Science.gov

Sample records for collimonas mycophagy weathering

  1. Comparative genomics of bacteria from the genus Collimonas: linking (dis)similarities in gene content to phenotypic variation and conservation.

    PubMed

    Mela, F; Fritsche, K; de Boer, W; van den Berg, M; van Veen, J A; Maharaj, N N; Leveau, J H J

    2012-08-01

    Collimonas is a genus of soil bacteria comprising three recognized species: C. fungivorans, C. pratensis and C. arenae. Collimonads share the ability to degrade chitin (chitinolysis), feed on living fungal hyphae (mycophagy), and dissolve minerals (weathering), but vary in their inhibition of fungi (fungistasis). To better understand this phenotypic variability, we analysed the genomic content of four strains representing three Collimonas species (Ter14, Ter6, Ter91 and Ter10) by hybridization to a microarray based on reference strain C. fungivorans Ter331. The analysis revealed genes unique to strain Ter331 (e.g. those on the extrachromosomal element pTer331) and genes present in some but not all of the tested strains. Among the latter were several candidates that may contribute to fungistasis, including genes for the production and secretion of antifungals. We hypothesize that differential possession of these genes underlies the specialization of Collimonas strains towards different fungal hosts. We identified a set of 136 genes that were common in all tested Collimonas strains, but absent from the genomes of three other members of the family Oxalobacteraceae. Predicted products of these 'Collimonas core' genes include lytic, secreted enzymes such as chitinases, peptidases, nucleases and phosphatases with a putative role in mycophagy and weathering. PMID:23760828

  2. Trait Differentiation within the Fungus-Feeding (Mycophagous) Bacterial Genus Collimonas.

    PubMed

    Ballhausen, Max-Bernhard; Vandamme, Peter; de Boer, Wietse

    2016-01-01

    The genus Collimonas consists of facultative, fungus-feeding (mycophagous) bacteria. To date, 3 species (C. fungivorans, C. pratensis and C. arenae) have been described and over 100 strains have been isolated from different habitats. Functional traits of Collimonas bacteria that are potentially involved in interactions with soil fungi mostly negatively (fungal inhibition e.g.), but also positively (mineral weathering e.g.), affect fungal fitness. We hypothesized that variation in such traits between Collimonas strains leads to different mycophagous bacterial feeding patterns. We investigated a) whether phylogenetically closely related Collimonas strains possess similar traits, b) how far phylogenetic resolution influences the detection of phylogenetic signal (possession of similar traits by related strains) and c) if there is a pattern of co-occurrence among the studied traits. We measured genetically encoded (nifH genes, antifungal collimomycin gene cluster e.g.) as well as phenotypically expressed traits (chitinase- and siderophore production, fungal inhibition and others) and related those to a high-resolution phylogeny (MLSA), constructed by sequencing the housekeeping genes gyrB and rpoB and concatenating those with partial 16S rDNA sequences. Additionally, high-resolution and 16S rDNA derived phylogenies were compared. We show that MLSA is superior to 16SrDNA phylogeny when analyzing trait distribution and relating it to phylogeny at fine taxonomic resolution (a single bacterial genus). We observe that several traits involved in the interaction of collimonads and their host fungus (fungal inhibition e.g.) carry phylogenetic signal. Furthermore, we compare Collimonas trait possession with sister genera like Herbaspirillum and Janthinobacterium. PMID:27309848

  3. Trait Differentiation within the Fungus-Feeding (Mycophagous) Bacterial Genus Collimonas

    PubMed Central

    Ballhausen, Max-Bernhard; Vandamme, Peter; de Boer, Wietse

    2016-01-01

    The genus Collimonas consists of facultative, fungus-feeding (mycophagous) bacteria. To date, 3 species (C. fungivorans, C. pratensis and C. arenae) have been described and over 100 strains have been isolated from different habitats. Functional traits of Collimonas bacteria that are potentially involved in interactions with soil fungi mostly negatively (fungal inhibition e.g.), but also positively (mineral weathering e.g.), affect fungal fitness. We hypothesized that variation in such traits between Collimonas strains leads to different mycophagous bacterial feeding patterns. We investigated a) whether phylogenetically closely related Collimonas strains possess similar traits, b) how far phylogenetic resolution influences the detection of phylogenetic signal (possession of similar traits by related strains) and c) if there is a pattern of co-occurrence among the studied traits. We measured genetically encoded (nifH genes, antifungal collimomycin gene cluster e.g.) as well as phenotypically expressed traits (chitinase- and siderophore production, fungal inhibition and others) and related those to a high-resolution phylogeny (MLSA), constructed by sequencing the housekeeping genes gyrB and rpoB and concatenating those with partial 16S rDNA sequences. Additionally, high-resolution and 16S rDNA derived phylogenies were compared. We show that MLSA is superior to 16SrDNA phylogeny when analyzing trait distribution and relating it to phylogeny at fine taxonomic resolution (a single bacterial genus). We observe that several traits involved in the interaction of collimonads and their host fungus (fungal inhibition e.g.) carry phylogenetic signal. Furthermore, we compare Collimonas trait possession with sister genera like Herbaspirillum and Janthinobacterium. PMID:27309848

  4. Violacein-producing Collimonas sp. from the sea surface microlayer of costal waters in Trøndelag, Norway.

    PubMed

    Hakvåg, Sigrid; Fjaervik, Espen; Klinkenberg, Geir; Borgos, Sven Even F; Josefsen, Kjell D; Ellingsen, Trond E; Zotchev, Sergey B

    2009-01-01

    A new strain belonging to the genus Collimonas was isolated from the sea surface microlayer off the coast of Trøndelag, Norway. The bacterium, designated Collimonas CT, produced an antibacterial compound active against Micrococcus luteus. Subsequent studies using LC-MS identified this antibacterial compound as violacein, known to be produced by several marine-derived bacteria. Fragments of the violacein biosynthesis genes vioA and vioB were amplified by PCR from the Collimonas CT genome and sequenced. Phylogenetic analysis of these sequences demonstrated close relatedness of the Collimonas CT violacein biosynthetic gene cluster to those in Janthinobacterium lividum and Duganella sp., suggesting relatively recent horizontal gene transfer. Considering diverse biological activities of violacein, Collimonas CT shall be further studied as a potential producer of this compound. PMID:20098599

  5. Violacein-Producing Collimonas sp. from the Sea Surface Microlayer of Costal Waters in Trøndelag, Norway

    PubMed Central

    Hakvåg, Sigrid; Fjærvik, Espen; Klinkenberg, Geir; Borgos, Sven Even F.; Josefsen, Kjell D.; Ellingsen, Trond E.; Zotchev, Sergey B.

    2009-01-01

    A new strain belonging to the genus Collimonas was isolated from the sea surface microlayer off the coast of Trøndelag, Norway. The bacterium, designated Collimonas CT, produced an antibacterial compound active against Micrococcus luteus. Subsequent studies using LC-MS identified this antibacterial compound as violacein, known to be produced by several marine-derived bacteria. Fragments of the violacein biosynthesis genes vioA and vioB were amplified by PCR from the Collimonas CT genome and sequenced. Phylogenetic analysis of these sequences demonstrated close relatedness of the Collimonas CT violacein biosynthetic gene cluster to those in Janthinobacterium lividum and Duganella sp., suggesting relatively recent horizontal gene transfer. Considering diverse biological activities of violacein, Collimonas CT shall be further studied as a potential producer of this compound. PMID:20098599

  6. Weather.

    ERIC Educational Resources Information Center

    Web Feet K-8, 2000

    2000-01-01

    This subject guide to weather resources includes Web sites, CD-ROMs and software, videos, books, audios, magazines, and professional resources. Related disciplines are indicated, age levels are specified, and a student activity is included. (LRW)

  7. Oxalic acid: a signal molecule for fungus-feeding bacteria of the genus Collimonas?

    PubMed

    Rudnick, M B; van Veen, J A; de Boer, W

    2015-10-01

    Mycophagous (=fungus feeding) soil bacteria of the genus Collimonas have been shown to colonize and grow on hyphae of different fungal hosts as the only source of energy and carbon. The ability to exploit fungal nutrient resources might require a strategy for collimonads to sense fungi in the soil matrix. Oxalic acid is ubiquitously secreted by soil fungi, serving different purposes. In this study, we investigated the possibility that collimonads might use oxalic acid secretion to localize a fungal host and move towards it. We first confirmed earlier indications that collimonads have a very limited ability to use oxalic acid as growth substrate. In a second step, with using different assays, we show that oxalic acid triggers bacterial movement in such a way that accumulation of cells can be expected at micro-sites with high free oxalic acid concentrations. Based on these observations we propose that oxalic acid functions as a signal molecule to guide collimonads to hyphal tips, the mycelial zones that are most sensitive for mycophagous bacterial attack. PMID:25858310

  8. Weather Watch

    ERIC Educational Resources Information Center

    Bratt, Herschell Marvin

    1973-01-01

    Suggests a number of ways in which Federal Aviation Agency weather report printouts can be used in teaching the weather section of meteorology. These weather sequence reports can be obtained free of charge at most major airports. (JR)

  9. Severe Weather

    ERIC Educational Resources Information Center

    Forde, Evan B.

    2004-01-01

    Educating the public about safety issues related to severe weather is part of the National Oceanic and Atmospheric Administration's (NOAA) mission. This article deals with a poster entitled, "Severe Weather," that has been created by NOAA to help educate the public about hazardous weather conditions. The four types of severe weather highlighted in…

  10. Severe Weather

    ERIC Educational Resources Information Center

    Forde, Evan B.

    2004-01-01

    Educating the public about safety issues related to severe weather is part of the National Oceanic and Atmospheric Administration's (NOAA) mission. This month's insert, Severe Weather, has been created by NOAA to help educate the public about hazardous weather conditions. The four types of severe weather highlighted in this poster are hurricanes,…

  11. Weather & Weather Maps. Teacher's Manual.

    ERIC Educational Resources Information Center

    Metro, Peter M.; Green, Rachel E.

    This guide is intended to provide an opportunity for students to work with weather symbols used for reporting weather. Also included are exercises in location of United States cities by latitude and longitude, measurement of distances in miles and kilometers, and prediction of weather associated with various types of weather fronts. (RE)

  12. Weather Instruments.

    ERIC Educational Resources Information Center

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    This booklet presents some activities to measure various weather phenomena. Directions for constructing a weather station are included. Instruments including rain gauges, thermometers, wind vanes, wind speed devices, humidity devices, barometers, atmospheric observations, a dustfall jar, sticky-tape can, detection of gases in the air, and pH of…

  13. Wacky Weather

    ERIC Educational Resources Information Center

    Sabarre, Amy; Gulino, Jacqueline

    2013-01-01

    What do a leaf blower, water hose, fan, and ice cubes have in common? Ask the students who participated in an integrative science, technology, engineering, and mathematics (I-STEM) education unit, "Wacky Weather," and they will tell say "fun and severe weather"--words one might not have expected! The purpose of the unit…

  14. Space Weather

    NASA Technical Reports Server (NTRS)

    Gallagher, Dennis L.

    2010-01-01

    This video provides a narrated exploration of the history and affects of space weather. It includes information the earth's magnetic field, solar radiation, magnetic storms, and how solar winds affect electronics on earth, with specific information on how space weather affects space exploration in the future.

  15. Weatherizing America

    ScienceCinema

    Stewart, Zachary; Bergeron, T.J.; Barth, Dale; Qualis, Xavier; Sewall, Travis; Fransen, Richard; Gill, Tony;

    2013-05-29

    As Recovery Act money arrives to expand home weatherization programs across the country, Zachary Stewart of Phoenix, Ariz., and others have found an exciting opportunity not only to start working again, but also to find a calling.

  16. Weatherizing America

    SciTech Connect

    Stewart, Zachary; Bergeron, T.J.; Barth, Dale; Qualis, Xavier; Sewall, Travis; Fransen, Richard; Gill, Tony

    2009-01-01

    As Recovery Act money arrives to expand home weatherization programs across the country, Zachary Stewart of Phoenix, Ariz., and others have found an exciting opportunity not only to start working again, but also to find a calling.

  17. Weather control

    SciTech Connect

    Leepson, M.

    1980-09-05

    Weather modification, the intentional altering of atmospheric conditions to suit the purposes of humankind, has five basic forms: (1) fog dissipation; (2) rain and snow enhancement; (3) hail suppression; (4) lightning suppression; and (5) the abatement of severe storms such as hurricanes and tornadoes. The dissipation of fog and the seeding of clouds with dry ice or silver iodide to produce rain are the most successful weather modification techniques. Both are used extensively and with varying degrees of success in the United States and around the world. Cloud seeding, though, is not effective in easing the harshness of a drought, such as the one that hit the Southwest, Midwest and Great Plains this summer.

  18. National Weather Service

    MedlinePlus

    ... Lightning Safe Boating Rip Currents Thunderstorms and Tornadoes Space Weather Sun (Ultraviolet Radiation) Safety Campaigns Wind Drought ... Outlook Hurricanes Fire Weather Outlooks UV Alerts Drought Space Weather NOAA Weather Radio NWS CAP Feeds PAST ...

  19. Weather in the News.

    ERIC Educational Resources Information Center

    Markle, Sandra

    1989-01-01

    A discussion of TV weather forecasting introduces this article which features several hands-on science activities involving observing, researching, and experimenting with the weather. A reproducible worksheet on the reliability of weather forecasts is included. (IAH)

  20. Winter Weather Checklists

    MedlinePlus

    ... Planning Information on Specific Types of Emergencies Winter Weather Checklists Language: English Español (Spanish) Recommend on Facebook ... emergency instructions National Oceanic and Atmospheric Administration (NOAA) weather radio receiver for listening to National Weather Service ...

  1. Forecasting the Weather.

    ERIC Educational Resources Information Center

    Bollinger, Richard

    1984-01-01

    Presents a computer program which predicts the weather based on student input of such weather data as wind direction and barometric pressure. Also provides procedures for several hands-on, weather-related activities. (JN)

  2. Weather in Your Life.

    ERIC Educational Resources Information Center

    Kannegieter, Sandy; Wirkler, Linda

    Facts and activities related to weather and meteorology are presented in this unit. Separate sections cover the following topics: (1) the water cycle; (2) clouds; (3) the Beaufort Scale for rating the speed and force of wind; (4) the barometer; (5) weather prediction; (6) fall weather in Iowa (sleet, frost, and fog); (7) winter weather in Iowa…

  3. Fun with Weather

    ERIC Educational Resources Information Center

    Yildirim, Rana

    2007-01-01

    This three-part weather-themed lesson for young learners connects weather, clothing, and feelings vocabulary. The target structures covered are: asking about the weather; comparing weather; using the modal auxiliary, should; and the question word, when. The lessons utilize all four skills and include such activities as going outside, singing,…

  4. Teaching Weather Concepts.

    ERIC Educational Resources Information Center

    Sebastian, Glenn R.

    Ten exercises based on the weather map provided in the national newspaper "U.S.A. Today" are used to teach intermediate grade students about weather. An overview describes the history of "U.S.A. Today," the format of the newspaper's weather map, and the map's suitability for teaching weather concepts. Specific exercises, which are briefly…

  5. Pilot weather advisor

    NASA Technical Reports Server (NTRS)

    Kilgore, W. A.; Seth, S.; Crabill, N. L.; Shipley, S. T.; Graffman, I.; Oneill, J.

    1992-01-01

    The results of the work performed by ViGYAN, Inc., to demonstrate the Pilot Weather Advisor cockpit weather data system using a broadcast satellite communication system are presented. The Pilot Weather Advisor demonstrated that the technical problems involved with transmitting significant amount of weather data to an aircraft in-flight or on-the-ground via satellite are solvable with today's technology. The Pilot Weather Advisor appears to be a viable solution for providing accurate and timely weather information for general aviation aircraft.

  6. Weather Information System

    NASA Technical Reports Server (NTRS)

    1995-01-01

    WxLink is an aviation weather system based on advanced airborne sensors, precise positioning available from the satellite-based Global Positioning System, cockpit graphics and a low-cost datalink. It is a two-way system that uplinks weather information to the aircraft and downlinks automatic pilot reports of weather conditions aloft. Manufactured by ARNAV Systems, Inc., the original technology came from Langley Research Center's cockpit weather information system, CWIN (Cockpit Weather INformation). The system creates radar maps of storms, lightning and reports of surface observations, offering improved safety, better weather monitoring and substantial fuel savings.

  7. Winter Weather: Indoor Safety

    MedlinePlus

    ... page: About CDC.gov . Natural Disasters and Severe Weather Earthquakes Being Prepared Emergency Supplies Home Hazards Indoor ... Heat Prevention Guide (Part 3 of 3) Hot Weather Tips Heat Stress in Older Adults FAQs Extreme ...

  8. Winter Weather Emergencies

    MedlinePlus

    Severe winter weather can lead to health and safety challenges. You may have to cope with Cold related health problems, including ... there are no guarantees of safety during winter weather emergencies, you can take actions to protect yourself. ...

  9. Convective Weather Avoidance with Uncertain Weather Forecasts

    NASA Technical Reports Server (NTRS)

    Karahan, Sinan; Windhorst, Robert D.

    2009-01-01

    Convective weather events have a disruptive impact on air traffic both in terminal area and in en-route airspaces. In order to make sure that the national air transportation system is safe and efficient, it is essential to respond to convective weather events effectively. Traffic flow control initiatives in response to convective weather include ground delay, airborne delay, miles-in-trail restrictions as well as tactical and strategic rerouting. The rerouting initiatives can potentially increase traffic density and complexity in regions neighboring the convective weather activity. There is a need to perform rerouting in an intelligent and efficient way such that the disruptive effects of rerouting are minimized. An important area of research is to study the interaction of in-flight rerouting with traffic congestion or complexity and developing methods that quantitatively measure this interaction. Furthermore, it is necessary to find rerouting solutions that account for uncertainties in weather forecasts. These are important steps toward managing complexity during rerouting operations, and the paper is motivated by these research questions. An automated system is developed for rerouting air traffic in order to avoid convective weather regions during the 20- minute - 2-hour time horizon. Such a system is envisioned to work in concert with separation assurance (0 - 20-minute time horizon), and longer term air traffic management (2-hours and beyond) to provide a more comprehensive solution to complexity and safety management. In this study, weather is dynamic and uncertain; it is represented as regions of airspace that pilots are likely to avoid. Algorithms are implemented in an air traffic simulation environment to support the research study. The algorithms used are deterministic but periodically revise reroutes to account for weather forecast updates. In contrast to previous studies, in this study convective weather is represented as regions of airspace that pilots

  10. American Weather Stories.

    ERIC Educational Resources Information Center

    Hughes, Patrick

    Weather has shaped United States' culture, national character and folklore; at times it has changed the course of history. The seven accounts compiled in this publication highlight some of the nation's weather experiences from the hurricanes that threatened Christopher Columbus to the peculiar run of bad weather that has plagued American…

  11. Weather Fundamentals: Meteorology. [Videotape].

    ERIC Educational Resources Information Center

    1998

    The videos in this educational series, for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes) looks at how meteorologists gather and interpret current weather data collected from sources…

  12. Aviation weather services

    NASA Technical Reports Server (NTRS)

    Sprinkle, C. H.

    1983-01-01

    The primary responsibilities of the National Weather Service (NWS) are to: provide warnings of severe weather and flooding for the protection of life and property; provide public forecasts for land and adjacent ocean areas for planning and operation; and provide weather support for: production of food and fiber; management of water resources; production, distribution and use of energy; and efficient and safe air operations.

  13. Severe Weather Perceptions.

    ERIC Educational Resources Information Center

    Abrams, Karol

    Severe weather is an element of nature that cannot be controlled. Therefore, it is important that the general public be aware of severe weather and know how to react quickly and appropriately in a weather emergency. This study, done in the community surrounding the Southern Illinois University at Carbondale, was conducted to compile and analyze…

  14. Weatherization and Intergovernmental Program - Weatherization Assistance Program

    SciTech Connect

    2010-06-01

    The U.S. Department of Energy’s (DOE) Weatherization Assistance Program reduces energy costs for low-income households by increasing the energy efficiency of their homes, while ensuring their health and safety.

  15. Beyond the Weather Chart: Weathering New Experiences.

    ERIC Educational Resources Information Center

    Huffman, Amy Bruno

    1996-01-01

    Describes an early childhood educator's approach to teaching children about rain, rainbows, clouds, precipitation, the sun, air, and wind. Recommends ways to organize study topics and describes experiments that can help children better understand the different elements of weather. (MOK)

  16. [Suicide and weather].

    PubMed

    Breuer, H W; Fischbach-Breuer, B R; Breuer, J; Goeckenjan, G; Curtius, J M

    1984-11-01

    In 151 patients, admitted to an intensive care unit after attempted suicide, the possible influence of weather at the time of the attempt was analysed retrospectively. The "biosynoptic daily analysis" of the German Weather Service provided the weather data. There was a 5% and 1%, respectively, significant level for the positive correlation between the time of the attempted suicide and the weather parameters "stable upslide, labile upslide, fog and thunderstorm" and the summarized parameters "warm air, upslide and weather drier than on the two preceding days". Significantly fewer attempts than expected occurred when the weather description was "low pressure and trough situation, labile ground layer--upslide above" and the summarized parameters "subsidence or downslide motion". Besides the individual factors such as the reaction to conflicts and the spectrum of reactions, exogenous factors like weather must be considered as important for the time of suicidal attempt. PMID:6499669

  17. Space Weathering of Rocks

    NASA Technical Reports Server (NTRS)

    Noble, Sarah

    2011-01-01

    Space weathering discussions have generally centered around soils but exposed rocks will also incur the effects of weathering. On the Moon, rocks make up only a very small percentage of the exposed surface and areas where rocks are exposed, like central peaks, are often among the least space weathered regions we find in remote sensing data. However, our studies of weathered Ap 17 rocks 76015 and 76237 show that significant amounts of weathering products can build up on rock surfaces. Because rocks have much longer surface lifetimes than an individual soil grain, and thus record a longer history of exposure, we can study these products to gain a deeper perspective on the weathering process and better assess the relative impo!1ance of various weathering components on the Moon. In contrast to the lunar case, on small asteroids, like Itokowa, rocks make up a large fraction of the exposed surface. Results from the Hayabusa spacecraft at Itokowa suggest that while the low gravity does not allow for the development of a mature regolith, weathering patinas can and do develop on rock surfaces, in fact, the rocky surfaces were seen to be darker and appear spectrally more weathered than regions with finer materials. To explore how weathering of asteroidal rocks may differ from lunar, a set of ordinary chondrite meteorites (H, L, and LL) which have been subjected to artificial space weathering by nanopulse laser were examined by TEM. NpFe(sup 0) bearing glasses were ubiquitous in both the naturally-weathered lunar and the artificially-weathered meteorite samples.

  18. NASA Connect: 'Plane Weather'

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Excerpt from the NASA Connect show 'Plane Weather' This clip explains what high and low pressure weather systems are, and how these affect weather patterns. Weather affects our daily lives. The elements of weather: rain, wind, fog, ice and snow affect the operation and flight of an airplane. In this program, NASA and FAA researchers will introduce students to math, science, and weather; demonstrate how these elements influence flight; and show how NASA and FAA research is used to limit the effects of these elements on flight. Students will examine: the tools, techniques, and technologies used by engineers and scientists to detect these and other climatological factors affecting aircraft in flight. The lesson and classroom experiment will involve students in the scientific process and emphasizing problem solving, measurement, and reasoning skills.

  19. RBSP Space Weather data

    NASA Astrophysics Data System (ADS)

    Weiss, M.; Fox, N. J.; Mauk, B. H.; Barnes, R. J.; Potter, M.; Romeo, G.; Smith, D.

    2012-12-01

    On August 23, 2012, NASA will launch two identical probes into the radiation belts to provide unprecedented insight into the physical processes and dynamics of near-Earth space. The RBSP mission in addition to the scientific data return, provides a 1Kbps real-time space weather broadcast data in support of real time space weather modeling, forecast and prediction efforts. Networks of ground stations have been identified to downlink the space weather data. The RBSP instrument suites have selected space weather data to be broadcast from their collected space data on board the spacecraft, a subset from measurements based on information normally available to the instrument. The data subset includes particle fluxes at a variety of energies, and magnetic and electric field data. This selected space weather data is broadcast at all times through the primary spacecraft science downlink antennas when an observatory is not in a primary mission-related ground contact. The collected data will resolve important scientific issues and help researchers develop and improve various models for the radiation belts that can be used by forecasters to predict space weather phenomena and alert astronauts and spacecraft operators to potential hazards. The near real-time data from RBSP will be available to monitor and analyze current environmental conditions, forecast natural environmental changes and support anomaly resolution. The space weather data will be available on the RBSP Science Gateway at http://athena.jhuapl.edu/ and will provide access to the space weather data received from the RBSP real-time space weather broadcast. The near real-time data will be calibrated and displayed on the web as soon as possible. The CCMC will ingest the RBSP space weather data into real-time models. The raw space weather data will be permanently archived at APL. This presentation will provide a first look at RBSP space weather data products.

  20. Weather and climate

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Recommendations for using space observations of weather and climate to aid in solving earth based problems are given. Special attention was given to: (1) extending useful forecasting capability of space systems, (2) reducing social, economic, and human losses caused by weather, (3) development of space system capability to manage and control air pollutant concentrations, and (4) establish mechanisms for the national examination of deliberate and inadvertent means for modifying weather and climate.

  1. Cockpit weather information needs

    NASA Technical Reports Server (NTRS)

    Scanlon, Charles H.

    1992-01-01

    The primary objective is to develop an advanced pilot weather interface for the flight deck and to measure its utilization and effectiveness in pilot reroute decision processes, weather situation awareness, and weather monitoring. Identical graphical weather displays for the dispatcher, air traffic control (ATC), and pilot crew should also enhance the dialogue capabilities for reroute decisions. By utilizing a broadcast data link for surface observations, forecasts, radar summaries, lightning strikes, and weather alerts, onboard weather computing facilities construct graphical displays, historical weather displays, color textual displays, and other tools to assist the pilot crew. Since the weather data is continually being received and stored by the airborne system, the pilot crew has instantaneous access to the latest information. This information is color coded to distinguish degrees of category for surface observations, ceiling and visibilities, and ground radar summaries. Automatic weather monitoring and pilot crew alerting is accomplished by the airborne computing facilities. When a new weather information is received, the displays are instantaneously changed to reflect the new information. Also, when a new surface or special observation for the intended destination is received, the pilot crew is informed so that information can be studied at the pilot's discretion. The pilot crew is also immediately alerted when a severe weather notice, AIRMET or SIGMET, is received. The cockpit weather display shares a multicolor eight inch cathode ray tube and overlaid touch panel with a pilot crew data link interface. Touch sensitive buttons and areas are used for pilot selection of graphical and data link displays. Time critical ATC messages are presented in a small window that overlays other displays so that immediate pilot alerting and action can be taken. Predeparture and reroute clearances are displayed on the graphical weather system so pilot review of weather along

  2. Weather assessment and forecasting

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Data management program activities centered around the analyses of selected far-term Office of Applications (OA) objectives, with the intent of determining if significant data-related problems would be encountered and if so what alternative solutions would be possible. Three far-term (1985 and beyond) OA objectives selected for analyses as having potential significant data problems were large-scale weather forecasting, local weather and severe storms forecasting, and global marine weather forecasting. An overview of general weather forecasting activities and their implications upon the ground based data system is provided. Selected topics were specifically oriented to the use of satellites.

  3. Pilot Weather Advisor System

    NASA Technical Reports Server (NTRS)

    Lindamood, Glenn; Martzaklis, Konstantinos Gus; Hoffler, Keith; Hill, Damon; Mehrotra, Sudhir C.; White, E. Richard; Fisher, Bruce D.; Crabill, Norman L.; Tucholski, Allen D.

    2006-01-01

    The Pilot Weather Advisor (PWA) system is an automated satellite radio-broadcasting system that provides nearly real-time weather data to pilots of aircraft in flight anywhere in the continental United States. The system was designed to enhance safety in two distinct ways: First, the automated receipt of information would relieve the pilot of the time-consuming and distracting task of obtaining weather information via voice communication with ground stations. Second, the presentation of the information would be centered around a map format, thereby making the spatial and temporal relationships in the surrounding weather situation much easier to understand

  4. Weather it's Climate Change?

    NASA Astrophysics Data System (ADS)

    Bostrom, A.; Lashof, D.

    2004-12-01

    For almost two decades both national polls and in-depth studies of global warming perceptions have shown that people commonly conflate weather and global climate change. Not only are current weather events such as anecdotal heat waves, droughts or cold spells treated as evidence for or against global warming, but weather changes such as warmer weather and increased storm intensity and frequency are the consequences most likely to come to mind. Distinguishing weather from climate remains a challenge for many. This weather 'framing' of global warming may inhibit behavioral and policy change in several ways. Weather is understood as natural, on an immense scale that makes controlling it difficult to conceive. Further, these attributes contribute to perceptions that global warming, like weather, is uncontrollable. This talk presents an analysis of data from public opinion polls, focus groups, and cognitive studies regarding people's mental models of and 'frames' for global warming and climate change, and the role weather plays in these. This research suggests that priming people with a model of global warming as being caused by a "thickening blanket of carbon dioxide" that "traps heat" in the atmosphere solves some of these communications problems and makes it more likely that people will support policies to address global warming.

  5. Weather and emotional state

    NASA Astrophysics Data System (ADS)

    Spasova, Z.

    2010-09-01

    Introduction Given the proven effects of weather on the human organism, an attempt to examine its effects on a psychic and emotional level has been made. Emotions affect the bio-tonus, working ability and concentration, hence their significance in various domains of economic life, such as health care, education, transportation, tourism, etc. Data and methods The research has been made in Sofia City within a period of 8 months, using 5 psychological methods (Eysenck Personality Questionnaire (EPQ), State-Trait Anxiety Inventory (STAI), Test for Self-assessment of the emotional state (developed by Wessman and Ricks), Test for evaluation of moods and Test "Self-confidence - Activity - Mood" (developed by the specialists from the Military Academy in Saint Petersburg). The Fiodorov-Chubukov's complex-climatic method was used to characterize meteorological conditions because of the purpose to include in the analysis a maximal number of meteorological elements. 16 weather types are defined in dependence of the meteorological elements values according to this method. Abrupt weather changes from one day to another, defined by the same method, were considered as well. Results and discussions The results obtained by t-test show that the different categories of weather lead to changes in the emotional status, which indicates a character either positive or negative for the organism. The abrupt weather changes, according to expectations, have negative effect on human emotions but only when a transition to the cloudy weather or weather type, classified as "unfavourable" has been realized. The relationship between weather and human emotions is rather complicated since it depends on individual characteristics of people. One of these individual psychological characteristics, marked by the dimension "neuroticism", has a strong effect on emotional reactions in different weather conditions. Emotionally stable individuals are more "protected" to the weather influence on their emotions

  6. Teacher's Weather Sourcebook.

    ERIC Educational Resources Information Center

    Konvicka, Tom

    This book is a teaching resource for the study of weather-related phenomena. A "weather unit" is often incorporated into school study because of its importance to our daily lives and because of its potential to cut across disciplinary content. This book consists of two parts. Part I covers the major topics of atmospheric science such as the modern…

  7. KSC Weather and Research

    NASA Technical Reports Server (NTRS)

    Maier, Launa; Huddleston, Lisa; Smith, Kristin

    2016-01-01

    This briefing outlines the history of Kennedy Space Center (KSC) Weather organization, past research sponsored or performed, current organization, responsibilities, and activities, the evolution of weather support, future technologies, and an update on the status of the buoys located offshore of Cape Canaveral Air Force Station and KSC.

  8. Weather Fundamentals: Clouds. [Videotape].

    ERIC Educational Resources Information Center

    1998

    The videos in this educational series, for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes) discusses how clouds form, the different types of clouds, and the important role they play in…

  9. Mild and Wild Weather.

    ERIC Educational Resources Information Center

    NatureScope, 1985

    1985-01-01

    Presents background information and six activities that focus on clouds, precipitation, and stormy weather. Each activity includes an objective, recommended age level(s), subject area(s), and instructional strategies. Also provided are two ready-to-copy pages (a coloring page on lightning and a list of weather riddles to solve). (JN)

  10. People and Weather.

    ERIC Educational Resources Information Center

    NatureScope, 1985

    1985-01-01

    Provides: (1) background information on ways weather influences human lives; (2) activities related to this topic; and (3) a ready-to-copy page with weather trivia. Each activity includes an objective, list of materials needed, recommended age level(s), subject area(s), and instructional strategies. (JN)

  11. World weather program

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A brief description of the Global Weather Experiment is presented. The world weather watch program plan is described and includes a global observing system, a global data processing system, a global telecommunication system, and a voluntary cooperation program. A summary of Federal Agency plans and programs to meet the challenges of international meteorology for the two year period, FY 1980-1981, is presented.

  12. Exercising in Cold Weather

    MedlinePlus

    ... www.nia.nih.gov/Go4Life Exercising in Cold Weather Exercise has benefits all year, even during winter. ... activities when it’s cold outside: l Check the weather forecast. If it’s very windy or cold, exercise ...

  13. Weather and Culture.

    ERIC Educational Resources Information Center

    Contemporary Learning Center, Houston, TX.

    This document is a minicourse on the interaction of weather, environment, and culture. It is designed for the high school student to read and self-administer. Performance objectives, enabling activities, and postassessment questions are given for each of eight modules. The modules are: (1) Basic Facts About Your Weather Known As Rain, (2) The…

  14. Home Weatherization Visit

    ScienceCinema

    Chu, Steven

    2013-05-29

    Secretary Steven Chu visits a home that is in the process of being weatherized in Columbus, OH, along with Ohio Governor Ted Strickland and Columbus Mayor Michael Coleman. They discuss the benefits of weatherization and how funding from the recovery act is having a direct impact in communities across America.

  15. Weathering Database Technology

    ERIC Educational Resources Information Center

    Snyder, Robert

    2005-01-01

    Collecting weather data is a traditional part of a meteorology unit at the middle level. However, making connections between the data and weather conditions can be a challenge. One way to make these connections clearer is to enter the data into a database. This allows students to quickly compare different fields of data and recognize which…

  16. On Observing the Weather

    ERIC Educational Resources Information Center

    Crane, Peter

    2004-01-01

    Rain, sun, snow, sleet, wind... the weather affects everyone in some way every day, and observing weather is a terrific activity to attune children to the natural world. It is also a great way for children to practice skills in gathering and recording information and to learn how to use simple tools in a standardized fashion. What better way to…

  17. Fabulous Weather Day

    ERIC Educational Resources Information Center

    Marshall, Candice; Mogil, H. Michael

    2007-01-01

    Each year, first graders at Kensington Parkwood Elementary School in Kensington, Maryland, look forward to Fabulous Weather Day. Students learn how meteorologists collect data about the weather, how they study wind, temperature, precipitation, basic types/characteristics of clouds, and how they forecast. The project helps the students grow in…

  18. The Home Weather Station.

    ERIC Educational Resources Information Center

    Steinke, Steven D.

    1991-01-01

    Described is how an amateur weather observer measures and records temperature and precipitation at a well-equipped, backyard weather station. Directions for building an instrument shelter and a description of the instruments needed for measuring temperature and precipitation are included. (KR)

  19. Weatherizing a Structure.

    ERIC Educational Resources Information Center

    Metz, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with weatherizing a structure. Its objective is for the student to be able to analyze factors related to specific structures that indicate need for weatherizing activities and to determine steps to correct defects in structures that…

  20. Weather Fundamentals: Wind. [Videotape].

    ERIC Educational Resources Information Center

    1998

    The videos in this educational series, for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes) describes the roles of the sun, temperature, and air pressure in creating the incredible power…

  1. Aviation Weather Program (AWP)

    NASA Technical Reports Server (NTRS)

    Foote, Brant

    1993-01-01

    The Aviation Weather Program (AWP) combines additional weather observations, improved forecast technology, and more efficient distribution of information to pilots, controllers, and automated systems to improve the weather information provided to the air traffic control system, pilots, and other users of aviation weather information. Specific objectives include the needs to: improve airport and en-route capacity by accurate, high resolution, timely forecasts of changing weather conditions affecting airport and en-route operations; improve analyses and forecasts of upper-level winds for efficient flight planning and traffic management; and increase flight safety through improved aviation weather hazard forecasting (e.g. icing, turbulence, severe storms, microbursts, or strong winds). The AWP would benefit from participation in a cooperative multiscale experiment by obtaining data for: evaluation of aviation weather forecast products, analysis of four dimensional data assimilation schemes, and experimental techniques for retrieving aerosol and other visibility parameters. A multiscale experiment would also be helpful to AWP by making it possible to evaluate the added benefit of enhanced data sets collected during the experiment on those forecast and analysis products. The goals of the Coperative Multiscale Experiment (CME) are an essential step in attaining the long-term AWP objective of providing two-to-four hour location-specific forecasts of significant weather. Although the possibility of a funding role for the AWP in the CME is presently unclear, modest involvement of Federal Aviation Administration (FAA)/AWP personnel could be expected.

  2. Designing a Weather Station

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2012-01-01

    The collection and analysis of weather data is crucial to the location of alternate energy systems like solar and wind. This article presents a design challenge that gives students a chance to design a weather station to collect data in advance of a large wind turbine installation. Data analysis is a crucial part of any science or engineering…

  3. Weathering and weathering rates of natural stone

    SciTech Connect

    Winkler, E.M. )

    1987-01-01

    Physical and chemical weathering were studied as separate processes in the past. Recent research, however, shows that most processes are physicochemical in nature. The rates at which calcite and silica weather by dissolution are dependent on the regional and local climatic environment. The weathering of silicate rocks leaves discolored margins and rinds, a function of the ricks permeability and of the climatic parameters. Salt action, the greatest disruptive factor, is complex and not yet fully understood in all its phases, but some of th causes of disruption are crystallization pressure, hydration pressure, and hygroscopic attraction of excess moisture. The decay of marble is complex, an interaction between dissolution, crack-corrosion, and the expansion-contraction cycles triggered by the release of residual stresses. Thin spalls of granites commonly found near the street level of buildings are generally caused by a combination of stress relief and salt action. To study and determine weathering rates of a variety of commercial stones, the National Bureau of Standards erected a Stone Exposure Test Wall in 1948. Of the many types of stone represented, only a few fossiliferous limestones permit a valid measurement of surface reduction in a polluted urban environment.

  4. NASA Connect: 'Plane Weather'

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Excerpt from the NASA Connect show 'Plane Weather' This clip explains how our weather occurs, and why Solar radiation is responsible. Weather affects our daily lives. The elements of weather: rain, wind, fog, ice and snow affect the operation and flight of an airplane. In this program, NASA and FAA researchers will introduce students to math, science, and weather; demonstrate how these elements influence flight; and show how NASA and FAA research is used to limit the effects of these elements on flight. Students will examine: the tools, techniques, and technologies used by engineers and scientists to detect these and other climatological factors affecting aircraft in flight. The lesson and classroom experiment will involve students in the scientific process and emphasizing problem solving, measurement, and reasoning skills.

  5. NASA Connect: 'Plane Weather'

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Excerpt from the NASA Connect show 'Plane Weather' This clip explains what high and low pressure weather systems are, and how they form. Weather affects our daily lives. The elements of weather: rain, wind, fog, ice and snow affect the operation and flight of an airplane. In this program, NASA and FAA researchers will introduce students to math, science, and weather; demonstrate how these elements influence flight; and show how NASA and FAA research is used to limit the effects of these elements on flight. Students will examine: the tools, techniques, and technologies used by engineers and scientists to detect these and other climatological factors affecting aircraft in flight. The lesson and classroom experiment will involve students in the scientific process and emphasizing problem solving, measurement, and reasoning skills.

  6. The Space Weather Reanalysis

    NASA Astrophysics Data System (ADS)

    Kihn, E. A.; Ridley, A. J.; Zhizhin, M.

    2002-12-01

    The objective of this project is to generate a complete 11 year space weather representation using physically consistent data-driven space weather models. The project will create a consistent, integrated historical record of the near Earth space environment by coupling observational data from space environmental monitoring systems archived at NGDC with data-driven, physically based numerical models. The resulting product will be an enhanced look at the space environment on consistent grids, time resolution, coordinate systems and containing key fields allowing an interested user to quickly and easily incorporate the impact of the near-Earth space climate in environmentally sensitive models. Currently there are no easily accessible long term climate archives available for the space-weather environment. Just as with terrestrial weather it is crucial to understand both daily weather forecasts as well as long term climate changes, so this project will demonstrate the ability to generate a meaningful and physically derived space weather climatology. The results of this project strongly support the DOD's Environmental Scenario Generator (ESG) project. The ESG project provides tools for intellegent data mining, classification and event detection which could be applied to a historical space-weather database. The two projects together provide a suite of tools for the user interested in modeling the effect of the near-earth space environment. We will present results and methodologies developed during the first two years of effort in the project.

  7. Food Safety for Warmer Weather

    MedlinePlus

    ... Fight Off Food Poisoning Food Safety for Warmer Weather In warm-weather months, who doesn’t love to get outside ... to keep foods safe to eat during warmer weather. If you’re eating or preparing foods outside, ...

  8. Weather--An Integrated Unit

    ERIC Educational Resources Information Center

    McConnell, Vivian

    1976-01-01

    Outlined is a two week unit on weather offered as independent study for sixth- and seventh-year students in Vancouver, Canada, schools. Included is a section on weather lore and a chart of weather symbols. (SL)

  9. Hypothermia: A Cold Weather Hazard

    MedlinePlus

    ... Weather Hazard Heath and Aging Hypothermia: A Cold Weather Hazard What Are The Signs Of Hypothermia? Taking ... cold air. But, not everyone knows that cold weather can also lower the temperature inside your body. ...

  10. Environmental Education Tips: Weather Activities.

    ERIC Educational Resources Information Center

    Brainard, Audrey H.

    1989-01-01

    Provides weather activities including questions, on weather, heating the earth's surface, air, tools of the meteorologist, clouds, humidity, wind, and evaporation. Shows an example of a weather chart activity. (RT)

  11. Sun, weather, and climate

    NASA Technical Reports Server (NTRS)

    Herman, J. R.; Goldberg, R. A.

    1985-01-01

    The general field of sun-weather/climate relationships, that is, apparent weather and climate responses to solar activity is introduced and theoretical and experimental suggestions for further research to identify and investigate the unknown causal mechanisms are provided. Topics of discussion include: (1) solar-related correlation factors and energy sources; (2) long-term climatic trends; (3) short-term meteorological correlations; (4) miscellaneous obscuring influences; (5) physical processes and mechanisms; (6) recapitulation of sun-weather relationships; and (7) guidelines for experiments.

  12. Weathering in a Cup.

    ERIC Educational Resources Information Center

    Stadum, Carol J.

    1991-01-01

    Two easy student activities that demonstrate physical weathering by expansion are described. The first demonstrates ice wedging and the second root wedging. A list of the needed materials, procedure, and observations are included. (KR)

  13. Weathering of Martian Evaporites

    NASA Technical Reports Server (NTRS)

    Wentworth, S. J.; Velbel, M. A.; Thomas-Keprta, K. L.; Longazo, T. G.; McKay, D. S.

    2001-01-01

    Evaporites in martian meteorites contain weathering or alteration features that may provide clues about the martian near-surface environment over time. Additional information is contained in the original extended abstract.

  14. Waste glass weathering

    SciTech Connect

    Bates, J.K.; Buck, E.C.

    1993-12-31

    The weathering of glass is reviewed by examining processes that affect the reaction of commercial, historical, natural, and nuclear waste glass under conditions of contact with humid air and slowly dripping water, which may lead to immersion in nearly static solution. Radionuclide release data from weathered glass under conditions that may exist in an unsaturated environment are presented and compared to release under standard leaching conditions. While the comparison between the release under weathering and leaching conditions is not exact, due to variability of reaction in humid air, evidence is presented of radionuclide release under a variety of conditions. These results suggest that both the amount and form of radionuclide release can be affected by the weathering of glass.

  15. Americans and Their Weather

    NASA Astrophysics Data System (ADS)

    Meyer, William B.

    2000-07-01

    This revealing book synthesizes research from many fields to offer the first complete history of the roles played by weather and climate in American life from colonial times to the present. Author William B. Meyer characterizes weather events as neutral phenomena that are inherently neither hazards nor resources, but can become either depending on the activities with which they interact. Meyer documents the ways in which different kinds of weather throughout history have represented hazards and resources not only for such exposed outdoor pursuits as agriculture, warfare, transportation, construction, and recreation, but for other realms of life ranging from manufacturing to migration to human health. He points out that while the weather and climate by themselves have never determined the course of human events, their significance as been continuously altered for better and for worse by the evolution of American life.

  16. Weather Information Processing

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Science Communications International (SCI), formerly General Science Corporation, has developed several commercial products based upon experience acquired as a NASA Contractor. Among them are METPRO, a meteorological data acquisition and processing system, which has been widely used, RISKPRO, an environmental assessment system, and MAPPRO, a geographic information system. METPRO software is used to collect weather data from satellites, ground-based observation systems and radio weather broadcasts to generate weather maps, enabling potential disaster areas to receive advance warning. GSC's initial work for NASA Goddard Space Flight Center resulted in METPAK, a weather satellite data analysis system. METPAK led to the commercial METPRO system. The company also provides data to other government agencies, U.S. embassies and foreign countries.

  17. Salt weathering on Mars

    NASA Technical Reports Server (NTRS)

    Malin, M. C.

    1974-01-01

    Mariner 9 photographs of Mars indicate that significant erosion has occurred on that planet. Although several possible erosion mechanisms have been proposed, most terrestrial weathering mechanisms cannot function in the present Martian environment. Salt weathering, believed to be active in the Antarctic dry valleys, is especially suited to Mars, given the presence of salts and small amounts of water. Volcanic salts are probably available, and the association of salts and water is likely from both thermodynamic and geologic considerations.

  18. Cockpit weather information system

    NASA Technical Reports Server (NTRS)

    Tu, Jeffrey Chen-Yu (Inventor)

    2000-01-01

    Weather information, periodically collected from throughout a global region, is periodically assimilated and compiled at a central source and sent via a high speed data link to a satellite communication service, such as COMSAT. That communication service converts the compiled weather information to GSDB format, and transmits the GSDB encoded information to an orbiting broadcast satellite, INMARSAT, transmitting the information at a data rate of no less than 10.5 kilobits per second. The INMARSAT satellite receives that data over its P-channel and rebroadcasts the GDSB encoded weather information, in the microwave L-band, throughout the global region at a rate of no less than 10.5 KB/S. The transmission is received aboard an aircraft by means of an onboard SATCOM receiver and the output is furnished to a weather information processor. A touch sensitive liquid crystal panel display allows the pilot to select the weather function by touching a predefined icon overlain on the display's surface and in response a color graphic display of the weather is displayed for the pilot.

  19. DOPPLER WEATHER SYSTEM

    SciTech Connect

    Berlin, Gary J.

    2002-08-05

    The SRS Doppler Weather System consists of a Doppler Server, A Master Server (also known as the Weather Server), several Doppler Slave Servers, and client-side software program called the Doppler Radar Client. This system is used to display near rel-time images taken from the SRS Weather Center's Doppler Radar computer. The Doppler Server is software that resides on the SRS Doppler Computer. It gathers raw data, 24-bit color weather images via screen scraping ever five minutes as requested by the Master Server. The Doppler Server then reduces the 24-bit color images to 8-bit color using a fixed color table for analysis and compression. This preserves the fidelity of the image color and arranges the colors in specific order for display. At the time of color reduction, the white color used for the city names on the background images are remapped to a different index (color) of white that the white on the weather scale. The Weather Server places a time stamp on the image, then compresses the image and passes it to all Doppler Slave servers. Each of the Doppler Slave servers mainitain a circular buffer of the eight most current images representing the last 40 minutes of weather data. As a new image is added, the oldest drops off. The Doppler Radar Client is an optional install program for any site-wide workstation. When a Client session is started, the Client requests Doppler Slave server assignment from the Master Server. Upon its initial request to the Slave Server, the Client obtains all eight current images and maintains its own circular buffer, updating its images every five minutes as the Doppler Slave is updated. Three background reference images are stored as part of the Client. The Client brings up the appropriate background image, decompresses the doppler data, and displays the doppler data on the background image.

  20. DOPPLER WEATHER SYSTEM

    Energy Science and Technology Software Center (ESTSC)

    2002-08-05

    The SRS Doppler Weather System consists of a Doppler Server, A Master Server (also known as the Weather Server), several Doppler Slave Servers, and client-side software program called the Doppler Radar Client. This system is used to display near rel-time images taken from the SRS Weather Center's Doppler Radar computer. The Doppler Server is software that resides on the SRS Doppler Computer. It gathers raw data, 24-bit color weather images via screen scraping ever fivemore » minutes as requested by the Master Server. The Doppler Server then reduces the 24-bit color images to 8-bit color using a fixed color table for analysis and compression. This preserves the fidelity of the image color and arranges the colors in specific order for display. At the time of color reduction, the white color used for the city names on the background images are remapped to a different index (color) of white that the white on the weather scale. The Weather Server places a time stamp on the image, then compresses the image and passes it to all Doppler Slave servers. Each of the Doppler Slave servers mainitain a circular buffer of the eight most current images representing the last 40 minutes of weather data. As a new image is added, the oldest drops off. The Doppler Radar Client is an optional install program for any site-wide workstation. When a Client session is started, the Client requests Doppler Slave server assignment from the Master Server. Upon its initial request to the Slave Server, the Client obtains all eight current images and maintains its own circular buffer, updating its images every five minutes as the Doppler Slave is updated. Three background reference images are stored as part of the Client. The Client brings up the appropriate background image, decompresses the doppler data, and displays the doppler data on the background image.« less

  1. New weather index

    NASA Astrophysics Data System (ADS)

    Scientists at the National Oceanic and Atmospheric Administration (NOAA) and the University of Delaware have refined the wind-chill factor, a common measurement of weather discomfort, into a new misery register called the weather stress index. In addition to the mix of temperature and wind speed data used to calculate wind chill, the recipe for the index adds two new ingredients—humidity and a dash of benchmark statistics—to estimate human reaction to weather conditions. NOAA says that the weather stress index estimates human reaction to weather conditions and that the reaction depends on variations from the ‘normal’ conditions in the locality involved.Discomfort criteria for New Orleans, La., and Bismarck, N.D., for example, differ drastically. According to NOAA, when it's the middle of winter and it's -10°C with a relative humidity of 80% and 24 km/h winds, persons in New Orleans would be highly stressed while those in Bismarck wouldn't bat an eye.

  2. [Weather, climate and health].

