Tao, Y.B.; He, Y.L.
2010-10-15
A unified two-dimensional numerical model was developed for the coupled heat transfer process in parabolic solar collector tube, which includes nature convection, forced convection, heat conduction and fluid-solid conjugate problem. The effects of Rayleigh number (Ra), tube diameter ratio and thermal conductivity of the tube wall on the heat transfer and fluid flow performance were numerically analyzed. The distributions of flow field, temperature field, local Nu and local temperature gradient were examined. The results show that when Ra is larger than 10{sup 5}, the effects of nature convection must be taken into account. With the increase of tube diameter ratio, the Nusselt number in inner tube (Nu{sub 1}) increases and the Nusselt number in annuli space (Nu{sub 2}) decreases. With the increase of tube wall thermal conductivity, Nu{sub 1} decreases and Nu{sub 2} increases. When thermal conductivity is larger than 200 W/(m K), it would have little effects on Nu and average temperatures. Due to the effect of the nature convection, along the circumferential direction (from top to down), the temperature in the cross-section decreases and the temperature gradient on inner tube surface increases at first. Then, the temperature and temperature gradients would present a converse variation at {theta} near {pi}. The local Nu on inner tube outer surface increases along circumferential direction until it reaches a maximum value then it decreases again. (author)
Rakowski, Cynthia L.; Serkowski, John A.; Richmond, Marshall C.; Perkins, William A.
2010-12-01
In 2003, an extension of the existing ice and trash sluiceway was added at Bonneville Powerhouse 2 (B2). This extension started at the existing corner collector for the ice and trash sluiceway adjacent to Bonneville Powerhouse 2 and the new sluiceway was extended to the downstream end of Cascade Island. The sluiceway was designed to improve juvenile salmon survival by bypassing turbine passage at B2, and placing these smolt in downstream flowing water minimizing their exposure to fish and avian predators. In this study, a previously developed computational fluid dynamics model was modified and used to characterized tailrace hydraulics and sluiceway egress conditions for low total river flows and low levels of spillway flow. STAR-CD v4.10 was used for seven scenarios of low total river flow and low spill discharges. The simulation results were specifically examined to look at tailrace hydraulics at 5 ft below the tailwater elevation, and streamlines used to compare streamline pathways for streamlines originating in the corner collector outfall and adjacent to the outfall. These streamlines indicated that for all higher spill percentage cases (25% and greater) that streamlines from the corner collector did not approach the shoreline at the downstream end of Bradford Island. For the cases with much larger spill percentages, the streamlines from the corner collector were mid-channel or closer to the Washington shore as they moved downstream. Although at 25% spill at 75 kcfs total river, the total spill volume was sufficient to "cushion" the flow from the corner collector from the Bradford Island shore, areas of recirculation were modeled in the spillway tailrace. However, at the lowest flows and spill percentages, the streamlines from the B2 corner collector pass very close to the Bradford Island shore. In addition, the very flow velocity flows and large areas of recirculation greatly increase potential predator exposure of the spillway passed smolt. If there is
Technology Transfer Automated Retrieval System (TEKTRAN)
Little research has been conducted to investigate fate and transport of colloids in surface vegetation in overland flow under unfavorable chemical conditions. In this work, single collector attachment efficiency (a) of colloid capture by a simulated plant stem (i.e. cylindrical collector) in laminar...
Internal thermal coupling in direct-flow coaxial vacuum tube collectors
Glembin, J.; Rockendorf, G.; Scheuren, J.
2010-07-15
This investigation covers the impact of low flow rates on the efficiency of coaxial vacuum tube collectors. Measurements show an efficiency reduction of 10% if reducing the flow rate from 78 kg/m{sup 2} h to 31 kg/m{sup 2} h for a collector group with 60 parallel vacuum tubes with a coaxial flow conduit at one-sided connection. For a more profound understanding a model of the coaxial tube was developed which defines the main energy fluxes including the internal thermal coupling. The tube simulations show a non-linear temperature profile along the tube with the maximum temperature in the outer pipe. Due to heat transfer to the entering flow this maximum is not located at the fluid outlet. The non-linearity increases with decreasing flow rates. The experimentally determined flow distribution allows simulating the measured collector array. The simulation results confirm the efficiency decrease at low flow rates. The flow distribution has a further impact on efficiency reduction, but even at an ideal uniform flow, a considerable efficiency reduction at low flow rates is to be expected. As a consequence, low flow rates should be prevented for coaxial tube collectors, thus restricting the possible operation conditions. The effect of constructional modifications like diameter or material variations is presented. Finally the additional impact of a coaxial manifold design is discussed. (author)
NASA Technical Reports Server (NTRS)
Johnson, S. M.
1976-01-01
Basic test results are given for a flat plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and one coolant flow rate. Collector efficiency is correlated in terms of inlet temperature and flux level.
Investigation of the flow field inside flat-plate collector tube using PIV technique
Sookdeo, Steven; Siddiqui, Kamran
2010-06-15
The thermofluid process inside the tube of flat-plate collectors is complex because the non-uniform heating of the tube results in the formation of stably and unstably stratified layers of fluid that interact with each other. The measurement and investigation of the flow behaviour inside the collector tube is very challenging. We report on a novel application of the particle image velocimetry (PIV) technique to remotely measure the velocity field inside the collector tube. The two-dimensional velocity fields were measured in the midplane of a collector tube for the Reynolds number range of 150-900 at unheated and four different heating conditions. We have presented and discussed in detail the technique implementation and the associated challenges. The results have shown that the collector heating significantly alters the structure and magnitude of the mean velocity field and influences the heat transfer to the fluid. It is observed that the collector heating causes a significant asymmetry in the mean velocity profiles over the given range of Reynolds numbers and heating conditions. (author)
Zolla, Valerio; Nizamutdinova, Irina Tsoy; Scharf, Brian; Clement, Cristina C; Maejima, Daisuke; Akl, Tony; Nagai, Takashi; Luciani, Paola; Leroux, Jean-Christophe; Halin, Cornelia; Stukes, Sabriya; Tiwari, Sangeeta; Casadevall, Arturo; Jacobs, William R; Entenberg, David; Zawieja, David C; Condeelis, John; Fooksman, David R; Gashev, Anatoliy A; Santambrogio, Laura
2015-01-01
The role of lymphatic vessels is to transport fluid, soluble molecules, and immune cells to the draining lymph nodes. Here, we analyze how the aging process affects the functionality of the lymphatic collectors and the dynamics of lymph flow. Ultrastructural, biochemical, and proteomic analysis indicates a loss of matrix proteins, and smooth muscle cells in aged collectors resulting in a decrease in contraction frequency, systolic lymph flow velocity, and pumping activity, as measured in vivo in lymphatic collectors. Functionally, this impairment also translated into a reduced ability for in vivo bacterial transport as determined by time-lapse microscopy. Ultrastructural and proteomic analysis also indicates a decrease in the thickness of the endothelial cell glycocalyx and loss of gap junction proteins in aged lymph collectors. Redox proteomic analysis mapped an aging-related increase in the glycation and carboxylation of lymphatic’s endothelial cell and matrix proteins. Functionally, these modifications translate into apparent hyperpermeability of the lymphatics with pathogen escaping from the collectors into the surrounding tissue and a decreased ability to control tissue fluid homeostasis. Altogether, our data provide a mechanistic analysis of how the anatomical and biochemical changes, occurring in aged lymphatic vessels, compromise lymph flow, tissue fluid homeostasis, and pathogen transport. PMID:25982749
Zolla, Valerio; Nizamutdinova, Irina Tsoy; Scharf, Brian; Clement, Cristina C; Maejima, Daisuke; Akl, Tony; Nagai, Takashi; Luciani, Paola; Leroux, Jean-Christophe; Halin, Cornelia; Stukes, Sabriya; Tiwari, Sangeeta; Casadevall, Arturo; Jacobs, William R; Entenberg, David; Zawieja, David C; Condeelis, John; Fooksman, David R; Gashev, Anatoliy A; Santambrogio, Laura
2015-08-01
The role of lymphatic vessels is to transport fluid, soluble molecules, and immune cells to the draining lymph nodes. Here, we analyze how the aging process affects the functionality of the lymphatic collectors and the dynamics of lymph flow. Ultrastructural, biochemical, and proteomic analysis indicates a loss of matrix proteins, and smooth muscle cells in aged collectors resulting in a decrease in contraction frequency, systolic lymph flow velocity, and pumping activity, as measured in vivo in lymphatic collectors. Functionally, this impairment also translated into a reduced ability for in vivo bacterial transport as determined by time-lapse microscopy. Ultrastructural and proteomic analysis also indicates a decrease in the thickness of the endothelial cell glycocalyx and loss of gap junction proteins in aged lymph collectors. Redox proteomic analysis mapped an aging-related increase in the glycation and carboxylation of lymphatic's endothelial cell and matrix proteins. Functionally, these modifications translate into apparent hyperpermeability of the lymphatics with pathogen escaping from the collectors into the surrounding tissue and a decreased ability to control tissue fluid homeostasis. Altogether, our data provide a mechanistic analysis of how the anatomical and biochemical changes, occurring in aged lymphatic vessels, compromise lymph flow, tissue fluid homeostasis, and pathogen transport. PMID:25982749
Billeter, Thomas R.; Philipp, Lee D.; Schemmel, Richard R.
1976-01-01
A microwave fluid flow meter is described utilizing two spaced microwave sensors positioned along a fluid flow path. Each sensor includes a microwave cavity having a frequency of resonance dependent upon the static pressure of the fluid at the sensor locations. The resonant response of each cavity with respect to a variation in pressure of the monitored fluid is represented by a corresponding electrical output which can be calibrated into a direct pressure reading. The pressure drop between sensor locations is then correlated as a measure of fluid velocity. In the preferred embodiment the individual sensor cavities are strategically positioned outside the path of fluid flow and are designed to resonate in two distinct frequency modes yielding a measure of temperature as well as pressure. The temperature response can then be used in correcting for pressure responses of the microwave cavity encountered due to temperature fluctuations.
Geophysical fluid flow experiment
NASA Technical Reports Server (NTRS)
Broome, B. G.; Fichtl, G.; Fowlis, W.
1979-01-01
The essential fluid flow processes associated with the solar and Jovian atmospheres will be examined in a laboratory experiment scheduled for performance on Spacelab Missions One and Three. The experimental instrumentation required to generate and to record convective fluid flow is described. Details of the optical system configuration, the lens design, and the optical coatings are described. Measurement of thermal gradient fields by schlieren techniques and measurement of fluid flow velocity fields by photochromic dye tracers is achieved with a common optical system which utilizes photographic film for data recording. Generation of the photochromic dye tracers is described, and data annotation of experimental parameters on the film record is discussed.
Multiple discharge cylindrical pump collector
Dunn, Charlton; Bremner, Robert J.; Meng, Sen Y.
1989-01-01
A space-saving discharge collector 40 for the rotary pump 28 of a pool-type nuclear reactor 10. An annular collector 50 is located radially outboard for an impeller 44. The annular collector 50 as a closed outer periphery 52 for collecting the fluid from the impeller 44 and producing a uniform circumferential flow of the fluid. Turning means comprising a plurality of individual passageways 54 are located in an axial position relative to the annular collector 50 for receiving the fluid from the annular collector 50 and turning it into a substantially axial direction.
Wilhelm, W.G.
The invention pertains to a flat plate collector that employs high performance thin films. The solar collector of this invention overcomes several problems in this field, such as excessive hardware, cost and reliability, and other prior art drawbacks outlined in the specification. In the preferred form, the apparatus features a substantially rigid planar frame. A thin film window is bonded to one planar side of the frame. An absorber of laminate construction is comprised of two thin film layers that are sealed perimetrically. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. Absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.
Magnetically stimulated fluid flow patterns
Martin, Jim; Solis, Kyle
2014-08-06
Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.
Magnetically stimulated fluid flow patterns
Martin, Jim; Solis, Kyle
2014-03-06
Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.
NASA Technical Reports Server (NTRS)
Johnson, S.
1976-01-01
This preliminary data report gives basic test results of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and coolant flow rates. Collector efficienty is correlated in terms of inlet temperature and flux level.
Combined solar collector and energy storage system
NASA Technical Reports Server (NTRS)
Jensen, R. N. (Inventor)
1980-01-01
A combined solar energy collector, fluid chiller and energy storage system is disclosed. A movable interior insulated panel in a storage tank is positionable flush against the storage tank wall to insulate the tank for energy storage. The movable interior insulated panel is alternately positionable to form a solar collector or fluid chiller through which the fluid flows by natural circulation.
Wilhelm, William G.
1982-01-01
The field of this invention is solar collectors, and more particularly, the invention pertains to a flat plate collector that employs high performance thin films. The solar collector of this invention overcomes several problems in this field, such as excessive hardware, cost and reliability, and other prior art drawbacks outlined in the specification. In the preferred form, the apparatus features a substantially rigid planar frame (14). A thin film window (42) is bonded to one planar side of the frame. An absorber (24) of laminate construction is comprised of two thin film layers (24a, 24b) that are sealed perimetrically. The layers (24a, 24b) define a fluid-tight planar envelope (24c) of large surface area to volume through which a heat transfer fluid flows. Absorber (24) is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.
McKay, M.D.; Sweeney, C.E.; Spangler, B.S. Jr.
1993-11-30
A flow meter and temperature measuring device are described comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips. 7 figures.
McKay, Mark D.; Sweeney, Chad E.; Spangler, Jr., B. Samuel
1993-01-01
A flow meter and temperature measuring device comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips.
Acoustic concentration of particles in fluid flow
Ward, Michael D.; Kaduchak, Gregory
2010-11-23
An apparatus for acoustic concentration of particles in a fluid flow includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.
Modeling Heat Flow In a Calorimeter Equipped With a Textured Solar Collector
NASA Technical Reports Server (NTRS)
Jaworske, Donald A.; Allen, Bradley J.
2001-01-01
Heat engines are being considered for generating electric power for minisatellite applications, particularly for those missions in high radiation threat orbits. To achieve this objective, solar energy must be collected and transported to the hot side of the heat engine. A solar collector is needed having the combined properties of high solar absorptance, low infrared emittance, and high thermal conductivity. To test candidate solar collector concepts, a simple calorimeter was designed, manufactured, and installed in a bench top vacuum chamber to measure heat flow. In addition, a finite element analysis model of the collector/calorimeter combination was made to model this heat flow. The model was tuned based on observations from the as-manufactured collector/calorimeter combination. In addition, the model was exercised to examine other collector concepts, properties, and scale up issues.
Geophysical Fluid Flow Cell Simulation
NASA Technical Reports Server (NTRS)
1998-01-01
Computer simulation of atmospheric flow corresponds well to imges taken during the second Geophysical Fluid Flow Cell (BFFC) mission. The top shows a view from the pole, while the bottom shows a view from the equator. Red corresponds to hot fluid rising while blue shows cold fluid falling. This simulation was developed by Anil Deane of the University of Maryland, College Park and Paul Fischer of Argorne National Laboratory. Credit: NASA/Goddard Space Flight Center
Programming fluid flow with microstructures
NASA Astrophysics Data System (ADS)
Amini, Hamed; Masaeli, Mahdokht; di Carlo, Dino
2011-11-01
Flow control and fluid interface manipulation in microfluidic platforms are of great importance in a variety of applications. Current approaches to manipulate fluids generally rely on complex designs, difficult-to-fabricate 3D platforms or use of active methods. Here we show that in the presence of simple cylindrical obstacles (i.e. pillars) in a microchannel, at moderate to high flow rates, streamlines tend to turn and stretch in a manner that, unlike intuition for Stokes flow, does not precisely reverse after passing the pillar. The asymmetric flow behavior up- and down-stream of the pillar due to fluid inertia manifests itself as a total deformation of the topology of streamlines that effectively creates a net secondary flow which resembles the recirculating Dean flow in curving channels. Confocal images were taken to investigate the secondary flow for a variety of microstructure settings. We also developed a numerical technique to map the fluid motion in the channel which is utilized to characterize the secondary flow as well as to engineer the fluid patterns within the channel. This passive method creates the possibility of exceptional control of the 3D structure of the fluid within a microfluidic platform which can significantly advance applications requiring fluid interface control (e.g. optofluidics), ultrafast mixing and solution control around cells.
Relaminarization of fluid flows
NASA Technical Reports Server (NTRS)
Narasimha, R.; Sreenivasan, K. R.
1979-01-01
The mechanisms of the relaminarization of turbulent flows are investigated with a view to establishing any general principles that might govern them. Three basic archetypes of reverting flows are considered: the dissipative type, the absorptive type, and the Richardson type exemplified by a turbulent boundary layer subjected to severe acceleration. A number of other different reverting flows are then considered in the light of the analysis of these archetypes, including radial Poiseuille flow, convex boundary layers, flows reverting by rotation, injection, and suction, as well as heated horizontal and vertical gas flows. Magnetohydrodynamic duct flows are also examined. Applications of flow reversion for turbulence control are discussed.
Fluid Flow Phenomena during Welding
Zhang, Wei
2011-01-01
MOLTEN WELD POOLS are dynamic. Liquid in the weld pool in acted on by several strong forces, which can result in high-velocity fluid motion. Fluid flow velocities exceeding 1 m/s (3.3 ft/s) have been observed in gas tungsten arc (GTA) welds under ordinary welding conditions, and higher velocities have been measured in submerged arc welds. Fluid flow is important because it affects weld shape and is related to the formation of a variety of weld defects. Moving liquid transports heat and often dominates heat transport in the weld pool. Because heat transport by mass flow depends on the direction and speed of fluid motion, weld pool shape can differ dramatically from that predicted by conductive heat flow. Temperature gradients are also altered by fluid flow, which can affect weld microstructure. A number of defects in GTA welds have been attributed to fluid flow or changes in fluid flow, including lack of penetration, top bead roughness, humped beads, finger penetration, and undercutting. Instabilities in the liquid film around the keyhole in electron beam and laser welds are responsible for the uneven penetration (spiking) characteristic of these types of welds.
Insertable fluid flow passage bridgepiece and method
Jones, Daniel O.
2000-01-01
A fluid flow passage bridgepiece for insertion into an open-face fluid flow channel of a fluid flow plate is provided. The bridgepiece provides a sealed passage from a columnar fluid flow manifold to the flow channel, thereby preventing undesirable leakage into and out of the columnar fluid flow manifold. When deployed in the various fluid flow plates that are used in a Proton Exchange Membrane (PEM) fuel cell, bridgepieces of this invention prevent mixing of reactant gases, leakage of coolant or humidification water, and occlusion of the fluid flow channel by gasket material. The invention also provides a fluid flow plate assembly including an insertable bridgepiece, a fluid flow plate adapted for use with an insertable bridgepiece, and a method of manufacturing a fluid flow plate with an insertable fluid flow passage bridgepiece.
Rotational fluid flow experiment
NASA Technical Reports Server (NTRS)
1991-01-01
This project which began in 1986 as part of the Worcester Polytechnic Institute (WPI) Advanced Space Design Program focuses on the design and implementation of an electromechanical system for studying vortex behavior in a microgravity environment. Most of the existing equipment was revised and redesigned by this project team, as necessary. Emphasis was placed on documentation and integration of the electrical and mechanical subsystems. Project results include reconfiguration and thorough testing of all hardware subsystems, implementation of an infrared gas entrainment detector, new signal processing circuitry for the ultrasonic fluid circulation device, improved prototype interface circuits, and software for overall control of experiment operation.
Flow velocities and shear stresses during flushing operations in sewer collectors.
Campisano, A; Modica, C
2003-01-01
Many relevant problems of drainage systems such as first flush pollution, flow capacity reduction and consequent risks of surcharges are worsened by sediment accumulation in sewer collectors. For the solution of these problems several sediment cleansing methods and techniques, e.g. mechanical methods, traps and flushing devices, have been developed and applied in the last decades. In particular, simulation studies and experimental campaigns have shown the effectiveness of flushing methods as preventive cleansing strategy in sewer collectors. In this paper the results of a numerical investigation for determining flushing waves characteristics both in terms of duration and flow rate are presented. The collector section lengths where flow velocities and average shear stresses determined by flushing waves exceed minimum threshold values are evaluated using a dimensionless approach. The results, related to the operative ranges of the practical applications, are exposed by means of graphs and regressive equations. PMID:12666809
Solar collector with improved thermal concentration
Barak, Amitzur Z.
1976-01-01
Reduced heat loss from the absorbing surface of the energy receiver of a cylindrical radiant energy collector is achieved by providing individual, insulated, cooling tubes for adjacent parallel longitudinal segments of the receiver. Control means allow fluid for removing heat absorbed by the tubes to flow only in those tubes upon which energy is then being directed by the reflective wall of the collector.
Flow distribution in parallel connected manifolds for evacuated tubular solar collectors
NASA Astrophysics Data System (ADS)
McPhedran, R. C.; Mackey, D. J. M.; McKenzie, D. R.; Collins, R. E.
A model is presented for predicting the flow distribution in solar collector manifolds in which risers are connected in parallel between headers. Both frictional and Bernoulli effects are considered. The distributions resulting from flow in the manifold in which header streams are parallel and opposed are calculated and compared with experiment. Parallel flow gives a more uniform distribution. The outlet header is found to be more critical in balancing the flow distribution than the inlet header. Conditions under which thermosiphon effects are important and flow reversal in risers may occur are discussed with reference to experiment.
Fluid flow electrophoresis in space
NASA Technical Reports Server (NTRS)
Griffin, R. N.
1975-01-01
Four areas relating to free-flow electrophoresis in space were investigated. The first was the degree of improvement over earthbound operations that might be expected. The second area of investigation covered the problems in developing a flowing buffer electrophoresis apparatus. The third area of investigation was the problem of testing on the ground equipment designed for use in space. The fourth area of investigation was the improvement to be expected in space for purification of biologicals. The results of some ground-based experiments are described. Other studies included cooling requirements in space, fluid sealing techniques, and measurement of voltage drop across membranes.
Ferroelectric Fluid Flow Control Valve
NASA Technical Reports Server (NTRS)
Jalink, Antony, Jr. (Inventor); Hellbaum, Richard F. (Inventor); Rohrbach, Wayne W. (Inventor)
1999-01-01
An active valve is controlled and driven by external electrical actuation of a ferroelectric actuator to provide for improved passage of the fluid during certain time periods and to provide positive closure of the valve during other time periods. The valve provides improved passage in the direction of flow and positive closure in the direction against the flow. The actuator is a dome shaped internally prestressed ferroelectric actuator having a curvature, said dome shaped actuator having a rim and an apex. and a dome height measured from a plane through said rim said apex that varies with an electric voltage applied between an inside and an outside surface of said dome shaped actuator.
General Transient Fluid Flow Algorithm
Energy Science and Technology Software Center (ESTSC)
1992-03-12
SALE2D calculates two-dimensional fluid flows at all speeds, from the incompressible limit to highly supersonic. An implicit treatment of the pressure calculation similar to that in the Implicit Continuous-fluid Eulerian (ICE) technique provides this flow speed flexibility. In addition, the computing mesh may move with the fluid in a typical Lagrangian fashion, be held fixed in an Eulerian manner, or move in some arbitrarily specified way to provide a continuous rezoning capability. This latitude resultsmore » from use of an Arbitrary Lagrangian-Eulerian (ALE) treatment of the mesh. The partial differential equations solved are the Navier-Stokes equations and the mass and internal energy equations. The fluid pressure is determined from an equation of state and supplemented with an artificial viscous pressure for the computation of shock waves. The computing mesh consists of a two-dimensional network of quadrilateral cells for either cylindrical or Cartesian coordinates, and a variety of user-selectable boundary conditions are provided in the program.« less
Cerebrospinal fluid flow in adults.
Bradley, William G; Haughton, Victor; Mardal, Kent-Andre
2016-01-01
This chapter uses magnetic resonance imaging phase-contrast cerebrospinal fluid (CSF) flow measurements to predict which clinical normal-pressure hydrocephalus (NPH) patients will respond to shunting as well as which patients with Chiari I are likely to develop symptoms of syringomyelia. Symptomatic NPH patients with CSF flow (measured as the aqueductal CSF stroke volume) which is shown to be hyperdynamic (defined as twice normal) are quite likely to respond to ventriculoperitoneal shunting. The hyperdynamic CSF flow results from normal systolic brain expansion compressing the enlarged ventricles. When atrophy occurs, there is less brain expansion, decreased aqueductal CSF flow, and less likelihood of responding to shunting. It appears that NPH is a "two-hit" disease, starting as benign external hydrocephalus in infancy, followed by deep white-matter ischemia in late adulthood, which causes increased resistance to CSF outflow through the extracellular space of the brain. Using computational flow dynamics (CFD), CSF flow can be modeled at the foramen magnum and in the upper cervical spine. As in the case of NPH, hyperdynamic CSF flow appears to cause the signs and symptoms in Chiari I and can provide an additional indication for surgical decompression. CFD can also predict CSF pressures over the cardiac cycle. It has been hypothesized that elevated pressure pulses may be a significant etiologic factor in some cases of syringomyelia. PMID:27432684
Transient Wellbore Fluid Flow Model
Energy Science and Technology Software Center (ESTSC)
1982-04-06
WELBORE is a code to solve transient, one-dimensional two-phase or single-phase non-isothermal fluid flow in a wellbore. The primary thermodynamic variables used in solving the equations are the pressure and specific energy. An equation of state subroutine provides the density, quality, and temperature. The heat loss out of the wellbore is calculated by solving a radial diffusion equation for the temperature changes outside the bore. The calculation is done at each node point in themore » wellbore.« less
Fluid flows around nanoelectromechanical resonators
NASA Astrophysics Data System (ADS)
Svitelskiy, O.; Sauer, V.; Liu, N.; Vick, D.; Cheng, K. M.; Freeman, M. R.; Hiebert, W. K.
2012-02-01
To explore properties of fluids on a nanosize scale, we fabricated by a standard top down technique a series of nanoelectromechanical resonators (cantilevers and bridges) with widths w and thicknesses t from 100 to 500 nm; lengths l from 0.5 to 12 micron; and resonant frequencies f from 10 to 400 MHz. For the sake of purity of the experiment, the undercut in the widest (w=500 nm) devices was eliminated using the focused ion beam. To model the fluidic environment the devices were placed in the atmosphere of compressed gases (He, N2, CO2, Ar, H2) at pressures from vacuum up to 20 MPa, and in liquid CO2; their properties were studied by the real time stroboscopic optical interferometry. Thus, we fully explored the Newtonian and non-Newtonian flow damping models. Observing free molecular flow extending above atmospheric pressure, we find the fluid relaxation time model to be the best approximation throughout, but not beyond, the non-Newtonian regime, and both, vibrating spheres model and the model based on Knudsen number, to be valid in the viscous limit.
