Science.gov

Sample records for color albedo flat

  1. The area of applicability of apparatus for analyzing the spectral characteristics of reflection, albedo and color parameters of flat objects

    NASA Astrophysics Data System (ADS)

    Gorbunova, Elena V.; Chertov, Aleksandr N.; Peretyagin, Vladimir S.; Lastovskaia, Elena A.; Korotaev, Valery V.

    2015-03-01

    Quality control of different coatings (colorful, paint, marker, safety, etc.) that are applied to the surface of various objects (both metallic and non-metallic) is an important problem. Also, there is a problem of dealing with counterfeit products. So it's necessary to distinguish the fake replicas of marking from the authentic marking of producer. To solve these problems, we propose an automated apparatus for analysis and control of spectral reflection characteristics, albedo and color parameters of extended (up to 150 mm × 150 mm) flat objects. It allows constructing the color image of the object surface as well as its multispectral images in different regions of the spectrum. Herewith the color of the object surface can be calculated for various standard light sources (A, B, C, D65, E, F2, F7, F11, GE), or to any light source with a predetermined emission spectrum. The paper presents the description of working principles of the proposed apparatus as well as the results of reflection and multispectral analysis of different flat objects.

  2. Albedo and color contrasts on asteroid surfaces

    NASA Technical Reports Server (NTRS)

    Degewij, J.; Tedesco, E. F.; Zellner, B.

    1979-01-01

    Asteroids in general display only small or negligible variations in spectrum or albedo during a rotational cycle. Color variations with rotation are described in the literature but are usually comparable to the noise in the measurements. Twenty-four asteroids have been systematically monitored for such color changes. Only 3 Juno, 4 Vesta, 6 Hebe, 71 Niobe, 349 Dembowska, and 944 Hidalgo display color variations larger than 0.03 mag. In each of these cases the asteroid appears redder near maximum brightness. Of seven asteroids monitored polarimetrically, only 4 Vesta shows a convincing variation, attributed to an albedo change with rotation. The lightcurve can be explained by albedo differences alone; Vesta apparently has a nearly spheroidal shape. Nothwithstanding the above results, the degree of uniformity of most asteroid surfaces is remarkable. If asteroids exist with large discrete domains of ferrosilicate, metallic, and/or carbonaceous material together on their surfaces, they have not yet been identified.

  3. Global color and albedo variations on Io

    NASA Technical Reports Server (NTRS)

    Mcewen, Alfred S.

    1988-01-01

    The present Voyager imaging data multispectral mosaics of Io include global mosaics from each of the Voyager 1 and 2 data sets and a high-resolution mosaic of the region centered on the Ra Patera volcano. The constancy of the disk-integrated color and albedo of Io over recent decades despite volcanic activity may be due to the regular occurrence of large Pele-type plumes with relatively dark, red deposits. Io's intrinsic spectral variability involves continuous variation among three major spectral end members. Attention is given to the mapping of the data into five spectral units for the purposes of comparison with laboratory measurements of Io surface material candidates.

  4. THE ALBEDO-COLOR DIVERSITY OF TRANSNEPTUNIAN OBJECTS

    SciTech Connect

    Lacerda, Pedro; Rengel, Miriam; Fornasier, Sonia; Lellouch, Emmanuel; Delsanti, Audrey; Kiss, Csaba; Vilenius, Esa; Müller, Thomas; Santos-Sanz, Pablo; Duffard, René; Guilbert-Lepoutre, Aurélie

    2014-09-20

    We analyze albedo data obtained using the Herschel Space Observatory that reveal the existence of two distinct types of surface among midsized trans-Neptunian objects. A color-albedo diagram shows two large clusters of objects, one redder and higher albedo and another darker and more neutrally colored. Crucially, all objects in our sample located in dynamically stable orbits within the classical Kuiper Belt region and beyond are confined to the bright red group, implying a compositional link. Those objects are believed to have formed further from the Sun than the dark neutral bodies. This color-albedo separation is evidence for a compositional discontinuity in the young solar system.

  5. Global color and albedo variations on Io

    USGS Publications Warehouse

    McEwen, A.S.

    1988-01-01

    Three multispectral mosaics of Io have been produced from Voyager imaging data: a global mosaic from each of the Voyager 1 and Voyager 2 data sets and a high-resolution mosaic of the region surrounding the volcano Ra Patera. The mosaics are maps of normal albedo and color in accurate geometric map formats. Io's photometric behavior, mapped with a two-image technique, is spatially variable, especially in the bright white areas. The disk-integrated color and albedo of the satellite have been remarkably constant over recent decades, despite the volcanic activity and the many differences between Voyager 1 and 2 images (acquired just 4 months apart). This constancy is most likely due to the consistent occurrence of large Pele-type plumes with relatively dark, red deposits in the region from long 240 to 360??. A transient brightening southeast of Pele during the Voyager 1 encounter was probably due to real changes in surface and/or atmospheric materials, rather than to photometric behavior. The intrinsic spectral variability of Io, as seen in a series of two-dimensional histograms of the multispectral mosaics, consists of continuous variation among three major spectral end members. The data were mapped into five spectral units to compare them with laboratory measurements of candidate surface materials and to show the planimetric distributions. Unit 1 is best fit by the spectral reflectance of ordinary elemental sulfur, and it is closely associated with the Peletype plume deposits. Unit 2 is strongly confined to the polar caps above about latitude ??50??, but its composition is unknown. Unit 5 is probably SO2 with relatively minor contamination; it is concentrated in the equatorial region and near the long-lived Prometheus-type plumes. Units 3 and 4 are gradational between units 1 and 5. In addition to SO2 and elemental sulfur, other plausible components of the surface are polysulfur oxides, FeCl2, Na2S, and NaHS. ?? 1988.

  6. Albedo and color maps of the Saturnian satellites

    SciTech Connect

    Buratti, B.J.; Mosher, J.A.; Johnson, T.V. )

    1990-10-01

    The paper discusses the production of maps of the albedos and colors of Mimas, Enceladus, Tethys, Dione, and Rhea over the full range of their imaged surfaces. Voyager images were used to prepare maps of the normal reflectances and color ratios (0.58/0.41 micron) of these satelites. 67 refs.

  7. Asteroid magnitudes, UBV colors, and IRAS albedos and diameters

    NASA Technical Reports Server (NTRS)

    Tedesco, Edward F.

    1989-01-01

    This paper lists absolute magnitudes and slope parameters for known asteroids numbered through 3318. The values presented are those used in reducing asteroid IR flux data obtained with the IRAS. U-B colors are given for 938 asteroids, and B-V colors are given for 945 asteroids. The IRAS albedos and diameters are tabulated for 1790 asteroids.

  8. Albedo and color maps of the Saturnian satellites

    NASA Technical Reports Server (NTRS)

    Buratti, Bonnie J.; Mosher, Joel A.; Johnson, Torrence V.

    1990-01-01

    The paper discusses the production of maps of the albedos and colors of Mimas, Enceladus, Tethys, Dione, and Rhea over the full range of their imaged surfaces. Voyager images were used to prepare maps of the normal reflectances and color ratios (0.58/0.41 micron) of these satelites.

  9. Global color and albedo variations on Triton

    NASA Technical Reports Server (NTRS)

    Mcewen, Alfred S.

    1990-01-01

    Global multispectral mosaics of Triton have been produced from Voyager approach images; six spectral units are defined and mapped. The margin of the south polar cap (SPC) is scalloped and ranges in latitude from + 10 deg to -30 deg. A bright fringe is closely associated with the cap's margin; form it, diffuse bright rays extend north-northeast for hundreds of kilometers. Thus, the rays may consist of fringe materials that were redistributed by northward-going Coriolis-deflected winds. From 1977 to 1989, Triton's full-disk spectrum changed from markedly red and UV-dark to nearly neutral white and UV-bright. This spectral change can be explained by new deposition of nitrogen frost over both the northern hemisphere and parts of a formerly redder SPC. Frost deposition in the southern hemisphere during southern summer is possible over relatively high albedo areas of the cap (Stansberry et al., 1990), which helps to explain the apparent stability of the unexpectedly large SPC and the presence of the bright fringe.

  10. Comparative global albedo and color maps of the Uranian satellites

    NASA Technical Reports Server (NTRS)

    Buratti, Bonnie J.; Mosher, Joel A.

    1991-01-01

    The surfaces of the Uranian satellites Ariel, Miranda, Oberon, Titania, and Umbriel are characterized on the basis of Voyager observations. Tables of spectrophotometric data and maps of normal reflectances, green/violet ratios, and possible geological formations are presented and discussed in detail. Variations in albedo are found to be associated with impact features, and it is inferred from color differences that the upper surface of Ariel contains a higher proportion of redder material (tentatively identified as accreted low-albedo meteoritic dust) than those of the other moons.

  11. Exogenic and endogenic albedo and color patterns on Europa

    NASA Technical Reports Server (NTRS)

    Mcewen, A. S.

    1986-01-01

    New global and high-resolution multispectral mosaics of Europa have been produced from the Voyager imaging data. Photometric normalizations are based on multiple-image techniques that explicitly account for intrinsic albedo variations through pixel-by-pixel solutions. The exogenic color and albedo pattern on Europa is described by a second-order function of the cosine of the angular distance from the apex of orbital motion. On the basis of this second-order function and of color trends that are different on the leading and trailing hemispheres, the exogenic pattern is interpreted as being due to equilibrium between two dominant processes: (1) impact gardening and (2) magnetospheric interactions, including sulfur-ion implantation and sputtering redistribution. Removal of the model exogenic pattern in the mosaics reveals the endogenic variations, consisting of only two major units: darker (redder) and bright materials. Therefore Europa's visual spectral reflectivity is simple, having one continuous exogenic pattern and two discrete endogenic units.

  12. Color and albedo heterogeneity of Vesta from Dawn.

    PubMed

    Reddy, Vishnu; Nathues, Andreas; Le Corre, Lucille; Sierks, Holger; Li, Jian-Yang; Gaskell, Robert; McCoy, Timothy; Beck, Andrew W; Schröder, Stefan E; Pieters, Carle M; Becker, Kris J; Buratti, Bonnie J; Denevi, Brett; Blewett, David T; Christensen, Ulrich; Gaffey, Michael J; Gutierrez-Marques, Pablo; Hicks, Michael; Keller, Horst Uwe; Maue, Thorsten; Mottola, Stefano; McFadden, Lucy A; McSween, Harry Y; Mittlefehldt, David; O'Brien, David P; Raymond, Carol; Russell, Christopher

    2012-05-11

    Multispectral images (0.44 to 0.98 μm) of asteroid (4) Vesta obtained by the Dawn Framing Cameras reveal global color variations that uncover and help understand the north-south hemispherical dichotomy. The signature of deep lithologies excavated during the formation of the Rheasilvia basin on the south pole has been preserved on the surface. Color variations (band depth, spectral slope, and eucrite-diogenite abundance) clearly correlate with distinct compositional units. Vesta displays the greatest variation of geometric albedo (0.10 to 0.67) of any asteroid yet observed. Four distinct color units are recognized that chronicle processes--including impact excavation, mass wasting, and space weathering--that shaped the asteroid's surface. Vesta's color and photometric diversity are indicative of its status as a preserved, differentiated protoplanet. PMID:22582258

  13. Photoresponsive control of color, albedo, and structure in lizard skin: a smart functional system

    NASA Astrophysics Data System (ADS)

    Vaughan, Gerald L.

    1996-02-01

    Skin from the lizard, Anolis carolinensis, carries a molecular photosensor and will, in response to visible light, change from bright green to dark brown within minutes. The color/albedo change, involving control of three types of pigment cell, exhibits the sensor, effector, and function aspects of a smart functional system.

  14. Global four-band spectral classification of Jupiter's clouds - Color/albedo units and trends

    NASA Astrophysics Data System (ADS)

    Thompson, W. Reid

    Voyager 2 digital images of Jupiter have been used to construct a global data base of cloud reflectance in four spectral bands: three wideband 'colors' with effective wavelengths at 431 nm, 564 nm, and 599 nm, plus the narrowband CH4 filter centered at 621 nm. This data base has been spectrally classified at 0.5 deg resolution to separate the complex scene into cloud color/albedo units on a pixel-by-pixel basis, revealing 20 distinct and five tentative units. These include both large, globally distributed units and very small, localized units. Global color maps and unit membership maps are used to highlight associations and trends.

  15. Color and albedo of the south polar layered deposits on Mars

    NASA Astrophysics Data System (ADS)

    Herkenhoff, K. E.; Murray, B. C.

    1990-02-01

    Five color/albedo units, including polar frost, have been recognized and mapped in the southern layered deposits on Mars. Atmospheric dust scattering was measured in shadows and modeled in order to remove the component of brightness in Mars images due to the atmosphere and quantify the albedo and color of the surface. The layered deposits appear to be mantled by red dust, except where eolian stripping has exposed the underlying bedrock. Dark material has been deposited in topographic depressions in much of the south polar region, including the layered deposits. The available observational data suggest that the layered deposits are composed of bright dust, ice, and a small amount of dark material. If the dark material is sand, a periodic change in polar winds seems required in order to transport the sand poleward into the layered terrain. In any case, the observations are not consistent with the layered deposits being composed only of bright dust and ice.

  16. Measurement of the spectral characteristics and color parameters of flat objects

    NASA Astrophysics Data System (ADS)

    Gorbunova, Elena V.; Chertov, Aleksandr N.; Lastovskaia, Elena A.; Korotaev, Valery V.; Norko, Vadim E.

    2015-02-01

    Quality control of different coatings (colorful, paint, marker, safety, etc.) that are applied to the surface of various objects (both metallic and non-metallic) is an important problem. Also, there is a problem of dealing with counterfeit products. So it's necessary to distinguish the fake replicas of marking from the authentic marking of producer. To solve these problems, we propose an automated device (hardware and software complex) for analysis and control of spectral reflection characteristics, albedo and color parameters of extended (up to 150 mm × 150 mm) flat objects. It allows constructing the color image of the object surface as well as its multispectral images in selected regions of the spectrum. Herewith the color of the object surface can be calculated for various standard light sources (A, B, C, D65, E, F2, F7, F11, GE), or to any light source with a predetermined emission spectrum. The paper presents the description of construction and working principles of the proposed hardware and software complex. All color settings calculations correspond to the requirements and recommendations of CIE.

  17. EXOPLANET ALBEDO SPECTRA AND COLORS AS A FUNCTION OF PLANET PHASE, SEPARATION, AND METALLICITY

    SciTech Connect

    Cahoy, Kerri L.; Marley, Mark S.; Fortney, Jonathan J.

    2010-11-20

    First generation space-based optical coronagraphic telescopes will obtain images of cool gas- and ice-giant exoplanets around nearby stars. Exoplanets lying at planet-star separations larger than about 1 AU-where an exoplanet can be resolved from its parent star-have spectra that are dominated by reflected light to beyond 1 {mu}m and punctuated by molecular absorption features. Here, we consider how exoplanet albedo spectra and colors vary as a function of planet-star separation, metallicity, mass, and observed phase for Jupiter and Neptune analogs from 0.35 to 1 {mu}m. We model Jupiter analogs with 1x and 3x the solar abundance of heavy elements, and Neptune analogs with 10x and 30x the solar abundance of heavy elements. Our model planets orbit a solar analog parent star at separations of 0.8 AU, 2 AU, 5 AU, and 10 AU. We use a radiative-convective model to compute temperature-pressure profiles. The giant exoplanets are found to be cloud-free at 0.8 AU, possess H{sub 2}O clouds at 2 AU, and have both NH{sub 3} and H{sub 2}O clouds at 5 AU and 10 AU. For each model planet we compute moderate resolution (R = {lambda}/{Delta}{lambda} {approx} 800) albedo spectra as a function of phase. We also consider low-resolution spectra and colors that are more consistent with the capabilities of early direct imaging capabilities. As expected, the presence and vertical structure of clouds strongly influence the albedo spectra since cloud particles not only affect optical depth but also have highly directional scattering properties. Observations at different phases also probe different volumes of atmosphere as the source-observer geometry changes. Because the images of the planets themselves will be unresolved, their phase will not necessarily be immediately obvious, and multiple observations will be needed to discriminate between the effects of planet-star separation, metallicity, and phase on the observed albedo spectra. We consider the range of these combined effects on

  18. Laboratory test simulation for non-flat response calibration of global Earth albedo monitor

    NASA Astrophysics Data System (ADS)

    Seong, Sehyun; Kim, Sug-Whan; Ryu, Dongok; Hong, Jinsuk; Lockwood, Mike

    2012-09-01

    In this report, we present laboratory test simulation for directional responsivity of a global Earth albedo monitoring instrument. The sensor is to observe the Sun and the Earth, alternately, and measure their shortwave (<4μm) radiations around the L1 halo orbit to obtain global Earth albedo. The instrument consists of a broadband scanning radiometer (energy channel instrument) and an imager (visible channel instrument) with ±2° field-of-view. In the case of the energy channel instrument, radiations arriving at the viewing ports from the Sun and the Earth are directed toward the pyroelectric detector via two spherical folding mirrors and a 3D compound parabolic concentrator (CPC). The instrument responsivity is defined by the ratio of the incident radiation input to the instrument output signal. The radiometer's relative directional responsivity needs to be characterized across the field-of-view to assist output signal calibration. For the laboratory test, the distant small source configuration consists of an off-axis collimator and the instrument with adjustable mounts. Using reconstructed 3D CPC surface, the laboratory test simulation for predicting the instrument directional responsivity was conducted by a radiative transfer computation with ray tracing technique. The technical details of the laboratory test simulation are presented together with future plan.

  19. Classification of surface units in the equatorial region of Mars based on Viking Orbiter color, albedo, and thermal data

    NASA Technical Reports Server (NTRS)

    Arvidson, R. E.; Guinness, E. A.; Zent, A. P.

    1982-01-01

    Clusters corresponding to mappable surface units are sought in Viking Orbiter color, albedo, and thermal inertia data for the equatorial region of Mars. A principal components analysis indicated that 84% of the variance within the data for this region can be carried along two vector directions which typify the dominant trend of Martian surface materials. These dominant trends were deemphasized by stretching the data from a five-dimensional elliptical swarm into a hypersphere, through the use of principal component techniques. The decorrelated data were then plotted in a triangle diagram with red/violet, albedo and thermal inertia apices to facilitate inherent cluster discrimination. As many as eight clusters can be identified, with important mixing between them. The three major clusters consist of red and grey material extremes, along with intermediate value materials.

  20. Color difference threshold of chromostereopsis induced by flat display emission

    PubMed Central

    Ozolinsh, Maris; Muizniece, Kristine

    2015-01-01

    The study of chromostereopsis has gained attention in the backdrop of the use of computer displays in daily life. In this context, we analyze the illusory depth sense using planar color images presented on a computer screen. We determine the color difference threshold required to induce an illusory sense of depth psychometrically using a constant stimuli paradigm. Isoluminant stimuli are presented on a computer screen, which stimuli are aligned along the blue–red line in the computer display CIE xyY color space. Stereo disparity is generated by increasing the color difference between the central and surrounding areas of the stimuli with both areas consisting of random dots on a black background. The observed altering of illusory depth sense, thus also stereo disparity is validated using the “center-of-gravity” model. The induced illusory sense of the depth effect undergoes color reversal upon varying the binocular lateral eye pupil covering conditions (lateral or medial). Analysis of the retinal image point spread function for the display red and blue pixel radiation validates the altering of chromostereopsis retinal disparity achieved by increasing the color difference, and also the chromostereopsis color reversal caused by varying the eye pupil covering conditions. PMID:25883573

  1. The nature of low-albedo asteroids from 3-micron multi-color photometry

    NASA Astrophysics Data System (ADS)

    Lebofsky, L. A.; Jones, T. D.; Owensby, P. D.; Feierberg, M. A.; Consolmagno, G. J.

    1990-01-01

    The present broadband and narrowband 1.2-3.5 micron spectrophotometry of 16 low-albedo asteroids encompasses C-, F-, P-, D-, and T-class asteroids, and has been used in an effort to identify low-temperature minerals on their surfaces. Attention has been given to the identification of water of hydration. While G-class asteroids have water-rich surfaces, and I asteroids possess some hydrated silicates, not all class Cs do. Finally, the P-, F-, and T-class asteroids do not seem to possess hydrated-silicate surfaces.

  2. Global Albedo

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A new sensor aboard NASA?s Terra satellite is now collecting the most detailed and accurate measurements ever made of how much sunlight the Earth?s surface reflects back up into the atmosphere. By quantifying precisely our planet?s reflectivity, or albedo, the Moderate Resolution Imaging Spectroradiometer (MODIS) is helping scientists better understand and predict how various surface features influence both short-term weather patterns as well as longer-term climate trends. (Click to read the press release.) The colors in this image emphasize the albedo over the Earth?s land surfaces, ranging from 0.0 to 0.4. Areas colored red show the brightest, most reflective regions; yellows and greens are intermediate values; and blues and violets show relatively dark surfaces. White indicates where no data were available, and no albedo data are provided over the oceans. This image was produced using data composited over a 16-day period, from April 7-22, 2002. Image courtesy Crystal Schaaf, Boston University, based upon data processed by the MODIS Land Science Team

  3. THE DEEP BLUE COLOR OF HD 189733b: ALBEDO MEASUREMENTS WITH HUBBLE SPACE TELESCOPE/SPACE TELESCOPE IMAGING SPECTROGRAPH AT VISIBLE WAVELENGTHS

    SciTech Connect

    Evans, Thomas M.; Aigrain, Suzanne; Barstow, Joanna K.; Pont, Frederic; Sing, David K.; Desert, Jean-Michel; Knutson, Heather A.; Gibson, Neale; Heng, Kevin; Lecavelier des Etangs, Alain

    2013-08-01

    We present a secondary eclipse observation for the hot Jupiter HD 189733b across the wavelength range 290-570 nm made using the Space Telescope Imaging Spectrograph on the Hubble Space Telescope. We measure geometric albedos of A{sub g} = 0.40 {+-} 0.12 across 290-450 nm and A{sub g} < 0.12 across 450-570 nm at 1{sigma} confidence. The albedo decrease toward longer wavelengths is also apparent when using six wavelength bins over the same wavelength range. This can be interpreted as evidence for optically thick reflective clouds on the dayside hemisphere with sodium absorption suppressing the scattered light signal beyond {approx}450 nm. Our best-fit albedo values imply that HD 189733b would appear a deep blue color at visible wavelengths.

  4. Linked color imaging technology facilitates early detection of flat gastric cancers.

    PubMed

    Fukuda, Hisashi; Miura, Yoshimasa; Hayashi, Yoshikazu; Takezawa, Takahito; Ino, Yuji; Okada, Masahiro; Osawa, Hiroyuki; Lefor, Alan K; Yamamoto, Hironori

    2015-12-01

    Conventional endoscopy can miss flat early gastric cancers (0-IIb) because they may not be visible. We treated a patient with synchronous flat early gastric cancers missed by conventional white-light endoscopy (WLE). A 74-year-old Japanese male was referred for endoscopic submucosal dissection (ESD) of a depressed-type early gastric cancer (0-IIc) on the posterior wall of the antrum. Linked color imaging (LCI) detected two flat reddish lesions (0-IIb) measuring 30 mm and 10 mm in diameter in the distal body and prepyloric area, respectively, which had not been detected by conventional WLE. LCI clearly demonstrated the line of demarcation between the malignant lesion and the surrounding mucosa without magnification. Flat early gastric cancers were suspected because both lesions had irregular surface patterns using magnifying blue laser imaging (BLI). An additional depressed lesion (0-IIc) was detected by laser WLE along the greater curvature in the antrum. Magnifying BLI suggested a malignant lesion. Histological examination of biopsy specimens revealed atypical glands in all four lesions. ESD of these lesions was performed. Pathological examination of the resected specimens confirmed well-differentiated adenocarcinoma localized to the mucosa in all four lesions. Flat early gastric cancers became clearly visible using new endoscopic technology. PMID:26560036

  5. Earth's Reflection: Albedo

    ERIC Educational Resources Information Center

    Gillette, Brandon; Hamilton, Cheri

    2011-01-01

    When viewing objects of different colors, you might notice that some appear brighter than others. This is because light is reflected differently from various surfaces, depending on their physical properties. The word "albedo" is used to describe how reflective a surface is. The Earth-atmosphere has a combined albedo of about 30%, a number that is…

  6. Mars Albedo

    NASA Technical Reports Server (NTRS)

    2001-01-01

    These two views of Mars are derived from the MGS Thermal Emission Spectrometer (TES) measurements of global broadband (0.3 - 3.0 microns) visible and near-infrared reflectance, also known as albedo. The range of colors are in dimensionless units. The values are the ratio of the amount of electromagnetic energy reflected by the surface to the amount of energy incident upon it from the sun (larger values are brighter surfaces).

    The TES instrument was built by Santa Barbara Remote Sensing and is operated by Philip R. Christensen, of Arizona State University, Tempe, AZ.

  7. Bidirectional Reflectance of a Macroscopically Flat, High-Albedo Particulate Surface: An Efficient Radiative Transfer Solution and Applications to Regoliths

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Zakharova, Nadia T.

    1999-01-01

    Many remote sensing applications rely on accurate knowledge of the bidirectional reflection function (BRF) of surfaces composed of discrete, randomly positioned scattering particles. Theoretical computations of BRFs for plane-parallel particulate layers are usually reduced to solving the radiative transfer equation (RTE) using one of existing exact or approximate techniques. Since semi-empirical approximate approaches are notorious for their low accuracy, violation of the energy conservation law, and ability to produce unphysical results, the use of numerically exact solutions of RTE has gained justified popularity. For example, the computation of BRFs for macroscopically flat particulate surfaces in many geophysical publications is based on the adding-doubling (AD) and discrete ordinate (DO) methods. A further saving of computer resources can be achieved by using a more efficient technique to solve the plane-parallel RTE than the AD and DO methods. Since many natural particulate surfaces can be well represented by the model of an optically semi-infinite, homogeneous scattering layer, one can find the BRF directly by solving the Ambartsumian's nonlinear integral equation using a simple iterative technique. In this way, the computation of the internal radiation field is avoided and the computer code becomes highly efficient and very accurate and compact. Furthermore, the BRF thus obtained fully obeys the fundamental physical laws of energy conservation and reciprocity. In this paper, we discuss numerical aspects and the computer implementation of this technique, examine the applicability of the Henyey-Greenstein phase function and the sigma-Eddington approximation in BRF and flux calculations, and describe sample applications demonstrating the potential effect of particle shape on the bidirectional reflectance of flat regolith surfaces. Although the effects of packing density and coherent backscattering are currently neglected, they can also be incorporated. The

  8. Performance requirements for electronic displays of color moving images using flat panel technology

    NASA Astrophysics Data System (ADS)

    Glenn, William E.

    1994-04-01

    The initial market for flat panel displays has been dominated by the laptop computer. This is a very attractive entry market for the newer technologies. The technical requirements for computer displays are much easier to satisfy then for high definition entertainment displays. While the resolutions are similar, the other requirements of contrast ratio, cost, light output, response time, uniformity, gray scale, size and color purity are all much less demanding than those for the display of real-time moving images for entertainment. However, if the panels being developed for computers could meet the requirements of entertainment television, they could be used as light valves in large screen projectors. In this way the investment in development and in manufacturing facilities can be amortized over a much larger market. This paper will review a comparison of the requirements for both applications.

  9. Arthroscopic knee surgery using the advanced flat panel high-resolution color head-mounted display

    NASA Astrophysics Data System (ADS)

    Nelson, Scott A.; Jones, D. E. Casey; St. Pierre, Patrick; Sampson, James B.

    1997-06-01

    The first ever deployed arthroscopic knee surgeries have been performed using a high resolution color head-mounted display (HMD) developed under the DARPA Advanced Flat Panel HMD program. THese procedures and several fixed hospital procedures have allowed both the system designers and surgeons to gain new insight into the use of a HMD for medical procedures in both community and combat support hospitals scenarios. The surgeons demonstrated and reported improved head-body orientation and awareness while using the HMD and reported several advantages and disadvantages of the HMD as compared to traditional CRT monitor viewing of the arthroscopic video images. The surgeries, the surgeon's comments, and a human factors overview of HMDs for Army surgical applications are discussed here.

  10. A Picture Is a Patchwork of Color Laid Out in a Private Space in Which Lie Flat Imitations of Life

    ERIC Educational Resources Information Center

    Socher, David

    2007-01-01

    A picture is a patchwork of color laid out in a private space in which lie flat imitations of life. Such a patchwork constitutes a make-believe visual field. The author rolls out this suggestion under the following headings: Intention, Form and Content, Ontology, Picture Space, Make-believe, Photography, and Resemblance. This commentary focuses on…

  11. Albedo Boundary

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-510, 11 October 2003

    The sharp, nearly straight line that runs diagonally across the center of this April 2003 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image is an albedo boundary. Albedois a term that refers to reflectance of sunlight. A surface with a low albedo is one that appears dark because it reflects less light than a high albedo (bright) surface. On Mars, albedo boundaries occur between two materials of differing texture, particle size, or composition, or some combination of these three factors. The boundary shown here is remarkable because it is so sharp and straight. This is caused by wind. Most likely, the entire surface was once covered with the lower-albedo (darker) material that is now seen in the upper half of the image. At some later time, wind stripped away this darker material from the surfaces in the lower half of the image. The difference in albedo here might be related to composition, and possibly particle size. This picture is located near the southwest rim of Schiaparelli Basin at 5.5oS, 345.9oW. The picture covers an area 3 km (1.9 mi) wide and is illuminated by sunlight from the left.

  12. The 67P/Churyumov-Gerasimenko comet: colors, albedo variations and inhomogeneity of the nucleus from the ROSETTA/OSIRIS images

    NASA Astrophysics Data System (ADS)

    Fornasier, S.; Leyrat, C.; Barucci, M. A.; Hasselmann, P. H.; Thomas, N.; Kueppers, M.; Sierks, H.; Oklay, N.; Snodgrass, C.; Tubiana, C.; Vincent, J. B.; Jorda, L.; Keller, H. U.; Hviik, S.; Magrin, S.; Massironi, M.; Besse, S.; Pajola, M.

    2014-04-01

    camera. From the images obtained during the mapping phase a 3D shape model of the comet will be constructed, and the images will then be co-aligned and photometrically corrected. Color cubes of the surface will then be produced by stacking registered and corrected images. We will present the spectrophotometry reflectivity and albedo maps, and their evolution over time. These data will give preliminary indications on the comet mineralogy, and will allow us to investigate the nucleus heterogeneity at several scales, both in term of albedo and composition, and the locations of different minerals and ice patches. These unique data will cast light on the nucleus-coma interaction, and on the relationships between ice patches/cometary activity with particular geomorphological features or peculiar terrains in term of albedo and surface roughness.

  13. Global Albedo

    Atmospheric Science Data Center

    2013-04-19

    ... to one in the visible region of the solar spectrum whereas deep clean ocean water has an albedo that is close to zero. Five years of ... Atmospheric Science Data Center's  MISR Level 3 Imagery  web site. The Multi-angle Imaging SpectroRadiometer observes the daylit ...

  14. Global Albedo

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Once home to the powerful Inca Empire, the spectacular vistas and canyons of the South American Andes are now a favorite to mountain bikers, climbers and other tourists looking for an adventure. This true color image of the Central Andes and surrounding landscape was acquired by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra spacecraft. The dark green area to the right of the brown mountains are the Gran Chaco planes, which consist mostly of alluvial fans and wetlands. To the west is the Pacific Ocean. In the upper half of this image, the Andes are formed by two distinct mountain ranges that appear as darker reddish-brown bands running northwest to southeast. Between the two ranges, shown in a lighter brown, sits the Altiplano plateau, which spans southern Peru and northern Bolivia. The plateau sits at 3660 meters (12,000 feet) and is covered in mazelike canyons, marshlands and lakes. The largest of the lakes-Lake Titticaca-can be seen as the dark blue patch in southern Peru. The two mountain ranges supporting the plateau eventually come together along the border of Argentina and Chile to form one continuous range. The Andes have been forming over the past 170 million years as the Nazca Plate lying under the Pacific Ocean has forced its way under the South American Plate and pushed up its western edge. The subduction of one plate under the other has given rise to a number of volcanoes that dot the western edge of the mountain range. Earthquakes are also very common in this region. Image by NASA GSFC, based on data from the MODIS science team.

  15. State-of-the-art for large area high resolution gray scale and full color AC plasma flat panel displays

    NASA Technical Reports Server (NTRS)

    Stoller, Ray A.; Wedding, Donald K.; Friedman, Peter S.

    1993-01-01

    A development status evaluation is presented for gas plasma display technology, noting how tradeoffs among the parameters of size, resolution, speed, portability, color, and image quality can yield cost-effective solutions for medical imaging, CAD, teleconferencing, multimedia, and both civil and military applications. Attention is given to plasma-based large-area displays' suitability for radar, sonar, and IR, due to their lack of EM susceptibility. Both monochrome and color displays are available.

  16. Albedos. Final report

    SciTech Connect

    Hansen, F.V.

    1993-07-01

    The albedo of the earth's surface varies dramatically from values of about 3 to 4 percent for calm bodies of water up to about 55 percent for gypsum sands. This rather broad range of reflected incoming solar radiation presents difficulties when attempting to define an average albedo for terrain over a large region from locally determined values. The patchwork, or checkerboard, appearance of the earth's surface as viewed from above is the result of various human activities, such as agriculture, the proliferation of urban sprawl, and road building. Each of these variable appearing surfaces will have individual albedos, rendering any attempt to determine an a real albedo almost an impossibility on the mesoscale. However, a vast data base exists for microscale applications for individual acreages, for example. A compilation of these data is presented.... Albedo, Solar radiation, Crops, Urban areas, Land uses.

  17. Charlie Flats

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image from the Mars Exploration Rover Opportunity's panoramic camera shows a region of the rock outcrop at Meridiani Planum, Mars, dubbed 'Charlie Flats.' This region is a rich science target for Opportunity because it contains a diverse assortment of small grains, pebbles and spherules, as well as both dark and light soil deposits. The area seen here measures approximately 0.6 meters (2 feet) across. The smallest grains visible in this image are only a few millimeters in size. The approximate true color image was acquired on Sol 20 of Opportunity's mission with panoramic camera filters red, green and blue. [figure removed for brevity, see original site] Click on image for larger view Charlie Flats Spectra The chart above shows examples of spectra, or light wave patterns, extracted from the region of the Meridiani Planum rock outcrop dubbed 'Charlie Flats,' a rich science target for the Mars Exploration Rover Opportunity. The spectra were extracted from the similarly colored regions in the image on the left, taken by the rover's panoramic camera. The green circle identifies a bright, dust-like soil deposit. The red circle identifies a dark soil region. The yellow identifies a small, angular rock chip with a strong near-infrared band. The pink identifies a sphere-shaped pebble with a different strong near-infrared band. The cyan circle shows a dark, grayish pebble.

  18. Observations of Surfzone Albedo

    NASA Astrophysics Data System (ADS)

    Sinnett, G.; Feddersen, F.

    2014-12-01

    The surfzone environment (where waves break) contains several unique and previously unconsidered processes that affect the heat budget. Entering short-wave radiation is a dominant term in both shelf and surfzone heat budgets. In contrast to the shelf, however, depth limited wave breaking in the surfzone generates spray, whitewater and suspended sediments, elevating the surface albedo (ratio of reflected to incident short-wave radiation). Elevated albedo reduces the level of solar short-wave radiation entering the water, potentially resulting in less heating. Additionally, surfzone water quality is often impacted by fecal bacteria contamination. As bacteria mortality is related to short-wave solar radiation, elevated surfzone albedo could reduce pathogen mortality, impacting human health. Albedo in the open ocean has been frequently studied and parameterizations often consider solar zenith angle, wind speed and ocean chlorophyll concentration, producing albedo values typically near 0.06. However, surfzone albedo observations have been extremely sparse, yet show depth limited wave breaking may increase the albedo by nearly a factor of 10 up to 0.5. Here, we present findings from a field study at the Scripps Institution of Oceanography pier to observe the affect of waves on surfzone albedo. Concurrent measurements were taken with a four-way radiometer (to measure both downwelling and upwelling short-wave and long wave radiation) mounted above the surfzone. A co-located GoPro camera was used to relate visual aspects of the surfzone to measured reflectance, and wave height and period were observed with a bottom mounted pressure sensor in 5 m water depth just outside the surfzone. Wind speed and direction were observed on the pier 10 m above the water surface. Here, we will examine the surfzone albedo dependence on surfzone parameters, such as wave height.

  19. Earth albedo neutrons from 10 to 100 MeV.

    NASA Technical Reports Server (NTRS)

    Preszler, A. M.; Simnett, G. M.; White, R. S.

    1972-01-01

    We report the measurement of the energy and angular distributions of earth albedo neutrons from 10 to 100 MeV at 40 deg N geomagnetic latitude from a balloon at 120,000 ft, below 4.65 g/sq cm. The albedo-neutron omnidirectional energy distribution is flat to 50 MeV, then decreases with energy. The absolute neutron energy distribution is of the correct strength and shape for the albedo neutrons to be the source of the protons trapped in earth's inner radiation belt.

  20. Greenland Glacier Albedo Variability

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The program for Arctic Regional Climate Assessment (PARCA) is a NASA-funded project with the prime goal of addressing the mass balance of the Greenland ice sheet. Since the formal initiation of the program in 1995, there has been a significant improvement in the estimates of the mass balance of the ice sheet. Results from this program reveal that the high-elevation regions of the ice sheet are approximately in balance, but the margins are thinning. Laser surveys reveal significant thinning along 70 percent of the ice sheet periphery below 2000 m elevations, and in at least one outlet glacier, Kangerdlugssuaq in southeast Greenland, thinning has been as much as 10 m/yr. This study examines the albedo variability in four outlet glaciers to help separate out the relative contributions of surface melting versus ice dynamics to the recent mass balance changes. Analysis of AVHRR Polar Pathfinder albedo shows that at the Petermann and Jakobshavn glaciers, there has been a negative trend in albedo at the glacier terminus from 1981 to 2000, whereas the Stor+strommen and Kangerdlugssuaq glaciers show slightly positive trends in albedo. These findings are consistent with recent observations of melt extent from passive microwave data which show more melt on the western side of Greenland and slightly less on the eastern side. Significance of albedo trends will depend on where and when the albedo changes occur. Since the majority of surface melt occurs in the shallow sloping western margin of the ice sheet where the shortwave radiation dominates the energy balance in summer (e.g. Jakobshavn region) this region will be more sensitive to changes in albedo than in regions where this is not the case. Near the Jakobshavn glacier, even larger changes in albedo have been observed, with decreases as much as 20 percent per decade.

  1. Albedo Response of Native and Artificial Soils to a Wetting Event: Implications for Critical Zone Processes

    NASA Astrophysics Data System (ADS)

    Lovell, L.; Sanchez-Mejia, Z. M.; Papuga, S. A.

    2012-12-01

    The Landscape Evolution Observatory (LEO) at Biosphere 2 is composed of three experimental hill slopes filled to one meter depth of a ground basaltic tephra soil, set up to investigate critical zone processes. Our goal is to understand the energy aspects of this artificial LEO soil; surfaces with a high surface reflectance (albedo) may limit energy available for critical zone processes. The albedo of a surface can change, e.g. by vegetation growth or soil wetting, which can further influence available energy. Here, we examine the soil moisture and albedo response of LEO soil to a 10 mm rainfall event, and compare the results to those found using traditional potting and native desert soils that differ in color and texture. We hypothesized that: 1) increased soil moisture would decrease albedo for all soil types; 2) a smaller wetting front would maximize any decrease in albedo, and 3) albedo will reach a minimum within hours of a rainstorm, returning to a maximum albedo value within the day. We found that albedo was lowest under wet conditions for all soils, regardless of initial color and texture. Additionally, the LEO soil experienced the shallowest wetting front and also showed the most significant decrease in albedo following rainfall. After the rainfall event, all soils showed an initial decrease in albedo, followed by an increase in albedo as the soil dried. While the albedo and soil moisture of each soil reacted similarly, the very dark and fine LEO soil showed the strongest response to wetting.

  2. Program for Computing Albedo

    NASA Technical Reports Server (NTRS)

    Justus, Carl G.

    2003-01-01

    Simple Thermal Environment Model (STEM) is a FORTRAN-based computer program that provides engineering estimates of top-of-atmosphere albedo and outgoing long-wave radiation (OLR) for use in analyzing thermal loads on spacecraft near Earth. The thermal environment of a spacecraft is represented in STEM as consisting of direct solar radiation; short-wave radiation reflected by the atmosphere of the Earth, as characterized in terms of the albedo of the Earth; and OLR emitted by the atmosphere of the Earth. STEM can also address effects of heat loads internal to a spacecraft. Novel features of STEM include (1) the use of Earth albedo and OLR information based on time series of measurements by Earth Radiation Budget Experiment satellites in orbit; (2) the ability to address thermal time constants of spacecraft systems by use of albedo and OLR values representing averages over a range of averaging times; and (3) the ability to address effects, on albedo and OLR values, of satellite orbital inclination, the angle between the plane of a spacecraft orbit and the line between the centers of the Earth and Sun, the solar zenith angle, and latitude.

