at many wells. Annual water use during 1990 is estimated to have been 53 million gallons, of which approximately 17 million gallons was delivered from a water company at Sands Pond. Demand by water company customers from May through October averages 74,000 gallons per day. The sustainable yield of Sands Pond during the drought years estimated to be only 45,000 gallons per day. Withdrawal of the remaining 29,000 gallons per day from Fresh Pond, proposed as an alternative source, would produce an estimated water-level decline of less than 1 foot. Block Island consists of a Pleistocene moraine deposit that includes meltwater deposits, till, sediment-flow deposits, and glacially transported blocks of Cretaceous strata and pre-Late Wisconsinan glacial deposits. The water table is a subdued reflection of the land-surface topography and flow is generally from the central, topographic highs toward the coast. Layers of low hydraulic- conductivity material impede vertical flow, creating steep vertical gradients. No evidence of widespread ground-water contamination was found during this study. Nitrate concentrations were below Federal Maximum Contaminant Levels at each of the 83 sites sampled. No evidence of dissolved organic constituents was found in groundwater at the 10 sites sampled, and ground-water samples collected near the landfill showed no evidence of contamination from landfill leachate. Dissolved-iron concentrations exceeded the Federal Secondary Maximum Contaminant Level in groundwater at 26 of 76 wells sampled. High iron concentrations were found predominantly in the eastern and northern parts of the island and are attributed to the presence of iron-bearing minerals and organic matter in the aquifer.

  10. Draft Genome Sequence of Altererythrobacter marensis DSM 21428T, Isolated from Seawater

    PubMed Central

    Wu, Yue-Hong; Huo, Ying-Yi; Wang, Chun-Sheng

    2016-01-01

    Altererythrobacter marensis DSM 21428T was isolated from seawater collected around Mara Island, South Korea. The genomic characteristics of this strain support its potential for alkane-related compound degradation. A. marensis DSM 21428T has potential applications in bioremediation projects concerning offshore petroleum spill prevention and response. PMID:26847882

  11. Draft Genome Sequence of Altererythrobacter marensis DSM 21428T, Isolated from Seawater.

    PubMed

    Cheng, Hong; Wu, Yue-Hong; Huo, Ying-Yi; Wang, Chun-Sheng; Xu, Xue-Wei

    2016-01-01

    Altererythrobacter marensis DSM 21428(T) was isolated from seawater collected around Mara Island, South Korea. The genomic characteristics of this strain support its potential for alkane-related compound degradation. A. marensis DSM 21428(T) has potential applications in bioremediation projects concerning offshore petroleum spill prevention and response. PMID:26847882

  12. The diploid D genome cottons (Gossypium spp.) of the new world

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The diploid D genome cottons (Gossypium spp.) of the New World are part of a great reservoir of important genes for improving fiber quality, pest and disease resistance, and drought and salt tolerance in the modern cultivated Upland/Acala (G. hirsutum) and Pima [also known as Sea Island or Egyptian ...

  13. Draft genome sequence of Alcaligenes faecalis subsp. faecalis NCIB 8687 (CCUG 2071).

    PubMed

    Phung, Le T; Trimble, William L; Meyer, Folker; Gilbert, Jack A; Silver, Simon

    2012-09-01

    Alcaligenes faecalis subsp. faecalis NCIB 8687, the betaproteobacterium from which arsenite oxidase had its structure solved and the first "arsenate gene island" identified, provided a draft genome of 3.9 Mb in 186 contigs (with the largest 15 comprising 90% of the total) for this opportunistic pathogen species. PMID:22933773

  14. Draft Genome Sequence of the Shellfish Larval Probiotic Bacillus pumilus RI06-95

    PubMed Central

    Hamblin, Meagan; Spinard, Edward; Gomez-Chiarri, Marta; Nelson, David R.

    2015-01-01

    Bacillus pumilus RI06-95 is a marine bacterium isolated in Narragansett, Rhode Island, which has shown probiotic activity against marine pathogens in larval shellfish. We report the genome of B. pumilus RI06-95, which provides insight into the microbe’s probiotic ability and may be used in future studies of the probiotic mechanism. PMID:26337873

  15. Draft Genome Sequence of Pediococcus lolii NGRI 0510QT Isolated from Ryegrass Silage

    PubMed Central

    Mori, Kazuki; Tashiro, Kosuke; Fujino, Yasuhiro; Nagayoshi, Yuko; Hayashi, Yoshiharu; Kuhara, Satoru; Ohshima, Toshihisa

    2013-01-01

    Pediococcus lolii NGRI 0510QT was isolated from ryegrass silage produced on Ishigaki Island, Okinawa Prefecture, Japan. Here we present a draft genome sequence for this strain, consisting of 103 contigs for a total of 2,047,078 bp, 2,154 predicted coding sequences, and a G+C content of 42.1%. PMID:23405350