    PubMed

    Banić, M; Plesko, N; Plesko, S

    1999-01-01

    The notion of complex influence of atmospheric conditions on modem human population, especially the relationship between weather, climate and human healths, has actuated the World Meteorological Organisation to commemorate the coming into force, on March 23, 1950, of the Convention of WMO and this year to celebrate this day by focusing on theme of current interest--"Weather, climate and health". In the light of this, the authors of this paper reveal the results of recent studies dealing with influence of sudden and short-term changes in weather and climate on human health, and future expected climate changes due to "greenhouse" effect, increase in global temperature and tropospheric ozone depletion, as well. Special attention is given to climate shifts due to ENSO (El Niño/Southern Oscillation) phenomenon because of its great impact on human society and epidemics of certain infectious diseases. The results of biometeorological studies dealing with complex influence of daily weather changes on incidence of certain diseases in Croatia have also been presented. In addition, the authors have stated their own view and opinion in regard to future biometeorlogical studies in Croatia in order to achieve better understanding of influence of climate and weather changes on human health, and help prevention of mortality and morbidity related to chronic noninfectious diseases. PMID:19658377

  3. Weather from the Stratosphere?

    NASA Technical Reports Server (NTRS)

    Baldwin, Mark P.; Thompson, David W. J.; Shuckburgh, Emily F.; Norton, Warwick A.; Gillett, Nathan P.

    2006-01-01

    Is the stratosphere, the atmospheric layer between about 10 and 50 km, important for predicting changes in weather and climate? The traditional view is that the stratosphere is a passive recipient of energy and waves from weather systems in the underlying troposphere, but recent evidence suggests otherwise. At a workshop in Whistler, British Columbia (1), scientists met to discuss how the stratosphere responds to forcing from below, initiating feedback processes that in turn alter weather patterns in the troposphere. The lowest layer of the atmosphere, the troposphere, is highly dynamic and rich in water vapor, clouds, and weather. The stratosphere above it is less dense and less turbulent (see the figure). Variability in the stratosphere is dominated by hemispheric-scale changes in airflow on time scales of a week to several months. Occasionally, however, stratospheric air flow changes dramatically within just a day or two, with large-scale jumps in temperature of 20 K or more. The troposphere influences the stratosphere mainly through atmospheric waves that propagate upward. Recent evidence shows that the stratosphere organizes this chaotic wave forcing from below to create long-lived changes in the stratospheric circulation. These stratospheric changes can feed back to affect weather and climate in the troposphere.

  4. New weather radar coming

    NASA Astrophysics Data System (ADS)

    Maggs, William Ward

    What would you call the next generation of radar for severe weather prediction? NEXRAD, of course. A prototype for the new system was recently completed in Norman, Okla., and by the early 1990s up to 195 stations around the United States will be tracking dangerous weather and sending faster, more accurate, and more detailed warnings to the public.NEXRAD is being built for the Departments of Commerce, Transportation, and Defense by the Unisys Corporation under a $450 million contract signed in December 1987. Th e system will be used by the National Weather Service, the Federal Aviation Administration (FAA), and the U.S. Air Force and Navy. The NEXRAD radar tower in Norman is expected to be operational in October.

  5. Spaceborne weather radar

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Kozu, Toshiaki

    1990-01-01

    The present work on the development status of spaceborne weather radar systems and services discusses radar instrument complementarities, the current forms of equations for the characterization of such aspects of weather radar performance as surface and mirror-image returns, polarimetry, and Doppler considerations, and such essential factors in spaceborne weather radar design as frequency selection, scanning modes, and the application of SAR to rain detection. Attention is then given to radar signal absorption by the various atmospheric gases, rain drop size distribution and wind velocity determinations, and the characteristics of clouds, as well as the range of available estimation methods for backscattering, single- and dual-wavelength attenuation, and polarimetric and climatological characteristics.

  6. Space Weather Workshop

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.

    2004-01-01

    This workshop will focus on what space weather is about and its impact on society. An overall picture will be "painted" describing the Sun's influence through the solar wind on the near-Earth space environment, including the aurora, killer electrons at geosynchronous orbit, million ampere electric currents through the ionosphere and along magnetic field lines, and the generation of giga-Watts of natural radio waves. Reference material in the form of Internet sites will be provided so that teachers can discuss space weather in the classroom and enable students to learn more about this topic.

  7. Accessing Space Weather Information

    NASA Astrophysics Data System (ADS)

    Morrison, D.; Weiss, M.; Immer, E. A.; Patrone, D.; Potter, M.; Barnes, R. J.; Colclough, C.; Holder, R.

    2009-12-01

    To meet the needs of our technology based society, space weather forecasting needs to be advanced and this will entail collaboration amongst research, military and commercial communities to find new ways to understand, characterize, and forecast. In this presentation VITMO, the Virtual Ionosphere-Thermosphere-Mesosphere Observatory will be used as a prototype for a generalized system as a means to bring together a set of tools to access data, models and online collaboration tools to enable rapid progress. VITMO, available at http://vitmo.jhuapl.edu/, currently provides a data access portal for researchers and scientists to enable finding data products as well as access to tools and models. To further the needs of space weather forecasters, the existing VITMO data holdings need to be expanded to provide additional datasets as well as integrating relevant models and model output. VITMO can easily be adapted for the Space Weather domain in its entirety. In this presentation, we will demonstrate how VITMO and the VITMO architecture can be utilized as a prototype in support of integration of Space Weather forecasting tools, models and data.

  8. Weather Specialist (AFSC 25120).

    ERIC Educational Resources Information Center

    Air Univ., Gunter AFS, Ala. Extension Course Inst.

    This correspondence course is designed for self-study to help military personnel to attain the rating of weather specialist. The course is organized in three volumes. The first volume, containing seven chapters, covers background knowledge, meteorology, and climatology. In the second volume, which also contains seven chapters, surface…

  9. Silam Irrusia (Weather Conditions).

    ERIC Educational Resources Information Center

    Brown, Emily Ivanoff

    This illustrated reader in Inupiaq Athabascan is intended for use in a bilingual education setting and is geared toward readers, especially schoolchildren, who have a good grasp of the language. It consists of a story about traditional Inupiaq beliefs concerning the weather, stars, etc. (AMH)

  10. Microbial Weathering of Olivine

    NASA Technical Reports Server (NTRS)

    McKay, D. S.; Longazo, T. G.; Wentworth, S. J.; Southam, G.

    2002-01-01

    Controlled microbial weathering of olivine experiments displays a unique style of nanoetching caused by biofilm attachment to mineral surfaces. We are investigating whether the morphology of biotic nanoetching can be used as a biosignature. Additional information is contained in the original extended abstract.

  11. Weathering the Double Whammy.

    ERIC Educational Resources Information Center

    Wellman, Jane V.

    2002-01-01

    Discusses how governing boards can help their institutions weather the "double-whammy" of doing more with less: identify the institution's short-term and long-term challenges; refocus the institution's mission, planning, and programming; assess and integrate the institution's tuition, aid, and outreach strategies; redouble the institution's…

  12. Weather and Flight Testing

    NASA Technical Reports Server (NTRS)

    Wiley, Scott

    2007-01-01

    This viewgraph document reviews some of the weather hazards involved with flight testing. Some of the hazards reviewed are: turbulence, icing, thunderstorms and winds and windshear. Maps, pictures, satellite pictures of the meteorological phenomena and graphs are included. Also included are pictures of damaged aircraft.

  13. Worldwide Marine Weather Broadcasts.

    ERIC Educational Resources Information Center

    Department of the Navy, Washington, DC.

    This publication is a source of marine weather broadcast information in all areas of the world where such service is provided. This publication was designed for the use of U.S. naval and merchant ships. Sections 1 through 4 contain details of radio telegraph, radio telephone, radio facsimile, and radio teleprinter transmissions, respectively. The…

  14. Dress for the Weather

    ERIC Educational Resources Information Center

    Glen, Nicole J.; Smetana, Lara K.

    2010-01-01

    "If someone were traveling to our area for the first time during this time of year, what would you tell them to bring to wear? Why?" This question was used to engage students in a guided-inquiry unit about how climate differs from weather. In this lesson, students explored local and national data sets to give "travelers" advice when preparing for…

  15. Rainy Weather Science.

    ERIC Educational Resources Information Center

    Reynolds, Karen

    1996-01-01

    Presents ideas on the use of rainy weather for activities in the earth, life, and physical sciences. Topics include formation and collision of raindrops, amount and distribution of rain, shedding of water by plants, mapping puddles and potholes, rainbow formation, stalking storms online, lightning, and comparing particles in the air before and…

  16. Weather, Climate, and You.

    ERIC Educational Resources Information Center

    Blai, Boris, Jr.

    Information from the American Institute of Medical Climatologists on human responses to weather and climatic conditions, including clouds, winds, humidity, barometric pressure, heat, cold, and other variables that may exert a pervasive impact on health, behavior, disposition, and the level of efficiency with which individuals function is reviewed.…

  17. Satellite Weather Watch.

    ERIC Educational Resources Information Center

    Summers, R. Joe

    1982-01-01

    Describes an inexpensive (about $1,500) direct-readout ground station for use in secondary school science/mathematics programs. Includes suggested activities including, among others, developing map overlays, operating station equipment, interpreting satellite data, developing weather forecasts, and using microcomputers for data storage, orbit…

  18. Weather in Motion.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The ATS-111 weather satellite, launched on November 18, 1967, in a synchronous earth orbit 22,000 miles above the equator, is described in this folder. The description is divided into these topics: the satellite, the camera, the display, the picture information, and the beneficial use of the satellite. Photographs from the satellite are included.…

  19. Weather impacts on space operations

    NASA Astrophysics Data System (ADS)

    Madura, J.; Boyd, B.; Bauman, W.; Wyse, N.; Adams, M.

    The efforts of the 45th Weather Squadron of the USAF to provide weather support to Patrick Air Force Base, Cape Canaveral Air Force Station, Eastern Range, and the Kennedy Space Center are discussed. Its weather support to space vehicles, particularly the Space Shuttle, includes resource protection, ground processing, launch, and Ferry Flight, as well as consultations to the Spaceflight Meteorology Group for landing forecasts. Attention is given to prelaunch processing weather, launch support weather, Shuttle launch commit criteria, and range safety weather restrictions. Upper level wind requirements are examined. The frequency of hourly surface observations with thunderstorms at the Shuttle landing facility, and lightning downtime at the Titan launch complexes are illustrated.

  20. Space Weather Forecasting at NASA GSFC Space Weather Research Center

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Kuznetsova, M. M.; Pulkkinen, A.; Maddox, M. M.; Taktakishvili, A.; Mays, M. L.; Chulaki, A.; Lee, H.; Hesse, M.; Evans, R. M.; Berrios, D.; Mullinix, R.

    2012-12-01

    The NASA GSFC Space Weather Research Center (http://swrc.gsfc.nasa.gov) is committed to providing research forecasts and notifications to address NASA's space weather needs - in addition to its critical role in space weather education. We provide a host of services including spacecraft anomaly resolution, historical impact analysis, real-time monitoring and forecasting, tailored space weather alerts and products, weekly summaries and reports, and most recently - video casts. In this presentation, we will focus on how near real-time data (both in space and on ground), in combination with modeling capabilities and an innovative dissemination system called the Integrated Space Weather Analysis System (iSWA http://iswa.gsfc.nasa.gov), enable space weather forecasting and quality space weather products provided by our Center. A few critical near real-time data streams for space weather forecasting will be identified and discussed.

  1. Weatherization Works: An interim report of the National Weatherization Evaluation

    SciTech Connect

    Brown, M.A.; Berry, L.G.; Kinney, L.F.

    1993-11-01

    The National Weatherization Evaluation is the first comprehensive evaluation of the Weatherization Assistance Program since 1984. The evaluation was designed to accomplish the following goals: Estimate energy savings and cost effectiveness; Assess nonenergy impacts; Describe the weatherization network; Characterize the eligible population and resources; and Identify factors influencing outcomes and opportunities for the future. As a national program, weatherization incorporates considerable diversity due to regional differences. Therefore, evaluation results are presented both in aggregate and for three climate regions: cold, moderate and hot.

  2. Bringing Weather into Your Classroom.

    ERIC Educational Resources Information Center

    Mogil, H. Michael

    1979-01-01

    Discusses meteorological resources available to classroom teachers. Describes in detail the National Oceanic and Atmospheric Administration (NOAA) Weather Radio and the A.M. Weather Show on Public Broadcasting Service (PBS). Includes addresses where teachers can get more information. (MA)

  3. Winter Weather Frequently Asked Questions

    MedlinePlus

    ... Planning Information on Specific Types of Emergencies Winter Weather Frequently Asked Questions Language: English Español (Spanish) Recommend ... I do if I get stranded in cold weather? Tie a brightly colored cloth to the antenna ...

  4. Geography and Weather: Mountain Meterology.

    ERIC Educational Resources Information Center

    Mogil, H. Michael; Collins, H. Thomas

    1990-01-01

    Provided are 26 ideas to help children explore the effects of mountains on the weather. Weather conditions in Nepal and Colorado are considered separately. Nine additional sources of information are listed. (CW)

  5. Weather Specialist/Aerographer's Mate.

    ERIC Educational Resources Information Center

    Chanute AFB Technical Training Center, IL.

    This course trains Air Force personnel to perform duties prescribed for weather specialists and aerographer's mates. Training includes meteorology, surface and ship observation, weather radar, operation of standard weather instruments and communications equipment, and decoding and plotting of surface and upper air codes upon standard maps and…

  6. Weather Fundamentals: Climate & Seasons. [Videotape].

    ERIC Educational Resources Information Center

    1998

    The videos in this educational series for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes), describes weather patterns and cycles around the globe. The various types of climates around…

  7. Weather Folklore: Fact or Fiction?

    ERIC Educational Resources Information Center

    Jones, Gail; Carter, Glenda

    1995-01-01

    Integrating children's weather-related family folklore with scientific investigation can be an effective way to involve elementary and middle level students in lessons spanning the disciplines of science, geography, history, anthropology, and language arts. Describes weather folklore studies and examples of weather investigations performed with…

  8. Severe Weather Planning for Schools

    ERIC Educational Resources Information Center

    Watson, Barbara McNaught; Strong, Christopher; Bunting, Bill

    2008-01-01

    Flash floods, severe thunderstorms, and tornadoes occur with rapid onset and often no warning. Decisions must be made quickly and actions taken immediately. This paper provides tips for schools on: (1) Preparing for Severe Weather Emergencies; (2) Activating a Severe Weather Plan; (3) Severe Weather Plan Checklist; and (4) Periodic Drills and…

  9. Improved weather information and aviation

    NASA Technical Reports Server (NTRS)

    Hallahan, K.; Zdanys, V.

    1973-01-01

    The major impacts of weather forecasts on aviation are reviewed. Topics discussed include: (1) present and projected structure of American aviation, (2) weather problems considered particularly important for aviation, (3) projected needs for improved weather information by aviators, (4) safety and economics, and (5) future studies utilizing satellite meteorology.

  10. Whether weather affects music

    NASA Astrophysics Data System (ADS)

    Aplin, Karen L.; Williams, Paul D.

    2012-09-01

    The creative output of composers, writers, and artists is often influenced by their surroundings. To give a literary example, it has been claimed recently that some of the characters in Oliver Twist and A Christmas Carol were based on real-life people who lived near Charles Dickens in London [Richardson, 2012]. Of course, an important part of what we see and hear is not only the people with whom we interact but also our geophysical surroundings. Of all the geophysical phenomena to influence us, the weather is arguably the most significant because we are exposed to it directly and daily. The weather was a great source of inspiration for artists Claude Monet, John Constable, and William Turner, who are known for their scientifically accurate paintings of the skies [e.g., Baker and Thornes, 2006].

  11. Winter weather scorecard

    NASA Astrophysics Data System (ADS)

    Last fall's 3-month winter weather prediction by National Weather Service (NWS) forecasters was not terrific, but it was not too far off the mark, either. A comparison of the predicted temperatures and precipitation (Eos, December 25, 1984, p. 1241) to the observed conditions (see Figures 1 and 2) during the months of December, January, and February shows that the forecasters were generally correct where they were most confident in their predictions.According to Donald Gilman, chief of the Predictions Branch at NWS's National Climate Analysis Center, the overall temperature forecast was probably better than that for precipitation. “The temperature forecast was pretty good in the West,” said Gilman. “East of the Mississippi, however, was a mixed picture.”

  12. Scorecard on weather predictions

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    No matter that several northern and eastern states were pelted by snow and sleet early in March, as far as longterm weather forecasters are concerned, winter ended on February 28. Now is the time to review their winter seasonal forecasts to determine how accurate were those predictions issued at the start of winter.The National Weather Service (NWS) predicted on November 27, 1981, that the winter season would bring colder-than-normal temperatures to the eastern half of the United States, while temperatures were expected to be higher than normal in the westernmost section (see Figure 1). The NWS made no prediction for the middle of the country, labeling the area ‘indeterminate,’ or having the same chance of experiencing above-normal temperatures as below-normal temperatures, explained Donald L. Gilman, chief of the NWS long-range forecasting group.

  13. Kazakhstan Space Weather Initiative

    NASA Astrophysics Data System (ADS)

    Kryakunova, Olga

    2012-07-01

    Kazakhstan experimental complex is a center of experimental study of space weather. This complex is situated near Almaty, Kazakhstan and includes experimental setup for registration of cosmic ray intensity (neutron monitor) at altitude of 3340 m above sea level, geomagnetic observatory and setup for registration of solar flux density with frequency of 1 and 3 GHz with 1 second time resolution. Results of space environment monitoring in real time are accessible via Internet. This experimental information is used for space weather investigations and different cosmic ray effects. Almaty mountain cosmic ray station is one of the most suitable and sensitive stations for investigation and forecasting of the dangerous situations for satellites; for this reason Almaty cosmic ray station is included in the world-wide neutron monitor network for the real-time monitoring of the space weather conditions and European Database NMDB (www.nmdb.eu). All data are represented on the web-site of the Institute of Ionosphere (www.ionos.kz) in real time. Since July, 2006 the space environment prediction laboratory represents the forecast of geomagnetic activity every day on the same site (www.ionos.kz/?q=en/node/21).

  14. Space Weathering of Lunar Rocks

    NASA Technical Reports Server (NTRS)

    Noble, S. K.; Keller, L. P.; Christoffersen, R.; Rahman, Z.

    2012-01-01

    All materials exposed at the lunar surface undergo space weathering processes. On the Moon, boulders make up only a small percentage of the exposed surface, and areas where such rocks are exposed, like central peaks, are often among the least space weathered regions identified from remote sensing data. Yet space weathered surfaces (patina) are relatively common on returned rock samples, some of which directly sample the surface of larger boulders. Because, as witness plates to lunar space weathering, rocks and boulders experience longer exposure times compared to lunar soil grains, they allow us to develop a deeper perspective on the relative importance of various weathering processes as a function of time.

  15. Space Weather Services of Korea

    NASA Astrophysics Data System (ADS)

    Yoon, K.; Hong, S.; Park, S.; Kim, Y. Y.; Wi, G.

    2015-12-01

    The Korean Space Weather Center (KSWC) of the National Radio Research Agency (RRA) is a government agency which is the official source of space weather information for Korean Government and the primary action agency of emergency measure to severe space weather condition. KSWC's main role is providing alerts, watches, and forecasts in order to minimize the space weather impacts on both of public and commercial sectors of satellites, aviation, communications, navigations, power grids, and etc. KSWC is also in charge of monitoring the space weather condition and conducting research and development for its main role of space weather operation in Korea. In this study, we will present KSWC's recent efforts on development of application-oriented space weather research products and services on user needs, and introduce new international collaborative projects, such as IPS-Driven Enlil model, global network of DSCOVR and STEREO satellites tracking, and ARMAS (Automated Radiation Measurement for Aviation Safety).

  16. Space Weather Services of Korea

    NASA Astrophysics Data System (ADS)

    Yoon, KiChang; Kim, Jae-Hun; Kim, Young Yun; Kwon, Yongki; Wi, Gwan-sik

    2016-07-01

    The Korean Space Weather Center (KSWC) of the National Radio Research Agency (RRA) is a government agency which is the official source of space weather information for Korean Government and the primary action agency of emergency measure to severe space weather condition. KSWC's main role is providing alerts, watches, and forecasts in order to minimize the space weather impacts on both of public and commercial sectors of satellites, aviation, communications, navigations, power grids, and etc. KSWC is also in charge of monitoring the space weather condition and conducting research and development for its main role of space weather operation in Korea. In this study, we will present KSWC's recent efforts on development of application-oriented space weather research products and services on user needs, and introduce new international collaborative projects, such as IPS-Driven Enlil model, DREAM model estimating electron in satellite orbit, global network of DSCOVR and STEREO satellites tracking, and ARMAS (Automated Radiation Measurement for Aviation Safety).

  17. Weather dissemination and public usage

    NASA Technical Reports Server (NTRS)

    Stacey, M. S.

    1973-01-01

    The existing public usage of weather information was examined. A survey was conducted to substantiate the general public's needs for dissemination of current (0-12 hours) weather information, needs which, in a previous study, were found to be extensive and urgent. The goal of the study was to discover how the general public obtains weather information, what information they seek and why they seek it, to what use this information is put, and to further ascertain the public's attitudes and beliefs regarding weather reporting and the diffusion of weather information. Major findings from the study include: 1. The public has a real need for weather information in the 0-6 hour bracket. 2. The visual medium is preferred but due to the lack of frequent (0-6 hours) forecasts, the audio media only, i.e., telephone recordings and radio weathercasts, were more frequently used. 3. Weather information usage is sporadic.

  18. Sun-weather relationships

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The possible processes in the lower atmosphere of the earth initiated or controlled by changes in the output of the sun are investigated. These changes can include solar variation in radiation (as in the constant, or in specific wavelength regions), in particles (as in physical properties of the solar wind, or in solar cosmic rays, or solar-modulated galactic cosmic rays), and in the extended magnetic field of the sun (as in circumstances of the passage of interplanetary sector boundaries). Changes of short term (in the weather) as well as long term (in regional or global climate) are considered.

  19. Terminal Doppler weather radar

    NASA Astrophysics Data System (ADS)

    Michelson, M.; Shrader, W. W.; Wieler, J. G.

    1990-02-01

    The terminal Doppler weather radar (TDWR) system, now under development, will provide automatic detection of microbursts and low-level wind shear. This paper discusses the TDWR performance parameters and describes its structural elements, including the antenna subsystem, the transmitter, the receiver/exciter, the digital signal processor, and the radar product generator/remote monitoring subsystem. Attention is also given to the processes of the base data formation, point target removal, signal-to-noise thresholding, and velocity de-aliasing and to the TDWR algorithms and displays. A schematic diagram of the TDWR system is presented.

  20. Utilities weather the storm

    SciTech Connect

    Lihach, N.

    1984-11-01

    Utilities must restore power to storm-damaged transmission and distribution systems, even if it means going out in ice storms or during lightning and hurricane conditions. Weather forecasting helps utilities plan for possible damage as well as alerting them to long-term trends. Storm planning includes having trained repair personnel available and adjusting the system so that less power imports are needed. Storm damage response requires teamwork and cooperation between utilities. Utilities can strengthen equipment in storm-prone or vulnerable areas, but good data are necessary to document the incidence of lighning strikes, hurricanes, etc. 2 references, 8 figures.

  1. Weather Balloon Ascent Rate

    NASA Astrophysics Data System (ADS)

    Denny, Mark

    2016-05-01

    The physics of a weather balloon is analyzed. The surprising aspect of the motion of these balloons is that they ascend to great altitudes (typically 35 km) at a more or less constant rate. Such behavior is not surprising near the ground—say for a helium-filled party balloon rising from street level to the top of the Empire State building—but it is unexpected for a balloon that rises to altitudes where the air is rarefied. We show from elementary physical laws why the ascent rate is approximately constant.

  2. Polarimetric Doppler Weather Radar

    NASA Astrophysics Data System (ADS)

    Bringi, V. N.; Chandrasekar, V.

    2001-10-01

    This work provides a detailed introduction to the principles of Doppler and polarimetric radar, focusing in particular on their use in the analysis of weather systems. The authors first discuss underlying topics such as electromagnetic scattering, polarization, and wave propagation. They then detail the engineering aspects of pulsed Doppler polarimetric radar, before examining key applications in meteorology and remote sensing. The book is aimed at graduate students of electrical engineering and atmospheric science as well as practitioners involved in the applications of polarimetric radar.

  3. Weather Forecasting Aid

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Weather forecasters are usually very precise in reporting such conditions as temperature, wind velocity and humidity. They also provide exact information on barometric pressure at a given moment, and whether the barometer is "rising" or "falling"- but not how rapidly or how slowly it is rising or falling. Until now, there has not been available an instrument which measures precisely the current rate of change of barometric pressure. A meteorological instrument called a barograph traces the historical ups and downs of barometric pressure and plots a rising or falling curve, but, updated every three hours, it is only momentarily accurate at each updating.

  4. Severe Weather Forecast Decision Aid

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III; Wheeler, Mark M.; Short, David A.

    2005-01-01

    This report presents a 15-year climatological study of severe weather events and related severe weather atmospheric parameters. Data sources included local forecast rules, archived sounding data, Cloud-to-Ground Lightning Surveillance System (CGLSS) data, surface and upper air maps, and two severe weather event databases covering east-central Florida. The local forecast rules were used to set threat assessment thresholds for stability parameters that were derived from the sounding data. The severe weather events databases were used to identify days with reported severe weather and the CGLSS data was used to differentiate between lightning and non-lightning days. These data sets provided the foundation for analyzing the stability parameters and synoptic patterns that were used to develop an objective tool to aid in forecasting severe weather events. The period of record for the analysis was May - September, 1989 - 2003. The results indicate that there are certain synoptic patterns more prevalent on days with severe weather and some of the stability parameters are better predictors of severe weather days based on locally tuned threat values. The results also revealed the stability parameters that did not display any skill related to severe weather days. An interactive web-based Severe Weather Decision Aid was developed to assist the duty forecaster by providing a level of objective guidance based on the analysis of the stability parameters, CGLSS data, and synoptic-scale dynamics. The tool will be tested and evaluated during the 2005 warm season.

  5. NASA Space Weather Center Services: Potential for Space Weather Research

    NASA Technical Reports Server (NTRS)

    Zheng, Yihua; Kuznetsova, Masha; Pulkkinen, Antti; Taktakishvili, A.; Mays, M. L.; Chulaki, A.; Lee, H.; Hesse, M.

    2012-01-01

    The NASA Space Weather Center's primary objective is to provide the latest space weather information and forecasting for NASA's robotic missions and its partners and to bring space weather knowledge to the public. At the same time, the tools and services it possesses can be invaluable for research purposes. Here we show how our archive and real-time modeling of space weather events can aid research in a variety of ways, with different classification criteria. We will list and discuss major CME events, major geomagnetic storms, and major SEP events that occurred during the years 2010 - 2012. Highlights of major tools/resources will be provided.

  6. Vodcasting Space Weather

    NASA Astrophysics Data System (ADS)

    Collins Petersen, Carolyn; Erickson, P. J.; Needles, M.

    2009-01-01

    The topic of space weather is the subject of a series of vodcasts (video podcasts) produced by MIT Haystack Observatory (Westford, MA) and Loch Ness Productions (Groton, MA). This paper discusses the production and distribution of the series via Webcast, Youtube, and other avenues. It also presents preliminary evaluation of the effectiveness and outreach of the project through feedback from both formal and information education venues. The vodcast series is linked to the NASA Living With a Star Targeted Research and Technology project award "Multi-Instrument Investigation of Inner-Magnetospheric/Ionosphere Disturbances.” It is being carried out by Principal Investigator Dr. John Foster, under the auspices of NASA Grant # NNX06AB86G. The research involves using ionospheric total electron content (TEC) observations to study the location, extent, and duration of perturbations within stormtime ionospheric electric fields at mid- to low latitudes. It combines ground-based global positioning system (GPS) TEC data, incoherent scatter radar measurements of the mid-latitude ionospheric state, and DMSP satellite observations to characterize conditions which lead to severe low-latitude ionospheric perturbations. Each vodcast episode covers a certain aspect of space weather and the research program.

  7. Weatherization Apprenticeship Program

    SciTech Connect

    Watson, Eric J

    2012-12-18

    Weatherization improvement services will be provided to Native people by Native people. The proposed project will recruit, train and hire two full-time weatherization technicians who will improve the energy efficiency of homes of Alaska Natives/American Indians residing in the Indian areas, within the Cook Inlet Region of Alaska. The Region includes Anchorage as well as 8 small tribal villages: The Native Villages of Eklutna, Knik, Chickaloon, Seldovia, Ninilchik, Kenaitze, Salamatof, and Tyonek. This project will be a partnership between three entities, with Cook Inlet Tribal Council (CITC) as the lead agency: CITCA's Employment and Training Services Department, Cook Inlet Housing Authority and Alaska Works Partnership. Additionally, six of the eight tribal villages within the Cook Inlet Region of Alaska have agreed to work with the project in order to improve the energy efficiency of their tribally owned buildings and homes. The remaining three villages will be invited to participate in the establishment of an intertribal consortium through this project. Tribal homes and buildings within Anchorage fall under Cook Inlet Region, Inc. (CIRI) tribal authority.

  8. Weathering of rock 'Ginger'

    NASA Technical Reports Server (NTRS)

    1997-01-01

    One of the more unusual rocks at the site is Ginger, located southeast of the lander. Parts of it have the reddest color of any material in view, whereas its rounded lobes are gray and relatively unweathered. These color differences are brought out in the inset, enhanced at the upper right. In the false color image at the lower right, the shape of the visible-wavelength spectrum (related to the abundance of weathered ferric iron minerals) is indicated by the hue of the rocks. Blue indicates relatively unweathered rocks. Typical soils and drift, which are heavily weathered, are shown in green and flesh tones. The very red color in the creases in the rock surface correspond to a crust of ferric minerals. The origin of the rock is uncertain; the ferric crust may have grown underneath the rock, or it may cement pebbles together into a conglomerate. Ginger will be a target of future super-resolution studies to better constrain its origin.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator. JPL is an operating division of the California Institute of Technology (Caltech).

  9. Road Weather and Connected Vehicles

    NASA Astrophysics Data System (ADS)

    Pisano, P.; Boyce, B. C.

    2015-12-01

    On average, there are over 5.8 M vehicle crashes each year of which 23% are weather-related. Weather-related crashes are defined as those crashes that occur in adverse weather or on slick pavement. The vast majority of weather-related crashes happen on wet pavement (74%) and during rainfall (46%). Connected vehicle technologies hold the promise to transform road-weather management by providing improved road weather data in real time with greater temporal and geographic accuracy. This will dramatically expand the amount of data that can be used to assess, forecast, and address the impacts that weather has on roads, vehicles, and travelers. The use of vehicle-based measurements of the road and surrounding atmosphere with other, more traditional weather data sources, and create road and atmospheric hazard products for a variety of users. The broad availability of road weather data from mobile sources will vastly improve the ability to detect and forecast weather and road conditions, and will provide the capability to manage road-weather response on specific roadway links. The RWMP is currently demonstrating how weather, road conditions, and related vehicle data can be used for decision making through an innovative Integrated Mobile Observations project. FHWA is partnering with 3 DOTs (MN, MI, & NV) to pilot these applications. One is a mobile alerts application called the Motorists Advisories and Warnings (MAW) and a maintenance decision support application. These applications blend traditional weather information (e.g., radar, surface stations) with mobile vehicle data (e.g., temperature, brake status, wiper status) to determine current weather conditions. These weather conditions, and other road-travel-relevant information, are provided to users via web and phone applications. The MAW provides nowcasts and short-term forecasts out to 24 hours while the EMDSS application can provide forecasts up to 72 hours in advance. The three DOTs have placed readers and external

  10. Weather Forecasting Systems and Methods

    NASA Technical Reports Server (NTRS)

    Mecikalski, John (Inventor); MacKenzie, Wayne M., Jr. (Inventor); Walker, John Robert (Inventor)

    2014-01-01

    A weather forecasting system has weather forecasting logic that receives raw image data from a satellite. The raw image data has values indicative of light and radiance data from the Earth as measured by the satellite, and the weather forecasting logic processes such data to identify cumulus clouds within the satellite images. For each identified cumulus cloud, the weather forecasting logic applies interest field tests to determine a score indicating the likelihood of the cumulus cloud forming precipitation and/or lightning in the future within a certain time period. Based on such scores, the weather forecasting logic predicts in which geographic regions the identified cumulus clouds will produce precipitation and/or lighting within during the time period. Such predictions may then be used to provide a weather map thereby providing users with a graphical illustration of the areas predicted to be affected by precipitation within the time period.

  11. Weather forecasting expert system study

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Weather forecasting is critical to both the Space Transportation System (STS) ground operations and the launch/landing activities at NASA Kennedy Space Center (KSC). The current launch frequency places significant demands on the USAF weather forecasters at the Cape Canaveral Forecasting Facility (CCFF), who currently provide the weather forecasting for all STS operations. As launch frequency increases, KSC's weather forecasting problems will be great magnified. The single most important problem is the shortage of highly skilled forecasting personnel. The development of forecasting expertise is difficult and requires several years of experience. Frequent personnel changes within the forecasting staff jeopardize the accumulation and retention of experience-based weather forecasting expertise. The primary purpose of this project was to assess the feasibility of using Artificial Intelligence (AI) techniques to ameliorate this shortage of experts by capturing aria incorporating the forecasting knowledge of current expert forecasters into a Weather Forecasting Expert System (WFES) which would then be made available to less experienced duty forecasters.

  12. Bishop Paiute Weatherization Training Program

    SciTech Connect

    Carlos Hernandez

    2010-01-28

    The DOE Weatherization Training Grant assisted Native American trainees in developing weatherization competencies, creating employment opportunities for Bishop Paiute tribal members in a growing field. The trainees completed all the necessary training and certification requirements and delivered high-quality weatherization services on the Bishop Paiute Reservation. Six tribal members received all three certifications for weatherization; four of the trainees are currently employed. The public benefit includes (1) development of marketable skills by low-income Native individuals, (2) employment for low-income Native individuals in a growing industry, and (3) economic development opportunities that were previously not available to these individuals or the Tribe.

  13. Solar weather/climate predictions

    NASA Technical Reports Server (NTRS)

    Schatten, K. H.; Goldberg, R. A.; Mitchell, J. M.; Olson, R.; Schaefer, J.; Silverman, S.; Wilcox, J.; Williams, G.

    1979-01-01

    Solar variability influences upon terrestrial weather and climate are addressed. Both the positive and negative findings are included and specific predictions, areas of further study, and recommendations listed.

  14. Space Weathering: An Ultraviolet Indicator

    NASA Technical Reports Server (NTRS)

    Hendrix, A. R.; Vilas, F.

    2003-01-01

    We present evidence suggesting that the spectral slope of airless bodies in the UV-visible wavelength range can be used as an indicator of exposure to space weathering. While space weathering generally produces a reddening of spectra in the visible-NIR spectral regions, it tends to result in a bluing of the UV-visible portion of the spectrum, and may in some cases produce a spectral reversal. The bluing effect may be detectable with smaller amounts of weathering than are necessary to detect the longer-wavelength weathering effects.

  15. Space Weathering: An Ultraviolet Indicator

    NASA Technical Reports Server (NTRS)

    Hendrix, A. R.; Vilas, F.

    2004-01-01

    We present evidence suggesting that the spectral slope of airless bodies in the UV-visible wavelength range can be used as an indicator of exposure to space weathering. While space weathering generally produces a reddening of spectra in the visible-NIR spectral regions, it tends to result in a bluing of the UV-visible portion of the spectrum, and may in some cases produce a spectral reversal. The bluing effect may be detectable with smaller amounts of weathering than are necessary to detect the longer-wavelength weathering effects.

  16. AWE: Aviation Weather Data Visualization

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly; Lodha, Suresh K.

    2001-01-01

    The two official sources for aviation weather reports both require the pilot to mentally visualize the provided information. In contrast, our system, Aviation Weather Environment (AWE) presents aviation specific weather available to pilots in an easy to visualize form. We start with a computer-generated textual briefing for a specific area. We map this briefing onto a grid specific to the pilot's route that includes only information relevant to his flight route that includes only information relevant to his flight as defined by route, altitude, true airspeed, and proposed departure time. By modifying various parameters, the pilot can use AWE as a planning tool as well as a weather briefing tool.

  17. Small Sensors for Space Weather

    NASA Astrophysics Data System (ADS)

    Nicholas, A. C.

    2015-12-01

    The Naval Research Laboratory is actively pursuing enhancing the nation's space weather sensing capability. One aspect of this plan is the concept of flying Space Weather sensor suites on host spacecraft as secondary payloads. The emergence and advancement of the CubeSat spacecraft architecture has produced a viable platform for scientifically and operationally relevant Space Weather sensing. This talk will provide an overview of NRL's low size weight and power sensor technologies targeting Space Weather measurements. A summary of on-orbit results of past and current missions will be presented, as well as an overview of future flights that are manifested and potential constellation missions.

  18. Supporting Weather Data

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Since its founding in 1992, Global Science & Technology, Inc. (GST), of Greenbelt, Maryland, has been developing technologies and providing services in support of NASA scientific research. GST specialties include scientific analysis, science data and information systems, data visualization, communications, networking and Web technologies, computer science, and software system engineering. As a longtime contractor to Goddard Space Flight Center s Earth Science Directorate, GST scientific, engineering, and information technology staff have extensive qualifications with the synthesis of satellite, in situ, and Earth science data for weather- and climate-related projects. GST s experience in this arena is end-to-end, from building satellite ground receiving systems and science data systems, to product generation and research and analysis.

  19. Intelligent Weather Agent

    NASA Technical Reports Server (NTRS)

    Spirkovska, Liljana (Inventor)

    2006-01-01

    Method and system for automatically displaying, visually and/or audibly and/or by an audible alarm signal, relevant weather data for an identified aircraft pilot, when each of a selected subset of measured or estimated aviation situation parameters, corresponding to a given aviation situation, has a value lying in a selected range. Each range for a particular pilot may be a default range, may be entered by the pilot and/or may be automatically determined from experience and may be subsequently edited by the pilot to change a range and to add or delete parameters describing a situation for which a display should be provided. The pilot can also verbally activate an audible display or visual display of selected information by verbal entry of a first command or a second command, respectively, that specifies the information required.

  20. Micro Weather Station

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael E.

    1999-01-01

    Improved in situ meteorological measurements in the troposphere and stratosphere are needed for studies of weather and climate, both as a primary data source and as validation for remote sensing instruments. Following the initial development and successful flight validation of the surface acoustic wave (SAW) hygrometer, the micro weather station program was directed toward the development of an integrated instrument, capable of accurate, in situ profiling of the troposphere, and small enough to fly on a radiosonde balloon for direct comparison with standard radiosondes. On April 23, 1998, working with Frank Schmidlin and Bob Olson of Wallops Island Flight Facility, we flew our instrument in a dual payload experiment, for validation and direct comparison with a Vaisala radiosonde. During that flight, the SAW dewpoint hygrometer measured frostpoint down to -76T at 44,000 feet. Using a laptop computer in radio contact with the balloon, we monitored data in real time, issued the cutdown command, and recovered the payload less than an hour after landing in White Sands Missile Range, 50 miles from the launch site in Hatch, New Mexico. Future flights will extend the intercomparison, and attempt to obtain in situ meteorological profiles from the surface through the tropopause. The SAW hygrometer was successfully deployed on the NASA DC8 as part of NASA's Third Convection and Moisture Experiment (CAMEX-3) during August and September, 1998. This field campaign was devoted to the study of hurricane tracking and intensification using NASA-funded aircraft. In situ humidity data from the SAW hygrometer are currently being analyzed and compared with data from other instruments on the DC8 and ER2 aircraft. Additional information is contained in the original.

  1. Terminal weather information management

    NASA Technical Reports Server (NTRS)

    Lee, Alfred T.

    1990-01-01

    Since the mid-1960's, microburst/windshear events have caused at least 30 aircraft accidents and incidents and have killed more than 600 people in the United States alone. This study evaluated alternative means of alerting an airline crew to the presence of microburst/windshear events in the terminal area. Of particular interest was the relative effectiveness of conventional and data link ground-to-air transmissions of ground-based radar and low-level windshear sensing information on microburst/windshear avoidance. The Advanced Concepts Flight Simulator located at Ames Research Center was employed in a line oriented simulation of a scheduled round-trip airline flight from Salt Lake City to Denver Stapleton Airport. Actual weather en route and in the terminal area was simulated using recorded data. The microburst/windshear incident of July 11, 1988 was re-created for the Denver area operations. Six experienced airline crews currently flying scheduled routes were employed as test subjects for each of three groups: (1) A baseline group which received alerts via conventional air traffic control (ATC) tower transmissions; (2) An experimental group which received alerts/events displayed visually and aurally in the cockpit six miles (approx. 2 min.) from the microburst event; and (3) An additional experimental group received displayed alerts/events 23 linear miles (approx. 7 min.) from the microburst event. Analyses of crew communications and decision times showed a marked improvement in both situation awareness and decision-making with visually displayed ground-based radar information. Substantial reductions in the variability of decision times among crews in the visual display groups were also found. These findings suggest that crew performance will be enhanced and individual differences among crews due to differences in training and prior experience are significantly reduced by providing real-time, graphic display of terminal weather hazards.

  2. Basalt Weathering Rates Across Scales

    NASA Astrophysics Data System (ADS)

    Navarresitchler, A.; Brantley, S.

    2006-12-01

    Weathering of silicate minerals is a known sink for atmospheric CO2. An estimated 30%-35% of the consumption of CO2 from continental silicate weathering can be attributed to basalt weathering (Dessert et al., 2003). To assess basalt weathering rates we examine weathering advance rates of basalt (w, mm/yr) reported at four scales: denudation rates from basalt watersheds (tens of kilometers), rates of soil formation from soil profiles developed on basaltic parent material of known age (meters), rates of weathering rind formation on basalt clasts (centimeters), and laboratory dissolution rates (millimeters). Basalt weathering advance rates calculated for watersheds range between 0.36 and 9.8x10-3 mm/yr. The weathering advance rate for a basalt soil profile in Hawaii is 8.0x10-3 mm/yr while advance rates for clasts range from 5.6x10-6 to 2.4x10-4 mm/yr. Batch and mixed flow laboratory experiments performed at circum- neutral pH yield advance rates of 2.5x10^{-5} to 3.4x10-7 mm/yr when normalized to BET surface area. These results show increasing advance rates with both increasing scale (from laboratory to watersheds) and increasing temperature. If we assume that basalt weathers at an intrinsic rate that applies to all scales then we conclude that variations in weathering advance rates arise from variations in surface area measurement at different scales (D); therefore, basalt weathering is a fractal system. We measure a fractal dimension (dr) of basalt weathering of 2.2. For Euclidean geometries, measured surface area does not vary with the scale at which it is measured and dr equals 2. For natural surfaces, surface area is related to the scale at which it is measured. As scale increases, the minimum size of the surface irregularities that are measurable also increases. The ratio between BET and geometric normalized laboratory dissolution rates has been defined as a roughness parameter, λ, which ranges from ~10-100. We extend the definition of this roughness parameter

  3. Weather Fundamentals: Hurricanes & Tornadoes. [Videotape].

    ERIC Educational Resources Information Center

    1998

    The videos in this educational series, for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes) features information on the deadliest and most destructive storms on Earth. Through satellite…

  4. Regional-seasonal weather forecasting

    SciTech Connect

    Abarbanel, H.; Foley, H.; MacDonald, G.; Rothaus, O.; Rudermann, M.; Vesecky, J.

    1980-08-01

    In the interest of allocating heating fuels optimally, the state-of-the-art for seasonal weather forecasting is reviewed. A model using an enormous data base of past weather data is contemplated to improve seasonal forecasts, but present skills do not make that practicable. 90 references. (PSB)

  5. Weather Fundamentals: Rain & Snow. [Videotape].

    ERIC Educational Resources Information Center

    1998

    The videos in this educational series, for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes) gives concise explanations of the various types of precipitation and describes how the water…

  6. Weather to Make a Decision

    ERIC Educational Resources Information Center

    Hoyle, Julie E.; Mjelde, James W.; Litzenberg, Kerry K.

    2006-01-01

    DECIDE is a teacher-friendly, integrated approach designed to stimulate learning by allowing students to make decisions about situations they face in their lives while using scientific weather principles. This learning unit integrates weather science, decision theory, mathematics, statistics, geography, and reading in a context of decision…

  7. The pioneers of weather forecasting

    NASA Astrophysics Data System (ADS)

    Ballard, Susan

    2016-01-01

    In The Weather Experiment author Peter Moore takes us on a compelling journey through the early history of weather forecasting, bringing to life the personalities, lives and achievements of the men who put in place the building blocks required for forecasts to be possible.

  8. Aviation Weather Information Requirements Study

    NASA Technical Reports Server (NTRS)

    Keel, Byron M.; Stancil, Charles E.; Eckert, Clifford A.; Brown, Susan M.; Gimmestad, Gary G.; Richards, Mark A.; Schaffner, Philip R. (Technical Monitor)

    2000-01-01

    The Aviation Safety Program (AvSP) has as its goal an improvement in aviation safety by a factor of 5 over the next 10 years and a factor of 10 over the next 20 years. Since weather has a big impact on aviation safety and is associated with 30% of all aviation accidents, Weather Accident Prevention (WxAP) is a major element under this program. The Aviation Weather Information (AWIN) Distribution and Presentation project is one of three projects under this element. This report contains the findings of a study conducted by the Georgia Tech Research Institute (GTRI) under the Enhanced Weather Products effort, which is a task under AWIN. The study examines current aviation weather products and there application. The study goes on to identify deficiencies in the current system and to define requirements for aviation weather products that would lead to an increase in safety. The study also provides an overview the current set of sensors applied to the collection of aviation weather information. New, modified, or fused sensor systems are identified which could be applied in improving the current set of weather products and in addressing the deficiencies defined in the report. In addition, the study addresses and recommends possible sensors for inclusion in an electronic pilot reporting (EPIREP) system.

  9. Upgrade Summer Severe Weather Tool

    NASA Technical Reports Server (NTRS)

    Watson, Leela

    2011-01-01

    The goal of this task was to upgrade to the existing severe weather database by adding observations from the 2010 warm season, update the verification dataset with results from the 2010 warm season, use statistical logistic regression analysis on the database and develop a new forecast tool. The AMU analyzed 7 stability parameters that showed the possibility of providing guidance in forecasting severe weather, calculated verification statistics for the Total Threat Score (TTS), and calculated warm season verification statistics for the 2010 season. The AMU also performed statistical logistic regression analysis on the 22-year severe weather database. The results indicated that the logistic regression equation did not show an increase in skill over the previously developed TTS. The equation showed less accuracy than TTS at predicting severe weather, little ability to distinguish between severe and non-severe weather days, and worse standard categorical accuracy measures and skill scores over TTS.

  10. Smooth Sailing for Weather Forecasting

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Through a cooperative venture with NASA's Stennis Space Center, WorldWinds, Inc., developed a unique weather and wave vector map using space-based radar satellite information and traditional weather observations. Called WorldWinds, the product provides accurate, near real-time, high-resolution weather forecasts. It was developed for commercial and scientific users. In addition to weather forecasting, the product's applications include maritime and terrestrial transportation, aviation operations, precision farming, offshore oil and gas operations, and coastal hazard response support. Target commercial markets include the operational maritime and aviation communities, oil and gas providers, and recreational yachting interests. Science applications include global long-term prediction and climate change, land-cover and land-use change, and natural hazard issues. Commercial airlines have expressed interest in the product, as it can provide forecasts over remote areas. WorldWinds, Inc., is currently providing its product to commercial weather outlets.

  11. International Space Weather Initiative (ISWI)

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat; Davila, Joseph M.

    2010-01-01

    The International Space Weather Initiative (ISWI) is an international scientific program to understand the external drivers of space weather. The science and applications of space weather has been brought to prominence because of the rapid development of space based technology that is useful for all human beings. The ISWI program has its roots in the successful International Heliophysical Year (IHY) program that ran during 2007 - 2009. The primary objective of the ISWI program is to advance the space weather science by a combination of instrument deployment, analysis and interpretation of space weather data from the deployed instruments in conjunction with space data, and communicate the results to the public and students. Like the IHY, the ISWI will be a grass roots organization with key participation from national coordinators in cooperation with an international steering committee. This talk outlines the ISWI program including its organization and proposed activities.

  12. Public Awareness of Space Weather

    NASA Astrophysics Data System (ADS)

    Lanzerotti, Louis J.

    2009-08-01

    As society increasingly relies on space-based infrastructure for communication and national security, there is a growing need to improve public awareness of the risks space weather poses. The National Space Weather Program (NSWP) should consider this need as it develops new strategic plans. The 2006 “Report of the Assessment Committee for the National Space Weather Program” (http://www.ofcm.gov/r24/fcm-r24.htm) continues to guide this important national program, which aims to improve space weather forecasting services and reduce technological vulnerabilities. NSWP, under the auspices of the Office of the Federal Coordinator for Meteorology (OFCM), is coordinated by the NSWP Council, which consists of eight federal agencies. This council, through its Committee for Space Weather, is in the process of formulating new Strategic and Implementation plans for the NSWP using recommendations from the Assessment Committee.

  13. PV powering a weather station for severe weather

    SciTech Connect

    Young, W. Jr.; Schmidt, J.

    1997-12-31

    A natural disaster, such as Hurricane Andrew, destroys thousands of homes and businesses. The destruction from this storm left thousands of people without communications, potable water, and electrical power. This prompted the Florida Solar Energy Center to study the application of solar electric power for use in disasters. During this same period, volunteers at the Tropical Prediction Center at the National Hurricane Center (NHC), Miami, Florida and the Miami Office of the National Weather Service (NWS) were working to increase the quantity and quality of observations received from home weather stations. Forecasters at NHC have found surface reports from home weather stations a valuable tool in determining the size, strength and course of hurricanes. Home weather stations appear able to record the required information with an adequate level of accuracy. Amateur radio, utilizing the Automatic Packet Report System, (APRS) can be used to transmit this data to weather service offices in virtually real time. Many weather data collecting stations are at remote sites which are not readily serviced by dependable commercial power. Photovoltaic (solar electric) modules generate electricity and when connected to a battery can operate as a stand alone power system. The integration of these components provides an inexpensive standalone system. The system is easy to install, operates automatically and has good communication capabilities. This paper discusses the design criteria, operation, construction and deployment of a prototype solar powered weather station.