  3. ALBEDOS OF SMALL HILDA GROUP ASTEROIDS AS REVEALED BY SPITZER

    SciTech Connect

    Ryan, Erin Lee; Woodward, Charles E. E-mail: chelsea@astro.umn.edu

    2011-06-15

    We present thermal 24 {mu}m observations from the Spitzer Space Telescope of 62 Hilda asteroid group members with diameters ranging from 3 to 12 km. Measurements of the thermal emission, when combined with reported absolute magnitudes, allow us to constrain the albedo and diameter of each object. From our Spitzer sample, we find the mean geometric albedo, p{sub V} = 0.07 {+-} 0.05, for small (D < 10 km) Hilda group asteroids. This Spitzer-derived value of p{sub V} is greater than and spans a larger range in albedo space than the mean albedo of large (D {approx}> 10 km) Hilda group asteroids which is p{sub V} = 0.04 {+-} 0.01. Though this difference may be attributed to space weathering, the small Hilda group population reportedly displays greater taxonomic range from C-, D-, and X-type whose albedo distributions are commensurate with the range of determined albedos. We discuss the derived Hilda size-frequency distribution, color-color space, and geometric albedo for our survey sample in the context of the expected migration induced 'seeding' of the Hilda asteroid group with outer solar system proto-planetesimals as outlined in the 'Nice' formalism.

  4. Arid land monitoring using Landsat albedo difference images

    USGS Publications Warehouse

    Robinove, Charles J.; Chavez, Pat S., Jr.; Gehring, Dale G.; Holmgren, Ralph

    1981-01-01

    The Landsat albedo, or percentage of incoming radiation reflected from the ground in the wavelength range of 0.5 [mu]m to 1.1 [mu]m, is calculated from an equation using the Landsat digital brightness values and solar irradiance values, and correcting for atmospheric scattering, multispectral scanner calibration, and sun angle. The albedo calculated for each pixel is used to create an albedo image, whose grey scale is proportional to the albedo. Differencing sequential registered images and mapping selected values of the difference is used to create quantitative maps of increased or decreased albedo values of the terrain. All maps and other output products are in black and white rather than color, thus making the method quite economical. Decreases of albedo in arid regions may indicate improvement of land quality; increases may indicate degradation. Tests of the albedo difference mapping method in the Desert Experimental Range in southwestern Utah (a cold desert with little long-term terrain change) for a four-year period show that mapped changes can be correlated with erosion from flash floods, increased or decreased soil moisture, and increases or decreases in the density of desert vegetation, both perennial shrubs and annual plants. All terrain changes identified in this test were related to variations in precipitation. Although further tests of this method in hot deserts showing severe "desertification" are needed, the method is nevertheless recommended for experimental use in monitoring terrain change in other arid and semiarid regions of the world.

  5. MISR Level 3 Albedo and Cloud Versioning

    Atmospheric Science Data Center

    2016-09-07

    ... 2:  CLOUD - Wind Vectors, Height Histogram Stage 1:  ALBEDO - Expansive, Restrictive and Local Albedo (except over snow and ... Stage 2 CLOUD - Height Histogram Stage 1 CLOUD - Wind Vectors Stage 1 ALBEDO - Expansive and Restrictive ...

  6. The two faces of Iapetus. [photometric and radiometric albedo observations

    NASA Technical Reports Server (NTRS)

    Morrison, D.; Jones, T. J.; Cruikshank, D. P.; Murphy, R. E.

    1975-01-01

    Radiometric and photometric observations of Iapetus are described, and a model is developed for the albedo distribution consistent with the visual light curves, color variations, and radiometric flux curve. The 20-micron infrared observations show that the radiometric variation differs by about 180 deg in phase from the visual light curve and has a peak-to-peak amplitude of about a factor of two, while the linear phase coefficient of the light curve varies, as the satellite rotates, from 0.028 to 0.068 mag/deg. Determination of the albedo distribution is described, and it is found to be characterized by a dark area covering most of the leading hemisphere, a bright trailing hemisphere, and a bright south polar cap. The radius is approximated as 800 to 850 km, and the mean geometric albedos for the light and dark faces are estimated as 0.35 and 0.07, respectively.

  7. Earth Flats

    NASA Astrophysics Data System (ADS)

    Bohlin, R. C.; Mack, J.; Hartig, G.; Sirianni, M.

    2005-10-01

    Since the last ISR 2003-02 on the use of Earth observations for a source of flat field illumination, several hundred more observations have been obtained with the full set of HRC standard filters and four narrow band WFC filters. While most of these observation show streaks or other nonuniform illumination, a significant subset are defect free and can be used to construct complete LP-flats. Many of the existing pipeline flats are confirmed to a precision of ~1%, which validates the stellar L-flat technique. Exceptions are the WFC, where a shutter light leak causes a systematic central contamination of a few percent and limits the verification accuracy to ~2%. Other exceptions are the four longest wavelength HRC filters, which show systematic differences with the pipeline flats. This discrepancy is apparently caused by stray light originating from the detector surface, where most of the longest wavelength photons are reflected and then scattered back from nearby focal plane structures. Because this complete set of HRC Earth flats is more appropriate than the pipeline flats for large diffuse objects such as the Moon, Jupiter, or the Orion Nebula, the set is now available on the STScI/ACS website. Earth flats also measure the small and intermediate scale P-flat structure. Due to slight deviations from OTA like illumination in the lab, the flat field corrections in the dust mote regions are 1-2% better with Earth flats. The trend found in ACS ISR 2005-09 for an increase toward the UV for more pixels with non-Poisson statistical distributions is confirmed for the F330W Earth flats, where up to 3% of the pixels are in error by >1%. Most of this newly discovered population of deviant pixels are dark with low responses; however, the effect of these erroneous P-flat values on stellar photometry is less than 0.1%.

  8. Trimodal color-fluorescence-polarization endoscopy aided by a tumor selective molecular probe accurately detects flat lesions in colitis-associated cancer

    NASA Astrophysics Data System (ADS)

    Charanya, Tauseef; York, Timothy; Bloch, Sharon; Sudlow, Gail; Liang, Kexian; Garcia, Missael; Akers, Walter J.; Rubin, Deborah; Gruev, Viktor; Achilefu, Samuel

    2014-12-01

    Colitis-associated cancer (CAC) arises from premalignant flat lesions of the colon, which are difficult to detect with current endoscopic screening approaches. We have developed a complementary fluorescence and polarization reporting strategy that combines the unique biochemical and physical properties of dysplasia and cancer for real-time detection of these lesions. Using azoxymethane-dextran sodium sulfate (AOM-DSS) treated mice, which recapitulates human CAC and dysplasia, we show that an octapeptide labeled with a near-infrared (NIR) fluorescent dye selectively identified all precancerous and cancerous lesions. A new thermoresponsive sol-gel formulation allowed topical application of the molecular probe during endoscopy. This method yielded high contrast-to-noise ratios (CNR) between adenomatous tumors (20.6±1.65) and flat lesions (12.1±1.03) and surrounding uninvolved colon tissue versus CNR of inflamed tissues (1.62±0.41). Incorporation of nanowire-filtered polarization imaging into NIR fluorescence endoscopy shows a high depolarization contrast in both adenomatous tumors and flat lesions in CAC, reflecting compromised structural integrity of these tissues. Together, the real-time polarization imaging provides real-time validation of suspicious colon tissue highlighted by molecular fluorescence endoscopy.

  9. Trimodal color-fluorescence-polarization endoscopy aided by a tumor selective molecular probe accurately detects flat lesions in colitis-associated cancer

    PubMed Central

    Charanya, Tauseef; York, Timothy; Bloch, Sharon; Sudlow, Gail; Liang, Kexian; Garcia, Missael; Akers, Walter J.; Rubin, Deborah; Gruev, Viktor; Achilefu, Samuel

    2014-01-01

    Abstract. Colitis-associated cancer (CAC) arises from premalignant flat lesions of the colon, which are difficult to detect with current endoscopic screening approaches. We have developed a complementary fluorescence and polarization reporting strategy that combines the unique biochemical and physical properties of dysplasia and cancer for real-time detection of these lesions. Using azoxymethane-dextran sodium sulfate (AOM-DSS) treated mice, which recapitulates human CAC and dysplasia, we show that an octapeptide labeled with a near-infrared (NIR) fluorescent dye selectively identified all precancerous and cancerous lesions. A new thermoresponsive sol-gel formulation allowed topical application of the molecular probe during endoscopy. This method yielded high contrast-to-noise ratios (CNR) between adenomatous tumors (20.6±1.65) and flat lesions (12.1±1.03) and surrounding uninvolved colon tissue versus CNR of inflamed tissues (1.62±0.41). Incorporation of nanowire-filtered polarization imaging into NIR fluorescence endoscopy shows a high depolarization contrast in both adenomatous tumors and flat lesions in CAC, reflecting compromised structural integrity of these tissues. Together, the real-time polarization imaging provides real-time validation of suspicious colon tissue highlighted by molecular fluorescence endoscopy. PMID:25473883

  10. The Ultraviolet Albedo of Ganymede

    NASA Technical Reports Server (NTRS)

    McGrath, Melissa; Hendrix, Amanda

    2013-01-01

    A large set of ultraviolet images of Ganymede have been acquired with the Hubble Space Telescope over the last 15 years. These images have been used almost exclusively to study Ganymede's stunning auroral emissions (Feldman et al. 2000; Eviatar et al. 2001; McGrath et al. 2004; Saur et al. 2011; McGrath et al. 2013), and even the most basic information about Ganymede's UV albedo has yet to be gleaned from these data. We will present a first-cut analysis of both disk-averaged and spatially-resolved UV albedos of Ganymede, with focus on the spatially-resolved Lyman-alpha albedo, which has never been considered previously for this satellite. Ganymede's visibly bright regions are known to be rich in water ice, while the visibly dark regions seem to be more carbonaceous (Carlson et al., 1996). At Lyman-alpha, these two species should also have very different albedo values.

  11. High-albedo materials for reducing building cooling energy use

    SciTech Connect

    Taha, H.; Sailor, D.; Akbari, H.

    1992-01-01

    One simple and effective way to mitigate urban heat islands, i.e., the higher temperatures in cities compared to those of the surrounds, and their negative impacts on cooling energy consumption is to use high-albedo materials on major urban surfaces such as rooftops, streets, sidewalks, school yards, and the exposed surfaces of parking lots. High-albedo materials can save cooling energy use by directly reducing the heat gain through a building`s envelope (direct effect) and also by lowering the urban air temperature in the neighborhood of the building (indirect effect). This project is an attempt to address high-albedo materials for buildings and to perform measurements of roof coatings. We search for existing methods and materials to implement fighter colors on major building and urban surfaces. Their cost effectiveness are examined and the possible related technical, maintenance, and environmental problems are identified. We develop a method for measuring albedo in the field by studying the instrumentation aspects of such measurements. The surface temperature impacts of various albedo/materials in the actual outdoor environment are studied by measuring the surface temperatures of a variety of materials tested on an actual roof. We also generate an albedo database for several urban surfaces to serve as a reference for future use. The results indicate that high-albedo materials can have a large impact on the surface temperature regime. On clear sunny days, when the solar noon surface temperatures of conventional roofing materials were about 40{degrees}C (72{degrees}F) warmer than air, the surface temperature of high-albedo coatings were only about 5{degrees}C warmer than air. In the morning and in the late afternoon, the high-albedo materials were as cool as the air itself. While conventional roofing materials warm up by an average 0.055{degrees}C/(W m{sup {minus}2}), the high-albedo surfaces warm up by an average 0.015{degrees}C/(W m{sup {minus}2}).

  12. High-albedo materials for reducing building cooling energy use

    SciTech Connect

    Taha, H.; Sailor, D.; Akbari, H.

    1992-01-01

    One simple and effective way to mitigate urban heat islands, i.e., the higher temperatures in cities compared to those of the surrounds, and their negative impacts on cooling energy consumption is to use high-albedo materials on major urban surfaces such as rooftops, streets, sidewalks, school yards, and the exposed surfaces of parking lots. High-albedo materials can save cooling energy use by directly reducing the heat gain through a building's envelope (direct effect) and also by lowering the urban air temperature in the neighborhood of the building (indirect effect). This project is an attempt to address high-albedo materials for buildings and to perform measurements of roof coatings. We search for existing methods and materials to implement fighter colors on major building and urban surfaces. Their cost effectiveness are examined and the possible related technical, maintenance, and environmental problems are identified. We develop a method for measuring albedo in the field by studying the instrumentation aspects of such measurements. The surface temperature impacts of various albedo/materials in the actual outdoor environment are studied by measuring the surface temperatures of a variety of materials tested on an actual roof. We also generate an albedo database for several urban surfaces to serve as a reference for future use. The results indicate that high-albedo materials can have a large impact on the surface temperature regime. On clear sunny days, when the solar noon surface temperatures of conventional roofing materials were about 40{degrees}C (72{degrees}F) warmer than air, the surface temperature of high-albedo coatings were only about 5{degrees}C warmer than air. In the morning and in the late afternoon, the high-albedo materials were as cool as the air itself. While conventional roofing materials warm up by an average 0.055{degrees}C/(W m{sup {minus}2}), the high-albedo surfaces warm up by an average 0.015{degrees}C/(W m{sup {minus}2}).

  13. Flat Top & rocky terrain

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Flat Top, the rectangular rock at lower right, is part of a stretch of rocky terrain in this image, taken by the deployed Imager for Mars Pathfinder (IMP) on Sol 3. Dust has accumulated on the top of Flat Top, but is not present on the sides due to the steep angles of the rock. This dust may have been placed by dust storms moving across the Martian surface. Flat Top has been studied using several different color filters on the IMP camera.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C.

  14. Mineralogical Variations Among High Albedo E-Type Asteroids: Implications for Asteroid Igneous Processes

    NASA Technical Reports Server (NTRS)

    Gaffey, Michael J.; Kelley, Michael S.

    2004-01-01

    The link between the E-type asteroids and the enstatite achondrites (aubrites) was first proposed for the original E-asteroid, 44 Nysa. The association was based on the high albedos and the featureless spectra shared by the E-asteroids and the aubrites. Among the plausible geologic and meteoritic materials, only enstatite (the magnesium end-member of the pyroxene solid solution series) is sufficiently abundant to comprise asteroid-sized bodies. However, the presence of a weak 0.89 m absorption feature in the spectrum of 44 Nysa indicates that its pyroxene contains a small amount of Fe(2+) but still substantially more than any aubrite present in the meteorite collection. The original E-class was defined based on its high albedo and flat to slightly reddish spectrum. In the absence of albedo data, the E-type was degenerate with the M- and P-types, and together these were designated as X-types. Recently, a taxonomy has been proposed to identify E-types in the absence of albedo data. In this newer classification system three subdivisions of the X-type have been proposed, including Xc, Xe and Xk. Of nine albedo-defined E-types [d], this newer non-albedo based taxonomy produced the following classifications: X-1 asteroid; Xc-2 asteroids; Xe-5 asteroids; and Xk-1 asteroid. Although the Xe subtype includes the largest number of albedo-defined E-types, most of the remaining 24 Xe-types can be excluded based on their low measured IRAS albedos, ranging from 0.116 to 0.329, which are below the lower albedo limit of the E-class (0.34) and substantially below that of the lowest albedo an actual E-type asteroid (0.41). The present discussion will be limited to unambiguous E-type asteroids determined on albedo criteria.

  15. Ks-BAND DETECTION OF THERMAL EMISSION AND COLOR CONSTRAINTS TO CoRoT-1b: A LOW-ALBEDO PLANET WITH INEFFICIENT ATMOSPHERIC ENERGY REDISTRIBUTION AND A TEMPERATURE INVERSION

    SciTech Connect

    Rogers, Justin C.; Apai, Daniel; Lopez-Morales, Mercedes; Sing, David K.; Burrows, Adam

    2009-12-20

    We report the detection in Ks-band of the secondary eclipse of the hot Jupiter CoRoT-1b from time series photometry with the ARC 3.5 m telescope at Apache Point Observatory. The eclipse shows a depth of 0.336 +- 0.042% and is centered at phase 0.5022{sup +0.0023}{sub -0.0027}, consistent with a zero eccentricity orbit (e cos omega = 0.0035{sup +0.0036}{sub -0.0042}). We perform the first optical to near-infrared multi-band photometric analysis of an exoplanet's atmosphere and constrain the reflected and thermal emissions by combining our result with the recent 0.6, 0.71, and 2.09 mum secondary eclipse detections by Snellen et al., Gillon et al., and Alonso et al. Comparing the multi-wavelength detections to state-of-the-art radiative-convective chemical-equilibrium atmosphere models, we find the near-infrared fluxes difficult to reproduce. The closest blackbody-based and physical models provide the following atmosphere parameters: a temperature T = 2460{sup +80}{sub -160} K; a very low Bond albedo A{sub B} = 0.000{sup +0.081}{sub -0.000}; and an energy redistribution parameter P{sub n} = 0.1, indicating a small but nonzero amount of heat transfer from the day to nightside. The best physical model suggests a thermal inversion layer with an extra optical absorber of opacity kappa{sub e} = 0.05 cm{sup 2} g{sup -1}, placed near the 0.1 bar atmospheric pressure level. This inversion layer is located 10 times deeper in the atmosphere than the absorbers used in models to fit mid-infrared Spitzer detections of other irradiated hot Jupiters.

  16. Ks-Band Detection of Thermal Emission and Color Constraints to CoRoT-1b: A Low-Albedo Planet with Inefficient Atmospheric Energy Redistribution and a Temperature Inversion

    NASA Astrophysics Data System (ADS)

    Rogers, Justin C.; Apai, Dániel; López-Morales, Mercedes; Sing, David K.; Burrows, Adam

    2009-12-01

    We report the detection in Ks-band of the secondary eclipse of the hot Jupiter CoRoT-1b from time series photometry with the ARC 3.5 m telescope at Apache Point Observatory. The eclipse shows a depth of 0.336 ± 0.042% and is centered at phase 0.5022+0.0023 -0.0027, consistent with a zero eccentricity orbit (e cos ω = 0.0035+0.0036 -0.0042). We perform the first optical to near-infrared multi-band photometric analysis of an exoplanet's atmosphere and constrain the reflected and thermal emissions by combining our result with the recent 0.6, 0.71, and 2.09 μm secondary eclipse detections by Snellen et al., Gillon et al., and Alonso et al. Comparing the multi-wavelength detections to state-of-the-art radiative-convective chemical-equilibrium atmosphere models, we find the near-infrared fluxes difficult to reproduce. The closest blackbody-based and physical models provide the following atmosphere parameters: a temperature T = 2460+80 -160 K; a very low Bond albedo AB = 0.000+0.081 -0.000 and an energy redistribution parameter Pn = 0.1, indicating a small but nonzero amount of heat transfer from the day to nightside. The best physical model suggests a thermal inversion layer with an extra optical absorber of opacity κ e = 0.05 cm2 g-1, placed near the 0.1 bar atmospheric pressure level. This inversion layer is located 10 times deeper in the atmosphere than the absorbers used in models to fit mid-infrared Spitzer detections of other irradiated hot Jupiters. Based on observations obtained with the Apache Point Observatory 3.5 m telescope, which is owned and operated by the Astrophysical Research Consortium.

  17. Spectral albedos of midlatitude snowpacks

    NASA Technical Reports Server (NTRS)

    Choudhury, B.

    1981-01-01

    Spectral albedos of impure-nonhomogeneous snowpacks, typical of midlatitudes, from 400 to 2200 nm were modeled through a numerical solution of the radiative transfer equation in the two-stream approximation. Discrete depth-dependent values of density, grain size and impurity concentration were used to characterize the snowpacks. The model is for diffuse incident radiation, and the numerical method is based on doubling and invariant imbedding. The effect of soot impurities on snowpack albedos is illustrated when a snowpack is several centimeters deep and soot reduces the albedos at visible wavelengths, however, when a snowpack is only a few centimeters deep, soot may increase the albedos at visible wavelengths. By adjusting soot content and snow grain size, good quantitative agreement with some observations at the Cascade Mountains (Washington) and at Point Barrow (Alaska) are obtained; however, the model grain sizes are found to be fifty to four hundred percent larger than the measured values. For satellite snowcover observations, a model for effective albedo of partially snow-covered areas was developed and compared with some NOAA-2 observations of the southeastern United States.

  18. Detailed spatiotemporal albedo observations at Greenland's Mittivakkat Gletscher

    NASA Astrophysics Data System (ADS)

    Mernild, Sebastian H.; Knudsen, Niels T.; Yde, Jacob C.; Malmros, Jeppe K.

    2015-04-01

    Surface albedo is defined as the reflected fraction of incoming solar shortwave radiation at the surface. On Greenland's Mittivakkat Gletscher the mean glacier-wide MODIS-estimated albedo dropped by 0.10 (2000-2013) from 0.43 to 0.33 by the end of the mass balance year (EBY). Hand-held albedo measurements as low as 0.10 were observed over debris-covered ice at the glacier margin at the EBY: these values were slightly below observed values for proglacial bedrock (~0.2). The albedo is highly variable in space - a significant variability occurred within few meters at the glacier margin area ranging from 0.10 to 0.39 due to variability in debris-cover thickness and composition, microbial activity (including algae and cyanobacteria), snow grain crystal metamorphism, bare ice exposure, and meltwater ponding. Huge dark-red-brown-colored ice algae colonies were observed. Albedo measurements on snow patches and bare glacier ice changed significant with increasing elevations (180-600 m a.s.l.) by lapse rates of 0.04 and 0.03 per 100 m, respectively, indicating values as high as 0.82 and 0.40 on the upper part of the glacier. Over a period of two weeks from early August to late August 2014 the hand-held observed mean glacier-wide albedo changed from 0.40 to 0.30 indicating that on average 10% more incoming solar shortwave radiation became available for surface ablation at the end of the melt season.

  19. Flat battery

    SciTech Connect

    Buckler, S.A.; Cohen, F.S.; Kennedy, D.P.

    1980-12-30

    A description is given of the method of making a thin flat laminar battery comprising the steps of coating a substrate with a dispersion of zinc powder and water to produce an anode slurry, and thereafter diffusing electrolytes into said anode slurry; and electrical cells and batteries made by this process.

  20. Near-ground cooling efficacies of trees and high-albedo surfaces

    SciTech Connect

    Levinson, R M

    1997-05-01

    Daytime summer urban heat islands arise when the prevalence of dark-colored surfaces and lack of vegetation make a city warmer than neighboring countryside. Two frequently-proposed summer heat island mitigation measures are to plant trees and to increase the albedo (solar reflectivity) of ground surfaces. This dissertation examines the effects of these measures on the surface temperature of an object near the ground, and on solar heating of air near the ground. Near-ground objects include people, vehicles, and buildings. The variation of the surface temperature of a near-ground object with ground albedo indicates that a rise in ground albedo will cool a near-ground object only if the object`s albedo exceeds a critical value. This critical value of object albedo depends on wind speed, object geometry, and the height of the atmospheric thermal boundary layer. It ranges from 0.15 to 0.37 for a person. If an object has typical albedo of 0.3, increasing the ground albedo by.

  1. Albedo in the ATIC Experiment

    NASA Technical Reports Server (NTRS)

    Sokolskaya, N. V.; Adams, J. H., Jr.; Ahn, H. S.; Bashindzhagyan, G. L.; Batkov, K. E.; Case, G.; Christl, M.; Chang, J.; Fazely, A. R.; Ganel, O.; Six, N. Frank (Technical Monitor)

    2002-01-01

    ATIC(Advanced Thin Ionization Calorimeter) is a balloon borne experiment designed to measure the cosmic ray composition for elements from hydrogen to iron and their energy spectra from approx.50 GeV to near 100 TeV. It consists of a Si-matrix detector to determine the charge of a CR particle, a scintillator hodoscope for tracking, carbon interaction targets and a fully active BGO calorimeter. ATIC had its first 16-day flight from McMurdo, Antarctica from 28/12/2000 to 13/01/2000. The ATIC flight collected approximately 25 million events. To measure charge of primary particle in presence of radiation scattered back from the interaction and subsequent shower development in the calorimeter a charge detector must be a mosaic of small detector pads so that the pad containing the signal from the incident particle has no additional signal from albedo particles. Therefore the silicon matrix was built of 4480 individual silicon pads each 2 cm x 1.5 cm. The matrix consists of four planes of detectors and the active detector area, in these planes are partially overlapped to completely cover the aperture. The lateral and amplitude distributions of albedo signals in Si-matrix are analyzed for different primary nuclei and different energy deposits in BGO calorimeter. The greater part of albedo signals has Q near 1, where Q = square root of Amplitude(MIP). The albedo distribution exponentially decreases up to Q near 8. These high values are produced by slow protons and plans. There are also a small number of signals of Q > 8, mainly for heavy nucleus primaries. These signals are apparently generated by neutrons. The comparison of the experimental data and simulations with GEANT 3-21 code using QGSM generator for nucleus-nucleus interactions is presented.

  2. A cavity radiometer for Earth albedo measurement, phase 1

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Radiometric measurements of the directional albedo of the Earth requires a detector with a flat response from 0.2 to 50 microns, a response time of about 2 seconds, a sensitivity of the order of 0.02 mw/sq cm, and a measurement uncertainty of less than 5 percent. Absolute cavity radiometers easily meet the spectral response and accuracy requirements for Earth albedo measurements, but the radiometers available today lack the necessary sensitivity and response time. The specific innovations addressed were the development of a very low thermal mass cavity and printed/deposited thermocouple sensing elements which were incorporated into the radiometer design to produce a sensitive, fast response, absolute radiometer. The cavity is applicable to the measurement of the reflected and radiated fluxes from the Earth surface and lower atmosphere from low Earth orbit satellites. The effort consisted of requirements and thermal analysis; design, construction, and test of prototype elements of the black cavity and sensor elements to show proof-of-concept. The results obtained indicate that a black body cavity sensor that has inherently a flat response from 0.2 to 50 microns can be produced which has a sensitivity of at least 0.02 mw/sq cm per micro volt ouput and with a time constant of less than two seconds. Additional work is required to develop the required thermopile.

  3. The Ultraviolet Albedo of Ganymede

    NASA Astrophysics Data System (ADS)

    McGrath, Melissa; Hendrix, A.

    2013-10-01

    A large set of ultraviolet images of Ganymede have been acquired with the Hubble Space Telescope over the last 15 years. These images have been used almost exclusively to study Ganymede’s stunning auroral emissions (Feldman et al. 2000; Eviatar et al. 2001; McGrath et al. 2004; Saur et al. 2011; McGrath et al. 2013), and even the most basic information about Ganymede’s UV albedo has yet to be gleaned from these data. We will present a first-cut analysis of both disk-averaged and spatially-resolved UV albedos of Ganymede, with focus on the spatially-resolved Lyman-alpha albedo, which has never been considered previously for this satellite. Ganymede's visibly bright regions are known to be rich in water ice, while the visibly dark regions seem to be more carbonaceous (Carlson et al., 1996). At Lyman-alpha, these two species should also have very different albedo values. References Carlson, R. and 39 co-authors, Near-infrared spectroscopy and spectral mapping of Jupiter and the Galilean satellites: Results from Galileo’s initial orbit, Science, 274, 385-388, 1996. Eviatar, A., D. F. Strobel, B. C. Wolven, P. D. Feldman, M. A. McGrath, and D. J. Williams, Excitation of the Ganymede ultraviolet aurora, Astrophys. J, 555, 1013-1019, 2001. Feldman, P. D., M. A. McGrath, D. F. Strobel, H. W. Moos, K. D. Retherford, and B. C. Wolven, HST/STIS imaging of ultraviolet aurora on Ganymede, Astrophys. J, 535, 1085-1090, 2000. McGrath M. A., Lellouch E., Strobel D. F., Feldman P. D., Johnson R. E., Satellite Atmospheres, Chapter 19 in Jupiter: The Planet, Satellites and Magnetosphere, ed. F. Bagenal, T. Dowling, W. McKinnon, Cambridge University Press, 2004. McGrath M. A., Jia, Xianzhe; Retherford, Kurt; Feldman, Paul D.; Strobel, Darrell F.; Saur, Joachim, Aurora on Ganymede, J. Geophys. Res., doi: 10.1002/jgra.50122, 2013. Saur, J., S. Duling, S., L. Roth, P. D. Feldman, D. F. Strobel, K. D. Retherford, M. A. McGrath, A. Wennmacher, American Geophysical Union, Fall Meeting

  4. Calculation of albedos for neutrons and photons

    NASA Astrophysics Data System (ADS)

    Brockhoff, Ronald Carl

    2003-07-01

    The albedo concept is used to describe radiation that appears to be reflected from a surface, although in reality this reflected radiation is comprised of radiation that has entered the medium, and is subsequently scattered back through the surface. The albedo often offers a computationally simple alternative to estimate doses from radiation reflected from surfaces surrounding a streaming region. However, albedo data available prior to this study, are limited to relatively few source energies and reflecting media, and are based on obsolete and incomplete cross sections and response functions. The Monte Carlo code MCNP is applied in this study to calculate the differential photon and neutron dose albedos, along with the differential secondary-photon dose albedo, based on modern response functions and cross section data. Differential photon dose albedo data were calculated for source energies ranging from 0.1 to 10 MeV incident on slabs of concrete, iron, lead, and water. Differential neutron dose albedo data, and the associated differential secondary-photon dose albedo data, were calculated for source energy bands ranging from 0.1 to 10 MeV, and for thermal, Californium, and 14 MeV source spectra, incident on the same four reflecting media. The results indicate that (1) the approximation of the differential photon dose albedo proposed by Chilton and Huddleston usually deviates from the raw albedo data by less than 10% for source energies between 0.1 and 10.0 MeV, (2) the new 24-parameter approximation of the differential neutron dose albedo deviates from the raw albedo data by less than 10% for source energy bands between 0.1 and 10 MeV, and (3) the five-parameter approximation of the secondary-photon dose albedo deviates from the raw albedo data by less than 25% for source energies between 0.1 and 10 MeV. The differential dose albedo approximations obtained in this study are used to solve several example radiation transport problems, where the dose from reflected

  5. The temporal scale research of MODIS albedo product authenticity verification

    NASA Astrophysics Data System (ADS)

    Cao, Yongxing; Xue, Zhihang; Cheng, Hui; Xiong, Yajv; Chen, Yunping; Tong, Ling

    2016-06-01

    This study introduces a method that normalizes the inversed ETM+ albedo to the local solar noon albedo for the temporal scale of the MODIS albedo validation. Firstly, the statistical relation model between the surface albedo and the solar elevation angle was set up, and then deducing relationship between ETM+ albedo and the solar elevation angle, so the ETM+ albedo at local solar noon could be got. Secondly, the ground measurement albedo at the local solar noon was used to assess the inversed ETM+ albedo and the normalized albedo. The experiment results show that the method can effectively improve the accuracy of product certification.

  6. Global Study of Small-Scale Color Variations on Eros

    NASA Astrophysics Data System (ADS)

    Riner, M. A.; Eckart, J. M.; Digilio, J. G.; Robinson, M. S.

    2005-12-01

    Small-scale color variations on Eros provide information about composition and regolith processes. We mosaicked all multispectral image sequences of Eros acquired with the NEAR Shoemaker MultiSpectral Imager (MSI) [1] to produce an exhaustive catalog of all color features. Consistent with previous findings we identify four types of spectral/albedo units: 1) high albedo streaks found on the steep slopes, 2) low albedo soils found in topographic lows and in association with high albedo streaks, 3) ponds which are smooth, flat deposits that infill topographic lows normal to local gravity, 4) and average Eros. From our global survey we have cataloged and characterized 137 white streaks, 66 dark soils, 123 areas of typical regolith, and 66 ponded deposits, roughly an order of magnitude more data points than reported in previous studies. We confirm the findings of [2]; white streaks, dark soils, and typical Eros fall on a two end-member mixing line with white streaks and dark soils as end members. White streaks are bluer (550nm/760nm) and have a deeper 1-micron absorption band (950nm/760nm), while dark soils are redder (550nm/760nm) and have a shallower 1-micron band (950nm/760nm). These trends are consistent with varying degrees of space weathering, from relatively immature white streaks to mature typical regolith. The dark soils may be a concentration of mature components (i.e. agglutinates, submicroscopic metallic iron) [2,3]. We also found a significant spatial association between dark soils and white streaks; all observed dark soils occur adjacent to white streaks however not all white streaks have associated dark soils. These observations support the hypothesis that white streaks are fresh material exposed on slopes by mass wasting and that dark soils are accumulations of mature components at the bottoms of slopes [2,3]. We find that ponded deposits are bluer (550nm/760nm) than and have similar 1-micron absorption band depths (950nm/760nm) as white streaks. However

  7. Color and chemistry on Triton

    NASA Technical Reports Server (NTRS)

    Thompson, W. Reid; Sagan, Carl

    1990-01-01

    The surface of Triton is very bright but shows subtle yellow to peach hues which probably arise from the production of colored organic compounds from CH4 + N2 and other simple species. In order to investigate possible relationships between chemical processes and the observed surface distribution of chromophores, the surface units are classified according to color/albedo properties, the rates of production of organic chromophores by the action of ultraviolet light and high-energy charged particles is estimated, and rates, spectral properties, and expected seasonal redistribution processes are compared to suggest possible origins of the colors seen on Triton's surface.

  8. Color and chemistry on Triton

    NASA Astrophysics Data System (ADS)

    Thompson, W. Reid; Sagan, Carl

    1990-10-01

    The surface of Triton is very bright but shows subtle yellow to peach hues which probably arise from the production of colored organic compounds from CH4 + N2 and other simple species. In order to investigate possible relationships between chemical processes and the observed surface distribution of chromophores, the surface units are classified according to color/albedo properties, the rates of production of organic chromophores by the action of ultraviolet light and high-energy charged particles is estimated, and rates, spectral properties, and expected seasonal redistribution processes are compared to suggest possible origins of the colors seen on Triton's surface.

  9. Color and Chemistry on Triton

    NASA Astrophysics Data System (ADS)

    Reid Thompson, W.; Sagan, Carl

    1990-10-01

    The surface of Triton is very bright but shows subtle yellow to peach hues which probably arise from the production of colored organic compounds from CH_4 + N_2 and other simple species. In order to investigate possible relationships between chemical processes and the observed surface distribution of chromophores, we classify the surface units according to color/albedo properties, estimate the rates of production of organic chromophores by the action of ultraviolet light and high-energy charged particles, and compare rates, spectral properties, and expected seasonal redistribution processes to suggest possible origins of the colors seen on Triton's surface.

  10. Albedo distribution of main-belt asteroids based on IRAS, AKARI, and WISE

    NASA Astrophysics Data System (ADS)

    Usui, F.; Hasegawa, S.; Ishiguro, M.; Mueller, T.; Ootsubo, T.

    2014-07-01

    survey of the entire sky. To date, there are two other infrared astronomical satellites dedicated to all-sky survey: the Japanese infrared satellite AKARI [2], and the Wide-field Infrared Survey Explorer (WISE; [3]). Based on the all-sky survey data obtained by IRAS, AKARI, and WISE, the largest asteroid catalogs containing size and albedo data were constructed (e.g., [4--6] and their series of papers). The total number of asteroids with size and albedo measured by these three infrared surveyors is 138,285 (more than 20 % of currently known asteroids), and size and albedo measured by all three surveyors for 1,993 commonly detected asteroids are in good agreement (within ±10 % for diameter and ±22 % for albedo at 1σ deviation level) [7]. In addition, several outstanding works have provided the taxonomic classification of asteroids (e.g., [8--11]), based on ground-based spectroscopic observations in optical and near-infrared wavelengths. Along with these taxonomic classifications, size and albedo data also contribute to our understanding of asteroid compositions. In general, the albedo of C-type asteroids is considered as low and that of S-type asteroids is high (e.g., [12]). The relationship between taxonomic types and albedo is, however, complex and type determinations cannot be made on the basis of albedo values alone. Recently albedos of C- and S-type asteroids are found to vary widely, especially for sizes smaller than several tens of km [13]. In this talk, we present the details of a data compilation including size, albedo, and taxonomy of MBAs, and discuss the compositional distribution in the main belt regions. We found that the heliocentric distribution of the mean albedo of asteroids in each taxonomic type is found to be nearly flat, in spite of albedo transition process like space weathering. In the total distribution, on the other hand, the mean albedo value gradually decreases with increasing the semimajor axis, presumably due to the compositional mixing of

  11. Wedge and Flat Top

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Flat Top, the rectangular rock at right, is part of a stretch of rocky terrain in this image, taken by the deployed Imager for Mars Pathfinder (IMP) on Sol 3. Dust has accumulated on the top of Flat Top, but is not present on the sides due to the steep angles of the rock. This dust may have been placed by dust storms moving across the Martian surface. The rock dubbed 'Wedge' is at left. The objects have been studied using several different color filters on the IMP camera.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  12. Variability of albedo and utility of the MODIS albedo product in forested wetlands

    USGS Publications Warehouse

    Sumner, David M.; Wu, Qinglong; Pathak, Chandra S.

    2011-01-01

    Albedo was monitored over a two-year period (beginning April 2008) at three forested wetland sites in Florida, USA using up- and down-ward facing pyranometers. Water level, above and below land surface, is the primary control on the temporal variability of daily albedo. Relatively low reflectivity of water accounts for the observed reductions in albedo with increased inundation of the forest floor. Enhanced canopy shading of the forest floor was responsible for lower sensitivity of albedo to water level at the most dense forest site. At one site, the most dramatic reduction in daily albedo was observed during the inundation of a highly-reflective, calcareous periphyton-covered land surface. Satellite-based Moderate-Resolution Imaging Spectroradiometer (MODIS) estimates of albedo compare favorably with measured albedo. Use of MODIS albedo values in net radiation computations introduced a root mean squared error of less than 4.7 W/m2 and a mean, annual bias of less than 2.3 W/m2 (1.7%). These results suggest that MODIS-estimated albedo values can reliably be used to capture areal and temporal variations in albedo that are important to the surface energy balance.

  13. Arctic sea ice albedo from AVHRR

    SciTech Connect

    Lindsay, R.W.; Rothrock, D.A.

    1994-11-01

    The seasonal cycle of surface albedo of sea ice in the Arctic is estimated from measurements made with the Advanced Very High Resolution Radiometer (AVHRR) on the polar-orbiting satellites NOAA-10 and NOAA-11. The albedos of 145 200-km-square cells are analyzed. The cells are from March through September 1989 and include only those for which the sun is more than 10 deg above the horizon. Cloud masking is performed manually. Corrections are applied for instrument calibration, nonisotropic reflection, atmospheric interference, narrowband to broadband conversion, and normalization to a common solar zenith angle. The estimated albedos are relative, with the instrument gain set to give an albedo of 0.80 for ice floes in March and April. The mean values for the cloud-free portions of individual cells range from 0.18 to 0.91. Monthly averages of cells in the central Arctic range from 0.76 in April to 0.47 in August. The monthly averages of the within-cell standard deviations in the central Arctic are 0.04 in April and 0.06 in September. The surface albedo and surface temperature are correlated most strongly in March (R = -0.77) with little correlation in the summer. The monthly average lead fraction is determined from the mean potential open water, a scaled representation of the temperature or albedo between 0.0 (for ice) and 1.0 (for water); in the central Arctic it rises from an average 0.025 in the spring to 0.06 in September. Sparse data on aerosols, ozone, and water vapor in the atmospheric column contribute uncertainties to instantaneous, area-average albedos of 0.13, 0.04, and 0.08. Uncertainties in monthly average albedos are not this large. Contemporaneous estimation of these variables could reduce the uncertainty in the estimated albedo considerably.

  14. Memnonia Fossae, Approximately Natural Color

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Tharsis-centered volcanic and tectonic activity resulted in the formation of radial grabens of Memnonia Fossae, which cut materials of the ancient cratered highlands and the relatively young, highland-embaying lava flows from the Tharsis volcanoes. Center of picture is at latitude 16 degrees S., longitude 142 degrees W. Natural color version shows albedo variations and uniform colors. The enhanced color version (PIA00151, following decorrelation stretch), however, reveals a diversity of subtle color variations; many of the color variations may be due to different lava flow units and variable amounts of weathering, possible alteration by water, and eolian redistributions. Viking Orbiter Picture Numbers 41B52 (green), 41b54 (red), and 41B56 (blue) at 198 m/pixel resolution. Picture width is 206 km. North is 119 degrees counter-clockwise from top.

  15. Radiation Dose from Lunar Neutron Albedo

    NASA Technical Reports Server (NTRS)

    Adams, J. H., Jr.; Bhattacharya, M.; Lin, Zi-Wei; Pendleton, G.

    2006-01-01

    The lunar neutron albedo from thermal energies to 8 MeV was measured on the Lunar Prospector Mission in 1998-1999. Using GEANT4 we have calculated the neutron albedo due to cosmic ray bombardment of the moon and found a good-agreement with the measured fast neutron spectra. We then calculated the total effective dose from neutron albedo of all energies, and made comparisons with the effective dose contributions from both galactic cosmic rays and solar particle events to be expected on the lunar surface.

  16. New method of verificating optical flat flatness

    NASA Astrophysics Data System (ADS)

    Sun, Hao; Li, Xueyuan; Han, Sen; Zhu, Jianrong; Guo, Zhenglai; Fu, Yuegang

    2014-11-01

    Optical flat is commonly used in optical testing instruments, flatness is the most important parameter of forming errors. As measurement criteria, optical flat flatness (OFF) index needs to have good precision. Current measurement in China is heavily dependent on the artificial visual interpretation, through discrete points to characterize the flatness. The efficiency and accuracy of this method can not meet the demand of industrial development. In order to improve the testing efficiency and accuracy of measurement, it is necessary to develop an optical flat verification system, which can obtain all surface information rapidly and efficiently, at the same time, in accordance with current national metrological verification procedures. This paper reviews current optical flat verification method and solves the problems existing in previous test, by using new method and its supporting software. Final results show that the new system can improve verification efficiency and accuracy, by comparing with JJG 28-2000 metrological verification procedures method.