Fluid Flow Experiment for Undergraduate Laboratory.
ERIC Educational Resources Information Center
Vilimpochapornkul, Viroj; Obot, Nsima T.
1986-01-01
The undergraduate fluid mechanics laboratory at Clarkson University consists of three experiments: mixing; drag measurements; and fluid flow and pressure drop measurements. The latter experiment is described, considering equipment needed, procedures used, and typical results obtained. (JN)
Fluid flow, mineral reactions, and metasomatism
Ferry, J.M.; Dipple, G.M. )
1991-03-01
A general model that relates fluid flow along a temnperature gradient to chemical reaction in rocks can be used to quantitatively interpret petrologic and geochemical data on metasomatism from ancient flow systems in terms of flow direction and time-integrated fluid flux. The model is applied to regional metamorphism, quartz veins, and a metasomatized ductile fault zone.
Design data brochure for the Owens-Illinois Sunpak (TM) air-cooled solar collector
NASA Technical Reports Server (NTRS)
1978-01-01
Information necessary to evaluate the design and installation of the Owens-Illinois Sunpak TM Air-Cooled Solar Collector is presented. Information includes collector features, fluid flow, thermal performance, installation and system tips. The collector utilizes a highly selective wavelength coating in combination with vacuum insulation, which virtually eliminates conduction and convention losses.
Fluid dynamics and vibration of tube banks in fluid flow
Zukauskas, A.; Ulinskas, R.; Katinas, V.
1988-01-01
This work presents results derived in fluid dynamics, hydraulic drag and flow-induced vibrations within transverse and yawed tube banks. The studies encompass banks of smooth, rough and finned tubes at Reynolds numbers from 1 to 2x10/sup 6/. Highlighted in the text are fluid dynamic parameters of tube banks measured at inter-tube spaces and tube surfaces.
Value for controlling flow of cryogenic fluid
Knapp, Philip A.
1996-01-01
A valve is provided for accurately controlling the flow of cryogenic fluids such as liquid nitrogen. The valve comprises a combination of disc and needle valves affixed to a valve stem in such a manner that the disc and needle are free to rotate about the stem, but are constrained in lateral and vertical movements. This arrangement provides accurate and precise fluid flow control and positive fluid isolation.
Fluid Flow Control with Transformation Media
NASA Astrophysics Data System (ADS)
Urzhumov, Yaroslav A.; Smith, David R.
2011-08-01
We introduce a new concept for the manipulation of fluid flow around three-dimensional bodies. Inspired by transformation optics, the concept is based on a mathematical idea of coordinate transformations and physically implemented with anisotropic porous media permeable to the flow of fluids. In two situations—for an impermeable object placed either in a free-flowing fluid or in a fluid-filled porous medium—we show that the object can be coated with an inhomogeneous, anisotropic permeable medium, such as to preserve the flow that would have existed in the absence of the object. The proposed fluid flow cloak eliminates downstream wake and compensates viscous drag, hinting at the possibility of novel propulsion techniques.
VISCOPLASTIC FLUID MODEL FOR DEBRIS FLOW ROUTING.
Chen, Cheng-lung
1986-01-01
This paper describes how a generalized viscoplastic fluid model, which was developed based on non-Newtonian fluid mechanics, can be successfully applied to routing a debris flow down a channel. The one-dimensional dynamic equations developed for unsteady clear-water flow can be used for debris flow routing if the flow parameters, such as the momentum (or energy) correction factor and the resistance coefficient, can be accurately evaluated. The writer's generalized viscoplastic fluid model can be used to express such flow parameters in terms of the rheological parameters for debris flow in wide channels. A preliminary analysis of the theoretical solutions reveals the importance of the flow behavior index and the so-called modified Froude number for uniformly progressive flow in snout profile modeling.
Frictional flow characteristics of microconvective flow for variable fluid properties
NASA Astrophysics Data System (ADS)
Kumar, Rajan; Mahulikar, Shripad P.
2015-12-01
The present work investigates the frictional flow characteristics of water flowing through a circular microchannel with variable fluid properties. The computational analysis reveals the importance of physical mechanisms due to variations in thermophysical fluid properties such as viscosity μ(T), thermal conductivity k(T) and density ρ(T) and also their contribution in the characteristics of frictional flow. Various combinations of thermophysical fluid properties have been used to find their effects on fluid friction. It is observed that the fluid friction attains the maximum value in the vicinity of the inlet and diminishes along the flow. The main reasons are attributed to this, (1) near the inlet, there is a flow undevelopment (the reverse process of flow development) due to μ(T) variation. (2) The viscosity of the water decreases with increasing temperature, which reduces fluid friction along the flow. It is noted that the skin friction coefficient (cf) reduces with increasing fluid mean velocity for a same value of constant wall heat flux ({q}{{w}}\\prime\\prime ). In the vicinity of the inlet, the deviation of Poiseuille number (Po) from 64 (constant properties solution) is also investigated in this paper. Additionally, the relationship between Reynolds number (Re) and cf, Po and Re have been proposed for different combinations of thermophysical fluid properties. This investigation also shows that the effect of fluid property variations on pressure drop is highly significant for microconvective water flow.
Measurement of Diffusion in Flowing Complex Fluids
Leonard, Edward F.; Aucoin, Christian P.; Nanne, Edgar E.
2006-01-01
A microfluidic device for the measurement of solute diffusion as well as particle diffusion and migration in flowing complex fluids is described. The device is particularly suited to obtaining diffusivities in such fluids, which require a desired flow state to be maintained during measurement. A method based on the Loschmidt diffusion theory and short times of exposure is presented to allow calculation of diffusivities from concentration differences in the flow streams leaving the cell. PMID:18560469
Performance and operational analysis of a liquid desiccant open-flow solar collector
NASA Astrophysics Data System (ADS)
Grodzka, P. G.; Rico, S. S.
1982-10-01
Theoretical predictions of the heat and mass transfer in an open flow solar collector used in conjunction with an absorption chiller are compared with performance data from a rooftop system. The study focuses on aqueous solutions of a hygroscopic salt, e.g., LiCl, flowing continuously over a solar absorbing surface. Water in the solution sublimes to a region of lower vapor pressure, i.e., the atmosphere. Direction of the water-depleted dessiccant to a storage volume and then to circulation around an evaporator unit permits operation of a solar-powered air conditioner. A closed form solution was defined for the heat and mass transfer, along with a finite difference solution. The system studied comprised a sloped roof top with 2500 sq ft of asphalt shingles, collector pipes beneath the shingles, and two 500 gal storage tanks. Relatively good agreement was found between the models and the recorded data, although some discrepancies were present when considering temperatures and performance at specific times of day. The measured 30-40% efficiencies indicated that further development of the system is warranted.
NASA Astrophysics Data System (ADS)
Nelson, Kirk E.; Ginn, Timothy R.
2011-05-01
A new equation for the collector efficiency (η) of the colloid filtration theory (CFT) is developed via nonlinear regression on the numerical data generated by a large number of Lagrangian simulations conducted in Happel's sphere-in-cell porous media model over a wide range of environmentally relevant conditions. The new equation expands the range of CFT's applicability in the natural subsurface primarily by accommodating departures from power law dependence of η on the Peclet and gravity numbers, a necessary but as of yet unavailable feature for applying CFT to large-scale field transport (e.g., of nanoparticles, radionuclides, or genetically modified organisms) under low groundwater velocity conditions. The new equation also departs from prior equations for colloids in the nanoparticle size range at all fluid velocities. These departures are particularly relevant to subsurface colloid and colloid-facilitated transport where low permeabilities and/or hydraulic gradients lead to low groundwater velocities and/or to nanoparticle fate and transport in porous media in general. We also note the importance of consistency in the conceptualization of particle flux through the single collector model on which most η equations are based for the purpose of attaining a mechanistic understanding of the transport and attachment steps of deposition. A lack of sufficient data for small particles and low velocities warrants further experiments to draw more definitive and comprehensive conclusions regarding the most significant discrepancies between the available equations.
Nelson, Kirk E.; Ginn, Timothy R.
2011-05-28
new equation for the collector efficiency (η) of the colloid filtration theory (CFT) is developed via nonlinear regression on the numerical data generated by a large number of Lagrangian simulations conducted in Happel's sphere-in-cell porous media model over a wide range of environmentally relevant conditions. The new equation expands the range of CFT's applicability in the natural subsurface primarily by accommodating departures from power law dependence of η on the Peclet and gravity numbers, a necessary but as of yet unavailable feature for applying CFT to large-scale field transport (e.g., of nanoparticles, radionuclides, or genetically modified organisms) under low groundwater velocity conditions. The new equation also departs from prior equations for colloids in the nanoparticle size range at all fluid velocities. These departures are particularly relevant to subsurface colloid and colloid-facilitated transport where low permeabilities and/or hydraulic gradients lead to low groundwater velocities and/or to nanoparticle fate and transport in porous media in general. We also note the importance of consistency in the conceptualization of particle flux through the single collector model on which most η equations are based for the purpose of attaining a mechanistic understanding of the transport and attachment steps of deposition. A lack of sufficient data for small particles and low velocities warrants further experiments to draw more definitive and comprehensive conclusions regarding the most significant discrepancies between the available equations.
Governing equations for electro-conjugate fluid flow
NASA Astrophysics Data System (ADS)
Hosoda, K.; Takemura, K.; Fukagata, K.; Yokota, S.; Edamura, K.
2013-12-01
An electro-conjugation fluid (ECF) is a kind of dielectric liquid, which generates a powerful flow when high DC voltage is applied with tiny electrodes. This study deals with the derivation of the governing equations for electro-conjugate fluid flow based on the Korteweg-Helmholtz (KH) equation which represents the force in dielectric liquid subjected to high DC voltage. The governing equations consist of the Gauss's law, charge conservation with charge recombination, the KH equation, the continuity equation and the incompressible Navier-Stokes equations. The KH equation consists of coulomb force, dielectric constant gradient force and electrostriction force. The governing equation gives the distribution of electric field, charge density and flow velocity. In this study, direct numerical simulation (DNS) is used in order to get these distribution at arbitrary time. Successive over-relaxation (SOR) method is used in analyzing Gauss's law and constrained interpolation pseudo-particle (CIP) method is used in analyzing charge conservation with charge recombination. The third order Runge-Kutta method and conservative second-order-accurate finite difference method is used in analyzing the Navier-Stokes equations with the KH equation. This study also deals with the measurement of ECF ow generated with a symmetrical pole electrodes pair which are made of 0.3 mm diameter piano wire. Working fluid is FF-1EHA2 which is an ECF family. The flow is observed from the both electrodes, i.e., the flow collides in between the electrodes. The governing equation successfully calculates mean flow velocity in between the collector pole electrode and the colliding region by the numerical simulation.
Visualizing vector field topology in fluid flows
NASA Technical Reports Server (NTRS)
Helman, James L.; Hesselink, Lambertus
1991-01-01
Methods of automating the analysis and display of vector field topology in general and flow topology in particular are discussed. Two-dimensional vector field topology is reviewed as the basis for the examination of topology in three-dimensional separated flows. The use of tangent surfaces and clipping in visualizing vector field topology in fluid flows is addressed.
Method and Apparatus for Measuring Fluid Flow
NASA Technical Reports Server (NTRS)
Arndt, G. Dickey (Inventor); Nguyen, Thanh X. (Inventor); Carl, James R. (Inventor)
1997-01-01
Method and apparatus for making measurements on fluids related to their complex permeability are disclosed. A microwave probe is provided for exposure to the fluids. The probe can be non-intrusive or can also be positioned at the location where measurements are to be made. The impedance of the probe is determined. in part. by the complex dielectric constant of the fluids at the probe. A radio frequency signal is transmitted to the probe and the reflected signal is phase and amplitude detected at a rapid rate for the purpose of identifying the fluids. Multiple probes may be selectively positioned to monitor the behavior of the fluids including their flow rate. Fluids may be identified as between two or more different fluids as well as multiple phases of the same fluid based on differences between their complex permittivities.
Viscoelastic fluid flow in inhomogeneous porous media
Siginer, D.A.; Bakhtiyarov, S.I.
1996-09-01
The flow of inelastic and viscoelastic fluids in two porous media of different permeabilities and same priority arranged in series has been investigated both theoretically and experimentally. The fluids are an oil field spacer fluid and aqueous solutions of polyacrylamide. The porous medium is represented by a cylindrical tube randomly packed with glass spheres. Expressions for the friction factor and the resistance coefficient as a function of the Reynolds number have been developed both for shear thinning and viscoelastic fluids based on the linear fluidity and eight constant Oldroyd models, respectively. The authors show that the energy loss is higher if the viscoelastic fluid flows first through the porous medium with the smaller permeability rather than through the section of the cylinder with the larger permeability. This effect is not observed for Newtonian and shear thinning fluids flowing through the same configuration. Energy requirements for the same volume flow rate are much higher than a Newtonian fluid of the same zero shear viscosity as the polymeric solution. Energy loss increases with increasing Reynolds number at a fixed concentration. At a fixed Reynolds number, the loss is a strong function of the concentration and increases with increasing concentration. The behavior of all fluids is predicted qualitatively except the difference in energy requirements.
Method and device for measuring fluid flow
Atherton, Richard; Marinkovich, Phillip S.; Spadaro, Peter R.; Stout, J. Wilson
1976-11-23
This invention is a fluid flow measuring device for determining the coolant flow at the entrance to a specific nuclear reactor fuel region. The device comprises a plurality of venturis having the upstream inlet and throat pressure of each respectively manifolded together to provide one static pressure signal for each region monitored. The device provides accurate flow measurement with low pressure losses and uniform entrance and discharge flow distribution.
Engineering fluid flow using sequenced microstructures
NASA Astrophysics Data System (ADS)
Amini, Hamed; Sollier, Elodie; Masaeli, Mahdokht; Xie, Yu; Ganapathysubramanian, Baskar; Stone, Howard A.; di Carlo, Dino
2013-05-01
Controlling the shape of fluid streams is important across scales: from industrial processing to control of biomolecular interactions. Previous approaches to control fluid streams have focused mainly on creating chaotic flows to enhance mixing. Here we develop an approach to apply order using sequences of fluid transformations rather than enhancing chaos. We investigate the inertial flow deformations around a library of single cylindrical pillars within a microfluidic channel and assemble these net fluid transformations to engineer fluid streams. As these transformations provide a deterministic mapping of fluid elements from upstream to downstream of a pillar, we can sequentially arrange pillars to apply the associated nested maps and, therefore, create complex fluid structures without additional numerical simulation. To show the range of capabilities, we present sequences that sculpt the cross-sectional shape of a stream into complex geometries, move and split a fluid stream, perform solution exchange and achieve particle separation. A general strategy to engineer fluid streams into a broad class of defined configurations in which the complexity of the nonlinear equations of fluid motion are abstracted from the user is a first step to programming streams of any desired shape, which would be useful for biological, chemical and materials automation.
Fluid/structure interactions. Internal flows
NASA Astrophysics Data System (ADS)
Weaver, D. S.
1991-05-01
Flow-induced vibrations are found wherever structures are exposed to high velocity fluid flows. Internal flows are usually characterized by the close proximity of solid boundaries. There are surfaces against which separated flows may reattach, or from which pressure disturbances may be reflected resulting in acoustic resonance. When the fluid is a liquid, the close proximity of solid boundaries to a vibrating component can produce very high added mass effects. This paper presents three different experimental studies of flow-induced vibration problems associated with internal flows. The emphasis was on experimental techniques developed for understanding excitation mechanisms. In difficult flow-induced vibration problems, a useful experimental technique is flow visualization using a large scale model and strobe light triggered by the phenomenon being observed. This should be supported by point measurements of velocity and frequency spectra. When the flow excitation is associated with acoustic resonance, the sound can be fed back to enhance or eliminate the instability. This is potentially a very useful tool for studying and controlling fluid-structure interaction problems. Some flow-induced vibration problems involve a number of different excitation mechanisms and care must be taken to ensure that the mechanisms are properly identified. Artificially imposing structural vibrations or acoustic fields may induce flow structures not naturally present in the system.
Apparatus for measuring fluid flow
Smith, Jack E.; Thomas, David G.
1984-01-01
Flow measuring apparatus includes a support loop having strain gages mounted thereon and a drag means which is attached to one end of the support loop and which bends the sides of the support loop and induces strains in the strain gages when a flow stream impacts thereon.
Apparatus for measuring fluid flow
Smith, J.E.; Thomas, D.G.
Flow measuring apparatus includes a support loop having strain gages mounted thereon and a drag means which is attached to one end of the support loop and which bends the sides of the support loop and induces strains in the strain gages when a flow stream impacts thereon.
Directed flow fluid rinse trough
Kempka, Steven N.; Walters, Robert N.
1996-01-01
Novel rinse troughs accomplish thorough uniform rinsing. The tanks are suitable for one or more essentially planar items having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs also require less rinse fluid to accomplish a thorough rinse than prior art troughs.
Directed flow fluid rinse trough
Kempka, S.N.; Walters, R.N.
1996-07-02
Novel rinse troughs accomplish thorough uniform rinsing. The tanks are suitable for one or more essentially planar items having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs also require less rinse fluid to accomplish a thorough rinse than prior art troughs. 9 figs.
Fluid Flow Within Fractured Porous Media
Crandall, D.M.; Ahmadi, G.; Smith, D.H.; Bromhal, G.S.
2006-10-01
Fractures provide preferential flow paths to subterranean fluid flows. In reservoir scale modeling of geologic flows fractures must be approximated by fairly simple formulations. Often this is accomplished by assuming fractures are parallel plates subjected to an applied pressure gradient. This is known as the cubic law. An induced fracture in Berea sandstone has been digitized to perform numerical flow simulations. A commercially available computational fluid dynamics software package has been used to solve the flow through this model. Single phase flows have been compared to experimental works in the literature to evaluate the accuracy with which this model can be applied. Common methods of fracture geometry classification are also calculated and compared to experimentally obtained values. Flow through regions of the fracture where the upper and lower fracture walls meet (zero aperture) are shown to induce a strong channeling effect on the flow. This model is expanded to include a domain of surrounding porous media through which the flow can travel. The inclusion of a realistic permeability in this media shows that the regions of small and zero apertures contribute to the greatest pressure losses over the fracture length and flow through the porous media is most prevalent in these regions. The flow through the fracture is shown to be the largest contributor to the net flow through the media. From this work, a novel flow relationship is proposed for flow through fractured media.
Pattern formation in flowing electrorheological fluids.
von Pfeil, Karl; Graham, Michael D; Klingenberg, Daniel J; Morris, Jeffrey F
2002-05-01
A two-fluid continuum model is developed to describe mass transport in electro- and magnetorheological suspensions. The particle flux is related to the field-induced stresses. Solutions of the resulting mass balance show column formation in the absence of flow, and stripe formation when a suspension is subjected simultaneously to an applied electric field and shear flow. PMID:12005727
Instrument continuously measures density of flowing fluids
NASA Technical Reports Server (NTRS)
Jacobs, R. B.; Macinko, J.; Miller, C. E.
1967-01-01
Electromechanical densitometer continuously measures the densities of either single-phase or two-phase flowing cryogenic fluids. Measurement is made on actual flow. The instrument operates on the principle that the mass of any vibrating system is a primary factor in determining the dynamic characteristics of the system.
Electromagnetic probe technique for fluid flow measurements
NASA Technical Reports Server (NTRS)
Arndt, G. D.; Carl, J. R.
1994-01-01
The probes described herein, in various configurations, permit the measurement of the volume fraction of two or more fluids flowing through a pipe. Each probe measures the instantaneous relative dielectric constant of the fluid in immediate proximity. As long as separation of the relative dielectric constant of the fluid is possible, several or even many fluids can be measured in the same flow stream. By using multiple probes, the velocity of each fluid can generally be determined as well as the distribution of each constituent in the pipe. The values are determined by statistical computation. There are many potential applications for probes of this type in industry and government. Possible NASA applications include measurements of helium/hydrazine flow during rocket tests at White Sands, liquid/gas flow in hydrogen or oxygen lines in Orbiter engines, and liquid/gaseous Freon flow in zero gravity tests with the KS135 aircraft at JSC. Much interest has been shown recently by the oil industry. In this a good method is needed to measure the fractions of oil, water, and natural gas flowing in a pipeline and the velocity of each. This particular problem involves an extension of what has been developed to date and our plans to solve this problem will be discussed herein.
Fundamental Processes of Atomization in Fluid-Fluid Flows
NASA Technical Reports Server (NTRS)
McCready, M. J.; Chang, H.-C.; Leighton, D. T.
2001-01-01
This report outlines the major results of the grant "Fundamental Processes of Atomization in Fluid-Fluid Flows." These include: 1) the demonstration that atomization in liquid/liquid shear flow is driven by a viscous shear instability that triggers the formation of a long thin sheet; 2) discovery of a new mode of interfacial instability for oscillatory two-layer systems whereby a mode that originates within the less viscous liquid phase causes interfacial deformation as the oscillation proceeds; 3) the demonstration that rivulet formation from gravity front occurs because the local front shape specified by gravity and surface tension changes from a nose to a wedge geometry, thus triggering a large increase in viscous resistance; and 4) extension of the studies on nonlinear wave evolution on falling films and in stratified flow, particularly the evolution towards large-amplitude solitary waves that tend to generate drops.
Fluid flow nozzle energy harvesters
NASA Astrophysics Data System (ADS)
Sherrit, Stewart; Lee, Hyeong Jae; Walkemeyer, Phillip; Winn, Tyler; Tosi, Luis Phillipe; Colonius, Tim
2015-04-01
Power generation schemes that could be used downhole in an oil well to produce about 1 Watt average power with long-life (decades) are actively being developed. A variety of proposed energy harvesting schemes could be used to extract energy from this environment but each of these has their own limitations that limit their practical use. Since vibrating piezoelectric structures are solid state and can be driven below their fatigue limit, harvesters based on these structures are capable of operating for very long lifetimes (decades); thereby, possibly overcoming a principle limitation of existing technology based on rotating turbo-machinery. An initial survey [1] identified that spline nozzle configurations can be used to excite a vibrating piezoelectric structure in such a way as to convert the abundant flow energy into useful amounts of electrical power. This paper presents current flow energy harvesting designs and experimental results of specific spline nozzle/ bimorph design configurations which have generated suitable power per nozzle at or above well production analogous flow rates. Theoretical models for non-dimensional analysis and constitutive electromechanical model are also presented in this paper to optimize the flow harvesting system.
NASA Technical Reports Server (NTRS)
Allton, J. H.; Calaway, Michael J.; Hittle, J. D.; Rodriquez, M. C.; Stansbery, E. K.; McNamara, K. M.
2006-01-01
The hard landing experienced by the Genesis sample return capsule breached the science canister containing the solar wind collectors. This impact into the damp lakebed contaminated collector surfaces with pulverized collector and spacecraft materials and Utah sediment and brine residue. The gold foil, polished aluminum, and bulk metallic glass remained intact, but the solar wind bulk and regime-specific array collectors were jarred loose from their frames and fractured into greater than 10,000 specimens. After a year of investigation and cleaning experimentation, the Genesis Science Team determined that array collectors had 4 classes of contaminants: particles, molecular film, submicron inorganic particulate ("aerosol"), and pre-launch surface contamination. We discuss here use of megasonically energized ultrapure water (UPW) for removing particulate debris from array collector fragments.
MEANS FOR VISUALIZING FLUID FLOW PATTERNS
Lynch, F.E.; Palmer, L.D.; Poppendick, H.F.; Winn, G.M.
1961-05-16
An apparatus is given for determining both the absolute and relative velocities of a phosphorescent fluid flowing through a transparent conduit. The apparatus includes a source for exciting a narrow trsnsverse band of the fluid to phosphorescence, detecting means such as a camera located downstream from the exciting source to record the shape of the phosphorescent band as it passes, and a timer to measure the time elapsed between operation of the exciting source and operation of the camera.
Two-fluid equilibrium with flow: FLOW2
Guazzotto, L.; Betti, R.
2015-09-15
The effects of finite macroscopic velocities on axisymmetric ideal equilibria are examined using the two-fluid (ions and electrons) model. A new equilibrium solver, the code FLOW2, is introduced for the two-fluid model and used to investigate the importance of various flow patterns on the equilibrium of tight aspect ratio (NSTX) and regular tokamak (DIII-D) configurations. Several improvements to the understanding and calculation of two-fluid equilibria are presented, including an analytical and numerical proof of the single-fluid and static limits of the two-fluid model, a discussion of boundary conditions, a user-friendly free-function formulation, and the explicit evaluation of velocity components normal to magnetic surfaces.
Electro-osmotic flow in bicomponent fluids
NASA Astrophysics Data System (ADS)
Bazarenko, Andrei; Sega, Marcello
The electroosmotic flow (EOF) is a widely used technique that uses the action of external electric fields on solvated ions to move fluids around in microfluidics devices. For homogeneous fluids, the characteristics of the flow can be well approximated by simple analytical models, but in multicomponent systems such as oil-in-water droplets one has to rely to numerical simulations. The purpose of this study is to investigate physical properties of the EOF in a bicomponent fluid by solving the coupled equations of motions of explicit ions in interaction with a continuous model of the flow. To do so we couple the hydrodynamics equations as solved by a Shan-Chen Lattice-Boltzmann method to the molecular dynamics of the ions. The presence of explicit ions allows us to go beyond the simple Poisson-Boltzmann approximations, and investigate a variety of EOF regimes. ETN-COLLDENSE (H2020-MCSA-ITN-2014, Grant No. 642774).
Tomographic reconstruction of stratified fluid flow.
