Sample records for collector ring cr

  1. Collector/collector guard ring balancing circuit eliminates edge effects

    NASA Technical Reports Server (NTRS)

    Lieb, D. P.

    1966-01-01

    Circuit in which an emitter is maintained opposite a concentric collector and guard structure is achieved by matching the temperature and potential of the guard with that of the collector over the operating range. This control system is capable of handling up to 100 amperes in the guard circuit and 200 amperes in the collectors circuit.

  2. Local spin density in the Cr 7Ni antiferromagnetic molecular ring and 53Cr-NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casadei, Cecilia M; Bordonali, L; Furukawa, Yuji

    We present 53Cr-NMR spectra collected at low temperature in a single crystal of the heterometallic antiferromagnetic (AF) ring Cr 7Ni in the S = 1/2 ground state with the aim of establishing the distribution of the local electronic moment in the ring. Due to the poor S/N we observed only one signal which is ascribed to three almost equivalent 53Cr nuclei in the ring. The calculated spin density in Cr 7Ni in the ground state, with the applied magnetic field both parallel and perpendicular to the plane of the ring, turns out to be AF staggered with the greatest componentmore » of the local spin {s} for the Cr 3+ ions next to the Ni 2+ ion. The 53Cr-NMR frequency was found to be in good agreement with the local spin density calculated theoretically by assuming a core polarization field of H cp =₋ 11 T/μ B for both orientations, close to the value found previously in Cr 7Cd. Lastly, the observed orientation dependence of the local spin moments is well reproduced by the theoretical calculation and evidences the importance of single-ion and dipolar anisotropies.« less

  3. Computer controlled performance mapping of thermionic converters: effect of collector, guard-ring potential imbalances on the observed collector current-density, voltage characteristics and limited range performance map of an etched-rhenium, niobium planar converter

    NASA Technical Reports Server (NTRS)

    Manista, E. J.

    1972-01-01

    The effect of collector, guard-ring potential imbalance on the observed collector-current-density J, collector-to-emitter voltage V characteristic was evaluated in a planar, fixed-space, guard-ringed thermionic converter. The J,V characteristic was swept in a period of 15 msec by a variable load. A computerized data acquisition system recorded test parameters. The results indicate minimal distortion of the J,V curve in the power output quadrant for the nominal guard-ring circuit configuration. Considerable distortion, along with a lowering of the ignited-mode striking voltage, was observed for the configuration with the emitter shorted to the guard ring. A limited-range performance map of an etched-rhenium, niobium, planar converter was obtained by using an improved computer program for the data acquisition system.

  4. Low-field spin dynamics of Cr7Ni and Cr7Ni-Cu -Cr 7Ni molecular rings as detected by μ SR

    NASA Astrophysics Data System (ADS)

    Sanna, S.; Arosio, P.; Bordonali, L.; Adelnia, F.; Mariani, M.; Garlatti, E.; Baines, C.; Amato, A.; Sabareesh, K. P. V.; Timco, G.; Winpenny, R. E. P.; Blundell, S. J.; Lascialfari, A.

    2017-11-01

    Muon spin rotation measurements were used to investigate the spin dynamics of heterometallic Cr7Ni and Cr7Ni -Cu-Cr7Ni molecular clusters. In Cr7Ni the magnetic ions are arranged in a quasiplanar ring and interact via an antiferromagnetic exchange coupling constant J , while Cr7Ni -Cu-Cr7Ni is composed of two Cr7Ni linked by a bridging moiety containing one Cu ion, that induces an inter-ring ferromagnetic interaction J'≪J . The longitudinal muon relaxation rate λ collected at low magnetic fields μ0H <0.15 Tesla, shows that the two systems present differences in spin dynamics vs temperature. While both samples exhibit a main peak in the muon relaxation rate vs temperature, at T ˜10 K for Cr7Ni and T ˜8 K for Cr7Ni -Cu-Cr7Ni , the two compounds have distinct additional features: Cr7Ni shows a shoulder in λ (T ) for T <8 K, while Cr7Ni -Cu-Cr7Ni shows a flattening of λ (T ) for T <2 K down to temperatures as low as T =20 mK. The main peak of both systems is explained by a Bloembergen-Purcell-Pound (BPP)-like heuristic fitting model that takes into account of a distribution of electronic spin characteristic times for T >5 K, while the shoulder presented by Cr7Ni can be reproduced by a BPP function that incorporates a single electronic characteristic time theoretically predicted to dominate for T <5 K. The flattening of λ (T ) in Cr7Ni -Cu-Cr7Ni occurring at very low temperature can be tentatively attributed to field-dependent quantum effects and/or to an inelastic term in the spectral density of the electronic spin fluctuations.

  5. OEDGE Modeling of Collector Probe measurements in L-mode from the DIII-D tungsten ring campaign

    NASA Astrophysics Data System (ADS)

    Elder, J. D.; Stangeby, P. C.; Unterberg, Z.; Donovan, D.; Wampler, W. R.; Watkins, J.; Abrams, T.; McLean, A. G.

    2017-10-01

    During the tungsten ring campaign on DIII-D, a collector probe system with multiple diameter, dual-facing collector rods was inserted into the far scrape off layer (SOL) near the outer midplane to measure the plasma tungsten content. For most probes more tungsten was observed on the side connected along field lines to the inner divertor, with the larger probes showing largest divertor-facing asymmetries The OEDGE code is used to model the tungsten erosion, transport and deposition. It has been enhanced with (i) a peripheral particle transport and deposition model to record the impurity content in the peripheral region outside the regular mesh, and (ii) a collector probe model. The OEDGE results approximately reproduce both the divertor-facing asymmetries and the radial decay of each collector probe profile. The effect of changing impurity transport assumptions and wall location are examined. The measured divertor-facing asymmetries imply a higher tungsten density in the plasma upstream of the probe; this was expected theoretically from the effect of the parallel ion temperature gradient force driving upstream transport of tungsten from the outer divertor and was also found in the code analysis. Work supported by the US Department of Energy under DE-FC02-04ER54698, DE-NA0003525, DE-AC05-00OR22725, and DE-AC52-07NA27344.

  6. Magnetic properties and hyperfine interactions in Cr{sub 8}, Cr{sub 7}Cd, and Cr{sub 7}Ni molecular rings from {sup 19}F-NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bordonali, L.; Borsa, F.; Consorzio INSTM, Via Giusti 9, I-50121 Firenze

    2014-04-14

    A detailed experimental investigation of the {sup 19}F nuclear magnetic resonance is made on single crystals of the homometallic Cr{sub 8} antiferromagnetic molecular ring and heterometallic Cr{sub 7}Cd and Cr{sub 7}Ni rings in the low temperature ground state. Since the F{sup −} ion is located midway between neighboring magnetic metal ions in the ring, the {sup 19}F-NMR spectra yield information about the local electronic spin density and {sup 19}F hyperfine interactions. In Cr{sub 8}, where the ground state is a singlet with total spin S{sub T} = 0, the {sup 19}F-NMR spectra at 1.7 K and low external magnetic fieldmore » display a single narrow line, while when the magnetic field is increased towards the first level crossing field, satellite lines appear in the {sup 19}F-NMR spectrum, indicating a progressive increase in the Boltzmann population of the first excited state S{sub T} = 1. In the heterometallic rings, Cr{sub 7}Cd and Cr{sub 7}Ni, whose ground state is magnetic with S{sub T} = 3/2 and S{sub T} = 1/2, respectively, the {sup 19}F-NMR spectrum has a complicated structure which depends on the strength and orientation of the magnetic field, due to both isotropic and anisotropic transferred hyperfine interactions and classical dipolar interactions. From the {sup 19}F-NMR spectra in single crystals we estimated the transferred hyperfine constants for both the F{sup −}-Ni{sup 2+} and the F{sup −}-Cd{sup 2+} bonds. The values of the hyperfine constants compare well to the ones known for F{sup −}-Ni{sup 2+} in KNiF{sub 3} and NiF{sub 2} and for F{sup −}-Cr{sup 3+} in K{sub 2}NaCrF{sub 6}. The results are discussed in terms of hybridization of the 2s, 2p orbitals of the F{sup −} ion and the d orbitals of the magnetic ion. Finally, we discuss the implications of our results for the electron-spin decoherence.« less

  7. Effect of collector molecular structure on the wettability of gold for froth flotation

    NASA Astrophysics Data System (ADS)

    Moncayo-Riascos, Ivan; Hoyos, Bibian A.

    2017-10-01

    Molecular dynamics simulations were conducted to evaluate the alteration of the hydrophilic state of gold surfaces caused by the adsorption of collectors with different molecular structures, using the contact angle of water droplets as an evaluation parameter. Four collectors were evaluated: SDS (with twelve hydrogenated carbon atoms), PAX (with five hydrogenated carbon atoms), DTP (with two branched aliphatic chains) and MBT (with an aromatic ring). The contact angle was evaluated for coatings of a monolayer (ML) and for surface densities of 2.89 μmol/m2 for each collector. For a ML, the hydrophobic effect generated by the aromatic ring of the MBT collector is comparable with the effect of the non-polar short chain of the PAX collector. The increase in hydrophobicity for the gold surfaces achieved by collectors with aliphatic chains is because the water-collector interaction energy is significantly higher (repulsive) than the water-gold interactions (attractive). The lowest increase in hydrophobicity was achieved with the MBT collector, since the carbon-water interaction energy of the aromatic ring is stronger than the interaction with the carbon atoms in the aliphatic chains. The calculated contact angles of the water droplets deviated less than 4% with respect to the experimental values.

  8. Solar collector mounting and support apparatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchison, J.A.

    1981-12-22

    A solar collector system is described of the type having a movable surface for receiving solar radiation having improved means for rotatably supporting the movable surface and for rotating the collector surface. A support axle for the collector includes a ball at one end which is carried within a cylindrical sleeve in the solar collector to support the weight of the collector. A torque transmitting arm comprising a flexible flat strip is connected at one end to the axle and at the other end to the collector surface. An improved rotational drive mechanism includes a first sprocket wheel carried onmore » the axle and a second sprocket wheel supported on a support pylon with a drive chain engaging both sprockets. A double acting piston also supported by the pylon is coupled to the chain so that the chain may be driven by a hydraulic control system to rotate the collector surfaces as required. An improved receiver tube support ring is also provided for use with the improved mounting and support apparatus to improve overall efficiency by reducing thermal losses.« less

  9. Magnetic anisotropy of the antiferromagnetic ring [Cr8F8Piv16].

    PubMed

    van Slageren, Joris; Sessoli, Roberta; Gatteschi, Dante; Smith, Andrew A; Helliwell, Madeleine; Winpenny, Richard E P; Cornia, Andrea; Barra, Anne-Laure; Jansen, Aloysius G M; Rentschler, Eva; Timco, Grigore A

    2002-01-04

    A new tetragonal (P42(1)2) crystalline form of [Cr8F8Piv16] (HPiv = pivalic acid, trimethyl acetic acid) is reported. The ring-shaped molecules, which are aligned in a parallel fashion in the unit cell, form almost perfectly planar, regular octagons. The interaction between the CrIII ions is antiferromagnetic (J = 12 cm(-1)) which results in a S = 0 spin ground state. The low-lying spin excited states were investigated by cantilever torque magnetometry (CTM) and high-frequency EPR (HFEPR). The compound shows hard-axis anisotropy. The axial zero-field splitting (ZFS) parameters of the first two spin excited states (S = 1 and S = 2, respectively) are D1 = 1.59(3) cm(-1) or 1.63 cm(-1) (from CTM and HFEPR, respectively) and D2 = 0.37 cm(-1) (from HFEPR). The dipolar contributions to the ZFS of the S = 1 and S = 2 spin states were calculated with the point dipolar approximation. These contributions proved to be less than the combined single-ion contributions. Angular overlap model calculations that used parameters obtained from the electronic absorption spectrum, showed that the unique axis of the single-ion ZFS is at an angle of 19.3(1) degrees with respect to the ring axis. The excellent agreement between the experimental and the theoretical results show the validity of the used methods for the analysis of the magnetic anisotropy in antiferromagnetic CrIII rings.

  10. Method for making a high current fiber brush collector

    NASA Astrophysics Data System (ADS)

    Scuro, S. J.

    1986-05-01

    An axial-type homopolar motor having high density, high current fiber brush collectors affording efficient, low contact resistance and low operating temperatures is discussed. The collectors include a ring of concentric row of brushes in equally spaced beveled holes soldered in place using a fixture for heating the ring to just below the solder melting point at a soldering iron for the local application of additional heat at each brush. Prior to soldering, an oxide film is formed on the surfaces of the brushes and ring, and the bevels are burnished to form a wetting surface. Flux applied with the solder at each bevel removes to an effective soldering depth the oxide film on the brushes and the holes.

  11. Labile trace metal contribution of the runoff collector to a semi-urban river.

    PubMed

    Villanueva, J D; Granger, D; Binet, G; Litrico, X; Huneau, F; Peyraube, N; Le Coustumer, P

    2016-06-01

    In this study, the distribution of labile trace metals (LTMs; Cd, Co, Cr, Cu, Ni, Pb, and Zn) in a semi-urban runoff collector was examined to assess its influence to a natural aqueous system (Jalle River, Bordeaux, France). This river is of high importance as it is part of a natural reserve dedicated to conserving aquatic flora and fauna. Two sampling campaigns with a differing precipitation condition (period 1, spring season; and period 2, summer season associated with storms) were considered. Precipitation and water flow were monitored. The collector is active as it is receptive to precipitation changes. It influences the river through discharging water, contributing LTMs, and channeling the mass fluxes. During period 2 where precipitation rate is higher, 25 % of the total water volume of the river was supplied by the collector. LTMs were detected at the collector. Measurements were done by using diffusive gradient in thin films (DGT) probes deployed during 1, 7, and 14 days in each period. The results showed that in an instantaneous period (day 1 or D1), most of these trace metals are above the environmental quality standards (Cd, Co, Cr, and Zn). The coefficient of determination (r (2) > 0.50) employed confirmed that the LTM concentrations in the downstream can be explained by the collector. While Co and Cr are from the upstream and the collector, Cd, Cu, and Zn are mostly provided by the collector. Ni, however, is mostly delivered by the upstream. Using the concentrations observed, the river can be affected by the collector in varying ways: (1) adding effect, resulting from the mix of the upstream and the collector (if upstream ˂ downstream); (2) diluted (if upstream ˃ downstream); and (3) conservative or unaffected (upstream ~ downstream). The range of LTM mass fluxes that the collector holds are as follows: (1) limited range or ˂10 g/day, Cd (0.04-1.75 g/day), Co (0.08-05.42 g/day), Ni (0.06-1.45 g/day), and Pb (0.08-9.89 g/day); (2) moderate

  12. Polar lunar power ring: Propulsion energy resource

    NASA Technical Reports Server (NTRS)

    Galloway, Graham Scott

    1990-01-01

    A ring shaped grid of photovoltaic solar collectors encircling a lunar pole at 80 to 85 degrees latitude is proposed as the primary research, development, and construction goal for an initial lunar base. The polar Lunar Power Ring (LPR) is designed to provide continuous electrical power in ever increasing amounts as collectors are added to the ring grid. The LPR can provide electricity for any purpose indefinitely, barring a meteor strike. The associated rail infrastructure and inherently expandable power levels place the LPR as an ideal tool to power an innovative propulsion research facility or a trans-Jovian fleet. The proposed initial output range is 90 Mw to 90 Gw.

  13. CsI-Silicon Particle detector for Heavy ions Orbiting in Storage rings (CsISiPHOS)

    NASA Astrophysics Data System (ADS)

    Najafi, M. A.; Dillmann, I.; Bosch, F.; Faestermann, T.; Gao, B.; Gernhäuser, R.; Kozhuharov, C.; Litvinov, S. A.; Litvinov, Yu. A.; Maier, L.; Nolden, F.; Popp, U.; Sanjari, M. S.; Spillmann, U.; Steck, M.; Stöhlker, T.; Weick, H.

    2016-11-01

    A heavy-ion detector was developed for decay studies in the Experimental Storage Ring (ESR) at the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Germany. This detector serves as a prototype for the in-pocket particle detectors for future experiments with the Collector Ring (CR) at FAIR (Facility for Antiproton and Ion Research). The detector includes a stack of six silicon pad sensors, a double-sided silicon strip detector (DSSD), and a CsI(Tl) scintillation detector. It was used successfully in a recent experiment for the detection of the β+-decay of highly charged 142Pm60+ ions. Based on the ΔE / E technique for particle identification and an energy resolution of 0.9% for ΔE and 0.5% for E (Full Width at Half Maximum (FWHM)), the detector is well-suited to distinguish neighbouring isobars in the region of interest.

  14. Heat collector

    DOEpatents

    Merrigan, M.A.

    1981-06-29

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  15. Heat collector

    DOEpatents

    Merrigan, Michael A.

    1984-01-01

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  16. The use of alloy 117 as a liquid metal current collector

    NASA Astrophysics Data System (ADS)

    Maribo, David; Sondergaard, Neal

    1987-09-01

    Low melting point, bismuth based alloys are potential replacements for NaK78 as liquid metal slip ring material because of their lower reactivity and potentially greater hydrodynamic stability. This paper describes experiments with one such alloy in a model of a 300 kW superconducting homopolar motor using close clearance braid type collectors. Slip ring tip velocities varied from 5 to 20 m/s and currents ranging from 500 to 2000 A. Viscous power losses tend to follow a simple turbulent mode. In all, the data supports the use of low melting point alloys as an alternative to Na78.

  17. Design and beam transport simulations of a multistage collector for the Israeli EA-FEM

    NASA Astrophysics Data System (ADS)

    Tecimer, M.; Canter, M.; Efimov, S.; Gover, A.; Sokolowski, J.

    2001-12-01

    A four stage asymmetric type depressed collector has been designed for the Israeli mm-wave FEM that is driven by a 1.4 MeV, 1.5 A electron beam. After leaving the interaction section the spent beam has an energy spread of 120 keV and 75 π mm mrad normalized beam emittance. Simulations of the beam transport system from the undulator exit through the decelerator tube into the collector have been carried out using EGUN and GPT codes. The latter has also been employed to study trajectories of the primary and scattered particles within the collector, optimizing the asymmetrical collector geometry and the electrode potentials at the presence of a deflecting magnetic field. The estimated overall system and collector efficiencies reach 50% and 70%, respectively, with a beam recovery of 99.6%. The design is aimed to attain millisecond long pulse operation and subsequently 1 kW average power. Simulation results are implemented in a mechanical design that leads to a simple, cost efficient assembly eliminating ceramic insulator rings between collector stages and the associated brazing in the manufacturing process. Instead, each copper plate is supported by insulating posts and freely displaceable within the vacuum chamber. We report on the simulation results of the beam transport and recovery systems and on the mechanical aspects of the multistage collector design.

  18. Solar Collectors

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Solar Energy's solar panels are collectors for a solar energy system which provides heating for a drive-in bank in Akron, OH. Collectors were designed and manufactured by Solar Energy Products, a firm established by three former NASA employees. Company President, Frank Rom, an example of a personnel-type technology transfer, was a Research Director at Lewis Research Center, which conducts extensive solar heating and cooling research, including development and testing of high-efficiency flat-plate collectors. Rom acquired solar energy expertise which helped the company develop two types of collectors, one for use in domestic/commercial heating systems and the other for drying grain.

  19. Multi-element RIMS Analysis of Genesis Solar Wind Collectors

    NASA Astrophysics Data System (ADS)

    Veryovkin, I. V.; Tripa, C. E.; Zinovev, A. V.; King, B. V.; Pellin, M. J.; Burnett, D. S.

    2009-12-01

    The samples of Solar Wind (SW) delivered by the NASA Genesis mission, present significant challenges for surface analytical techniques, in part due to severe terrestrial contamination of the samples on reentry, in part due to the ultra-shallow and diffused ion implants in the SW collector materials. We are performing measurements of metallic elements in the Genesis collectors using Resonance Ionization Mass Spectrometry (RIMS), an ultra-sensitive analytical method capable of detecting SW in samples with lateral dimensions of only a few mm and at concentrations from above one ppm to below one ppt. Since our last report at 2008 AGU Fall Meeting, we have (a) developed and tested new resonance ionization schemes permitting simultaneous measurements of up to three (Ca, Cr, and Mg) elements, and (b) improved reproducibility and accuracy of our RIMS analyses for SW-like samples (i.e. shallow ion implants) by developing and implementing an optimized set of new analytical protocols. This is important since the quality of scientific results from the Genesis mission critically depends on the accuracy of analytical techniques. In this work, we report on simultaneous RIMS measurements of Ca and Cr performed on two silicon SW collector samples, (#60179 and #60476). First, we have conducted test experiments with 3×1013 at/cm2 52Cr and 44Ca implants in silicon to evaluate the accuracy of our quantitative analyses. Implant fluencies were measured by RIMS to be 2.73×1013 and 2.71×1013 at/cm2 for 52Cr and 44Ca, respectively, which corresponds to an accuracy of ≈10%. Using the same implanted wafer as a reference, we conducted RIMS analyses of the Genesis samples: 3 spots on #60179 and 4 spots on #60476. The elemental SW fluencies expected for Cr and Ca are 2.95×1010 and 1.33×1011 at/cm2 , respectively. Our measurements of 52Cr yielded 3.0±0.6×1011 at/cm2 and 5.1±4.1×1010 at/cm2 for #60179 and #60476, respectively. For 40Ca, SW fluencies of 1.39±0.70×1011 at/cm2 in #60179

  20. Pulsed depressed collector

    DOEpatents

    Kemp, Mark A

    2015-11-03

    A high power RF device has an electron beam cavity, a modulator, and a circuit for feed-forward energy recovery from a multi-stage depressed collector to the modulator. The electron beam cavity include a cathode, an anode, and the multi-stage depressed collector, and the modulator is configured to provide pulses to the cathode. Voltages of the electrode stages of the multi-stage depressed collector are allowed to float as determined by fixed impedances seen by the electrode stages. The energy recovery circuit includes a storage capacitor that dynamically biases potentials of the electrode stages of the multi-stage depressed collector and provides recovered energy from the electrode stages of the multi-stage depressed collector to the modulator. The circuit may also include a step-down transformer, where the electrode stages of the multi-stage depressed collector are electrically connected to separate taps on the step-down transformer.

  1. Piston and Ring Assembly Friction Studies in Cummins 903 Engine

    DTIC Science & Technology

    1989-06-01

    5.0 um/div, horiz = 1.0 mm/div, Sample Interval of 7.0 um 121 Cr Oxide plasma ring on Cummins kaman-Cr Oxide, non lubricated 1.88I .9B 1I .8e8 I T 48...Chromium Oxide Liner, No Lubricant 122 Cr Oxide Plasma ring on Cummins-Naman Cr Oxide, Synthetic A oil 1.88- .908 I .788 T 1 .680 N .48 f C 38" " : " • Oo

  2. Ultracapacitor current collector

    DOEpatents

    Jerabek, Elihu Calfin; Mikkor, Mati

    2001-10-16

    An ultracapacitor having two solid, nonporous current collectors, two porous electrodes separating the collectors, a porous separator between the electrodes and an electrolyte occupying the pores in the electrodes and separator. At least one of the current collectors comprises a conductive metal substrate coated with a metal nitride, carbide or boride coating.

  3. MSFC hot air collectors

    NASA Technical Reports Server (NTRS)

    Anthony, K.

    1978-01-01

    A description of the hot air collector is given that includes a history of development, a history of the materials development, and a program summary. The major portion of the solar energy system cost is the collector. Since the collector is the heart of the system and the most costly subsystem, reducing the cost of producing collectors in large quantities is a major goal. This solar collector is designed to heat air and/or water cheaply and efficiently through the use of solar energy.

  4. Tracking system for solar collectors

    DOEpatents

    Butler, Barry L.

    1984-01-01

    A tracking system is provided for pivotally mounted spaced-apart solar collectors. A pair of cables is connected to spaced-apart portions of each collector, and a driver displaces the cables, thereby causing the collectors to pivot about their mounting, so as to assume the desired orientation. The collectors may be of the cylindrical type as well as the flat-plate type. Rigid spar-like linkages may be substituted for the cables. Releasable attachments of the cables to the collectors is also described, as is a fine tuning mechanism for precisely aligning each individual collector.

  5. Tracking system for solar collectors

    DOEpatents

    Butler, B.

    1980-10-01

    A tracking system is provided for pivotally mounted spaced-apart solar collectors. A pair of cables is connected to spaced-apart portions of each collector, and a driver displaces the cables, thereby causing the collectors to pivot about their mounting, so as to assume the desired orientation. The collectors may be of the cylindrical type as well as the flat-plate type. Rigid spar-like linkages may be substituted for the cables. Releasable attachments of the cables to the collectors is also described, as is a fine tuning mechanism for precisely aligning each individual collector.

  6. Solar collector-skylight assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dame, R.E.

    1984-10-09

    A solar collector-skylight assembly having movable parabolic concentrators wherein, in one position the parabolic concentrators direct solar energy to a collector to heat fluid circulating therethrough to thereby provide a solar heater; and when the concentrators are moved to another position, the assembly functions as a skylight wherein the solar energy is allowed to pass through the collector, to thereby illuminate the interior of a building upon which the solar collector-skylight assembly is mounted.

  7. Internal absorber solar collector

    DOEpatents

    Sletten, Carlyle J.; Herskovitz, Sheldon B.; Holt, F. S.; Sletten, E. J.

    1981-01-01

    Thin solar collecting panels are described made from arrays of small rod collectors consisting of a refracting dielectric rod lens with an absorber imbedded within it and a reflecting mirror coated on the back side of the dielectric rod. Non-tracking collector panels on vertical walls or roof tops receive approximately 90% of solar radiation within an acceptance zone 60.degree. in elevation angle by 120.degree. or more in the azimuth sectors with a collector concentration ratio of approximately 3.0. Miniaturized construction of the circular dielectric rods with internal absorbers reduces the weight per area of glass, plastic and metal used in the collector panels. No external parts or insulation are needed as heat losses are low due to partial vacuum or low conductivity gas surrounding heated portions of the collector. The miniature internal absorbers are generally made of solid copper with black selective surface and the collected solar heat is extracted at the collector ends by thermal conductivity along the absorber rods. Heat is removed from end fittings by use of liquid circulants. Several alternate constructions are provided for simplifying collector panel fabrication and for preventing the thermal expansion and contraction of the heated absorber or circulant tubes from damaging vacuum seals. In a modified version of the internal absorber collector, oil with temperature dependent viscosity is pumped through a segmented absorber which is now composed of closely spaced insulated metal tubes. In this way the circulant is automatically diverted through heated portions of the absorber giving higher collector concentration ratios than theoretically possible for an unsegmented absorber.

  8. Solar collector

    DOEpatents

    Wilhelm, William G.

    1982-01-01

    The field of this invention is solar collectors, and more particularly, the invention pertains to a flat plate collector that employs high performance thin films. The solar collector of this invention overcomes several problems in this field, such as excessive hardware, cost and reliability, and other prior art drawbacks outlined in the specification. In the preferred form, the apparatus features a substantially rigid planar frame (14). A thin film window (42) is bonded to one planar side of the frame. An absorber (24) of laminate construction is comprised of two thin film layers (24a, 24b) that are sealed perimetrically. The layers (24a, 24b) define a fluid-tight planar envelope (24c) of large surface area to volume through which a heat transfer fluid flows. Absorber (24) is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  9. The Redox-Active Chromium Phthalocyanine System: Isolation of Five Oxidation States from Pc4- CrI to Pc2- CrIII.

    PubMed

    Zhou, Wen; Thompson, John R; Leznoff, Clifford C; Leznoff, Daniel B

    2017-02-16

    The preparation and structural characterization of a series of chromium phthalocyanine complexes with multiple metal and ring oxidation states were achieved using PcCr II (1) (Pc=phthalocyanine) or PcCr II (THF) 2 (1⋅THF 2 ) as starting materials. The reaction of soluble 1⋅THF 2 with Br 2 or I 2 gave the PcCr III halide complexes PcCrX(THF) (X=I/I 3 , Br; 3, 4, respectively). Treatment of 1 with 0.5 equivalent of PhIO or air generated the dinuclear [PcCr(THF)] 2 (μ-O) (5), whereas the addition of one equivalent of AgSbF 6 to 1 resulted in oxidation to THF-solvated octahedral [PcCr III (THF) 2 ]SbF 6 (6). The reduction of 1 with three sequential equivalents of KEt 3 BH resulted in the isolation of [K(DME) 4 ][Pc 3- Cr II ] (7), [K(DME) 4 ] 2 [Pc 4- Cr II ] (8) and [K 6 (DME) 4 ][Pc 4- Cr I ] 2 (9), respectively. The reduced products are deep purple in colour, with visible absorption maxima between 500-580 nm. The ring-reduced complexes 7 and 8 are monomeric, whereas 9 is a 1D chain of dinuclear [PcCr] 2 units with intercalated K + cations and supported by Cr-Cr interactions of 2.988(2) Å. Addition of four equivalents of KC 8 resulted in the demetallated product PcK 2 (DME) 4 (10), which has a 1D chain structure. The isolation and structural characterization of new PcCr complexes spanning five oxidation states, including rare examples of crystalline reduced Pc-ring species emphasizes the broad redox activity and stability of phthalocyanine-based complexes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Solvent vapor collector

    DOEpatents

    Ellison, Kenneth; Whike, Alan S.

    1979-01-30

    A solvent vapor collector is mounted on the upstream inlet end of an oven having a gas-circulating means and intended for curing a coating applied to a strip sheet metal at a coating station. The strip sheet metal may be hot and solvent vapors are evaporated at the coating station and from the strip as it passes from the coating station to the oven. Upper and lower plenums within a housing of the collector are supplied with oven gases or air from the gas-circulating means and such gases or air are discharged within the collector obliquely in a downstream direction against the strip passing through that collector to establish downstream gas flows along the top and under surfaces of the strip so as, in turn, to induct solvent vapors into the collector at the coating station. A telescopic multi-piece shroud is usefully provided on the housing for movement between an extended position in which it overlies the coating station to collect solvent vapors released thereat and a retracted position permitting ready cleaning and adjustment of that coating station.

  11. Electrostatic particle collector with improved features for installing and/or removing its collector plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siegfried, Matthew J.; Radford, Daniel R.; Huffman, Russell K.

    An electrostatic particle collector may generally include a housing having sidewalls extending lengthwise between a first end and a second end. The housing may define a plate slot that extends heightwise within the housing between a top end and a bottom end. The housing may further include a plate access window that provides access to the bottom end of the plate slot. The collector may also include a collector plate configured to be installed within the plate slot that extends heightwise between a top edge and a bottom edge. Additionally, when the collector plate is installed within the plate slot,more » the bottom edge of the collector plate may be accessible from an exterior of the housing via the plate access window so as to allow the bottom edge of the collector plate to be moved relative to the housing to facilitate removal of the collector plate from the housing.« less

  12. A generalized correlation of experimental flat-plate collector performance. [solar collectors, performance tests, energy policy

    NASA Technical Reports Server (NTRS)

    Simon, F. F.; Miller, D. R.

    1975-01-01

    A generalized collector performance correlation was derived and shown by experimental verification to be of the proper form to account for the majority of the variable conditions encountered both in outdoor and in indoor collector tests. This correlation permits a determination of collector parameters which are essentially nonvarying under conditions which do vary randomly (outdoors) or conditions which vary in a controlled manner (indoors - simulator). It was shown that correlation of the experimental performance of collectors allows the following: (1) comparisons of different collector designs; (2) collector performance prediction under conditions that differ from the conditions of the test program; and (3) monitoring performance degradation effects.

  13. Heat pipes in solar collectors

    NASA Astrophysics Data System (ADS)

    Bairamov, R.; Toiliev, K.

    The diode property of heat pipes is evaluated for use in solar collectors. Model experiments show that the effect of heat pipes in solar collectors is most pronounced during the nighttime, when solar radiation is zero, due to a significant reduction in the heat loss from the transparent cover surface of the collector compared to that for conventional collectors. For a solar collector with a glass cover area of one square meter during the summer season when the maximum water temperature is 60 C and the discharge is 85 l/sq m/day, the water temperature in the accumulator tank of the solar collector with a heat pipe is 10-11 C higher than in the solar collector lacking a heat pipe. In addition, the design of a solar house with passive systems in which heat pipes serve as the heat eliminating mechanism is discussed

  14. Multiple discharge cylindrical pump collector

    DOEpatents

    Dunn, Charlton; Bremner, Robert J.; Meng, Sen Y.

    1989-01-01

    A space-saving discharge collector 40 for the rotary pump 28 of a pool-type nuclear reactor 10. An annular collector 50 is located radially outboard for an impeller 44. The annular collector 50 as a closed outer periphery 52 for collecting the fluid from the impeller 44 and producing a uniform circumferential flow of the fluid. Turning means comprising a plurality of individual passageways 54 are located in an axial position relative to the annular collector 50 for receiving the fluid from the annular collector 50 and turning it into a substantially axial direction.

  15. Rolled-out collectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shurcliff, W.A.

    1979-04-01

    SolaRoll is a solar collector material composed of extruded strips of black ethylene propylene diene monomer (EPDM) that is suitable for water or air type collectors. SolaRoll is provided in rolls and consists of an absorber mat with tubes and fins and a framing strip comprising all the parts of the collector frame. The rolls are bent in a counterflow pattern to cover the entire collector area and the mat is fastened with a thermosetting mastic adhesive. The heat transfer fluid is plain water as freezing does not injure the EPDM. Installation of the glazing in the framing strip ismore » described. EPDM has the disadvantage of low thermal conductivity but its use does not require antifreeze or a heat exchanger. Design options and suitable applications of SolaRoll systems are discussed.« less

  16. Tribological Properties of CrN Coating Under Lubrication Conditions

    NASA Astrophysics Data System (ADS)

    Lubas, Janusz

    2012-08-01

    The paper presents research results of the influence of CrN coating on the friction parameters in friction pairs under lubricated friction conditions. The formed CrN homogeneous coating and CrN-steel 46Cr2 "ring" structure coating was matched under test conditions with a counterpart made from SAE-48 and SAE-783 bearing alloys. Tested sliding pairs were lubricated with 5W/40 Lotos synthetic engine oil. The tribological test was conducted on block-on-ring tester. The applied modification technologies of the surface layer of steel allowed for obtaining construction materials with pre-determined tribological characteristics required for the elements of friction pairs in lubricated contact. The results of the tests proved the possibility of implementing CrN coating in friction pairs, which work under mixed friction conditions. The results showed differences in the wear of bearing alloy, as the effect of the interaction between the co-operating surface layers and of the physiochemical changes of their surfaces, induced by external forces. The smallest wear of the bearing alloy occurs during the cooperation with the nitrided layer, whereas the largest wear occurs during the cooperation with the homogenous CrN coating. The CrN coating-46Cr2 steel "ring structure" decreases friction resistance during the start-up of the sliding pair, as well as lowers the level of the friction force and temperature in the friction area during co-operation with SAE-783 bearing alloys.

  17. Tower-supported solar-energy collector

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K.

    1977-01-01

    Multiple-collector tower system supports three receiver/concentrators that absorb solar energy reflected from surrounding field of heliostats. System overcomes disadvantages of tower-supported collectors. Booms can be lowered during heavy winds to protect arms and collectors.

  18. City sewer collectors biocorrosion

    NASA Astrophysics Data System (ADS)

    Ksiażek, Mariusz

    2014-12-01

    This paper presents the biocorrosion of city sewer collectors impregnated with special polymer sulphur binders, polymerized sulphur, which is applied as the industrial waste material. The city sewer collectors are settled with a colony of soil bacteria which have corrosive effects on its structure. Chemoautotrophic nitrifying bacteria utilize the residues of halites (carbamide) which migrate in the city sewer collectors, due to the damaged dampproofing of the roadway and produce nitrogen salts. Chemoorganotrophic bacteria utilize the traces of organic substrates and produce a number of organic acids (formic, acetic, propionic, citric, oxalic and other). The activity of microorganisms so enables the origination of primary and secondary salts which affect physical properties of concretes in city sewer collectors unfavourably.

  19. Solar radiation on a catenary collector

    NASA Technical Reports Server (NTRS)

    Crutchik, M.; Appelbaum, J.

    1992-01-01

    A tent-shaped structure with a flexible photovoltaic blanket acting as a catenary collector is presented. The shadow cast by one side of the collector produces a shadow on the other side of the collector. This self-shading effect is analyzed. The direct beam, the diffuse, and the albedo radiation on the collector are determined. An example is given for the insolation on the collector operating on Viking Lander 1 (VL1).

  20. Solar Collector Control System.

    DTIC Science & Technology

    A system for controlling the movement in azimuth and elevation of a large number of sun following solor energy collectors from a single controller...The system utilizes servo signal generators, a modulator and a demodulator for transmitting the servo signals, and stepping motors for controlling...remotely located solar collectors. The system allows precise tracking of the sun by a series of solar collectors without the necessity or expense of individualized solar trackers. (Author)

  1. Solar collector

    DOEpatents

    Wilhelm, W.G.

    The invention pertains to a flat plate collector that employs high performance thin films. The solar collector of this invention overcomes several problems in this field, such as excessive hardware, cost and reliability, and other prior art drawbacks outlined in the specification. In the preferred form, the apparatus features a substantially rigid planar frame. A thin film window is bonded to one planar side of the frame. An absorber of laminate construction is comprised of two thin film layers that are sealed perimetrically. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. Absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  2. Structurally integrated steel solar collector

    DOEpatents

    Moore, Stanley W.

    1977-03-08

    Herein is disclosed a flat plate solar heat collector unit. The solar collector is integrated as a structural unit so that the collector also functions as the building roof. The functions of efficient heat collection, liquid coolant flow passages, roof structural support and building insulation are combined into one unit.

  3. Structurally integrated steel solar collector

    DOEpatents

    Moore, S.W.

    1975-06-03

    Herein is disclosed a flate plate solar heat collector unit. The solar collector is integrated as a structural unit so that the collector also functions as the building roof. The functions of efficient heat collection, liquid coolant flow passages, roof structural support, and building insulation are combined into one unit.

  4. Turning collectors for solar radiation

    DOEpatents

    Barak, Amitzur Z.

    1976-01-01

    A device is provided for turning a solar collector about the polar axis so that the collector is directed toward the sun as the sun tracks the sky each day. It includes two heat-expansive elements and a shadow plate. In the morning a first expansive element is heated, expands to turn the collector to face the sun, while the second expansive element is shaded by the plate. In the afternoon the second element is heated, expands to turn the collector to face the sun, while the first is shaded by the plate.

  5. Delocalization of positive charge in π-stacked multi-benzene rings in multilayered cyclophanes.

    PubMed

    Fujitsuka, Mamoru; Tojo, Sachiko; Shibahara, Masahiko; Watanabe, Motonori; Shinmyozu, Teruo; Majima, Tetsuro

    2011-02-10

    In the present study, delocalization of a positive charge in π-stacked multi-benzene rings in multilayered para- and meta-cyclophanes, in which benzene rings are connected by propyl chains to form a chromophore array with the face-to-face structure, was investigated by means of transient absorption spectroscopy during the pulse radiolysis using dichloroethane as a solvent. The local excitation and charge resonance (CR) bands were successfully observed. It was revealed that the CR band shifted to the longer wavelength side with the number of the benzene rings. The stabilization energy estimated from the peak position of the CR band showed the efficient charge delocalization over the cyclophanes. Furthermore, the CR bands showed the slight spectral change attributable to the change in distribution of the conformers. The substantially long lifetime of the CR band can be explained on the basis of the smaller charge distribution on the outer layers of the multilayered cyclophanes.

  6. Solar radiation on a catenary collector

    NASA Technical Reports Server (NTRS)

    Crutchik, M.; Appelbaum, J.

    1992-01-01

    A tent-shaped structure with a flexible photovoltaic blanket acting as a catenary collector is presented. The shadow cast by one side of the collector on the other side producing a self shading effect is analyzed. The direct beam, the diffuse and the albedo radiation on the collector are determined. An example is given for the insolation on the collector operating on the martian surface for the location of Viking Lander 1 (VL1).

  7. Design package for concentrating solar collector panels

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Information used to evaluate the design of the Northrup concentrating collector is presented. Included are the system performance specifications, the applications manual, and the detailed design drawings of the collector. The collector is a water/glycol/working fluid type, with a dipped galvanized steel housing, transparent acrylic Fresnel lens cover, copper absorber tube, and fiber glass insulation. It weights 98 pounds. A collector assembly includes four collector units within a tracking mount array.

  8. Analytical prediction with multidimensional computer programs and experimental verification of the performance, at a variety of operating conditions, of two traveling wave tubes with depressed collectors

    NASA Technical Reports Server (NTRS)

    Dayton, J. A., Jr.; Kosmahl, H. G.; Ramins, P.; Stankiewicz, N.

    1979-01-01

    Experimental and analytical results are compared for two high performance, octave bandwidth TWT's that use depressed collectors (MDC's) to improve the efficiency. The computations were carried out with advanced, multidimensional computer programs that are described here in detail. These programs model the electron beam as a series of either disks or rings of charge and follow their multidimensional trajectories from the RF input of the ideal TWT, through the slow wave structure, through the magnetic refocusing system, to their points of impact in the depressed collector. Traveling wave tube performance, collector efficiency, and collector current distribution were computed and the results compared with measurements for a number of TWT-MDC systems. Power conservation and correct accounting of TWT and collector losses were observed. For the TWT's operating at saturation, very good agreement was obtained between the computed and measured collector efficiencies. For a TWT operating 3 and 6 dB below saturation, excellent agreement between computed and measured collector efficiencies was obtained in some cases but only fair agreement in others. However, deviations can largely be explained by small differences in the computed and actual spent beam energy distributions. The analytical tools used here appear to be sufficiently refined to design efficient collectors for this class of TWT. However, for maximum efficiency, some experimental optimization (e.g., collector voltages and aperture sizes) will most likely be required.

  9. Standardized performance tests of collectors of solar thermal energy: Prototype moderately concentrating grooved collectors

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Prototypes of moderately concentrating grooved collectors were tested with a solar simulator for varying inlet temperature, flux level, and incident angle. Collector performance is correlated in terms of inlet temperature and flux level.

  10. Solar thermal collectors using planar reflector

    NASA Technical Reports Server (NTRS)

    Espy, P. N.

    1978-01-01

    Specular reflectors have been used successfully with flat-plate collectors to achieve exceptionally high operating temperatures and high delivered energy per unit collector area. Optimal orientation of collectors and reflectors can result in even higher performance with an improved relationship between energy demand and supply. This paper reports on a study providing first order optimization of collector-reflector arrays in which single- and multiple-faceted reflectors in fixed or singly adjustable configurations provide delivered energy maxima in either summer or winter.

  11. Positive current collector for Li||Sb-Pb liquid metal battery

    NASA Astrophysics Data System (ADS)

    Ouchi, Takanari; Sadoway, Donald R.

    2017-07-01

    Corrosion in grid-scale energy storage devices adversely affects service lifetime and thus has a significant economic impact on their deployment. In this work, we investigate the corrosion of steel and stainless steels (SSs) as positive current collectors in the Li||Sb-Pb liquid metal battery. The erosion and formation of new phases on low-carbon steel, SS301, and SS430 were evaluated both in static conditions and under cell operating conditions. The cell performance is not adversely affected by the dissolution of iron or chromium but rather nickel. Furthermore, the in situ formation of a Fe-Cr-Sb layer helps mitigate the recession of SS430.

  12. Biological sample collector

    DOEpatents

    Murphy, Gloria A [French Camp, CA

    2010-09-07

    A biological sample collector is adapted to a collect several biological samples in a plurality of filter wells. A biological sample collector may comprise a manifold plate for mounting a filter plate thereon, the filter plate having a plurality of filter wells therein; a hollow slider for engaging and positioning a tube that slides therethrough; and a slide case within which the hollow slider travels to allow the tube to be aligned with a selected filter well of the plurality of filter wells, wherein when the tube is aligned with the selected filter well, the tube is pushed through the hollow slider and into the selected filter well to sealingly engage the selected filter well and to allow the tube to deposit a biological sample onto a filter in the bottom of the selected filter well. The biological sample collector may be portable.

  13. Gyrotron collector systems: Types and capabilities

    NASA Astrophysics Data System (ADS)

    Manuilov, V. N.; Morozkin, M. V.; Luksha, O. I.; Glyavin, M. Yu

    2018-06-01

    A classification and a comparative analysis of the collector systems of gyrotrons of different frequency ranges and power levels are presented. Both the classical schemes of gyrotron collectors with an adiabatic magnetic field and new ones, including the systems with dynamic scanning of the electron beam, collectors with a highly nonuniform field, as well as multistage recovery schemes, are considered. Recommendations on the use of this or that type of collectors, depending on the output power of the device and the pulse width, are given.

  14. Indoor thermal performance evaluation of Daystar solar collector

    NASA Technical Reports Server (NTRS)

    Shih, K., Sr.

    1977-01-01

    The test procedures used and results obtained from a test program to obtain thermal performance data on a Daystar Model 21B, S/N 02210, Unit 2, liquid solar collector under simulated conditions are described. The test article is a flat plate solar collector using liquid as a heat transfer medium. The absorber plate is copper and coated with black paint. Between the tempered low iron glass and absorber plate is a polycarbonate trap used to suppress convective heat loss. The collector incorporates a convector heat dump panel to limit temperature excursions during stagnation. The following tests were conducted: (1) collector thermal efficiency; (2) collector time constant; (3) collector incident angle modifier; (4) collector heat loss coefficient; and (5) collector stagnation.

  15. Solar collector with altitude tracking

    DOEpatents

    Barak, Amitzur Z.

    1977-01-01

    A device is provided for turning a solar collector about an east-west horizontal axis so that the collector is tilted toward the sun as the EWV altitude of the sun varies each day. It includes one or more heat responsive elements and a shading means aligned so that within a range of EWV altitudes of the sun during daylight hours the shading means shades the element or elements while during the rest of the daylight hours the elements or elements are heated by the sun to assume heated, stable states. Mechanical linkage between the collector and the element is responsive to the states of the element or elements to tilt the collector in accordance with variations in the EWV altitude of the sun.

  16. Bioinspired plate-based fog collectors.

    PubMed

    Heng, Xin; Luo, Cheng

    2014-09-24

    In a recent work, we explored the feeding mechanism of a shorebird to transport liquid drops by repeatedly opening and closing its beak. In this work, we apply the corresponding results to develop a new artificial fog collector. The collector includes two nonparallel plates. It has three advantages in comparison with existing artificial collectors: (i) easy fabrication, (ii) simple design to scale up, and (iii) active transport of condensed water drops. Two collectors have been built. A small one with dimensions of 4.2 × 2.1 × 0.05 cm(3) (length × width × thickness) was first built and tested to examine (i) the time evolution of condensed drop sizes and (ii) the collection processes and efficiencies on the glass, SiO2, and SU-8 plates. Under similar experimental conditions, the amount of water collected per unit area on the small collector is about 9.0, 4.7, and 3.7 times, respectively, as much as the ones reported for beetles, grasses, and metal wires, and the total amount of water collected is around 33, 18, and 15 times. On the basis of the understanding gained from the tests on the small collector, a large collector with dimensions of 26 × 10 × 0.2 cm(3) was further built and tested, which was capable of collecting 15.8 mL of water during a period of 36 min. The amount of water collected, when it is scaled from 36 to 120 min, is about 878, 479, or 405 times more than what was collected by individual beetles, grasses, or metal wires.

  17. Electro-optical hybrid slip ring

    NASA Astrophysics Data System (ADS)

    Hong, En

    2005-11-01

    The slip ring is a rotary electrical interface, collector, swivel or rotary joint. It is a physical system that can perform continuous data transfer and data exchange between a stationary and a rotating structure. A slip ring is generally used to transfer data or power from an unrestrained, continuously rotating electro-mechanical system in real-time, thereby simplifying operations and eliminating damage-prone wires dangling from moving joints. Slip rings are widely used for testing, evaluating, developing and improving various technical equipment and facilities with rotating parts. They are widely used in industry, especially in manufacturing industries employing turbo machinery, as in aviation, shipbuilding, aerospace, defense, and in precise facilities having rotating parts such as medical Computerized Tomography (CT) and MRI scanners and so forth. Therefore, any improvement in slip ring technology can impact large markets. Research and development in this field will have broad prospects long into the future. The goal in developing the current slip ring technology is to improve and increase the reliability, stability, anti-interference, and high data fidelity between rotating and stationary structures. Up to now, there have been numerous approaches used for signal and data transfer utilizing a slip ring such as metal contacts, wires, radio transmission, and even liquid media. However, all suffer from drawbacks such as data transfer speed limitations, reliability, stability, electro-magnetic interference and durability. The purpose of the current research is to break through these basic limitations using an optical solution, thereby improving performance in current slip ring applications. This dissertation introduces a novel Electro-Optical Hybrid Slip Ring technology, which makes "through the air" digital-optical communication between stationary and rotating systems a reality with high data transfer speed, better reliability and low interference susceptibility

  18. Microstructure and Sliding Wear Performance of Cr7C3-(Ni,Cr)3(Al,Cr) Coating Deposited from Cr7C3 In Situ Formed Atomized Powder

    NASA Astrophysics Data System (ADS)

    Zhu, Hong-Bin; Shen, Jie; Gao, Feng; Yu, Yueguang; Li, Changhai

    2017-01-01

    This work is aimed at developing a new type of Cr7C3-(Ni,Cr)3(Al,Cr) coating for parts used in heavy-duty diesel engines. The feedstock, in which the stripe-shaped Cr7C3 was in situ formed, was firstly prepared by vacuum melting and gas atomization and then subjected by high-velocity oxy-fuel spraying to form the coatings. The carbon content, microstructure and phase constitution of the powders, as well as the sprayed coatings, were analyzed by chemical analysis, SEM and XRD. The hardness and sliding wear performance of the sprayed coatings were also tested and compared to a commercial Cr3C2-NiCr coating used on piston rings. The results showed that the content of carbon in feedstock was almost the same as designed, and that the volume content of in situ formed Cr7C3 was increased with carbon and chromium added. The major phases of the powders and sprayed coatings are Cr7C3 and Cr-alloyed Ni3Al. Only a small amount of carbon lost during the spraying process. As Cr7C3 content increased in the coatings, the microhardness at room temperature was firstly increased to about 1000Hv0.3. The microhardness of the coatings stayed almost constant, while the testing temperature was raised up to 700 °C for 0.5 h, which illustrates the potential application of the investigated coatings under high temperature conditions. The coatings containing 70 and 77 vol.% Cr7C3 showed the most promising wear resistance, lower friction coefficient and better tribological compatibility to gray cast iron counterpart than other tested Cr7C3-(Ni,Cr)3(Al,Cr) coatings and the reference Cr3C2-NiCr coating.

  19. Standardized performance tests of collectors of solar thermal energy: A selectively coated, steel collector with one transparent cover

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Basic test results are presented of a flat-plate solar collector whose performance was determined in solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and coolant flow rates. Collector efficiency was correlated in terms of inlet temperature and flux level.

  20. Black Liquid Solar Collector Demonstrator.

    ERIC Educational Resources Information Center

    Weichman, F. L.; Austen, D. J.

    1979-01-01

    Describes the details of constructing, and use of, a solar collector. Uses a black liquid to absorb the energy, the thermosyphon effect to drive the liquid through the collector, and a floodlamp as a surrogate sun. (GA)

  1. Artists and collectors

    NASA Astrophysics Data System (ADS)

    Meulien-Ohlmann, Odile

    1995-02-01

    `Where can I buy holograms?' `Where can I exhibit, there is no more gallery to show me?' These are the two complaints I have heard these past two years, first from the collectors and museum curators, second from the artists, Trained as a psycho-sociologist, I have been the curator and research associate of the Museum of Holography in Washington, D.C. for 7 years, at a time when holography was coming out of the laboratory, creating a real 3-D novelty in people's minds. I saw the mass production growing and the applications multiplying. Meanwhile the artists appeared and started to deal with gallery managers. After the renting period of artworks for exhibits, price went up. The general recession affected the art and the dialogue between collectors and artists became harder. Having my husband as an artist, I know pretty well both sides. My paper tries to analyze the situation to facilitate the communication between artists and collectors.

  2. Standardized performance tests of collectors of solar thermal energy - A flat-plate copper collector with parallel mylar striping

    NASA Technical Reports Server (NTRS)

    Johnson, S. M.

    1976-01-01

    Basic test results are reported for a flat plate solar collector whose performance was determined in a solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and one coolant flow rate. Collector efficiency is correlated in terms of inlet temperature and flux level.

  3. Integrated main rail, feed rail, and current collector

    DOEpatents

    Petri, Randy J.; Meek, John; Bachta, Robert P.; Marianowski, Leonard G.

    1994-01-01

    A separator plate for a fuel cell comprising an anode current collector, a cathode current collector and a main plate, the main plate disposed between the anode current collector and the cathode current collector. The anode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the anode side of the separator plate and the cathode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the cathode side of the separator plate. In this manner, the number of components required to manufacture and assemble a fuel cell stack is reduced.

  4. Base and collector resistances in heterojunction bipolar transistors

    NASA Astrophysics Data System (ADS)

    Anholt, R.; Bozada, C.; Desalvo, G.; Dettmer, R.; Ebel, J.; Gillespie, J.; Jenkins, T.; Havasy, C.; Ito, C.; Nakano, K.; Pettiford, C.; Quach, T.; Sewell, J.; Via, D.

    1997-11-01

    In heterojunction bipolar transistors (HBTs), the reverse base currents flow from the outer base periphery to the collector. The reverse base and collector resistances are therefore dominated by contact resistance, which is inversely proportional to the outer base and inner collector periphery lengths which are larger than the emitter lengths when the base and collector electrodes surround the emitter element. These resistances can be extracted from reverse Gummel (current vs Vbc with Vbc = 0) and from measurements of output resistances at zero collector voltage sweeps. We compare models with measurements where the base and collector peripheries decrease with increasing emitter diameters.

  5. Integrated main rail, feed rail, and current collector

    DOEpatents

    Petri, R.J.; Meek, J.; Bachta, R.P.; Marianowski, L.G.

    1994-11-08

    A separator plate is described for a fuel cell comprising an anode current collector, a cathode current collector and a main plate, the main plate disposed between the anode current collector and the cathode current collector. The anode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the anode side of the separator plate and the cathode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the cathode side of the separator plate. In this manner, the number of components required to manufacture and assemble a fuel cell stack is reduced. 9 figs.

  6. Comparison of three different collectors for process heat applications

    NASA Astrophysics Data System (ADS)

    Brunold, Stefan; Frey, R.; Frei, Ulrich

    1994-09-01

    In general vacuum tube collectors are used in solar process heat systems. Another possibility is to use transparent insulated flat plate collectors. A critical point however, is that most of the common transparent insulating materials can not withstand high temperatures because they consist of plastics. Thus, temperature resistive collector covers combining a high tranmisivity with a low U-value are required. One possibility is to use capillaries made of glass instead of plastics. Measurement results of collector efficiency and incident angle modifier will be presented as well as calculated energy gains for three different collectors: a vacuum tube collector (Giordano Ind., France), a CPC vacuum tube collector (microtherm Energietechnik Germany; a new flat plate collector using glass capillary as transparent insulation (SET, Germany).