  17. Color Blindness

    MedlinePlus

    ... rose in full bloom. If you have a color vision defect, you may see these colors differently than most people. There are three main kinds of color vision defects. Red-green color vision defects are the most ...

  18. Color Blindness

    MedlinePlus

    ... three color cone cells to determine our color perception. Color blindness can occur when one or more ... Anyone who experiences a significant change in color perception should see an ophthalmologist (Eye M.D.). Next ...

  19. Color Blindness

    MedlinePlus

    ... rose in full bloom. If you have a color vision defect, you may see these colors differently than most people. There are three main kinds of color vision defects. Red-green color vision defects are the ...

  20. Mimas - Photometric roughness and albedo map

    NASA Technical Reports Server (NTRS)

    Verbiscer, Anne J.; Veverka, Joseph

    1992-01-01

    The backscattering phase function asssociated with bright icy satellites may render Hapke's (1986) isotropic approximation to multiple scattering inadequate. A reanalysis is accordingly conducted here of the Voyager observations of Mimas, using a modification to Hapke's equation that accommodates anisotropic multiple scattering, in order to characterize the physical and photometric properties of the heavily cratered icy surface. The roughness parameter of Mimas is in this way redefined, and an accurate albedo map is obtained which deminstrates small latitudinal and longitudinal albedo variations.

  1. The Albedo 'system' in the Cryosphere

    NASA Astrophysics Data System (ADS)

    Burkhart, J. F.; Storvold, R.; Solbo, S.; Pedersen, C. A.; Bogren, W.; Gerland, S.; Kylling, A.

    2012-12-01

    An Unmanned Aerial Vehicle (UAV) equipped with spectrometers making upward and downward measurements between 320-950nm was flown in Ny-Ålesund and Summit providing measurements of sea ice, ice sheet, and snow-covered tundra conditions. Concurrent with the flights, ground based stations with identical instrumentation were established. Micro snow pits and snow samples for black carbon analysis were collected at each measurement location. Preliminary analysis of the data show reflectance variability larger than albedo variability and more sensitive at longer wavelengths. This variability is driven by both the light absorbing aerosol component of the black carbon as well as physical aspects of the snow pack properties. At the each location, grain size variability, stratigraphy, and other physical snow pack properties are recorded. Analysis of black carbon content of the snow and inter-comparison with satellite retrieved measurements of albedo is ongoing. In this presentation the multiple measurements of albedo show that traditional measurements and estimates of albedo lack adequate characterization of the system within which the measurements are being made. Albedo is not a property of the surface being measured, but rather a property of a system and dependent on multiple parameters within the system that change seasonally, daily, and even hourly. We examine this system, and identify areas for improvement in current albedo parameterizations in the cryosphere.

  2. Applying Color.

    ERIC Educational Resources Information Center

    Burton, David

    1984-01-01

    Most schools teach the triadic color system, utilizing red, blue, and yellow as primary colors. Other systems, such as additive and subtractive color systems, Munsell's Color Notation System, and the Hering Opponent Color Theory, can broaden children's concepts and free them to better choose color in their own work. (IS)

  3. Sea ice-albedo climate feedback mechanism

    SciTech Connect

    Schramm, J.L.; Curry, J.A.; Ebert, E.E.

    1995-02-01

    The sea ice-albedo feedback mechanism over the Arctic Ocean multiyear sea ice is investigated by conducting a series of experiments using several one-dimensional models of the coupled sea ice-atmosphere system. In its simplest form, ice-albedo feedback is thought to be associated with a decrease in the areal cover of snow and ice and a corresponding increase in the surface temperature, further decreasing the area cover of snow and ice. It is shown that the sea ice-albedo feedback can operate even in multiyear pack ice, without the disappearance of this ice, associated with internal processes occurring within the multiyear ice pack (e.g., duration of the snow cover, ice thickness, ice distribution, lead fraction, and melt pond characteristics). The strength of the ice-albedo feedback mechanism is compared for several different thermodynamic sea ice models: a new model that includes ice thickness distribution., the Ebert and Curry model, the Mayjut and Untersteiner model, and the Semtner level-3 and level-0 models. The climate forcing is chosen to be a perturbation of the surface heat flux, and cloud and water vapor feedbacks are inoperative so that the effects of the sea ice-albedo feedback mechanism can be isolated. The inclusion of melt ponds significantly strengthens the ice-albedo feedback, while the ice thickness distribution decreases the strength of the modeled sea ice-albedo feedback. It is emphasized that accurately modeling present-day sea ice thickness is not adequate for a sea ice parameterization; the correct physical processes must be included so that the sea ice parameterization yields correct sensitivities to external forcing. 22 refs., 6 figs., 1 tab.

  4. Surface Albedo and Spectral Variability of Ceres

    NASA Astrophysics Data System (ADS)

    Li, Jian-Yang; Reddy, Vishnu; Nathues, Andreas; Le Corre, Lucille; Izawa, Matthew R. M.; Cloutis, Edward A.; Sykes, Mark V.; Carsenty, Uri; Castillo-Rogez, Julie C.; Hoffmann, Martin; Jaumann, Ralf; Krohn, Katrin; Mottola, Stefano; Prettyman, Thomas H.; Schaefer, Michael; Schenk, Paul; Schröder, Stefan E.; Williams, David A.; Smith, David E.; Zuber, Maria T.; Konopliv, Alexander S.; Park, Ryan S.; Raymond, Carol A.; Russell, Christopher T.

    2016-02-01

    Previous observations suggested that Ceres has active, but possibly sporadic, water outgassing as well as possibly varying spectral characteristics over a timescale of months. We used all available data of Ceres collected in the past three decades from the ground and the Hubble Space Telescope, as well as the newly acquired images by the Dawn  Framing Camera, to search for spectral and albedo variability on Ceres, on both a global scale and in local regions, particularly the bright spots inside the Occator crater, over timescales of a few months to decades. Our analysis has placed an upper limit on the possible temporal albedo variation on Ceres. Sporadic water vapor venting, or any possibly ongoing activity on Ceres, is not significant enough to change the albedo or the area of the bright features in the Occator crater by >15%, or the global albedo by >3% over the various timescales that we searched. Recently reported spectral slope variations can be explained by changing Sun-Ceres-Earth geometry. The active area on Ceres is less than 1 km2, too small to cause global albedo and spectral variations detectable in our data. Impact ejecta due to impacting projectiles of tens of meters in size like those known to cause observable changes to the surface albedo on Asteroid Scheila cannot cause detectable albedo change on Ceres due to its relatively large size and strong gravity. The water vapor activity on Ceres is independent of Ceres’ heliocentric distance, ruling out the possibility of the comet-like sublimation process as a possible mechanism driving the activity.

  5. Surface Albedo and Spectral Variability of Ceres

    NASA Astrophysics Data System (ADS)

    Li, Jian-Yang; Reddy, Vishnu; Nathues, Andreas; Le Corre, Lucille; Izawa, Matthew R. M.; Cloutis, Edward A.; Sykes, Mark V.; Carsenty, Uri; Castillo-Rogez, Julie C.; Hoffmann, Martin; Jaumann, Ralf; Krohn, Katrin; Mottola, Stefano; Prettyman, Thomas H.; Schaefer, Michael; Schenk, Paul; Schröder, Stefan E.; Williams, David A.; Smith, David E.; Zuber, Maria T.; Konopliv, Alexander S.; Park, Ryan S.; Raymond, Carol A.; Russell, Christopher T.

    2016-02-01

    Previous observations suggested that Ceres has active, but possibly sporadic, water outgassing as well as possibly varying spectral characteristics over a timescale of months. We used all available data of Ceres collected in the past three decades from the ground and the Hubble Space Telescope, as well as the newly acquired images by the Dawn  Framing Camera, to search for spectral and albedo variability on Ceres, on both a global scale and in local regions, particularly the bright spots inside the Occator crater, over timescales of a few months to decades. Our analysis has placed an upper limit on the possible temporal albedo variation on Ceres. Sporadic water vapor venting, or any possibly ongoing activity on Ceres, is not significant enough to change the albedo or the area of the bright features in the Occator crater by >15%, or the global albedo by >3% over the various timescales that we searched. Recently reported spectral slope variations can be explained by changing Sun–Ceres–Earth geometry. The active area on Ceres is less than 1 km2, too small to cause global albedo and spectral variations detectable in our data. Impact ejecta due to impacting projectiles of tens of meters in size like those known to cause observable changes to the surface albedo on Asteroid Scheila cannot cause detectable albedo change on Ceres due to its relatively large size and strong gravity. The water vapor activity on Ceres is independent of Ceres’ heliocentric distance, ruling out the possibility of the comet-like sublimation process as a possible mechanism driving the activity.

  6. The albedos of Pluto and Charon - Wavelength dependence

    NASA Technical Reports Server (NTRS)

    Marcialis, Robert L.; Lebofsky, Larry A.; Disanti, Michael A.; Fink, Uwe; Tedesco, Edward F.; Africano, John

    1992-01-01

    The March 3, 1987 occultation of Charon by Pluto was monitored simultaneously with three telescopes. Each site covered a distinct wavelength interval with the total range spanning 0.44-2.4 microns. Observing the same event ensures an identical sun-Pluto-earth geometry for all three sites, and minimizes the assumptions which must be made to combine results. This spectrophotometry is used to derive the individual geometric albedos of Pluto and Charon over a factor of at least 5 in wavelength. Combining the results with those of Binzel (1988) improved (B - V) color estimates (on the 'Johnson Pluto' system) are obtained for the components of the system at rotational phase 0.75: (Pluto + Charon) = 0.843 +/- 0.006; Pluto alone = 0.866 +/- 0.007; and Charon alone = 0.702 +/- 0.010.

  7. Detecting Low-Contrast Features in the Cosmic Ray Albedo Proton Yield Map of the Moon

    NASA Astrophysics Data System (ADS)

    Wilson, J. K.; Schwadron, N.; Spence, H.; Smith, S. S.; Golightly, M. J.; Case, A. W.; Stubbs, T. J.; Blake, J. B.; Kasper, J. C.; Looper, M. D.; Mazur, J. E.; Townsend, L. W.; Zeitlin, C. J.

    2013-12-01

    . Phys., 9, 69. [2] Feldman W. C. et al. (1998) Science, 281, 1496-1500. [3] Gasnault, O. et al. (2001) GRL, 28, 3797-3800. [4] Maurice, S. et al. (2004) JGR, 109, E07S04. [5] Mitrofanov I. G. et al. (2010) Science, 330, 483-486. [6] Feldman W. C. et al. (1997) JGR, 102, 25565-25574. [7] Wilson, J. K. et al. (2012) JGR, 117, E00H23. Figure 1. Top: Color-coded lunar albedo proton map, with two high-yielding mare regions labeled 'A' and 'B'. Bottom: Clementine white-light mosaic of lunar surface.

  8. Gamma-ray Albedo of the Moon

    SciTech Connect

    Moskalenko, Igor V.; Porter, Troy A.

    2007-06-14

    We use the GEANT4 Monte Carlo framework to calculate the gamma-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of gamma-rays from the Moon is very steep with an effective cutoff around 3 GeV (600 MeV for the inner part of the Moon disc). Since it is the only (almost) black spot in the gamma-ray sky, it provides a unique opportunity for calibration of gamma-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST). The albedo flux depends on the incident CR spectrum which changes over the solar cycle. Therefore, it is possible to monitor the CR spectrum using the albedo gamma-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo -rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the GLAST LAT to monitor the CR spectrum near the Earth beyond the lifetime of PAMELA.

  9. Bright is the New Black - Multi-Year Performance of Generic High-Albedo Roofs in an Urban Climate

    NASA Technical Reports Server (NTRS)

    Gaffin, S. R.; Imhoff, M.; Rosenzweig, C.; Khanbilvardi, R.; Pasqualini, A.; Kong, A. Y. Y.; Grillo, D.; Freed, A.; Hillel, D.; Hartung, E.

    2012-01-01

    High-albedo white and cool roofing membranes are recognized as a fundamental strategy that dense urban areas can deploy on a large scale, at low cost, to mitigate the urban heat island effect. We are monitoring three generic white membranes within New York City that represent a cross-section of the dominant white membrane options for U.S. flat roofs: (1) an ethylene propylene diene monomer (EPDM) rubber membrane; (2) a thermoplastic polyolefin (TPO) membrane and; (3) an asphaltic multi-ply built-up membrane coated with white elastomeric acrylic paint. The paint product is being used by New York City s government for the first major urban albedo enhancement program in its history. We report on the temperature and related albedo performance of these three membranes at three different sites over a multi-year period. The results indicate that the professionally installed white membranes are maintaining their temperature control effectively and are meeting the Energy Star Cool Roofing performance standards requiring a three-year aged albedo above 0.50. The EPDM membrane however shows evidence of low emissivity. The painted asphaltic surface shows high emissivity but lost about half of its initial albedo within two years after installation. Given that the acrylic approach is an important "do-it-yourself," low-cost, retrofit technique, and, as such, offers the most rapid technique for increasing urban albedo, further product performance research is recommended to identify conditions that optimize its long-term albedo control. Even so, its current multi-year performance still represents a significant albedo enhancement for urban heat island mitigation.

  10. Bright is the new black—multi-year performance of high-albedo roofs in an urban climate

    NASA Astrophysics Data System (ADS)

    Gaffin, S. R.; Imhoff, M.; Rosenzweig, C.; Khanbilvardi, R.; Pasqualini, A.; Kong, A. Y. Y.; Grillo, D.; Freed, A.; Hillel, D.; Hartung, E.

    2012-03-01

    High-albedo white and cool roofing membranes are recognized as a fundamental strategy that dense urban areas can deploy on a large scale, at low cost, to mitigate the urban heat island effect. We are monitoring three generic white membranes within New York City that represent a cross section of the dominant white membrane options for US flat roofs: (1) an ethylene-propylene-diene monomer (EPDM) rubber membrane; (2) a thermoplastic polyolefin (TPO) membrane; and (3) an asphaltic multi-ply built-up membrane coated with white elastomeric acrylic paint. The paint product is being used by New York City’s government for the first major urban albedo enhancement program in its history. We report on the temperature and related albedo performance of these three membranes at three different sites over a multi-year period. The results indicate that the professionally installed white membranes are maintaining their temperature control effectively and are meeting the Energy Star Cool Roofing performance standards requiring a three-year aged albedo above 0.50. The EPDM membrane shows evidence of low emissivity; however this had the interesting effect of avoiding any ‘winter heat penalty’ for this building. The painted asphaltic surface shows high emissivity but lost about half of its initial albedo within two years of installation. Given that the acrylic approach is such an important ‘do-it-yourself’, low-cost, retrofit technique, and, as such, offers the most rapid technique for increasing urban albedo, further product performance research is recommended to identify conditions that optimize its long-term albedo control. Even so, its current multi-year performance still represents a significant albedo enhancement for urban heat island mitigation.

  11. Microgap flat panel display

    DOEpatents

    Wuest, C.R.

    1998-12-08

    A microgap flat panel display is disclosed which includes a thin gas-filled display tube that utilizes switched X-Y ``pixel`` strips to trigger electron avalanches and activate a phosphor at a given location on a display screen. The panel utilizes the principal of electron multiplication in a gas subjected to a high electric field to provide sufficient electron current to activate standard luminescent phosphors located on an anode. The X-Y conductive strips of a few micron widths may for example, be deposited on opposite sides of a thin insulating substrate, or on one side of the adjacent substrates and function as a cathode. The X-Y strips are separated from the anode by a gap filled with a suitable gas. Electrical bias is selectively switched onto X and Y strips to activate a ``pixel`` in the region where these strips overlap. A small amount of a long-lived radioisotope is used to initiate an electron avalanche in the overlap region when bias is applied. The avalanche travels through the gas filled gap and activates a luminescent phosphor of a selected color. The bias is adjusted to give a proportional electron multiplication to control brightness for given pixel. 6 figs.

  12. Microgap flat panel display

    DOEpatents

    Wuest, Craig R.

    1998-01-01

    A microgap flat panel display which includes a thin gas-filled display tube that utilizes switched X-Y "pixel" strips to trigger electron avalanches and activate a phosphor at a given location on a display screen. The panel utilizes the principal of electron multiplication in a gas subjected to a high electric field to provide sufficient electron current to activate standard luminescent phosphors located on an anode. The X-Y conductive strips of a few micron widths may for example, be deposited on opposite sides of a thin insulating substrate, or on one side of the adjacent substrates and function as a cathode. The X-Y strips are separated from the anode by a gap filled with a suitable gas. Electrical bias is selectively switched onto X and Y strips to activate a "pixel" in the region where these strips overlap. A small amount of a long-lived radioisotope is used to initiate an electron avalanche in the overlap region when bias is applied. The avalanche travels through the gas filled gap and activates a luminescent phosphor of a selected color. The bias is adjusted to give a proportional electron multiplication to control brightness for given pixel.

  13. The determination of surface albedo from meteorological satellites

    NASA Technical Reports Server (NTRS)

    Johnson, W. T.

    1977-01-01

    A surface albedo was determined from visible data collected by the NOAA-4 polar orbiting meteorological satellite. To filter out the major cause of atmospheric reflectivity, namely clouds, techniques were developed and applied to the data resulting in a map of global surface albedo. Neglecting spurious surface albedos for regions with persistent cloud cover, sun glint effects, insufficient reflected light and, at this time, some unresolved influences, the surface albedos retrieved from satellite data closely matched those of a global surface albedo map produced from surface and aircraft measurements and from characteristic albedos for land type and land use.

  14. Color blindness

    MedlinePlus

    ... have trouble telling the difference between red and green. This is the most common type of color ... color blindness often have problems seeing reds and greens, too. The most severe form of color blindness ...

  15. Color blindness

    MedlinePlus

    ... care provider or eye specialist can check your color vision in several ways. Testing for color blindness is ... Adams AJ, Verdon WA, Spivey BE. Color vision. In: Tasman W, Jaeger EA, eds. ... PA: Lippincott Williams & Wilkins; 2013:vol. 2, chap ...

  16. Multiscale climatological albedo look-up maps derived from moderate resolution imaging spectroradiometer BRDF/albedo products

    NASA Astrophysics Data System (ADS)

    Gao, Feng; He, Tao; Wang, Zhuosen; Ghimire, Bardan; Shuai, Yanmin; Masek, Jeffrey; Schaaf, Crystal; Williams, Christopher

    2014-01-01

    Surface albedo determines radiative forcing and is a key parameter for driving Earth's climate. Better characterization of surface albedo for individual land cover types can reduce the uncertainty in estimating changes to Earth's radiation balance due to land cover change. This paper presents albedo look-up maps (LUMs) using a multiscale hierarchical approach based on moderate resolution imaging spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF)/albedo products and Landsat imagery. Ten years (2001 to 2011) of MODIS BRDF/albedo products were used to generate global albedo climatology. Albedo LUMs of land cover classes defined by the International Geosphere-Biosphere Programme (IGBP) at multiple spatial resolutions were generated. The albedo LUMs included monthly statistics of white-sky (diffuse) and black-sky (direct) albedo for each IGBP class for visible, near-infrared, and shortwave broadband under both snow-free and snow-covered conditions. The albedo LUMs were assessed by using the annual MODIS IGBP land cover map and the projected land use scenarios from the Intergovernmental Panel on Climate Change land-use harmonization project. The comparisons between the reconstructed albedo and the MODIS albedo data product show good agreement. The LUMs provide high temporal and spatial resolution global albedo statistics without gaps for investigating albedo variations under different land cover scenarios and could be used for land surface modeling.

  17. Monitoring surface albedo change with Landsat

    NASA Technical Reports Server (NTRS)

    Otterman, J.

    1977-01-01

    A pronounced decrease of the surface albedo (reflectivity) has been observed in an area in the Northern Sinai, fenced-in in the summer of 1974. Analysis of the Landsat Multispectral Scanner System digital data from an April 1977 pass indicates a reduction in the albedo in the exclosure by 13%, as compared to the outside, which continues to be subjected to overgrazing and anthropogenic pressures. The reduction of reflectivity is approximately the same in all the spectral bands, and is therefore attributable to accumulation of dead plants and plant debris, and not directly to live vegetation.

  18. The diameter and albedo of 1943 Anteros

    NASA Technical Reports Server (NTRS)

    Veeder, G. J.; Tedesco, E. F.; Tholen, D. J.; Tokunaga, A.; Matthews, K.; Neugebauer, G.; Soifer, B. T.; Kowal, C.

    1981-01-01

    The results of broadband visual and infrared photometry of the Apollo-Amor asteroid 1943 Anteros during its 1980 apparition are reported. By means of a radiometric model, a diameter of 2.3 + or - 0.2 km and a visual geometric albedo of 0.13 + or - 0.03 is calculated. The albedo and reflectance spectrum of Anteros imply that it is a type S asteroid. Thus, Anteros may have a silicate surface similar to other Apollo-Amor asteroids as well as some stony-iron meteorites.

  19. The ultraviolet continuum albedo of Uranus

    SciTech Connect

    Cochran, W.D.; Wagener, R.; Caldwell, J.; Fricke, K.H. New York State Univ., Stony Brook York Univ., Toronto Bonn Universitaet )

    1990-01-01

    A radiative transfer code explicitly treating the Raman scattering of solar protons by H{sub 2} is presently used to analyze the Uranus geometric albedo in the 2000-5000 A range. The Baines and Bergstralh (1986) baseline model used reproduces the geometric albedo peak produced by Raman scattering filling of solar absorption line cores, but is found to be excessively bright for wavelengths below 2400 A. This discrepancy is resolvable through inclusion of an absorbing stratospheric haze layer, and results are thereby obtained which are consistent with the Pollack et al. (1987) model, in which aerosols are generated stratospherically through photochemical effects on hydrocarbons. 20 refs.

  20. ALBEDO PROPERTIES OF MAIN BELT ASTEROIDS BASED ON THE ALL-SKY SURVEY OF THE INFRARED ASTRONOMICAL SATELLITE AKARI

    SciTech Connect

    Usui, Fumihiko; Hasegawa, Sunao; Matsuhara, Hideo; Kasuga, Toshihiro; Ishiguro, Masateru; Kuroda, Daisuke; Mueller, Thomas G.; Ootsubo, Takafumi

    2013-01-01

    We present an analysis of the albedo properties of main belt asteroids (MBAs) detected by the All-Sky Survey of the infrared astronomical satellite AKARI. The characteristics of 5120 asteroids detected by the survey, including their sizes and albedos, were cataloged in the Asteroid Catalog Using AKARI (AcuA). Size and albedo measurements were based on the standard thermal model, using inputs of infrared fluxes and absolute magnitudes measured at optical wavelengths. MBAs, which account for 4722 of the 5120 AcuA asteroids, have semimajor axes of 2.06-3.27 AU, except for the near-Earth asteroids. AcuA provides a complete data set of all MBAs brighter than the absolute magnitude of H < 10.3, which corresponds to the diameter of d > 20 km. We confirmed that the albedo distribution of the MBAs is strongly bimodal as was already known from the past observations, and that the bimodal distribution occurs not only in the total population, but also within inner, middle, and outer regions of the main belt. The bimodal distribution in each group consists of low-albedo components in C-type asteroids and high-albedo components in S-type asteroids. We found that the small asteroids have much more variety in albedo than the large asteroids. In spite of the albedo transition process like space weathering, the heliocentric distribution of the mean albedo of asteroids in each taxonomic type is nearly flat. The mean albedo of the total, on the other hand, gradually decreases with an increase in semimajor axis. This can be explained by the compositional ratio of taxonomic types; that is, the proportion of dark asteroids such as C- and D-types increases, while that of bright asteroids such as S-type decreases, with increasing heliocentric distance. The heliocentric distributions of X-subclasses: E-, M-, and P-types, which can be divided based on albedo values, are also examined. P-types, which are the major component in X-types, are distributed throughout the main belt regions, and the

  1. Hopkins Ultraviolet Telescope observations of far-ultraviolet scattering in NGC 7023 - The dust albedo

    NASA Technical Reports Server (NTRS)

    Murthy, Jayant; Dring, Andrew; Henry, Richard C.; Kruk, Jeffrey W.; Blair, William P.; Kimble, Randy A.; Durrance, Samuel T.

    1993-01-01

    We have obtained the first sub-Ly-alpha spectroscopic observations of the reflection nebula NGC 7023 and its illuminating star, HD 200775, using the Hopkins UV Telescope during the Astro-1 mission in December, 1990. The ratio of the nebular to stellar flux is virtually flat between 1100 and 1860 A, indicating that sigma(a), the cross section for absorption, must rise sharply with decreasing wavelength. Independent of any model, this means that much of the far-UV rise in the extinction curve is due to an increase in absorption rather than scattering. If, in addition, we assume a spherical geometry, we derive an albedo of 0.5 at 1100 A with somewhat higher values at longer wavelengths. If the geometry is not spherical, lower values of the albedo may be obtained.

  2. Large Multispectral and Albedo Panoramas Acquired by the Pancam Instruments on the Mars Exploration Rovers Spirit and Opportunity

    NASA Technical Reports Server (NTRS)

    Bell, J. F., III; Arneson, H. M.; Farrand, W. H.; Goetz, W.; Hayes, A. G.; Herkenhoff, K.; Johnson, M. J.; Johnson, J. R.; Joseph, J.; Kinch, K.

    2005-01-01

    Introduction. The panoramic camera (Pancam) multispectral, stereoscopic imaging systems on the Mars Exploration Rovers Spirit and Opportunity [1] have acquired and downlinked more than 45,000 images (35 Gbits of data) over more than 700 combined sols of operation on Mars as of early January 2005. A large subset of these images were acquired as part of 26 large multispectral and/or broadband "albedo" panoramas (15 on Spirit, 11 on Opportunity) covering large ranges of azimuth (12 spanning 360 ) and designed to characterize major regional color and albedo characteristics of the landing sites and various points along both rover traverses.

  3. The ultraviolet spectral albedo of planet earth

    NASA Technical Reports Server (NTRS)

    Frederick, John E.; Serafino, George N.

    1987-01-01

    The solar backscattered ultraviolet spectral radiometer on the Nimbus 7 satellite provides a unique set of radiation measurements which allows an evaluation of the spectral albedo of the earth and its atmosphere in the wavelength range 300 to 340 nm. Near 340 nm, the derived spectral albedo expressed as a function of latitude and month exceeds that in the visible part of the spectrum, with values near 45 percent existing equatorward of 30 deg and an increase to 60-80 percent toward the poles. At middle to high latitudes, the monthly mean spectral albedo exceeds the contribution from Rayleigh scattering alone by factors of 1.4 to 2.2. At wavelengths from 300 to 310 nm, where absorption by stratospheric ozone is significant, the daylight averaged spectral albedos receive negligible contribution from scattering by tropospheric clouds, yet the derived values exceed those predicted for Rayleigh scattering from a clean stratosphere. These observations are consistent with the presence of an atmospheric scattering layer, distinct from cloudiness, located at an altitude above the tropopause.

  4. The low energy atmospheric antiproton albedo

    NASA Technical Reports Server (NTRS)

    Cole, J. B.; Ormes, J. F.

    1989-01-01

    The flux of albedo antiprotons in the 100-1000 MeV kinetic energy range produced by the cosmic ray primaries in the atmosphere is calculated. It is shown that this is not a significant background to measurements of the low energy anti-proton cosmic ray flux.

  5. MAMA NUV Flats

    NASA Astrophysics Data System (ADS)

    Sana, Hugues

    2013-10-01

    This program is aimed at obtaining NUV-MAMA flat-field observations for the construction of pixel-to-pixel flats {p-flats} with a SNR of 100 per binned pixel. The flats are obtained with the DEUTERIUM-lamp and the MR grisms G230M. The actual choice of central wavelength and slit combination depends on the observed count level within each exposure.Note that STIS NUV-MAMA flats are taken every other cycles{i.e. during odd number cycles} in order to not drain the DEUTERIUMlamp lifetime.

  6. MAMA NUV Flats

    NASA Astrophysics Data System (ADS)

    Mason, Elena

    2011-10-01

    This program is aimed at obtaining NUV-MAMA flat-field observations for the construction of pixel-to-pixel flats {p-flats} with a SNR of 100 per binned pixel. The flats are obtained with the DEUTERIUM-lamp and the MR grisms G230M. The actual choice of central wavelength and slit combination depends on the observed count level within each exposure.Note that STIS NUV-MAMA flats are taken every other cycles{i.e. during odd number cycles} in order to not drain the DEUTERIUMlamp lifetime.

  7. Colorful Chemistry.

    ERIC Educational Resources Information Center

    Williams, Suzanne

    1991-01-01

    Described is an color-making activity where students use food coloring, eyedroppers, and water to make various colored solutions. Included are the needed materials and procedures. Students are asked to write up the formulas for making their favorite color. (KR)

  8. The albedo of fractal stratocumulus clouds

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert F.; Ridgway, William; Wiscombe, Warren J.; Bell, Thomas L.; Snider, Jack B.

    1994-01-01

    An increase in the planetary albedo of the earth-atmosphere system by only 10% can decrease the equilibrium surface temperature to that of the last ice age. Nevertheless, albedo biases of 10% or greater would be introduced into large regions of current climate models if clouds were given their observed liquid water amounts, because of the treatment of clouds as plane parallel. The focus on marine stratocumulus clouds is due to their important role in cloud radiative forcing and also that, of the wide variety of earth's cloud types, they are most nearly plane parallel, so that they have the least albedo bias. The fractal model employed here reproduces both the probability distribution and the wavenumber spectrum of the stratocumulus liquid water path, as observed during the First ISCCP Regional Experiment (FIRE). A single new fractal parameter 0 less than or equal to f less than or equal to 1, is introduced and determined empirically by the variance of the logarithm of the vertically integrated liquid water. The reduced reflectivity of fractal stratocumulus clouds is approximately given by the plane-parallel reflectivity evaluated at a reduced 'effective optical thickness,' which when f = 0.5 is tau(sub eff) approximately equal to 10. Study of the diurnal cycle of stratocumulus liquid water during FIRE leads to a key unexpected result: the plane-parallel albedo bias is largest when the cloud fraction reaches 100%, that is, when any bias associated with the cloud fraction vanishes. This is primarily due to the variability increase with cloud fraction. Thus, the within-cloud fractal structure of stratocumulus has a more significant impact on estimates of its mesoscale-average albedo than does the cloud fraction.

  9. Albedo boundaries on Mars in 1972: Results from Mariner 9

    USGS Publications Warehouse

    Batson, R.M.; Inge, J.L.

    1976-01-01

    A map of "albedo" boundaries (light and dark markings) on Mars was prepared from Mariner 9 images. After special digital processing, these pictures provide detailed locations of albedo boundaries, which is significant in interpreting recent eolian activity. Derivation of absolute albedo values from the spacecraft data was not attempted. The map correlates well with telescopic observations of Mars after the 1971 dust storm. ?? 1976.

  10. Assessing surface albedo change and its induced radiation budget under rapid urbanization with Landsat and GLASS data

    NASA Astrophysics Data System (ADS)

    Hu, Yonghong; Jia, Gensuo; Pohl, Christine; Zhang, Xiaoxuan; van Genderen, John

    2016-02-01

    Radiative forcing (RF) induced by land use (mainly surface albedo) change is still not well understood in climate change science, especially the effects of changes in urban albedo due to rapid urbanization on the urban radiation budget. In this study, a modified RF derivation approach based on Landsat images was used to quantify changes in the solar radiation budget induced by variations in surface albedo in Beijing from 2001 to 2009. Field radiation records from a Beijing meteorological station were used to identify changes in RF at the local level. There has been rapid urban expansion over the last decade, with the urban land area increasing at about 3.3 % annually from 2001 to 2009. This has modified three-dimensional urban surface properties, resulting in lower albedo due to complex building configurations of urban centers and higher albedo on flat surfaces of suburban areas and cropland. There was greater solar radiation (6.93 × 108 W) in the urban center in 2009 than in 2001. However, large cropland and urban fringe areas caused less solar radiation absorption. RF increased with distance from the urban center (less than 14 km) and with greater urbanization, with the greatest value being 0.41 W/m2. The solar radiation budget in urban areas was believed to be mainly influenced by urban structural changes in the horizontal and vertical directions. Overall, the results presented herein indicate that cumulative urbanization impacts on the natural radiation budget could evolve into an important driver of local climate change.

  11. Disappearance of the Propontis Regional Dark Albedo Feature on Mars

    NASA Astrophysics Data System (ADS)

    Lee, Steven W.; Thomas, P. C.; Cantor, B. A.

    2013-10-01

    The appearance of Propontis, one of many distinct classical dark albedo features on Mars, has been documented by ground-based observers for well over a century; Propontis was once thought to be the location of a “typical Martian canal”. The roughly circular feature (centered at 38°N, 179°W) covers about 500km in north-south extent. Modern spacecraft observations have shown the northern plains in which Propontis is located to include many subdued craters, knobs, and troughs. Observations by the Mars Color Imager (MARCI) onboard the Mars Reconnaissance Orbiter (MRO) have documented dramatic changes in the Propontis feature during August 2009. Daily MARCI mosaics (spatial resolution of 1 km/pixel) revealed extensive dust storm activity in this region over a ten day period (August 16-25, Ls ~ 322°-327°). At this time, the north polar seasonal ice cap was at maximum extent (reaching southward to about 55°N), and dust storm activity was frequently observed southward of the seasonal cap. These storms apparently led to sufficient deposition of bright dust to effectively “erase” the dark Propontis feature - yielding one of the most significant changes in regional albedo since Mars Global Surveyor began routine global mapping in 1997. Only minor changes have been detected over the course of repeated MARCI observations of this region since late-2009 - Propontis has not yet “recovered” to its previous extent and appearance. MRO is expected to provide ongoing MARCI mapping, enhanced with regular Context Imager (CTX, spatial resolution of 6 m/pixel) monitoring. An overview of the accumulated observations to date will be presented, along with interpretation of the magnitude of sediment transport required to account for the observed changes in Propontis.

  12. Meteorological and photochemical modeling of large-scale albedo changes in the South Coast Air Basin

    SciTech Connect

    Tran, K.T.; Mirabella, V.A.

    1998-12-31

    The effectiveness of large-scale surface albedo changes as an ozone control strategy is investigated. These albedo changes are part of the Cool Communities strategy that calls for the use of lighter colored roofing and paving materials as well as an increase in tree planting. The advanced mesoscale model MM5 was used to analyze the associated effects on ambient temperature, mixing depth and winds. The MM5 model was modified to accept surface properties derived from a satellite-based land use database. Preprocessors were also developed to allow a research-oriented model such as MM5 to be user friendly and amenable to practical, routine air quality modeling applications. Changes in ozone air quality are analyzed with the Urban Airshed Model (UAM). Results of the MM5/UAM simulations of the SCAQS August 26--28, 1987 ozone episode are presented and compared to those obtained with the CSUMM/UAM models.

  13. MAMA FUV Flats

    NASA Astrophysics Data System (ADS)

    Mason, Elena

    2012-10-01

    This program aims at obtaining FUV-MAMA flat-field observations to create a new p-flats with a SNR of 100 per {low resolution} pixel. The flats are obtained with the Krypton-lamp and the MR grating G140M, similarly to the cycle 17 and 18 programs. However the exact instrument setup {slit width and central wavelength} might change depending on the desired count level {which will be close to the internally allowed global rate limit}.

  14. Estimating big bluestem albedo from directional reflectance measurements

    NASA Technical Reports Server (NTRS)

    Irons, J. R.; Ranson, K. J.; Daughtry, C. S. T.

    1988-01-01

    Multidirectional reflectance factor measurements acquired in the summer of 1986 are used to make estimates of big bluestem grass albedo, evaluating the variation of albedo with changes in solar zenith angle and phenology. On any given day, the albedo was observed to increase by at least 19 percent as solar zenith angle increased. Changes in albedo were found to correspond to changes in the green leaf area index of the grass canopy. Estimates of albedo made using reflectance data acquired within only one or two azimuthal planes and at a restricted range of view zenith angle were evaluated and compared to 'true' albedos derived from all available reflectance factor data. It was found that even a limited amount of multiple direction reflectance data was preferable to a single nadir reflectance factor for the estimation of prarie grass albedo.

  15. Calibration system for albedo neutron dosimeters

    SciTech Connect

    Rothermich, N.E.

    1981-01-01

    Albedo neutron dosimeters have proven to be effective as a method of measuring the dose from neutron exposures that other types of neutron detectors cannot measure. Results of research conducted to calibrate an albedo neutron dosemeter are presented. The calibration procedure consisted of exposing the TLD chips to a 46 curie /sup 238/PuBe source at known distances, dose rates and exposure periods. The response of the TLD's is related to the dose rate measured with a dose rate meter to obtain the calibration factor. This calibration factor is then related to the ratio of the counting rates determined by 9-inch and 3-inch Bonner spheres (also called remmeters) and a calibration curve was determined. 17 references, 10 figures, 3 tables.

  16. The albedo of particles in reflection nebulae

    NASA Technical Reports Server (NTRS)

    Rush, W. F.

    1974-01-01

    The relation between the apparent angular extent of a reflection nebula and the apparent magnitude of its illuminating star was reconsidered under a less restrictive set of assumptions. A computational technique was developed which permits the use of fits to the observed m-log a values to determine the albedo of particles composing reflection nebulae, providing only that a phase function and average optical thickness are assumed. Multiple scattering, anisotropic phase functions, and illumination by the general star field are considered, and the albedo of reflection nebular particles appears to be the same as that for interstellar particles in general. The possibility of continuous fluorescence contributions to the surface brightness is also considered.

  17. Earth Albedo and the orbit of LAGEOS

    NASA Technical Reports Server (NTRS)

    Rubincam, D. P.; Weiss, N. R.

    1985-01-01

    The long-period perturbations in the orbit of the Lageos satellite due to the Earth's albedo have been found using a new analytical formalism. The Earth is assumed to be a sphere whose surface diffusely reflects sunlight according to Lambert's law. Specular reflection is not considered. The formalism is based on spherical harmonics; it produces equations which hold regardless of whether the terminator is seen by the satellite or not. Specializing to the case of a realistic zonal albedo shows that Lageos' orbital semimajor axis changes periodically by only the a few millimeters and the eccentricity by one part in 100,000. The longitude of the node increases secularly. The effect considered here can explain neither the secular decay of 1.1 mm/day in the semimajor axis nor the observed along-track variations in acceleration of order 2 x 10 to the minus 12 power/sq ms.

  18. Geomorphological related albedo features on Ceres

    NASA Astrophysics Data System (ADS)

    Krohn, K.; Matz, K.-D.; Jaumann, R.; Otto, K.; Li, J.-Y.; Buczkowski, D.; Mest, S.; Scully, J. E. C.; Williams, D. A.; Raymond, C. A.; Russell, C. T.

    2015-10-01

    NASA's Dawn spacecraft entered orbit of Ceres on March 6, 2015, to spend one year characterizing the geology, elemental and mineralogical composition, topography, shape, and internal structure of the Ceres [1]. Ceres is supposed to be differentiated into a silicate core, a liquid water mantle and a solid ice crust with a surface temperature from 130K to 235K [2,3]. At the time of writing, the acquired image data from Ceres provide a spatial resolution of up to 2.1 km/pixel. The surface of Ceres reveals some albedo features that seem to be related to geomorphology. Those features show either a high or a low albedo compared to the surrounding.

  19. Climatic effects of surface albedo geoengineering

    NASA Astrophysics Data System (ADS)

    Irvine, Peter J.; Ridgwell, Andy; Lunt, Daniel J.

    2011-12-01

    Various surface albedo modification geoengineering schemes such as those involving desert, urban, or agricultural areas have been proposed as potential strategies for helping counteract the warming caused by greenhouse gas emissions. However, such schemes tend to be inherently limited in their potential and would create a much more heterogeneous radiative forcing than propositions for space-based "reflectors" and enhanced stratospheric aerosol concentrations. Here we present results of a series of atmosphere-ocean general circulation model (GCM) simulations to compare three surface albedo geoengineering proposals: urban, cropland, and desert albedo enhancement. We find that the cooling effect of surface albedo modification is strongly seasonal and mostly confined to the areas of application. For urban and cropland geoengineering, the global effects are minor but, because of being colocated with areas of human activity, they may provide some regional benefits. Global desert geoengineering, which is associated with significant global-scale changes in circulation and the hydrological cycle, causes a smaller reduction in global precipitation per degree of cooling than sunshade geoengineering, 1.1% K-1 and 2.0% K-1 respectively, but a far greater reduction in the precipitation over land, 3.9% K-1 compared with 1.0% K-1. Desert geoengineering also causes large regional-scale changes in precipitation with a large reduction in the intensity of the Indian and African monsoons in particular. None of the schemes studied reverse the climate changes associated with a doubling of CO2, with desert geoengineering profoundly altering the climate and with urban and cropland geoengineering providing only some regional amelioration at most.

  20. Uncalibrated color

    NASA Astrophysics Data System (ADS)

    Moroney, Nathan

    2006-01-01

    Color calibration or the use of color measurement processes to characterize the color properties of a device or workflow is often expected or assumed for many color reproduction applications. However it is interesting to consider applications or situations in which color calibration is not as critical. In the first case it is possible to imagine an implicit color calibration resulting from a standardization or convergence of the colorant and substrate spectrum. In the second case it is possible to imagine cases where the device color variability is significantly less than the user color thresholds or expectations for color consistency. There are still general requirements for this form of pragmatic color but they are generally lower than for the higher end of digital color reproduction. Finally it is possible to imagine an implicit calibration that leverages in some way the highly accurate memory color for the hue of common objects. This scenario culminates with a challenge to create a natural capture calibration standard that does not require individual calibration, is spectrally diverse, is inexpensive and is environmentally friendly.