Winters, K B; Rouseff, D
1993-01-01
A method for imaging a moving fluid is proposed and evaluated by numerical simulation. A cross-section of a three-dimensional fluid is probed by high-frequency acoustic waves from several different directions. Assuming straight-ray geometric acoustics, the time of flight depends on both the scaler sound speed and the vector fluid velocity. By appropriately combining travel times, projections of both the sound speed and the velocity are isolated. The sound speed is reconstructed using the standard filtered backprojection algorithm. Though complete inversion of velocity is not possible, sufficient information is available to recover the component of fluid vorticity transverse to the plane of insonification. A new filtered backprojection algorithm for vorticity is developed and implemented. To demonstrate the inversion procedure, a 3-D stratified fluid is simulated and travel time data are calculated by path integration. These data are then inverted to recover both the scaler sound speed and the vorticity of the evolving flow. PMID:18263153
Method and Apparatus for Measuring Fluid Flow
NASA Technical Reports Server (NTRS)
Arndt, G. Dickey (Inventor); Nguyen, Than X. (Inventor); Carl, James R. (Inventor)
1995-01-01
The invention is a method and apparatus for monitoring the presence, concentration, and the movement of fluids. It is based on utilizing electromagnetic measurements of the complex permittivity of the fluids for detecting and monitoring the fluid. More particularly the apparatus uses one or more microwave probes which are placed at the locations where the measurements are to be made. A radio frequency signal is transmitted to the probe and the reflected signal is phase and amplitude detected at a rapid rate for the purpose of identifying the fluids, based on their dielectric constant at the probe. The apparatus can be used for multiple purposes including measures of flow rates, turbulence, dispersion, fluid identification, and changes in flow conditions of multiple fluids or multiple states of a single fluid in a flowline or a holding container. The apparatus includes a probe consisting of two electrical conductors separated by an insulator. A radio frequency signal is communicated to the probe and is reflected back from the portion of the probe exposed to the fluid. The radio frequency signal also provides a reference signal. An oscillator generates a second signal which combined with each of the reference signal and the reflected signal to produce signals of lower frequencies to facilitate filtering and amplifying those signals. The two signals are then mixed in a detector to produce an output signal that is representative of the phase and amplitude change caused by the reflection of the signal at the probe exposed to the fluid. The detector may be a dual phase detector that provides two such output signals that are in phase quadrature. A phase shifter may be provided for selectively changing the phase of the reference signal to improve the sensitivity of at least one of the output signals for more accurate readings and/or for calibration purposes. The two outputs that are in quadrature with respect to each other may be simultaneously monitored to account for
Fluid Flow in An Evaporating Droplet
NASA Technical Reports Server (NTRS)
Hu, H.; Larson, R.
1999-01-01
Droplet evaporation is a common phenomenon in everyday life. For example, when a droplet of coffee or salt solution is dropped onto a surface and the droplet dries out, a ring of coffee or salt particles is left on the surface. This phenomenon exists not only in everyday life, but also in many practical industrial processes and scientific research and could also be used to assist in DNA sequence analysis, if the flow field in the droplet produced by the evaporation could be understood and predicted in detail. In order to measure the fluid flow in a droplet, small particles can be suspended into the fluid as tracers. From the ratio of gravitational force to Brownian force a(exp 4)(delta rho)(g)/k(sub B)T, we find that particle's tendency to settle is proportional to a(exp 4) (a is particle radius). So, to keep the particles from settling, the droplet size should be chosen to be in a range 0.1 -1.0 microns in experiments. For such small particles, the Brownian force will affect the motion of the particle preventing accurate measurement of the flow field. This problem could be overcome by using larger particles as tracers to measure fluid flow under microgravity since the gravitational acceleration g is then very small. For larger particles, Brownian force would hardly affect the motion of the particles. Therefore, accurate flow field could be determined from experiments in microgravity. In this paper, we will investigate the fluid flow in an evaporating droplet under normal gravity, and compare experiments to theories. Then, we will present our ideas about the experimental measurement of fluid flow in an evaporating droplet under microgravity.
Messinian Salinity Crisis and basin fluid flow
NASA Astrophysics Data System (ADS)
Bertoni, Claudia; Cartwight, Joe
2014-05-01
Syn- and post-depositional movement of fluids through sediments is one of the least understood aspects in the evolution of a basin. The conventional hydrostratigraphic view on marine sedimentary basins assumes that compactional and meteoric groundwater fluid circulation drives fluid movement and defines its timing. However, in the past few years, several examples of instantaneous and catastrophic release of fluids have been observed even through low-permeability sediments. A particularly complex case-study involves the presence of giant salt bodies in the depocentres of marine basins. Evaporites dramatically change the hydrostratigraphy and fluid-dynamics of the basin, and influence the P/T regimes, e.g. through changes in the geothermal gradient and in the compaction of underlying sediments. Our paper reviews the impact of the Messinian Salinity Crisis (MSC) and evaporites on fluid flow in the Mediterranean sub-basins. The analysis of geological and geophysical sub-surface data provides examples from this basin, and the comparison with analogues in other well-known evaporitic provinces. During the MSC, massive sea-level changes occurred in a relatively limited time interval, and affected the balance of fluid dynamics, e.g. with sudden release or unusual trapping of fluids. Fluid expulsion events are here analysed and classified in relation to the long and short-term effects of the MSC. Our main aim is to build a framework for the correct identification of the fluid flow-related events, and their genetic mechanisms. On basin margins, where evaporites are thin or absent, the sea-level changes associated with the MSC force a rapid basinward shift of the mixing zone of meteoric/gravity flow and saline/compactional flow, 100s-km away from its pre-MSC position. This phenomenon changes the geometry of converging flows, creates hydraulic traps for fluids, and triggers specific diagenetic reactions in pre-MSC deep marine sediments. In basin-centre settings, unloading and
NASA Astrophysics Data System (ADS)
Blackmon, J. B.; Linskens, M. C.; Reed, K. A.
1982-12-01
Consensus standard test method, for determining the thermal performance of concentrating solar collectors is described. The method applies to outdoor testing of one or two axis concentrating collectors with heat fluids for use in thermal systems and whose design is such that the effects of diffuse sky irradiance is negligible. The procedures determine the optical response of the collector for various angles of incidence of solar radiation, and the thermal performance of the collector at various operating temperatures for the condition of maximum optical response. The method requires quasi steady state conditions, measurement of enviromental parameters, and determination of the fluidmass flow rate specific heat product and temperature difference of the heat transfer fluid between the inlet and outlet of the collector. These quantities determine the rate of heat gain for the solar irradiance condition encountered. Thermal performance is determined as the rate of heat gain of the collector relative to the solar power incident on the plane of the collector aperture.
Fluid flow meter for measuring the rate of fluid flow in a conduit
NASA Technical Reports Server (NTRS)
White, P. R. (Inventor)
1986-01-01
A tube fluid flow rate meter consists of a reservoir divided by flexible diaphragm into two separate isolated compartments. The incoming and outgoing tubes open into the compartments. The orifice is sized to allow maximum tube fluid flow. Opposing compression springs are secured within the two compartments on opposite sides of the orifice to maintain orifice position when the tube fluid pressure is zero. A tapered element is centered in, and extends through the orifice into the compartment, leaving an annular opening between the element and the perimeter of the oriface. The size varies as the diaphragm flexes with changes in the tube fluid pressure to change the fluid flow through the opening. The light source directs light upon the element which in turn scatters the light through the opening into the compartment. The light detector in the compartment senses the scattered light to generate a signal indicating the amount of fluid.
Method and apparatus for controlling fluid flow
Miller, J.R.
1980-06-27
A method and apparatus for precisely controlling the rate (and hence amount) of fluid flow are given. The controlled flow rate is finely adjustable, can be extremely small (on the order of microliter-atmospheres per second), can be adjusted to zero (flow stopped), and is stable to better than 1% with time. The dead volume of the valve can be made arbitrarily small, in fact essentially zero. The valve employs no wearing mechanical parts (including springs, stems, or seals). The valve is finely adjustable, has a flow rate dynamic range of many decades, can be made compatible with any fluid, and is suitable for incorporation into an open or closed loop servo-control system.
Fluid flow along faults in carbonate rocks
NASA Astrophysics Data System (ADS)
Romano, Valentina; Battaglia, Maurizio; Bigi, Sabina
2015-04-01
The study of fluid flow in fractured rocks plays a key role in reservoir management, including CO2 sequestration and waste isolation. We present a mathematical model of fluid flow in a fault zone, based on field data acquired in Majella Mountain, in the Central Apennines (Italy). The Majella is a thrust related, asymmetric, box shaped anticline. The mountain carbonate outcrops are part of a lower Cretaceous-Miocene succession, covered by a siliciclastic sequence of lower Pliocene age. We study a fault zone located in the Bolognano Formation (Oligo-Miocene age) and exposed in the Roman Valley Quarry near the town of Lettomanoppello, in the northern sector of the Majella Mountain. This is one of the best places in the Apennines to investigate a fault zone and has been the subject of numerous field studies. Faults are mechanical and permeability heterogeneities in the upper crust, so they strongly influence fluid flow. The distribution of the main components (core, damage zone) can lead a fault zone to act as a conduit, a barrier or a combined conduit-barrier system. We integrated existing and our own structural surveys of the area to better identify the major fault features (e.g., kind of fractures, statistical properties, geometry and pertrophysical characteristics). Our analytical model describe the Bolognano Formation using a dual porosity/dual permeability model: global flow occurs through the fracture network only, while rock matrix contain the majority of fluid storage and provide fluid drainage to the fractures. Pressure behavior is analyzed by examining the pressure drawdown curves, the derivative plots and the effects of the characteristic parameters. The analytical model has been calibrated against published data on fluid flow and pressure distribution in the Bolognano Formation.
NASA Astrophysics Data System (ADS)
Fairman, Stephen J.; Johnson, Joseph A.; Walkiewicz, Thomas A.
2003-09-01
Graphical analysis of experimental data that exhibit exponential behavior is typically postponed at many institutions until students are able to understand the theory underlying the concept of radioactive decay or of RC time constants in ac circuits. In 1960 Smithson and Pinkston described a laboratory exercise that uses the flow of water from a vertical column through a long horizontal capillary tube as a source of data that models radioactive decay. Many institutions have used this experiment simply as an early introduction to exponential behavior without reference to radioactive decay or ac circuits. Greenslade2 recently described a modification of this experiment to demonstrate the concept of secular equilibrium in radioactive decay. This paper presents results of similar experiments, but visual measurements are replaced in this work by data obtained with modern sensors interfaced to a computer. Experiments are described from simple exponential decay to an analogue of the complex interactions of three nuclides in a radioactive-series decay chain.
Automated analysis for fluid flow topology
NASA Technical Reports Server (NTRS)
Helman, James; Hesselink, Lambertus
1989-01-01
A new approach for visualizing vector data sets was developed by reducing the original vector field to a set of critical points and their connections, and was applied to fluid flow data sets. The critical point representation allows for considerable reduction in the data complexity. The representations are displayed as surfaces which are much simpler than the original data set, yet retain all the pertinent flow topology information. It is suggested that topological representations may be useful for database comparison.
Maximal mixing by incompressible fluid flows
NASA Astrophysics Data System (ADS)
Seis, Christian
2013-12-01
We consider a model for mixing binary viscous fluids under an incompressible flow. We prove the impossibility of perfect mixing in finite time for flows with finite viscous dissipation. As measures of mixedness we consider a Monge-Kantorovich-Rubinstein transportation distance and, more classically, the H-1 norm. We derive rigorous a priori lower bounds on these mixing norms which show that mixing cannot proceed faster than exponentially in time. The rate of the exponential decay is uniform in the initial data.
NASA Astrophysics Data System (ADS)
Zavolzhenskii, M. V.
1982-09-01
Boussinesq equations are used in studying the spectral problem of the stability loss in the equilibrium state of a rotating layer of viscous fluid subjected to temperature inversion. It is shown that this loss can take the form of eddy flows localized around the axis of rotation. It is noted that flows of this type have properties similar to those of waterspouts, tornados, and other vortices.
Geophysical Fluid Flow Cell (GFFC) Simulation
NASA Technical Reports Server (NTRS)
1999-01-01
These simulations of atmospheric flow use the same experimental parameters but started with slightly different initial conditions in the model. The simulations were part of data analysis for the Geophysical Fluid Flow Cell (GFFC), a planet in a test tube apparatus flown on Spacelab to mimic the atmospheres on gas giant planets and stars. (Credit: Dr. Tim Miller of Global Hydrology and Climate Center at the Marshall Space Flight Center)
Advanced designs for fluid flow visualization
NASA Technical Reports Server (NTRS)
1978-01-01
Research was carried out on existing and new designs for minimally intrusive measurement of flow fields in the Geophysical Fluid Flow Cell and the proposed Atmospheric General Circulation Experiment. The following topics are discussed: (1) identification and removal of foreign particles, (2) search for higher dielectric photochromic solutions, (3) selection of uv light source, (4) analysis of refractive techniques and (5) examination of fresnel lens applicability.
The Geophysical Fluid Flow Cell Experiment
NASA Technical Reports Server (NTRS)
Hart, J. E.; Ohlsen, D.; Kittleman, S.; Borhani, N.; Leslie, F.; Miller, T.
1999-01-01
The Geophysical Fluid Flow Cell (GFFC) experiment performed visualizations of thermal convection in a rotating differentially heated spherical shell of fluid. In these experiments dielectric polarization forces are used to generate a radially directed buoyancy force. This enables the laboratory simulation of a number of geophysically and astrophysically important situations in which sphericity and rotation both impose strong constraints on global scale fluid motions. During USML-2 a large set of experiments with spherically symmetric heating were carried out. These enabled the determination of critical points for the transition to various forms of nonaxisymmetric convection and, for highly turbulent flows, the transition latitudes separating the different modes of motion. This paper presents a first analysis of these experiments as well as data on the general performance of the instrument during the USML-2 flight.
Finite scale equations for compressible fluid flow
Margolin, Len G
2008-01-01
Finite-scale equations (FSE) describe the evolution of finite volumes of fluid over time. We discuss the FSE for a one-dimensional compressible fluid, whose every point is governed by the Navier-Stokes equations. The FSE contain new momentum and internal energy transport terms. These are similar to terms added in numerical simulation for high-speed flows (e.g. artificial viscosity) and for turbulent flows (e.g. subgrid scale models). These similarities suggest that the FSE may provide new insight as a basis for computational fluid dynamics. Our analysis of the FS continuity equation leads to a physical interpretation of the new transport terms, and indicates the need to carefully distinguish between volume-averaged and mass-averaged velocities in numerical simulation. We make preliminary connections to the other recent work reformulating Navier-Stokes equations.
Volcanic termor: Nonlinear excitation by fluid flow
NASA Astrophysics Data System (ADS)
Julian, Bruce R.
1994-06-01
A nonlinear process analogous to the excitation mechanism of musical wind instruments and human vocal cords can explain many characteristics of volcanic tremor, including (1) periodic and 'chaotic' oscillations, with peaked and irregular spectra respectively, (2) rapid pulsations in eruptions occurring at the same frequency as tremor, (3) systematic changes in tremor amplitude as channel geometry evolves during an eruption, (4) the period doubling reported for Hawaiian deep tremor, and (5) the fact that the onset of termor can be either gradual or abrupt. Volcanic 'long-period' earthquakes can be explained as oscillations excited by transient disturbances produced by nearby earthquakes, fluid heterogeneity, or changes in channel geometry, when the magma flow rate is too low to excite continuous tremor. A simple lumped-parameter tremor model involving the flow of an incompressible viscous fluid through a channel with movable elastic walls leads to a third-order system of nonlinear ordinary differential equations. For different driving fluid pressures, numerical solutions exhibit steady flow, simple limit-cycle oscillations, a cascade of period-doubling subharmonic bifurcations, and chaotic oscillations controlled by a strange attractor of Rossler type. In this model, tremor occurs most easily at local constrictions, and fluid discharge is lower than would occur in unstable steady flow.
Cryogenic fluid flow instabilities in heat exchangers
NASA Technical Reports Server (NTRS)
Fleming, R. B.; Staub, F. W.
1969-01-01
Analytical and experimental investigation determines the nature of oscillations and instabilities that occur in the flow of two-phase cryogenic fluids at both subcritical and supercritical pressures in heat exchangers. Test results with varying system parameters suggest certain design approaches with regard to heat exchanger geometry.
14 CFR 23.1095 - Carburetor deicing fluid flow rate.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor deicing fluid flow rate. 23.1095... Induction System § 23.1095 Carburetor deicing fluid flow rate. (a) If a carburetor deicing fluid system is used, it must be able to simultaneously supply each engine with a rate of fluid flow, expressed...
14 CFR 23.1095 - Carburetor deicing fluid flow rate.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Carburetor deicing fluid flow rate. 23.1095... Induction System § 23.1095 Carburetor deicing fluid flow rate. (a) If a carburetor deicing fluid system is used, it must be able to simultaneously supply each engine with a rate of fluid flow, expressed...
14 CFR 23.1095 - Carburetor deicing fluid flow rate.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor deicing fluid flow rate. 23.1095... Induction System § 23.1095 Carburetor deicing fluid flow rate. (a) If a carburetor deicing fluid system is used, it must be able to simultaneously supply each engine with a rate of fluid flow, expressed...
14 CFR 23.1095 - Carburetor deicing fluid flow rate.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor deicing fluid flow rate. 23.1095... Induction System § 23.1095 Carburetor deicing fluid flow rate. (a) If a carburetor deicing fluid system is used, it must be able to simultaneously supply each engine with a rate of fluid flow, expressed...
14 CFR 23.1095 - Carburetor deicing fluid flow rate.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor deicing fluid flow rate. 23.1095... Induction System § 23.1095 Carburetor deicing fluid flow rate. (a) If a carburetor deicing fluid system is used, it must be able to simultaneously supply each engine with a rate of fluid flow, expressed...
Enhanced fluid flow through nanoscale carbon pipes.
Whitby, Max; Cagnon, Laurent; Thanou, Maya; Quirke, Nick
2008-09-01
Recent experimental and theoretical studies demonstrate that pressure driven flow of fluids through nanoscale ( d < 10 nm) carbon pores occurs 4 to 5 orders of magnitude faster than predicted by extrapolation from conventional theory. Here, we report experimental results for flow of water, ethanol, and decane through carbon nanopipes with larger inner diameters (43 +/- 3 nm) than previously investigated. We find enhanced transport up to 45 times theoretical predictions. In contrast to previous work, in our systems, decane flows faster than water. These nanopipes were composed of amorphous carbon deposited from ethylene vapor in alumina templates using a single step fabrication process. PMID:18680352
Granular Material Flows with Interstitial Fluid Effects
NASA Technical Reports Server (NTRS)
Hunt, Melany L.; Brennen, Christopher E.
2004-01-01
The research focused on experimental measurements of the rheological properties of liquid-solid and granular flows. In these flows, the viscous effects of the interstitial fluid, the inertia of the fluid and particles, and the collisional interactions of the particles may all contribute to the flow mechanics. These multiphase flows include industrial problems such as coal slurry pipelines, hydraulic fracturing processes, fluidized beds, mining and milling operation, abrasive water jet machining, and polishing and surface erosion technologies. In addition, there are a wide range of geophysical flows such as debris flows, landslides and sediment transport. In extraterrestrial applications, the study of transport of particulate materials is fundamental to the mining and processing of lunar and Martian soils and the transport of atmospheric dust (National Research Council 2000). The recent images from Mars Global Surveyor spacecraft dramatically depict the complex sand and dust flows on Mars, including dune formation and dust avalanches on the slip-face of dune surfaces. These Aeolian features involve a complex interaction of the prevailing winds and deposition or erosion of the sediment layer; these features make a good test bed for the verification of global circulation models of the Martian atmosphere.
Ultrasonic fluid flow measurement method and apparatus
Kronberg, J.W.
1993-10-12
An apparatus for measuring the flow of a fluid in a pipe using ultrasonic waves. The apparatus comprises an ultrasonic generator, a lens for focusing the sound energy produced by the generator, and means for directing the focused energy into the side of the pipe through an opening and in a direction close to parallel to the long axis of the pipe. A cone carries the sound energy to the lens from the generator. Depending on the choice of materials, there may be a quarter-wave, acoustic impedance matching section between the generator and the cone to reduce the reflections of energy at the cone boundary. The lens material has an acoustic impedance similar to that of the cone material but a different sonic velocity so that the lens can converge the sound waves in the fluid. A transition section between the lens and the fluid helps to couple the energy to the fluid and assures it is directed as close to parallel to the fluid flow direction as possible. 3 figures.
Ultrasonic fluid flow measurement method and apparatus
Kronberg, James W.
1993-01-01
An apparatus for measuring the flow of a fluid in a pipe using ultrasonic waves. The apparatus comprises an ultrasonic generator, a lens for focusing the sound energy produced by the generator, and means for directing the focused energy into the side of the pipe through an opening and in a direction close to parallel to the long axis of the pipe. A cone carries the sound energy to the lens from the generator. Depending on the choice of materials, there may be a quarter-wave, acoustic impedance matching section between the generator and the cone to reduce the reflections of energy at the cone boundary. The lens material has an acoustic impedance similar to that of the cone material but a different sonic velocity so that the lens can converge the sound waves in the fluid. A transition section between the lens and the fluid helps to couple the energy to the fluid and assures it is directed as close to parallel to the fluid flow direction as possible.
Flow behaviour of extremely bidisperse magnetizable fluids
NASA Astrophysics Data System (ADS)
Susan-Resiga, Daniela; Bica, Doina; Vékás, L.
2010-10-01
In this paper we investigated the rheological and magnetorheological behaviours of an extremely bidisperse (nano-micro) magnetizable fluid (sample D1) for comparison of a commercial magnetorheological fluid (MRF-140CG; LORD Co. (USA)) with the same magnetic solid volume fraction, using the Physica MCR-300 rheometer with a 20 mm diameter plate-plate magnetorheological cell (MRD180). D1 sample is a suspension of micrometer range Fe particles in a transformer oil based magnetic fluid as carrier. For both types of samples, the experimental data for zero and non-zero magnetic field conditions were fitted to equations derived from the Newtonian and Cross type flow equations, as well as the Herschel-Bulkley model. The main advantage of both rheological equations for the quantitative description of the magnetic field behaviour of samples is that they can be used in regular CFD codes to compute the flow properties of the magnetorheological fluid and of the bidisperse magnetizable fluid for practical applications.
2-Phase Fluid Flow & Heat Transport
Energy Science and Technology Software Center (ESTSC)
1993-03-13
GEOTHER is a three-dimensional, geothermal reservoir simulation code. The model describes heat transport and flow of a single component, two-phase fluid in porous media. It is based on the continuity equations for steam and water, which are reduced to two nonlinear partial differential equations in which the dependent variables are fluid pressure and enthalpy. GEOTHER can be used to simulate the fluid-thermal interaction in rock that can be approximated by a porous media representation. Itmore » can simulate heat transport and the flow of compressed water, two-phase mixtures, and superheated steam in porous media over a temperature range of 10 to 300 degrees C. In addition, it can treat the conversion from single to two-phase flow, and vice versa. It can be used for evaluation of a near repository spatial scale and a time scale of a few years to thousands of years. The model can be used to investigate temperature and fluid pressure changes in response to thermal loading by waste materials.« less
Monotectic composite growth with fluid flow
NASA Astrophysics Data System (ADS)
Stöcker, C.; Ratke, L.
It is a well-known fluid-mechanical phenomenon that thermocapillary forces induce surface convection on a fluid-fluid interface. This so-called Marangoni convection depends on the variation of the surface energy along the interface. In our present work we focus our attention on the evolution of a fibrous monotectic microstructure with liquid L 2 fibers. We will show, that the Marangoni convection has a strong influence on the transport of solute in front of the solidification front, despite the flow induced by density differences. The resulting flow field affects the constitutional undercooling and therefore the mean undercooling of a monotectic solidification front. In a previous paper we discussed qualitatively the influence of fluid flow on the microstructure evolution of composite monotetic growth (C. Stöcker, L. Ratke, J. Crystal Growth 203 (1999) 582). We introduced an analytical model that takes the density differences of the phases and the surface convection on the L 1-L 2 surface into consideration. With this extended Jackson and Hunt theory for composite monotectic growth we derived a characteristic equation for the inter-rod distance depending on solidification velocity and temperature gradient. In this paper we develop a more accurate model. We solve numerically the diffusion equation coupled with the Navier-Stokes equation in the L 1 phase to find the minimal undercooling for a given velocity and temperature gradient. We derive a Jackson and Hunt diagram and show that the fluid flow leads to a strong dependence of the inter-rod distance on the temperature gradient opposite to eutectic solidification.
Slip mechanisms in complex fluid flows.
Hatzikiriakos, Savvas G
2015-10-28
The classical no-slip boundary condition of fluid mechanics is not always a valid assumption for the flow of several classes of complex fluids including polymer melts, their blends, polymer solutions, microgels, glasses, suspensions and pastes. In fact, it appears that slip effect in these systems is the rule and not the exemption. The occurrence of slip complicates the analysis of rheological data, although it provides new opportunities to understand their behavior in restricted environments delineating additional molecular mechanisms i.e. entropic restrictions due to limitations in the number of molecular conformations. This article discusses these complexities and provides future research opportunities. PMID:26345121
Modeling Tools Predict Flow in Fluid Dynamics
NASA Technical Reports Server (NTRS)
2010-01-01
"Because rocket engines operate under extreme temperature and pressure, they present a unique challenge to designers who must test and simulate the technology. To this end, CRAFT Tech Inc., of Pipersville, Pennsylvania, won Small Business Innovation Research (SBIR) contracts from Marshall Space Flight Center to develop software to simulate cryogenic fluid flows and related phenomena. CRAFT Tech enhanced its CRUNCH CFD (computational fluid dynamics) software to simulate phenomena in various liquid propulsion components and systems. Today, both government and industry clients in the aerospace, utilities, and petrochemical industries use the software for analyzing existing systems as well as designing new ones."
Two-fluid Hydrodynamic Model for Fluid-Flow Simulation in Fluid-Solids Systems
Energy Science and Technology Software Center (ESTSC)
1994-06-20
FLUFIX is a two-dimensional , transient, Eulerian, and finite-difference program, based on a two-fluid hydrodynamic model, for fluid flow simulation in fluid-solids systems. The software is written in a modular form using the Implicit Multi-Field (IMF) numerical technique. Quantities computed are the spatial distribution of solids loading, gas and solids velocities, pressure, and temperatures. Predicted are bubble formation, bed frequencies, and solids recirculation. Applications include bubbling and circulating atmospheric and pressurized fluidized bed reactors, combustors,more » gasifiers, and FCC (Fluid Catalytic Cracker) reactors.« less
Analysis of Fluid Flow over a Surface
NASA Technical Reports Server (NTRS)
McCloud, Peter L. (Inventor)
2013-01-01
A method, apparatus, and computer program product for modeling heat radiated by a structure. The flow of a fluid over a surface of a model of the structure is simulated. The surface has a plurality of surface elements. Heat radiated by the plurality of surface elements in response to the fluid flowing over the surface of the model of the structure is identified. An effect of heat radiated by at least a portion of the plurality of surface elements on each other is identified. A model of the heat radiated by the structure is created using the heat radiated by the plurality of surface elements and the effect of the heat radiated by at least a portion of the plurality of surface elements on each other.