  14. Weather Data Receiver

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Northern Video Graphics, Inc. developed a low-cost satellite receiving system for users such as independent meteorologists, agribusiness firms, small airports or flying clubs, marine vessels and small TV stations. Called Video Fax, it is designed for use with certain satellites; the GOES (Geostationary Operational Environmental Satellite) spacecraft operated by the National Oceanic and Atmospheric Administration, the European Space Agency's Meteosat and Japan's Geostationary Meteorological Satellite. By dictum of the World Meteorological Organization, signals from satellites are available to anyone without cost so the Video Fax user can acquire signals directly from the satellite and cut out the middle man, enabling savings. Unit sells for about one-fifth the cost of the equipment used by TV stations. It consists of a two-meter antenna; a receiver; a microprocessor-controlled display computer; and a video monitor. Computer stores data from the satellites and converts it to an image which is displayed on the monitor. Weather map can be preserved as signal data on tape, or it can be stored in a video cassette as a permanent image.

  15. Global ionospheric weather

    SciTech Connect

    Decker, D.T.; Doherty, P.H.

    1994-02-28

    In the last year, the authors have studied several issues that are critical for understanding ionospheric weather. Work on global F-region modeling has consisted of testing the Phillips Laboratory Global Theoretical Ionosphere Model. Comparisons with both data and other theoretical models have been successfully conducted and are ongoing. GPS observations, as well as data analysis, are also ongoing. Data have been collected for a study on the limitations in making absolute ionospheric measurements using GPS. Another study on ionospheric variability is the first of its kind using GPS data. The observed seasonal total electron content behavior is consistent with that determined from the Faraday rotation technique. Work on the FAA's Phase 1 Wide Area Differential GPS (WADGPS) Satellite Navigation Testbed Experiment also continues. Initial results indicate that stations using operational WADGPS should be located no greater than 430 km apart. Work comparing the authors electron-proton-H atom model to both observations and other models has been generally successful. They have successfully modeled the creation of high-latitude large-scale plasma structures using two separate mechanisms (time-varying global convection and meso-scale convection events).

  16. Cold-Weather Sports and Your Family

    MedlinePlus

    ... 5 Things to Know About Zika & Pregnancy Cold-Weather Sports and Your Family KidsHealth > For Parents > Cold- ... once the weather turns frosty. Beating the Cold-Weather Blahs Once a chill is in the air, ...

  17. Stormy weather in galaxy clusters

    PubMed

    Burns

    1998-04-17

    Recent x-ray, optical, and radio observations coupled with particle and gas dynamics numerical simulations reveal an unexpectedly complex environment within clusters of galaxies, driven by ongoing accretion of matter from large-scale supercluster filaments. Mergers between clusters and continuous infall of dark matter and baryons from the cluster periphery produce long-lived "stormy weather" within the gaseous cluster atmosphere-shocks, turbulence, and winds of more than 1000 kilometers per second. This weather may be responsible for shaping a rich variety of extended radio sources, which in turn act as "barometers" and "anemometers" of cluster weather. PMID:9545210

  18. GEM: Statistical weather forecasting procedure

    NASA Technical Reports Server (NTRS)

    Miller, R. G.

    1983-01-01

    The objective of the Generalized Exponential Markov (GEM) Program was to develop a weather forecast guidance system that would: predict between 0 to 6 hours all elements in the airways observations; respond instantly to the latest observed conditions of the surface weather; process these observations at local sites on minicomputing equipment; exceed the accuracy of current persistence predictions at the shortest prediction of one hour and beyond; exceed the accuracy of current forecast model output statistics inside eight hours; and be capable of making predictions at one location for all locations where weather information is available.

  19. Space Weather Forecasting: An Enigma

    NASA Astrophysics Data System (ADS)

    Sojka, J. J.

    2012-12-01

    The space age began in earnest on October 4, 1957 with the launch of Sputnik 1 and was fuelled for over a decade by very strong national societal concerns. Prior to this single event the adverse effects of space weather had been registered on telegraph lines as well as interference on early WWII radar systems, while for countless eons the beauty of space weather as mid-latitude auroral displays were much appreciated. These prior space weather impacts were in themselves only a low-level science puzzle pursued by a few dedicated researchers. The technology boost and innovation that the post Sputnik era generated has almost single handedly defined our present day societal technology infrastructure. During the decade following Neil's walk on the moon on July 21, 1969 an international thrust to understand the science of space, and its weather, was in progress. However, the search for scientific understand was parsed into independent "stove pipe" categories: The ionosphere-aeronomy, the magnetosphere, the heliosphere-sun. The present day scientific infrastructure of funding agencies, learned societies, and international organizations are still hampered by these 1960's logical divisions which today are outdated in the pursuit of understanding space weather. As this era of intensive and well funded scientific research progressed so did societies innovative uses for space technologies and space "spin-offs". Well over a decade ago leaders in technology, science, and the military realized that there was indeed an adverse side to space weather that with each passing year became more severe. In 1994 several U.S. agencies established the National Space Weather Program (NSWP) to focus scientific attention on the system wide issue of the adverse effects of space weather on society and its technologies. Indeed for the past two decades a significant fraction of the scientific community has actively engaged in understanding space weather and hence crossing the "stove

  20. STEREO Space Weather and the Space Weather Beacon

    NASA Technical Reports Server (NTRS)

    Biesecker, D. A.; Webb, D F.; SaintCyr, O. C.

    2007-01-01

    The Solar Terrestrial Relations Observatory (STEREO) is first and foremost a solar and interplanetary research mission, with one of the natural applications being in the area of space weather. The obvious potential for space weather applications is so great that NOAA has worked to incorporate the real-time data into their forecast center as much as possible. A subset of the STEREO data will be continuously downlinked in a real-time broadcast mode, called the Space Weather Beacon. Within the research community there has been considerable interest in conducting space weather related research with STEREO. Some of this research is geared towards making an immediate impact while other work is still very much in the research domain. There are many areas where STEREO might contribute and we cannot predict where all the successes will come. Here we discuss how STEREO will contribute to space weather and many of the specific research projects proposed to address STEREO space weather issues. We also discuss some specific uses of the STEREO data in the NOAA Space Environment Center.

  1. Compute the Weather in Your Classroom.

    ERIC Educational Resources Information Center

    Meier, Beverly

    1988-01-01

    Discusses a weather prediction activity connecting local weather network by computer modem. Describes software for telecommunications, data gathering, preparation work, and instructional procedures. (YP)

  2. Microarray Analysis of Microbial Weathering

    NASA Astrophysics Data System (ADS)

    Olsson-Francis, K.; van Houdt, R.; Leys, N.; Mergeay, M.; Cockell, C. S.

    2010-04-01

    Microarray analysis of the heavy metal resistant bacterium, Cupriavidus metallidurans CH34 was used to investigate the genes involved in the weathering. The results demonstrated that large porin and membrane transporter genes were unregulated.

  3. Space weather center in Japan

    NASA Astrophysics Data System (ADS)

    Watari, S.

    2008-11-01

    Progress in information technology has enabled to collecting data in near real-time. This significantly improves our ability to monitor space weather conditions. We deliver information on near real-time space weather conditions via the internet. We have started two collaborations with space weather users. One is a measurement of geomagnetically induced current (GIC) of power grids in collaboration with a Japanese power company. The other concerns radiation hazards for aircrews. The radiation exposure level for aircrews was been determined by the Japanese government by the end of 2005. The proposed upper limit is 5 mSV a year. We are actively seeking ways to contribute to this subject. Our activities at the Japanese space weather center are reported in this paper.

  4. Exercising Safely in Hot Weather

    MedlinePlus

    ... www.nia.nih.gov/Go4Life Exercising Safely in Hot Weather Many people enjoy outdoor activities—walking, gardening, ... older adults and people with health problems. Being hot for too long can cause hyperthermia—a heat- ...

  5. The science of space weather.

    PubMed

    Eastwood, Jonathan P

    2008-12-13

    The basic physics underpinning space weather is reviewed, beginning with a brief overview of the main causes of variability in the near-Earth space environment. Although many plasma phenomena contribute to space weather, one of the most important is magnetic reconnection, and recent cutting edge research in this field is reviewed. We then place this research in context by discussing a number of specific types of space weather in more detail. As society inexorably increases its dependence on space, the necessity of predicting and mitigating space weather will become ever more acute. This requires a deep understanding of the complexities inherent in the plasmas that fill space and has prompted the development of a new generation of scientific space missions at the international level. PMID:18812302

  6. Practical Weathering for Geology Students.

    ERIC Educational Resources Information Center

    Hodder, A. Peter

    1990-01-01

    The design and data management of an activity to study weathering by increasing the rate of mineral dissolution in a microwave oven is described. Data analysis in terms of parabolic and first-order kinetics is discussed. (CW)

  7. Space Weathering Processes on Mercury

    NASA Technical Reports Server (NTRS)

    Noble, S. K.; Pieters, C. M.

    2002-01-01

    Like the Moon, Mercury has no atmosphere to protect it from the harsh space environment and therefore it is expected that it will incur the effects of space weathering. These weathering processes are capable of both creating regolith and altering its optical properties. However, there are many important differences between the environments of Mercury and the Moon. These environmental differences will almost certainly affect the weathering processes as well as the products of those processes. It should be possible to observe the effects of these differences in Vis/NIR spectra of the type expected to be returned by MESSENGER. More importantly, understanding these weathering processes and their consequences is essential for evaluating the spectral data returned from MESSENGER and other missions in order to determine the mineralogy and the iron content of the Mercurian surface. Theoretical and experimental work has been undertaken in order to better understand these consequences.

  8. URBAN WET-WEATHER FLOWS

    EPA Science Inventory

    Provides the annual Urban Wet Weather Flow Literture Review for the calendar year 1998 conducted for the Water Environment Federation. It contains hundreds of citations covering the topics of characterization and effects, management, modeling, regulator policies and contol and t...

  9. The International Space Weather Initiative

    NASA Technical Reports Server (NTRS)

    Nat, Gopalswamy; Joseph, Davila; Barbara, Thompson

    2010-01-01

    The International Space Weather Initiative (ISWI) is a program of international cooperation aimed at understanding the external drivers of space weather. The ISWI program has its roots in the successful International Heliophysical Year (IHY) program that ran during 2007 - 2009 and will continue with those aspects that directly affect life on Earth. The primary objective of the ISWI program is to advance the space weather science by a combination of instrument deployment, analysis and interpretation of space weather data from the deployed instruments in conjunction with space data, and communicate the results to the public and students. Like the IHY, the ISWI will be a grass roots organization with key participation from national coordinators in cooperation with an international steering committee. This presentation outlines the ISWI program including its organizational aspects and proposed activities. The ISWI observatory deployment and outreach activities are highly complementary to the CAWSES II activities of SCOSTEP.

  10. Weather data communication and utilization

    NASA Technical Reports Server (NTRS)

    Mcfarland, R. H.; Nickum, J. D.; Mccall, D. L.

    1983-01-01

    The communication of weather data to aircraft is discussed. Problems encountered because of the great quantities of data available and the limited capacity to transfer this via radio link to an aircraft are discussed. Display devices are discussed.

  11. The DLR Project - Weather & Flying

    NASA Astrophysics Data System (ADS)

    Gerz, T.

    2009-09-01

    A project is introduced which aims at (a) providing timely, tailored and concise meteorological information especially for adverse weather as precisely as possible for air traffic control and management, airline operating centres, pilots, and airports, and (b) building automated flight control systems and evasion-manoeuvre methods to minimise the impact of adverse wind and wake conditions on the flight performance of an aircraft. Today ATM and ATC most of the time only react on adverse weather when the disruption has already happened or is just about to happen. A future air traffic management should pro-actively anticipate disruptive weather elements and their time scales well in advance to avoid or to mitigate the impact upon the traffic flow. But "weather” is not a technical problem that can be simply solved. Predicting the weather is a difficult and complex task and only possible within certain limits. It is therefore necessary to observe and forecast the changing state of the atmosphere as precisely and as rapidly as possible. Measures must be taken to minimise the impact of adverse weather or changing weather conditions on air traffic management and tactical manoeuvring, both on ground and onboard the aircraft. Weather and meteorological information (MET in short) is to be considered as an integral part of air traffic management. In 2008, DLR has initiated a major project "Wetter & Fliegen” (German for "Weather and Flying”) to address this inter¬disciplinary challenge. Its goal is to augment safety and efficiency of air transportation, thereby focusing on the two German hub airports in Frankfurt and München. This high-level goal shall be reached by two strands of work: a) The development of an Integrated Terminal Weather Systems (ITWS) for the air¬¬ports at Frankfurt and München to improve the detection and forecast of weather phenomena adversely affecting airport operations, including deep convection (thunderstorms, hail, wind), wake vortex, and

  12. Space Weathering of Small Bodies

    NASA Astrophysics Data System (ADS)

    McFadden, L. A.

    2002-12-01

    Space weathering is defined as any process that wears away and alters surfaces, here confined to small bodies in the Solar System. Mechanisms which possibly alter asteroid and comet surfaces include solar wind bombardment, UV radiation, cosmic ray bombardment, micrometeorite bombardment. These processes are likely to contribute to surface processes differently. For example, solar wind bombardment would be more important on a body closer to the Sun compared to a comet where cosmic ray bombardment might be a more significant weathering mechanism. How can we measure the effects of space weathering? A big problem is that we don't know the nature of the surface before it was weathered. We are in a new era in the study of surface processes on small bodies brought about by the availability of spatially resolved, color and spectral measurements of asteroids from Galileo and NEAR. What processes are active on which bodies? What physics controls surface processes in different regions of the solar system? How do processes differ on different bodies of different physical and chemical properties? What combinations of observable parameters best address the nature of surface processes? Are there alternative explanations for the observed parameters that have been attributed to space weathering? Should we retain the term, space weathering? How can our understanding of space weathering on the Moon help us understand it on asteroids and comets? Finally, we have to leave behind some presuppositions, one being that there is evidence of space weathering based on the fact that the optical properties of S-type asteroids differs from those of ordinary chondrites.

  13. Temperature dependence of basalt weathering

    NASA Astrophysics Data System (ADS)

    Li, Gaojun; Hartmann, Jens; Derry, Louis A.; West, A. Joshua; You, Chen-Feng; Long, Xiaoyong; Zhan, Tao; Li, Laifeng; Li, Gen; Qiu, Wenhong; Li, Tao; Liu, Lianwen; Chen, Yang; Ji, Junfeng; Zhao, Liang; Chen, Jun

    2016-06-01

    The homeostatic balance of Earth's long-term carbon cycle and the equable state of Earth's climate are maintained by negative feedbacks between the levels of atmospheric CO2 and the chemical weathering rate of silicate rocks. Though clearly demonstrated by well-controlled laboratory dissolution experiments, the temperature dependence of silicate weathering rates, hypothesized to play a central role in these weathering feedbacks, has been difficult to quantify clearly in natural settings at landscape scale. By compiling data from basaltic catchments worldwide and considering only inactive volcanic fields (IVFs), here we show that the rate of CO2 consumption associated with the weathering of basaltic rocks is strongly correlated with mean annual temperature (MAT) as predicted by chemical kinetics. Relations between temperature and CO2 consumption rate for active volcanic fields (AVFs) are complicated by other factors such as eruption age, hydrothermal activity, and hydrological complexities. On the basis of this updated data compilation we are not able to distinguish whether or not there is a significant runoff control on basalt weathering rates. Nonetheless, the simple temperature control as observed in this global dataset implies that basalt weathering could be an effective mechanism for Earth to modulate long-term carbon cycle perturbations.

  14. Weather service upgrade too costly?

    NASA Astrophysics Data System (ADS)

    Bush, Susan

    America needs timely and accurate weather forecasting, said Ernest F. Hollings (D-S.C.), chairman of the Senate Committee on Commerce, Science, and Transportation on National Ocean Policy. Calling the existing warning and forecast system dangerously obsolete, Hollings said that new technology “should dramatically improve the accuracy and timeliness of weather predictions,” as we face the new challenge of bringing the National Weather Service into the 21st century. Hollings' committee heard testimony to consider the modernization of the NWS and pending legislation (S98, S916) on June 18.Major components of the Weather Service Modernization program, according to John A. Knauss, administrator of the National Oceanic and Atmospheric Administration, are the Next Generation Weather Radar (NEXRAD), a new generation of Geostationary Operational Environmental Satellites (GOES-NEXT), the Automated Surface Observing System (ASOS), and the Advanced Weather Interactive Processing System (AWIA). The best defense against severe weather—early warnings—is probably hampered by outdated equipment, he added.

  15. Weather data dissemination to aircraft

    NASA Technical Reports Server (NTRS)

    Mcfarland, Richard H.; Parker, Craig B.

    1990-01-01

    Documentation exists that shows weather to be responsible for approximately 40 percent of all general aviation accidents with fatalities. Weather data products available on the ground are becoming more sophisticated and greater in number. Although many of these data are critical to aircraft safety, they currently must be transmitted verbally to the aircraft. This process is labor intensive and provides a low rate of information transfer. Consequently, the pilot is often forced to make life-critical decisions based on incomplete and outdated information. Automated transmission of weather data from the ground to the aircraft can provide the aircrew with accurate data in near-real time. The current National Airspace System Plan calls for such an uplink capability to be provided by the Mode S Beacon System data link. Although this system has a very advanced data link capability, it will not be capable of providing adequate weather data to all airspace users in its planned configuration. This paper delineates some of the important weather data uplink system requirements, and describes a system which is capable of meeting these requirements. The proposed system utilizes a run-length coding technique for image data compression and a hybrid phase and amplitude modulation technique for the transmission of both voice and weather data on existing aeronautical Very High Frequency (VHF) voice communication channels.

  16. Commercializing Space Weather using GAIM

    NASA Astrophysics Data System (ADS)

    Tobiska, W. Kent; Schunk, Robert; Sojka, Jan J.

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the en-ergy transfer processes from the Sun's photons, particles, and fields. Of the space environment domains that are affected by space weather, the ionosphere is the key region that affects com-munication and navigation systems. The Utah State University (USU) Space Weather Center (SWC) was organized in 2009 to develop commercial space weather applications. It uses the Global Assimilation of Ionospheric Measurements (GAIM) system as the basis for providing improvements to communication and navigation systems. For example, in August 2009 SWC released, in conjunction with Space Environment Technologies, the world's first real-time space weather via an iPhone app, Space WX. It displays the real-time, current global ionosphere to-tal electron content along with its space weather drivers, is available through the Apple iTunes store, and is used around the world. The GAIM system is run operationally at SWC for global and regional (continental U.S.) conditions. Each run stream continuously ingests up to 10,000 slant TEC measurements every 15-minutes from approximately 500 stations in a Kalman filter to adjust the background output from the physics-based Ionosphere Forecast Model (IFM). Additionally, 80 real-time digisonde data streams from around the world provide ionosphere characterization up to the F-region peak. The combination of these data dramatically improves the current epoch ionosphere specification beyond the physics-based solution. The altitudinal range is 90-1500 km for output TEC, electron densities, and other data products with a few degrees resolution in latitude and longitude at 15-minute time granularity. We describe the existing SWC products that are used as commercial space weather information. SWC funding is provided by the State of Utah's Utah Science Technology and Research (USTAR) initiative. The SWC is physically located on the USU campus in Logan, Utah.

  17. Integration of Weather Avoidance and Traffic Separation

    NASA Technical Reports Server (NTRS)

    Consiglio, Maria C.; Chamberlain, James P.; Wilson, Sara R.

    2011-01-01

    This paper describes a dynamic convective weather avoidance concept that compensates for weather motion uncertainties; the integration of this weather avoidance concept into a prototype 4-D trajectory-based Airborne Separation Assurance System (ASAS) application; and test results from a batch (non-piloted) simulation of the integrated application with high traffic densities and a dynamic convective weather model. The weather model can simulate a number of pseudo-random hazardous weather patterns, such as slow- or fast-moving cells and opening or closing weather gaps, and also allows for modeling of onboard weather radar limitations in range and azimuth. The weather avoidance concept employs nested "core" and "avoid" polygons around convective weather cells, and the simulations assess the effectiveness of various avoid polygon sizes in the presence of different weather patterns, using traffic scenarios representing approximately two times the current traffic density in en-route airspace. Results from the simulation experiment show that the weather avoidance concept is effective over a wide range of weather patterns and cell speeds. Avoid polygons that are only 2-3 miles larger than their core polygons are sufficient to account for weather uncertainties in almost all cases, and traffic separation performance does not appear to degrade with the addition of weather polygon avoidance. Additional "lessons learned" from the batch simulation study are discussed in the paper, along with insights for improving the weather avoidance concept. Introduction

  18. Merging Space Weather With NOAA's National Weather Service

    NASA Astrophysics Data System (ADS)

    Lanzerotti, Louis

    2004-07-01

    A major change in the reporting structure of the National Oceanic and Atmospheric Administration's Space Environment Center (SEC) is poised to occur later this year when Congress approves the fiscal year 2005 budget proposed by the Bush administration. The activities of the center, together with its proposed budget, will move from under NOAA's research budget and administration to that of the National Weather Service (NWS), which is also administered by NOAA. The weather service will receive augmented funding to accommodate the SEC as one of the service's National Centers for Environmental Prediction.

  19. Weather types and traffic accidents.

    PubMed

    Klaić, Z B

    2001-06-01

    Traffic accident data for the Zagreb area for the 1981-1982 period were analyzed to investigate possible relationships between the daily number of accidents and the weather conditions that occurred for the 5 consecutive days, starting two days before the particular day. In the statistical analysis of low accident days weather type classification developed by Poje was used. For the high accident days a detailed analyses of surface and radiosonde data were performed in order to identify possible front passages. A test for independence by contingency table confirmed that conditional probability of the day with small number of accidents is the highest, provided that one day after it "N" or "NW" weather types occur, while it is the smallest for "N1" and "Bc" types. For the remaining 4 days of the examined periods dependence was not statistically confirmed. However, northern ("N", "NE" and "NW") and anticyclonic ("Vc", "V4", "V3", "V2" and "mv") weather types predominated during 5-days intervals related to the days with small number of accidents. On the contrary, the weather types with cyclonic characteristics ("N1", "N2", "N3", "Bc", "Dol1" and "Dol"), that are generally accompanied by fronts, were the rarest. For 85% days with large number of accidents, which had not been caused by objective circumstances (such as poor visibility, damaged or slippery road etc.), at least one front passage was recorded during the 3-days period, starting one day before the day with large number of accidents. PMID:11787547

  20. Space Weather - the Economic Case

    NASA Astrophysics Data System (ADS)

    Bisi, M. M.; Gibbs, M.

    2015-12-01

    Following on from the UK Government's placement of space weather on it's National Risk Register, in 2011, and the Royal Academy of Engineering's study into the impacts of a severe space weather event, the next piece of key evidence, to underpin future investment decisions, is understanding the socio-economic impact of space weather This poster outlines a study, funded by the UK Space Agency, which will assess the socio-economic cost of space weather, both severe events, such as 1989 & a modern day repeat of the Carrington storm and also the cost of day-to-day impacts. The study will go on to estimate the cost benefit of forecasting and also investigate options for an operational L5 spacecraft mission and knowledge exchange activities with the South African Space Agency. The findings from the initial space weather socio-economic literature review will be presented along with other findings to date and sets out the tasks for the remainder of this programme of work.

  1. Interplanetary Disturbances Affecting Space Weather

    NASA Astrophysics Data System (ADS)

    Wimmer-Schweingruber, Robert F.

    2014-01-01

    The Sun somehow accelerates the solar wind, an incessant stream of plasma originating in coronal holes and some, as yet unidentified, regions. Occasionally, coronal, and possibly sub-photospheric structures, conspire to energize a spectacular eruption from the Sun which we call a coronal mass ejection (CME). These can leave the Sun at very high speeds and travel through the interplanetary medium, resulting in a large-scale disturbance of the ambient background plasma. These interplanetary CMEs (ICMEs) can drive shocks which in turn accelerate particles, but also have a distinct intrinsic magnetic structure which is capable of disturbing the Earth's magnetic field and causing significant geomagnetic effects. They also affect other planets, so they can and do contribute to space weather throughout the heliosphere. This paper presents a historical review of early space weather studies, a modern-day example, and discusses space weather throughout the heliosphere.

  2. Weathering of Thermal Control Coatings

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Tuan, George C.; Westheimer, David T.; Peters, Wanda C.; Kauder, Lonny R.; Triolo, Jack J.

    2007-01-01

    Spacecraft radiators reject heat to their surroundings. Radiators can be deployable or mounted on the body of the spacecraft. NASA's Crew Exploration Vehicle is to use body mounted radiators. Coatings play an important role in heat rejection. The coatings provide the radiator surface with the desired optical properties of low solar absorptance and high infrared emittance. These specialized surfaces are applied to the radiator panel in a number of ways, including conventional spraying, plasma spraying, or as an applique. Not specifically designed for a weathering environment, little is known about the durability of conventional paints, coatings, and appliques upon exposure to weathering and subsequent exposure to solar wind and ultraviolet radiation exposure. In addition to maintaining their desired optical properties, the coatings must also continue to adhere to the underlying radiator panel. This is a challenge, as new composite radiator panels are being considered as replacements for the aluminum panels used previously. Various thermal control paints, coatings, and appliques were applied to aluminum and isocyanate ester composite coupons and were exposed for 30 days at the Atmospheric Exposure Site of the Kennedy Space Center s Beach Corrosion Facility for the purpose of identifying their durability to weathering. Selected coupons were subsequently exposed to simulated solar wind and vacuum ultraviolet radiation to identify the effect of a simulated space environment on the as-weathered surfaces. Optical properties and adhesion testing were used to document the durability of the paints and coatings. The purpose of this paper is to present the results of the weathering testing and to summarize the durability of several thermal control paints, coatings, and appliques to weathering and postweathering environments.

  3. Ionospheric climate and weather modeling

    SciTech Connect

    Schunk, R.W.; Sojka, J.J.

    1988-03-01

    Simulations of the ionospheric model of Schunk et al. (1986) have been used for climatology and weather modeling. Steady state empirical models were used in the climatology model to provide plasma convection and particle precipitation patterns in the northern high-latitude region. The climatology model also depicts the ionospheric electron density and ion and electron temperatures for solar maximum, winter solstice, and strong geomagnetic activity conditions. The weather model describes the variations of ionospheric features during the solar cycle, seasonal changes, and geomagnetic activity. Prospects for future modeling are considered. 23 references.

  4. Earth Observation Services Weather Imaging

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Microprocessor-based systems for processing satellite data offer mariners real-time images of weather systems, day and night, of large areas or allow them to zoom in on a few square miles. Systems West markets these commercial image processing systems, which have significantly decreased the cost of satellite weather stations. The company was assisted by the EOCAP program, which provides government co-funding to encourage private investment in, and to broaden the use of, NASA-developed technology for analyzing information about Earth and ocean resources.

  5. Space weathering on Mercury: Simulation of plagioclase weathering

    NASA Astrophysics Data System (ADS)

    Sasaki, Sho; Hiroi, Takahiro; Helbert, Jorn; Arai, Tomoko

    The optical property of the surfaces of airless silicate bodies such as the Moon, Mercury and asteroids should change in time. Typical characteristics of the change, "space weathering", are darkening, spectral reddening, and attenuation of absorption bands in reflectance spectra. The space weathering is caused by the formation of nanophase metallic iron particles in amorphous surface coatings from the deposition of ferrous silicate vapor, which was formed by high velocity dust impacts as well as irradiation of the solar wind ions. Nanophase iron particles have been confirmed in the lunar soil coating [1]. Moreover, experimental studies using pulse laser showed the formation of nanophase ion particles on the surface should control the spectral darkening and reddening [2]. Mariner 10 and MESSENGER spacecraft showed that Mercury has more impact craters asso-ciated with bright rays than the Moon. The space weathering rate on Mercury's surface might be slower than that of the lunar surface, although dust flux and solar wind flux causing the weathering should be one order of magnitude of greater on Mercury than on the Moon [3]. The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) on board MES-SENGER measured reflectance spectra from Mercury's surface during the two flybys in 2008 [4] with the wavelength range between 0.2 and 1.3 microns. MASCS spectra show variation in the slope, which can be explained by lunar-like maturity trend due to the difference of space weathering degree. Spectral absorption in the UV range shows that the ferrous oxide (Fe2+) content in average surface/subsurface material is as low as a few weight percent. This could explain apparent low weathering rate on Mercury. Growth of size of nanophase iron could also have lowered the weathering degree. Size of nanophase iron particles should increase by Ostwald ripening under high temperature of several 100C [5] . And repeated irradiation by high velocity dust impacts as well as solar wind

  6. Verification of Space Weather Forecasts using Terrestrial Weather Approaches

    NASA Astrophysics Data System (ADS)

    Henley, E.; Murray, S.; Pope, E.; Stephenson, D.; Sharpe, M.; Bingham, S.; Jackson, D.

    2015-12-01

    The Met Office Space Weather Operations Centre (MOSWOC) provides a range of 24/7 operational space weather forecasts, alerts, and warnings, which provide valuable information on space weather that can degrade electricity grids, radio communications, and satellite electronics. Forecasts issued include arrival times of coronal mass ejections (CMEs), and probabilistic forecasts for flares, geomagnetic storm indices, and energetic particle fluxes and fluences. These forecasts are produced twice daily using a combination of output from models such as Enlil, near-real-time observations, and forecaster experience. Verification of forecasts is crucial for users, researchers, and forecasters to understand the strengths and limitations of forecasters, and to assess forecaster added value. To this end, the Met Office (in collaboration with Exeter University) has been adapting verification techniques from terrestrial weather, and has been working closely with the International Space Environment Service (ISES) to standardise verification procedures. We will present the results of part of this work, analysing forecast and observed CME arrival times, assessing skill using 2x2 contingency tables. These MOSWOC forecasts can be objectively compared to those produced by the NASA Community Coordinated Modelling Center - a useful benchmark. This approach cannot be taken for the other forecasts, as they are probabilistic and categorical (e.g., geomagnetic storm forecasts give probabilities of exceeding levels from minor to extreme). We will present appropriate verification techniques being developed to address these forecasts, such as rank probability skill score, and comparing forecasts against climatology and persistence benchmarks. As part of this, we will outline the use of discrete time Markov chains to assess and improve the performance of our geomagnetic storm forecasts. We will also discuss work to adapt a terrestrial verification visualisation system to space weather, to help

  7. Space weather: Challenges and Opportunities (Invited)

    NASA Astrophysics Data System (ADS)

    Bogdan, T. J.

    2009-12-01

    The Space Weather Prediction Center (SWPC) has the following legal mandates to: a) Continuously monitor, measure, and specify the space environment, b) Provide timely and accurate space weather data, operational forecasts, alerts, and warnings of hazardous space weather phenomena, c) Provide scientific stewardship of, and public access to, space weather data and products, d) Understand the processes that influence space weather and develop applications for the user community and e) Develop new and improved products and transition them into operations to meet evolving space weather user needs. This presentation will discuss the challenges and opportunities that NOAA and the SWPC face in addressing these mandates. This includes coordination of space environment activities across federal agencies and the strategic planning for NOAA's space weather services, integration of space weather activities as well as critical dependencies of space weather services on current and future operational environmental satellites.

  8. Dynamic Weather Routes Architecture Overview

    NASA Technical Reports Server (NTRS)

    Eslami, Hassan; Eshow, Michelle

    2014-01-01

    Dynamic Weather Routes Architecture Overview, presents the high level software architecture of DWR, based on the CTAS software framework and the Direct-To automation tool. The document also covers external and internal data flows, required dataset, changes to the Direct-To software for DWR, collection of software statistics, and the code structure.

  9. Tomorrow's Forecast: Oceans and Weather.

    ERIC Educational Resources Information Center

    Smigielski, Alan

    1995-01-01

    This issue of "Art to Zoo" focuses on weather and climate and is tied to the traveling exhibition Ocean Planet from the Smithsonian's National Museum of Natural History. The lessons encourage students to think about the profound influence the oceans have on planetary climate and life on earth. Sections of the lesson plan include: (1) "Ocean…

  10. Asteroids: Does Space Weathering Matter?

    NASA Technical Reports Server (NTRS)

    Gaffey, Michael J.

    2001-01-01

    The interpretive calibrations and methodologies used to extract mineralogy from asteroidal spectra appear to remain valid until the space weathering process is advanced to a degree which appears to be rare or absent on asteroid surfaces. Additional information is contained in the original extended abstract.

  11. Solar activity and the weather

    NASA Technical Reports Server (NTRS)

    Wilcox, J. M.

    1975-01-01

    The attempts during the past century to establish a connection between solar activity and the weather are discussed; some critical remarks about the quality of much of the literature in this field are given. Several recent investigations are summarized. Use of the solar/interplanetary magnetic sector structure in future investigations is suggested to add an element of cohesiveness and interaction to these investigations.

  12. Heated Rack For Weathering Tests

    NASA Technical Reports Server (NTRS)

    Cuddihy, Edward F.; Willis, Paul B.

    1989-01-01

    Outdoor photothermal aging reactor (OPTAR) simple device exposing polymer specimens to both heat and natural sunlight. Intended to provide accelerated aging data for service life of polymers used in outdoor environments. In principle, OPTAR accelerates (but does not initiate) degradation of polymers resulting from sunlight and other weathering effect (eg. rain, wind, ozone). Aging of tested material accelerated, but under almost-natural conditions.

  13. Severe Weather Forecast Decision Aid

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III; Wheeler, Mark

    2005-01-01

    The Applied Meteorology Unit developed a forecast tool that provides an assessment of the likelihood of local convective severe weather for the day in order to enhance protection of personnel and material assets of the 45th Space Wing Cape Canaveral Air Force Station (CCAFS), and Kennedy Space Center (KSC).

  14. Skywatch: The Western Weather Guide.

    ERIC Educational Resources Information Center

    Keen, Richard A.

    The western United States is a region of mountains and valleys with the world's largest ocean next door. Its weather is unique. This book discusses how water, wind, and environmental conditions combine to create the climatic conditions of the region. Included are sections describing: fronts; cyclones; precipitation; storms; tornadoes; hurricanes;…

  15. Solar variability, weather, and climate

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Advances in the understanding of possible effects of solar variations on weather and climate are most likely to emerge by addressing the subject in terms of fundamental physical principles of atmospheric sciences and solar-terrestrial physis. The limits of variability of solar inputs to the atmosphere and the depth in the atmosphere to which these variations have significant effects are determined.

  16. Cosmic Rays and Space Weather

    NASA Astrophysics Data System (ADS)

    Dorman, Lev

    In this review-paper we consider following problems. 1. Cosmic rays (CR) as element of space weather 1.1. Influence of CR on the Earth's atmosphere and global climate change 1.2. Radia-tion hazard from galactic CR 1.3. Radiation hazard from solar CR 1.4. Radiation hazard from energetic particle precipitation from radiation belts 2. CR as tool for space weather forecasting 2.1. Forecasting of the part of global climate change caused by CR intensity variations 2.2. Forecasting of radiation hazard for aircrafts and spacecrafts caused by variations of galactic CR intensity 2.3. Forecasting of the radiation hazard from solar CR events by using on-line one-min ground neutron monitors network and satellite data 2.4. Forecasting of great magnetic storms hazard by using on-line one hour CR intensity data from ground based world-wide network of neutron monitors and muon telescopes 3. CR, space weather, and satellite anomalies 4. CR, space weather, and people health

  17. Aviation Weather Flys on PBS

    ERIC Educational Resources Information Center

    Harrison, Robert P.

    1974-01-01

    Describes a television program aimed at pilots, flight students, and general aviation interests which presents a two part format. The first part focuses on the latest available weather information both nationally and locally, while the second part is designed to educate and stimulate interest in general aviation. (BR)

  18. Mexican Space Weather Service (SCIESMEX)

    NASA Astrophysics Data System (ADS)

    Gonzalez-Esparza, A.; De la Luz, V.; Mejia-Ambriz, J. C.; Aguilar-Rodriguez, E.; Corona-Romero, P.; Gonzalez, L. X.

    2015-12-01

    Recent modifications of the Civil Protection Law in Mexico include now specific mentions to space hazards and space weather phenomena. During the last few years, the UN has promoted international cooperation on Space Weather awareness, studies and monitoring. Internal and external conditions motivated the creation of a Space Weather Service in Mexico (SCIESMEX). The SCIESMEX (www.sciesmex.unam.mx) is operated by the Geophysics Institute at the National Autonomous University of Mexico (UNAM). The UNAM has the experience of operating several critical national services, including the National Seismological Service (SSN); besides that has a well established scientific group with expertise in space physics and solar- terrestrial phenomena. The SCIESMEX is also related with the recent creation of the Mexican Space Agency (AEM). The project combines a network of different ground instruments covering solar, interplanetary, geomagnetic, and ionospheric observations. The SCIESMEX has already in operation computing infrastructure running the web application, a virtual observatory and a high performance computing server to run numerical models. SCIESMEX participates in the International Space Environment Services (ISES) and in the Inter-progamme Coordination Team on Space Weather (ICTSW) of the Word Meteorological Organization (WMO).

  19. Industry and Government Space Weather Experts Meet

    NASA Astrophysics Data System (ADS)

    Intriligator, Devrie S.

    2011-07-01

    The fifth annual NOAA Space Weather Prediction Center (SWPC)-Commercial Space Weather Interest Group (CSWIG) Summit was held on 28 April 2011 in Boulder, Colo., in association with the 2011 Space Weather Workshop. Interest was high, in the United States and internationally, in potential space weather impacts on many aspects of everyday life because of the increased vulnerability of technological systems and the possibility that a major space weather event may occur as the twenty-fourth solar cycle begins to progress toward solar maximum. Industry and government space weather experts participated in the summit. Devrie Intriligator (Carmel Research Center, Inc.) and W. Kent Tobiska (Space Environment Technologies (SET)) served as cochairs.

  20. Accelerated laboratory weathering of acrylic lens materials

    NASA Astrophysics Data System (ADS)

    Arndt, Thomas; Richter, Steffen; Kogler, René; Pasierb, Mike; Walby, Christopher

    2015-09-01

    Flat samples from various poly(methyl methacrylate) (PMMA) formulations were subjected to outdoor weathering in Arizona and Florida, EMMAQUA® accelerated outdoor weathering, and two accelerated laboratory weathering procedures at 3 Sun irradiance which, imitate dry (Arizona) and wet (Florida) conditions. The main mode of degradation is yellowing and not the generation of haze for any weathering procedure within the investigated radiant exposure. Higher UV absorber concentrations lead to smaller changes in optical properties and in the resulting relative concentrator photovoltaic (CPV) module efficiencies. Comparison of sample properties after various weathering procedures reveals that the influence of weathering factors other than radiant exposure depends on the sample as well.

  1. Hydrochemistry, weathering and weathering rates on Madeira island

    NASA Astrophysics Data System (ADS)

    Van der Weijden, Cornelis H.; Pacheco, Fernando A. L.

    2003-12-01

    Madeira island consists of Miocene to Pleistocene lavas and pyroclasts. Major rock types are alkali-basalts, basanites and hawaiites; principal soil types are leptosols, andosols and cambisols. Our main objective was to link the chemistry of ground waters to weathering reactions and rates. We collected 40 shallow groundwater samples, remote from human activities. With a few exceptions, the ranges of electrical conductivities were 29-176 μS/cm and of pH 5.8-8.5. The calculated PCO 2 was generally higher than the atmospheric value. The contribution of sea salt to the water chemistry was 30±9%. Corrected for sea salt, the cation concentrations (in meq/l) decrease in the order Ca 2+≈Mg 2+>Na +>>>K +. The concentrations of SO 42- and NO 3- are very low. We calculated that the total annual chemical denudation rate in the studied area amounts to 37±12 g/m 2, consuming 0.86±0.38 mol CO 2/m 2. To achieve our main objective, a set of mole balance equations— ( AX= B)—was used, where A is a composite matrix of coefficients, including ratios between stoichiometric coefficients as determined by the weathering reactions and coefficients accounting for unconstrained contributions, B is the vector with a water composition, and X is the set of mole fractions of dissolved primary minerals plus the residual concentrations of the unconstrained contributions. Olivine (Ol), pyroxene (Py) and plagioclase (Pl) were considered to be the major primary minerals, and smectite, vermiculite, halloysite, allophane, gibbsite and hematite the secondary minerals in the weathering reactions. Using iterative procedures, whereby mixtures of secondary products as well as the composition of plagioclase are allowed to change, we selected one best-fit set of weathering reactions for each spring by checking all possible solutions of the mole balances against predefined boundary conditions. At odds with Goldich (1938) sequence, our model results indicate—for most best-fit sets—a weathering rate

  2. Weather-Corrected Performance Ratio

    SciTech Connect

    Dierauf, T.; Growitz, A.; Kurtz, S.; Cruz, J. L. B.; Riley, E.; Hansen, C.

    2013-04-01

    Photovoltaic (PV) system performance depends on both the quality of the system and the weather. One simple way to communicate the system performance is to use the performance ratio (PR): the ratio of the electricity generated to the electricity that would have been generated if the plant consistently converted sunlight to electricity at the level expected from the DC nameplate rating. The annual system yield for flat-plate PV systems is estimated by the product of the annual insolation in the plane of the array, the nameplate rating of the system, and the PR, which provides an attractive way to estimate expected annual system yield. Unfortunately, the PR is, again, a function of both the PV system efficiency and the weather. If the PR is measured during the winter or during the summer, substantially different values may be obtained, making this metric insufficient to use as the basis for a performance guarantee when precise confidence intervals are required. This technical report defines a way to modify the PR calculation to neutralize biases that may be introduced by variations in the weather, while still reporting a PR that reflects the annual PR at that site given the project design and the project weather file. This resulting weather-corrected PR gives more consistent results throughout the year, enabling its use as a metric for performance guarantees while still retaining the familiarity this metric brings to the industry and the value of its use in predicting actual annual system yield. A testing protocol is also presented to illustrate the use of this new metric with the intent of providing a reference starting point for contractual content.

  3. Weather Watchers--Activities for Young Meteorologists.

    ERIC Educational Resources Information Center

    Ludwig, Fran

    1989-01-01

    Describes science activities which were adapted from a teacher's guide entitled "For Spacious Skies" and contains resources for interdisciplinary weather studies. Includes studying properties of air, gravity, cloud movement, humidity, tornadoes, and weather instruments. (RT)

  4. GOES Weather Satellite Watches The Sun

    NASA Video Gallery

    NASA satellites such as STEREO, SOHO, and SDO are dedicated to studying the sun. GOES is a weather satellite but also watches the sun constantly. Watch this video and learn why space weather data i...

  5. National Weather Service: Watch, Warning, Advisory Display

    MedlinePlus

    weather.gov Site Map News Organization Search for: SPC NCEP All NOAA Search by city or zip ... Fire Wx Outlooks RSS Feeds E-Mail Alerts Weather Information Storm Reports Storm Reports Dev. NWS Hazards ...

  6. Rainmakers: why bad weather means good productivity.

    PubMed

    Lee, Jooa Julia; Gino, Francesca; Staats, Bradley R

    2014-05-01

    People believe that weather conditions influence their everyday work life, but to date, little is known about how weather affects individual productivity. Contrary to conventional wisdom, we predict and find that bad weather increases individual productivity and that it does so by eliminating potential cognitive distractions resulting from good weather. When the weather is bad, individuals appear to focus more on their work than on alternate outdoor activities. We investigate the proposed relationship between worse weather and higher productivity through 4 studies: (a) field data on employees' productivity from a bank in Japan, (b) 2 studies from an online labor market in the United States, and (c) a laboratory experiment. Our findings suggest that worker productivity is higher on bad-, rather than good-, weather days and that cognitive distractions associated with good weather may explain the relationship. We discuss the theoretical and practical implications of our research. PMID:24417552

  7. Space weather activities in Australia

    NASA Astrophysics Data System (ADS)

    Cole, D.

    Space Weather Plan Australia has a draft space weather plan to drive and focus appropriate research into services that meet future industry and social needs. The Plan has three main platforms, space weather monitoring and service delivery, support for priority research, and outreach to the community. The details of monitoring, service, research and outreach activities are summarised. A ground-based network of 14 monitoring stations from Antarctica to Papua New Guinea is operated by IPS, a government agency. These sites monitor ionospheric and geomagnetic characteristics, while two of them also monitor the sun at radio and optical wavelengths. Services provided through the Australian Space Forecast Centre (ASFC) include real-time information on the solar, space, ionospheric and geomagnetic environments. Data are gathered automatically from monitoring sites and integrated with data exchanged internationally to create snapshots of current space weather conditions and forecasts of conditions up to several days ahead. IPS also hosts the WDC for Solar-Terrestrial Science and specialises in ground-based solar, ionospheric, and geomagnetic data sets, although recent in-situ magnetospheric measurements are also included. Space weather activities A research consortium operates the Tasman International Geospace Environment Radar (TIGER), an HF southward pointing auroral radar operating from Hobart (Tasmania). A second cooperative radar (Unwin radar) is being constructed in the South Island of New Zealand. This will intersect with TIGER over the auroral zone and enhance the ability of the radar to image the surge of currents that herald space environment changes entering the Polar Regions. Launched in November 2002, the micro satellite FEDSAT, operated by the Cooperative Research Centre for Satellite Systems, has led to successful space science programs and data streams. FEDSAT is making measurements of the magnetic field over Australia and higher latitudes. It also carries a

  8. Determining mineral weathering rates based on solid and solute weathering gradients and velocities: Application to biotite weathering in saprolites

    USGS Publications Warehouse

    White, A.F.

    2002-01-01

    Chemical weathering gradients are defined by the changes in the measured elemental concentrations in solids and pore waters with depth in soils and regoliths. An increase in the mineral weathering rate increases the change in these concentrations with depth while increases in the weathering velocity decrease the change. The solid-state weathering velocity is the rate at which the weathering front propagates through the regolith and the solute weathering velocity is equivalent to the rate of pore water infiltration. These relationships provide a unifying approach to calculating both solid and solute weathering rates from the respective ratios of the weathering velocities and gradients. Contemporary weathering rates based on solute residence times can be directly compared to long-term past weathering based on changes in regolith composition. Both rates incorporate identical parameters describing mineral abundance, stoichiometry, and surface area. Weathering gradients were used to calculate biotite weathering rates in saprolitic regoliths in the Piedmont of Northern Georgia, USA and in Luquillo Mountains of Puerto Rico. Solid-state weathering gradients for Mg and K at Panola produced reaction rates of 3 to 6 x 10-17 mol m-2 s-1 for biotite. Faster weathering rates of 1.8 to 3.6 ?? 10-16 mol m-2 s-1 are calculated based on Mg and K pore water gradients in the Rio Icacos regolith. The relative rates are in agreement with a warmer and wetter tropical climate in Puerto Rico. Both natural rates are three to six orders of magnitude slower than reported experimental rates of biotite weathering. ?? 2002 Elsevier Science B.V. All rights reserved.

  9. Aviation weather service requirements, 1980 - 1990

    NASA Technical Reports Server (NTRS)

    Lieurance, N. A.

    1977-01-01

    Future aviation weather needs are discussed. Priority weather requirements and deficiencies existing for weather observations and forecast services in terminal areas are presented. Needs in en route operations up to 30 km are addressed with emphasis on turbulence, presence of suspended ice and water particles, SST to supersonic speeds, solar radiation, ozone, and sonic booms. Some conclusions are drawn and recommendations are presented.

  10. Basic Weather Facts Study Texts for Students.

    ERIC Educational Resources Information Center

    Ontario Ministry of the Environment, Toronto.

    This pamphlet offers information to teachers and students concerning basic facts about weather and how to construct simple weather measurement devices. Directions, necessary materials, procedures, and instructions for use are given for four weather predicting instruments: wind vane, rain gauge, barometer, anemometer. Information is provided on…

  11. 49 CFR 195.224 - Welding: Weather.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Welding: Weather. 195.224 Section 195.224 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.224 Welding: Weather. Welding must be protected from weather conditions...

  12. 49 CFR 195.224 - Welding: Weather.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Welding: Weather. 195.224 Section 195.224 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.224 Welding: Weather. Welding must be protected from weather conditions...

  13. 49 CFR 195.224 - Welding: Weather.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Welding: Weather. 195.224 Section 195.224 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.224 Welding: Weather. Welding must be protected from weather conditions...

  14. 46 CFR 170.170 - Weather criteria.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Weather criteria. 170.170 Section 170.170 Shipping COAST... ALL INSPECTED VESSELS Intact Stability Criteria § 170.170 Weather criteria. (a) Each vessel must be... weather deck or abnormal sheer. (c) When doing the calculations required by paragraph (a) of this...

  15. 46 CFR 170.170 - Weather criteria.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Weather criteria. 170.170 Section 170.170 Shipping COAST... ALL INSPECTED VESSELS Intact Stability Criteria § 170.170 Weather criteria. (a) Each vessel must be... weather deck or abnormal sheer. (c) When doing the calculations required by paragraph (a) of this...

  16. 46 CFR 170.170 - Weather criteria.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Weather criteria. 170.170 Section 170.170 Shipping COAST... ALL INSPECTED VESSELS Intact Stability Criteria § 170.170 Weather criteria. (a) Each vessel must be... weather deck or abnormal sheer. (c) When doing the calculations required by paragraph (a) of this...

  17. Efficient Ways to Learn Weather Radar Polarimetry

    ERIC Educational Resources Information Center

    Cao, Qing; Yeary, M. B.; Zhang, Guifu

    2012-01-01

    The U.S. weather radar network is currently being upgraded with dual-polarization capability. Weather radar polarimetry is an interdisciplinary area of engineering and meteorology. This paper presents efficient ways to learn weather radar polarimetry through several basic and practical topics. These topics include: 1) hydrometeor scattering model…

  18. 49 CFR 195.224 - Welding: Weather.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Welding: Weather. 195.224 Section 195.224 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.224 Welding: Weather. Welding must be protected from weather conditions...

  19. The Early Years: The Wonders of Weather

    ERIC Educational Resources Information Center

    Ashbrook, Peggy

    2013-01-01

    This article reports on the wonders of winter weather, as it often inspires teachers' and students' interest in collecting weather data, especially if snow falls. Beginning weather data collection in preschool will introduce children to the concepts of making regular observations of natural phenomena, recording the observations (data),…

  20. 49 CFR 195.224 - Welding: Weather.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Welding: Weather. 195.224 Section 195.224 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.224 Welding: Weather. Welding must be protected from weather conditions...

  1. 36 CFR 910.71 - Weather protection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Weather protection. 910.71 Section 910.71 Parks, Forests, and Public Property PENNSYLVANIA AVENUE DEVELOPMENT CORPORATION GENERAL... DEVELOPMENT AREA Glossary of Terms § 910.71 Weather protection. Weather protection means a seasonal...