  1. Color realism and color science.

    PubMed

    Byrne, Alex; Hilbert, David R

    2003-02-01

    The target article is an attempt to make some progress on the problem of color realism. Are objects colored? And what is the nature of the color properties? We defend the view that physical objects (for instance, tomatoes, radishes, and rubies) are colored, and that colors are physical properties, specifically, types of reflectance. This is probably a minority opinion, at least among color scientists. Textbooks frequently claim that physical objects are not colored, and that the colors are "subjective" or "in the mind." The article has two other purposes: First, to introduce an interdisciplinary audience to some distinctively philosophical tools that are useful in tackling the problem of color realism and, second, to clarify the various positions and central arguments in the debate. The first part explains the problem of color realism and makes some useful distinctions. These distinctions are then used to expose various confusions that often prevent people from seeing that the issues are genuine and difficult, and that the problem of color realism ought to be of interest to anyone working in the field of color science. The second part explains the various leading answers to the problem of color realism, and (briefly) argues that all views other than our own have serious difficulties or are unmotivated. The third part explains and motivates our own view, that colors are types of reflectances and defends it against objections made in the recent literature that are often taken as fatal. PMID:14598439

  2. Charred Forests Increase Snow Albedo Decay: Watershed-Scale Implications of the Postfire Snow Albedo Effect

    NASA Astrophysics Data System (ADS)

    Gleason, K. E.; Nolin, A. W.

    2014-12-01

    Recent work shows that after a high severity forest fire, approximately 60% more solar radiation reaches the snow surface due to the reduction in canopy density. Also, significant amounts of black carbon (BC) particles and larger burned woody debris (BWD) are shed from standing charred trees, which concentrate on the snowpack, darken its surface, and reduce snow albedo by 50% during ablation. The postfire forest environment drives a substantial increase in net shortwave radiation at the snowpack surface, driving earlier and more rapid melt, however hydrologic models do not explicitly incorporate forest fire disturbance effects to snowpack dynamics. In this study we characterized, parameterized, and validated the postfire snow albedo effect: how the deposition and concentration of charred forest debris decreases snow albedo, increases snow albedo decay rates, and drives an earlier date of snow disappearance. For three study sites in the Oregon High Cascade Mountains, a 2-yr old burned forest, a 10-yr burned forest, and a nearby unburned forest, we used a suite of empirical data to characterize the magnitude and duration of the postfire effect to snow albedo decay. For WY 2012, WY2013, and WY2014 we conducted spectral albedo measurements, snow surface sampling, in-situ snow and meteorological monitoring, and snow energy balance modeling. From these data we developed a new parameterization which represents the postfire effect to snow albedo decay as a function of days-since-snowfall. We validated our parameterization using a physically-based, spatially-distributed snow accumulation and melt model, in-situ snow monitoring, net snowpack radiation, and remote sensing data. We modeled snow dynamics across the extent of all burned area in the headwaters of the McKenzie River Basin and validated the watershed-scale implications of the postfire snow albedo effect using in-situ micrometeorological and remote sensing data. This research quantified the watershed scale postfire

  3. Comet color changes with solar distance

    NASA Technical Reports Server (NTRS)

    Hartmann, W. K.; Cruikshank, D. P.

    1984-01-01

    JHK colors of 14 comets are correlated with cometary distance from the sun. The correlation could be explained by (1) changes in coma particle size as comets approach the sun, (2) decrease in the ice/dirt ratio in coma grains as comets approach the sun, and/or (3) phase reddening. Short-term color changes in individual comets at fixed phase angles suggest that phase reddening does not explain all color changes. Short-term changes are consistent with jets injecting fresh (high ice/dirt) nuclear material into parts of the coma. All colorimetric data are consistent with pristine coma material being relatively low-albedo dirty ice grains colored by carbonaceous dirt like that in RD-type asteroids. Ice sublimation near the sun may leave residual pure RD dirt grains, explaining the observed color changes.

  4. Simulating coronas in color.

    PubMed

    Gedzelman, Stanley D; Lock, James A

    2003-01-20

    Coronas are simulated in color by use of the Mie scattering theory of light by small droplets through clouds of finite optical thickness embedded in a Rayleigh scattering atmosphere. The primary factors that affect color, visibility, and number of rings of coronas are droplet size, width of the size distribution, and cloud optical thickness. The color sequence of coronas and iridescence varies when the droplet radius is smaller than approximately 6-microm. As radius increases to approximately 3.5 microm, new color bands appear at the center of the corona and fade as they move outward. As the radius continues to increase to approximately 6 microm, successively more inner rings become fixed in the manner described by classical diffraction theory, while outer rings continue their outward migration. Wave clouds or rippled cloud segments produce the brightest and most vivid multiple ringed coronas and iridescence because their integrated dropsize distributions along sunbeams are much narrower than in convective or stratiform clouds. The visibility of coronas and the appearance of the background sky vary with cloud optical depth tau. First the corona becomes visible as a white aureole in a blue sky when tau approximately 0.001. Color purity then rapidly increases to an almost flat maximum in the range 0.05 < or = tau < or = 0.5 and then decreases, so coronas are almost completely washed out by a bright gray background when tau > or = 4. PMID:12570272

  5. Seeing Color

    ERIC Educational Resources Information Center

    Texley, Juliana

    2005-01-01

    Colors are powerful tools for engaging children, from the youngest years onward. We hang brightly patterned mobiles above their cribs and help them learn the names of colors as they begin to record their own ideas in pictures and words. Colors can also open the door to an invisible world of electromagnetism, even when children can barely imagine…

  6. Flat Pack Toy Design

    ERIC Educational Resources Information Center

    Hutcheson, Brian

    2007-01-01

    In this article, the author introduces the concept of flat pack toys. Flat pack toys are designed using a template on a single sheet of letter-sized card stock paper. Before being cut out and built into a three-dimensional toy, they are scanned into the computer and uploaded to a website. With the template accessible from the website, anyone with…

  7. Flat Band Quastiperiodic Lattices

    NASA Astrophysics Data System (ADS)

    Bodyfelt, Joshua; Flach, Sergej; Danieli, Carlo

    2014-03-01

    Translationally invariant lattices with flat bands (FB) in their band structure possess irreducible compact localized flat band states, which can be understood through local rotation to a Fano structure. We present extension of these quasi-1D FB structures under incommensurate lattices, reporting on the FB effects to the Metal-Insulator Transition.

  8. Photometric-based recovery of illuminant-free color images using a red-green-blue digital camera

    NASA Astrophysics Data System (ADS)

    Luis Nieves, Juan; Plata, Clara; Valero, Eva M.; Romero, Javier

    2012-01-01

    Albedo estimation has traditionally been used to make computational simulations of real objects under different conditions, but as yet no device is capable of measuring albedo directly. The aim of this work is to introduce a photometric-based color imaging framework that can estimate albedo and can reproduce the appearance both indoors and outdoors of images under different lights and illumination geometry. Using a calibration sample set composed of chips made of the same material but different colors and textures, we compare two photometric-stereo techniques, one of them avoiding the effect of shadows and highlights in the image and the other ignoring this constraint. We combined a photometric-stereo technique and a color-estimation algorithm that directly relates the camera sensor outputs with the albedo values. The proposed method can produce illuminant-free images with good color accuracy when a three-channel red-green-blue (RGB) digital camera is used, even outdoors under solar illumination.

  9. Implementation of a soil albedo scheme in the CABLEv1.4b land surface model and evaluation against MODIS estimates over Australia

    NASA Astrophysics Data System (ADS)

    Kala, J.; Evans, J. P.; Pitman, A. J.; Schaaf, C. B.; Decker, M.; Carouge, C.; Mocko, D.; Sun, Q.

    2014-09-01

    Land surface albedo, the fraction of incoming solar radiation reflected by the land surface, is a key component of the Earth system. This study evaluates snow-free surface albedo simulations by the Community Atmosphere Biosphere Land Exchange (CABLEv1.4b) model with the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Satellite Pour L'Observation de la Terre (SPOT) albedo. We compare results from offline simulations over the Australian continent. The control simulation has prescribed background snow-free and vegetation-free soil albedo derived from MODIS whilst the experiments use a simple parameterisation based on soil moisture and colour, originally from the Biosphere Atmosphere Transfer Scheme (BATS), and adopted in the Common Land Model (CLM). The control simulation, with prescribed soil albedo, shows that CABLE simulates overall albedo over Australia reasonably well, with differences compared to MODIS and SPOT albedos within ±0.1. Application of the original BATS scheme, which uses an eight-class soil classification, resulted in large differences of up to -0.25 for the near-infrared (NIR) albedo over large parts of the desert regions of central Australia. The use of a recalibrated 20-class soil colour classification from the CLM, which includes a higher range for saturated and VIS (visible) and NIR soil albedos, reduced the underestimation of the NIR albedo. However, this soil colour mapping is tuned to CLM soil moisture, a quantity which is not necessarily transferrable between land surface models. We therefore recalibrated the soil color map using CABLE's climatological soil moisture, which further reduced the underestimation of the NIR albedo to within ±0.15 over most of the continent as compared to MODIS and SPOT albedos. Small areas of larger differences of up to -0.25 remained within the central arid parts of the continent during summer; however, the spatial extent of these large differences is substantially reduced as compared to the

  10. Color Categories and Color Appearance

    ERIC Educational Resources Information Center

    Webster, Michael A.; Kay, Paul

    2012-01-01

    We examined categorical effects in color appearance in two tasks, which in part differed in the extent to which color naming was explicitly required for the response. In one, we measured the effects of color differences on perceptual grouping for hues that spanned the blue-green boundary, to test whether chromatic differences across the boundary…

  11. Color Terms and Color Concepts

    ERIC Educational Resources Information Center

    Davidoff, Jules

    2006-01-01

    In their lead articles, both Kowalski and Zimiles (2006) and O'Hanlon and Roberson (2006) declare a general relation between color term knowledge and the ability to conceptually represent color. Kowalski and Zimiles, in particular, argue for a priority for the conceptual representation in color term acquisition. The complexities of the interaction…

  12. Color Analysis

    NASA Astrophysics Data System (ADS)

    Wrolstad, Ronald E.; Smith, Daniel E.

    Color, flavor, and texture are the three principal quality attributes that determine food acceptance, and color has a far greater influence on our judgment than most of us appreciate. We use color to determine if a banana is at our preferred ripeness level, and a discolored meat product can warn us that the product may be spoiled. The marketing departments of our food corporations know that, for their customers, the color must be "right." The University of California Davis scorecard for wine quality designates four points out of 20, or 20% of the total score, for color and appearance (1). Food scientists who establish quality control specifications for their product are very aware of the importance of color and appearance. While subjective visual assessment and use of visual color standards are still used in the food industry, instrumental color measurements are extensively employed. Objective measurement of color is desirable for both research and industrial applications, and the ruggedness, stability, and ease of use of today's color measurement instruments have resulted in their widespread adoption.

  13. FLATs: Warming Up

    NASA Astrophysics Data System (ADS)

    Calzetti, Daniela

    1997-07-01

    The purpose of this proposal is to monitor the flat fields during the interval between the end of science observations and the exhaustion of cryogen and subsequent warming of the dewar to > 100K. These flats will provide a monitor for particulate comtamination {GROT} and detector lateral position {from the coronagraphic spot and FDA vignetting}. They will provide some measure of relative {flat field} and absolute QE variation as a function of temperature. When stars are visible they might provide a limited degree of focus determination.

  14. FLATs: Warming Up - continuation

    NASA Astrophysics Data System (ADS)

    Calzetti, Daniela

    1997-07-01

    The purpose of this proposal is to monitor the flat fields during the interval between the end of science observations and the exhaustion of cryogen and subsequent warming of the dewar to > 100K. These flats will provide a monitor for particulate comtamination {GROT} and detector lateral position {from the coronagraphic spot and FDA vignetting}. They will provide some measure of relative {flat field} and absolute QE variation as a function of temperature. When stars are visible they might provide a limited degree of focus determination.

  15. Albedo and transmittance of inhomogeneous stratus clouds

    SciTech Connect

    Zuev, V.E.; Kasyanov, E.I.; Titov, G.A.

    1996-04-01

    A highly important topic is the study of the relationship between the statistical parameters of optical and radiative charactertistics of inhomogeneous stratus clouds. This is important because the radiation codes of general circulation models need improvement, and it is important for geophysical information. A cascade model has been developed at the Goddard Space Flight Center to treat stratocumulus clouds with the simplest geometry and horizontal fluctuations of the liquid water path (optical thickness). The model evaluates the strength with which the stochastic geometry of clouds influences the statistical characteristics of albedo and the trnasmittance of solar radiation.

  16. Impact of Atmospheric Albedo on Amazon Evapotranspiration

    NASA Astrophysics Data System (ADS)

    Lopes, A. V.; Thompson, S. E.; Dracup, J. A.

    2013-12-01

    The vulnerability of the Amazon region to climate and anthropogenic driven disturbances has been the subject of extensive research efforts, given its importance in the global and regional climate and ecologic systems. The evaluation of such vulnerabilities requires the proper understanding of physical mechanisms controlling water and energy balances and how the disturbances change them. Among those mechanisms, the effects of atmospheric albedo on evapotranspiration have not been fully explored yet and are explored in this study. Evapotranspiration in the Amazon is sustained at high levels across all seasons and represents a large fraction of water and energy surface budgets. In this study, statistical analysis of data from four flux towers installed at Amazon primary forest sites was employed to quantify the impact of atmospheric albedo, mostly resulted from cloudiness, on evapotranspiration and to compare it to the effect of water limitation. Firstly, the difference in eddy-flux derived evapotranspiration at the flux towers under rainy and non-rainy antecedent conditions was tested for significance. Secondly, the same statistical comparison was performed under cloudy and clear sky conditions at hourly and daily time scales, using the reduction in incoming solar radiation as an indicator of cloudiness. Finally, the sensitivity of seasonal evapotranspiration totals to atmospheric albedo resulted from rainfall patterns is evaluated. That was done by sampling daily evapotranspiration estimates from empirical probability distribution functions conditioned to rainfall occurrence and then varying the number of dry days in each season. It was found that light limitation is much more important than water limitation in the Amazon, resulting in up to 43% reduction in daily evapotranspiration. Also, this effect varies by location and by season, the largest impact being in wet season, from December do January. Moreover, seasonal evapotranspiration totals were found to be

  17. Albedo maps of Pluto and Charon - Initial mutual event results

    NASA Technical Reports Server (NTRS)

    Buie, Marc W.; Tholen, David J.; Horne, Keith

    1992-01-01

    By applying the technique of maximum entropy image reconstruction to invert observed lightcurves, surface maps of single-scattering albedo are obtained for the surfaces of Pluto and Charon from 1954 to 1986. The albedo features of the surface of Pluto are similar to those of the Buie and Tholen (1989) spot model maps; a south polar cap is evident. The map of Charon is somewhat darker, with single-scattering albedos as low as 0.03.

  18. Correlation of Far Ultraviolet Lunar Albedo with Solar Activity

    NASA Technical Reports Server (NTRS)

    Maddox, Will; Spann, James F.; Germany, Glynn

    2004-01-01

    We present a correlative analysis between the variability of the lunar albedo in the far ultraviolet wavelength range (130- 190 nm) and various solar activity indices for a two-week period. We also report lunar albedo measurements in four separate wavelength ranges, corresponding to four filters on the Polar Ultraviolet Imager. To our knowledge this is the first reported long term measurements of the lunar albedo in this wavelength range.

  19. Processing of Color Words Activates Color Representations

    ERIC Educational Resources Information Center

    Richter, Tobias; Zwaan, Rolf A.

    2009-01-01

    Two experiments were conducted to investigate whether color representations are routinely activated when color words are processed. Congruency effects of colors and color words were observed in both directions. Lexical decisions on color words were faster when preceding colors matched the color named by the word. Color-discrimination responses…

  20. Impact of weather events on Arctic sea ice albedo evolution

    NASA Astrophysics Data System (ADS)

    Arntsen, A. E.; Perovich, D. K.; Polashenski, C.; Stwertka, C.

    2015-12-01

    Arctic sea ice undergoes a seasonal evolution from cold snow-covered ice to melting snow to bare ice with melt ponds. Associated with this physical evolution is a decrease in the albedo of the ice cover. While the change in albedo is often considered as a steady seasonal decrease, weather events during melt, such as rain or snow, can impact the albedo evolution. Measurements on first year ice in the Chukchi Sea showed a decrease in visible albedo to 0.77 during the onset of melt. New snow from 4 - 6 June halted melting and increased the visible albedo to 0.87. It took 12 days for the albedo to decrease to levels prior to the snowfall. Incident solar radiation is large in June and thus a change in albedo has a large impact on the surface heat budget. The snowfall increased the albedo by 0.1 and reduced the absorbed sunlight from 5 June to 17 June by approximately 32 MJ m-2. The total impact of the snowfall will be even greater, since the delay in albedo reduction will be propagated throughout the entire summer. A rain event would have the opposite impact, increasing solar heat input and accelerating melting. Snow or rain in May or June can impact the summer melt cycle of Arctic sea ice.

  1. The first cosmic ray albedo proton map of the Moon

    NASA Astrophysics Data System (ADS)

    Wilson, Jody K.; Spence, Harlan E.; Kasper, Justin; Golightly, Michael; Bern Blake, J.; Mazur, Joe E.; Townsend, Lawrence W.; Case, Anthony W.; Dixon Looper, Mark; Zeitlin, Cary; Schwadron, Nathan A.

    2012-06-01

    Neutrons emitted from the Moon are produced by the impact of galactic cosmic rays (GCRs) within the regolith. GCRs are high-energy particles capable of smashing atomic nuclei in the lunar regolith and producing a shower of energetic protons, neutrons and other subatomic particles. Secondary particles that are ejected out of the regolith become “albedo” particles. The neutron albedo has been used to study the hydrogen content of the lunar regolith, which motivates our study of albedo protons. In principle, the albedo protons should vary as a function of the input GCR source and possibly as a result of surface composition and properties. During the LRO mission, the total detection rate of albedo protons between 60 MeV and 150 MeV has been declining since 2009 in parallel with the decline in the galactic cosmic ray flux, which validates the concept of an albedo proton source. On the other hand, the average yield of albedo protons has been increasing as the galactic cosmic ray spectrum has been hardening, consistent with a disproportionately stronger modulation of lower energy GCRs as solar activity increases. We construct the first map of the normalized albedo proton emission rate from the lunar surface to look for any albedo variation that correlates with surface features. The map is consistent with a spatially uniform albedo proton yield to within statistical uncertainties.

  2. Enhancement of the MODIS Daily Snow Albedo Product

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Schaaf, Crystal B.; Wang, Zhuosen; Riggs, George A.

    2009-01-01

    The MODIS daily snow albedo product is a data layer in the MOD10A1 snow-cover product that includes snow-covered area and fractional snow cover as well as quality information and other metadata. It was developed to augment the MODIS BRDF/Albedo algorithm (MCD43) that provides 16-day maps of albedo globally at 500-m resolution. But many modelers require daily snow albedo, especially during the snowmelt season when the snow albedo is changing rapidly. Many models have an unrealistic snow albedo feedback in both estimated albedo and change in albedo over the seasonal cycle context, Rapid changes in snow cover extent or brightness challenge the MCD43 algorithm; over a 16-day period, MCD43 determines whether the majority of clear observations was snow-covered or snow-free then only calculates albedo for the majority condition. Thus changes in snow albedo and snow cover are not portrayed accurately during times of rapid change, therefore the current MCD43 product is not ideal for snow work. The MODIS daily snow albedo from the MOD10 product provides more frequent, though less robust maps for pixels defined as "snow" by the MODIS snow-cover algorithm. Though useful, the daily snow albedo product can be improved using a daily version of the MCD43 product as described in this paper. There are important limitations to the MOD10A1 daily snow albedo product, some of which can be mitigated. Utilizing the appropriate per-pixel Bidirectional Reflectance Distribution Functions (BRDFs) can be problematic, and correction for anisotropic scattering must be included. The BRDF describes how the reflectance varies with view and illumination geometry. Also, narrow-to-broadband conversion specific for snow on different surfaces must be calculated and this can be difficult. In consideration of these limitations of MOD10A1, we are planning to improve the daily snow albedo algorithm by coupling the periodic per-pixel snow albedo from MCD43, with daily surface ref|outanoom, In this paper, we

  3. Remote sensing of ocean color and detection of chlorophyll content

    NASA Technical Reports Server (NTRS)

    Deschamps, P. Y.; Lecompte, P.; Viollier, M.

    1977-01-01

    The chlorophyll enrichment of the water in an equatorial upwelling was surveyed and described with the aid of a radiometer specially designed for the airborne measurement of ocean color. A relation is proposed between airborne measurement of difference of albedos at two wavelengths in the blue and green, and the concentration of chlorophyll in the ocean.

  4. Flat plate solar oven

    SciTech Connect

    Parikh, M.

    1981-01-01

    The construction of an Indian Rs. 186 (US $20.33) flat-plate solar oven is described. Detailed drawings are provided and relevant information on cooking times and temperature for different foods is given.

  5. Flat conductor cable survey

    NASA Technical Reports Server (NTRS)

    Swanson, C. R.; Walker, G. L.

    1973-01-01

    Design handbook contains data and illustrations concerned with commercial and Government flat-conductor-cable connecting and terminating hardware. Material was obtained from a NASA-sponsored industry-wide survey of approximately 150 companies and Government agencies.

  6. [Hair colorants].

    PubMed

    Urbanek-Karłowska, B; Luks, E; Jedra, M; Kiss, E; Malanowska, M

    1997-01-01

    The properties, mode of action and its duration of the preparations used for hair dyeing are described, together with their chemical components, and also preparations of herbal origin. The chemical reactions are described in detail which lead the development of a color polymer occurring during hair dyeing. The studies are presented which are used for toxicological assessment of the raw materials which are the components of the colorants, and the list is included of hair colorants permitted for use in Poland. PMID:9562811

  7. Polar Color

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 3 May 2004 This nighttime visible color image was collected on January 1, 2003 during the Northern Summer season near the North Polar Troughs.

    This daytime visible color image was collected on September 4, 2002 during the Northern Spring season in Vastitas Borealis. The THEMIS VIS camera is capable of capturing color images of the martian surface using its five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from the use of multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    Image information: VIS instrument. Latitude 79, Longitude 346 East (14 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with

  8. Quantum Color

    ScienceCinema

    Lincoln, Don

    2016-07-16

    The idea of electric charges and electricity in general is a familiar one to the science savvy viewer. However, electromagnetism is but one of the four fundamental forces and not the strongest one. The strongest of the fundamental forces is called the strong nuclear force and it has its own associated charge. Physicists call this charge ?color? in analogy with the primary colors, although there is no real connection with actual color. In this video, Fermilab?s Dr. Don Lincoln explains why it is that we live in a colorful world.

  9. Entrainment, Drizzle, and Stratocumulus Cloud Albedo

    NASA Technical Reports Server (NTRS)

    Ackerman, A. S.; Kirkpatrick, M. P.; Stevens, D. E.; Toon, O. B.

    2004-01-01

    Globally averaged cloud changes from GCMs on average show a doubling of the Twomey effect, which is the change in cloud albedo with respect to changes in droplet concentrations for fixed cloud water and droplet dispersion. In contrast, ship-track measurements show a much more modest amplification of the Twomey effect, suggesting that the GCMs are exaggerating the indirect aerosol effect. We have run large-eddy simulations with bin microphysics of marine stratocumulus from multiple field campaigns, and find that the large-eddy simulations are in much better agreement with the ship-track measurements. The inversion strength over N. Pacific stratocumulus (as measured during DYCOMS-II) is generally much stronger than over N. Atlantic stratocumulus (as measured during ASTEX), and we have found that the response of cloud water to increasing droplet concentration changes sign as the inversion strengthens. For the different environmental conditions, we will show the overall response of cloud albedo to droplet concentrations, and decompose the response into its contributing factors of changes in cloud water, droplet dispersion, and horizontal inhomogeneity.

  10. A FALSE POSITIVE FOR OCEAN GLINT ON EXOPLANETS: THE LATITUDE-ALBEDO EFFECT

    SciTech Connect

    Cowan, Nicolas B.; Abbot, Dorian S.; Voigt, Aiko

    2012-06-10

    Identifying liquid water on the surface of planets is a high priority, as this traditionally defines habitability. One proposed signature of oceans is specular reflection ('glint'), which increases the apparent albedo of a planet at crescent phases. We post-process a global climate model of an Earth-like planet to simulate reflected light curves. Significantly, we obtain glint-like phase variations even though we do not include specular reflection in our model. This false positive is the product of two generic properties: (1) for modest obliquities, a planet's poles receive less orbit-averaged stellar flux than its equator, so the poles are more likely to be covered in highly reflective snow and ice; and (2) we show that reflected light from a modest-obliquity planet at crescent phases probes higher latitudes than at gibbous phases, therefore a planet's apparent albedo will naturally increase at crescent phase. We suggest that this 'latitude-albedo effect' will operate even for large obliquities: in that case the equator receives less orbit-averaged flux than the poles, and the equator is preferentially sampled at crescent phase. Using rotational and orbital color variations to map the surfaces of directly imaged planets and estimate their obliquity will therefore be a necessary pre-condition for properly interpreting their reflected phase variations. The latitude-albedo effect is a particularly convincing glint false positive for zero-obliquity planets, and such worlds are not amenable to latitudinal mapping. This effect severely limits the utility of specular reflection for detecting oceans on exoplanets.

  11. Surface Albedo Variations Across Opportunity's Traverse in Meridiani Planum

    NASA Astrophysics Data System (ADS)

    Studer-Ellis, G. L.; Rice, M. S.; Johnson, J. R.; Bell, J. F., III

    2015-12-01

    Surface albedo measurements from the Mars Exploration Rover (MER) Opportunity mission can be used to help understand surface-atmosphere interactions at Meridiani Planum. Opportunity has acquired 117 albedo panoramas with the Pancam instrument as of sol 3870, across the first 40 km of its traverse. To date, only the first 32 panoramas have been reported upon in previous studies [1]. Here we present an analysis of the full set of PDS-released albedo observations from Opportunity and correlate our measurements with terrain type and known atmospheric events. To acquire a 360-degree albedo observation, Pancam's L1 ("clear") filter is used to take 27 broad-spectrum images, which are stitched into a mosaic. Pancam images are calibrated to reflectance factor (R*), which is taken as an approximation of the Lambertian albedo. Areas of interest are selected and average albedo calculations are applied to all of the selections. Results include the average albedo of each scene, as well as equal-area corrections where applicable, in addition to measurements of specific classes of surface features (e.g., outcrops, dusty terrain, and rover tracks). Average scene albedo measurements range from 0.11 ± 0.04 to 0.30 ± 0.04, with the highest value observed on sol 1290 (immediately after the planet-encircling dust storm of 2007). We compare these results to distance traveled, surface morphologies, local wind driven events, and dust opacity measurements. Future work will focus on correlating Pancam albedo values with orbital data from cameras such as HiRISE, CTX, MOC, THEMIS-VIS, and MARCI, and completion of the same analysis for the full Pancam albedo dataset from Spirit. References: [1] Bell, J. F., III, M. S. Rice, J. R. Johnson, and T. M. Hare (2008), Surface albedo observations at Gusev Crater and Meridiani Planum, Mars, J. Geophys. Res., 113, E06S18, doi:10.1029/2007JE002976.

  12. Colored Chaos

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 7 May 2004 This daytime visible color image was collected on May 30, 2002 during the Southern Fall season in Atlantis Chaos.

    The THEMIS VIS camera is capable of capturing color images of the martian surface using its five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from the use of multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    Image information: VIS instrument. Latitude -34.5, Longitude 183.6 East (176.4 West). 38 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of

  13. From Regional Cloud-Albedo to a Global Albedo Footprint - Studying Aerosol Effects on the Radiation Budget Using the Relation Between Albedo and Cloud Fraction

    NASA Astrophysics Data System (ADS)

    Bender, F.; Engström, A.; Karlsson, J.; Wood, R.; Charlson, R. J.

    2015-12-01

    Earth's albedo is the primary determinant of the amount of energy absorbed by the Earth-atmosphere system. The main factor controlling albedo is the amount of clouds present, but aerosols can affect and alter both clear-sky and cloudy-sky reflectance. How albedo depends on cloud fraction and how albedo varies at a given cloud fraction and a given cloud water content, reveals information about these aerosol effects on the radiation budget. Hence, the relation between total albedo and cloud fraction can be used for illustration and quantification of aerosol effects, and as a diagnostic tool, to test model performance. Here, we show examples of the utilisation of this relation focusing on satellite observations from CERES and MODIS on Aqua, as well as from Calipso and CloudSat, and performing comparisons with climate models on the way: In low-cloud regions in the subtropics, we find that climate models well represent a near-constant regional cloud albedo, and this representation has improved from CMIP3 to CMIP5. CMIP5 models indicate more reflective clouds in present-day climate than pre-industrial, as a result of increased aerosol burdens. On monthly mean time scale, models are found to over-estimate the regional cloud-brightening due to aerosols. On the global scale we find an increasing cloud albedo with increasing cloud fraction - a relation that is very well defined in observations, and less so in CMIP5 models. Cloud brightening from pre-industrial to present day is also seen on global scale. Further, controlling for both cloud fraction and cloud water content we can trace small variations in albedo, or perturbations of solar reflectivity, that create a near-global coherent geographical pattern that is consistent with aerosol impacts on climate, with albedo enhancement in regions dominant of known aerosol sources and suppression of albedo in regions associated with high rates of aerosol removal (deduced using CloudSat precipitation estimates). This mapping can be

  14. Color Metric.

    ERIC Educational Resources Information Center

    Illinois State Office of Education, Springfield.

    This booklet was designed to convey metric information in pictoral form. The use of pictures in the coloring book enables the more mature person to grasp the metric message instantly, whereas the younger person, while coloring the picture, will be exposed to the metric information long enough to make the proper associations. Sheets of the booklet…

  15. Color Poetry.

    ERIC Educational Resources Information Center

    Ferry, John E.

    1980-01-01

    Elementary students were asked to find 12 colors and 5 sounds in their immediate natural environment and to describe in writing where they saw each color in relationship to themselves. The writings formed a type of poetry which expressed involvement with and observation of the environment. (CM)

  16. The albedo of snow for partially cloudy skies

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.; Chang, A. T. C.

    1980-01-01

    The input parameters of the model are atmospheric precipitable water, ozone content, turbidity, cloud optical thickness, size and shape of ice crystal of snow and surface pressure. The model outputs spectral and integrated solar flux snow reflectance as a function of solar elevation and fractional cloudcover. The model is illustrated using representative parameters for the Antarctic coastal regions. The albedo for a clear sky depends inversely on the solar elevation. At high elevation the albedo depends primarily upon the grain size; at low elevation this dependence is on grain size and shape. The gradient of the albedo-elevation curve increases as the grains get larger and faceted. The albedo for a dense overcast is a few percent higher than the clear sky albedo at high elevations. A simple relation between the grain size and the overcast albedo is obtained. For a set of grain size and shape, the albedo matrices (the albedo as a function of solar elevation and fractional cloudcover) are tabulated.

  17. Shallow Lunar Hydrogen and Forward-Scattered Albedo Protons

    NASA Astrophysics Data System (ADS)

    Wilson, J. K.; Schwadron, N.; Jordan, A. P.; Spence, H. E.; Looper, M. D.; Townsend, L. W.

    2015-11-01

    The CRaTER instrument sees a ~40% higher flux of lunar albedo protons (>65 MeV) at grazing angles compared to the nadir direction. A shallow layer (<10 cm) of hydrated lunar regolith may enhance the yield of forward-scattered albedo protons.

  18. Effect of shaddock albedo addition on the properties of frankfurters.

    PubMed

    Shan, Bing; Li, Xingmin; Pan, Teng; Zheng, Limin; Zhang, Hao; Guo, Huiyuan; Jiang, Lu; Zhen, Shaobo; Ren, Fazheng

    2015-07-01

    To explore the potential as a natural auxiliary emulsifier, shaddock albedo was added into frankfurters at six different levels: 0.0, 2.5, 5.0, 7.5, 10 and 12.5 %. The emulsion capacity (EC) of meat batters and cooking properties of frankfurters were evaluated. EC of meat batters was improved with the addition of shaddock albedo and the maximum value was reached at the 5 % albedo concentration. The addition of shaddock albedo resulted in lower cooking losses of frankfurters, with the lowest value obtained at the 7.5 % level. The presence of shaddock albedo decreased the total expressible fluid (TEF) and the proportion of fat in total expressible fluid (PF) which indicated the emulsion stability of frankfurters and the lowest values both occurred at the concentration of 7.5 %. Shaddock albedo inclusion increased the lightness and yellowness of frankfurters and decreased redness. Texture profile analysis showed increased hardness and decreased chewiness of frankfurters with the addition of shaddock albedo. Consequently, shaddock albedo could be a potential source of auxiliary emulsifier filler for emulsion-type meat products. PMID:26139927

  19. Anthropogenic desertification by high-albedo pollution Observations and modeling

    NASA Technical Reports Server (NTRS)

    Otterman, J.; Rosenberg, N. W.; Rosenberg, E.

    1974-01-01

    ERTS-1 MSS albedo data of Western Negev, Sinai and the Gaza strip are presented. A sharp contrast in albedo exists across the Negev-Sinai and Negev-Gaza strip borders. Anthropogenic desertification has occurred on the Arab side due to overgrazing and Bedouin agriculture, whereas natural vegetation grows much more abundantly on the Israeli side.

  20. Greenland surface albedo changes 1981-2012 from satellite observations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Significant melt over Greenland has been observed during the last several decades associated with extreme warming events over the northern Atlantic Ocean. An analysis of surface albedo change over Greenland is presented, using a 32-year consistent satellite albedo product from the Global Land Surfac...

  1. Asymmetry in the Diurnal Variation of Surface Albedo

    NASA Technical Reports Server (NTRS)

    Mayor, S.; Smith, W. L., Jr.; Nguyen, L.; Alberta, T. A.; Minnis, P.; Whitlock, C. H.; Schuster, G. L.

    1996-01-01

    Remote sensing of surface properties and estimation of clear-sky and surface albedo generally assumes that the albedo depends only on the solar zenith angle. The effects of dew, frost, and precipitation as well as evaporation and wind can lead to some systematic diurnal variability resulting in an asymmetric diurnal cycle of albedo. This paper examines the symmetry of both surface-observed albedos and top-of-the-atmosphere (TOA) albedos derived from satellite data. Broadband and visible surface albedos were measured at the Department of Energy Atmospheric Radiation Measurement (ARM) Program Southern Great Plains Central Facility, at some fields near the ARM site, and over a coniferous forest in eastern Virginia. Surface and wind conditions are available for most cases. GOES-8 satellite radiance data are converted to broadband albedo using bidirectional reflectance functions and an empirical narrowband-to-broadband relationship. The initial results indicate that surface moisture has a significant effect and can change the albedo in the afternoon by 20% relative to its morning counterpart. Such effects may need to be incorporated in mesoscale and even large-scale models of atmospheric processes.

  2. NEOWISE Reactivation Mission Year Two: Asteroid Diameters and Albedos

    NASA Astrophysics Data System (ADS)

    Nugent, C. R.; Mainzer, A.; Bauer, J.; Cutri, R. M.; Kramer, E. A.; Grav, T.; Masiero, J.; Sonnett, S.; Wright, E. L.

    2016-09-01

    The Near-Earth Object Wide-Field Infrared Survey Explorer (NEOWISE) mission continues to detect, track, and characterize minor planets. We present diameters and albedos calculated from observations taken during the second year since the spacecraft was reactivated in late 2013. These include 207 near-Earth asteroids (NEAs) and 8885 other asteroids. Of the NEAs, 84% NEAs did not have previously measured diameters and albedos by the NEOWISE mission. Comparison of sizes and albedos calculated from NEOWISE measurements with those measured by occultations, spacecraft, and radar-derived shapes shows accuracy consistent with previous NEOWISE publications. Diameters and albedos fall within ±∼20% and ±∼40%, 1-sigma, respectively, of those measured by these alternate techniques. NEOWISE continues to preferentially discover near-Earth objects which are large (>100 m), and have low albedos.

  3. NEOWISE Reactivation Mission Year Two: Asteroid Diameters and Albedos

    NASA Astrophysics Data System (ADS)

    Nugent, C. R.; Mainzer, A.; Bauer, J.; Cutri, R. M.; Kramer, E. A.; Grav, T.; Masiero, J.; Sonnett, S.; Wright, E. L.

    2016-09-01

    The Near-Earth Object Wide-Field Infrared Survey Explorer (NEOWISE) mission continues to detect, track, and characterize minor planets. We present diameters and albedos calculated from observations taken during the second year since the spacecraft was reactivated in late 2013. These include 207 near-Earth asteroids (NEAs) and 8885 other asteroids. Of the NEAs, 84% NEAs did not have previously measured diameters and albedos by the NEOWISE mission. Comparison of sizes and albedos calculated from NEOWISE measurements with those measured by occultations, spacecraft, and radar-derived shapes shows accuracy consistent with previous NEOWISE publications. Diameters and albedos fall within ±˜20% and ±˜40%, 1-sigma, respectively, of those measured by these alternate techniques. NEOWISE continues to preferentially discover near-Earth objects which are large (>100 m), and have low albedos.

  4. Use of wrist albedo neutron dosimeters

    SciTech Connect

    Hankins, D.E.

    1983-01-01

    We are developing a wrist dosimeter that can be used to measure the exposure at the wrist to x-rays, gamma rays, beta-particles, thermal neutrons and fast neutrons. It consists of a modified Hankins Type albedo neutron dosimeter and also contains three pieces of CR-39 plastic. ABS plastic in the form of an elongated hemisphere provides the beta and low energy x-ray shielding necessary to meet the requirement of depth dose measurements at 1 cm. The dosimeter has a beta window located in the side of the hemisphere oriented towards an object being held in the hands. A TLD 600 is positioned under the 1 cm thick ABS plastic and is used to measure the thermal neutron dose. At present we are using Velcro straps to hold the dosimeter on the inside of the wrist. 9 figures.

  5. Constraining Albedo and Composition of Four Potentially-Hazardous Asteroids via Near-IR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Reddy, Vishnu; Gaffey, M.

    2009-09-01

    Near-infrared spectroscopic observations of potentially-hazardous asteroids 2005 RC34, (90403) 2003 YE45, (185851) 2000 DP107, and 2008 QS11 were obtained remotely using the SpeX instrument on NASA IRTF on Mauna Kea, Hawai'i. All data were reduced using IRAF and the PC-based SpecPR spectral processing program. Isolation of the Band I and II absorption features and calculation of band area ratios were accomplished using SpecPR. Albedo was estimated using STM based thermal modeling program, Thermflx. 2005 RC34 spectrum shows a weak inflection at 0.90±0.01 µm(<10%) with no thermal emission beyond 2.0 µm. The lack of thermal emission helps constrain the lower limit albedo of the object to be greater than or equal to 15±1%. Spectrum of 2003 YE45 shows a moderate absorption feature with a minimum at 1.0±0.1 µm (depth 20-25%) and a relatively flat spectrum beyond 1.4 µm. No thermal excess can be detected beyond 2.0 µm, which permits us to conservatively constrain the lower limit albedo to be greater than or equal to 5±1%. 2000 DP107 spectrum shows a moderately deep feature at 0.96±0.01 µm with sharp rise in reflectance beyond 2.0 µm due to thermal emission, which gives an estimated albedo of 2±1%. 2008 QS11 spectrum has a weak feature (band depth 8%) at 0.98±0.01 µm with a steep reddish slope and sharp rise in reflectance beyond 2.0 µm due to thermal emission. The measured thermal excess at 2.4 µm is 11%, which results in an estimated albedo of 5.5±1 %. Preliminary compositional analysis suggests that 2000 DP107 is a relatively dark object analogous to carbonaceous chondrites, 2005 RC34 belongs to taxonomic type E similar to aubrites or low-Fe pyroxene. 2003 YE45's surface is dominated by olivine and 2008 QS11 is similar to impact shock blackened chondrites. This research was supported by NASA NEOO Program Grants NNG04GI17G and NNX07AL29G.

  6. The albedo effect on neutron transmission probability.

    PubMed

    Khanouchi, A; Sabir, A; Boulkheir, M; Ichaoui, R; Ghassoun, J; Jehouani, A

    1997-01-01

    The aim of this study is to evaluate the albedo effect on the neutron transmission probability through slab shields. For this reason we have considered an infinite homogeneous slab having a fixed thickness equal to 20 lambda (lambda is the mean free path of the neutron in the slab). This slab is characterized by the factor Ps (scattering probability) and contains a vacuum channel which is formed by two horizontal parts and an inclined one (David, M. C. (1962) Duc and Voids in shields. In Reactor Handbook, Vol. III, Part B, p. 166). The thickness of the vacuum channel is taken equal to 2 lambda. An infinite plane source of neutrons is placed on the first of the slab (left face) and detectors, having windows equal to 2 lambda, are placed on the second face of the slab (right face). Neutron histories are sampled by the Monte Carlo method (Booth, T. E. and Hendricks, J. S. (1994) Nuclear Technology 5) using exponential biasing in order to increase the Monte Carlo calculation efficiency (Levitt, L. B. (1968) Nuclear Science and Engineering 31, 500-504; Jehouani, A., Ghassoun, J. and Abouker, A. (1994) In Proceedings of the 6th International Symposium on Radiation Physics, Rabat, Morocco) and we have applied the statistical weight method which supposes that the neutron is born at the source with a unit statistical weight and after each collision this weight is corrected. For different values of the scattering probability and for different slopes of the inclined part of the channel we have calculated the neutron transmission probability for different positions of the detectors versus the albedo at the vacuum channel-medium interface. Some analytical representations are also presented for these transmission probabilities. PMID:9463883

  7. Fire disturbance effects on land surface albedo in Alaskan tundra

    NASA Astrophysics Data System (ADS)

    French, Nancy H. F.; Whitley, Matthew A.; Jenkins, Liza K.