Visualization of working fluid flow in gravity assisted heat pipe
NASA Astrophysics Data System (ADS)
Nemec, Patrik; Malcho, Milan
2015-05-01
Heat pipe is device working with phase changes of working fluid inside hermetically closed pipe at specific pressure. The phase changes of working fluid from fluid to vapor and vice versa help heat pipe to transport high heat flux. The article deal about construction and processes casing in heat pipe during operation. Experiment visualization of working fluid flow is performed with glass heat pipe filed with ethanol. The visualization of working fluid flow explains the phenomena as working fluid boiling, nucleation of bubbles, vapor flow, vapor condensation on the wall, vapor and condensate flow interaction, flow down condensate film thickness on the wall, occurred during the heat pipe operation.
Bernoulli theorem generalized to rheologically complex viscous fluid flow
NASA Astrophysics Data System (ADS)
Brutyan, M. A.; Krapivskii, P. L.
1992-08-01
The Bernoulli theorem is generalized to two-dimensional and axisymmetric micropolar incompressible fluid flows. It is shown that the approach developed is also applicable to magnetohydrodynamic flows of a viscous Newtonian fluid.
Piezoelectric energy harvesting in internal fluid flow.
Lee, Hyeong Jae; Sherrit, Stewart; Tosi, Luis Phillipe; Walkemeyer, Phillip; Colonius, Tim
2015-01-01
We consider piezoelectric flow energy harvesting in an internal flow environment with the ultimate goal powering systems such as sensors in deep oil well applications. Fluid motion is coupled to structural vibration via a cantilever beam placed in a converging-diverging flow channel. Two designs were considered for the electromechanical coupling: first; the cantilever itself is a piezoelectric bimorph; second; the cantilever is mounted on a pair of flextensional actuators. We experimentally investigated varying the geometry of the flow passage and the flow rate. Experimental results revealed that the power generated from both designs was similar; producing as much as 20 mW at a flow rate of 20 L/min. The bimorph designs were prone to failure at the extremes of flow rates tested. Finite element analysis (FEA) showed fatigue failure was imminent due to stress concentrations near the bimorph's clamped region; and that robustness could be improved with a stepped-joint mounting design. A similar FEA model showed the flextensional-based harvester had a resonant frequency of around 375 Hz and an electromechanical coupling of 0.23 between the cantilever and flextensional actuators in a vacuum. These values; along with the power levels demonstrated; are significant steps toward building a system design that can eventually deliver power in the Watts range to devices down within a well. PMID:26473879
Piezoelectric Energy Harvesting in Internal Fluid Flow
Lee, Hyeong Jae; Sherrit, Stewart; Tosi, Luis Phillipe; Walkemeyer, Phillip; Colonius, Tim
2015-01-01
We consider piezoelectric flow energy harvesting in an internal flow environment with the ultimate goal powering systems such as sensors in deep oil well applications. Fluid motion is coupled to structural vibration via a cantilever beam placed in a converging-diverging flow channel. Two designs were considered for the electromechanical coupling: first; the cantilever itself is a piezoelectric bimorph; second; the cantilever is mounted on a pair of flextensional actuators. We experimentally investigated varying the geometry of the flow passage and the flow rate. Experimental results revealed that the power generated from both designs was similar; producing as much as 20 mW at a flow rate of 20 L/min. The bimorph designs were prone to failure at the extremes of flow rates tested. Finite element analysis (FEA) showed fatigue failure was imminent due to stress concentrations near the bimorph’s clamped region; and that robustness could be improved with a stepped-joint mounting design. A similar FEA model showed the flextensional-based harvester had a resonant frequency of around 375 Hz and an electromechanical coupling of 0.23 between the cantilever and flextensional actuators in a vacuum. These values; along with the power levels demonstrated; are significant steps toward building a system design that can eventually deliver power in the Watts range to devices down within a well. PMID:26473879
Physical aspects of computing the flow of a viscous fluid
NASA Technical Reports Server (NTRS)
Mehta, U. B.
1984-01-01
One of the main themes in fluid dynamics at present and in the future is going to be computational fluid dynamics with the primary focus on the determination of drag, flow separation, vortex flows, and unsteady flows. A computation of the flow of a viscous fluid requires an understanding and consideration of the physical aspects of the flow. This is done by identifying the flow regimes and the scales of fluid motion, and the sources of vorticity. Discussions of flow regimes deal with conditions of incompressibility, transitional and turbulent flows, Navier-Stokes and non-Navier-Stokes regimes, shock waves, and strain fields. Discussions of the scales of fluid motion consider transitional and turbulent flows, thin- and slender-shear layers, triple- and four-deck regions, viscous-inviscid interactions, shock waves, strain rates, and temporal scales. In addition, the significance and generation of vorticity are discussed. These physical aspects mainly guide computations of the flow of a viscous fluid.
Draining of the SUNPAK/sup TM/ evacuated tubular collector
Pei, Y.K.
1980-05-01
A program has been completed which demonstrates the capability of draining the present liquid series flow SUNPAK/sup TM/ evacuated tubular collector. The benefits which are derived include the avoidance of potential problems associated with liquid boil-out during system failure and the avoidance of collector freeze up. Additional benefits derived from a fully drained collector are the avoidance of significant heat losses during overnight periods, safe access to the collector for maintenance at any time and ability to dissipate excess heat through dry stagnation of the collector during shut down periods. A simple modification to the series flow SUNPAK/sup TM/ collector module arrangement was developed and demonstrated through the full scale testing of a two bank-six module arrangement. The necessary changes can be implemented at a minimum expenditure of time and cost. The extensive field service experience which has been accumulated with the liquid series flow SUNPAK/sup TM/ collector is directly applicable to the drainable configuration. The program included the investigation of an alternate approach to the series flow SUNPAK/sup TM/ solution. The intra module parallel flow concept was demonstrated through the proof of concept phase of effort. The solution investigated incorporated a batch flow rather than a continuous flow mode of the cooling fluid. The solution required an extensive design modification of the existing SUNPAK/sup TM/ collector manifold. During the redesign effort, other desired mechanical features of the manifold were incorporated to improve the physical characteristics, to improve safety and reliability and to reduce the potential cost of future SUNPAK/sup TM/ collector arrays.
Testing the Markov hypothesis in fluid flows
NASA Astrophysics Data System (ADS)
Meyer, Daniel W.; Saggini, Frédéric
2016-05-01
Stochastic Markov processes are used very frequently to model, for example, processes in turbulence and subsurface flow and transport. Based on the weak Chapman-Kolmogorov equation and the strong Markov condition, we present methods to test the Markov hypothesis that is at the heart of these models. We demonstrate the capabilities of our methodology by testing the Markov hypothesis for fluid and inertial particles in turbulence, and fluid particles in the heterogeneous subsurface. In the context of subsurface macrodispersion, we find that depending on the heterogeneity level, Markov models work well above a certain scale of interest for media with different log-conductivity correlation structures. Moreover, we find surprising similarities in the velocity dynamics of the different media considered.
Fluid flow in solidifying monotectic alloys
NASA Technical Reports Server (NTRS)
Ecker, A.; Frazier, D. O.; Alexander, J. Iwan D.
1989-01-01
Use of a two-wavelength holographic technique results in a simultaneous determination of temperature and composition profiles during directional solidification in a system with a miscibility gap. The relationships among fluid flow, phase separation, and mass transport during the solidification of the monotectic alloy are discussed. The primary sources of fluid motion in this system are buoyancy and thermocapillary forces. These forces act together when phase separation results in the formation of droplets (this occurs at the solid-liquid interface and in the bulk melt). In the absence of phase separation, buoyancy results from density gradients related to temperature and compositional gradients in the single-phase bulk melt. The effects of buoyancy are especially evident in association with water- or ethanol-rich volumes created at the solid-liquid growth interface.
Fluid flow in solidifying monotectic alloys
NASA Astrophysics Data System (ADS)
Ecker, A.; Frazier, D. O.; Alexander, J. Iwan D.
1989-11-01
Use of a two-wavelength holographic technique results in a simultaneous determination of temperature and composition profiles during directional solidification in a system with a miscibility gap. A shadowgraph technique is employed for flow visualization. By these methods, flow regimes are identified and related to particular melt compositions. We discuss the relationships among fluid flow, phase separation, and mass transport during the solidification of the monotectic alloy. The primary sources of fluid motion in this system are buoyancy and thermocapillary forces. These forces act together when phase separation results in the formation of droplets (this occurs at the solid-liquid interface and in the bulk melt). While buoyancy forces arise due to density differences between the droplet and the host phase, thermocapillary forces (associated with temperature gradients in the droplet surface) may predominate. In the absence of phase separation, buoyancy results from density gradients related to temperature and compositional gradients in the single-phase bulk melt. The effects of buoyancy are especially evident in association with water- or ethanol-rich volumes created at the solid-liquid growth interface.
Fluid flow through packings of rotating obstacles
NASA Astrophysics Data System (ADS)
Oliveira, Rafael S.; Andrade, José S.; Andrade, Roberto F. S.
2015-03-01
We investigate through numerical simulation the nonstationary flow of a Newtonian fluid through a two-dimensional channel filled with an array of circular obstacles of distinct sizes. The disks may rotate around their respective centers, modeling a nonstationary, inhomogeneous porous medium. Obstacle sizes and positions are defined by the geometry of an Apollonian packing (AP). To allow for fluid flow, the radii of the disks are uniformly reduced by a factor 0.6 ≤s ≤0.8 for assemblies corresponding to the four first AP generations. The investigation is targeted to elucidate the main features of the rotating regime as compared to the fixed disk condition. It comprises the evaluation of the region of validity of Darcy's law as well as the study of the nonlinear hydraulic resistance as a function of the channel Reynolds number, the reduction factor s , and the AP generation. Depending on a combination of these factors, the resistance of rotating disks may be larger or smaller than that of the corresponding static case. We also analyze the flow redistribution in the interdisk channels as a result of the rotation pattern and characterize the angular velocity of the disks. Here, the striking feature is the emergence of a stable oscillatory behavior of the angular velocity for almost all disks that are inserted into the assemblies after the second generation.
Structurally integrated steel solar collector
Moore, S.W.
1975-06-03
Herein is disclosed a flate plate solar heat collector unit. The solar collector is integrated as a structural unit so that the collector also functions as the building roof. The functions of efficient heat collection, liquid coolant flow passages, roof structural support, and building insulation are combined into one unit.
Structurally integrated steel solar collector
Moore, Stanley W.
1977-03-08
Herein is disclosed a flat plate solar heat collector unit. The solar collector is integrated as a structural unit so that the collector also functions as the building roof. The functions of efficient heat collection, liquid coolant flow passages, roof structural support and building insulation are combined into one unit.
Fluid flow dynamics in MAS systems
NASA Astrophysics Data System (ADS)
Wilhelm, Dirk; Purea, Armin; Engelke, Frank
2015-08-01
The turbine system and the radial bearing of a high performance magic angle spinning (MAS) probe with 1.3 mm-rotor diameter has been analyzed for spinning rates up to 67 kHz. We focused mainly on the fluid flow properties of the MAS system. Therefore, computational fluid dynamics (CFD) simulations and fluid measurements of the turbine and the radial bearings have been performed. CFD simulation and measurement results of the 1.3 mm-MAS rotor system show relatively low efficiency (about 25%) compared to standard turbo machines outside the realm of MAS. However, in particular, MAS turbines are mainly optimized for speed and stability instead of efficiency. We have compared MAS systems for rotor diameter of 1.3-7 mm converted to dimensionless values with classical turbomachinery systems showing that the operation parameters (rotor diameter, inlet mass flow, spinning rate) are in the favorable range. This dimensionless analysis also supports radial turbines for low speed MAS probes and diagonal turbines for high speed MAS probes. Consequently, a change from Pelton type MAS turbines to diagonal turbines might be worth considering for high speed applications. CFD simulations of the radial bearings have been compared with basic theoretical values proposing considerably smaller frictional loss values. The discrepancies might be due to the simple linear flow profile employed for the theoretical model. Frictional losses generated inside the radial bearings result in undesired heat-up of the rotor. The rotor surface temperature distribution computed by CFD simulations show a large temperature gradient over the rotor.
Fluid flow dynamics in MAS systems.
Wilhelm, Dirk; Purea, Armin; Engelke, Frank
2015-08-01
The turbine system and the radial bearing of a high performance magic angle spinning (MAS) probe with 1.3mm-rotor diameter has been analyzed for spinning rates up to 67kHz. We focused mainly on the fluid flow properties of the MAS system. Therefore, computational fluid dynamics (CFD) simulations and fluid measurements of the turbine and the radial bearings have been performed. CFD simulation and measurement results of the 1.3mm-MAS rotor system show relatively low efficiency (about 25%) compared to standard turbo machines outside the realm of MAS. However, in particular, MAS turbines are mainly optimized for speed and stability instead of efficiency. We have compared MAS systems for rotor diameter of 1.3-7mm converted to dimensionless values with classical turbomachinery systems showing that the operation parameters (rotor diameter, inlet mass flow, spinning rate) are in the favorable range. This dimensionless analysis also supports radial turbines for low speed MAS probes and diagonal turbines for high speed MAS probes. Consequently, a change from Pelton type MAS turbines to diagonal turbines might be worth considering for high speed applications. CFD simulations of the radial bearings have been compared with basic theoretical values proposing considerably smaller frictional loss values. The discrepancies might be due to the simple linear flow profile employed for the theoretical model. Frictional losses generated inside the radial bearings result in undesired heat-up of the rotor. The rotor surface temperature distribution computed by CFD simulations show a large temperature gradient over the rotor. PMID:26073599
Fluid Physics of Foam Evolution and Flow
NASA Technical Reports Server (NTRS)
Aref, H.; Thoroddsen, S. T.; Sullivan, J. M.
2003-01-01
The grant supported theoretical, numerical and experimental work focused on the elucidation of the fluid physics of foam structure, evolution and flow. The experimental work concentrated on these subject areas: (a) Measurements of the speed of reconnections within a foam; (b) statistics of bubble rearrangements; and (c) three-dimensional reconstruction of the foam structure. On the numerical simulation and theory side our efforts concentrated on the subjects: (a) simulation techniques for 2D and 3D foams; (b) phase transition in a compressible foam; and (c) TCP structures.
Flow Diode and Method for Controlling Fluid Flow Origin of the Invention
NASA Technical Reports Server (NTRS)
Dyson, Rodger W (Inventor)
2015-01-01
A flow diode configured to permit fluid flow in a first direction while preventing fluid flow in a second direction opposite the first direction is disclosed. The flow diode prevents fluid flow without use of mechanical closures or moving parts. The flow diode utilizes a bypass flowline whereby all fluid flow in the second direction moves into the bypass flowline having a plurality of tortuous portions providing high fluidic resistance. The portions decrease in diameter such that debris in the fluid is trapped. As fluid only travels in one direction through the portions, the debris remains trapped in the portions.
Flow rate measurement in aggressive conductive fluids
NASA Astrophysics Data System (ADS)
Dubovikova, Nataliia; Kolesnikov, Yuri; Karcher, Christian
2014-03-01
Two non-contact experimental methods of flow rate measurements for aggressive conductive liquids are described. The techniques are based on electromagnetic forces and Faraday's law: Lorentz force is induced inside moving conductive liquid under influence of variable magnetic field of permanent magnets. They are mounted along a liquid metal channel or (in case of the second method) inserted into rotated metal wheels. The force acts in the opposite of fluids' velocity direction and hence it is possible to measure reaction force of it that takes place according to Newton's law on magnetic field source - permanent magnets. And by knowing the force, which linearly depends on velocity, one can calculate mean flow rate of liquid. In addition experimental "dry" calibration and its results are described for one of the measurements' techniques.
Geophysical Fluid Flow Cell (GFFC) Cross Section
NASA Technical Reports Server (NTRS)
1995-01-01
This drawing shows a cross-section view of the test cell at the heart of the Geophysical Fluid Flow Cell (GFFC) that flew on two Spacelab missions. The middle and lower drawings depict the volume of the silicone oil layer that served as the atmosphere as the steel ball rotated and an electrostatic field pulled the oil inward to mimic gravity's effects during the experiments. The GFFC thus produced flow patterns that simulated conditions inside the atmospheres of Jupiter and the Sun and other stars. The principal investigator was John Hart of the University of Colorado at Boulder. It was managed by NASA's Marshall Space Flight Center (MSFC). An Acrobat PDF copy of this drawing is available at http://microgravity.nasa.gov/gallery. (Credit: NASA/Marshall Space Flight Center)
Microscale imaging of cilia-driven fluid flow
Huang, Brendan K.; Choma, Michael A.
2015-01-01
Cilia-driven fluid flow is important for multiple processes in the body, including respiratory mucus clearance, gamete transport in the oviduct, right-left patterning in the embryonic node, and cerebrospinal fluid circulation. Multiple imaging techniques have been applied towards quantifying ciliary flow. Here we review common velocimetry methods of quantifying fluid flow. We then discuss four important optical modalities, including light microscopy, epifluorescence, confocal microscopy, and optical coherence tomography, that have been used to investigate cilia-driven flow. PMID:25417211
Template Matching Using a Fluid Flow Model
NASA Astrophysics Data System (ADS)
Newman, William Curtis
Template matching is successfully used in machine recognition of isolated spoken words. In these systems a word is broken into frames (20 millisecond time slices) and the spectral characteristics of each frame are found. Thus, each word is represented as a 2-dimensional (2-D) function of spectral characteristic and frame number. An unknown word is recognized by matching its 2-D representation to previously stored example words, or templates, also in this 2-D form. A new model for this matching step will be introduced. The 2-D representations of the template and unknown are used to determine the shape of a volume of viscous fluid. This volume is broken up into many small elements. The unknown is changed into the template by allowing flows between the element boundaries. Finally the match between the template and unknown is determined by calculating a weighted squared sum of the flow values. The model also allows the relative flow resistance between the element boundaries to be changed. This is useful for characterizing the important features of a given template. The flow resistances are changed according to the gradient of a simple performance function. This performance function is evaluated using a set of training samples provided by the user. The model is applied to isolated word and single character recognition tasks. Results indicate the applications where this model works best.
Unified slip boundary condition for fluid flows.
Thalakkottor, Joseph John; Mohseni, Kamran
2016-08-01
Determining the correct matching boundary condition is fundamental to our understanding of several everyday problems. Despite over a century of scientific work, existing velocity boundary conditions are unable to consistently explain and capture the complete physics associated with certain common but complex problems, such as moving contact lines and corner flows. The widely used Maxwell and Navier slip boundary conditions make an implicit assumption that velocity varies only in the wall normal direction. This makes their boundary condition inapplicable in the vicinity of contact lines and corner points, where velocity gradient exists both in the wall normal and wall tangential directions. In this paper, by identifying this implicit assumption we are able to extend Maxwell's slip model. Here, we present a generalized velocity boundary condition that shows that slip velocity is a function of not only the shear rate but also the linear strain rate. In addition, we present a universal relation for slip length, which shows that, for a general flow, slip length is a function of the principal strain rate. The universal relation for slip length along with the generalized velocity boundary condition provides a unified slip boundary condition to model a wide range of steady Newtonian fluid flows. We validate the unified slip boundary for simple Newtonian liquids by using molecular dynamics simulations and studying both the moving contact line and corner flow problems. PMID:27627398
Design package for concentrating solar collector panels
NASA Technical Reports Server (NTRS)
1978-01-01
Information used to evaluate the design of the Northrup concentrating collector is presented. Included are the system performance specifications, the applications manual, and the detailed design drawings of the collector. The collector is a water/glycol/working fluid type, with a dipped galvanized steel housing, transparent acrylic Fresnel lens cover, copper absorber tube, and fiber glass insulation. It weights 98 pounds. A collector assembly includes four collector units within a tracking mount array.
Space Coffee Cup: Capillary Flow Driven Fluids in Space
Interested in learning more about how fluids react in Space? In this video, Professor Mark Weislogel, and Dr. Marshall Porterfield will discuss the Space Coffee Cup and Capillary Flow Driven Fluids...
Thermal and Fluid Flow Brazing Simulations
HOSKING, FLOYD MICHAEL; GIANOULAKIS,STEVEN E.; GIVLER,RICHARD C.; SCHUNK,P. RANDALL
1999-12-15
The thermal response of fixtured parts in a batch-type brazing furnace can require numerous, time-consuming development runs before an acceptable furnace schedule or joint design is established. Powerful computational simulation tools are being developed to minimize the required number of verification experiments, improve furnace throughput, and increase product yields. Typical furnace simulations are based on thermal, fluid flow, and structural codes that incorporate the fundamental physics of the brazing process. The use of massively parallel computing to predict furnace and joint-level responses is presented. Measured and computed data are compared. Temperature values are within 1-270 of the expected peak brazing temperature for different loading conditions. Sensitivity studies reveal that the thermal response is more sensitive to the thermal boundary conditions of the heating enclosure than variability y in the materials data. Braze flow simulations predict fillet geometry and free surface joint defects. Dynamic wetting conditions, interfacial reactions, and solidification structure add a high degree of uncertainty to the flow results.
Installation package for concentrating solar collector panels
NASA Technical Reports Server (NTRS)
1978-01-01
The concentrating solar collector panels comprise a complete package array consisting of collector panels using modified Fresnel prismatic lenses for a 10 to 1 concentrating ratio, supporting framework, fluid manifolding and tracking drive system, and unassembled components for field erection.
Merrigan, M.A.
1981-06-29
A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.
Merrigan, Michael A.
1984-01-01
A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.
Bi-coolant flat plate solar collector
NASA Astrophysics Data System (ADS)
Chon, W. Y.; Green, L. L.
The feasibility study of a flat plate solar collector which heats air and water concurrently or separately was carried out. Air flows above the collector absorber plate, while water flows in tubes soldered or brazed beneath the plate. The collector efficiencies computed for the flow of both air and water are compared with those for the flow of a single coolant. The results show that the bi-coolant collector efficiency computed for the entire year in Buffalo, New York is higher than the single-coolant collector efficiency, although the efficiency of the water collector is higher during the warmer months.
On stability and turbulence of fluid flows
NASA Technical Reports Server (NTRS)
Heisenberg, Werner
1951-01-01
This investigation is divided into two parts, the treatment of the stability problem of fluid flows on the one hand, and that of the turbulent motion on the other. The first part summarizes all previous investigations under a unified point of view, that is, sets up as generally as possible the conditions under which a profile possesses unstable or stable characteristics, and indicates the methods for solution of the stability equation for any arbitrary velocity profile and for calculation of the critical Reynolds number for unstable profiles. In the second part, under certain greatly idealizing assumptions, differential equations for the turbulent motions are derived and from them qualitative information about several properties of the turbulent velocity distribution is obtained.
Saffer, D.M.; Bekins, B.A.
1998-01-01
Down-hole geochemical anomalies encountered in active accretionary systems can be used to constrain the timing, rates, and localization of fluid flow. Here we combine a coupled flow and solute transport model with a kinetic model for smectite dehydration to better understand and quantify fluid flow in the Nankai accretionary complex offshore of Japan. Compaction of sediments and clay dehydration provide fluid sources which drive the model flow system. We explicitly include the consolidation rate of underthrust sediments in our calculations to evaluate the impact that variations in this unknown quantity have on pressure and chloride distribution. Sensitivity analysis of steady state pressure solutions constrains bulk and flow conduit permeabilities. Steady state simulations with 30% smectite in the incoming sedimentary sequence result in minimum chloride concentrations at site 808 of 550 mM, but measured chlorinity is as low as 447 mM. We simulate the transient effects of hydrofracture or a strain event by assuming an instantaneous permeability increase of 3-4 orders of magnitude along a flow conduit (in this case the de??collement), using steady state results as initial conditions. Transient results with an increase in de??collement permeability from 10-16 m2 to 10-13 m2 and 20% smectite reproduce the observed chloride profile at site 808 after 80-160 kyr. Modeled chloride concentrations are highly sensitive to the consolidation rate of underthrust sediments, such that rapid compaction of underthrust material leads to increased freshening. Pressures within the de??collement during transient simulations rise rapidly to a significant fraction of lithostatic and remain high for at least 160 kyr, providing a mechanism for maintaining high permeability. Flow rates at the deformation front for transient simulations are in good agreement with direct measurements, but steady state flow rates are 2-3 orders of magnitude smaller than observed. Fluid budget calculations
Fluid flow dynamics under location uncertainty
NASA Astrophysics Data System (ADS)
Mémin, Etienne
2014-03-01
We present a derivation of a stochastic model of Navier Stokes equations that relies on a decomposition of the velocity fields into a differentiable drift component and a time uncorrelated uncertainty random term. This type of decomposition is reminiscent in spirit to the classical Reynolds decomposition. However, the random velocity fluctuations considered here are not differentiable with respect to time, and they must be handled through stochastic calculus. The dynamics associated with the differentiable drift component is derived from a stochastic version of the Reynolds transport theorem. It includes in its general form an uncertainty dependent "subgrid" bulk formula that cannot be immediately related to the usual Boussinesq eddy viscosity assumption constructed from thermal molecular agitation analogy. This formulation, emerging from uncertainties on the fluid parcels location, explains with another viewpoint some subgrid eddy diffusion models currently used in computational fluid dynamics or in geophysical sciences and paves the way for new large-scales flow modelling. We finally describe an applications of our formalism to the derivation of stochastic versions of the Shallow water equations or to the definition of reduced order dynamical systems.
A coupled model of fluid flow in jointed rock
Swenson, Daniel; Martineau, Rick; James, Mark; Brown, Don
1991-01-01
We present a fully coupled model of fluid flow in jointed rock, where the fluid flow depends on the joint openings and the joint openings depend on the fluid pressure. The joints and rock blocks are modeled discretely using the finite element method. Solutions for the fluid and rock are obtained and iteration is performed until both solutions converge. Example applications include an examination of the effects of back-pressure on flow in a geothermal reservoir and transient fluid injection into a reservoir.
Analysis of heat-pipe absorbers in evacuated-tube solar collectors
NASA Astrophysics Data System (ADS)
Hull, J. R.; Schertz, W. W.; Allen, J. W.