  2. 46 CFR 170.170 - Weather criteria.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Weather criteria. 170.170 Section 170.170 Shipping COAST... ALL INSPECTED VESSELS Intact Stability Criteria § 170.170 Weather criteria. (a) Each vessel must be... weather deck or abnormal sheer. (c) When doing the calculations required by paragraph (a) of this...

  3. 36 CFR 910.71 - Weather protection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Weather protection. 910.71 Section 910.71 Parks, Forests, and Public Property PENNSYLVANIA AVENUE DEVELOPMENT CORPORATION GENERAL... DEVELOPMENT AREA Glossary of Terms § 910.71 Weather protection. Weather protection means a seasonal...

  4. Methods for Baiting and Enriching Fungus-Feeding (Mycophagous) Rhizosphere Bacteria

    PubMed Central

    Ballhausen, Max-Bernhard; van Veen, Johannes A.; Hundscheid, Maria P. J.; de Boer, Wietse

    2015-01-01

    Mycophagous soil bacteria are able to obtain nutrients from living fungal hyphae. However, with exception of the soil bacterial genus Collimonas, occurrence of this feeding strategy has not been well examined. Evaluation of the importance of mycophagy in soil bacterial communities requires targeted isolation methods. In this study, we compared two different approaches to obtain mycophagous bacteria from rhizospheric soil. A short-term method based on baiting for bacteria that can rapidly adhere to fungal hyphae and a long-term method based on the enrichment of bacteria on fungal hyphae via repeated transfer. Hyphae-adhering bacteria were isolated, identified by 16S rDNA sequencing and tested for antifungal activity and the ability to feed on fungi as the sole source of carbon. Both methods yielded a range of potentially mycophagous bacterial isolates with little phylogenetic overlap. We also found indications for feeding preferences among the potentially mycophagous bacteria. Our results indicate that mycophagy could be an important growth strategy for rhizosphere bacteria. To our surprise, we found several potential plant pathogenic bacteria among the mycophagous isolates. We discuss the possible benefits that these bacteria might gain from colonizing fungal hyphae. PMID:26733962

  5. Weather in a Tank (Invited)

    NASA Astrophysics Data System (ADS)

    Illari, L.

    2013-12-01

    ';Weather in a Tank' is an approach to teaching atmospheres, oceans and climate which uses rotating laboratory demonstrations and associated curriculum materials. Originating at MIT, the approach has been further developed and expanded through collaborations with many Professors in universities across the country and around the world. The aim of the project is to offer instructors a repertoire of rotating tank experiments and a curriculum in fluid dynamics to better assist students in making connections between phenomena in the real world and basic principles of rotating fluid dynamics. The approach also provides a context for interactive experiments in which data is collected in real-time and then analyzed. In this presentation we will illustrate the ideas behind ';Weather in a Tank' by performing (if possible) some live laboratory experiments using rotating tanks of water, dyes and ice buckets, emphasizing the kind of quantitative approach we use in our teaching.

  6. The Sun and Space Weather

    NASA Astrophysics Data System (ADS)

    Hanslmeier, Arnold

    2002-06-01

    What are the terrestrial effects of solar activity and the solar activity cycle? The modern term used for solar terrestrial relations is `Space Weather'. This term describes all external effects on the space environment of the Earth and the Earth's atmosphere. The main driver for space weather is our Sun. Explosive events on the Sun that are modulated by the solar activity cycle lead to enhanced particle emission and short wavelength radiation. This affects satellites: for example surface charging and enhanced drag forces on satellites in low Earth orbit can cause satellite crashes etc. Enhanced radiation also poses a problem for astronauts, especially for extravehicular activities. Another source of space weather effects is space debris and micrometeoroids. Since the Sun is the main source of space weather effects, the first part of the book is devoted to a general introduction to the physics of the Sun. A better understanding of the phenomena underlying solar activity is also important for prediction of solar outbursts and thus for establishing alert systems for space missions and telecommunication systems. The book contains the following topics: * possible influence of the Sun on the Earth's climate; * the effects of radiation on humans in space and the expected radiation dose from various solar events; * disturbances of the Earth's ionosphere and the implications of radio communication at different wavelength ranges; * possible hazardous asteroids and meteoroids and their detection; and * space debris and special shielding of spacecraft. In the cited literature the reader can find more detailed information about the topics. This book provides an introduction and overview of modern solar-terrestrial physics for students as well as for researchers in the field of astrophysics, solar physics, geophysics, and climate research. Link: http://www.wkap.nl/prod/b/1-4020-0684-5

  7. The Weather and Climate Toolkit

    NASA Astrophysics Data System (ADS)

    Ansari, S.; Del Greco, S.; Hankins, B.

    2010-12-01

    The Weather and Climate Toolkit (WCT) is free, platform independent software distributed from NOAA’s National Climatic Data Center (NCDC). The WCT allows the visualization and data export of weather and climate data, including Radar, Satellite and Model data. By leveraging the NetCDF for Java library and Common Data Model, the WCT is extremely scalable and capable of supporting many new datasets in the future. Gridded NetCDF files (regular and irregularly spaced, using Climate-Forecast (CF) conventions) are supported, along with many other formats including GRIB. The WCT provides tools for custom data overlays, Web Map Service (WMS) background maps, animations and basic filtering. The export of images and movies is provided in multiple formats. The WCT Data Export Wizard allows for data export in both vector polygon/point (Shapefile, Well-Known Text) and raster (GeoTIFF, ESRI Grid, VTK, Gridded NetCDF) formats. These data export features promote the interoperability of weather and climate information with various scientific communities and common software packages such as ArcGIS, Google Earth, MatLAB, GrADS and R. The WCT also supports an embedded, integrated Google Earth instance. The Google Earth Browser Plugin allows seamless visualization of data on a native 3-D Google Earth instance linked to the standard 2-D map. Level-II NEXRAD data for Hurricane Katrina GPCP (Global Precipitation Product), visualized in 2-D and internal Google Earth view.

  8. Positive lightning and severe weather

    NASA Astrophysics Data System (ADS)

    Price, C.; Murphy, B.

    2003-04-01

    In recent years researchers have noticed that severe weather (tornados, hail and damaging winds) are closely related to the amount of positive lightning occurring in thunderstorms. On 4 July 1999, a severe derecho (wind storm) caused extensive damage to forested regions along the United States/Canada border, west of Lake Superior. There were 665,000 acres of forest destroyed in the Boundary Waters Canoe Area Wilderness (BWCAW) in Minnesota and Quetico Provincial Park in Canada, with approximately 12.5 million trees blown down. This storm resulted in additional severe weather before and after the occurrence of the derecho, with continuous cloud-to-ground (CG) lightning occurring for more than 34 hours during its path across North America. At the time of the derecho the percentage of positive cloud-to-ground (+CG) lightning measured by the Canadian Lightning Detection Network (CLDN) was greater than 70% for more than three hours, with peak values reaching 97% positive CG lightning. Such high ratios of +CG are rare, and may be useful indicators for short-term forecasts of severe weather.

  9. Sunspots, Space Weather and Climate

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    2009-01-01

    Four hundred years ago this year the telescope was first used for astronomical observations. Within a year, Galileo in Italy and Harriot in England reported seeing spots on the surface of the Sun. Yet, it took over 230 years of observations before a Swiss amateur astronomer noticed that the sunspots increased and decreased in number over a period of about 11 years. Within 15 years of this discovery of the sunspot cycle astronomers made the first observations of a flare on the surface of the Sun. In the 150 years since that discovery we have learned much about sunspots, the sunspot cycle, and the Sun s explosive events - solar flares, prominence eruptions and coronal mass ejections that usually accompany the sunspots. These events produce what is called Space Weather. The conditions in space are dramatically affected by these events. Space Weather can damage our satellites, harm our astronauts, and affect our lives here on the surface of planet Earth. Long term changes in the sunspot cycle have been linked to changes in our climate as well. In this public lecture I will give an introduction to sunspots, the sunspot cycle, space weather, and the possible impact of solar variability on our climate.

  10. Hydrologic applications of weather radar

    NASA Astrophysics Data System (ADS)

    Seo, Dong-Jun; Habib, Emad; Andrieu, Hervé; Morin, Efrat

    2015-12-01

    By providing high-resolution quantitative precipitation information (QPI), weather radars have revolutionized hydrology in the last two decades. With the aid of GIS technology, radar-based quantitative precipitation estimates (QPE) have enabled routine high-resolution hydrologic modeling in many parts of the world. Given the ever-increasing need for higher-resolution hydrologic and water resources information for a wide range of applications, one may expect that the use of weather radar will only grow. Despite the tremendous progress, a number of significant scientific, technological and engineering challenges remain to realize its potential. New challenges are also emerging as new areas of applications are discovered, explored and pursued. The purpose of this special issue is to provide the readership with some of the latest advances, lessons learned, experiences gained, and science issues and challenges related to hydrologic applications of weather radar. The special issue features 20 contributions on various topics which reflect the increasing diversity as well as the areas of focus in radar hydrology today. The contributions may be grouped as follows: Radar QPE (Kwon et al.; Hall et al.; Chen and Chandrasekar; Seo and Krajewski; Sandford).

  11. Health Issues and Space Weather

    NASA Astrophysics Data System (ADS)

    Crosby, N.

    2009-04-01

    The possibility that solar activity and variations in the Earth's magnetic field may affect human health has been debated for many decades but is still a "scientific topic" in its infancy. By learning whether and, if so, how much the Earth's space weather can influence the daily health of people will be of practical importance. Knowing whether human genetics, include regulating factors that take into account fluctuations of the Earth's magnetic field and solar disturbances, indeed exist will also benefit future interplanetary space travelers. Because the atmospheres on other planets are different from ours, as well as their interaction with the space environment, one may ask whether we are equipped with the genetics necessary to take this variability into account. The goal of this presentation is to define what is meant by space weather as a health risk and identify the long-term socio-economic effects on society that such health risks would have. Identifying the physical links between space weather sources and different effects on human health, as well as the parameters (direct and indirect) to be monitored, the potential for such a cross-disciplinary study will be invaluable, for scientists and medical doctors, as well as for engineers.

  12. Weather variability, climatic change, and soybean production

    SciTech Connect

    Thompson, L.M.

    1985-01-01

    A crop/weather model was used to determine the effect of changing climate and weather variability on soybean production in the Corn Belt. A cooling trend from the 1930s to the 1970s was accompanied by an upward trend in July plus August rainfall. There was decreased weather variability from the 1930s to 1973 and greatly increased weather variability after 1973. Improved weather from 1930 to 1972 increased soybean yields 3 bushels/acre. Higher intensity rainfalls increased in Illinois and Iowa after 1970.

  13. Weathering of stony meteorites in Antarctica

    NASA Technical Reports Server (NTRS)

    Gooding, J. L.

    1986-01-01

    Weathering produces undesirable physical, chemical, and isotopic changes that might disturb the records of cosmochemical evolution that are sought in meteorites. Meteorites are physically disintegrated by crack propagation phenomena, including ice riving and secondary mineral riving, and are probably abraded by wind that is laden with ice crystals or dust particles. Chemical weathering proceeds by oxidation, hydration, carbonation, and solution and produces a variety of secondary minerals and mineraloids. Differential weathering under freezing conditions is discussed, as well as, the mineralogy of weathering products. Furthermore, the use of Antarctic alteration of meteorites could be used as an excellent analog for weathering on Mars or on cometary bodies.

  14. Weather information network including graphical display

    NASA Technical Reports Server (NTRS)

    Leger, Daniel R. (Inventor); Burdon, David (Inventor); Son, Robert S. (Inventor); Martin, Kevin D. (Inventor); Harrison, John (Inventor); Hughes, Keith R. (Inventor)

    2006-01-01

    An apparatus for providing weather information onboard an aircraft includes a processor unit and a graphical user interface. The processor unit processes weather information after it is received onboard the aircraft from a ground-based source, and the graphical user interface provides a graphical presentation of the weather information to a user onboard the aircraft. Preferably, the graphical user interface includes one or more user-selectable options for graphically displaying at least one of convection information, turbulence information, icing information, weather satellite information, SIGMET information, significant weather prognosis information, and winds aloft information.

  15. Operational Space Weather Activities in the US

    NASA Astrophysics Data System (ADS)

    Berger, Thomas; Singer, Howard; Onsager, Terrance; Viereck, Rodney; Murtagh, William; Rutledge, Robert

    2016-07-01

    We review the current activities in the civil operational space weather forecasting enterprise of the United States. The NOAA/Space Weather Prediction Center is the nation's official source of space weather watches, warnings, and alerts, working with partners in the Air Force as well as international operational forecast services to provide predictions, data, and products on a large variety of space weather phenomena and impacts. In October 2015, the White House Office of Science and Technology Policy released the National Space Weather Strategy (NSWS) and associated Space Weather Action Plan (SWAP) that define how the nation will better forecast, mitigate, and respond to an extreme space weather event. The SWAP defines actions involving multiple federal agencies and mandates coordination and collaboration with academia, the private sector, and international bodies to, among other things, develop and sustain an operational space weather observing system; develop and deploy new models of space weather impacts to critical infrastructure systems; define new mechanisms for the transition of research models to operations and to ensure that the research community is supported for, and has access to, operational model upgrade paths; and to enhance fundamental understanding of space weather through support of research models and observations. The SWAP will guide significant aspects of space weather operational and research activities for the next decade, with opportunities to revisit the strategy in the coming years through the auspices of the National Science and Technology Council.

  16. Characterization of the Weatherization Assistance Program network. Weatherization Assistance Program

    SciTech Connect

    Mihlmester, P.E.; Koehler, W.C. Jr.; Beyer, M.A.; Brown, M.A.; Beschen, D.A. Jr.

    1992-02-01

    The Characterization of the Weatherization Assistance Program (WAP) Network was designed to describe the national network of State and local agencies that provide WAP services to qualifying low-income households. The objective of this study was to profile the current WAP network. To achieve the objective, two national surveys were conducted: one survey collected data from 49 State WAP agencies (including the coterminous 48 States and the District of Columbia), and the second survey collected data from 920 (or 81 percent) of the local WAP agencies.

  17. Space Weather Outreach: An Informal Education Perspective

    NASA Astrophysics Data System (ADS)

    Dusenbery, P. B.

    2008-12-01

    Informal science education institutions, such as science centers, play an important role in science education. They serve millions of people, including students and teachers. Within the last decade, many have tried to improve the public's understanding of science and scientific research through informal education projects. The recent success of several space weather-related missions and research programs and the launch of the International Heliophysical Year (IHY) research and education programs make this an ideal time to inform the public about the importance and relevance of space weather to our understanding of heliophysical science. Communication efforts associated with space weather both benefit and are compromised by analogies to terrestrial weather. This paper summarizes the benefits and challenges of the terrestrial weather analogy using two exhibit evaluation studies. The paper also describes three components of the Space Science Institute's Space Weather Outreach Program: Space Weather Center Website, Educator Workshops, and Small Exhibits for Libraries and Science Centers.

  18. Space Weather Outreach: An informal education perspective

    NASA Astrophysics Data System (ADS)

    Dusenbery, P. B.; Harold, J. B.; McLain, B.; Curtis, L.

    2008-12-01

    Informal science education institutions, such as science centers, play an important role in science education. They serve millions of people, including students and teachers. Within the last decade, many have tried to improve the public's understanding of science and scientific research through informal education projects. The recent success of several space weather-related missions and research programs and the launch of the International Heliophysical Year (IHY) research and education programs make this an ideal time to inform the public about the importance and relevance of space weather to our understanding of heliophysical science. Communication efforts associated with space weather both benefit and are compromised by analogies to terrestrial weather. This paper summarizes the benefits and challenges of the terrestrial weather analogy using two exhibit evaluation studies. The paper also describes three components of the Space Science Institute's Space Weather Outreach Program - Space Weather Center Website, Educator Workshops, and Small Exhibits - and how they can help to achieve the education goals of IHY.

  19. Space Weather Outreach: An Informal Education Perspective

    NASA Astrophysics Data System (ADS)

    Dusenbery, P. B.; Harold, J.; McLain, B.; Curtis, L.

    2008-05-01

    Informal science education institutions, such as science centers, play an important role in science education. They serve millions of people, including students and teachers. Within the last decade, many have tried to improve the public's understanding of science and scientific research through informal education projects. The recent success of several space weather-related missions and research programs and the launch of the International Heliophysical Year (IHY) research and education programs make this an ideal time to inform the public about the importance and relevance of space weather to our understanding of heliophysical science. Communication efforts associated with space weather both benefit and are compromised by analogies to terrestrial weather. This paper summarizes the benefits and challenges of the terrestrial weather analogy using two exhibit evaluation studies. The paper also describes three components of the Space Science Institute's Space Weather Outreach Program - Space Weather Center Website, Educator Workshops, and Small Exhibits - and how they can help to achieve the education goals of IHY.

  20. Economic Value of Weather and Climate Forecasts

    NASA Astrophysics Data System (ADS)

    Katz, Richard W.; Murphy, Allan H.

    1997-06-01

    Weather and climate extremes can significantly impact the economics of a region. This book examines how weather and climate forecasts can be used to mitigate the impact of the weather on the economy. Interdisciplinary in scope, it explores the meteorological, economic, psychological, and statistical aspects of weather prediction. Chapters by area specialists provide a comprehensive view of this timely topic. They encompass forecasts over a wide range of temporal scales, from weather over the next few hours to the climate months or seasons ahead, and address the impact of these forecasts on human behavior. Economic Value of Weather and Climate Forecasts seeks to determine the economic benefits of existing weather forecasting systems and the incremental benefits of improving these systems, and will be an interesting and essential text for economists, statisticians, and meteorologists.

  1. Probability for Weather and Climate

    NASA Astrophysics Data System (ADS)

    Smith, L. A.

    2013-12-01

    Over the last 60 years, the availability of large-scale electronic computers has stimulated rapid and significant advances both in meteorology and in our understanding of the Earth System as a whole. The speed of these advances was due, in large part, to the sudden ability to explore nonlinear systems of equations. The computer allows the meteorologist to carry a physical argument to its conclusion; the time scales of weather phenomena then allow the refinement of physical theory, numerical approximation or both in light of new observations. Prior to this extension, as Charney noted, the practicing meteorologist could ignore the results of theory with good conscience. Today, neither the practicing meteorologist nor the practicing climatologist can do so, but to what extent, and in what contexts, should they place the insights of theory above quantitative simulation? And in what circumstances can one confidently estimate the probability of events in the world from model-based simulations? Despite solid advances of theory and insight made possible by the computer, the fidelity of our models of climate differs in kind from the fidelity of models of weather. While all prediction is extrapolation in time, weather resembles interpolation in state space, while climate change is fundamentally an extrapolation. The trichotomy of simulation, observation and theory which has proven essential in meteorology will remain incomplete in climate science. Operationally, the roles of probability, indeed the kinds of probability one has access too, are different in operational weather forecasting and climate services. Significant barriers to forming probability forecasts (which can be used rationally as probabilities) are identified. Monte Carlo ensembles can explore sensitivity, diversity, and (sometimes) the likely impact of measurement uncertainty and structural model error. The aims of different ensemble strategies, and fundamental differences in ensemble design to support of

  2. Federal Aviation Administration weather program to improve aviation safety

    NASA Technical Reports Server (NTRS)

    Wedan, R. W.

    1983-01-01

    The implementation of the National Airspace System (NAS) will improve safety services to aviation. These services include collision avoidance, improved landing systems and better weather data acquisition and dissemination. The program to improve the quality of weather information includes the following: Radar Remote Weather Display System; Flight Service Automation System; Automatic Weather Observation System; Center Weather Processor, and Next Generation Weather Radar Development.

  3. Weather and climate on Mars.

    PubMed

    Leovy, C

    2001-07-12

    Imagine a planet very much like the Earth, with similar size, rotation rate and inclination of rotation axis, possessing an atmosphere and a solid surface, but lacking oceans and dense clouds of liquid water. We might expect such a desert planet to be dominated by large variations in day-night and winter-summer weather. Dust storms would be common. Observations and simulations of martian climate confirm these expectations and provide a wealth of detail that can help resolve problems of climate evolution. PMID:11449286

  4. Fair weather terrestrial atmospheric electricity

    NASA Astrophysics Data System (ADS)

    Harrison, G.

    Atmospheric electricity is one of the oldest experimental topics in atmospheric science. The fair weather aspects, although having less dramatic effects than thunderstorm electrification, link the microscale behaviour of ion clusters to currents flowing on the global scale. This talk will include a survey of some past measurements and measurement methods, as atmospheric electrical data from a variety of sites and eras are now being used to understand changes in atmospheric composition. Potential Gradient data was the original source of information on the global atmospheric electrical circuit, and similar measurements can now be used to reconstruct past air pollution concentrations, and black carbon loading.

  5. Radiometers Optimize Local Weather Prediction

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Radiometrics Corporation, headquartered in Boulder, Colorado, engaged in Small Business Innovation Research (SBIR) agreements with Glenn Research Center that resulted in a pencil-beam radiometer designed to detect supercooled liquid along flight paths -- a prime indicator of dangerous icing conditions. The company has brought to market a modular radiometer that resulted from the SBIR work. Radiometrics' radiometers are used around the world as key tools for detecting icing conditions near airports and for the prediction of weather conditions like fog and convective storms, which are known to produce hail, strong winds, flash floods, and tornadoes. They are also employed for oceanographic research and soil moisture studies.

  6. Space weather applications with PICARD

    NASA Astrophysics Data System (ADS)

    Dudok de Wit, Thierry; Thuillier, Gerard

    The PICARD mission aims at providing a better understanding of the origin of solar variability and the relations between the Sun and Earth's climate. Some of the instruments from PICARD will also be of direct interest to space weather. SODISM will provide regular UV images at 215 and 393 nm wavelength and PREMOS will measure the solar spectral irradiance in 5 channels, 3 of which are in the visible and in the near-infrared. Some potential applications will be discussed as well as synergies with other spectral irradiance observations, such as by LYRA on PROBA2 and EVE on SDO.

  7. Assessing the Economic Impacts of Weather

    NASA Astrophysics Data System (ADS)

    Lazo, J. K.

    2008-05-01

    Understanding the socio-economic impacts of weather provides a basis for prioritizing actions to mitigate and respond to weather events and understanding the value of improvements in weather forecasts. In this talk we discuss two studies of the economic impacts of weather: (1) an empirical study of the sensitivity of state-sector level economic activity to weather variability and (2) an assessment of the quality of data on storm damages in the US as primarily collected through the National Weather Service's Storm Data Program. In the first study, 24 years of state level sector economic data and historical weather observations are used to form a panel combining weather information with economic data. A translog function is estimated of sectoral sensitivity and vulnerability to weather variability. Eleven sectors are ranked based on their degree of sensitivity to weather, states more sensitive to weather impacts are identified, and the aggregate dollar amount of variation in U.S. economic activity attributable to weather variability is calculated. Estimates indicate that US economic output varies by about 3.4% due to weather variability. While considerably smaller than prior estimates, our estimate represents about 469 billion a year in 2007 dollars. In our work to update and revise damage data in the Extreme Weather Sourcebook (www.sip.ucar.edu/sourcebook), we have confronted issues concerning the depth, accuracy and consistency of storm damage data collection. This type of data has been used in many studies exploring changes in weather impacts over time but there has been little recognition of the quality of the data. In the second study reported here, we examine issues with weather induced damage data quality to prompt a dialogue about reliability of scattered and inconsistent data from multiple sources. We hope this will lead to efforts to reduce the error in reported damages and to better reporting and organization of storm damage data in the future. We advocate

  8. Enhanced Weather Radar (EWxR) System

    NASA Technical Reports Server (NTRS)

    Kronfeld, Kevin M. (Technical Monitor)

    2003-01-01

    An airborne weather radar system, the Enhanced Weather Radar (EWxR), with enhanced on-board weather radar data processing was developed and tested. The system features additional weather data that is uplinked from ground-based sources, specialized data processing, and limited automatic radar control to search for hazardous weather. National Weather Service (NWS) ground-based Next Generation Radar (NEXRAD) information is used by the EWxR system to augment the on-board weather radar information. The system will simultaneously display NEXRAD and on-board weather radar information in a split-view format. The on-board weather radar includes an automated or hands-free storm-finding feature that optimizes the radar returns by automatically adjusting the tilt and range settings for the current altitude above the terrain and searches for storm cells near the atmospheric 0-degree isotherm. A rule-based decision aid was developed to automatically characterize cells as hazardous, possibly-hazardous, or non-hazardous based upon attributes of that cell. Cell attributes are determined based on data from the on-board radar and from ground-based radars. A flight path impact prediction algorithm was developed to help pilots to avoid hazardous weather along their flight plan and their mission. During development the system was tested on the NASA B757 aircraft and final tests were conducted on the Rockwell Collins Sabreliner.

  9. AWE: Aviation Weather Data Visualization Environment

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly; Lodha, Suresh K.

    2000-01-01

    The two official sources for aviation weather reports both provide weather information to a pilot in a textual format. A number of systems have recently become available to help pilots with the visualization task by providing much of the data graphically. However, two types of aviation weather data are still not being presented graphically. These are airport-specific current weather reports (known as meteorological observations, or METARs) and forecast weather reports (known as terminal area forecasts, or TAFs). Our system, Aviation Weather Environment (AWE), presents intuitive graphical displays for both METARs and TAFs, as well as winds aloft forecasts. We start with a computer-generated textual aviation weather briefing. We map this briefing onto a cartographic grid specific to the pilot's area of interest. The pilot is able to obtain aviation-specific weather for the entire area or for his specific route. The route, altitude, true airspeed, and proposed departure time can each be modified in AWE. Integral visual display of these three elements of weather reports makes AWE a useful planning tool, as well as a weather briefing tool.

  10. Comparison of Weather Shows in Eastern Europe

    NASA Astrophysics Data System (ADS)

    Najman, M.

    2009-09-01

    Comparison of Weather Shows in Eastern Europe Television weather shows in Eastern Europe have in most cases in the high graphical standard. There is though a wast difference in duration and information content in the weather shows. There are few signs and regularities by which we can see the character of the weather show. The main differences are mainly caused by the income structure of the TV station. Either it is a fully privately funded TV relying on the TV commercials income. Or it is a public service TV station funded mainly by the national budget or fixed fee structure/tax. There are wast differences in duration and even a graphical presentation of the weather. Next important aspect is a supplier of the weather information and /or the processor. Shortly we can say, that when the TV show is produced by the national met office, the TV show consists of more scientific terms, synoptic maps, satellite imagery, etc. If the supplier is the private meteorological company, the weather show is more user-friendly, laical with less scientific terms. We are experiencing a massive shift in public weather knowledge and demand for information. In the past, weather shows consisted only of maps with weather icons. In todaýs world, even the laic weather shows consist partly of numerical weather model outputs - they are of course designed to be understandable and graphically attractive. Outputs of the numerical weather models used to be only a part of daily life of a professional meteorologist, today they are common part of life of regular people. Video samples are a part of this presentation.

  11. Graphical tools for TV weather presentation

    NASA Astrophysics Data System (ADS)

    Najman, M.

    2010-09-01

    Contemporary meteorology and its media presentation faces in my opinion following key tasks: - Delivering the meteorological information to the end user/spectator in understandable and modern fashion, which follows industry standard of video output (HD, 16:9) - Besides weather icons show also the outputs of numerical weather prediction models, climatological data, satellite and radar images, observed weather as actual as possible. - Does not compromise the accuracy of presented data. - Ability to prepare and adjust the weather show according to actual synoptic situtation. - Ability to refocus and completely adjust the weather show to actual extreme weather events. - Ground map resolution weather data presentation need to be at least 20 m/pixel to be able to follow the numerical weather prediction model resolution. - Ability to switch between different numerical weather prediction models each day, each show or even in the middle of one weather show. - The graphical weather software need to be flexible and fast. The graphical changes nee to be implementable and airable within minutes before the show or even live. These tasks are so demanding and the usual original approach of custom graphics could not deal with it. It was not able to change the show every day, the shows were static and identical day after day. To change the content of the weather show daily was costly and most of the time impossible with the usual approach. The development in this area is fast though and there are several different options for weather predicting organisations such as national meteorological offices and private meteorological companies to solve this problem. What are the ways to solve it? What are the limitations and advantages of contemporary graphical tools for meteorologists? All these questions will be answered.

  12. Weathering of ordinary chondrites from Oman: Correlation of weathering parameters with 14C terrestrial ages and a refined weathering scale

    NASA Astrophysics Data System (ADS)

    Zurfluh, Florian J.; Hofmann, Beda A.; Gnos, Edwin; Eggenberger, Urs; Jull, A. J. Timothy

    2016-07-01

    We have investigated 128 14C-dated ordinary chondrites from Oman for macroscopically visible weathering parameters, for thin section-based weathering degrees, and for chemical weathering parameters as analyzed with handheld X-ray fluorescence. These 128 14C-dated meteorites show an abundance maximum of terrestrial age at 19.9 ka, with a mean of 21.0 ka and a pronounced lack of samples between 0 and 10 ka. The weathering degree is evaluated in thin section using a refined weathering scale based on the current W0 to W6 classification of Wlotzka (1993), with five newly included intermediate steps resulting in a total of nine (formerly six) steps. We find significant correlations between terrestrial ages and several macroscopic weathering parameters. The correlation of various chemical parameters including Sr and Ba with terrestrial age is not very pronounced. The microscopic weathering degree of metal and sulfides with newly added intermediate steps shows the best correlation with 14C terrestrial ages, demonstrating the significance of the newly defined weathering steps. We demonstrate that the observed 14C terrestrial age distribution can be modeled from the abundance of meteorites with different weathering degrees, allowing the evaluation of an age-frequency distribution for the whole meteorite population.

  13. Weathering of ordinary chondrites from Oman: Correlation of weathering parameters with 14C terrestrial ages and a refined weathering scale

    NASA Astrophysics Data System (ADS)

    Zurfluh, Florian J.; Hofmann, Beda A.; Gnos, Edwin; Eggenberger, Urs; Jull, A. J. Timothy

    2016-09-01

    We have investigated 128 14C-dated ordinary chondrites from Oman for macroscopically visible weathering parameters, for thin section-based weathering degrees, and for chemical weathering parameters as analyzed with handheld X-ray fluorescence. These 128 14C-dated meteorites show an abundance maximum of terrestrial age at 19.9 ka, with a mean of 21.0 ka and a pronounced lack of samples between 0 and 10 ka. The weathering degree is evaluated in thin section using a refined weathering scale based on the current W0 to W6 classification of Wlotzka (1993), with five newly included intermediate steps resulting in a total of nine (formerly six) steps. We find significant correlations between terrestrial ages and several macroscopic weathering parameters. The correlation of various chemical parameters including Sr and Ba with terrestrial age is not very pronounced. The microscopic weathering degree of metal and sulfides with newly added intermediate steps shows the best correlation with 14C terrestrial ages, demonstrating the significance of the newly defined weathering steps. We demonstrate that the observed 14C terrestrial age distribution can be modeled from the abundance of meteorites with different weathering degrees, allowing the evaluation of an age-frequency distribution for the whole meteorite population.

  14. Weathering of sulfides on Mars

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.; Fisher, Duncan S.

    1987-01-01

    Pyrrhotite-pentlandite assemblages in mafic and ultramafic igneous rocks may have contributed significantly to the chemical weathering reactions that produce degradation products in the Martian regolith. By analogy and terrestrial processes, a model is proposed whereby supergene alteration of these primary Fe-Ni sulfides on Mars has generated secondary sulfides (e.g., pyrite) below the water table and produced acidic groundwater containing high concentrations of dissolved Fe, Ni, and sulfate ions. The low pH solutions also initiated weathering reactions of igneous feldspars and ferromagnesian silicates to form clay silicate and ferric oxyhydroxide phases. Near-surface oxidation and hydrolysis of ferric sulfato-and hydroxo-complex ions and sols formed gossan above the water table consisting of poorly crystalline hydrated ferric sulfates (e.g., jarosite), oxides (ferrihydrite, goethite), and silica (opal). Underlying groundwater, now permafrost contains hydroxo sulfato complexes of Fe, Al, Mg, Ni, which may be stabilized in frozen acidic solutions beneath the surface of Mars. Sublimation of permafrost may replenish colloidal ferric oxides, sulfates, and phyllosilicates during dust storms on Mars.

  15. Panic anxiety, under the weather?

    NASA Astrophysics Data System (ADS)

    Bulbena, A.; Pailhez, G.; Aceña, R.; Cunillera, J.; Rius, A.; Garcia-Ribera, C.; Gutiérrez, J.; Rojo, C.

    2005-03-01

    The relationship between weather conditions and psychiatric disorders has been a continuous subject of speculation due to contradictory findings. This study attempts to further clarify this relationship by focussing on specific conditions such as panic attacks and non-panic anxiety in relation to specific meteorological variables. All psychiatric emergencies attended at a general hospital in Barcelona (Spain) during 2002 with anxiety as main complaint were classified as panic or non-panic anxiety according to strict independent and retrospective criteria. Both groups were assessed and compared with meteorological data (wind speed and direction, daily rainfall, temperature, humidity and solar radiation). Seasons and weekend days were also included as independent variables. Non-parametric statistics were used throughout since most variables do not follow a normal distribution. Logistic regression models were applied to predict days with and without the clinical condition. Episodes of panic were three times more common with the poniente wind (hot wind), twice less often with rainfall, and one and a half times more common in autumn than in other seasons. These three trends (hot wind, rainfall and autumn) were accumulative for panic episodes in a logistic regression formula. Significant reduction of episodes on weekends was found only for non-panic episodes. Panic attacks, unlike other anxiety episodes, in a psychiatric emergency department in Barcelona seem to show significant meteorotropism. Assessing specific disorders instead of overall emergencies or other variables of a more general quality could shed new light on the relationship between weather conditions and behaviour.

  16. Rock weathering and Carbon cycle

    NASA Astrophysics Data System (ADS)

    Strozza, Patrick

    2010-05-01

    In the history of the Earth system, we can find indicators of hot or glacial periods, as well as brutal climatic change… How can we explain those climate variations on a geological timescale ? One of the causative agents is probably the fluctuation of atmospheric CO2 amounts, (gas responsible for the greenhouse effect). A concrete study of some CO2 fluxes between Earth system reservoirs (atmo, hydro and lithosphere) is proposed in this poster. Hydrogencarbonate is the major ion in river surface waters and its amount is so high that it can not be explained by a simple atmospheric Carbon diffusion. From a simple measurement of river HCO3- concentration, we can estimate the consumption of atmospheric CO2 that arises from carbonate and silicate weathering processes. Practical experiments are proposed. These are carried out in the local environment, and are conform to the curriculums of Chemistry and Earth sciences. These tests enable us to outline long-term Carbon cycles and global climatic changes. Key words : Erosion, rock weathering, CO2 cycle, Hydrogencarbonate in waters, climatic changes

  17. Automatic Weather Station (AWS) Lidar

    NASA Technical Reports Server (NTRS)

    Rall, Jonathan A.R.; Abshire, James B.; Spinhirne, James D.; Smith, David E. (Technical Monitor)

    2000-01-01

    An autonomous, low-power atmospheric lidar instrument is being developed at NASA Goddard Space Flight Center. This compact, portable lidar will operate continuously in a temperature controlled enclosure, charge its own batteries through a combination of a small rugged wind generator and solar panels, and transmit its data from remote locations to ground stations via satellite. A network of these instruments will be established by co-locating them at remote Automatic Weather Station (AWS) sites in Antarctica under the auspices of the National Science Foundation (NSF). The NSF Office of Polar Programs provides support to place the weather stations in remote areas of Antarctica in support of meteorological research and operations. The AWS meteorological data will directly benefit the analysis of the lidar data while a network of ground based atmospheric lidar will provide knowledge regarding the temporal evolution and spatial extent of Type la polar stratospheric clouds (PSC). These clouds play a crucial role in the annual austral springtime destruction of stratospheric ozone over Antarctica, i.e. the ozone hole. In addition, the lidar will monitor and record the general atmospheric conditions (transmission and backscatter) of the overlying atmosphere which will benefit the Geoscience Laser Altimeter System (GLAS). Prototype lidar instruments have been deployed to the Amundsen-Scott South Pole Station (1995-96, 2000) and to an Automated Geophysical Observatory site (AGO 1) in January 1999. We report on data acquired with these instruments, instrument performance, and anticipated performance of the AWS Lidar.

  18. Deeply weathered basement rocks in Norway

    NASA Astrophysics Data System (ADS)

    Bönner, Marco; Knies, Jochen; Fredin, Ola; Olesen, Odleiv; Viola, Giulio

    2014-05-01

    Recent studies show that, in addition to tectonic processes, surface processes have also had a profound impact on the topography of Norway. This is especially obvious for the northernmost part of the Nordland county and for western Norway, where the current immature Alpine-type topography cannot be easily explained by tectonic processes only. Erosion of the sedimentary succession also does not seem sufficient to explain the observed relief. Common remnants of deeply weathered basement rocks, however, indicate a history of deep alteration and later erosion of the bedrock, which needs to be considered as another important factor in the development of the topographic relief. Most of the sites with deeply weathered basement exhibit a clay-poor grussy type of weathering, which is generally considered to be of relatively young age (Plio-/Pleistocene) and thought to represent an intermediate stage of weathering. Unfortunately, small amounts or complete absence of clay minerals in these weathering products precluded the accurate dating of this weathered material. Scandinavia was exposed to a large range of glaciations and the once extensive sedimentary successions have been almost entirely eroded, which impedes a minimum age estimate of the weathering profile. Although several sites preserving remnants of deep weathering can still be observed onshore Norway, they are all covered by Quaternary overburden and the age of the regolith remains thus unconstrained and a matter of debate. The only exception is a small Mesozoic basin on Andøya, northern Norway, where weathered and clay-poor saprolite was found underlying Jurassic and Cretaceous sedimentary rocks. Over the last few years the Geological Survey of Norway (NGU) has mapped and investigated deep weathering onshore Norway to better understand weathering processes and to constrain the age of the weathering remnants. The combined interpretation of geophysical, mineralogical and geochemical data, together with recent

  19. Prediction Techniques in Operational Space Weather Forecasting

    NASA Astrophysics Data System (ADS)

    Zhukov, Andrei

    2016-07-01

    The importance of forecasting space weather conditions is steadily increasing as our society is becoming more and more dependent on advanced technologies that may be affected by disturbed space weather. Operational space weather forecasting is still a difficult task that requires the real-time availability of input data and specific prediction techniques that are reviewed in this presentation, with an emphasis on solar and interplanetary weather. Key observations that are essential for operational space weather forecasting are listed. Predictions made on the base of empirical and statistical methods, as well as physical models, are described. Their validation, accuracy, and limitations are discussed in the context of operational forecasting. Several important problems in the scientific basis of predicting space weather are described, and possible ways to overcome them are discussed, including novel space-borne observations that could be available in future.

  20. Space Weather Impacts on Technological Infrastructures

    NASA Astrophysics Data System (ADS)

    Murtagh, W.; Viereck, R. A.; Rutledge, R.

    2012-12-01

    The Space Weather Prediction Center (SWPC), one of the nine National Weather Service (NWS), National Centers for Environmental Prediction, is the nation's official source for space weather alerts and warnings. The rapid advances in the technology sector and our fast growing dependency on space-based systems have resulted in an ever-increasing vulnerability to hazardous space weather. NWS efforts to support aviation, emergency response efforts, and electric power grids, now extend to space and solar storms. Other key sectors impacted by space weather include satellite communications, and GPS applications, which pervade modern society. And the concerns are growing as we approach the next solar maximum, expected to peak in 2013. This presentation will address the different types of space weather events and how they impact our technological infrastructure.

  1. New Technologies for Weather Accident Prevention

    NASA Technical Reports Server (NTRS)

    Stough, H. Paul, III; Watson, James F., Jr.; Daniels, Taumi S.; Martzaklis, Konstantinos S.; Jarrell, Michael A.; Bogue, Rodney K.

    2005-01-01

    Weather is a causal factor in thirty percent of all aviation accidents. Many of these accidents are due to a lack of weather situation awareness by pilots in flight. Improving the strategic and tactical weather information available and its presentation to pilots in flight can enhance weather situation awareness and enable avoidance of adverse conditions. This paper presents technologies for airborne detection, dissemination and display of weather information developed by the National Aeronautics and Space Administration (NASA) in partnership with the Federal Aviation Administration (FAA), National Oceanic and Atmospheric Administration (NOAA), industry and the research community. These technologies, currently in the initial stages of implementation by industry, will provide more precise and timely knowledge of the weather and enable pilots in flight to make decisions that result in safer and more efficient operations.

  2. The Integrated Space Weather Analysis System

    NASA Astrophysics Data System (ADS)

    Maddox, M. M.; Mullinix, R. E.; Jain, P.; Berrios, D.; Hesse, M.; Rastaetter, L.; MacNeice, P. J.; Kuznetsova, M. M.; Taktakishvili, A.; Garneau, J. W.; Conti-Vock, J.

    2009-12-01

    The Integrated Space Weather Analysis System is a joint development project at NASA GSFC between the Space Weather Laboratory, Community Coordinated Modeling Center, Applied Engineering & Technology Directorate, and NASA HQ Office Of Chief Engineer. The iSWA system is a turnkey, web-based dissemination system for NASA-relevant space weather information that combines forecasts based on the most advanced space weather models with concurrent space environment information. A key design driver for the iSWA system is to generate and present vast amounts of space weather resources in an intuitive, user-configurable, and adaptable format - thus enabling users to respond to current and future space weather impacts as well as enabling post-imact analysis. This presentation will highlight several technical aspects of the iSWA system implementation including data collection methods, database design, customizable user interfaces, interactive system components, and innovative displays of quantitative information.

  3. Five case studies of multifamily weatherization programs

    SciTech Connect

    Kinney, L; Wilson, T.; Lewis, G.; MacDonald, M.

    1997-12-31

    The multifamily case studies that are the subject of this report were conducted to provide a better understanding of the approach taken by program operators in weatherizing large buildings. Because of significant variations in building construction and energy systems across the country, five states were selected based on their high level of multifamily weatherization. This report summarizes findings from case studies conducted by multifamily weatherization operations in five cities. The case studies were conducted between January and November 1994. Each of the case studies involved extensive interviews with the staff of weatherization subgrantees conducting multifamily weatherization, the inspection of 4 to 12 buildings weatherized between 1991 and 1993, and the analysis of savings and costs. The case studies focused on innovative techniques which appear to work well.

  4. An overview of aviation weather services

    NASA Technical Reports Server (NTRS)

    Connolly, J. W.

    1977-01-01

    Safety of flight is the first concern of the aviation weather service, the economics of air transportation is a second major interest. Weather is a significant causal factor impacting on the efficiency of air transportation. A discussion is presented on the functions of various weather service agencies as they relate to one another in the dissemination of information to the pilot and to the air traffic controller. Improvements in the aviation weather service and weather knowledge are cited as future goals. The weather service at the present time is an efficient system but future aviation objectives dictate more improvements are needed (especially in automation technology) to enhance flight planning and for safe and efficient flight execution.

  5. Sources, Propagators, and Sinks of Space Weather

    NASA Astrophysics Data System (ADS)

    Pesnell, W. D.

    Space Weather is a complex web of sources propagators and sinks of energy mass and momentum A complete understanding of Space Weather would require specifying and an ability to predict each link in this web One important problem in Space Weather is ranking the importance of a particular measurement or model in a research program One way to do this ranking is to identify the sources propagators and sinks and produce the simplest linked diagram of the components Such a diagram will be shown and used to discuss how longterm effects of Space Weather can be separated from the impulsive effects

  6. Weather Forecaster Understanding of Climate Models

    NASA Astrophysics Data System (ADS)

    Bol, A.; Kiehl, J. T.; Abshire, W. E.

    2013-12-01

    Weather forecasters, particularly those in broadcasting, are the primary conduit to the public for information on climate and climate change. However, many weather forecasters remain skeptical of model-based climate projections. To address this issue, The COMET Program developed an hour-long online lesson of how climate models work, targeting an audience of weather forecasters. The module draws on forecasters' pre-existing knowledge of weather, climate, and numerical weather prediction (NWP) models. In order to measure learning outcomes, quizzes were given before and after the lesson. Preliminary results show large learning gains. For all people that took both pre and post-tests (n=238), scores improved from 48% to 80%. Similar pre/post improvement occurred for National Weather Service employees (51% to 87%, n=22 ) and college faculty (50% to 90%, n=7). We believe these results indicate a fundamental misunderstanding among many weather forecasters of (1) the difference between weather and climate models, (2) how researchers use climate models, and (3) how they interpret model results. The quiz results indicate that efforts to educate the public about climate change need to include weather forecasters, a vital link between the research community and the general public.

  7. Aging and weathering of cool roofing membranes

    SciTech Connect

    Akbari, Hashem; Berhe, Asmeret A.; Levinson, Ronnen; Graveline,Stanley; Foley, Kevin; Delgado, Ana H.; Paroli, Ralph M.

    2005-08-23

    Aging and weathering can reduce the solar reflectance of cool roofing materials. This paper summarizes laboratory measurements of the solar spectral reflectance of unweathered, weathered, and cleaned samples collected from single-ply roofing membranes at various sites across the United States. Fifteen samples were examined in each of the following six conditions: unweathered; weathered; weathered and brushed; weathered, brushed and then rinsed with water; weathered, brushed, rinsed with water, and then washed with soap and water; and weathered, brushed, rinsed with water, washed with soap and water, and then washed with an algaecide. Another 25 samples from 25 roofs across the United States and Canada were measured in their unweathered state, weathered, and weathered and wiped. We document reduction in reflectivity resulted from various soiling mechanisms and provide data on the effectiveness of various cleaning approaches. Results indicate that although the majority of samples after being washed with detergent could be brought to within 90% of their unweathered reflectivity, in some instances an algaecide was required to restore this level of reflectivity.

  8. Natural Weathering Rates of Silicate Minerals

    NASA Astrophysics Data System (ADS)

    White, A. F.

    2003-12-01

    Silicates constitute more than 90% of the rocks exposed at Earth's land surface (Garrels and Mackenzie, 1971). Most primary minerals comprising these rocks are thermodynamically unstable at surface pressure/temperature conditions and are therefore susceptible to chemical weathering. Such weathering has long been of interest in the natural sciences. Hartt (1853) correctly attributed chemical weathering to "the efficacy of water containing carbonic acid in promoting the decomposition of igneous rocks." Antecedent to the recent interest in the role of vegetation on chemical weathering, Belt (1874) observed that the most intense weathering of rocks in tropical Nicaragua was confined to forested regions. He attributed this effect to "the percolation through rocks of rain water charged with a little acid from decomposing vegetation." Chamberlin (1899) proposed that the enhanced rates of chemical weathering associated with major mountain building episodes in Earth's history resulted in a drawdown of atmospheric CO2 that led to periods of global cooling. Many of the major characteristics of chemical weathering had been described when Merrill (1906) published the groundbreaking volume Rocks, Rock Weathering, and Soils.The major advances since that time, particularly during the last several decades, have centered on understanding the fundamental chemical, hydrologic, and biologic processes that control weathering and in establishing quantitative weathering rates. This research has been driven by the importance of chemical weathering to a number environmentally and economically important issues. Undoubtedly, the most significant aspect of chemical weathering is the breakdown of rocks to form soils, a process that makes life possible on the surface of the Earth. The availability of many soil macronutrients such as magnesium, calcium, potassium, and PO4 is directly related to the rate at which primary minerals weather. Often such nutrient balances are upset by anthropogenic

  9. Weatherization Makes Headlines in Connecticut: Weatherization Assistance Close-Up Fact Sheet

    SciTech Connect

    D&R International

    2001-10-10

    Connecticut demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes.

  10. A Tribute to Weatherization Solutions in South Dakota: Weatherization Assistance Close-Up Fact Sheet

    SciTech Connect

    D&R International

    2001-10-10

    South Dakota demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes.

  11. Value of global weather sensors

    SciTech Connect

    Canavan, G.H.

    1998-12-23

    Long-range weather predictions have great scientific and economic potential, but require precise global observations. Small balloon transponders could serve as lagrangian trace particles to measure the vector wind, which is the primary input to long-range numerical forecasts. The wind field is difficult to measure; it is at present poorly sampled globally. Distance measuring equipment (DME) triangulation of signals from roughly a million transponders could sample it with sufficient accuracy to support {approximately} two week forecasts. Such forecasts would have great scientific and economic potential which is estimated below. DME uses small, low-power transmitters on each transponder to broadcast short, low-power messages that are detected by several small receivers and forwarded to the ground station for processing of position, velocity, and state information. Thus, the transponder is little more than a balloon with a small radio, which should only weigh a few grams and cost a few dollars.

  12. Micro Weather Stations for Mars

    NASA Technical Reports Server (NTRS)

    Crisp, David; Kaiser, William J.; VanZandt, Thomas R.; Hoenk, Michael E.; Tillman, James E.

    1995-01-01

    A global network of weather stations will be needed to characterize the near-surface environment on Mars. Here, we review the scientific and measurement objectives of this network. We also show how these objectives can be met within the cost-constrained Mars Surveyor Program by augmenting the Mars Pathfinder-derived landers with large numbers of very small (less than 5 liter), low-mass (less than 5 kg), low-power, low-cost Mini-meteorological stations. Each station would include instruments for measuring atmospheric. pressures, temperatures, wind velocities, humidity, and airborne dust abundance. They would also include a data handling, telemetry, power, atmospheric entry, and deployment systems in a rugged package capable of direct entry and a high-impact landing. In this paper, we describe these systems and summarize the data-taking strategies and data volumes needed to achieve the surface meteorology objectives for Mars.

  13. Emulation for probabilistic weather forecasting

    NASA Astrophysics Data System (ADS)

    Cornford, Dan; Barillec, Remi

    2010-05-01

    Numerical weather prediction models are typically very expensive to run due to their complexity and resolution. Characterising the sensitivity of the model to its initial condition and/or to its parameters requires numerous runs of the model, which is impractical for all but the simplest models. To produce probabilistic forecasts requires knowledge of the distribution of the model outputs, given the distribution over the inputs, where the inputs include the initial conditions, boundary conditions and model parameters. Such uncertainty analysis for complex weather prediction models seems a long way off, given current computing power, with ensembles providing only a partial answer. One possible way forward that we develop in this work is the use of statistical emulators. Emulators provide an efficient statistical approximation to the model (or simulator) while quantifying the uncertainty introduced. In the emulator framework, a Gaussian process is fitted to the simulator response as a function of the simulator inputs using some training data. The emulator is essentially an interpolator of the simulator output and the response in unobserved areas is dictated by the choice of covariance structure and parameters in the Gaussian process. Suitable parameters are inferred from the data in a maximum likelihood, or Bayesian framework. Once trained, the emulator allows operations such as sensitivity analysis or uncertainty analysis to be performed at a much lower computational cost. The efficiency of emulators can be further improved by exploiting the redundancy in the simulator output through appropriate dimension reduction techniques. We demonstrate this using both Principal Component Analysis on the model output and a new reduced-rank emulator in which an optimal linear projection operator is estimated jointly with other parameters, in the context of simple low order models, such as the Lorenz 40D system. We present the application of emulators to probabilistic weather

  14. Polar orbiting operational weather satellites.

    NASA Technical Reports Server (NTRS)

    Stampfl, R. A.; Albert, G.