    2016-03-01

    The study uses satellite Moderate Resolution Imaging Spectroradiometer albedo products (MCD43A3) to assess changes in albedo at two sites in the treeless tundra region of Alaska, both within the foothills region of the Brooks Range, the 2007 Anaktuvuk River Fire (ARF) and 2012 Kucher Creek Fire (KCF). Results are compared to each other and other studies to assess the magnitude of albedo change and the longevity of impact of fire on land surface albedo. In both sites there was a marked decrease of albedo in the year following the fire. In the ARF, albedo slowly increased until 4 years after the fire, when it returned to albedo values prior to the fire. For the year immediately after the fire, a threefold difference in the shortwave albedo decrease was found between the two sites. ARF showed a 45.3% decrease, while the KCF showed a 14.1% decrease in shortwave albedo, and albedo is more variable in the KCF site than ARF site 1 year after the fire. These differences are possibly the result of differences in burn severity of the two fires, wherein the ARF burned more completely with more contiguous patches of complete burn than KCF. The impact of fire on average growing season (April-September) surface shortwave forcing in the year following fire is estimated to be 13.24 ± 6.52 W m-2 at the ARF site, a forcing comparable to studies in other treeless ecosystems. Comparison to boreal studies and the implications to energy flux are discussed in the context of future increases in fire occurrence and severity in a warming climate.

  8. Generating multi-scale albedo look-up maps using MODIS BRDF/Albedo products and landsat imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface albedo determines radiative forcing and is a key parameter for driving Earth’s climate. Better characterization of surface albedo for individual land cover types can reduce the uncertainty in estimating changes to Earth’s radiation balance due to land cover change. This paper presents a mult...

  9. Relationship between cloud radiative forcing, cloud fraction and cloud albedo, and new surface-based approach for determining cloud albedo

    SciTech Connect

    Liu, Y.; Wu, W.; Jensen, M. P.; Toto, T.

    2011-07-21

    This paper focuses on three interconnected topics: (1) quantitative relationship between surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo; (2) surface-based approach for measuring cloud albedo; (3) multiscale (diurnal, annual and inter-annual) variations and covariations of surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo. An analytical expression is first derived to quantify the relationship between cloud radiative forcing, cloud fraction, and cloud albedo. The analytical expression is then used to deduce a new approach for inferring cloud albedo from concurrent surface-based measurements of downwelling surface shortwave radiation and cloud fraction. High-resolution decade-long data on cloud albedos are obtained by use of this surface-based approach over the US Department of Energy's Atmospheric Radiaton Measurement (ARM) Program at the Great Southern Plains (SGP) site. The surface-based cloud albedos are further compared against those derived from the coincident GOES satellite measurements. The three long-term (1997-2009) sets of hourly data on shortwave cloud radiative forcing, cloud fraction and cloud albedo collected over the SGP site are analyzed to explore the multiscale (diurnal, annual and inter-annual) variations and covariations. The analytical formulation is useful for diagnosing deficiencies of cloud-radiation parameterizations in climate models.

  10. Flat Focusing Mirror

    PubMed Central

    Cheng, Y. C.; Kicas, S.; Trull, J.; Peckus, M.; Cojocaru, C.; Vilaseca, R.; Drazdys, R.; Staliunas, K.

    2014-01-01

    The control of spatial propagation properties of narrow light beams such as divergence, focusing or imaging are main objectives in optics and photonics. In this letter, we propose and demonstrate experimentally a flat focusing mirror, based on an especially designed dielectric structure without any optical axis. More generally, it also enables imaging any light pattern in reflection. The flat focusing mirror with a transversal invariance can largely increase the applicability of structured photonic materials for light beam propagation control in small-dimension photonic circuits. PMID:25228358

  11. Flat focusing mirror.

    PubMed

    Cheng, Y C; Kicas, S; Trull, J; Peckus, M; Cojocaru, C; Vilaseca, R; Drazdys, R; Staliunas, K

    2014-01-01

    The control of spatial propagation properties of narrow light beams such as divergence, focusing or imaging are main objectives in optics and photonics. In this letter, we propose and demonstrate experimentally a flat focusing mirror, based on an especially designed dielectric structure without any optical axis. More generally, it also enables imaging any light pattern in reflection. The flat focusing mirror with a transversal invariance can largely increase the applicability of structured photonic materials for light beam propagation control in small-dimension photonic circuits. PMID:25228358

  12. Erratum: Voyager Color Photometry of Saturn's Main Rings

    NASA Technical Reports Server (NTRS)

    Estrada, Paul R.; Cuzzi, Jeffrey N.; Showalter, Mark R.; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    We correct a calibration error in our earlier analysis of Voyager color observations of Saturn's main rings at 14 deg phase angle and present thoroughly revised and reanalyzed radial profiles of the brightness of the main rings in Voyager G, V, and UV filters, and ratios of these brightnesses. These results are consistent with more recent HST results at 6 deg phase angle, once allowance is made for plausible phase reddening of the rings. Unfortunately, the Voyager camera calibration factors are simply not sufficiently well known for a combination of the Voyager and HST data to be used to constrain the phase reddening quantitatively. However, some interesting radial variations in reddening between 6-14 deg phase angles are hinted at. We update a ring-and-satellite color vs. albedo plot from Cuzzi and Estrada in several ways. The A and B rings are still found to be in a significantly redder part of color-albedo space than Saturn's icy satellites.

  13. Is flat fair?

    SciTech Connect

    Bunzl, Martin

    2010-07-15

    Dynamic pricing holds out the promise of shifting peak demand as well as reducing overall demand. But it also raises thorny issues of fairness. All practical pricing systems involve tradeoffs between equity and efficiency. I examine the circumstances under which equity ought to be allowed to trump efficiency and whether or not this constitutes a defense of flat pricing. (author)

  14. Flat conductor cable applications

    NASA Technical Reports Server (NTRS)

    Angele, W.

    1972-01-01

    Some of the numerous applications of flat conductor cable (FCC) systems are briefly described. Both government and commercial uses were considered, with applications designated as either aerospace, military, or commercial. The number and variety of ways in which FCC is being applied and considered for future designs are illustrated.

  15. The Temporal Evolution of the Albedo of Seasonal Sea Ice

    NASA Astrophysics Data System (ADS)

    Perovich, D. K.; Polashenski, C.; Eicken, H.; Grenfell, T. C.

    2009-12-01

    The ice-albedo feedback mechanism plays a key role in the heat budget of the Arctic sea ice cover and has climate implications. Seasonal ice is now the dominant Arctic ice type and has a significant impact on the large-scale albedo. The albedo of shorefast, seasonal ice was measured from April through late June for five field seasons. There was considerable interannual variability in the seasonal evolution of albedo, and consequently the solar heat input to the ice and upper ocean. In one year there was a monotonic decrease in areally averaged albedo after the onset of melt, while in others there were significant fluctuations of up to 0.4 over periods of only a few days. For all of the different evolutionary pathways there were two key drivers of albedo; the timing of the onset of melt and the areal coverage of melt ponds. Melt ponds on undeformed seasonal ice have been observed to reach coverages as large as 80% in only a few days. Just as rapidly coverages have been observed to drop to 7% as the ponds drained. The evolution of melt ponds is the key to understanding the evolution of seasonal ice albedo during the early stages of melt.

  16. Albedo reduction by dirty snow: measurements and implications

    NASA Astrophysics Data System (ADS)

    Zender, C. S.; Gallet, J.; Domine, F.; Picard, G.

    2008-12-01

    Industrial and biomass burning emissions of black carbon (BC) from low- and mid-latitudes dominate the radiative forcing by absorbing impurities trapped in snow and ice at mid- and high- northern latitudes. Correct model representation of albedo reduction by BC-contaminated snow is crucial because our GCM simulations show that dirty snow can explain about 30% of the observed 20th century Arctic warming. Until now, measurements of actual snow darkening by BC have been attempted only in the field, under non- reproducible conditions, and limited to the environmental BC concentration. We have conducted the first measurements of the direct effect of BC-contamination on snow albedo by in a controlled environment. We doped natural snow with a commercially available BC-analogue and measured the resulting albedo change at visible and near-infrared wavelengths. Snow albedo was measured in a (portable) integrating sphere system. Snow grain size is estimated from the near-infrared albedo. Snow density, temperature, and BC properties were known a priori. The albedo measurement reproducibility is about 1% for natural snow. Our measurements agree with model predictions that BC concentrations from 250 ppbm to 200 ppmm darken snow albedo by 1--70%. Our results lend confidence to the current model representations of surface darkening in the cryosphere. Applying these methods to impurity records in polar ice cores yields surface radiative forcing estimates that can be extrapolated to regional scales.

  17. The Gamma-ray Albedo of the Moon

    SciTech Connect

    Moskalenko, Igor V.; Porter, Troy A.; /UC, Santa Cruz

    2007-09-28

    We use the GEANT4 Monte Carlo framework to calculate the {gamma}-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of {gamma}-rays from the Moon is very steep with an effective cutoff around 3-4 GeV (600 MeV for the inner part of the Moon disk) and exhibits a narrow pion-decay line at 67.5 MeV, perhaps unique in astrophysics. Apart from other astrophysical sources, the albedo spectrum of the Moon is well understood, including its absolute normalization; this makes it a useful 'standard candle' for {gamma}-ray telescopes. The steep albedo spectrum also provides a unique opportunity for energy calibration of {gamma}-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST). Since the albedo flux depends on the incident CR spectrum which changes over the solar cycle, it is possible to monitor the CR spectrum using the albedo {gamma}-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter-Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo {gamma}-rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the LAT to monitor the CR spectrum near the Earth beyond the lifetime of the PAMELA.

  18. The Gamma-Ray Albedo of the Moon

    SciTech Connect

    Moskalenko, I.V.; Porter, T.A.; /UC, Santa Cruz

    2008-03-25

    We use the GEANT4 Monte Carlo framework to calculate the {gamma}-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of {gamma}-rays from the Moon is very steep with an effective cutoff around 3-4 GeV (600 MeV for the inner part of the Moon disk) and exhibits a narrow pion-decay line at 67.5 MeV, perhaps unique in astrophysics. Apart from other astrophysical sources, the albedo spectrum of the Moon is well understood, including its absolute normalization; this makes it a useful 'standard candle' for {gamma}-ray telescopes. The steep albedo spectrum also provides a unique opportunity for energy calibration of {gamma}-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST). Since the albedo flux depends on the incident CR spectrum which changes over the solar cycle, it is possible to monitor the CR spectrum using the albedo {gamma}-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter-Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo {gamma}-rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the LAT to monitor the CR spectrum near the Earth beyond the lifetime of the PAMELA.

  19. Observing Flat Birds and Other Fun Birding Activities for K-12 Students.

    ERIC Educational Resources Information Center

    Matthews, Catherine E.; Connors, John

    2002-01-01

    Introduces the concept of the flat bird, which is a life-size color cutout of a bird, and uses flat birds to introduce the study of birds. Includes suggestions for teaching about common characteristics of birds and information on resource materials. (YDS)

  20. Variable control of neutron albedo in toroidal fusion devices

    DOEpatents

    Jassby, Daniel L.; Micklich, Bradley J.

    1986-01-01

    An arrangement is provided for controlling neutron albedo in toroidal fusion devices having inboard and outboard vacuum vessel walls for containment of the neutrons of a fusion plasma. Neutron albedo material is disposed immediately adjacent the inboard wall, and is movable, preferably in vertical directions, so as to be brought into and out of neutron modifying communication with the fusion neutrons. Neutron albedo material preferably comprises a liquid form, but may also take pebble, stringer and curtain-like forms. A neutron flux valve, rotatable about a vertical axis is also disclosed.

  1. Lunar Terrain and Albedo Reconstruction from Apollo Imagery

    NASA Technical Reports Server (NTRS)

    Nefian, Ara V.; Kim, Taemin; Broxton, Michael; Moratto, Zach

    2010-01-01

    Generating accurate three dimensional planetary models and albedo maps is becoming increasingly more important as NASA plans more robotics missions to the Moon in the coming years. This paper describes a novel approach for separation of topography and albedo maps from orbital Lunar images. Our method uses an optimal Bayesian correlator to refine the stereo disparity map and generate a set of accurate digital elevation models (DEM). The albedo maps are obtained using a multi-image formation model that relies on the derived DEMs and the Lunar- Lambert reflectance model. The method is demonstrated on a set of high resolution scanned images from the Apollo era missions.

  2. Color vision test

    MedlinePlus

    ... from birth) color vision problems: Achromatopsia -- complete color blindness , seeing only shades of gray Deuteranopia -- difficulty telling ... test -- color; Ishihara color vision test Images Color blindness tests References Adams AJ, Verdon WA, Spivey BE. ...

  3. SCAP. Point Kernel Single or Albedo Scatter

    SciTech Connect

    Disney, R.K.; Bevan, S.E.

    1982-08-05

    SCAP solves for radiation transport in complex geometries using the single or albedo-scatter point kernel method. The program is designed to calculate the neutron or gamma-ray radiation level at detector points located within or outside a complex radiation scatter source geometry or a user-specified discrete scattering volume. The geometry is described by zones bounded by intersecting quadratic surfaces with an arbitrary maximum number of boundary surfaces per zone. The anisotropic point sources are described as point-wise energy dependent distributions of polar angles on a meridian; isotropic point sources may be specified also. The attenuation function for gamma rays is an exponential function on the primary source leg and the scatter leg with a buildup factor approximation to account for multiple scatter on the scatter leg. The neutron attenuation function is an exponential function using neutron removal cross sections on the primary source leg and scatter leg. Line or volumetric sources can be represented as distributions of isotropic point sources, with uncollided line-of-sight attenuation and buildup calculated between each source point and the detector point.

  4. Color superconductivity

    SciTech Connect

    Wilczek, F.

    1997-09-22

    The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken.

  5. COS NUV Flat Fields

    NASA Astrophysics Data System (ADS)

    Mason, Elena

    2011-10-01

    This program aims at obtaining COS NUV-MAMA flat-field observations for monitoring purpose only.The program uses the internal deuterium lamp and the MR grism G185M {at the central wavelengths 1835, 1850 and 1864 A}, as during thermal vacuum testing and SMOV4. The estimated SNR reached at the end of the program {13 hr integration during 10 orbits} is 20-25 per 3x3 pixel.

  6. Cloud condensation nucleus-sulfate mass relationship and cloud albedo

    NASA Technical Reports Server (NTRS)

    Hegg, Dean A.

    1994-01-01

    Analysis of previously published, simultaneous measurements of cloud condensation nucleus number concentration and sulfate mass concentration suggest a nonlinear relationship between the two variables. This nonlinearity reduces the sensitivity of cloud albedo to changes in the sulfur cycle.

  7. Disappearance of the Propontis Regional Dark Albedo Feature on Mars

    NASA Astrophysics Data System (ADS)

    Lee, S. W.; Thomas, P. C.; Cantor, B. A.

    2014-07-01

    In Aug. 2009, repeated local dust storms deposited sufficient bright dust to reduce the contrast of the Propontis dark albedo feature dramatically — effectively “erasing” this distinct and long-observed feature. Propontis has yet to "recover".

  8. Interpretation of surface and planetary directional albedos for vegetated regions

    NASA Technical Reports Server (NTRS)

    Cess, Robert D.; Vulis, Inna L.

    1989-01-01

    An atmospheric solar radiation model has been coupled with surface reflectance measurements for two vegetation types, pasture land and savannah, in order to address several issues associated with understanding the directional planetary albedo; i.e., the dependence of planetary albedo upon solar zenith angle. These include an elucidation of processes that influence the variation of planetary albedo with solar zenith angle, as well as emphasizing potential problems associated with converting narrowband planetary albedo measurements to broadband quantities. It is suggested that, for vegetated surfaces, this latter task could be somewhat formidable, since the model simulations indicate that narrowband to broadband conversions strongly depend upon vegetation type. A further aspect of this paper is to illustrate a procedure by which reciprocity inconsistencies within a bidirectional reflectance dataset, if they are not too severe, can be circumvented.

  9. Greenland ice sheet albedo variability and feedback: 2000-2015

    NASA Astrophysics Data System (ADS)

    Box, J. E.; van As, D.; Fausto, R. S.; Mottram, R.; Langen, P. P.; Steffen, K.

    2015-12-01

    Absorbed solar irradiance represents the dominant source of surface melt energy for Greenland ice. Surface melting has increased as part of a positive feedback amplifier due to surface darkening. The 16 most recent summers of observations from the NASA MODIS sensor indicate a darkening exceeding 6% in July when most melting occurs. Without the darkening, the increase in surface melting would be roughly half as large. A minority of the albedo decline signal may be from sensor degradation. So, in this study, MOD10A1 and MCD43 albedo products from MODIS are evaluated for sensor degradation and anisotropic reflectance errors. Errors are minimized through calibration to GC-Net and PROMICE Greenland snow and ice ground control data. The seasonal and spatial variability in Greenland snow and ice albedo over a 16 year period is presented, including quantifying changing absorbed solar irradiance and melt enhancement due to albedo feedback using the DMI HIRHAM5 5 km model.

  10. A preliminary global oceanic cloud climatology from satellite albedo observations

    NASA Technical Reports Server (NTRS)

    Hughes, N. A.; Henderson-Sellers, A.

    1983-01-01

    A predictive relationship is developed between over-ocean cloud system albedo and the cloud amount present, using as a data base ERB satellite microwave readings at 0.5-0.7 micron and the USAF three-dimensional nephanalysis archive. The ERB data provided global coverage at a resolution of 2.5 x 2.5 deg during the 1974-78 period. Regression analyses were performed on the amounts and albedos for several years of data for one month in order to detect seasonal variations. A logarithmic relationship was found between the cloud system albedo and cloud amount over the oceans, with negligible seasonal variance. The analysis is noted to apply only where low surface albedos are encountered, and further work to extend the study to continental vegetated areas is indicated.

  11. Albedo Pattern Recognition and Time-Series Analyses in Malaysia

    NASA Astrophysics Data System (ADS)

    Salleh, S. A.; Abd Latif, Z.; Mohd, W. M. N. Wan; Chan, A.

    2012-07-01

    Pattern recognition and time-series analyses will enable one to evaluate and generate predictions of specific phenomena. The albedo pattern and time-series analyses are very much useful especially in relation to climate condition monitoring. This study is conducted to seek for Malaysia albedo pattern changes. The pattern recognition and changes will be useful for variety of environmental and climate monitoring researches such as carbon budgeting and aerosol mapping. The 10 years (2000-2009) MODIS satellite images were used for the analyses and interpretation. These images were being processed using ERDAS Imagine remote sensing software, ArcGIS 9.3, the 6S code for atmospherical calibration and several MODIS tools (MRT, HDF2GIS, Albedo tools). There are several methods for time-series analyses were explored, this paper demonstrates trends and seasonal time-series analyses using converted HDF format MODIS MCD43A3 albedo land product. The results revealed significance changes of albedo percentages over the past 10 years and the pattern with regards to Malaysia's nebulosity index (NI) and aerosol optical depth (AOD). There is noticeable trend can be identified with regards to its maximum and minimum value of the albedo. The rise and fall of the line graph show a similar trend with regards to its daily observation. The different can be identified in term of the value or percentage of rises and falls of albedo. Thus, it can be concludes that the temporal behavior of land surface albedo in Malaysia have a uniform behaviours and effects with regards to the local monsoons. However, although the average albedo shows linear trend with nebulosity index, the pattern changes of albedo with respects to the nebulosity index indicates that there are external factors that implicates the albedo values, as the sky conditions and its diffusion plotted does not have uniform trend over the years, especially when the trend of 5 years interval is examined, 2000 shows high negative linear

  12. Earth albedo effects in the motion of artificial earth satellites

    NASA Astrophysics Data System (ADS)

    Lala, P.

    Different models of the earth albedo values and geographical distribution are compared. Effects of the local cloud cover on the satellite perturbing acceleration are investigated. Resulting changes of the satellite orbit obtained by the method of numerical integration in the spherical coordinate system are given. It is shown that a sufficiently sensitive microaccelerometer on board a special satellite could significantly improve existing models of the earth albedo.

  13. NEOWISE Diameters and Albedos V1.0

    NASA Astrophysics Data System (ADS)

    Mainzer, A. K.; Bauer, J. M.; Cutri, R. M.; Grav, T.; Kramer, E. A.; Masiero, J. R.; Nugent, C. R.; Sonnett, S. M.; Stevenson, R. A.; Wright, E. L.

    2016-06-01

    This PDS data set represents a compilation of published diameters, optical albedos, near-infrared albedos, and beaming parameters for minor planets detected by NEOWISE during the fully cryogenic, 3-band cryo, post-cryo and NEOWISE-Reactivation Year 1 operations. It contains data covering near-Earth asteroids, Main Belt asteroids, active Main Belt objects, Hildas, Jupiter Trojans, Centaurs, and Jovian and Saturnian irregular satellites. Methodology for physical property determination is described in the referenced articles.

  14. Surface albedo observations at Gusev Crater and Meridiani Planum, Mars

    USGS Publications Warehouse

    Bell, J.F., III; Rice, M.S.; Johnson, J. R.; Hare, T.M.

    2008-01-01

    During the Mars Exploration Rover mission, the Pancam instrument has periodically acquired large-scale panoramic images with its broadband (739??338 nm) filter in order to estimate the Lambert bolometric albedo of the surface along each rover's traverse. In this work we present the full suite of such estimated albedo values measured to date by the Spirit and Opportunity rovers along their traverses in Gusev Crater and Meridiani Planum, respectively. We include estimated bolometric albedo values of individual surface features (e.g., outcrops, dusty plains, aeolian bed forms, wheel tracks, light-toned soils, and crater walls) as well as overall surface averages of the 43 total panoramic albedo data sets acquired to date. We also present comparisons to estimated Lambert albedo values taken from the Mars Global Surveyor Mars Orbiter Camera (MOC) along the rovers' traverses, and to the large-scale bolometric albedos of the sites from the Viking Orbiter Infrared Thermal Mapper (IRTM) and Mars Global Surveyor/Thermal Emission Spectrometer (TES). The ranges of Pancam-derived albedos at Gusev Crater (0.14 to 0.25) and in Meridiani Planum. (0.10 to 0.18) are in good agreement with IRTM, TES, and MOC orbital measurements. These data sets will be a useful tool and benchmark for future investigations of albodo variations with time, including measurements from orbital instruments like the Context Camera and High Resolution Imaging Science Experiment on Mars Reconnaissance Orbiter. Long-term, accurate albedo measurements could also be important for future efforts in climate modeling as well as for studies of active surface processes. Copyright 2008 by the American Geophysical Union.

  15. IAU nomenclature for albedo features on the planet Mercury

    NASA Technical Reports Server (NTRS)

    Dollfus, A.; Chapman, C. R.; Davies, M. E.; Gingerich, O.; Goldstein, R.; Guest, J.; Morrison, D.; Smith, B. A.

    1978-01-01

    The International Astronomical Union has endorsed a nomenclature for the albedo features on Mercury. Designations are based upon the mythological names related to the god Hermes; they are expressed in Latin form. The dark-hued albedo features are associated with the generic term Solitudo. The light-hued areas are designated by a single name without generic term. The 32 names adopted are allocated on the Mercury map.

  16. Improving modeled snow albedo estimates during the spring melt season

    NASA Astrophysics Data System (ADS)

    Malik, M. Jahanzeb; Velde, Rogier; Vekerdy, Zoltan; Su, Zhongbo

    2014-06-01

    Snow albedo influences snow-covered land energy and water budgets and is thus an important variable for energy and water fluxes calculations. Here, we quantify the performance of the three existing snow albedo parameterizations under alpine, tundra, and prairie snow conditions when implemented in the Noah land surface model (LSM)—Noah's default and ones from the Biosphere-Atmosphere Transfer Scheme (BATS) and the Canadian Land Surface Scheme (CLASS) LSMs. The Noah LSM is forced with and its output is evaluated using in situ measurements from seven sites in U.S. and France. Comparison of the snow albedo simulations with the in situ measurements reveals that the three parameterizations overestimate snow albedo during springtime. An alternative snow albedo parameterization is introduced that adopts the shape of the variogram for the optically thick snowpacks and decreases the albedo further for optically thin conditions by mixing the snow with the land surface (background) albedo as a function of snow depth. In comparison with the in situ measurements, the new parameterization improves albedo simulation of the alpine and tundra snowpacks and positively impacts the simulation of snow depth, snowmelt rate, and upward shortwave radiation. An improved model performance with the variogram-shaped parameterization can, however, not be unambiguously detected for prairie snowpacks, which may be attributed to uncertainties associated with the simulation of snow density. An assessment of the model performance for the Upper Colorado River Basin highlights that with the variogram-shaped parameterization Noah simulates more evapotranspiration and larger runoff peaks in Spring, whereas the Summer runoff is lower.

  17. Simultaneous Spectral Albedo Measurements Near the Atmospheric Radiation Measurement Southern Great Plains (ARM SGP) Central Facility

    SciTech Connect

    Michalsky, Joseph J.; Min, Qilong; Barnard, James C.; Marchand, Roger T.; Pilewskie, Peter

    2003-04-30

    In this study, a data analysis is performed to determine the area-averaged, spectral albedo at ARM's SGP central facility site. The spectral albedo is then fed into radiation transfer models to show that the diffuse discrepancy is diminished when the spectral albedo is used (as opposed to using the broadband albedo).

  18. Spectral albedo and transmittance of thin young Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Taskjelle, Torbjørn; Hudson, Stephen R.; Granskog, Mats A.; Nicolaus, Marcel; Lei, Ruibo; Gerland, Sebastian; Stamnes, Jakob J.; Hamre, Børge

    2016-01-01

    Spectral albedo and transmittance in the range were measured on three separate dates on less than thick new Arctic sea ice growing on Kongsfjorden, Svalbard at , . Inherent optical properties, including absorption coefficients of particulate and dissolved material, were obtained from ice samples and fed into a radiative transfer model, which was used to analyze spectral albedo and transmittance and to study the influence of clouds and snow on these. Integrated albedo and transmittance for photosynthetically active radiation () were in the range 0.17-0.21 and 0.77-0.86, respectively. The average albedo and transmittance of the total solar radiation energy were 0.16 and 0.51, respectively. Values inferred from the model indicate that the ice contained possibly up to 40% brine and only 0.6% bubbles. Angular redistribution of solar radiation by clouds and snow was found to influence both the wavelength-integrated value and the spectral shape of albedo and transmittance. In particular, local peaks and depressions in the spectral albedo and spectral transmittance were found for wavelengths within atmospheric absorption bands. Simulated and measured transmittance spectra were within 5% for most of the wavelength range, but deviated up to 25% in the vicinity of , indicating the need for more optical laboratory measurements of pure ice, or improved modeling of brine optical properties in this near-infrared wavelength region.

  19. Postfire influences of snag attrition on albedo and radiative forcing

    NASA Astrophysics Data System (ADS)

    O'Halloran, Thomas L.; Acker, Steven A.; Joerger, Verena M.; Kertis, Jane; Law, Beverly E.

    2014-12-01

    This paper examines albedo perturbation and radiative forcing after a high-severity fire in a mature forest in the Oregon Cascade Range. Correlations between postfire albedo and seedling, sapling, and snag (standing dead tree) density were investigated across fire severity classes and seasons for years 4-15 after fire. Albedo perturbation was 14 times larger in winter compared to summer and increased with fire severity class for the first several years. Albedo perturbation increased linearly with time over the study period. Correlations between albedo perturbations and the vegetation densities were strongest with snags, and significant in all fire classes in both summer and winter (R < -0.92, p < 0.01). The resulting annual radiative forcing at the top of the atmosphere became more negative linearly at a rate of -0.86 W m-2 yr-1, reaching -15 W m-2 in year 15 after fire. This suggests that snags can be the dominant controller of postfire albedo on decadal time scales.

  20. Albedo as a modulator of climate response to tropical deforestation

    NASA Technical Reports Server (NTRS)

    Dirmeyer, Paul A.; Shukla, J.

    1994-01-01

    An atmospheric general circulation model with land surface properties represented by the simplified Simple Biosphere model is used to investigate the effects on local climate due to tropical deforestation for the Amazon basin. One control and three anomaly integrations of 4 years' duration are performed. In the anomaly integrations, rain forest in South America is replaced by degraded grassland. The anomaly integrations differ only in the optical properties of the grassland vegetation, with net surface albedos ranging from the same as to 0.09 lighter than that of rain forest. It is found that the change in climate, particularly rainfall, is strongly dependent on the change in surface albedo that accompanies deforestation. Replacement of forest by grass causes a reduction in transpiration and reduces frictional convergence by decreasing surface roughness. However, precipitation averaged over the deforested area is not necessarily reduced. Average precipitation decreases when the increase in albedo is greater than 0.03. If surface albedo is not increased appreciably as a result of deforestation, moisture flux convergence driven by the increase in surface temperature can offset the other effects, and average precipitation increases. As albedo is increased, surface temperature does not change, but surface latent and sensible heat flux decreases due to reduced radiational energy absorbed at the surface, resulting in a reduction in convection and precipitation. A change in the distribution of precipitation due to deforestation that appears to be independent of the albedo is observed.

  1. Albedo as a modulator of climate response to tropical deforestation

    SciTech Connect

    Dirmeyer, P.A.; Shukla, J.

    1994-10-01

    An atmospheric general circulation model with land surface properties represented by the simplified Simple Biosphere model is used to investigate the effects on local climate due to tropical deforestation for the Amazon basin. One control and three anomaly integrations of 4 years` duration are performed. In the anomaly integrations, rain forest in South America is replaced by degraded grassland. The anomaly integrations differ only in the optical properties of the grassland vegetation, with net surface albedos ranging from the same as to 0.09 lighter than that of rain forest. It is found that the change in climate, particularly rainfall, is strongly dependent on the change in surface albedo that accompanies deforestation. Replacement of forest by grass causes a reduction in transpiration and reduces frictional convergence by decreasing surface roughness. However, precipitation averaged over the deforested area is not necessarily reduced. Average precipitation decreases when the increase in albedo is greater than 0.03. If surface albedo is not increased appreciably as a result of deforestation, moisture flux convergence driven by the increase in surface temperature can offset the other effects, and average precipitation increases. As albedo is increased, surface temperature does not change, but surface latent and sensible heat flux decreases due to reduced radiational energy absorbed at the surface, resulting in a reduction in convection and precipitation. A change in the distribution of precipitation due to deforestation that appears to be independent of the albedo is observed.

  2. Tracking daily land surface albedo and reflectance anisotropy with moderate-resolution imaging spectroradiometer (MODIS)

    NASA Astrophysics Data System (ADS)

    Shuai, Yanmin

    A new algorithm provides daily values of land surface albedo and angular reflectance at a 500-m spatial resolution using data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments currently in orbit on NASA's Terra and Aqua satellite platforms. To overcome the day-to-day variance in observed surface reflectance induced by differences in view and solar illumination angles, the algorithm uses the RossThickLiSparse-Reciprocal bidirectional reflectance model, which is fitted to all MODIS observations of a 500-m resolution cell acquired during a 16-day moving window. Individual observations are weighted by their quality, observation coverage, and proximity to the production date of interest. Product quality is measured by (1) the root mean square error (RMSE) of observations against the best model fit; and (2) the ability of the angular sampling pattern of the observations at hand to determine reflectance model parameters accurately. A regional analysis of model fits to data from selected MODIS data tiles establishes the bounds of these quality measures for application in the daily algorithm. The algorithm, which is now available to users of direct broadcast satellite data from MODIS, allows daily monitoring of rapid surface radiation and land surface change phenomena such as crop development and forest foliage cycles. In two demonstrations, the daily algorithm captured rapid change in plant phenology. The growth phases of a winter wheat crop, as monitored at the Yucheng agricultural research station in Yucheng, China, matched MODIS daily multispectral reflectance data very well, especially during the flowering and heading stages. The daily algorithm also captured the daily change in autumn leaf color in New England, documenting the ability of the algorithm to work well over large regions with varying degrees of cloud cover and atmospheric conditions. Daily surface albedos measured using ground-based instruments on towers at the agricultural and

  3. Two-Layer, Full-Color Electroluminescent Display

    NASA Technical Reports Server (NTRS)

    Robertson, J. B.

    1987-01-01

    Full-color, matrix-addressed electroluminescent display uses three different color phosphors located in two separate, superimposed layers to provide higher brightness, better contrast ratio, and higher resolution. Design used for such transparent, flat-panel display media as thin-film electroluminescent phosphors, liquid crystals, or light-emitting diodes.

  4. Color Sense

    ERIC Educational Resources Information Center

    Johnson, Heidi S. S.; Maki, Jennifer A.

    2009-01-01

    This article reports a study conducted by members of the WellU Academic Integration Subcommittee of The College of St. Scholastica's College's Healthy Campus Initiative plan whose purpose was to determine whether changing color in the classroom could have a measurable effect on students. One simple improvement a school can make in a classroom is…

  5. Colorful television

    NASA Astrophysics Data System (ADS)

    Carlowicz, Michael

    What are the challenges and rewards for American men and women of color who chose to become scientists? The Public Broadcasting Service intends to show us through an upcoming 6-hour documentary series entitled “Breakthrough: The Changing Face of Science in America.”

  6. Colorful Accounting

    ERIC Educational Resources Information Center

    Warrick, C. Shane

    2006-01-01

    As instructors of accounting, we should take an abstract topic (at least to most students) and connect it to content known by students to help increase the effectiveness of our instruction. In a recent semester, ordinary items such as colors, a basketball, and baseball were used to relate the subject of accounting. The accounting topics of account…

  7. Single Scattering Albedo Monitor for Airborne Particulates

    NASA Astrophysics Data System (ADS)

    Onasch, Timothy; Massoli, Paola; Kebabian, Paul; Hills, Frank; Bacon, Fred; Freedman, Andrew

    2015-04-01

    We describe a robust, compact, field deployable instrument (the CAPS PMssa) that simultaneously measures airborne particle light extinction and scattering coefficients and thus the single scattering albedo (SSA) on the same sample volume. With an appropriate change in mirrors and light source, measurements have been made at wavelengths ranging from 450 to 780 nm. The extinction measurement is based on cavity attenuated phase shift (CAPS) techniques as employed in the CAPS PMex particle extinction monitor; scattering is measured using a integrating nephelometry by incorporating a Lambertian integrating sphere within the sample cell. The scattering measurement is calibrated using the extinction measurement. Measurements using ammonium sulfate particles of various sizes indicate that the response of the scattering channel with respect to measured extinction is linear to within 1% up to 1000 Mm-1 and can be extended further (4000 Mm-1) with additional corrections. The precision in both measurement channels is less than 1 Mm-1 (1s, 1σ). The truncation effect in the scattering channel, caused by light lost at extreme forward/backward scattering angles, was measured as a function of particle size using monodisperse polystyrene latex particles (n=1.59). The results were successfully fit using a simple geometric model allowing for reasonable extrapolation to a given wavelength, particle index of refraction and particle size distribution, assuming spherical particles. For sub-micron sized particles, the truncation corrections are comparable to those reported for commercial nephelometers. Measurements of the optical properties of ambient aerosol indicate that the values of the SSA of these particles measured with this instrument (0.91±0.03) using scattering and extinction agreed within experimental uncertainty with those determined using extinction measured by this instrument and absorption measured using a Multi-Angle Absorption Spectrometer (0.89±0.03) where the

  8. Color measurements based on a color camera

    NASA Astrophysics Data System (ADS)

    Marszalec, Elzbieta A.; Pietikaeinen, Matti

    1997-08-01

    The domain of color camera applications is increasing all time due to recent progress in color machine vision research. Colorimetric measurement tasks are quite complex as the purpose of color measurement is to provide a quantitative evaluation of the phenomenon of colors as perceived by human vision. A proper colorimetric calibration of the color camera system is needed in order to make color a practical tool in machine vision. This paper discuses two approaches to color measurements based on a color camera and includes an overview of practical approaches to color camera calibration under unstable illumination conditions.

  9. Flat conductor cable commercialization project

    NASA Technical Reports Server (NTRS)

    Hogarth, P.; Wadsworth, E.

    1977-01-01

    An undercarpet flat conductor cable and a baseboard flat conductor cable system were studied for commercialization. The undercarpet system is designed for use in office and commercial buildings. It employs a flat power cable, protected by a grounded metal shield, that terminates in receptacles mounted on the floor. It is designed to interface with a flat conductor cable telephone system. The baseboard system consists of a flat power cable mounted in a plastic raceway; both the raceway and the receptacles are mounted on the surface of the baseboard. It is designed primarily for use in residential buildings, particularly for renovation and concrete and masonry construction.

  10. Standards for the validation of remotely sensed albedo products

    NASA Astrophysics Data System (ADS)

    Adams, Jennifer

    2015-04-01

    Land surface albedo is important component of the Earth's energy balance, defined as the fraction of shortwave radiation absorbed by a surface, and is one many Essential Climate Variables (ECVS) that can be retrieved from space through remote sensing. To quantify the accuracy of these products, they must be validated with respect to in-situ measurements of albedo using an albedometer. Whilst accepted standards exist for the calibration of albedometers, standards for the use of in-situ measurement schemes, and their use in validation procedures have yet to be developed. It is essential that we can assess the quality of remotely sensed albedo data, and to identify traceable sources of uncertainty during process of providing these data. As a result of the current lack of accepted standards for in-situ albedo retrieval and validation procedures, we are not yet able to identify and quantify traceable sources of uncertainty. Establishing standard protocols for in-situ retrievals for the validation of global albedo products would allow inter-product use and comparison, in addition to product standardization. Accordingly, this study aims to assess the quality of in-situ albedo retrieval schemes and identify sources of uncertainty, specifically in vegetation environments. A 3D Monte Carlo Ray Tracing Model will be used to simulate albedometer instruments in complex 3D vegetation canopies. To determine sources of uncertainty, factors that influence albedo measurement uncertainty were identified and will subsequently be examined: 1. Time of day (Solar Zenith Angle) 2. Ecosytem type 3. Placement of albedometer within the ecosystem 4. Height of albedometer above the canopy 5. Clustering within the ecosystem A variety of 3D vegetation canopies have been generated to cover the main ecosystems found globally, different seasons, and different plant distributions. Canopies generated include birchstand and pinestand forests for summer and winter, savanna, shrubland, cropland and

  11. Martian soil color variations

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Rocks and soils on the surface are thought to be composed of minerals similar to those found on Earth's surface. One of the most important tools for recognizing these minerals is the spectrum of sunlight reflected by them. At the visible and near-infrared light wavelengths measured by the Imager for Mars Pathfinder (IMP), the most important coloring materials in the Martian surface are iron minerals. There are two broad classes of iron minerals. Minerals which occur in igneous rocks (such as pyroxene) have a relatively flat spectrum and they reflect only a small amount of light; they are said to have a low reflectance. Ferric iron minerals, which occur as weathering products, reflect longer-wavelength light and absorb short-wavelength light, hence their very red color. The relative brightnesses of Martian surface materials in IMP's different wavelength filter is a powerful tool for recognizing the iron minerals present.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator. JPL is an operating division of the California Institute of Technology (Caltech).

  12. THE HIGH ALBEDO OF THE HOT JUPITER KEPLER-7 b

    SciTech Connect

    Demory, Brice-Olivier; Seager, Sara; Madhusudhan, Nikku; Kjeldsen, Hans; Christensen-Dalsgaard, Joergen; Gillon, Michael; Rowe, Jason F.; Borucki, William J.; Koch, David G.; Welsh, William F.; Adams, Elisabeth R.; Dupree, Andrea; McCarthy, Don; Kulesa, Craig

    2011-07-01

    Hot Jupiters are expected to be dark from both observations (albedo upper limits) and theory (alkali metals and/or TiO and VO absorption). However, only a handful of hot Jupiters have been observed with high enough photometric precision at visible wavelengths to investigate these expectations. The NASA Kepler mission provides a means to widen the sample and to assess the extent to which hot Jupiter albedos are low. We present a global analysis of Kepler-7 b based on Q0-Q4 data, published radial velocities, and asteroseismology constraints. We measure an occultation depth in the Kepler bandpass of 44 {+-} 5 ppm. If directly related to the albedo, this translates to a Kepler geometric albedo of 0.32 {+-} 0.03, the most precise value measured so far for an exoplanet. We also characterize the planetary orbital phase light curve with an amplitude of 42 {+-} 4 ppm. Using atmospheric models, we find it unlikely that the high albedo is due to a dominant thermal component and propose two solutions to explain the observed planetary flux. First, we interpret the Kepler-7 b albedo as resulting from an excess reflection over what can be explained solely by Rayleigh scattering, along with a nominal thermal component. This excess reflection might indicate the presence of a cloud or haze layer in the atmosphere, motivating new modeling and observational efforts. Alternatively, the albedo can be explained by Rayleigh scattering alone if Na and K are depleted in the atmosphere by a factor of 10-100 below solar abundances.