1986-02-01
Heat transfer in evacuated-tube solar collectors with heat-pipe absorbers is compared with that for similar collectors with flow-through absorbers. In systems that produce hot water or other heated fluids, the heat-pipe absorber suffers a heat transfer penalty compared with the flow-through absorber, but in many cases the penalty can be minimized by proper design at the heat-pipe condenser and system manifold. The heat transfer penalty decreases with decreasing collector heat loss coefficient, suggesting that evacuated tubes with optical concentration are more appropriate for use with heat pipes than evacuated or nonevacuated flat-plate collectors. When the solar collector is used to drive an absorption chiller, the heat-pipe absorber has better heat transfer characteristics than the flow-through absorbers.
Fluid flow plate for decreased density of fuel cell assembly
Vitale, Nicholas G.
1999-01-01
A fluid flow plate includes first and second outward faces. Each of the outward faces has a flow channel thereon for carrying respective fluid. At least one of the fluids serves as reactant fluid for a fuel cell of a fuel cell assembly. One or more pockets are formed between the first and second outward faces for decreasing density of the fluid flow plate. A given flow channel can include one or more end sections and an intermediate section. An interposed member can be positioned between the outward faces at an interface between an intermediate section, of one of the outward faces, and an end section, of that outward face. The interposed member can serve to isolate the reactant fluid from the opposing outward face. The intermediate section(s) of flow channel(s) on an outward face are preferably formed as a folded expanse.
Fluid flow and particle transport in mechanically ventilated airways. Part I. Fluid flow structures.
Van Rhein, Timothy; Alzahrany, Mohammed; Banerjee, Arindam; Salzman, Gary
2016-07-01
A large eddy simulation-based computational study of fluid flow and particle transport in upper tracheobronchial airways is carried out to investigate the effect of ventilation parameters on pulmonary fluid flow. Respiratory waveforms commonly used by commercial mechanical ventilators are used to study the effect of ventilation parameters and ventilation circuit on pulmonary fluid dynamics. A companion paper (Alzahrany et al. in Med Biol Eng Comput, 2014) reports our findings on the effect of the ventilation parameters and circuit on particle transport and aerosolized drug delivery. The endotracheal tube (ETT) was found to be an important geometric feature and resulted in a fluid jet that caused an increase in turbulence and created a recirculation zone with high wall shear stress in the main bronchi. Stronger turbulence was found in lower airways than would be found under normal breathing conditions due to the presence of the jet caused by the ETT. The pressure-controlled sinusoidal waveform induced the lowest wall shear stress on the airways wall. PMID:26563199
On the coupling between fluid flow and mesh motion in the modelling of fluid structure interaction
NASA Astrophysics Data System (ADS)
Dettmer, Wulf G.; Perić, Djordje
2008-12-01
Partitioned Newton type solution strategies for the strongly coupled system of equations arising in the computational modelling of fluid solid interaction require the evaluation of various coupling terms. An essential part of all ALE type solution strategies is the fluid mesh motion. In this paper, we investigate the effect of the terms which couple the fluid flow with the fluid mesh motion on the convergence behaviour of the overall solution procedure. We show that the computational efficiency of the simulation of many fluid solid interaction processes, including fluid flow through flexible pipes, can be increased significantly if some of these coupling terms are calculated exactly.
NASA Technical Reports Server (NTRS)
Rodriguez, David L. (Inventor); Sturdza, Peter (Inventor)
2013-01-01
Fluid-flow simulation over a computer-generated aircraft surface is generated using inviscid and viscous simulations. A fluid-flow mesh of fluid cells is obtained. At least one inviscid fluid property for the fluid cells is determined using an inviscid fluid simulation that does not simulate fluid viscous effects. A set of intersecting fluid cells that intersects the aircraft surface are identified. One surface mesh polygon of the surface mesh is identified for each intersecting fluid cell. A boundary-layer prediction point for each identified surface mesh polygon is determined. At least one boundary-layer fluid property for each boundary-layer prediction point is determined using the at least one inviscid fluid property of the corresponding intersecting fluid cell and a boundary-layer simulation that simulates fluid viscous effects. At least one updated fluid property for at least one fluid cell is determined using the at least one boundary-layer fluid property and the inviscid fluid simulation.
Thermohydrodynamic Analysis of Cryogenic Liquid Turbulent Flow Fluid Film Bearings
NASA Technical Reports Server (NTRS)
SanAndres, Luis
1996-01-01
Computational programs developed for the thermal analysis of tilting and flexure-pad hybrid bearings, and the unsteady flow and transient response of a point mass rotor supported on fluid film bearings are described. The motion of a cryogenic liquid on the thin film annular region of a fluid film bearing is described by a set of mass and momentum conservation, and energy transport equations for the turbulent bulk-flow velocities and pressure, and accompanied by thermophysical state equations for evaluation of the fluid material properties. Zeroth-order equations describe the fluid flow field for a journal static equilibrium position, while first-order (linear) equations govern the fluid flow for small amplitude-journal center translational motions. Solution to the zeroth-order flow field equations provides the bearing flow rate, load capacity, drag torque and temperature rise. Solution to the first-order equations determines the rotordynamic force coefficients due to journal radial motions.
Flow of an electrorheological fluid between eccentric rotating cylinders
NASA Astrophysics Data System (ADS)
Průša, Vít; Rajagopal, K. R.
2012-01-01
Electrorheological fluids have numerous potential applications in vibration dampers, brakes, valves, clutches, exercise equipment, etc. The flows in such applications are complex three-dimensional flows. Most models that have been developed to describe the flows of electrorheological fluids are one-dimensional models. Here, we discuss the behavior of two fully three-dimensional models for electrorheological fluids. The models are such that they reduce, in the case of simple shear flows with the intensity of the electric field perpendicular to the streamlines, to the same constitutive relation, but they would not be identical in more complicated three-dimensional settings. In order to show the difference between the two models, we study the flow of these fluids between eccentrically placed rotating cylinders kept at different potentials, in the setting that corresponds to technologically relevant problem of flow of electrorheological fluid in journal bearing. Even though the two models have quite a different constitutive structure, due to the assumed forms for the velocity and pressure fields, the models lead to the same velocity field but to different pressure fields. This finding illustrates the need for considering the flows of fluids described by three-dimensional constitutive models in complex geometries, and not restricting ourselves to flows of fluids described by one-dimensional models or simple shear flows of fluids characterized by three-dimensional models.
Katz, Murray; Bonk, Stanley P.; Maricle, Donald L.; Abrams, Martin
1991-01-01
A fuel cell has a current collector plate (22) located between an electrode (20) and a separate plate (25). The collector plate has a plurality of arches (26, 28) deformed from a single flat plate in a checkerboard pattern. The arches are of sufficient height (30) to provide sufficient reactant flow area. Each arch is formed with sufficient stiffness to accept compressive load and sufficient resiliently to distribute the load and maintain electrical contact.
Ceramic materials for solar collectors. Final report
Ankeny, A.E.
1982-09-29
The purpose of this project was to identify ceramic materials which exhibit solar absorption properties which are appropriate for flat plate solar collectors. To accomplish this, various glaze formulations and clay combinations were produced and evaluated for their potential as solar absorbers. For purposes of comparison a black coated copper sheet was also tested concurrently with the ceramic materials. Thirty-five different coatings were prepared on fifty-six tiles. Two different clays, a porcelain and a stoneware clay, were used to make the tiles. From the tiles prepared, thirty of the most promising coatings were chosen for evaluation. The test apparatus consisted of a wooden frame which enclosed four mini-collectors. Each mini-collector was a rectangular ceramic heat exchanger on which a test tile could be mounted. The working fluid, water, was circulated into the collector, passed under the test tile where it gained heat, and then was discharged out of the collector. Thermometers were installed in the inlet and discharge areas to indicate the temperature increase of the water. The quantity of heat absorbed was determined by measuring the water flow (pounds per minute) and multiplying it by the temperature increase (/sup 0/F). The control sample, a copper wheet painted flat black, provided a base by which to compare the performance of the test tiles installed in the other three mini-collectors. Testing was conducted on various days during August and September, 1982. The test results indicate that coatings with very satisfactory solar absorbing properties can be made with ceramic materials. The results suggest that an economically viable ceramic solar collector could be constructed if engineered to minimize the effects of relatively low thermal conductivity of clay.
Device for deriving energy from a flow of fluid
van Holten, T.
1982-12-07
Improved process and device for extracting energy present in a flowing fluid medium wherein a supported hub with propellers or blades is placed in said medium and the blades are provided with a wing or vane at the tip. The wing is of such a form that it generates a ''venturi effect'' in the flowing medium by which a part of the fluid which should normally pass outside the propeller disc area, is drawn into the propeller. The improvement consists of mixing of fluid which normally should pass outside the venturi with fluid which has flowed through the blades by provisions on blades and/or wing or vanes.
Some specific features of the NMR study of fluid flows
NASA Astrophysics Data System (ADS)
Davydov, V. V.
2016-07-01
Some specific features of studying fluid flows with a NMR spectrometer are considered. The consideration of these features in the NMR spectrometer design makes it possible to determine the relative concentrations of paramagnetic ions and measure the longitudinal and transverse relaxation times ( T 1 and T 2, respectively) in fluid flows with an error no larger than 0.5%. This approach allows one to completely avoid errors in determining the state of a fluid from measured relaxation constants T 1 and T 2, which is especially urgent when working with medical suspensions and biological solutions. The results of an experimental study of fluid flows are presented.
Working fluid flow visualization in gravity heat pipe
NASA Astrophysics Data System (ADS)
Nemec, Patrik; Malcho, Milan
2016-03-01
Heat pipe is device working with phase changes of working fluid inside hermetically closed pipe at specific pressure. The phase changes of working fluid from fluid to vapour and vice versa help heat pipe to transport high heat flux. The article deal about gravity heat pipe construction and processes casing inside during heat pipe operation. Experiment working fluid flow visualization is performed with two glass heat pipes with different inner diameter (13 mm and 22 mm) and filled with water. The working fluid flow visualization explains the phenomena as a working fluid boiling, nucleation of bubbles, and vapour condensation on the wall, vapour and condensate flow interaction, flow down condensate film thickness on the wall occurred during the heat pipe operation.
Fluid flow into vertical fractures from a point source
Clark, P.E.; Zhu, Q.
1995-03-01
Flow into a fracture from a point source recently has been the focus of attention in the petroleum industry. The suggestion has been made that, in this flow configuration, convection (gravity-driven flow) would dominate Stokes`-type settling for determining final proppant distribution. The theory is that when a dense fluid flows into a fracture filled with a less dense fluid from a point source, the density of the fluid will force it to the bottom of the fracture. This clearly happens when the two fluids have low viscosity. However, viscosity of both the fluid in the fracture and the displacing fluid and nonuniformities in the fracture influence displacement process significantly. Results presented in this study clearly show the effects of viscosity and fracture nonuniformity on the convective settling mechanism.
Method and apparatus for chemically altering fluids in continuous flow
Heath, W.O.; Virden, J.W. Jr.; Richardson, R.L.; Bergsman, T.M.
1993-10-19
The present invention relates to a continuous flow fluid reactor for chemically altering fluids. The reactor operates on standard frequency (50 to 60 Hz) electricity. The fluid reactor contains particles that are energized by the electricity to form a corona throughout the volume of the reactor and subsequently a non-equilibrium plasma that interacts with the fluid. Particles may form a fixed bed or a fluid bed. Electricity may be provided through electrodes or through an inductive coil. Fluids include gases containing exhaust products and organic fuels requiring oxidation. 4 figures.
Method and apparatus for chemically altering fluids in continuous flow
Heath, William O.; Virden, Jr., Judson W.; Richardson, R. L.; Bergsman, Theresa M.
1993-01-01
The present invention relates to a continuous flow fluid reactor for chemically altering fluids. The reactor operates on standard frequency (50 to 60 Hz) electricity. The fluid reactor contains particles that are energized by the electricity to form a corona throughout the volume of the reactor and subsequently a non-equilibrium plasma that interacts with the fluid. Particles may form a fixed bed or a fluid bed. Electricity may be provided through electrodes or through an inductive coil. Fluids include gases containing exhaust products and organic fuels requiring oxidation.
MHD Flow of the Micropolar Fluid between Eccentrically Rotating Disks.
Srivastava, Neetu
2014-01-01
This analytical investigation examines the magnetohydrodynamic flow problem of an incompressible micropolar fluid between the two eccentrically placed disks. Employing suitable transformations, the flow governing partial differential equations is reduced to ordinary differential equations. An exact solution representing the different flow characteristic of micropolar fluid has been derived by solving the ordinary differential equations. Analysis of the flow characteristics of the micropolar fluid has been done graphically by varying the Reynolds number and the Hartmann number. This analysis has been carried out for the weak and strong interactions. PMID:27355040
MHD Flow of the Micropolar Fluid between Eccentrically Rotating Disks
Srivastava, Neetu
2014-01-01
This analytical investigation examines the magnetohydrodynamic flow problem of an incompressible micropolar fluid between the two eccentrically placed disks. Employing suitable transformations, the flow governing partial differential equations is reduced to ordinary differential equations. An exact solution representing the different flow characteristic of micropolar fluid has been derived by solving the ordinary differential equations. Analysis of the flow characteristics of the micropolar fluid has been done graphically by varying the Reynolds number and the Hartmann number. This analysis has been carried out for the weak and strong interactions.
Microfluidic flow switching design using volume of fluid model.
Chein, Reiyu; Tsai, S H
2004-03-01
In this study, a volume of fluid (VOF) model was employed for microfluidic switch design. The VOF model validity in predicting the interface between fluid streams with different viscosities co-flowing in a microchannel was first verified by experimental observation. It was then extended to microfluidic flow switch design. Two specific flow switches, one with a guided fluid to one of five desired outlet ports, and another with a guided fluid flows into one, two, or three outlet ports equally distributed along the outlet channel of a Y-shaped channel. The flow switching was achieved by controlling the flow rate ratios between tested and buffer fluids. The numerical results showed that the VOF model could successfully predict the flow switching phenomena in these flow switches. The numerical results also showed that the flow rate ratio required for flow switching depends on the viscosity ratio between the tested and buffer fluids. The numerical simulation was verified by experimental study and the agreement was good. PMID:15307449
Brin, Raymond L.; Pace, Thomas L.
1978-01-01
The invention relates to a solar energy collector comprising solar energy absorbing material within chamber having a transparent wall, solar energy being transmitted through the transparent wall, and efficiently absorbed by the absorbing material, for transfer to a heat transfer fluid. The solar energy absorbing material, of generally foraminous nature, absorbs and transmits the solar energy with improved efficiency.
Thermodynamics and flow-frames for dissipative relativistic fluids
Ván, P.; Biró, T. S.
2014-01-14
A general thermodynamic treatment of dissipative relativistic fluids is introduced, where the temperature four vector is not parallel to the velocity field of the fluid. Generic stability and kinetic equilibrium points out a particular thermodynamics, where the temperature vector is parallel to the enthalpy flow vector and the choice of the flow fixes the constitutive functions for viscous stress and heat. The linear stability of the homogeneous equilibrium is proved in a mixed particle-energy flow-frame.
Fundamental Processes of Atomization in Fluid-Fluid Flows
NASA Technical Reports Server (NTRS)
Gallagher, Christopher; Leighton, David T.; Chang, Hsueh-Chia; McCready, Mark J.
1996-01-01
This paper discusses our proposed experimental and theoretical study of atomization in gas-liquid and liquid-liquid flows. While atomization is a very important process in these flows, the fundamental mechanism is not understood and there is no predictive theory. Previous photographic studies in (turbulent) gas-liquid flows have shown that liquid is atomized when it is removed by the gas flow from the crest of large solitary or roll waves. Our preliminary studies in liquid-liquid laminar flows exhibit the same mechanism. The two-liquid system is easier to study than gas-liquid systems because the time scales are much slower, the length scales much larger, and there is no turbulence. The proposed work is intended to obtain information about the mechanism of formation, rate of occurrence and the evolving shape of solitary waves; and quantitative aspects of the detailed events of the liquid removal process that can be used to verify a general predictive theory.
Vibration of a Flexible Pipe Conveying Viscous Pulsating Fluid Flow
NASA Astrophysics Data System (ADS)
GORMAN, D. G.; REESE, J. M.; ZHANG, Y. L.
2000-02-01
The non-linear equations of motion of a flexible pipe conveying unsteadily flowing fluid are derived from the continuity and momentum equations of unsteady flow. These partial differential equations are fully coupled through equilibrium of contact forces, the normal compatibility of velocity at the fluid- pipe interfaces, and the conservation of mass and momentum of the transient fluid. Poisson coupling between the pipe wall and fluid is also incorporated in the model. A combination of the finite difference method and the method of characteristics is employed to extract displacements, hydrodynamic pressure and flow velocities from the equations. A numerical example of a pipeline conveying fluid with a pulsating flow is given and discussed.
Potential of size reduction of flat-plate solar collectors when applying MWCNT nanofluid
NASA Astrophysics Data System (ADS)
Faizal, M.; Saidur, R.; Mekhilef, S.
2013-06-01
Flat-plate solar collector is the most popular type of collector for hot water system to replace gas or electric heater. Solar thermal energy source is clean and infinite to replace fossil fuel source that is declining and harmful to the environment. However, current solar technology is still expensive, low in efficiency and takes up a lot of space. One effective way to increase the efficiency is by applying high conductivity fluid as nanofluid. This paper analyzes the potential of size reduction of solar collector when MWCNT nanofluid is used as absorbing medium. The analysis is based on different mass flow rate, nanoparticles mass fraction, and presence of surfactant in the fluid. For the same output temperature, it can be observed that the collector's size can be reduced up to 37% of its original size when applying MWCNT nanofluid as the working fluid and thus can reduce the overall cost of the system.
Thermohydrodynamic analysis of cryogenic liquid turbulent flow fluid film bearings
NASA Technical Reports Server (NTRS)
Andres, Luis San
1993-01-01
A thermohydrodynamic analysis is presented and a computer code developed for prediction of the static and dynamic force response of hydrostatic journal bearings (HJB's), annular seals or damper bearing seals, and fixed arc pad bearings for cryogenic liquid applications. The study includes the most important flow characteristics found in cryogenic fluid film bearings such as flow turbulence, fluid inertia, liquid compressibility and thermal effects. The analysis and computational model devised allow the determination of the flow field in cryogenic fluid film bearings along with the dynamic force coefficients for rotor-bearing stability analysis.
Sefidgar, Mostafa; Soltani, M.; Bazmara, Hossein
2015-01-01
A solid tumor is investigated as porous media for fluid flow simulation. Most of the studies use Darcy model for porous media. In Darcy model, the fluid friction is neglected and a few simplified assumptions are implemented. In this study, the effect of these assumptions is studied by considering Brinkman model. A multiscale mathematical method which calculates fluid flow to a solid tumor is used in this study to investigate how neglecting fluid friction affects the solid tumor simulation. The mathematical method involves processes such as blood flow through vessels and solute and fluid diffusion, convective transport in extracellular matrix, and extravasation from blood vessels. The sprouting angiogenesis model is used for generating capillary network and then fluid flow governing equations are implemented to calculate blood flow through the tumor-induced capillary network. Finally, the two models of porous media are used for modeling fluid flow in normal and tumor tissues in three different shapes of tumors. Simulations of interstitial fluid transport in a solid tumor demonstrate that the simplifications used in Darcy model affect the interstitial velocity and Brinkman model predicts a lower value for interstitial velocity than the values that Darcy model predicts. PMID:25960764
Nelson, R.T.
1986-10-21
This patent describes a dust collector comprising: (a) a housing having inlet means for receiving air to be cleaned; (b) a plurality of filter units within the housing; (c) a first centrifugal fan arranged for drawing air through the units for removing dust from the air; (d) a plurality of ducts each connected to a corresponding one of the units at one end and to the first fan at the other end to provide passages for air from the units to the first fan, the ducts through a portion of their length being arranged in side-by-side relationship; (e) a second centrifugal fan for providing reverse flow of air through the ducts to the units, the second fan providing a high volume of air at low pressure; (f) a transverse duct connected to the second fan and extending transversely of the portion of the plurality of ducts and adjacent thereto: (g) a plurality of openings providing communication between the transverse duct and each of the plurality of ducts; (i) rotatable means engaging the vanes for sequentially moving the vanes between the first and second positions.
Conjugate Compressible Fluid Flow and Heat Transfer in Ducts
NASA Technical Reports Server (NTRS)
Cross, M. F.
2011-01-01
A computational approach to modeling transient, compressible fluid flow with heat transfer in long, narrow ducts is presented. The primary application of the model is for analyzing fluid flow and heat transfer in solid propellant rocket motor nozzle joints during motor start-up, but the approach is relevant to a wide range of analyses involving rapid pressurization and filling of ducts. Fluid flow is modeled through solution of the spatially one-dimensional, transient Euler equations. Source terms are included in the governing equations to account for the effects of wall friction and heat transfer. The equation solver is fully-implicit, thus providing greater flexibility than an explicit solver. This approach allows for resolution of pressure wave effects on the flow as well as for fast calculation of the steady-state solution when a quasi-steady approach is sufficient. Solution of the one-dimensional Euler equations with source terms significantly reduces computational run times compared to general purpose computational fluid dynamics packages solving the Navier-Stokes equations with resolved boundary layers. In addition, conjugate heat transfer is more readily implemented using the approach described in this paper than with most general purpose computational fluid dynamics packages. The compressible flow code has been integrated with a transient heat transfer solver to analyze heat transfer between the fluid and surrounding structure. Conjugate fluid flow and heat transfer solutions are presented. The author is unaware of any previous work available in the open literature which uses the same approach described in this paper.
A framework for estimating potential fluid flow from digital imagery.
Luttman, Aaron; Bollt, Erik M; Basnayake, Ranil; Kramer, Sean; Tufillaro, Nicholas B
2013-09-01
Given image data of a fluid flow, the flow field, , governing the evolution of the system can be estimated using a variational approach to optical flow. Assuming that the flow field governing the advection is the symplectic gradient of a stream function or the gradient of a potential function-both falling under the category of a potential flow-it is natural to re-frame the optical flow problem to reconstruct the stream or potential function directly rather than the components of the flow individually. There are several advantages to this framework. Minimizing a functional based on the stream or potential function rather than based on the components of the flow will ensure that the computed flow is a potential flow. Next, this approach allows a more natural method for imposing scientific priors on the computed flow, via regularization of the optical flow functional. Also, this paradigm shift gives a framework--rather than an algorithm--and can be applied to nearly any existing variational optical flow technique. In this work, we develop the mathematical formulation of the potential optical flow framework and demonstrate the technique on synthetic flows that represent important dynamics for mass transport in fluid flows, as well as a flow generated by a satellite data-verified ocean model of temperature transport. PMID:24089970
Unbalanced-flow, fluid-mixing plug with metering capabilities
NASA Technical Reports Server (NTRS)
England, John Dwight (Inventor); Kelley, Anthony R. (Inventor); Van Buskirk, Paul D. (Inventor)
2009-01-01
A fluid mixer plug has holes formed therethrough such that a remaining portion is closed to fluid flow. The plug's inlet face defines a central circuit region and a ring-shaped region with the ring-shaped region including at least some of the plug's remaining portion so-closed to fluid flow. This remaining portion or closed region at each radius R of the ring shaped region satisfies a radius independent, flow-based relationship. Entry openings are defined in the plug's inlet face in correspondence with the holes. The entry openings define an open flow area at each radius of the ring-shaped region. The open flow area at each such radius satisfies the inverse of the flow-based relationship defining the closed regions of the plug.
Flow networks: A characterization of geophysical fluid transport
NASA Astrophysics Data System (ADS)
Ser-Giacomi, Enrico; Rossi, Vincent; López, Cristóbal; Hernández-García, Emilio
2015-03-01
We represent transport between different regions of a fluid domain by flow networks, constructed from the discrete representation of the Perron-Frobenius or transfer operator associated to the fluid advection dynamics. The procedure is useful to analyze fluid dynamics in geophysical contexts, as illustrated by the construction of a flow network associated to the surface circulation in the Mediterranean sea. We use network-theory tools to analyze the flow network and gain insights into transport processes. In particular, we quantitatively relate dispersion and mixing characteristics, classically quantified by Lyapunov exponents, to the degree of the network nodes. A family of network entropies is defined from the network adjacency matrix and related to the statistics of stretching in the fluid, in particular, to the Lyapunov exponent field. Finally, we use a network community detection algorithm, Infomap, to partition the Mediterranean network into coherent regions, i.e., areas internally well mixed, but with little fluid interchange between them.
Feedback regulated induction heater for a flowing fluid
Migliori, Albert; Swift, Gregory W.
1985-01-01
A regulated induction heater for heating a stream of flowing fluid to a predetermined desired temperature. The heater includes a radiofrequency induction coil which surrounds a glass tube through which the fluid flows. A heating element consisting of a bundle of approximately 200 stainless steel capillary tubes located within the glass tube couples the output of the induction coil to the fluid. The temperature of the fluid downstream from the heating element is sensed with a platinum resistance thermometer, the output of which is applied to an adjustable proportional and integral feedback control circuit which regulates the power applied to the induction coil. The heater regulates the fluid temperature to within 0.005.degree. C. at a flow rate of 50 cm.sup.3 /second with a response time of less than 0.1 second, and can accommodate changes in heat load up to 1500 watts.
Feedback regulated induction heater for a flowing fluid
Migliori, A.; Swift, G.W.
1984-06-13
A regulated induction heater for heating a stream of flowing fluid to a predetermined desired temperature. The heater includes a radiofrequency induction coil which surrounds a glass tube through which the fluid flows. A heating element consisting of a bundle of approximately 200 stainless steel capillary tubes located within the glass tube couples the output of the induction coil to the fluid. The temperature of the fluid downstream from the heating element is sensed with a platinum resistance thermometer, the output of which is applied to an adjustable porportional and integral feedback control circuit which regulates the power applied to the induction coil. The heater regulates the fluid temperature to within 0.005/sup 0/C at a flow rate of 50 cm/sup 3//sec with a response time of less than 0.1 second, and can accommodate changes in heat load up to 1500 watts.
Apparatus for irradiating a continuously flowing stream of fluid
Speir, Leslie G.; Adams, Edwin L.
1984-01-01
An apparatus for irradiating a continuously flowing stream of fluid is diosed. The apparatus consists of a housing having a spherical cavity and a spherical moderator containing a radiation source positioned within the spherical cavity. The spherical moderator is of lesser diameter than the spherical cavity so as to define a spherical annular volume around the moderator. The housing includes fluid intake and output conduits which open onto the spherical cavity at diametrically opposite positions. Fluid flows through the cavity around the spherical moderator and is uniformly irradiated due to the 4.pi. radiation geometry. The irradiation source, for example a .sup.252 CF neutron source, is removable from the spherical moderator through a radial bore which extends outwardly to an opening on the outside of the housing. The radiation source may be routinely removed without interrupting the flow of fluid or breaching the containment of the fluid.