    1972-01-01

    The progress in the development of operational weather satellites is reviewed, covering their chronology from Explorer 7 of 1959 through Meteor 12 of June, 1972. Special attention is given to the development of the TIROS series satellites with the evolution of their operational sensors, data systems and performance requirements. The topics also include the data collection system designs, to Advanced Very High Resolution Radiometer (AVHRR), the sounder radiometer, the Solar Environment Monitor (SEM), the data processor, and TIROS-N operation and orbital characteristics. It is expected that TIROS-N and its forthcoming advanced versions will provide an effective technology for sensing environmental data on a global scale in the latter half of the decade.

  15. Space Weather - Sun Earth Relations

    NASA Astrophysics Data System (ADS)

    Raman, K. Sundara

    2011-03-01

    Sun, a star of spectral type G2 is the main source of energy to the Earth. Being close to the Earth, Sun produces a resolvable disk of great detail, which is not possible for other stars. Solar flares and coronal mass ejections are the enigmatic phenomena that occur in the solar atmosphere and regularly bombard the Earth's environment in addition to the solar wind. Thus it becomes important for us not only to understand these physical processes of the Sun, but in addition how these activities affect the Earth and it's surrounding. Thus a branch of study called "Space Weather" had emerged in the recent past, which connects the Sun Earth rela-tions. This paper details about the solar activity and associated energetic phenomena that occur in the atmosphere of the Sun and their influence on the Earth.

  16. International Space Weather Initiative (ISWI)

    NASA Technical Reports Server (NTRS)

    Davila, Joseph; Gopalswamy, Nathanial; Thompson, Barbara

    2010-01-01

    The International Heliophysical Year (IHY), an international program of scientific collaboration to understand the external drivers of planetary environments, has come to an end. The IHY was a major international event of great interest to the member States, which involved the deployment of new instrumentation, new observations from the ground and in space, and an education component. We propose to continue the highly successful collaboration between the heliophysics science community and the United Nations Basic Space Science (UNBSS) program. One of the major thrust of the IHY was to deploy arrays of small instruments such as magnetometers, radio antennas, GPS receivers, all-sky cameras, particle detectors, etc. around the world to provide global measurements of heliospheric phenomena. The United Nations Basic Space Science Initiative (UNBSSI) played a major role in this effort. Scientific teams were organized through UNBSS, which consisted of a lead scientist who provided the instruments or fabrication plans for instruments in the array. As a result of the this program, scientists from UNBSS member states now participate in the instrument operation, data collection, analysis, and publication of scientific results, working at the forefront of science research. As part of this project, support for local scientists, facilities and data acquisition is provided by the host nation. In addition, support at the Government level is provided for local scientists to participate. Building on momentum of the IHY, we propose to continue the highly successful collaboration with the UNBSS program to continue the study of universal processes in the solar system that affect the interplanetary and terrestrial environments, and to continue to coordinate the deployment and operation of new and existing instrument arrays aimed at understanding the impacts of Space Weather on Earth and the near-Earth environment. Toward this end, we propose a new program, the International Space

  17. International Space Weather Initiative (ISWI)

    NASA Technical Reports Server (NTRS)

    Davila, Joseph M.; Gopalswamy, Nat; Thompson, Barbara

    2009-01-01

    The International Heliophysical Year (IHY), an international program of scientific collaboration to understand the external drivers of planetary environments, has come to an end. The IHY was a major international event of great interest to the member States, which involved the deployment of new instrumentation, new observations from the ground and in space, and an education component. We propose to continue the highly successful collaboration between the heliophysics science community and the United Nations Basic Space Science (UNBSS) program. One of the major thrust of the IHY was to deploy arrays of small instruments such as magnetometers, radio antennas, GPS receivers, all-sky cameras, particle detectors, etc. around the world to provide global measurements of heliospheric phenomena. The United Nations Basic Space Science Initiative (UNBSSI) played a major role in this effort. Scientific teams were organized through UNBSS, which consisted of a lead scientist who provided the instruments or fabrication plans for instruments in the array. As a result of the this program, scientists from UNBSS member states now participate in the instrument operation, data collection, analysis, and publication of scientific results, working at the forefront of science research. As part of this project, support for local scientists, facilities and data acquisition is provided by the host nation. In addition, support at the Government level is provided for local scientists to participate. Building on momentum of the IHY, we propose to continue the highly successful collaboration with the UNBSS program to continue the study of universal processes in the solar system that affect the interplanetary and terrestrial environments, and to continue to coordinate the deployment and operation of new and existing instrument arrays aimed at understanding the impacts of Space Weather on Earth and the near-Earth environment. Toward this end, we propose a new program, the International Space

  18. Weather Satellite Enterprise Information Chain

    NASA Astrophysics Data System (ADS)

    Jamilkowski, M. L.; Grant, K. D.; Miller, S. W.; Cochran, S.

    2015-12-01

    NOAA & NASA are acquiring the next-generation civilian operational weather satellite: Joint Polar Satellite System (JPSS). Contributing the afternoon orbit & ground system (GS) to replace current NOAA POES Satellites, its sensors will collect meteorological, oceanographic & climatological data. The JPSS Common Ground System (CGS), consisting of C3 and IDP segments, is developed by Raytheon. It now flies the Suomi National Polar-orbiting Partnership (S-NPP) satellite, transferring data between ground facilities, processing them into environmental products for NOAA weather centers, and expanding to support JPSS-1 in 2017. As a multi-mission system, CGS provides combinations of C3, data processing, and product delivery for numerous NASA, NOAA, DoD and international missions.The CGS provides a wide range of support to a number of missions: Command and control and mission management for the S-NPP mission today, expanding this support to the JPSS-1 satellite mission in 2017 Data acquisition for S-NPP, the JAXA's Global Change Observation Mission - Water (GCOM-W1), POES, and the Defense Meteorological Satellite Program (DMSP) and Coriolis/WindSat for the DoD Data routing over a global fiber network for S-NPP, JPSS-1, GCOM-W1, POES, DMSP, Coriolis/WindSat, NASA EOS missions, MetOp for EUMETSAT and the National Science Foundation Environmental data processing and distribution for S-NPP, GCOM-W1 and JPSS-1 The CGS plays a key role in facilitating the movement and value-added enhancement of data all the way from satellite-based sensor data to delivery to the consumers who generate forecasts and produce watches and warnings. This presentation will discuss the information flow from sensors, through data routing and processing, and finally to product delivery. It will highlight how advances in architecture developed through lessons learned from S-NPP and implemented for JPSS-1 will increase data availability and reduce latency for end user applications.

  19. The Application of Synoptic Weather Forecasting Rules to Selected Weather Situations in the United States.

    ERIC Educational Resources Information Center

    Kohler, Fred E.

    The document describes the use of weather maps and data in teaching introductory college courses in synoptic meteorology. Students examine weather changes at three-hour intervals from data obtained from the "Monthly Summary of Local Climatological Data." Weather variables in the local summary include sky cover, air temperature, dew point, relative…

  20. Sentinels in the Sky: Weather Satellites.

    ERIC Educational Resources Information Center

    Haynes, Robert

    This publication describes forecasting weather activity using satellites. Information is included on the development of weather satellites, the National Oceanic and Atmospheric Administration (NOAA) Satellite System (including the polar-orbiting satellites), and the Geostationary Operational Environmental Satellite (GOES). The publication…

  1. Carbon dioxide efficiency of terrestrial enhanced weathering.

    PubMed

    Moosdorf, Nils; Renforth, Phil; Hartmann, Jens

    2014-05-01

    Terrestrial enhanced weathering, the spreading of ultramafic silicate rock flour to enhance natural weathering rates, has been suggested as part of a strategy to reduce global atmospheric CO2 levels. We budget potential CO2 sequestration against associated CO2 emissions to assess the net CO2 removal of terrestrial enhanced weathering. We combine global spatial data sets of potential source rocks, transport networks, and application areas with associated CO2 emissions in optimistic and pessimistic scenarios. The results show that the choice of source rocks and material comminution technique dominate the CO2 efficiency of enhanced weathering. CO2 emissions from transport amount to on average 0.5-3% of potentially sequestered CO2. The emissions of material mining and application are negligible. After accounting for all emissions, 0.5-1.0 t CO2 can be sequestered on average per tonne of rock, translating into a unit cost from 1.6 to 9.9 GJ per tonne CO2 sequestered by enhanced weathering. However, to control or reduce atmospheric CO2 concentrations substantially with enhanced weathering would require very large amounts of rock. Before enhanced weathering could be applied on large scales, more research is needed to assess weathering rates, potential side effects, social acceptability, and mechanisms of governance. PMID:24597739

  2. Can the Weather Affect My Child's Asthma?

    MedlinePlus

    ... who participate in winter sports are especially susceptible. Dry, windy weather can stir up pollen and mold in the ... in the dryer (hanging clothes or sheets to dry can allow mold or pollen to ... action plan should list weather triggers and ways to manage them, including any ...

  3. Extreme weather events and infectious disease outbreaks

    PubMed Central

    McMichael, Anthony J

    2015-01-01

    Human-driven climatic changes will fundamentally influence patterns of human health, including infectious disease clusters and epidemics following extreme weather events. Extreme weather events are projected to increase further with the advance of human-driven climate change. Both recent and historical experiences indicate that infectious disease outbreaks very often follow extreme weather events, as microbes, vectors and reservoir animal hosts exploit the disrupted social and environmental conditions of extreme weather events. This review article examines infectious disease risks associated with extreme weather events; it draws on recent experiences including Hurricane Katrina in 2005 and the 2010 Pakistan mega-floods, and historical examples from previous centuries of epidemics and ‘pestilence’ associated with extreme weather disasters and climatic changes. A fuller understanding of climatic change, the precursors and triggers of extreme weather events and health consequences is needed in order to anticipate and respond to the infectious disease risks associated with human-driven climate change. Post-event risks to human health can be constrained, nonetheless, by reducing background rates of persistent infection, preparatory action such as coordinated disease surveillance and vaccination coverage, and strengthened disaster response. In the face of changing climate and weather conditions, it is critically important to think in ecological terms about the determinants of health, disease and death in human populations. PMID:26168924

  4. Book Review: Space Weather: Physics and Effects

    NASA Astrophysics Data System (ADS)

    Wilkinson, Phil

    2007-11-01

    At 438 pages, Space Weather: Physics and Effects, edited by Volker Bothmer and Ioannis A. Daglis, seems like a daunting read. But its thickness belies its conversational tone, and its content provides a different presentation of material aimed at drawing in a new audience while satisfying the present space weather audience's interest in their subject. I found reading this book a pleasure.

  5. The Weathering of Rocks: Three Activities.

    ERIC Educational Resources Information Center

    McLure, John W.

    1991-01-01

    Integrates science and social studies in several activities that study weathering caused by the freezing and thawing of rocks, wind erosion, and the effects of weathering on tombstones. Cites the possibility of these activities leading to an interdisciplinary exploration of pollution, customs, and populations. (MCO)

  6. The International Space Weather Initiative (ISWI)

    NASA Technical Reports Server (NTRS)

    Davila, Joseph M.

    2010-01-01

    The International Heliophysical Year (IHY) provided a successful model for the deployment of arrays of small scientific instruments in new and scientifically interesting geographic locations, and outreach. The new International Space Weather Initiative (ISWI) is designed to build on this momentum to promote the observation, understanding, and prediction space weather phenomena, and to communicate the scientific results to the public.

  7. Future weather dataset for fourteen UK sites.

    PubMed

    Liu, Chunde

    2016-09-01

    This Future weather dataset is used for assessing the risk of overheating and thermal discomfort or heat stress in the free running buildings. The weather files are in the format of .epw which can be used in the building simulation packages such as EnergyPlus, DesignBuilder, IES, etc. PMID:27570809

  8. AWE: Aviation Weather Data Visualization Environment

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly; Lodha, Suresh K.; Norvig, Peter (Technical Monitor)

    2000-01-01

    Weather is one of the major causes of aviation accidents. General aviation (GA) flights account for 92% of all the aviation accidents, In spite of all the official and unofficial sources of weather visualization tools available to pilots, there is an urgent need for visualizing several weather related data tailored for general aviation pilots. Our system, Aviation Weather Data Visualization Environment AWE), presents graphical displays of meteorological observations, terminal area forecasts, and winds aloft forecasts onto a cartographic grid specific to the pilot's area of interest. Decisions regarding the graphical display and design are made based on careful consideration of user needs. Integral visual display of these elements of weather reports is designed for the use of GA pilots as a weather briefing and route selection tool. AWE provides linking of the weather information to the flight's path and schedule. The pilot can interact with the system to obtain aviation-specific weather for the entire area or for his specific route to explore what-if scenarios and make "go/no-go" decisions. The system, as evaluated by some pilots at NASA Ames Research Center, was found to be useful.

  9. 46 CFR 45.187 - Weather limitations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Weather limitations. 45.187 Section 45.187 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES GREAT LAKES LOAD LINES Unmanned River Barges on Lake Michigan Routes § 45.187 Weather limitations. (a) Tows on the Burns Harbor...

  10. 46 CFR 45.187 - Weather limitations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Weather limitations. 45.187 Section 45.187 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES GREAT LAKES LOAD LINES Unmanned River Barges on Lake Michigan Routes § 45.187 Weather limitations. (a) Tows on the Burns Harbor...

  11. 46 CFR 45.187 - Weather limitations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Weather limitations. 45.187 Section 45.187 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES GREAT LAKES LOAD LINES Unmanned River Barges on Lake Michigan Routes § 45.187 Weather limitations. (a) Tows on the Burns Harbor...

  12. 46 CFR 45.187 - Weather limitations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Weather limitations. 45.187 Section 45.187 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES GREAT LAKES LOAD LINES Unmanned River Barges on Lake Michigan Routes § 45.187 Weather limitations. (a) Tows on the Burns Harbor...

  13. 46 CFR 45.187 - Weather limitations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Weather limitations. 45.187 Section 45.187 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES GREAT LAKES LOAD LINES Unmanned River Barges on Lake Michigan Routes § 45.187 Weather limitations. (a) Tows on the Burns Harbor...

  14. Extreme weather events and infectious disease outbreaks.

    PubMed

    McMichael, Anthony J

    2015-01-01

    Human-driven climatic changes will fundamentally influence patterns of human health, including infectious disease clusters and epidemics following extreme weather events. Extreme weather events are projected to increase further with the advance of human-driven climate change. Both recent and historical experiences indicate that infectious disease outbreaks very often follow extreme weather events, as microbes, vectors and reservoir animal hosts exploit the disrupted social and environmental conditions of extreme weather events. This review article examines infectious disease risks associated with extreme weather events; it draws on recent experiences including Hurricane Katrina in 2005 and the 2010 Pakistan mega-floods, and historical examples from previous centuries of epidemics and 'pestilence' associated with extreme weather disasters and climatic changes. A fuller understanding of climatic change, the precursors and triggers of extreme weather events and health consequences is needed in order to anticipate and respond to the infectious disease risks associated with human-driven climate change. Post-event risks to human health can be constrained, nonetheless, by reducing background rates of persistent infection, preparatory action such as coordinated disease surveillance and vaccination coverage, and strengthened disaster response. In the face of changing climate and weather conditions, it is critically important to think in ecological terms about the determinants of health, disease and death in human populations. PMID:26168924

  15. Towards a National Space Weather Predictive Capability

    NASA Astrophysics Data System (ADS)

    Fox, N. J.; Ryschkewitsch, M. G.; Merkin, V. G.; Stephens, G. K.; Gjerloev, J. W.; Barnes, R. J.; Anderson, B. J.; Paxton, L. J.; Ukhorskiy, A. Y.; Kelly, M. A.; Berger, T. E.; Bonadonna, L. C. M. F.; Hesse, M.; Sharma, S.

    2015-12-01

    National needs in the area of space weather informational and predictive tools are growing rapidly. Adverse conditions in the space environment can cause disruption of satellite operations, communications, navigation, and electric power distribution grids, leading to a variety of socio-economic losses and impacts on our security. Future space exploration and most modern human endeavors will require major advances in physical understanding and improved transition of space research to operations. At present, only a small fraction of the latest research and development results from NASA, NOAA, NSF and DoD investments are being used to improve space weather forecasting and to develop operational tools. The power of modern research and space weather model development needs to be better utilized to enable comprehensive, timely, and accurate operational space weather tools. The mere production of space weather information is not sufficient to address the needs of those who are affected by space weather. A coordinated effort is required to support research-to-applications transition efforts and to develop the tools required those who rely on this information. In this presentation we will review the space weather system developed for the Van Allen Probes mission, together with other datasets, tools and models that have resulted from research by scientists at JHU/APL. We will look at how these, and results from future missions such as Solar Probe Plus, could be applied to support space weather applications in coordination with other community assets and capabilities.

  16. Weatherization works: Final report of the National Weatherization Evaluation

    SciTech Connect

    Brown, M.A.; Berry, L.G.; Kinney, L.F.

    1994-09-01

    In 1990, the U.S. Department of Energy (DOE) sponsored a comprehensive evaluation of its Weatherization Assistance Program, the nation`s largest residential energy conservation program. Oak Ridge National Laboratory (ORNL) managed the five-part study. This document summarizes the findings of the evaluation. Its conclusions are based mainly on data from the 1989 program year (supplemented by data from 1991-92). The evaluation concludes that the Program meets the objectives of its enabling legislation and fulfills its mission statement. Specifically, it (1) saves energy, (2) lowers fuel bills, and (3) improves the health and safety of dwellings occupied by low-income people. In addition, the Program achieves its mission in a cost-effective manner based on each of three perspectives employed by the evaluators. Finally, the evaluation estimates that the investments made in 1989 will, over a 20-year lifetime, save the equivalent of 12 million barrels of oil, roughly the amount of oil added to the Strategic Petroleum Reserve in each of the past several years.

  17. Weathering: methods and techniques to measure

    NASA Astrophysics Data System (ADS)

    Lopez-Arce, P.; Zornoza-Indart, A.; Alvarez de Buergo, M.; Fort, R.

    2012-04-01

    Surface recession takes place when weathered material is removed from the rocks. In order to know how fast does weathering and erosion occur, a review of several methods, analyses and destructive and non-destructive techniques to measure weathering of rocks caused by physico-chemical changes that occur in bedrocks due to salt crystallization, freezing-thaw, thermal shock, influence of water, wind, temperature or any type of environmental agent leading to weathering processes and development of soils, in-situ in the field or through experimental works in the laboratory are addressed. From micro-scale to macro-scale, from the surface down to more in depth, several case studies on in-situ monitoring of quantification of decay on soils and rocks from natural landscapes (mountains, cliffs, caves, etc) or from urban environment (foundations or facades of buildings, retaining walls, etc) or laboratory experimental works, such as artificial accelerated ageing tests (a.a.e.e.) or durability tests -in which one or more than one weathering agents are selected to assess the material behaviour in time and in a cyclic way- performed on specimens of these materials are summarised. Discoloration, structural alteration, precipitation of weathering products (mass transfer), and surface recession (mass loss) are all products of weathering processes. Destructive (SEM-EDX, optical microscopy, mercury intrusion porosimetry, drilling resistance measurement, flexural and compression strength) and Non-destructive (spectrophotocolorimetry, 3D optical surface roughness, Schmidt hammer rebound tester, ultrasound velocity propagation, Nuclear Magnetic Resonance NMR, X ray computed micro-tomography or CT-scan, geo-radar differential global positioning systems) techniques and characterization analyses (e.g. water absorption, permeability, open porosity or porosity accessible to water) to assess their morphological, physico-chemical, mechanical and hydric weathering; consolidation products or

  18. Pushing the Envelope of Extreme Space Weather

    NASA Astrophysics Data System (ADS)

    Pesnell, W. D.

    2014-12-01

    Extreme Space Weather events are large solar flares or geomagnetic storms, which can cost billions of dollars to recover from. We have few examples of such events; the Carrington Event (the solar superstorm) is one of the few that had superlatives in three categories: size of solar flare, drop in Dst, and amplitude of aa. Kepler observations show that stars similar to the Sun can have flares releasing millions of times more energy than an X-class flare. These flares and the accompanying coronal mass ejections could strongly affect the atmosphere surrounding a planet. What level of solar activity would be necessary to strongly affect the atmosphere of the Earth? Can we map out the envelope of space weather along the evolution of the Sun? What would space weather look like if the Sun stopped producing a magnetic field? To what extreme should Space Weather go? These are the extremes of Space Weather explored in this talk.

  19. Predicting the magnetospheric plasma of weather

    NASA Technical Reports Server (NTRS)

    Dawson, John M.

    1986-01-01

    The prediction of the plasma environment in time, the plasma weather, is discussed. It is important to be able to predict when large magnetic storms will produce auroras, which will affect the space station operating in low orbit, and what precautions to take both for personnel and sensitive control (computer) equipment onboard. It is also important to start to establish a set of plasma weather records and a record of the ability to predict this weather. A successful forecasting system requires a set of satellite weather stations to provide data from which predictions can be made and a set of plasma weather codes capable of accurately forecasting the status of the Earth's magnetosphere. A numerical magnetohydrodynamic fluid model which is used to model the flow in the magnetosphere, the currents flowing into and out of the auroral regions, the magnetopause, the bow shock location and the magnetotail of the Earth is discussed.

  20. Interactive Visual Contextualization of Space Weather Data

    NASA Astrophysics Data System (ADS)

    Törnros, M.; Ynnerman, A.; Emmart, C.; Berrios, D.; Harberts, R.

    2012-12-01

    Linköping University, the American Museum of Natural History (AMNH), and the Community Coordinated Modeling Center (CCMC) at NASA Goddard Space Flight Center are collaborating on a new open source visualization software for astrovisualization. The CCMC is providing real-time and historical space weather data from the Integrated Space Weather Analysis System (iSWA), including timely modeled coronal mass ejection events simulated by the Space Weather Research Center at NASA GSFC. Linköping University is developing a new modular visualization tool with multi-channel capabilities to support planetarium exhibits, displaying the real-time space weather data contextualized using fieldlines, volumetric visualization techniques, and planetary information. This collaboration aims to engage the public about space weather and real-time events at the AMNH. We present an overview of this collaboration and demo some of the capabilities.

  1. Acknowledging the weather-health link.

    PubMed Central

    Bart, J L; Bourque, D A

    1995-01-01

    The impact of weather on health is generally overlooked by physicians. Possible reasons for this include lack of training and insufficient awareness of the significant body of research on human biometeorology. The authors argue that, in the absence of clearly demonstrable causal connections, statistical associations between weather phenomena and health problems should be enough to influence clinical practice. Physicians in Germany make use of daily bulletins from the national weather service to advise patients on the management of common health problems that seem to be exacerbated by certain weather conditions. The authors urge Canadian doctors to follow the lead of their European colleagues by increasing their awareness of the relation between weather and health. PMID:7553497

  2. Modeling Weather Impact on Ground Delay Programs

    NASA Technical Reports Server (NTRS)

    Wang, Yao; Kulkarni, Deepak

    2011-01-01

    Scheduled arriving aircraft demand may exceed airport arrival capacity when there is abnormal weather at an airport. In such situations, Federal Aviation Administration (FAA) institutes ground-delay programs (GDP) to delay flights before they depart from their originating airports. Efficient GDP planning depends on the accuracy of prediction of airport capacity and demand in the presence of uncertainties in weather forecast. This paper presents a study of the impact of dynamic airport surface weather on GDPs. Using the National Traffic Management Log, effect of weather conditions on the characteristics of GDP events at selected busy airports is investigated. Two machine learning methods are used to generate models that map the airport operational conditions and weather information to issued GDP parameters and results of validation tests are described.

  3. Weather forecasting support for AASE-2

    NASA Technical Reports Server (NTRS)

    Forbes, Gregory S.

    1992-01-01

    The AFEAS Contract and NASA Grant were awarded to Penn State in order to obtain real-time weather forecasting support for the NASA AASE-II Project, which was conducted between October 1991 and March 1992. Because of the special weather sensitivities of the NASA ER-2 aircraft, AASE-II planners felt that public weather forecasts issued by the National Weather Service would not be adequate for mission planning purposes. A likely consequence of resorting to that medium would have been that scientists would have had to be at work by 4 AM day after day in the hope that the aircraft could fly, only to be frustrated by a great number of 'scrubbed' missions. Thus, the Pennsylvania State University was contracted to provide real-time weather support to the AASE-II mission.

  4. Integrating weather derivatives for managing risks

    SciTech Connect

    Bilski, B.

    1999-11-01

    As deregulation and customer choice loom on the horizon, many energy utilities and other energy suppliers are scrambling to find new services that add value for consumers. Many are also seeking opportunities for increasing efficiency to ensure that costs remain competitive. Integrating weather derivatives with marketing programs and financial management can produce attractive new services and increase efficiency. Weather derivatives can be used to create innovative consumer services, such as a guaranteed annual energy bill which is unaffected by weather and energy price changes. They can also be used to protect the earnings of energy suppliers from one of their most significant financial risks, unpredictable weather. There are three basic types of weather derivatives available today. Option or insurance based derivatives (options), swaps or hedge based derivatives (swaps) and packages where other services are combined with one or both of the above.

  5. Learn about Earth Science: Weather. [CD-ROM].

    ERIC Educational Resources Information Center

    2000

    This CD-ROM, designed for students in grades K-2, explores the world of weather. Students investigate weather to learn about climate and the seasons, how animals adapt to weather changes, how clouds tell us about conditions, and how weather plays a part in our everyday lives. The weather calendar lets students record and write about conditions…

  6. 14 CFR 135.219 - IFR: Destination airport weather minimums.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false IFR: Destination airport weather minimums... VFR/IFR Operating Limitations and Weather Requirements § 135.219 IFR: Destination airport weather... latest weather reports or forecasts, or any combination of them, indicate that weather conditions at...

  7. 14 CFR 135.219 - IFR: Destination airport weather minimums.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false IFR: Destination airport weather minimums... VFR/IFR Operating Limitations and Weather Requirements § 135.219 IFR: Destination airport weather... latest weather reports or forecasts, or any combination of them, indicate that weather conditions at...

  8. 14 CFR 135.219 - IFR: Destination airport weather minimums.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false IFR: Destination airport weather minimums... VFR/IFR Operating Limitations and Weather Requirements § 135.219 IFR: Destination airport weather... latest weather reports or forecasts, or any combination of them, indicate that weather conditions at...

  9. 14 CFR 135.219 - IFR: Destination airport weather minimums.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false IFR: Destination airport weather minimums... VFR/IFR Operating Limitations and Weather Requirements § 135.219 IFR: Destination airport weather... latest weather reports or forecasts, or any combination of them, indicate that weather conditions at...

  10. 14 CFR 135.219 - IFR: Destination airport weather minimums.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false IFR: Destination airport weather minimums... VFR/IFR Operating Limitations and Weather Requirements § 135.219 IFR: Destination airport weather... latest weather reports or forecasts, or any combination of them, indicate that weather conditions at...

  11. Forecasting Space Weather from Magnetograms

    NASA Technical Reports Server (NTRS)

    Falconer, David A.; Moore, Ronald L.; Barghouty, Abdulnasser F.; Khazanov, Igor

    2012-01-01

    Large flares and fast CMEs are the drivers of the most severe space weather including Solar Energetic Particle Events (SEP Events). Large flares and their co-produced CMEs are powered by the explosive release of free magnetic energy stored in non-potential magnetic fields of sunspot active regions. The free energy is stored in and released from the low-beta regime of the active region s magnetic field above the photosphere, in the chromosphere and low corona. From our work over the past decade and from similar work of several other groups, it is now well established that (1) a proxy of the free magnetic energy stored above the photosphere can be measured from photospheric magnetograms, maps of the measured field in the photosphere, and (2) an active region s rate of production of major CME/flare eruptions in the coming day or so is strongly correlated with its present measured value of the free-energy proxy. These results have led us to use the large database of SOHO/MDI full-disk magnetograms spanning Solar Cycle 23 to obtain empirical forecasting curves that from an active region s present measured value of the free-energy proxy give the active region s expected rates of production of major flares, CMEs, fast CMEs, and SEP Events in the coming day or so (Falconer et al 2011, Space Weather, 9, S04003). For each type of event, the expected rate is readily converted to the chance that the active region will produce such an event in any given forward time window of a day or so. If the chance is small enough (e.g. <5%), the forecast is All Clear for that type of event. We will present these forecasting curves and demonstrate the accuracy of their forecasts. In addition, we will show that the forecasts for major flares and fast CMEs can be made significantly more accurate by taking into account not only the value of the free energy proxy but also the active region s recent productivity of major flares; specifically, whether the active region has produced a major flare

  12. A gridded multisite weather generator and synchronization to observed weather data

    NASA Astrophysics Data System (ADS)

    Wilks, Daniel S.

    2009-10-01

    Procedures are described for constructing a daily multisite weather generator at a collection of arbitrary (e.g., gridded) locations and for synchronizing the gridded generator to observed weather series at a set of reference stations. The gridded generator is constructed by interpolating conventional single-station weather generator parameters using locally weighted regressions and producing coherent simulations of daily weather from them using spatial correlation functions. When implemented, the synchronization algorithm results in simulated spatial weather fields at the grid points that are consistent with daily weather observations at nearby locations for particular years. The synchronization is achieved by exploiting the latent multivariate Gaussian structure of the spatially distributed weather generator and making use of well-known statistical results that define conditional multivariate Gaussian distributions given known values for a subset of variables from the larger joint distribution. The primary focus is on precipitation, but the nonprecipitation variables in the weather generator are also amenable to gridding and to synchronization with nearby observed weather series. The motivating idea is to allow calibration of spatially distributed hydrological models consistent with the climate of the spatial weather generator, potentially allowing more realistic hydrological simulation, but the procedure may also be useful for interpolation of missing daily weather data.

  13. Alaska Native Weatherization Training and Jobs Program First Steps Toward Tribal Weatherization – Human Capacity Development

    SciTech Connect

    Wiita, Joanne

    2013-07-30

    The Alaska Native Weatherization Training and Jobs Project expanded weatherization services for tribal members’ homes in southeast Alaska while providing weatherization training and on the job training (OJT) for tribal citizens that lead to jobs and most probably careers in weatherization-related occupations. The program resulted in; (a) 80 Alaska Native citizens provided with skills training in five weatherization training units that were delivered in cooperation with University of Alaska Southeast, in accordance with the U.S. Department of Energy Core Competencies for Weatherization Training that prepared participants for employment in three weatherizationrelated occupations: Installer, Crew Chief, and Auditor; (b) 25 paid OJT training opportunities for trainees who successfully completed the training course; and (c) employed trained personnel that have begun to rehab on over 1,000 housing units for weatherization.

  14. Weather Information Communications (WINCOMM) Project: Dissemination of Weather Information for the Reduction of Aviation Weather-Related Accident Causal Factors

    NASA Technical Reports Server (NTRS)

    Jarrell, Michael; Tanger, Thomas

    2004-01-01

    Weather Information Communications (WINCOMM) is part of the Weather Accident Prevention (WxAP) Project, which is part of the NASA's Aviation Safety and Security Program. The goals of WINCOMM are to facilitate the exchange of tactical and strategic weather information between air and ground. This viewgraph presentation provides information on data link decision factors, architectures, validation goals. WINCOMM is capable of providing en-route communication air-to-ground, ground-to-air, and air-to-air, even on international or intercontinental flights. The presentation also includes information on the capacity, cost, and development of data links.

  15. Scorecard on winter weather forecast

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    A comparison of the observed temperatures and precipitation for this past winter (maps on left) with predicted temperatures and precipitation (maps on right) shows that the National Weather Service (NWS) temperature prediction was below par, but that the NWS precipitation forecast was ‘quite good,’ according to Don L. Gilman, chief of the NWS long-range forecast branch. The predictions, issued November 29, 1982 (Eos, December 14, 1982, p. 1211), covered December, January, and February.NWS long-range forecasters had thought that frigid Arctic air would swoop far south to bring below-normal temperatures to the western United States. Instead, an east Pacific trough, which may have been the strongest since 1900, brought a strong influx of air from the west, according to Gilman. The intense, low-pressure anomaly in the east Pacific, with the strong westerly winds, teamed with heavy rains south and southwest of Hawaii and warm equatorial Pacific waters to bring warm, wet air to the western United States. The results (see maps): Throughout most of the country, observed temperatures were above normal (A) or normal (N), while observed precipitation was heavy (H) o r normal (no code). Below-normal temperatures (B) occurred only in a portion of the southcentral U.S. and the Florida Keys. Light precipitation (L) fell over two patches in the northern plains, in the Appalachian region, and along the Maine coast.

  16. Space Weather with GONG+ Data

    NASA Astrophysics Data System (ADS)

    Hill, F.; Komm, R.; Gonzalez-Hernandez, I.; Petrie, G.; Harvey, J. W.

    2008-05-01

    The Global Oscillation Network Group (GONG) is now routinely producing several data products that are useful for space weather predictions. These products are one-minute cadence full-disk magnetograms obtained continually; ten-miniute averages of these magnetograms; one-hour cadence synoptic magnetic field maps and potential field source-surface extrapolations; and twelve-hour far-side maps that show the presence of large active regions. Most of these these products are made available over the Internet in near-real time. In addition, we are developing flare predictors based on subsurface vorticity obtained from helioseismic ring diagrams in conjunction with surface magnetic field observations. We find that, when both the subsurface vorticity and the surface magnetic field are above certain thresholds for a specific active region, then that active region has a very high probability of producing vigorous flare activity. We will present the quantitative results for this predictor and also report on progress developing a predictor based on the temporal evolution of the vorticity.

  17. Space Weather: The Solar Perspective

    NASA Astrophysics Data System (ADS)

    Schwenn, Rainer

    2006-08-01

    The term space weather refers to conditions on the Sun and in the solar wind, magnetosphere, ionosphere, and thermosphere that can influence the performance and reliability of space-borne and ground-based technological systems and that can affect human life and health. Our modern hi-tech society has become increasingly vulnerable to disturbances from outside the Earth system, in particular to those initiated by explosive events on the Sun: Flares release flashes of radiation that can heat up the terrestrial atmosphere such that satellites are slowed down and drop into lower orbits, solar energetic particles accelerated to near-relativistic energies may endanger astronauts traveling through interplanetary space, and coronal mass ejections are gigantic clouds of ionized gas ejected into interplanetary space that after a few hours or days may hit the Earth and cause geomagnetic storms. In this review, I describe the several chains of actions originating in our parent star, the Sun, that affect Earth, with particular attention to the solar phenomena and the subsequent effects in interplanetary space.

  18. Weatherization Works: Final Report of the National Weatherization Evaluation

    SciTech Connect

    Brown, M.A.

    2001-02-01

    In 1990, the US Department of Energy (DOE) sponsored a comprehensive evaluation of its Weatherization Assistance Program, the nation's largest residential energy conservation program. Oak Ridge National Laboratory (ORNL) managed the five-part study. This document summarizes the findings of the evaluation. Its conclusions are based mainly on data from the 1989 program year. The evaluation concludes that the Program meets the objectives of its enabling legislation and fulfills its mission statement. Specifically, it saves energy, lowers fuel bills, and improves the health and safety of dwellings occupied by low-income people. In addition, the Program achieves its mission in a cost-effective manner based on each of three perspectives employed by the evaluators. Finally, the evaluation estimates that the investments made in 1989 will, over a 20-year lifetime, save the equivalent of 12 million barrels of oil, roughly the amount of oil added to the Strategic Petroleum Reserve in each of the past several years. The Program's mission is to reduce the heating and cooling costs for low-income families--particularly the elderly, persons with disabilities, and children by improving the energy efficiency of their homes and ensuring their health and safety. Substantial progress has been made, but the job is far from over. The Department of Health and Human Services (HHS) reports that the average low-income family spends 12 percent of its income on residential energy, compared to only 3% for the average-income family. Homes where low-income families live also have a greater need for energy efficiency improvements, but less money to pay for them.

  19. Dynamically Evolving Sectors for Convective Weather Impact

    NASA Technical Reports Server (NTRS)

    Drew, Michael C.

    2010-01-01

    A new strategy for altering existing sector boundaries in response to blocking convective weather is presented. This method seeks to improve the reduced capacity of sectors directly affected by weather by moving boundaries in a direction that offers the greatest capacity improvement. The boundary deformations are shared by neighboring sectors within the region in a manner that preserves their shapes and sizes as much as possible. This reduces the controller workload involved with learning new sector designs. The algorithm that produces the altered sectors is based on a force-deflection mesh model that needs only nominal traffic patterns and the shape of the blocking weather for input. It does not require weather-affected traffic patterns that would have to be predicted by simulation. When compared to an existing optimal sector design method, the sectors produced by the new algorithm are more similar to the original sector shapes, resulting in sectors that may be more suitable for operational use because the change is not as drastic. Also, preliminary results show that this method produces sectors that can equitably distribute the workload of rerouted weather-affected traffic throughout the region where inclement weather is present. This is demonstrated by sector aircraft count distributions of simulated traffic in weather-affected regions.

  20. Educating Emergency Managers About Weather -Related Hazards

    NASA Astrophysics Data System (ADS)

    Spangler, T. C.; Johnson, V.

    2006-12-01

    The most common crises that emergency managers face are those related to hazardous weather - snowstorms, floods, hurricanes, heat waves, tornadoes, etc. However, man-made disasters, such as accidental releases of hazardous substances or terrorist acts, also often have a weather component. For example, after the bombing of the Alfred P. Murrah Federal Building in Oklahoma City, emergency managers were concerned that thunderstorms in the area might cause the building to collapse, putting rescuers in further danger. Training emergency managers to recognize the importance of weather in disaster planning and response has been a small but important focus of the COMET Program's educational development effort. Topics addressed in COMET training modules that are pertinent to emergency management include fire weather, hurricanes, flood events, and air contaminant dispersion. Additionally, the module entitled Anticipating Hazardous Weather and Community Risk provides an overview of basic meteorological processes, describes a broad range of weather phenomenon, and then addresses what forecast products are available to emergency managers to assess a threat to their community. In many of the modules, learners are presented with scenarios that give them the opportunity to practice decision-making in hazardous weather situations. We will demonstrate some of those scenarios and discuss how training can be used to model good emergency management skills. We will discuss ways to communicate with the emergency management community and provide examples of how distance learning can be used to educate and train emergency managers.

  1. Towards a National Space Weather Predictive Capability

    NASA Astrophysics Data System (ADS)

    Fox, N. J.; Lindstrom, K. L.; Ryschkewitsch, M. G.; Anderson, B. J.; Gjerloev, J. W.; Merkin, V. G.; Kelly, M. A.; Miller, E. S.; Sitnov, M. I.; Ukhorskiy, A. Y.; Erlandson, R. E.; Barnes, R. J.; Paxton, L. J.; Sotirelis, T.; Stephens, G.; Comberiate, J.

    2014-12-01

    National needs in the area of space weather informational and predictive tools are growing rapidly. Adverse conditions in the space environment can cause disruption of satellite operations, communications, navigation, and electric power distribution grids, leading to a variety of socio-economic losses and impacts on our security. Future space exploration and most modern human endeavors will require major advances in physical understanding and improved transition of space research to operations. At present, only a small fraction of the latest research and development results from NASA, NOAA, NSF and DoD investments are being used to improve space weather forecasting and to develop operational tools. The power of modern research and space weather model development needs to be better utilized to enable comprehensive, timely, and accurate operational space weather tools. The mere production of space weather information is not sufficient to address the needs of those who are affected by space weather. A coordinated effort is required to support research-to-applications transition efforts and to develop the tools required those who rely on this information. In this presentation we will review datasets, tools and models that have resulted from research by scientists at JHU/APL, and examine how they could be applied to support space weather applications in coordination with other community assets and capabilities.

  2. Toward a Space Weather Virtual Organization (Invited)

    NASA Astrophysics Data System (ADS)

    Paxton, L. J.; Holm, J. M.; Schaefer, R. K.; Weiss, M.

    2009-12-01

    On the 150th anniversary of the Carrington Event, it behooves us to reflect upon the impact of space weather on our technology-intensive, communications-driven, socitey. Over the period since the last solar maximum in 2001, the commercial, defense department, and other national entities have become increasingly dependent on the electronic command, control, & communication systems that are vulnerable to Space Weather events. There has not been a concomitant increase in our ability to reliably predict space weather nor in our ability to separate natural effects from human ones. Now we need to quickly gear up space situational awareness capability in time for the next solar max predicted to occur in about 3-4 years. Unfortunately, space weather expertise is spread over institutions and academic disciplines and communication between space weather forecasters, forecast users, and the research community is poor. We would like to set up a demonstration space weather virtual organization to find a more efficient way to communicate and manage knowledge to ensure the operational community can get actionable information in a timely manner. We call this system concept SWIFTER-ACTION (Space Weather Informatics, Forecasting, and Technology through Enabling Research - Accessibility, Content, & Timely Information On the Network.) In this paper we provide an overview of the issues that must be addressed in order to transform data into knowledge that enables action.

  3. Bad WEATHER? then Sue the WEATHERMAN!.

    NASA Astrophysics Data System (ADS)

    Klein, Roberta; Pielke, Roger A., Jr.

    2002-12-01

    Weather forecasts have become demonstrably more accurate in recent decades due to increasingly sophisticated computer technology and models. Yet scientists cannot predict the future with 100% certainty. Relying on inaccurate or inadequate forecasts can result in great financial or even bodily harm. In such situations, what liability, if any, arises under the U.S. legal system?This article is the first of a two-part review. Part I discusses several court decisions resolving lawsuits against the federal or state government based on inaccurate or inadequate weather-related forecasts or failure to issue weather warnings that led to injury or loss. In general, most claims against the federal government based on weather forecasting or failure to warn about weather conditions have been (and likely will continue to be) resolved in favor of the government on the basis of immunity under the Federal Tort Claims Act (FTCA). State government immunity will depend on the provisions of a state's immunity statute and how the state interprets its immunity statute. Part II of the review will address claims against private sector weather forecasters. These articles aim to familiarize the reader with some of the legal issues involved when forecasts are the subject of a lawsuit, rather than provide a comprehensive, law-review-style legal analysis. The authors conclude with some forecasts of their own about liability for weather forecasters.

  4. The Future of Operational Space Weather Observations

    NASA Astrophysics Data System (ADS)

    Berger, T. E.

    2015-12-01

    We review the current state of operational space weather observations, the requirements for new or evolved space weather forecasting capablities, and the relevant sections of the new National strategy for space weather developed by the Space Weather Operations, Research, and Mitigation (SWORM) Task Force chartered by the Office of Science and Technology Policy of the White House. Based on this foundation, we discuss future space missions such as the NOAA space weather mission to the L1 Lagrangian point planned for the 2021 time frame and its synergy with an L5 mission planned for the same period; the space weather capabilities of the upcoming GOES-R mission, as well as GOES-Next possiblities; and the upcoming COSMIC-2 mission for ionospheric observations. We also discuss the needs for ground-based operational networks to supply mission critical and/or backup space weather observations including the NSF GONG solar optical observing network, the USAF SEON solar radio observing network, the USGS real-time magnetometer network, the USCG CORS network of GPS receivers, and the possibility of operationalizing the world-wide network of neutron monitors for real-time alerts of ground-level radiation events.

  5. Space Weathering in the Thermal Infrared: Lessons from LRO Diviner

    NASA Astrophysics Data System (ADS)

    Greenhagen, B. T.; Lucey, P. G.; Glotch, T. D.; Arnold, J. A.; Bandfield, J. L.; Bowles, N. E.; Donaldson Hanna, K. L.; Hayne, P. O.; Lemelin, M.; Shirley, K. A.; Song, E.; Paige, D. A.

    2016-05-01

    Before LRO, it was suggested that TIR spectroscopy would be less susceptible to the effects of space weathering. Diviner has shown the TIR is affected by space weathering. We will discuss this unanticipated space weathering dependence.

  6. What Solutions Caused Noachian Weathering on Mars?

    NASA Astrophysics Data System (ADS)

    Zolotov, M. Y.

    2015-12-01

    The stratified sequence of Al-rich and Fe/Mg phyllosilicates in Noachian formations indicates widespread chemical weathering of mafic materials [1]. The composition of alteration solutions could be inferred from the mineralogy of weathering profiles and models for water-rock interaction. We have developed numerical models for basalt weathering by acidic solutions with different concentrations of weak (H2CO3) and strong (H2SO4, HCl) acids equilibrated with low- and high-pressure CO2 atmospheres. The results show that the observed clay stratigraphies could be produced by neutral to strongly acidic solutions. Weathering by solutions equilibrated with dense CO2 atmospheres produces abundant carbonates at depth, which are not observed in clay stratigraphies. The development of weathering profiles by S-, Cl-free solutions equilibrated with 6 mbar CO2 requires large volumes of water. These volumes are inconsistent with density and orientation of Noachian valley networks and climate models [3-5]. Weathering by sulfate-free fluids does not produce abundant Ca sulfates reported in the Mawrth Valley region [2]. Weathering by low-pH H2SO4-bearing solutions does not require elevated water/rock ratios, a warm climate, or a dense CO2 atmosphere. It leads to formation of Ca sulfates in middle parts of weathering profiles together with neutralized Mg-rich sulfate solutions at depth. The weathering could have occurred through transient volcanism- and impact-generated supply of strong acids, and volcanism-, impact-, obliquity-related warming and partial ice melting, consistent with climate models [3-5]. Refs: [1] Carter, J. et al. (2015), Icarus 248, 373-382. [2] Wray, J. J. et al. (2010), Icarus 209, 416-421. [3] Wordsworth, R. et al. (2013), Icarus 222, 1-19. [4] Mischna, M. A. et al. (2013), J. Geophys. Res. Planets 118, 518-576. [5] Halevy, I., Head, J.W. (2014), Nature Geosci. 7, 865-868.

  7. Rock strength reductions during incipient weathering

    NASA Astrophysics Data System (ADS)

    Kelly, P. J.; Anderson, S. P.; Blum, A.

    2012-12-01

    Patrick Kelly, Suzanne Anderson, Alex Blum In rock below the surface, temperature swings are damped, water flow is limited, and biota are few. Yet rock weathers, presumably driven by these environmental parameters. We use rock strength as an indicator of rock weathering in Gordon Gulch in the Boulder Creek Critical Zone Observatory, a watershed at 2500 m underlain by Proterozoic gneiss intruded by the Boulder Creek granodiorite. Fresh rock is found at depths of 8-30 m in this area, and the thickness of the weathered rock zone imaged with shallow seismic refraction is greater on N-facing slopes than S-facing slopes (Befus et al., 2011, Vadose Zone J.). We use the Brazilian splitting test to determine tensile strength of cores collected with a portable drilling rig. Spatial variations in rock strength that we measure in the top 2 m of the weathered rock mantle can be connected to two specific environmental variables: slope aspect and the presence of a soil mantle. We find weaker rock on N-facing slopes and under soil. There is no clear correlation between rock strength and the degree of chemical alteration in these minimally weathered rocks. Denudation rates of 20-30 microns/yr imply residence times of 105-106 years within the weathered rock layers of the critical zone. Given these timescales, rock weathering is more likely to have occurred under glacial climate conditions, when periglacial processes prevailed in this non-glaciated watershed. Incipient weathering of rock appears to be controlled by water and frost cracking in Gordon Gulch. Water is more effectively delivered to the subsurface on N-facing slopes, and is more likely held against rock surfaces under soil than on outcrops. These moisture conditions, and the lower surface temperatures that prevail on N-facing slopes also favor frost cracking as an important weathering process.

  8. The Integrated Space Weather Analysis System

    NASA Astrophysics Data System (ADS)

    Maddox, M. M.; Hesse, M.; Kuznetsova, M.; Rastaetter, L.; MacNeice, P. J.; Jain, P.; Garneau, J. W.; Berrios, D. H.; Pulkinnen, A.; Rowland, D.

    2008-12-01

    Space weather affects virtually all of NASA's endeavors, from robotic missions to human exploration. Knowledge and prediction of space weather conditions is therefore essential to NASA operations. The diverse nature of currently available space environment measurements and modeling products, along with the lack of single-portal access, renders its practical use for space weather analysis and forecasting unfeasible. There exists a compelling need for accurate real-time forecasting of both large-scale and local space environments - and their probable impacts for missions. A vital design driver for any system that is created to solve this problem lies in the fact that information needs to be presented in a form that is useful and as such, must be both easily accessible and understandable. The Integrated Space Weather Analysis System is a joint development project at NASA GSFC between the Space Weather Laboratory, Community Coordinated Modeling Center, Applied Engineering & Technology Directorate, and NASA HQ Office Of Chief Engineer. The iSWA system will be a turnkey, web-based dissemination system for NASA-relevant space weather information that combines forecasts based on the most advanced space weather models with concurrent space environment information. It will be customer configurable and adaptable for use as a powerful decision making tool offering an unprecedented ability to analyze the present and expected future space weather impacts on virtually all NASA human and robotic missions. We will discuss some of the key design considerations for the system and present some of the initial space weather analysis products that have been created to date.

  9. Commercial Space Tourism and Space Weather

    NASA Astrophysics Data System (ADS)

    Turner, Ronald

    2007-08-01

    Space tourism, a concept which even a few years ago was perveived as science fantasy, is now a credible industry. Five individuals have paid up to $25 M to spend more than a week on the International Space Station. Several enterprises are working toward viable suborbital and orbital private space operations. while operational space weather support to human space flight has been the domain of government entities the emergence of space tourism now presents a new opportunity for the commercial space weather community. This article examines the space weather impact on crews and passengers of the future space tourism industry.

  10. Weather adjustment using seemingly unrelated regression

    SciTech Connect

    Noll, T.A.

    1995-05-01

    Seemingly unrelated regression (SUR) is a system estimation technique that accounts for time-contemporaneous correlation between individual equations within a system of equations. SUR is suited to weather adjustment estimations when the estimation is: (1) composed of a system of equations and (2) the system of equations represents either different weather stations, different sales sectors or a combination of different weather stations and different sales sectors. SUR utilizes the cross-equation error values to develop more accurate estimates of the system coefficients than are obtained using ordinary least-squares (OLS) estimation. SUR estimates can be generated using a variety of statistical software packages including MicroTSP and SAS.