  13. Preferential cooling of hot extremes from cropland albedo management

    PubMed Central

    Davin, Edouard L.; Seneviratne, Sonia I.; Ciais, Philippe; Olioso, Albert; Wang, Tao

    2014-01-01

    Changes in agricultural practices are considered a possible option to mitigate climate change. In particular, reducing or suppressing tillage (no-till) may have the potential to sequester carbon in soils, which could help slow global warming. On the other hand, such practices also have a direct effect on regional climate by altering the physical properties of the land surface. These biogeophysical effects, however, are still poorly known. Here we show that no-till management increases the surface albedo of croplands in summer and that the resulting cooling effect is amplified during hot extremes, thus attenuating peak temperatures reached during heat waves. Using a regional climate model accounting for the observed effects of no-till farming on surface albedo, as well as possible reductions in soil evaporation, we investigate the potential consequences of a full conversion to no-till agriculture in Europe. We find that the summer cooling from cropland albedo increase is strongly amplified during hot summer days, when surface albedo has more impact on the Earth’s radiative balance due to clear-sky conditions. The reduced evaporation associated with the crop residue cover tends to counteract the albedo-induced cooling, but during hot days the albedo effect is the dominating factor. For heatwave summer days the local cooling effect gained from no-till practice is of the order of 2 °C. The identified asymmetric impact of surface albedo change on summer temperature opens new avenues for climate-engineering measures targeting high-impact events rather than mean climate properties. PMID:24958872

  14. Preferential cooling of hot extremes from cropland albedo management.

    PubMed

    Davin, Edouard L; Seneviratne, Sonia I; Ciais, Philippe; Olioso, Albert; Wang, Tao

    2014-07-01

    Changes in agricultural practices are considered a possible option to mitigate climate change. In particular, reducing or suppressing tillage (no-till) may have the potential to sequester carbon in soils, which could help slow global warming. On the other hand, such practices also have a direct effect on regional climate by altering the physical properties of the land surface. These biogeophysical effects, however, are still poorly known. Here we show that no-till management increases the surface albedo of croplands in summer and that the resulting cooling effect is amplified during hot extremes, thus attenuating peak temperatures reached during heat waves. Using a regional climate model accounting for the observed effects of no-till farming on surface albedo, as well as possible reductions in soil evaporation, we investigate the potential consequences of a full conversion to no-till agriculture in Europe. We find that the summer cooling from cropland albedo increase is strongly amplified during hot summer days, when surface albedo has more impact on the Earth's radiative balance due to clear-sky conditions. The reduced evaporation associated with the crop residue cover tends to counteract the albedo-induced cooling, but during hot days the albedo effect is the dominating factor. For heatwave summer days the local cooling effect gained from no-till practice is of the order of 2 °C. The identified asymmetric impact of surface albedo change on summer temperature opens new avenues for climate-engineering measures targeting high-impact events rather than mean climate properties. PMID:24958872

  15. Global Cooling: Effect of Urban Albedo on Global Temperature

    SciTech Connect

    Akbari, Hashem; Menon, Surabi; Rosenfeld, Arthur

    2007-05-22

    In many urban areas, pavements and roofs constitute over 60% of urban surfaces (roof 20-25%, pavements about 40%). The roof and the pavement albedo can be increased by about 0.25 and 0.10, respectively, resulting in a net albedo increase for urban areas of about 0.1. Many studies have demonstrated building cooling-energy savings in excess of 20% upon raising roof reflectivity from an existing 10-20% to about 60%. We estimate U.S. potential savings in excess of $1 billion (B) per year in net annual energy bills. Increasing albedo of urban surfaces can reduce the summertime urban temperature and improve the urban air quality. Increasing the urban albedo has the added benefit of reflecting more of the incoming global solar radiation and countering the effect of global warming. We estimate that increasing albedo of urban areas by 0.1 results in an increase of 3 x 10{sup -4} in Earth albedo. Using a simple global model, the change in air temperature in lowest 1.8 km of the atmosphere is estimated at 0.01K. Modelers predict a warming of about 3K in the next 60 years (0.05K/year). Change of 0.1 in urban albedo will result in 0.01K global cooling, a delay of {approx}0.2 years in global warming. This 0.2 years delay in global warming is equivalent to 10 Gt reduction in CO2 emissions.

  16. Preliminary estimation of color inhomogeneities on the surface of Venus according to the television images obtained by the VENERA-13 and VENERA-14 automated space probes

    NASA Technical Reports Server (NTRS)

    Shkuratov, Yu. G.; Kreslavskiy, M. A.; Bazilevskiy, A. T.

    1987-01-01

    Digital processing of images obtained by the Venera 13 and Venera 14 probes led to the discovery of faint color differences of some areas of the observed surface. Maximum color differences were observed in the right part of 14-1 panorama. Color anomaly is associated with the bedrock outcrop having slightly higher albedo than the surrounding. Possible causes of the discovered color differences are discussed.

  17. A Continental United States High Resolution NLCD Land Cover – MODIS Albedo Database to Examine Albedo and Land Cover Change Relationships

    EPA Science Inventory

    Surface albedo influences climate by affecting the amount of solar radiation that is reflected at the Earth’s surface, and surface albedo is, in turn, affected by land cover. General Circulation Models typically use modeled or prescribed albedo to assess the influence of land co...

  18. MGS/TES-Odyssey/THEMIS-IR Analysis of Localized Low Albedo Regions in Valles Marineris

    NASA Technical Reports Server (NTRS)

    NoeDobrea, E. Z.; Bell, J. F., III; Wolff, M. J.; Snook, K. J.

    2003-01-01

    We are conducting a systematic analysis of small (approximately 10's of km), localized regions in Valles Marineris that display significant albedo differences relative to their surroundings. This analysis is based on a finding that the locations of the hematite deposits identified by [1] in the interior layered deposits of Valles Marineris typically coincide with regions having a low MGS/TES visible bolometric albedo [1,2]. Until recently, it was difficult to identify the morphology or geologic context of the regions containing the hematite deposits. However, with the recent advent of high-resolution (1/128 /pixel) MOLA grided topography and Mars Odyssey s THEMIS-IR instrument, it has been possible to better understand the morphologic context of TES observations. This analysis combines the use of PDS-released data from the MGS/TES visible bolometer and infrared spectrometer, the Odyssey/THEMIS Infrared imager, and MOLA grided topography. First, the TES infrared bolometer is used to identify regions of interesting albedo variability, and is overlaid on Viking controlled photomosaics for context. THEMIS-IR data, in conjunction with MOLA topography, is then used to: 1) identify the context and morphology of the area; and 2) identify spectrally unique regions at the km scale. In preparation for the latter, all the THEMIS planes are coregistered using an autocorrelation routine, the data are converted to brightness temperature and then each plane is normalized to the brightness temperature of the third plane (1261 cm-1). We then perform a 3-band search for color variations and a Principle Components Analysis (PCA) of the 8 unique bands in the THEMIS-IR dataset. Any variability is then investigated using both THEMIS-IR and TES spectra of the same regions. In both cases, the spectra are ratioed to near-simultaneously acquired spectra of adjacent or "average" regions that do not show this albedo variation, therefore allowing us to identify spectral variability unique to

  19. Gale Crater in IR Color

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released August 4, 2004 This image shows two representations of the same infra-red image of Gale Crater. On the left is a grayscale image showing surface temperature, and on the right is a false-color composite made from 3 individual THEMIS bands. The false-color image is colorized using a technique called decorrelation stretch (DCS), which emphasizes the spectral differences between the bands to highlight compositional variations.

    In the bottom of the crater, surrounding the central mound, there are extensive basaltic sand deposits. The basaltic sand spectral signature combined with the warm surface (due to the low albedo of basaltic sand) produces a very strong pink/magenta color. This color signature contrasts with the green/yellow color of soil and dust in the top of the image, and the cyan color due to the presence of water ice clouds at the bottom of the image. This migrating sand may be producing the erosional features seen on the central mound.

    Image information: IR instrument. Latitude -4.4, Longitude 137.4 East (222.6 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University

  20. Colorful drying.

    PubMed

    Lakio, Satu; Heinämäki, Jyrki; Yliruusi, Jouko

    2010-03-01

    Drying is one of the standard unit operations in the pharmaceutical industry and it is important to become aware of the circumstances that dominate during the process. The purpose of this study was to test microcapsulated thermochromic pigments as heat indicators in a fluid bed drying process. The indicator powders were manually granulated with alpha-lactose monohydrate resulting in three particle-size groups. Also, pellets were coated with the indicator powders. The granules and pellets were fluidized in fluid bed dryer to observe the progress of the heat flow in the material and to study the heat indicator properties of the indicator materials. A tristimulus colorimeter was used to measure CIELAB color values. Color indicator for heat detection can be utilized to test if the heat-sensitive API would go through physical changes during the pharmaceutical drying process. Both the prepared granules and pellets can be used as heat indicator in fluid bed drying process. The colored heat indicators give an opportunity to learn new aspects of the process at real time and could be exploded, for example, for scaling-up studies. PMID:20039220

  1. Relating black carbon content to reduction of snow albedo

    NASA Astrophysics Data System (ADS)

    Brandt, R. E.; Warren, S. G.; Clarke, A. D.

    2011-12-01

    In remote snow of the Northern Hemisphere, the levels of soot pollution are in the parts-per-billion (ppb) range, where the effect on albedo is at the level of a few percent. A reduction of albedo by 1-2% is significant for climate but is difficult to detect experimentally, because snow albedo depends on several other variables. In our work to quantify the climatic effect of black carbon (BC) in snow, we therefore do not directly measure the albedo reduction. Instead, we use a two-step procedure: (1) We collect snow samples, melt and filter them, and analyze the filters spectrophotometrically for BC concentration. (2) We use the BC amount from the filter measurement, together with snow grain size, in a radiative transfer model to compute the albedo reduction. Our radiative transfer model uses the discrete ordinates algorithm DISORT 2.0. We have chosen a representative BC size distribution and optical constants, and have incorporated those of mineral dust as well. While a given mass of BC causes over an order of magnitude more snow albedo reduction compared to dust, a snowpack containing dust mutes the albedo-reducing effect of BC. Because the computed reduction of snow albedo is model-based, it requires experimental verification. We doubt that direct measurement of albedo-reduction will be feasible in nature, because of the vertical variation of both snow grain size and soot content, and because the natural soot content is small. We conclude that what is needed is an artificial snowpack, with uniform grain size and large uniform soot content (ppm not ppb), to produce a large signal on albedo. We have chosen to pursue this experiment outdoors rather than in the laboratory, for the following reasons: (1) The snowpack in the field of view is uniformly illuminated if the source of radiation is the Sun. (2) Visible radiation penetrates into the snow, so photons emerge horizontally distant from where they entered. In the limited width of a laboratory snowpack, radiation

  2. Potential effects of forest management on surface albedo

    NASA Astrophysics Data System (ADS)

    Otto, J.; Bréon, F.-M.; Schelhaas, M.-J.; Pinty, B.; Luyssaert, S.

    2012-04-01

    Currently 70% of the world's forests are managed and this figure is likely to rise due to population growth and increasing demand for wood based products. Forest management has been put forward by the Kyoto-Protocol as one of the key instruments in mitigating climate change. For temperate and boreal forests, the effects of forest management on the stand-level carbon balance are reasonably well understood, but the biophysical effects, for example through changes in the albedo, remain elusive. Following a modeling approach, we aim to quantify the variability in albedo that can be attributed to forest management through changes in canopy structure and density. The modelling approach chains three separate models: (1) a forest gap model to describe stand dynamics, (2) a Monte-Carlo model to estimate the probability density function of the optical path length of photons through the canopy and (3) a physically-based canopy transfer model to estimate the interaction between photons and leaves. The forest gap model provides, on a monthly time step the position, height, diameter, crown size and leaf area index of individual trees. The Monte-Carlo model computes from this the probability density function of the distance a photon travels through crown volumes to determine the direct light reaching the forest floor. This information is needed by the canopy transfer model to calculate the effective leaf area index - a quantity that allows it to correctly represent a 3D process with a 1D model. Outgoing radiation is calculated as the result of multiple processes involving the scattering due to the canopy layer and the forest floor. Finally, surface albedo is computed as the ratio between incident solar radiation and calculated outgoing radiation. The study used two time series representing thinning from below of a beech and a Scots pine forest. The results show a strong temporal evolution in albedo during stand establishment followed by a relatively stable albedo once the canopy

  3. Understanding the Factors That Control Snow Albedo Over Central Greenland

    NASA Astrophysics Data System (ADS)

    Wright, P.; Bergin, M. H.; Dibb, J. E.; Domine, F.; Carmagnola, C.; Courville, Z.; Sokolik, I. N.; Lefer, B. L.

    2011-12-01

    Snow albedo plays a critical role in the energy balance of the Greenland Ice Sheet. In particular, the snow albedo influences the extent to which absorbing aerosols over Greenland (i.e. dust and black carbon) force climate. With this in mind the spectral snow albedo, physical snow properties, and snow chemistry were measured during May, June, and July 2011 at Summit, Greenland to investigate the variability in snow spectral albedo and its impact on aerosol direct radiative forcing. Optical and chemical properties of aerosol and aerosol optical depth were also measured as part of this study. Strellis et. al. will present a preliminary assessment of aerosol radiative forcing at Summit in summer 2011, in a separate presentation at this meeting. Spectral albedo was measured from 350-2500 nm with an ASD FieldSpec Pro spectroradiometer daily at four permanent sites and a moving fifth site where snow was sampled for characterization, as well as in more intensive diurnal and spatial surveys. Snow specific surface area (SSA), the ratio of snow crystal surface area to mass, was measured with a Dual Frequency Integrating Sphere (DUFISSS) at 1310 nm and 1550 nm, as well as with dyed and cast samples collected for stereology analysis. Snow stratigraphy, crystal size, and density were also measured on a daily basis, and snow samples will be analyzed for microstructural parameters determined from micro-CT imaging. Snow chemistry measurements include specific elements, major ions, and elemental and organic carbon. The time series of daily albedo measurements ranged from 0.88 to nearly 1.0 in visible wavelengths and from 0.42 to 0.65 in the near infrared. Changes as large as 0.1 were observed between consecutive daily measurements across the spectrum. Preliminary results show a strong correlation between variation in albedo and co-located measurements of snow specific surface area, specifically in the near infrared. By conducting our measurements near solar noon every day, and

  4. K'-band observations of the evil eye galaxy: Are the optical and near-infrared dust albedos identical?

    NASA Technical Reports Server (NTRS)

    Witt, Adolf N.; Lindell, Rebecca S.; Block, David L.; Evans, Rhodri

    1994-01-01

    New measurements of the reduction of the V-band surface brightness across the prominent dust feature in the galaxy NGC 4826 are compared with corresponding increases in the V-K' color within the context of radiative transfer models invoking both absorption and scattering. The K'-band surface brightness is found to be higher than expected from standard dust models. We interpret the difference as resulting from a high effective dust albedo at K', with a likely value in excess of 0.8, provided the near-IR extinction curve in NGC 4826 is identical to the Galactic one. The high effective albedo may result from scattering by dust with a maximum grain size at least twice as large as assumed by standard models, a conclusion already indirectly hinted at by recent studies of dust star-forming regions and reflection nebulae. At least part of the high effective albedo at K' may result from near-IR nonequilibrium continuum emission attributable to very small grains.

  5. K'-band observations of the evil eye galaxy: Are the optical and near-infrared dust albedos identical?

    NASA Astrophysics Data System (ADS)

    Witt, Adolf N.; Lindell, Rebecca S.; Block, David L.; Evans, Rhodri

    1994-05-01

    New measurements of the reduction of the V-band surface brightness across the prominent dust feature in the galaxy NGC 4826 are compared with corresponding increases in the V-K' color within the context of radiative transfer models invoking both absorption and scattering. The K'-band surface brightness is found to be higher than expected from standard dust models. We interpret the difference as resulting from a high effective dust albedo at K', with a likely value in excess of 0.8, provided the near-IR extinction curve in NGC 4826 is identical to the Galactic one. The high effective albedo may result from scattering by dust with a maximum grain size at least twice as large as assumed by standard models, a conclusion already indirectly hinted at by recent studies of dust star-forming regions and reflection nebulae. At least part of the high effective albedo at K' may result from near-IR nonequilibrium continuum emission attributable to very small grains.

  6. Sky Flats: Generating Improved WFC3 IR Flat-fields

    NASA Astrophysics Data System (ADS)

    Pirzkal, N.; Mack, J.; Dahlen, T.; Sabbi, E.

    2011-05-01

    A significantly improved set of flat-fields are now available and are currently used as part of the WFC3 calibration pipeline. We describe the creation and testing of new in-orbit flat-field corrections for the WFC3 IR channel. While high signal to noise ground based flat-fields were generated prior to launch, photometry of dithered stellar fields showed that these flat-fields failed to fully flatten the large scale structure of the WFC3 IR flat-fields. In this ISR we show how we generated a correction to the ground based flat-fields using thousands of IR observations. This correction, or sky delta flat-field (SD-flat in this ISR), appears to be both wavelength and time independent and is stable down to better than 1% over most of the detector. Photometric accuracy using new corrected flat-fields is better than 0.5% (peak to peak variation of -1.5/+1.6%) if one avoid being within 128 pixels of the edge of the detector. For the "wagon-wheel" region and the edge of the detector, photometric accuracy is reduced to about 0.8% (peak to peak variation of -2.0/+1.9%).

  7. Occurrence of lower cloud albedo in ship tracks

    NASA Astrophysics Data System (ADS)

    Chen, Y.-C.; Christensen, M. W.; Xue, L.; Sorooshian, A.; Stephens, G. L.; Rasmussen, R. M.; Seinfeld, J. H.

    2012-05-01

    The concept of geoengineering by marine cloud brightening is based on seeding marine stratocumulus clouds with sub-micrometer sea-salt particles to enhance the cloud droplet number concentration and cloud albedo, thereby producing a climate cooling effect. The efficacy of this as a strategy for global cooling rests on the extent to which aerosol-perturbed marine clouds will respond with increased albedo. Ship tracks, cloud regions impacted by ship exhaust, are a well-known manifestation of the effect of aerosol injection on marine clouds. We present here an analysis of the albedo responses in ship tracks, based on in situ aircraft measurements and three years of satellite observations of 589 individual ship tracks. It is found that the sign (increase or decrease) and magnitude of the albedo response in ship tracks depends on the mesoscale cloud structure, the free tropospheric humidity, and cloud top height. In a closed cell structure (cloud cells ringed by a perimeter of clear air), nearly 30% of ship tracks exhibited a decreased albedo. Detailed cloud responses must be accounted for in global studies of the potential efficacy of sea-spray geoengineering as a means to counteract global warming.

  8. Occurrence of lower cloud albedo in ship tracks

    NASA Astrophysics Data System (ADS)

    Chen, Y.-C.; Christensen, M. W.; Xue, L.; Sorooshian, A.; Stephens, G. L.; Rasmussen, R. M.; Seinfeld, J. H.

    2012-09-01

    The concept of geoengineering by marine cloud brightening is based on seeding marine stratocumulus clouds with sub-micrometer sea-salt particles to enhance the cloud droplet number concentration and cloud albedo, thereby producing a climate cooling effect. The efficacy of this as a strategy for global cooling rests on the extent to which aerosol-perturbed marine clouds will respond with increased albedo. Ship tracks, quasi-linear cloud features prevalent in oceanic regions impacted by ship exhaust, are a well-known manifestation of the effect of aerosol injection on marine clouds. We present here an analysis of the albedo responses in ship tracks, based on in situ aircraft measurements and three years of satellite observations of 589 individual ship tracks. It is found that the sign (increase or decrease) and magnitude of the albedo response in ship tracks depends on the mesoscale cloud structure, the free tropospheric humidity, and cloud top height. In a closed cell structure (cloud cells ringed by a perimeter of clear air), nearly 30% of ship tracks exhibited a decreased albedo. Detailed cloud responses must be accounted for in global studies of the potential efficacy of sea-spray geoengineering as a means to counteract global warming.

  9. Climate change due to anthropogenic surface albedo modification

    SciTech Connect

    Potter, G.L.; Ellsaesser, H.W.; MacCracken, M.C.; Ellis, J.S.; Luther, F.M.

    1980-02-01

    Using a statistical dynamic climate model with more realistic surface albedo changes than used in previous experiments, we have conducted a numerical experiment combining desertification of the Sahara and deforestation of the tropical rain forest. Over an area of 9 x 10/sup 6/ km/sup 2/ at 20/sup 0/N the desert albedo was increased from 0.16 to 0.35 and over 7 x 10/sup 6/ km/sup 2/ at the equator and 10/sup 0/S the rain forest albedo was increased from 0.07 to 0.16. While the most significant direct climatic responses were observed in the modified zones, high northern latitudes exhibited the greatest cooling through activation of the ice-albedo feedback process. In contrast to Sagan et al., this experiment suggests that anthropogenic modification of surface albedo over the past few thousand years has had an impact on global climate which is likely quite small and probably undetectable.

  10. THE ALBEDOS OF KEPLER'S CLOSE-IN SUPER-EARTHS

    SciTech Connect

    Demory, Brice-Olivier

    2014-07-01

    Exoplanet research focusing on the characterization of super-Earths is currently limited to the handful of targets orbiting bright stars that are amenable to detailed study. This Letter proposes to look at alternative avenues to probe the surface and atmospheric properties of this category of planets, known to be ubiquitous in our galaxy. I conduct Markov Chain Monte Carlo light-curves analyses for 97 Kepler close-in R{sub P} ≲ 2.0 R {sub ⊕} super-Earth candidates with the aim of detecting their occultations at visible wavelengths. Brightness temperatures and geometric albedos in the Kepler bandpass are constrained for 27 super-Earth candidates. A hierarchical Bayesian modeling approach is then employed to characterize the population-level reflective properties of these close-in super-Earths. I find median geometric albedos A{sub g} in the Kepler bandpass ranging between 0.16 and 0.30, once decontaminated from thermal emission. These super-Earth geometric albedos are statistically larger than for hot Jupiters, which have medians A{sub g} ranging between 0.06 and 0.11. A subset of objects, including Kepler-10b, exhibit significantly larger albedos (A{sub g} ≳ 0.4). I argue that a better understanding of the incidence of stellar irradation on planetary surface and atmospheric processes is key to explain the diversity in albedos observed for close-in super-Earths.

  11. Spectral surface albedo derived from GOME-2/Metop measurements

    NASA Astrophysics Data System (ADS)

    Pflug, Bringfried; Loyola, Diego

    2009-09-01

    Spectral surface albedo is an important input for GOME-2 trace gas retrievals. An algorithm was developed for estimation of spectral surface albedo from top-of-atmosphere (TOA)-radiances measured by the Global Ozone Monitoring Experiment GOME-2 flying on-board MetOp-A. The climatologically version of this algorithm estimates Minimum Lambert-Equivalent Reflectivity (MLER) for a fixed time window and can use data of many years in contrast to the Near-real time version. Accuracy of surface albedo estimated by MLER-computation increases with the amount of available data. Unfortunately, most of the large GOME pixels are partly covered by clouds, which enhance the LER-data. A plot of LER-values over cloud fraction is used within this presentation to account for this influence of clouds. This "cloud fraction plot" can be applied over all surface types. Surface albedo obtained using the "cloud fraction plot" is compared with reference surface albedo spectra and with the FRESCO climatology. There is a general good agreement; however there are also large differences for some pixels.

  12. Quantifying the influence of deep soil moisture on ecosystem albedo: the role of vegetation Zulia M. Sánchez-Mejía 1 and Shirley A. Papuga1 1School of Natural Resources and the Environment, University of Arizona, Tucson, AZ

    NASA Astrophysics Data System (ADS)

    Sanchez-Mejia, Z. M.; Papuga, S. A.

    2012-12-01

    Water limited ecosystems in arid and semiarid regions are characterized by sparse vegetation and a relatively large fraction of bare soil. Importantly, the land surface in these dryland regions is highly sensitive to pulses of moisture that affect the vegetation canopy in density and color, as well as the soil color. Changes in surface conditions due to these pulses have been shown to affect the surface energy fluxes and atmospheric processes in these regions. For instance, previous studies have shown that shallow soil moisture ( < 20 cm below the surface) significantly changes surface albedo (a= SWup/ SWin). Recent studies have highlighted the importance of deep soil moisture ( > 20 cm below the surface) for vegetation dynamics in these regions. We hypothesize that deep soil moisture will change vegetation canopy density and color enough that changes in albedo will be observable at the surface, therefore linking deep soil moisture and albedo. We adopt a conceptual framework to address this hypothesis, where at any point in time the soil profile falls into one of four cases: (1) dry shallow soil and dry deep soil; (2) wet shallow soil and dry deep soil; (3) wet shallow soil and wet deep soil; and (4) dry shallow soil and wet deep soil. At a creosotebush dominated ecosystem of the Santa Rita Experimental Range, southern Arizona during summers of 2011 and 2012, we took albedo measurements during these cases at multiple bare and vegetated patches within the footprint of an eddy covariance tower. We found that when the soil is completely dry (Case 1) albedo is highest in both bare and vegetated patches. Likewise, when the soil is wet in both the shallow and deep regions (Case 3), albedo is lowest in both bare and vegetated patches. Interestingly, we also found that albedo is significantly lower for vegetated patches when the deep soil is wet and shallow soil is dry (Case 4). These results imply that deep soil moisture can be important in altering ecosystem level albedo

  13. MORSE/STORM: A generalized albedo option for Monte Carlo calculations

    SciTech Connect

    Gomes, I.C.; Stevens, P.N. )

    1991-09-01

    The advisability of using the albedo procedure for the Monte Carlo solution of deep penetration shielding problems that have ducts and other penetrations has been investigated. The use of albedo data can dramatically improve the computational efficiency of certain Monte Carlo calculations. However, the accuracy of these results may be unacceptable because of lost information during the albedo event and serious errors in the available differential albedo data. This study was done to evaluate and appropriately modify the MORSE/BREESE package, to develop new methods for generating the required albedo data, and to extend the adjoint capability to the albedo-modified calculations. Major modifications to MORSE/BREESE include an option to save for further use information that would be lost at the albedo event, an option to displace the point of emergence during an albedo event, and an option to use spatially dependent albedo data for both forward and adjoint calculations, which includes the point of emergence as a new random variable to be selected during an albedo event. The theoretical basis for using TORT-generated forward albedo information to produce adjuncton albedos was derived. The MORSE/STORM package was developed to perform both forward and adjoint modes of analysis using spatially dependent albedo data. Results obtained with MORSE/STORM for both forward and adjoint modes were compared with benchmark solutions. Excellent agreement and improved computational efficiency were achieved, demonstrating the full utilization of the albedo option in the MORSE code. 7 refs., 17 figs., 15 tabs.

  14. Cassini Imaging of Iapetus and Solution of the Albedo Asymmetry Enigma

    NASA Astrophysics Data System (ADS)

    Denk, Tilmann; Spencer, John

    2014-05-01

    Cassini imaging of Iapetus during one close and several more distant flybys mainly in the first years of the mission revealed an alien and often unique landscape of this third-largest moon in the Saturnian system [1]. The data show numerous impact craters on the bright and dark terrain, equator-facing dark and pole-facing bright crater walls, huge impact basins, rather minor endogenic geologic features, a non-spherical, but ellipsoidal shape, a giant ridge which spans across half of Iapetus' circumference exactly along the equator, a newly detected global 'color dichotomy' presumably formed by dust from retrograde irregular moons, and of course the famous extreme global albedo asymmetry which has been an enigma for more than three centuries. Revealing the cause of this 'albedo dichotomy' enigma of Iapetus, where the trailing side and poles are more than 10x brighter than the leading side, was one of the major tasks for the Cassini mission. It has now been solved successfully. In the mid-1970es, deposition of exogenic dark material on the leading side, originating from outer retrograde moon Phoebe, was proposed as the cause. But this alone could not explain the global shape, sharpness, and complexity of the transition between Iapetus' bright and dark terrain. Mainly with Cassini spectrometer (CIRS) and imaging (ISS) data, all these characteristics and the asymmetry's large amplitude are now plausibly explained by runaway global thermal migration of water ice, triggered by the deposition of dark material on the leading hemisphere. This mechanism is unique to Iapetus among the Saturnian satellites for many reasons. Most important are Iapetus' slow rotation which produces unusually high daytime temperatures and water ice sublimation rates, and the size (gravity) of Iapetus which is small enough for global migration of water ice but large enough that much of the ice is retained on the surface [2]. References: [1] Denk, T., Neukum, G., Roatsch, Th., Porco, C.C., Burns, J

  15. Color space conversion for linear color grading

    NASA Astrophysics Data System (ADS)

    Lee, Dah-Jye

    2000-10-01

    Color grading is an important process for various industries such as food processing, fruit and vegetable grading, etc. Quality and price are often determined by the color of product. For example, darker red color for apples means higher price. In color machine vision applications, image is acquired with a color CCD camera that outputs color information in three channels, red, gree, and blue. When grading color, these three primary colors must be processed to determine the color level for separation. A very popular color space conversion technique for color image processing is RGB-to-HSI, where HSI represents hue, saturation, and intensity, respectively. However, the conversion result is still 3D information that makes determining color grades very difficult. A new color space conversion technique that can be implemented for high-speed real-time processing for color grading is introduced in this paper. Depending on the application, different color space conversion equations must be used. The result of this technique is a simple one-dimensional array that represents different color levels. This linear array makes linear color grading adjustment possible.

  16. Subsurface water parameters: optimization approach to their determination from remotely sensed water color data.

    PubMed

    Jain, S C; Miller, J R

    1976-04-01

    A method, using an optimization scheme, has been developed for the interpretation of spectral albedo (or spectral reflectance) curves obtained from remotely sensed water color data. This method used a two-flow model of the radiation flow and solves for the albedo. Optimization fitting of predicted to observed reflectance data is performed by a quadratic interpolation method for the variables chlorophyll concentration and scattering coefficient. The technique is applied to airborne water color data obtained from Kawartha Lakes, Sargasso Sea, and Nova Scotia coast. The modeled spectral albedo curves are compared to those obtained experimentally, and the computed optimum water parameters are compared to ground truth values. It is shown that the backscattered spectral signal contains information that can be interpreted to give quantitative estimates of the chlorophyll concentration and turbidity in the waters studied. PMID:20165093

  17. Cosmic Ray Albedo Proton Yield Correlated with Lunar Elemental Abundances

    NASA Astrophysics Data System (ADS)

    Wilson, J. K.; Spence, H. E.; Case, A. W.; Blake, J. B.; Golightly, M. J.; Kasper, J. C.; Looper, M. D.; Mazur, J. E.; Schwadron, N. A.; Townsend, L. W.; Zeitlin, C. J.

    2012-12-01

    High energy cosmic rays constantly bombard the lunar regolith, producing secondary "albedo" or "splash" particles like protons and neutrons, some of which escape back to space. Two lunar missions, Lunar Prospector and the Lunar Reconnaissance Orbiter (LRO), have shown that the energy distribution of albedo neutrons is modulated by the elemental composition of the lunar regolith[1-4], with reduced neutron fluxes near the lunar poles being the result of collisions with hydrogen nuclei in ice deposits[5] in permanently shadowed craters. Here we investigate an analogous phenomenon with high energy (~100 MeV) lunar albedo protons. LRO has been observing the surface and environment of the Moon since June of 2009. The CRaTER instrument (Cosmic Ray Telescope for the Effects of Radiation) on LRO is designed to characterize the lunar radiation environment and its effects on simulated human tissue. CRaTER's multiple solid-state detectors can discriminate the different elements in the galactic cosmic ray (GCR) population above ~10 MeV/nucleon, and can also distinguish between primary GCR protons arriving from deep space and albedo particles propagating up from the lunar surface. We use albedo protons with energies greater than 60 MeV to construct a cosmic ray albedo proton map of the Moon. The yield of albedo protons is proportional to the rate of lunar proton detections divided by the rate of incoming GCR detections. The map accounts for time variation in the albedo particles driven by time variations in the primary GCR population, thus revealing any true spatial variation of the albedo proton yield. Our current map is a significant improvement over the proof-of-concept map of Wilson et al.[6]. In addition to including twelve more months of CRaTER data here, we use more numerous minimum ionizing GCR protons for normalization, and we make use of all six of CRaTER's detectors to reduce contamination from spurious non-proton events in the data stream. We find find that the flux

  18. Direct determination of surface albedos from satellite imagery

    NASA Technical Reports Server (NTRS)

    Mekler, Y.; Joseph, J. H.

    1983-01-01

    An empirical method to measure the spectral surface albedo of surfaces from Landsat imagery is presented and analyzed. The empiricism in the method is due only to the fact that three parameters of the solution must be determined for each spectral photograph of an image on the basis of independently known albedos at three points. The approach is otherwise based on exact solutions of the radiative transfer equation for upwelling intensity. Application of the method allows the routine construction of spectral albedo maps from satelite imagery, without requiring detailed knowledge of the atmospheric aerosol content, as long as the optical depth is less than 0.75, and of the calibration of the satellite sensor.

  19. A new parameterization of spectral and broadband ocean surface albedo.

    PubMed

    Jin, Zhonghai; Qiao, Yanli; Wang, Yingjian; Fang, Yonghua; Yi, Weining

    2011-12-19

    A simple yet accurate parameterization of spectral and broadband ocean surface albedo has been developed. To facilitate the parameterization and its applications, the albedo is parameterized for the direct and diffuse incident radiation separately, and then each of them is further divided into two components: the contributions from surface and water, respectively. The four albedo components are independent of each other, hence, altering one will not affect the others. Such a designed parameterization scheme is flexible for any future update. Users can simply replace any of the adopted empirical formulations (e.g., the relationship between foam reflectance and wind speed) as desired without a need to change the parameterization scheme. The parameterization is validated by in situ measurements and can be easily implemented into a climate or radiative transfer model. PMID:22274228

  20. Sample size and scene identification (cloud) - Effect on albedo

    NASA Technical Reports Server (NTRS)

    Vemury, S. K.; Stowe, L.; Jacobowitz, H.

    1984-01-01

    Scan channels on the Nimbus 7 Earth Radiation Budget instrument sample radiances from underlying earth scenes at a number of incident and scattering angles. A sampling excess toward measurements at large satellite zenith angles is noted. Also, at large satellite zenith angles, the present scheme for scene selection causes many observations to be classified as cloud, resulting in higher flux averages. Thus the combined effect of sampling bias and scene identification errors is to overestimate the computed albedo. It is shown, using a process of successive thresholding, that observations with satellite zenith angles greater than 50-60 deg lead to incorrect cloud identification. Elimination of these observations has reduced the albedo from 32.2 to 28.8 percent. This reduction is very nearly the same and in the right direction as the discrepancy between the albedoes derived from the scanner and the wide-field-of-view channels.

  1. Moon: lunar albedo for soft x-rays

    NASA Astrophysics Data System (ADS)

    Ibadov, Subhon

    2016-07-01

    Albedo of the Moon for soft X-rays (0.1-2 keV photons) is determined on the basis of the X-ray luminosity of the Moon detected and measured for the first time by orbital space telescope ROSAT in 1990. It is found that the lunar albedo for the solar soft X-rays is less than the lunar visual region albedo almost thousand times. The data allow to estimate more correctly X-ray luminosity of dusty comets like Hyakutake C/1996 B2 and Hale-Bopp C/1995 O1 due to scattering of solar soft X-rays and to reveal thus the dominant mechanism for production of X-rays in dusty comets.

  2. Cloud albedo control by cloud-top entrainment

    NASA Technical Reports Server (NTRS)

    Hanson, Howard P.

    1991-01-01

    Marine stratus and stratocumulus clouds exert a considerable influence on the earth's heat budget, mainly due to their high albedos relative to the ocean surface. It is therefore important to understand the processes that control the radiative properties of these extensive cloud systems, particularly during daylight hours. Aircraft measurements of a stratocumulus cloud deck taken around local noon during the 1987 field phase of the First International Satellite Cloud Climatology Project Regional Experiment are the topic of this paper. A mixing line analysis of data from a series of flight tracks across a strong gradient in cloud albedo provides evidence that variations in the water vapor content of the air above the marine inversion can be responsible for the albedo change. The implications of this unexpected result for climate modeling are discussed.

  3. Transformation of surface albedo to surface: Atmosphere surface and irradiance, and their spectral and temporal averages

    NASA Technical Reports Server (NTRS)

    Nack, M. L.; Curran, R. J.

    1978-01-01

    The dependence of the albedo at the top of a realistic atmosphere upon the surface albedo, solar zenith angle, and cloud optical thickness is examined for the cases of clear sky, total cloud cover, and fractional cloud cover. The radiative transfer calculations of Dave and Braslau (1975) for particular values of surface albedo and solar zenith angle, and a single value of cloud optical thickness are used as the basis of a parametric albedo model. The question of spectral and temporal averages of albedos and reflected irradiances is addressed, and unique weighting functions for the spectral and temporal albedo averages are developed.

  4. Is classical flat Kasner spacetime flat in quantum gravity?

    NASA Astrophysics Data System (ADS)

    Singh, Parampreet

    2016-05-01

    Quantum nature of classical flat Kasner spacetime is studied using effective spacetime description in loop quantum cosmology (LQC). We find that even though the spacetime curvature vanishes at the classical level, nontrivial quantum gravitational effects can arise. For the standard loop quantization of Bianchi-I spacetime, which uniquely yields universal bounds on expansion and shear scalars and results in a generic resolution of strong singularities, we find that a flat Kasner metric is not a physical solution of the effective spacetime description, except in a limit. The lack of a flat Kasner metric at the quantum level results from a novel feature of the loop quantum Bianchi-I spacetime: quantum geometry induces nonvanishing spacetime curvature components, making it not Ricci flat even when no matter is present. The noncurvature singularity of the classical flat Kasner spacetime is avoided, and the effective spacetime transits from a flat Kasner spacetime in asymptotic future, to a Minkowski spacetime in asymptotic past. Interestingly, for an alternate loop quantization which does not share some of the fine features of the standard quantization, flat Kasner spacetime with expected classical features exists. In this case, even with nontrivial quantum geometric effects, the spacetime curvature vanishes. These examples show that the character of even a flat classical vacuum spacetime can alter in a fundamental way in quantum gravity and is sensitive to the quantization procedure.

  5. Albedo, clouds and climate sensitivity in the CMIP3 models

    NASA Astrophysics Data System (ADS)

    Bender, F.; Rodhe, H.; Ekman, A. M.; Charlson, R.

    2010-12-01

    The albedo is a key parameter in the radiative budget of the Earth and a primary determinant of the planetary temperature and is therefore also central to questions regarding climate stability, climate change and climate sensitivity. Global climate models are essential for studying the albedo, and the parameters determining it (specifically clouds), on large spatial and temporal scales. Although models (here represented by the CMIP3 models) are able to capture the large-scale characteristics of the albedo, a bias is found between modelled and observed global albedo estimates, and on a regional scale particularly problematic regions can be identified. Many cloud parameters are poorly constrained by observations, and vary widely among models. This freedom of variability can be used in tuning models to the better constrained radiative budget, which may influence the model climate sensitivity. The effect can be kept small, compared to the range of climate sensitivities estimated by different models. Despite their different parameterizations of clouds, aerosols etc., models do have fundamental features in common, which can further the understanding of the real climate system. For instance, sensitivity to volcanic forcing is related to climate sensitivity in an ensemble of CMIP3 models. If this relation is valid for the real climate as well, observations of the volcanic sensitivity can help restrict estimates of climate sensitivity. The range of climate sensitivity estimates in models can largely be attributed to variations in cloud response to external forcing. In models with high (low) climate sensitivity, changes in cloud cover and cloud reflectivity generally enhance (counteract) a positive radiative forcing due to increased CO2 concentrations, feeding back on (damping) the warming, with a more (less) negative albedo response to the forcing. Cloud albedo is important in this regard, yet not well known. Regional cloud albedo, particularly for low-level marine

  6. Daily albedo estimation and comparison to MCD43 product

    NASA Astrophysics Data System (ADS)

    Franch, B.; Vermote, E.; Sobrino, J. A.