  16. The PEDANT genome database.

    PubMed

    Frishman, Dmitrij; Mokrejs, Martin; Kosykh, Denis; Kastenmüller, Gabi; Kolesov, Grigory; Zubrzycki, Igor; Gruber, Christian; Geier, Birgitta; Kaps, Andreas; Albermann, Kaj; Volz, Andreas; Wagner, Christian; Fellenberg, Matthias; Heumann, Klaus; Mewes, Hans-Werner

    2003-01-01

    The PEDANT genome database (http://pedant.gsf.de) provides exhaustive automatic analysis of genomic sequences by a large variety of established bioinformatics tools through a comprehensive Web-based user interface. One hundred and seventy seven completely sequenced and unfinished genomes have been processed so far, including large eukaryotic genomes (mouse, human) published recently. In this contribution, we describe the current status of the PEDANT database and novel analytical features added to the PEDANT server in 2002. Those include: (i) integration with the BioRS data retrieval system which allows fast text queries, (ii) pre-computed sequence clusters in each complete genome, (iii) a comprehensive set of tools for genome comparison, including genome comparison tables and protein function prediction based on genomic context, and (iv) computation and visualization of protein-protein interaction (PPI) networks based on experimental data. The availability of functional and structural predictions for 650 000 genomic proteins in well organized form makes PEDANT a useful resource for both functional and structural genomics. PMID:12519983

  17. The PEDANT genome database

    PubMed Central

    Frishman, Dmitrij; Mokrejs, Martin; Kosykh, Denis; Kastenmüller, Gabi; Kolesov, Grigory; Zubrzycki, Igor; Gruber, Christian; Geier, Birgitta; Kaps, Andreas; Albermann, Kaj; Volz, Andreas; Wagner, Christian; Fellenberg, Matthias; Heumann, Klaus; Mewes, Hans-Werner

    2003-01-01

    The PEDANT genome database (http://pedant.gsf.de) provides exhaustive automatic analysis of genomic sequences by a large variety of established bioinformatics tools through a comprehensive Web-based user interface. One hundred and seventy seven completely sequenced and unfinished genomes have been processed so far, including large eukaryotic genomes (mouse, human) published recently. In this contribution, we describe the current status of the PEDANT database and novel analytical features added to the PEDANT server in 2002. Those include: (i) integration with the BioRS™ data retrieval system which allows fast text queries, (ii) pre-computed sequence clusters in each complete genome, (iii) a comprehensive set of tools for genome comparison, including genome comparison tables and protein function prediction based on genomic context, and (iv) computation and visualization of protein–protein interaction (PPI) networks based on experimental data. The availability of functional and structural predictions for 650 000 genomic proteins in well organized form makes PEDANT a useful resource for both functional and structural genomics. PMID:12519983

  18. Fission and fusion in island taxa--serendipity, or something to be expected?

    PubMed

    Emerson, Brent C; Faria, Christiana M A

    2014-11-01

    A well-used metaphor for oceanic islands is that they act as 'natural laboratories' for the study of evolution. But how can islands or archipelagos be considered analogues of laboratories for understanding the evolutionary process itself? It is not necessarily the case that just because two or more related species occur on an island or archipelago, somehow, this can help us understand more about their evolutionary history. But in some cases, it can. In this issue of Molecular Ecology, Garrick et al. () use population-level sampling within closely related taxa of Galapagos giant tortoises to reveal a complex demographic history of the species Chelonoidis becki - a species endemic to Isabela Island, and geographically restricted to Wolf Volcano. Using microsatellite genotyping and mitochondrial DNA sequencing, they provide a strong case for C. becki being derived from C. darwini from the neighbouring island of Santiago. But the interest here is that colonization did not happen only once. Garrick et al. () reveal C. becki to be the product of a double colonization event, and their data reveal these two founding lineages to be now fusing back into one. Their results are compelling and add to a limited literature describing the evolutionary consequences of double colonization events. Here, we look at the broader implications of the findings of Garrick et al. () and suggest genomic admixture among multiple founding populations may be a characteristic feature within insular taxa. PMID:25330853

  19. Tambora Caldera, Sumbawa Island, Indonesia

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Tambora caldera on the island of Sumbawa, Indonesia (8.5S, 118.0E) is a large crater formed in 1815 when a huge volcanic eruption ejected millions of tons debris high into the atmosphere. The particulate matter was blown around the globe by winds, masking much of the Earth's surface from sunlight, lowering global temperatures. Snow fell in New England in June and freezes occurred in the summer of 1816 which became known as the year without a summer.

  20. The Three Mile Island crisis

    SciTech Connect

    Houts, P.S.; Cleary, P.D.; Hu, T.W.

    1988-01-01

    Since the March 1979 accident at the Three Mile Island (TMI) nuclear power plant, many studies have assessed its impacts. Compiled and summarized in this book are the results of five related surveys, all aimed at the scientific assessment of the psycho-socio-economic behavior of the residents around the TMI facility. These studies are based on a randomly selected, large sample of the population (with telephones) around TMI.