  11. Prediction of Weather Related Center Delays

    NASA Technical Reports Server (NTRS)

    Deepak, Kulkarni; Banavar, Sridhar

    2008-01-01

    This paper presents results of an initial study of relations between national delay, center level delays and weather. The results presented in the paper indicate: (a) the methodology used for estimating the delay at the national level can be extended to estimate delays caused by a center and delays experienced by a center, (b)delays caused by a center can be predicted using that center's Weather Impacted Traffic Index (WITI) whereas delays experienced by a center are best predicted using WITI of that center and that of a few prominent centers (c) there is differential impact of weather of different centers on center delays.

  12. The quiet revolution of numerical weather prediction

    NASA Astrophysics Data System (ADS)

    Bauer, Peter; Thorpe, Alan; Brunet, Gilbert

    2015-09-01

    Advances in numerical weather prediction represent a quiet revolution because they have resulted from a steady accumulation of scientific knowledge and technological advances over many years that, with only a few exceptions, have not been associated with the aura of fundamental physics breakthroughs. Nonetheless, the impact of numerical weather prediction is among the greatest of any area of physical science. As a computational problem, global weather prediction is comparable to the simulation of the human brain and of the evolution of the early Universe, and it is performed every day at major operational centres across the world.

  13. NASA GSFC Space Weather Center - Innovative Space Weather Dissemination: Web-Interfaces, Mobile Applications, and More

    NASA Technical Reports Server (NTRS)

    Maddox, Marlo; Zheng, Yihua; Rastaetter, Lutz; Taktakishvili, A.; Mays, M. L.; Kuznetsova, M.; Lee, Hyesook; Chulaki, Anna; Hesse, Michael; Mullinix, Richard; Berrios, David

    2012-01-01

    The NASA GSFC Space Weather Center (http://swc.gsfc.nasa.gov) is committed to providing forecasts, alerts, research, and educational support to address NASA's space weather needs - in addition to the needs of the general space weather community. We provide a host of services including spacecraft anomaly resolution, historical impact analysis, real-time monitoring and forecasting, custom space weather alerts and products, weekly summaries and reports, and most recently - video casts. There are many challenges in providing accurate descriptions of past, present, and expected space weather events - and the Space Weather Center at NASA GSFC employs several innovative solutions to provide access to a comprehensive collection of both observational data, as well as space weather model/simulation data. We'll describe the challenges we've faced with managing hundreds of data streams, running models in real-time, data storage, and data dissemination. We'll also highlight several systems and tools that are utilized by the Space Weather Center in our daily operations, all of which are available to the general community as well. These systems and services include a web-based application called the Integrated Space Weather Analysis System (iSWA http://iswa.gsfc.nasa.gov), two mobile space weather applications for both IOS and Android devices, an external API for web-service style access to data, google earth compatible data products, and a downloadable client-based visualization tool.

  14. Landslides as weathering reactors; links between physical erosion and weathering in rapidly eroding mountain belts

    NASA Astrophysics Data System (ADS)

    Emberson, R.; Hovius, N.; Galy, A.

    2014-12-01

    The link between physical erosion and chemical weathering is generally modelled with a surface-blanketing weathering zone, where the supply of fresh minerals is tied to the average rate of denudation. In very fast eroding environments, however, sediment production is dominated by landsliding, which acts in a stochastic fashion across the landscape, contrasting strongly with more uniform denudation models. If physical erosion is a driver of weathering at the highest erosion rates, then an alternative weathering model is required. Here we show that landslides can be effective 'weathering reactors'. Previous work modelling the effect of landslides on chemical weathering (Gabet 2007) considered the fresh bedrock surfaces exposed in landslide scars. However, fracturing during the landslide motion generates fresh surfaces, the total surface area of which exceeds that of the exposed scar by many orders of magnitude. Moreover, landslides introduce concavity into hillslopes, which acts to catch precipitation. This is funnelled into a deposit of highly fragmented rock mass with large reactive surface area and limited hydraulic conductivity (Lo et al. 2007). This allows percolating water reaction time for chemical weathering; any admixture of macerated organic debris could yield organic acid to further accelerate weathering. In the South island of New Zealand, seepage from recent landslide deposits has systematically high solute concentrations, far outstripping concentration in runoff from locations where soils are present. River total dissolved load in the western Southern Alps is highly correlated with the rate of recent (<35yrs) landsliding, suggesting that landslides are the dominant locus of weathering in this rapidly eroding landscape. A tight link between landsliding and weathering implies that localized weathering migrates through the landscape with physical erosion; this contrasts with persistent and ubiquitous weathering associated with soil production. Solute

  15. A Change in the Weather

    NASA Technical Reports Server (NTRS)

    2007-01-01

    These two Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) images were acquired over the northern plains of Mars near one of the possible landing sites for NASA's Phoenix mission, set to launch in August 2007. The lower right image was acquired first, on Nov. 29, 2006, at 0720 UTC (2:20 a.m. EST), while the upper left image was acquired about one month later on Dec. 26, 2006, at 0030 UTC (or Dec. 25, 2006, at 7:30 p.m. EST). The CRISM data were taken in 544 colors covering the wavelength range from 0.36-3.92 micrometers, and show features as small as about 20 meters (66 feet) across. The images shown above are red-green-blue color composites using wavelengths 0.71, 0.6, and 0.53 micrometers, respectively (or infrared, red, and green light), and are overlain on a mosaic of Mars Odyssey Thermal Emission Imaging System (THEMIS) visible data. Each image covers a region about 11 kilometers (6.6 miles) wide at its narrowest, and they overlap near 71.0 degrees north latitude, 252.8 degrees east longitude

    The Earth equivalent to the season and latitude of this site is late summer in northern Canada, above the Arctic Circle. At that season and latitude, Martian weather conditions are transitioning from summer with generally clear skies, occasional weather fronts, and infrequent dust storms, to an autumn with pervasive, thick water-ice clouds.

    The striking difference in the appearance of the images is caused by the seasonal development of water-ice clouds. The earlier (lower right) image is cloud-free, and surface features can clearly be seen - like the small crater in the upper left. However, the clouds and haze in the later (upper left) image make it hard to see the surface. There are variations in the thickness and spacing of the clouds, just like clouds on Earth. On other days when nearby sites were imaged, the cloud cover varied day-to-day, but as the seasons change the trend is more and thicker clouds.

    With the onset of autumn the clouds

  16. Space Weather and GOCE Measurements

    NASA Astrophysics Data System (ADS)

    Ince, E. S.; Pagiatakis, S. D.

    2015-12-01

    The latest gravity field mission GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) has mapped the Earth's static gravity field with an unrivalled precision. The satellite completed its mission in November 2013 and the most recent gravity field models (e.g., GOCE 5th generation gravity field models) have already been released. However, there are still unanswered questions in the data processing which leak into GOCE Level 1b and 2 products. It is found that there are signals of non-gravitational origin present in the cross-track gravity gradients that are about three to five times larger than the expected noise level of the gravity field components derived from GOCE gradiometer. These disturbances are observed around the magnetic poles during particular time periods that correspond to geomagnetically active days. In this study, we investigate the unexpected disturbances present in GOCE gradiometer gravity tensor's diagonal components along the satellite track and analyze possible causes. External datasets, interplanetary magnetic, and electric field observations from the solar wind monitoring spacecraft ACE- (Advanced Composition Explorer) and WIND, geomagnetic activity observed at CARISMA (Canadian Array for Real-time Investigations of Magnetic Activity) stations and Ionospheric Equivalent Currents (EICS) and Elementary Current Amplitudes (SECS) derived from terrestrial geomagnetic field disturbances observed over North America and Greenland are used to understand the effect of the space weather variations and ionospheric dynamics on the GOCE Gradiometer measurements. We have shown that the variation in the amplitude of the equivalent currents and changes in the current directions show high correlation with the disturbances observed in GOCE measurements along the satellite track which hints the interaction between the two.

  17. Impact of Tactical and Strategic Weather Avoidance on Separation Assurance

    NASA Technical Reports Server (NTRS)

    Refai, Mohamad S.; Windhorst, Robert

    2011-01-01

    The ability to keep flights away from weather hazards while maintaining aircraft-to-aircraft separation is critically important. The Advanced Airspace Concept is an automation concept that implements a ground-based strategic conflict resolution algorithm for management of aircraft separation. The impact of dynamic and uncertain weather avoidance on this concept is investigated. A strategic weather rerouting system is integrated with the Advanced Airspace Concept, which also provides a tactical weather avoidance algorithm, in a fast time simulation of the Air Transportation System. Strategic weather rerouting is used to plan routes around weather in the 20 minute to two-hour time horizon. To address forecast uncertainty, flight routes are revised at 15 minute intervals. Tactical weather avoidance is used for short term trajectory adjustments (30 minute planning horizon) that are updated every minute to address any weather conflicts (instances where aircraft are predicted to pass through weather cells) that are left unresolved by strategic weather rerouting. The fast time simulation is used to assess the impact of tactical weather avoidance on the performance of automated conflict resolution as well as the impact of strategic weather rerouting on both conflict resolution and tactical weather avoidance. The results demonstrate that both tactical weather avoidance and strategic weather rerouting increase the algorithm complexity required to find aircraft conflict resolutions. Results also demonstrate that tactical weather avoidance is prone to higher airborne delay than strategic weather rerouting. Adding strategic weather rerouting to tactical weather avoidance reduces total airborne delays for the reported scenario by 18% and reduces the number of remaining weather violations by 13%. Finally, two features are identified that have proven important for strategic weather rerouting to realize these benefits; namely, the ability to revise reroutes and the use of maneuvers

  18. National Ignition Facility wet weather construction plan

    SciTech Connect

    Kugler, A N

    1998-01-01

    This report presents a wet weather construction plan for the National Ignition Facility (NIF) construction project. Construction of the NIF commenced in mid- 1997, and excavation of the site was completed in the fall. Preparations for placing concrete foundations began in the fall, and above normal rainfall is expected over the tinter. Heavy rainfall in late November impacted foundation construction, and a wet weather construction plan was determined to be needed. This wet weather constiction plan recommends a strategy, techniques and management practices to prepare and protect the site corn wet weather effects and allow construction work to proceed. It is intended that information in this plan be incorporated in the Stormwater Pollution Prevention Plan (SWPPP) as warranted.

  19. Sentinels of the Sun: Forecasting Space Weather

    NASA Astrophysics Data System (ADS)

    Poland, Arthur I.

    2006-08-01

    The story of humanity's interest in space weather may go back to prehistoric times when people at high latitudes noticed the northern lights. Interest became more acute after the development of electrical technologies such as the telegraph, and certainly during World War II when shortwave radio communication came into practical use. Solar observing actually began to be supported by the military, with the observatory at Climax, Colorado being established to monitor the Sun during the war. With the advent of satellites and manned space travel to the Moon, space weather became a seriously funded endeavor both for basic research and forecasting. In the book, Sentinels of the Sun: Forecasting Space Weather, Barbara Poppe does an excellent job of telling this story for the nonprofessional. Moreover, as a professional who has studied space weather since before humans landed on the Moon, I found the book to be a very enjoyable read.

  20. ESTIMATING URBAN WET-WEATHER POLLUTANT LOADING

    EPA Science Inventory

    This paper presents procedures for estimating pollutant loads in urban watersheds emanating from wet-weather flow discharge. Equations for pollutant loading estimates will focus on the effects of wastewater characteristics, sewer flow carrying velocity, and sewer-solids depositi...

  1. NOAA's Space Weather Prediction Center, Forecast Office

    NASA Video Gallery

    The Forecast Office of NOAA's Space Weather Prediction Center is the nation's official source of alerts, warnings, and watches. The office, staffed 24/7, is always vigilant for solar activity that ...

  2. Space Weathering in the Mercurian Environment

    NASA Technical Reports Server (NTRS)

    Noble, S. K.; Pieters, C. M.

    2001-01-01

    Space weathering processes are known to be important on the Moon. These processes both create the lunar regolith and alter its optical properties. Like the Moon, Mercury has no atmosphere to protect it from the harsh space environment and therefore it is expected that it will also incur the effects of space weathering. However, there are many important differences between the environments of Mercury and the Moon. These environmental differences will almost certainly affect the weathering processes and the products of those processes. It should be possible to observe the effects of these differences in Vis (visible)/NIR (near infrared) spectra of the type expected to be returned by MESSENGER. More importantly, understanding these weathering processes and their consequences is essential for evaluating the spectral data returned from MESSENGER and other missions in order to determine the mineralogy and the Fe content of the Mercurian surface. Additional information is contained in the original extended abstract.

  3. Lesson 1: Wind, waves, and weather, 1985

    SciTech Connect

    Not Available

    1985-01-01

    This book acquaints rig crews with the environment they will encounter offshore; covers basic meteorology and oceanography, effects of the environment on offshore operations, and safety procedures to be followed in severe weather and sea conditions.

  4. The Weatherization Training program at Pennsylvania College

    SciTech Connect

    Meville, Jeff; Wilson, Jack; Manz, John; Gannett, Kirk; Smith, Franzennia

    2010-01-01

    A look into some of the remarkable work being done in the Weatherization Training program at Pennsylvania College. Penn College's program has served as the model for six other training centers in Pennsylvania alone.

  5. Chlorine Disinfection of Wet Weather Managed Flows

    EPA Science Inventory

    Blending is a practice used in the wastewater industry to deal with wet weather events when the hydraulic capacity of the treatment facility could be compromised. Blending consists of primary wastewater treatment plant effluent, partially bypassing secondary treatment, and then ...

  6. Operational Space Weather Entering a New Era

    NASA Astrophysics Data System (ADS)

    Tobiska, W. Kent

    2009-10-01

    U.S. operational space weather is caught between two competing factors. On one hand, directed agency funding at about $1 billion for model development over the past decade has brought modeling maturity to five broad Sun-to-Earth domains, i.e., the Sun, heliosphere, magnetosphere, ionosphere, and thermosphere. On the other hand, agency funding for transitioning these models into operations has been a small fraction of the level provided for model development. This situation has left implementation of operational space weather largely unfunded and woefully undirected, with the exception of a few U.S. Air Force Weather Agency projects. A new vision is needed so that operational space weather can help solve 21st-century challenges.

  7. Serpentinite Weathering and Implications for Mars

    NASA Astrophysics Data System (ADS)

    Tu, V.; Baumeister, J.; Metcalf, R.; Olsen, A.; Hausrath, E.

    2011-03-01

    Near-surface soil environments may be important habitats for life on Mars accessible to future missions. Weathered serpentinites indicate the formation of Al-rich surfaces and smectites, and the presence of Fe-oxidizing bacteria.

  8. Data Network Weather Service Reporting - Final Report

    SciTech Connect

    Michael Frey

    2012-08-30

    A final report is made of a three-year effort to develop a new forecasting paradigm for computer network performance. This effort was made in co-ordination with Fermi Lab's construction of e-Weather Center.

  9. The Weatherization Training program at Pennsylvania College

    ScienceCinema

    Meville, Jeff; Wilson, Jack; Manz, John; Gannett, Kirk; Smith, Franzennia;

    2013-05-29

    A look into some of the remarkable work being done in the Weatherization Training program at Pennsylvania College. Penn College's program has served as the model for six other training centers in Pennsylvania alone.

  10. Sources, Propagators, and Sinks of Space Weather

    NASA Technical Reports Server (NTRS)

    Pesnell, William D.

    2006-01-01

    Space Weather is a complex web of sources, propagators, and sinks of energy, mass, and momentum. A complete understanding of Space Weather requires specifying, and an ability to predict, each link in this web. One important problem in Space Weather is ranking the importance of a particular measurement or model in a research program. One way to do this ranking is to examine the simplest linked diagram of the sources, propagators, and sinks and produce. By analyzing only those components that contribute to a particular area the individual contributions can be better appreciated. Several such diagrams will be shown and used to discuss how long-term effects of Space Weather can be separated from the impulsive effects.

  11. Sources, Propagators, and Sinks of Space Weather

    NASA Astrophysics Data System (ADS)

    Pesnell, W. D.

    2006-12-01

    Space Weather is a complex web of sources, propagators, and sinks of energy, mass, and momentum. A complete understanding of Space Weather requires specifying, and an ability to predict, each link in this web. One important problem in Space Weather is ranking the importance of a particular measurement or model in a research program. One way to do this ranking is to examine the simplest linked diagram of the sources, propagators, and sinks and produce. By analyzing only those components that contribute to a particular area the individual contributions can be better appreciated. Several such diagrams will be shown and used to discuss how long-term effects of Space Weather can be separated from the impulsive effects.

  12. Satellite observations of weather and climate

    NASA Technical Reports Server (NTRS)

    Kellogg, W. W.

    1974-01-01

    The SEASAT-A program is viewed as a new way to obtain atmospheric observations for weather and climatic studies in the framework of the Global Atmospheric Research Program (GARP). Total information derived from SEASAT-A sensor package provides a synoptic picture of the upper parts of the world's oceans as a prerequisite to the development of dynamic ocean models and combined ocean/atmospheric models for weather forecasting requirements.

  13. Space Weather Gets Real—on Smartphones

    NASA Astrophysics Data System (ADS)

    Tobiska, W. Kent; Crowley, Geoff; Oh, Seung Jun; Guhathakurta, Madhulika

    2010-10-01

    True to the saying that "a picture is worth a thousand words," society's affinity for visual images has driven innovative efforts to see space weather as it happens. The newest frontiers of these efforts involve applications, or apps, on cellular phones, allowing space weather researchers, operators, and teachers, as well as other interested parties, to have the ability to monitor conditions in real time with just the touch of a button.

  14. Key findings of the national weatherization evaluation

    SciTech Connect

    Brown, M.A.; Berry, L.G.

    1994-10-01

    In 1990, the U.S. Department of Energy sponsored a comprehensive evaluation of its Weatherization Assistance Program, the nation`s largest residential energy conservation program. The primary goal of the evaluation was to establish whether the Program meets the objectives of its enabling legislation and fulfills its mission statement, to reduce the heating and cooling costs for low-income families-particularly the elderly, persons with disabilities, and children by improving the energy-efficiency of their homes and ensuring their health and safety. Oak Ridge National Laboratory managed a five-part study which produced a series of documents evaluating the Program. The objective of this document is to summarize the findings of the five-part National Weatherization Evaluation. The five studies were as follows: (1) Network Study-this study characterized the weatherization network`s leveraging, capabilities, procedures, staff, technologies, and innovations; (2) Resources and Population Study-this study profiled low-income weatherization resources, the weatherized population, and the population remaining to be served; (3) Multifamily Study-this study described the nature and extent of weatherization activities in larger multifamily buildings; (4) Single-family Study-this study estimated the national savings and cost- effectiveness of weatherizing single-family and small multifamily dwellings that use natural gas or electricity for space heating; (5) Fuel-Oil Study-this study estimated the savings and cost-effectiveness of weatherizing single-family homes, located in nine northeastern states, that use fuel oil for space heating. This paper provides a brief overview of each study`s purposes, research methods and most important findings.

  15. Seafloor weathering buffering climate: numerical experiments

    NASA Astrophysics Data System (ADS)

    Farahat, N. X.; Archer, D. E.; Abbot, D. S.

    2013-12-01

    Continental silicate weathering is widely held to consume atmospheric CO2 at a rate controlled in part by temperature, resulting in a climate-weathering feedback [Walker et al., 1981]. It has been suggested that weathering of oceanic crust of warm mid-ocean ridge flanks also has a CO2 uptake rate that is controlled by climate [Sleep and Zahnle, 2001; Brady and Gislason, 1997]. Although this effect might not be significant on present-day Earth [Caldeira, 1995], seafloor weathering may be more pronounced during snowball states [Le Hir et al., 2008], during the Archean when seafloor spreading rates were faster [Sleep and Zahnle, 2001], and on waterworld planets [Abbot et al., 2012]. Previous studies of seafloor weathering have made significant contributions using qualitative, generally one-box, models, and the logical next step is to extend this work using a spatially resolved model. For example, experiments demonstrate that seafloor weathering reactions are temperature dependent, but it is not clear whether the deep ocean temperature affects the temperature at which the reactions occur, or if instead this temperature is set only by geothermal processes. Our goal is to develop a 2-D numerical model that can simulate hydrothermal circulation and resulting alteration of oceanic basalts, and can therefore address such questions. A model of diffusive and convective heat transfer in fluid-saturated porous media simulates hydrothermal circulation through porous oceanic basalt. Unsteady natural convection is solved for using a Darcy model of porous media flow that has been extensively benchmarked. Background hydrothermal circulation is coupled to mineral reaction kinetics of basaltic alteration and hydrothermal mineral precipitation. In order to quantify seafloor weathering as a climate-weathering feedback process, this model focuses on hydrothermal reactions that influence carbon uptake as well as ocean alkalinity: silicate rock dissolution, calcium and magnesium leaching

  16. Resource Letter SW1: Space Weather

    NASA Astrophysics Data System (ADS)

    Baker, Daniel N.; Lanzerotti, Louis J.

    2016-03-01

    This Resource Letter describes the phenomena and effects on technological systems that are known collectively as space weather. A brief history of the topic is provided, and the scientific understandings of drivers for such phenomena are discussed. The impacts of space disturbances are summarized, and the strategies for dealing with space weather threats are examined. The Resource Letter concludes with description of approaches that have been proposed to deal with threats to our increasingly technological society.

  17. Investigation and Modeling of Cranberry Weather Stress.

    NASA Astrophysics Data System (ADS)

    Croft, Paul Joseph

    Cranberry bog weather conditions and weather-related stress were investigated for development of crop yield prediction models and models to predict daily weather conditions in the bog. Field investigations and data gathering were completed at the Rutgers University Blueberry/Cranberry Research Center experimental bogs in Chatsworth, New Jersey. Study indicated that although cranberries generally exhibit little or no stomatal response to changing atmospheric conditions, the evaluation of weather-related stress could be accomplished via use of micrometeorological data. Definition of weather -related stress was made by establishing critical thresholds of the frequencies of occurrence, and magnitudes of, temperature and precipitation in the bog based on values determined by a review of the literature and a grower questionnaire. Stress frequencies were correlated with cranberry yield to develop predictive models based on the previous season's yield, prior season data, prior and current season data, current season data; and prior and current season data through July 31 of the current season. The predictive ability of the prior season models was best and could be used in crop planning and production. Further examination of bog micrometeorological data permitted the isolation of those weather conditions conducive to cranberry scald and allowed for the institution of a pilot scald advisory program during the 1991 season. The micrometeorological data from the bog was also used to develop models to predict daily canopy temperature and precipitation, based on upper air data, for grower use. Models were developed for each month for maximum and minimum temperatures and for precipitation and generally performed well. The modeling of bog weather conditions is an important first step toward daily prediction of cranberry weather-related stress.

  18. Super high-resolution mesoscale weather prediction

    NASA Astrophysics Data System (ADS)

    Saito, K.; Tsuyuki, T.; Seko, H.; Kimura, F.; Tokioka, T.; Kuroda, T.; Duc, L.; Ito, K.; Oizumi, T.; Chen, G.; Ito, J.; the Spire Field 3 Mesoscale Nwp Group

    2013-08-01

    A five-year research project of high performance regional numerical weather prediction is underway as one of the five research fields of the Strategic Programs for Innovative Research (SPIRE). The ultimate goal of the project is to demonstrate feasibility of precise prediction of severe weather phenomena using the K-computer. Three sub-themes of the project are shown with achievements at the present and developments in the near future.

  19. Weathering of copper-amine treated wood

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Kamdem, D. Pascal; Temiz, Ali

    2009-11-01

    In this study, the effect of ultraviolet light (UV) irradiation and water spray on color, contact angle and surface chemistry of treated wood was studied. Southern pine sapwood ( Pinus Elliottii.Engelm.) treated with copper ethanolamine (Cu-MEA) was subjected to artificially accelerated weathering with a QUV Weathering Tester. The compositional changes and the surface properties of the weathered samples were characterized by Fourier transform infrared (FTIR) spectroscopy, color and contact angle measurements. FTIR indicated that MEA treatment was not found to slow down wood weathering. FTIR spectrum of MEA-treated sample was similar to that of the untreated SP. However, the Cu-MEA treatment retarded the surface lignin degradation during weathering. The main changes in FTIR spectrum of Cu-MEA treatment took place at 915, 1510, and 1595 cm -1. The intensity of the bands at 1510 and 1595 cm -1 increased with the Cu-MEA treatment. Both untreated and MEA-treated exhibited higher Δ E than the Cu-MEA treated samples, indicating that MEA treatment did not retard color changes. However, Δ E decreased with increasing copper concentration, suggesting a positive contribution of Cu-EA to wood color stability. The contact angle of untreated and MEA-treated samples changed rapidly, and dropped from 75 ± 5° to 0° after artificial weathering up to 600 h. Treatment with Cu-MEA slowed down the decreasing in contact angle. As the copper concentration increases, the rate of change in contact angle decreases.

  20. Space Weathering in the Inner Solar System

    NASA Technical Reports Server (NTRS)

    Noble, Sarah K.

    2010-01-01

    "Space weathering" is the term given to the cumulative effects incurred by surfaces which are exposed to the harsh environment of space. Lunar sample studies over the last decade or so have produced a clear picture of space weathering processes in the lunar environment. By combining laboratory and remote spectra with microanalytical methods (scanning and transmission electron microscopy), we have begun to unravel the various processes (irradiation, micrometeorite bombardment, etc) that contribute to space weathering and the physical and optical consequences of those processes on the Moon. Using the understanding gleaned from lunar samples, it is possible to extrapolate weathering processes to other airless bodies from which we have not yet returned samples (i.e. Mercury, asteroids). Through experiments which simulate various components of weathering, the expected differences in environment (impact rate, distance from Sun, presence of a magnetic field, reduced or enhanced gravity, etc) and composition (particularly iron content) can be explored to understand how space weathering will manifest on a given body.

  1. Introducing GFWED: The Global Fire Weather Database

    NASA Technical Reports Server (NTRS)

    Field, R. D.; Spessa, A. C.; Aziz, N. A.; Camia, A.; Cantin, A.; Carr, R.; de Groot, W. J.; Dowdy, A. J.; Flannigan, M. D.; Manomaiphiboon, K.; Pappenberger, F.; Tanpipat, V.; Wang, X.

    2015-01-01

    The Canadian Forest Fire Weather Index (FWI) System is the mostly widely used fire danger rating system in the world. We have developed a global database of daily FWI System calculations, beginning in 1980, called the Global Fire WEather Database (GFWED) gridded to a spatial resolution of 0.5 latitude by 2-3 longitude. Input weather data were obtained from the NASA Modern Era Retrospective-Analysis for Research and Applications (MERRA), and two different estimates of daily precipitation from rain gauges over land. FWI System Drought Code calculations from the gridded data sets were compared to calculations from individual weather station data for a representative set of 48 stations in North, Central and South America, Europe, Russia,Southeast Asia and Australia. Agreement between gridded calculations and the station-based calculations tended to be most different at low latitudes for strictly MERRA based calculations. Strong biases could be seen in either direction: MERRA DC over the Mato Grosso in Brazil reached unrealistically high values exceeding DCD1500 during the dry season but was too low over Southeast Asia during the dry season. These biases are consistent with those previously identified in MERRAs precipitation, and they reinforce the need to consider alternative sources of precipitation data. GFWED can be used for analyzing historical relationships between fire weather and fire activity at continental and global scales, in identifying large-scale atmosphereocean controls on fire weather, and calibration of FWI-based fire prediction models.

  2. Development of a Global Fire Weather Database

    NASA Astrophysics Data System (ADS)

    Field, R. D.; Spessa, A. C.; Aziz, N. A.; Camia, A.; Cantin, A.; Carr, R.; de Groot, W. J.; Dowdy, A. J.; Flannigan, M. D.; Manomaiphiboon, K.; Pappenberger, F.; Tanpipat, V.; Wang, X.

    2015-06-01

    The Canadian Forest Fire Weather Index (FWI) System is the mostly widely used fire danger rating system in the world. We have developed a global database of daily FWI System calculations, beginning in 1980, called the Global Fire WEather Database (GFWED) gridded to a spatial resolution of 0.5° latitude by 2/3° longitude. Input weather data were obtained from the NASA Modern Era Retrospective-Analysis for Research and Applications (MERRA), and two different estimates of daily precipitation from rain gauges over land. FWI System Drought Code calculations from the gridded data sets were compared to calculations from individual weather station data for a representative set of 48 stations in North, Central and South America, Europe, Russia, Southeast Asia and Australia. Agreement between gridded calculations and the station-based calculations tended to be most different at low latitudes for strictly MERRA-based calculations. Strong biases could be seen in either direction: MERRA DC over the Mato Grosso in Brazil reached unrealistically high values exceeding DC = 1500 during the dry season but was too low over Southeast Asia during the dry season. These biases are consistent with those previously identified in MERRA's precipitation, and they reinforce the need to consider alternative sources of precipitation data. GFWED can be used for analyzing historical relationships between fire weather and fire activity at continental and global scales, in identifying large-scale atmosphere-ocean controls on fire weather, and calibration of FWI-based fire prediction models.

  3. Satellite Delivery of Aviation Weather Data

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Haendel, Richard

    2001-01-01

    With aviation traffic continuing to increase worldwide, reducing the aviation accident rate and aviation schedule delays is of critical importance. In the United States, the National Aeronautics and Space Administration (NASA) has established the Aviation Safety Program and the Aviation System Capacity Program to develop and test new technologies to increase aviation safety and system capacity. Weather is a significant contributor to aviation accidents and schedule delays. The timely dissemination of weather information to decision makers in the aviation system, particularly to pilots, is essential in reducing system delays and weather related aviation accidents. The NASA Glenn Research Center is investigating improved methods of weather information dissemination through satellite broadcasting directly to aircraft. This paper describes an on-going cooperative research program with NASA, Rockwell Collins, WorldSpace, Jeppesen and American Airlines to evaluate the use of satellite digital audio radio service (SDARS) for low cost broadcast of aviation weather information, called Satellite Weather Information Service (SWIS). The description and results of the completed SWIS Phase 1 are presented, and the description of the on-going SWIS Phase 2 is given.

  4. Operational Space Weather in USAF Education

    NASA Astrophysics Data System (ADS)

    Smithtro, C.; Quigley, S.

    2006-12-01

    Most education programs offering space weather courses are understandably and traditionally heavily weighted with theoretical space physics that is the basis for most of what is researched and modeled. While understanding the theory is a good and necessary grounding for anyone working the field of space weather, few military or commercial jobs employ such theory in real-time operations. The operations sites/centers are much more geared toward use of applied theory-resultant models, tools and products. To ensure its operations centers personnel, commanders, real-time system operators and other customers affected by the space environment are educated on available and soon-to-be operational space weather models and products, the USAF has developed applicable course/lecture material taught at various institutions to include the Air Force Institute of Technology (AFIT) and the Joint Weather Training Complex (335th/TRS/OUA). Less frequent training of operational space weather is available via other venues that will be discussed, and associated course material is also being developed for potential use at the National Security Space Institute (NSSI). This presentation provides an overview of the programs, locations, courses and material developed and/or taught by or for USAF personnel dealing with operational space weather. It also provides general information on student research project results that may be used in operational support, along with observations regarding logistical and professional benefits of teaching such non-theoretical/non-traditional material.

  5. The scope of the Weatherization Assistance Program: The weatherized population and the resource base

    SciTech Connect

    Power, M.; Eisenberg, J.F.; Michels, E. ); Witherspoon, M.J. ); Brown, M.A. )

    1992-05-01

    This study is one of five parts of the US Department of Energy's national evaluation of its Weatherization Assistance Program (WAP). It has three major goals: (1) to enumerate the size and sources of investment in low-income weatherization; (2) to provide a count of the number of low-income units weatherized by all weatherization programs and characterized the type and tenure of those homes; and (3) to document the extent to which the DOE/WAP funding has been expanded though use of external resources.

  6. The scope of the Weatherization Assistance Program: The weatherized population and the resource base

    SciTech Connect

    Power, M.; Eisenberg, J.F.; Michels, E.; Witherspoon, M.J.; Brown, M.A.

    1992-05-01

    This study is one of five parts of the US Department of Energy`s national evaluation of its Weatherization Assistance Program (WAP). It has three major goals: (1) to enumerate the size and sources of investment in low-income weatherization; (2) to provide a count of the number of low-income units weatherized by all weatherization programs and characterized the type and tenure of those homes; and (3) to document the extent to which the DOE/WAP funding has been expanded though use of external resources.

  7. CCMC: Serving research and space weather communities with unique space weather services, innovative tools and resources

    NASA Astrophysics Data System (ADS)

    Zheng, Yihua; Kuznetsova, Maria M.; Pulkkinen, Antti; Maddox, Marlo

    2015-04-01

    With the addition of Space Weather Research Center (a sub-team within CCMC) in 2010 to address NASA’s own space weather needs, CCMC has become a unique entity that not only facilitates research through providing access to the state-of-the-art space science and space weather models, but also plays a critical role in providing unique space weather services to NASA robotic missions, developing innovative tools and transitioning research to operations via user feedback. With scientists, forecasters and software developers working together within one team, through close and direct connection with space weather customers and trusted relationship with model developers, CCMC is flexible, nimble and effective to meet customer needs. In this presentation, we highlight a few unique aspects of CCMC/SWRC’s space weather services, such as addressing space weather throughout the solar system, pushing the frontier of space weather forecasting via the ensemble approach, providing direct personnel and tool support for spacecraft anomaly resolution, prompting development of multi-purpose tools and knowledge bases, and educating and engaging the next generation of space weather scientists.

  8. Flight Deck Weather Avoidance Decision Support: Implementation and Evaluation

    NASA Technical Reports Server (NTRS)

    Wu, Shu-Chieh; Luna, Rocio; Johnson, Walter W.

    2013-01-01

    Weather related disruptions account for seventy percent of the delays in the National Airspace System (NAS). A key component in the weather plan of the Next Generation of Air Transportation System (NextGen) is to assimilate observed weather information and probabilistic forecasts into the decision process of flight crews and air traffic controllers. In this research we explore supporting flight crew weather decision making through the development of a flight deck predicted weather display system that utilizes weather predictions generated by ground-based radar. This system integrates and presents this weather information, together with in-flight trajectory modification tools, within a cockpit display of traffic information (CDTI) prototype. that the CDTI features 2D and perspective 3D visualization models of weather. The weather forecast products that we implemented were the Corridor Integrated Weather System (CIWS) and the Convective Weather Avoidance Model (CWAM), both developed by MIT Lincoln Lab. We evaluated the use of CIWS and CWAM for flight deck weather avoidance in two part-task experiments. Experiment 1 compared pilots' en route weather avoidance performance in four weather information conditions that differed in the type and amount of predicted forecast (CIWS current weather only, CIWS current and historical weather, CIWS current and forecast weather, CIWS current and forecast weather and CWAM predictions). Experiment 2 compared the use of perspective 3D and 21/2D presentations of weather for flight deck weather avoidance. Results showed that pilots could take advantage of longer range predicted weather forecasts in performing en route weather avoidance but more research will be needed to determine what combinations of information are optimal and how best to present them.

  9. Highlights of Space Weather Services/Capabilities at NASA/GSFC Space Weather Center

    NASA Technical Reports Server (NTRS)

    Fok, Mei-Ching; Zheng, Yihua; Hesse, Michael; Kuznetsova, Maria; Pulkkinen, Antti; Taktakishvili, Aleksandre; Mays, Leila; Chulaki, Anna; Lee, Hyesook

    2012-01-01

    The importance of space weather has been recognized world-wide. Our society depends increasingly on technological infrastructure, including the power grid as well as satellites used for communication and navigation. Such technologies, however, are vulnerable to space weather effects caused by the Sun's variability. NASA GSFC's Space Weather Center (SWC) (http://science.gsfc.nasa.gov//674/swx services/swx services.html) has developed space weather products/capabilities/services that not only respond to NASA's needs but also address broader interests by leveraging the latest scientific research results and state-of-the-art models hosted at the Community Coordinated Modeling Center (CCMC: http://ccmc.gsfc.nasa.gov). By combining forefront space weather science and models, employing an innovative and configurable dissemination system (iSWA.gsfc.nasa.gov), taking advantage of scientific expertise both in-house and from the broader community as well as fostering and actively participating in multilateral collaborations both nationally and internationally, NASA/GSFC space weather Center, as a sibling organization to CCMC, is poised to address NASA's space weather needs (and needs of various partners) and to help enhancing space weather forecasting capabilities collaboratively. With a large number of state-of-the-art physics-based models running in real-time covering the whole space weather domain, it offers predictive capabilities and a comprehensive view of space weather events throughout the solar system. In this paper, we will provide some highlights of our service products/capabilities. In particular, we will take the 23 January and the 27 January space weather events as examples to illustrate how we can use the iSWA system to track them in the interplanetary space and forecast their impacts.

  10. Airborne Differential Doppler Weather Radar

    NASA Technical Reports Server (NTRS)

    Meneghini, R.; Bidwell, S.; Liao, L.; Rincon, R.; Heymsfield, G.; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    The Precipitation Radar aboard the Tropical Rain Measuring Mission (TRMM) Satellite has shown the potential for spaceborne sensing of snow and rain by means of an incoherent pulsed radar operating at 13.8 GHz. The primary advantage of radar relative to passive instruments arises from the fact that the radar can image the 3-dimensional structure of storms. As a consequence, the radar data can be used to determine the vertical rain structure, rain type (convective/stratiform) effective storm height, and location of the melting layer. The radar, moreover, can be used to detect snow and improve the estimation of rain rate over land. To move toward spaceborne weather radars that can be deployed routinely as part of an instrument set consisting of passive and active sensors will require the development of less expensive, lighter-weight radars that consume less power. At the same time, the addition of a second frequency and an upgrade to Doppler capability are features that are needed to retrieve information on the characteristics of the drop size distribution, vertical air motion and storm dynamics. One approach to the problem is to use a single broad-band transmitter-receiver and antenna where two narrow-band frequencies are spaced apart by 5% to 10% of the center frequency. Use of Ka-band frequencies (26.5 GHz - 40 GHz) affords two advantages: adequate spatial resolution can be attained with a relatively small antenna and the differential reflectivity and mean Doppler signals are directly related to the median mass diameter of the snow and raindrop size distributions. The differential mean Doppler signal has the additional property that this quantity depends only on that part of the radial speed of the hydrometeors that is drop-size dependent. In principle, the mean and differential mean Doppler from a near-nadir viewing radar can be used to retrieve vertical air motion as well as the total mean radial velocity. In the paper, we present theoretical calculations for the

  11. Aviation Weather for Pilots and Flight Operations Personnel.

    ERIC Educational Resources Information Center

    National Oceanic and Atmospheric Administration (DOC), Rockville, MD. National Weather Service.

    The revised Aviation Weather book discusses each aspect of weather as it relates to aircraft operations and flight safety. The book is not an aircraft operating manual and omits all reference to specific weather services. Much of the book has been devoted to marginal, hazardous, and violent weather. It teaches pilots to learn to appreciate good…

  12. Random, but Uniform Please: Requirements for Synthetic Weather Generation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Synthetic weather generation models often rely on standard uniform random numbers (RN) to simulate stochastic aspects of weather. However, short sequences of RNs, needed to generate certain weather variables, are not necessarily uniformly distributed, as assumed by weather generation models, and may...

  13. 14 CFR 135.213 - Weather reports and forecasts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Weather reports and forecasts. 135.213... Operating Limitations and Weather Requirements § 135.213 Weather reports and forecasts. (a) Whenever a person operating an aircraft under this part is required to use a weather report or forecast, that...

  14. 14 CFR 135.213 - Weather reports and forecasts.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Weather reports and forecasts. 135.213... Operating Limitations and Weather Requirements § 135.213 Weather reports and forecasts. (a) Whenever a person operating an aircraft under this part is required to use a weather report or forecast, that...

  15. 14 CFR 135.213 - Weather reports and forecasts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Weather reports and forecasts. 135.213... Operating Limitations and Weather Requirements § 135.213 Weather reports and forecasts. (a) Whenever a person operating an aircraft under this part is required to use a weather report or forecast, that...

  16. 44 CFR 15.3 - Access to Mt. Weather.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Access to Mt. Weather. 15.3... HOMELAND SECURITY GENERAL CONDUCT AT THE MT. WEATHER EMERGENCY ASSISTANCE CENTER AND AT THE NATIONAL EMERGENCY TRAINING CENTER § 15.3 Access to Mt. Weather. Mt. Weather contains classified material and...

  17. 14 CFR 25.961 - Fuel system hot weather operation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel system hot weather operation. 25.961... hot weather operation. (a) The fuel system must perform satisfactorily in hot weather operation. This... simulated flight conditions. If a flight test is performed in weather cold enough to interfere with...

  18. 14 CFR 25.961 - Fuel system hot weather operation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel system hot weather operation. 25.961... hot weather operation. (a) The fuel system must perform satisfactorily in hot weather operation. This... simulated flight conditions. If a flight test is performed in weather cold enough to interfere with...

  19. 14 CFR 135.221 - IFR: Alternate airport weather minimums.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false IFR: Alternate airport weather minimums... VFR/IFR Operating Limitations and Weather Requirements § 135.221 IFR: Alternate airport weather minimums. No person may designate an alternate airport unless the weather reports or forecasts, or...

  20. 14 CFR 135.221 - IFR: Alternate airport weather minimums.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false IFR: Alternate airport weather minimums... VFR/IFR Operating Limitations and Weather Requirements § 135.221 IFR: Alternate airport weather minimums. No person may designate an alternate airport unless the weather reports or forecasts, or...

  1. 44 CFR 15.3 - Access to Mt. Weather.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Access to Mt. Weather. 15.3... HOMELAND SECURITY GENERAL CONDUCT AT THE MT. WEATHER EMERGENCY ASSISTANCE CENTER AND AT THE NATIONAL EMERGENCY TRAINING CENTER § 15.3 Access to Mt. Weather. Mt. Weather contains classified material and...

  2. 14 CFR 25.961 - Fuel system hot weather operation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel system hot weather operation. 25.961... hot weather operation. (a) The fuel system must perform satisfactorily in hot weather operation. This... simulated flight conditions. If a flight test is performed in weather cold enough to interfere with...

  3. 44 CFR 15.3 - Access to Mt. Weather.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Access to Mt. Weather. 15.3... HOMELAND SECURITY GENERAL CONDUCT AT THE MT. WEATHER EMERGENCY ASSISTANCE CENTER AND AT THE NATIONAL EMERGENCY TRAINING CENTER § 15.3 Access to Mt. Weather. Mt. Weather contains classified material and...

  4. 14 CFR 135.221 - IFR: Alternate airport weather minimums.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false IFR: Alternate airport weather minimums... VFR/IFR Operating Limitations and Weather Requirements § 135.221 IFR: Alternate airport weather minimums. No person may designate an alternate airport unless the weather reports or forecasts, or...

  5. 14 CFR 135.213 - Weather reports and forecasts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Weather reports and forecasts. 135.213... Operating Limitations and Weather Requirements § 135.213 Weather reports and forecasts. (a) Whenever a person operating an aircraft under this part is required to use a weather report or forecast, that...

  6. 14 CFR 135.221 - IFR: Alternate airport weather minimums.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false IFR: Alternate airport weather minimums... VFR/IFR Operating Limitations and Weather Requirements § 135.221 IFR: Alternate airport weather minimums. No person may designate an alternate airport unless the weather reports or forecasts, or...

  7. 46 CFR 44.01-13 - Heavy weather plan.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Heavy weather plan. 44.01-13 Section 44.01-13 Shipping... VOYAGES Administration § 44.01-13 Heavy weather plan. (a) Each heavy weather plan under § 44.01-12(b) must... Inspection. Approval of a heavy weather plan is limited to the current hurricane season. (b) The...

  8. 46 CFR 44.01-13 - Heavy weather plan.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Heavy weather plan. 44.01-13 Section 44.01-13 Shipping... VOYAGES Administration § 44.01-13 Heavy weather plan. (a) Each heavy weather plan under § 44.01-12(b) must... Inspection. Approval of a heavy weather plan is limited to the current hurricane season. (b) The...

  9. 14 CFR 135.213 - Weather reports and forecasts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Weather reports and forecasts. 135.213... Operating Limitations and Weather Requirements § 135.213 Weather reports and forecasts. (a) Whenever a person operating an aircraft under this part is required to use a weather report or forecast, that...

  10. 44 CFR 15.3 - Access to Mt. Weather.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Access to Mt. Weather. 15.3... HOMELAND SECURITY GENERAL CONDUCT AT THE MT. WEATHER EMERGENCY ASSISTANCE CENTER AND AT THE NATIONAL EMERGENCY TRAINING CENTER § 15.3 Access to Mt. Weather. Mt. Weather contains classified material and...

  11. 14 CFR 25.961 - Fuel system hot weather operation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel system hot weather operation. 25.961... hot weather operation. (a) The fuel system must perform satisfactorily in hot weather operation. This... simulated flight conditions. If a flight test is performed in weather cold enough to interfere with...

  12. 44 CFR 15.3 - Access to Mt. Weather.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Access to Mt. Weather. 15.3... HOMELAND SECURITY GENERAL CONDUCT AT THE MT. WEATHER EMERGENCY ASSISTANCE CENTER AND AT THE NATIONAL EMERGENCY TRAINING CENTER § 15.3 Access to Mt. Weather. Mt. Weather contains classified material and...

  13. 14 CFR 25.961 - Fuel system hot weather operation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system hot weather operation. 25.961... hot weather operation. (a) The fuel system must perform satisfactorily in hot weather operation. This... simulated flight conditions. If a flight test is performed in weather cold enough to interfere with...

  14. 14 CFR 135.221 - IFR: Alternate airport weather minimums.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false IFR: Alternate airport weather minimums... VFR/IFR Operating Limitations and Weather Requirements § 135.221 IFR: Alternate airport weather minimums. No person may designate an alternate airport unless the weather reports or forecasts, or...

  15. Using Artificial Intelligence to Inform Pilots of Weather

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly; Lodha, Suresh K.

    2006-01-01

    An automated system to assist a General Aviation (GA) pilot in improving situational awareness of weather in flight is now undergoing development. This development is prompted by the observation that most fatal GA accidents are attributable to loss of weather awareness. Loss of weather awareness, in turn, has been attributed to the difficulty of interpreting traditional preflight weather briefings and the difficulty of both obtaining and interpreting traditional in-flight weather briefings. The developmental automated system not only improves weather awareness but also substantially reduces the time a pilot must spend in acquiring and maintaining weather awareness.

  16. Atmospheric CO2 Removal by Enhancing Weathering

    NASA Astrophysics Data System (ADS)

    Koster van Groos, A. F.; Schuiling, R. D.

    2014-12-01

    The increase of the CO2 content in the atmosphere by the release of anthropogenic CO2 may be addressed by the enhancement of weathering at the surface of the earth. The average emission of mantle-derived CO2 through volcanism is ~0.3 Gt/year (109 ton/year). Considering the ~3.000 Gt of CO2 present in the atmosphere, the residence time of CO2 in the earth's atmosphere is ~10,000 years. Because the vast proportion of carbon in biomass is recycled through the atmosphere, CO2 is continuously removed by a series of weathering reactions of silicate minerals and stored in calcium and magnesium carbonates. The addition of anthropogenic CO2 from fossil fuel and cement production, which currently exceeds 35 Gt/year and dwarfs the natural production 100-fold, cannot be compensated by current rates of weathering, and atmospheric CO2 levels are rising rapidly. To address this increase in CO2 levels, weathering rates would have to be accelerated on a commensurate scale. Olivine ((Mg,Fe)2SiO4) is the most reactive silicate mineral in the weathering process. This mineral is the major constituent in relatively common ultramafic rocks such as dunites (olivine content > 90%). To consume the current total annual anthropogenic release of CO2, using a simplified weathering reaction (Mg2SiO4 + 4CO2 + 4H2O --> 2 Mg2+ + 4HCO3- + H4SiO4) would require ~30 Gt/year or ~8-9 km3/year of dunite. This is a large volume; it is about double the total amount of ore and gravel currently mined (~ 17 Gt/year). To mine and crush these rocks to <100 μm costs ~ 8/ton. The transport and distribution over the earth's surface involves additional costs, that may reach 2-5/ton. Thus, the cost of remediation for the release of anthropogenic CO2 is 300-400 billion/year. This compares to a 2014 global GDP of ~80 trillion. Because weathering reactions require the presence of water and proceed more rapidly at higher temperatures, the preferred environments to enhance weathering are the wet tropics. From a socio

  17. Weatherization and Intergovernmental Program - Portal to New Jobs in Home Weatherization (Green Jobs)

    SciTech Connect

    2010-04-01

    Expanding training opportunities in the weatherization of buildings will accelerate learning and provide a direct path for many Americans to find jobs in the clean energy field. The National Weatherization Training Portal (NWTP), which is now in the final stages of testing, features multi-media, interactive, self-paced training modules.

  18. Weatherization and Indoor Air Quality: Measured Impacts in Single Family Homes Under the Weatherization Assistance Program

    SciTech Connect

    Pigg, Scott; Cautley, Dan; Francisco, Paul; Hawkins, Beth A; Brennan, Terry M

    2014-09-01

    This report summarizes findings from a national field study of indoor air quality parameters in homes treated under the Weatherization Assistance Program (WAP). The study involved testing and monitoring in 514 single-family homes (including mobile homes) located in 35 states and served by 88 local weatherization agencies.

  19. Training Early Career Space Weather Researchers and other Space Weather Professionals at the CISM Space Weather Summer School

    NASA Astrophysics Data System (ADS)

    Gross, N. A.; Hughes, W.

    2011-12-01

    This talk will outline the organization of a summer school designed to introduce young professions to a sub-discipline of geophysics. Through out the 10 year life time of the Center for Integrated Space Weather Modeling (CISM) the CISM Team has offered a two week summer school that introduces new graduate students and other interested professional to the fundamentals of space weather. The curriculum covers basic concepts in space physics, the hazards of space weather, and the utility of computer models of the space environment. Graduate students attend from both inside and outside CISM, from all the sub-disciplines involved in space weather (solar, heliosphere, geomagnetic, and aeronomy), and from across the nation and around the world. In addition, between 1/4 and 1/3 of the participants each year are professionals involved in space weather in some way, such as: forecasters from NOAA and the Air Force, Air Force satellite program directors, NASA specialists involved in astronaut radiation safety, and representatives from industries affected by space weather. The summer school has adopted modern pedagogy that has been used successfully at the undergraduate level. A typical daily schedule involves three morning lectures followed by an afternoon lab session. During the morning lectures, student interaction is encouraged using "Timeout to Think" questions and peer instruction, along with question cards for students to ask follow up questions. During the afternoon labs students, working in groups of four, answer thought provoking questions using results from simulations and observation data from a variety of source. Through the interactions with each other and the instructors, as well as social interactions during the two weeks, students network and form bonds that will last them through out their careers. We believe that this summer school can be used as a model for summer schools in a wide variety of disciplines.