  7. A Passive Nuclear Debris Collector.

    ERIC Educational Resources Information Center

    Griffin, John J.; And Others

    1979-01-01

    Describes a nuclear debris collector which removes trace substances from the lower atmosphere during rainfall. Suggests that the collector could be implemented into courses at various educational levels and could result in developing a network for monitoring the geographical extent of nuclear contamination. (Author/SA)

  8. Cleaner for Solar-Collector Covers

    NASA Technical Reports Server (NTRS)

    Frickland, P. O.; Cleland, E. L.

    1983-01-01

    Simple self-contained cleaning system proposed for solar collectors or solar-collector protective domes. Perforated transparent plastic cap attached to top of protective dome in heliostat solar-energy collection system distributes cleaning fluid over surface of dome without blocking significant fraction of solar radiation.

  9. Miniature, ruggedized data collector

    NASA Astrophysics Data System (ADS)

    Jackson, Scott; Calcutt, Wade; Knobler, Ron; Jones, Barry; Klug, Robert

    2009-05-01

    McQ has developed a miniaturized, programmable, ruggedized data collector intended for use in weapon testing or data collection exercises that impose severe stresses on devices under test. The recorder is designed to survive these stresses which include acceleration and shock levels up to 100,000 G. The collector acquires and stores up to four channels of signal data to nonvolatile memory for later retrieval by a user. It is small (< 7 in3), light weight (< 1 lb), and can operate from various battery chemistries. A built-in menuing system, accessible via a USB interface, allows the user to configure parameters of the recorder operation, such as channel gain, filtering, and signal offsets, and also to retrieve recorded data for analysis. An overview of the collector, its features, performance, and potential uses, is presented.

  10. Standardized performance tests of collectors of solar thermal energy: An evacuated flatplate copper collector with a serpentine flow distribution

    NASA Technical Reports Server (NTRS)

    Johnson, S. M.

    1976-01-01

    Basic test results are given for a flat plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and one coolant flow rate. Collector efficiency is correlated in terms of inlet temperature and flux level.

  11. Deposition Profile Analysis from DIII-D Metal Rings Campaign Outer-Midplane Collector Probe Diagnostic and Utilization of Enriched Isotopic Tungsten Tracer Particles

    NASA Astrophysics Data System (ADS)

    Donovan, D. C.; Duran, J.; Zamperini, S.; Lee, S.; Unterberg, E. A.; Wampler, W. R.; Rudakov, D. L.; Elder, D.; Stangeby, P. C.; Abrams, T.

    2017-10-01

    The DIII-D Metal Rings Campaign used isotopically-enriched, W-coated divertor tiles coupled with dual-facing midplane collector probes (CPs) in the far Scrape-off Layer (SOL). Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) results are presented characterizing the isotopic ratios of deposited W on the CPs and which give quantitative information on the transport of W from specific poloidal locations within the lower outer divertor region having different isotopically-marked tiles. Rutherford Backscattering Spectrometry (RBS) of these CPs has provided areal densities of elemental W content. These resultant W deposition profiles were compared with DIVIMP modelling of the far-SOL to better understand impurity transport in the edge plasma. CPs were exposed for 37 distinct operating configurations (L-mode/H-mode, forward/reverse Bt, strikepoint position). Radial decay lengths (RDL) between 5 and 50 mm were observed with consistently narrower RDL and higher peak W content on the side of the probes connected along field lines to the inner divertor, indicating a concentration of W in the upstream plasma. Correlations are discussed between peak W content, RDL, and isotopic profiles on the CPs over a wide range of conditions. Work supported by US DOE under DE-AC05-00OR22725, DE-FG02-07ER54917, DE-FC02-04ER54698, DE-NA0003525.

  12. A high performance porous flat-plate solar collector

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.; Clarke, V.; Reynolds, R.

    1979-01-01

    A solar collector employing a porous matrix as a solar absorber and heat exchanger is presented and its application in solar air heaters is discussed. The collector is composed of a metallic matrix with a porous surface which acts as a large set of cavity radiators; cold air flows through the matrix plate and exchanges heat with the thermally stratified layers of the matrix. A steady-state thermal analysis of the collector is used to determine collector temperature distributions for the cases of an opaque surface matrix with total absorption of solar energy at the surface, and a diathermanous matrix with successive solar energy absorption at each depth. The theoretical performance of the porous flat plate collector is shown to exceed greatly that of a solid flat plate collector using air as the working medium for any given set of operational conditions. An experimental collector constructed using commercially available, low cost steel wool as the matrix has been found to have thermal efficiencies from 73 to 86%.

  13. 21 CFR 874.4800 - Bone particle collector.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Bone particle collector. 874.4800 Section 874.4800...) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Surgical Devices § 874.4800 Bone particle collector. (a) Identification. A bone particle collector is a filtering device intended to be inserted into a suction tube...

  14. 21 CFR 874.4800 - Bone particle collector.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Bone particle collector. 874.4800 Section 874.4800...) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Surgical Devices § 874.4800 Bone particle collector. (a) Identification. A bone particle collector is a filtering device intended to be inserted into a suction tube...

  15. 21 CFR 874.4800 - Bone particle collector.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Bone particle collector. 874.4800 Section 874.4800...) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Surgical Devices § 874.4800 Bone particle collector. (a) Identification. A bone particle collector is a filtering device intended to be inserted into a suction tube...

  16. 21 CFR 874.4800 - Bone particle collector.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Bone particle collector. 874.4800 Section 874.4800...) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Surgical Devices § 874.4800 Bone particle collector. (a) Identification. A bone particle collector is a filtering device intended to be inserted into a suction tube...

  17. 21 CFR 874.4800 - Bone particle collector.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Bone particle collector. 874.4800 Section 874.4800...) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Surgical Devices § 874.4800 Bone particle collector. (a) Identification. A bone particle collector is a filtering device intended to be inserted into a suction tube...

  18. AEROSOL PARTICLE COLLECTOR DESIGN STUDY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S; Richard Dimenna, R

    2007-09-27

    A computational evaluation of a particle collector design was performed to evaluate the behavior of aerosol particles in a fast flowing gas stream. The objective of the work was to improve the collection efficiency of the device while maintaining a minimum specified air throughput, nominal collector size, and minimal power requirements. The impact of a range of parameters was considered subject to constraints on gas flow rate, overall collector dimensions, and power limitations. Potential improvements were identified, some of which have already been implemented. Other more complex changes were identified and are described here for further consideration. In addition, fruitfulmore » areas for further study are proposed.« less

  19. FRACTIONATING COLUMN PRODUCT COLLECTOR CONTROL

    DOEpatents

    Paxson, G.D. Jr.

    1964-03-10

    Means for detecting minute fluid products from a chemical separation column and for advancing a collector tube rack in order to automatically separate and collect successive fractionated products are described. A charge is imposed on the forming drops at the column orifice to create an electric field as the drop falls in the vicinity of a sensing plate. The field is detected by an electrometer tube coupled to the plate causing an output signal to actuate rotation of a collector turntable rack, thereby positioning new collectors under the orifice. The invention provides reliable automatic collection independent of drop size, rate of fall, or chemical composition. (AEC)

  20. Current collectors for improved safety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelmalak, Michael Naguib; Allu, Srikanth; Dudney, Nancy J.

    A battery electrode assembly includes a current collector with conduction barrier regions having a conductive state in which electrical conductivity through the conduction barrier region is permitted, and a safety state in which electrical conductivity through the conduction barrier regions is reduced. The conduction barrier regions change from the conductive state to the safety state when the current collector receives a short-threatening event. An electrode material can be connected to the current collector. The conduction barrier regions can define electrical isolation subregions. A battery is also disclosed, and methods for making the electrode assembly, methods for making a battery, andmore » methods for operating a battery.« less

  1. Ring head recording on perpendicular media: Output spectra for CoCr and CoCr/NiFe media

    NASA Astrophysics Data System (ADS)

    Stubbs, D. P.; Whisler, J. W.; Moe, C. D.; Skorjanec, J.

    1985-04-01

    The recording density response for sputtered CoCr (thickness=0.5 μm) and CoCr/NiFe (t=0.25 μm/0.5 μm) as well as evaporated CoNi (t=0.12 μm) and Co surface-doped iron oxide particulate media has been measured by reading and writing with Mn-Zn ferrite heads (gap length=0.375 μm, track width=37 μm) in contact with the media. Measurements to 200 kfc/i (thousand flux changes per inch) show a gap null around 115 kfc/i. The data have been normalized by dividing out the head sensitivity to obtain the value of spacing plus transition width (d+a) for the various media. For the CoCr media this value varied from 0.075-0.088 μm; for CoNi, 0.100 μm, and for the particulate medium, 0.163 μm. In addition, testing with a larger gapped Mn-Zn ferrite head (g=2.43 μm) shows that the head fields are distorted by the soft magnetic underlayer in dual layer CoCr/NiFe samples when the gap length is large compared to the distance to the underlayer.

  2. Fuel cell current collector

    DOEpatents

    Katz, Murray; Bonk, Stanley P.; Maricle, Donald L.; Abrams, Martin

    1991-01-01

    A fuel cell has a current collector plate (22) located between an electrode (20) and a separate plate (25). The collector plate has a plurality of arches (26, 28) deformed from a single flat plate in a checkerboard pattern. The arches are of sufficient height (30) to provide sufficient reactant flow area. Each arch is formed with sufficient stiffness to accept compressive load and sufficient resiliently to distribute the load and maintain electrical contact.

  3. Optimal nonimaging integrated evacuated solar collector

    NASA Astrophysics Data System (ADS)

    Garrison, John D.; Duff, W. S.; O'Gallagher, Joseph J.; Winston, Roland

    1993-11-01

    A non imaging integrated evacuated solar collector for solar thermal energy collection is discussed which has the lower portion of the tubular glass vacuum enveloped shaped and inside surface mirrored to optimally concentrate sunlight onto an absorber tube in the vacuum. This design uses vacuum to eliminate heat loss from the absorber surface by conduction and convection of air, soda lime glass for the vacuum envelope material to lower cost, optimal non imaging concentration integrated with the glass vacuum envelope to lower cost and improve solar energy collection, and a selective absorber for the absorbing surface which has high absorptance and low emittance to lower heat loss by radiation and improve energy collection efficiency. This leads to a very low heat loss collector with high optical collection efficiency, which can operate at temperatures up to the order of 250 degree(s)C with good efficiency while being lower in cost than current evacuated solar collectors. Cost estimates are presented which indicate a cost for this solar collector system which can be competitive with the cost of fossil fuel heat energy sources when the collector system is produced in sufficient volume. Non imaging concentration, which reduces cost while improving performance, and which allows efficient solar energy collection without tracking the sun, is a key element in this solar collector design.

  4. Thermionic converter output as a function of collector temperature

    NASA Technical Reports Server (NTRS)

    Stark, G.; Saunders, M.; Lieb, D.

    1980-01-01

    Surprisingly few data are available on the variation of thermionic converter output with collector temperature. In this study the output power density has been measured as a function of collector temperature (at a fixed emitter temperature of 1650 K) for six converters with different electrode combinations. Collector temperatures ranged from 750 to 1100 K. For collector temperatures below 900 K, converters built with sublimed molybdenum oxide collectors gave the best performance.

  5. Tubular solid oxide fuel cell current collector

    DOEpatents

    Bischoff, Brian L.; Sutton, Theodore G.; Armstrong, Timothy R.

    2010-07-20

    An internal current collector for use inside a tubular solid oxide fuel cell (TSOFC) electrode comprises a tubular coil spring disposed concentrically within a TSOFC electrode and in firm uniform tangential electrical contact with the electrode inner surface. The current collector maximizes the contact area between the current collector and the electrode. The current collector is made of a metal that is electrically conductive and able to survive under the operational conditions of the fuel cell, i.e., the cathode in air, and the anode in fuel such as hydrogen, CO, CO.sub.2, H.sub.2O or H.sub.2S.

  6. The Thermal Collector With Varied Glass Covers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luminosu, I.; Pop, N.

    2010-08-04

    The thermal collector with varied glass covers represents an innovation realized in order to build a collector able to reach the desired temperature by collecting the solar radiation from the smallest surface, with the highest efficiency. In the case of the thermal collector with variable cover glasses, the number of the glass plates covering the absorber increases together with the length of the circulation pipe for the working fluid. The thermal collector with varied glass covers compared to the conventional collector better meet user requirements because: for the same temperature increase, has the collecting area smaller; for the same collectionmore » area, realizes the highest temperature increase and has the highest efficiency. This works is addressed to researchers in the solar energy and to engineers responsible with air-conditioning systems design or industrial and agricultural products drying.« less

  7. The Thermal Collector With Varied Glass Covers

    NASA Astrophysics Data System (ADS)

    Luminosu, I.; Pop, N.

    2010-08-01

    The thermal collector with varied glass covers represents an innovation realized in order to build a collector able to reach the desired temperature by collecting the solar radiation from the smallest surface, with the highest efficiency. In the case of the thermal collector with variable cover glasses, the number of the glass plates covering the absorber increases together with the length of the circulation pipe for the working fluid. The thermal collector with varied glass covers compared to the conventional collector better meet user requirements because: for the same temperature increase, has the collecting area smaller; for the same collection area, realizes the highest temperature increase and has the highest efficiency. This works is addressed to researchers in the solar energy and to engineers responsible with air-conditioning systems design or industrial and agricultural products drying.

  8. Air solar collectors in building use - A review

    NASA Astrophysics Data System (ADS)

    Bejan, Andrei-Stelian; Labihi, Abdelouhab; Croitoru, Cristiana; Catalina, Tiberiu

    2018-02-01

    In the current energy and environmental context it is imperative to implement systems based on renewable energy sources in order to reduce energy consumptions worldwide. Solar collectors are studied by many years and many researchers are focusing their attention in order to increase their efficiency and cost-effectiveness. Water solar collectors are often implemented for domestic hot water, heating or industrial processes and already have a place on the market. A promising system which is not yet widely known is represented by air solar collectors that could represent an efficient way to use the solar energy with a lower investment cost, a system that can be used in order to preheat the fresh air required for heating, drying, or to maintain a minimum temperature during winter. This paper presents a comprehensive literature review on air solar collectors used mainly in buildings, acting as a solar wall. Air solar collectors are roughly classified into two types: glazed and opaque. The present study comprises the solar collector classification, applications and their main parameters with a special focus on opaque solar collectors.

  9. Pathways toward a low cost evacuated collector system

    NASA Astrophysics Data System (ADS)

    Hull, J. R.; Schertz, W. W.; Allen, J. W.; Ogallagher, J. J.; Winston, R.

    The goal of widespread use of solar thermal collectors will only be achieved when they are proven to be economically superior to competing energy sources. Evacuated tubular collectors appear to have the potential to achieve this goal. An advanced evacuated collector using nonimaging concentration under development at the University of Chicago and Argonne can achieve a 50% seasonal efficiency at heat delivery temperatures in excess of 170C. The same collector has an optical efficiency so that low temperature performance is also excellent. In this advanced collector design all of the critical components are enclosed in the vacuum, and the collector has an inherently long lifetime. The current cost of evacuated systems is too high, mainly because the volume of production has been too low to realize economies of mass production. It appears that certain design features of evacuated collectors can be changed (e.g., use of heat pipe absorbers) so as to introduce new system design and market strategy options that can reduce the balance of system cost.

  10. Solar Air Collectors: How Much Can You Save?

    DOE R&D Accomplishments Database

    Newburn, J. D.

    1985-04-01

    A collector efficiency curve is used to determine the output of solar air collectors based on the testing of seven solar collectors sold in Iowa. In this application the solar heater is being used as a space heater for a house. The performance of the solar air heater was analyzed and an 8% savings in energy was achieved over a one year period using two 4 x 8 collectors in a typical house.

  11. Comparison under a simulated sun of two black-nickel-coated flat-plate solar collectors with a nonselective black-paint-coated collector

    NASA Technical Reports Server (NTRS)

    Simon, F. F.

    1975-01-01

    A performance evaluation was made of two, black nickel coated, flat plate solar collectors. Collector performance was determined under a simulated sun for a wide range of inlet temperatures, including the temperature required for solar powered absorption air conditioning. For a basis of comparison a performance test was made on a traditional, two glass, nonselective, black paint coated, flat plate collector. Performance curves and performance parameters are presented to point out the importance of the design variables which determine an efficient collector. A black nickel coated collector was found to be a good performer at the conditions expected for solar powered absorption air conditioning. This collector attained a thermal efficiency of 50 percent at an inlet temperature of 366 K (200 F) and an incident flux of 946 watts/sq m (300 Btu/hr-sq ft).

  12. 10 CFR 26.85 - Collector qualifications and responsibilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Collector qualifications and responsibilities. 26.85 Section 26.85 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Collecting Specimens for Testing § 26.85 Collector qualifications and responsibilities. (a) Urine collector qualifications. Urine...

  13. 10 CFR 26.85 - Collector qualifications and responsibilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Collector qualifications and responsibilities. 26.85 Section 26.85 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Collecting Specimens for Testing § 26.85 Collector qualifications and responsibilities. (a) Urine collector qualifications. Urine...

  14. 10 CFR 26.85 - Collector qualifications and responsibilities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Collector qualifications and responsibilities. 26.85 Section 26.85 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Collecting Specimens for Testing § 26.85 Collector qualifications and responsibilities. (a) Urine collector qualifications. Urine...

  15. 10 CFR 26.85 - Collector qualifications and responsibilities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Collector qualifications and responsibilities. 26.85 Section 26.85 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Collecting Specimens for Testing § 26.85 Collector qualifications and responsibilities. (a) Urine collector qualifications. Urine...

  16. 10 CFR 26.85 - Collector qualifications and responsibilities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Collector qualifications and responsibilities. 26.85 Section 26.85 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Collecting Specimens for Testing § 26.85 Collector qualifications and responsibilities. (a) Urine collector qualifications. Urine...

  17. Increasing thermal efficiency of solar flat plate collectors

    NASA Astrophysics Data System (ADS)

    Pona, J.

    A study of methods to increase the efficiency of heat transfer in flat plate solar collectors is presented. In order to increase the heat transfer from the absorber plate to the working fluid inside the tubes, turbulent flow was induced by installing baffles within the tubes. The installation of the baffles resulted in a 7 to 12% increase in collector efficiency. Experiments were run on both 1 sq ft and 2 sq ft collectors each fitted with either slotted baffles or tubular baffles. A computer program was run comparing the baffled collector to the standard collector. The results obtained from the computer show that the baffled collectors have a 2.7% increase in life cycle cost (LCC) savings and a 3.6% increase in net cash flow for use in domestic hot water systems, and even greater increases when used in solar heating systems.

  18. Energy data report: Solar collector manufacturing activity, July - December 1980

    NASA Astrophysics Data System (ADS)

    1981-03-01

    Statistics on solar collector manufacturing activity for both solar thermal collectors and photovoltaic modules through 1980 are presented. Summary data are given for the number of manufacturers and collector area produced each year from 1974 through 1980; data for collector type are included, i.e., low temperature or medium temperature and special collectors. Producer shipments are tabulated according to location of company headquarters, producer size, and collector types. headquarters The number of companies engaged in activities related to solar collector manufacturing for 1978 through 1980 are listed; and the number of manufacturers and market sector are tabulated for photovoltaic modules manufacturing activities.

  19. Standardized performance tests of collectors of solar thermal energy-a flat-plate collector with a single-tube serpentine flow distribution

    NASA Technical Reports Server (NTRS)

    Johnson, S.

    1976-01-01

    This preliminary data report gives basic test results of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and coolant flow rates. Collector efficienty is correlated in terms of inlet temperature and flux level.

  20. Collation of quarterly reports on air flat plate collectors

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The solar 2 air flat plate collectors are described. The development and fabrication of a prototype air flat plate collector subsystem containing 320 square feet of collector area are described. Three instrumented panels were completely assembled with glazing and insulation. Manufacture of the last seven prototype collectors was completed in October 1977.

  1. A thermal comparison among several beverage can solar collectors.

    Treesearch

    Peter Y.S. Chen

    1984-01-01

    Four air-heated solar collectors were built using four different configurations of aluminum beverage cans. The collectors were then tested for four consecutive seasons for their daily efficiencies. One of the collectors was also evaluated for one season for the effect of air velocity on efficiency, temperature rise, and power consumption of the collector.

  2. 21 CFR 876.5250 - Urine collector and accessories.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Urine collector and accessories. 876.5250 Section... (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5250 Urine collector and accessories. (a) Identification. A urine collector and accessories is a device intended to collect...

  3. 21 CFR 876.5250 - Urine collector and accessories.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Urine collector and accessories. 876.5250 Section... (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5250 Urine collector and accessories. (a) Identification. A urine collector and accessories is a device intended to collect...

  4. 21 CFR 876.5250 - Urine collector and accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Urine collector and accessories. 876.5250 Section... (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5250 Urine collector and accessories. (a) Identification. A urine collector and accessories is a device intended to collect...

  5. 21 CFR 876.5250 - Urine collector and accessories.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Urine collector and accessories. 876.5250 Section... (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5250 Urine collector and accessories. (a) Identification. A urine collector and accessories is a device intended to collect...

  6. 21 CFR 876.5250 - Urine collector and accessories.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Urine collector and accessories. 876.5250 Section... (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5250 Urine collector and accessories. (a) Identification. A urine collector and accessories is a device intended to collect...

  7. Flat-Plate Solar-Collector Performance Evaluation with a Solar Simulator as a Basis for Collector Selection and Performance Prediction

    NASA Technical Reports Server (NTRS)

    Simon, F. F.

    1975-01-01

    The use of a solar simulator for performance determination permits collector testing under standard conditions of wind, ambient temperature, flow rate and sun. The performance results determined with the simulator have been found to be in good agreement with outdoor performance results. The measured thermal efficiency and evaluation of 23 collectors are reported which differ according to absorber material (copper, aluminum, steel), absorber coating (nonselective black paint, selective copper oxide, selective black nickel, selective black chrome), type of glazing material (glass, Tedlar, Lexan, antireflection glass), the use of honeycomb material and the use of vacuum to prevent thermal convection losses. The collectors were given performance rankings based on noon-hour solar conditions and all-day solar conditions. The determination with the simulator of an all-day collector performance was made possible by tests at different incident angles. The solar performance rankings were made based on whether the collector is to be used for pool heating, hot water, absorption air conditioning, heating, or for a solar Rankine machine.

  8. Next Generation Solar Collectors for CSP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molnar, Attila; Charles, Ruth

    The intent of “Next Generation Solar Collectors for CSP” program was to develop key technology elements for collectors in Phase 1 (Budget Period 1), design these elements in Phase 2 (Budget Period 2) and to deploy and test the final collector in Phase 3 (Budget Period 3). 3M and DOE mutually agreed to terminate the program at the end of Budget Period 1, primarily due to timeline issues. However, significant advancements were achieved in developing a next generation reflective material and panel that has the potential to significantly improve the efficiency of CSP systems.

  9. Molecular design of flotation collectors: A recent progress.

    PubMed

    Liu, Guangyi; Yang, Xianglin; Zhong, Hong

    2017-08-01

    The nature of froth flotation is to selectively hydrophobize valuable minerals by collector adsorption so that the hydrophobized mineral particles can attach air bubbles. In recent years, the increasing commercial production of refractory complex ores has been urgent to develop special collectors for enhancing flotation separation efficiency of valuable minerals from these ores. Molecular design methods offer an effective way for understanding the structure-property relationship of flotation collectors and developing new ones. The conditional stability constant (CSC), molecular mechanics (MM), quantitative structure-activity relationship (QSAR), and first-principle theory, especially density functional theory (DFT), have been adopted to build the criteria for designing flotation collectors. Azole-thiones, guanidines, acyl thioureas and thionocarbamates, amide-hydroxamates, and double minerophilic-group surfactants such as Gemini, dithiourea and dithionocarbamate molecules have been recently developed as high-performance collectors. To design hydrophobic groups, the hydrophilic-hydrophobic balance parameters have been extensively used as criteria. The replacement of aryl group with aliphatic group or CC single bond(s) with CC double bond(s), reduction of carbon numbers, introduction of oxygen atom(s) and addition of trisiloxane to the tail terminal have been proved to be useful approaches for adjusting the surface activity of collectors. The role of molecular design of collectors in practical flotation applications was also summarized. Based on the critical review, some comments and prospects for further research on molecular design of flotation collectors were also presented in the paper. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Integrated Design of Undepressed Collector for Low Power Gyrotron

    NASA Astrophysics Data System (ADS)

    Kumar, Anil; Goswami, Uttam K.; Poonia, Sunita; Singh, Udaybir; Kumar, Nitin; Alaria, M. K.; Bera, A.; Khatun, Hasina; Sinha, A. K.

    2011-06-01

    A 42 GHz, 200 kW continuous wave (CW) gyrotron, operating at TE03 mode is under development for the electron cyclotron resonance plasma heating of the Indian TOKAMAK system. The gyrotron is made up of an undepressed collector. The undepressed collector is simple to design and cost effective. In this paper, a detailed design study of the undepressed collector for the 42 GHz gyrotron is presented. The EGUN code is used to analyze the spent electron beam trajectory for the maximum spread to reduce the power loading on the collector surface. To achieve wall loading ≤1 kW/cm2, a collector with a length of 800 mm and a radius of 42.5 mm is designed. The design also includes the three magnet systems around the collector for maximum and uniform beam spread. The thermal and the structural analyses are done using the ANSYS code to optimize the collector structure and dimensions with tolerance.

  11. Step tracking program for concentrator solar collectors

    NASA Astrophysics Data System (ADS)

    Ciobanu, D.; Jaliu, C.

    2016-08-01

    The increasing living standards in developed countries lead to increased energy consumption. The fossil fuel consumption and greenhouse gas effect that accompany the energy production can be reduced by using renewable energy. For instance, the solar thermal systems can be used in temperate climates to provide heating during the transient period or cooling during the warmer months. Most used solar thermal systems contain flat plate solar collectors. In order to provide the necessary energy for the house cooling system, the cooling machine uses a working fluid with a high temperature, which can be supplied by dish concentrator collectors. These collectors are continuously rotated towards sun by biaxial tracking systems, process that increases the consumed power. An algorithm for a step tracking program to be used in the orientation of parabolic dish concentrator collectors is proposed in the paper to reduce the consumed power due to actuation. The algorithm is exemplified on a case study: a dish concentrator collector to be implemented in Brasov, Romania, a location with the turbidity factor TR equal to 3. The size of the system is imposed by the environment, the diameter of the dish reflector being of 3 meters. By applying the proposed algorithm, 60 sub-programs are obtained for the step orientation of the parabolic dish collector over the year. Based on the results of the numerical simulations for the step orientation, the efficiency of the direct solar radiation capture on the receptor is up to 99%, while the energy consumption is reduced by almost 80% compared to the continuous actuation of the concentrator solar collector.

  12. High Performance Flat Plate Solar Thermal Collector Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rockenbaugh, Caleb; Dean, Jesse; Lovullo, David

    2016-09-01

    This report was prepared for the General Services Administration by the National Renewable Energy Laboratory. The Honeycomb Solar Thermal Collector (HSTC) is a flat plate solar thermal collector that shows promising high efficiencies over a wide range of climate zones. The technical objectives of this study are to: 1) verify collector performance, 2) compare that performance to other market-available collectors, 3) verify overheat protection, and 4) analyze the economic performance of the HSTC both at the demonstration sites and across a matrix of climate zones and utility markets.

  13. Direct-heating solar-collector dump valve

    NASA Technical Reports Server (NTRS)

    Howikman, T. C.

    1977-01-01

    Five-port ganged valve isolates collector from primary load system pressure and drains collectors, allowing use of direct heating with all its advantages. Valve is opened and closed by same switch that controls pump or by temperature sensor set at O C, while providing direct dump option.

  14. Flat-plate solar collector - installation package

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Package includes installation, operation and maintenance manual for collector, analysis of safety hazards, special handling instructions, materials list, installation drawings, and warranty and certification statement. Manual includes instructions for roof preparation and for preparing collector for installation. Several pages are devoted to major and minor repairs.

  15. Design, fabrication, testing and delivery of a solar collector

    NASA Technical Reports Server (NTRS)

    Sims, W. H.; Ballheim, R. W.; Bartley, S. M.; Smith, G. W.

    1976-01-01

    A two phase program encompassing the redesign and fabrication of a solar collector which is low in cost and aesthetically appealing is described. Phase one work reviewed the current collector design and developed a low-cost design based on specific design/performance/cost requirements. Throughout this phase selected collector component materials were evaluated by testing and by considering cost, installation, maintainability and durability. The resultant collector design was composed of an absorber plate, insulation, frame, cover, desiccant and sealant. In Phase two, three collector prototypes were fabricated and evaluated for both nonthermal and thermal characteristics. Tests included static load tests of covers, burst pressure tests of absorber plates, and tests for optical characteristics of selective absorber plate coatings. The three prototype collectors were shipped to Marshall Space Flight Center for use in their solar heating and cooling test facility.

  16. Survey and evaluation of current design of evacuated collectors. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, B. J.

    The general development of these collectors, is described and a description of numerous evacuated collectors is given which vary from collectors that have been widely used in various applications to others which are still being developed in the laboratory. A table summarizing all of the available collectors, along with their characteristics, is presented. There are four evacuated collectors which have been tested, used in demonstration sites, and developed for the market. These collectors are described in detail, and they are compared in performance and cost with a well-engineered, double glazed, selectively coated, flat plate collector. A rather simple model systemmore » of about 2000 ft/sup 2/ of collector area for each of the four evacuated collectors and the flat plate collector is described, along with the support structure and the piping for each. Details of the cost are presented in order to compare collector costs with component costs. All of the available efficiency curves of collectors were plotted for comparison with the efficiency curve of a good, flat plate collector. To show the extent of use of evacuated collectors, a list according to manufacturers and to location of all of the sites at which these collectors are being used is presented.« less

  17. Owens-Illinois liquid solar collector materials assessment

    NASA Technical Reports Server (NTRS)

    Nichols, R. L.

    1978-01-01

    From the beginning, it was noted that the baseline drawings for the liquid solar collector exhibited a distinct weakness concerning materials specification where elastomers, plastics, and foam insulation materials were utilized. A relatively small effort by a competent design organization would alleviate this deficiency. Based on results obtained from boilout and stagnation tests on the solar simulator, it was concluded that proof testing of the collector tubes prior to use helps to predict their performance for limited service life. Fracture mechanics data are desirable for predicting extended service life and establishing a minimum proof pressure level requirement. The temperature capability of this collector system was increased as the design matured and the coating efficiency improved. This higher temperature demands the use of higher temperature materials at critical locations in the collector.

  18. Tilt assembly for tracking solar collector assembly

    DOEpatents

    Almy, Charles; Peurach, John; Sandler, Reuben

    2012-01-24

    A tilt assembly is used with a solar collector assembly of the type comprising a frame, supporting a solar collector, for movement about a tilt axis by pivoting a drive element between first and second orientations. The tilt assembly comprises a drive element coupler connected to the drive element and a driver, the driver comprising a drive frame, a drive arm and a drive arm driver. The drive arm is mounted to the drive frame for pivotal movement about a drive arm axis. Movement on the drive arm mimics movement of the drive element. Drive element couplers can extend in opposite directions from the outer portion of the drive arm, whereby the assembly can be used between adjacent solar collector assemblies in a row of solar collector assemblies.

  19. Solar collector apparatus having increased energy rejection during stagnation

    DOEpatents

    Moore, S.W.

    1981-01-16

    An active solar collector having increased energy rejection during stagnation is disclosed. The collector's glazing is brought into substantial contact with absorber during stagnation to increase re-emittance and thereby to maintan lower temperatures when the collector is not in operation.

  20. Anillin acts as a bifunctional linker coordinating midbody ring biogenesis during cytokinesis

    PubMed Central

    Kechad, Amel; Jananji, Silvana; Ruella, Yvonne; Hickson, Gilles R. X.

    2013-01-01

    Summary Animal cell cytokinesis proceeds via constriction of an actomyosin-based contractile ring (CR) [1, 2]. Upon reaching a diameter of ~1 μm [3], a midbody ring (MR) forms to stabilize the intercellular bridge until abscission [4-6]. How MR formation is coupled to CR closure and how plasma membrane anchoring is maintained at this key transition is unknown. Time-lapse microscopy of Drosophila S2 cells depleted of the scaffold protein, Anillin [7-9], revealed that Anillin is required for complete closure of the CR and formation of the MR. Truncation analysis revealed that Anillin N-termini connected with the actomyosin CR and supported formation of stable MR-like structures, but these could not maintain anchoring of the plasma membrane. Conversely, Anillin C-termini failed to connect with the CR or MR but recruited the septin, Peanut, to ectopic structures at the equatorial cortex. Peanut depletion mimicked truncation of the Anillin C-terminus, resulting in MR-like structures that failed to anchor the membrane. These data demonstrate that Anillin coordinates the transition from CR to MR, and that it does so by linking two distinct cortical cytoskeletal elements. One apparently acts as the core structural template for MR assembly, while the other ensures stable anchoring of the plasma membrane beyond the CR stage. PMID:22226749

  1. Microstructure and Mechanical Properties of Cr-SiC Particles-Reinforced Fe-Based Alloy Coating

    NASA Astrophysics Data System (ADS)

    Wang, Fu-cheng; Du, Xiao-dong; Zhan, Ma-ji; Lang, Jing-wei; Zhou, Dan; Liu, Guang-fu; Shen, Jian

    2015-12-01

    In this study, SiC particles were first coated with Cr to form a layer that can protect the SiC particles from dissolution in the molten pool. Then, the Cr-SiC powder was injected into the tail of molten pool during plasma-transferred arc welding process (PTAW), where the temperature was relatively low, to prepare Cr-SiC particles reinforced Fe-based alloy coating. The microstructure and phase composition of the powder and surface coatings were analyzed, and the element distribution and hardness at the interfacial region were also evaluated. The protective layer consists of Cr3Si, Cr7C3, and Cr23C6, which play an important role in the microstructure and mechanical properties. The protective layer is dissolved in the molten pool forming a flocculent region and a transition region between the SiC particles and the matrix. The tribological performance of the coating was also assessed using a ring-block sliding wear tester with GGr15 grinding ring under 490 and 980 N load. Cr-SiC particles-reinforced coating has a lower wear rate than the unreinforced coating.

  2. Solar collector apparatus having increased energy rejection during stagnation

    DOEpatents

    Moore, Stanley W.

    1983-07-12

    The disclosure relates to an active solar collector having increased energy rejection during stagnation. The collector's glazing is brought into substantial contact with absorber during stagnation to increase re-emittance and thereby to maintain lower temperatures when the collector is not in operation.

  3. Performance of wood in a do-it-yourself solar collector

    Treesearch

    G. E. Sherwood; W. A. Gatz

    1979-01-01

    Six variations of a do-it-yourself solar collector design were constructed and exposed under stagnation conditions for 1 year; collectors were basically closed boxes without air circulation. Temperature in each collector was recorded throughout the test period and the effect of these temperatures on the wood framing and plywood in the collectors was estimated...

  4. Thermionic converter performance with oxide collectors

    NASA Technical Reports Server (NTRS)

    Lieb, D.; Goodale, D.; Briere, T.; Balestra, C.

    1977-01-01

    Thermionic converters using a variety of metal oxide collector surfaces have been fabricated and tested. Both work function and power output data are presented and evaluated. Oxides of barium, strontium, zinc, tungsten and titanium have been incorporated into a variable spacing converter. Tungsten oxide was found to give the highest converter performance and to furnish oxygen for the emitter at the same time. Oxygenated emitters operate at reduced cesium pressure with an increase in electrode spacing. Electron spectroscopy for chemical analysis (ESCA) performed on several tungsten oxide collectors showed cesium penetration of the oxide layer, possibly forming a cesium tungstate bronze. Titanium oxide showed high performance but did not furnish oxygen for the emitter; strontium oxide, in the form of a sprayed layer, appeared to dissociate in the presence of cesium. Sprayed coatings of barium and zinc oxides produced collector work functions of about 1.3 eV, but had excessive series resistance. Lanthanum hexaboride, in combination with oxygen introduced through a silver tube, and cesium produced a low work function collector and better than average performance.

  5. Ultrahigh vacuum gauge having two collector electrodes

    NASA Technical Reports Server (NTRS)

    Torney, F. L., Jr. (Inventor)

    1967-01-01

    A gauge for measuring ultrahigh vacuums with great accuracy is described. It provides a means for ionizing the gas whose pressure is being measured, and consists of a collector electrode, a suppressor, radiation shielding, and a second collector.

  6. Corrugated cover plate for flat plate collector

    DOEpatents

    Hollands, K. G. Terry; Sibbitt, Bruce

    1978-01-01

    A flat plate radiant energy collector is providing having a transparent cover. The cover has a V-corrugated shape which reduces the amount of energy reflected by the cover away from the flat plate absorber of the collector.

  7. Heat Pumps With Direct Expansion Solar Collectors

    NASA Astrophysics Data System (ADS)

    Ito, Sadasuke

    In this paper, the studies of heat pump systems using solar collectors as the evaporators, which have been done so far by reserchers, are reviwed. Usually, a solar collector without any cover is preferable to one with ac over because of the necessity of absorbing heat from the ambient air when the intensity of the solar energy on the collector is not enough. The performance of the collector depends on its area and the intensity of the convective heat transfer on the surface. Fins are fixed on the backside of the collector-surface or on the tube in which the refrigerant flows in order to increase the convective heat transfer. For the purpose of using a heat pump efficiently throughout year, a compressor with variable capacity is applied. The solar assisted heat pump can be used for air conditioning at night during the summer. Only a few groups of people have studied cooling by using solar assisted heat pump systems. In Japan, a kind of system for hot water supply has been produced commercially in a company and a kind of system for air conditioning has been installed in buildings commercially by another company.

  8. Ring-averaged ion velocity distribution function probe for laboratory magnetized plasma experiment

    NASA Astrophysics Data System (ADS)

    Kawamori, Eiichirou; Chen, Jinting; Lin, Chiahsuan; Lee, Zongmau

    2017-10-01

    Ring-averaged velocity distribution function of ions at a fixed guiding center position is a fundamental quantity in the gyrokinetic plasma physics. We have developed a diagnostic tool for the ring averaged velocity distribution function of ions for laboratory plasma experiments, which is named as the ring-averaged ion distribution function probe (RIDFP). The RIDFP is a set of ion collectors for different velocities. It is designed to be immersed in magnetized plasmas and achieves momentum selection of incoming ions by the selection of the ion Larmor radii. To nullify the influence of the sheath potential surrounding the RIDFP on the orbits of the incoming ions, the electrostatic potential of the RIDFP body is automatically adjusted to coincide with the space potential of the target plasma with the use of an emissive probe and a voltage follower. The developed RIDFP successfully measured the equilibrium ring-averaged velocity distribution function of a laboratory magnetized plasma, which was in accordance with the Maxwellian distribution having an ion temperature of 0.2 eV.

  9. Ring-averaged ion velocity distribution function probe for laboratory magnetized plasma experiment.

    PubMed

    Kawamori, Eiichirou; Chen, Jinting; Lin, Chiahsuan; Lee, Zongmau

    2017-10-01

    Ring-averaged velocity distribution function of ions at a fixed guiding center position is a fundamental quantity in the gyrokinetic plasma physics. We have developed a diagnostic tool for the ring averaged velocity distribution function of ions for laboratory plasma experiments, which is named as the ring-averaged ion distribution function probe (RIDFP). The RIDFP is a set of ion collectors for different velocities. It is designed to be immersed in magnetized plasmas and achieves momentum selection of incoming ions by the selection of the ion Larmor radii. To nullify the influence of the sheath potential surrounding the RIDFP on the orbits of the incoming ions, the electrostatic potential of the RIDFP body is automatically adjusted to coincide with the space potential of the target plasma with the use of an emissive probe and a voltage follower. The developed RIDFP successfully measured the equilibrium ring-averaged velocity distribution function of a laboratory magnetized plasma, which was in accordance with the Maxwellian distribution having an ion temperature of 0.2 eV.

  10. Solar cell collector

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr. (Inventor)

    1978-01-01

    A method is provided for the fabrication of a photovoltaic device which possesses an efficient collector system for the conduction of the current generated by incident photons to the external circuitry of the device.

  11. Two-axis movable concentrating solar energy collector

    NASA Technical Reports Server (NTRS)

    Perkins, G. S.

    1977-01-01

    Proposed solar-tracker collector assembly with boiler in fixed position, allows use of hard line connections, capable of withstanding optimum high temperature fluid flow. System thereby eliminates need for flexible or slip connection previously used with solar collector systems.

  12. Effect of dividing daylight in symmetric prismatic daylight collector

    NASA Astrophysics Data System (ADS)

    Yeh, Shih-Chuan; Lu, Ju-Lin; Cheng, Yu-Chin

    2017-04-01

    This paper presented a symmetric prismatic daylight collector to collect daylight for the natural light illumination system. We analyzed the characteristics of the emerging light when the parallel light beam illuminate on the horizontally placed symmetric prismatic daylight collector. The ratio of the relative intensities of collected daylight that emerging from each surface of the daylight collector shown that the ratio is varied with the incident angle during a day. The simulation of the emerging light of the daylight collector shown that the ratio of emerging light is varied with the tilted angle when sunshine illuminated on a symmetric prismatic daylight collector which was not placed horizontally. The integration of normalized intensity is also varied with the tilted angle. The symmetric prismatic daylight collector with the benefits of reducing glare and dividing intensity of incident daylight, it is applicable to using in the natural light illumination system and hybrid system for improving the efficiency of utilizing of solar energy.

  13. Genetic algorithms used for the optimization of light-emitting diodes and solar thermal collectors

    NASA Astrophysics Data System (ADS)

    Mayer, Alexandre; Bay, Annick; Gaouyat, Lucie; Nicolay, Delphine; Carletti, Timoteo; Deparis, Olivier

    2014-09-01

    We present a genetic algorithm (GA) we developed for the optimization of light-emitting diodes (LED) and solar thermal collectors. The surface of a LED can be covered by periodic structures whose geometrical and material parameters must be adjusted in order to maximize the extraction of light. The optimization of these parameters by the GA enabled us to get a light-extraction efficiency η of 11.0% from a GaN LED (for comparison, the flat material has a light-extraction efficiency η of only 3.7%). The solar thermal collector we considered consists of a waffle-shaped Al substrate with NiCrOx and SnO2 conformal coatings. We must in this case maximize the solar absorption α while minimizing the thermal emissivity ɛ in the infrared. A multi-objective genetic algorithm has to be implemented in this case in order to determine optimal geometrical parameters. The parameters we obtained using the multi-objective GA enable α~97.8% and ɛ~4.8%, which improves results achieved previously when considering a flat substrate. These two applications demonstrate the interest of genetic algorithms for addressing complex problems in physics.

  14. Outdoor performance results for NBS Round Robin collector no. 1

    NASA Technical Reports Server (NTRS)

    Miller, D. R.

    1976-01-01

    The efficiency of a PPG flat-plate solar collector was evaluated utilizing an outdoor solar collector test facility at the NASA-Lewis Research Center, as part of the National Bureau of Standards 'round robin' collector test program. The correlation equation for collector thermal efficiency Eta curve fit of the data was: Eta = 0.666 - 1.003(Btu/hr-sq ft-F) Theta, where the parameter Theta is the difference between the average fluid temperature and the ambient temperature, all divided by the total flux impinging on the collector.

  15. Installation package for concentrating solar collector panels

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The concentrating solar collector panels comprise a complete package array consisting of collector panels using modified Fresnel prismatic lenses for a 10 to 1 concentrating ratio, supporting framework, fluid manifolding and tracking drive system, and unassembled components for field erection.

  16. Selective flotation of phosphate minerals with hydroxamate collectors

    DOEpatents

    Miller, Jan D.; Wang, Xuming; Li, Minhua

    2002-01-01

    A method is disclosed for separating phosphate minerals from a mineral mixture, particularly from high-dolomite containing phosphate ores. The method involves conditioning the mineral mixture by contacting in an aqueous in environment with a collector in an amount sufficient for promoting flotation of phosphate minerals. The collector is a hydroxamate compound of the formula; ##STR1## wherein R is generally hydrophobic and chosen such that the collector has solubility or dispersion properties it can be distributed in the mineral mixture, typically an alkyl, aryl, or alkylaryl group having 6 to 18 carbon atoms. M is a cation, typically hydrogen, an alkali metal or an alkaline earth metal. Preferably, the collector also comprises an alcohol of the formula, R'--OH wherein R' is generally hydrophobic and chosen such that the collector has solubility or dispersion properties so that it can be distributed in the mineral mixture, typically an alkyl, aryl, or alkylaryl group having 6 to 18 carbon atoms.

  17. Chemical characterization of seven Large Area Collector particles by SXRF. [cosmic dust composition

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Sutton, S. R.

    1991-01-01

    Optical microscopy and synchrotron X-ray fluorescence (SXRF) are used to analyze the chemical composition of seven dark-appearing cosmic-dust particles obtained in the stratosphere during NASA Johnson Large Area Collector flights. The experimental setup and procedures are outlined, and the results are presented in extensive tables. Three of the particles had abundances similar to those of chondrites (except for low Ca values in one particle); two had a metallic appearance and spectra dominated by Fe and Zn; one contained Cu and Cr plus small amounts of Fe and Zn; and one had igneous-type abundances of minor and trace elements while containing all of the elements seen in chondritic particles, suggesting it may be of extraterrestrial origin.

  18. Pyrolytic graphite collector development program

    NASA Technical Reports Server (NTRS)

    Wilkins, W. J.

    1982-01-01

    Pyrolytic graphite promises to have significant advantages as a material for multistage depressed collector electrodes. Among these advantages are lighter weight, improved mechanical stiffness under shock and vibration, reduced secondary electron back-streaming for higher efficiency, and reduced outgassing at higher operating temperatures. The essential properties of pyrolytic graphite and the necessary design criteria are discussed. This includes the study of suitable electrode geometries and methods of attachment to other metal and ceramic collector components consistent with typical electrical, thermal, and mechanical requirements.

  19. Thermal performances of vertical hybrid PV/T air collector

    NASA Astrophysics Data System (ADS)

    Tabet, I.; Touafek, K.; Bellel, N.; Khelifa, A.

    2016-11-01

    In this work, numerical analyses and the experimental validation of the thermal behavior of a vertical photovoltaic thermal air collector are investigated. The thermal model is developed using the energy balance equations of the PV/T air collector. Experimental tests are conducted to validate our mathematical model. The tests are performed in the southern Algerian region (Ghardaïa) under clear sky conditions. The prototype of the PV/T air collector is vertically erected and south oriented. The absorber upper plate temperature, glass cover temperature, air temperature in the inlet and outlet of the collector, ambient temperature, wind speed, and solar radiation are measured. The efficiency of the collector increases with increase in mass flow of air, but the increase in mass flow of air reduces the temperature of the system. The increase in efficiency of the PV/T air collector is due to the increase in the number of fins added. In the experiments, the air temperature difference between the inlet and the outlet of the PV/T air collector reaches 10 ° C on November 21, 2014, the interval time is between 10:00 and 14:00, and the temperature of the upper plate reaches 45 ° C at noon. The mathematical model describing the dynamic behavior of the typical PV/T air collector is evaluated by calculating the root mean square error and mean absolute percentage error. A good agreement between the experiment and the simulation results is obtained.

  20. Standardized solar simulator tests of flat plate solar collectors. 1: Soltex collector with two transparent covers

    NASA Technical Reports Server (NTRS)

    Simon, F.

    1975-01-01

    A Soltex flat plate solar collector was tested with a solar simulator for inlet temperatures of 77 to 201 F, flux levels of 240 and 350 Btu/hr-sq ft, a collant flow rate of 10.5 lb/hr sq ft, and incident angles of 0 deg, 41.5 deg, and 65.2 deg. Collector performance is correlated in terms of inlet temperature, flux level, and incident angle.

  1. Status of the NASA-Lewis flat-plate collector tests with a solar simulator

    NASA Technical Reports Server (NTRS)

    Simon, F. F.

    1974-01-01

    Simulator test results of 15 collector types are presented. Collectors are given performance ratings according to their use for pool heating, hot water, absorption A/C or heating, and solar Rankine machines. Collectors found to be good performers in the above categories, except for pool heating, were a black nickel coated, 2 glass collector, and a black paint 2 glass collector containing a mylar honeycomb. For pool heating, a black paint, one glass collector was found to be the best performer. Collector performance parameters of 5 collector types were determined to aid in explaining the factors that govern performance. The two factors that had the greatest effect on collector performance were the collector heat loss and the coating absorptivity.

  2. Positive electrode current collector for liquid metal cells

    DOEpatents

    Shimotake, Hiroshi; Bartholme, Louis G.

    1984-01-01

    A current collector for the positive electrode of an electrochemical cell with a positive electrode including a sulfide. The cell also has a negative electrode and a molten salt electrolyte including halides of a metal selected from the alkali metals and the alkaline earth metals in contact with both the positive and negative electrodes. The current collector has a base metal of copper, silver, gold, aluminum or alloys thereof with a coating thereon of iron, nickel, chromium or alloys thereof. The current collector when subjected to cell voltage forms a sulfur-containing compound on the surface thereby substantially protecting the current collector from further attack by sulfur ions during cell operation. Both electroless and electrolytic processes may be used to deposit coatings.

  3. Solar collector with improved thermal concentration

    DOEpatents

    Barak, Amitzur Z.

    1976-01-01

    Reduced heat loss from the absorbing surface of the energy receiver of a cylindrical radiant energy collector is achieved by providing individual, insulated, cooling tubes for adjacent parallel longitudinal segments of the receiver. Control means allow fluid for removing heat absorbed by the tubes to flow only in those tubes upon which energy is then being directed by the reflective wall of the collector.

  4. Hybrid thermoelectric solar collector design and analysis

    NASA Technical Reports Server (NTRS)

    Roberts, A. S., Jr.; Shaheen, K. E.

    1982-01-01

    A flat-plate solar collector is conceived where energy cascades through thermoelectric power modules generating direct-current electricity. The intent of this work was to choose a collector configuration and to perform a steady-state thermal performance assessment. A set of energy balance equations were written and solved numerically for the purpose of optimizing collector thermal and electrical performance. The collector design involves finned columns of thermoelectric modules imbedded in the absorber plate (hot junction) over a parallel array of vertical tubes. The thermoelectric power output is limited by the small hot-junction/cold-junction temperature difference which can be maintained under steady-state conditions. The electric power per unit tube pass area is found to have a maximum as a function of a geometric parameter, while electric power is maximized with respect to an electric resistance ratio. Although the electric power efficiency is small, results indicate that there is sufficient electric power production to drive a coolant circulator, suggesting the potential for a stand-alone system.

  5. Impact of Electro-Magneto Concave Collector on the Characterizations of Electrospun Nanofibers

    NASA Astrophysics Data System (ADS)

    Shehata, Nader; Abdelkader, Mohamed

    2018-05-01

    We introduce a modified approach to produce aligned nanofibers through electro-magneto concave collectors. Both electric and magnetic fields distributions are simulated with COMSOL Multiphysics for different collectors including conventional, concave and modified concave collectors by adding magnetic discs in the back. Orientation matrices are evaluated for each collector in the study, and the highest degree of alignment is found to be with the modified concave collector with a percentage of 68%, followed by the concave collector with a percentage of 57%, which shows an improvement of the proposed method by adding a magnetic field. The generated nanofiber mats from the electro-magneto concave collector show improvements in both mechanical (Young's modulus = 117.66 MPa) and thermal properties compared to both concave and conventional collectors.

  6. Thin film solar energy collector

    DOEpatents

    Aykan, Kamran; Farrauto, Robert J.; Jefferson, Clinton F.; Lanam, Richard D.

    1983-11-22

    A multi-layer solar energy collector of improved stability comprising: (1) a substrate of quartz, silicate glass, stainless steel or aluminum-containing ferritic alloy; (2) a solar absorptive layer comprising silver, copper oxide, rhodium/rhodium oxide and 0-15% by weight of platinum; (3) an interlayer comprising silver or silver/platinum; and (4) an optional external anti-reflective coating, plus a method for preparing a thermally stable multi-layered solar collector, in which the absorptive layer is undercoated with a thin film of silver or silver/platinum to obtain an improved conductor-dielectric tandem.

  7. Development of flat-plate solar plate collector: Evaporator

    NASA Astrophysics Data System (ADS)

    Abramzon, B.; Yaron, I.

    1981-11-01

    In the present study the thermal performance of a flat plate solar collector is analyzed theoretically for the case in which the working fluid may undergo a phase change within the tubes of the collector. In addition to the common domestic applications, such a collector - evaporator may be used as a generator of vapors for the production of mechanical or electrical energy, e.g., solar water pumps, solar power stations, etc., as well as for solar - powered absorption refrigeration machines, distillation installations, etc.

  8. Indoor thermal performance evaluation of the SEPCO air collector

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The procedures used and the results obtained during the evaluation test program on the Solaron solar air collector, model EF-212, under simulated conditions for comparison with data collected in outdoor tests on the same collector are given. The test article was a single glazed collector with a nonsensitive absorber plate, aluminum box frame, and one inch isocyanurate foam insulation.

  9. High air volume to low liquid volume aerosol collector

    DOEpatents

    Masquelier, Donald A.; Milanovich, Fred P.; Willeke, Klaus

    2003-01-01

    A high air volume to low liquid volume aerosol collector. A high volume flow of aerosol particles is drawn into an annular, centripetal slot in a collector which directs the aerosol flow into a small volume of liquid pool contained is a lower center section of the collector. The annular jet of air impinges into the liquid, imbedding initially airborne particles in the liquid. The liquid in the pool continuously circulates in the lower section of the collector by moving to the center line, then upwardly, and through assistance by a rotating deflector plate passes back into the liquid at the outer area adjacent the impinging air jet which passes upwardly through the liquid pool and through a hollow center of the collector, and is discharged via a side outlet opening. Any liquid droplets escaping with the effluent air are captured by a rotating mist eliminator and moved back toward the liquid pool. The collector includes a sensor assembly for determining, controlling, and maintaining the level of the liquid pool, and includes a lower centrally located valve assembly connected to a liquid reservoir and to an analyzer for analyzing the particles which are impinged into the liquid pool.

  10. Development, testing, and certification of life sciences engineering solar collector

    NASA Technical Reports Server (NTRS)

    Caudle, J. M.

    1978-01-01

    Results are presented for the development of an air flat plate collector for use with solar heating, combined heating and cooling, and hot water systems. The contract was for final development, testing, and certification of the collector, and for delivery of a 320 square feet collector panel.

  11. Development and testing of the Shenandoah collector

    NASA Technical Reports Server (NTRS)

    Kinoshita, G. S.

    1981-01-01

    The test and development of the 7-meter Shenandoah parabolic dish collector incorporating an FEK-244 film reflective surface and cavity receiver are described. Four prototypes tested in the midtemperature Solar System Test Facility indicate, with changes incorporated from these development tests, that the improvements should lead to predicted performance levels in the production collectors.