Destabilization of confined granular packings due to fluid flow
NASA Astrophysics Data System (ADS)
Monloubou, Martin; Sandnes, Bjørnar
2016-04-01
Fluid flow through granular materials can cause fluidization when fluid drag exceeds the frictional stress within the packing. Fluid driven failure of granular packings is observed in both natural and engineered settings, e.g. soil liquefaction and flowback of proppants during hydraulic fracturing operations. We study experimentally the destabilization and flow of an unconsolidated granular packing subjected to a point source fluid withdrawal using a model system consisting of a vertical Hele-Shaw cell containing a water-grain mixture. The fluid is withdrawn from the cell at a constant rate, and the emerging flow patterns are imaged in time-lapse mode. Using Particle Image Velocimetry (PIV), we show that the granular flow gets localized in a narrow channel down the center of the cell, and adopts a Gaussian velocity profile similar to those observed in dry grain flows in silos. We investigate the effects of the experimental parameters (flow rate, grain size, grain shape, fluid viscosity) on the packing destabilization, and identify the physical mechanisms responsible for the observed complex flow behaviour.
Laminar flow of two miscible fluids in a simple network
NASA Astrophysics Data System (ADS)
Karst, Casey M.; Storey, Brian D.; Geddes, John B.
2013-03-01
When a fluid comprised of multiple phases or constituents flows through a network, nonlinear phenomena such as multiple stable equilibrium states and spontaneous oscillations can occur. Such behavior has been observed or predicted in a number of networks including the flow of blood through the microcirculation, the flow of picoliter droplets through microfluidic devices, the flow of magma through lava tubes, and two-phase flow in refrigeration systems. While the existence of nonlinear phenomena in a network with many inter-connections containing fluids with complex rheology may seem unsurprising, this paper demonstrates that even simple networks containing Newtonian fluids in laminar flow can demonstrate multiple equilibria. The paper describes a theoretical and experimental investigation of the laminar flow of two miscible Newtonian fluids of different density and viscosity through a simple network. The fluids stratify due to gravity and remain as nearly distinct phases with some mixing occurring only by diffusion. This fluid system has the advantage that it is easily controlled and modeled, yet contains the key ingredients for network nonlinearities. Experiments and 3D simulations are first used to explore how phases distribute at a single T-junction. Once the phase separation at a single junction is known, a network model is developed which predicts multiple equilibria in the simplest of networks. The existence of multiple stable equilibria is confirmed experimentally and a criterion for existence is developed. The network results are generic and could be applied to or found in different physical systems.
Superconfinement tailors fluid flow at microscales
Setu, Siti Aminah; Dullens, Roel P.A.; Hernández-Machado, Aurora; Pagonabarraga, Ignacio; Aarts, Dirk G.A.L.; Ledesma-Aguilar, Rodrigo
2015-01-01
Understanding fluid dynamics under extreme confinement, where device and intrinsic fluid length scales become comparable, is essential to successfully develop the coming generations of fluidic devices. Here we report measurements of advancing fluid fronts in such a regime, which we dub superconfinement. We find that the strong coupling between contact-line friction and geometric confinement gives rise to a new stability regime where the maximum speed for a stable moving front exhibits a distinctive response to changes in the bounding geometry. Unstable fronts develop into drop-emitting jets controlled by thermal fluctuations. Numerical simulations reveal that the dynamics in superconfined systems is dominated by interfacial forces. Henceforth, we present a theory that quantifies our experiments in terms of the relevant interfacial length scale, which in our system is the intrinsic contact-line slip length. Our findings show that length-scale overlap can be used as a new fluid-control mechanism in strongly confined systems. PMID:26073752
Performance of Magnetorheological Fluids Flowing Through Metal Foams
NASA Astrophysics Data System (ADS)
Liu, X. h.; Fu, Z. m.; Yao, X. y.; Li, F.
2011-01-01
If magnetorheological (MR) fluids are stored in porous materials, when excited by the external magnetic field, MR fluid will be drawn out and produce MR effect, which could be used to solve the following problems of the MR damper, such as the seal, volume and the cost of MR fluid damper. In this paper, the effect of structure of metal foams on the performance of MR fluid is investigated; the relationship between the penetrability and the porosity of the metal foams is measured, the change of MR fluid performance flowing though the metal foams is obtained. It shows that, after flowing through metal foams, the change of performance of MR fluid is about 2.5%. Compared to the sponge, the porous metal foams have the obvious advantages in high porosity and rigidity, which provide a convenient and low-cost way to design the MR damper.
Collapsible sheath fluid reservoirs for flow cytometers
Mark, Graham A.
2000-01-01
The present invention is a container in the form of a single housing for holding fluid, including a first collapsible reservoir having a first valve. The first reservoir initially contains a volume of fluid. The container also includes a second reservoir, initially empty (or substantially empty), expandable to a second volume. The second reservoir has a second valve. As the volume of said first reservoir decreases, the volume of the second reservoir proportionally increases.
NASA Astrophysics Data System (ADS)
Hunt, J. C. R.
1981-05-01
The ways in which advances in fluid mechanics have led to improvements in engineering design are discussed, with attention to the stimulation of fluid mechanics research by industrial and environmental problems. The development of many practical uses of fluid flow without the benefit of scientific study is also emphasized. Among the topics discussed are vortices and coherent structures in turbulent flows, lubrication, jet and multiphase flows, the control and exploitation of waves, the effect of unsteady forces on structures, and dispersion phenomena. Among the practical achievements covered are the use of bluff shields to control separated flow over truck bodies and reduce aerodynamic drag, ink-jet printing, hovercraft stability, fluidized-bed combustion, the fluid/solid instabilities caused by air flow around a computer memory floppy disc, and various wind turbines.
Centrifuge in space fluid flow visualization experiment
NASA Technical Reports Server (NTRS)
Arnold, William A.; Wilcox, William R.; Regel, Liya L.; Dunbar, Bonnie J.
1993-01-01
A prototype flow visualization system is constructed to examine buoyancy driven flows during centrifugation in space. An axial density gradient is formed by imposing a thermal gradient between the two ends of the test cell. Numerical computations for this geometry showed that the Prandtl number plays a limited part in determining the flow.
Debris-flow deposition: Effects of pore-fluid pressure and friction concentrated at flow margins
Major, J.J.; Iverson, R.M.
1999-01-01
Measurements of pore-fluid pressure and total bed-normal stress at the base of several ???10 m3 experimental debris flows provide new insight into the process of debris-flow deposition. Pore-fluid pressures nearly sufficient to cause liquefaction were developed and maintained during flow mobilization and acceleration, persisted in debris-flow interiors during flow deceleration and deposition, and dissipated significantly only during postdepositional sediment consolidation. In contrast, leading edges of debris flows exhibited little or no positive pore-fluid pressure. Deposition therefore resulted from grain-contact friction and bed friction concentrated at flow margins. This finding contradicts models that invoke widespread decay of excess pore-fluid pressure, uniform viscoplastic yield strength, or pervasive grain-collision stresses to explain debris-flow deposition. Furthermore, the finding demonstrates that deposit thickness cannot be used to infer the strength of flowing debris.
A two-fluid model for avalanche and debris flows.
Pitman, E Bruce; Le, Long
2005-07-15
Geophysical mass flows--debris flows, avalanches, landslides--can contain O(10(6)-10(10)) m(3) or more of material, often a mixture of soil and rocks with a significant quantity of interstitial fluid. These flows can be tens of meters in depth and hundreds of meters in length. The range of scales and the rheology of this mixture presents significant modelling and computational challenges. This paper describes a depth-averaged 'thin layer' model of geophysical mass flows containing a mixture of solid material and fluid. The model is derived from a 'two-phase' or 'two-fluid' system of equations commonly used in engineering research. Phenomenological modelling and depth averaging combine to yield a tractable set of equations, a hyperbolic system that describes the motion of the two constituent phases. If the fluid inertia is small, a reduced model system that is easier to solve may be derived. PMID:16011934
NASA Astrophysics Data System (ADS)
Huang, C.-S.; Chen, J.-J.; Yeh, H.-D.
2016-01-01
This study develops a three-dimensional (3-D) mathematical model for describing transient hydraulic head distributions due to pumping at a radial collector well (RCW) in a rectangular confined or unconfined aquifer bounded by two parallel streams and no-flow boundaries. The streams with low-permeability streambeds fully penetrate the aquifer. The governing equation with a point-sink term is employed. A first-order free surface equation delineating the water table decline induced by the well is considered. Robin boundary conditions are adopted to describe fluxes across the streambeds. The head solution for the point sink is derived by applying the methods of finite integral transform and Laplace transform. The head solution for a RCW is obtained by integrating the point-sink solution along the laterals of the RCW and then dividing the integration result by the sum of lateral lengths. On the basis of Darcy's law and head distributions along the streams, the solution for the stream depletion rate (SDR) can also be developed. With the aid of the head and SDR solutions, the sensitivity analysis can then be performed to explore the response of the hydraulic head to the change in a specific parameter such as the horizontal and vertical hydraulic conductivities, streambed permeability, specific storage, specific yield, lateral length, and well depth. Spatial head distributions subject to the anisotropy of aquifer hydraulic conductivities are analyzed. A quantitative criterion is provided to identify whether groundwater flow at a specific region is 3-D or 2-D without the vertical component. In addition, another criterion is also given to allow for the neglect of vertical flow effect on SDR. Conventional 2-D flow models can be used to provide accurate head and SDR predictions if satisfying these two criteria.
NASA Astrophysics Data System (ADS)
Huang, C.-S.; Chen, J.-J.; Yeh, H.-D.
2015-08-01
This study develops a three-dimensional mathematical model for describing transient hydraulic head distributions due to pumping at a radial collector well (RCW) in a rectangular confined or unconfined aquifer bounded by two parallel streams and no-flow boundaries. The governing equation with a point-sink term is employed. A first-order free surface equation delineating the water table decline induced by the well is considered. The head solution for the point sink is derived by applying the methods of double-integral transform and Laplace transform. The head solution for a RCW is obtained by integrating the point-sink solution along the laterals of the RCW and then dividing the integration result by the sum of lateral lengths. On the basis of Darcy's law and head distributions along the streams, the solution for the stream depletion rate (SDR) can also be developed. With the aid of the head and SDR solutions, the sensitivity analysis can then be performed to explore the response of the hydraulic head to the change in a specific parameter such as the horizontal and vertical hydraulic conductivities, streambed permeability, specific storage, specific yield, lateral length and well depth. Spatial head distributions subject to the anisotropy of aquifer hydraulic conductivities are analyzed. A quantitative criterion is provided to identify whether groundwater flow at a specific region is 3-D or 2-D without the vertical component. In addition, another criterion is also given to allow the neglect of vertical flow effect on SDR. Conventional 2-D flow models can be used to provide accurate head and SDR predictions if satisfying these two criteria.
Flow of Magnetohydrodynamic Micropolar Fluid Induced by Radially Stretching Sheets
NASA Astrophysics Data System (ADS)
Hayat, Tasawar; Nawaz, Muhammad; Hendi, Awatif A.
2011-02-01
We investigate the flow of a micropolar fluid between radial stretching sheets. The magnetohydrodynamic (MHD) nonlinear problem is treated using the homotopy analysis method (HAM) and the velocity profiles are predicted for the pertinent parameters. The values of skin friction and couple shear stress coefficients are obtained for various values of Reynolds number, Hartman number, and micropolar fluid parameter.
Thermal analysis of turbulent flow of a supercritical fluid
NASA Technical Reports Server (NTRS)
Yamane, E.
1979-01-01
The influence of the large variation of thermodynamics and transport properties near the pseudocritical temperature on the heat transfer coefficient of supercritical fluid in turbulent flow was studied. The formation of the characteristics peak in the heat transfer coefficient vs. bulk temperature curve is described, and the necessity of the fluid element at pseudocritical temperature located in the buffer layer is discussed.
Nanoscale Fluid Flows in the Vicinity of Patterned Surfaces
NASA Astrophysics Data System (ADS)
Cieplak, Marek; Koplik, Joel; Banavar, Jayanth R.
2006-03-01
Molecular dynamics simulations of dense and rarefied fluids comprising small chain molecules in chemically patterned nanochannels predict a novel switching from Poiseuille to plug flow along the channel. We also demonstrate behavior akin to the lotus effect for a nanodrop on a chemically patterned substrate. Our results show that one can control and exploit the behavior of fluids at the nanoscale using chemical patterning.
A discrete simulation of 2-D fluid flow on TERASYS
Mullins, P.G.; Krolak, P.D.
1995-12-01
A discrete simulation of two-dimensional (2-D) fluid flow, on a recently designed novel architecture called TERASYS is presented. The simulation uses a cellular automaton approach, implemented in a new language called data-parallel bit C (dbC). A performance comparison between our implementation on TERASYS and an implementation on the Connection Machine is discussed. We comment briefly on the suitability of the TERASYS system for modeling fluid flow using cellular automata.
General thermal analysis of serpentine-flow flat-plate solar collector absorbers
Lund, K.O. )
1989-01-01
A thermal analysis is performed on an absorber which has general applicability to the serpentine-flow configuration. The heat conduction equation is rendered in nondimensional form for a typical panel-segment of the absorber, and shape factors are introduced for general application to various detailed flow-duct geometries. An analytical solution is obtained for the typical panel in terms of an Effectiveness-NTU relationship for that panel; the series combination of these relationships yields the overall E-NTU relationship for the entire absorber plate, for any number of panels, or serpentine-flow reversals. The results of the present analysis indicate the expected, axially varying, asymmetry of the temperature profile between the flow passes. Performance results are stated in terms of a serpentine relative performance factor, which permits direct comparison to the parallel configuration. The results indicate superior thermal performance of the serpentine-flow absorber, relative to the parallel-flow absorber, for the same number of transfer units.
Fluid pressure and flow as a cause of bone resorption
Fahlgren, Anna
2010-01-01
Background Unstable implants in bone become surrounded by an osteolytic zone. This is seen around loose screws, for example, but may also contribute to prosthetic loosening. Previous animal studies have shown that such zones can be induced by fluctuations in fluid pressure or flow, caused by implant instability. Method To understand the roles of pressure and flow, we describe the 3-dimensional distribution of osteolytic lesions in response to fluid pressure and flow in a previously reported rat model of aseptic loosening. 50 rats had a piston inserted in the proximal tibia, designed to produce 20 local spikes in fluid pressure of a clinically relevant magnitude (700 mmHg) twice a day. The spikes lasted for about 0.3 seconds. After 2 weeks, the pressure was measured in vivo, and the osteolytic lesions induced were studied using micro-CT scans. Results Most bone resorption occurred at pre-existing cavities within the bone in the periphery around the pressurized region, and not under the piston. This region is likely to have a higher fluid flow and less pressure than the area just beneath the piston. The velocity of fluid flow was estimated to be very high (roughly 20 mm/s). Interpretation The localization of the resorptive lesions suggests that high-velocity fluid flow is important for bone resorption induced by instability. PMID:20718695
Flow regimes for fluid injection into a confined porous medium
Zheng, Zhong; Guo, Bo; Christov, Ivan C.; Celia, Michael A.; Stone, Howard A.
2015-02-24
We report theoretical and numerical studies of the flow behaviour when a fluid is injected into a confined porous medium saturated with another fluid of different density and viscosity. For a two-dimensional configuration with point source injection, a nonlinear convection–diffusion equation is derived to describe the time evolution of the fluid–fluid interface. In the early time period, the fluid motion is mainly driven by the buoyancy force and the governing equation is reduced to a nonlinear diffusion equation with a well-known self-similar solution. In the late time period, the fluid flow is mainly driven by the injection, and the governing equation is approximated by a nonlinear hyperbolic equation that determines the global spreading rate; a shock solution is obtained when the injected fluid is more viscous than the displaced fluid, whereas a rarefaction wave solution is found when the injected fluid is less viscous. In the late time period, we also obtain analytical solutions including the diffusive term associated with the buoyancy effects (for an injected fluid with a viscosity higher than or equal to that of the displaced fluid), which provide the structure of the moving front. Numerical simulations of the convection–diffusion equation are performed; the various analytical solutions are verified as appropriate asymptotic limits, and the transition processes between the individual limits are demonstrated.
Flow regimes for fluid injection into a confined porous medium
Zheng, Zhong; Guo, Bo; Christov, Ivan C.; Celia, Michael A.; Stone, Howard A.
2015-02-24
We report theoretical and numerical studies of the flow behaviour when a fluid is injected into a confined porous medium saturated with another fluid of different density and viscosity. For a two-dimensional configuration with point source injection, a nonlinear convection–diffusion equation is derived to describe the time evolution of the fluid–fluid interface. In the early time period, the fluid motion is mainly driven by the buoyancy force and the governing equation is reduced to a nonlinear diffusion equation with a well-known self-similar solution. In the late time period, the fluid flow is mainly driven by the injection, and the governingmore » equation is approximated by a nonlinear hyperbolic equation that determines the global spreading rate; a shock solution is obtained when the injected fluid is more viscous than the displaced fluid, whereas a rarefaction wave solution is found when the injected fluid is less viscous. In the late time period, we also obtain analytical solutions including the diffusive term associated with the buoyancy effects (for an injected fluid with a viscosity higher than or equal to that of the displaced fluid), which provide the structure of the moving front. Numerical simulations of the convection–diffusion equation are performed; the various analytical solutions are verified as appropriate asymptotic limits, and the transition processes between the individual limits are demonstrated.« less
Maxwell, electromagnetism, and fluid flow in resistive media
NASA Astrophysics Data System (ADS)
Narasimhan, T. N.
Common wisdom has it that Darcy [1856] founded the modern field of fluid flow through porous media with his celebrated 1856 experiment on the steady flow of water through a sand column. For considerable time, Darcy's empirical observation, in conjunction with Fourier's [1807] heat equation, was used to analyze fluid flow in porous media simply by mathematical analogy. Hubbert [1940] is credited with placing Darcy's work on sound hydrodynamic foundations. Among other things, he defined an energy potential, interpreted permeability in the context of balancing impelling and resistive forces, and derived an expression for the refraction of flow lines. In 1856, James Clerk Maxwell constructed a theory for the flow of an incompressible fluid in a resistive medium as a metaphor for comprehending the emerging field of electromagnetism [Maxwell, 1890].
Deployable Emergency Shutoff Device Blocks High-Velocity Fluid Flows
NASA Technical Reports Server (NTRS)
Nabors, Sammy A.
2015-01-01
NASA's Marshall Space Flight Center has developed a device and method for blocking the flow of fluid from an open pipe. Motivated by the sea-bed oil-drilling catastrophe in the Gulf of Mexico in 2010, NASA innovators designed the device to plug, control, and meter the flow of gases and liquids. Anchored with friction fittings, spikes, or explosively activated fasteners, the device is well-suited for harsh environments and high fluid velocities and pressures. With the addition of instrumentation, it can also be used as a variable area flow metering valve that can be set based upon flow conditions. With robotic additions, this patent-pending innovation can be configured to crawl into a pipe then anchor and activate itself to block or control fluid flow.
Current collector geometry and mixing in liquid metal electrodes
NASA Astrophysics Data System (ADS)
Ashour, Rakan; Kelley, Douglas
2015-11-01
Liquid metal batteries are emerging as an efficient and cost effective technology for large-scale energy storage on electrical grids. In these batteries, critical performance related factors such as the limiting current density and life cycle are strongly influenced by fluid mixing and transport of electrochemical species to and from the electrode-electrolyte interface. In this work, ultrasound velocimetry is used to investigate the role of negative current collector location on the induced velocity, flow pattern, and mixing time in liquid metal electrodes. Ultrasound velocity measurements are obtained at a range of operating current densities. Furthermore, a comparison between velocity profiles produced by current collectors with different sizes is also presented.
Bone tissue engineering: the role of interstitial fluid flow
NASA Technical Reports Server (NTRS)
Hillsley, M. V.; Frangos, J. A.
1994-01-01
It is well established that vascularization is required for effective bone healing. This implies that blood flow and interstitial fluid (ISF) flow are required for healing and maintenance of bone. The fact that changes in bone blood flow and ISF flow are associated with changes in bone remodeling and formation support this theory. ISF flow in bone results from transcortical pressure gradients produced by vascular and hydrostatic pressure, and mechanical loading. Conditions observed to alter flow rates include increases in venous pressure in hypertension, fluid shifts occurring in bedrest and microgravity, increases in vascularization during the injury-healing response, and mechanical compression and bending of bone during exercise. These conditions also induce changes in bone remodeling. Previously, we hypothesized that interstitial fluid flow in bone, and in particular fluid shear stress, serves to mediate signal transduction in mechanical loading- and injury-induced remodeling. In addition, we proposed that a lack or decrease of ISF flow results in the bone loss observed in disuse and microgravity. The purpose of this article is to review ISF flow in bone and its role in osteogenesis.
Capacitance probe for fluid flow and volume measurements
NASA Technical Reports Server (NTRS)
Arndt, G. Dickey (Inventor); Nguyen, Thanh X. (Inventor); Carl, James R. (Inventor)
1995-01-01
Method and apparatus for making measurements on fluids are disclosed, including the use of a capacitive probe for measuring the flow volume of a material within a flow stream. The capacitance probe has at least two elongate electrodes and, in a specific embodiment of the invention, has three parallel elongate electrodes with the center electrode being an extension of the center conductor of a co-axial cable. A conductance probe is also provided to provide more accurate flow volume data in response to conductivity of the material within the flow stream. A preferred embodiment of the present invention provides for a gas flow stream through a microgravity environment that allows for monitoring a flow volume of a fluid sample, such as a urine sample, that is entrained within the gas flow stream.
Capacitance Probe for Fluid Flow and Volume Measurements
NASA Technical Reports Server (NTRS)
Arndt, G. Dickey (Inventor); Nguyen, Thanh X. (Inventor); Carl, James R. (Inventor)
1997-01-01
Method and apparatus for making measurements on fluids are disclosed, including the use of a capacitive probe for measuring the flow volume of a material within a flow stream. The capacitance probe has at least two elongate electrodes and, in a specific embodiment of the invention, has three parallel elongate electrodes with the center electrode being an extension of the center conductor of a co-axial cable. A conductance probe is also provided to provide more accurate flow volume data in response to conductivity of the material within the flow stream. A preferred embodiment of the present invention provides for a gas flow stream through a micro-gravity environment that allows for monitoring a flow volume of a fluid sample, such as a urine sample, that is entrained within the gas flow stream.
Axisymmetric flows from fluid injection into a confined porous medium
NASA Astrophysics Data System (ADS)
Guo, Bo; Zheng, Zhong; Celia, Michael A.; Stone, Howard A.
2016-02-01
We study the axisymmetric flows generated from fluid injection into a horizontal confined porous medium that is originally saturated with another fluid of different density and viscosity. Neglecting the effects of surface tension and fluid mixing, we use the lubrication approximation to obtain a nonlinear advection-diffusion equation that describes the time evolution of the sharp fluid-fluid interface. The flow behaviors are controlled by two dimensionless groups: M, the viscosity ratio of displaced fluid relative to injected fluid, and Γ, which measures the relative importance of buoyancy and fluid injection. For this axisymmetric geometry, the similarity solution involving R2/T (where R is the dimensionless radial coordinate and T is the dimensionless time) is an exact solution to the nonlinear governing equation for all times. Four analytical expressions are identified as asymptotic approximations (two of which are new solutions): (i) injection-driven flow with the injected fluid being more viscous than the displaced fluid (Γ ≪ 1 and M < 1) where we identify a self-similar solution that indicates a parabolic interface shape; (ii) injection-driven flow with injected and displaced fluids of equal viscosity (Γ ≪ 1 and M = 1), where we find a self-similar solution that predicts a distinct parabolic interface shape; (iii) injection-driven flow with a less viscous injected fluid (Γ ≪ 1 and M > 1) for which there is a rarefaction wave solution, assuming that the Saffman-Taylor instability does not occur at the reservoir scale; and (iv) buoyancy-driven flow (Γ ≫ 1) for which there is a well-known self-similar solution corresponding to gravity currents in an unconfined porous medium [S. Lyle et al. "Axisymmetric gravity currents in a porous medium," J. Fluid Mech. 543, 293-302 (2005)]. The various axisymmetric flows are summarized in a Γ-M regime diagram with five distinct dynamic behaviors including the four asymptotic regimes and an intermediate regime
Numerical study of subcritical flow with fluid injection
NASA Technical Reports Server (NTRS)
Balasubramanian, R.
1990-01-01
It is suggested that the study of synthetic flows, where controlled experiments can be performed, is useful in understanding turbulent flow structures. The early states of formation of hairpin structures in shear flows and the subsequent evolution of these structures is studied in shear flows and the subsequent evolution of these structures is studied through numerical simulations, by developing full-time dependent three-dimensional flow solution of an initially laminar (subcritical) flow in which injection of fluid through a narrow streamwise slot from the bottom wall of a plate is carried out. Details of the numerical approach and significance of the present findings are reported in this work.
Surface tension driven flow in glass melts and model fluids
NASA Technical Reports Server (NTRS)
Mcneil, T. J.; Cole, R.; Subramanian, R. S.
1982-01-01
Surface tension driven flow has been investigated analytically and experimentally using an apparatus where a free column of molten glass or model fluids was supported at its top and bottom faces by solid surfaces. The glass used in the experiments was sodium diborate, and the model fluids were silicone oils. In both the model fluid and glass melt experiments, conclusive evidence was obtained to prove that the observed flow was driven primarily by surface tension forces. The experimental observations are in qualitative agreement with predictions from the theoretical model.
Pulmonary fluid flow challenges for experimental and mathematical modeling.
Levy, Rachel; Hill, David B; Forest, M Gregory; Grotberg, James B
2014-12-01
Modeling the flow of fluid in the lungs, even under baseline healthy conditions, presents many challenges. The complex rheology of the fluids, interaction between fluids and structures, and complicated multi-scale geometry all add to the complexity of the problem. We provide a brief overview of approaches used to model three aspects of pulmonary fluid and flow: the surfactant layer in the deep branches of the lung, the mucus layer in the upper airway branches, and closure/reopening of the airway. We discuss models of each aspect, the potential to capture biological and therapeutic information, and open questions worthy of further investigation. We hope to promote multi-disciplinary collaboration by providing insights into mathematical descriptions of fluid-mechanics in the lung and the kinds of predictions these models can make. PMID:25096289
Pulmonary Fluid Flow Challenges for Experimental and Mathematical Modeling
Levy, Rachel; Hill, David B.; Forest, M. Gregory; Grotberg, James B.