    2013-12-01

    Land surface broadband albedo is among the main radiative uncertainties in current climate modelling. An accuracy requirement of 5% and a daily temporal resolution is suggested by the Global Climate Observing System for albedo characterization at spatial and temporal scales compatible with climate studies. Satellite remote sensing provides the only practical way of producing high-quality global albedo data sets with high spatial and temporal resolutions. For view-ilumination geometries such as Moderate Resolution Imaging Spectroradiometer (MODIS), in order to retrieve the Bidirectional Reflectance Distribution Function (BRDF) parameters and, consequently, the albedo, a period of sequential measurement is needed to accumulate sufficient observations. This is used to derive the MODIS BRDF/Albedo product (MCD43), which consider a composite period of 16 days with a resulting temporal resolution of 8 days. Looking for an improvement in the albedo temporal resolution that mitigated the assumption of a stable target, Vermote et al. (2009) presented the VJB method that assumes that the BRDF shape variations throughout a year are limited and linked to the Normalized Difference Vegetation Index (NDVI). This method retains the highest temporal resolution (daily, cloud cover permitting). The purpose of this work is to compare the MCD43 product with the VJB method through the albedo. Additionally, we present and study a method based on the VJB assumption, the 5param Rsqr. In this study we focus our analysis on daily MODIS CMG Collection 6 data from both Aqua and Terra satellites over Europe from 2002 until 2011. Figure 1 shows the percentage of the total RMSE of the VJB and the 5param Rsqr method against the MCD43 product. They display that southern latitudes present lower errors while they increase for northern latitudes and mountainous areas. Comparing the methods, the VJB presents errors higher than 15% in 8.2% of total land pixels while they suppose 6.9% of pixels when

  7. Treatment of textile industry effluents using orange waste: a proposal to reduce color and chemical oxygen demand.

    PubMed

    de Farias Silva, Carlos Eduardo; da Silva Gonçalves, Andreza Heloiza; de Souza Abud, Ana Karla

    2016-01-01

    Various agricultural residues have been tested as biosorbents due to their low cost, high surface area, and favorable surface chemistry. In this work, a sweet orange albedo was tested as a biosorbent for treatment of real textile effluents. The orange albedo powder was prepared by drying the residue at 50 °C and milling to 30 mesh, and then used for dye adsorption from a alkaline (pH = 10.71) effluent. The adsorption process was studied in batch experiments at 30 °C by measuring color removal and chemical oxygen demand (COD). The color removal was found not to be significantly altered when the effluent was used in its raw state, while COD increased probably due to albedo degradation. For the effluent diluted to 60% (Veffluent VH2O(-1)), color and COD removal percentages of approximately 89% were obtained. It was found that pH played a very significant role on the adsorption process, as the treated albedo displayed a relative pHPZC* of 4.61, and the highest dye removal efficiencies were reached at pH lower than 2. The COD was strongly influenced by the effluent dilution. The effectiveness in eliminating color and COD shows that orange albedo can be potentially used as a biosorbent to treat textile wastewater. PMID:27533873

  8. Cognitive aspects of color

    NASA Astrophysics Data System (ADS)

    Derefeldt, Gunilla A. M.; Menu, Jean-Pierre; Swartling, Tiina

    1995-04-01

    This report surveys cognitive aspects of color in terms of behavioral, neuropsychological, and neurophysiological data. Color is usually defined as psychophysical color or as perceived color. Behavioral data on categorical color perception, absolute judgement of colors, color coding, visual search, and visual awareness refer to the more cognitive aspects of color. These are of major importance in visual synthesis and spatial organization, as already shown by the Gestalt psychologists. Neuropsychological and neurophysiological findings provide evidence for an interrelation between cognitive color and spatial organization. Color also enhances planning strategies, as has been shown by studies on color and eye movements. Memory colors and the color- language connections in the brain also belong among the cognitive aspects of color.

  9. New Sky Flats for HST's ACS/WFC

    NASA Astrophysics Data System (ADS)

    Lucas, Ray A.; Grogin, Norman A.

    2016-06-01

    We have begun experiments to make new sky flat files for HST's ACS/WFC. Sky flats can be especially useful for deep imaging in such as programs as deep, extragalactic survey programs because they can help to better deal with noise at low levels. Although we also hope to make similar sky flats for some other popular filters including F606W and F814W, we are beginning this experiment with the F435W filter on the ACS/WFC since it is a popular filter in use in many deep extragalactic surveys, and since the bluer filters such as F435W generally have lower throughput and images in that filter are typically noisier than others at some longer mid-optical wavelengths. Initially, although sources will be masked in these images, etc. we are endeavoring to use just post-SM4 F435W images of duration equal to or greater than 800 seconds and which are free of bright stars in order to try and avoid scattered light and sky background color issues as much as possible, although the sky in different images taken at different times and in different directions will likely have some different background levels and color terms in any event. However, our hope is that the final sky flats will be of sufficient S/N to be good calibrators for deep survey programs.

  10. SDO FlatSat Facility

    NASA Technical Reports Server (NTRS)

    Amason, David L.

    2008-01-01

    The goal of the Solar Dynamics Observatory (SDO) is to understand and, ideally, predict the solar variations that influence life and society. It's instruments will measure the properties of the Sun and will take hifh definition images of the Sun every few seconds, all day every day. The FlatSat is a high fidelity electrical and functional representation of the SDO spacecraft bus. It is a high fidelity test bed for Integration & Test (I & T), flight software, and flight operations. For I & T purposes FlatSat will be a driver to development and dry run electrical integration procedures, STOL test procedures, page displays, and the command and telemetry database. FlatSat will also serve as a platform for flight software acceptance and systems testing for the flight software system component including the spacecraft main processors, power supply electronics, attitude control electronic, gimbal control electrons and the S-band communications card. FlatSat will also benefit the flight operations team through post-launch flight software code and table update development and verification and verification of new and updated flight operations products. This document highlights the benefits of FlatSat; describes the building of FlatSat; provides FlatSat facility requirements, access roles and responsibilities; and, and discusses FlatSat mechanical and electrical integration and functional testing.

  11. Absolute calibration of optical flats

    DOEpatents

    Sommargren, Gary E.

    2005-04-05

    The invention uses the phase shifting diffraction interferometer (PSDI) to provide a true point-by-point measurement of absolute flatness over the surface of optical flats. Beams exiting the fiber optics in a PSDI have perfect spherical wavefronts. The measurement beam is reflected from the optical flat and passed through an auxiliary optic to then be combined with the reference beam on a CCD. The combined beams include phase errors due to both the optic under test and the auxiliary optic. Standard phase extraction algorithms are used to calculate this combined phase error. The optical flat is then removed from the system and the measurement fiber is moved to recombine the two beams. The newly combined beams include only the phase errors due to the auxiliary optic. When the second phase measurement is subtracted from the first phase measurement, the absolute phase error of the optical flat is obtained.

  12. Intercomparison and interpretation of satellite-derived directional albedos over deserts

    NASA Technical Reports Server (NTRS)

    Cess, Robert D.; Vulis, Inna L.

    1989-01-01

    Issues related to the dependence of planetary albedo upon solar zenith angle are studied using Nimbus-7, GOES, and Meteosat data over deserts. Geographical variations of the planetary albedo are isolated from the albedo's solar zenith angle dependence. An atmospheric solar radiation model is coupled with desert surface bidirectional reflectance measurements to test the consistency of satellite-derived directional planetary albedos. Consideration is given to the use of narrowband versus broadband instruments, the impact of desert aerosols on the directional planetary albedo, and potential differences in the directional planetary albedo associated with different types of deserts. The results show that the directional planetary albedo is dominated by the directional surface albedo, although surface brightness influences the atmospheric limb brightening and limb darkening processes.

  13. The albedo of snow for partially cloudy skies

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.; Chang, A. T. C.

    1981-01-01

    The albedo of snow is defined as the ratio of reflected to incident solar energy, and it is an important parameter in the earth's radiation budget analysis and in the study of snowpack's thermal conditions. An approximate model for calculating the incident spectral flux for partially cloudy skies is presented. The input parameters for the calculation are atmospheric precipitable water, turbidity, ozone content, surface pressure, the optical thickness of clouds, and the grain size of snow crystals. The spectral snow reflectance model considers both specular surface reflection and volumetric multiple scattering. The surface reflection is calculated by using a crystal-shape-dependent bidirectional reflectance distribution function; the volumetric multiple scattering is calculated by using a crystal-size-dependent approximate solution in the radiative transfer equation. The model yields spectral and integrated solar flux and snow reflectance as a function of solar elevation and fractional cloud-cover. The illustrative insolation and albedo values were obtained from spectral reflectance and incident flux for representative parameters of Antarctic coastal regions. A simple relationship between grain size and the overcast albedo was obtained. For a set of grain size and shape, the albedo as a function of solar elevation and fractional cloud cover was tabulated.

  14. Detection limits of albedo changes induced by climate engineering

    NASA Astrophysics Data System (ADS)

    Seidel, Dian J.; Feingold, Graham; Jacobson, Andrew R.; Loeb, Norman

    2014-02-01

    A key question surrounding proposals for climate engineering by increasing Earth's reflection of sunlight is the feasibility of detecting engineered albedo increases from short-duration experiments or prolonged implementation of solar-radiation management. We show that satellite observations permit detection of large increases, but interannual variability overwhelms the maximum conceivable albedo increases for some schemes. Detection of an abrupt global average albedo increase <0.002 (comparable to a ~0.7 W m-2 reduction in radiative forcing) would be unlikely within a year, given a five-year prior record. A three-month experiment in the equatorial zone (5° N-5° S), a potential target for stratospheric aerosol injection, would need to cause an ~0.03 albedo increase, three times larger than that due to the Mount Pinatubo eruption, to be detected. Detection limits for three-month experiments in 1° (latitude and longitude) regions of the subtropical Pacific, possible targets for cloud brightening, are ~0.2 larger than might be expected from some model simulations.

  15. Variable control of neutron albedo in toroidal fusion devices

    DOEpatents

    Jassby, D.L.; Micklich, B.J.

    1983-06-01

    This invention pertains to methods of controlling in the steady state, neutron albedo in toroidal fusion devices, and in particular, to methods of controlling the flux and energy distribution of collided neutrons which are incident on an outboard wall of a toroidal fusion device.

  16. Albedo in the ATIC Experiment: Results of Measurements and Simulation

    NASA Technical Reports Server (NTRS)

    Sokolskaya, N. V.; Adams, J. H., Jr.; Ahn, H. S.; Bashindzhagyan, G. L.; Batkov, K. E.; Chang, J.; Christl, M.; Fazely, A. R.; Ganel, O.; Gunasingha, R. M.

    2004-01-01

    Characteristics of albedo, or backscatter current, providing a 'background' for calorimeter experiments in high energy cosmic rays are analyzed. The comparison of experimental data obtained in the flights of the ATIC spectrometer is made with simulations performed using the GEANT 3.21 code. The influence of the backscatter on charge resolution in the ATIC experiment is discussed.

  17. Mimicking biochar-albedo feedback in complex Mediterranean agricultural landscapes

    NASA Astrophysics Data System (ADS)

    Bozzi, E.; Genesio, L.; Toscano, P.; Pieri, M.; Miglietta, F.

    2015-08-01

    Incorporation of charcoal produced by biomass pyrolysis (biochar) in agricultural soils is a potentially sustainable strategy for climate change mitigation. However, some side effects of large-scale biochar application need to be investigated. In particular a massive use of a low-reflecting material on large cropland areas may impact the climate via changes in surface albedo. Twelve years of MODIS-derived albedo data were analysed for three pairs of selected agricultural sites in central Italy. In each pair bright and dark coloured soil were identified, mimicking the effect of biochar application on the land surface albedo of complex agricultural landscapes. Over this period vegetation canopies never completely masked differences in background soil colour. This soil signal, expressed as an albedo difference, induced a local instantaneous radiative forcing of up to 4.7 W m-2 during periods of high solar irradiance. Biochar mitigation potential might therefore be reduced up to ˜30%. This study proves the importance of accounting for crop phenology and crop management when assessing biochar mitigation potential and provides more insights into the analysis of its environmental feedback.

  18. FLASH EXTRACTION OF PECTIN FROM ORANGE ALBEDO BY STEAM INJECTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pectin was acid extracted from orange albedo by steam injection heating under pressure. Extraction times ranged from 2 to 6 minutes at a pressure of about 15 psi. Solubilized pectin was characterized by HPSEC with online light scattering and viscosity detection. Molar mass (M), radius of gyration...

  19. Detection of light transformations and concomitant changes in surface albedo

    PubMed Central

    Gerhard, Holly E.; Maloney, Laurence T.

    2010-01-01

    We report two experiments demonstrating that (1) observers are sensitive to information about changes in the light field not captured by local scene statistics and that (2) they can use this information to enhance detection of changes in surface albedo. Observers viewed scenes consisting of matte surfaces at many orientations illuminated by a collimated light source. All surfaces were achromatic, all lights neutral. In the first experiment, observers attempted to discriminate small changes in direction of the collimated light source (light transformations) from matched changes in the albedos of all surfaces (non-light transformations). Light changes and non-light changes shared the same local scene statistics and edge ratios, but the latter were not consistent with any change in direction to the collimated source. We found that observers could discriminate light changes as small as 5 degrees with sensitivity d′ > 1 and accurately judge the direction of change. In a second experiment, we measured observers' ability to detect a change in the surface albedo of an isolated surface patch during either a light change or a surface change. Observers were more accurate in detecting isolated albedo changes during light changes. Measures of sensitivity d′ were more than twice as great. PMID:20884599

  20. Using BRDFs for accurate albedo calculations and adjacency effect corrections

    SciTech Connect

    Borel, C.C.; Gerstl, S.A.W.

    1996-09-01

    In this paper the authors discuss two uses of BRDFs in remote sensing: (1) in determining the clear sky top of the atmosphere (TOA) albedo, (2) in quantifying the effect of the BRDF on the adjacency point-spread function and on atmospheric corrections. The TOA spectral albedo is an important parameter retrieved by the Multi-angle Imaging Spectro-Radiometer (MISR). Its accuracy depends mainly on how well one can model the surface BRDF for many different situations. The authors present results from an algorithm which matches several semi-empirical functions to the nine MISR measured BRFs that are then numerically integrated to yield the clear sky TOA spectral albedo in four spectral channels. They show that absolute accuracies in the albedo of better than 1% are possible for the visible and better than 2% in the near infrared channels. Using a simplified extensive radiosity model, the authors show that the shape of the adjacency point-spread function (PSF) depends on the underlying surface BRDFs. The adjacency point-spread function at a given offset (x,y) from the center pixel is given by the integral of transmission-weighted products of BRDF and scattering phase function along the line of sight.

  1. Albedo of Permanently Shadowed Regions of the Lunar Poles

    NASA Astrophysics Data System (ADS)

    Riner, M. A.; Lucey, P. G.; Bussey, B.; Cahill, J. T.; McGovern, A.

    2012-12-01

    Due to the slight tilt in the Moon's spin axis, some topographic depressions near the lunar poles experience permanent shadow and may serve as cold traps, harboring water ice and/or other volatile compounds [1]. Permanently shadowed regions (PSRs) provide an opportunity toward understanding the amount, nature and transport of volatiles on the Moon and may also be a potential resource for human exploration. While many different data sets have suggested the presence of water ice in PSRs near the lunar poles many questions remain. For example, ice does not appear to be uniformly distributed across identified PSRs. More work is needed to understand the distribution of ice in PSRs and how delivery and retention mechanisms influence the distribution. The active illumination of the Lunar Orbiter Laser Altimeter (LOLA) provides a unique contribution toward exploration PSR exploration. While LOLA is principally a laser altimeter used for quantitative topography and related cartographic and geodetic applications [2], LOLA also measures the intensity and width of the return laser pulse (1064 nm) from the surface. Here we use a global mosaic (4 pixels per degree) of LOLA albedo data corrected for instrumental drift, irregular variations, and calibrated to normal albedo using local equatorial measurements of normal albedo obtained by the Kaguya Multiband Imager [3]. Recent work using LOLA albedo shows the floor of Shackleton crater, near the lunar south pole, is brighter than the surrounding terrain (and the interior of nearby craters) at 1064 nm [4]. This albedo difference may be due to decreased space weathering due to shadowing from the Sun or to a 1 μm thick layer with 20% water ice a the surface of the crater floor [4]. Here we use LOLA dayside reflectance measurements to examine the albedo of PSRs catalogued by [5] derived from illumination modeling of a hybrid 100 m/pixel LOLA-LROC digital terrain model (DTM) up to 83° north and south latitudes. The upper latitude

  2. Effective Albedo of Vegetated Terrain at L-Band

    NASA Technical Reports Server (NTRS)

    Kurum, Mehmet; O'Neill, Peggy E.; Lang, Roger H.

    2011-01-01

    This paper derives an explicit expression for an effective albedo of vegetated terrain from the zero- and multiple- order radiative transfer (RT) model comparison. The formulation establishes a direct physical link between the effective vegetation parameterization and the theoretical description of absorption and scattering within the canopy. The paper will present an evaluation of the derived albedo for corn canopies with data taken during an experiment at Alabama A&M Winfield A. Thomas Agricultural Research Station near Huntsville, Alabama in June, 1998. The test site consisted of two 50-m x 60-m plots - one with a bare surface and the other with grass cover - and four 30-m x 50-m plots of corn at different planting densities. One corn field was planted at a full density of 9.5 plants/sq m while the others were planted at 1/3, 1/2 and 2/3 of the full density. The fields were observed with a truck-mounted L-band radiometer at incident angle of 15 degree for the period of two weeks. Soil moisture (SM) changed daily due to irrigation and natural rainfall. Variations in gravimetric SM from 18 % to 34 % were seen during this period. Ground truth data, including careful characterization of the corn size and orientation statistics, and its dielectric, was also collected and used to simulate the effective albedo for the vegetation. The single-scattering albedo is defined as the fractional power scattered from individual vegetation constituents with respect to canopy extinction. It represents single-scattering properties of vegetation elements only, and is independent of ground properties. The values of the albedo get higher when there is dense vegetation (i.e. forest, mature corn, etc.) with scatterers, such as branches and trunks (or stalks in the case of corn), which are large with respect to the wavelength. This large albedo leads to a reduction in brightness temperature in the zero-order RT solution (known as tau-omega model). Higher-order multiple-scattering RT

  3. Using color management in color document processing

    NASA Astrophysics Data System (ADS)

    Nehab, Smadar

    1995-04-01

    Color Management Systems have been used for several years in Desktop Publishing (DTP) environments. While this development hasn't matured yet, we are already experiencing the next generation of the color imaging revolution-Device Independent Color for the small office/home office (SOHO) environment. Though there are still open technical issues with device independent color matching, they are not the focal point of this paper. This paper discusses two new and crucial aspects in using color management in color document processing: the management of color objects and their associated color rendering methods; a proposal for a precedence order and handshaking protocol among the various software components involved in color document processing. As color peripherals become affordable to the SOHO market, color management also becomes a prerequisite for common document authoring applications such as word processors. The first color management solutions were oriented towards DTP environments whose requirements were largely different. For example, DTP documents are image-centric, as opposed to SOHO documents that are text and charts centric. To achieve optimal reproduction on low-cost SOHO peripherals, it is critical that different color rendering methods are used for the different document object types. The first challenge in using color management of color document processing is the association of rendering methods with object types. As a result of an evolutionary process, color matching solutions are now available as application software, as driver embedded software and as operating system extensions. Consequently, document processing faces a new challenge, the correct selection of the color matching solution while avoiding duplicate color corrections.

  4. Influence of polar-cap albedo on past and current Martian climate

    NASA Technical Reports Server (NTRS)

    Kieffer, Hugh H.; Paige, David A.

    1987-01-01

    The finding that the observed albedo of the Martian polar caps increase with increasing isolation is reviewed. Models of the Martian climate system are greatly stabilized when an insolation-dependent frost albedo instead of a constant albedo is used in the energy budget. The authors views on microphysics of the process is then presented. Long term climate models must account for the variability of CO2 frost albedo.

  5. CESAR at Poker Flat

    NASA Astrophysics Data System (ADS)

    Matsiev, D.; Slanger, T. G.; Hedin, J.

    2015-12-01

    The Compact Echelle Spectrograph for Aeronomic Research (CESAR) has been sited at Poker Flat Research Range since November 2013, collecting data over two seasons of the nightglow and the aurora. CESAR has operated with a field of view of seven degrees in the zenith direction, with a resolution of 5000, although a resolution three times greater is available. So far, data collection times have been in the range of 20 minutes, while the wavelength range used has been 500-1050 nm. Detailed studies of a number of optical features have been carried out. 1) It is demonstrated that the v = 2 level of the O2(b) state is best studied by using the weak b-X 2-1 band near 697 nm, it being free of auroral contamination. 2) Similarly, the best uncontaminated feature of the N2+ Meinel system is the complex A-X 0-1 band, which has been accurately simulated for the first time [Dubowsky and McCall, private communication, 2014]. 3) The N(2P-2D) quartet of lines near 1040 nm is an important auroral feature, being the N-atom equivalent of the oxygen green line. These lines are uncontaminated in many of our spectra. For lower altitude auroral excitation, there may be some overlap with the N2 First Positive 0-0 band [Pendleton et al, 1989]. 4) Time series on the O+(2P-2D) lines near 732-733 nm have been studied, showing variable background emission in this region depending on auroral type. Information on OH Meinel band lines is available throughout the region studied, and there is substantial evidence from sky spectra (Keck, VLT) that the attempt to extract kinetic temperatures from OH intensity distributions is strongly influenced by non-LTE effects [Cosby and Slanger, 2007; Noll et al, 2014].

  6. Report on the ALPO LTP observing program. [for establishing albedo scale for lunar features

    NASA Technical Reports Server (NTRS)

    Cameron, W. S.

    1974-01-01

    Observations of lunar transient phenomena for the Association of Lunar and Planetary Observers (ALPO) are reported. The procedures for making visual observations for estimating albedo are described, and the reported albedo analyzed for lunar topographic features. It is shown that a catalog or scale of albedos can be established for each feature.

  7. The electromagnetic component of albedo from superhigh energy cascades in dense media

    NASA Technical Reports Server (NTRS)

    Golynskaya, R. M.; Hein, L. A.; Plyasheshnikov, A. V.; Vorobyev, K. V.

    1985-01-01

    Albedo from cascades induced in iron by high energy gamma quanta were Monte Carlo simulated. Thereafter the albedo electromagnetic component from proton induced cascades were calculated analytically. The calculations showed that the albedo electromagnetic component increases more rapidly than the nuclear active component and will dominate at sufficiently high energies.

  8. Colors of extreme exo-Earth environments.

    PubMed

    Hegde, Siddharth; Kaltenegger, Lisa

    2013-01-01

    The search for extrasolar planets has already detected rocky planets and several planetary candidates with minimum masses that are consistent with rocky planets in the habitable zone of their host stars. A low-resolution spectrum in the form of a color-color diagram of an exoplanet is likely to be one of the first post-detection quantities to be measured for the case of direct detection. In this paper, we explore potentially detectable surface features on rocky exoplanets and their connection to, and importance as, a habitat for extremophiles, as known on Earth. Extremophiles provide us with the minimum known envelope of environmental limits for life on our planet. The color of a planet reveals information on its properties, especially for surface features of rocky planets with clear atmospheres. We use filter photometry in the visible as a first step in the characterization of rocky exoplanets to prioritize targets for follow-up spectroscopy. Many surface environments on Earth have characteristic albedos and occupy a different color space in the visible waveband (0.4-0.9 μm) that can be distinguished remotely. These detectable surface features can be linked to the extreme niches that support extremophiles on Earth and provide a link between geomicrobiology and observational astronomy. This paper explores how filter photometry can serve as a first step in characterizing Earth-like exoplanets for an aerobic as well as an anaerobic atmosphere, thereby prioritizing targets to search for atmospheric biosignatures. PMID:23252379

  9. LED Color Characteristics

    SciTech Connect

    2012-01-01

    Color quality is an important consideration when evaluating LED-based products for general illumination. This fact sheet reviews the basics regarding light and color and summarizes the most important color issues related to white-light LED systems.

  10. Urine - abnormal color

    MedlinePlus

    ... straw-yellow. Abnormally colored urine may be cloudy, dark, or blood-colored. Causes Abnormal urine color may ... red blood cells, or mucus in the urine. Dark brown but clear urine is a sign of ...

  11. Color Blindness Simulations

    MedlinePlus

    ... many disables? The fastest growing segment? Myths of disability The Law The Rules Accessibility Resources Page Updates, additions Contact Us For assistance contact your NOAA Line Office Section 508 Coordinator Color blindness Simulations Normal Color Vision Deuteranopia Color blindness marked ...

  12. Long term surface albedo datasets generated with Meteosat images

    NASA Astrophysics Data System (ADS)

    Lattanzio, A.; Govaerts, Y. M.; Theodore, B.

    2009-04-01

    The Global Climate Observing System (GCOS) has recognized the importance and the key-role of the surface albedo in the study of the climate change. This and the other climate variables, called Essential Climate Variables (ECVs), must satisfy the following requirements: (i) a global coverage over long-term periods with adequate spatial and temporal resolution, (ii) reliability and accuracy as well as a (iii) quality control. The Coordination Group for Meteorological Satellites (CGMS) assigned to EUMETSAT an action (T18 (TF7)) in order to prototype and test a new algorithm able to retrieve surface albedo using geostationary satellites as described in the "Implementation plan for the global observing system for climate in support of the UNFCCC" document (WMO/TD No. 1219). In this frame EUMETSAT decided to develop a new specific algorithm, named Meteosat Surface Albedo (MSA), based on a method proposed by Pinty et al. The MSA algorithm is currently running in the operational reprocessing facility of EUMETSAT in order to generate reliable albedo data set starting from 1982. These data have been acquired by six different radiometers. As Meteosat first generation satellites have not been designed for climate monitoring, before proceeding with the interpretation of the complete archive (~ 25 years of data), a detailed temporal consistency analysis of the albedo data set generated with the MSA algorithm has been performed in order to check the compliance with points (ii) and (iii). Specific efforts have been put on the estimation of the measurement error accounting for the observation uncertainties and retrieval method assumptions. Currently 100% of the archive for the prime mission at 0 degree has been processed and the albedo data set can be requested from the EUMETSAT archive facility. This paper will present the method elaborated for the evaluation of the temporal consistency of the MSA data set and illustrate typical problems raising from the processing of old data and

  13. Radiative transfer in dusty nebulae. III - The effects of dust albedo

    NASA Technical Reports Server (NTRS)

    Petrosian, V.; Dana, R. A.

    1980-01-01

    The effects of an albedo of internal dust, such as ionization structure and temperature of dust grain, were studied by the quasi-diffusion method with an iterative technique for solving the radiative heat transfer equations. It was found that the generalized on-the-spot approximation solution is adequate for most astrophysical applications for a zero albedo; for a nonzero albedo, the Eddington approximation is more accurate. The albedo increases the average energy of the diffuse photons, increasing the ionization level of hydrogen and heavy elements if the Eddington approximation is applied; the dust thermal gradient is reduced so that the infrared spectrum approaches blackbody spectrum with an increasing albedo.

  14. ON A POSSIBLE SIZE/COLOR RELATIONSHIP IN THE KUIPER BELT

    SciTech Connect

    Pike, R. E.; Kavelaars, J. J.

    2013-10-01

    Color measurements and albedo distributions introduce non-intuitive observational biases in size-color relationships among Kuiper Belt Objects (KBOs) that cannot be disentangled without a well characterized sample population with systematic photometry. Peixinho et al. report that the form of the KBO color distribution varies with absolute magnitude, H. However, Tegler et al. find that KBO color distributions are a property of object classification. We construct synthetic models of observed KBO colors based on two B-R color distribution scenarios: color distribution dependent on H magnitude (H-Model) and color distribution based on object classification (Class-Model). These synthetic B-R color distributions were modified to account for observational flux biases. We compare our synthetic B-R distributions to the observed ''Hot'' and ''Cold'' detected objects from the Canada-France Ecliptic Plane Survey and the Meudon Multicolor Survey. For both surveys, the Hot population color distribution rejects the H-Model, but is well described by the Class-Model. The Cold objects reject the H-Model, but the Class-Model (while not statistically rejected) also does not provide a compelling match for data. Although we formally reject models where the structure of the color distribution is a strong function of H magnitude, we also do not find that a simple dependence of color distribution on orbit classification is sufficient to describe the color distribution of classical KBOs.

  15. Albedo of coastal landfast sea ice in Prydz Bay, Antarctica: Observations and parameterization

    NASA Astrophysics Data System (ADS)

    Yang, Qinghua; Liu, Jiping; Leppäranta, Matti; Sun, Qizhen; Li, Rongbin; Zhang, Lin; Jung, Thomas; Lei, Ruibo; Zhang, Zhanhai; Li, Ming; Zhao, Jiechen; Cheng, Jingjing

    2016-05-01

    The snow/sea-ice albedo was measured over coastal landfast sea ice in Prydz Bay, East Antarctica (off Zhongshan Station) during the austral spring and summer of 2010 and 2011. The variation of the observed albedo was a combination of a gradual seasonal transition from spring to summer and abrupt changes resulting from synoptic events, including snowfall, blowing snow, and overcast skies. The measured albedo ranged from 0.94 over thick fresh snow to 0.36 over melting sea ice. It was found that snow thickness was the most important factor influencing the albedo variation, while synoptic events and overcast skies could increase the albedo by about 0.18 and 0.06, respectively. The in-situ measured albedo and related physical parameters (e.g., snow thickness, ice thickness, surface temperature, and air temperature) were then used to evaluate four different snow/ice albedo parameterizations used in a variety of climate models. The parameterized albedos showed substantial discrepancies compared to the observed albedo, particularly during the summer melt period, even though more complex parameterizations yielded more realistic variations than simple ones. A modified parameterization was developed, which further considered synoptic events, cloud cover, and the local landfast sea-ice surface characteristics. The resulting parameterized albedo showed very good agreement with the observed albedo.

  16. Comparison of spectral surface albedos and their impact on the general circulation model simulated surface climate

    NASA Astrophysics Data System (ADS)

    Roesch, A.; Wild, M.; Pinker, R.; Ohmura, A.

    2002-07-01

    This study investigates the impact of spectrally resolved surface albedo on the total surface albedo. The neglect of albedo variation within the shortwave spectrum may lead to substantial errors as the atmospheric water greatly influences the spectral distribution of the incoming radiation. It is shown that ignoring the spectral dependence of the surface albedo will affect the predicted climate. The study reveals substantial changes in the climate over northern Africa when modifying the surface albedo of the Sahara deserts. Detailed information is given how the European Center/Hamburg General Circulation Model (ECHAM4) can be extended to include surface boundary conditions for both the visible and near-infrared incoming radiation. This comprises global climatologies for both the visible and near-infrared albedo for snow-free conditions, as well as the corresponding albedo values over snow, land-/sea ice and over snow covered forests. Comparisons between several available surface albedo climatologies and a newly compiled albedo data set show substantial scatter in estimated albedos. The largest albedo differences are found in snow covered forest regions as well as in arid and semi-arid terrains.

  17. Evaluating biases in simulated land surface albedo from CMIP5 global climate models

    NASA Astrophysics Data System (ADS)

    Li, Yue; Wang, Tao; Zeng, Zhenzhong; Peng, Shushi; Lian, Xu; Piao, Shilong

    2016-06-01

    Land surface albedo is a key parameter affecting energy balance and near-surface climate. In this study, we used satellite data to evaluate simulated surface albedo in 37 models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5). There was a systematic overestimation in the simulated seasonal cycle of albedo with the highest bias occurring during the Northern Hemisphere's winter months. The bias in surface albedo during the snow-covered season was classified into that in snow cover fraction (SCF) and albedo contrast (β1). There was a general overestimation of β1 due to the simulated snow-covered albedo being brighter than the observed value; negative biases in SCF were not always related to negative albedo biases, highlighting the need for realistic representation of snow-covered albedo in models. In addition, models with a lower leaf area index (LAI) tend to produce a higher surface albedo over the boreal forests during the winter, which emphasizes the necessity of improving LAI simulations in CMIP5 models. Insolation weighting showed that spring albedo biases were of greater importance for climate. The removal of albedo biases is expected to improve temperature simulations particularly over high-elevation regions.

  18. MISR Level 2 TOA/Cloud Albedo parameters (MIL2TCAL_V2)

    NASA Technical Reports Server (NTRS)

    Diner, David J. (Principal Investigator)

    The TOA/Cloud Albedo data contain albedo values, including finely-sampled or local (2.2 km) TOA albedos registered to the RLRA, and two coarsely-sampled (35.2 km resolution) TOA albedos projected to 30-km altitude. The local (2.2 km) albedos do not take the obscuration of cloud features into account, so they should only be treated as traditional albedos when the number of obscured pixels is low. The restrictive and expansive albedos are both available at 35.2 km resolution: the restrictive albedos are only calculated using the radiation upwelling from the pixel under consideration, whereas the expansive albedos use all the radiation emanating from the surrounding area. Therefore, the expansive albedo is closer to the traditional definition of top-of-atmosphere albedos. [Temporal_Coverage: Start_Date=2000-02-24; Stop_Date=] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=1.1 km; Longitude_Resolution=1.1 km; Temporal_Resolution=about 15 orbits/day].

  19. Durability of high-albedo roof coatings and implications for cooling energy savings. Final report

    SciTech Connect

    Bretz, S.E.; Akbari, H.

    1994-06-01

    Twenty-six spot albedo measurements of roofs were made using a calibrated pyranometer. The roofs were surfaced with either an acrylic elastomeric coating, a polymer coating with an acrylic base, or a cementitious coating. Some of the roofs` albedos were measured before and after washing to determine whether the albedo decrease was permanent. Data indicated that most of the albedo degradation occurred within the first year, and even within the first two months. On one roof, 70% of one year`s albedo degradation occurred in the first two months. After the first year, the degradation slowed, with data indicating small losses in albedo after the second year. Measurements of seasonal cooling energy savings by Akbari et al. (1993) included the effects of over two months of albedo degradation. We estimated {approximately}20% loss in cooling-energy savings after the first year because of dirt accumulation. For most of the roofs we cleaned, the albedo was restored to within 90% of its initial value. Although washing is effective at restoring albedo, the increase in energy savings is temporary and labor costs are significant in comparison to savings. By our calculations, it is not cost-effective to hire someone to clean a high-albedo roof only to achieve energy savings. Thus, it would be useful to develop and identify dirt-resistant high-albedo coatings.

  20. Spectral reflectance estimation using a six-color scanner

    NASA Astrophysics Data System (ADS)

    Tominaga, Shoji; Kohno, Satoshi; Kakinuma, Hirokazu; Nohara, Fuminori; Horiuchi, Takahiko

    2009-01-01

    A method is proposed for estimating the spectral reflectance function of an object surface by using a six-color scanner. The scanner is regarded as a six-band spectral imaging system, since it captures six color channels in total from two separate scans using two difference lamps. First, we describe the basic characteristics of the imaging systems for a HP color scanner and a multiband camera used for comparison. Second, we describe a computational method for recovering surface-spectral reflectances from the noisy sensor outputs. A LMMSE estimator is presented as an optimal estimator. We discuss the reflectance estimation for non-flat surfaces with shading effect. A solution method is presented for the reliable reflectance estimation. Finally, the performance of the proposed method is examined in detail on experiments using the Macbeth Color Checker and non-flat objects.

  1. 'Payson' Panorama in False Color

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The panoramic camera aboard NASA's Mars Exploration Rover Opportunity acquired this panorama of the 'Payson' outcrop on the western edge of 'Erebus' Crater during Opportunity's sol 744 (Feb. 26, 2006). From this vicinity at the northern end of the outcrop, layered rocks are observed in the crater wall, which is about 1 meter (3.3 feet) thick. The view also shows rocks disrupted by the crater-forming impact event and subjected to erosion over time.

    To the left of the outcrop, a flat, thin layer of spherule-rich soils overlies more outcrop materials. The rover is currently traveling down this 'road' and observing the approximately 25-meter (82-foot) length of the outcrop prior to departing Erebus crater.

    The panorama camera took 28 separate exposures of this scene, using four different filters. The resulting panorama covers about 90 degrees of terrain around the rover. This false-color rendering was made using the camera's 753-nanometer, 535-nanometer and 423-nanometer filters. Using false color enhances the subtle color differences between layers of rocks and soils in the scene so that scientists can better analyze them. Image-to-image seams have been eliminated from the sky portion of the mosaic to better simulate the vista a person standing on Mars would see.

  2. Preliminary albedo map of the south polar region

    NASA Technical Reports Server (NTRS)

    Devaucouleurs, G.; Roth, J.; Mulholand, C.

    1973-01-01

    A preliminary albedo map of the Martian south polar region in stereographic projection was prepared mainly from mission test video system (MTVS) prints before rectified and gridded prints were received, but some adjustments were made to conform with a semi-controlled photomosaic. Wherever possible, use also was made of crater coordinates. Two versions of the map are presented: one with a coordinate grid overlay and one without it. The precision of the coordinates is generally within 1 deg in latitude and the corresponding are in longitude. The maps show both the albedo markings and, with subdued contrast, the craters and topographic features that are necessary to locate the former. The map covers the range of latitudes from - 65 deg to the south pole.

  3. Comparison of MISR and MODIS land surface albedos: Methodology

    NASA Astrophysics Data System (ADS)

    Taberner, M.; Pinty, B.; Govaerts, Y.; Liang, S.; Verstraete, M. M.; Gobron, N.; Widlowski, J.-L.

    2010-03-01

    The broadband white sky surface albedo (bihemispherical reflectance) products available from the Moderate Resolution Imaging Spectroradiometer (MODIS) are compared at regional and continental scales with similar products generated from the Multiangle Imaging Spectroradiometer (MISR) land surface bidirectional reflectance factor (BRF) parameters. This paper describes the methodology applied to derive MISR white sky albedos over four spectral broadbands of interest, namely, 0.3-0.7 μm, 0.4-1.1 μm, 0.7-3.0 μm, and 0.3-3.0 μm, as well as an evaluation of the strategy adopted to compare the MODIS and MISR products. The results are very encouraging since the two data sets show very good statistical agreement over large areas and over a full year of measurements, despite the many differences that exist in the suite of algorithms applied to retrieve these surface quantities from each of these instruments separately.

  4. Deriving Albedo from Coupled MERIS and MODIS Surface Products

    NASA Technical Reports Server (NTRS)

    Gao, Feng; Schaaf, Crystal; Jin, Yu-Fang; Lucht, Wolfgang; Strahler, Alan

    2004-01-01

    MERIS Level 2 surface reflectance products are now available to the scientific community. This paper demonstrates the production of MERIS-derived surface albedo and Nadir Bidirectional Reflectance Distribution Function (BRDF) adjusted reflectances by coupling the MERIS data with MODIS BRDF products. Initial efforts rely on the specification of surface anisotropy as provided by the global MODIS BRDF product for a first guess of the shape of the BRDF and then make use all of the coincidently available, partially atmospherically corrected, cloud cleared, MERIS observations to generate MERIS-derived BRDF and surface albedo quantities for each location. Comparisons between MODIS (aerosol-corrected) and MERIS (not-yet aerosol-corrected) surface values from April and May 2003 are also presented for case studies in Spain and California as well as preliminary comparisons with field data from the Devil's Rock Surfrad/BSRN site.

  5. Land Surface Albedo from MERIS Reflectances Using MODIS Directional Factors

    NASA Technical Reports Server (NTRS)

    Schaaf, Crystal L. B.; Gao, Feng; Strahler, Alan H.

    2004-01-01

    MERIS Level 2 surface reflectance products are now available to the scientific community. This paper demonstrates the production of MERIS-derived surface albedo and Nadir Bidirectional Reflectance Distribution Function (BRDF) adjusted reflectances by coupling the MERIS data with MODIS BRDF products. Initial efforts rely on the specification of surface anisotropy as provided by the global MODIS BRDF product for a first guess of the shape of the BRDF and then make use all of the coincidently available, partially atmospherically corrected, cloud cleared, MERIS observations to generate MERIS-derived BRDF and surface albedo quantities for each location. Comparisons between MODIS (aerosol-corrected) and MERIS (not-yet aerosol-corrected) surface values from April and May 2003 are also presented for case studies in Spain and California as well as preliminary comparisons with field data from the Devil's Rock Surfrad/BSRN site.

  6. Temporal Variations in the Uranian Near-IR Geometric Albedo

    NASA Astrophysics Data System (ADS)

    Walter, C. M.; Marley, M. S.; Baines, K. H.

    1996-09-01

    Over the period August 1995 -- August 1996 the near-infrared geometric albedo of Uranus showed distinct variation. We obtained images of the planet in 10 broad and narrowband filters using the ARC 3.5 meter telescope at Apache Point Observatory. Along with the albedo variations we saw significant changes in the contrast of the planet. Data acquired in August 1995 (Walter & Marley 1995) show the same high altitude hazes encircling the south polar region as seen by Baines et al. (1995) from the IRTF two days prior to our observations and by HST in August 1994. Followup images from June 1996 no longer contain this asymmetry, instead showing a homogeneous disk with corresponding lower albedos at matching wavelengths. Observations will also be made in late August 1996. We modeled this data by computing theoretical monochromatic albedos which were then integrated over the filter bandpasses. These filters were chosen to best probe a variety of atmospheric levels, with continuum filters probing down to the CH_4 tropospheric cloud and beyond. Filters selected in the deep H_2 and CH_4 absorption bands allow us to examine the structure of hazes in the upper stratosphere, whose small reflection contributions dominate in these dark filters. Preliminary analysis of information from two very different states of Uranian weather shows evidence for temporal variability in the vertical location and thickness of the CH_4 cloud as well as the incompatibility of extrapolating optical stratospheric haze characteristics in the near-infrared. This work was supported by NASA grant NGT-51383. Baines, K. H., Yanamandra-Fisher, P., Lebofsky, L. A., Momary, T. W., & Golisch, W. 1995, BAAS, 27, 1088. Walter, C & Marley, M. S. 1995, BAAS, 27, 1089.

  7. A wide angle earth albedo sensor for spacecraft attitude determinations

    NASA Astrophysics Data System (ADS)

    Cruise, A. M.; Barnsdale, K.; Bowles, J. A.; Coker, A. J.; Sheather, P. H.

    1991-03-01

    A design is proposed for an earth albedo sensor which meets the conflicting parameters of a wide field of view and high sensitivity by using large area photodiodes and a very low noise dc amplifier. Two units have been launched on the United Kingdom Satellite of the Active Magnetospheric Particle tracer Experiment mission and operated successfully, measuring spacecraft attitude to an accuracy of one degree.

  8. Extended HXR Sources - Albedo Patches or Coronal Sources

    NASA Technical Reports Server (NTRS)

    Dennis, Brian R.

    2011-01-01

    Extended HXR sources in the presence of compact footpoints have been reported based on visibility amplitudes from different detectors. Attempts have been made to determine the location and extent of these sources through direct imaging. Results of this work will be described for simulated sources and for specific flares at different solar longitudes, with a discussion of the possible nature of the extended sources as either albedo patches or coronal sources or a combination of the two.