  12. Solar internal lighting using optical collectors and fibers

    NASA Astrophysics Data System (ADS)

    Francini, F.; Fontani, D.; Jafrancesco, D.; Mercatelli, L.; Sansoni, P.

    2006-08-01

    A system exploiting solar energy, by means of optical collectors and fibres, has been applied for indoor illumination. The project has been called "The Sunflowers" for the property of solar collectors to track solar position during the day. Every "sunflower" contains several solar collectors, each of which is coupled to an optical fibre. The "Sunflower" is provided of mechanical systems and electric accessories for solar tracking. The light focused by the solar collector can be used in two possible ways: for internal illumination with direct solar light; otherwise it can be accumulated for lighting when the sun is not present. The first function is obtained coupling the optical collector to an optical fibre, which transports the solar light in selected points within the showcases. The second one consists in focusing solar light on a photovoltaic cell of the last generation type with high efficiency. In this configuration the photovoltaic cell converts the focused light into electric energy to be used for illumination in case of sun absence. A demonstrative installation has been realised applying this solar illumination system to museum lighting: a prototype has been tested in a prestigious museum in Florence.

  13. 30 CFR 18.21 - Machines equipped with powered dust collectors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Machines equipped with powered dust collectors... Construction and Design Requirements § 18.21 Machines equipped with powered dust collectors. Powered dust collectors on machines submitted for approval shall meet the applicable requirements of Part 33 of this...

  14. Electron beam collector for a microwave power tube

    DOEpatents

    Dandl, Raphael A.

    1980-01-01

    This invention relates to a cylindrical, electron beam collector that efficiently couples the microwave energy out of a high power microwave source while stopping the attendant electron beam. The interior end walls of the collector are a pair of facing parabolic mirrors and the microwave energy from an input horn is radiated between the two mirrors and reassembled at the entrance to the output waveguide where the transmitted mode is reconstructed. The mode transmission through the collector of the present invention has an efficiency of at least 94%.

  15. Optimization of the functional domain of flat plate collectors

    NASA Astrophysics Data System (ADS)

    Ritoux, G.; Irigaray, J.-L.

    1981-12-01

    The variations of the extracted heat flux as function of the temperature of the heat transfer fluid in black and selective surface solar collectors are examined. The heat flux is calculated based on the difference of the initial to the stage of thermal equilibrium of the fluid. A nonlinear system of equations is developed and solved by a fast, iterative method to obtain the equilibrium temperatures. It is found that more flux can be extracted from the solar heat by a collector with only one glass cover than with more than one cover. The captured flux is proportional to the coefficient of transmission of the glass coverings, to the coefficient of absorption of the collector, and to the incident flux. Black painted surfaces were more absorbent than selective surfaces, and highest collection efficiencies were displayed by low temperature collectors. Charts of effective uses of the respective types of collectors for heating swimming pools, hot water, home heat, and for refrigeration and air-conditioning are provided.

  16. Initial Subdivision of Genesis Early Science Polished Aluminum Collector

    NASA Technical Reports Server (NTRS)

    Allton, J. H.; Stansbery, E. K.; McNamara, K. M.; Meshik, A.; See, T. H.; Bastien, R.

    2005-01-01

    A large surface, about 245 square centimeters, of highly polished aluminum 6061 T6 alloy was attached to the science canister thermal panel for the purpose of collecting solar wind noble gases. The analysis of this collector will be part of the Genesis Early Science results. The pre-launch configuration of the collector is shown. The collector sustained some damage during the recovery impact in Utah, September 8, 2004.

  17. Physically absorbable reagents-collectors in elementary flotation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.A. Kondrat'ev; I.G. Bochkarev

    2007-09-15

    Based on the reviewed researches held at the Institute of Mining, Siberian Branch, Russian Academy of Sciences, the effect of physically absorbable reagents-collectors on formation of a flotation complex and its stability in turbulent pulp flows in flotation machines of basic types is considered. The basic requirements for physically absorbable reagents-collectors at different flotation stages are established.

  18. The PKI collector

    NASA Astrophysics Data System (ADS)

    Rice, M. P.

    1982-07-01

    The design and manufacturing of a solar thermal collector is discussed. The collector has three primary subsystems: concentrator, receiver/fluid loop, and controls. Identical curved reflective columns are utilized in a faceted Fresnel design to support 864 one foot square flat inexpensive second-surface, silvered glass mirrors. The columns are ganged together and rotated through their centers of gravity to provide elevation tracking. The concentrator is supported by a lightweight spaceframe structure which distributes all wind and gravity loads to the base supports. The base of the structure is a track which rotates on wheels mounted on concrete piers. A parallel tube steel heat exchanger is mounted at the concentrator focal area in a well insulated, galvanized steel housing. Two rows of vertical close-packed, staggered tubes connect a mud header and a steam header. Automatic two axis tracking and operational control is provided with a microprocessor based package. Concentrator-mounted shadowbands are the basis for active tracking. A software program provides azimuthal tracking during cloudy periods.

  19. The PKI collector

    NASA Technical Reports Server (NTRS)

    Rice, M. P.

    1982-01-01

    The design and manufacturing of a solar thermal collector is discussed. The collector has three primary subsystems: concentrator, receiver/fluid loop, and controls. Identical curved reflective columns are utilized in a faceted Fresnel design to support 864 one foot square flat inexpensive second-surface, silvered glass mirrors. The columns are ganged together and rotated through their centers of gravity to provide elevation tracking. The concentrator is supported by a lightweight spaceframe structure which distributes all wind and gravity loads to the base supports. The base of the structure is a track which rotates on wheels mounted on concrete piers. A parallel tube steel heat exchanger is mounted at the concentrator focal area in a well insulated, galvanized steel housing. Two rows of vertical close-packed, staggered tubes connect a mud header and a steam header. Automatic two axis tracking and operational control is provided with a microprocessor based package. Concentrator-mounted shadowbands are the basis for active tracking. A software program provides azimuthal tracking during cloudy periods.

  20. Analytical analysis of solar thermal collector with glass and Fresnel lens glazing

    NASA Astrophysics Data System (ADS)

    Zulkifle, Idris; Ruslan, Mohd Hafidz Hj; Othman, Mohd Yusof Hj; Ibarahim, Zahari

    2018-04-01

    Solar thermal collector is a system that converts solar radiation to heat. The heat will raise the temperature higher than the ambient temperature. Absorber and glazing are two important components in order to increase the temperature of the collector. The thermal absorber will release heat by convection and as radiation to the surrounding. These losses will be reduced by glazing. Other than that, glazing is beneficial for protecting the collector from dust and water. This study discusses about modelling of solar thermal collector effects of different mass flow rates with different glazing for V-groove flat plate solar collectors. The glazing used was the glass and linear Fresnel lens. Concentration ratio in this modelling was 1.3 for 0.1m solar collector thickness. Results show that solar collectors with linear Fresnel lens has the highest efficiency value of 71.18% compared to solar collectors with glass which has efficiency 54.10% with same operation conditions.

  1. Standarized performance tests of collectors of solar thermal energy: A steel flat-plate collector with two transparent covers and a proprietary coating

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Basic test results of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator are given. The collector was tested over ranges of inlet temperature and flux level.

  2. Combined solar collector and energy storage system

    NASA Technical Reports Server (NTRS)

    Jensen, R. N. (Inventor)

    1980-01-01

    A combined solar energy collector, fluid chiller and energy storage system is disclosed. A movable interior insulated panel in a storage tank is positionable flush against the storage tank wall to insulate the tank for energy storage. The movable interior insulated panel is alternately positionable to form a solar collector or fluid chiller through which the fluid flows by natural circulation.

  3. Recent progress in terrestrial photovoltaic collector technology

    NASA Technical Reports Server (NTRS)

    Ferber, R. R.

    1982-01-01

    The U.S. Photovoltaic Research and Development Program has the objective to develop the technology necessary to foster widespread grid-competitive electric power generation by the late 1980s. The flat-plate and the concentrator collector activities form the nucleus of the program. The project is concerned with the refining of silicon, silicon sheet production, solar cell processing and fabrication, encapsulation materials development, and collector design and production. The Large-Area Silicon Sheet Task has the objective to develop and demonstrate the feasibility of several methods for producing large area silicon sheet material suitable for fabricating low-cost, high-efficiency solar cells. It is expected that a variety of economic flat-plate and concentrator collectors will become commercially available for grid-connected applications.

  4. State-of-the-Art Review of Low-Cost Collector Technologies

    DTIC Science & Technology

    1981-06-01

    Mobility Low-Cost Parabolic Trough Survivability Light-Weight Thin-Film Reliability Heliostats Polymers Military 20. ABSTRACT (Contine an revers. deo It... heliostats and parabolic dish collectors. In addition several criteria were evaluated with respect to low-cost collector technologies These included...has produced collectors which incorporate sophisticated materials, = Heliostat heavy components, expensive seals and compli- o- (Point Focus) cated

  5. Baseline performance of solar collectors for NASA Langley solar building test facility

    NASA Technical Reports Server (NTRS)

    Knoll, R. H.; Johnson, S. M.

    1977-01-01

    The solar collector field contains seven collector designs. Before operation in the field, the experimental performances (thermal efficiencies) of the seven collector designs were measured in an indoor solar simulator. The resulting data provided a baseline for later comparison with actual field test data. The simulator test results are presented for the collectors as received, and after several weeks of outdoor exposure with no coolant (dry operation). Six of the seven collector designs tested showed substantial reductions in thermal efficiency after dry operation.

  6. Carbon-Coated Current Collectors for High-Power Li-ion Secondary Batteries III

    DTIC Science & Technology

    2013-12-02

    surface. Electron-performance for use modified Al foil as current collector of the cathode. LiFePO4 (LFPO) was used as active materials for test...kinds of current collectors were shown in Fig. 4. It shows the rate capacity of LiFePO4 (LFPO) get poorer when using PAT-Al as current collector, and...commercial LiFePO4 (Ale84) on different current collector Figure 4. Rate capacities of LFPO electrodes with different current collectors. 0 20

  7. Design and installation package for the Sunmat Flat Plate solar collector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The information used in evaluating the design of a liquid flat plate solar collector is reported. Included in this package are subsystem performance specification, installation, operation and maintenance manuals, collector sizing guides, and detailed drawings of the single-glazed collector.

  8. Ellipsoid-conic radiation collector and method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunsting, A.; Hogg, W.R.

    Disclosed is a radiation collector apparatus and method primarily for counting and analyzing a flow of dilute particulate material, such as blood cells, sperm cells and the like, through the use of light detection. The radiation collector apparatus comprises a reflector chamber having an ellipsoidal reflector surface with a pair of elipsoidal foci defining a first focus, f11, and second focus, f12, and a second reflector surface with a primary focus, f21, positioned at the same point as focus f12, and a secondary focus, f22. The second reflector surface has the configuration of one of the conic sections of revolution.more » In operation the radiation collector apparatus is provided with an intensifed beam of light and a stream of particulate material aligned to intersect the intensifed beam of light at focus f11. Detectable light signals, after two reflections, are received in a focused beam by a photosensitive detector.« less

  9. Terrestrial photovoltaic collector technology trends

    NASA Technical Reports Server (NTRS)

    Shimada, K.; Costogue, E.

    1984-01-01

    Following the path of space PV collector development in its early stages, terrestrial PV technologies based upon single-crystal silicon have matured rapidly. Currently, terrestrial PV cells with efficiencies approaching space cell efficiencies are being fabricated into modules at a fraction of the space PV module cost. New materials, including CuInSe2 and amorphous silicon, are being developed for lowering the cost, and multijunction materials for achieving higher efficiency. Large grid-interactive, tracking flat-plate power systems and concentrator PV systems totaling about 10 MW, are already in operation. Collector technology development both flat-plate and concentrator, will continue under an extensive government and private industry partnership.

  10. A comparison of two cloudwater/fogwater collectors: The rotating arm collector and the caltech active strand cloudwater collector

    NASA Astrophysics Data System (ADS)

    Collett, Jeffrey L.; Daube, Bruce C.; Munger, J. William; Hoffmann, Michael R.

    A side-by-side comparison of the Rotating Arm Collector (RAC) and the Caltech Active Strand Cloudwater Collector (CASCC) was conducted at an elevated coastal site near the eastern end of the Santa Barbara Channel in southern California. The CASCC was observed to collect cloudwater at rates of up to 8.5 ml min -1. The ratio of cloudwater collection rates was found to be close to the theoretical prediction of 4.2:1 (CASCC:RAC) over a wide range of liquid water contents (LWC). At low LWC, however, this ratio climbed rapidly, possibly reflecting a predominance of small droplets under these conditions, coupled with a greater collection efficiency of small droplets by the CASCC. Cloudwater samples collected by the RAC had significantly higher concentrations of Na +, Ca 2+, Mg 2+ and Cl - than those collected by the CASCC. These higher concentrations may be due to differences in the chemical composition of large vs small droplets. No significant differences were observed in concentrations of NO 3-, SO 42- or NH 4+ in samples collected by the two instruments.

  11. Qualification test and analysis report: Solar collectors

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Test results show that the Owens-Illinois Sunpak TM Model SEC 601 air-cooled collector meets the national standards and codes as defined in the Subsystem Peformance Specification and Verification Plan of NASA/MSFC, dated October 28, 1976. The program calls for the development, fabrication, qualification and delivery of an air-cooled solar collector for solar heating, combined heating and cooling, and/or hot water systems.

  12. Libbey-Owens-Ford solar collector static load test

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The test article is a flat plate solar collector that uses liquid as the heat transfer medium. The absorber plate is copper and has a double tempered glass cover. Test requirements and procedures are described and results are presented in a table. Results demonstrate that the collector performed satisfactorily.

  13. Performance evaluation of two black nickel and two black chrome solar collectors

    NASA Technical Reports Server (NTRS)

    Losey, R.

    1977-01-01

    The test program was based on the evaluation of four unique solar collectors described below: (1) black nickel collector surface with a desiccant drying bed, (2) black nickel collector surface without a desiccant drying bed, (3) black chrome collector surface with a dessicant drying bed, and (4) black chrome collector surface without a desiccant drying bed. The test program included three distinct phases: Initial performance evaluation, natural environmental aging, and post-aging performance evaluation. Results of Phase III testing conclusively indicated a higher normalized efficiency for Black Chrome surfaces when compared to Black Nickel.

  14. Secondary-electron-emission losses in multistage depressed collectors and traveling-wave-tube efficiency improvements with carbon collector electrode surfaces

    NASA Technical Reports Server (NTRS)

    Ramins, P.; Ebihara, B. T.

    1986-01-01

    Secondary-electron-emission losses in multistage depressed collectors (MDC's) and their effects on overall traveling-wave-tube (TWT) efficiency were investigated. Two representative TWT's and several computer-modeled MDC's were used. The experimental techniques provide the measurement of both the TWT overall and the collector efficiencies. The TWT-MDC performance was optimized and measured over a wide range of operating conditions, with geometrically identical collectors, which utilized different electrode surface materials. Comparisons of the performance of copper electrodes to that of various forms of carbon, including pyrolytic and iisotropic graphites, were stressed. The results indicate that: (1) a significant improvement in the TWT overall efficiency was obtained in all cases by the use of carbon, rather than copper electrodes, and (2) that the extent of this efficiency enhancement depended on the characteristics of the TWT, the TWT operating point, the MDC design, and collector voltages. Ion textured graphite was found to be particularly effective in minimizing the secondary-electron-emission losses. Experimental and analytical results, however, indicate that it is at least as important to provide a maximum amount of electrostatic suppression of secondary electrons by proper MDC design. Such suppression, which is obtained by ensuring that a substantial suppressing electric field exists over the regions of the electrodes where most of the current is incident, was found to be very effective. Experimental results indicate that, with proper MDC design and the use of electrode surfaces with low secondary-electron yield, degradation of the collector efficiency can be limited to a few percent.

  15. Researcher and Mechanic with Solar Collector in Solar Simulator Cell

    NASA Image and Video Library

    1976-08-21

    Researcher Susan Johnson and a mechanic examine a flat-plate solar collector in the Solar Simulator Cell in the High Temperature Composites Laboratory at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The Solar Simulator Cell allowed the researchers to control the radiation levels, air temperature, airflow, and fluid flow. The flat-plate collector, seen in a horizontal position here, was directed at the solar simulator, seen above Johnson, during the tests. Lewis researchers were studying the efficiency of various flat- plate solar collector designs in the 1970s for temperature control systems in buildings. The collectors consisted of a cover material, absorber plate, and parallel flow configuration. The collector’s absorber material and coating, covers, honeycomb material, mirrors, vacuum, and tube attachment could all be modified. Johnson’s study analyzed 35 collectors. Johnson, a lifelong pilot, joined NASA Lewis in 1974. The flat-plate solar collectors, seen here, were her first research project. Johnson also investigated advanced heat engines for general aviation and evaluated variable geometry combustors and liners. Johnson earned the Cleveland Technical Society’s Technical Achievement Award in 1984.

  16. Thermal performance evaluation of the Solargenics solar collector at outdoor conditions

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Test procedures used during the performance of an evaluation program are presented. The test program was conducted to obtain the following performance data and information on the solar collector. (1) thermal performance data under outdoor conditions; (2) structural behavior of collector under static conditions; (3) effects of long term exposure to material weathering elements. The solargenics is a liquid, single-glazed, flat plate collector. Approximate dimensions of each collector are 240 inches long, 36 inches wide, and 3.5 inches in depth.

  17. Evaluation of initial collector field performance at the Langley Solar Building Test Facility

    NASA Technical Reports Server (NTRS)

    Boyle, R. J.; Jensen, R. N.; Knoll, R. H.

    1977-01-01

    The thermal performance of the solar collector field for the NASA Langley Solar Building Test Facility is given for October 1976 through January 1977. A 1,180 square meter solar collector field with seven collector designs helped to provide hot water for the building heating system and absorption air conditioner. The collectors were arranged in 12 rows with nominally 51 collectors per row. Heat transfer rates for each row were calculated and recorded along with sensor, insolation, and weather data every five minutes using a minicomputer. The agreement between the experimental and predicted collector efficiencies was generally within five percentage points.

  18. Evaluation of initial collector field performance at the Langley Solar Building Test Facility

    NASA Technical Reports Server (NTRS)

    Boyle, R. J.; Knoll, R. H.; Jensen, R. N.

    1977-01-01

    The thermal performance of the solar collector field for the NASA Langley Solar Building Test Facility is given for October 1976 through January 1977. An 1180 square meter solar collector field with seven collector designs helped to provide hot water for the building heating system and absorption air conditioner. The collectors were arranged in 12 rows with nominally 51 collectors per row. Heat transfer rates for each row are calculated and recorded along with sensor, insolation, and weather data every 5 minutes using a mini-computer. The agreement between the experimental and predicted collector efficiencies was generally within five percentage points.

  19. Theoretical analysis to investigate thermal performance of co-axial heat pipe solar collector

    NASA Astrophysics Data System (ADS)

    Azad, E.

    2011-12-01

    The thermal performance of co-axial heat pipe solar collector which consist of a collector 15 co-axial heat pipes surrounded by a transparent envelope and which heat a fluid flowing through the condenser tubes have been predicted using heat transfer analytical methods. The analysis considers conductive and convective losses and energy transferred to a fluid flowing through the collector condenser tubes. The thermal performances of co-axial heat pipe solar collector is developed and are used to determine the collector efficiency, which is defined as the ratio of heat taken from the water flowing in the condenser tube and the solar radiation striking the collector absorber. The theoretical water outlet temperature and efficiency are compared with experimental results and it shows good agreement between them. The main advantage of this collector is that inclination of collector does not have influence on performance of co-axial heat pipe solar collector therefore it can be positioned at any angle from horizontal to vertical. In high building where the roof area is not enough the co-axial heat pipe solar collectors can be installed on the roof as well as wall of the building. The other advantage is each heat pipe can be topologically disconnected from the manifold.

  20. Solar energy collector

    DOEpatents

    Brin, Raymond L.; Pace, Thomas L.

    1978-01-01

    The invention relates to a solar energy collector comprising solar energy absorbing material within chamber having a transparent wall, solar energy being transmitted through the transparent wall, and efficiently absorbed by the absorbing material, for transfer to a heat transfer fluid. The solar energy absorbing material, of generally foraminous nature, absorbs and transmits the solar energy with improved efficiency.

  1. Design and development of high efficiency 140W space TWT with graphite collector

    NASA Astrophysics Data System (ADS)

    Srivastava, V.; Purohit, G.; Sharma, R. K.; Sharma, S. M.; Bera, A.; Bhaskar, P. V.; Singh, R. R.; Prasad, K.; Kiran, V.

    2008-05-01

    4-stage graphite collector assembly has been designed and developed for a 140W Ku-band space TWT to achieve the collector efficiency more than 80%. The UHV compatible, high density, copper impregnated POCO graphite (DFP-1C) was used to fabricate the four collector electrodes of the 4-stage depressed collector. Copper impregnated graphite material is used for the collector electrodes because of its low secondary electron emission coefficient, high thermal and electrical conductivities, easy machining and brazing, low thermal expansion coefficient and low weight. The graphite material was characterized for the UHV compatibility. The collector electrodes were precisely fabricated by careful machining, and technology was developed for brazing of graphite electrodes with high voltage alumina insulators. Complete TWT with four-stage graphite collector was developed and 140W output power at gain more than 55 dB was achieved. The TWT was pumped from both the gun and the collector ends.

  2. Thermal Performance of an Annealed Pyrolytic Graphite Solar Collector

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Hornacek, Jennifer

    2002-01-01

    A solar collector having the combined properties of high solar absorptance, low infrared emittance, and high thermal conductivity is needed for applications where solar energy is to be absorbed and transported for use in minisatellites. Such a solar collector may be used with a low temperature differential heat engine to provide power or with a thermal bus for thermal switching applications. One concept being considered for the solar collector is an Al2O3 cermet coating applied to a thermal conductivity enhanced polished aluminum substrate. The cermet coating provides high solar absorptance and the polished aluminum provides low infrared emittance. Annealed pyrolytic graphite embedded in the aluminum substrate provides enhanced thermal conductivity. The as-measured thermal performance of an annealed pyrolytic graphite thermal conductivity enhanced polished aluminum solar collector, coated with a cermet coating, will be presented.

  3. A solar air collector with integrated latent heat thermal storage

    NASA Astrophysics Data System (ADS)

    Charvat, Pavel; Ostry, Milan; Mauder, Tomas; Klimes, Lubomir

    2012-04-01

    Simulations of the behaviour of a solar air collector with integrated latent heat thermal storage were performed. The model of the collector was created with the use of coupling between TRNSYS 17 and MATLAB. Latent heat storage (Phase Change Material - PCM) was integrated with the solar absorber. The model of the latent heat storage absorber was created in MATLAB and the model of the solar air collector itself was created in TRNSYS with the use of TYPE 56. The model of the latent heat storage absorber allows specification of the PCM properties as well as other parameters. The simulated air collector was the front and back pass collector with the absorber in the middle of the air cavity. Two variants were considered for comparison; the light-weight absorber made of sheet metal and the heat-storage absorber with the PCM. Simulations were performed for the climatic conditions of the Czech Republic (using TMY weather data).

  4. Thermal performance of MSFC hot air collectors under natural and simulated conditions

    NASA Technical Reports Server (NTRS)

    Shih, K., Sr.

    1977-01-01

    The procedures used and the results obtained from an evaluation test program conducted to determine the thermal performance and structural characteristics of selected MSFC--designed hot air collectors under both real and simulated environmental conditions are described. Five collectors were tested in the three phased program. A series of outdoor tests were conducted to determine stagnation temperatures on a typical bright day and to determine each collector's ability to withstand these temperatures. Two of the collectors experienced structural deformation sufficient to eliminate them from the remainder of the test program. A series of outdoor tests to evaluate the thermal performance of collector S/N 10 under certain test conditions were performed followed by a series of indoor tests to evaluate the thermal performance of the collector under closely controlled simulated conditions.

  5. Shape Control of Solar Collectors Using Shape Memory Alloy Actuators

    NASA Technical Reports Server (NTRS)

    Lobitz, D. W.; Grossman, J. W.; Allen, J. J.; Rice, T. M.; Liang, C.; Davidson, F. M.

    1996-01-01

    Solar collectors that are focused on a central receiver are designed with a mechanism for defocusing the collector or disabling it by turning it out of the path of the sun's rays. This is required to avoid damaging the receiver during periods of inoperability. In either of these two cases a fail-safe operation is very desirable where during power outages the collector passively goes to its defocused or deactivated state. This paper is principally concerned with focusing and defocusing the collector in a fail-safe manner using shape memory alloy actuators. Shape memory alloys are well suited to this application in that once calibrated the actuators can be operated in an on/off mode using a minimal amount of electric power. Also, in contrast to other smart materials that were investigated for this application, shape memory alloys are capable of providing enough stroke at the appropriate force levels to focus the collector. Design and analysis details presented, along with comparisons to test data taken from an actual prototype, demonstrate that the collector can be repeatedly focused and defocused within accuracies required by typical solar energy systems. In this paper the design, analysis and testing of a solar collector which is deformed into its desired shape by shape memory alloy actuators is presented. Computations indicate collector shapes much closer to spherical and with smaller focal lengths can be achieved by moving the actuators inward to a radius of approximately 6 inches. This would require actuators with considerably more stroke and some alternate SMA actuators are currently under consideration. Whatever SMA actuator is finally chosen for this application, repeatability and fatigue tests will be required to investigate the long term performance of the actuator.

  6. Truncation of CPC solar collectors and its effect on energy collection

    NASA Astrophysics Data System (ADS)

    Carvalho, M. J.; Collares-Pereira, M.; Gordon, J. M.; Rabl, A.

    1985-01-01

    Analytic expressions are derived for the angular acceptance function of two-dimensional compound parabolic concentrator solar collectors (CPC's) of arbitrary degree of truncation. Taking into account the effect of truncation on both optical and thermal losses in real collectors, the increase in monthly and yearly collectible energy is also evaluated. Prior analyses that have ignored the correct behavior of the angular acceptance function at large angles for truncated collectors are shown to be in error by 0-2 percent in calculations of yearly collectible energy for stationary collectors.

  7. EUV near normal incidence collector development at SAGEM

    NASA Astrophysics Data System (ADS)

    Mercier Ythier, R.; Bozec, X.; Geyl, R.; Rinchet, A.; Hecquet, Christophe; Ravet-Krill, Marie-Françoise; Delmotte, Franck; Sassolas, Benoît; Flaminio, Raffaele; Mackowski, Jean-Marie; Michel, Christophe; Montorio, Jean-Luc; Morgado, Nazario; Pinard, Laurent; Roméo, Elodie

    2008-03-01

    Through its participation to European programs, SAGEM has worked on the design and manufacturing of normal incidence collectors for EUV sources. By opposition to grazing incidence, normal incidence collectors are expected to collect more light with a simpler and cheaper design. Designs are presented for the two current types of existing sources: Discharge Produced Plasma (DPP) and Laser Produced Plasma (LPP). Collection efficiency is calculated in both cases. It is shown that these collectors can achieve about 10 % efficiency for DPP sources and 40 % for LPP sources. SAGEM works on the collectors manufacturability are also presented, including polishing, coating and cooling. The feasibility of polishing has been demonstrated with a roughness better than 2 angstroms obtained on several materials (glass, silicon, Silicon Carbide, metals...). SAGEM is currently working with the Institut d'Optique and the Laboratoire des Materiaux Avancés on the design and the process of EUV coatings for large mirrors. Lastly, SAGEM has studied the design and feasibility of an efficient thermal control, based on a liquid cooling through slim channels machined close to the optical surface.

  8. Installation package for air flat plate collector

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Solar 2 dimensions are four feet by eight feet by two and one half inches. The collector weighs 130 pounds and has an effective solar collection area of over 29.5 square feet. This area represents 95 percent of the total surface of the collector. The installation, operation and maintenance manual, safety hazard analysis, special handling instructions, materials list, installation concept drawings, warranty and certification statement are included in the installation package.

  9. Attaching solar collectors to a structural framework utilizing a flexible clip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruse, John S

    Methods and apparatuses described herein provide for the attachment of solar collectors to a structural framework in a solar array assembly. A flexible clip is attached to either end of each solar collector and utilized to attach the solar collector to the structural framework. The solar collectors are positioned to allow a member of the framework to engage a pair of flexible clips attached to adjacent solar collectors during assembly of the solar array. Each flexible clip may have multiple frame-engaging portions, each with a flange on one end to cause the flexible clip to deflect inward when engaged bymore » the framework member during assembly and to guide each of the frame-engaging portions into contact with a surface of the framework member for attachment.« less

  10. Optical performance effects of the misalignment of nonimaging optics solar collectors

    NASA Astrophysics Data System (ADS)

    Ferry, Jonathan; Ricketts, Melissa; Winston, Roland

    2017-09-01

    The use of non-imaging optics in the application of high temperature solar thermal collectors can be extremely advantageous in eliminating the need to track the sun. The stationary nature of non-imaging optics collectors, commonly called compound parabolic concentrators (CPC's), present a unique design challenge when orienting them to collect sunlight. Many facilities throughout the world that adopt CPCs are not situated to orient the collectors in the ideal angle facing the sun. This East-West misalignment can adversely affect the optical and power performance of the CPC collector. To characterize how this misalignment effects CPCs, reverse raytracing simulations are conducted for varying offset angles of the collectors from solar South. Optical performance is analyzed for an ideal East-West oriented CPC with a 40-degree acceptance angle. Direction cosine plots are used to develop a ratio of annual solar collection by the CPC over the total annual solar input. From these simulations, average annual collector performance is given for offset angles ranging from 0 to 90 degrees for different Earth Latitudes in 10 degree increments.

  11. Preliminary design package for solar collector and solar pump

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A solar-operated pump using an existing solar collector, for use on solar heating and cooling and hot water systems is described. Preliminary design criteria of the collector and solar-powered pump is given including: design drawings, verification plans, and hazard analysis.

  12. Wide acceptance angle, high concentration ratio, optical collector

    NASA Technical Reports Server (NTRS)

    Kruer, Mark Arthur (Inventor)

    1990-01-01

    The invention is directed to an optical collector requiring a wide acceptance angle, and a high concentration ratio. The invention is particularly adapted for use in solar collectors of cassegrain design. The optical collector system includes a parabolic circular concave primary mirror and a hyperbolic circular convex secondary mirror. The primary mirror includes a circular hole located at its center wherein a solar collector is located. The mirrored surface of the secondary mirror has three distinct zones: a center circle, an on-axis annulus, and an off-axis section. The parabolic shape of the primary mirror is chosen so that the primary mirror reflects light entering the system on-axis onto the on-axis annulus. A substantial amount of light entering the system off-axis is reflected by the primary mirror onto either the off-axis section or onto the center circle. Subsequently, the off-axis sections reflect the off-axis light toward the solar collector. Thus, off-axis light is captured which would otherwise be lost to the system. The novelty of the system appears to lie in the configuration of the primary mirror which focuses off-axis light onto an annular portion of the secondary mirror to enable capture thereof. This feature results in wide acceptance angle and a high concentration ratio, and also compensates for the effects of non-specular reflection, and enables a cassegrain configuration to be used where such characteristics are required.

  13. Fog collectors and collection techniques

    NASA Astrophysics Data System (ADS)

    Höhler, I.; Suau, C.

    2010-07-01

    The earth sciences taught that due to the occurrence of water in three phases: gas, liquid and solid, solar energy keeps the hydrological cycle going, shaping the earth surface while regulating the climate and thus allowing smart technologies to interfere in the natural process by rerouting water and employing its yield for natural and human environments’ subsistence. This is the case of traditional fog collectors implemented by several researchers along the Atacama Desert since late ’50s such as vertical tensile mesh or macro-diamonds structures. Nevertheless, these basic prototypes require to be upgraded, mainly through new shapes, fabrics and frameworks’ types by following the principles of lightness, transformability, portability and polyvalence. The vertical canvas of conventional fog collectors contain too much stressed at each joints and as result it became vulnerable. Our study constitutes a research by design of two fog-trap devices along the Atacama Desert. Different climatic factors influence the efficiency of fog harvesting. In order to increase yield of collected fog water, we need to establish suitable placements that contain high rates of fog’s accumulation. As important as the location is also the building reliability of these collectors that will be installed. Their frames and skins have to be adjustable to the wind direction and resistant against strong winds and rust. Its fabric need to be more hydrophobic, elastic and with light colours to ease dripping/drainage and avoid ultra-violet deterioration. In addition, meshes should be well-tensed and frames well-embraced too. In doing so we have conceived two fog collectors: DropNet© (Höhler) and FogHive© (Suau). These designs explore climatic design parameters combined with the agile structural principles of Tensegrity and Geodesic widely developed by Bucky Fuller and Frei Otto. The research methods mainly consisted of literature review; fieldwork; comparative analysis of existing fog

  14. Four Interstellar Dust Candidates from the Stardust Interstellar Dust Collector

    NASA Astrophysics Data System (ADS)

    Westphal, A. J.; Allen, C.; Bajt, S.; Bechtel, H. A.; Borg, J.; Brenker, F.; Bridges, J.; Brownlee, D. E.; Burchell, M.; Burghammer, M.; Butterworth, A. L.; Cloetens, P.; Davis, A. M.; Floss, C.; Flynn, G. J.; Fougeray, P.; Frank, D.; Gainsforth, Z.; Grün, E.; Heck, P. R.; Hillier, J. K.; Hoppe, P.; Howard, L.; Hudson, B.; Huss, G. R.; Huth, J.; Kearsley, A.; King, A. J.; Lai, B.; Leitner, J.; Lemelle, L.; Leroux, H.; Lettieri, R.; Marchant, W.; Nittler, L. R.; Ogliore, R. C.; Postberg, F.; Price, M. C.; Sandford, S. A.; Sans Tresseras, J. A.; Schmitz, S.; Schoonjans, T.; Silversmit, G.; Simionovici, A.; Srama, R.; Stadermann, F. J.; Stephan, T.; Stodolna, J.; Stroud, R. M.; Sutton, S. R.; Toucoulou, R.; Trieloff, M.; Tsou, P.; Tsuchiyama, A.; Tyliczszak, T.; Vekemans, B.; Vincze, L.; Wordsworth, N.; Zevin, D.; Zolensky, M. E.; 29,000 Stardust@Home Dusters

    2011-03-01

    We report the discovery of two new interstellar dust candidates in the aerogel collectors of the Stardust Interstellar Dust Collector, and the analyses of these and two previously identified candidates.

  15. Summer performance results obtained from simultaneously testing ten solar collectors outdoors

    NASA Technical Reports Server (NTRS)

    Miller, D. R.

    1977-01-01

    Ten solar collectors were simultaneously tested outdoors. Efficiency data were correlated using a method that separates solar variables (flux, incident angle) from the desired performance parameters (heat loss, absorbtance, transmittance) which are unique to a given collector design. Tests were conducted on both clear and moderately cloudy days. Correlating data in the above manner, a 2-glass, black paint collector exhibited a decrease in efficiency of 5 percentage points relative to the baseline data for an exposure time of 2 years, 4 months. Condensation on the collector glazing was thought to be a contributing factor in this efficiency change.

  16. Solar collector manufacturing activity, 1988

    NASA Astrophysics Data System (ADS)

    1989-11-01

    This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy in cooperation with the Office of Conservation and Renewable Energy. The report presents data on producer shipments and end uses obtained from manufacturers and importers of solar thermal collectors and photovoltaic modules. It provides annual data necessary for the Department of Energy to execute its responsibility to: (1) monitor activities and trends in the solar collector manufacturing industry, (2) prepare the national energy strategy, and (3) provide information on the size and status of the industry to interested groups such as the U.S. Congress, government agencies, the Solar Energy Research institute, solar energy specialists, manufacturers, and the general public.

  17. Conductivity fuel cell collector plate and method of fabrication

    DOEpatents

    Braun, James C.

    2002-01-01

    An improved method of manufacturing a PEM fuel cell collector plate is disclosed. During molding a highly conductive polymer composite is formed having a relatively high polymer concentration along its external surfaces. After molding the polymer rich layer is removed from the land areas by machining, grinding or similar process. This layer removal results in increased overall conductivity of the molded collector plate. The polymer rich surface remains in the collector plate channels, providing increased mechanical strength and other benefits to the channels. The improved method also permits greater mold cavity thickness providing a number of advantages during the molding process.

  18. Solar collector performance evaluated outdoors at NASA-Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Vernon, R. W.

    1974-01-01

    The study of solar reflector performance reported is related to a project in which solar collectors are to be provided for the solar heating and cooling system of an office building at NASA's Langley Research Center. The solar collector makes use of a liquid consisting of 50% ethylene glycol and 50% water. A conventional air-liquid heat exchanger is employed. Collector performance and solar insolation data are recorded along with air temperature, wind speed and direction, and relative humidity.

  19. Development of an economic solar heating system with cost efficient flat plate collectors

    NASA Astrophysics Data System (ADS)

    Eder-Milchgeisser, W.; Burkart, R.

    1980-10-01

    Mass produced flat plate solar collectors were worked into the design of a system for heating a swimming pool and/or providing domestic hot water. The collector characteristics, including physical and mechanical data as well as theoretical energy conversion efficiency, are presented. The collector was tested and service life efficiency was determined. The mounting of the collector, depending on roof type, is explained. Both in service and laboratory test results demonstrate the cost effectiveness of the system. Further improvement of efficiency is envisaged with automatic flow control in the solar collector and hot water circuits.

  20. Genesis Solar Wind Array Collector Fragments Post-Recovery Status

    NASA Astrophysics Data System (ADS)

    Allton, J. H.

    2005-12-01

    The Genesis solar wind sample return mission spacecraft was launched with 271 whole and 30 half hexagonally-shaped collectors. At 65 cm2 per hexagon, the total collection area was 18,600 cm2. These 301 collectors were comprised of 9 materials mounted on 5 arrays, each of which was exposed to a specific regime of the solar wind. Thoughtfully, collectors exposed to a specific regime were made of a unique thickness: bulk solar wind (700 μm thick), transient solar wind associated with coronal mass ejection (650 μm), high speed solar wind from coronal holes (600 μm), and interstream low-speed solar wind (550 μm). Thus, it is easy to distinguish the solar wind regime sampled by measuring the fragment thickness. Nearly 10,000 fragments have been enumerated, constituting about 20% of the total area. The sapphire-based hexagons survived better than the silicon hexagons as seen in the percent pre-flight whole collectors compared to the percent of recovered fragments in 10 to 25 mm size range. Silicon-based collectors accounted for 57% of the hexagons flown but 18% of the recovered fragments. However, a) gold coating on sapphire accounted for 12% flown and 27% of the recovered; b) aluminum coating on sapphire for 9% flown and 25% of the recovered; c) silicon coating on sapphire for 7% flown and 18% of the recovered; and d) sapphire for 7% flown and 10% of the recovered. Due to the design of the array frames, many of the recovered fragments were trapped in baffles very near their original location and were relatively protected from outside debris. Collector fragments are coated with particulate debris, and there is evidence that a thin molecular film was deposited on collector surfaces during flight. Therefore, in addition to allocations distributed for solar wind science analysis, poorer quality samples have been used in specimen cleaning tests.

  1. Cytogenetic Biomonitoring in Buccal Mucosal Cells from Municipal Solid Waste Collectors.

    PubMed

    Andrade, Mariana Carvalho; Dos Santos, Jean Nunes; Cury, Patricia Ramos; Flygare, Ana Carolina Correa; Claudio, Samuel Rangel; Oshima, Celina Tizuko Fujiyama; Ribeiro, Daniel Araki

    2017-02-01

    Waste collectors collect, transport, and process the garbage produced by people living in the city. Nowadays, this activity requires special attention due to the environmental impact of garbage and its potential consequences on human health. The aim of this study was to evaluate potential cytotoxic and mutagenic effects of garbage collection on waste collectors. For this purpose, a total of 47 male waste collectors aged from 24 to 53 years were included in the experimental group. A total of 30 men matched by age were used as the control group. Cytotoxicity and mutagenicity were analyzed by micronucleus test in buccal mucosaI cells. No statistically significant difference (p>0.05) in the frequency of micronuclei was detected in the waste collectors when compared to controls. Nevertheless, higher frequencies of karyolysis and pyknosis (p<0.05) were detected in buccal mucosaI cells from waste collectors when compared to matched controls. Taken together, our results indicate that waste collectors comprise an at-risk group as a result of increased cytotoxicity apparent from buccal mucosa cells. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  2. Thin film absorber for a solar collector

    DOEpatents

    Wilhelm, William G.

    1985-01-01

    This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  3. The Whitfield Solar CPV Collector

    NASA Astrophysics Data System (ADS)

    Bentley, Roger; Anstey, Ben; Callear, Jason; Chonavel, Sylvain; Clark, Ian; Collins, Ian; Ramallo, Alfonso; Scanlon, Hamilton; Weatherby, Clive

    2010-10-01

    Whitfield Solar is now in production with a point-focus Fresnel lens 70x PV concentrator that uses LGBC silicon cells. The design builds on initial research carried out under a number of EU-funded R&D projects. Each collector has twenty-four V-troughs 1.2 m long by 110 mm wide by 110 mm deep, and each trough carries 12 cells. Tracking is closed-loop, in a 2-axis tilt & roll system. Initial prototypes were installed in Spain in 2006, and subsequent production-version collectors have been on-sun since September 2008. In-field normalised d.c. system efficiency is 13.5%. Volume-manufactured sales price—including support frame and mark-up—is €2.40/Wp,dc, with scope for further significant cost reduction identified.

  4. Commissioning a Megawatt-class Gyrotron with Collector Potential Depression

    NASA Astrophysics Data System (ADS)

    Lohr, J.; Cengher, M.; Gorelov, Y. A.; Ponce, D.; Prater, R.

    2013-10-01

    A 110 GHz depressed collector gyrotron has been installed on the DIII-D tokamak. The commissioning process rapidly achieved operation at full parameters, 45 A and 94 kV total voltage, with 29 kV depression. Although short pulse, 2 ms, factory testing demonstrated 1.2 MW at 41% electrical efficiency, long pulse testing at DIII-D achieved only 33% efficiency at full power parameters, for pulse lengths up to 10 s. Maximum generated power was ~950 kW, considerably below the 1.2 MW target. During attempts to increase the power at 5 s pulse length, it was noted that the collector cooling water was boiling. This led to the discovery that 14 of the 160 cooling channels in the collector had been blocked by braze material during manufacture of the tube. The locations of blocked channels were identified using infrared imaging of the outside of the collector during rapid changes in the cooling water temperature. Despite these difficulties, the rf beam itself was of very high quality and the stray rf found calorimetrically in the Matching Optics Unit, which couples the Gaussian rf beam to the waveguide, was only 2% of the generated power, about half that of our previous best quality high power beam. Details of the power measurements and collector observations will be presented. Work supported by the US DOE under DE-FC02-04ER54698.

  5. Beta ray flux measuring device

    DOEpatents

    Impink, Jr., Albert J.; Goldstein, Norman P.

    1990-01-01

    A beta ray flux measuring device in an activated member in-core instrumentation system for pressurized water reactors. The device includes collector rings positioned about an axis in the reactor's pressure boundary. Activated members such as hydroballs are positioned within respective ones of the collector rings. A response characteristic such as the current from or charge on a collector ring indicates the beta ray flux from the corresponding hydroball and is therefore a measure of the relative nuclear power level in the region of the reactor core corresponding to the specific exposed hydroball within the collector ring.

  6. Lauryl Amine as heavy metal collector of boiler ash from pulp and paper mill waste

    NASA Astrophysics Data System (ADS)

    Sembiring, M. P.; Kaban, J.; Bangun, N.; Saputra, E.

    2018-04-01

    Theincreasing of demand of pulp and paper products, will following with the growing the pulp and paper industryand generate significant mill waste. The total waste reached 1/3 of the amount raw materials used and ash boiler is the waste with the largest percentage of 52%. For that it takes effort to manage the existing waste. The boiler ash contained the chemical elements, it can be utilized such as fertilizer, because it also contains transition metals in form of heavy metal such as Cadmium (Cd), Cobalt (Co), Chrome (Cr), Cupprum (Cu), Ferrum (Fe), Nickel (Ni), and Zinc (Zn), the use of boiler ash must follow the threshold specified by the Government. Several studies have been undertaken to reduce and extract heavy metals from ash and sand of the boiler by using carbon dioxide as its ligand. Eelectrochemical method was used to remove and recovery of heavy metals from the incenerator. This study focused on removal of heavy metals using Lauryl Amine as collector and three solvents namely Dichloromethane, Ethanol and n-Hexane. The treatmentswas able to extract the heavy metal and generally reduce the heavy metal content of ash boiler pulp and paper mill waste. The combination treatment used toreduce the heavy metal content of 5 gram Lauryl Amine collector in Dichloromethane solvent for 4 hours process time.

  7. 27 CFR 478.93 - Authorized operations by a licensed collector.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... the licensed collector in curios and relics. The collector's license is of no force or effect and a... disposition as required by § 478.125 (a) and (b). [T.D. ATF-270, 53 FR 10496, Mar. 31, 1988] ...

  8. 27 CFR 478.93 - Authorized operations by a licensed collector.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the licensed collector in curios and relics. The collector's license is of no force or effect and a... disposition as required by § 478.125 (a) and (b). [T.D. ATF-270, 53 FR 10496, Mar. 31, 1988] ...

  9. Comparison of Thermal Performances between Low Porosity Perforate Plate and Flat Plate Solar Air Collector

    NASA Astrophysics Data System (ADS)

    Chan, Hoy-Yen; Vinson, A. A.; Baljit, S. S. S.; Ruslan, M. H.

    2018-04-01

    Flat plate solar air collector is the most common collector design, which is relatively simpler to fabricate and lower cost. In the present study, perforated plate solar collector was developed to improve the system thermal performance. A glazed perforated plate of 6mm holes diameter with square geometry was designed and installed as the absorber of the collector. The influences of solar radiation intensity and mass flow rate on the thermal performance were investigated. The perforated collector was compared with the flat plate solar collector under the same operating conditions. The highest values of thermal efficiency in this study for the perforated plate (PP) and the flat plate (FP) solar collectors were 59% and 36% respectively, at solar radiation intensity of 846 Wm-2 and mass flow rate of 0.02 kgs-1. Furthermore, PP collector gave better thermal performance compared to FP collector; and compared to previous studies, the present perforated design was compatible with the flat plate with double pass designs.

  10. Effect of the collector tube profile on Pitot pump performances

    NASA Astrophysics Data System (ADS)

    Komaki, K.; Kanemoto, T.; Sagara, K.; Umekage, T.

    2013-12-01

    The pitot pump is composed of the rotating casing with the impeller channel and the pitot tube type collector as the discharge line. The radial impeller feeds water to the rotating casing. The water rotating together with the casing is caught by the stationary pitot tube type collector, and then discharges to the outside. This type pump, as the extra high head pump, is provided mainly for boiler feed systems, and has been designed by trial and error. To optimize the pump profiles, it is desirable to investigate not only performances but also internal flow conditions. This paper discusses experimentally and numerically the relation between the pump performances and the flow conditions in the rotating casing. The moderately larger dimensions of the collector make the pump head and the discharge high with the higher hydraulic efficiency. The flow in the casing is almost the forced vortex type whose velocity is in proportion to the radius but the core velocity is affected with the drag force of the stationary collector. Based upon the above results, the profile of the pitot tube type collector was optimized with the numerical simulation.

  11. Study of Performance of Coaxial Vacuum Tube Solar Collector on Ethanol Distillation Process

    NASA Astrophysics Data System (ADS)

    Sutomo; Ramelan, A. H.; Mustafa; Tristono, T.

    2017-07-01

    Coaxial vacuum tube solar collectors can generate heat up to 80°C is possibly used for ethanol distillation process that required temperature 79°C only. This study reviews the performance of coaxial collector vacuum tube used for ethanol distillation process. This experimental research was conducted in a closed space using a halogen lamp as a solar radiation simulator. We had done on three different of the radiation values, i.e. 998 W/m2, 878 W/m2 and 782 W/m2. The pressure levels of vacuum tube collector cavity in the research were 1; 0.5; 0.31; 0.179; and 0.043 atmospheres. The Research upgraded the 30% of ethanol to produce the concentration of 77% after distillation. The result shows that the performance of coaxial collector vacuum tube used for ethanol distillation process has the negative correlation to the level of the collector tube cavity pressure. The productivity will increase while the collector tube cavity pressure decreased. Therefore, the collector efficiency has the negative correlation also to the level of collector tube cavity pressure. The best performance achieved when it operated at a pressure of 0.043 atmosphere with radiation intensity 878 W / m2, and the value of efficiency is 57.8%.

  12. Method Of Making Solar Collectors By In-Situ Encapsulation Of Solar Cells

    DOEpatents

    Carrie, Peter J.; Chen, Kingsley D. D.

    2000-10-24

    A method of making solar collectors by encapsulating photovoltaic cells within a base of an elongated solar collector wherein heat and pressure are applied to the cells in-situ, after an encapsulating material has been applied. A tool is fashioned having a bladder expandable under gas pressure, filling a region of the collector where the cells are mounted. At the same time, negative pressure is applied outside of the bladder, enhancing its expansion. The bladder presses against a platen which contacts the encapsulated cells, causing outgassing of the encapsulant, while heat cures the encapsulant. After curing, the bladder is deflated and the tool may be removed from the collector and base and reflective panels put into place, if not already there, thereby allowing the solar collector to be ready for use.

  13. Cathode Characterization with Steel and Copper Collector Bars in an Electrolytic Cell

    NASA Astrophysics Data System (ADS)

    Das, Subrat; Morsi, Yos; Brooks, Geoffrey

    2013-12-01

    This article presents finite-element method simulation results of current distribution in an aluminum electrolytic cell. The model uses one quarter of the cell as a computational domain assuming longitudinal (along the length of the cell) and transverse axes of symmetries. The purpose of this work is to closely examine the impact of steel and copper collector bars on the cell current distribution. The findings indicated that an inclined steel collector bar (φ = 1°) can save up to 10-12 mV from the cathode lining in comparison to a horizontal 100 mm × 150-mm steel collector bar. It is predicted that a copper collector bar has a much higher potential of saving cathode voltage drop (CVD) and has a greater impact on the overall current distribution in the cell. A copper collector bar with 72% of cathode length and size of 100 mm × 150 mm is predicted to have more than 150 mV savings in cathode lining. In addition, a significant improvement in current distribution over the entire cathode surface is achieved when compared with a similar size of steel collector bar. There is a reduction of more than 70% in peak current density value due to the higher conductivity of copper. Comparisons between steel and copper collector bars with different sizes are discussed in terms CVD and current density distribution. The most important aspect of the findings is to recognize the influence of copper collector bars on the current distribution in molten metal. Lorentz fields are evaluated at different sizes of steel and copper collector bars. The simulation predicts that there is 50% decrease in Lorentz force due to the improvement in current distribution in the molten metal.

  14. Thermal performance evaluation of the Calmac (liquid) solar collector

    NASA Technical Reports Server (NTRS)

    Usher, H.

    1978-01-01

    The procedures used and the results obtained during the evaluation test program on the S. N. 1, (liquid) solar collector are presented. The flat plate collector uses water as the working fluid. The absorber plate is aluminum with plastic tubes coated with urethane black. The glazing consists of .040 in fiberglass reinforced polyester. The collector weight is 78.5 pounds with overall external dimensions of approximately 50.3in. x 98.3in. x 3.8in. The following information is given: thermal performance data under simulated conditions, structural behavior under static loading, and the effects of long term exposure to natural weathering. These tests were conducted using the MSFC Solar Simulator.

  15. Surface water-ground water interaction: Herbicide transport into municipal collector wells

    USGS Publications Warehouse

    Verstraeten, Ingrid M.; Carr, J.D.; Steele, G.V.; Thurman, E.M.; Bastian, K.C.; Dormedy, D.F.

    1999-01-01

    During spring runoff events, herbicides in the Platte River are transported through an alluvial aquifer into collector wells located on an island in the river in 6 to 7 d. During two spring runoff events in 1995 and 1996, atrazine [2-chloro-4-ethylamino-6-isopropylamino-s-triazine] concentrations in water from these wells reached approximately 7 ??g/L, 70 times more than the background concentration in ground water. Concentrations of herbicides and metabolites in the collector wells generally were one-half to one-fifth the concentrations of herbicides in the river for atrazine, alachlor [2-chloro-2'-6'-diethyl-N-(methoxymethyl)-acetanilide], alachlor ethane-sulfonic acid (ESA) [2-((2,6-diethylphenyl) (methoxymethyl)amino)-2- oxoethane-sulfonic acid], metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N- (2-methoxy-1-methylethyl)acetamide], cyanazine [2-((4-chloro-6-(ethyl-amino)- 1,3,5 triazin-2-yl)-amino)-2-methylpropionitrile], and acetochlor [2-chloro- N-(ethoxymethyl)-N-(2-ethyl-6methyl-phenyl) acetamide], suggesting that 20 to 50% river water could be present in the water from the collector wells, assuming no degradation. The effect of the river on the quality of water from the collector wells can be reduced through selective management of horizontal laterals of the collector wells. The quality of the water from the collector wells is dependent on the (i) selection of the collector well used, (ii) number and selection of laterals used, (iii) chemical characteristics of the contaminant, and (iv) relative mixing of the Platte River and a major upstream tributary.

  16. Efficiency enhancement of octave-bandwidth traveling wave tubes by use of multistage depressed collectors

    NASA Technical Reports Server (NTRS)

    Ramins, P.; Fox, T. A.

    1979-01-01

    Small, three- and five-stage depressed collectors were evaluated in conjunction with a 4.8- to 9.6-GHz TWT of 325- to 675-W power output and a beam of 0.5 microperv. The multistage depressed collector (MDC) performed well even though its design had been optimized for a TWT of identical design but considerably less output power. Despite large, fixed losses significant efficiency enhancement was demonstrated with both the three- and five-stage depressed collectors. At saturated rf power output, the improvement in the overall efficiency ranged from a factor of 2.5 to 3.0 for the three-stage collector and a factor of 3.0 to 3.5 for the five-stage collector. At saturation three-stage collector efficiencies of 77 to 80 percent and five-stage collector efficiencies of 81 to 84 percent were obtained across the frequency band. An overall efficiency of 37.0 to 44.3 percent across the frequency band of 4.8 to 9.6 GHz was demonstrated with the use of harmonic injection. For operation below saturation, even larger relative improvements in the overall TWT efficiency were demonstrated. Collector performance was relatively insensitive to the degree of regulation of the collector power supply.