2014-01-01
Modeling the flow of fluid in the lungs, even under baseline healthy conditions, presents many challenges. The complex rheology of the fluids, interaction between fluids and structures, and complicated multi-scale geometry all add to the complexity of the problem. We provide a brief overview of approaches used to model three aspects of pulmonary fluid and flow: the surfactant layer in the deep branches of the lung, the mucus layer in the upper airway branches, and closure/reopening of the airway. We discuss models of each aspect, the potential to capture biological and therapeutic information, and open questions worthy of further investigation. We hope to promote multi-disciplinary collaboration by providing insights into mathematical descriptions of fluid-mechanics in the lung and the kinds of predictions these models can make. PMID:25096289
System and method measuring fluid flow in a conduit
Ortiz, M.G.; Kidd, T.G.
1999-05-18
A system is described for measuring fluid mass flow in a conduit in which there exists a pressure differential in the fluid between at least two spaced-apart locations in the conduit. The system includes a first pressure transducer disposed in the side of the conduit at a first location for measuring pressure of fluid at that location, a second or more pressure transducers disposed in the side of the conduit at a second location, for making multiple measurements of pressure of fluid in the conduit at that location, and a computer for computing the average pressure of the multiple measurements at the second location and for computing flow rate of fluid in the conduit from the pressure measurement by the first pressure transducer and from the average pressure calculation of the multiple measurements. 3 figs.
System and method measuring fluid flow in a conduit
Ortiz, Marcos German; Kidd, Terrel G.
1999-01-01
A system for measuring fluid mass flow in a conduit in which there exists a pressure differential in the fluid between at least two spaced-apart locations in the conduit. The system includes a first pressure transducer disposed in the side of the conduit at a first location for measuring pressure of fluid at that location, a second or more pressure transducers disposed in the side of the conduit at a second location, for making multiple measurements of pressure of fluid in the conduit at that location, and a computer for computing the average pressure of the multiple measurements at the second location and for computing flow rate of fluid in the conduit from the pressure measurement by the first pressure transducer and from the average pressure calculation of the multiple measurements.
Transonic Flows of Bethe-Zel'dovich-Thompson Fluids
NASA Astrophysics Data System (ADS)
Cramer, Mark; Andreyev, Aleksandr
2013-11-01
We examine steady transonic flows of Bethe-Zel'dovich-Thompson (BZT) fluids over thin turbine blades or airfoils. BZT fluids are ordinary fluids having a region of negative fundamental derivative over a finite range of pressures and temperatures in the single phase regime. We present the transonic small disturbance equation, shock jump conditions, and shock existence conditions capable of capturing the qualitative behavior of BZT fluids. The flux function is seen to be quartic in the pressure or density perturbation rather than the quadratic (convex) flux function of the perfect gas theory. We show how this nonconvex flux function can be used to predict and explain the complex flows possible. Numerical solutions using a successive line relaxation (SLR) scheme are presented. New results of interest include shock-splitting, collisions between expansion and compression shocks, two compressive bow shocks in supersonic flows, and the observation of as many as three normal stern shocks following an oblique trailing edge shock.
An Iterative CT Reconstruction Algorithm for Fast Fluid Flow Imaging.
Van Eyndhoven, Geert; Batenburg, K Joost; Kazantsev, Daniil; Van Nieuwenhove, Vincent; Lee, Peter D; Dobson, Katherine J; Sijbers, Jan
2015-11-01
The study of fluid flow through solid matter by computed tomography (CT) imaging has many applications, ranging from petroleum and aquifer engineering to biomedical, manufacturing, and environmental research. To avoid motion artifacts, current experiments are often limited to slow fluid flow dynamics. This severely limits the applicability of the technique. In this paper, a new iterative CT reconstruction algorithm for improved a temporal/spatial resolution in the imaging of fluid flow through solid matter is introduced. The proposed algorithm exploits prior knowledge in two ways. First, the time-varying object is assumed to consist of stationary (the solid matter) and dynamic regions (the fluid flow). Second, the attenuation curve of a particular voxel in the dynamic region is modeled by a piecewise constant function over time, which is in accordance with the actual advancing fluid/air boundary. Quantitative and qualitative results on different simulation experiments and a real neutron tomography data set show that, in comparison with the state-of-the-art algorithms, the proposed algorithm allows reconstruction from substantially fewer projections per rotation without image quality loss. Therefore, the temporal resolution can be substantially increased, and thus fluid flow experiments with faster dynamics can be performed. PMID:26259219
Numerical modeling of fluid flow with rafts: An application to lava flows
NASA Astrophysics Data System (ADS)
Tsepelev, Igor; Ismail-Zadeh, Alik; Melnik, Oleg; Korotkii, Alexander
2016-07-01
Although volcanic lava flows do not significantly affect the life of people, its hazard is not negligible as hot lava kills vegetation, destroys infrastructure, and may trigger a flood due to melting of snow/ice. The lava flow hazard can be reduced if the flow patterns are known, and the complexity of the flow with debris is analyzed to assist in disaster risk mitigation. In this paper we develop three-dimensional numerical models of a gravitational flow of multi-phase fluid with rafts (mimicking rigid lava-crust fragments) on a horizontal and topographic surfaces to explore the dynamics and the interaction of lava flows. We have obtained various flow patterns and spatial distribution of rafts depending on conditions at the surface of fluid spreading, obstacles on the way of a fluid flow, raft landing scenarios, and the size of rafts. Furthermore, we analyze two numerical models related to specific lava flows: (i) a model of fluid flow with rafts inside an inclined channel, and (ii) a model of fluid flow from a single vent on an artificial topography, when the fluid density, its viscosity, and the effusion rate vary with time. Although the studied models do not account for lava solidification, crust formation, and its rupture, the results of the modeling may be used for understanding of flows with breccias before a significant lava cooling.
System proportions fluid-flow in response to demand signals
NASA Technical Reports Server (NTRS)
1966-01-01
Control system provides proportioned fluid flow rates in response to demand signals. It compares a digital signal, representing a flow demand, with a reference signal to yield a control voltage to one or more solenoid valves connected to orifices of a predetermined size.
Hydromechanical Modeling of Fluid Flow in the Lower Crust
NASA Astrophysics Data System (ADS)
Connolly, J.
2011-12-01
The lower crust lies within an ambiguous rheological regime between the brittle upper crust and ductile sub-lithospheric mantle. This ambiguity has allowed two schools of thought to develop concerning the nature of fluid flow in the lower crust. The classical school holds that lower crustal rocks are inviscid and that any fluid generated by metamorphic devolatilization is squeezed out of rocks as rapidly as it is produced. According to this school, permeability is a dynamic property and fluid flow is upward. In contrast, the modern school uses concepts from upper crustal hydrology that presume implicitly, if not explicitly, that rocks are rigid or, at most, brittle. For the modern school, the details of crustal permeability determine fluid flow and as these details are poorly known almost anything is possible. Reality, to the extent that it is reflected by inference from field studies, offers some support to both schools. In particular, evidence of significant lateral and channelized fluid flow are consistent with flow in rigid media, while evidence for short (104 - 105 y) grain-scale fluid-rock interaction during much longer metamorphic events, suggests that reaction-generated grain-scale permeability is sealed rapidly by compaction; a phenomenon that is also essential to prevent extensive retrograde metamorphism. These observations provide a compelling argument for recognizing in conceptual models of lower crustal fluid flow that rocks are neither inviscid nor rigid, but compact by viscous mechanisms on a finite time-scale. This presentation will review the principle consequences of, and obstacles to, incorporating compaction in such models. The role of viscous compaction in the lower crust is extraordinarily uncertain, but ignoring this uncertainty in models of lower crustal fluid flow does not make the models any more certain. Models inevitably invoke an initial steady state hydraulic regime. This initial steady state is critical to model outcomes because it
Fluid migration in the subduction zone: a coupled fluid flow approach
NASA Astrophysics Data System (ADS)
Wang, Hongliang; Huismans, Ritske; Rondenay, Stéphane
2016-04-01
Subduction zone are the main entry point of water into earth's mantle and play an important role in the global water cycle. The progressive release of water by metamorphic dehydration induce important physical-chemical process in the subduction zone, such as hydrous melting, hydration and weakening of the mantle wedge, creation of pore fluid pressures that may weaken the subduction interface and induce earthquakes. Most previous studies on the role of fluids in subduction zones assume vertical migration or migration according to the dynamic pressure in the solid matrix without considering the pore fluid pressure effect on the deformation of the solid matrix. Here we investigate this interaction by explicitly modeling two-phase coupled poro-plastic flow during subduction. In this approach, the fluid migrates by compaction and decompaction of the solid matrix and affects the subduction dynamics through pore fluid pressure dependent frictional-plastic yield. Our preliminary results indicate that: 1) the rate of fluid migration depends strongly on the permeability and the bulk viscosity of the solid matrix, 2) fluid transfer occurs preferentially along the slab and then propagates into the mantle wedge by viscous compaction driven fluid flow, 3) fluid transport from the surface to depth is a prerequisite for producing high fluid pore pressures and associated hydration induced weakening of the subduction zone interface.
A preliminary study to Assess Model Uncertainties in Fluid Flows
Marc Oliver Delchini; Jean C. Ragusa
2009-09-01
The goal of this study is to assess the impact of various flow models for a simplified primary coolant loop of a light water nuclear reactor. The various fluid flow models are based on the Euler equations with an additional friction term, gravity term, momentum source, and energy source. The geometric model is purposefully chosen simple and consists of a one-dimensional (1D) loop system in order to focus the study on the validity of various fluid flow approximations. The 1D loop system is represented by a rectangle; the fluid is heated up along one of the vertical legs and cooled down along the opposite leg. A pressurizer and a pump are included in the horizontal legs. The amount of energy transferred and removed from the system is equal in absolute value along the two vertical legs. The various fluid flow approximations are compressible vs. incompressible, and complete momentum equation vs. Darcy’s approximation. The ultimate goal is to compute the fluid flow models’ uncertainties and, if possible, to generate validity ranges for these models when applied to reactor analysis. We also limit this study to single phase flows with low-Mach numbers. As a result, sound waves carry a very small amount of energy in this particular case. A standard finite volume method is used for the spatial discretization of the system.
Flow over a membrane-covered, fluid-filled cavity
Mongeau, Luc; Frankel, Steven H.
2014-01-01
The flow-induced response of a membrane covering a fluid-filled cavity located in a section of a rigid-walled channel was explored using finite element analysis. The membrane was initially aligned with the channel wall and separated the channel fluid from the cavity fluid. As fluid flowed over the membrane-covered cavity, a streamwise-dependent transmural pressure gradient caused membrane deformation. This model has application to synthetic models of the vocal fold cover layer used in voice production research. In this paper, the model is introduced and responses of the channel flow, the membrane, and the cavity flow are summarized for a range of flow and membrane parameters. It is shown that for high values of cavity fluid viscosity, the intracavity pressure and the beam deflection both reached steady values. For combinations of low cavity viscosity and sufficiently large upstream pressures, large-amplitude membrane vibrations resulted. Asymmetric conditions were introduced by creating cavities on opposing sides of the channel and assigning different stiffness values to the two membranes. The asymmetry resulted in reduction in or cessation of vibration amplitude, depending on the degree of asymmetry, and in significant skewing of the downstream flow field. PMID:24723738
Flow over a membrane-covered, fluid-filled cavity.
Thomson, Scott L; Mongeau, Luc; Frankel, Steven H
2007-01-01
The flow-induced response of a membrane covering a fluid-filled cavity located in a section of a rigid-walled channel was explored using finite element analysis. The membrane was initially aligned with the channel wall and separated the channel fluid from the cavity fluid. As fluid flowed over the membrane-covered cavity, a streamwise-dependent transmural pressure gradient caused membrane deformation. This model has application to synthetic models of the vocal fold cover layer used in voice production research. In this paper, the model is introduced and responses of the channel flow, the membrane, and the cavity flow are summarized for a range of flow and membrane parameters. It is shown that for high values of cavity fluid viscosity, the intracavity pressure and the beam deflection both reached steady values. For combinations of low cavity viscosity and sufficiently large upstream pressures, large-amplitude membrane vibrations resulted. Asymmetric conditions were introduced by creating cavities on opposing sides of the channel and assigning different stiffness values to the two membranes. The asymmetry resulted in reduction in or cessation of vibration amplitude, depending on the degree of asymmetry, and in significant skewing of the downstream flow field. PMID:24723738
A numerical model for dynamic crustal-scale fluid flow
NASA Astrophysics Data System (ADS)
Sachau, Till; Bons, Paul; Gomez-Rivas, Enrique; Koehn, Daniel
2015-04-01
Fluid flow in the crust is often envisaged and modeled as continuous, yet minimal flow, which occurs over large geological times. This is a suitable approximation for flow as long as it is solely controlled by the matrix permeability of rocks, which in turn is controlled by viscous compaction of the pore space. However, strong evidence (hydrothermal veins and ore deposits) exists that a significant part of fluid flow in the crust occurs strongly localized in both space and time, controlled by the opening and sealing of hydrofractures. We developed, tested and applied a novel computer code, which considers this dynamic behavior and couples it with steady, Darcian flow controlled by the matrix permeability. In this dual-porosity model, fractures open depending on the fluid pressure relative to the solid pressure. Fractures form when matrix permeability is insufficient to accommodate fluid flow resulting from compaction, decompression (Staude et al. 2009) or metamorphic dehydration reactions (Weisheit et al. 2013). Open fractures can close when the contained fluid either seeps into the matrix or escapes by fracture propagation: mobile hydrofractures (Bons, 2001). In the model, closing and sealing of fractures is controlled by a time-dependent viscous law, which is based on the effective stress and on either Newtonian or non-Newtonian viscosity. Our simulations indicate that the bulk of crustal fluid flow in the middle to lower upper crust is intermittent, highly self-organized, and occurs as mobile hydrofractures. This is due to the low matrix porosity and permeability, combined with a low matrix viscosity and, hence, fast sealing of fractures. Stable fracture networks, generated by fluid overpressure, are restricted to the uppermost crust. Semi-stable fracture networks can develop in an intermediate zone, if a critical overpressure is reached. Flow rates in mobile hydrofractures exceed those in the matrix porosity and fracture networks by orders of magnitude
Advances in modelling of biomimetic fluid flow at different scales
2011-01-01
The biomimetic flow at different scales has been discussed at length. The need of looking into the biological surfaces and morphologies and both geometrical and physical similarities to imitate the technological products and processes has been emphasized. The complex fluid flow and heat transfer problems, the fluid-interface and the physics involved at multiscale and macro-, meso-, micro- and nano-scales have been discussed. The flow and heat transfer simulation is done by various CFD solvers including Navier-Stokes and energy equations, lattice Boltzmann method and molecular dynamics method. Combined continuum-molecular dynamics method is also reviewed. PMID:21711847
Modelling fluid flow in a reciprocating compressor
NASA Astrophysics Data System (ADS)
Tuhovcak, Jan; Hejčík, Jiří; Jícha, Miroslav
2015-05-01
Efficiency of reciprocating compressor is strongly dependent on the valves characteristics, which affects the flow through the suction and discharge line. Understanding the phenomenon inside the compressor is necessary step in development process. Commercial CFD tools offer wide capabilities to simulate the flow inside the reciprocating compressor, however they are too complicated in terms of computational time and mesh creation. Several parameters describing compressor could be therefore examined without the CFD analysis, such is valve characteristic, flow through the cycle and heat transfer. The aim of this paper is to show a numerical tool for reciprocating compressor based on the energy balance through the cycle, which provides valve characteristics, flow through the cycle and heat losses from the cylinder. Spring-damping-mass model was used for the valve description. Boundary conditions were extracted from the performance test of 4-cylinder semihermetic compressor and numerical tool validation was performed with indicated p-V diagram comparison.
Fluid Flow Technology that Measures Up
NASA Technical Reports Server (NTRS)
2004-01-01
From 1994 to 1996, NASA s Marshall Space Flight Center conducted a Center Director's Discretionary Fund research effort to apply artificial intelligence technologies to the health management of plant equipment and space propulsion systems. Through this effort, NASA established a business relationship with Quality Monitoring and Control (QMC), of Kingwood, Texas, to provide hardware modeling and artificial intelligence tools. Very detailed and accurate Space Shuttle Main Engine (SSME) analysis and algorithms were jointly created, which identified several missing, critical instrumentation needs for adequately evaluating the engine health status. One of the missing instruments was a liquid oxygen (LOX) flow measurement. This instrument was missing since the original SSME included a LOX turbine flow meter that failed during a ground test, resulting in considerable damage for NASA. New balanced flow meter technology addresses this need with robust, safe, and accurate flow metering hardware.
Direct numerical simulation of solidification microstructures affected by fluid flow
Juric, D.
1997-12-01
The effects of fluid flow on the solidification morphology of pure materials and solute microsegregation patterns of binary alloys are studied using a computational methodology based on a front tracking/finite difference method. A general single field formulation is presented for the full coupling of phase change, fluid flow, heat and solute transport. This formulation accounts for interfacial rejection/absorption of latent heat and solute, interfacial anisotropies, discontinuities in material properties between the liquid and solid phases, shrinkage/expansion upon solidification and motion and deformation of the solid. Numerical results are presented for the two dimensional dendritic solidification of pure succinonitrile and the solidification of globulitic grains of a plutonium-gallium alloy. For both problems, comparisons are made between solidification without fluid flow and solidification within a shear flow.
A Causal, Covariant Theory of Dissipative Fluid Flow
NASA Astrophysics Data System (ADS)
Scofield, Dillon; Huq, Pablo
2015-04-01
The use of newtonian viscous dissipation theory in covariant fluid flow theories is known to lead to predictions that are inconsistent with the second law of thermodynamics and to predictions that are acausal. For instance, these problems effectively limit the covariant form of the Navier-Stokes theory (NST) to time-independent flow regimes. Thus the NST, the work horse of fluid dynamical theory, is limited in its ability to model time-dependent turbulent, stellar or thermonuclear flows. We show how such problems are avoided by a new geometrodynamical theory of fluids. This theory is based on a recent result of geometrodynamics showing current conservation implies gauge field creation, called the vortex field lemma and classification of flows by their Pfaff dimension. Experimental confirmation of the theory is reviewed.
Benchmarking computational fluid dynamics models for lava flow simulation
NASA Astrophysics Data System (ADS)
Dietterich, Hannah; Lev, Einat; Chen, Jiangzhi
2016-04-01
Numerical simulations of lava flow emplacement are valuable for assessing lava flow hazards, forecasting active flows, interpreting past eruptions, and understanding the controls on lava flow behavior. Existing lava flow models vary in simplifying assumptions, physics, dimensionality, and the degree to which they have been validated against analytical solutions, experiments, and natural observations. In order to assess existing models and guide the development of new codes, we conduct a benchmarking study of computational fluid dynamics models for lava flow emplacement, including VolcFlow, OpenFOAM, FLOW-3D, and COMSOL. Using the new benchmark scenarios defined in Cordonnier et al. (Geol Soc SP, 2015) as a guide, we model viscous, cooling, and solidifying flows over horizontal and sloping surfaces, topographic obstacles, and digital elevation models of natural topography. We compare model results to analytical theory, analogue and molten basalt experiments, and measurements from natural lava flows. Overall, the models accurately simulate viscous flow with some variability in flow thickness where flows intersect obstacles. OpenFOAM, COMSOL, and FLOW-3D can each reproduce experimental measurements of cooling viscous flows, and FLOW-3D simulations with temperature-dependent rheology match results from molten basalt experiments. We can apply these models to reconstruct past lava flows in Hawai'i and Saudi Arabia using parameters assembled from morphology, textural analysis, and eruption observations as natural test cases. Our study highlights the strengths and weaknesses of each code, including accuracy and computational costs, and provides insights regarding code selection.
Ellison, Kenneth; Whike, Alan S.
1979-01-30
A solvent vapor collector is mounted on the upstream inlet end of an oven having a gas-circulating means and intended for curing a coating applied to a strip sheet metal at a coating station. The strip sheet metal may be hot and solvent vapors are evaporated at the coating station and from the strip as it passes from the coating station to the oven. Upper and lower plenums within a housing of the collector are supplied with oven gases or air from the gas-circulating means and such gases or air are discharged within the collector obliquely in a downstream direction against the strip passing through that collector to establish downstream gas flows along the top and under surfaces of the strip so as, in turn, to induct solvent vapors into the collector at the coating station. A telescopic multi-piece shroud is usefully provided on the housing for movement between an extended position in which it overlies the coating station to collect solvent vapors released thereat and a retracted position permitting ready cleaning and adjustment of that coating station.
The fluid mechanics of continuous flow electrophoresis
NASA Technical Reports Server (NTRS)
Saville, D. A.
1990-01-01
The overall objective is to establish theoretically and confirm experimentally the ultimate capabilities of continuous flow electrophoresis chambers operating in an environment essentially free of particle sedimentation and buoyancy. The efforts are devoted to: (1) studying the effects of particle concentration on sample conductivity and dielectric constant. The dielectric constant and conductivity were identified as playing crucial roles in the behavior of the sample and on the resolving power and throughput of continuous flow devices; and (2) improving the extant mathematical models to predict flow fields and particle trajectories in continuous flow electrophoresis. A dielectric spectrometer was designed and built to measure the complex dielectric constant of a colloidal dispersion as a function of frequency between 500 Hz and 200 kHz. The real part of the signal can be related to the sample's conductivity and the imaginary part to its dielectric constant. Measurements of the dielectric constants of several different dispersions disclosed that the dielectric constants of dilute systems of the sort encountered in particle electrophoresis are much larger than would be expected based on the extant theory. Experiments were carried out to show that, in many cases, this behavior is due to the presence of a filamentary structure of small hairs on the particle surface. A technique for producing electrokinetically ideal synthetic latex particles by heat treating was developed. Given the ubiquitous nature of hairy surfaces with both cells and synthetic particles, it was deemed necessary to develop a theory to explain their behavior. A theory for electrophoretic mobility of hairy particles was developed. Finally, the extant computer programs for predicting the structure of electro-osmotically driven flows were extended to encompass flow channels with variable wall mobilities.
Active Learning in Fluid Mechanics: Youtube Tube Flow and Puzzling Fluids Questions
ERIC Educational Resources Information Center
Hrenya, Christine M.
2011-01-01
Active-learning exercises appropriate for a course in undergraduate fluid mechanics are presented. The first exercise involves an experiment in gravity-driven tube flow, with small groups of students partaking in a contest to predict the experimental flow rates using the mechanical energy balance. The second exercise takes the form of an…
The origin of massive hydrothermal alterations: what drives fluid flow?
NASA Astrophysics Data System (ADS)
Gomez-Rivas, Enrique; Bons, Paul D.; Martín-Martín, Juan-Diego; Corbella, Mercè; Stafford, Sherry L.; Griera, Albert; Teixell, Antonio; Salas, Ramón; Travé, Anna
2014-05-01
Hydrothermal alterations form when fluids warmer than the host rocks flow through them dissolving and precipitating minerals. These fluids typically flow upwards from deeper geologic units using faults as major conduits. In some cases, hydrothermal alterations affect large (km-scale) rock volumes. One example of such process is the massive high-temperature dolostones that crop out at the Benicàssim outcrop analogue (Maestrat Basin, E Spain). In this area, seismic-scale fault-controlled stratabound dolostone bodies extend over several kilometres away from large-scale faults, replacing Lower Cretaceous limestones. The fluid responsible for such alteration is a seawater-derived brine that interacted with underlying Permian-Triassic and Paleozoic basement rocks. The estimated volume of fluid required to produce the Benicàssim dolomitization is huge, with fluid-rock ratios in the order of several tens to a few hundreds, depending on composition and reaction temperature (Gomez-Rivas et al., 2014). An open key question is what brought this warm fluid (80 - 150 ºC) upwards to a depth of less than 1 km, where the dolomitization reaction took place. The driving forces should have been able not only to provide sufficient fluid volumes at shallow depths but also to heat up the whole host rock, including the non-replaced limestones. There are two hyphoteses for driving a warm fluid upwards in the Maestrat Basin: (a) rapid release through faults of overpressured solutions in recurrent pulses and (b) thermal convection. We present a series of heat and fluid flow numerical simulations to constrain the dolomitization conditions under these two end-member cases. The results indicate that in a pulsating model the fluid must flow upwards at velocities higher than cm/s to keep their elevated temperature. Otherwise they cool down quickly, and the host rocks cannot be heated. Such velocities can be reached if the fluid flow velocity equals that of fracture propagation, as in mobile
Fluid dynamics following flow shut-off in bottle filling
NASA Astrophysics Data System (ADS)
Thete, Sumeet; Appathurai, Santosh; Gao, Haijing; Basaran, Osman
2012-11-01
Bottle filling is ubiquitous in industry. Examples include filling of bottles with shampoos and cleaners, engine oil and pharmaceuticals. In these examples, fluid flows out of a nozzle to fill bottles in an assembly line. Once the required volume of fluid has flowed out of the nozzle, the flow is shut off. However, an evolving fluid thread or string may remain suspended from the nozzle following flow shut-off and persist. This stringing phenomenon can be detrimental to a bottle filling operation because it can adversely affect line speed and filling accuracy by causing uncertainty in fill volume, product loss and undesirable marring of the bottles' exterior surfaces. The dynamics of stringing are studied numerically primarily by using the 1D, slender-jet approximation of the flow equations. A novel feature entails development and use of a new boundary condition downstream of the nozzle exit to expedite the computations. While the emphasis is on stringing of Newtonian fluids and use of 1D approximations, results will also be presented for situations where (a) the fluids are non-Newtonian and (b) the full set of equations are solved without invoking the 1D approximation. Phase diagrams will be presented that identify conditions for which stringing can be problematic.
Particle Deposition in a Two-Fluid Flow Environment
NASA Astrophysics Data System (ADS)
Yap, Yit Fatt; Goharzadeh, Afshin; Vargas, Francisco M.; John Chai, Chee Kiong
2014-11-01
The formation of particle deposit on surfaces occurs in many applications. For example, in the oil and gas industry, deposition of wax, hydrates and asphaltene reduces flows and clogs pipelines eventually if left untreated. Removal of the deposits is costly as it disrupts production. To further complicate the problem, the main flow carrying the depositing particles is often of a multi-phase nature. Successful mitigation effort requires good understanding and eventual prediction of the deposition process interacting within a multiphase flow environment. This work presents a model for prediction of particle deposition in a two-fluid flow environment. Modeling of the process is challenging as there are two unknown evolving interfaces, i.e. the fluid-fluid interface and the depositing front. Both interfaces are captured via the level-set method. The deposition at the depositing front is modeled as a first order reaction. The two immiscible fluids are modeled using the incompressible Navier-Stokes equations. Solution of the equations is implemented using a finite volume method. The model is then verified against known solutions. Preliminary results on deposition process in a two-fluid flow environment are presented. ADNOC R&D Oil-Sub Committee.