  20. Upgrade Summer Severe Weather Tool in MIDDS

    NASA Technical Reports Server (NTRS)

    Wheeler, Mark M.

    2010-01-01

    The goal of this task was to upgrade the severe weather database from the previous phase by adding weather observations from the years 2004 - 2009, re-analyze the data to determine the important parameters, make adjustments to the index weights depending on the analysis results, and update the MIDDS GUI. The added data increased the period of record from 15 to 21 years. Data sources included local forecast rules, archived sounding data, surface and upper air maps, and two severe weather event databases covering east-central Florida. Four of the stability indices showed increased severe weather predication. The Total Threat Score (TTS) of the previous work was verified for the warm season of 2009 with very good skill. The TTS Probability of Detection (POD) was 88% and the False alarm rate (FAR) of 8%. Based on the results of the analyses, the MIDDS Severe Weather Worksheet GUI was updated to assist the duty forecaster by providing a level of objective guidance based on the analysis of the stability parameters and synoptic-scale dynamics.

  1. Space Weather Studies at Istanbul Technical University

    NASA Astrophysics Data System (ADS)

    Kaymaz, Zerefsan

    2016-07-01

    This presentation will introduce the Upper Atmosphere and Space Weather Laboratory of Istanbul Technical University (ITU). It has been established to support the educational needs of the Faculty of Aeronautics and Astronautics in 2011 to conduct scientific research in Space Weather, Space Environment, Space Environment-Spacecraft Interactions, Space instrumentation and Upper Atmospheric studies. Currently the laboratory has some essential infrastructure and the most instrumentation for ionospheric observations and ground induced currents from the magnetosphere. The laboratory has two subunits: SWIFT dealing with Space Weather Instrumentation and Forecasting unit and SWDPA dealing with Space Weather Data Processing and Analysis. The research area covers wide range of upper atmospheric and space science studies from ionosphere, ionosphere-magnetosphere coupling, magnetic storms and magnetospheric substorms, distant magnetotail, magnetopause and bow shock studies, as well as solar and solar wind disturbances and their interaction with the Earth's space environment. We also study the spacecraft environment interaction and novel plasma instrument design. Several scientific projects have been carried out in the laboratory. Operational objectives of our laboratory will be carried out with the collaboration of NASA's Space Weather Laboratory and the facilities are in the process of integration to their prediction services. Educational and research objectives, as well as the examples from the research carried out in our laboratory will be demonstrated in this presentation.

  2. Iron isotopic fractionation during continental weathering

    SciTech Connect

    Fantle, Matthew S.; DePaolo, Donald J.

    2003-10-01

    The biological activity on continents and the oxygen content of the atmosphere determine the chemical pathways through which Fe is processed at the Earth's surface. Experiments have shown that the relevant chemical pathways fractionate Fe isotopes. Measurements of soils, streams, and deep-sea clay indicate that the {sup 56}Fe/{sup 54}Fe ratio ({delta}{sup 56}Fe relative to igneous rocks) varies from +1{per_thousand} for weathering residues like soils and clays, to -3{per_thousand} for dissolved Fe in streams. These measurements confirm that weathering processes produce substantial fractionation of Fe isotopes in the modern oxidizing Earth surface environment. The results imply that biologically-mediated processes, which preferentially mobilize light Fe isotopes, are critical to Fe chemistry in weathering environments, and that the {delta}{sup 56}Fe of marine dissolved Fe should be variable and negative. Diagenetic reduction of Fe in marine sediments may also be a significant component of the global Fe isotope cycle. Iron isotopes provide a tracer for the influence of biological activity and oxygen in weathering processes through Earth history. Iron isotopic fractionation during weathering may have been smaller or absent in an oxygen-poor environment such as that of the early Precambrian Earth.

  3. GPU Computing in Space Weather Modeling

    NASA Astrophysics Data System (ADS)

    Feng, X.; Zhong, D.; Xiang, C.; Zhang, Y.

    2013-04-01

    Space weather refers to conditions on the Sun and in the solar wind, magnetosphere, ionosphere, and thermosphere that can influence the performance and reliability of space-borne and ground-based technological systems and that affect human life or health. In order to make the real- or faster than real-time numerical prediction of adverse space weather events and their influence on the geospace environment, high-performance computational models are required. The main objective in this article is to explore the application of programmable graphic processing units (GPUs) to the numerical space weather modeling for the study of solar wind background that is a crucial part in the numerical space weather modeling. GPU programming is realized for our Solar-Interplanetary-CESE MHD model (SIP-CESE MHD model) by numerically studying the solar corona/interplanetary solar wind. The global solar wind structures is obtained by the established GPU model with the magnetic field synoptic data as input. The simulated global structures for Carrington rotation 2060 agrees well with solar observations and solar wind measurements from spacecraft near the Earth. The model's implementation of the adaptive-mesh-refinement (AMR) and message passing interface (MPI) enables the full exploitation of the computing power in a heterogeneous CPU/GPU cluster and significantly improves the overall performance. Our initial tests with available hardware show speedups of roughly 5x compared to traditional software implementation. This work presents a novel application of GPU to the space weather study.

  4. Visually Comparing Weather Features in Forecasts.

    PubMed

    Quinan, P Samuel; Meyer, Miriah

    2016-01-01

    Meteorologists process and analyze weather forecasts using visualization in order to examine the behaviors of and relationships among weather features. In this design study conducted with meteorologists in decision support roles, we identified and attempted to address two significant common challenges in weather visualization: the employment of inconsistent and often ineffective visual encoding practices across a wide range of visualizations, and a lack of support for directly visualizing how different weather features relate across an ensemble of possible forecast outcomes. In this work, we present a characterization of the problems and data associated with meteorological forecasting, we propose a set of informed default encoding choices that integrate existing meteorological conventions with effective visualization practice, and we extend a set of techniques as an initial step toward directly visualizing the interactions of multiple features over an ensemble forecast. We discuss the integration of these contributions into a functional prototype tool, and also reflect on the many practical challenges that arise when working with weather data. PMID:26390490

  5. A semiparametric multivariate and multisite weather generator

    NASA Astrophysics Data System (ADS)

    Apipattanavis, Somkiat; Podestá, Guillermo; Rajagopalan, Balaji; Katz, Richard W.

    2007-11-01

    We propose a semiparametric multivariate weather generator with greater ability to reproduce the historical statistics, especially the wet and dry spells. The proposed approach has two steps: (1) a Markov Chain for generating the precipitation state (i.e., no rain, rain, or heavy rain), and (2) a k-nearest neighbor (k-NN) bootstrap resampler for generating the multivariate weather variables. The Markov Chain captures the spell statistics while the k-NN bootstrap captures the distributional and lag-dependence statistics of the weather variables. Traditional k-NN generators tend to under-simulate the wet and dry spells that are keys to watershed and agricultural modeling for water planning and management; hence the motivation for this research. We demonstrate the utility of the proposed approach and its improvement over the traditional k-NN approach through an application to daily weather data from Pergamino in the Pampas region of Argentina. We show the applicability of the proposed framework in simulating weather scenarios conditional on the seasonal climate forecast and also at multiple sites in the Pampas region.

  6. Evaluation plan for the Weatherization Assistance Program

    SciTech Connect

    Beschen, D.A. ); Brown, M.A. )

    1991-08-01

    The most recent national evaluation of the impacts of the US Department of Energy (DOE)'s Weatherization Assistance Program (WAP) was completed in 1984 based on consumption data for households weatherized in 1981. WAP regulations and operations have changed substantially over the last decade, and new opportunities are on the horizon. DOE recognizes the need for a more current national level evaluation of the program and has developed a plan for conducting the evaluation with the support of the Oak Ridge National Laboratory (ORNL). The national WAP evaluation as currently proposed has seven major goals: (1) estimate the energy saved by the program -- one, two, and three years after participation; (2) assess nonenergy impacts, such as comfort, safety, and housing affordability; (3) assess program cost effectiveness; (4) analyze factors which influence energy savings, nonenergy impacts, and cost effectiveness; (5) describe the WAP network's capabilities and the innovative weatherization technologies and procedures it has employed; (6) characterize the WAP-eligible population and the federal and non-federal funds that haven been used to meet its weatherization needs; and, (7) identify promising WAP opportunities for the future. The data collection, analyses, and reports are to be completed in phases between 1991 and 1993. The evaluation methodologies vary by fuel type, housing type, and climate zone. The analysis of energy savings and cost effectiveness will be based primarily on weather-normalized, retrospective utility billing records (collected for pre- and postretrofit years). 12 refs., 8 figs.

  7. Incidence of myocardial infarction and weather

    NASA Astrophysics Data System (ADS)

    Staiger, Henning

    1982-08-01

    Extreme values of temperature and/or humidity in the temperate climate of Hamburg are not able to explain the influence of weather on day-to-day fluctuations of morbidity. Short term changes in weather are described by two objective classifications as deviation from the meteorological past: 1. the temperature-humidity-environment, derived from values of temperature and water vapour pressure at 07.00 h, 2. changes in the cyclonality, derived from the difference of 500 and 850 mbar vorticity values. Their suitability for human biometeorology is illustrated with a material of 1262 subjects who suffered from acute myocardial infarction. For these investigated cases it was known whether angina pectoris was already manifest before the infarction or not. The daily weather conditions have a significant effect on the incidence of acute myocardial infarction according to angina pectoris. Compared to subjects with angina pectoris those without angina pectoris show an increased susceptibility to infarction during changes in weather conditions to warmer/more humid and also during all strong changes in the cyclonality whereby the temperature-humidity-environment seems to leave only the role of an indicator too. Persons with a preceeding angina pectoris are more sensitive agains rapid changes in weather conditions.

  8. Asteroid Surface Alteration by Space Weathering Processes

    NASA Astrophysics Data System (ADS)

    Brunetto, R.; Loeffler, M. J.; Nesvorný, D.; Sasaki, S.; Strazzulla, G.

    Micrometeorite bombardment and irradiation by solar wind and cosmic-ray ions cause variations in the optical properties of small solar system bodies surfaces, affecting efforts to draw connections between specific meteorites and asteroid types. These space weathering processes have been widely studied for the Moon and S- and V-type asteroids, and they are currently being investigated for other asteroid types. Here we review the laboratory studies performed by several groups on meteorites and asteroid surface analogs, aimed at simulating space weathering by using ion irradiation and laser ablation. Together with direct evidence of weathering of particles from asteroid Itokawa acquired by the Hayabusa mission, these results have provided a fundamental contribution to the spectral interpretation of asteroid observations, to establish a solid asteroids-meteorites link, and to understand the energetic processes affecting the surfaces of minor bodies. A general scheme for asteroid optical maturation is thus emerging. Slope trends from large surveys and in particular of young asteroid families have confirmed that solar wind is the main source of rapid (104-106 yr) weathering, and that a number of rejuvenating processes (impacts by small meteorites, planetary encounters, regolith shaking, etc.) efficiently counterbalance the fast weathering timescales.

  9. Solar EUV irradiance for space weather applications

    NASA Astrophysics Data System (ADS)

    Viereck, R. A.

    2015-12-01

    Solar EUV irradiance is an important driver of space weather models. Large changes in EUV and x-ray irradiances create large variability in the ionosphere and thermosphere. Proxies such as the F10.7 cm radio flux, have provided reasonable estimates of the EUV flux but as the space weather models become more accurate and the demands of the customers become more stringent, proxies are no longer adequate. Furthermore, proxies are often provided only on a daily basis and shorter time scales are becoming important. Also, there is a growing need for multi-day forecasts of solar EUV irradiance to drive space weather forecast models. In this presentation we will describe the needs and requirements for solar EUV irradiance information from the space weather modeler's perspective. We will then translate these requirements into solar observational requirements such as spectral resolution and irradiance accuracy. We will also describe the activities at NOAA to provide long-term solar EUV irradiance observations and derived products that are needed for real-time space weather modeling.

  10. ESA situational awareness of space weather

    NASA Astrophysics Data System (ADS)

    Luntama, Juha-Pekka; Glover, Alexi; Keil, Ralf; Kraft, Stefan; Lupi, Adriano

    2016-07-01

    ESA SSA Period 2 started at the beginning of 2013 and will last until the end of 2016. For the Space Weather Segment, transition to Period 2 introduced an increasing amount of development of new space weather service capability in addition to networking existing European assets. This transition was started already towards the end of SSA Period 1 with the initiation of the SSA Space Weather Segment architecture definition studies and activities enhancing existing space weather assets. The objective of Period 2 has been to initiate SWE space segment developments in the form of hosted payload missions and further expand the federated service network. A strong focus has been placed on demonstration and testing of European capabilities in the range of SWE service domains with a view to establishing core products which can form the basis of SWE service provision during SSA Period 3. This focus has been particularly addressed in the SSA Expert Service Centre (ESC) Definition and Development activity that was started in September 2015. This presentation will cover the current status of the SSA SWE Segment and the achievements during SSA Programme Periods 1 and 2. Particular attention is given to the federated approach that allow building the end user services on the best European expertise. The presentation will also outline the plans for the Space Weather capability development in the framework of the ESA SSA Programme in 2017-2020.

  11. Space Weather Outreach: Connection to STEM Standards

    NASA Astrophysics Data System (ADS)

    Dusenbery, P. B.

    2008-12-01

    Many scientists are studying the Sun-Earth system and attempting to provide timely, accurate, and reliable space environment observations and forecasts. Research programs and missions serve as an ideal focal point for creating educational content, making this an ideal time to inform the public about the importance and value of space weather research. In order to take advantage of this opportunity, the Space Science Institute (SSI) is developing a comprehensive Space Weather Outreach program to reach students, educators, and other members of the public, and share with them the exciting discoveries from this important scientific discipline. The Space Weather Outreach program has the following five components: (1) the Space Weather Center Website that includes online educational games; (2) Small Exhibits for Libraries, Shopping Malls, and Science Centers; (3) After-School Programs; (4) Professional Development Workshops for Educators, and (5) an innovative Evaluation and Education Research project. Its overarching goal is to inspire, engage, and educate a broad spectrum of the public and make strategic and innovative connections between informal and K-12 education communities. An important factor in the success of this program will be its alignment with STEM standards especially those related to science and mathematics. This presentation will describe the Space Weather Outreach program and how standards are being used in the development of each of its components.

  12. Space weather forecasting: Past, Present, Future

    NASA Astrophysics Data System (ADS)

    Lanzerotti, L. J.

    2012-12-01

    There have been revolutionary advances in electrical technologies over the last 160 years. The historical record demonstrates that space weather processes have often provided surprises in the implementation and operation of many of these technologies. The historical record also demonstrates that as the complexity of systems increase, including their interconnectedness and interoperability, they can become more susceptible to space weather effects. An engineering goal, beginning during the decades following the 1859 Carrington event, has been to attempt to forecast solar-produced disturbances that could affect technical systems, be they long grounded conductor-based or radio-based or required for exploration, or the increasingly complex systems immersed in the space environment itself. Forecasting of space weather events involves both frontier measurements and models to address engineering requirements, and industrial and governmental policies that encourage and permit creativity and entrepreneurship. While analogies of space weather forecasting to terrestrial weather forecasting are frequently made, and while many of the analogies are valid, there are also important differences. This presentation will provide some historical perspectives on the forecast problem, a personal assessment of current status of several areas including important policy issues, and a look into the not-too-distant future.

  13. Dynamic Weather Routes: A Weather Avoidance Concept for Trajectory-Based Operations

    NASA Technical Reports Server (NTRS)

    McNally, B. David; Love, John

    2011-01-01

    The integration of convective weather modeling with trajectory automation for conflict detection, trial planning, direct routing, and auto resolution has uncovered a concept that could help controllers, dispatchers, and pilots identify improved weather routes that result in significant savings in flying time and fuel burn. Trajectory automation continuously and automatically monitors aircraft in flight to find those that could potentially benefit from improved weather reroutes. Controllers, dispatchers, and pilots then evaluate reroute options to assess their suitability given current weather and traffic. In today's operations aircraft fly convective weather avoidance routes that were implemented often hours before aircraft approach the weather and automation does not exist to automatically monitor traffic to find improved weather routes that open up due to changing weather conditions. The automation concept runs in real-time and employs two keysteps. First, a direct routing algorithm automatically identifies flights with large dog legs in their routes and therefore potentially large savings in flying time. These are common - and usually necessary - during convective weather operations and analysis of Fort Worth Center traffic shows many aircraft with short cuts that indicate savings on the order of 10 flying minutes. The second and most critical step is to apply trajectory automation with weather modeling to determine what savings could be achieved by modifying the direct route such that it avoids weather and traffic and is acceptable to controllers and flight crews. Initial analysis of Fort Worth Center traffic suggests a savings of roughly 50% of the direct route savings could be achievable.The core concept is to apply trajectory automation with convective weather modeling in real time to identify a reroute that is free of weather and traffic conflicts and indicates enough time and fuel savings to be considered. The concept is interoperable with today

  14. Rock-weathering rates as functions of time

    USGS Publications Warehouse

    Colman, Steven M.

    1981-01-01

    The scarcity of documented numerical relations between rock weathering and time has led to a common assumption that rates of weathering are linear. This assumption has been strengthened by studies that have calculated long-term average rates. However, little theoretical or empirical evidence exists to support linear rates for most chemical-weathering processes, with the exception of congruent dissolution processes. The few previous studies of rock-weathering rates that contain quantitative documentation of the relation between chemical weathering and time suggest that the rates of most weathering processes decrease with time. Recent studies of weathering rinds on basaltic and andesitic stones in glacial deposits in the western United States also clearly demonstrate that rock-weathering processes slow with time. Some weathering processes appear to conform to exponential functions of time, such as the square-root time function for hydration of volcanic glass, which conforms to the theoretical predictions of diffusion kinetics. However, weathering of mineralogically heterogeneous rocks involves complex physical and chemical processes that generally can be expressed only empirically, commonly by way of logarithmic time functions. Incongruent dissolution and other weathering processes produce residues, which are commonly used as measures of weathering. These residues appear to slow movement of water to unaltered material and impede chemical transport away from it. If weathering residues impede weathering processes then rates of weathering and rates of residue production are inversely proportional to some function of the residue thickness. This results in simple mathematical analogs for weathering that imply nonlinear time functions. The rate of weathering becomes constant only when an equilibrium thickness of the residue is reached. Because weathering residues are relatively stable chemically, and because physical removal of residues below the ground surface is slight

  15. Measuring weather for aviation safety in the 1980's

    NASA Technical Reports Server (NTRS)

    Wedan, R. W.

    1980-01-01

    Requirements for an improved aviation weather system are defined and specifically include the need for (1) weather observations at all airports with instrument approaches, (2) more accurate and timely radar detection of weather elements hazardous to aviation, and (3) better methods of timely distribution of both pilot reports and ground weather data. The development of the discrete address beacon system data link, Doppler weather radar network, and various information processing techniques are described.

  16. Browsing Space Weather Data and Models with the Integrated Space Weather Analysis (iSWA) System

    NASA Technical Reports Server (NTRS)

    Maddox, Marlo M.; Mullinix, Richard E.; Berrios, David H.; Hesse, Michael; Rastaetter, Lutz; Pulkkinen, Antti; Hourcle, Joseph A.; Thompson, Barbara J.

    2011-01-01

    The Integrated Space Weather Analysis (iSWA) System is a comprehensive web-based platform for space weather information that combines data from solar, heliospheric and geospace observatories with forecasts based on the most advanced space weather models. The iSWA system collects, generates, and presents a wide array of space weather resources in an intuitive, user-configurable, and adaptable format - thus enabling users to respond to current and future space weather impacts as well as enabling post-impact analysis. iSWA currently provides over 200 data and modeling products, and features a variety of tools that allow the user to browse, combine, and examine data and models from various sources. This presentation will consist of a summary of the iSWA products and an overview of the customizable user interfaces, and will feature several tutorial demonstrations highlighting the interactive tools and advanced capabilities.

  17. The Weathering of Antarctic Meteorites: Climatic Controls on Weathering Rates and Implications for Meteorite Accumulation

    NASA Technical Reports Server (NTRS)

    Benoit, P. H.; Akridge, J. M. C.; Sears, D. W. G.; Bland, P. A.

    1995-01-01

    Weathering of meteorites includes a variety of chemical and mineralogical changes, including conversion of metal to iron oxides, or rust. Other changes include the devitrification of glass, especially in fusion crust. On a longer time scale, major minerals such as olivine, pyroxene, and feldspar are partially or wholly converted to various phyllosilicates. The degree of weathering of meteorite finds is often noted using a qualitative system based on visual inspection of hand specimens. Several quantitative weathering classification systems have been proposed or are currently under development. Wlotzka has proposed a classification system based on mineralogical changes observed in polished sections and Mossbauer properties of meteorite powders have also been used. In the current paper, we discuss induced thermoluminescence (TL) as an indicator of degree of weathering of individual meteorites. The quantitative measures of weathering, including induced TL, suffer from one major flaw, namely that their results only apply to small portions of the meteorite.

  18. Properties of weathered and moderately weathered rhyolite tuff: what cause changes in mechanical properties?

    NASA Astrophysics Data System (ADS)

    Fityus, Stephen; Rickard, Scott; Bögöly, Gyula; Czinder, Balázs; Görög, Péter; Vásárhelyi, Balázs; Török, Ákos

    2016-04-01

    Miocene rhyolite tuff forms extended steep cliffs in NE-Hungary, at village of Sirok. The unique geomorphology and the presence of stable and unstable cliff faces are supposedly associated with the different rate of weathering of tuff. To understand the weathering characteristics, and the changes that lead to various degrees of preservation, block samples of tuff were taken for laboratory analyses. Samples were chosen to represent various grades of weathering. Density, porosity, mechanical properties, mineralogy and geochemical composition of tuffs were tested by using standardized methods. A strong correlation was found between the dry density and dry uniaxial compressive strength of the tuff. Systematic trends were also observed in porosity: an increase in pore volume and an increase in dominant pore size were both recorded as samples become weaker and less dense. To the contrary, no significant differences in mineralogy (XRD) or elemental composition (XRF) were found between apparently slightly and strongly weathered tuff, suggesting that no major clay mineralization had taken place with increasing weathering. Micro-fabric analyses (SEM) suggest that glass shards and vitreous particles are present in all samples but more corroded in samples of tuff which appeared intensively weathered. The differences in density, porosity, strength and appearance seem to correlate well with a difference in weathering intensity, but the lack of variation in chemical and mineralogical composition do not support this idea. Another and more probable explanation is that the differences in density are inherent in this type of tuff, even when it is fresh, and that more dense material is inherently stronger. The apparent correlation to weathering may simply be due to the more porous, less dense material being more susceptible to moisture infiltration, and hence, to freeze-thaw weathering and visible staining, and thus they appear to be more weathered.

  19. Weathering a Perfect Storm from Space

    USGS Publications Warehouse

    Love, Jeffrey J.

    2016-01-01

    Extreme space-weather events — intense solar and geomagnetic storms — have occurred in the past: most recently in 1859, 1921 and 1989. So scientists expect that, sooner or later, another extremely intense spaceweather event will strike Earth again. Such storms have the potential to cause widespread interference with and damage to technological systems. A National Academy of Sciences study projects that an extreme space-weather event could end up costing the American economy more than $1 trillion. The question now is whether or not we will take the actions needed to avoid such expensive consequences. Let’s assume that we do. Below is an imagined scenario of how, sometime in the future, an extreme space-weather event might play out.

  20. Weather and climate. [review of satellite observations

    NASA Technical Reports Server (NTRS)

    Atlas, D.

    1981-01-01

    Highlights of recent progress and the directions of future advances in the application of space observations to weather and climate are reviewed. In mesometeorology and severe storms, satellite stereography of cloud topography and temperature profiling from GOES-VAS promise dramatic developments in both nowcasting and prediction. In global weather, the initial results from the year long Global Weather Experiment conclusively demonstrate the enhanced forecast skill emanating from the use of satellite data, especially cloud track winds and temperature profiles. In climate, empirical studies and numerical experiments point to the feasibility of useful climate predictions on monthly and seasonal time scales. They also indicate the kinds of surface boundary conditions to which climate is sensitive and which need to be observed from space.

  1. Activities of NICT space weather project

    NASA Astrophysics Data System (ADS)

    Murata, Ken T.; Nagatsuma, Tsutomu; Watari, Shinichi; Shinagawa, Hiroyuki; Ishii, Mamoru

    NICT (National Institute of Information and Communications Technology) has been in charge of space weather forecast service in Japan for more than 20 years. The main target region of the space weather is the geo-space in the vicinity of the Earth where human activities are dominant. In the geo-space, serious damages of satellites, international space stations and astronauts take place caused by energetic particles or electromagnetic disturbances: the origin of the causes is dynamically changing of solar activities. Positioning systems via GPS satellites are also im-portant recently. Since the most significant effect of positioning error comes from disturbances of the ionosphere, it is crucial to estimate time-dependent modulation of the electron density profiles in the ionosphere. NICT is one of the 13 members of the ISES (International Space Environment Service), which is an international assembly of space weather forecast centers under the UNESCO. With help of geo-space environment data exchanging among the member nations, NICT operates daily space weather forecast service every day to provide informa-tion on forecasts of solar flare, geomagnetic disturbances, solar proton event, and radio-wave propagation conditions in the ionosphere. The space weather forecast at NICT is conducted based on the three methodologies: observations, simulations and informatics (OSI model). For real-time or quasi real-time reporting of space weather, we conduct our original observations: Hiraiso solar observatory to monitor the solar activity (solar flare, coronal mass ejection, and so on), domestic ionosonde network, magnetometer HF radar observations in far-east Siberia, and south-east Asia low-latitude ionosonde network (SEALION). Real-time observation data to monitor solar and solar-wind activities are obtained through antennae at NICT from ACE and STEREO satellites. We have a middle-class super-computer (NEC SX-8R) to maintain real-time computer simulations for solar and solar

  2. Insecticide residues on weathered passerine carcass feet

    USGS Publications Warehouse

    Vyas, N.B.; Spann, J.W.; Hulse, C.S.; Butterbrodt, J.J.; Mengelkoch, J.; MacDougall, K.; Williams, B.; Pendergrass, P.

    2003-01-01

    Nine brown-headed cowbirds (Molothrus ater) were exposed to turf srayed with either EarthCare? (25% diazinon; 477 L a.i./ha) or Ortho-Klor? (12 .6% chlorpyrifos; 5.21 L a.i./ha.). Birds were euthanized and one foot from each bird was weathered outdoors for up to 28 days and the other foot was kept frozen until residue analysis. When compared to the unweathered feet, feet weathered for 28 days retained 43% and 37% of the diazinon and chlorpyrifors, respectively. Insecticide residues were below the level of detection (1.0 ppm) on control feet. Weathered feet may be used for determining organophosphorus insecticide exposure to birds.

  3. Canada invests in weather and climate monitoring

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-01-01

    Canada is investing $78.7 million over the next 5 years to improve weather and climate monitoring infrastructure, Canada's minister of the environment Peter Kent announced on 20 January. The Canadian weather radar network, which consists of 31 radar sites around the country, is slated to receive the bulk of the funding ($45.2 million) to allow existing newer-generation radars to upgrade to dual-polarization technology. Of the remainder, $18.8 million is for the Canadian weather and climate observing networks to supplement existing resources and upgrade about 250 observing stations; $10.5 million is to improve the Canadian lightning detection network; and $4.2 million is to upgrade the Canadian aerological network's navigational technology with multisensor GPS radiosonde equipment.

  4. Space Weather in Magnetic Observatory Noise

    NASA Astrophysics Data System (ADS)

    Gilder, S. A.; Truong, F.

    2012-12-01

    Space weather impacts human activity by degrading satellite operation or disrupting electrical power grids. By exploiting small differences in the time stamp between magnetometer pairs to facilitate data filtering, we find that ground-based magnetic observatories are well suited to measure space weather phenomena, and in particular, high frequency fluctuations known as pulsations. Several of the world's consortium of INTERMAGNET observatories are used in the analyses. They show that pulsation amplitudes attain a maximum near local noon over diurnal periods. Long-term trends in pulsation amplitude correlate well with the solar cycle, with the greatest effect occurring during the waning part of the cycle when the derivative of the number of sunspots attains a maximum rate of decrease. Seasonal variability and total amplitude of the diurnal expression of pulsations depends on latitude. Our study highlights the utility of ground-based observatories to understand solar phenomena and suggests how INTERMAGNET data and protocol could be better tuned to monitor space weather.

  5. Healthy Housing Opportunities During Weatherization Work

    SciTech Connect

    Wilson, J.; Tohn, E.

    2011-03-01

    In the summer and early fall of 2010, the National Center for Healthy Housing interviewed people from a selection of state and local agencies that perform weatherizations on low-income housing in order to gauge their approach to improving the health and safety of the homes. The interviews provided a strong cross section of what work agencies can do, and how they go about funding this work when funds from the Weatherization Assistance Program (WAP) do not cover the full extent of the repairs. The report also makes recommendations for WAP in how to assist agencies to streamline and maximize the health and safety repairs they are able to make in the course of a standard weatherization.

  6. Space weathering: from laboratory to observations .

    NASA Astrophysics Data System (ADS)

    Brunetto, R.; Orofino, V.; Strazzulla, G.

    An ongoing research program in our laboratories is focusing on the effects of laser ablation and ion irradiation on silicates, meteorites, and ices, as a simulation of space weathering on Solar System minor bodies (asteroids, Trans-Neptunian Objects, etc.). Spectroscopic results show a general reddening and darkening of the various materials in the 0.3-2.7 mu m range. Laboratory data are then compared with observations, through spectral characterization and scattering models, indicating that space weathering is a very efficient process both in the inner and outer Solar System. In particular, we demonstrated that the majority of TNOs and Centaurs can develop an organic crust mantle produced after irradiation of simple C-bearing molecules. Another relevant result is that the exposure to surface space weathering of asteroid 832 Karin, as calculated from our experiments and models, is in agreement with a dynamical time-scale, i.e. the age of the corresponding Karin family.

  7. Weather satellites: Systems, data, and environmental applications

    SciTech Connect

    Rao, P.K.; Holmes, S.J.; Anderson, R.K.; Winston, J.S.; Lehr, P.E. )

    1990-01-01

    The present review of weather-satellite systems, data, and environmental applications encompasses the evolution of space-based weather observation, national observing capabilities, sensor data and processing, climate and meteorological applications, applications to land, agriculture, and ocean sciences, and some future directions. Specific issues addressed include U.S. operational polar and geostationary satellites, the Japanese GMS, remote sensing instrumentation, the Argos data collection and location system, satellite data product processing and archiving, atmospheric soundings, and image display and analysis systems. Also addressed are stereoscopic measurements, convective-scale weather analysis and forecasting, aviation and marine applications, and applications to the study of thermal anomalies, the earth-radiation budget, stratospheric monitoring, and vegetation monitoring, and reference is made to the potential of a polar orbiting platform.

  8. Explaining the road accident risk: weather effects.

    PubMed

    Bergel-Hayat, Ruth; Debbarh, Mohammed; Antoniou, Constantinos; Yannis, George

    2013-11-01

    This research aims to highlight the link between weather conditions and road accident risk at an aggregate level and on a monthly basis, in order to improve road safety monitoring at a national level. It is based on some case studies carried out in Work Package 7 on "Data analysis and synthesis" of the EU-FP6 project "SafetyNet-Building the European Road Safety Observatory", which illustrate the use of weather variables for analysing changes in the number of road injury accidents. Time series analysis models with explanatory variables that measure the weather quantitatively were used and applied to aggregate datasets of injury accidents for France, the Netherlands and the Athens region, over periods of more than 20 years. The main results reveal significant correlations on a monthly basis between weather variables and the aggregate number of injury accidents, but the magnitude and even the sign of these correlations vary according to the type of road (motorways, rural roads or urban roads). Moreover, in the case of the interurban network in France, it appears that the rainfall effect is mainly direct on motorways--exposure being unchanged, and partly indirect on main roads--as a result of changes in exposure. Additional results obtained on a daily basis for the Athens region indicate that capturing the within-the-month variability of the weather variables and including it in a monthly model highlights the effects of extreme weather. Such findings are consistent with previous results obtained for France using a similar approach, with the exception of the negative correlation between precipitation and the number of injury accidents found for the Athens region, which is further investigated. The outlook for the approach and its added value are discussed in the conclusion. PMID:23928504

  9. Weather and Environmental Hazards at Mass Gatherings

    PubMed Central

    Soomaroo, Lee; Murray, Virginia

    2012-01-01

    Introduction Reviews of mass gathering events have traditionally concentrated on crowd variables that affect the level and type of medical care needed. Weather and environmental hazards at mass gathering events have not been fully researched. This review examines these events and aims to provide future suggestions for event organisers, medical resource planners, and emergency services, including local hospital emergency departments. Methods A review was conducted using computerised data bases: MEDLINE, The Cochrane Library, HMIC and EMBASE, with Google used to widen the search beyond peer-reviewed publications, to identify grey literature. All peer-review literature articles found containing information pertaining to lessons identified from mass gathering disasters due to weather or environmental hazards leading to participant death, injury or illness were analysed and reviewed. Disasters occurring due to crowd variables were not included. These articles were read, analysed, abstracted and summarised. Results 20 articles from literature search were found detailing mass gathering disasters relating directly to weather or environmental hazards from 1988 – 2011, with only 17 cases found within peer-review literature. Two events grey literature from 2011 are due to undergo further inquiry while one article reviews an event originally occurring in 1922. Analysis of cases were categorised in to heat and cold-related events, lightning and storms and disease outbreak. Conclusions Mass gathering events have an enormous potential to place a severe strain on the local health care system, Prior health resource and environmental planning for heat & cold-related illness, lightning & storms, and disease outbreak can advance emergency preparedness and response to potential disasters. Citation: Soomaroo L, Murray V. Weather and Environmental Hazards at Mass Gatherings. PLoS Currents Disasters. 2012 Jul 31 Keywords: Mass Gatherings, Disasters, Sporting Events, Festivals, Concerts

  10. Silicate weathering in the Ganges alluvial plain

    NASA Astrophysics Data System (ADS)

    Frings, Patrick J.; Clymans, Wim; Fontorbe, Guillaume; Gray, William; Chakrapani, Govind J.; Conley, Daniel J.; De La Rocha, Christina

    2015-10-01

    The Ganges is one of the world's largest rivers and lies at the heart of a body of literature that investigates the interaction between mountain orogeny, weathering and global climate change. Three regions can be recognised in the Ganges basin, with the Himalayan orogeny to the north and the plateaus of peninsular India to the south together delimiting the Ganges alluvial plain. Despite constituting approximately 80% of the basin, weathering processes in the peninsula and alluvial plain have received little attention. Here we present an analysis of 51 water samples along a transect of the alluvial plain, including all major tributaries. We focus on the geochemistry of silicon and its isotopes. Area normalised dissolved Si yields are approximately twice as high in rivers of Himalaya origin than the plain and peninsular tributaries (82, 51 and 32 kmol SiO2 km-2 yr-1, respectively). Such dissolved Si fluxes are not widely used as weathering rate indicators because a large but variable fraction of the DSi mobilised during the initial weathering process is retained in secondary clay minerals. However, the silicon isotopic composition of dissolved Si (expressed as δ30Si) varies from + 0.8 ‰ in the Ganges mainstem at the Himalaya front to + 3.0 ‰ in alluvial plain streams and appears to be controlled by weathering congruency, i.e. by the degree of incorporation of Si into secondary phases. The higher δ30Si values therefore reflect decreasing weathering congruency in the lowland river catchments. This is exploited to quantify the degree of removal using a Rayleigh isotope mass balance model, and consequently derive initial silica mobilisation rates of 200, 150 and 107 kmol SiO2 km-2 yr-1, for the Himalaya, peninsular India and the alluvial plain, respectively. Because the non-Himalayan regions dominate the catchment area, the majority of initial silica mobilisation from primary minerals occurs in the alluvial plain and peninsular catchment (41% and 34%, respectively).

  11. Space Weather affects on Air Transportation

    NASA Astrophysics Data System (ADS)

    Jones, J. B. L.; Bentley, R. D.; Dyer, C.; Shaw, A.

    In Europe, legislation requires the airline industry to monitor the occupational exposure of aircrew to cosmic radiation. However, there are other significant impacts of space weather phenomena on the technological systems used for day-to-day operations which need to be considered by the airlines. These were highlighted by the disruption caused to the industry by the period of significant solar activity in late October and early November 2003. Next generation aircraft will utilize increasingly complex avionics as well as expanding the performance envelopes. These and future generation platforms will require the development of a new air-space management infrastructure with improved position accuracy (for route navigation and landing in bad weather) and reduced separation minima in order to cope with the expected growth in air travel. Similarly, greater reliance will be placed upon satellites for command, control, communication and information (C3I) of the operation. However, to maximize effectiveness of this globally interoperable C3I and ensure seamless fusion of all components for a safe operation will require a greater understanding of the space weather affects, their risks with increasing technology, and the inclusion of space weather information into the operation. This paper will review space weather effects on air transport and the increasing risks for future operations cause by them. We will examine how well the effects can be predicted, some of the tools that can be used and the practicalities of using such predictions in an operational scenario. Initial results from the SOARS ESA Space Weather Pilot Project will also be discussed,

  12. Pilot based frameworks for Weather Research Forecasting

    NASA Astrophysics Data System (ADS)

    Ganapathi, Dinesh Prasanth

    The Weather Research Forecasting (WRF) domain consists of complex workflows that demand the use of Distributed Computing Infrastructure (DCI). Weather forecasting requires that weather researchers use different set of initial conditions and one or a combination of physics models on the same set of input data. For these type of simulations an ensemble based computing approach becomes imperative. Most DCIs have local job-schedulers that have no smart way of dealing with the execution of an ensemble type of computational problem as the job-schedulers are built to cater to the bare essentials of resource allocation. This means the weather scientists have to submit multiple jobs to the job-scheduler. In this dissertation we use Pilot-Job based tools to decouple work-load submission and resource allocation therefore streamlining the complex workflows in Weather Research and Forecasting domain and reduce their overall time to completion. We also achieve location independent job execution, data movement, placement and processing. Next, we create the necessary enablers to run an ensemble of tasks bearing the capability to run on multiple heterogeneous distributed computing resources there by creating the opportunity to minimize the overall time consumed in running the models. Our experiments show that the tools developed exhibit very good, strong and weak scaling characteristics. These results bear the potential to change the way weather researchers are submitting traditional WRF jobs to the DCIs by giving them a powerful weapon in their arsenal that can exploit the combined power of various heterogeneous DCIs that could otherwise be difficult to harness owing to interoperability issues.

  13. Atmospheric attenuation calibrations of surface weather observations

    NASA Technical Reports Server (NTRS)

    Sanii, Babak

    2001-01-01

    A correlation between near-IR atmospheric attenuation measurements made by the Atmospheric Visibility Monitor (AVM) at the Table Mountain Facility and airport surface weather observations at Edwards Air Force Base has been performed. High correlations (over 0.93) exist between the simultaneous Edwards observed sky cover and the average AVM measured attenuations over the course of the 10 months analyzed. The statistical relationship between the data-sets allows the determination of coarse attenuation statistics from the surface observations, suggesting that such statistics may be extrapolated from any surface weather observation site, Furthermore, a superior technique for converting AVM images to attenuation values by way of MODTRAN predictions has been demonstrated.

  14. 1990 Weatherization Assistance Program monitoring. Final report

    SciTech Connect

    Samuels, L.S.

    1992-06-19

    The fiscal year 1990 DOE weatherization programs were monitored in Indiana, Ohio, and Wisconsin. The focus of the monitoring was on a total of 18 subgrantees. Separate reports on the monitoring completed on each site was submitted as well as the final summary report for each state. The scope of monitoring consisted of a review of current contracts, budgets, program operating procedures, staffing, inventory control, financial and procurement procedures, review of client files and audit reports, inspection of completed dwelling units and assessment of monitoring, training, and technical assistance provided by the grantees. A random sampling of completed units were selected and visits were made to inspect these weatherized dwellings.

  15. Weather Information Communications (WINCOMM) Overview and Status

    NASA Technical Reports Server (NTRS)

    Martzaklis, K.

    2003-01-01

    The second annual project review of Weather Information Communications (WINCOMM) is presented. The topics of discussion include: 1) In-Flight Weather Information; 2) System Elements; 3) Technology Investment Areas; 4) NAS Information Exchange; 5) FIS Datalink Architecture Analyses; 6) Hybrid FIS Datalink Architecture; 7) FIS Datalink Architecture Analyses; 8) Air Transport: Ground and Satellite-based Datalinks; 9) General Aviation: Ground and Satellite-based Datalinks; 10) Low Altitude AutoMET Reporting; 11) AutoMET: Airborne-based Datalinks; 12) Network Protocols Development; and 13) FAA/NASA Collaboration. A summary of WINCOMM is also included. This paper is in viewgraph form.

  16. Space Weather Effects of Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Iyer, K. N.; Jadav, R. M.; Jadeja, A. K.; Manoharan, P. K.; Sharma, Som; Vats, Hari Om

    2006-09-01

    This paper describes the space weather effects of a major CME which was accompanied by extremely violent events on the Sun. The signatures of the event in the interplanetary medium (IPM) sensed by Ooty Radio Telescope, the solar observations by LASCO coronagraph onboard SOHO, GOES X-ray measurements, satellite measurements of the interplanetary parameters, GPS based ionospheric measurements, the geomagnetic storm parameter Dst and ground based ionosonde data are used in the study to understand the space weather effects in the different regions of the solar-terrestrial environment. The effects of this event are compared and possible explanations attempted.

  17. Research relative to weather radar measurement techniques

    NASA Technical Reports Server (NTRS)

    Smith, Paul L.

    1992-01-01

    Research relative to weather radar measurement techniques, which involves some investigations related to measurement techniques applicable to meteorological radar systems in Thailand, is reported. A major part of the activity was devoted to instruction and discussion with Thai radar engineers, technicians, and meteorologists concerning the basic principles of radar meteorology and applications to specific problems, including measurement of rainfall and detection of wind shear/microburst hazards. Weather radar calibration techniques were also considered during this project. Most of the activity took place during two visits to Thailand, in December 1990 and February 1992.

  18. How MAG4 Improves Space Weather Forecasting

    NASA Technical Reports Server (NTRS)

    Falconer, David; Khazanov, Igor; Barghouty, Nasser

    2013-01-01

    Dangerous space weather is driven by solar flares and Coronal Mass Ejection (CMEs). Forecasting flares and CMEs is the first step to forecasting either dangerous space weather or All Clear. MAG4 (Magnetogram Forecast), developed originally for NASA/SRAG (Space Radiation Analysis Group), is an automated program that analyzes magnetograms from the HMI (Helioseismic and Magnetic Imager) instrument on NASA SDO (Solar Dynamics Observatory), and automatically converts the rate (or probability) of major flares (M- and X-class), Coronal Mass Ejections (CMEs), and Solar Energetic Particle Events.

  19. Chemical weathering within high mountain depositional structures

    NASA Astrophysics Data System (ADS)

    Emberson, R.; Hovius, N.; Hsieh, M.; Galy, A.

    2013-12-01

    Material eroded from active mountain belts can spend extended periods in depositional structures within the mountain catchments before reaching its final destination. This can be in the form of colluvial fills, debris fans, or alluvial valley fills and terraces. The existence of these landforms is testament to the catastrophic nature of the events that lead to their formation. Sourced by landslides or debris flows, the material that forms them is in many cases either unweathered or incompletely weathered (e.g. Hsieh and Chyi 2010). Due to their porosity and permeability, these deposits likely serve as locations for extensive chemical weathering within bedrock landscapes. Recent studies considering the weathering flux from active mountain belts (e.g. Calmels et al. 2011) have distinguished between shallow and deep groundwater in terms of the contribution to the solute budget from a catchment; in this study we have attempted to more tightly constrain the sources of these groundwater components in the context of the previously mentioned depositional structures. We have collected water samples from a large number of sites within the Chen-you-lan catchment (370 km2) in central west Taiwan to elucidate the location of chemical weathering as well as how the sourcing of weathering products varies depending on the meteorological conditions. Central Taiwan has good attributes for this work considering both the extremely active tectonics and tropical climate, (including extensive cyclonic activity) which stimulate both extensive physical erosion (Dadson et al. 2003) and chemical weathering (Calmels et al. 2011). The Chen-you-lan catchment in particular contains some of the largest alluvial deposits inside the Taiwan mountain belt (Hsieh and Chyi 2010). Our preliminary results suggest that weathering within intramontane deposits may be a significant source of solutes, with the hyporheic systems within mountain rivers of particular import. This input of solutes occurs over

  20. Cockpit display of hazardous weather information

    NASA Technical Reports Server (NTRS)

    Hansman, R. John, Jr.; Wanke, Craig

    1990-01-01

    Information transfer and display issues associated with the dissemination of hazardous weather warnings are studied in the context of windshear alerts. Operational and developmental windshear detection systems are briefly reviewed. The July 11, 1988 microburst events observed as part of the Denver Terminal Doppler Weather Radar (TDWR) operational evaluation are analyzed in terms of information transfer and the effectiveness of the microburst alerts. Information transfer, message content and display issues associated with microburst alerts generated from ground based sources are evaluated by means of pilot opinion surveys and part task simulator studies.

  1. Cockpit display of hazardous weather information

    NASA Technical Reports Server (NTRS)

    Hansman, R. John, Jr.; Wanke, Craig

    1991-01-01

    Information transfer and display issues associated with the dissemination of hazardous weather warnings are studied in the context of wind shear alerts. Operational and developmental wind shear detection systems are briefly reviewed. The July 11, 1988 microburst events observed as part of the Denver Terminal Doppler Weather Radar (TDWR) operational evaluation are analyzed in terms of information transfer and the effectiveness of the microburst alerts. Information transfer, message content and display issues associated with microburst alerts generated from ground based sources (Doppler Radar, Low Level Wind Shear Alert System, and Pilot Reports) are evaluated by means fo pilot opinion surveys and part task simulator studies.

  2. THOR contribution to space weather science

    NASA Astrophysics Data System (ADS)

    Vaivads, Andris; Opgenoorth, Hermann; Retinò, Alessandro; Khotyaintsev, Yuri; Soucek, Jan; Valentini, Francesco; Escoubet, Philippe

    2016-04-01

    Turbulence Heating ObserveR - THOR is a mission proposal to study energy dissipation and particle acceleration in turbulent space plasma. THOR will focus on turbulent plasma in pristine solar wind, bow shock and magnetosheath. The orbit of THOR is tuned to spend long times in those regions allowing THOR to obtain high resolution data sets that can be used also for space weather science. In addition, THOR is designed with enough propellant to reach L1 in the second phase of the mission if necessary. Here we will discuss the space weather science questions that can be addressed and significantly advanced using THOR. Link to THOR: http://thor.irfu.se.

  3. Solar Drivers for Space Weather Operations (Invited)

    NASA Astrophysics Data System (ADS)

    White, S. M.

    2013-12-01

    Most space weather effects can be tied back to the Sun, and major research efforts are devoted to understanding the physics of the relevant phenomena with a long-term view of predicting their occurrence. This talk will focus on the current state of knowledge regarding the solar drivers of space weather, and in particular the connection between the science and operational needs. Topics covered will include the effects of solar ionizing flux on communications and navigation, radio interference, flare forecasting, the solar wind and the arrival of coronal mass ejections at Earth.

  4. Meteorological satellites in support of weather modification

    NASA Technical Reports Server (NTRS)

    Reynolds, D. W.; Vonder Haar, T. H.; Grant, L. O.

    1978-01-01

    During the past several years, many weather modification programs have been incorporating meteorological satellite data into both the operations and the analysis phase of these projects. This has occurred because of the advancement of the satellite as a mesoscale measurement platform, both temporally and spatially, and as the availability of high quality data has increased. This paper surveys the applications of meteorological satellite data to both summer and winter weather modification programs. A description of the types of observations needed by the programs is given, and an assessment of how accurately satellites can determine these necessary parameters is made.

  5. Proposed U.S. Space Weather Budget

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2009-08-01

    The Obama administration's proposed federal budget for fiscal year (FY) 2010 includes $147.6 billion for research and development, which would be an increase of $555 million, or 0.4%, above the enacted 2009 budget. Tucked away in the budget is funding for research and operations related to space weather. The budget, which needs approval by Congress, includes increases for space weather-related initiatives at the U.S. National Science Foundation (NSF) and NOAA and fairly flat funding for NASA.

  6. Accelerated laboratory weathering of acrylic lens materials

    NASA Astrophysics Data System (ADS)

    Arndt, Thomas; Richter, Steffen; Kogler, René; Pasierb, Mike; Walby, Christopher

    2014-09-01

    Flat samples from various PMMA formulations subjected to accelerated laboratory weathering in an "Atlas Xenotest Alpha +" weathering device operating at 3 Sun irradiance remain transparent after 6.48GJ/m2 radiant exposure (300 - 400nm). Transmittance is reduced and yellowness index increases. However, the amount of change depends largely on the PMMA formulation. Higher UV absorber concentrations lead to smaller changes in optical properties. Based on a model of CPV efficiency for a particular power train, relative losses of efficiency are between 1 and 28%. Performance regarding these properties can be linked to the UV absorber type and concentrations used.

  7. Detection and attribution of extreme weather disasters

    NASA Astrophysics Data System (ADS)

    Huggel, Christian; Stone, Dáithí; Hansen, Gerrit

    2014-05-01

    Single disasters related to extreme weather events have caused loss and damage on the order of up to tens of billions US dollars over the past years. Recent disasters fueled the debate about whether and to what extent these events are related to climate change. In international climate negotiations disaster loss and damage is now high on the agenda, and related policy mechanisms have been discussed or are being implemented. In view of funding allocation and effective risk reduction strategies detection and attribution to climate change of extreme weather events and disasters is a key issue. Different avenues have so far been taken to address detection and attribution in this context. Physical climate sciences have developed approaches, among others, where variables that are reasonably sampled over climatically relevant time periods and related to the meteorological characteristics of the extreme event are examined. Trends in these variables (e.g. air or sea surface temperatures) are compared between observations and climate simulations with and without anthropogenic forcing. Generally, progress has been made in recent years in attribution of changes in the chance of some single extreme weather events to anthropogenic climate change but there remain important challenges. A different line of research is primarily concerned with losses related to the extreme weather events over time, using disaster databases. A growing consensus is that the increase in asset values and in exposure are main drivers of the strong increase of economic losses over the past several decades, and only a limited number of studies have found trends consistent with expectations from climate change. Here we propose a better integration of existing lines of research in detection and attribution of extreme weather events and disasters by applying a risk framework. Risk is thereby defined as a function of the probability of occurrence of an extreme weather event, and the associated consequences

  8. Aviation Weather Observations for Supplementary Aviation Weather Reporting Stations (SAWRS) and Limited Aviation Weather Reporting Stations (LAWRS). Federal Meteorological Handbook No. 9.