  17. Reliability and quality of water isotope data collected with a low-budget rain collector.

    PubMed

    Prechsl, Ulrich E; Gilgen, Anna K; Kahmen, Ansgar; Buchmann, Nina

    2014-04-30

    Low-budget rain collectors for water isotope analysis, such as the 'ball-in-funnel type collector' (BiFC), are widely used in studies on stable water isotopes of rain. To date, however, an experimental quality assessment of such devices in relation to climatic factors does not exist. We used Cavity Ring-Down Spectrometry (CRDS) to quantify the effects of evaporation on the δ(18)O values of reference water under controlled conditions as a function of the elapsed time between rainfall and collection for isotope analysis, the sample volume and the relative humidity (RH: 31% and 67%; 25 °C). The climate chamber conditions were chosen to reflect the warm and dry end of field conditions that favor evaporative enrichment (EE). We also tested the performance of the BiFC in the field, and compared our δ(2)H/δ(18)O data obtained by isotope ratio mass spectrometry (IRMS) with those from the Swiss National Network for the Observation of Isotopes in the Water Cycle (ISOT). The EE increased with time, with a 1‰ increase in the δ(18)O values after 10 days (RH: 25%; 25 °C; 35 mL (corresponding to a 5 mm rain event); p <0.001). The sample volume strongly affected the EE (max. value +1.5‰ for 7 mL samples (i.e., 1 mm rain events) after 72 h at 31% and 67% RH; p <0.001), whereas the relative humidity had no significant effect. Using the BiFC in the field, we obtained very tight relationships of the δ(2)H/δ(18)O values (r(2) ≥ 0.95) for three sites along an elevational gradient, not significantly different from that of the next ISOT station. Since the chosen experimental conditions were extreme compared with the field conditions, it was concluded that the BiFC is a highly reliable and inexpensive collector of rainwater for isotope analysis. Copyright © 2014 John Wiley & Sons, Ltd.

  18. Solar collector array

    DOEpatents

    Hall, John Champlin; Martins, Guy Lawrence

    2015-09-06

    A method and apparatus for efficient manufacture, assembly and production of solar energy. In one aspect, the apparatus may include a number of modular solar receiver assemblies that may be separately manufactured, assembled and individually inserted into a solar collector array housing shaped to receive a plurality of solar receivers. The housing may include optical elements for focusing light onto the individual receivers, and a circuit for electrically connecting the solar receivers.

  19. Cleaning Surface Particle Contamination with Ultrapure Water (UPW) Megasonic Flow on Genesis Array Collectors

    NASA Technical Reports Server (NTRS)

    Allton, J. H.; Calaway, Michael J.; Hittle, J. D.; Rodriquez, M. C.; Stansbery, E. K.; McNamara, K. M.

    2006-01-01

    The hard landing experienced by the Genesis sample return capsule breached the science canister containing the solar wind collectors. This impact into the damp lakebed contaminated collector surfaces with pulverized collector and spacecraft materials and Utah sediment and brine residue. The gold foil, polished aluminum, and bulk metallic glass remained intact, but the solar wind bulk and regime-specific array collectors were jarred loose from their frames and fractured into greater than 10,000 specimens. After a year of investigation and cleaning experimentation, the Genesis Science Team determined that array collectors had 4 classes of contaminants: particles, molecular film, submicron inorganic particulate ("aerosol"), and pre-launch surface contamination. We discuss here use of megasonically energized ultrapure water (UPW) for removing particulate debris from array collector fragments.

  20. Stereomicroscope Inspection of Polished Aluminum Collector 50684.0

    NASA Technical Reports Server (NTRS)

    Rodriquez, M. C.; Calaway, M. J.; Allton, J. H.

    2008-01-01

    The Genesis polished aluminum "kidney" collector was damaged during the hard landing of the capsule on September 8, 2004 in the Utah desert. The kidney was introduced into the Genesis (ISO class 4) cleanroom laboratory on November 4, 2004 and stored under nitrogen cover gas. The collector is currently fastened to a highly polished stainless steel plate for secure handling. Curatorial work at JSC has made successful subdivision and subsequent allocation of samples from the kidney.

  1. Leaves: Nature's Solar Collectors

    ERIC Educational Resources Information Center

    Isabelle, Aaron D.; de Groot, Cornelis

    2009-01-01

    One of the most captivating things about plants is the way they capture the Sun's energy, but this can be a difficult topic to cover with elementary students. Therefore, to help students to make a concrete connection to this abstract concept, this series of solar-energy lessons focuses on leaves and how they act as "solar collectors." As students…

  2. Galactic rings revisited. II. Dark gaps and the locations of resonances in early-to-intermediate-type disc galaxies

    NASA Astrophysics Data System (ADS)

    Buta, Ronald J.

    2017-10-01

    Dark gaps are commonly seen in early-to-intermediate-type barred galaxies having inner and outer rings or related features. In this paper, the morphologies of 54 barred and oval ringed galaxies have been examined with the goal of determining what the dark gaps are telling us about the structure and evolution of barred galaxies. The analysis is based mainly on galaxies selected from the Galaxy Zoo 2 data base and the Catalogue of Southern Ringed Galaxies. The dark gaps between inner and outer rings are of interest because of their likely association with the L4 and L5 Lagrangian points that would be present in the gravitational potential of a bar or oval. Since the points are theoretically expected to lie very close to the corotation resonance (CR) of the bar pattern, the gaps provide the possibility of locating corotation in some galaxies simply by measuring the radius rgp of the gap region and setting rCR=rgp. With the additional assumption of generally flat rotation curves, the locations of other resonances can be predicted and compared with observed morphological features. It is shown that this `gap method' provides remarkably consistent interpretations of the morphology of early-to-intermediate-type barred galaxies. The paper also brings attention to cases where the dark gaps lie inside an inner ring, rather than between inner and outer rings. These may have a different origin compared to the inner/outer ring gaps.

  3. Tax Examiners, Revenue Agents, and Collectors.

    ERIC Educational Resources Information Center

    McCarron, Kevin M.

    2001-01-01

    Describes the nature of the work of tax examiners, revenue agents, and collectors. Includes employment outlook; benefits and drawbacks; qualifications, training, and advancement; and sources of additional information. (JOW)

  4. Integrated function nonimaging concentrating collector tubes for solar thermal energy

    NASA Astrophysics Data System (ADS)

    Winston, R.; Ogallagher, J. J.

    1982-09-01

    A substantial improvement in optical efficiency over contemporary external reflector evacuated tube collectors has been achieved by integrating the reflector surface into the outer glass envelope. Described are the design fabrication and test results for a prototype collector based on this concept. A comprehensive test program to measure performance and operational characteristics of a 2 sq m panel (45 tubes) has been completed. Efficiencies above 50% relative to beam at 200 C have been repeatedly demonstrated. Both the instantaneous and long term average performance of this totally stationary solar collector are comparable to those for tracking line focus parabolic troughs. The yield, reliability and stability of performance achieved have been excellent. Subcomponent assemblies and fabrication procedures have been used which are expected to be compatible with high volume production. The collector has a wide variety of applications in the 100 to 300 C range including industrial progress heat, air conditioning and Rankine engine operation.

  5. Standard performance tests of collectors of solar thermal energy: A selectively coated, flat-plate copper collector with one transparent cover and a tube-to-tube spacing of 3-7/8 inches

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Basic test results are given of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes, and coolant flow rates. Collector efficiency is correlated in terms of inlet temperature and flux level.

  6. Heterogeneous current collector in lithium-ion battery for thermal-runaway mitigation

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Le, Anh V.; Shi, Yang; Noelle, Daniel J.; Qiao, Yu

    2017-02-01

    Current collector accounts for more than 90% of the electric conductivity and ˜90% of the mechanical strength of the electrode in lithium-ion battery (LIB). Usually, current collectors are smooth metallic thin films. In the current study, we show that if the current collector is heterogeneous, the heat generation becomes negligible when the LIB cell is subjected to mechanical abuse. The phenomenon is attributed to the guided strain concentration, which promotes the separation of the forward and the return paths of internal short circuit. As the internal impedance drastically increases, the stored electric energy cannot be dissipated as thermal energy. The modification of current collector does not affect the cycling performance of the LIB cell. This finding enables advanced thermal-runaway mitigation techniques for high-energy, large-scale energy storage systems.

  7. Thermal performance evaluation of the Suncatcher SH-11 (liquid) solar collector

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The procedures used and the results obtained during the evaluation test program on the Solar Unlimited, Inc., Suncatcher SH-11 (liquid) solar collector are presented. The flat-plate collector case assembly is made of .08 inch aluminum 3003 H14 riveted with fiberglass board insulation. The absorber consists of collared aluminum fins mechanically bonded to 3/8 inch copper tubing and coated with 3M Nextel black. Water is used as the working fluid. The glazing is made of a single glass, 1/8 inch water white, tempered and antireflective. The collector weight is 85 pounds with overall external dimensions of about 35.4 in x 82.0 in x 4.0 in. Thermal performance data on the Solar Unlimited Suncatcher SH-11 solar collector under simulated conditions were conducted using the MSFC Solar Simulator.

  8. Higher Magnification Imaging of the Polished Aluminum Collector Returned from the Genesis Mission

    NASA Technical Reports Server (NTRS)

    Rodriquez, Melissa C.; Burkett, P. J.; Allton, J. H.

    2011-01-01

    The polished aluminum collector (previously referred to as the polished aluminum kidney) was intended for noble gas analysis for the Gene-sis mission. The aluminum collector, fabricated from alloy 6061T, was polished for flight with alumina, then diamond paste. Final cleaning was performed by soak-ing and rinsing with hexane, then isopropanol, and last-ly megasonically energized ultrapure water prior to installation. It was mounted inside the collector canister on the thermal shield at JSC in 2000. The polished aluminum collector was not surveyed microscopically prior to flight.

  9. Standardized performance tests of collectors of solar thermal energy: A selectively coated, flat-plate copper collector with one transparent cover and a tube-to-tube spacing of 5 5/8 inches

    NASA Technical Reports Server (NTRS)

    1976-01-01

    This preliminary data report gives basic test results of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and coolant flow rates. Collector efficiency is correlated in terms of inlet temperature and flux level.

  10. 30 CFR 33.35 - Methods of drilling; dust-collector unit.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Methods of drilling; dust-collector unit. 33.35 Section 33.35 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL...

  11. 30 CFR 33.35 - Methods of drilling; dust-collector unit.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Methods of drilling; dust-collector unit. 33.35 Section 33.35 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL...

  12. 30 CFR 33.35 - Methods of drilling; dust-collector unit.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Methods of drilling; dust-collector unit. 33.35 Section 33.35 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL...

  13. 30 CFR 33.35 - Methods of drilling; dust-collector unit.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Methods of drilling; dust-collector unit. 33.35 Section 33.35 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL...

  14. 30 CFR 33.35 - Methods of drilling; dust-collector unit.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Methods of drilling; dust-collector unit. 33.35 Section 33.35 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL...

  15. 167. VIEW OF DUST COLLECTOR AND CRUSHED OXIDIZED ORE BIN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    167. VIEW OF DUST COLLECTOR AND CRUSHED OXIDIZED ORE BIN FROM EAST. THE DUCTWORK TO TOP OF COLLECTOR (OPEN END, MIDDLE LEFT) CONNECTED TO HOODS OVER SYMONS SCREEN, ROD MILL, AND BAKER COOLER DISCHARGE - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  16. 52. VIEW OF DUST COLLECTOR AND CRUSHED OXIDIZED ORE BIN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. VIEW OF DUST COLLECTOR AND CRUSHED OXIDIZED ORE BIN FROM EAST. THE DUCTWORK TO TOP OF COLLECTOR (OPEN END, MIDDLE LEFT) CONNECTED TO HOODS OVER SYMONS SCREEN, ROD MILL, AND BAKER COOLER DISCHARGE. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  17. Indoor test for thermal performance evaluation on the Sunworks (air) solar collector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The test procedure used and the results obtained from an evaluation test program conducted to obtain thermal performance data on a Sunworks single glazed air solar collector under simulated conditions are described. A time constant test and incident angle modifier test were conducted to determine the transient effect and the incident angle effect on the collector. These results and the results of the collector load test are also discussed.

  18. Integrated solar collector

    DOEpatents

    Tchernev, Dimiter I.

    1985-01-01

    A solar collector having a copper panel in a contiguous space relationship with a condenser-evaporator heat exchanger located under the panel, the panel having a honeycomb-like structure on its interior defining individual cells which are filled with zeolite loaded, in its adsorbed condition, with 18 to 20% by weight of water. The interior of the panel and heat exchanger are maintained at subatmospheric pressure of about 0.1 to 1 psia. The panel and heat exchanger are insulated on their lateral sides and bottoms and on the top of the heat exchange. The panel has a black coating on its top which is exposed to and absorbs solar energy. Surrounding the insulation (which supports the panel) is an extruded aluminum framework which supports a pair of spaced-apart glass panels above the solar panel. Water in conduits from a system for heating or cooling or both is connected to flow into an inlet and discharge from outlet of a finned coil received within the heat exchanger. The collector panel provides heat during the day through desorption and condensing of water vapor from the heated solar panel in the heat exchanger and cools at night by the re-adsorption of the water vapor from the heat exchanger which lowers the absolute pressure within the system and cools the heat exchange coils by evaporation.

  19. Indoor test for thermal performance evaluation of the Solaron (air) solar collector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The test procedure used and the results obtained from an evaluation test program, conducted to obtain thermal performance data on a Solaron double glazed air solar collector under simulated conditions in a solar simulator are described. A time constant test and incident angle modifier test were also conducted to determine the transient effect and the incident angle effect on the collector. These results and the results of the collector load test are also discussed. The Solaron collector absorber plate is made of 24-gage steel, the coating is baked-on black paint, the cover consists of two sheets of 1/8-inch low-iron tempered glass, and the insulation is one thickness of 3 5/8-inch fiberglass batting.

  20. The contamination of rain samples by dry deposition on rain collectors

    NASA Astrophysics Data System (ADS)

    Fowler, D.; Cape, J. N.

    A series of short-term experiments at a rural site in eastern Scotland showed that dry deposition of SO 2 gas onto pyrex glass rain collectors in dry weather approached saturation after 24 h and contributed c. 80 % of dry-deposited S, the remaining 20 % being attributable to Particulate sulphate. A comparison over 3 years of soluble sulphate from funnel washings after dry days with daily concentrations of SO 2 and particulate sulphate was well fitted by a linear dependence on Particulate sulphate and a logarithmic dependence on SO 2 concentrations. Particulate sulphate contributed 34 (+- 7) % of the dry deposition on dry days, although there was a marked seasonal variation in the total dry deposit of S on the collector which was independent of SO 2 and particulate sulphate concentrations. A comparison of monthly and daily collectors at the same site from April to September was consistent with these estimates of dry deposition on dry days. An extrapolation to sites with similar collectors in northern Britain showed that between 1S and 35 % of the monthly collected non-marine sulphate could have been dry-deposited on the collector.

  1. Cosmic Dust Catalog. Volume 15; Particles from Collectors L2036 and L2021

    NASA Technical Reports Server (NTRS)

    Warren, J.; Watts, L.; Thomas-Keprta, K.; Wentworth , S.; Dodson , A.; Zolensky, Michael E.

    1997-01-01

    Since May 1981, the National Aeronautics and Space Administration (NASA) has used aircraft to collect cosmic dust (CD) particles from Earth's stratosphere. Specially designed dust collectors are prepared for flight and processed after flight in an ultraclean (Class-100) laboratory constructed for this purpose at the Lyndon B. Johnson Space Center (JSC) in Houston, Texas. Particles are individually retrieved from the collectors, examined and cataloged, and then made available to the scientific community for research. Cosmic dust thereby joins lunar samples and meteorites as an additional source of extraterrestrial materials for scientific study. This catalog summarizes preliminary observations on 468 particles retrieved from collection surfaces L2021 and L2036. These surfaces were flat plate Large Area Collectors (with a 300 cm2 surface area each) which was coated with silicone oil (dimethyl siloxane) and then flown aboard a NASA ER-2 aircraft during a series of flights that were made during January and February of 1994 (L2021) and June 7 through July 5 of 1994 (L2036). Collector L2021 was flown across the entire southern margin of the US (California to Florida), and collector L2036 was flown from California to Wallops Island, VA and on to New England. These collectors were installed in a specially constructed wing pylon which ensured that the necessary level of cleanliness was maintained between periods of active sampling. During successive periods of high altitude (20 km) cruise, the collectors were exposed in the stratosphere by barometric controls and then retracted into sealed storage container-s prior to descent. In this manner, a total of 35.8 hours of stratospheric exposure was accumulated for collector L2021, and 26 hours for collector L2036.

  2. Integrated function nonimaging concentrating collector tubes for solar thermal energy

    NASA Astrophysics Data System (ADS)

    Winston, R.; Ogallagher, J. J.

    1981-08-01

    A substantial improvement in optical efficiency over contemporary external reflector evacuated tube collectors was achieved by integrating the reflector surface into the outer glass envelope. The design, fabrication and preliminary test results are described for a prototype collector based on this concept. Efficiencies above 40% up to nearly 300 C may be achieved.

  3. Fuel cell collector plate and method of fabrication

    DOEpatents

    Braun, James C.; Zabriskie, Jr., John E.; Neutzler, Jay K.; Fuchs, Michel; Gustafson, Robert C.

    2001-01-01

    An improved molding composition is provided for compression molding or injection molding a current collector plate for a polymer electrolyte membrane fuel cell. The molding composition is comprised of a polymer resin combined with a low surface area, highly-conductive carbon and/or graphite powder filler. The low viscosity of the thermoplastic resin combined with the reduced filler particle surface area provide a moldable composition which can be fabricated into a current collector plate having improved current collecting capacity vis-a-vis comparable fluoropolymer molding compositions.

  4. Oak tree-rings record spatial-temporal pollution trends from different sources in Terni (Central Italy).

    PubMed

    Perone, A; Cocozza, C; Cherubini, P; Bachmann, O; Guillong, M; Lasserre, B; Marchetti, M; Tognetti, R

    2018-02-01

    Monitoring atmospheric pollution in industrial areas near urban center is essential to infer past levels of contamination and to evaluate the impact for environmental health and safety. The main aim of this study was to understand if the chemical composition of tree-ring wood can be used for monitoring spatial-temporal variability of pollutants in Terni, Central Italy, one of the most polluted towns in Italy. Tree cores were taken from 32 downy oaks (Quercus pubescens) located at different distances from several pollutant sources, including a large steel factory. Trace element (Cr, Co, Cu, Pb, Hg, Mo, Ni, Tl, W, U, V, and Zn) index in tree-ring wood was determined using high-resolution laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). We hypothesized that the presence of contaminants detected in tree-rings reflected industrial activities over time. The accumulation of contaminants in tree-rings was affected by anthropogenic activities in the period 1958-2009, though signals varied in intensity with the distance of trees from the industrial plant. A stronger limitation of tree growth was observed in the proximity of the industrial plant in comparison with other pollutant sources. Levels of Cr, Ni, Mo, V, U and W increased in tree-ring profiles of trees close to the steel factory, especially during the 80's and 90's, in correspondence to a peak of pollution in this period, as recorded by air quality monitoring stations. Uranium contents in our tree-rings were difficult to explain, while the higher contents of Cu, Hg, Pb, and Tl could be related to the contaminants released from an incinerator located close to the industrial plant. The accumulation of contaminants in tree-rings reflected the historical variation of environmental pollution in the considered urban context. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Participation in multilateral effort to develop high performance integrated CPC evacuated collectors

    NASA Astrophysics Data System (ADS)

    Winston, R.; Ogallagher, J. J.

    1992-05-01

    The University of Chicago Solar Energy Group has had a continuing program and commitment to develop an advanced evacuated solar collector integrating nonimaging concentration into its design. During the period from 1985-1987, some of our efforts were directed toward designing and prototyping a manufacturable version of an Integrated Compound Parabolic Concentrator (ICPC) evacuated collector tube as part of an international cooperative effort involving six organizations in four different countries. This 'multilateral' project made considerable progress towards a commercially practical collector. One of two basic designs considered employed a heat pipe and an internal metal reflector CPC. We fabricated and tested two large diameter (125 mm) borosilicate glass collector tubes to explore this concept. The other design also used a large diameter (125 mm) glass tube but with a specially configured internal shaped mirror CPC coupled to a U-tube absorber. Performance projections in a variety of systems applications using the computer design tools developed by the International Energy Agency (IEA) task on evacuated collectors were used to optimize the optical and thermal design. The long-term goal of this work continues to be the development of a high efficiency, low cost solar collector to supply solar thermal energy at temperatures up to 250 C. Some experience and perspectives based on our work are presented and reviewed. Despite substantial progress, the stability of research support and the market for commercial solar thermal collectors were such that the project could not be continued. A cooperative path involving university, government, and industrial collaboration remains the most attractive near term option for developing a commercial ICPC.

  6. High temperature spin dynamics in linear magnetic chains, molecular rings, and segments by nuclear magnetic resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adelnia, Fatemeh; Lascialfari, Alessandro; Dipartimento di Fisica, Università degli Studi di Pavia and INSTM, Pavia

    2015-05-07

    We present the room temperature proton nuclear magnetic resonance (NMR) nuclear spin-lattice relaxation rate (NSLR) results in two 1D spin chains: the Heisenberg antiferromagnetic (AFM) Eu(hfac){sub 3}NITEt and the magnetically frustrated Gd(hfac){sub 3}NITEt. The NSLR as a function of external magnetic field can be interpreted very well in terms of high temperature spin dynamics dominated by a long time persistence of the decay of the two-spin correlation function due to the conservation of the total spin value for isotropic Heisenberg chains. The high temperature spin dynamics are also investigated in Heisenberg AFM molecular rings. In both Cr{sub 8} closed ringmore » and in Cr{sub 7}Cd and Cr{sub 8}Zn open rings, i.e., model systems for a finite spin segment, an enhancement of the low frequency spectral density is found consistent with spin diffusion but the high cut-off frequency due to intermolecular anisotropic interactions prevents a detailed analysis of the spin diffusion regime.« less

  7. Serum oxidant and antioxidant levels in diesel exposed toll collectors.

    PubMed

    Arbak, Peri; Yavuz, Ozlem; Bukan, Neslihan; Balbay, Oner; Ulger, Füsun; Annakkaya, Ali Nihat

    2004-07-01

    It has been suggested that exposure to diesel exhaust may lead to adverse effects due to the generation of oxidants. To evaluate the end products of oxidative stress in DE exposure, toll collectors who are considered a high risk group in regard to occupational toxins were compared to controls who had office-based occupations in the same company in this cross sectional study. A total of 38 toll collectors constituted the study group. All subjects were male. The toll collectors and 29 controls were similar regarding age, smoking status and duration of work. All subjects underwent a clinical examination and an interviewer-administrated questionnaire regarding respiratory symptoms, past medical and occupational history, and pulmonary function tests were performed in all subjects. Serum malondialdehyde (MDA), nitrite+nitrate and vitamin E levels were measured. Toll collectors showed higher serum MDA (5.76 +/- 2.15 micromol/L vs. 3.07 +/- 0.76 micromol/L, p=0.0001) and nitrite+nitrate levels (96.50 +/- 45.54 micromol/L vs. 19.32 +/- 11.77 micromol/L, p=0.0001) than controls. Vitamin E levels were similar in toll collectors and controls (10.57 +/- 3.44 mg/L and 9.72 +/- 2.44 mg/L, respectively, p=0.267). There was no difference between groups in terms of the findings of clinical examinations and respiratory symptoms. In pulmonary function parameters, only peak expiratory flow (PEF) in toll collectors was significantly lower than that of controls (88.9% predicted and 104.2% predicted, respectively, p=0.012). In conclusion, we suggest that serum MDA and nitrite+nitrate levels may be used as biological markers of oxidative stress related to DE exposure, but prospective controlled clinical studies are necessary to clarify the possible association between concentrations of MDA and nitrite+nitrate and pulmonary diseases related to DE exposure.

  8. PROGRAM ASTEC (ADVANCED SOLAR TURBO ELECTRIC CONCEPT). PART IV. SOLAR COLLECTOR DEVELOPMENT SUPPORT TASKS. VOL. VII. ENGINEERING DEVELOPMENT GROUND TEST PLAN FOR THE ASTEC SOLAR ENERGY COLLECTOR.

    DTIC Science & Technology

    optical, and structural integrity of the full scale ASTEC solar collector before further development proceeds. This document specifies these initial...engineering ground tests recommended for testing petals and other critical components of the ASTEC collector. It defines the requirements and

  9. Pollution of soils (Pb, Cd, Cr, Zn, Cu, Ni) along the ring road of Wrocław (Poland)

    NASA Astrophysics Data System (ADS)

    Hołtra, Anna; Zamorska-Wojdyła, Dorota

    2017-11-01

    The concentrations of metallic pollution in soils and plants along the ring road of Wrocław, Poland, have been determined. Environmental samples were collected from the surface layer of the profile within 2-3 m from the edge of the road. The analysis of metals (Pb, Cd, Cr, Zn, Cu and Ni) has been carried out through FAAS and GFAAS methods. The mineralizates of soils and plants were prepared in HNO3, 65% supra pure, using the Microwave Digestion System. The pH and conductivity of the soil solutions were measured to evaluate their active and exchangeable acidity and the salinity of the soils. The index of the enrichment of soils in metals (Wn) and the bioaccumulation coefficient (WB) have been determined. Also, histograms of the frequency of the occurrence of metals in the environmental samples and the Pearson's correlation coefficients were presented. The results of metal concentrations in soils were compared to the geochemical background in uncontaminated soils of Poland. The assessment of the results in the soils was also made relative to the standard, according to the Polish Ministry of Environment Regulation from September 1st, 2016. During the assessment of the bioaccumulation coefficients of metals in plants a reference was made to the content of undesirable substances in feed in agreement with the Polish Ministry of Agriculture and Rural Development Regulation from January 23rd, 2007.

  10. A Simulated Annealing Algorithm for the Optimization of Multistage Depressed Collector Efficiency

    NASA Technical Reports Server (NTRS)

    Vaden, Karl R.; Wilson, Jeffrey D.; Bulson, Brian A.

    2002-01-01

    The microwave traveling wave tube amplifier (TWTA) is widely used as a high-power transmitting source for space and airborne communications. One critical factor in designing a TWTA is the overall efficiency. However, overall efficiency is highly dependent upon collector efficiency; so collector design is critical to the performance of a TWTA. Therefore, NASA Glenn Research Center has developed an optimization algorithm based on Simulated Annealing to quickly design highly efficient multi-stage depressed collectors (MDC).

  11. Two hundred passage three-way valve: Fraction collector

    NASA Technical Reports Server (NTRS)

    Keffer, J. L.

    1983-01-01

    This paper describes the design and operation of a fraction collector used to direct flow of separated biological materials from 197 capillary tubes to either a collection tray or to a waste tank. This mechanism uses a 28-volt dc gear motor driving twin cams to force 197 needles through a self-sealing silicone rubber septum, where they inject the material in 197 separate pockets in a collection tray. The position of the collector tray is sensed by two optical limit switches. The time sequences are controlled automatically by an electronics control monitoring module.

  12. Genome Sequence Analysis of the Naphthenic Acid Degrading and Metal Resistant Bacterium Cupriavidus gilardii CR3

    PubMed Central

    Xiao, Jingfa; Hao, Lirui; Crowley, David E.; Zhang, Zhewen; Yu, Jun; Huang, Ning; Huo, Mingxin; Wu, Jiayan

    2015-01-01

    Cupriavidus sp. are generally heavy metal tolerant bacteria with the ability to degrade a variety of aromatic hydrocarbon compounds, although the degradation pathways and substrate versatilities remain largely unknown. Here we studied the bacterium Cupriavidus gilardii strain CR3, which was isolated from a natural asphalt deposit, and which was shown to utilize naphthenic acids as a sole carbon source. Genome sequencing of C. gilardii CR3 was carried out to elucidate possible mechanisms for the naphthenic acid biodegradation. The genome of C. gilardii CR3 was composed of two circular chromosomes chr1 and chr2 of respectively 3,539,530 bp and 2,039,213 bp in size. The genome for strain CR3 encoded 4,502 putative protein-coding genes, 59 tRNA genes, and many other non-coding genes. Many genes were associated with xenobiotic biodegradation and metal resistance functions. Pathway prediction for degradation of cyclohexanecarboxylic acid, a representative naphthenic acid, suggested that naphthenic acid undergoes initial ring-cleavage, after which the ring fission products can be degraded via several plausible degradation pathways including a mechanism similar to that used for fatty acid oxidation. The final metabolic products of these pathways are unstable or volatile compounds that were not toxic to CR3. Strain CR3 was also shown to have tolerance to at least 10 heavy metals, which was mainly achieved by self-detoxification through ion efflux, metal-complexation and metal-reduction, and a powerful DNA self-repair mechanism. Our genomic analysis suggests that CR3 is well adapted to survive the harsh environment in natural asphalts containing naphthenic acids and high concentrations of heavy metals. PMID:26301592

  13. Inspecting a Canister and Sample Collector

    NASA Image and Video Library

    2006-01-20

    Investigators from University of Washington, Johnson Space Center, and Lockheed Martin Missiles and Space, Denver, Colorado, inspect a canister and sample collector soon after opening a container with Stardust material in a laboratory at the JSC.

  14. Method of making a current collector for a sodium/sulfur battery

    DOEpatents

    Tischer, R.P.; Winterbottom, W.L.; Wroblowa, H.S.

    1987-03-10

    This specification is directed to a method of making a current collector for a sodium/sulfur battery. The current collector so-made is electronically conductive and resistant to corrosive attack by sulfur/polysulfide melts. The method includes the step of forming the current collector for the sodium/sulfur battery from a composite material formed of aluminum filled with electronically conductive fibers selected from the group of fibers consisting essentially of graphite fibers having a diameter up to 10 microns and silicon carbide fibers having a diameter in a range of 500--1,000 angstroms. 2 figs.

  15. Method of making a current collector for a sodium/sulfur battery

    DOEpatents

    Tischer, Ragnar P.; Winterbottom, Walter L.; Wroblowa, Halina S.

    1987-01-01

    This specification is directed to a method of making a current collector (14) for a sodium/sulfur battery (10). The current collector so-made is electronically conductive and resistant to corrosive attack by sulfur/polysulfide melts. The method includes the step of forming the current collector for the sodium/sulfur battery from a composite material (16) formed of aluminum filled with electronically conductive fibers selected from the group of fibers consisting essentially of graphite fibers having a diameter up to 10 microns and silicon carbide fibers having a diameter in a range of 500-1000 angstroms.

  16. Semi-solid electrode cell having a porous current collector and methods of manufacture

    DOEpatents

    Chiang, Yet-Ming; Carter, William Craig; Cross, III, James C.; Bazzarella, Ricardo; Ota, Naoki

    2017-11-21

    An electrochemical cell includes an anode, a semi-solid cathode, and a separator disposed therebetween. The semi-solid cathode includes a porous current collector and a suspension of an active material and a conductive material disposed in a non-aqueous liquid electrolyte. The porous current collector is at least partially disposed within the suspension such that the suspension substantially encapsulates the porous current collector.

  17. Design optimization of sinusoidal glass honeycomb for flat plate solar collectors

    NASA Technical Reports Server (NTRS)

    Mcmurrin, J. C.; Buchberg, H.

    1980-01-01

    The design of honeycomb made of sinusoidally corrugated glass strips was optimized for use in water-cooled, single-glazed flat plate solar collectors with non-selective black absorbers. Cell diameter (d), cell height (L), and pitch/diameter ratio (P/d) maximizing solar collector performance and cost effectiveness for given cell wall thickness (t sub w) and optical properties of glass were determined from radiative and convective honeycomb characteristics and collector performance all calculated with experimentally validated algorithms. Relative lifetime values were estimated from present materials costs and postulated production methods for corrugated glass honeycomb cover assemblies. A honeycomb with P/d = 1.05, d = 17.4 mm, L = 146 mm and t sub w = 0.15 mm would provide near-optimal performance over the range delta T sub C greater than or equal to 0 C and less than or equal to 80 C and be superior in performance and cost effectiveness to a non-honeycomb collector with a 0.92/0.12 selective black absorber.

  18. Four Interstellar Dust Candidates from the Stardust Interstellar Dust Collector

    NASA Technical Reports Server (NTRS)

    Westphal, A. J.; Allen, C.; Bajt, S.; Bechtel, H. A.; Borg, J.; Brenker, F.; Bridges, J.; Brownlee, D. E.; Burchell, M.; Burghammer, M.; hide

    2011-01-01

    In January 2006, the Stardust sample return capsule returned to Earth bearing the first solid samples from a primitive solar system body, Comet 81P/Wild2, and a collector dedicated to the capture and return of contemporary interstellar dust. Both collectors were approx. 0.1 sq m in area and were composed of aerogel tiles (85% of the collecting area) and aluminum foils. The Stardust Interstellar Dust Collector (SIDC) was exposed to the interstellar dust stream for a total exposure factor of 20 sq m/day. The Stardust Interstellar Preliminary Examination (ISPE) is a consortium-based project to characterize the collection using nondestructive techniques. The goals and restrictions of the ISPE are described . A summary of analytical techniques is described.

  19. Means of increasing efficiency of CPC solar energy collector

    DOEpatents

    Chao, B.T.; Rabl, A.

    1975-06-27

    A device is provided for improving the thermal efficiency of a cylindrical radiant energy collector. A channel is placed next to and in close proximity to the nonreflective side of an energy reflective wall of a cylindrical collector. A coolant is piped through the channel and removes a portion of the nonreflective energy incident on the wall which is absorbed by the wall. The energy transferred to the coolant may be utilized in a useful manner.

  20. Means of increasing efficiency of CPC solar energy collector

    DOEpatents

    Chao, Bei Tse; Rabl, Ari

    1977-02-15

    A device is provided for improving the thermal efficiency of a cylindrical radiant energy collector. A channel is placed next to and in close proximity to the nonreflective side of an energy reflective wall of a cylindrical collector. A coolant is piped through the channel and removes a portion of the nonreflective energy incident on the wall which is absorbed by the wall. The energy transferred to the coolant may be utilized in a useful manner.

  1. Performance Evaluation of a Nanofluid-Based Direct Absorption Solar Collector with Parabolic Trough Concentrator.

    PubMed

    Xu, Guoying; Chen, Wei; Deng, Shiming; Zhang, Xiaosong; Zhao, Sainan

    2015-12-04

    Application of solar collectors for hot water supply, space heating, and cooling plays a significant role in reducing building energy consumption. For conventional solar collectors, solar radiation is absorbed by spectral selective coating on the collectors' tube/plate wall. The poor durability of the coating can lead to an increased manufacturing cost and unreliability for a solar collector operated at a higher temperature. Therefore, a novel nanofluid-based direct absorption solar collector (NDASC) employing uncoated collector tubes has been proposed, and its operating characteristics for medium-temperature solar collection were theoretically and experimentally studied in this paper. CuO/oil nanofluid was prepared and used as working fluid of the NDASC. The heat-transfer mechanism of the NDASC with parabolic trough concentrator was theoretically evaluated and compared with a conventional indirect absorption solar collector (IASC). The theoretical analysis results suggested that the fluid's temperature distribution in the NDASC was much more uniform than that in the IASC, and an enhanced collection efficiency could be achieved for the NDASC operated within a preferred working temperature range. To demonstrate the feasibility of the proposed NDASC, experimental performances of an NDASC and an IASC with the same parabolic trough concentrator were furthermore evaluated and comparatively discussed.

  2. Performance evaluation of the solar kinetics T-700 line concentrating solar collector

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A performance evaluation of the solar kinetics T-700 line concentrating solar collector is reported. Collector descriptions, summary, test conditions, test equipment, test requirements and procedures, and an analysis of the various tests performed are described.

  3. Effects of the inclination angle on the performance of flat plate solar collector

    NASA Astrophysics Data System (ADS)

    Ambarita, H.; Siregar, R. E. T.; Ronowikarto, A. D.; Setyawan, E. Y.

    2018-03-01

    Double glasses cover is typically used in a flat plate solar collector to decrease heat losses to ambient. The working principal of the cover is to allow the solar irradiation hit the plate absorber and blocks it using natural convection mechanism in the enclosure between the glasses. The performance of the enclosure to block the heat loss to the surrounding affected by the inclination angle of the collector. The objective of this study is to explore the effect of the inclination angle to the performance of the solar collector. Numerical simulation using commercial code Computational Fluid Dynamic (CFD) has been carried out to explore the fluid flow and heat transfer characteristics in the enclosure. In the result, streamline, vector velocity, and contour temperature are plotted. It was shown that the inclination angle strongly affects the performance of the collector. The average heat transfer coefficient decreases with increasing inclination angle. This fact suggests that too high inclination angle is not recommended for solar collector.

  4. Electrolytic/fuel cell bundles and systems including a current collector in communication with an electrode thereof

    DOEpatents

    Hawkes, Grant L.; Herring, James S.; Stoots, Carl M.; O& #x27; Brien, James E.

    2013-03-05

    Electrolytic/fuel cell bundles and systems including such bundles include an electrically conductive current collector in communication with an anode or a cathode of each of a plurality of cells. A cross-sectional area of the current collector may vary in a direction generally parallel to a general direction of current flow through the current collector. The current collector may include a porous monolithic structure. At least one cell of the plurality of cells may include a current collector that surrounds an outer electrode of the cell and has at least six substantially planar exterior surfaces. The planar surfaces may extend along a length of the cell, and may abut against a substantially planar surface of a current collector of an adjacent cell. Methods for generating electricity and for performing electrolysis include flowing current through a conductive current collector having a varying cross-sectional area.

  5. Human Intelligence in Counterinsurgency: Persistent Pathologies in the Collector-Consumer Relationship

    DTIC Science & Technology

    2011-06-05

    in fact, possess Jedi-like powers. Drawn to the “ sexiness ” of source operations and envisioning himself as a tactical James Bond, this collector...collectors that every hour spent on the streets conducting the “ sexy ” work of military source operations entails five hours spent in the office conducting

  6. Influence of nanofluids on the efficiency of Flat-Plate Solar Collectors (FPSC)

    NASA Astrophysics Data System (ADS)

    Nejad, Marjan B.; Mohammed, H. A.; Sadeghi, O.; Zubeer, Swar A.

    2017-11-01

    A numerical investigation is performed using finite volume method to study the laminar heat transfer in a three-dimensional flat-plate solar collector using different nanofluids as working fluids. Three nanofluids with different types of nanoparticles (Ag, MWCNT and Al2O3 dispersed in water) with 1-2 wt% volume fractions are analyzed. A constant heat flux, equivalent to solar radiation absorbed by the collector, is applied at the top surface of the absorber plate. In this study, several parameters including boundary conditions (different volume flow rates, different fluid inlet temperatures and different solar irradiance at Skudai, Malaysia), different types of nanoparticles, and different solar collector tilt angles are investigated to identify their effects on the heat transfer performance of FPSC. The numerical results reveal that the three types of nanofluid enhance the thermal performance of solar collector compared to pure water and FPSC with Ag nanofluid has the best thermal performance enhancement. For all the cases, the collector efficiency increased with the increase of volume flow rate while fluid outlet temperature decreased. It is found that FPSC with tilt angle of 10° and fluid inlet temperature of 301.15 K has the best thermal performance.

  7. Concentrating solar collector subsystem: Preliminary design package

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Preliminary design data are presented for a concentrating solar collector including an attitude controller. Provided are schedules, technical status, all documents required for preliminary design, and other program activities.

  8. Adsorption of guanidinium collectors on aluminosilicate minerals - a density functional study.

    PubMed

    Nulakani, Naga Venkateswara Rao; Baskar, Prathab; Patra, Abhay Shankar; Subramanian, Venkatesan

    2015-10-07

    In this density functional theory based investigation, we have modelled and studied the adsorption behaviour of guanidinium cations and substituted (phenyl, methoxy phenyl, nitro phenyl and di-nitro phenyl) guanidinium cationic collectors on the basal surfaces of kaolinite and goethite. The adsorption behaviour is assessed in three different media, such as gas, explicit water and pH medium, to understand the affinity of GC collectors to the SiO4 tetrahedral and AlO6 octahedral surfaces of kaolinite. The tetrahedral siloxane surface possesses a larger binding affinity to GC collectors than the octahedral sites due to the presence of surface exposed oxygen atoms that are active in the intermolecular interactions. Furthermore, the inductive electronic effects of substituted guanidinium cations also play a key role in the adsorption mechanism. Highly positive cations result in a stronger electrostatic interaction and preferential adsorption with the kaolinite surfaces than low positive cations. Computed interaction energies and electron densities at the bond critical points suggest that the adsorption of guanidinium cations on the surfaces of kaolinite and goethite is due to the formation of intra/inter hydrogen bonding networks. Also, the electrostatic interaction favours the high adsorption ability of GC collectors in the pH medium than gas phase and water medium. The structures and energies of GC collectors pave an intuitive view for future experimental studies on mineral flotation.

  9. Indoor test for thermal performance of the Sunmaster evacuated tube (liquid) solar collector

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The test procedures used to obtain the thermal performance data for a solar collector under simulated conditions are presented. Tests included a stagnation test, a time constant test, a thermal efficiency test, an incident angle modifier test, and a hot fill test. All tests were performed at ambient conditions and the transient effect and the incident angle effect on the collector were determined. The solar collector is a water working fluid type.

  10. Microstructures and tribological properties of GLC coated 100Cr6 bearing steels

    NASA Astrophysics Data System (ADS)

    Kong, Yonghua; Chen, Qiao; Wang, Long

    2017-11-01

    Low friction and hard amorphous carbon films were fabricated on 100Cr6 bearing steels via the unbalanced magnetron sputtering method. This paper studied the effect of graphite-like carbon (GLC) coatings on the wear resistance of 100Cr6, which are widely used in textile rings. The microstructures of the GLC coatings were investigated using scanning electron microscope (SEM), atomic force microscope (AFM), energy dispersive Spectrometer (EDS) and Raman. A comparative analysis using a ball-on-disc tribometer was carried out on 100Cr6 bearing steels with GLC coatings and those that had chromium-electroplated coatings. It was demonstrated that the GLC films on 100Cr6 presented better tribological properties, and the corresponding wear mechanisms were investigated. The tribological properties of GLC films under cryogenic treatment (-196 °C), annealing at temperatures of 300 °C and 350 °C were characterized. It was revealed that the friction coefficients decreased after using three kinds of treatments above.

  11. Internal-short-mitigating current collector for lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Le, Anh V.; Noelle, Daniel J.; Shi, Yang; Meng, Y. Shirley; Qiao, Yu

    2017-05-01

    Mechanical abuse often causes thermal runaway of lithium-ion battery (LIB). When a LIB cell is impacted, radial cracks can be formed in the current collector, separating the electrode into petals. As separator ruptures, the petals on positive and negative electrodes may contact each other, forming internal short circuit (ISC). In this study, we conducted an experimental investigation on LIB coin cells with current collectors modified by surface notches. Our testing results showed that as the current collector contained appropriate surface notches, the cracking mode of electrode in a damaged LIB cell could be adjusted. Particularly, if a complete circumferential crack was generated, the petals would be cut off, which drastically reduced the area of electrode involved in ISC and the associated heat generation rate. A parameterized study was performed to analysis various surface-notch configurations. We identified an efficient surface-notch design that consistently led to trivial temperature increase of ISC.

  12. Reduction of toxic Cr(VI)-humic acid in an ionic liquid

    NASA Astrophysics Data System (ADS)

    Huang, Hsin-Liang; Huang, Hsin-Hung; Wei, Yu Jhe

    2017-07-01

    Remediation of soil contaminated by toxic hexavalent chromium species associated with humic acid (Cr(VI)-HA) and absorbed Cr(VI) in pores frequently experiences technical difficulties. In the present work, a feasibility study for extraction of the Cr(VI) species from a molecular sieve MCM-41 (Mobil Composition of Matter No. 41) that was used to simulate the pore system of soil, with a green solvent (ionic liquid), 1-butyl-3-methylimidazolium chloride ([C4mim][Cl]), was carried out. After a 30-min extraction, approximately 70% of the Cr(VI) species can be extracted. By component fitted X-ray absorption near edge structure (XANES) spectroscopy, about 48% of the Cr(VI)-HA are reduced to form less toxic species (Cr(III)-HA) during extraction with [C4mim][Cl]. Note that the Cr-O in the [C4mim][Cl] phase has a slightly greater bond distance (BD) (0.162 nm) possibly due to the fact of that the fraction of Cr(III) is increased in the extraction process. The non-extractable chromium remaining in MCM-41 has a much greater fraction of Cr(III) (78%) and its BD is further increased to 0.195 nm. The coordination numbers of chromium for the 1st shell Cr-O in the Cr(VI) and Cr(III) species are in the range of 2.4-2.9, suggesting that chromium is chelated with HA and adsorbed in MCM-41. The 1H NMR data also suggest that the enhanced reduction of the Cr(VI) species may be related to interactions between chromium species and electron-rich imidazole ring of the [C4mim]+. This work also exemplifies that the fate of toxic chromium species in the complicated remediation of contaminated soils can be revealed in a molecule-scale study by synchrotron X-ray absorption spectroscopy.

  13. Jupiter's Main Ring/Ring Halo

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A mosaic of four images taken through the clear filter (610 nanometers) of the solid state imaging (CCD) system aboard NASA's Galileo spacecraft on November 8, 1996, at a resolution of approximately 46 kilometers (28.5 miles) per picture element (pixel) along Jupiter's rings. Because the spacecraft was only about 0.5 degrees above the ring plane, the image is highly foreshortened in the vertical direction. The images were obtained when Galileo was in Jupiter's shadow, peering back toward the Sun; the ring was approximately 2.3 million kilometers (1.4 million miles) away. The arc on the far right of the image is produced when sunlight is scattered by small particles comprising Jupiter's upper atmospheric haze. The ring also efficiently scatters light, indicating that much of its brightness is due to particles that are microns or less in diameter. Such small particles are believed to have human-scale lifetimes, i.e., very brief compared to the solar system's age.

    Jupiter's ring system is composed of three parts - - a flat main ring, a lenticular halo interior to the main ring, and the gossamer ring, outside the main ring. The near and far arms of Jupiter's main ring extend horizontally across the mosaic, joining together at the ring's ansa, on the figure's far left side. The near arm of the ring appears to be abruptly truncated close to the planet, at the point where it passes into Jupiter's shadow. Some radial structure is barely visible across the ring's ansa (top image). A faint mist of particles can be seen above and below the main rings. This vertically extended 'halo' is unusual in planetary rings, and is probably caused by electromagnetic forces pushing the smallest grains out of the ring plane. Because of shadowing, the halo is not visible close to Jupiter in the lower right part of the mosaic. To accentuate faint features in the bottom image of the ring halo, different brightnesses are shown through color. Brightest features are white or yellow and the

  14. Influence of wire-coil inserts on the thermo-hydraulic performance of a flat-plate solar collector

    NASA Astrophysics Data System (ADS)

    Herrero Martín, R.; García, A.; Pérez-García, J.

    2012-11-01

    Enhancement techniques can be applied to flat-plate liquid solar collectors towards more compact and efficient designs. For the typical operating mass flow rates in flat-plate solar collectors, the most suitable technique is inserted devices. Based on previous studies from the authors, wire coils were selected for enhancing heat transfer. This type of inserted device provides better results in laminar, transitional and low turbulence fluid flow regimes. To test the enhanced solar collector and compare with a standard one, an experimental side-by-side solar collector test bed was designed and constructed. The testing set up was fully designed following the requirements of EN12975-2 and allow us to accomplish performance tests under the same operating conditions (mass flow rate, inlet fluid temperature and weather conditions). This work presents the thermal efficiency curves of a commercial and an enhanced solar collector, for the standardized mass flow rate per unit of absorber area of 0.02 kg/sm2 (in useful engineering units 144 kg/h for water as working fluid and 2 m2 flat-plate solar collector of absorber area). The enhanced collector was modified inserting spiral wire coils of dimensionless pitch p/D = 1 and wire-diameter e/D = 0.0717. The friction factor per tube has been computed from the overall pressure drop tests across the solar collectors. The thermal efficiency curves of both solar collectors, a standard and an enhanced collector, are presented. The enhanced solar collector increases the thermal efficiency by 15%. To account for the overall enhancement a modified performance evaluation criterion (R3m) is proposed. The maximum value encountered reaches 1.105 which represents an increase in useful power of 10.5% for the same pumping power consumption.

  15. Environmental Biomonitoring of Cr and As in Shallow Groundwater: Do Red Oak Trees Preserve Long-Term Records of Contaminant Loading?

    NASA Astrophysics Data System (ADS)

    Shailer, M.; Brabander, D.

    2005-05-01

    The use of dendrochemical analysis has been shown to be a valuable, although controversial, tool in monitoring historical trends in trace metal deposition and mobilization in groundwater and sediments. Neutron activation analysis (NAA) is one method that has been used to determine annual dendrochemical patterns in tree rings. The use of NAA may also provide a practical tool for revealing sub-annual differences in metal concentrations between earlywood and latewood. In a variety of geochemical settings, Cr and As can be mobile in the groundwater-root environment and are subsequently taken up by trees and stored in xylem tissues specifically associated with groundwater transport. For the purposes of determining historical patterns in Cr and As bioavailability at a Woburn, MA, superfund site along the Aberjona River, Quercus rubra (red oak) sectioned tree rings were analyzed. Sub-annual dendrochemical analyses were used to identify different As and Cr loading pathways in oak stem wood. A sixty-year record of [As] and [Cr] in stem wood was obtained, and results suggest seasonally dependent correlations with Aberjona River flow and with pumping rates for a municipal well in close proximity to the sampling location. These two hydrological pathways likely dominate in providing a flux of dissolved As and Cr into oak stem wood.

  16. Overall Traveling-Wave-Tube Efficiency Improved By Optimized Multistage Depressed Collector Design

    NASA Technical Reports Server (NTRS)

    Vaden, Karl R.

    2002-01-01

    Depressed Collector Design The microwave traveling wave tube (TWT) is used widely for space communications and high-power airborne transmitting sources. One of the most important features in designing a TWT is overall efficiency. Yet, overall TWT efficiency is strongly dependent on the efficiency of the electron beam collector, particularly for high values of collector efficiency. For these reasons, the NASA Glenn Research Center developed an optimization algorithm based on simulated annealing to quickly design highly efficient multistage depressed collectors (MDC's). Simulated annealing is a strategy for solving highly nonlinear combinatorial optimization problems. Its major advantage over other methods is its ability to avoid becoming trapped in local minima. Simulated annealing is based on an analogy to statistical thermodynamics, specifically the physical process of annealing: heating a material to a temperature that permits many atomic rearrangements and then cooling it carefully and slowly, until it freezes into a strong, minimum-energy crystalline structure. This minimum energy crystal corresponds to the optimal solution of a mathematical optimization problem. The TWT used as a baseline for optimization was the 32-GHz, 10-W, helical TWT developed for the Cassini mission to Saturn. The method of collector analysis and design used was a 2-1/2-dimensional computational procedure that employs two types of codes, a large signal analysis code and an electron trajectory code. The large signal analysis code produces the spatial, energetic, and temporal distributions of the spent beam entering the MDC. An electron trajectory code uses the resultant data to perform the actual collector analysis. The MDC was optimized for maximum MDC efficiency and minimum final kinetic energy of all collected electrons (to reduce heat transfer). The preceding figure shows the geometric and electrical configuration of an optimized collector with an efficiency of 93.8 percent. The

  17. A Didactic Experiment and Model of a Flat-Plate Solar Collector

    ERIC Educational Resources Information Center

    Gallitto, Aurelio Agliolo; Fiordilino, Emilio

    2011-01-01

    We report on an experiment performed with a home-made flat-plate solar collector, carried out together with high-school students. To explain the experimental results, we propose a model that describes the heating process of the solar collector. The model accounts quantitatively for the experimental data. We suggest that solar-energy topics should…

  18. Theoretical model of gravitational perturbation of current collector axisymmetric flow field

    NASA Astrophysics Data System (ADS)

    Walker, John S.; Brown, Samuel H.; Sondergaard, Neal A.

    1989-03-01

    Some designs of liquid metal collectors in homopolar motors and generators are essentially rotating liquid metal fluids in cylindrical channels with free surfaces and will, at critical rotational speeds, become unstable. The role of gravity in modifying this ejection instability is investigated. Some gravitational effects can be theoretically treated by perturbation techniques on the axisymmetric base flow of the liquid metal. This leads to a modification of previously calculated critical current collector ejection values neglecting gravity effects. The derivation of the mathematical model which determines the perturbation of the liquid metal base flow due to gravitational effects is documented. Since gravity is a small force compared with the centrifugal effects, the base flow solutions can be expanded in inverse powers of the Froude number and modified liquid flow profiles can be determined as a function of the azimuthal angle. This model will be used in later work to theoretically study the effects of gravity on the ejection point of the current collector. A rederivation of the hydrodynamic instability threshold of a liquid metal current collector is presented.

  19. Harmonization of standards for parabolic trough collector testing in solar thermal power plants

    NASA Astrophysics Data System (ADS)

    Sallaberry, Fabienne; Valenzuela, Loreto; Palacin, Luis G.; Leon, Javier; Fischer, Stephan; Bohren, Andreas

    2017-06-01

    The technology of parabolic trough collectors (PTC) is used widely in concentrating Solar Power (CSP) plants worldwide. However this type of large-size collectors cannot be officially tested by an accredited laboratory and certified by an accredited certification body so far, as there is no standard adapted to its particularity, and the current published standard for solar thermal collectors are not completely applicable to them. Recently some standardization committees have been working on this technology. This paper aims to give a summary of the standardized testing methodology of large-size PTC for CSP plants, giving the physical model chosen for modeling the thermal performance of the collector in the new revision of standard ISO 9806 and the points still to be improved in the standard draft IEC 62862-3-2. In this paper, a summary of the testing validation performed on one parabolic trough collector installed in one of the test facilities at the Plataforma Solar de Almería (PSA) with this new model is also presented.

  20. Synthesis of nanoparticle emulsion collector HNP and its application in microfine chalcopyrite flotation

    NASA Astrophysics Data System (ADS)

    He, G. C.; Ding, J.; Huang, C. H.; Kang, Q.

    2018-01-01

    Hydrophobic polystyrene nanoparticles bearing thiazole groups named HNP were used as collectors to improve recovery of microfine chalcopyrite in flotation. HNP adsorbs onto microfine particles selectively, which were modified hydrophobically to induce flotation effectively. Particle size and scanning electron microscope analysis for HNP show that HNP is a spherical nano particles with small size, uniform distribution and good dispersion. Infrared spectrum analysis for HNP proved that functional monomer 2-mercapto styrene acrylic thiazole was bonded chemically onto styrene. Flotation test results indicate that HNP is the right collector of chalcopyrite. Especially, the recovery of chalcopyrite is higher than 95% in neutral and acid media. FTIR results reveal that the flotation selectivity of collector HNP is due to strong chemical absorption onto chalcopyrite surface. Zeta potential analysis shows that the zeta potential of chalcopyrite decreased more quickly after interaction with HNP with the increase of pulp pH value, confirming that collector HNP is an anionic collector. Scanning electron microscope conform that HNP has good selective adsorption on chalcopyrite.

  1. Subsystem design package for Solar II collector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The requirements for the design and performance of the Solar 2 Collector Subsystem developed for use in solar heating of single family residences and mobile homes are presented. Installation drawings are included.

  2. 27 CFR 479.25 - Collector's items.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2014-04-01 2014-04-01 false Collector's items. 479.25 Section 479.25 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION MACHINE GUNS, DESTRUCTIVE DEVICES, AND CERTAIN...