Thin film absorber for a solar collector
Wilhelm, William G.
1985-01-01
This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.
AEROSOL PARTICLE COLLECTOR DESIGN STUDY
Lee, S; Richard Dimenna, R
2007-09-27
A computational evaluation of a particle collector design was performed to evaluate the behavior of aerosol particles in a fast flowing gas stream. The objective of the work was to improve the collection efficiency of the device while maintaining a minimum specified air throughput, nominal collector size, and minimal power requirements. The impact of a range of parameters was considered subject to constraints on gas flow rate, overall collector dimensions, and power limitations. Potential improvements were identified, some of which have already been implemented. Other more complex changes were identified and are described here for further consideration. In addition, fruitful areas for further study are proposed.
FRACTIONATING COLUMN PRODUCT COLLECTOR CONTROL
Paxson, G.D. Jr.
1964-03-10
Means for detecting minute fluid products from a chemical separation column and for advancing a collector tube rack in order to automatically separate and collect successive fractionated products are described. A charge is imposed on the forming drops at the column orifice to create an electric field as the drop falls in the vicinity of a sensing plate. The field is detected by an electrometer tube coupled to the plate causing an output signal to actuate rotation of a collector turntable rack, thereby positioning new collectors under the orifice. The invention provides reliable automatic collection independent of drop size, rate of fall, or chemical composition. (AEC)
Weber, N.; Galindo, V.; Stefani, F.; Weier, T.; Priede, J.
2015-01-15
The Tayler instability (TI) is a kink-type flow instability which occurs when the electrical current through a conducting fluid exceeds a certain critical value. Originally studied in the astrophysical context, the instability was recently discussed as a possible limiting factor for the upward scalability of liquid metal batteries. In this paper, we continue our efforts to simulate this instability for liquid metals within the framework of an integro-differential equation approach. The original solver is enhanced by multi-domain support with Dirichlet-Neumann partitioning for the static boundaries. Particular focus is laid on the detailed influence of the axial electrical boundary conditions on the characteristic features of the Tayler instability and, second, on the occurrence of electro-vortex flows and their relevance for liquid metal batteries. Electro-vortex flows might pose a larger risk to the integrity of the battery than the TI.
Method, apparatus and system for controlling fluid flow
McMurtrey, Ryan D.; Ginosar, Daniel M.; Burch, Joesph V.
2007-10-30
A system, apparatus and method of controlling the flow of a fluid are provided. In accordance with one embodiment of the present invention, a flow control device includes a valve having a flow path defined therethrough and a valve seat in communication with the flow path with a valve stem disposed in the valve seat. The valve stem and valve seat are cooperatively configured to cause mutual relative linear displacement thereof in response to rotation of the valve stem. A gear member is coupled with the rotary stem and a linear positioning member includes a portion which complementarily engages the gear member. Upon displacement of the linear positioning member along a first axis, the gear member and rotary valve stem are rotated about a second axis and the valve stem and valve seat are mutually linearly displaced to alter the flow of fluid through the valve.
Regulation of tumor invasion by interstitial fluid flow
NASA Astrophysics Data System (ADS)
Shieh, Adrian C.; Swartz, Melody A.
2011-02-01
The importance of the tumor microenvironment in cancer progression is undisputed, yet the significance of biophysical forces in the microenvironment remains poorly understood. Interstitial fluid flow is a nearly ubiquitous and physiologically relevant biophysical force that is elevated in tumors because of tumor-associated angiogenesis and lymphangiogenesis, as well as changes in the tumor stroma. Not only does it apply physical forces to cells directly, but interstitial flow also creates gradients of soluble signals in the tumor microenvironment, thus influencing cell behavior and modulating cell-cell interactions. In this paper, we highlight our current understanding of interstitial fluid flow in the context of the tumor, focusing on the physical changes that lead to elevated interstitial flow, how cells sense flow and how they respond to changes in interstitial flow. In particular, we emphasize that interstitial flow can directly promote tumor cell invasion through a mechanism known as autologous chemotaxis, and indirectly support tumor invasion via both biophysical and biochemical cues generated by stromal cells. Thus, interstitial fluid flow demonstrates how important biophysical factors are in cancer, both by modulating cell behavior and coupling biophysical and biochemical signals.
Computerized tomographic analysis of fluid flow in fractured tuff
Felice, C.W.; Sharer, J.C. ); Springer, E.P. )
1992-01-01
The purpose of this summary is to demonstrate the usefulness of X-ray computerized tomography to observe fluid flow down a fracture and rock matrix imbibition in a sample of Bandelier tuff. This was accomplished by using a tuff sample 152.4 mm long and 50.8 mm in diameter. A longitudinal fracture was created by cutting the core with a wire saw. The fractured piece was then coupled to its adjacent section to that the fracture was not expected. Water was injected into a dry sample at five flow rates and CT scanning performed at set intervals during the flow. Cross sectional images and longitudinal reconstructions were built and saturation profiles calculated for the sample at each time interval at each flow rate. The results showed that for the test conditions, the fracture was not a primary pathway of fluid flow down the sample. At a slow fluid injection rate into the dry sample, the fluid was imbibed into the rock uniformly down the length of the core. With increasing injection rates, the flow remained uniform over the core cross section through complete saturation.
Flow lasers. [fluid mechanics of high power continuous output operations
NASA Technical Reports Server (NTRS)
Christiansen, W. H.; Russell, D. A.; Hertzberg, A.
1975-01-01
The present work reviews the fluid-mechanical aspects of high-power continuous-wave (CW) lasers. The flow characteristics of these devices appear as classical fluid-mechanical phenomena recast in a complicated interactive environment. The fundamentals of high-power lasers are reviewed, followed by a discussion of the N2-CO2 gas dynamic laser. Next, the HF/DF supersonic diffusion laser is described, and finally the CO electrical-discharge laser is discussed.
Studies of fluid flow indicators, Pacific margin of Costa Rica
Silver, E.; McAdoo, B.; Langseth, M.; Orange, D.
1996-12-31
Seismic reflection profiles off Costa Rica image a decrease in thickness of the underthrust sedimentary section from the Middle America Trench, implying a significant reduction of porosity in the outer 3-5 km from the trench and a source of vent water through the wedge. We encountered no evidence of discrete fluid venting over the outer 3-5 km of this margin from dives using the ALVIN submersible or from heat flow measurements (based on absence of chemosynthetic vent communities and heat flow anomalies in this zone). Vent communities occur farther upslope, associated with a series of out-of-sequence thrusts, with two mud diapirs, and a mid-slope canyon. We infer that fracture permeability dominates in the out-of-sequence thrusts, upflow of fluid-rich muds in the diapir, and focusing of fluid flow in the canyon. Over 100 heat flow observations on the wedge and incoming COCOS plate showed a broad area of anomalously low heat flow (13 mW/m{sup 2}) seaward of the frontal thrust, whereas the expected heat flow for ocean crust of early Miocene age is seven times greater. The very low regional heat flow may reflect refrigeration by vigorous sea water flow through the upper crust pillow basalts. Heat flow increases to about 30 mW/m{sup 2} throughout the lower slope to mid-slope, implying a combination of widespread fluid venting, reheating of the cooled crust and frictional heating at the base of the wedge. The lack of discrete vents over the outer 3-5 km of the margin indicates diffuse flow and likely temporal episodicity, as this region has been aseismic since 1950.
Studies of fluid flow indicators, Pacific margin of Costa Rica
Silver, E.; McAdoo, B. ); Langseth, M. ); Orange, D. )
1996-01-01
Seismic reflection profiles off Costa Rica image a decrease in thickness of the underthrust sedimentary section from the Middle America Trench, implying a significant reduction of porosity in the outer 3-5 km from the trench and a source of vent water through the wedge. We encountered no evidence of discrete fluid venting over the outer 3-5 km of this margin from dives using the ALVIN submersible or from heat flow measurements (based on absence of chemosynthetic vent communities and heat flow anomalies in this zone). Vent communities occur farther upslope, associated with a series of out-of-sequence thrusts, with two mud diapirs, and a mid-slope canyon. We infer that fracture permeability dominates in the out-of-sequence thrusts, upflow of fluid-rich muds in the diapir, and focusing of fluid flow in the canyon. Over 100 heat flow observations on the wedge and incoming COCOS plate showed a broad area of anomalously low heat flow (13 mW/m[sup 2]) seaward of the frontal thrust, whereas the expected heat flow for ocean crust of early Miocene age is seven times greater. The very low regional heat flow may reflect refrigeration by vigorous sea water flow through the upper crust pillow basalts. Heat flow increases to about 30 mW/m[sup 2] throughout the lower slope to mid-slope, implying a combination of widespread fluid venting, reheating of the cooled crust and frictional heating at the base of the wedge. The lack of discrete vents over the outer 3-5 km of the margin indicates diffuse flow and likely temporal episodicity, as this region has been aseismic since 1950.
Triangular spectral elements for incompressible fluid flow
NASA Technical Reports Server (NTRS)
Mavriplis, C.; Vanrosendale, John
1993-01-01
We discuss the use of triangular elements in the spectral element method for direct simulation of incompressible flow. Triangles provide much greater geometric flexibility than quadrilateral elements and are better conditioned and more accurate when small angles arise. We employ a family of tensor product algorithms for triangles, allowing triangular elements to be handled with comparable arithmetic complexity to quadrilateral elements. The triangular discretizations are applied and validated on the Poisson equation. These discretizations are then applied to the incompressible Navier-Stokes equations and a laminar channel flow solution is given. These new triangular spectral elements can be combined with standard quadrilateral elements, yielding a general and flexible high order method for complex geometries in two dimensions.
Modeling of fluid and heat flow in fractured geothermal reservoirs
Pruess, K.
1988-08-01
In most geothermal reservoirs large-scale permeability is dominated by fractures, while most of the heat and fluid reserves are stored in the rock matrix. Early-time fluid production comes mostly from the readily accessible fracture volume, while reservoir behavior at later time depends upon the ease with which fluid and heat can be transferred from the rock matrix to the fractures. Methods for modeling flow in fractured porous media must be able to deal with this matrix-fracture exchange, the so-called interporosity flow. This paper reviews recent work at Lawrence Berkeley Laboratory on numerical modeling of nonisothermal multiphase flow in fractured porous media. We also give a brief summary of simulation applications to problems in geothermal production and reinjection. 29 refs., 1 fig.
Fluid flow in nanopores: Accurate boundary conditions for carbon nanotubes
NASA Astrophysics Data System (ADS)
Sokhan, Vladimir P.; Nicholson, David; Quirke, Nicholas
2002-11-01
Steady-state Poiseuille flow of a simple fluid in carbon nanopores under a gravitylike force is simulated using a realistic empirical many-body potential model for carbon. Building on our previous study of slit carbon nanopores we show that fluid flow in a nanotube is also characterized by a large slip length. By analyzing temporal profiles of the velocity components of particles colliding with the wall we obtain values of the Maxwell coefficient defining the fraction of molecules thermalized by the wall and, for the first time, propose slip boundary conditions for smooth continuum surfaces such that they are equivalent in adsorption, diffusion, and fluid flow properties to fully dynamic atomistic models.
Fluid flow and chemical reaction kinetics in metamorphic systems
Lasaga, A.C.; Rye, D.M. )
1993-05-01
The treatment and effects of chemical reaction kinetics during metamorphism are developed along with the incorporation of fluid flow, diffusion, and thermal evolution. The interplay of fluid flow and surface reaction rates, the distinction between steady state and equilibrium, and the possible overstepping of metamorphic reactions are discussed using a simple analytic model. This model serves as an introduction to the second part of the paper, which develops a reaction model that solves the coupled temperature-fluid flow-chemical composition differential equations relevant to metamorphic processes. Consideration of stable isotopic evidence requires that such a kinetic model be considered for the chemical evolution of a metamorphic aureole. A general numerical scheme is discussed to handle the solution of the model. The results of this kinetic model allow us to reach several important conclusions regarding the factors controlling the chemical evolution of mineral assemblages during a metamorphic event. 41 refs., 19 figs., 5 tabs.
Numerical computational of fluid flow through a detached retina
NASA Astrophysics Data System (ADS)
Jiann, Lim Yeou; Ismail, Zuhaila; Shafie, Sharidan; Fitt, Alistair
2015-02-01
In this paper, a phenomenon of fluid flow through a detached retina is studied. Rhegmatogeneous retinal detachment happens when vitreous humour flow through a detached retina. The exact mechanism of Rhegmatogeneous retinal detachment is complex and remains incomplete. To understand the fluid flow, a paradigm mathematical model is developed and is approximated by the lubrication theory. The numerical results of the velocity profile and pressure distribution are computed by using Finite Element Method. The effects of fluid mechanical on the retinal detachment is discussed and analyzed. Based on the analysis, it is found that the retinal detachment deformation affects the pressure distribution. It is important to comprehend the development of the retinal detachment so that a new treatment method can be developed.
Multiphase Flow of Immiscible Fluids on Unstructured Moving Meshes.
Misztal, Marek K; Erleben, Kenny; Bargteil, Adam; Fursund, Jens; Christensen, Brian Bunch; Bærentzen, J Andreas; Bridson, Robert
2013-07-01
In this paper, we present a method for animating multiphase flow of immiscible fluids using unstructured moving meshes. Our underlying discretization is an unstructured tetrahedral mesh, the deformable simplicial complex (DSC), that moves with the flow in a Lagrangian manner. Mesh optimization operations improve element quality and avoid element inversion. In the context of multiphase flow, we guarantee that every element is occupied by a single fluid and, consequently, the interface between fluids is represented by a set of faces in the simplicial complex. This approach ensures that the underlying discretization matches the physics and avoids the additional book-keeping required in grid-based methods where multiple fluids may occupy the same cell. Our Lagrangian approach naturally leads us to adopt a finite element approach to simulation, in contrast to the finite volume approaches adopted by a majority of fluid simulation techniques that use tetrahedral meshes. We characterize fluid simulation as an optimization problem allowing for full coupling of the pressure and velocity fields and the incorporation of a second-order surface energy. We introduce a preconditioner based on the diagonal Schur complement and solve our optimization on the GPU. We provide the results of parameter studies as well as a performance analysis of our method, together with suggestions for performance optimization. PMID:23836703
Multiphase flow of immiscible fluids on unstructured moving meshes.
Misztal, Marek Krzysztof; Erleben, Kenny; Bargteil, Adam; Fursund, Jens; Christensen, Brian Bunch; Bærentzen, Jakob Andreas; Bridson, Robert
2014-01-01
In this paper, we present a method for animating multiphase flow of immiscible fluids using unstructured moving meshes. Our underlying discretization is an unstructured tetrahedral mesh, the deformable simplicial complex (DSC), that moves with the flow in a Lagrangian manner. Mesh optimization operations improve element quality and avoid element inversion. In the context of multiphase flow, we guarantee that every element is occupied by a single fluid and, consequently, the interface between fluids is represented by a set of faces in the simplicial complex. This approach ensures that the underlying discretization matches the physics and avoids the additional book-keeping required in grid-based methods where multiple fluids may occupy the same cell. Our Lagrangian approach naturally leads us to adopt a finite element approach to simulation, in contrast to the finite volume approaches adopted by a majority of fluid simulation techniques that use tetrahedral meshes. We characterize fluid simulation as an optimization problem allowing for full coupling of the pressure and velocity fields and the incorporation of a second-order surface energy. We introduce a preconditioner based on the diagonal Schur complement and solve our optimization on the GPU. We provide the results of parameter studies as well as a performance analysis of our method, together with suggestions for performance optimization. PMID:24201322
Apparatus for controlling fluid flow in a conduit wall
Glass, S. Jill; Nicolaysen, Scott D.; Beauchamp, Edwin K.
2003-05-13
A frangible rupture disk and mounting apparatus for use in blocking fluid flow, generally in a fluid conducting conduit such as a well casing, a well tubing string or other conduits within subterranean boreholes. The disk can also be utilized in above-surface pipes or tanks where temporary and controllable fluid blockage is required. The frangible rupture disk is made from a pre-stressed glass with controllable rupture properties wherein the strength distribution has a standard deviation less than approximately 5% from the mean strength. The frangible rupture disk has controllable operating pressures and rupture pressures.
Analysis for flow of Jeffrey fluid with nanoparticles
NASA Astrophysics Data System (ADS)
Hayat, T.; Asad, Sadia; Alsaedi, A.
2015-04-01
An analysis of the boundary layer flow and heat transfer in a Jeffrey fluid containing nanoparticles is presented in this paper. Here, fluid motion is due to a stretchable cylinder. The thermal conductivity of the fluid is taken to be temperature-dependent. The partial differential equations of velocity, temperature, and concentration fields are transformed to a dimensionless system of ordinary differential equations. Nonlinear governing analysis is computed for the homotopy solutions. The behaviors of Brownian motion and thermophoresis diffusion of nanoparticles have been examined graphically. Numerical values of the local Nusselt number are computed and analyzed.
Fluid flow from a low to a higher density liquid
NASA Astrophysics Data System (ADS)
Weinberg, F.
1984-12-01
The penetration of liquid from a low density brine solution into a higher density solution below it has been measured as a function of vertical flow velocity and the density difference of the two solutions. The flow velocity was produced by a horizontal disc rotating in the low density liquid. The results show the penetration distance and penetration rate are dependent on flow velocity and in particular are very sensitive to small changes in the density difference between the two liquids. The observations are considered in relation to liquid penetration into dendritic arrays, and fluid flow in the pool of ingots and continuously cast steel billets, during solidification.
Using artificial intelligence to control fluid flow computations
NASA Technical Reports Server (NTRS)
Gelsey, Andrew
1992-01-01
Computational simulation is an essential tool for the prediction of fluid flow. Many powerful simulation programs exist today. However, using these programs to reliably analyze fluid flow and other physical situations requires considerable human effort and expertise to set up a simulation, determine whether the output makes sense, and repeatedly run the simulation with different inputs until a satisfactory result is achieved. Automating this process is not only of considerable practical importance but will also significantly advance basic artificial intelligence (AI) research in reasoning about the physical world.
Rotation of a rod system containing inertial fluid flow
NASA Astrophysics Data System (ADS)
Sergeev, A. D.
2012-11-01
This paper considers a rod system for which it is possible to correctly formulate and solve the problem of three-dimensional motion in the physical space of an elastic pipeline area containing inertial incompressible fluid flow. The precession of the axis of an elastic pipeline along which inertial incompressible fluid flows is described, a physical phenomenon which has not been previously studied. With the use of rigid body dynamics, it was theoretically established that a three-dimensional dynamic process is possible in an open (exchanging mass with the environment) elastic-inertial rod system.
Beyond poiseuille: preservation fluid flow in an experimental model.
Singh, Saurabh; Randle, Lucy V; Callaghan, Paul T; Watson, Christopher J E; Callaghan, Chris J
2013-01-01
Poiseuille's equation describes the relationship between fluid viscosity, pressure, tubing diameter, and flow, yet it is not known if cold organ perfusion systems follow this equation. We investigated these relationships in an ex vivo model and aimed to offer some rationale for equipment selection. Increasing the cannula size from 14 to 20 Fr increased flow rate by a mean (SD) of 13 (12)%. Marshall's hyperosmolar citrate was three times less viscous than UW solution, but flows were only 45% faster. Doubling the bag pressure led to a mean (SD) flow rate increase of only 19 (13)%, not twice the rate. When external pressure devices were used, 100 mmHg of continuous pressure increased flow by a mean (SD) of 43 (17)% when compared to the same pressure applied initially only. Poiseuille's equation was not followed; this is most likely due to "slipping" of preservation fluid within the plastic tubing. Cannula size made little difference over the ranges examined; flows are primarily determined by bag pressure and fluid viscosity. External infusor devices require continuous pressurisation to deliver high flow. Future studies examining the impact of perfusion variables on graft outcomes should include detailed equipment descriptions. PMID:24062943
A thermal stack structure for measurement of fluid flow
NASA Astrophysics Data System (ADS)
Zhao, Hao; Mitchell, S. J. N.; Campbell, D. H.; Gamble, Harold S.
2003-03-01
A stacked thermal structure for fluid flow sensing has been designed, fabricated, and tested. A double-layer polysilicon process was employed in the fabrication. Flow measurement is based on the transfer of heat from a temperature sensor element to the moving fluid. The undoped or lightly doped polysilicon temperature sensor is located on top of a heavily doped polysilicon heater element. A dielectric layer between the heater and the sensor elements provides both thermal coupling and electrical isolation. In comparison to a hot-wire flow sensor, the heating and sensing functions are separated, allowing the electrical characteristics of each to be optimized. Undoped polysilicon has a large temperature coefficient of resistance (TCR) up to 7 %/K and is thus a preferred material for the sensor. However, heavily doped polysilicon is preferred for the heater due to its lower resistance. The stacked flow sensor structure offers a high thermal sensitivity making it especially suitable for medical applications where the working temperatures are restricted. Flow rates of various fluids can be measured over a wide range. The fabricated flow sensors were used to measure the flow rate of water in the range μl - ml/min and gas (Helium) in the range 10 - 100ml/min.
Balanced Flow Metering and Conditioning: Technology for Fluid Systems
NASA Technical Reports Server (NTRS)
Kelley, Anthony R.
2006-01-01
Revolutionary new technology that creates balanced conditions across the face of a multi-hole orifice plate has been developed, patented and exclusively licensed for commercialization. This balanced flow technology simultaneously measures mass flow rate, volumetric flow rate, and fluid density with little or no straight pipe run requirements. Initially, the balanced plate was a drop in replacement for a traditional orifice plate, but testing revealed substantially better performance as compared to the orifice plate such as, 10 times better accuracy, 2 times faster (shorter distance) pressure recovery, 15 times less acoustic noise energy generation, and 2.5 times less permanent pressure loss. During 2004 testing at MSFC, testing revealed several configurations of the balanced flow meter that match the accuracy of Venturi meters while having only slightly more permanent pressure loss. However, the balanced meter only requires a 0.25 inch plate and has no upstream or downstream straight pipe requirements. As a fluid conditioning device, the fluid usually reaches fully developed flow within 1 pipe diameter of the balanced conditioning plate. This paper will describe the basic balanced flow metering technology, provide performance details generated by testing to date and provide implementation details along with calculations required for differing degrees of flow metering accuracy.
Beyond Poiseuille: Preservation Fluid Flow in an Experimental Model
Singh, Saurabh; Randle, Lucy V.; Callaghan, Paul T.; Watson, Christopher J. E.; Callaghan, Chris J.
2013-01-01
Poiseuille's equation describes the relationship between fluid viscosity, pressure, tubing diameter, and flow, yet it is not known if cold organ perfusion systems follow this equation. We investigated these relationships in an ex vivo model and aimed to offer some rationale for equipment selection. Increasing the cannula size from 14 to 20 Fr increased flow rate by a mean (SD) of 13 (12)%. Marshall's hyperosmolar citrate was three times less viscous than UW solution, but flows were only 45% faster. Doubling the bag pressure led to a mean (SD) flow rate increase of only 19 (13)%, not twice the rate. When external pressure devices were used, 100 mmHg of continuous pressure increased flow by a mean (SD) of 43 (17)% when compared to the same pressure applied initially only. Poiseuille's equation was not followed; this is most likely due to “slipping” of preservation fluid within the plastic tubing. Cannula size made little difference over the ranges examined; flows are primarily determined by bag pressure and fluid viscosity. External infusor devices require continuous pressurisation to deliver high flow. Future studies examining the impact of perfusion variables on graft outcomes should include detailed equipment descriptions. PMID:24062943
On two-dimensional flows of compressible fluids
NASA Technical Reports Server (NTRS)
Bergman, Stefan
1945-01-01
This report is devoted to the study of two-dimensional steady motion of a compressible fluid. It is shown that the complete flow pattern around a closed obstacle cannot be obtained by the method of Chaplygin. In order to overcome this difficulty, a formula for the stream-function of a two-dimensional subsonic flow is derived. The formula involves an arbitrary function of a complex variable and yields all possible subsonic flow patterns of certain types. Conditions are given so that the flow pattern in the physical plane will represent a flow around a closed curve. The formula obtained can be employed for the approximate determination of a subsonic flow around an obstacle. The method can be extended to partially supersonic flows.
Dynamics of a fluid flow on Mars: lava or mud?
NASA Astrophysics Data System (ADS)
Wilson, L.; Mouginis-Mark, P. J.
2013-12-01
We have identified an enigmatic flow in S.W. Cerberus Fossae, Mars. The flow originates from an almost circular pit within a remnant of a yardang at 0.58 degrees N, 155.28 degrees E, within the lower unit of the Medusae Fossae Formation. The flow is ~42 km long and 0.5 to 2.0 km wide. The surface textures of the resulting deposit show that the material flowed in such a way that the various deformation patterns on its surface were generally preserved as it moved, only being distorted or disrupted when the flow encountered major topographic obstacles or was forced to make rapid changes of direction. This observation of a stiff, generally undeformed surface layer overlying a relatively mobile base suggests that, while it was moving, the fluid material flowed in a laminar, and possibly non-Newtonian, fashion. The least-complicated non-Newtonian fluids are Bingham plastics. On this basis we use measurements of flow width, length, thickness and substrate slope obtained from images, a DEM constructed from stereo pairs of Context Camera (CTX) images, and Mars Orbiter Laser Altimeter (MOLA) altimetry points to deduce the rheological properties of the fluid, treating it as both a Newtonian and a Bingham material for comparison. The Newtonian option requires the fluid to have a viscosity close to 100 Pa s and to have flowed everywhere in a turbulent fashion. The Bingham option requires laminar flow, a plastic viscosity close to 1 Pa s, and a yield strength of ~185 Pa. We compare these parameters values with those of various environmental fluids on Earth in an attempt to narrow the range of possible materials forming the martian flow. A mafic to ultramafic lava would fit the Newtonian option but the required turbulence does not seem consistent with the surface textures. The Bingham option satisfies the morphological constraint of laminar motion if the material is a mud flow consisting of ~40% water and ~60% silt-sized silicate solids. Elsewhere on Mars, deposits with similar