    ERIC Educational Resources Information Center

    Department of Transportation, Washington, DC.

    This handbook provides instructions for observing, identifying, and recording aviation weather at Limited Aviation Weather Reporting Stations (LAWRS) and Supplementary Aviation Weather Reporting Stations (SAWRS). Official technical definitions, meteorological and administrative procedures are outlined. Although this publication is intended for use…

  9. NASA Space Weather Research Center: Addressing the Unique Space Weather Needs of NASA Robotic Missions

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Pulkkinen, A. A.; Kuznetsova, M. M.; Maddox, M. M.; Mays, M. L.; Taktakishvili, A.; Chulaki, A.; Thompson, B. J.; Collado-Vega, Y. M.; Muglach, K.; Evans, R. M.; Wiegand, C.; MacNeice, P. J.; Rastaetter, L.

    2014-12-01

    The Space Weather Research Center (SWRC) has been providing space weather monitoring and forecasting services to NASA's robotic missions since its establishment in 2010. Embedded within the Community Coordinated Modeling Center (CCMC) (see Maddox et al. in Session IN026) and located at NASA Goddard Space Flight Center, SWRC has easy access to state-of-the-art modeling capabilities and proximity to space science and research expertise. By bridging space weather users and the research community, SWRC has been a catalyst for the efficient transition from research to operations and operations to research. In this presentation, we highlight a few unique aspects of SWRC's space weather services, such as addressing space weather throughout the solar system, pushing the frontier of space weather forecasting via the ensemble approach, providing direct personnel and tool support for spacecraft anomaly resolution, prompting development of multi-purpose tools and knowledge bases (see Wiegand et al. in the same session SM004), and educating and engaging the next generation of space weather scientists.

  10. Geochemical investigation of weathering processes in a forested headwater catchment: Mass-balance weathering fluxes

    USGS Publications Warehouse

    Jones, B.F.; Herman, J.S.

    2008-01-01

    Geochemical research on natural weathering has often been directed towards explanations of the chemical composition of surface water and ground water resulting from subsurface water-rock interactions. These interactions are often defined as the incongruent dissolution of primary silicates, such as feldspar, producing secondary weathering products, such as clay minerals and oxyhydroxides, and solute fluxes (Meunier and Velde, 1979). The chemical composition of the clay-mineral product is often ignored. However, in earlier investigations, the saprolitic weathering profile at the South Fork Brokenback Run (SFBR) watershed, Shenandoah National Park, Virginia, was characterized extensively in terms of its mineralogical and chemical composition (Piccoli, 1987; Pochatila et al., 2006; Jones et al., 2007) and its basic hydrology. O'Brien et al. (1997) attempted to determine the contribution of primary mineral weathering to observed stream chemistry at SFBR. Mass-balance model results, however, could provide only a rough estimate of the weathering reactions because idealized mineral compositions were utilized in the calculations. Making use of detailed information on the mineral occurrence in the regolith, the objective of the present study was to evaluate the effects of compositional variation on mineral-solute mass-balance modelling and to generate plausible quantitative weathering reactions that support both the chemical evolution of the surface water and ground water in the catchment, as well as the mineralogical evolution of the weathering profile. ?? 2008 The Mineralogical Society.

  11. Formation of halloysite from feldspar: Low temperature, artificial weathering versus natural weathering

    USGS Publications Warehouse

    Parham, W.E.

    1969-01-01

    Weathering products formed on surfaces of both potassium and plagioclase feldspar (An70), which were continuously leached in a Soxhlet extraction apparatus for 140 days with 7.21 of distilled water per day at a temperature of approximately 78 ??C, are morphologically identical to natural products developed on potassium feldspars weathered under conditions of good drainage in the humid tropics. The new products, which first appear as tiny bumps on the feldspar surface, start to develop mainly at exposed edges but also at apparently random sites on flat cleavage surfaces. As weathering continues, the bumps grow outward from the feldspar surface to form tapered projections, which then develop into wide-based thin films or sheets. The thin sheets of many projections merge laterally to form one continuous flame-shaped sheet. The sheets formed on potassium feldspars may then roll to form tubes that are inclined at a high angle to the feldspar surface. Etch pits of triangular outline on the artificially weathered potassium feldspars serve as sites for development of continuous, non-rolled, hollow tubes. It is inferred from its morphology that this weathering product is halloysite or its primitive form. The product of naturally weathered potassium feldspars is halloysite . 4H2O. The flame-shaped films or sheets formed on artificially weathered plagioclase feldspar do not develop into hollow tubes, but instead give rise to a platy mineral that is most probably boehmite. These plates form within the flame-shaped films, and with continued weathering are released as the film deteriorates. There is no indication from this experiment that platy pseudohexagonal kaolinite forms from any of these minerals under the initial stage of weathering. ?? 1969.

  12. Overview of Space Weather Impacts and NASA Space Weather Center Services and Products

    NASA Technical Reports Server (NTRS)

    Zheng, Y.

    2012-01-01

    The presentation is divided into two major components. First, I will give an overview of space weather phenomenon and their associated impacts. Then I will describe the comprehensive list of products and tools that NASA Space Weather Center has developed by leveraging more than a decade long modeling experience enabled by the Community Coordinated Modeling Center (CCMC) and latest scientific research results from the broad science community. In addition, a summary of the space weather activities we have been engaged in and our operational experience will be provided.

  13. Preparing for and responding to severe weather.

    PubMed

    Sarnese, Paul M

    2013-01-01

    Learning from the experiences of employees of St. John's Hospital, Joplin, MO, which was severely damaged in a devastating tornado, a healthcare system in New Jersey drastically revised its weather emergency preparedness system. The author describes how the system was revised and how it was employed in actual disasters, including Hurricane Sandy. PMID:23513700

  14. Solar Weather Event Modelling and Prediction

    NASA Astrophysics Data System (ADS)

    Messerotti, Mauro; Zuccarello, Francesca; Guglielmino, Salvatore L.; Bothmer, Volker; Lilensten, Jean; Noci, Giancarlo; Storini, Marisa; Lundstedt, Henrik

    2009-11-01

    Key drivers of solar weather and mid-term solar weather are reviewed by considering a selection of relevant physics- and statistics-based scientific models as well as a selection of related prediction models, in order to provide an updated operational scenario for space weather applications. The characteristics and outcomes of the considered scientific and prediction models indicate that they only partially cope with the complex nature of solar activity for the lack of a detailed knowledge of the underlying physics. This is indicated by the fact that, on one hand, scientific models based on chaos theory and non-linear dynamics reproduce better the observed features, and, on the other hand, that prediction models based on statistics and artificial neural networks perform better. To date, the solar weather prediction success at most time and spatial scales is far from being satisfactory, but the forthcoming ground- and space-based high-resolution observations can add fundamental tiles to the modelling and predicting frameworks as well as the application of advanced mathematical approaches in the analysis of diachronic solar observations, that are a must to provide comprehensive and homogeneous data sets.

  15. School Science Inspired by Improving Weather Forecasts

    ERIC Educational Resources Information Center

    Reid, Heather; Renfrew, Ian A.; Vaughan, Geraint

    2014-01-01

    High winds and heavy rain are regular features of the British weather, and forecasting these events accurately is a major priority for the Met Office and other forecast providers. This is the challenge facing DIAMET, a project involving university groups from Manchester, Leeds, Reading, and East Anglia, together with the Met Office. DIAMET is part…

  16. Advanced Weather Awareness and Reporting Enhancements

    NASA Technical Reports Server (NTRS)

    Busquets, Anthony M. (Technical Monitor); Ruokangas, Corinne Clinton; Kelly, Wallace E., III

    2005-01-01

    AWARE (Aviation Weather Awareness and Reporting Enhancements) was a NASA Cooperative Research and Development program conducted jointly by Rockwell Scientific, Rockwell Collins, and NASA. The effort culminated in an enhanced weather briefing and reporting tool prototype designed to integrate graphical and text-based aviation weather data to provide clear situational awareness in the context of a specific pilot, flight and equipment profile. The initial implementation of AWARE was as a web-based preflight planning tool, specifically for general aviation pilots, who do not have access to support such as the dispatchers available for commercial airlines. Initial usability tests showed that for VFR (Visual Flight Rules) pilots, AWARE provided faster and more effective weather evaluation. In a subsequent formal usability test for IFR (Instrument Flight Rules) pilots, all users finished the AWARE tests faster than the parallel DUAT tests, and all subjects graded AWARE higher for effectiveness, efficiency, and usability. The decision analysis basis of AWARE differentiates it from other aviation safety programs, providing analysis of context-sensitive data in a personalized graphical format to aid pilots/dispatchers in their complex flight requirements.

  17. Robust Sparse Sensing Using Weather Radar

    NASA Astrophysics Data System (ADS)

    Mishra, K. V.; Kruger, A.; Krajewski, W. F.; Xu, W.

    2014-12-01

    The ability of a weather radar to detect weak echoes is limited by the presence of noise or unwanted echoes. Some of these unwanted signals originate externally to the radar system, such as cosmic noise, radome reflections, interference from co-located radars, and power transmission lines. The internal source of noise in microwave radar receiver is mainly thermal. The thermal noise from various microwave devices in the radar receiver tends to lower the signal-to-noise ratio, thereby masking the weaker signals. Recently, the compressed sensing (CS) technique has emerged as a novel signal sampling paradigm that allows perfect reconstruction of signals sampled at frequencies lower than the Nyquist rate. Many radar and remote sensing applications require efficient and rapid data acquisition. The application of CS to weather radars may allow for faster target update rates without compromising the accuracy of target information. In our previous work, we demonstrated recovery of an entire precipitation scene from its compressed-sensed version by using the matrix completion approach. In this study, we characterize the performance of such a CS-based weather radar in the presence of additive noise. We use a signal model where the precipitation signals form a low-rank matrix that is corrupted with (bounded) noise. Using recent advances in algorithms for matrix completion from few noisy observations, we reconstruct the precipitation scene with reasonable accuracy. We test and demonstrate our approach using the data collected by Iowa X-band Polarimetric (XPOL) weather radars.

  18. Does cold winter weather produce depressive symptoms?

    NASA Astrophysics Data System (ADS)

    Garvey, Michael J.; Goodes, Mike; Furlong, Candy; Tollefson, Gary D.

    1988-06-01

    To examine whether harsh winter weather is associated with depressive symptoms, 45 healthy subjects from Minnesota were compared to 42 subjects from California near the end of the winter season. No differences in the prevalence of depressive symptoms were found between the two groups.

  19. International Collaboration in Space Weather Situational Awareness

    NASA Astrophysics Data System (ADS)

    Boteler, David; Trichtchenko, Larisa; Danskin, Donald

    Space weather is a global phenomena so interntional collaboration is necessary to maintain awareness of potentially dangerous conditions. The Regional Warning Centres (RWCs) of the International Space Environment Service were set up during the International Geophysical Year to alert the scientific community to conditions requiring special measurements. The information sharing continues to this day with URSIGRAM messages exchanged between RWCs to help them produce space weather forecasts. Venturing into space, especially with manned missions, created a need to know about the space environment and particularly radiation dangers to man in space. Responding to this need led to the creation of a network of stations around the world to provide continuous monitoring of solar activity. Solar wind monitoring is now provided by the ACE satellite, operated by one country, but involving international collaborators to bring the information down in real time. Disturbances in the Earth's magnetic field are monitored by many magnetic observatories that are collaborating through INTERMAGNET to provide reliable data. Space weather produces effects on the ionosphere that can interfere with a variety of systems: the International GNSS Service provides information about effects on positioning systems, and the International Space Environment Service is providing information about iono-spheric absorption, particularly for trans-polar airline operations. The increasing availability of internet access, even at remote locations, is making it easier to obtain the raw information. The challenge now is how to integrate that information to provide effective international situational awareness of space weather.

  20. Biogeochemical weathering under ice: Size matters

    NASA Astrophysics Data System (ADS)

    Wadham, J. L.; Tranter, M.; Skidmore, M.; Hodson, A. J.; Priscu, J.; Lyons, W. B.; Sharp, M.; Wynn, P.; Jackson, M.

    2010-09-01

    The basal regions of continental ice sheets are gaps in our current understanding of the Earth's biosphere and biogeochemical cycles. We draw on existing and new chemical data sets for subglacial meltwaters to provide the first comprehensive assessment of sub-ice sheet biogeochemical weathering. We show that size of the ice mass is a critical control on the balance of chemical weathering processes and that microbial activity is ubiquitous in driving dissolution. Carbonate dissolution fueled by sulfide oxidation and microbial CO2 dominate beneath small valley glaciers. Prolonged meltwater residence times and greater isolation characteristic of ice sheets lead to the development of anoxia and enhanced silicate dissolution due to calcite saturation. We show that sub-ice sheet environments are highly geochemically reactive and should be considered in regional and global solute budgets. For example, calculated solute fluxes from Antarctica (72-130 t yr-1) are the same order of magnitude as those from some of the world's largest rivers and rates of chemical weathering (10-17 t km-2 yr-1) are high for the annual specific discharge (2.3-4.1 × 10-3 m). Our model of chemical weathering dynamics provides important information on subglacial biodiversity and global biogeochemical cycles and may be used to design strategies for the first sampling of Antarctic Subglacial Lakes and other sub-ice sheet environments for the next decade.

  1. Research relative to weather radar measurement techniques

    NASA Technical Reports Server (NTRS)

    Smith, Paul L.

    1992-01-01

    This grant provides for some investigations related to weather radar measurement techniques applicable to meteorological radar systems in Thailand. Quality data are needed from those systems to support TRMM and other scientific investigations. Activities carried out during a trip to the radar facilities at Phuket are described.

  2. MSATT Workshop on Chemical Weathering on Mars

    NASA Technical Reports Server (NTRS)

    Burns, Roger (Editor); Banin, Amos (Editor)

    1992-01-01

    The topics covered with respect to chemical weathering on Mars include the following: Mars soil, mineralogy, spectroscopic analysis, clays, silicates, oxidation, iron oxides, water, chemical reactions, geochemistry, minerals, Mars atmosphere, atmospheric chemistry, salts, planetary evolution, volcanology, Mars volcanoes, regolith, surface reactions, Mars soil analogs, carbonates, meteorites, and reactivity.

  3. The Quest for the Perfect Weather Forecaster

    ERIC Educational Resources Information Center

    Kahl, Jonathan; Horwitz, Kevin; Berg, Craig; Gruhl, Mary

    2004-01-01

    It is said that meteorology is the only profession where a person can be wrong half the time and still keep his or her job. The truth is not quite so bleak, but one can still ask, "Just how accurate are weather forecasters, anyway?" This article presents two projects for middle level students to investigate this issue in a hands-on,…

  4. Using Satellite Data in Weather Forecasting: I

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Suggs, Ronnie J.; Lecue, Juan M.

    2006-01-01

    The GOES Product Generation System (GPGS) is a set of computer codes and scripts that enable the assimilation of real-time Geostationary Operational Environmental Satellite (GOES) data into regional-weather-forecasting mathematical models. The GPGS can be used to derive such geophysical parameters as land surface temperature, the amount of precipitable water, the degree of cloud cover, the surface albedo, and the amount of insolation from satellite measurements of radiant energy emitted by the Earth and its atmosphere. GPGS incorporates a priori information (initial guesses of thermodynamic parameters of the atmosphere) and radiometric measurements from the geostationary operational environmental satellites along with mathematical models of physical principles that govern the transfer of energy in the atmosphere. GPGS solves the radiative-transfer equation and provides the resulting data products in formats suitable for use by weather-forecasting computer programs. The data-assimilation capability afforded by GPGS offers the potential to improve local weather forecasts ranging from 3 hours to 2 days - especially with respect to temperature, humidity, cloud cover, and the probability of precipitation. The improvements afforded by GPGS could be of interest to news media, utility companies, and other organizations that utilize regional weather forecasts.

  5. Extreme Convective Weather in Future Decades

    NASA Astrophysics Data System (ADS)

    Gadian, Alan; Burton, Ralph; Groves, James; Blyth, Alan; Warner, James; Holland, Greg; Bruyere, Cindy; Done, James; Thielen, Jutta

    2016-04-01

    WISER (Weather Climate Change Impact Study at Extreme Resolution) is a project designed to analyse changes in extreme weather events in a future climate, using a weather model (WRF) which is able to resolve small scale processes. Use of a weather model is specifically designed to look at convection which is of a scale which cannot be resolved by climate models. The regional meso-scale precipitation events, which are critical in understanding climate change impacts will be analysed. A channel domain outer model, with a resolution of ~ 20km in the outer domain drives an inner domain of ~ 3 km resolution. Results from 1989-1994 and 2020-2024 and 2030-2034 will be presented to show the effects of extreme convective events over Western Europe. This presentation will provide details of the project. It will present data from the 1989-1994 ERA-interim and CCSM driven simulations, with analysis of the future years as defined above. The representation of pdfs of extreme precipitation, Outgoing Longwave Radiation and wind speeds, with preliminary comparison with observations will be discussed. It is also planned to use the output to drive the EFAS (European Flood model) to examine the predicted changes in quantity and frequency of severe and hazardous convective rainfall events and leading to the frequency of flash flooding due to heavy convective precipitation.

  6. Developing Effective Communications about Extreme Weather Risks.

    NASA Astrophysics Data System (ADS)

    Bruine de Bruin, W.

    2014-12-01

    Members of the general public often face complex decisions about the risks that they face, including those associated with extreme weather and climate change adaptation. Scientific experts may be asked to develop communications with the goal of improving people's understanding of weather and climate risks, and informing people's decisions about how to protect against these risks. Unfortunately, scientific experts' communication efforts may fail if they lack information about what people need or want to know to make more informed decisions or what wording people prefer use to describe relevant concepts. This presentation provides general principles for developing effective risk communication materials that aim for widespread dissemination, such as brochures and websites. After a brief review of the social science evidence on how to design effective risk communication materials, examples will focus on communications about extreme weather events and climate change. Specifically, data will be presented from ongoing projects on flood risk perception, public preparedness for heat waves, and public perceptions of climate change. The presentation will end with specific recommendations about how to improve recipients' understanding about risks and inform decisions. These recommendations should be useful to scientific experts who aim to communicate about extreme weather, climate change, or other risks.

  7. A Community Planning Guide to Weatherization.

    ERIC Educational Resources Information Center

    Community Services Administration, Washington, DC.

    This publication of the Community Services Administration is a guide for Community Action Agencies (CAA's) programs for home energy conservation. CAA's involved with renovation of dwellings in poor and depressed areas are given in this guide and step-by-step instructions for administering their weatherization programs. Contents include: (1) a…

  8. An Electronic Weather Vane for Field Science

    ERIC Educational Resources Information Center

    Burman, J.; Talbert, R.; Carlton, K.

    2014-01-01

    This paper details the construction of a weather vane for the measurement of wind direction in field situations. The purpose of its construction was to analyse how wind direction affected the attractiveness of an insect pheromone in a dynamic outdoor environment, where wind could be a significant contributor to odour movement. The apparatus…

  9. Dual-Rate Transmission Reduces Weather Effects

    NASA Technical Reports Server (NTRS)

    Posner, E. C.

    1984-01-01

    Scheme ensures maximum data received on average. Dual-rate scheme for maximizing data returned during spacecraft mission, adaptable, as is or with modifications, to high-frequency terrestrial data transmission. Data rate fixed in advance at minimum value guarantees reasonable prospect of success during bad weather. Dualrate strategy yields net data rate 2.5 times best achievable with single transmission rate.

  10. Severe storms and local weather research

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Developments in the use of space related techniques to understand storms and local weather are summarized. The observation of lightning, storm development, cloud development, mesoscale phenomena, and ageostrophic circulation are discussed. Data acquisition, analysis, and the development of improved sensor and computer systems capability are described. Signal processing and analysis and application of Doppler lidar data are discussed. Progress in numerous experiments is summarized.

  11. Discussion of long-range weather prediction

    SciTech Connect

    Canavan, G.H.

    1998-09-10

    A group of scientists at Los Alamos have held a series of discussions of the issues in and prospects for improvements in Long-range Weather Predictions Enabled by Proving of the Atmosphere at High Space-Time Resolution. The group contained the requisite skills for a full evaluation, although this report presents only an informal discussion of the main technical issues. The group discussed all aspects of the proposal, which are grouped below into the headings: (1) predictability; (2) sensors and satellites, (3) DIAL and atmospheric sensing; (4) localized transponders; and (5) summary and integration. Briefly, the group agreed that the relative paucity of observations of the state of the atmosphere severely inhibits the accuracy of weather forecasts, and any program that leads to a more dense and uniform observational network is welcome. As shown in Long-range Weather more dense and uniform observational network is welcome. As shown in Long-range Weather Predictions, the pay-back of accurate long-range forecasts should more than justify the expenditure associated with improved observations and forecast models required. The essential step is to show that the needed technologies are available for field test and space qualification.

  12. Cold weather properties and performance of biodiesel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is an alternative fuel made from vegetable oil or animal fat that can be employed in compression-ignition (diesel) engines. Biodiesel is more prone to start-up and operability problems during cold weather than conventional diesel fuels (petrodiesel). This work reviews impacts that exposu...

  13. CO2 mitigation via accelerated limestone weathering

    USGS Publications Warehouse

    Rau, G.H.; Knauss, K.G.; Langer, W.H.; Caldeira, K.

    2004-01-01

    The climate and environmental impacts of the current, carbon-intensive energy usage demands that effective and practical energy alternatives and CO2 mitigation strategies be found. A discussion on CO2 mitigation via accelerated limestone weathering covers limestone and seawater availability and cost; reaction rates and densities; effectiveness in CO2 sequestration; and environmental impacts and benefits.

  14. ESTIMATING URBAN WET WEATHER POLLUTANT LOADING

    EPA Science Inventory

    This paper presents procedures for estimating pollutant loads emanating from wet-weather flow discharge in urban watersheds. Equations are presented for: annual volume of litter and floatables; the quantity of sand from highway runoff; the quantity of dust-and-dirt accumulation ...

  15. What Research Says: Children's Conceptions of Weather.

    ERIC Educational Resources Information Center

    Stepans, Joseph; Kuehn, Christine

    1985-01-01

    Children in grades two and five explained such weather phenomena as wind, clouds, thunder, lightning, rain, snow, and rainbows during interviews. Results indicate that most students in both grades were at a stage of nonreligious finalism and do not use true causality in explanations. Implications for teaching are discussed. (DH)

  16. The association between arthritis and the weather

    NASA Astrophysics Data System (ADS)

    Aikman, Helen

    Despite the pervasiveness of the idea that arthritis is influenced by the weather, scientific evidence on the matter is sparse and non-conclusive. This study, conducted in the Australian inland city of Bendigo, sought to establish a possible relationship between the pain and rigidity of arthritis and the weather variables of temperature, relative humidity, barometric pressure, wind speed and precipitation. Pain and rigidity levels were scored by 25 participants with osteoarthritis and/or rheumatoid arthritis four times per day for 1 month from each season. Mean pain and rigidity scores for each time of each day were found to be correlated with the meteorological data. Correlations between mean symptoms and temperature and relative humidity were significant (P <0.001). Time of day was included in the analysis. Stepwise multiple regression analysis indicated that meteorological variables and time of day accounted for 38% of the variance in mean pain and 20% of the variance in mean rigidity when data of all months were considered. A post-study telephone questionnaire indicated 92% of participants perceived their symptoms to be influenced by the weather, while 48% claimed to be able to predict the weather according to their symptoms. Hence, the results suggest (1) decreased temperature is associated with both increased pain and increased rigidity and (2) increased relative himidity is associated with increased pain and rigidity in arthritis sufferers.

  17. 36 CFR 910.71 - Weather protection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true Weather protection. 910.71 Section 910.71 Parks, Forests, and Public Property PENNSYLVANIA AVENUE DEVELOPMENT CORPORATION GENERAL GUIDELINES AND UNIFORM STANDARDS FOR URBAN PLANNING AND DESIGN OF DEVELOPMENT WITHIN THE PENNSYLVANIA...

  18. 36 CFR 910.71 - Weather protection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false Weather protection. 910.71 Section 910.71 Parks, Forests, and Public Property PENNSYLVANIA AVENUE DEVELOPMENT CORPORATION GENERAL GUIDELINES AND UNIFORM STANDARDS FOR URBAN PLANNING AND DESIGN OF DEVELOPMENT WITHIN THE PENNSYLVANIA...

  19. 36 CFR 910.71 - Weather protection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false Weather protection. 910.71 Section 910.71 Parks, Forests, and Public Property PENNSYLVANIA AVENUE DEVELOPMENT CORPORATION GENERAL GUIDELINES AND UNIFORM STANDARDS FOR URBAN PLANNING AND DESIGN OF DEVELOPMENT WITHIN THE PENNSYLVANIA...

  20. A New Perspective on Surface Weather Maps

    ERIC Educational Resources Information Center

    Meyer, Steve

    2006-01-01

    A two-dimensional weather map is actually a physical representation of three-dimensional atmospheric conditions at a specific point in time. Abstract thinking is required to visualize this two-dimensional image in three-dimensional form. But once that visualization is accomplished, many of the meteorological concepts and processes conveyed by the…

  1. Weather and the W.C.

    ERIC Educational Resources Information Center

    Mogil, H. Michael

    1983-01-01

    Types of weather phenomena that can be demonstrated in a home bathroom are discussed. For example, if the bathroom is small enough, warm, moist air can be seen accumulating in the upper part of the room after taking a hot shower. (Author/JN)

  2. Solar Energy: Solar and the Weather.

    ERIC Educational Resources Information Center

    Knapp, Henry H., III

    This module on solar and the weather is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies.…

  3. Briefing highlights space weather risks to GPS

    NASA Astrophysics Data System (ADS)

    Tretkoff, Ernie

    2011-07-01

    Solar storms, which are expected to increase as the Sun nears the most active phase of the solar cycle, can disrupt a variety of technologies on which society relies. Speakers at a 22 June briefing on Capitol Hill in Washington, D. C., focused on how space weather can affect the Global Positioning System (GPS), which is used in a wide range of industries, including commercial air travel, agriculture, national security, and emergency response. Rocky Stone, chief technical pilot for United Airlines, noted that GPS allows more aircraft to be in airspace, saves fuel, and helps aircraft move safely on runways. “Improvements in space weather forecasting need to be pursued,” he said. Precision GPS has also “changed the whole nature of farming,” said Ron Hatch, Director of Navigation Systems, NavCom Technology/John Deere. GPS makes it possible for tractors to be driven in the most efficient paths and for fertilizer and water to be applied precisely to the areas that most need them. Space weather-induced degradation of GPS signals can cause significant loss to farms that rely on GPS. Elizabeth Zimmerman, Deputy Associate Administrator for the Office of Response and Recovery at the Federal Emergency Management Agency (FEMA), described how FEMA relies on GPS for disaster recovery. The agency is developing an operations plan for dealing with space weather, she said.

  4. Cockpit weather graphics using mobile satellite communications

    NASA Technical Reports Server (NTRS)

    Seth, Shashi

    1993-01-01

    Many new companies are pushing state-of-the-art technology to bring a revolution in the cockpits of General Aviation (GA) aircraft. The vision, according to Dr. Bruce Holmes - the Assistant Director for Aeronautics at National Aeronautics and Space Administration's (NASA) Langley Research Center, is to provide such an advanced flight control system that the motor and cognitive skills you use to drive a car would be very similar to the ones you would use to fly an airplane. We at ViGYAN, Inc., are currently developing a system called the Pilot Weather Advisor (PWxA), which would be a part of such an advanced technology flight management system. The PWxA provides graphical depictions of weather information in the cockpit of aircraft in near real-time, through the use of broadcast satellite communications. The purpose of this system is to improve the safety and utility of GA aircraft operations. Considerable effort is being extended for research in the design of graphical weather systems, notably the works of Scanlon and Dash. The concept of providing pilots with graphical depictions of weather conditions, overlaid on geographical and navigational maps, is extremely powerful.

  5. Characterising Cold Weather for the UK mainland

    NASA Astrophysics Data System (ADS)

    Fradley, Kate; Dacre, Helen; Ambaum, Maarten

    2016-04-01

    Excess Winter Mortality is a peak in the population's mortality rate during winter months and is correlated with low outdoor temperatures. Excess Winter Mortality has adverse impacts, including increased demand on health services. The management of resources for such increased demands maybe improved through incorporation of weather forecasting information to advanced warnings. For the UK, prolonged cold periods are associated with easterly advection, and high pressure systems. Characterisation of the synoptic conditions associated with cold periods is important to understand forecast performance. Principal Component Analysis has been used with mean sea level pressure from 35 years of ERA interim reanalysis to capture synoptic variability on a continuous scale. Cold events in the North and South of the UK mainland have been identified as having different synoptic variability using this method. Furthermore extending the Principal Component Analysis to investigate the skill of forecasts has identified systematic under prediction of some cold weather synoptic conditions. Ensemble forecasts are used to quantify the uncertainty associated with these cold weather synoptic conditions. This information maybe be used to improve the value of existing weather warnings.

  6. CME front and severe space weather

    NASA Astrophysics Data System (ADS)

    Balan, N.; Skoug, R.; Tulasi Ram, S.; Rajesh, P. K.; Shiokawa, K.; Otsuka, Y.; Batista, I. S.; Ebihara, Y.; Nakamura, T.

    2014-12-01

    Thanks to the work of a number of scientists who made it known that severe space weather can cause extensive social and economic disruptions in the modern high-technology society. It is therefore important to understand what determines the severity of space weather and whether it can be predicted. We present results obtained from the analysis of coronal mass ejections (CMEs), solar energetic particle (SEP) events, interplanetary magnetic field (IMF), CME-magnetosphere coupling, and geomagnetic storms associated with the major space weather events since 1998 by combining data from the ACE and GOES satellites with geomagnetic parameters and the Carrington event of 1859, the Quebec event of 1989, and an event in 1958. The results seem to indicate that (1) it is the impulsive energy mainly due to the impulsive velocity and orientation of IMF Bz at the leading edge of the CMEs (or CME front) that determine the severity of space weather. (2) CMEs having high impulsive velocity (sudden nonfluctuating increase by over 275 km s-1 over the background) caused severe space weather (SvSW) in the heliosphere (failure of the solar wind ion mode of Solar Wind Electron Proton Alpha Monitor in ACE) probably by suddenly accelerating the high-energy particles in the SEPs ahead directly or through the shocks. (3) The impact of such CMEs which also show the IMF Bz southward from the leading edge caused SvSW at the Earth including extreme geomagnetic storms of mean DstMP < -250 nT during main phases, and the known electric power outages happened during some of these SvSW events. (4) The higher the impulsive velocity, the more severe the space weather, like faster weather fronts and tsunami fronts causing more severe damage through impulsive action. (5) The CMEs having IMF Bz northward at the leading edge do not seem to cause SvSW on Earth, although, later when the IMF Bz turns southward, they can lead to super geomagnetic storms of intensity (Dstmin) less than even -400 nT.

  7. Space weathering on S-complex asteroids

    NASA Astrophysics Data System (ADS)

    Willman, M.

    Space weathering was hypothesized to reconcile the different spectra from meteorites and their putative source, S-complex asteroids. We measured a new space weathering time and the first regolith gardening time for changing surface color on S-complex asteroids. We also measured the principal component color (PC1) range over which space weathering operates. Our space weathering models evolved from the single tau model with only one weathering time, to the dual tau model incorporating the gardening time, and finally to the enhanced dual tau model using a probability density function to represent an asteroid's PC1 and age. The first two models were fit to pre-existing data plus new observations of the youngest families and even younger sub-Myr clusters. The third model used a sample common to SMASS and SDSS. The enhanced dual tau model best represents space weathering but it was fit to a small data sample of limited size and age range. Therefore we believe that the best estimate of space weathering and gardening times comes from the dual tau model which yields 960 +/- 160 Myr and 2000 +/- 290 Myr, respectively. On the other hand, the enhanced dual tau model solved a PC1 truncation problem when inverting the dual tau model, so we prefer its initial and maximum likely PC 1 values of --0.05 +/- 0.01 and 1.29 +/- 0.04. We independently calculated an average resurfacing time of tau g = 270 +/- 110 My from impact rates and cratering physics that is 7x smaller than our measured gardening time. Hence, we postulate that due to internal porosity, small asteroids absorb impactors up to 10--20 m diameter through inelastic deformation without producing significant ejecta blankets, a 'honeycomb' mechanism. This may also explain the paucity of craters <200 m on Eros. The only data point not fitting our models was from asteroid two-members families that have an average color of PC1 = 0.49 +/- 0.03, 5sigma redder than predicted. This anomaly may be due to a different formation

  8. Receivers Gather Data for Climate, Weather Prediction

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Signals from global positioning system (GPS) satellites are now being used for more than just location and navigation information. By looking at the radio waves from GPS satellites, a technology developed at NASA s Jet Propulsion Laboratory (JPL) not only precisely calculates its position, but can also use a technique known as radio occultation to help scientists study the Earth s atmosphere and gravity field to improve weather forecasts, monitor climate change, and enhance space weather research. The University Corporation for Atmospheric Research (UCAR), a nonprofit group of universities in Boulder, Colorado, compares radio occultation to the appearance of a pencil when viewed though a glass of water. The water molecules change the path of visible light waves so that the pencil appears bent, just like molecules in the air bend GPS radio signals as they pass through (or are occulted by) the atmosphere. Through measurements of the amount of bending in the signals, scientists can construct detailed images of the ionosphere (the energetic upper part of the atmosphere) and also gather information about atmospheric density, pressure, temperature, and moisture. Once collected, this data can be input into weather forecasting and climate models for weather prediction and climate studies. Traditionally, such information is obtained through the use of weather balloons. In 1998, JPL started developing a new class of GPS space science receivers, called Black Jack, that could take precise measurements of how GPS signals are distorted or delayed along their way to the receiver. By 2006, the first demonstration of a GPS radio occultation constellation was launched through a collaboration among Taiwan s National Science Council and National Space Organization, the U.S. National Science Foundation, NASA, the National Oceanic and Atmospheric Administration (NOAA), and other Federal entities. Called the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC

  9. What will be the weather like tomorrow?

    NASA Astrophysics Data System (ADS)

    Christelle, Guilloux

    2014-05-01

    Since June 2010, our school is part of the network '"météo à l'école'": it hosts an autonomous weather station, approved by Météo France , which measures continuously the temperature and precipitation. The data is transmitted by a GSM module to a computer server. After its validation by Météo France, it is send online every day on a public accessible website : http://www.edumeteo.org/ The MPS Education ( Scientific Methods and Practices) in junior high school classes (one hour and half per week throughout the school year ) makes full use of data from the networks '"météo à l'école'" data and Météo France. Three scientific disciplines :; Mathematics, Life and Earth Sciences, Physical Sciences and Chemistry are part of a schedule defined after consultation and educational coherence to enable students to: - Discovering and understanding the operation of the sensors station, weather satellites ... - Operating satellite images, studying of the atmosphere and weather phenomena (formation of a storm, for example) - Operating collected data (networks 'météo à l'école' and Météo France) to identify climatic differences between regions, seasons, and their effects on living beings (study of the greenhouse effect and climate warming among others). The ultimate goal is to discover used tools and data to produce a weather forecast. We work for these purposes with the Cité de l'Espace in Toulouse (weather Pole) and the head forecaster Meteo France Merignac.

  10. Impact of weather variability on nitrate leaching

    NASA Astrophysics Data System (ADS)

    Richards, Karl; Premrov, Alina; Hackett, Richard; Coxon, Catherine

    2016-04-01

    The loss of nitrate (NO3 - N) to water via leaching and overland flow contributes to eutrophication of freshwaters, transitional and near coastal waters with agriculture contributing significantly to nitrogen (N) loading to these water. Environmental regulations, such as the Nitrates and Water Framework Directives, have increased constraints on farmers to improve N management in regions at risk of NO3--N loss to water. In addition, farmers also have to manage their systems within a changing climate as the imapcts of climate change begin to impact resulting in more frequent extreme events such as floods and droughts. The objective of this study was to investigate the link between weather volatility and the concentration of leached NO3--N spring barley. Leaching was quantified under spring barley grown on a well-drained, gravelly sandy soil using ceramic cup samplers over 6 drainage years under the same farming practices and treatments. Soil solution NO3--N concentrations under spring barley grown by conventional inversion ploughing and reduced tillage were compared to weather parameters over the period. Weather was recorded at a national Met Eireann weather station on site. Soil solution NO3--N varied significantly between years. Within individual years NO3--N concentrations varied over the drainage season, with peak concentrations generally observed in the autumn time, decreasing thereafter. Under both treatments there was a three-fold difference in mean annual soil solution NO3--N concentration over the 6 years with no change in the agronomic practices (crop type, tillage type and fertiliser input). Soil solution nitrate concentrations were significantly influenced by weather parameters such as rainfall, effective drainage and soil moisture deficit. The impact of climate change in Ireland could lead to increased NO3--N loss to water further exacerbating eutrophication of sensitive estuaries. The increased impact on eutrophication of waters, related to climatic

  11. Development of a Space Weather forecast service

    NASA Astrophysics Data System (ADS)

    Kirsch, Peter; Isles, John; Burge, Christina

    2014-05-01

    Space weather describes changes in the near-Earth space environment, it includes the monitoring of magnetic fields, plasma, radiation and other matter. Ejections of plasma from the Sun and magnetic storms at the Earth can increase the number of high energy particles trapped in the Earth's magnetic field; these events can present risks and hazards to space-borne instrumentation and personnel. Improved knowledge of space weather processes acquired through monitoring via both satellite and ground based instruments and related collaborative research projects (European Union Framework 7 - SPACECAST) has allowed the further development of forecasting models such as the British Antarctic Survey (BAS) Radiation Belt model. A system is being developed which enables real-time access to a space weather forecast service. This service will provide a 3-hourly forward look, updated hourly. To enable this forecast, systems are in place to gather, in real-time, ancillary data required for input into the BAS model, in particular data from the GOES satellite instruments. Auxiliary information from other satellites (e.g. ACE) and ground based magnetometers are also gathered and presented to assist in the interpretation of current space weather activity. BAS is working in collaboration with satellite operators and other interested parties to provide an interface which will inform them, in a timely fashion, of events that may require mitigating action to prevent possible extensive (and costly) effects to, for example, communication services. Data can be obtained via a web service, or viewed directly via a browser interface. In addition, it is anticipated that a post-event analysis suite be available, enabling the more detailed view of recent and past events and the possibility of running the model to "replay" periods of space weather history.

  12. Innovative Information Technology for Space Weather Research

    NASA Astrophysics Data System (ADS)

    Wang, H.; Qu, M.; Shih, F.; Denker, C.; Gerbessiotis, A.; Lofdahl, M.; Rees, D.; Keller, C.

    2004-05-01

    Solar activity is closely related to the near earth environment -- summarized descriptively as space weather. Changes in space weather have adverse effect on many aspects of life and systems on earth and in space. Real-time, high-quality data and data processing would be a key element to forecast space weather promptly and accurately. Recently, we obtained a funding from US National Science Foundation to apply innovative information technology for space weather prediction. (1) We use the technologies of image processing and pattern recognition, such as image morphology segmentation, Support Vector Machines (SVMs), and neural networks to detect and characterize three important solar activities in real-time: filament eruptions, flares, and emerging flux regions (EFRs). Combining the real time detection with the recent statistical study on the relationship among filament eruptions, flares, EFRs, coronal mass ejections (CMEs), and geomagnetic storms, we are establishing real time report of solar events and automatic forecasting of earth directed CMEs and subsequent geomagnetic storms. (2) We combine state-of-art parallel computing techniques with phase diverse speckle imaging techniques, to yield near real-time diffraction limited images with a cadence of approximately 10 sec. We utilize the multiplicity of parallel paradigms to optimize the calculation of phase diverse speckle imaging to improve calculation speed. With such data, we can monitor flare producing active regions continuously and carry out targeted studies of the evolution and flows in flare producing active regions. (3) We are developing Web based software tools to post our processed data, events and forecasting in real time, and to be integrated with current solar activity and space weather prediction Web pages at BBSO. This will also be a part of Virtual Solar Observatory (VSO) being developed by the solar physics community. This research is supported by NSF ITR program.

  13. Weather and emotional state: a search for associations between weather and calls to telephone counseling services

    NASA Astrophysics Data System (ADS)

    Driscoll, Dennis; Stillman, Daniel

    2002-08-01

    Previous research has revealed that an emotional response to weather might be indicated by calls to telephone counseling services. We analyzed call frequency from such "hotlines", each serving communities in a major metropolitan area of the United States (Detroit, Washington DC, Dallas and Seattle). The periods examined were all, or parts of, the years 1997 and 1998. Associations with subjectively derived synoptic weather types for all cities except Seattle, as well as with individual weather elements [cloudiness (sky cover), precipitation, windspeed, and interdiurnal temperature change] for all four cities, were investigated. Analysis of variance and t-tests (significance of means) were applied to test the statistical significance of differences. Although statistically significant results were obtained in scattered instances, the total number was within that expected by chance, and there was little in the way of consistency to these associations. One clear exception was the increased call frequency during destructive (severe) weather, when there is obvious concern about the damage done by it.

  14. Where fast weathering creates thin regolith and slow weathering creates thick regolith

    SciTech Connect

    Bazilevskaya, Ekaterina; Lebedeva, Marina; Pavich, Milan; Rother, Gernot; Parkinson, D. Y.; Cole, David; Brantley, S. L.

    2012-01-01

    Weathering disaggregates rock into regolith the fractured or granular earthmaterial that sustains life on the continental land surface. Here, we investigate what controls the depth of regolith formed on ridges of two rock compositions with similar initial porosities in Virginia (USA).A priori, we predicted that the regolith on diabasewould be thicker than on granite because the dominant mineral (feldspar) in the diabase weathers faster than its granitic counterpart. However, weathering advanced 20deeper into the granite than the diabase. The 20-thicker regolith is attributed mainly to connected micron-sized pores, microfractures formed around oxidizing biotite at 20m depth, and the lower iron (Fe) content in the felsic rock. Such porosity allows pervasive advection and deep oxidation in the granite. These observations may explainwhy regolithworldwide is thicker on felsic compared tomafic rock under similar conditions. To understand regolith formationwill require better understanding of such deep oxidation reactions and how they impact fluid flow during weathering.

  15. Reducing Aviation Weather-Related Accidents Through High-Fidelity Weather Information Distribution and Presentation

    NASA Technical Reports Server (NTRS)

    Stough, H. Paul, III; Shafer, Daniel B.; Schaffner, Philip R.; Martzaklis, Konstantinos S.

    2000-01-01

    In February 1997, the US President announced a national goal to reduce the fatal accident rate for aviation by 80% within ten years. The National Aeronautics and Space Administration established the Aviation Safety Program to develop technologies needed to meet this aggressive goal. Because weather has been identified (is a causal factor in approximately 30% of all aviation accidents, a project was established for the development of technologies that will provide accurate, time and intuitive information to pilots, dispatchers, and air traffic controllers to enable the detection and avoidance of atmospheric hazards. This project addresses the weather information needs of general, corporate, regional, and transport aircraft operators. An overview and status of research and development efforts for high-fidelity weather information distribution and presentation is discussed with emphasis on weather information in the cockpit.

  16. A Milestone in Commercial Space Weather: USTAR Center for Space Weather

    NASA Astrophysics Data System (ADS)

    Tobiska, W.; Schunk, R. W.; Sojka, J. J.; Thompson, D. C.; Scherliess, L.; Zhu, L.; Gardner, L. C.

    2009-12-01

    As of 2009, Utah State University (USU) hosts a new organization to develop commercial space weather applications using funding that has been provided by the State of Utah’s Utah Science Technology and Research (USTAR) initiative. The USTAR Center for Space Weather (UCSW) is located on the USU campus in Logan, Utah and is developing innovative applications for mitigating adverse space weather effects in technological systems. Space weather’s effects upon the near-Earth environment are due to dynamic changes in the Sun’s photons, particles, and fields. Of the space environment domains that are affected by space weather, the ionosphere is the key region that affects communication and navigation systems. The UCSW has developed products for users of systems that are affected by space weather-driven ionospheric changes. For example, on September 1, 2009 USCW released, in conjunction with Space Environment Technologies, the world’s first real-time space weather via an iPhone app. Space WX displays the real-time, current global ionosphere total electron content along with its space weather drivers; it is available through the Apple iTunes store and is used around the planet. The Global Assimilation of Ionospheric Measurements (GAIM) system is now being run operationally in real-time at UCSW with the continuous ingestion of hundreds of global data streams to dramatically improve the ionosphere’s characterization. We discuss not only funding and technical advances that have led to current products but also describe the direction for UCSW that includes partnering opportunities for moving commercial space weather into fully automated specification and forecasting over the next half decade.

  17. Widespread Surface Weathering on Early Mars

    NASA Astrophysics Data System (ADS)

    Loizeau, Damien; Carter, John; Mangold, Nicolas; Poulet, François; Rossi, Angelo; Allemand, Pascal; Quantin, Cathy; Bibring, Jean-Pierre

    2014-05-01

    The recent discovery of widespread hydrous clays on Mars indicates that diverse and widespread aqueous environments existed on Mars, from the surface to kilometric depths [1,2]. The study of the past habitability and past climates of the planet requires assessing the importance of sustained surface water vs. subsurface water in its aqueous history. Using remote sensing data, we propose that surface weathering existed on Mars, suggesting that Mars experienced durable episodes of sustained liquid water on its surface. Weathering profiles are identified as vertical sequences of Al-rich clays and Fe/Mg-rich clays in the top tens of meters of the surface, similar to cases of pedogenesis on Earth (e.g. [3,4]). Such localized clay sequences have been reported by other works in 3 regions of Mars [5-8] and a similar origin was also proposed. Their frequency is however likely underestimated due to limitations of orbital investigations and re-surfacing processes. A large survey of the CRISM dataset leaded to a down-selection of ~100 deposits with clear vertical sequences, widely distributed over the southern highlands and grouped in regional clusters [9]. These putative weathering sequences are found either on inter-crater plateaus, on the floor of craters and large basins, or on crater ejectas. We investigated the thickness of the altered sequences, the age of the altered units and the different geological contexts to further understand the weathering process(es). Using few HiRISE DEMs where possible, and CTX DEMs, we find that the thickness of the exposed Al clays is on average of the order of several meters to few tens of meters. The clay sequences reported here are consistent with terrestrial weathering sequences which form under wet climates over geological timescales (>105-107 years). The combined age assessment of the altered unit and the unaltered capping (where present) provides constraints on the age of the weathering itself. All investigated cases point to an

  18. Widespread Surface Weathering on Early Mars

    NASA Astrophysics Data System (ADS)

    Loizeau, D.; Carter, J.; Mangold, N.; Poulet, F.; Rossi, A.; Allemand, P.; Quantin, C.; Bibring, J.

    2013-12-01

    The recent discovery of widespread hydrous clays on Mars indicates that diverse and widespread aqueous environments existed on Mars, from the surface to kilometric depths [1,2]. The study of the past habitability of the planet requires assessing the importance of sustained surface water vs. subsurface water in its aqueous history. Using remote sensing data, we propose that surface weathering existed on Mars, suggesting that Mars experienced durable episodes of sustained liquid water on its surface. Weathering profiles are identified as vertical sequences of Al-rich clays and Fe/Mg-rich clays in the top tens of meters of the surface, similar to cases of pedogenesis on Earth (e.g. [3,4]). Such localized clay sequences have been reported by other works in 3 regions of Mars [5-8] and a similar origin was also proposed. Their frequency is however likely underestimated due to limitations of orbital investigations and re-surfacing processes. A large survey of the CRISM dataset leaded to a down-selection of 104 deposits with clear vertical sequences, widely distributed over the southern highlands and grouped in regional clusters [9]. These putative weathering sequences are found either on inter-crater plateaus, on the floor of craters and large basins, or on crater ejectas. We investigated the thickness of the altered sequences, the age of the altered units and the different geological contexts to further understand the weathering process(es). Using few HiRISE DEMs where possible, and CTX DEMs, we find that the thickness of the exposed Al clays is on average of the order of several meters to few tens of meters. The clay sequences reported here are consistent with terrestrial weathering sequences which form under wet climates over geological timescales (> 105-107 years). The combined age assessment of the altered unit and the unaltered capping (where present) provides constraints on the age of the weathering itself. All investigated cases point to an active weathering

  19. Weathered stony meteorites from Victoria Land, Antarctica, as possible guides to rock weathering on Mars

    NASA Technical Reports Server (NTRS)

    Gooding, J. L.

    1984-01-01

    Parallel studies of Martian geomorphic features and their analogs on Earth continue to be fruitful in deciphering the geologic history of Mars. In the context of rock weathering, the Earth-analog approach is admirably served by the study of meteorites recovered from ice sheets in Antarctica. The weathering environment of Victoria Land possesses several Mars-like attributes. Four of the five Antarctic meteorites being studied contain rust and EETA79005 further possesses a conspicuous, dark, weathering rind on one side. Secondary minerals (rust and salts) occur both on the surfaces and interiors of some of the samples and textural evidence indicates that such secondary mineralization contributed to physical weathering (by salt riving) of the rocks. Several different rust morphologies occur and emphasis is being placed on identifying the phase compositions of the various rust occurrances. A thorough understanding of terrestrial weathering features of the meteorites is a prerequisite for identifying possible Martian weathering features (if such features exist) that might be postulated to occur in some meteorites.

  20. Aviation & Space Weather Policy Research: Integrating Space Weather Observations & Forecasts into Operations

    NASA Astrophysics Data System (ADS)

    Fisher, G.; Jones, B.

    2006-12-01

    The American Meteorological Society and SolarMetrics Limited are conducting a policy research project leading to recommendations that will increase the safety, reliability, and efficiency of the nation's airline operations through more effective use of space weather forecasts and information. This study, which is funded by a 3-year National Science Foundation grant, also has the support of the Federal Aviation Administration and the Joint Planning and Development Office (JPDO) who is planning the Next Generation Air Transportation System. A major component involves interviewing and bringing together key people in the aviation industry who deal with space weather information. This research also examines public and industrial strategies and plans to respond to space weather information. The focus is to examine policy issues in implementing effective application of space weather services to the management of the nation's aviation system. The results from this project will provide government and industry leaders with additional tools and information to make effective decisions with respect to investments in space weather research and services. While space weather can impact the entire aviation industry, and this project will address national and international issues, the primary focus will be on developing a U.S. perspective for the airlines.