  3. 27 CFR 479.25 - Collector's items.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2012-04-01 2010-04-01 true Collector's items. 479.25 Section 479.25 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION MACHINE GUNS, DESTRUCTIVE DEVICES, AND CERTAIN...

  4. 27 CFR 479.25 - Collector's items.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2010-04-01 2010-04-01 false Collector's items. 479.25 Section 479.25 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION MACHINE GUNS, DESTRUCTIVE DEVICES, AND CERTAIN...

  5. 27 CFR 479.25 - Collector's items.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2013-04-01 2013-04-01 false Collector's items. 479.25 Section 479.25 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION MACHINE GUNS, DESTRUCTIVE DEVICES, AND CERTAIN...

  6. 27 CFR 479.25 - Collector's items.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2011-04-01 2010-04-01 true Collector's items. 479.25 Section 479.25 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION MACHINE GUNS, DESTRUCTIVE DEVICES, AND CERTAIN...

  7. Reactivities of some thiol collectors and their interactions with Ag (+1) ion by molecular modeling

    NASA Astrophysics Data System (ADS)

    Yekeler, Hulya; Yekeler, Meftuni

    2004-09-01

    The most commonly used collectors for sulfide minerals in the mining industry are the thiol collectors for the recovery of these minerals from their associated gangues by froth flotation. For this reason, a great deal of attention has been paid to understand the attachment mechanism of thiol collectors to metal sulfide surfaces. The density functional theory (DFT) calculations at the B3LYP/3-21G* and B3LYP/6-31++G** levels were employed to propose the flotation responses of these thiol collectors, namely, diethyl dithiocarbamate, ethyl dithiocarbamate, ethyl dithiocarbonate, ethyl trithiocarbonate and ethyl dithiophosphate ions, and to study the interaction energies of these collectors with Ag (+1) ion in connection to acanthite (Ag 2S) mineral. The calculated interaction energies, Δ E, were interpreted in terms of the highest occupied molecular orbital (HOMO) energies of the isolated collector ions. The results show that the HOMOs are strongly localized to the sulfur atoms and the HOMO energies can be used as a reactivity descriptor for the flotation ability of the thiol collectors. Using the HOMO and Δ E energies, the reactivity order of the collectors is found to be (C 2H 5) 2NCS 2- > C 2H 5NHCS 2- > C 2H 5OCS 2- > C 2H 5SCS 2- > (C 2H 5O)(OH)PS 2-. The theoretically obtained results are in good agreement with the experimental data reported.

  8. Mathematical modeling of photovoltaic thermal PV/T system with v-groove collector

    NASA Astrophysics Data System (ADS)

    Zohri, M.; Fudholi, A.; Ruslan, M. H.; Sopian, K.

    2017-07-01

    The use of v-groove in solar collector has a higher thermal efficiency in references. Dropping the working heat of photovoltaic panel was able to raise the electrical efficiency performance. Electrical and thermal efficiency were produced by photovoltaic thermal (PV/T) system concurrently. Mathematical modeling based on steady-state thermal analysis of PV/T system with v-groove was conducted. With matrix inversion method, the energy balance equations are explained by means of the investigative method. The comparison results show that in the PV/T system with the V-groove collector is higher temperature, thermal and electrical efficiency than other collectors.

  9. Characteristics of evacuated tubular solar thermal collector as input energy for cooling system at Universitas Indonesia

    NASA Astrophysics Data System (ADS)

    Alhamid, M. Idrus; Nasruddin, Aisyah, Nyayu; Sholahudin

    2017-03-01

    This paper discussed the use of solar thermal collector as an input energy for cooling system. The experimental investigation was undertaken to characterize solar collectors that have been integrated with an absorption chiller. About 62 modules of solar collectors connected in series and parallel are placed on the roof top of MRC building. Thermistors were used to measure the fluid temperature at inlet, inside and outlet of each collector, inside the water tank and ambient temperature. Water flow that circulated from the storage was measured by flow meter, while solar radiation was measured by a pyranometer that was mounted parallel to the collector. Experimental data for a data set was collected in March 2016, during the day time hours of 08:00 - 17:00. This data set was used to calculate solar collector efficiency. The results showed that in the maximum solar radiation, the outlet temperature that can be reached is about 78°C, the utilized energy is about 70 kW and solar collector has an efficiency of 64%. While in the minimum solar radiation, the outlet temperature that can be reached is about 53°C, the utilized energy is about 28 kW and solar collector has an efficiency of 43%.

  10. Computer Simulation of the Hydrodynamic Processes of Cyclone Dust Collectors

    NASA Astrophysics Data System (ADS)

    Plashikhin, S. V.

    2016-09-01

    In the present paper, the gas-dynamic flow structures in dust collectors with an internal louvered element and an external dust hopper and the traditional design of the NIIOGAZ type have been considered. The character of motion of particles of various median diameters in a cyclone dust collector has also been investigated. A survey has been made of the literature of foreign and home authors dealing with questions of filtration of solid particles in the gas flow in apparatuses of the centrifugal type [1, 2]. The arrangement and principle of operation of the cyclone dust collector is presented. The computational modeling of the flow was carried out by solving Reynolds-averaged Navier-Stokes (RANS) equations by the CFD method with the use of a k-ɛ turbulence model for four modes of operation of the apparatus.

  11. A new concept of hybrid photovoltaic thermal (PVT) collector with natural circulation

    NASA Astrophysics Data System (ADS)

    Lu, Longsheng; Wang, Xiaowu; Wang, Shuai; Liu, Xiaokang

    2017-07-01

    Hybrid photovoltaic thermal (PVT) technology refers to the integration of a photovoltaic module into a conventional solar thermal collector. Generally, the traditional design of a PVT collector has solar cells fixed on the top surface of an absorber in a flat-plate solar thermal collector. In this work, we presented a new concept of water-based PVT collector in which solar cells were directly placed on the bottom surface of its glass cover. A dynamic numerical model of this new PVT is developed and validated by experimental tests. With numerical analysis, it is found that at same covering factor, the electricity conversion efficiency of solar cells of the new PVT exceed that of the traditional PVT by nearly 10% while its thermal efficiency is approximately 30% lower than that of the traditional PVT. When the covering factor changes from 0.05 to 1, the thermal efficiency of the new PVT drops nearly 70%. The thermal efficiency of both the new PVT and the traditional PVT rise up as the water mass in tank increases. Meanwhile, the final water temperature in tank of the traditional PVT collector declines more than 17 °C, whereas that of the new PVT declines less than 6 °C, when the water mass increases from 100 to 300 kg.

  12. Hierarchical Surface Architecture of Plants as an Inspiration for Biomimetic Fog Collectors.

    PubMed

    Azad, M A K; Barthlott, W; Koch, K

    2015-12-08

    Fog collectors can enable us to alleviate the water crisis in certain arid regions of the world. A continuous fog-collection cycle consisting of a persistent capture of fog droplets and their fast transport to the target is a prerequisite for developing an efficient fog collector. In regard to this topic, a biological superior design has been found in the hierarchical surface architecture of barley (Hordeum vulgare) awns. We demonstrate here the highly wettable (advancing contact angle 16° ± 2.7 and receding contact angle 9° ± 2.6) barbed (barb = conical structure) awn as a model to develop optimized fog collectors with a high fog-capturing capability, an effective water transport, and above all an efficient fog collection. We compare the fog-collection efficiency of the model sample with other plant samples naturally grown in foggy habitats that are supposed to be very efficient fog collectors. The model sample, consisting of dry hydrophilized awns (DH awns), is found to be about twice as efficient (fog-collection rate 563.7 ± 23.2 μg/cm(2) over 10 min) as any other samples investigated under controlled experimental conditions. Finally, a design based on the hierarchical surface architecture of the model sample is proposed for the development of optimized biomimetic fog collectors.

  13. Planetary Rings

    NASA Astrophysics Data System (ADS)

    Esposito, Larry

    2014-03-01

    Preface: a personal view of planetary rings; 1. Introduction: the allure of the ringed planets; 2. Studies of planetary rings 1610-2013; 3. Diversity of planetary rings; 4. Individual ring particles and their collisions; 5. Large-scale ring evolution; 6. Moons confine and sculpt rings; 7. Explaining ring phenomena; 8. N-body simulations; 9. Stochastic models; 10. Age and evolution of rings; 11. Saturn's mysterious F ring; 12. Uranus' rings and moons; 13. Neptune's partial rings; 14. Jupiter's ring-moon system after Galileo and New Horizons; 15. Ring photometry; 16. Dusty rings; 17. Concluding remarks; Afterword; Glossary; References; Index.

  14. Blind-type optical configuration for the high heat solar collectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasilyev, V.P.

    1996-12-31

    Blind approach in constructing high heat solar collectors with the one-stage light flux concentration is presented. Shown are diverse multielement optical configurations that can be built on the basis of a blind-type concept. Their two main versions using the set of concave parabolic reflecting elements are described. A preliminary estimation of the flux concentration level for a circle-blind collector shows it reaching up to half of the thermodynamic limit.

  15. 31 CFR 203.17 - Collector depositaries.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false Collector depositaries. 203.17 Section 203.17 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) FISCAL SERVICE, DEPARTMENT OF THE TREASURY FINANCIAL MANAGEMENT SERVICE PAYMENT OF FEDERAL TAXES AND THE TREASURY...

  16. Saturn's Rings and Associated Ring Plasma Cavity: Evidence for Slow Ring Erosion

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Kurth, W. S.; Gurnett, D. A.; Persoon, A. M.; MacDowall, R. J.

    2017-01-01

    We re-examine the radio and plasma wave observations obtained during the Cassini Saturn orbit insertion period, as the spacecraft flew over the northern ring surface into a radial distance of 1.3 Rs (over the C-ring). Voyager era studies suggest the rings are a source of micro-meteoroid generated plasma and dust, with theorized peak impact-created plasma outflows over the densest portion of the rings (central B-ring). In sharp contrast, the Cassini Radio and Plasma Wave System (RPWS) observations identify the presence of a ring-plasma cavity located in the central portion of the B-ring, with little evidence of impact-related plasma. While previous Voyager era studies have predicted unstable ion orbits over the C- ring, leading to field-aligned plasma transport to Saturns ionosphere, the Cassini RPWS observations do not reveal evidence for such instability-created plasma fountains. Given the passive ring loss processes observed by Cassini, we find that the ring lifetimes should extend >10(exp 9) years, and that there is limited evidence for prompt destruction (loss in <100 Myrs).

  17. Saturn's rings and associated ring plasma cavity: Evidence for slow ring erosion

    NASA Astrophysics Data System (ADS)

    Farrell, W. M.; Kurth, W. S.; Gurnett, D. A.; Persoon, A. M.; MacDowall, R. J.

    2017-08-01

    We re-examine the radio and plasma wave observations obtained during the Cassini Saturn orbit insertion period, as the spacecraft flew over the northern ring surface into a radial distance of 1.3 Rs (over the C-ring). Voyager era studies suggest the rings are a source of micro-meteoroid generated plasma and dust, with theorized peak impact-created plasma outflows over the densest portion of the rings (central B-ring). In sharp contrast, the Cassini Radio and Plasma Wave System (RPWS) observations identify the presence of a ring-plasma cavity located in the central portion of the B-ring, with little evidence of impact-related plasma. While previous Voyager era studies have predicted unstable ion orbits over the C-ring, leading to field-aligned plasma transport to Saturn's ionosphere, the Cassini RPWS observations do not reveal evidence for such instability-created plasma 'fountains'. Given the passive ring loss processes observed by Cassini, we find that the ring lifetimes should extend >109 years, and that there is limited evidence for prompt destruction (loss in <100 Myrs).

  18. Combined current collector and electrode separator

    DOEpatents

    Gerenser, R.J.; Littauer, E.L.

    1983-08-23

    This relates to reactive metal cells wherein there is a cathode and a consumable anode. It is necessary to separate the cathode from the anode so that an electrolyte may constantly flow over the face of the anode opposing the cathode. It has been found that this separator may also beneficially function as a current collector. The combined current collector and separator includes a peripheral supporting frame of which a portion may function as a bus-bar. A plurality of bars or ribs extend in parallel relation across the opening defined by the supporting frame and are electrically connected to the bus-bar portion. It is preferred that each bar or rib have a pointed or line edge which will engage and slightly bite into the associated anode to maintain the bar or rib in electrical contact with the anode. This abstract forms no part of the specification of this application and is not to be construed as limiting the claims of the application. 6 figs.

  19. Combined current collector and electrode separator

    DOEpatents

    Gerenser, Robert J.; Littauer, Ernest L.

    1983-01-01

    This relates to reactive metal cells wherein there is a cathode and a consumable anode. It is necessary to separate the cathode from the anode so that an electrolyte may constantly flow over the face of the anode opposing the cathode. It has been found that this separator may also beneficially function as a current collector. The combined current collector and separator includes a peripheral supporting frame of which a portion may function as a bus-bar. A plurality of bars or ribs extend in parallel relation across the opening defined by the supporting frame and are electrically connected to the bus-bar portion. It is preferred that each bar or rib have a pointed or line edge which will engage and slightly bite into the associated anode to maintain the bar or rib in electrical contact with the anode. This abstract forms no part of the specification of this application and is not to be construed as limiting the claims of the application.

  20. High-performance supercapacitors using a nanoporous current collector made from super-aligned carbon nanotubes.

    PubMed

    Zhou, Ruifeng; Meng, Chuizhou; Zhu, Feng; Li, Qunqing; Liu, Changhong; Fan, Shoushan; Jiang, Kaili

    2010-08-27

    Nanoporous current collectors for supercapacitors have been fabricated by cross-stacking super-aligned carbon nanotube (SACNT) films as a replacement for heavy conventional metallic current collectors. The CNT-film current collectors have good conductivity, extremely low density (27 microg cm(-2)), high specific surface area, excellent flexibility and good electrochemical stability. Nanosized active materials such as NiO, Co(3)O(4) or Mn(2)O(3) nanoparticles can be directly synthesized on the SACNT films by a straightforward one-step, in situ decomposition strategy that is both efficient and environmentally friendly. These composite films can be integrated into a pseudo-capacitor that does not use metallic current collectors, but nevertheless shows very good performance, including high specific capacitance (approximately 500 F g(-1), including the current collector mass), reliable electrochemical stability (<4.5% degradation in 2500 cycles) and a very high rate capability (245 F g(-1) at 155 A g(-1)).

  1. High-performance supercapacitors using a nanoporous current collector made from super-aligned carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhou, Ruifeng; Meng, Chuizhou; Zhu, Feng; Li, Qunqing; Liu, Changhong; Fan, Shoushan; Jiang, Kaili

    2010-08-01

    Nanoporous current collectors for supercapacitors have been fabricated by cross-stacking super-aligned carbon nanotube (SACNT) films as a replacement for heavy conventional metallic current collectors. The CNT-film current collectors have good conductivity, extremely low density (27 µg cm - 2), high specific surface area, excellent flexibility and good electrochemical stability. Nanosized active materials such as NiO, Co3O4 or Mn2O3 nanoparticles can be directly synthesized on the SACNT films by a straightforward one-step, in situ decomposition strategy that is both efficient and environmentally friendly. These composite films can be integrated into a pseudo-capacitor that does not use metallic current collectors, but nevertheless shows very good performance, including high specific capacitance (~500 F g - 1, including the current collector mass), reliable electrochemical stability (<4.5% degradation in 2500 cycles) and a very high rate capability (245 F g - 1 at 155 A g - 1).

  2. The flotation and adsorption of mixed collectors on oxide and silicate minerals.

    PubMed

    Xu, Longhua; Tian, Jia; Wu, Houqin; Lu, Zhongyuan; Sun, Wei; Hu, Yuehua

    2017-12-01

    The analysis of flotation and adsorption of mixed collectors on oxide and silicate minerals is of great importance for both industrial applications and theoretical research. Over the past years, significant progress has been achieved in understanding the adsorption of single collectors in micelles as well as at interfaces. By contrast, the self-assembly of mixed collectors at liquid/air and solid/liquid interfaces remains a developing area as a result of the complexity of the mixed systems involved and the limited availability of suitable analytical techniques. In this work, we systematically review the processes involved in the adsorption of mixed collectors onto micelles and at interface by examining four specific points, namely, theoretical background, factors that affect adsorption, analytical techniques, and self-assembly of mixed surfactants at the mineral/liquid interface. In the first part, the theoretical background of collector mixtures is introduced, together with several core solution theories, which are classified according to their application in the analysis of physicochemical properties of mixed collector systems. In the second part, we discuss the factors that can influence adsorption, including factors related to the structure of collectors and environmental conditions. We summarize their influence on the adsorption of mixed systems, with the objective to provide guidance on the progress achieved in this field to date. Advances in measurement techniques can greatly promote our understanding of adsorption processes. In the third part, therefore, modern techniques such as optical reflectometry, neutron scattering, neutron reflectometry, thermogravimetric analysis, fluorescence spectroscopy, ultrafiltration, atomic force microscopy, analytical ultracentrifugation, X-ray photoelectron spectroscopy, Vibrational Sum Frequency Generation Spectroscopy and molecular dynamics simulations are introduced in virtue of their application. Finally, focusing on

  3. Planetary Rings

    NASA Astrophysics Data System (ADS)

    Esposito, Larry W.

    2011-07-01

    Preface; 1. Introduction: the allure of ringed planets; 2. Studies of planetary rings 1610-2004; 3. Diversity of planetary rings; 4. Individual ring particles and their collisions; 5. Large-scale ring evolution; 6. Moons confine and sculpt rings; 7. Explaining ring phenomena; 8. N-Body simulations; 9. Stochastic models; 10. Age and evolution of rings; 11. Saturn's mysterious F ring; 12. Neptune's partial rings; 13. Jupiter's ring-moon system after Galileo; 14. Ring photometry; 15. Dusty rings; 16. Cassini observations; 17. Summary: the big questions; Glossary; References; Index.

  4. Performance Evaluation of a Nanofluid-Based Direct Absorption Solar Collector with Parabolic Trough Concentrator

    PubMed Central

    Xu, Guoying; Chen, Wei; Deng, Shiming; Zhang, Xiaosong; Zhao, Sainan

    2015-01-01

    Application of solar collectors for hot water supply, space heating, and cooling plays a significant role in reducing building energy consumption. For conventional solar collectors, solar radiation is absorbed by spectral selective coating on the collectors’ tube/plate wall. The poor durability of the coating can lead to an increased manufacturing cost and unreliability for a solar collector operated at a higher temperature. Therefore, a novel nanofluid-based direct absorption solar collector (NDASC) employing uncoated collector tubes has been proposed, and its operating characteristics for medium-temperature solar collection were theoretically and experimentally studied in this paper. CuO/oil nanofluid was prepared and used as working fluid of the NDASC. The heat-transfer mechanism of the NDASC with parabolic trough concentrator was theoretically evaluated and compared with a conventional indirect absorption solar collector (IASC). The theoretical analysis results suggested that the fluid’s temperature distribution in the NDASC was much more uniform than that in the IASC, and an enhanced collection efficiency could be achieved for the NDASC operated within a preferred working temperature range. To demonstrate the feasibility of the proposed NDASC, experimental performances of an NDASC and an IASC with the same parabolic trough concentrator were furthermore evaluated and comparatively discussed. PMID:28347112

  5. A detailed study of the magnetism of chiral {Cr₇M} rings: an investigation into parametrization and transferability of parameters.

    PubMed

    Garlatti, Elena; Albring, Morten A; Baker, Michael L; Docherty, Rebecca J; Mutka, Hannu; Guidi, Tatiana; Garcia Sakai, Victoria; Whitehead, George F S; Pritchard, Robin G; Timco, Grigore A; Tuna, Floriana; Amoretti, Giuseppe; Carretta, Stefano; Santini, Paolo; Lorusso, Giulia; Affronte, Marco; McInnes, Eric J L; Collison, David; Winpenny, Richard E P

    2014-07-09

    Compounds of general formula [Cr7MF3(Etglu)(O2C(t)Bu)15(Phpy)] [H5Etglu = N-ethyl-d-glucamine; Phpy = 4-phenylpyridine; M = Zn (1), Mn (2), Ni (3)] have been prepared. The structures contain an irregular octagon of metal sites formed around the penta-deprotonated Etglu(5-) ligand; the chirality of N-ethyl-d-glucamine is retained in the final product. The seven Cr(III) sites have a range of coordination environments, and the divalent metal site is crystallographically identified and has a Phpy ligand attached to it. By using complementary experimental techniques, including magnetization and specific heat measurements, inelastic neutron scattering, and electron paramagnetic resonance spectroscopy, we have investigated the magnetic features of this family of {Cr7M} rings. Microscopic parameters of the spin Hamiltonian have been determined as a result of best fits of the different experimental data, allowing a direct comparison with corresponding parameters found in the parent compounds. We examine whether these parameters can be transferred between compounds and compare them with those of an earlier family of heterometallic rings.

  6. Mass Spectrometer Containing Multiple Fixed Collectors

    NASA Technical Reports Server (NTRS)

    Moskala, Robert; Celo, Alan; Voss, Guenter; Shaffer, Tom

    2008-01-01

    A miniature mass spectrometer that incorporates features not typically found in prior mass spectrometers is undergoing development. This mass spectrometer is designed to simultaneously measure the relative concentrations of five gases (H2, He, N2, O2, and Ar) in air, over the relative-concentration range from 10(exp -6) to 1, during a sampling time as short as 1 second. It is intended to serve as a prototype of a product line of easy-to-use, portable, lightweight, highspeed, relatively inexpensive instruments for measuring concentrations of multiple chemical species in such diverse applications as detecting explosive or toxic chemicals in air, monitoring and controlling industrial processes, measuring concentrations of deliberately introduced isotopes in medical and biological investigations, and general environmental monitoring. The heart of this mass spectrometer is an integral combination of a circular cycloidal mass analyzer, multiple fixed ion collectors, and two mass-selective ion sources. By circular cycloidal mass analyzer is meant an analyzer that includes (1) two concentric circular cylindrical electrodes for applying a radial electric field and (2) a magnet arranged to impose a magnetic flux aligned predominantly along the cylindrical axis, so that ions, once accelerated into the annulus between the electrodes, move along circular cycloidal trajectories. As in other mass analyzers, trajectory of each ion is determined by its mass-to-charge ratio, and so ions of different species can be collected simultaneously by collectors (Faraday cups) at different locations intersected by the corresponding trajectories (see figure). Unlike in other mass analyzers, the installation of additional collectors to detect additional species does not necessitate increasing the overall size of the analyzer assembly.

  7. Conceptual designs of E × B multistage depressed collectors for gyrotrons

    NASA Astrophysics Data System (ADS)

    Wu, Chuanren; Pagonakis, Ioannis Gr.; Gantenbein, Gerd; Illy, Stefan; Thumm, Manfred; Jelonnek, John

    2017-04-01

    Multistage depressed collectors are challenges for high-power, high-frequency fusion gyrotrons. Two concepts exist in the literature: (1) unwinding the spent electron beam cyclotron motion utilizing non-adiabatic transitions of magnetic fields and (2) sorting and collecting the electrons using the E × B drift. To facilitate the collection by the drift, the hollow electron beam can be transformed to one or more thin beams before applying the sorting. There are many approaches, which can transform the hollow electron beam to thin beams; among them, two approaches similar to the tilted electric field collectors of traveling wave tubes are conceptually studied in this paper: the first one transforms the hollow circular electron beam to an elongated elliptic beam, and then the thin elliptic beam is collected by the E × B drift; the second one splits an elliptic or a circular electron beam into two arc-shaped sheet beams; these two parts are collected individually. The functionality of these concepts is proven by CST simulations. A model of a three-stage collector for a 170 GHz, 1 MW gyrotron using the latter approach shows 76% collector efficiency while taking secondary electrons and realistic electron beam characteristics into account.

  8. Non-Random Spatial Distribution of Impacts in the Stardust Cometary Collector

    NASA Technical Reports Server (NTRS)

    Westphal, Andrew J.; Bastien, Ronald K.; Borg, Janet; Bridges, John; Brownlee, Donald E.; Burchell, Mark J.; Cheng, Andrew F.; Clark, Benton C.; Djouadi, Zahia; Floss, Christine

    2007-01-01

    In January 2004, the Stardust spacecraft flew through the coma of comet P81/Wild2 at a relative speed of 6.1 km/sec. Cometary dust was collected at in a 0.1 sq m collector consisting of aerogel tiles and aluminum foils. Two years later, the samples successfully returned to earth and were recovered. We report the discovery that impacts in the Stardust cometary collector are not distributed randomly in the collecting media, but appear to be clustered on scales smaller than approx.10 cm. We also report the discovery of at least two populations of oblique tracks. We evaluated several hypotheses that could explain the observations. No hypothesis was consistent with all the observations, but the preponderance of evidence points toward at least one impact on the central Whipple shield of the spacecraft as the origin of both clustering and low-angle oblique tracks. High-angle oblique tracks unambiguously originate from a noncometary impact on the spacecraft bus just forward of the collector. Here we summarize the observations, and review the evidence for and against three scenarios that we have considered for explaining the impact clustering found on the Stardust aerogel and foil collectors.

  9. IEA/SPS 500 kW distributed collector system

    NASA Technical Reports Server (NTRS)

    Neumann, T. W.; Hartman, C. D.

    1980-01-01

    Engineering studies for an International Energy Agency project for the design and construction of a 500 kW solar thermal electric power generation system of the distributed collector system (DCS) type are reviewed. The DCS system design consists of a mixed field of parabolic trough type solar collectors which are used to heat a thermal heat transfer oil. Heated oil is delivered to a thermocline storage tank from which heat is extracted and delivered to a boiler by a second heat transfer loop using the same heat transfer oil. Steam is generated in the boiler, expanded through a steam turbine, and recirculated through a condenser system cooled by a wet cooling tower.

  10. Solar collector parameter identification from unsteady data by a discrete-gradient optimization algorithm

    NASA Technical Reports Server (NTRS)

    Hotchkiss, G. B.; Burmeister, L. C.; Bishop, K. A.

    1980-01-01

    A discrete-gradient optimization algorithm is used to identify the parameters in a one-node and a two-node capacitance model of a flat-plate collector. Collector parameters are first obtained by a linear-least-squares fit to steady state data. These parameters, together with the collector heat capacitances, are then determined from unsteady data by use of the discrete-gradient optimization algorithm with less than 10 percent deviation from the steady state determination. All data were obtained in the indoor solar simulator at the NASA Lewis Research Center.

  11. Ab initio molecular orbital and density functional studies on the ring-opening reaction of oxetene.

    PubMed

    Jayaprakash, S; Jeevanandam, Jebakumar; Subramani, K

    2014-11-01

    Electrocyclic ring opening (ERO) reaction of 2H-Oxete (oxetene) has been carried out computationally in the gas phase and ring opening barrier has been computed. When comparing the ERO reaction of oxetene with the parent hydrocarbon (cyclobutene), the ring opening of cyclobutene is found to exhibit pericyclic behavior while oxetene shows mild pseudopericyclic nature. Computation of the nucleus-independent chemical shift (NICS) of oxetene adds evidence for pseudopericyclic behavior of oxetene. By locking of lone pair of electrons by hydrogen bonding, it is seen that the pseudopericyclic nature of the ring opening of oxetene is converted into a pericyclic one. CASSCF(5,6)/6-311+G** computation was carried out to understand the extent of involvement of lone pair of electrons during the course of the reaction. CR-CCSD(T)/6-311+G** computation was performed to assess the energies of the reactant, transition state and the product more accurately.

  12. Heterogeneous epoxide carbonylation by cooperative ion-pair catalysis in Co(CO) 4 –-incorporated Cr-MIL-101

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Hoyoung D.; Dinca, Mircea; Roman-Leshkov, Yuriy

    Here, despite the commercial desirability of epoxide carbonylation to β-lactones, the reliance of this process on homogeneous catalysts makes its industrial application challenging. Here we report the preparation and use of a Co(CO) 4 –-incorporated Cr-MIL-101 (Co(CO) 4cCr-MIL-101, Cr-MIL-101 = Cr 3O(BDC) 3F, H2BDC = 1,4-benzenedicarboxylic acid) heterogeneous catalyst for the ring-expansion carbonylation of epoxides, whose activity, selectivity, and substrate scope are on par with those of the reported homogeneous catalysts. We ascribe the observed performance to the unique cooperativity between the postsynthetically introduced Co(CO) 4 – and the site-isolated Lewis acidic Cr(III) centers in the metal–organic framework (MOF). Themore » heterogeneous nature of Co(CO) 4cCr-MIL-101 allows the first demonstration of gas-phase continuous-flow production of β-lactones from epoxides, attesting to the potential applicability of the heterogeneous epoxide carbonylation strategy.« less

  13. Heterogeneous epoxide carbonylation by cooperative ion-pair catalysis in Co(CO) 4 –-incorporated Cr-MIL-101

    DOE PAGES

    Park, Hoyoung D.; Dinca, Mircea; Roman-Leshkov, Yuriy

    2017-03-21

    Here, despite the commercial desirability of epoxide carbonylation to β-lactones, the reliance of this process on homogeneous catalysts makes its industrial application challenging. Here we report the preparation and use of a Co(CO) 4 –-incorporated Cr-MIL-101 (Co(CO) 4cCr-MIL-101, Cr-MIL-101 = Cr 3O(BDC) 3F, H2BDC = 1,4-benzenedicarboxylic acid) heterogeneous catalyst for the ring-expansion carbonylation of epoxides, whose activity, selectivity, and substrate scope are on par with those of the reported homogeneous catalysts. We ascribe the observed performance to the unique cooperativity between the postsynthetically introduced Co(CO) 4 – and the site-isolated Lewis acidic Cr(III) centers in the metal–organic framework (MOF). Themore » heterogeneous nature of Co(CO) 4cCr-MIL-101 allows the first demonstration of gas-phase continuous-flow production of β-lactones from epoxides, attesting to the potential applicability of the heterogeneous epoxide carbonylation strategy.« less

  14. Two Fixed, Evacuated, Glass, Solar Collectors Using Nonimaging Concentration

    NASA Astrophysics Data System (ADS)

    Garrison, John D.; Winston, Roland; O'Gallagher, Joseph; Ford, Gary

    1984-01-01

    Two fixed, evacuated, glass solar thermal collectors have been designed. The incorporation of nonimaging concentration, selective absorption and vacuum insulation into their design is essential for obtaining high efficiency through low heat loss, while operating at high temperatures. Nonimaging, approximately ideal concentration with wide acceptance angle permits solar radiation collection without tracking the sun, and insures collection of much of the diffuse radiation. It also minimizes the area of the absorbing surface, thereby reducing the radiation heat loss. Functional integration, where different parts of these two collectors serve more than one function, is also important in achieving high efficiency, and it reduces cost.

  15. Thermal performance evaluation of the Semco (liquid) solar collector

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Procedures used and results obtained during the evaluation test program on a flat plate collector which uses water as the working fluid are discussed. The absorber plate is copper tube soldered to copper fin coated with flat black paint. The glazing consists of two plates of Lo-Iron glass; the insulation is polyurethane foam. The collector weight is 242.5 pounds with overall external dimensions of approximately 48.8 in. x 120.8 in. x 4.1 in. The test program was conducted to obtain thermal performance data before and after 34 days of weather exposure test.

  16. Size Distribution of Genesis Solar Wind Array Collector Fragments Recovered

    NASA Technical Reports Server (NTRS)

    Allton, J. H.; Stansbery, E. K.; McNamara, K. M.

    2005-01-01

    Genesis launched in 2001 with 271 whole and 30 half hexagonally-shaped collectors mounted on 5 arrays, comprised of 9 materials described in [1]. The array collectors were damaged during re-entry impact in Utah in 2004 [2], breaking into many smaller pieces and dust. A compilation of the number and approximate size of the fragments recovered was compiled from notes made during the field packaging performed in the Class 10,000 cleanroom at Utah Test and Training Range [3].

  17. Processing on high efficiency solar collector coatings

    NASA Technical Reports Server (NTRS)

    Roberts, M.

    1977-01-01

    Wavelength selective coatings for solar collectors are considered. Substrates with good infrared reflectivity were examined along with their susceptibility to physical and environmental damage. Improvements of reflective surfaces were accomplished through buffing, chemical polishing and other surface processing methods.

  18. The use of bulk collectors in monitoring wet deposition at high-altitude sites in winter

    USGS Publications Warehouse

    Ranalli, A.J.; Turk, J.T.; Campbell, D.H.

    1997-01-01

    Concentrations of dissolved ions from samples collected by wet/dry collectors were compared to those collected by bulk collectors at Halfmoon Creek and Ned Wilson Lake in western Colorado to determine if bulk collectors can be used to monitor wet deposition chemistry in remote, high-altitude regions in winter. Hydrogen-ion concentration was significantly lower (p 0.05) at Halfmoon Creek. Wet deposition concentrations were predicated from bulk deposition concentrations through linear regression analysis. Results indicate that anions (chloride, nitrate and sulfate) can be predicted with a high degree of confidence. Lack of significant differences between seasonal (winter and summer) ratios of bulk to wet deposition concentrations indicates that at sites where operation of a wet/dry collector during the winter is not practical, wet deposition concentrations can be predicted from bulk collector samples through regression analysis of wet and bulk deposition data collected during the summer.

  19. Effect of Collector Configuration on Test Section Turbulence Levels in an Open-Jet Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Manuel, G. S.; Molloy, John K.; Barna, P. Stephen

    1992-01-01

    Flow quality studies in the Langley 14- by 22-Foot Subsonic Tunnel indicated periodic flow pulsation at discrete frequencies in the test section when the tunnel operated in an open-jet configuration. To alleviate this problem, experiments were conducted in a 1/24-scale model of the full-scale tunnel to evaluate the turbulence reduction potential of six collector configurations. As a result of these studies, the original bell-mouth collector of the 14- by 22-Foot Subsonic Tunnel was replaced by a collector with straight walls, and a slot was incorporated between the trailing edge of the collector and the entrance of the diffuser.

  20. Development of flat-plate solar collectors for the heating and cooling of buildings

    NASA Technical Reports Server (NTRS)

    Ramsey, J. W.; Borzoni, J. T.; Holland, T. H.

    1975-01-01

    The relevant design parameters in the fabrication of a solar collector for heating liquids were examined. The objective was to design, fabricate, and test a low-cost, flat-plate solar collector with high collection efficiency, high durability, and requiring little maintenance. Computer-aided math models of the heat transfer processes in the collector assisted in the design. The preferred physical design parameters were determined from a heat transfer standpoint and the absorber panel configuration, the surface treatment of the absorber panel, the type and thickness of insulation, and the number, spacing and material of the covers were defined. Variations of this configuration were identified, prototypes built, and performance tests performed using a solar simulator. Simulated operation of the baseline collector configuration was combined with insolation data for a number of locations and compared with a predicted load to determine the degree of solar utilization.

  1. Analysis of Molecular Contamination on Genesis Collectors Through Spectroscopic Ellipsometry

    NASA Technical Reports Server (NTRS)

    McNamara, K. M.; Stansbery, Eileen K.

    2005-01-01

    Before the spacecraft returned to Earth in September, the Genesis mission had a preliminary assessment plan in place for the purpose of providing information on the condition and availability of collector materials to the science community as a basis for allocation requests. One important component of that plan was the evaluation of collector surfaces for molecular contamination. Sources of molecular contamination might be the on-orbit outgassing of spacecraft and science canister components, the condensation of thruster by-products during spacecraft maneuvers, or the condensation of volatile species associated with reentry. Although the non-nominal return of the Genesis spacecraft introduced particulate contamination to the collectors, such as dust and heatshield carbon-carbon, it is unlikely to have caused any molecular deposition. The contingency team's quick action in returning the damaged payload the UTTR cleanroom by 6 PM the evening of recovery help to ensure that exposure to weather conditions and the environment were kept to a minimum.

  2. The Aerogel Mesh Contamination Collector

    DTIC Science & Technology

    1993-07-01

    patent pending 2.1 Introduction The new method of contamination prevention and collection described herein employs ultra-low density silica aerogel and a... silica aerogel and the Section 2.2 presents the fabrication of the acrogel me:sh contamination collector (AMCC). The device is a heterostructure...monolithic photonic devices and lightweight optics). This report series will focus on silica aerogels almost exclusively. It is also of interest to note that

  3. Thermal performance evaluation of Solar Energy Products Company (SEPCO) 'Soloron' collector tested outdoors

    NASA Technical Reports Server (NTRS)

    Chiou, J., Sr.

    1977-01-01

    The test article, Model EF-212, Serial Nr. 002, is a single glazed collector with a nonselective absorber plate, using flowing air as the heat transfer medium. The absorber plate and box frame are aluminum and the insulation is one inch isocyanurate foam board with thermal conductivity of 0.11 (BTU/sq ft Hr0/ft.) The tests included the following. (1) time constant test, (2) collector efficiency test, (3) collector stagnation test, (4) incident angle modifier test, (5) load test, (6) weathering test, and (7) absorber plate optical properties test. The results of these tests are tabulated, graphed, or otherwise recorded.

  4. Low work function silicon collector for thermionic converters

    NASA Technical Reports Server (NTRS)

    Chang, K. H.; Shimada, K.

    1976-01-01

    To improve the efficiency of present thermionic converters, single crystal silicon was investigated as a low work function collector material. The experiments were conducted in a test vehicle which resembled an actual thermionic converter. Work function as low as 1.0eV was obtained with an n-type silicon. The stabilities of the activated surfaces at elevated temperatures were tested by raising the collector temperature up to 829 K. By increasing the Cs arrival rate, it was possible to restore the originally activated low work function of the surface at elevated surface temperatures. These results, plotted in the form of Rasor-Warner curve, show a behavior similar to that of metal electrode except that the minimum work function was much lower with silicon than with metals.

  5. Development of a selective thin film and of a hermetically sealed flat plate solar collector with gas filling

    NASA Astrophysics Data System (ADS)

    Zernial, W.

    1982-12-01

    The industrial productibility of a selective absorbing thin film was investigated on the basis of reactive cathodic sputtering of Ni. On substrates of 1.8 sq m of Al, Cu, steel and stainless steel, solar absorption values up to 97% were achieved at emissivities of 5 to 10%. A prototype flat plate collector for high temperatures with two covers and hermetical sealing was developed. The technical data of the collector were measured, dependent on the selectivity of the absorber, gas fillings of dry air, argon or SF6 and the geometry and were compared with those of an evacuated flat plate collector. A hermetical sealed double flat plate collector for low temperatures was developed which has the advantage of lower no load temperatures and higher energy gain for heating swimming pool water compared with a conventional flat plate collector. The insolation values on collectors were measured and were used for a calculation of the energy gains of different collector types.

  6. Performance of computer-designed small-size multistage depressed collectors for a high-perveance traveling wave tube

    NASA Technical Reports Server (NTRS)

    Ramins, P.

    1984-01-01

    Computer designed axisymmetric 2.4-cm-diameter three-, four-, and five-stage depressed collectors were evaluated in conjunction with an octave bandwidth, high-perveance, and high-electronic-efficiency, griddled-gun traveling wave tube (TWT). Spent-beam refocusing was used to condition the beam for optimum entry into the depressed collectors. Both the TWT and multistage depressed collector (MDC) efficiencies were measured, as well as the MDC current, dissipated thermal power, and DC input power distributions, for the TWT operating both at saturation over its bandwidth and over its full dynamic range. Relatively high collector efficiencies were obtained, leading to a very substantial improvement in the overall TWT efficiency. In spite of large fixed TWT body losses (due largely to the 6 to 8 percent beam interception), average overall efficiencies of 45 to 47 percent (for three to five collector stages) were obtained at saturation across the 2.5-, to 5.5-GHz operating band. For operation below saturation the collector efficiencies improved steadily, leading to reasonable ( 20 percent) overall efficiencies as far as 6 dB below saturation.

  7. Effect of three typical sulfide mineral flotation collectors on soil microbial activity.

    PubMed

    Guo, Zunwei; Yao, Jun; Wang, Fei; Yuan, Zhimin; Bararunyeretse, P; Zhao, Yue

    2016-04-01

    The sulfide mineral flotation collectors are wildly used in China, whereas their toxic effect on soil microbial activity remains largely unexplored. In this study, isothermal microcalorimetric technique and soil enzyme assay techniques were employed to investigate the toxic effect of typical sulfide mineral flotation collectors on soil microbial activity. Soil samples were treated with different concentrations (0-100 μg•g - 1 soil) of butyl xanthate, butyl dithiophosphate, and sodium diethyldithiocarbamate. Results showed a significant adverse effect of butyl xanthate (p < 0.05), butyl dithiophosphate, and sodium diethyldithiocarbamate (p < 0.01) on soil microbial activity. The growth rate constants k decreased along with the increase of flotation collectors concentration from 20.0 to 100.0 μg•g(-1). However, the adverse effects of these three floatation collectors showed significant difference. The IC 20 of the investigated flotation reagents followed such an order: IC 20 (butyl xanthate) > IC 20 (sodium diethyldithiocarbamate) > IC 20 (butyl dithiophosphate) with their respective inhibitory concentration as 47.03, 38.36, and 33.34 μg•g(-1). Besides, soil enzyme activities revealed that these three flotation collectors had an obvious effect on fluorescein diacetate hydrolysis (FDA) enzyme and catalase (CAT) enzyme. The proposed methods can provide meaningful toxicological information of flotation reagents to soil microbes in the view of metabolism and biochemistry, which are consistent and correlated to each other.

  8. Current collector for AMTEC

    NASA Technical Reports Server (NTRS)

    Williams, Roger M. (Inventor)

    1989-01-01

    An electrode having higher power output is formed of an open mesh current collector such as expanded nickel covering an electrode film applied to a tube of beta-alumina solid electrolyte (BASE). A plurality of cross-members such as spaced, parallel loops of molybdenum metal wire surround the BASE tube. The loops are electrically connected by a bus wire. As the AMTEC cell is heated, the grid of expanded nickel expands more than the BASE tube and the surrounding loop of wire and become diffusion welded to the electrode film and to the wire loops.

  9. Evaluation of ion collection area in Faraday probes.

    PubMed

    Brown, Daniel L; Gallimore, Alec D

    2010-06-01

    A Faraday probe with three concentric rings was designed and fabricated to assess the effect of gap width and collector diameter in a systematic study of the diagnostic ion collection area. The nested Faraday probe consisted of two concentric collector rings and an outer guard ring, which enabled simultaneous current density measurements on the inner and outer collectors. Two versions of the outer collector were fabricated to create gaps of 0.5 and 1.5 mm between the rings. Distribution of current density in the plume of a low-power Hall thruster ion source was measured in azimuthal sweeps at constant radius from 8 to 20 thruster diameters downstream of the exit plane with variation in facility background pressure. A new analytical technique is proposed to account for ions collected in the gap between the Faraday probe collector and guard ring. This method is shown to exhibit excellent agreement between all nested Faraday probe configurations, and to reduce the magnitude of integrated ion beam current to levels consistent with Hall thruster performance analyses. The technique is further studied by varying the guard ring bias potential with a fixed collector bias potential, thereby controlling ion collection in the gap. Results are in agreement with predictions based on the proposed analytical technique. The method is applied to a past study comparing the measured ion current density profiles of two Faraday probe designs. These findings provide new insight into the nature of ion collection in Faraday probe diagnostics, and lead to improved accuracy with a significant reduction in measurement uncertainty.

  10. Thermal analysis of insulated north-wall greenhouse with solar collector under passive mode

    NASA Astrophysics Data System (ADS)

    Chauhan, Prashant Singh; Kumar, Anil

    2018-04-01

    An insulated north wall greenhouse dryer has been fabricated and tested for no-load condition under passive mode. Testing has been conducted in two different cases. Case-I is considered for solar collector kept inside the dryer and Case-II is dryer without solar collector. Convective heat transfer coefficient and various heat transfer dimensionless numbers with have been calculated for thermal analysis. The maximum convective heat transfer coefficient is found 52.18 W/m2°C at 14 h during the first day for Case-I. The difference of the highest convective heat transfer coefficient of both cases was 8.34 W/m2°C. Net heat gain inside room curves are uniform and smooth for Case-I, which shows the steady heat generation process due to presence of solar collector inside the dryer. Above results depicts the effectiveness of solar collector and insulated north wall. The selection of suitable crop for drying can be done by analysing article's result.

  11. Electronic structure, stability and magnetic properties of small M1-2Cr (M = Fe, Co, and Ni) alloy encapsulated inside a (BN)48 cage

    NASA Astrophysics Data System (ADS)

    Liang, Wenjuan; Jia, Jianfeng; Lv, Jin; Wu, Haishun

    2015-09-01

    The geometrical structure and magnetic properties of M1-2Cr (M = Fe, Co, and Ni) alloy clusters inside a (BN)48 cage were calculated at the BPW91/LANL2DZ level of theory. The doping with Cr significantly changed the magnetic properties of the transition-metal clusters. When M1-2Cr alloys were placed inside a (BN)48 cage, the alloy clusters interacted strongly with the cage, and the M1-2Cr@(BN)48 clusters showed high stability. Moreover, Cr-doped magnetic metal clusters preferably occupied positions off-center and near the hexagonal rings of (BN)48 cages. Thus, the (BN)48 cages can be used to increase the stability of M1-2Cr alloys, and retain their magnetic nature, except for CoCr and Ni2Cr clusters.

  12. Recent Optical and SEM Characterization of Genesis Solar Wind Concentrator Diamond on Silicon Collector

    NASA Technical Reports Server (NTRS)

    Allton, Judith H.; Rodriquez, M. C.; Burkett, P. J.; Ross, D. K.; Gonzalez, C. P.; McNamara, K. M.

    2013-01-01

    One of the 4 Genesis solar wind concentrator collectors was a silicon substrate coated with diamond-like carbon (DLC) in which to capture solar wind. This material was designed for analysis of solar nitrogen and noble gases [1, 2]. This particular collector fractured during landing, but about 80% of the surface was recovered, including a large piece which was subdivided in 2012 [3, 4, 5]. The optical and SEM imaging and analysis described below supports the subdivision and allocation of the diamond-on-silicon (DOS) concentrator collector.

  13. Mechanisms and rates of proton transfer to coordinated carboxydithioates: studies on [Ni(S2CR){PhP(CH2CH2PPh2)2}](+) (R = Me, Et, Bu(n) or Ph).

    PubMed

    Alwaaly, Ahmed; Clegg, William; Henderson, Richard A; Probert, Michael R; Waddell, Paul G

    2015-02-21

    The complexes [Ni(S2CR)(triphos)]BPh4 (R = Me, Et, Bu(n) or Ph; triphos = PhP{CH2CH2PPh2}2) have been prepared and characterised. X-ray crystallography (for R = Et, Ph, C6H4Me-4, C6H4OMe-4 and C6H4Cl-4) shows that the geometry of the five-coordinate nickel in the cation is best described as distorted trigonal bipyramidal, containing a bidentate carboxydithioate ligand with the two sulfur atoms spanning axial and equatorial sites, the other axial site being occupied by the central phosphorus of triphos. The reactions of [Ni(S2CR)(triphos)](+) with mixtures of HCl and Cl(-) in MeCN to form equilibrium solutions containing [Ni(SH(S)CR)(triphos)](2+) have been studied using stopped-flow spectrophotometry. The kinetics show that proton transfer is slower than the diffusion-controlled limit and involves at least two coupled equilibria. The first step involves the rapid association between [Ni(S2CR)(triphos)](+) and HCl to form the hydrogen-bonded precursor, {[Ni(S2CR)(triphos)](+)HCl} (K) and this is followed by the intramolecular proton transfer (k) to produce [Ni(SH(S)CR)(triphos)](2+). In the reaction of [Ni(S2CMe)(triphos)](+) the rate law is consistent with the carboxydithioate ligand undergoing chelate ring-opening after protonation. It seems likely that chelate ring-opening occurs for all [Ni(S2CR)(triphos)](+), but only with [Ni(S2CMe)(triphos)](+) is the protonation step sufficiently fast that chelate ring-opening is rate-limiting. With all other systems, proton transfer is rate-limiting. DFT calculations indicate that protonation can occur at either sulfur atom, but only protonation at the equatorial sulfur results in chelate ring-opening. The ways in which protonation of either sulfur atom complicates the analyses and interpretation of the kinetics are discussed.

  14. Non-tracking solar energy collector system

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K. (Inventor)

    1978-01-01

    A solar energy collector system is described characterized by an improved concentrator for directing incident rays of solar energy on parallel strip-like segments of a flatplate receiver. Individually mounted reflector modules of a common asymmetrical triangular cross-sectional configuration supported for independent orientation are asymmetric included with vee-trough concentrators for deflecting incident solar energy toward the receiver.

  15. On the Failure of Upscaling the Single-Collector Efficiency to the Transport of Colloids in an Array of Collectors

    NASA Astrophysics Data System (ADS)

    Messina, F.; Tosco, T.; Sethi, R.

    2017-12-01

    Colloidal transport and deposition in saturated porous media are phenomena of considerable importance in a large number of natural processes and engineering applications, such as the contaminant and microorganism propagation in aquifer systems, the development of innovative groundwater remediation technologies, air and water filtration, and many others. Therefore, a thorough understanding of particle filtration is essential for predicting the transport and fate of colloids in the subsurface environment. The removal efficiency of a filter is a key aspect for colloid transport in porous media. Several efforts were devoted to derive accurate correlations for the single collector efficiency, one of the key concept in the filtration theory. However, up scaling this parameter to the entire porous medium is still a challenge. The common up-scaling approach assumes the deposition to be independent of the transport history, which means that the collector efficiency is considered uniform along the porous medium. However, previous works showed that this approach is inadequate under unfavorable deposition conditions. This study demonstrates that it is not adequate even in the simplest case of favorable deposition. Computational Fluid Dynamics simulations were run for a simplify porous media geometry, composed of a vertical array of 50 identical spherical collectors. A combination of Lagrangian and Eulerian simulations were performed to analyze the particle transport under a broad range of parameters (i.e., particle size, particle density, water velocity). The results show the limits of the existing models to interpret the experimental data. In fact, the outcome evidenced that when particle deposition is not controlled by Brownian diffusion, non-exponential concentration profiles are retrieved, in contrast with the assumption of uniform efficiency. Moreover, when the deposition mechanisms of sedimentation and interception dominate, the efficiency of the first sphere of the

  16. Design, fabrication, testing, and delivery of a solar energy collector system for residential heating and cooling

    NASA Technical Reports Server (NTRS)

    Holland, T. H.; Borzoni, J. T.

    1976-01-01

    A low cost flat plate solar energy collector was designed for the heating and cooling of residential buildings. The system meets specified performance requirements, at the desired system operating levels, for a useful life of 15 to 20 years, at minimum cost and uses state-of-the-art materials and technology. The rationale for the design method was based on identifying possible material candidates for various collector components and then selecting the components which best meet the solar collector design requirements. The criteria used to eliminate certain materials were: performance and durability test results, cost analysis, and prior solar collector fabrication experience.

  17. Radiant energy collector

    DOEpatents

    McIntire, William R.

    1983-01-01

    A cylindrical radiant energy collector is provided which includes a reflector spaced apart from an energy absorber. The reflector is of a particular shape which ideally eliminates gap losses. The reflector includes a plurality of adjacent facets of V shaped segments sloped so as to reflect all energy entering between said absorber and said reflector onto said absorber. The outer arms of each facet are sloped to reflect one type of extremal ray in a line substantially tangent to the lowermost extremity of the energy absorber. The inner arms of the facets are sloped to reflect onto the absorber all rays either falling directly thereon or as a result of reflection from an outer arm.

  18. A Computer-Interfaced Drop Counter as an Inexpensive Fraction Collector for Column Chromatography

    ERIC Educational Resources Information Center

    Nash, Barbara T.

    2008-01-01

    A computer-interfaced drop counter is described that serves as an inexpensive alternative to a fraction collector for column chromatography experiments. Undergraduate biochemistry laboratories frequently do not have the budget to purchase fraction collectors. Protocols that call for the manual measurement of fraction volumes as well as the manual…

  19. Report of the eRHIC Ring-Ring Working Group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aschenauer, E. C.; Berg, S.; Blaskiewicz, M.

    2015-10-13

    This report evaluates the ring-ring option for eRHIC as a lower risk alternative to the linac-ring option. The reduced risk goes along with a reduced initial luminosity performance. However, a luminosity upgrade path is kept open. This upgrade path consists of two branches, with the ultimate upgrade being either a ring-ring or a linac-ring scheme. The linac-ring upgrade could be almost identical to the proposed linac-ring scheme, which is based on an ERL in the RHIC tunnel. This linac-ring version has been studied in great detail over the past ten years, and its significant risks are known. On the othermore » hand, no detailed work on an ultimate performance ring-ring scenario has been performed yet, other than the development of a consistent parameter set. Pursuing the ring-ring upgrade path introduces high risks and requires significant design work that is beyond the scope of this report.« less

  20. Big hitting collectors make massive and disproportionate contribution to the discovery of plant species

    PubMed Central

    Bebber, Daniel P.; Carine, Mark A.; Davidse, Gerrit; Harris, David J.; Haston, Elspeth M.; Penn, Malcolm G.; Cafferty, Steve; Wood, John R. I.; Scotland, Robert W.

    2012-01-01

    Discovering biological diversity is a fundamental goal—made urgent by the alarmingly high rate of extinction. We have compiled information from more than 100 000 type specimens to quantify the role of collectors in the discovery of plant diversity. Our results show that more than half of all type specimens were collected by less than 2 per cent of collectors. This highly skewed pattern has persisted through time. We demonstrate that a number of attributes are associated with prolific plant collectors: a long career with increasing productivity and experience in several countries and plant families. These results imply that funding a small number of expert plant collectors in the right geographical locations should be an important element in any effective strategy to find undiscovered plant species and complete the inventory of the world flora. PMID:22298844

  1. Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Cuzzi, J. N.

    2014-12-01

    The rings are changing before our eyes; structure varies on all timescales and unexpected things have been discovered. Many questions have been answered, but some answers remain elusive (see Cuzzi et al 2010 for a review). Here we highlight the major ring science progress over the mission to date, and describe new observations planned for Cassini's final three years. Ring Composition and particle sizes: The rings are nearly all water ice with no other ices - so why are they reddish? The C Ring and Cassini Division are "dirtier" than the more massive B and A Rings, as shown by near-IR and, recently, microwave observations. Particle sizes, from stellar and radio occultations, vary from place to place. Ring structure, micro and macro: numerous spiral density waves and ubiquitous "self-gravity wakes" reveal processes which fostered planet formation in the solar system and elsewhere. However, big puzzles remain regarding the main ring divisions, the C Ring plateau structures, and the B Ring irregular structure. Moonlets, inside and out, seen and unseen: Two gaps contain sizeable moonlets, but more gaps seem to contain none; even smaller embedded "propeller" objects wander, systematically or randomly, through the A ring. Rubble pile ringmoons just outside the rings may escaped from the rings, and the recently discovered "Peggy" may be trying this as we watch. Impact bombardment of the rings: Comet fragments set the rings to rippling on century-timescales, and boulders crash through hourly; meanwhile, the constant hail of infalling Kuiper belt material has a lower mass flux than previously thought. Origin and Age of the Rings: The ring mass and bombardment play key roles. The ring mass is well known everywhere but in the B Ring (where most of it is). New models suggest how tidal breakup of evolving moons may have formed massive ancient rings, of which the current ring is just a shadow. During its last three years, the Cassini tour profile will allow entirely new

  2. Object-oriented simulation model of a parabolic trough solar collector: Static and dynamic validation

    NASA Astrophysics Data System (ADS)

    Ubieta, Eduardo; Hoyo, Itzal del; Valenzuela, Loreto; Lopez-Martín, Rafael; Peña, Víctor de la; López, Susana

    2017-06-01

    A simulation model of a parabolic-trough solar collector developed in Modelica® language is calibrated and validated. The calibration is performed in order to approximate the behavior of the solar collector model to a real one due to the uncertainty in some of the system parameters, i.e. measured data is used during the calibration process. Afterwards, the validation of this calibrated model is done. During the validation, the results obtained from the model are compared to the ones obtained during real operation in a collector from the Plataforma Solar de Almeria (PSA).

  3. 22 CFR 91.2 - Furnishing samples to collectors of customs or appraising officers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Furnishing samples to collectors of customs or appraising officers. 91.2 Section 91.2 Foreign Relations DEPARTMENT OF STATE LEGAL AND RELATED SERVICES IMPORT CONTROLS § 91.2 Furnishing samples to collectors of customs or appraising officers. Upon the...

  4. Numerical characterisation of one-step and three-step solar air heating collectors used for cocoa bean solar drying.

    PubMed

    Orbegoso, Elder Mendoza; Saavedra, Rafael; Marcelo, Daniel; La Madrid, Raúl

    2017-12-01

    In the northern coastal and jungle areas of Peru, cocoa beans are dried using artisan methods, such as direct exposure to sunlight. This traditional process is time intensive, leading to a reduction in productivity and, therefore, delays in delivery times. The present study was intended to numerically characterise the thermal behaviour of three configurations of solar air heating collectors in order to determine which demonstrated the best thermal performance under several controlled operating conditions. For this purpose, a computational fluid dynamics model was developed to describe the simultaneous convective and radiative heat transfer phenomena under several operation conditions. The constructed computational fluid dynamics model was firstly validated through comparison with the data measurements of a one-step solar air heating collector. We then simulated two further three-step solar air heating collectors in order to identify which demonstrated the best thermal performance in terms of outlet air temperature and thermal efficiency. The numerical results show that under the same solar irradiation area of exposition and operating conditions, the three-step solar air heating collector with the collector plate mounted between the second and third channels was 67% more thermally efficient compared to the one-step solar air heating collector. This is because the air exposition with the surface of the collector plate for the three-step solar air heating collector former device was twice than the one-step solar air heating collector. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Design and performance verification of advanced multistage depressed collectors. [traveling wave tubes for ECM

    NASA Technical Reports Server (NTRS)

    Kosmahl, H.; Ramins, P.

    1975-01-01

    Design and performance of a small size, 4-stage depressed collector are discussed. The collector and a spent beam refocusing section preceding it are intended for efficiency enhancement of octave bandwidth, high CW power traveling wave tubes for use in ECM.

  6. A non-linear steady state characteristic performance curve for medium temperature solar energy collectors

    NASA Astrophysics Data System (ADS)

    Eames, P. C.; Norton, B.

    A numerical simulation model was employed to investigate the effects of ambient temperature and insolation on the efficiency of compound parabolic concentrating solar energy collectors. The limitations of presently-used collector performance characterization curves were investigated and a new approach proposed.

  7. Microelectrode generator-collector systems for electrolytic titration: theoretical and practical considerations.

    PubMed

    Bell, Christopher G; Seelanan, Parinya; O'Hare, Danny

    2017-10-23

    Electochemical generator-collector systems, where one electrode is used to generate a reagent, have a potentially large field of application in sensing and measurement. We present a new theoretical description for coplanar microelectrode disc-disc systems where the collector is passive (such as a potentiometric sensor) and the generator is operating at constant flux. This solution is then used to develop a leading order solution for such a system where the reagent reacts reversibly in solution, such as in acid-base titration, where a hydrogen ion flux is generated by electrolysis of water. The principal novel result of the theory is that such devices are constrained by a maximum reagent flux. The hydrogen ion concentration at the collector will only reflect the buffer capacity of the bulk solution if this constraint is met. Both mathematical solutions are evaluated with several microfabricated devices and reasonable agreement with theory is demonstrated.

  8. Mesoscale behavior study of collector aggregations in a wet dust scrubber.

    PubMed

    Li, Xiaochuan; Wu, Xiang; Hu, Haibin; Jiang, Shuguang; Wei, Tao; Wang, Dongxue

    2018-01-01

    In order to address the bottleneck problem of low fine-particle removal efficiency of self-excited dust scrubbers, this paper is focused on the influence of the intermittent gas-liquid two-phase flow on the mesoscale behavior of collector aggregations. The latter is investigated by the application of high-speed dynamic image technology to the self-excited dust scrubber experimental setup. The real-time-scale monitoring of the dust removal process is provided to clarify its operating mechanism at the mesoscale level. The results obtained show that particulate capturing in self-excited dust scrubber is provided by liquid droplets, liquid films/curtains, bubbles, and their aggregations. Complex spatial and temporal structures are intrinsic to each kind of collector morphology, and these are considered as the major factors controlling the dust removal mechanism of self-excited dust scrubbers. For the specific parameters of gas-liquid two-phase flow under study, the evolution patterns of particular collectors reflect the intrinsic, intermittent, and complex characteristics of the temporal structure. The intermittent initiation of the collector and the air hole formation-collapse cyclic processes provide time and space for the fine dust to escape from being trapped by the collectors. The above mesoscale experimental data provide more insight into the factors reducing the dust removal efficiency of self-excited dust scrubbers. This paper focuses on the reconsideration of the capturer aggregations of self-excited dust scrubbers from the mesoscale. Complex structures in time and space scales exist in each kind of capturer morphology. With changes of operating parameters, the morphology and spatial distributions of capturers diversely change. The change of the capturer over time presents remarkable, intermittent, and complex characteristics of the temporal structure.

  9. Cavity transport effects in generator-collector electrochemical analysis of nitrobenzene.

    PubMed

    Lewis, Grace E M; Dale, Sara E C; Kasprzyk-Hordern, Barbara; Lubben, Anneke T; Barnes, Edward O; Compton, Richard G; Marken, Frank

    2014-09-21

    Two types of generator-collector electrode systems, (i) a gold-gold interdigitated microband array and (ii) a gold-gold dual-plate microtrench, are compared for nitrobenzene electroanalysis in aerated aqueous 0.1 M NaOH. The complexity of the nitrobenzene reduction in conjunction with the presence of ambient levels of oxygen in the analysis solution provide a challenging problem in which feedback-amplified generator-collector steady state currents provide the analytical signal. In contrast to the more openly accessible geometry of the interdigitated array electrode, where the voltammetric response for nitrobenzene is less well-defined and signals drift, the voltammetric response for the cavity-like microtrench electrode is stable and readily detectable at 1 μM level. Both types of electrode show oxygen-enhanced low concentration collector current responses due to additional feedback via reaction intermediates. The observations are rationalised in terms of a "cavity transport coefficient" which is beneficial in the dual-plate microtrench, where oxygen interference effects are suppressed and the analytical signal is amplified and stabilised.

  10. An analytical investigation of the performance of solar collectors as nighttime heat radiators in airconditioning cycles

    NASA Technical Reports Server (NTRS)

    Jones, C. B.; Smetana, F. O.

    1979-01-01

    It was found that if the upper and lower ends of a collector were opened, large free convention currents may be set up between the collector surface and the cover glass(es) which can result in appreciable heat rejection. If the collector is so designed that both plates surfaces are exposed to convection currents when the upper and lower ends of the collector enclosure are opened, the heat rejection rate is 300 watts sq m when the plate is 13 C above ambient. This is sufficient to permit a collector array designed to provide 100 percent of the heating needs of a home to reject the accumulated daily air conditioning load during the course of a summer night. This also permits the overall energy requirements for cooling to be reduced by at least 15 percent and shift the load on the utility entirely to the nighttime hours.

  11. Theoretical investigation of the gas-phase reactions of CrO(+) with ethylene.

    PubMed

    Scupp, Thomas M; Dudley, Timothy J

    2010-01-21

    The potential energy surfaces associated with the reactions of chromium oxide cation (CrO(+)) with ethylene have been characterized using density functional, coupled-cluster, and multireference methods. Our calculations show that the most probable reaction involves the formation of acetaldehyde and Cr(+) via a hydride transfer involving the metal center. Our calculations support previous experimental hypotheses that a four-membered ring intermediate plays an important role in the reactivity of the system. We have also characterized a number of viable reaction pathways that lead to other products, including ethylene oxide. Due to the experimental observation that CrO(+) can activate carbon-carbon bonds, a reaction pathway involving C-C bond cleavage has also been characterized. Since many of the reactions involve a change in the spin state in going from reactants to products, locations of these spin surface crossings are presented and discussed. The applicability of methods based on Hartree-Fock orbitals is also discussed.

  12. Thermal performance of evacuated tube heat pipe solar collector

    NASA Astrophysics Data System (ADS)

    Putra, Nandy; Kristian, M. R.; David, R.; Haliansyah, K.; Ariantara, Bambang

    2016-06-01

    The high fossil energy consumption not only causes the scarcity of energy but also raises problems of global warming. Increasing needs of fossil fuel could be reduced through the utilization of solar energy by using solar collectors. Indonesia has the abundant potential for solar energy, but non-renewable energy sources still dominate energy consumption. With heat pipe as passive heat transfer device, evacuated tube solar collector is expected to heat up water for industrial and home usage without external power supply needed to circulate water inside the solar collector. This research was conducted to determine the performance of heat pipe-based evacuated tube solar collector as solar water heater experimentally. The experiments were carried out using stainless steel screen mesh as a wick material, and water and Al2O3-water 0.1% nanofluid as working fluid, and applying inclination angles of 0°, 15°, 30°, and 45°. To analyze the heat absorbed and transferred by the prototype, water at 30°C was circulated through the condenser. A 150 Watt halogen lamp was used as sun simulator, and the prototype was covered by an insulation box to obtain a steady state condition with a minimum affection of ambient changes. Experimental results show that the usage of Al2O3-water 0.1% nanofluid at 30° inclination angle provides the highest thermal performance, which gives efficiency as high as 0.196 and thermal resistance as low as 5.32 °C/W. The use of nanofluid as working fluid enhances thermal performance due to high thermal conductivity of the working fluid. The increase of the inclination angle plays a role in the drainage of the condensate to the evaporator that leads to higher thermal performance until the optimal inclination angle is reached.

  13. Flotation performances and surface properties of chalcopyrite with xanthate collector added before and after grinding

    NASA Astrophysics Data System (ADS)

    Peng, Huiqing; Wu, Di; Abdelmonem, Mohamed

    In this study, effects of the collector added before grinding and after grinding on the subsequent flotation and mineral surface properties were investigated. The pH was controlled at 10 during the grinding and flotation processes opened to the atmosphere. With enough amounts of sodium butyl xanthate addition, adding the collector before grinding recovered more chalcopyrite than adding it after grinding in single mineral flotation. The Eh of each ground pulp before and after conditioning were measured and it was found that adding collector before grinding obtained higher and relatively suitable pulp potential for chalcopyrite flotation. Particle size analyses of the flotation products indicate that the different flotation recoveries occurred due to the different flotation losses in fine particles (<20 μm). XPS analyses focused on the fine particles of flotation feedings and found that more carbon and oxygen, and less iron were remained on mineral surfaces when the collector was added before grinding, due to the higher collector adsorption capacity, larger free oxygen adsorbance and less iron oxide/hydroxide species.

  14. Donor-Acceptor-Collector Ternary Crystalline Films for Efficient Solid-State Photon Upconversion.

    PubMed

    Ogawa, Taku; Hosoyamada, Masanori; Yurash, Brett; Nguyen, Thuc-Quyen; Yanai, Nobuhiro; Kimizuka, Nobuo

    2018-06-25

    It is pivotal to achieve efficient triplet-triplet annihilation based photon upconversion (TTA-UC) in the solid-state for enhancing potentials of renewable energy production devices. However, the UC efficiency of solid materials is largely limited by low fluorescence quantum yields that originate from the aggregation of TTA-UC chromophores, and also by severe back energy transfer from the acceptor singlet state to the singlet state of the triplet donor in the condensed state. In this work, to overcome these issues, we introduce a highly fluorescent singlet energy collector as the third component of donor-doped acceptor crystalline films, in which dual energy migration, i.e., triplet energy migration for TTA-UC and succeeding singlet energy migration for transferring energy to a collector, takes place. To demonstrate this scheme, a highly fluorescent singlet energy collector was added as the third component of donor-doped acceptor crystalline films. An anthracene-based acceptor containing alkyl chains and a carboxylic moiety is mixed with the triplet donor Pt(II) octaethylporphyrin (PtOEP) and the energy collector 2,5,8,11-tetra- tert-butylperylene (TTBP) in solution, and spin-coating of the mixed solution gives acceptor films of nanofibrous crystals homogeneously doped with PtOEP and TTBP. Interestingly, delocalized singlet excitons in acceptor crystals are found to diffuse effectively over the distance of ~37 nm. Thanks to this high diffusivity, only 0.5 mol% of doped TTBP can harvest most of the singlet excitons, which successfully doubles the solid-state fluorescent quantum yield of acceptor/TTBP blend films to 76%. Furthermore, since the donor PtOEP and the collector TTBP are separately isolated in the nanofibrous acceptor crystals, the singlet back energy transfer from the collector to the donor is effectively avoided. Such efficient singlet energy collection and inhibited back energy transfer processes result in a large increase of UC efficiency up to 9

  15. Hierarchically Mesostructured Aluminum Current Collector for Enhancing the Performance of Supercapacitors.

    PubMed

    Huang, Yilun; Li, Yuyao; Gong, Qianming; Zhao, Guanlei; Zheng, Pengjie; Bai, Junfei; Gan, Jianning; Zhao, Ming; Shao, Yang; Wang, Dazhi; Liu, Lei; Zou, Guisheng; Zhuang, Daming; Liang, Ji; Zhu, Hongwei; Nan, Cewen

    2018-05-16

    Aluminum (Al) current collector is one of the most important components of supercapacitors, and its performance has vital effects on the electrochemical performance and cyclic stability of supercapacitors. In the present work, a scalable and low-cost, yet highly efficient, picosecond laser processing method of Al current collectors was developed to improve the overall performance of supercapacitors. The laser treatment resulted in hierarchical micro-nanostructures on the surface of the commercial Al foil and reduced the surface oxygen content of the foil. The electrochemical performance of the Al foil with the micro-nanosurface structures was examined in the symmetrical activated carbon-based coin supercapacitors with an organic electrolyte. The results suggest that the laser-treated Al foil (laser-Al) increased the capacitance density of supercapacitors up to 110.1 F g -1 and promoted the rate capability due to its low contact resistance with the carbonaceous electrode and high electrical conductivity derived from its larger specific surface areas and deoxidized surface. In addition, the capacitor with the laser-Al current collector exhibited high cyclic stability with 91.5% capacitance retention after 10 000 cycles, 21.3% higher than that with pristine-Al current collector due to its stronger bonding with the carbonaceous electrode that prevented any delamination during aging. Our work has provided a new strategy for improving the electrochemical performance of supercapacitors.

  16. Design optimization studies for nonimaging concentrating solar collector tubes

    NASA Astrophysics Data System (ADS)

    Winston, R.; Ogallagher, J. J.

    1983-09-01

    The Integrated Stationary Evacuated Concentrator or ISEC solar collector panel which achieved the best high temperature performance ever measured with a stationary collector was examined. A development effort review and optimize the initial proof of concept design was completed. Changes in the optical design to improve the angular response function and increase the optical efficiency were determined. A recommended profile design with a concentration ratio of 1.55x and an acceptance angle of + - 35(0) was identified. Two alternative panel/module configurations are recommended based on the preferred double ended flow through design. Parasitic thermal and pumping losses show to be reducible to acceptable levels, and two passive approaches to the problem of ensuring stagnation survival are identified.

  17. Effect of notch depth of modified current collector on internal-short-circuit mitigation for lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Noelle, Daniel J.; Shi, Yang; Le, Anh V.; Qiao, Yu

    2018-01-01

    Formation of internal short circuit (ISC) may result in catastrophic thermal runaway of lithium-ion battery (LIB). Among LIB cell components, direct contact between cathode and anode current collectors is most critical to the ISC behavior, yet is still relatively uninvestigated. In the current study, we analyze the effect of heterogeneity of current collector on the temperature increase of LIB cells subjected to mechanical abuse. The cathode current collector is modified by surface notches, so that it becomes effectively brittle and the ISC site can be isolated. Results from impact tests on LIB cells with modified current collectors suggest that their temperature increase can be negligible. The critical parameters include the failure strain and the failure work of modified current collector, both of which are related to the notch depth.

  18. Clean Assembly of Genesis Collector Canister for Flight: Lessons for Planetary Sample Return

    NASA Technical Reports Server (NTRS)

    Allton, J. H.; Stansbery, E. K.; Allen, C. C.; Warren, J. L.; Schwartz, C. M.

    2007-01-01

    Measurement of solar composition in the Genesis collectors requires not only high sensitivity but very low blanks; thus, very strict collector contamination minimization was required beginning with mission planning and continuing through hardware design, fabrication, assembly and testing. Genesis started with clean collectors and kept them clean inside of a canister. The mounting hardware and container for the clean collectors were designed to be cleanable, with access to all surfaces for cleaning. Major structural components were made of aluminum and cleaned with megasonically energized ultrapure water (UPW). The UPW purity was >18 M resistivity. Although aluminum is relatively difficult to clean, the Genesis protocol achieved level 25 and level 50 cleanliness on large structural parts; however, the experience suggests that surface treatments may be helpful on future missions. All cleaning was performed in an ISO Class 4 (Class 10) cleanroom immediately adjacent to an ISO Class 4 assembly room; thus, no plastic packaging was required for transport. Persons assembling the canister were totally enclosed in cleanroom suits with face shield and HEPA filter exhaust from suit. Interior canister materials, including fasteners, were installed, untouched by gloves, using tweezers and other stainless steel tools. Sealants/lubricants were not exposed inside the canister, but vented to the exterior and applied in extremely small amounts using special tools. The canister was closed in ISO Class 4, not to be opened until on station at Earth-Sun L1. Throughout the cleaning and assembly, coupons of reference materials that were cleaned at the same time as the flight hardware were archived for future reference and blanks. Likewise reference collectors were archived. Post-mission analysis of collectors has made use of these archived reference materials.

  19. Collector Size or Range Independence of SNR in Fixed-Focus Remote Raman Spectrometry.

    PubMed

    Hirschfeld, T

    1974-07-01

    When sensitivity allows, remote Raman spectrometers can be operated at a fixed focus with purely electronic (easily multiplexable) range gating. To keep the background small, the system etendue must be minimized. For a maximum range larger than the hyperfocal one, this is done by focusing the system at roughly twice the minimum range at which etendue matching is still required. Under these conditions the etendue varies as the fourth power of the collector diameter, causing the background shot noise to vary as its square. As the signal also varies with the same power, and background noise is usually limiting in this type instrument, the SNR becomes independent of the collector size. Below this minimum etendue-matched range, the transmission at the limiting aperture grows with the square of the range, canceling the inverse square loss of signal with range. The SNR is thus range independent below the minimum etendue matched range and collector size independent above it, with the location of transition being determined by the system etendue and collector diameter. The range of validity of these outrageousstatements is discussed.

  20. Planetary Rings

    NASA Astrophysics Data System (ADS)

    Tiscareno, Matthew S.

    Planetary rings are the only nearby astrophysical disks and the only disks that have been investigated by spacecraft (especially the Cassini spacecraft orbiting Saturn). Although there are significant differences between rings and other disks, chiefly the large planet/ring mass ratio that greatly enhances the flatness of rings (aspect ratios as small as 10- 7), understanding of disks in general can be enhanced by understanding the dynamical processes observed at close range and in real time in planetary rings.We review the known ring systems of the four giant planets, as well as the prospects for ring systems yet to be discovered. We then review planetary rings by type. The A, B, and C rings of Saturn, plus the Cassini Division, comprise our solar system's only dense broad disk and host many phenomena of general application to disks including spiral waves, gap formation, self-gravity wakes, viscous overstability and normal modes, impact clouds, and orbital evolution of embedded moons. Dense narrow rings are found both at Uranus (where they comprise the main rings entirely) and at Saturn (where they are embedded in the broad disk) and are the primary natural laboratory for understanding shepherding and self-stability. Narrow dusty rings, likely generated by embedded source bodies, are surprisingly found to sport azimuthally confined arcs at Neptune, Saturn, and Jupiter. Finally, every known ring system includes a substantial component of diffuse dusty rings.Planetary rings have shown themselves to be useful as detectors of planetary processes around them, including the planetary magnetic field and interplanetary impactors as well as the gravity of nearby perturbing moons. Experimental rings science has made great progress in recent decades, especially numerical simulations of self-gravity wakes and other processes but also laboratory investigations of coefficient of restitution and spectroscopic ground truth. The age of self-sustained ring systems is a matter of

  1. Mass-spectrometric mining of Hadean zircons by automated SHRIMP multi-collector and single-collector U/Pb zircon age dating: The first 100,000 grains

    NASA Astrophysics Data System (ADS)

    Holden, Peter; Lanc, Peter; Ireland, Trevor R.; Harrison, T. Mark; Foster, John J.; Bruce, Zane

    2009-09-01

    The identification and retrieval of a large population of ancient zircons (>4 Ga; Hadean) is of utmost priority if models of the early evolution of Earth are to be rigorously tested. We have developed a rapid and accurate U-Pb zircon age determination protocol utilizing a fully automated multi-collector ion microprobe, the ANU SHRIMP II, to screen and date these zircons. Unattended data acquisition relies on the calibration of a digitized sample map to the Sensitive High Resolution Ion MicroProbe (SHRIMP) sample-stage co-ordinate system. High precision positioning of individual grains can be produced through optical image processing of a specified mount location. The focal position of the mount can be optimized through a correlation between secondary-ion steering and the spot position on the target. For the Hadean zircon project, sample mounts are photographed and sample locations (normally grain centers) are determined off-line. The sample is loaded, reference points calibrated, and the target positions are then visited sequentially. In SHRIMP II multiple-collector mode, zircons are initially screened (ca. 5 s data acquisition) through their 204Pb corrected 207Pb/206Pb ratio; suitable candidates are then analyzed in a longer routine to obtain better measurement statistics, U/Pb, and concentration data. In SHRIMP I and SHRIMP RG, we have incorporated the automated analysis protocol to single-collector measurements. These routines have been used to analyze over 100,000 zircons from the Jack Hills quartzite. Of these, ca. 7%, have an age greater than 3.8 Ga, the oldest grain being 4372 +/- 6 Ma (2[sigma]), and this age is part of a group of analyses around 4350 Ma which we interpret as the age when continental crust first began to coalesce in this region. In multi-collector mode, the analytical time taken for a single mount with 400 zircons is approximately 6 h; whereas in single-collector mode, the analytical time is ca. 17 h. With this productivity, we can produce

  2. Solar collector cell and roof flashing assembly and method of constructing a roof with such an assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayerovitch, M.D.

    1980-03-25

    A solar collector cell formed as an integral portion of a roof flashing is disclosed as comprising a flashing base having a dihedral surface including a larger base portion and a smaller ramp portion, and a solar collector cell container built integrally with the base portion of the flashing. The combination is designed to be installed in the roof of a dwelling or other building structure. The container portion of the flashing is substantially shorter in height above the roof line than conventional solar collector cell structures added to a roof subsequent to its construction. As a result, the inventionmore » gives the building constructor or owner, the option of either including the solar cell components at the time of construction of the roof to provide a solar heating device, or to fill the solar collector cell container with a temporary support structure, such as roof shakes or tiles. The shape of the solar collector cell and flashing assembly permits the solar collector cell structure to be camouflaged by overlying shakes or tiles of which the roof is constructed.« less

  3. Hybrid solar collector using nonimaging optics and photovoltaic components

    NASA Astrophysics Data System (ADS)

    Winston, Roland; Yablonovitch, Eli; Jiang, Lun; Widyolar, Bennett K.; Abdelhamid, Mahmoud; Scranton, Gregg; Cygan, David; Kozlov, Alexandr

    2015-08-01

    The project team of University of California at Merced (UC-M), Gas Technology Institute, and Dr. Eli Yablonovitch of University of California at Berkeley developed a novel hybrid concentrated solar photovoltaic thermal (PV/T) collector using nonimaging optics and world record single-junction Gallium arsenide (GaAs) PV components integrated with particle laden gas as thermal transfer and storage media, to simultaneously generate electricity and high temperature dispatchable heat. The collector transforms a parabolic trough, commonly used in CSP plants, into an integrated spectrum-splitting device. This places a spectrum-sensitive topping element on a secondary reflector that is registered to the thermal collection loop. The secondary reflector transmits higher energy photons for PV topping while diverting the remaining lower energy photons to the thermal media, achieving temperatures of around 400°C even under partial utilization of the solar spectrum. The collector uses the spectral selectivity property of Gallium arsenide (GaAs) cells to maximize the exergy output of the system, resulting in an estimated exergy efficiency of 48%. The thermal media is composed of fine particles of high melting point material in an inert gas that increases heat transfer and effectively stores excess heat in hot particles for later on-demand use.

  4. Experimental investigation of a nanofluid absorber employed in a low-profile, concentrated solar thermal collector

    NASA Astrophysics Data System (ADS)

    Li, Qiyuan; Zheng, Cheng; Mesgari, Sara; Hewakuruppu, Yasitha L.; Hjerrild, Natasha; Crisostomo, Felipe; Morrison, Karl; Woffenden, Albert; Rosengarten, Gary; Scott, Jason A.; Taylor, Robert A.

    2015-12-01

    Recent studies [1-3] have demonstrated that nanotechnology, in the form of nanoparticles suspended in water and organic liquids, can be employed to enhance solar collection via direct volumetric absorbers. However, current nanofluid solar collector experimental studies are either relevant to low-temperature flat plate solar collectors (<100 °C) [4] or higher temperature (>100 °C) indoor laboratory-scale concentrating solar collectors [1, 5]. Moreover, many of these studies involve in thermal properties of nanofluid (such as thermal conductivity) enhancement in solar collectors by using conventional selective coated steel/copper tube receivers [6], and no full-scale concentrating collector has been tested at outdoor condition by employing nanofluid absorber [2, 6]. Thus, there is a need of experimental researches to evaluate the exact performance of full-scale concentrating solar collector by employing nanofluids absorber at outdoor condition. As reported previously [7-9], a low profile (<10 cm height) solar thermal concentrating collector was designed and analysed which can potentially supply thermal energy in the 100-250 °C range (an application currently met by gas and electricity). The present study focuses on the design and experimental investigation of a nanofluid absorber employed in this newly designed collector. The nanofluid absorber consists of glass tubes used to contain chemically functionalized multi-walled carbon nanotubes (MWCNTs) dispersed in DI water. MWCNTs (average diameter of 6-13 nm and average length of 2.5-20 μm) were functionalized by potassium persulfate as an oxidant. The nanofluids were prepared with a MCWNT concentration of 50 +/- 0.1 mg/L to form a balance between solar absorption depth and viscosity (e.g. pumping power). Moreover, experimentally comparison of the thermal efficiency between two receivers (a black chrome-coated copper tube versus a MWCNT nanofluid contained within a glass tubetube) is investigated. Thermal

  5. Heavy Nucleus Collector (HNC) project for the NASA Long Duration Exposure Facility (LDEF)

    NASA Technical Reports Server (NTRS)

    Tarle, Gregory

    1990-01-01

    The primary goal of the heavy nucleus collector (HNC) experiment was to obtain high resolution composition measurements for cosmic ray nuclei in the platinum-lead and actinide region of the periodic table. Secondary objectives include studies of selected groups of elements of lower charge. These goals were to be realized by orbiting a large area array of dielectric nuclear track detectors in space for several years. In this time sufficient actinide nuclei would be collected to determine the nucleosynthetic age of the cosmic radiation and the relative mix of r- and s-process elements in the cosmic ray source. The detector consists of approximately 50 trays assembled in pressurized canisters. Each tray would contain 8 half-stacks (4 stacks total) and an event thermometer which would record the temperature of each event at the time of exposure. Each stack would contain 7 layers of Rodyne-P, CR-39 and Cronar plastic track detectors interleaved with copper stripping foils. Upon return to Earth, detectors would be removed for analysis. Ultraheavy nuclei would have left tracks through the detector sheets that would be made visible after etching in a hot sodium hydroxide solution.

  6. The effect of precipitation collector design on the measured acid content of precipitation

    Treesearch

    H. A. Weibe

    1976-01-01

    In order to evaluate the effect of different types of collectors on the measured chemical constituents of monthly precipitation collections, an array of fourteen precipitation samplers of five different designs has been in operation at Woodbridge, Ontario since March 1974. The collectors are located in an open field near the city of Toronto in an area of approximately...

  7. Lightweight diaphragm mirror module system for solar collectors

    DOEpatents

    Butler, Barry L.

    1985-01-01

    A mirror module system is provided for accurately focusing solar radiation on a point or a line as defined by an array of solar collectors. Each mirror module includes a flexible membrane stretched over a frame in a manner similar to that of a drum or a trampoline and further includes a silvered glass or plastic mirror for forming an optical reflecting surface. The configuration of the optical reflecting surface is variably adjustable to provide for the accurate focusing of the solar energy on a given collector array, e.g., a point or a linear array arrangement. The flexible mirror-membrane combination is lightweight to facilitate installation and reduce system cost yet structurally strong enough to provide for the precise focusing of the incident solar radiation in a semi-rigid reflector system in which unwanted reflector displacement is minimized.

  8. Lightweight diaphragm mirror module system for solar collectors

    DOEpatents

    Butler, B.L.

    1984-01-01

    A mirror module system is provided for accurately focusing solar radiation on a point or a line as defined by an array of solar collectors. Each mirror module includes a flexible membrane stretched over a frame in a manner similar to that of a drum or a trampoline and further includes a silvered glass or plastic mirror for forming an optical reflecting surface. The configuration of the optical reflecting surface is variably adjustable to provide for the accurate focusing of the solar energy on a given collector array, e.g., a point or a linear array arrangement. The flexible mirror-membrane combination is lightweight to facilitate installation and reduce system cost yet structurally strong enough to provide for the precise focusing of the incident solar radiation in a semi-rigid reflector system in which unwanted reflector displacement is minimized.

  9. Are municipal solid waste collectors at increased risk of Hepatitis A Virus infection? A Greek cross-sectional study.

    PubMed

    Rachiotis, George; Tsovili, Eva; Papagiannis, Dimitrios; Markaki, Adelais; Hadjichristodoulou, Christos

    2016-12-01

    Municipal solid waste collectors are reportedly at risk for Hepatitis A virus infection (HAV) as an occupational hazard. We aimed to investigate the prevalence and possible risk factors of HAV infection among solid waste collectors in a municipality of the broader region of Attica, Greece. A cross-sectional sero-prevalence study was conducted. Fifty (n=50) waste collectors participated in the study (response rate: 95%). The group of municipal waste collectors was compared to a convenient sample of workers not exposed to solid waste (n=83). Municipal solid waste collectors recorded a higher, but not statistically significant, prevalence of anti-HAV(+) in comparison to subjects without occupational exposure to waste (40% vs 34% respectively p=0,4). No significant associations were found between inappropriate work practices and anti- HAV (+). Education was the only factor independently associated with the risk of HAV infection. This study did not corroborate previous reports of an increased prevalence of Hepatitis A Virus infection among municipal solid waste collectors.

  10. Genesis Solar Wind Science Canister Components Curated as Potential Solar Wind Collectors and Reference Contamination Sources

    NASA Technical Reports Server (NTRS)

    Allton, J. H.; Gonzalez, C. P.; Allums, K. K.

    2016-01-01

    The Genesis mission collected solar wind for 27 months at Earth-Sun L1 on both passive and active collectors carried inside of a Science Canister, which was cleaned and assembled in an ISO Class 4 cleanroom prior to launch. The primary passive collectors, 271 individual hexagons and 30 half-hexagons of semiconductor materials, are described in. Since the hard landing reduced the 301 passive collectors to many thousand smaller fragments, characterization and posting in the online catalog remains a work in progress, with about 19% of the total area characterized to date. Other passive collectors, surfaces of opportunity, have been added to the online catalog. For species needing to be concentrated for precise measurement (e.g. oxygen and nitrogen isotopes) an energy-independent parabolic ion mirror focused ions onto a 6.2 cm diameter target. The target materials, as recovered after landing, are described in. The online catalog of these solar wind collectors, a work in progress, can be found at: http://curator.jsc.nasa.gov/gencatalog/index.cfm This paper describes the next step, the cataloging of pieces of the Science Canister, which were surfaces exposed to the solar wind or component materials adjacent to solar wind collectors which may have contributed contamination.

  11. Reducing heat loss from the energy absorber of a solar collector

    DOEpatents

    Chao, Bei Tse; Rabl, Ari

    1976-01-01

    A device is provided for reducing convective heat loss in a cylindrical radiant energy collector. It includes a curved reflective wall in the shape of the arc of a circle positioned on the opposite side of the exit aperture from the reflective side walls of the collector. Radiant energy exiting the exit aperture is directed by the curved wall onto an energy absorber such that the portion of the absorber upon which the energy is directed faces downward to reduce convective heat loss from the absorber.

  12. New adaptive method to optimize the secondary reflector of linear Fresnel collectors

    DOE PAGES

    Zhu, Guangdong

    2017-01-16

    Performance of linear Fresnel collectors may largely depend on the secondary-reflector profile design when small-aperture absorbers are used. Optimization of the secondary-reflector profile is an extremely challenging task because there is no established theory to ensure superior performance of derived profiles. In this work, an innovative optimization method is proposed to optimize the secondary-reflector profile of a generic linear Fresnel configuration. The method correctly and accurately captures impacts of both geometric and optical aspects of a linear Fresnel collector to secondary-reflector design. The proposed method is an adaptive approach that does not assume a secondary shape of any particular form,more » but rather, starts at a single edge point and adaptively constructs the next surface point to maximize the reflected power to be reflected to absorber(s). As a test case, the proposed optimization method is applied to an industrial linear Fresnel configuration, and the results show that the derived optimal secondary reflector is able to redirect more than 90% of the power to the absorber in a wide range of incidence angles. Here, the proposed method can be naturally extended to other types of solar collectors as well, and it will be a valuable tool for solar-collector designs with a secondary reflector.« less

  13. New adaptive method to optimize the secondary reflector of linear Fresnel collectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Guangdong

    Performance of linear Fresnel collectors may largely depend on the secondary-reflector profile design when small-aperture absorbers are used. Optimization of the secondary-reflector profile is an extremely challenging task because there is no established theory to ensure superior performance of derived profiles. In this work, an innovative optimization method is proposed to optimize the secondary-reflector profile of a generic linear Fresnel configuration. The method correctly and accurately captures impacts of both geometric and optical aspects of a linear Fresnel collector to secondary-reflector design. The proposed method is an adaptive approach that does not assume a secondary shape of any particular form,more » but rather, starts at a single edge point and adaptively constructs the next surface point to maximize the reflected power to be reflected to absorber(s). As a test case, the proposed optimization method is applied to an industrial linear Fresnel configuration, and the results show that the derived optimal secondary reflector is able to redirect more than 90% of the power to the absorber in a wide range of incidence angles. Here, the proposed method can be naturally extended to other types of solar collectors as well, and it will be a valuable tool for solar-collector designs with a secondary reflector.« less

  14. Research of thermionic converter collector properties in model experiments with surface control

    NASA Astrophysics Data System (ADS)

    Agafonov, Valerii R.; Vizgalov, Anatolii V.; Iarygin, Valerii I.

    Consideration was given to a possible scheme of phenomena on electrodes leading to changes in emission properties (EP) of a thermionic converter (TEC) collector. It was based on technology and materials typical of the TOPAZ-type reactor-converter (TRC). The element composition (EC), near-surface layer (NSL) structure, and work function (WF) of a collector made from niobium-based polycrystal alloy were studied within this scheme experimentally. The influence of any media except for the interelectrode gap (IEG) medium was excluded when investigating the effect of thermovacuum treatment (TVT) as well as the influence of carbon monoxide, hydrogen, and methane on the NSL characteristics. Experimental data and analytical estimates of the impact of fission products of the nuclear fuel on collector EP are presented. The calculation of possible TRC electrical power decrease was also carried out.

  15. The Data Collector: A Qualitative Research Tool.

    ERIC Educational Resources Information Center

    Handler, Marianne G.; Turner, Sandra V.

    Computer software that is intended to assist the qualitative researcher in the analysis of textual data is relatively new. One such program, the Data Collector, is a HyperCard computer program designed for use on the Macintosh computer. A tool for organizing and analyzing textual data obtained from observations, interviews, surveys, and other…

  16. Vertically oriented graphene bridging active-layer/current-collector interface for ultrahigh rate supercapacitors.

    PubMed

    Bo, Zheng; Zhu, Weiguang; Ma, Wei; Wen, Zhenhai; Shuai, Xiaorui; Chen, Junhong; Yan, Jianhua; Wang, Zhihua; Cen, Kefa; Feng, Xinliang

    2013-10-25

    Dense networks of graphene nanosheets standing vertically on a current collector can work as numerous electrically conductive bridges to facilitate charge transport and mitigate the constriction/spreading resistance at the interface between the active material and the current collector. The vertically oriented graphene-bridged supercapacitors present excellent rate and power capabilities. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Safety comparison of roadway design elements on urban collectors with access : final report, April 2009.

    DOT National Transportation Integrated Search

    2009-04-01

    The main goal of this study identified by NJDOT can be defined as the quantification of the effects of : management treatments on roadway operations and safety on urban collectors with access. : Since, urban collector road runs through highly d...

  18. Integrally Closed Rings

    NASA Astrophysics Data System (ADS)

    Tuganbaev, A. A.

    1982-04-01

    This paper studies integrally closed rings. It is shown that a semiprime integrally closed Goldie ring is the direct product of a semisimple artinian ring and a finite number of integrally closed invariant domains that are classically integrally closed in their (division) rings of fractions. It is shown also that an integrally closed ring has a classical ring of fractions and is classically integrally closed in it.Next, integrally closed noetherian rings are considered. It is shown that an integrally closed noetherian ring all of whose nonzero prime ideals are maximal is either a quasi-Frobenius ring or a hereditary invariant domain.Finally, those noetherian rings all of whose factor rings are invariant are described, and the connection between integrally closed rings and distributive rings is examined.Bibliography: 13 titles.

  19. Mapping Ring Particle Cooling across Saturn's Rings with Cassini CIRS

    NASA Astrophysics Data System (ADS)

    Brooks, Shawn M.; Spilker, L. J.; Edgington, S. G.; Pilorz, S. H.; Deau, E.

    2010-10-01

    Previous studies have shown that the rings' thermal inertia, a measure of their response to changes in the thermal environment, varies from ring to ring. Thermal inertia can provide insight into the physical structure of Saturn's ring particles and their regoliths. Low thermal inertia and quick temperature responses are suggestive of ring particles that have more porous or fluffy regoliths or that are riddled with cracks. Solid, coherent particles can be expected to have higher thermal inertias (Ferrari et al. 2005). Cassini's Composite Infrared Spectrometer has recorded millions of spectra of Saturn's rings since its arrival at Saturn in 2004 (personal communication, M. Segura). CIRS records far infrared radiation between 10 and 600 cm-1 (16.7 and 1000 µm) at focal plane 1 (FP1), which has a field of view of 3.9 mrad. Thermal emission from Saturn's rings peaks in this wavelength range. FP1 spectra can be used to infer ring temperatures. By tracking how ring temperatures vary, we can determine the thermal inertia of the rings. In this work we focus on CIRS observations of the shadowed portion of Saturn's rings. The thermal budget of the rings is dominated by the solar radiation absorbed by its constituent particles. When ring particles enter Saturn's shadow this source of energy is abruptly cut off. As a result, ring particles cool as they traverse Saturn's shadow. From these shadow observations we can create cooling curves at specific locations across the rings. We will show that the rings' cooling curves and thus their thermal inertia vary not only from ring to ring, but by location within the individual rings. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Copyright 2010 California Institute of Technology. Government sponsorship acknowledged.

  20. Hybrid lead-acid battery with reticulated vitreous carbon as a carrier- and current-collector of negative plate

    NASA Astrophysics Data System (ADS)

    Czerwiński, A.; Obrębowski, S.; Kotowski, J.; Rogulski, Z.; Skowroński, J.; Bajsert, M.; Przystałowski, M.; Buczkowska-Biniecka, M.; Jankowska, E.; Baraniak, M.; Rotnicki, J.; Kopczyk, M.

    Bare reticulated vitreous carbon (RVC) plated electrochemically with thin layer of lead was investigated as a negative plate carrier- and current-collector material for lead-acid batteries. Hybrid flooded single cell lead-acid batteries containing one negative plate based on a new type (RVC or Pb/RVC) of carrier/current-collector and two positive plates based on Pb-Ca grid collectors were assembled and subjected to charge/discharge tests (at 20-h and 1-h discharge rates) and Peukert's dependences determination. The promising results show that application of RVC as carrier- and current-collector in negative plate will significantly increase the specific capacity of lead-acid battery.

  1. The rise of non-imaging optics for rooftop solar collectors

    NASA Astrophysics Data System (ADS)

    Rosengarten, Gary; Stanley, Cameron; Ferrari, Dave; Blakers, Andrew; Ratcliff, Tom

    2016-09-01

    In this paper we explore the use of non-imaging optics for rooftop solar concentrators. Specifically, we focus on compound parabolic concentrators (CPCs), which form an ideal shape for cylindrical thermal absorbers, and for linear PV cells (allowing the use of more expensive but more efficient cells). Rooftops are ideal surfaces for solar collectors as they face the sky and are generally free, unused space. Concentrating solar radiation adds thermodynamic value to thermal collectors (allowing the attainment of higher temperature) and can add efficiency to PV electricity generation. CPCs allow that concentration over the day without the need for tracking. Hence they have become ubiquitous in applications requiring low concentration.

  2. Ergonomic and organizational analysis of an association of collectors of recyclable waste.

    PubMed

    Maria, R; Chagas, T; Silva, V

    2012-01-01

    The managerial difficulties encountered by an Association of Recyclable Materials Collectors to organize and ensure the perpetuation of his work gave rise to this research. In order to overcome the difficulties encountered with regard to accounting, organizational and ergonomic work, we used a methodology capable of providing a greater interaction between researchers and collectors, facilitating the exchange of knowledge and the perpetuation of the techniques used. Improvements were seen in relation to screening, storage and organization of work.

  3. The relationship between emotional labor status and workplace violence among toll collectors.

    PubMed

    Joo, Yosub; Rhie, Jeongbae

    2017-01-01

    This study aimed to identify the emotional labor and workplace violence status among toll collectors by assessing and comparing the same with that in workers in other service occupation. It also aimed to analyze the relationship between emotional labor and workplace violence. This study examined emotional labor and workplace violence status in 264 female toll collectors from August 20 to September 4, 2015. The emotional labor was assessed using the Korean Emotional Labor Scale (K-ELS), and a questionnaire was used to examine the presence or absence, and type and frequency of workplace violence experienced by the subjects. A linear regression analysis was also performed to analyze the relationship between workplace violence and emotional labor. The scores on "emotional demanding and regulation ( p  < 0.001)," "overload and conflict in customer service ( p  = 0.005)," "emotional disharmony and hurt ( p  < 0.001)," and "organizational surveillance and monitoring ( p  < 0.001)" among the sub-categories of emotional labor were significantly high and indicated "at-risk" levels of emotional labor in those who experienced workplace violence, whereas they were "normal" of emotional labor in those who did not. Even after being adjusted in the linear regression analysis, the emotional labor scores for the above 4 sub-categories were still significantly high in those who experienced workplace violence. On comparing the present scores with 13 other service occupations, it was found that toll collectors had the highest level in "emotional disharmony and hurt," "organizational surveillance and monitoring," and "organizational supportive and protective system". This study found that the toll collectors engaged in a high level of emotional labor. Additionally, there was a significant relationship between emotional labor and the experience of workplace violence among the toll collectors.

  4. Use of the Marshall Space Flight Center solar simulator in collector performance evaluation

    NASA Technical Reports Server (NTRS)

    Humphries, W. R.

    1978-01-01

    Actual measured values from simulator checkout tests are detailed. Problems encountered during initial startup are discussed and solutions described. Techniques utilized to evaluate collector performance from simulator test data are given. Performance data generated in the simulator are compared to equivalent data generated during natural outdoor testing. Finally, a summary of collector performance parameters generated to date as a result of simulator testing are given.

  5. Comparison of indoor-outdoor thermal performance for the Sunpak evacuated tube liquid collector

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Performance data for current Sunpak production collectors is presented. The effects of an improved manifold are seen from the test results. The test results show excellent correlation between the solar simulator derived test results and outdoor test results. Also, because of different incident angle modifiers, the all-day efficiency of this collector with a diffuse reflector is comparable to the performance with the standard shaped specular reflector.

  6. Ring dynamics

    NASA Technical Reports Server (NTRS)

    Borderies, Nicole

    1989-01-01

    Theoretical models of planetary-ring dynamics are discussed in a detailed analytical review and illustrated with graphs and diagrams. The streamline concept is introduced, and the phenomena associated with the transport of angular momentum are described. Particular attention is then given to (1) broad rings like those of Saturn (shepherding, density-wave excitation, gaps, bending-wave excitation, multiringlet structures, inner-edge shepherding, and the possibility of polar rings around Neptune), (2) narrow rings like those of Uranus (shepherding, ring shapes, and a self-gravity model of rigid precession), and (3) ring arcs like those seen in stellar-occultation observations of Neptune.

  7. Theoretical model of gravitational perturbation of current collector axisymmetric flow field

    NASA Astrophysics Data System (ADS)

    Walker, John S.; Brown, Samuel H.; Sondergaard, Neal A.

    1990-05-01

    Some designs of liquid-metal current collectors in homopolar motors and generators are essentially rotating liquid-metal fluids in cylindrical channels with free surfaces and will, at critical rotational speeds, become unstable. An investigation at David Taylor Research Center is being performed to understand the role of gravity in modifying this ejection instability. Some gravitational effects can be theoretically treated by perturbation techniques on the axisymmetric base flow of the liquid metal. This leads to a modification of previously calculated critical-current-collector ejection values neglecting gravity effects. The purpose of this paper is to document the derivation of the mathematical model which determines the perturbation of the liquid-metal base flow due to gravitational effects. Since gravity is a small force compared with the centrifugal effects, the base flow solutions can be expanded in inverse powers of the Froude number and modified liquid-flow profiles can be determined as a function of the azimuthal angle. This model will be used in later work to theoretically study the effects of gravity on the ejection point of the current collector.

  8. Performance Evaluation of Dual-axis Tracking System of Parabolic Trough Solar Collector

    NASA Astrophysics Data System (ADS)

    Ullah, Fahim; Min, Kang

    2018-01-01

    A parabolic trough solar collector with the concentration ratio of 24 was developed in the College of Engineering; Nanjing Agricultural University, China with the using of the TracePro software an optical model built. Effects of single-axis and dual-axis tracking modes, azimuth and elevating angle tracking errors on the optical performance were investigated and the thermal performance of the solar collector was experimentally measured. The results showed that the optical efficiency of the dual-axis tracking was 0.813% and its year average value was 14.3% and 40.9% higher than that of the eat-west tracking mode and north-south tracking mode respectively. Further, form the results of the experiment, it was concluded that the optical efficiency was affected significantly by the elevation angle tracking errors which should be kept below 0.6o. High optical efficiency could be attained by using dual-tracking mode even though the tracking precision of one axis was degraded. The real-time instantaneous thermal efficiency of the collector reached to 0.775%. In addition, the linearity of the normalized efficiency was favorable. The curve of the calculated thermal efficiency agreed well with the normalized instantaneous efficiency curve derived from the experimental data and the maximum difference between them was 10.3%. This type of solar collector should be applied in middle-scale thermal collection systems.

  9. Performance optimization of evacuated tube collector for solar cooling of a house in hot climate

    NASA Astrophysics Data System (ADS)

    Ghoneim, Adel A.

    2018-02-01

    Evacuating the space connecting cover and absorber significantly improves evacuated tube collector (ETC) performance. So, ETCs are progressively utilised all over the world. The main goal of current study is to explore ETC thermal efficiency in hot and severe climate like Kuwait weather conditions. A collector test facility was installed to record ETC thermal performance for one-year period. An extensively developed model for ETCs is presented, employing complete optical and thermal assessment. This study analyses separately optics and heat transfer in the evacuated tubes, allowing the analysis to be extended to different configurations. The predictions obtained are in agreement with experimental. The optimum collector parameters (collector tube length and diameter, mass flow rate and collector tilt angle) are determined. The present results indicate that the optimum tube length is 1.5 m, as at this length a significant improvement is achieved in efficiency for different tube diameters studied. Finally, the heat generated from ETCs is used for solar cooling of a house. Results of the simulation of cooling system indicate that an ETC of area 54 m2, tilt angle of 25° and storage tank volume of 2.1 m3 provides 80% of air-conditioning demand in a house located in Kuwait.

  10. Certification and verification for Northrup Model NSC-01-0732 Fresnel lens concentrating solar collector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-03-01

    The certification and verification of the Northrup Model NSC-01-0732 Fresnel lens tracking solar collector are presented. A certification statement is included with signatures and a separate report on the structural analysis of the collector system. System verification against the Interim Performance Criteria are indicated by matrices with verification discussion, analysis, and enclosed test results.

  11. Experimental investigations of the performance of a solar air collector with latent heat thermal storage integrated with the solar absorber

    NASA Astrophysics Data System (ADS)

    Charvat, P.; Pech, O.; Hejcik, J.

    2013-04-01

    The paper deals with experimental investigations of the performance of a solar air collector with latent heat thermal storage integrated with the solarabsorber. The main purpose of heat storage in solar thermal systems is to store heat when the supply of solar heat exceeds demand and release it when otherwise. A number of heat storage materials can be used for this purpose; the phase change materials among them. Short-term latent heat thermal storage integrated with the solar absorber can stabilize the air temperature at the outlet of the collector on cloudy days when solar radiation intensity incident on a solar collector fluctuates significantly. Two experimental front-and-back pass solar air collectors of the same dimensions have been built for the experimental investigations. One collector had a "conventional" solar absorber made of a metal sheet while the solar absorber of the other collector consisted of containers filled with organic phase change material. The experimental collectors were positioned side by side during the investigations to ensure the same operating conditions (incident solar radiation, outdoor temperature).

  12. A numerical study of a vertical solar air collector with obstacle

    NASA Astrophysics Data System (ADS)

    Moumeni, A.; Bouchekima, B.; Lati, M.

    2016-07-01

    Because of the lack of heat exchange obtained by a solar air between the fluid and the absorber, the introduction of obstacles arranged in rows overlapping in the ducts of these systems improves heat transfer. In this work, a numerical study using the finite volume methods is made to model the dynamic and thermal behavior of air flow in a vertical solar collector with baffles destined for integration in building. We search essentially to compare between three air collectors models with different inclined obstacles angle. The first kind with 90° shows a good performance energetic and turbulent.

  13. Carbon-Coated Current Collectors for High-Power Lithium-Ion Secondary Batteries

    DTIC Science & Technology

    2011-09-20

    foils have been used as the current collectors for LiFePO4 and Li4Ti5O12. It was found that the C-coating has remarkably enhance the power performance...chemical vapor deposition (T-CVD) to produce surface C-coating, and the resulting foils were used as current collectors for LiFePO4 and Li4Ti5O12. The C...2 mm x 2 mm. Two types of active electrode materials have been used for test, and they are LiFePO4 (LFPO) and Li4Ti5O12 (LTO) as cathode and anode

  14. Automated solar collector installation design including ability to define heterogeneous design preferences

    DOEpatents

    Wayne, Gary; Frumkin, Alexander; Zaydman, Michael; Lehman, Scott; Brenner, Jules

    2014-04-29

    Embodiments may include systems and methods to create and edit a representation of a worksite, to create various data objects, to classify such objects as various types of pre -defined "features" with attendant properties and layout constraints. As part of or in addition to classification, an embodiment may include systems and methods to create, associate, and edit intrinsic and extrinsic properties to these objects. A design engine may apply of design rules to the features described above to generate one or more solar collectors installation design alternatives, including generation of on-screen and/or paper representations of the physical layout or arrangement of the one or more design alternatives. Embodiments may also include definition of one or more design apertures, each of which may correspond to boundaries in which solar collector layouts should comply with distinct sets of user-defined design preferences. Distinct apertures may provide heterogeneous regions of collector layout according to the user-defined design preferences.

  15. Automated solar collector installation design including ability to define heterogeneous design preferences

    DOEpatents

    Wayne, Gary; Frumkin, Alexander; Zaydman, Michael; Lehman, Scott; Brenner, Jules

    2013-01-08

    Embodiments may include systems and methods to create and edit a representation of a worksite, to create various data objects, to classify such objects as various types of pre-defined "features" with attendant properties and layout constraints. As part of or in addition to classification, an embodiment may include systems and methods to create, associate, and edit intrinsic and extrinsic properties to these objects. A design engine may apply of design rules to the features described above to generate one or more solar collectors installation design alternatives, including generation of on-screen and/or paper representations of the physical layout or arrangement of the one or more design alternatives. Embodiments may also include definition of one or more design apertures, each of which may correspond to boundaries in which solar collector layouts should comply with distinct sets of user-defined design preferences. Distinct apertures may provide heterogeneous regions of collector layout according to the user-defined design preferences.

  16. Performance of a thermionic converter module utilizing emitter and collector heat pipes

    NASA Technical Reports Server (NTRS)

    Kroeger, E. W.; Morris, J. F.; Miskolczy, G.; Lieb, D. P.; Goodale, D. B.

    1978-01-01

    A thermionic converter module simulating a configuration for an out-of-core thermionic nuclear reactor was designed, fabricated, and tested. The module consists of three cylindrical thermionic converters. The tungsten emitter of the converter is heated by a tungsten, lithium heat pipe. The emitter heat pipes are immersed in a furnace, insulated by MULTI-FOIL thermal insulation, and heated by tungsten radiation filaments. The performance of each thermionic converter was characterized before assembly into the module. Dynamic voltage, current curves were taken using a 60 Hz sweep and computerized data acquisition over a range of emitter, collector, and cesium-reservoir temperatures. An output power of 215 W was observed at an emitter temperature of 1750 K and a collector temperature of 855 K for a two diode module. With a three diode module, an output power of 270 W was observed at an average emitter temperature of 1800 K and a Collector temperature of 875 K.

  17. Indoor test for the thermal performance evaluation of the DEC 8A large manifold sunmaster evacuated tube (liquid) solar collector

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The Sunmaster DEC 8A Large Manifold solar collector using simulated conditions was evaluated. The collector provided 17.17 square feet of gross collector area. Test conditions, test requirements, an analysis of results, and tables of test data are reported.

  18. Planetary rings as relics of plasma pre-rings

    NASA Astrophysics Data System (ADS)

    Rabinovich, B. I.

    2007-02-01

    A possibility is discussed that the rings of large planets observed in the modern epoch are relics of some pre-rings consisting of magnetized plasma (according to a hypothesis by H. Alfven). The solution to a model problem published in [36, 37] is used. Its main result is a mechanism of stratification of an evolutionally mature plasma pre-ring into a large number of narrow elite rings separated by anti-rings (gaps). Another result is the theoretical substantiation of the presence in the near-planetary space of a region of existence and stability (in what follows it is referred to as ES-region) of plasma rings. The data obtained in the course of the Voyager, Galileo, and Cassini missions are used below for verification of the model on which the solutions presented in [36, 37] are based.

  19. Microfabricated Collector-Generator Electrode Sensor for Measuring Absolute pH and Oxygen Concentrations.

    PubMed

    Dengler, Adam K; Wightman, R Mark; McCarty, Gregory S

    2015-10-20

    Fast-scan cyclic voltammetry (FSCV) has attracted attention for studying in vivo neurotransmission due to its subsecond temporal resolution, selectivity, and sensitivity. Traditional FSCV measurements use background subtraction to isolate changes in the local electrochemical environment, providing detailed information on fluctuations in the concentration of electroactive species. This background subtraction removes information about constant or slowly changing concentrations. However, determination of background concentrations is still important for understanding functioning brain tissue. For example, neural activity is known to consume oxygen and produce carbon dioxide which affects local levels of oxygen and pH. Here, we present a microfabricated microelectrode array which uses FSCV to detect the absolute levels of oxygen and pH in vitro. The sensor is a collector-generator electrode array with carbon microelectrodes spaced 5 μm apart. In this work, a periodic potential step is applied at the generator producing transient local changes in the electrochemical environment. The collector electrode continuously performs FSCV enabling these induced changes in concentration to be recorded with the sensitivity and selectivity of FSCV. A negative potential step applied at the generator produces a transient local pH shift at the collector. The generator-induced pH signal is detected using FSCV at the collector and correlated to absolute solution pH by postcalibration of the anodic peak position. In addition, in oxygenated solutions a negative potential step at the generator produces hydrogen peroxide by reducing oxygen. Hydrogen peroxide is detected with FSCV at the collector electrode, and the magnitude of the oxidative peak is proportional to absolute oxygen concentrations. Oxygen interference on the pH signal is minimal and can be accounted for with a postcalibration.

  20. Embedded Ag Grid Electrodes as Current Collector for Ultraflexible Transparent Solid-State Supercapacitor.

    PubMed

    Xu, Jian-Long; Liu, Yan-Hua; Gao, Xu; Sun, Yilin; Shen, Su; Cai, Xinlei; Chen, Linsen; Wang, Sui-Dong

    2017-08-23

    Flexible transparent solid-state supercapacitors have attracted immerse attention for the power supply of next-generation flexible "see-through" or "invisible" electronics. For fabrication of such devices, high-performance flexible transparent current collectors are highly desired. In this paper, the utilization of embedded Ag grid transparent conductive electrodes (TCEs) fabricated by a facile soft ultraviolet imprinting lithography method combined with scrap techniques, as the current collector for flexible transparent solid-state supercapacitors, is demonstrated. The embedded Ag grid TCEs exhibit not only excellent optoelectronic properties (R S ∼ 2.0 Ω sq -1 and T ∼ 89.74%) but also robust mechanical properties, which could meet the conductivity, transparency, and flexibility needs of current collectors for flexible transparent supercapacitors. The obtained supercapacitor exhibits large specific capacitance, long cycling life, high optical transparency (T ∼ 80.58% at 550 nm), high flexibility, and high stability. Owing to the embedded Ag grid TCE structure, the device shows a slight capacitance loss of 2.6% even after 1000 cycles of repetitive bending for a bending radius of up to 2.0 mm. This paves the way for developing high-performance current collectors and thus flexible transparent energy storage devices, and their general applicability opens up opportunities for flexible transparent electronics.

  1. Long-term weathering effects on the thermal performance of the Libbey-Owens-Ford (liquid) solar collector

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Thermal performance tests were conducted on the Libbey-Owens-Ford liquid collector, following long term exposure to natural weathering conditions. Visual inspection of the collector, prior to the retest, indicated noticeable clouding of the inner cover glass, probably resulting from outgassing of the insulation. The absorber plate also showed some discoloration. The test results indicated that performance degradation had occurred at inlet temperatures significantly above ambient. The change in the slope of the efficiency curve, from the original data, is a direct indicator of an increase in the collector heat loss coefficient.

  2. S-NPP CrIS Full Resolution Sensor Data Record Processing and Evaluations

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Han, Y.; Wang, L.; Tremblay, D. A.; Jin, X.; Weng, F.

    2014-12-01

    The Cross-track Infrared Sounder (CrIS) on Suomi National Polar-orbiting Partnership Satellite (S-NPP) is a Fourier transform spectrometer. It provides a total of 1305 channels in the normal mode for sounding the atmosphere. CrIS can also be operated in the full spectral resolution (FSR) mode, in which the MWIR and SWIR band interferograms are recorded with the same maximum path difference as the LWIR band and with spectral resolution of 0.625 cm-1 for all three bands (total 2211 channels). NOAA will operate CrIS in FSR mode in December 2014 and the Joint Polar Satellite System (JPSS). Up to date, the FSR mode has been commanded three times in-orbit (02/23/2012, 03/12/2013, and 08/27/2013). Based on CrIS Algorithm Development Library (ADL), CrIS full resolution Processing System (CRPS) has developed to generate the FSR Sensor Data Record (SDR). This code can also be run for normal mode and truncation mode SDRs with recompiling. Different calibration approaches are implemented in the code in order to study the ringing effect observed in CrIS normal mode SDR and to support to select the best calibration algorithm for J1. We develop the CrIS FSR SDR Validation System to quantify the CrIS radiometric and spectral accuracy, since they are crucial for improving its data assimilation in the numerical weather prediction, and for retrieving atmospheric trace gases. In this study, CrIS full resolution SDRs are generated from CRPS using the data collected from FSR mode of S-NPP, and the radiometric and spectral accuracy are assessed by using the Community Radiative Transfer Model (CRTM) and European Centre for Medium-Range Weather Forecasts (ECMWF) forecast fields. The biases between observation and simulations are evaluated to estimate the FOV-2-FOV variability and bias under clear sky over ocean. Double difference method and Simultaneous Nadir Overpass (SNO) method are also used to assess the CrIS radiance consistency with well-validated IASI. Two basic frequency validation

  3. Planetary Rings

    NASA Astrophysics Data System (ADS)

    Gordon, M. K.; Araki, S.; Black, G. J.; Bosh, A. S.; Brahic, A.; Brooks, S. M.; Charnoz, S.; Colwell, J. E.; Cuzzi, J. N.; Dones, L.; Durisen, R. H.; Esposito, L. W.; Ferrari, C.; Festou, M.; French, R. G.; Giuliatti-Winter, S. M.; Graps, A. L.; Hamilton, D. P.; Horanyi, M.; Karjalainen, R. M.; Krivov, A. V.; Krueger, H.; Larson, S. M.; Levison, H. F.; Lewis, M. C.; Lissauer, J. J.; Murray, C. D.; Namouni, F.; Nicholson, P. D.; Olkin, C. B.; Poulet, F.; Rappaport, N. J.; Salo, H. J.; Schmidt, J.; Showalter, M. R.; Spahn, F.; Spilker, L. J.; Srama, R.; Stewart, G. R.; Yanamandra-Fisher, P.

    2002-08-01

    The past two decades have witnessed dramatic changes in our view and understanding of planetary rings. We now know that each of the giant planets in the Solar System possesses a complex and unique ring system. Recent studies have identified complex gravitational interactions between the rings and their retinues of attendant satellites. Among the four known ring systems, we see elegant examples of Lindblad and corotation resonances (first invoked in the context of galactic disks), electromagnetic resonances, spiral density waves and bending waves, narrow ringlets which exhibit internal modes due to collective instabilities, sharp-edged gaps maintained via tidal torques from embedded moonlets, and tenuous dust belts created by meteoroid impact onto, or collisions between, parent bodies. Yet, as far as we have come, our understanding is far from complete. The fundamental questions confronting ring scientists at the beginning of the twenty-first century are those regarding the origin, age and evolution of the various ring systems, in the broadest context. Understanding the origin and age requires us to know the current ring properties, and to understand the dominant evolutionary processes and how they influence ring properties. Here we discuss a prioritized list of the key questions, the answers to which would provide the greatest improvement in our understanding of planetary rings. We then outline the initiatives, missions, and other supporting activities needed to address those questions, and recommend priorities for the coming decade in planetary ring science.

  4. The performance of solar collector CPC (compound parabolic concentrator) type with three pipes covered by glass tubes

    NASA Astrophysics Data System (ADS)

    Gaos, Yogi Sirodz; Yulianto, Muhamad; Juarsa, Mulya; Nurrohman, Marzuki, Edi; Yuliaji, Dwi; Budiono, Kabul

    2017-03-01

    Indonesia is a tropical country that has potential energy of solar radiation worth of 4.5 until 4.8 kWh/m2. However, this potential has not been utilized regularly. This paper will discuss the performance of solar collector compound parabolic concentrator (CPC) type with water as the working fluid. This CPC solar collector utilized three pipes covered by glass tubes. This paper has contribution to provide the temperature achievement between three pipes covered by glass tubes with and without glass cover of solar collector CPC type. The research conducted by varying the water flow rate of 1 l/m up to 6 l/m with three pipes arranged in series and parallel. From the results, the used of solar collector CPC type in the current study shows that the decrease of solar radiation, which was caused by climate change, did not influence the heat absorbance by water in the pipe. Therefore, the design of the solar collector in this research has potential to be used in future when solar radiation are used as the energy source.

  5. Removal of Tin from Extreme Ultraviolet Collector Optics by an In-Situ Hydrogen Plasma

    NASA Astrophysics Data System (ADS)

    Elg, Daniel Tyler

    Throughout the 1980s and 1990s, as the semiconductor industry upheld Moore's Law and continuously shrank device feature sizes, the wavelength of the lithography source remained at or below the resolution limit of the minimum feature size. Since 2001, however, the light source has been the 193nm ArF excimer laser. While the industry has managed to keep up with Moore's Law, shrinking feature sizes without shrinking the lithographic wavelength has required extra innovations and steps that increase fabrication time, cost, and error. These innovations include immersion lithography and double patterning. Currently, the industry is at the 14 nm technology node. Thus, the minimum feature size is an order of magnitude below the exposure wavelength. For the 10 nm node, triple and quadruple patterning have been proposed, causing potentially even more cost, fabrication time, and error. Such a trend cannot continue indefinitely in an economic fashion, and it is desirable to decrease the wavelength of the lithography sources. Thus, much research has been invested in extreme ultraviolet lithography (EUVL), which uses 13.5 nm light. While much progress has been made in recent years, some challenges must still be solved in order to yield a throughput high enough for EUVL to be commercially viable for high-volume manufacturing (HVM). One of these problems is collector contamination. Due to the 92 eV energy of a 13.5 nm photon, EUV light must be made by a plasma, rather than by a laser. Specifically, the industrially-favored EUV source topology is to irradiate a droplet of molten Sn with a laser, creating a dense, hot laser-produced plasma (LPP) and ionizing the Sn to (on average) the +10 state. Additionally, no materials are known to easily transmit EUV. All EUV light must be collected by a collector optic mirror, which cannot be guarded by a window. The plasmas used in EUV lithography sources expel Sn ions and neutrals, which degrade the quality of collector optics. The mitigation

  6. Adsorption mechanism of mixed cationic/anionic collectors in feldspar-quartz flotation system.

    PubMed

    Vidyadhar, A; Hanumantha Rao, K

    2007-02-15

    The adsorption mechanism of mixed cationic alkyl diamine and anionic sulfonate/oleate collectors at acidic pH values was investigated on microcline and quartz minerals through Hallimond flotation, electrokinetic and diffuse reflectance FTIR studies. In the presence of anionic collectors, neither of the minerals responded to flotation but the diamine flotation of the minerals was observed to be pH and concentration dependent. The presence of sulfonate enhanced the diamine flotation of the minerals by its co-adsorption. The difference in surface charge between the minerals at pH 2 was found to be the basis for preferential feldspar flotation from quartz in mixed diamine/sulfonate collectors. The infrared spectra revealed no adsorption of sulfonate collector when used alone but displayed its co-adsorption as diamine-sulfonate complex when used with diamine. The presence of sulfonate increased the diamine adsorption due to a decrease in the electrostatic head-head repulsion between the adjacent surface ammonium ions and thereby increasing the lateral tail-tail hydrophobic bonds. The mole ratio of diamine/sulfonate was found to be an important factor in the orientation of alkyl chains and thus the flotation response of minerals. The increase in sulfonate concentration beyond diamine concentration leads to the formation of soluble 1:2 diamine-sulfonate complex or precipitate and the adsorption of these species decreased the flotation since the alkyl chains are in chaotical orientation with a conceivable number of head groups directing towards the solution phase.

  7. QSAR modeling of flotation collectors using principal components extracted from topological indices.

    PubMed

    Natarajan, R; Nirdosh, Inderjit; Basak, Subhash C; Mills, Denise R

    2002-01-01

    Several topological indices were calculated for substituted-cupferrons that were tested as collectors for the froth flotation of uranium. The principal component analysis (PCA) was used for data reduction. Seven principal components (PC) were found to account for 98.6% of the variance among the computed indices. The principal components thus extracted were used in stepwise regression analyses to construct regression models for the prediction of separation efficiencies (Es) of the collectors. A two-parameter model with a correlation coefficient of 0.889 and a three-parameter model with a correlation coefficient of 0.913 were formed. PCs were found to be better than partition coefficient to form regression equations, and inclusion of an electronic parameter such as Hammett sigma or quantum mechanically derived electronic charges on the chelating atoms did not improve the correlation coefficient significantly. The method was extended to model the separation efficiencies of mercaptobenzothiazoles (MBT) and aminothiophenols (ATP) used in the flotation of lead and zinc ores, respectively. Five principal components were found to explain 99% of the data variability in each series. A three-parameter equation with correlation coefficient of 0.985 and a two-parameter equation with correlation coefficient of 0.926 were obtained for MBT and ATP, respectively. The amenability of separation efficiencies of chelating collectors to QSAR modeling using PCs based on topological indices might lead to the selection of collectors for synthesis and testing from a virtual database.

  8. Preliminary design package for Sunair SEC-601 solar collector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The preliminary design of the Owens-Illinois model Sunair SEC-601 tubular air solar collector is presented. Information in this package includes the subsystem design and development approaches, hazard analysis, and detailed drawings available as the preliminary design review.

  9. Electron beam simulation from gun to collector: Towards a complete solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mertzig, R., E-mail: robert.mertzig@cern.ch; Shornikov, A., E-mail: robert.mertzig@cern.ch; Wenander, F.

    An electron-beam simulation technique for high-resolution complete EBIS/T modelling is presented. The technique was benchmarked on the high compression HEC{sup 2} test-stand with an electron beam current, current density and energy of 10 A, 10 kA/cm{sup 2} and 49.2 keV, and on the immersed electron beam at REXEBIS for electron beam characteristics of 0.4 A, 200 A/cm{sup 2} and 4.5 keV. In both Brillouin-like and immersed beams the electron-beam radius varies from several millimeters at the gun, through some hundreds of micrometers in the ionization region to a few centimeters at the collector over a total length of several meters.more » We report on our approach for finding optimal meshing parameters, based on the local beam properties such as magnetic field-strength, electron energy and beam radius. This approach combined with dividing the problem domain into sub-domains, and subsequent splicing of the local solutions allowed us to simulate the beam propagation in EBISes from the gun to the collector using a conventional PC in about 24–36 h. Brillouin-like electron beams propagated through the complete EBIS were used to analyze the beam behavior within the collector region. We checked whether elastically reflected paraxial electrons from a Brillouin-like beam will escape from the collector region and add to the loss current. We have also studied the power deposition profiles as function of applied potentials using two electrode geometries for a Brillouin-like beam including the effects of backscattered electrons.« less

  10. Axial motion of collector plasma in a relativistic backward wave oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Renzhen; Chen, Changhua; Deng, Yuqun

    2016-06-15

    In this paper, it is proposed that plasma formed at the collector may drift back to the cathode and cause pulse shortening of the relativistic backward wave oscillator. Theoretical analysis shows that the axial drift velocity of plasma ions can be up to 5 mm/ns due to the presence of space charge potential provided by an intense relativistic electron beam. Particle-in-cell simulations indicate that the plasma electrons are initially trapped around the collector surface. With the accumulation of the plasma ions, a large electrostatic field forms and drives the plasma electrons to overcome the space charge potential and enter the beam-wavemore » interaction region along the magnetic field lines. As a result, the beam current modulation is disturbed and the output microwave power falls rapidly. The plasma ions move in the beam-wave interaction region with an average axial velocity of 5–8 mm/ns. After the plasma ions reach the diode region, the emitted current at the cathode rises due to the charge neutralizations by the ions. The impedance collapse leads to further decrease of the microwave power. In experiments, when the diode voltage and beam current were 850 kV and 9.2 kA, and the collector radius was 2.15 cm, the output microwave power was 2.4 GW with a pulse width of less than 20 ns. The ion drift velocity was estimated to be about 5 mm/ns. After an improved collector with 3.35 cm radius was adopted, the pulse width was prolonged to more than 30 ns.« less

  11. 78 FR 38452 - Price for the 2013 Girl Scouts of the USA Young Collector Set

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-26

    ... DEPARTMENT OF THE TREASURY United States Mint Price for the 2013 Girl Scouts of the USA Young Collector Set AGENCY: United States Mint, Department of the Treasury. ACTION: Notice. SUMMARY: The United States Mint is announcing a price of $54.95 for the 2013 Girl Scouts of the USA Young Collector Set. FOR...

  12. Saturn's Rings, the Yarkovsky Effects, and the Ring of Fire

    NASA Technical Reports Server (NTRS)

    Rubincam, David

    2004-01-01

    Saturn's icy ring particles, with their low thermal conductivity, are almost ideal for the operation of the Yarkovsky effects. The dimensions of Saturn's A and B rings may be determined by a near balancing of the seasonal Yarkovsky effect with the Yarkovsky- Schach effect. The two effects, which are photon thrust due to temperature gradients, may confine the A and B rings to within their observed dimensions. The C ring may be sparsely populated with icy particles because Yarkovsky drag has pulled them into Saturn, leaving the more slowly orbitally decaying rocky particles. Icy ring particles ejected from the B ring and passing through the C ring, as well as some of the slower rocky particles, should fall on Saturn's equator, where they may create a luminous "Ring of Fire" around Saturn's equator. This predicted Ring of Fire may be visible to Cassini's camera. Curiously, the speed of outwards Yarkovsky orbital evolution appears to peak near the Cassini Division. The connection between the two is not clear. D. Nesvorny has speculated that the resonance at the outer edge of the B ring may impede particles from evolving via Yarkovsky across the Division. If supply from the B ring is largely cut off, then Yarkovsky may push icy particles outward, away from the inner edge of the A ring, leaving only the rocky ones in the Division. The above scenarios depend delicately on the properties of the icy particles.

  13. Variations in Ring Particle Cooling across Saturn's Rings with Cassini CIRS

    NASA Astrophysics Data System (ADS)

    Brooks, S. M.; Spilker, L. J.; Pilorz, S.; Edgington, S. G.; Déau, E.; Altobelli, N.

    2010-12-01

    Cassini's Composite Infrared Spectrometer has recorded over two million of spectra of Saturn's rings in the far infrared since arriving at Saturn in 2004. CIRS records far infrared radiation between 10 and 600 cm-1 ( 16.7 and 1000 μ {m} ) at focal plane 1 (FP1), which has a field of view of 3.9 mrad. Thermal emission from Saturn’s rings peaks in this wavelength range. Ring temperatures can be inferred from FP1 data. By tracking how ring temperatures vary, we can determine the thermal inertia of the rings. Previous studies have shown that the rings' thermal inertia, a measure of their response to changes in the thermal environment, varies from ring to ring. Thermal inertia can provide insight into the physical structure of Saturn's ring particles and their regoliths. Low thermal inertia and rapidly changing temperatures are suggestive of ring particles that have more porous or fluffy regoliths or that are riddled with cracks. Solid particles can be expected to have higher thermal inertias. Ferrari et al. (2005) fit thermal inertia values of 5218 {Jm)-2 {K}-1 {s}-1/2 to their B ring data and 6412 {Jm)-2 {K}-1 {s}-1/2 to their C ring data. In this work we focus on CIRS observations of the shadowed portion of Saturn's rings. The rings’ thermal budget is dominated by its absorption of solar radiation. As a result, ring particles abruptly cool as they traverse Saturn's shadow. From these shadow observations we can create cooling curves at specific locations across the rings. We will show that the rings' cooling curves and thus their thermal inertia vary not only from ring to ring, but by location within the individual rings. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Copyright 2010 California Institute of Technology. Government sponsorship acknowledged.

  14. Investigation of Backside Textures for Genesis Solar Wind Silicon Collectors

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. P.; Burkett, P. J.; Rodriguez, M. C.; Allton, J. H.

    2014-01-01

    Genesis solar wind collectors were comprised of a suite of 15 types of ultrapure materials. The single crystal, pure silicon collectors were fabricated by two methods: float zone (FZ) and Czochralski (CZ). Because of slight differences in bulk purity and surface cleanliness among the fabrication processes and the specific vendor, it is desirable to know which variety of silicon and identity of vendor, so that appropriate reference materials can be used. The Czochralski method results in a bulk composition with slightly higher oxygen, for example. The CZ silicon array wafers that were Genesis-flown were purchased from MEMC Electronics. Most of the Genesis-flown FZ silicon was purchased from Unisil and cleaned by MEMC, although a few FZ wafers were acquired from International Wafer Service (IWS).

  15. OFFSET - RAY TRACING OPTICAL ANALYSIS OF OFFSET SOLAR COLLECTOR FOR SPACE STATION SOLAR DYNAMIC POWER SYSTEM

    NASA Technical Reports Server (NTRS)

    Jefferies, K.

    1994-01-01

    OFFSET is a ray tracing computer code for optical analysis of a solar collector. The code models the flux distributions within the receiver cavity produced by reflections from the solar collector. It was developed to model the offset solar collector of the solar dynamic electric power system being developed for Space Station Freedom. OFFSET has been used to improve the understanding of the collector-receiver interface and to guide the efforts of NASA contractors also researching the optical components of the power system. The collector for Space Station Freedom consists of 19 hexagonal panels each containing 24 triangular, reflective facets. Current research is geared toward optimizing flux distribution inside the receiver via changes in collector design and receiver orientation. OFFSET offers many options for experimenting with the design of the system. The offset parabolic collector model configuration is determined by an input file of facet corner coordinates. The user may choose other configurations by changing this file, but to simulate collectors that have other than 19 groups of 24 triangular facets would require modification of the FORTRAN code. Each of the roughly 500 facets in the assembled collector may be independently aimed to smooth out, or tailor, the flux distribution on the receiver's wall. OFFSET simulates the effects of design changes such as in receiver aperture location, tilt angle, and collector facet contour. Unique features of OFFSET include: 1) equations developed to pseudo-randomly select ray originating sources on the Sun which appear evenly distributed and include solar limb darkening; 2) Cone-optics technique used to add surface specular error to the ray originating sources to determine the apparent ray sources of the reflected sun; 3) choice of facet reflective surface contour -- spherical, ideal parabolic, or toroidal; 4) Gaussian distributions of radial and tangential components of surface slope error added to the surface normals at

  16. High temperature wear performance of HVOF-sprayed Cr3C2-WC-NiCoCrMo and Cr3C2-NiCr hardmetal coatings

    NASA Astrophysics Data System (ADS)

    Zhou, Wuxi; Zhou, Kesong; Li, Yuxi; Deng, Chunming; Zeng, Keli

    2017-09-01

    A novel Cr3C2-WC-NiCoCrMo and commercial Cr3C2-NiCr thermal spray-grade powders with particle size of -45 + 15 μm were prepared by an agglomeration and sintering process. Cr3C2-WC-NiCoCrMo and Cr3C2-NiCr coatings were deposited by high velocity oxygen fuel (HVOF) spraying. The fundamental properties of both coatings were evaluated and friction wear test against Al2O3 counterbodies of both coatings at high temperatures (450 °C, 550 °C, 650 °C) were carried out ball-on-disk high temperature tribometer. All specimens were characterized by optical microscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS) and 3D non-contact surface mapping profiler. The results have shown that the Cr3C2-WC-NiCoCrMo coating exhibited lower porosity, higher micro-hardness compared to the Cr3C2-NiCr coating. The Cr3C2-WC-NiCoCrMo coating also exhibited better wear resistance and higher friction coefficient compared to the Cr3C2-NiCr coating when sliding against the Al2O3 counterpart. Wear rates of both coatings increased with raising temperature. Both coatings experienced abrasive wear; hard phase particles (WC and Cr3C2) with different sizes, distributed in the matrix phase, will effectively improve the resistance against wear at high temperatures.

  17. Precipitation collector bias and its effects on temporal trends and spatial variability in National Atmospheric Deposition Program/National Trends Network data

    USGS Publications Warehouse

    Wetherbee, Gregory A.

    2017-01-01

    Precipitation samples have been collected by the National Atmospheric Deposition Program's (NADP) National Trends Network (NTN) using the Aerochem Metrics Model 301 (ACM) collector since 1978. Approximately one-third of the NTN ACM collectors have been replaced with N-CON Systems, Inc. Model ADS 00-120 (NCON) collectors. Concurrent data were collected over 6 years at 12 NTN sites using colocated ACM and NCON collectors in various precipitation regimes. Linear regression models of the colocated data were used to adjust for relative bias between the collectors. Replacement of ACM collectors with NCON collectors resulted in shifts in 10-year seasonal precipitation-weighted mean concentration (PWMC) trend slopes for: cations (−0.001 to −0.007 mgL−1yr−1), anions (−0.009 to −0.028 mgL−1yr−1), and hydrogen ion (+0.689 meqL-1yr−1). Larger shifts in NO3− and SO4−2 seasonal PWMC trend slopes were observed in the Midwest and Northeast US, where concentrations are generally higher than in other regions. Geospatial analysis of interpolated concentration rasters indicated regions of accentuated variability introduced by incorporation of NCON collectors into the NTN.

  18. Reduction of Fire Hazard in Materials for Irrigators and Water Collectors in Cooling Towers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smirnov, N. V.; Konstantinova, N. I., E-mail: konstantinova-n@inbox.ru; Gordon, E. P.

    A way of reducing the fire hazard of PVC film used to make cooling-tower irrigators and water collectors is examined. A new generation of fire retardant, nanostructured magnesium hydroxide, is used to impart fire retardant properties. The fabrication technology is optimized with a roller-calendering manufacturing technique, and the permissible ranges of fire hazard indicators for materials in irrigators and water collectors are determined.

  19. Vortex rings

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Leonard, Anthony

    1992-01-01

    The vortex-ring problem in fluid mechanics is examined generally in terms of formation, the steady state, the duration of the rings, and vortex interactions. The formation is studied by examining the generation of laminar and turbulent vortex rings and their resulting structures with attention given to the three stages of laminar ring development. Inviscid dynamics is addressed to show how core dynamics affects overall ring motion, and laminar vortex structures are described in two dimensions. Viscous and inviscid structures are related in terms of 'leapfrogging', head-on collisions, and collisions with a no-slip wall. Linear instability theory is shown to successfully describe observational data, although late stages in the breakdown are not completely understood. This study of vortex rings has important implications for key aerodynamic issues including sound generation, transport and mixing, and vortex interactions.

  20. Certification and verification for Calmac flat plate solar collector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Information used in the certification and verification of the Calmac Flat Plate Collector is presented. Contained are such items as test procedures and results, information on materials used, installation, operation, and maintenance manuals, and other information pertaining to the verification and certification.

  1. Estimation and optimization of thermal performance of evacuated tube solar collector system

    NASA Astrophysics Data System (ADS)

    Dikmen, Erkan; Ayaz, Mahir; Ezen, H. Hüseyin; Küçüksille, Ecir U.; Şahin, Arzu Şencan

    2014-05-01

    In this study, artificial neural networks (ANNs) and adaptive neuro-fuzzy (ANFIS) in order to predict the thermal performance of evacuated tube solar collector system have been used. The experimental data for the training and testing of the networks were used. The results of ANN are compared with ANFIS in which the same data sets are used. The R2-value for the thermal performance values of collector is 0.811914 which can be considered as satisfactory. The results obtained when unknown data were presented to the networks are satisfactory and indicate that the proposed method can successfully be used for the prediction of the thermal performance of evacuated tube solar collectors. In addition, new formulations obtained from ANN are presented for the calculation of the thermal performance. The advantages of this approaches compared to the conventional methods are speed, simplicity, and the capacity of the network to learn from examples. In addition, genetic algorithm (GA) was used to maximize the thermal performance of the system. The optimum working conditions of the system were determined by the GA.

  2. Asymmetric dipolar ring

    DOEpatents

    Prosandeev, Sergey A.; Ponomareva, Inna V.; Kornev, Igor A.; Bellaiche, Laurent M.

    2010-11-16

    A device having a dipolar ring surrounding an interior region that is disposed asymmetrically on the ring. The dipolar ring generates a toroidal moment switchable between at least two stable states by a homogeneous field applied to the dipolar ring in the plane of the ring. The ring may be made of ferroelectric or magnetic material. In the former case, the homogeneous field is an electric field and in the latter case, the homogeneous field is a magnetic field.

  3. Air-liquid solar collector for solar heating, combined heating and cooling, and hot water subsystems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A collection of quarterly reports consisting of the installation and layout design of the air collector system for commercial applications, completion of the preliminary design review, detailed design efforts, and preparation of the verification test plan are given. Performance specifications and performance testing of a prototype model of a two manifold, 144 tube air collector array is presented.

  4. Concentric ring flywheel with hooked ring carbon fiber separator/torque coupler

    DOEpatents

    Kuklo, Thomas C.

    1999-01-01

    A concentric ring flywheel with expandable separators, which function as torque couplers, between the rings to take up the gap formed between adjacent rings due to differential expansion between different radius rings during rotation of the flywheel. The expandable separators or torque couplers include a hook-like section at an upper end which is positioned over an inner ring and a shelf-like or flange section at a lower end onto which the next adjacent outer ring is positioned. As the concentric rings are rotated the gap formed by the differential expansion there between is partially taken up by the expandable separators or torque couplers to maintain torque and centering attachment of the concentric rings.

  5. Concentric ring flywheel with hooked ring carbon fiber separator/torque coupler

    DOEpatents

    Kuklo, T.C.

    1999-07-20

    A concentric ring flywheel with expandable separators, which function as torque couplers, between the rings to take up the gap formed between adjacent rings due to differential expansion between different radius rings during rotation of the flywheel. The expandable separators or torque couplers include a hook-like section at an upper end which is positioned over an inner ring and a shelf-like or flange section at a lower end onto which the next adjacent outer ring is positioned. As the concentric rings are rotated the gap formed by the differential expansion there between is partially taken up by the expandable separators or torque couplers to maintain torque and centering attachment of the concentric rings. 2 figs.

  6. Sputtering of sub-micrometer aluminum layers as compact, high-performance, light-weight current collector for supercapacitors

    NASA Astrophysics Data System (ADS)

    Busom, J.; Schreiber, A.; Tolosa, A.; Jäckel, N.; Grobelsek, I.; Peter, N. J.; Presser, V.

    2016-10-01

    Supercapacitors are devices for rapid and efficient electrochemical energy storage and commonly employ carbon coated aluminum foil as the current collector. However, the thickness of the metallic foil and the corresponding added mass lower the specific and volumetric performance on a device level. A promising approach to drastically reduce the mass and volume of the current collector is to directly sputter aluminum on the freestanding electrode instead of adding a metal foil. Our work explores the limitations and performance perspectives of direct sputter coating of aluminum onto carbon film electrodes. The tight and interdigitated interface between the metallic film and the carbon electrode enables high power handling, exceeding the performance and stability of a state-of-the-art carbon coated aluminum foil current collector. In particular, we find an enhancement of 300% in specific power and 186% in specific energy when comparing aluminum sputter coated electrodes with conventional electrodes with Al current collectors.

  7. Metal glass vacuum tube solar collectors are approaching lower-medium temperature heat application.

    PubMed

    Jiang, Xinian

    2010-04-26

    Solar thermal collectors are widely used worldwide mainly for hot water preparation at a low temperature (less than 80 degrees C). Applications including many industrial processes and central air conditioning with absorption chillers, instead require lower-medium temperature heat (between 90 degrees C and 150 degrees C) to be driven when using solar thermal energy. The metal absorber glass vacuum tube collectors (MGVT) are developed for this type of applications. Current state-of-art and possible future technology development of MGVT are presented.

  8. Metal glass vacuum tube solar collectors are approaching lower-medium temperature heat application.

    PubMed

    Jiang, Xinian

    2010-04-26

    Solar thermal collectors are widely used worldwide mainly for hot water preparation at a low temperature (less than 80?C). Applications including many industrial processes and central air conditioning with absorption chillers, instead require lower-medium temperature heat (between 90 degrees C and 150 degrees C) to be driven when using solar thermal energy. The metal absorber glass vacuum tube collectors (MGVT) are developed for this type of applications. Current state-of-art and possible future technology development of MGVT are presented.

  9. Evaluation of All-Day-Efficiency for selected flat plate and evacuated tube collectors

    NASA Technical Reports Server (NTRS)

    1981-01-01

    An evaluation of all day efficiency for selected flat plate and evacuated tube collectors is presented. Computations are based on a modified version of the NBSIR 78-1305A procedure for all day efficiency. The ASHMET and NOAA data bases for solar insolation are discussed. Details of the algorithm used to convert total (global) horizontal radiation to the collector tilt plane of the selected sites are given along with tables and graphs which show the results of the tests performed during this evaluation.

  10. Scaled centrifugal compressor, collector and running gear program

    NASA Technical Reports Server (NTRS)

    Kenehan, J. G.

    1983-01-01

    The Scaled Centrifugal Compressor, Collector and Running gear Program was conducted in support of an overall NASA strategy to improve small-compressor performance, durability, and reliability while reducing initial and life-cycle costs. Accordingly, Garrett designed and provided a test rig, gearbox coupling, and facility collector for a new NASA facility, and provided a scaled model of an existing, high-performance impeller for evaluation scaling effects on aerodynamic performance and for obtaining other performance data. Test-rig shafting was designed to operate smoothly throughout a speed range up to 60,000 rpm. Pressurized components were designed to operate at pressures up to 300 psia and at temperatures to 1000 F. Nonrotating components were designed to provide a margin-of-safety of 0.05 or greater; rotating components, for a margin-of-safety based on allowable yield and ultimate strengths. Design activities were supported by complete design analysis, and the finished hardware was subjected to check-runs to confirm proper operation. The test rig will support a wide range of compressor tests and evaluations.

  11. Differential Resonant Ring YIG Tuned Oscillator

    NASA Technical Reports Server (NTRS)

    Parrott, Ronald A.

    2010-01-01

    A differential SiGe oscillator circuit uses a resonant ring-oscillator topology in order to electronically tune the oscillator over multi-octave bandwidths. The oscillator s tuning is extremely linear, because the oscillator s frequency depends on the magnetic tuning of a YIG sphere, whose resonant frequency is equal to a fundamental constant times the DC magnetic field. This extremely simple circuit topology uses two coupling loops connecting a differential pair of SiGe bipolar transistors into a feedback configuration using a YIG tuned filter creating a closed-loop ring oscillator. SiGe device technology is used for this oscillator in order to keep the transistor s 1/f noise to an absolute minimum in order to achieve minimum RF phase noise. The single-end resonant ring oscillator currently has an advantage in fewer parts, but when the oscillation frequency is greater than 16 GHz, the package s parasitic behavior couples energy to the sphere and causes holes and poor phase noise performance. This is because the coupling to the YIG is extremely low, so that the oscillator operates at near the unloaded Q. With the differential resonant ring oscillator, the oscillation currents are just in the YIG coupling mechanisms. The phase noise is even better, and the physical size can be reduced to permit monolithic microwave integrated circuit oscillators. This invention is a YIG tuned oscillator circuit making use of a differential topology to simultaneously achieve an extremely broadband electronic tuning range and ultra-low phase noise. As a natural result of its differential circuit topology, all reactive elements, such as tuning stubs, which limit tuning bandwidth by contributing excessive open loop phase shift, have been eliminated. The differential oscillator s open-loop phase shift is associated with completely non-dispersive circuit elements such as the physical angle of the coupling loops, a differential loop crossover, and the high-frequency phase shift of the n

  12. Saturn's Rings, the Yarkovsky Effects, and the Ring of Fire

    NASA Technical Reports Server (NTRS)

    Rubincam, David Parry

    2004-01-01

    The dimensions of Saturn's A and B rings may be determined by the seasonal Yarkovsky effect and the Yarkovsky-Schach effect; the two effects confine the rings between approximately 1.68 and approximately 2.23 Saturn radii, in reasonable agreement with the observed values of 1.525 and 2.267. The C ring may be sparsely populated because its particles are transients on their way to Saturn; the infall may create a luminous Ring of Fire around Saturn's equator. The ring system may be young: in the past heat flow from Saturn's interior much above its present value would not permit rings to exist.

  13. Saturn's largest ring.

    PubMed

    Verbiscer, Anne J; Skrutskie, Michael F; Hamilton, Douglas P

    2009-10-22

    Most planetary rings in the Solar System lie within a few radii of their host body, because at these distances gravitational accelerations inhibit satellite formation. The best known exceptions are Jupiter's gossamer rings and Saturn's E ring, broad sheets of dust that extend outward until they fade from view at five to ten planetary radii. Source satellites continuously supply the dust, which is subsequently lost in collisions or by radial transport. Here we report that Saturn has an enormous ring associated with its outer moon Phoebe, extending from at least 128R(S) to 207R(S) (Saturn's radius R(S) is 60,330 km). The ring's vertical thickness of 40R(S) matches the range of vertical motion of Phoebe along its orbit. Dynamical considerations argue that these ring particles span the Saturnian system from the main rings to the edges of interplanetary space. The ring's normal optical depth of approximately 2 x 10(-8) is comparable to that of Jupiter's faintest gossamer ring, although its particle number density is several hundred times smaller. Repeated impacts on Phoebe, from both interplanetary and circumplanetary particle populations, probably keep the ring populated with material. Ring particles smaller than centimetres in size slowly migrate inward and many of them ultimately strike the dark leading face of Iapetus.

  14. Electrochemical Properties of Si Film Electrodes Containing TiNi Thin-Film Current Collectors

    NASA Astrophysics Data System (ADS)

    Im, Yeon-min; Noh, Jung-pil; Cho, Gyu-bong; Nam, Tea-hyun

    2018-03-01

    A 50.3Ti-49.7Ni thin film fabricated by DC sputtering was employed as a current collector of Si film electrode. The structural and electrochemical properties of Si/TiNi film electrode were compared with those of a Si/Cu film electrode. The TiNi film with cluster-like structures composed of B2 austenitic phase at room temperature displayed the high electrochemical stability for Li ions. The amorphous Si film deposited on the TiNi film also consisted of cluster-like structures on the surface. The Si film grown on the TiNi film current collector (Si/TiNi electrode) demonstrated a high columbic efficiency of 87% at the first cycle (363 μAh/cm2 of charge capacity and 314 μAh/cm2 of discharge capacity). The Si/TiNi electrode exhibited better electrochemical properties in terms of capacity, cycle performance, and structural stability compared to the Si electrode with a conventional Cu foil current collector.

  15. Thermal Performance Analysis of Solar Collectors Installed for Combisystem in the Apartment Building

    NASA Astrophysics Data System (ADS)

    Žandeckis, A.; Timma, L.; Blumberga, D.; Rochas, C.; Rošā, M.

    2012-01-01

    The paper focuses on the application of wood pellet and solar combisystem for space heating and hot water preparation at apartment buildings under the climate of Northern Europe. A pilot project has been implemented in the city of Sigulda (N 57° 09.410 E 024° 52.194), Latvia. The system was designed and optimised using TRNSYS - a dynamic simulation tool. The pilot project was continuously monitored. To the analysis the heat transfer fluid flow rate and the influence of the inlet temperature on the performance of solar collectors were subjected. The thermal performance of a solar collector loop was studied using a direct method. A multiple regression analysis was carried out using STATGRAPHICS Centurion 16.1.15 with the aim to identify the operational and weather parameters of the system which cause the strongest influence on the collector's performance. The parameters to be used for the system's optimisation have been evaluated.

  16. Slowing down of ring polymer diffusion caused by inter-ring threading.

    PubMed

    Lee, Eunsang; Kim, Soree; Jung, YounJoon

    2015-06-01

    Diffusion of long ring polymers in a melt is much slower than the reorganization of their internal structures. While direct evidence for entanglements has not been observed in the long ring polymers unlike linear polymer melts, threading between the rings is suspected to be the main reason for slowing down of ring polymer diffusion. It is, however, difficult to define the threading configuration between two rings because the rings have no chain end. In this work, evidence for threading dynamics of ring polymers is presented by using molecular dynamics simulation and applying a novel analysis method. The simulation results are analyzed in terms of the statistics of persistence and exchange times that have proved useful in studying heterogeneous dynamics of glassy systems. It is found that the threading time of ring polymer melts increases more rapidly with the degree of polymerization than that of linear polymer melts. This indicates that threaded ring polymers cannot diffuse until an unthreading event occurs, which results in the slowing down of ring polymer diffusion. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Absorber design for a compound parabolic concentrator collector without transmission loss.

    PubMed

    Suzuki, A; Kobayashi, S

    1994-10-01

    A new design method for a compound parabolic concentrator heat collector is described. The conventional design of the ideal compound parabolic concentrator collector has a touching point between a light absorber and the reflectors. This structure is not preferable from the standpoint of conductive heat leakage and thermal stress on reflector materials. On the other hand, if the absorber and the reflectors are separated from each other, the gap between them usually causes optical errors such as light transmission loss or an increase in the reflection number. We discuss the fact that ideal heat collection is possible, in spite of the gap, by introducing the idea of an effective heat concentration ratio.

  18. First application of combined isochronous and Schottky mass spectrometry: Half-lives of fully ionized Cr 24 + 49 and Fe 26 + 53 atoms

    NASA Astrophysics Data System (ADS)

    Tu, X. L.; Chen, X. C.; Zhang, J. T.; Shuai, P.; Yue, K.; Xu, X.; Fu, C. Y.; Zeng, Q.; Zhou, X.; Xing, Y. M.; Wu, J. X.; Mao, R. S.; Mao, L. J.; Fang, K. H.; Sun, Z. Y.; Wang, M.; Yang, J. C.; Litvinov, Yu. A.; Blaum, K.; Zhang, Y. H.; Yuan, Y. J.; Ma, X. W.; Zhou, X. H.; Xu, H. S.

    2018-01-01

    Lifetime measurements of β -decaying highly charged ions have been performed in the experimental storage ring (CSRe) by applying the isochronous Schottky mass spectrometry. The fully ionized 49Cr and 53Fe ions were produced in projectile fragmentation of 58Ni primary beam and were stored in the CSRe tuned into the isochronous ion-optical mode. The new resonant Schottky detector was applied to monitor the intensities of stored uncooled Cr 24 + 49 and Fe 26 + 53 ions. The extracted half-lives T1 /2(Cr 24 + 49 ) =44.0 (27 ) min and T1 /2(Fe 26 + 53 ) =8.47 (19 ) min are in excellent agreement with the literature half-life values corrected for the disabled electron capture branchings. This is an important proof-of-principle step towards realizing the simultaneous mass and lifetime measurements on exotic nuclei at the future storage ring facilities.

  19. Preliminary design review package on air flat plate collector for solar heating and cooling system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Guidelines to be used in the development and fabrication of a prototype air flat plate collector subsystem containing 320 square feet (10-4 ft x 8 ft panels) of collector area are presented. Topics discussed include: (1) verification plan; (2) thermal analysis; (3) safety hazard analysis; (4) drawing list; (5) special handling, installation and maintenance tools; (6) structural analysis; and (7) selected drawings.

  20. Cyclic and isothermal oxidation behavior at 1100 and 1200 C of Ni-20Cr, Ni-20Cr-3Mn, Ni-20Cr-3Si, and Ni-40Cr alloys

    NASA Technical Reports Server (NTRS)

    Lowell, C. E.

    1973-01-01

    Alloys of Ni-20Cr, Ni-20Cr-3Mn, Ni-20Cr-3Si, and Ni-40Cr were cyclically oxidized at 1100 and 1200 C for up to 100 hours. Oxidation behavior was judged by sample thickness and weight change, metallography, diffraction, and microprobe analysis. The least attacked were Ni-40Cr and Ni-20Cr-3Si. The alloy Ni-20Cr-3Mn was much less attacked than Ni-20Cr, but more than the other alloys. The formation of Cr2O3 accounted for the increased resistance of Ni-Cr and Ni-20Cr-3Si, and the formation of MnCr2O4 accounts for the improvement in Ni-20Cr-3mn over Ni-20Cr.

  1. Biobriefcase aerosol collector

    DOEpatents

    Bell, Perry M [Tracy, CA; Christian, Allen T [Madison, WI; Bailey, Christopher G [Pleasanton, CA; Willis, Ladona [Manteca, CA; Masquelier, Donald A [Tracy, CA; Nasarabadi, Shanavaz L [Livermore, CA

    2009-09-22

    A system for sampling air and collecting particles entrained in the air that potentially include bioagents. The system comprises providing a receiving surface, directing a liquid to the receiving surface and producing a liquid surface. Collecting samples of the air and directing the samples of air so that the samples of air with particles entrained in the air impact the liquid surface. The particles potentially including bioagents become captured in the liquid. The air with particles entrained in the air impacts the liquid surface with sufficient velocity to entrain the particles into the liquid but cause minor turbulence. The liquid surface has a surface tension and the collector samples the air and directs the air to the liquid surface so that the air with particles entrained in the air impacts the liquid surface with sufficient velocity to entrain the particles into the liquid, but cause minor turbulence on the surface resulting in insignificant evaporation of the liquid.

  2. Highly concentrated, ring-shaped phase conversion laser-induced breakdown spectroscopy technology for liquid sample analysis.

    PubMed

    Lin, Qingyu; Wei, Zhimei; Guo, Hongli; Wang, Shuai; Guo, Guangmeng; Zhang, Zhi; Duan, Yixiang

    2017-06-10

    A highly concentrated, ring-shaped phase conversion (RSPC) method was developed for liquid sample analysis using the laser-induced breakdown spectroscopy (LIBS) technique. In this work, test samples were prepared by mixing the metal particles with polyvinyl alcohol (PVA) supporter in liquid phase. With heat, the PVA solution solidified inside a modified glass petri dish, forming a metal-enriched polymer ring film. Distinguished from other traditional liquid-to-solid conversing methods, the proposed new method takes advantage of enhanced homogeneity for the target elements inside the ring film. The modified glass petri dish was used to control the ring-shaped concentration. Due to the specially designed circular groove at the bottom of this dish, where the PVA solution and liquid sample mixture accumulated, the target elements were concentrated in this small ring, which is beneficial for enhancing and stabilizing the plasma signals compared to the direct liquid sample analysis using LIBS. The limits of detection for Ag, Cu, Cr, and Ba obtained with the RSPC-LIBS technology were 0.098  μg·mL -1 , 0.18  μg·mL -1 , 0.83  μg·mL -1 , and 0.046  μg·mL -1 , respectively, which provided greater improvement than the direct bulk liquid analysis using LIBS.

  3. Uranus Tenth Ring

    NASA Image and Video Library

    1996-01-29

    On Jan. 23, 1986, NASA Voyager 2 discovered a tenth ring orbiting Uranus. The tenth ring is about midway between the bright, outermost epsilon ring and the next ring down, called delta. http://photojournal.jpl.nasa.gov/catalog/PIA00035

  4. Side-by-side comparisons of evacuated compound parabolic concentrator and flat plate solar collector systems at temperatures of 90 to 100C

    NASA Astrophysics Data System (ADS)

    Allen, J. W.; Schertz, W. W.; Wantroba, A. S.

    1987-03-01

    This collector system study is an extension of a previous system study in which Argonne National Laboratory (ANL) compared the performance of three solar energy systems operated side by side for over a year. In the present system study, four solar energy systems were operated side by side for part of a year. Two of the collector systems used commercially available compound parabolic concentrator (CPC) collectors, one used a commercially available flat plate collector, and one used an experimental CPC collector built by The University of Chicago. The collectors were mounted in fixed positions; they did not track the Sun, and their tilt angles were not seasonally adjusted. All of the collector arrays faced south and were tilted at 42 deg with respect to the horizon (to match the 42 deg N latitude at ANL). All four collector systems started each day with their storage temperatures at 90 C. During the day, each system was operated by its own solar controller. At the end of the day, the tanks were mixed and the temperature changes in the tanks were measured. The change in storage energy was calculated from the temperature change, the heat capacity of the storage system, and the pump energy.

  5. Injuries among solid waste collectors in the private versus public sectors.

    PubMed

    Bunn, Terry L; Slavova, Svetla; Tang, Minao

    2011-10-01

    Solid waste collection is among the occupations with the highest risk for injuries and illnesses. Solid waste collector injuries were characterized in terms of injury risk and employment industry sector (public versus private) using Kentucky workers' compensation first reports of injury and claims data. When compared to 35-44-year-old workers, solid waste collectors who were under 35 years of age were less likely to have a workers' compensation first report of injury or claim that resulted in awarded benefits. The probability that a workers' compensation first report of injury or claim would result in an awarded benefit was higher if the worker was employed as a solid waste collector in the private sector compared to the public sector, or was injured due to a motor vehicle-related injury or a push-or-pull type of injury. A better understanding of the differences in the contributing factors for an injury that results in a first report of injury or claim with awarded benefits (e.g., job activities, new and refresher worker safety training, type of equipment used, differences in collection vehicle automation, and differential reporting of injuries on the job) between the public and private sectors is necessary to target injury prevention strategies in this high-risk occupation.

  6. Jupiter Ring Halo

    NASA Image and Video Library

    1998-03-26

    A mosaic of four images taken through the clear filter (610 nanometers) of the solid state imaging (CCD) system aboard NASA's Galileo spacecraft on November 8, 1996, at a resolution of approximately 46 kilometers (km) per picture element (pixel) along the rings; however, because the spacecraft was only about 0.5 degrees above the ring plane, the image is highly foreshortened in the vertical direction. The images were obtained when Galileo was in Jupiter's shadow peering back toward the Sun; the ring was approximately 2,300,000 kilometers (km) away. The arc on the far right of the image is produced by sunlight scattered by small particles comprising Jupiter's upper atmospheric haze. The ring also efficiently scatters light, indicating that much of its brightness is due to particles that are microns or less in diameter. Such small particles are believed to have human-scale lifetimes, i.e., very brief compared to the solar system's age. Jupiter's ring system is composed of three parts -- a flat main ring, a lenticular halo interior to the main ring, and the gossamer ring, which lies exterior to the main ring. The near and far arms of Jupiter's main ring extend horizontally across the mosaic, joining together at the ring's ansa, on the far left side of the figure. The near arm of the ring appears to be abruptly truncated close to the planet, at the point where it passes into Jupiter's shadow. A faint mist of particles can be seen above and below the main rings; this vertically extended, toroidal "halo" is unusual in planetary rings, and is probably caused by electromagnetic forces which can push small grains out of the ring plane. Halo material is present across this entire image, implying that it reaches more than 27,000 km above the ring plane. Because of shadowing, the halo is not visible close to Jupiter in the lower right part of the mosaic. In order to accentuate faint features in the image, different brightnesses are shown through color, with the brightest being

  7. Stress Corrosion Cracking of Ni-Fe-Cr Alloys Relevant to Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Persaud, Suraj

    Stress corrosion cracking (SCC) of Ni-Fe-Cr alloys and weld metals was investigated in simulated environments representative of high temperature water used in the primary and secondary circuits of nuclear power plants. The mechanism of primary water SCC (PWSCC) was studied in Alloys 600, 690, 800 and Alloy 82 dissimilar metal welds using the internal oxidation model as a guide. Initial experiments were carried out in a 480°C hydrogenated steam environment considered to simulate high temperature reducing primary water. Ni alloys underwent classical internal oxidation intragranularly resulting in the expulsion of the solvent metal, Ni, to the surface. Selective intergranular oxidation of Cr in Alloy 600 resulted in embrittlement, while other alloys were resistant owing to their increased Cr contents. Atom probe tomography was used to determine the short-circuit diffusion path used for Ni expulsion at a sub-nanometer scale, which was concluded to be oxide-metal interfaces. Further exposures of Alloys 600 and 800 were done in 315°C simulated primary water and intergranular oxidation tendency was comparable to 480°C hydrogenated steam. Secondary side work involved SCC experiments and electrochemical measurements, which were done at 315°C in acid sulfate solutions. Alloy 800 C-rings were found to undergo acid sulfate SCC (AcSCC) to a depth of up to 300 microm in 0.55 M sulfate solution at pH 4.3. A focused-ion beam was used to extract a crack tip from a C-ring and high resolution analytical electron microscopy revealed a duplex oxide structure and the presence of sulfur. Electrochemical measurements were taken on Ni alloys to complement crack tip analysis; sulfate was concluded to be the aggressive anion in mixed sulfate and chloride systems. Results from electrochemical measurements and crack tip analysis suggested a slip dissolution-type mechanism to explain AcSCC in Ni alloys.

  8. Interdiffusion in the Ni/TD-NiCr and Cr/TD-NiCr systems

    NASA Technical Reports Server (NTRS)

    Pawar, A. V.; Tenney, D. R.

    1974-01-01

    The diffusion of Ni and Cr into TD-NiCr has been studied over the 900 to 1100 C temperature range. The diffusion couples were prepared by electroplating Cr and Ni on polished TD-NiCr wafers. Concentration profiles produced as a result of isothermal diffusion at 905, 1000, and 1100 C were determined by electron microprobe analysis. The Boltzmann-Matano analysis was used to determine concentration-dependent diffusion coefficients which were found to compare favorably with previously reported values. These data suggest that 2 vol % ThO2 distribution has no appreciable effect on the rates of diffusion in TD-NiCr with a large grain size. This supports the view that an inert dispersoid in an alloy matrix will not in itself lead to enhanced diffusion unless a short-circuit diffusion structure is stabilized.

  9. Design and fabrication of light weight current collectors for direct methanol fuel cells using the micro-electro mechanical system technique

    NASA Astrophysics Data System (ADS)

    Sung, Min-Feng; Kuan, Yean-Der; Chen, Bing-Xian; Lee, Shi-Min

    The direct methanol fuel cell (DMFC) is suitable for portable applications. Therefore, a light weight and small size is desirable. The main objective of this paper is to design and fabricate a light weight current collector for DMFC usage. The light weight current collector mainly consists of a substrate with two thin film metal layers. The substrate of the current collector is an FR4 epoxy plate. The thin film metal layers are accomplished by the thermo coater technique to coat metal powders onto the substrate surfaces. The developed light weight current collectors are further assembled to a single cell DMFC test fixture to measure the cell performance. The results show that the proposed current collectors could even be applied to DMFCs because they are light, thin and low cost and have potential for mass production.

  10. Automated solar collector installation design

    DOEpatents

    Wayne, Gary; Frumkin, Alexander; Zaydman, Michael; Lehman, Scott; Brenner, Jules

    2014-08-26

    Embodiments may include systems and methods to create and edit a representation of a worksite, to create various data objects, to classify such objects as various types of pre-defined "features" with attendant properties and layout constraints. As part of or in addition to classification, an embodiment may include systems and methods to create, associate, and edit intrinsic and extrinsic properties to these objects. A design engine may apply of design rules to the features described above to generate one or more solar collectors installation design alternatives, including generation of on-screen and/or paper representations of the physical layout or arrangement of the one or more design alternatives.

  11. Line-focus concentrating collector program

    NASA Technical Reports Server (NTRS)

    Dugan, V. L.

    1980-01-01

    The Line-Focus Concentrating Collector Program has emphasized the development and dissemination of concentrating solar technology in which the reflected sunlight is focused onto a linear or line receiver. Although a number of different types of line-focus concentrators were developed, the parabolic trough has gained the widest acceptance and utilization within the industrial and applications sectors. The trough is best applied for application scenarios which require temperatures between 140 and 600 F. Another concept, the bowl, is investigated for applications which may require temperatures in the range between 600 and 1200 F. Current technology emphases are upon the reduction of system installation cost and the implementation of production oriented engineering.

  12. Birth Control Ring

    MedlinePlus

    ... Safe Videos for Educators Search English Español Birth Control Ring KidsHealth / For Teens / Birth Control Ring What's in this article? What Is It? ... Anillo vaginal anticonceptivo What Is It? The birth control ring is a soft, flexible, doughnut-shaped ring ...

  13. Planetary Rings

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.

    1994-01-01

    Just over two decades ago, Jim Pollack made a critical contribution to our understanding of planetary ring particle properties, and resolved a major apparent paradox between radar reflection and radio emission observations. At the time, particle properties were about all there were to study about planetary rings, and the fundamental questions were, why is Saturn the only planet with rings, how big are the particles, and what are they made of? Since then, we have received an avalanche of observations of planetary ring systems, both from spacecraft and from Earth. Meanwhile, we have seen steady progress in our understanding of the myriad ways in which gravity, fluid and statistical mechanics, and electromagnetism can combine to shape the distribution of the submicron-to-several-meter size particles which comprise ring systems into the complex webs of structure that we now know them to display. Insights gained from studies of these giant dynamical analogs have carried over into improved understanding of the formation of the planets themselves from particle disks, a subject very close to Jim's heart. The now-complete reconnaissance of the gas giant planets by spacecraft has revealed that ring systems are invariably found in association with families of regular satellites, and there is ark emerging perspective that they are not only physically but causally linked. There is also mounting evidence that many features or aspects of all planetary ring systems, if not the ring systems themselves, are considerably younger than the solar system

  14. The Saturn Ring Observer: In situ studies of planetary rings

    NASA Astrophysics Data System (ADS)

    Nicholson, P. D.; Tiscareno, M. S.; Spilker, L. J.

    2010-12-01

    As part of the Planetary Science Decadal Survey recently undertaken by the NRC's Space Studies Board for the National Academy of Sciences, studies were commissioned for a number of potential missions to outer planet targets. One of these studies examined the technological feasibility of a mission to carry out in situ studies of Saturn's rings, from a spacecraft placed in a circular orbit above the ring plane: the Saturn Ring Observer. The technical findings and background are discussed in a companion poster by T. R. Spilker et al. Here we outline the science goals of such a mission. Most of the fundamental interactions in planetary rings occur on spatial scales that are unresolved by flyby or orbiter spacecraft. Typical particle sizes in the rings of Saturn are in the 1 cm - 10 m range, and average interparticle spacings are a few meters. Indirect evidence indicates that the vertical thickness of the rings is as little as 5 - 10 m, which implies a velocity dispersion of only a few mm/sec. Theories of ring structure and evolution depend on the unknown characteristics of interparticle collisions and on the size distribution of the ring particles. The SRO could provide direct measurements of both the coefficient of restitution -- by monitoring individual collisions -- and the particles’ velocity dispersion. High-resolution observations of individual ring particles should also permit estimates of their spin states. Numerical simulations of Saturn’s rings incorporating both collisions and self-gravity predict that the ring particles are not uniformly distributed, but are instead clustered into elongated structures referred to as “self-gravity wakes”, which are continually created and destroyed on an orbital timescale. Theory indicates that the average separation between wakes in the A ring is of order 30-100 m. Direct imaging of self-gravity wakes, including their formation and subsequent dissolution, would provide critical validation of these models. Other

  15. Performance-Enhanced Activated Carbon Electrodes for Supercapacitors Combining Both Graphene-Modified Current Collectors and Graphene Conductive Additive

    PubMed Central

    Wang, Rubing; Qian, Yuting; Li, Weiwei; Zhu, Shoupu; Liu, Fengkui; Guo, Yufen; Chen, Mingliang; Li, Qi; Liu, Liwei

    2018-01-01

    Graphene has been widely used in the active material, conductive agent, binder or current collector for supercapacitors, due to its large specific surface area, high conductivity, and electron mobility. However, works simultaneously employing graphene as conductive agent and current collector were rarely reported. Here, we report improved activated carbon (AC) electrodes (AC@G@NiF/G) simultaneously combining chemical vapor deposition (CVD) graphene-modified nickel foams (NiF/Gs) current collectors and high quality few-layer graphene conductive additive instead of carbon black (CB). The synergistic effect of NiF/Gs and graphene additive makes the performances of AC@G@NiF/G electrodes superior to those of electrodes with CB or with nickel foam current collectors. The performances of AC@G@NiF/G electrodes show that for the few-layer graphene addition exists an optimum value around 5 wt %, rather than a larger addition of graphene, works out better. A symmetric supercapacitor assembled by AC@G@NiF/G electrodes exhibits excellent cycling stability. We attribute improved performances to graphene-enhanced conductivity of electrode materials and NiF/Gs with 3D graphene conductive network and lower oxidation, largely improving the electrical contact between active materials and current collectors. PMID:29762528

  16. Aging-related anatomical and biochemical changes in lymphatic collectors impair lymph transport, fluid homeostasis, and pathogen clearance

    PubMed Central

    Zolla, Valerio; Nizamutdinova, Irina Tsoy; Scharf, Brian; Clement, Cristina C; Maejima, Daisuke; Akl, Tony; Nagai, Takashi; Luciani, Paola; Leroux, Jean-Christophe; Halin, Cornelia; Stukes, Sabriya; Tiwari, Sangeeta; Casadevall, Arturo; Jacobs, William R; Entenberg, David; Zawieja, David C; Condeelis, John; Fooksman, David R; Gashev, Anatoliy A; Santambrogio, Laura

    2015-01-01

    The role of lymphatic vessels is to transport fluid, soluble molecules, and immune cells to the draining lymph nodes. Here, we analyze how the aging process affects the functionality of the lymphatic collectors and the dynamics of lymph flow. Ultrastructural, biochemical, and proteomic analysis indicates a loss of matrix proteins, and smooth muscle cells in aged collectors resulting in a decrease in contraction frequency, systolic lymph flow velocity, and pumping activity, as measured in vivo in lymphatic collectors. Functionally, this impairment also translated into a reduced ability for in vivo bacterial transport as determined by time-lapse microscopy. Ultrastructural and proteomic analysis also indicates a decrease in the thickness of the endothelial cell glycocalyx and loss of gap junction proteins in aged lymph collectors. Redox proteomic analysis mapped an aging-related increase in the glycation and carboxylation of lymphatic’s endothelial cell and matrix proteins. Functionally, these modifications translate into apparent hyperpermeability of the lymphatics with pathogen escaping from the collectors into the surrounding tissue and a decreased ability to control tissue fluid homeostasis. Altogether, our data provide a mechanistic analysis of how the anatomical and biochemical changes, occurring in aged lymphatic vessels, compromise lymph flow, tissue fluid homeostasis, and pathogen transport. PMID:25982749

  17. Performance-Enhanced Activated Carbon Electrodes for Supercapacitors Combining Both Graphene-Modified Current Collectors and Graphene Conductive Additive.

    PubMed

    Wang, Rubing; Qian, Yuting; Li, Weiwei; Zhu, Shoupu; Liu, Fengkui; Guo, Yufen; Chen, Mingliang; Li, Qi; Liu, Liwei

    2018-05-15

    Graphene has been widely used in the active material, conductive agent, binder or current collector for supercapacitors, due to its large specific surface area, high conductivity, and electron mobility. However, works simultaneously employing graphene as conductive agent and current collector were rarely reported. Here, we report improved activated carbon (AC) electrodes (AC@G@NiF/G) simultaneously combining chemical vapor deposition (CVD) graphene-modified nickel foams (NiF/Gs) current collectors and high quality few-layer graphene conductive additive instead of carbon black (CB). The synergistic effect of NiF/Gs and graphene additive makes the performances of AC@G@NiF/G electrodes superior to those of electrodes with CB or with nickel foam current collectors. The performances of AC@G@NiF/G electrodes show that for the few-layer graphene addition exists an optimum value around 5 wt %, rather than a larger addition of graphene, works out better. A symmetric supercapacitor assembled by AC@G@NiF/G electrodes exhibits excellent cycling stability. We attribute improved performances to graphene-enhanced conductivity of electrode materials and NiF/Gs with 3D graphene conductive network and lower oxidation, largely improving the electrical contact between active materials and current collectors.

  18. Jupiter's Main Ring

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A mosaic of four images taken through the clear filter (610 nanometers) of the solid state imaging (CCD) system aboard NASA's Galileo spacecraft on November 8, 1996, at a resolution of approximately 46 kilometers (km) per picture element (pixel) along the rings; however, because the spacecraft was only about 0.5 degrees above the ring plane, the image is highly foreshortened in the vertical direction. The images were obtained when Galileo was in Jupiter's shadow peering back toward the Sun; the ring was approximately 2,300,000 kilometers (km) away. The arc on the far right of the image is produced by sunlight scattered by small particles comprising Jupiter's upper atmospheric haze. The ring also efficiently scatters light, indicating that much of its brightness is due to particles that are microns or less in diameter. Such small particles are believed to have human-scale lifetimes, i.e., very brief compared to the solar system's age.

    Jupiter's ring system is composed of three parts -- a flat main ring, a lenticular halo interior to the main ring, and the gossamer ring, which lies exterior to the main ring. The near and far arms of Jupiter's main ring extend horizontally across the mosaic, joining together at the ring's ansa, on the far left side of the figure. The near arm of the ring appears to be abruptly truncated close to the planet, at the point where it passes into Jupiter's shadow. Some radial structure is barely visible across the ring's ansa. A faint mist of particles can be seen above and below the main rings; this vertically extended 'halo' is unusual in planetary rings, and is probably caused by electromagnetic forces pushing the smallest grains out of the ring plane. Because of shadowing, the halo is not visible close to Jupiter in the lower right part of the mosaic.

    Jupiter's main ring is a thin strand of material encircling the planet. The diffuse innermost boundary begins at approximately 123,000 km. The main ring's outer radius is found to be

  19. Jupiter's ring

    NASA Technical Reports Server (NTRS)

    1979-01-01

    First evidence of a ring around the planet Jupiter is seen in this photograph taken by Voyager 1 on March 4, 1979. The multiple exposure of the extremely thin faint ring appears as a broad light band crossing the center of the picture. The edge of the ring is 1,212,000 km from the spacecraft and 57,000 km from the visible cloud deck of Jupiter. The background stars look like broken hair pins because of spacecraft motion during the 11 minute 12 second exposure. The wavy motion of the star trails is due to the ultra-slow natural oscillation of the spacecraft (with a period of 78 seconds). The black dots are geometric calibration points in the camera. The ring thickness is estimated to be 30 km or less. The photograph was part of a sequence planned to search for such rings in Jupiter's equatorial plane. The ring has been invisible from Earth because of its thinness and its transparency when viewed at any angle except straight on. JPL manages and controls the Voyager Project for NASA's Office of Space Science.

  20. Electron Gun and Collector Design for 94 GHz Gyro-amplifiers.

    NASA Astrophysics Data System (ADS)

    Nguyen, K.; Danly, B.; Levush, B.; Blank, M.; True, D.; Felch, K.; Borchard, P.

    1997-05-01

    The electrical design of the magnetron injection gun and collector for high average power TE_01 gyro-amplifiers has recently been completed using the EGUN(W.B. Herrmannsfeldt, AIP Conf. Proc. 177, pp. 45-58, 1988.) and DEMEOS(R. True, AIP Conf. Proc. 297, pp. 493-499, 1993.) codes. The gun employs an optimized double-anode geometry and a radical cathode cone angle of 500 to achieve superior beam optics that are relatively insensitive to electrode misalignments and field errors. Perpendicular velocity spread of 1.6% at an perpendicular to axial velocity ratio of 1.52 is obtained for a 6 A, 65 kV beam. The 1.28" diameter collector, which also serves as the output waveguide, has an average power density of < 350 W/cm^2 for a 59 kW average power beam. Details will be presented at the conference.

  1. Optimization of insulation of a linear Fresnel collector

    NASA Astrophysics Data System (ADS)

    Ardekani, Mohammad Moghimi; Craig, Ken J.; Meyer, Josua P.

    2017-06-01

    This study presents a simulation based optimization study of insulation around the cavity receiver of a Linear Fresnel Collector. This optimization study focuses on minimizing heat losses from a cavity receiver (maximizing plant thermal efficiency), while minimizing insulation cross-sectional area (minimizing material cost and cavity dead load), which leads to a cheaper and thermally more efficient LFC cavity receiver.

  2. The vertical structure of the F ring of Saturn from ring-plane crossings

    NASA Astrophysics Data System (ADS)

    Scharringhausen, Britt R.; Nicholson, Philip D.

    2013-11-01

    We present a photometric model of the rings of Saturn which includes the main rings and an F ring, inclined to the main rings, with a Gaussian vertical profile of optical depth. This model reproduces the asymmetry in brightness between the east and west ansae of the rings of Saturn that was observed by the Hubble Space Telescope (HST) within a few hours after the Earth ring-plane crossing (RPX) of 10 August 1995. The model shows that during this observation the inclined F ring unevenly blocked the east and west ansae of the main rings. The brightness asymmetry produced by the model is highly sensitive to the vertical thickness and radial optical depth of the F ring. The F-ring model that best matches the observations has a vertical full width at half maximum of 13 ± 7 km and an equivalent depth of 10 ± 4 km. The model also reproduces the shape of the HST profiles of ring brightness vs. distance from Saturn, both before and after the time of ring-plane crossing. Smaller asymmetries observed before the RPX, when the Earth was on the dark side of the rings, cannot be explained by blocking of the main rings by the F ring or vice versa and are probably instead due to the intrinsic longitudinal variation exhibited by the F ring.

  3. Experiencing everyday ethics in context: frontline data collectors perspectives and practices of bioethics.

    PubMed

    Kingori, Patricia

    2013-12-01

    Data collectors play a vital role in producing scientific knowledge. They are also an important component in understanding the practice of bioethics. Yet, very little attention has been given to their everyday experiences or the context in which they are expected to undertake these tasks. This paper argues that while there has been extensive philosophical attention given to 'the what' and 'the why' in bioethics - what action is taken place and why - these should be considered along 'the who' - who are the individuals tasked with bioethics and what can their insights bring to macro-level and abstract discussions of bioethics. This paper will draw on the philosophical theories of Paul Ricoeur which compliments a sociological examination of data collectors experiences and use of their agency coupled with a concern for contextual and institutional factors in which they worked. In emphasising everyday experiences and contexts, I will argue that data collectors' practice of bioethics was shaped by their position at the frontline of face-to-face interactions with medical research participants and community members, alongside their own personal ethical values and motivations. Institutional interpretations of bioethics also imposed certain parameters on their bioethical practice but these were generally peripheral to their sense of obligation and the expectations conferred in witnessing the needs and suffering of those they encountered during their quotidian research duties. This paper will demonstrate that although the principle of autonomy has dominated discussions of bioethics and gaining informed consent seen as a central facet of ethical research by many research institutions, for data collectors this principle was seldom the most important marker of their ethical practice. Instead, data collectors were concerned with remedying the dilemmas they encountered through enacting their own interpretations of justice and beneficence and imposing their own agency on the

  4. Experiencing everyday ethics in context: Frontline data collectors perspectives and practices of bioethics☆

    PubMed Central

    Kingori, Patricia

    2013-01-01

    Data collectors play a vital role in producing scientific knowledge. They are also an important component in understanding the practice of bioethics. Yet, very little attention has been given to their everyday experiences or the context in which they are expected to undertake these tasks. This paper argues that while there has been extensive philosophical attention given to ‘the what’ and ‘the why’ in bioethics – what action is taken place and why – these should be considered along ‘the who’ – who are the individuals tasked with bioethics and what can their insights bring to macro-level and abstract discussions of bioethics. This paper will draw on the philosophical theories of Paul Ricoeur which compliments a sociological examination of data collectors experiences and use of their agency coupled with a concern for contextual and institutional factors in which they worked. In emphasising everyday experiences and contexts, I will argue that data collectors' practice of bioethics was shaped by their position at the frontline of face-to-face interactions with medical research participants and community members, alongside their own personal ethical values and motivations. Institutional interpretations of bioethics also imposed certain parameters on their bioethical practice but these were generally peripheral to their sense of obligation and the expectations conferred in witnessing the needs and suffering of those they encountered during their quotidian research duties. This paper will demonstrate that although the principle of autonomy has dominated discussions of bioethics and gaining informed consent seen as a central facet of ethical research by many research institutions, for data collectors this principle was seldom the most important marker of their ethical practice. Instead, data collectors were concerned with remedying the dilemmas they encountered through enacting their own interpretations of justice and beneficence and imposing their own

  5. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes

    PubMed Central

    Yang, Chun-Peng; Yin, Ya-Xia; Zhang, Shuai-Feng; Li, Nian-Wu; Guo, Yu-Guo

    2015-01-01

    Lithium metal is one of the most attractive anode materials for electrochemical energy storage. However, the growth of Li dendrites during electrochemical deposition, which leads to a low Coulombic efficiency and safety concerns, has long hindered the application of rechargeable Li-metal batteries. Here we show that a 3D current collector with a submicron skeleton and high electroactive surface area can significantly improve the electrochemical deposition behaviour of Li. Li anode is accommodated in the 3D structure without uncontrollable Li dendrites. With the growth of Li dendrites being effectively suppressed, the Li anode in the 3D current collector can run for 600 h without short circuit and exhibits low voltage hysteresis. The exceptional electrochemical performance of the Li-metal anode in the 3D current collector highlights the importance of rational design of current collectors and reveals a new avenue for developing Li anodes with a long lifespan. PMID:26299379

  6. Carbon-Coated Current Collectors for High-Power Lithium Ion Secondary Batteries III

    DTIC Science & Technology

    2014-02-11

    performance for use modified Al foil as current collector of the cathode. LiFePO4 (LFPO) was used as active materials for test, and this cathode material was...shown in Fig. 4. It shows the rate capacity of LiFePO4 (LFPO) get poorer when using PAT-Al as current collector, and this might be attributed to...e c ap ac ity (m Ah /g ) C rate Al (3.01mg/cm2) PAT-Al (2.48mg/cm2) PBT-Al (2.86mg/cm2) PCT-Al (3.01mg/cm2) commercial LiFePO4 (Ale84) on

  7. Gyrotron multistage depressed collector based on E × B drift concept using azimuthal electric field. I. Basic design

    NASA Astrophysics Data System (ADS)

    Wu, Chuanren; Pagonakis, Ioannis Gr.; Avramidis, Konstantinos A.; Gantenbein, Gerd; Illy, Stefan; Thumm, Manfred; Jelonnek, John

    2018-03-01

    Multistage Depressed Collectors (MDCs) are widely used in vacuum tubes to regain energy from the depleted electron beam. However, the design of an MDC for gyrotrons, especially for those deployed in fusion experiments and future power plants, is not trivial. Since gyrotrons require relatively high magnetic fields, their hollow annular electron beam is magnetically confined in the collector. In such a moderate magnetic field, the MDC concept based on E × B drift is very promising. Several concrete design approaches based on the E × B concept have been proposed. This paper presents a realizable design of a two-stage depressed collector based on the E × B concept. A collector efficiency of 77% is achievable, which will be able to increase the total gyrotron efficiency from currently 50% to more than 60%. Secondary electrons reduce the efficiency only by 1%. Moreover, the collector efficiency is resilient to the change of beam current (i.e., space charge repulsion) and beam misalignment as well as magnetic field perturbations. Therefore, compared to other E × B conceptual designs, this design approach is promising and fairly feasible.

  8. Ring-diameter Ratios for Multi-ring Basins Average 2.0(0.5)D

    NASA Technical Reports Server (NTRS)

    Pike, R. J.; Spudis, P. D.

    1985-01-01

    The spacing of the concentric rings of planetary impact basins was studied. It is shown that a radial increment of x (sup 0.5) D, where x is about 2.0 and D = ring diameter, separates both (1) adjacent least-squares groups of rings and arcs of multi-ring basins on Mars, Mercury, and the Moon; and (2) adjacent rings of individual basins on the three planets. Statistics for ratios of ring diameters are presented, the first and most-applied parameter of ring spacing. It is found that ratios excluding rings flanking the main ring also have a mean spacing increment of about 2.0. Ratios including such rings, as for the least-squares groups, and (1) above, have a larger increment, averaging 2.1. The F-test indicates, that these spacings of basin ring locations, and mode of ring formation are controlled by the mechanics of the impact event itself, rather than by crustal properties.

  9. Theoretical studies of thermionic conversion of solar energy with graphene as emitter and collector

    NASA Astrophysics Data System (ADS)

    Olawole, Olukunle C.; De, Dilip Kumar

    2018-01-01

    Thermionic energy conversion (TEC) using nanomaterials is an emerging field of research. It is known that graphene can withstand temperatures as high as 4600 K in vacuum, and it has been shown that its work function can be engineered from a high value (for monolayer/bilayer) of 4.6 eV to as low as 0.7 eV. Such attractive electronic properties (e.g., good electrical conductivity and high dielectric constant) make engineered graphene a good candidate as an emitter and collector in a thermionic energy converter for harnessing solar energy efficiently. We have used a modified Richardson-Dushman equation and have adopted a model where the collector temperature could be controlled through heat extraction in a calculated amount and a magnet can be attached on the back surface of the collector for future control of the space-charge effect. Our work shows that the efficiency of solar energy conversion also depends on power density falling on the emitter surface, and that a power conversion efficiency of graphene-based solar TEC as high as 55% can be easily achieved (in the absence of the space-charge effect) through proper choice of work functions, collector temperature, and emissivity of emitter surfaces. Such solar energy conversion would reduce our dependence on silicon solar panels and offers great potential for future renewable energy utilization.

  10. Long-term weathering effects on the thermal performance of the solargenics (liquid) solar collector at outdoor conditions. [Marshall Space Flight Center Solar test facility

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The test procedures and the results obtained during the evaluation of a single-covered liquid solar collector are presented. The tests were performed under outdoor natural conditions. The collector was under stagnation conditions for a total of approximately ten months. The solar collector is a liquid, single-glazed, flat plate collector, and is about 240 inches long, and 3.8 inches in depth.

  11. A compact E × B filter: A multi-collector cycloidal focusing mass spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blase, Ryan C., E-mail: rblase@swri.edu; Miller, Greg; Brockwell, Tim

    2015-10-15

    A compact E × B mass spectrometer is presented. The mass spectrometer presented is termed a “perfect focus” mass spectrometer as the resolution of the device is independent of both the initial direction and energy of the ions (spatial and energy independent). The mass spectrometer is small in size (∼10.7 in.{sup 3}) and weight (∼2 kg), making it an attractive candidate for portability when using small, permanent magnets. A multi-collector Faraday cup design allows for the detection of multiple ion beams in discrete collectors simultaneously; providing the opportunity for isotope ratio monitoring. The mass resolution of the device is aroundmore » 400 through narrow collector slits and the sensitivity of the device follows expected theoretical calculations of the ion current produced in the electron impact ion source. Example mass spectra obtained from the cycloidal focusing mass spectrometer are presented as well as information on mass discrimination based on instrumental parameters and isotope ratio monitoring of certain ion signals in separate Faraday cups.« less

  12. Jupiter's Ring Halo

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A mosaic of four images taken through the clear filter (610 nanometers) of the solid state imaging (CCD) system aboard NASA's Galileo spacecraft on November 8, 1996, at a resolution of approximately 46 kilometers (km) per picture element (pixel) along the rings; however, because the spacecraft was only about 0.5 degrees above the ring plane, the image is highly foreshortened in the vertical direction. The images were obtained when Galileo was in Jupiter's shadow peering back toward the Sun; the ring was approximately 2,300,000 kilometers (km) away. The arc on the far right of the image is produced by sunlight scattered by small particles comprising Jupiter's upper atmospheric haze. The ring also efficiently scatters light, indicating that much of its brightness is due to particles that are microns or less in diameter. Such small particles are believed to have human-scale lifetimes, i.e., very brief compared to the solar system's age.

    Jupiter's ring system is composed of three parts -- a flat main ring, a lenticular halo interior to the main ring, and the gossamer ring, which lies exterior to the main ring. The near and far arms of Jupiter's main ring extend horizontally across the mosaic, joining together at the ring's ansa, on the far left side of the figure. The near arm of the ring appears to be abruptly truncated close to the planet, at the point where it passes into Jupiter's shadow.

    A faint mist of particles can be seen above and below the main rings; this vertically extended, toroidal 'halo' is unusual in planetary rings, and is probably caused by electromagnetic forces which can push small grains out of the ring plane. Halo material is present across this entire image, implying that it reaches more than 27,000 km above the ring plane. Because of shadowing, the halo is not visible close to Jupiter in the lower right part of the mosaic. In order to accentuate faint features in the image, different brightnesses are shown through color, with the brightest

  13. Saturn Ring

    NASA Image and Video Library

    2007-12-12

    Like Earth, Saturn has an invisible ring of energetic ions trapped in its magnetic field. This feature is known as a "ring current." This ring current has been imaged with a special camera on Cassini sensitive to energetic neutral atoms. This is a false color map of the intensity of the energetic neutral atoms emitted from the ring current through a processed called charged exchange. In this process a trapped energetic ion steals and electron from cold gas atoms and becomes neutral and escapes the magnetic field. The Cassini Magnetospheric Imaging Instrument's ion and neutral camera records the intensity of the escaping particles, which provides a map of the ring current. In this image, the colors represent the intensity of the neutral emission, which is a reflection of the trapped ions. This "ring" is much farther from Saturn (roughly five times farther) than Saturn's famous icy rings. Red in the image represents the higher intensity of the particles, while blue is less intense. Saturn's ring current had not been mapped before on a global scale, only "snippets" or areas were mapped previously but not in this detail. This instrument allows scientists to produce movies (see PIA10083) that show how this ring changes over time. These movies reveal a dynamic system, which is usually not as uniform as depicted in this image. The ring current is doughnut shaped but in some instances it appears as if someone took a bite out of it. This image was obtained on March 19, 2007, at a latitude of about 54.5 degrees and radial distance 1.5 million kilometres (920,000 miles). Saturn is at the center, and the dotted circles represent the orbits of the moon's Rhea and Titan. The Z axis points parallel to Saturn's spin axis, the X axis points roughly sunward in the sun-spin axis plane, and the Y axis completes the system, pointing roughly toward dusk. The ion and neutral camera's field of view is marked by the white line and accounts for the cut-off of the image on the left. The

  14. Jupiter Ring

    NASA Image and Video Library

    2000-03-23

    First evidence of a ring around the planet Jupiter is seen in this photograph taken by Voyager 1 on March 4, 1979. The multiple exposure of the extremely thin faint ring appears as a broad light band crossing the center of the picture. The edge of the ring is 1,212,000 km from the spacecraft and 57,000 km from the visible cloud deck of Jupiter. The background stars look like broken hair pins because of spacecraft motion during the 11 minute 12 second exposure. The wavy motion of the star trails is due to the ultra-slow natural oscillation of the spacecraft (with a period of 78 seconds). The black dots are geometric calibration points in the camera. The ring thickness is estimated to be 30 km or less. The photograph was part of a sequence planned to search for such rings in Jupiter's equatorial plane. The ring has been invisible from Earth because of its thinness and its transparency when viewed at any angle except straight on. JPL manages and controls the Voyager Project for NASA's Office of Space Science. http://photojournal.jpl.nasa.gov/catalog/PIA02251

  15. Compendium of information on identification and testing of materials for plastic solar thermal collectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGinniss, V.D.; Sliemers, F.A.; Landstrom, D.K.

    1980-07-31

    This report is intended to organize and summarize prior and current literature concerning the weathering, aging, durability, degradation, and testing methodologies as applied to materials for plastic solar thermal collectors. Topics covered include (1) rate of aging of polymeric materials; (2) environmental factors affecting performance; (3) evaluation and prediction of service life; (4) measurement of physical and chemical properties; (5) discussion of evaluation techniques and specific instrumentation; (6) degradation reactions and mechanisms; (7) weathering of specific polymeric materials; and (8) exposure testing methodology. Major emphasis has been placed on defining the current state of the art in plastics degradation andmore » on identifying information that can be utilized in applying appropriate and effective aging tests for use in projecting service life of plastic solar thermal collectors. This information will also be of value where polymeric components are utilized in the construction of conventional solar collectors or any application where plastic degradation and weathering are prime factors in material selection.« less

  16. Performance of double -pass solar collector with CPC and fins for heat transfer enhancement

    NASA Astrophysics Data System (ADS)

    Alfegi, Ebrahim M. A.; Abosbaia, Alhadi A. S.; Mezughi, Khaled M. A.; Sopian, Kamaruzzaman

    2013-06-01

    The temperature of photovoltaic modules increases when it absorbs solar radiation, causing a decrease in efficiency. This undesirable effect can be partially avoided by applying a heat recovery unit with fluid circulation (air or water) with the photovoltaic module. Such unit is called photovoltaic / thermal collector (pv/t) or hybrid (pv/t). In this unit, photovoltaic cells were pasted directly on the flat plate absorber. An experimental study of a solar air heater with photovoltaic cell located at the absorber with fins and compound parabolic collector for heat transfer enhancement and increasing the number of reflection on the cells have been conducted. The performance of the photovoltaic, thermal, and combined pv/t collector over range of operating conditions and the results was discussed. Results at solar irradiance of 500 W/m2 show that the combined pv/t efficiency is increasing from 37.28 % to 81.41 % at mass flow rates various from 0.029 to 0.436 kg/s.

  17. Parametric study of a concentric coaxial glass tube solar air collector: a theoretical approach

    NASA Astrophysics Data System (ADS)

    Dabra, Vishal; Yadav, Avadhesh

    2017-12-01

    Concentric coaxial glass tube solar air collector (CCGTSAC) is a quite innovative development in the field of solar collectors. This type of collector is specially designed to produce hot air. A mathematical model based on the energy conservation equations for small control volumes along the axial direction of concentric coaxial glass tube (CCGT) is developed in this paper. It is applied to predict the effect of thirteen different parameters on the exit air temperature rise and appeared that absorber tube size, length of CCGT, absorptivity of transparent glazing, transmissivity of transparent glazing, absorptivity of absorber coating, inlet or ambient air temperature, mass flow rate, variation of thermo-physical properties of air, wind speed, solar intensity and vacuum present between transparent glazing and absorber tube are significant parameters. Results of the model were analysed to predict the effect of key parameters on the thermal performance of a CCGTSAC for exit air temperature rise about 43.9-58.4 °C.

  18. Parametric study of a concentric coaxial glass tube solar air collector: a theoretical approach

    NASA Astrophysics Data System (ADS)

    Dabra, Vishal; Yadav, Avadhesh

    2018-06-01

    Concentric coaxial glass tube solar air collector (CCGTSAC) is a quite innovative development in the field of solar collectors. This type of collector is specially designed to produce hot air. A mathematical model based on the energy conservation equations for small control volumes along the axial direction of concentric coaxial glass tube (CCGT) is developed in this paper. It is applied to predict the effect of thirteen different parameters on the exit air temperature rise and appeared that absorber tube size, length of CCGT, absorptivity of transparent glazing, transmissivity of transparent glazing, absorptivity of absorber coating, inlet or ambient air temperature, mass flow rate, variation of thermo-physical properties of air, wind speed, solar intensity and vacuum present between transparent glazing and absorber tube are significant parameters. Results of the model were analysed to predict the effect of key parameters on the thermal performance of a CCGTSAC for exit air temperature rise about 43.9-58.4 °C.

  19. A precipitation collector and automated pH-monitoring system

    Treesearch

    Gerald M. Aubertin; Benjamin C. Thorner; John Campbell

    1976-01-01

    A sensitive precipitation collector and automated pH-monitoring system are described. This system provides for continuous monitoring and recording of the pH of precipitation. Discrete or composite rainwater samples are manually obtainable for chemical analyses. The system can easily be adapted to accommodate a flow-through specific conductance probe and monitoring...

  20. Advanced evacuated tube collectors

    NASA Astrophysics Data System (ADS)

    Schertz, W. W.; Hull, J. R.; Winston, R.; Ogallagher, J.

    1985-04-01

    The essence of the design concept for these new collectors is the integration of moderate levels of nonimaging concentration inside the evacuated tube itself. This permanently protects the reflection surfaces and allows the use of highly reflecting front surface mirrors with reflectances greater than 95%. Previous fabrication and long term testing of a proof-of-concept prototype has established the technical success of the concept. Present work is directed toward the development of a manufacturable unit that will be suitable for the widest possible range of applications. Design alternatives include scaling up the original prototype's tube diameter from 5 cm to 10 cm, using an internal shaped metal concentrating reflector, using a variety of profile shapes to minimize so-called gap losses and accommodate both single ended and double-ended flow geometries, and allowing the use of heat pipes for the absorber tube.

  1. Preliminary Microstructural and Microscratch Results of Ni-Cr-Fe and Cr3C2-NiCr Coatings on Magnesium Substrate

    NASA Astrophysics Data System (ADS)

    Istrate, B.; Munteanu, C.; Lupescu, S.; Benchea, M.; Vizureanu, P.

    2017-06-01

    Thermal coatings have a large scale application in aerospace and automotive field, as barriers improving wear mechanical characteristics and corrosion resistance. In present research, there have been used two types of coatings, Ni-Cr-Fe, respectively Cr3C2-NiCr which were deposited on magnesium based alloys (pure magnesium and Mg-30Y master alloy). There have been investigated the microstructural aspects through scanning electronic microscopy and XRD analysis and also a series of mechanical characteristics through microscratch and indentation determinations. The results revealed the formation of some adherent layers resistant to the penetration of the metallic indenter, the coatings did not suffer major damages. Microstructural analysis highlighted the formation of Cr3C2, Cr7C3, Cr3Ni2, Cr7Ni3, FeNi3, Cr-Ni phases. Also, the apparent coefficient of friction for Ni-Cr-Fe coatings presents superior values than Cr3C2-NiCr coatings.

  2. Elements of a nitrogen budget for a stream collector. Appendix IX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-01-01

    A simple diagram of a preliminary nitrogen budget for a generalized collector-gatherer is presented. The internal anatomy of chironomus sp. indicates its potential for fairly complex physiological processes. 26 refs., 2 figs.

  3. Topological ring currents in the "empty" ring of benzo-annelated perylenes.

    PubMed

    Dickens, Timothy K; Mallion, Roger B

    2011-01-27

    Cyclic conjugation in benzo-annelated perylenes is examined by means of the topological π-electron ring currents calculated for each of their constituent rings, in a study that is an exact analogy of a recent investigation by Gutman et al. based on energy-effect values for the corresponding rings in each of these structures. "Classical" approaches, such as Kekulé structures, Clar "sextet" formulas, and circuits of conjugation, predict that the central ring in perylene is "empty" and thus contributes negligibly to cyclic conjugation. However, conclusions from the present calculations of topological ring currents agree remarkably with those arising from the earlier study involving energy-effect values in that, contrary to what would be predicted from the classical approaches, rings annelated in an angular fashion relative to the central ring of these perylene structures materially increase the extent of that ring's involvement in cyclic conjugation. It is suggested that such close quantitative agreement between the predictions of these two superficially very different indices (energy effect and topological ring current) might be due to the fact that, ultimately, both depend, albeit in ostensibly quite different ways, only on an adjacency matrix that contains information about the carbon-carbon connectivity of the conjugated system in question.

  4. Correlation between bulk- and surface chemistry of Cr-tanned leather and the release of Cr(III) and Cr(VI).

    PubMed

    Hedberg, Yolanda S; Lidén, Carola; Odnevall Wallinder, Inger

    2014-09-15

    About 1-3% of the adult general population in Europe is allergic to chromium (Cr). The assessment of the potential release of Cr(III) and Cr(VI) from leather is hence important from a human health and environmental risk perspective. The Cr(VI) content in leather was recently restricted in the European Union. The aim of this study was to assess possible correlations between the bulk and surface chemistry of leather, released Cr(III) and Cr(VI), and capacities of co-released leather specific species to reduce and complex released Cr. Four differently tanned leathers were characterized by scanning electron microscopy with energy dispersive spectroscopy, X-ray photoelectron spectroscopy, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, and the diphenylcarbazide colorimetric method. Their characteristics were compared with results on Cr(III) and Cr(VI) release into artificial sweat (ASW, pH<6.5) and phosphate buffer (PB, pH 7.5-8.0), measured by means of spectrophotometry and atomic absorption spectroscopy. Co-released leather-specific species were shown to reduce Cr(VI), both in ASW and in PB. Their reduction capacities correlated with findings of the surface content of Cr and of released Cr. Leather samples without this capacity, and with less aromatic surface groups visible by ATR-FTIR, revealed Cr(VI) both at the surface and in solution (PB). Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Nitrile O-ring Cracking: A Case of Vacuum Flange O-ring Failures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dees, Craig

    2016-07-01

    A review of recent nitrile O-ring failures in ISO-KF vacuum flange connections in glovebox applications is presented. An investigation of a single “isolated” o-ring failure leads to the discovery of cracked nitrile o-rings in a glovebox atmospheric control unit. The initial cause of the o-ring failure is attributed to ozone degradation. However, additional investigation reveals nitrile o-ring cracking on multiple gloveboxes and general purpose piping, roughly 85% of the nitrile o-rings removed for inspection show evidence of visible cracking after being in service for 18 months or less. The results of material testing and ambient air testing is presented, elevatedmore » ozone levels are not found. The contributing factors of o-ring failure, including nitrile air sensitivity, inadequate storage practices, and poor installation techniques, are discussed. A discussion of nitrile o-ring material properties, the benefits and limitations, and alternate materials are discussed. Considerations for o-ring material selection, purchasing, storage, and installation are presented in the context of lessons learned from the nitrile o-ring cracking investigation. This paper can be presented in 20 minutes and does not require special accommodations or special audio visual devices.« less

  6. Microstructure and Corrosion Behavior of CrN and CrSiCN Coatings

    NASA Astrophysics Data System (ADS)

    Cai, Feng; Yang, Qi; Huang, Xiao; Wei, Ronghua

    2010-07-01

    Three CrN-based coatings were deposited on 17-4PH stainless steel substrate using plasma enhanced magnetron sputtering (PEMS) technique. The microstructure and corrosion resistance were evaluated to examine the effect of Si and C in the coatings. The three coating compositions were CrN(Cr0.69N0.31), CrSiCN-1 (Cr0.55Si0.014C0.14N0.3), and CrSiCN-2 (Cr0.43Si0.037C0.24N0.3). The testing results indicated that with the increase of Si concentration, the coating microstructure transformed from B1 structure to B1 + Si3N4 structure. All the three coating systems were subjected to electrochemical tests in 3.5% NaCl solution at room temperature. Potentiodynamic polarization results revealed that the CrSiCN-2 coating had a higher anodic current density and a lower corrosion potential when compared to the CrN and CrSiCN-1 coatings. Extended exposure in 3.5% NaCl caused several localized corrosion to the CrSiCN-2 coating due to the porous coating structure. Electrochemical impedance spectroscopic measurements demonstrated that the CrSiCN-1 has better corrosion resistance than CrN and CrSiCN-2.

  7. DC-Powered Jumping Ring

    NASA Astrophysics Data System (ADS)

    Jeffery, Rondo N.; Amiri, Farhang

    2016-02-01

    The classroom jumping ring demonstration is nearly always performed using alternating current (AC), in which the ring jumps or flies off the extended iron core when the switch is closed. The ring jumps higher when cooled with liquid nitrogen (LN2). We have performed experiments using DC to power the solenoid and find similarities and significant differences from the AC case. In particular, the ring does not fly off the core but rises a short distance and then falls back. If the ring jumps high enough, the rising and the falling motion of the ring does not follow simple vertical motion of a projectile. This indicates that there are additional forces on the ring in each part of its motion. Four possible stages of the motion of the ring with DC are identified, which result from the ring current changing directions during the jump in response to a changing magnetic flux through the moving ring.

  8. Infrared spectra and density functional calculations for SMO2 molecules (M = Cr, Mo, W).

    PubMed

    Wang, Xuefeng; Andrews, Lester

    2009-08-06

    Infrared absorptions of the matrix isolated SMO2 (M = Cr, Mo, W) molecules were observed following laser-ablated metal atom reactions with SO2 during condensation in solid argon and neon. The symmetric and antisymmetric M-O stretching mode assignments were confirmed by appropriate S18O2 and S(16,18)O2 isotopic shifts. The much weaker Cr-S stretching mode was identified through its 34S shift. Density functional (B3LYP and BPW91) calculations were performed to obtain molecular structures and to reproduce the infrared spectra. Computed pyramidal structures for the SMO2 molecules are very similar to those for the analogous trioxides and this functional group in [MO2S(bdt)]2- complexes. Additional weaker absorptions are assigned to the (SO2)(SMO2) adducts, which are stabilized by a four-membered ring.

  9. Experimental study on flat plate air solar collector using a thin sand layer

    NASA Astrophysics Data System (ADS)

    Lati, Moukhtar; Boughali, Slimane; Bouguettaia, Hamza; Mennouche, Djamel; Bechki, Djamel

    2016-07-01

    A flat plate air solar collector was constructed in the laboratory of New and Renewable Energy in Arid Zones LENREZA, Ouargla University-South East Algeria. The absorber of the flat plate air solar collector was laminated with a thin layer of local sand. This acted as a thermal storage system (packed bed) with a collecting area of 2.15 m2 (0.86 m × 2.5 m). It was noticed that the solar heater integrated with the thermal storage material delivered comparatively higher temperatures; thus, giving a better efficiency than the air heater without the thermal storage system.

  10. LIDAR as an alternative to passive collectors to measure pesticide spray drift

    NASA Astrophysics Data System (ADS)

    Gregorio, Eduard; Rosell-Polo, Joan R.; Sanz, Ricardo; Rocadenbosch, Francesc; Solanelles, Francesc; Garcerá, Cruz; Chueca, Patricia; Arnó, Jaume; del Moral, Ignacio; Masip, Joan; Camp, Ferran; Viana, Rafael; Escolà, Alexandre; Gràcia, Felip; Planas, Santiago; Moltó, Enrique

    2014-01-01

    Pesticide spray drift entails a series of risks and costs in terms of human, animal and environmental well-being. A proper understanding of this phenomenon is essential to minimise these risks. However, most conventional methods used in drift measurement are based on point collectors which are unable to obtain information concerning the temporal or spatial evolution of the pesticide cloud. Such methods are also costly, labour-intensive, and require a considerable amount of time. The aim of this paper is to propose a method to measure the spray drift based on lidar (LIght Detection And Ranging) and to prove that it can be an alternative to passive collectors. An analytical model is proposed to relate the measurements obtained through passive collectors and those obtained with lidar systems considering several spray application and meteorological parameters. The model was tested through an experimental campaign involving multiple ground spray tests. A lidar system and two types of passive collectors (nylon strings and water-sensitive paper) were used simultaneously to measure the drift. The results showed for each test a high coefficient of determination (R2 ≈ 0.90) between the lidar signal and the tracer mass captured by the nylon strings. This coefficient decreased (R2 = 0.77) when all tests were considered together. Lidar measurements were also used to study the evolution of the pesticide cloud with high range (1.5 m) and temporal resolution (1 s) and to estimate its velocity. Furthermore, a very satisfactory adjustment (R2 = 0.89) was observed between the tracer mass collected by the nylon lines and the coverage on water-sensitive paper sheets. These results are in accordance with the proposed analytical model and allow the conclusion that the application and meteorological parameters can be considered spatially invariant for a given test but are not invariant for different tests.

  11. Collector sealants and breathing. Final Report, 25 September 1978-31 December 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendelsohn, M A; Luck, R M; Yeoman, F A

    1980-02-20

    The objectives of this program were: (1) to investigate the pertinent properties of a variety of possible sealants for solar collectors and identify the most promising candidates, and (2) to study the effect of breathing in flat-plate, thermal solar collector units. The study involved two types of sealants, Class PS which includes preformed seals or gaskets and Class SC which includes sealing compounds or caulks. It was the intent of the study to obtain data regarding initial properties of candidate elastomers from manufacturers and from the technical literature and to use those sources to provide data pertaining to endurance ofmore » these materials under environmental service conditions. Where necessary, these data were augmented by experimental measurements. Environmental stresses evaluated by these measurements included elevated temperatures, moisture, ultraviolet light, ozone and oxygen, and fungus. The second major area of the work involved a study of the effects of materials used and design on the durability of solar collectors. Factors such as design, fabrication, materials of construction, seals and sealing techniques and absorber plate coatings were observed on actual field units removed from service. Such phenomena as leakage, corrosion and formation of deposits on glazing and absorber plate were noted. An evaluation of the properties of several desiccants was made in order to providemeans to mitigate the deleterious effects of water on collector life. Adsorbents for organic degradation products of sealants were also investigated in order to protect the glazing and absorber plate from deposited coatings. Since adsorbents and desiccants in general tend to take up both water and organic decomposition products, relative affinities of a number of these agents for water and for organic compounds were determined . Results are presented in detail.« less

  12. Metal-free current collectors based on graphene materials for supecapacitors produced by 3D printing

    NASA Astrophysics Data System (ADS)

    Baskakov, S. A.; Baskakova, Yu. V.; Lyskov, N. V.; Dremova, N. N.; Shul'ga, Yu. M.

    2017-10-01

    Supercapacitor (SC) current collectors with electrodes made of graphite oxide reduced during microwave exfoliation are produced from a commercial filament with a graphene component via layer-by-layer fusing with a 3D printer. The separator is made of a graphene oxide film. The current collectors are investigated by means of IR spectroscopy. Electrochemical tests are performed for the assembled SC that include tests of its cyclic stability up to 1000 cycles.

  13. Oxygen Abundances in the Rings of Polar-Ring Galaxies

    NASA Astrophysics Data System (ADS)

    Radtke, I. R.; Eskridge, P. B.; Pogge, R. W.

    2003-05-01

    Polar ring galaxies (PRGs) are typically early-type (S0 or E) galaxies surrounded by rings of gas, dust, and stars orbiting nearly perpendicular to the principle plane of the host galaxy (Whitmore et al. 1990 AJ 100 1489). Given that PRGs have two separate, perpendicular axes of rotation, it is clear on dynamical grounds that PRGs are the products of merger events between two galaxies, but are observed in a state where two distinct kinematic and morphological structures are still apparent. As such, they present a unique opportunity to study merger events in systems where the debris is not confused with material from the host. Our understanding of the relative importance of polar ring systems in the overall process of galaxy evolution is confounded by our lack of knowledge regarding the typical lifetimes and evolutionary histories of polar rings. A crucial factor for understanding the formation and evolution of PRGs is information regarding the elemental abundances of the ring material. Polar rings are typically rich in {\\protectH 2} regions. Optical spectroscopy of these {\\protectH 2} regions can tell us their density, temperature, and oxygen abundance. Our earlier work (Eskridge & Pogge 1997 ApJ 486 259) revealed roughly Solar oxygen abundances for {\\protectH 2} regions in the polar ring of NGC 2685. We have extended this project, and now have spectra for six PRGs. Analysis of the data for II Zw 73 and UGC 7576 reveal the polar rings of these galaxies to have {\\protectH 2} region oxygen abundances in the range 0.3 to 0.6 Solar, substantially less than found for NGC 2685. Abundances in this range are much easier to explain with conventional models of chemical enrichment and polar ring formation. We shall present results for our full sample. Taken as a whole, this sample will provide a clear foundation for the typical chemical enrichment patterns in polar rings, and thus provide a clearer understanding of the formation and evolution of these curious objects. We

  14. Saturn's F-Ring

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This narrow-angle camera image of Saturn's F Ring was taken through the Clear filter while at a distance of 6.9 million km from Saturn on 8 November 1980. The brightness variations of this tightly-constrained ring shown here indicate that the ring is less uniform in makeup than the larger rings. JPL managed the Voyager Project for NASA's Office of Space Science

  15. Study of the collector/heat pipe cooled externally configured thermionic diode

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A collector/heat pipe cooled, externally configured (heated) thermionic diode module was designed for use in a laboratory test to demonstrate the applicability of this concept as the fuel element/converter module of an in-core thermionic electric power source. During the course of the program, this module evolved from a simple experimental mock-up into an advanced unit which was more reactor prototypical. Detailed analysis of all diode components led to their engineering design, fabrication, and assembly, with the exception of the collector/heat pipe. While several designs of high power annular wicked heat pipes were fabricated and tested, each exhibited unexpected performance difficulties. It was concluded that the basic cause of these problems was the formation of crud which interfered with the liquid flow in the annular passage of the evaporator region.

  16. Plan for Subdividing Genesis Mission Diamond-on-Silicon 60000 Solar Wind Collector

    NASA Technical Reports Server (NTRS)

    Burkett, Patti J.; Allton, J. A.; Clemett, S. J.; Gonzales, C. P.; Lauer, H. V., Jr.; Nakamura-Messenger, K.; Rodriquez, M. C.; See, T. H.; Sutter, B.

    2013-01-01

    NASA's Genesis solar wind sample return mission experienced an off nominal landing resulting in broken, albeit useful collectors. Sample 60000 from the collector is comprised of diamond-like-carbon film on a float zone (FZ) silicon wafer substrate Diamond-on-Silicon (DOS), and is highly prized for its higher concentration of solar wind (SW) atoms. A team of scientist at the Johnson Space Center was charged with determining the best, nondestructive and noncontaminating method to subdivide the specimen that would result in a 1 sq. cm subsample for allocation and analysis. Previous work included imaging of the SW side of 60000, identifying the crystallographic orientation of adjacent fragments, and devising an initial cutting plan.

  17. A performance evaluation of various coatings, substrate materials, and solar collector systems

    NASA Technical Reports Server (NTRS)

    Dolan, F. J.

    1976-01-01

    An experimental apparatus was constructed and utilized in conjunction with both a solar simulator and actual sunlight to test and evaluate various solar panel coatings, panel designs, and scaled-down collector subsystems. Data were taken by an automatic digital data acquisition system and reduced and printed by a computer system. The solar collector test setup, data acquisition system, and data reduction and printout systems were considered to have operated very satisfactorily. Test data indicated that there is a practical or useful limit in scaling down beyond which scaled-down testing cannot produce results comparable to results of larger scale tests. Test data are presented as are schematics and pictures of test equipment and test hardware.

  18. Cleaning Genesis Solar Wind Collectors with Ultrapure Water: Residual Contaminant Particle Analysis

    NASA Technical Reports Server (NTRS)

    Allton, J. H.; Wentworth, S. J.; Rodriquez, M. C.; Calaway, M. J.

    2008-01-01

    Additional experience has been gained in removing contaminant particles from the surface of Genesis solar wind collectors fragments by using megasonically activated ultrapure water (UPW)[1]. The curatorial facility has cleaned six of the eight array collector material types to date: silicon (Si), sapphire (SAP), silicon-on-sapphire (SOS), diamond-like carbon-on-silicon (DOS), gold-on-sapphire (AuOS), and germanium (Ge). Here we make estimates of cleaning effectiveness using image analysis of particle size distributions and an SEM/EDS reconnaissance of particle chemistry on the surface of UPW-cleaned silicon fragments (Fig. 1). Other particle removal techniques are reported by [2] and initial assessment of molecular film removal is reported by [3].

  19. Planetary Rings

    NASA Astrophysics Data System (ADS)

    Nicholson, P. D.

    2001-11-01

    A revolution in the studies in planetary rings studies occurred in the period 1977--1981, with the serendipitous discovery of the narrow, dark rings of Uranus, the first Voyager images of the tenuous jovian ring system, and the many spectacular images returned during the twin Voyager flybys of Saturn. In subsequent years, ground-based stellar occultations, HST observations, and the Voyager flybys of Uranus (1986) and Neptune (1989), as well as a handful of Galileo images, provided much additional information. Along with the completely unsuspected wealth of detail these observations revealed came an unwelcome problem: are the rings ancient or are we privileged to live at a special time in history? The answer to this still-vexing question may lie in the complex gravitational interactions recent studies have revealed between the rings and their retinues of attendant satellites. Among the four known ring systems, we see elegant examples of Lindblad and corotation resonances (first invoked in the context of galactic disks), electromagnetic resonances, spiral density waves and bending waves, narrow ringlets which exhibit internal modes due to collective instabilities, sharp-edged gaps maintained via tidal torques from embedded moonlets, and tenuous dust belts created by meteoroid impact onto parent bodies. Perhaps most puzzling is Saturn's multi-stranded, clumpy F ring, which continues to defy a simple explanation 20 years after it was first glimpsed in grainy images taken by Pioneer 11. Voyager and HST images reveal a complex, probably chaotic, dynamical interaction between unseen parent bodies within this ring and its two shepherd satellites, Pandora and Prometheus. The work described here reflects contributions by Joe Burns, Jeff Cuzzi, Luke Dones, Dick French, Peter Goldreich, Colleen McGhee, Carolyn Porco, Mark Showalter, and Bruno Sicardy, as well as those of the author. This research has been supported by NASA's Planetary Geology and Geophysics program and the

  20. Aluminum Foils of the Stardust Interstellar Collector: The Challenge of Recognizing Micrometer-sized Impact Craters made by Interstellar Grains

    NASA Technical Reports Server (NTRS)

    Kearsley, A. T.; Westphal, A. J.; Burchell, M. J.; Zolensky, Michael E.

    2008-01-01

    Preliminary Examination (PE) of the Stardust cometary collector revealed material embedded in aerogel and on aluminium (Al) foil. Large numbers of sub-micrometer impact craters gave size, structural and compositional information. With experience of finding and analyzing the picogram to nanogram mass remains of cometary particles, are we now ready for PE of the Interstellar (IS) collector? Possible interstellar particle (ISP) tracks in the aerogel are being identified by the stardust@home team. We are now assessing challenges facing PE of Al foils from the interstellar collector.