  9. An Improved Degree-day Melt Model Considering Albedo

    NASA Astrophysics Data System (ADS)

    Pellicciotti, F.; Strasser, U.; Burlando, P.; Funk, M.; Brock, B.; Corripio, J.

    Albedo is a major controlling factor for the melting of snow and ice. Here, an en- hanced degree-day melt model for the point scale is presented, in which the classical dependency on temperature is extended by considering albedo and global radiation. Temperature based index melt methods have been widely used due to their good per- formances, the availability of temperature data and the ease of its spatial interpolation. Other authors have recently improved the standard approach by addition of a radiation term. Here, the latter is modified with albedo, which represents a physical property of the material, and accounts for the way the surface reacts to the energy input of global radiation. The formulation adopted is additive, being melt expressed as the sum of two components, one controlled by temperature and the second by short-wave incoming radiation. Such a representation allows to separate in a clear way the two important contributions to melt of long wave and global radiation The model was run at different sites where the necessary meteorological data are measured and melt values are avail- able. In the pre-alpine site of Col de Porte (French Alps, 1340m), melt was computed by use of a highly sophisticated, physically based energy balance model. An ultrasonic device was used at a glacier location on Haut Glacier d'Arolla (Swiss Alps, 2920 m). Both measured short-wave radiation and computed potential direct short-wave radia- tion were used, and different temporal resolutions were tested. Results are discussed with the purpose of evaluating the increased efficiency of the improved degree-day scheme, and in the light of extending it to a distributed model, which accounts for space-time albedo variability.

  10. Signatures of volatiles in the lunar proton albedo

    NASA Astrophysics Data System (ADS)

    Schwadron, N. A.; Wilson, J. K.; Looper, M. D.; Jordan, A. P.; Spence, H. E.; Blake, J. B.; Case, A. W.; Iwata, Y.; Kasper, J. C.; Farrell, W. M.; Lawrence, D. J.; Livadiotis, G.; Mazur, J.; Petro, N.; Pieters, C.; Robinson, M. S.; Smith, S.; Townsend, L. W.; Zeitlin, C.

    2016-07-01

    We find evidence for hydrated material in the lunar regolith using "albedo protons" measured with the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaissance Orbiter (LRO). Fluxes of these albedo protons, which are emitted from the regolith due to steady bombardment by high energy radiation (Galactic Cosmic Rays), are observed to peak near the poles, and are inconsistent with the latitude trends of heavy element enrichment (e.g., enhanced Fe abundance). The latitudinal distribution of albedo protons anti-correlates with that of epithermal or high energy neutrons. The high latitude enhancement may be due to the conversion of upward directed secondary neutrons from the lunar regolith into tertiary protons due to neutron-proton collisions in hydrated regolith that is more prevalent near the poles. The CRaTER instrument may thus provide important measurements of volatile distributions within regolith at the Moon and potentially, with similar sensors and observations, at other bodies within the Solar System.

  11. Albedo feedback enhanced by smoother Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Landy, Jack C.; Ehn, Jens K.; Barber, David G.

    2015-12-01

    The ICESat operational period 2003-2008 coincided with a dramatic decline in Arctic sea ice—linked to prolonged melt season duration and enhanced melt pond coverage. Although melt ponds evolve in stages, sea ice with smoother surface topography typically allows the pond water to spread over a wider area, reducing the ice-albedo and accelerating further melt. Here we develop this theory into a quantitative relationship between premelt sea ice surface roughness and summer melt pond coverage. Our method, applied to ICESat observations of the end-of-winter sea ice roughness, can account for 85% of the variance in advanced very high resolution radiometer (AVHRR) observations of the summer ice-albedo. An Arctic-wide reduction in sea ice roughness from 2003 to 2008 explains a drop in ice-albedo that resulted in a 16% increase in solar heat input to the sea ice cover, which represents ten times the heat input contributed by earlier melt onset timing over the same period.

  12. Gamma-ray Albedo of Small Solar System Bodies

    SciTech Connect

    Moskalenko, I.V.

    2008-03-25

    We calculate the {gamma}-ray albedo flux from cosmic-ray (CR) interactions with the solid rock and ice in Main Belt asteroids and Kuiper Belt objects (KBOs) using the Moon as a template. We show that the {gamma}-ray albedo for the Main Belt and KBOs strongly depends on the small-body mass spectrum of each system and may be detectable by the forthcoming Gamma Ray Large Area Space Telescope (GLAST). If detected, it can be used to derive the mass spectrum of small bodies in the Main Belt and Kuiper Belt and to probe the spectrum of CR nuclei at close-to-interstellar conditions. The orbits of the Main Belt asteroids and KBOs are distributed near the ecliptic, which passes through the Galactic center and high Galactic latitudes. Therefore, the {gamma}-ray emission by the Main Belt and Kuiper Belt has to be taken into account when analyzing weak {gamma}-ray sources close to the ecliptic. The asteroid albedo spectrum also exhibits a 511 keV line due to secondary positrons annihilating in the rock. This may be an important and previously unrecognized celestial foreground for the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) observations of the Galactic 511 keV line emission including the direction of the Galactic center. For details of our calculations and references see [1].

  13. Leading/Trailing Albedo Asymmetries of Thebe, Amalthea, and Metis

    NASA Astrophysics Data System (ADS)

    Simonelli, Damon P.; Rossier, Laura; Thomas, Peter C.; Veverka, Joseph; Burns, Joseph A.; Belton, Michael J. S.

    2000-10-01

    Using Galileo clear-filter images (effective wavelength ≈0.64 μm), we have created the first albedo maps of the small inner jovian satellites Thebe, Amalthea, and Metis. These maps clearly show that the leading sides of all three satellites are significantly brighter than their corresponding trailing sides, confirming and extending a result first reported by P. C. Thomas et al. (1998, Icarus135, 360-371). In particular, on all three moons the leading side is brighter than the trailing side by 25 to 30%. The fact that the direction and size of this albedo asymmetry is identical from satellite to satellite suggests that one common physical mechanism is governing the global albedo patterns of all three moons. The most plausible such mechanism is the impact of macroscopic meteoroids that originated outside the jovian system. These impacts, which eject the dust that forms Jupiter's ring system (M. E. Ockert-Bell et al., 1999, Icarus138, 188-213; J. A. Burns et al., 1999, Science284, 1146-1150), are probably also responsible for brightening the leading sides of these small satellites.

  14. Supercritical Salt Spray for the Implementation of Cloud Albedo Modification

    NASA Astrophysics Data System (ADS)

    Neukermans, A. P.; Cooper, G.; Foster, J. D.; Galbraith, L.; Ormond, B.; Wang, Q.; Johnston, D.; Cloud Brightening Research

    2011-12-01

    Of all the geo-engineering schemes proposed so far, the Latham-Salter cloud albedo modification scheme is perhaps the most benign and "natural" method. In its full deployment, it proposes to densify and thereby modify the albedo of low-hanging marine boundary clouds by a few percent such that the overall earth albedo might be changed by 1%. The scheme would require the production of vast numbers of salt cloud condensation nuclei (CCN), in one implementation on the order of 10^17 per second from each of some 1500 autonomous sailing vessels. We have investigated a number of possible techniques to create these nuclei. We reported previously the laboratory production of suitable nuclei from saltwater using Taylor cones. This method would require about 10^8 Taylor cones per vessel to get to the required CCN production rate, and hence needs a very extensive scale-up effort. We report here on the use of saltwater sprayed at or near its critical temperature and pressure through small nozzles. Although a number of technical problems remain, results to date suggest that this method might be suitable, at least for research purposes. The mean particle size distributions of nuclei generated (40-100 nm) are acceptable, and the scale-up effort to the estimated number of nozzles required (1000-2000) seems reasonable.

  15. Color identification testing device

    NASA Technical Reports Server (NTRS)

    Brawner, E. L.; Martin, R.; Pate, W.

    1970-01-01

    Testing device, which determines ability of a technician to identify color-coded electric wires, is superior to standard color blindness tests. It tests speed of wire selection, detects partial color blindness, allows rapid testing, and may be administered by a color blind person.

  16. Half-flat quantum hair

    NASA Astrophysics Data System (ADS)

    García-Compeán, Hugo; Loaiza-Brito, Oscar; Martínez-Merino, Aldo; Santos-Silva, Roberto

    2014-02-01

    By wrapping D3-branes over 3-cycles on a half-flat manifold, we construct an effective supersymmetric black hole in the N=2 low-energy theory in four dimensions. Specifically, we find that the torsion cycles present in a half-flat compactification, corresponding to the mirror symmetric image of electric Neveu-Schwarz flux on a Calabi-Yau manifold, manifest in the half-flat black hole as quantum hair. We compute the electric and magnetic charges related to the quantum hair and also the mass contribution to the effective black hole. We find that by wrapping a number of D3-branes equal to the order of the discrete group associated to the torsional part of the half-flat homology, the effective charge and mass terms vanish. We compute the variation of entropy and the corresponding temperature associated with the loss of quantum hair. We also comment on the equivalence between canceling Freed-Witten anomaly and the assumption of self-duality for the 5-form field strength. Finally from a K-theoretical perspective, we compute the presence of discrete Ramond-Ramond charge of D-branes wrapping torsional cycles in a half-flat manifold.

  17. Chips of many colors

    SciTech Connect

    Dickens, M.W.; Dorie, L.A.

    1982-07-01

    A large number of available color display tools generally fall into three categories. Intelligent terminals offer a wide range of color grpahics capability but require extensive software for specific applications. Large turn-key graphics systems, with color display consoles controlled by software, were made for electronic design. In color CAD workstations, color graphics is under hardware control and offers specific features for IC design. The authors look at the various colour graphics systems, and their advantages in VLSI chip design.

  18. Organic Solid Matter as a Coloring Agent in Outer Solar System Bodies

    NASA Technical Reports Server (NTRS)

    Cruikshank, D. P.; DalleOre, C. M.; Roush, T. L.; Khare, B. N.; Fonda, Mark (Technical Monitor)

    2002-01-01

    Small bodies in the outer Solar System OSS, exhibit a range of color, or slope of the reflectance in the photovisual spectral region, ranging from neutral to very red, sometimes with and sometimes without distinct absorption bands. These objects range in geometric albedo from 0.03 to 1.0, with the higher albedo objects typically showing clear evidence of water ice. Water ice has also been found in a few objects with albedo 0. 1 or less. We explore here the identification of the material or materials that color these icy and non-icy surfaces through scattering models that incorporate minerals, meteoritic material, and organic solids (tholins) produced ID the laboratory by energy deposition in ices and gases. These models must match not only the color in the photovisual region, but the spectral reflectance properties throughout the near-infrared. Among some classes of objects, such as Kuiper Belt objects, the coloring agent may be a single material that is present in greater or lesser abundance, thus accounting for the range in color from neutral to very red. This may also apply to the Centaur objects, the Jovian Trojans, and the outer-main belt asteroids, each taken as a separate class. If so, each class may be colored to varying degrees by a different material, or they all might be colored by a common material that is widespread throughout the OSS, from 3 to 50 AU, and beyond. In this paper, we model the reflectances of "Kuiper Belt objects, Centaurs, Trojans, outer ARAB asteroids, and planetary satellites. Our models show that the reddest surfaces cannot be colored by minerals or meteoritic materials, but can be matched throughout the photovisual and near-infrared by organic solids, specifically certain tholins.

  19. Flat structure cooled detector assembly

    NASA Astrophysics Data System (ADS)

    Reeb, Nathalie; Coutures, Bernard; Gerin, Nicolas; Reale, S.; Guille, B.

    1994-07-01

    Long wavelength IR detectors need to be cooled at cryogenic temperature to achieve high performances. This specific need makes it difficult to integrate the detector because of high cost of dewar and cooling device designed to fulfill severe vibration conditions. A new era for IR detection could begin with flat structures allowing intrinsic vibration resistance for detectors to be plugged on electronics board. Sofradir has carried out a study about feasibility of detector dewar assembly including a flat Joule-Thomson cooler with porous heat exchanger in cooperation with Air Liquide. The aim of this paper is to put forward the interest of such a product. The very good results achieved demonstrate a promising future for such flat structure detector assembly.

  20. Dual polarization flat plate antenna

    NASA Astrophysics Data System (ADS)

    Kelly, Kenneth C.

    Rectangular waveguides with radiating slots are used in groups to form planar array microwave antennas with large apertures and small depth. Such flat plate antennas are widely used on spacecraft and aircraft. Typically, flat plate antennas provide fixed linear polarization. The present paper describes a new flat plate antenna which produces two coincident beams that are distinguished by their orthogonal linear polarizations. The antenna has two ports, one for each of the coicident beams. Completely external to the antenna, connecting a simple network to those terminal ports enables the antenna to provide right circular polarization from one port and left from the other. A different external network enables the antenna to have arbitrarily adjustable polarizations.

  1. Quantifying the Impacts of Surface Albedo on Climate Using the WRF Model

    NASA Astrophysics Data System (ADS)

    Schlosser, C. A.; Xu, L.; Xu, X.; Gregory, J.; Kirchain, R.

    2015-12-01

    Surface albedo is an important part of the energy budget in shaping local and regional climate. It could also be a potential tool to mitigate the anthropogenic effect on climate change. However, the current level of scientific understanding of surface albedo on global warming potential is medium to low. In order to investigate the anthropogenic impact of surface albedo on climate, different scenarios of urban surface albedo over continental US using the WRF model are simulated. In this study, the change in surface albedo applies to rooftops, pavements, and walls of urban land cover grid cells. The two groups of simulations (low and high albedo) were compared to determine the impacts of elevating urban surface albedo and to account for the uncertainty in the errors or noise introduced by the slightly different initial conditions. The results are represented as the differences in surface temperature and the top of the atmosphere radiation between the two scenarios when urban surface albedos are elevated from 0.15 to 0.40. The ensemble mean of all potential outcomes as a whole, instead of individual initial conditions, shows that the impact of elevating surface albedo has a cooling effect that is robust at both local and regional scales during the summer season. More refined analyses of urban areas will provide insights on surface albedo impacts in specific regions. Future analyses may address changes in CO2 equivalence.

  2. Robust estimation of albedo for illumination-invariant matching and shape recovery.

    PubMed

    Biswas, Soma; Aggarwal, Gaurav; Chellappa, Rama

    2009-05-01

    We present a nonstationary stochastic filtering framework for the task of albedo estimation from a single image. There are several approaches in the literature for albedo estimation, but few include the errors in estimates of surface normals and light source direction to improve the albedo estimate. The proposed approach effectively utilizes the error statistics of surface normals and illumination direction for robust estimation of albedo, for images illuminated by single and multiple light sources. The albedo estimate obtained is subsequently used to generate albedo-free normalized images for recovering the shape of an object. Traditional Shape-from-Shading (SFS) approaches often assume constant/piecewise constant albedo and known light source direction to recover the underlying shape. Using the estimated albedo, the general problem of estimating the shape of an object with varying albedo map and unknown illumination source is reduced to one that can be handled by traditional SFS approaches. Experimental results are provided to show the effectiveness of the approach and its application to illumination-invariant matching and shape recovery. The estimated albedo maps are compared with the ground truth. The maps are used as illumination-invariant signatures for the task of face recognition across illumination variations. The recognition results obtained compare well with the current state-of-the-art approaches. Impressive shape recovery results are obtained using images downloaded from the Web with little control over imaging conditions. The recovered shapes are also used to synthesize novel views under novel illumination conditions. PMID:19299862

  3. [Temporal and Spatial Characteristics of Lake Taihu Surface Albedo and Its Impact Factors].

    PubMed

    Cao, Chang; Li, Xu-hui; Zhang, Mi; Liu, Shou-dong; Xiao, Wei; Xiao, Qi-tao; Xu, Jia-ping

    2015-10-01

    Lake surface albedo determines energy balance of water-atmospheric interface and water physical environment. Solar elevation angle, cloudiness, wind speed, water quality and other factors can affect lake surface albedo. Using solar radiation, wind speed, and water quality data (turbidity and chlorophyll-a concentration) which were observed in four eddy covariance sites (Meiliangwan, Dapukou, Bifenggang and Xiaoleishan i. e. MLW, DPK, BFG and XLS) in Lake Taihu and clearness index (k(t)), the influence of these factors on Lake Taihu surface albedo and the reasons that led to its spatial difference were investigated. The results showed that solar elevation angle played a leading role in the diurnal and seasonal change of lake surface albedo; lake surface albedo reached two peaks in 0 < k(t) < 0.1 and 0.4 < k(t) < 0.6 respectively, when solar elevation angle was below 35 degrees. The surface albedo increased with the increasing wind speed, turbidity and chlorophyll-a concentration. However, wind could indirectly affect surface albedo through leading to the changes in sediment resuspension and chlorophyll-a distribution. The sequence of albedo in the four sites was XLS > BFG > DPK > MLW. XLS and BFG belonged to the higher albedo group, while DPK and MLW belonged to the lower albedo group. The different biological environments caused by aquatic macrophytes and algae resulting in the spatial variation of Lake Taihu surface albedo. The relationship between albedo and chlorophyll-a concentration was not a very sensitive factor for indicating the outbreak of algae. This study can provide theoretical reference for lake albedo parameterization. PMID:26841592

  4. The Fallacies of Flatness: Thomas Friedman's "The World Is Flat"

    ERIC Educational Resources Information Center

    Abowitz, Kathleen Knight; Roberts, Jay

    2007-01-01

    Thomas Friedman's best-selling "The World is Flat" has exerted much influence in the west by providing both an accessible analysis of globalization and its economic and social effects, and a powerful cultural metaphor for globalization. In this review, we more closely examine Friedman's notion of the social contract, the moral center of his…

  5. Nonlocal gravity: Conformally flat spacetimes

    NASA Astrophysics Data System (ADS)

    Bini, Donato; Mashhoon, Bahram

    2016-04-01

    The field equations of the recent nonlocal generalization of Einstein’s theory of gravitation are presented in a form that is reminiscent of general relativity. The implications of the nonlocal field equations are studied in the case of conformally flat spacetimes. Even in this simple case, the field equations are intractable. Therefore, to gain insight into the nature of these equations, we investigate the structure of nonlocal gravity (NLG) in 2D spacetimes. While any smooth 2D spacetime is conformally flat and satisfies Einstein’s field equations, only a subset containing either a Killing vector or a homothetic Killing vector can satisfy the field equations of NLG.

  6. Climatic Benefit of Swiss Forest Cover Change: Including Albedo Change into Net Carbon Balance

    NASA Astrophysics Data System (ADS)

    Schwaab, J.; Lehning, M.; Bebi, P.

    2012-12-01

    Forests influence climate through physical, chemical and biological processes. It has been shown that warming caused by the comparatively low albedo of forests (albedo-effect), can reduce or even exceed cooling caused by carbon storage in forests (CO2-effect). Although warming caused by albedo and the amount of carbon storage depend on local characteristics, studies are lacking that investigate the combined local patterns of albedo and CO2-effect. Our study area, Switzerland, provides a variety of geographical features and thus the possibility to show how different geographical variables influence the two effects. We used the concept of radiative forcing to compare the effect of a changing albedo and a change in atmospheric CO2 concentration due to land cover change in the past. The change of forest cover was analysed over a period of 12 years based on aerial photographs. We estimate the albedo-effect by combining albedo data derived from the satellite sensor MODIS and data on snow cover derived from the satellite sensor AVHRR. Changes in carbon storage were calculated as differences in biomass and soil stocks of specific land cover classes. We found carbon storage induced cooling to be higher than albedo induced warming everywhere in Switzerland. However, especially in altitudes over 1200 m the albedo-effect reduced the benefits of carbon storage by more than 50%. In lower altitudes the albedo change was less important. The albedo-effect in altitudes above 1200 m was more relevant because of a more persistent snow-cover, a slightly higher global radiation and less additional carbon storage. The relevance of warming caused by an albedo change did not only depend on altitude, but also on the characteristics of forest cover change. While transitions from open land to open forest were accompanied by high albedo changes, the albedo change was only marginal if open forest turned into closed forest. Since snow cover has a large influence on the albedo effect, we included

  7. What color is it?

    NASA Astrophysics Data System (ADS)

    Eschbach, Reiner; Sharma, Gaurav; Unal, Gozde B.

    2005-01-01

    Color management allows the deterministic handling of color data from input to output. This, of course, assumes that the first digital representation of our data is the "correct" color. It assumes that we did not make any errors in the input definitions, did not use wrong color input profiles, captured the user's intent, or fell prey to a host of other potential problems. After we have made those assumptions, we now can deterministically transfer the color from one place to another. Note that there is a big difference between "reproducing" one color at a different location and "deterministically transferring one set of color data to another location". The deterministic transfer is limited to the small set of physical metrics we decided to call "color". All other components of color are ignored.

  8. What color is it?

    NASA Astrophysics Data System (ADS)

    Eschbach, Reiner; Sharma, Gaurav; Unal, Gozde B.

    2004-12-01

    Color management allows the deterministic handling of color data from input to output. This, of course, assumes that the first digital representation of our data is the "correct" color. It assumes that we did not make any errors in the input definitions, did not use wrong color input profiles, captured the user's intent, or fell prey to a host of other potential problems. After we have made those assumptions, we now can deterministically transfer the color from one place to another. Note that there is a big difference between "reproducing" one color at a different location and "deterministically transferring one set of color data to another location". The deterministic transfer is limited to the small set of physical metrics we decided to call "color". All other components of color are ignored.

  9. UV signatures of carbonaceous species on low-albedo asteroids

    NASA Astrophysics Data System (ADS)

    Hendrix, A.; Vilas, F.

    2014-07-01

    Asteroids in the low-albedo classes (C, B, G, F) are known to have spectra that are relatively feature-free in the visible/near-infrared (VNIR) spectral region, making them classically difficult to study in terms of surface mineralogy. Many of these bodies exhibit a 3-micron absorption band (e.g., [1]), which can be used to study hydration and organics. The primary other spectrally active region --- less well studied so far --- is the ultraviolet (UV). In this study, we utilize UV spectra of low-albedo asteroids (C, B, G, and F class) to study surface composition. In particular, we investigate implications for the presence of carbonaceous compounds, including tholins and Polycyclic Aromatic Hydrocarbons (PAHs), which have unique spectral features in the UV. Low-albedo asteroids are typically rather bland spectrally at VNIR wavelengths. Many of these objects exhibit an absorption band near 3 microns, indicative of some type of hydration (OH and-or H_2O). A subset of the asteroids with the 3-micron features also exhibit absorption near 0.7 microns, due to a ferrous-ferric charge-transfer transition likely resulting from aqueous alteration (the interaction of material with liquid water formed by melting of water upon a heating event). Some asteroids likely do not exhibit these features due to a history of heating experienced at some point in the asteroid's evolution. Despite having little spectral activity in the VNIR, all low-albedo asteroids absorb at wavelengths shorter than ˜500 nm. This has been generally attributed to a ferric-iron intervalence charge-transfer transition absorption. Carbon-bearing phases have long been assumed to be important on low-albedo asteroids (e.g., [2]) due to the dark, mostly-featureless VNIR spectra of these bodies. However, there are many forms of carbonaceous species and the species are expected to undergo phase modifications (e.g., due to thermal, aqueous, and radiation processes) that affect the spectra [3,7]. Tholins are residues

  10. Effect of reflectance model choice on earthshine-based terrestrial albedo determinations.

    NASA Astrophysics Data System (ADS)

    Thejll, Peter; Gleisner, Hans; Flynn, Chris

    2016-04-01

    Earthshine observations can be used to determine near-hemispheric average terrestrial albedos by careful observation of the relative strength of the earthshine-lit half of the Moon coupled with correct modelling of the reflectances of Earth and Moon, as well as lunar single-scattering albedo maps. Using our own observations of the earthshine, from Mauna Loa Observatory in 2011-12, we investigate the influence of the choice of bidirectional reflectance models for the Moon on derived terrestrial albedos. We find a considerable dependence on albedo results in this choice, and discuss ways to determine what the origin of the dependence is - e.g is it in the joint choices of lunar and terrestrial BRDFs, or is the choice of terrestrial BRDF less important than the lunar one? We report on the results of modelling lunar reflectance and albedo in 6 ways and terrestrial reflectance in two ways, assuming a uniform single-scattering albedo on Earth.

  11. A REVISED ASTEROID POLARIZATION-ALBEDO RELATIONSHIP USING WISE/NEOWISE DATA

    SciTech Connect

    Masiero, Joseph R.; Mainzer, A. K.; Bauer, J. M.; Wright, E. L.; McMillan, R. S.; Tholen, D. J.; Blain, A. W.

    2012-04-20

    We present a reanalysis of the relationship between asteroid albedo and polarization properties using the albedos derived from the Wide-field Infrared Survey Explorer. We find that the function that best describes this relation is a three-dimensional linear fit in the space of log (albedo)-log (polarization slope)-log (minimum polarization). When projected to two dimensions, the parameters of the fit are consistent with those found in previous work. We also define p* as the quantity of maximal polarization variation when compared with the albedo and present the best-fitting albedo-p* relation. Some asteroid taxonomic types stand out in this three-dimensional space, notably the E, B, and M Tholen types, while others cluster in clumps coincident with the S- and C-complex bodies. We note that both low albedo and small (D < 30 km) asteroids are underrepresented in the polarimetric sample, and we encourage future polarimetric surveys to focus on these bodies.

  12. Earth's albedo variations 1998-2014 as measured from ground-based earthshine observations

    NASA Astrophysics Data System (ADS)

    Palle, E.; Goode, P. R.; Montañés-Rodríguez, P.; Shumko, A.; Gonzalez-Merino, B.; Lombilla, C. Martinez; Jimenez-Ibarra, F.; Shumko, S.; Sanroma, E.; Hulist, A.; Miles-Paez, P.; Murgas, F.; Nowak, G.; Koonin, S. E.

    2016-05-01

    The Earth's albedo is a fundamental climate parameter for understanding the radiation budget of the atmosphere. It has been traditionally measured not only from space platforms but also from the ground for 16 years from Big Bear Solar Observatory by observing the Moon. The photometric ratio of the dark (earthshine) to the bright (moonshine) sides of the Moon is used to determine nightly anomalies in the terrestrial albedo, with the aim of quantifying sustained monthly, annual, and/or decadal changes. We find two modest decadal scale cycles in the albedo, but with no significant net change over the 16 years of accumulated data. Within the evolution of the two cycles, we find periods of sustained annual increases, followed by comparable sustained decreases in albedo. The evolution of the earthshine albedo is in remarkable agreement with that from the Clouds and the Earth's Radiant Energy System instruments, although each method measures different slices of the Earth's Bond albedo.

  13. Splash and Re-entrant Albedo Fluxes Measured in the PAMELA Experiment

    NASA Astrophysics Data System (ADS)

    Mayorov, A. G.; Moiseeva, A. I.; Adriani, O.; Barbarino, G. C.; Bazilevskaya, G. A.; Bellotti, R.; Boezio, M.; Bogomolov, E. A.; Bongi, M.; Bonvicini, V.; Bottai, S.; Bruno, A.; Cafagna, F.; Campana, D.; Carbone, R.; Carlson, P.; Casolino, M.; Castellini, G.; DeDonato, C.; DeSantis, C.; DeSimone, N.; DiFelice, V.; Formato, V.; Galper, A. M.; Karelin, A. V.; Koldashov, S. V.; Koldobskiy, S.; Kvashnin, A. A.; Kvashnin, A. N.; Leonov, A.; Malakhov, V.; Marcelli, L.; Martucci, M.; Mayorova, M. A.; Menn, W.; Merge', M.; Mikhailov, V. V.; Mocchiutti, E.; Monaco, A.; Mori, N.; Munini, R.; Osteria, G.; Palma, F.; Panico, B.; Papini, P.; Pearce, M.; Picozza, P.; Pizzolotto, C.; Ricci, M.; Ricciarini, S. B.; Sarkar, R.; Scotti, V.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stozhkov, Y. I.; Vacchi, A.; Vannuccini, E.; Voronov, S. A.; Yurkin, Y. T.; Zampa, G.; Zampa, N.; Zverev, V. G.

    This work devoted to the description of the method for splash albedo protons identification in the satellite-born experiment PAMELA. In contrast to the reentrant albedo particles, which enter into the main aperture of the instrument, the direct albedo particles enter from the opposite direction, so they pass a few detectors, including calorimeter, before being register by the magnetic spectrometer. The developed method take into account the influence of these detectors on the selection of events and measurements of their characteristics. To test this method the energy spectrum of reentrant albedo protons in various regions of the near-Earth space reconstructed; it is in a good agreement with the classical measurements in the main aperture. Therefore, this method can be useful to obtain a new physical data about fluxes of splash albedo protons in the PAMELA experiment, which, unlike the reentrant albedo, can be study even at high geomagnetic latitudes.

  14. From A Physical Color Stimulus To A Psychological Color Percept

    NASA Astrophysics Data System (ADS)

    Sporea, Dan G.; Tonnquist, Gunnar

    1989-08-01

    The paper discusses the complexity of color vision in humans, considering the main aspects involved: the physical aspect, the psychophysical aspect, the physiological aspect and the psychological aspect. The meanings of the term color associated to each such aspect (asfor example, color stimulus, color valence, neural color signal and color percept) are introduced. Some types of color defective vision, relevant for color display users, are indicated. The methods to generate color stimuli in modern display devices, employing different technologies, are compared.

  15. Advantages of using flat-panel LCD for projection displays

    NASA Astrophysics Data System (ADS)

    Wu, Dean C.

    1995-04-01

    The advantages of applying flat panel Liquid CRystal Displays (LCD) for Projection Displays will be extensively discussed. The selection and fabrication of flat panel LCD in order to meet the specific requirements of projection displays through various technologies will be suggested and explored in detail. The compact, flexible size and easy portability of flat panel LCDs are well known. For practical reasons, it is desirable to take advantages some of these useful properties in Projection Displays. With the recent popularity of large format display sizes, high information content and practicality all increases the demand of projection enlargement for high level performance and comfortable viewing. As a result, Projection Displays are becoming the chosen technological option for effective presentation of visual information. In general, the Liquid Crystal Light Valves (LCLV) used in Projection Displays are simply transmissive flat panel liquid crystal displays. For example at the low end, the monochromatic LCD projection panels are simply transmissive LCDs to be used in combination with laptops or PCs and light sources such as overhead projectors. These projection panels are getting popular for their portability, readability and low cost. However, due to the passive nature of the LCD used in these projector panels, the response time, contrast ratio and color gamut are relatively limited. Whether the newly developed Active Addressing technology will be able to improve the response time, contrast ratio and color gamut of these passive matrix LCDs remain to be proven. In the middle range of projection displays, Liquid Crystal Light Valves using color Active Matrix LCDs are rapidly replacing the dominant CRT based projectors. LCLVs have a number of advantages including portability, easy set-up and data readability. There are several new developments using single crystal, polysilicon as active matrix for LCDs with improved performance. Since single crystal active matrix

  16. Surface Albedo/BRDF Parameters (Terra/Aqua MODIS)

    DOE Data Explorer

    Trishchenko, Alexander

    2008-01-15

    Spatially and temporally complete surface spectral albedo/BRDF products over the ARM SGP area were generated using data from two Moderate Resolution Imaging Spectroradiometer (MODIS) sensors on Terra and Aqua satellites. A landcover-based fitting (LBF) algorithm is developed to derive the BRDF model parameters and albedo product (Luo et al., 2004a). The approach employs a landcover map and multi-day clearsky composites of directional surface reflectance. The landcover map is derived from the Landsat TM 30-meter data set (Trishchenko et al., 2004a), and the surface reflectances are from MODIS 500m-resolution 8-day composite products (MOD09/MYD09). The MOD09/MYD09 data are re-arranged into 10-day intervals for compatibility with other satellite products, such as those from the NOVA/AVHRR and SPOT/VGT sensors. The LBF method increases the success rate of the BRDF fitting process and enables more accurate monitoring of surface temporal changes during periods of rapid spring vegetation green-up and autumn leaf-fall, as well as changes due to agricultural practices and snowcover variations (Luo et al., 2004b, Trishchenko et al., 2004b). Albedo/BRDF products for MODIS on Terra and MODIS on Aqua, as well as for Terra/Aqua combined dataset, are generated at 500m spatial resolution and every 10-day since March 2000 (Terra) and July 2002 (Aqua and combined), respectively. The purpose for the latter product is to obtain a more comprehensive dataset that takes advantages of multi-sensor observations (Trishchenko et al., 2002). To fill data gaps due to cloud presence, various interpolation procedures are applied based on a multi-year observation database and referring to results from other locations with similar landcover property. Special seasonal smoothing procedure is also applied to further remove outliers and artifacts in data series.

  17. Can increasing albedo of existing ship wakes reduce climate change?

    NASA Astrophysics Data System (ADS)

    Crook, Julia A.; Jackson, Lawrence S.; Forster, Piers M.

    2016-02-01

    Solar radiation management schemes could potentially alleviate the impacts of global warming. One such scheme could be to brighten the surface of the ocean by increasing the albedo and areal extent of bubbles in the wakes of existing shipping. Here we show that ship wake bubble lifetimes would need to be extended from minutes to days, requiring the addition of surfactant, for ship wake area to be increased enough to have a significant forcing. We use a global climate model to simulate brightening the wakes of existing shipping by increasing wake albedo by 0.2 and increasing wake lifetime by ×1440. This yields a global mean radiative forcing of -0.9 ± 0.6 Wm-2 (-1.8 ± 0.9 Wm-2 in the Northern Hemisphere) and a 0.5°C reduction of global mean surface temperature with greater cooling over land and in the Northern Hemisphere, partially offsetting greenhouse gas warming. Tropical precipitation shifts southward but remains within current variability. The hemispheric forcing asymmetry of this scheme is due to the asymmetry in the distribution of existing shipping. If wake lifetime could reach ~3 months, the global mean radiative forcing could potentially reach -3 Wm-2. Increasing wake area through increasing bubble lifetime could result in a greater temperature reduction, but regional precipitation would likely deviate further from current climatology as suggested by results from our uniform ocean albedo simulation. Alternatively, additional ships specifically for the purpose of geoengineering could be used to produce a larger and more hemispherically symmetrical forcing.

  18. Radiation coloration resistant glass

    DOEpatents

    Tomozawa, Minoru; Watson, E. Bruce; Acocella, John

    1986-01-01

    A radiation coloration resistant glass is disclosed which is used in a radiation environment sufficient to cause coloration in most forms of glass. The coloration resistant glass includes higher proportions by weight of water and has been found to be extremely resistant to color change when exposed to such radiation levels. The coloration resistant glass is free of cerium oxide and has more than about 0.5% by weight water content. Even when exposed to gamma radiation of more than 10.sup.7 rad, the coloration resistant glass does not lose transparency.

  19. Radiation coloration resistant glass

    DOEpatents

    Tomozawa, M.; Watson, E.B.; Acocella, J.

    1986-11-04

    A radiation coloration resistant glass is disclosed which is used in a radiation environment sufficient to cause coloration in most forms of glass. The coloration resistant glass includes higher proportions by weight of water and has been found to be extremely resistant to color change when exposed to such radiation levels. The coloration resistant glass is free of cerium oxide and has more than about 0.5% by weight water content. Even when exposed to gamma radiation of more than 10[sup 7] rad, the coloration resistant glass does not lose transparency. 3 figs.

  20. Trichromatic opponent color classification.

    PubMed

    Chichilnisky, E J; Wandell, B A

    1999-10-01

    Stimuli varying in intensity and chromaticity, presented on numerous backgrounds, were classified into red/green, blue/yellow and white/black opponent color categories. These measurements revealed the shapes of the boundaries that separate opponent colors in three-dimensional color space. Opponent color classification boundaries were generally not planar, but their shapes could be summarized by a piecewise linear model in which increment and decrement color signals are combined with different weights at two stages to produce opponent color sensations. The effect of background light on classification was largely explained by separate gain changes in increment and decrement cone signals. PMID:10615508

  1. Independent pixel and Monte Carlo estimates of stratocumulus albedo

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert F.; Ridgway, William; Wiscombe, Warren J.; Gollmer, Steven; HARSHVARDHAN

    1994-01-01

    Monte Carlo radiative transfer methods are employed here to estimate the plane-parallel albedo bias for marine stratocumulus clouds. This is the bias in estimates of the mesoscale-average albedo, which arises from the assumption that cloud liquid water is uniformly distributed. The authors compare such estimates with those based on a more realistic distribution generated from a fractal model of marine stratocumulus clouds belonging to the class of 'bounded cascade' models. In this model the cloud top and base are fixed, so that all variations in cloud shape are ignored. The model generates random variations in liquid water along a single horizontal direction, forming fractal cloud streets while conserving the total liquid water in the cloud field. The model reproduces the mean, variance, and skewness of the vertically integrated cloud liquid water, as well as its observed wavenumber spectrum, which is approximately a power law. The Monte Carlo method keeps track of the three-dimensional paths solar photons take through the cloud field, using a vectorized implementation of a direct technique. The simplifications in the cloud field studied here allow the computations to be accelerated. The Monte Carlo results are compared to those of the independent pixel approximation, which neglects net horizontal photon transport. Differences between the Monte Carlo and independent pixel estimates of the mesoscale-average albedo are on the order of 1% for conservative scattering, while the plane-parallel bias itself is an order of magnitude larger. As cloud absorption increases, the independent pixel approximation agrees even more closely with the Monte Carlo estimates. This result holds for a wide range of sun angles and aspect ratios. Thus, horizontal photon transport can be safely neglected in estimates of the area-average flux for such cloud models. This result relies on the rapid falloff of the wavenumber spectrum of stratocumulus, which ensures that the smaller

  2. Albedo, thermal inertia and rotation of ring particles (Invited)

    NASA Astrophysics Data System (ADS)

    Morishima, R.; Spilker, L. J.; Ohtsuki, K.; Cassini Cirs Ring Team

    2010-12-01

    Since the Saturn orbit insertion of the Cassini spacecraft in mid-2004 up to now, the Cassini composite infrared spectrometer (CIRS) has measured temperatures of Saturn's main rings at various observational geometries. We present results of parameter fits using our new thermal model (Morishima et al. 2009). Our model is based on classical radiative transfer and takes into account the heat transport due to particle motion in the azimuthal and vertical directions. The model assumes a bimodal size distribution consisting of small fast rotators and large slow rotators. Important parameters are the Bolometric bond albedo, A_V, the fraction of fast rotators in cross section, f_fast, and the thermal inertia, Γ. Two different data sets are used to estimate these parameters. The first set, which consists of four radial scans obtained at low and high solar phases both on the lit and unlit faces of rings (Spilker et al. 2006), is suitable for accurate estimations of A_V and f_fast with high radial resolution. Another one, which consists of azimuthal scans that include data in Saturn shadow (Leyrat et al. 2008), is suitable for estimations of Γ. The estimated parameters are shown in Fig.1. The albedo is 0.1-0.4, 0.5-0.7, 0.4, 0.5 for the C ring, the B ring, the Cassini division, and the A ring, respectively. The fraction of fast rotators is roughly half for all the rings. The thermal inertia is 7-21 in MKS units. For the mid B ring, values of parameters obtained from two data sets are consistent with each other if ring particles are assumed to bounce at the midplane due to mutual collisions. We also find that fits to azimuthal scans are improved if Γ for fast rotators is larger than that for slow rotators. Albedo, fraction of fast rotators in cross section, and thermal inertia estimated from parameter fits. Two different thermal data sets are used: radial scans at four different geometries (solid curves) and azimuthal scans including data in Saturn shadow (diamonds). Dashed

  3. Sizes and Albedos of Young C-type Asteroids

    NASA Astrophysics Data System (ADS)

    Tamblyn, Peter; Chapman, Clark; Durda, Dan; Merline, William; Nesvorny, David

    2005-06-01

    We propose to measure the sizes and albedos of 8 very young C-type asteroids with IRAC 8um and near-simultaneous ground-based visible photometry. Asteroid families are created from major collisions between asteroids and are identified from clustering of orbital elements. Co-I Nesvorny has recently identified an exceptionally-young family (Veritas) and precisely-dated it at only 8.3+/-0.5 Myr (just 0.2% of the age of the solar system). We will compare our results for this family with those obtained by our similar Spitzer GO-1 program where we study an even younger S-type family, Karin. C-type asteroids are composed of primitive material (as opposed to the more processed silicate-rich S-types) and comprise the majority of asteorids in the Main Belt, yet their compositions and properties remain elusive. These recent breakup events provide unparalleled opportunities to study compositions, dynamics, and collisions of asteroids. They allow tests of the rates of physical processes that happen on time scales comparable with the family age. Space weathering, for example, appears to affect C- and S-type asteroids very differently. We will test directly whether the Veritas fragments have similar albedos; we will also test if their albedos differ from those of similar asteroids with much older surfaces by study of a second C-type family, Themis. We will compare our observations with those made of larger asteroids of both families, from a companion ground-based program. We will quantify any correlation of size with albedo, a dominant uncertainty in standard size estimates. The size distribution will be used to calibrate hydrocode models of asteroid collisions. To do this will require observations at the smallest practical sizes. In addition, the measured sizes will be immediately applicable to a novel measurement of the Yarkovsky Effect. We have already demonstrated in our GO-1 program that we can make similar Spitzer observations and provide the ground-based visible support.

  4. Detecting Low-Contrast Features in the Cosmic Ray Albedo Proton Map of the Moon

    NASA Technical Reports Server (NTRS)

    Wilson, J. K.; Schwadron, N.; Spence, H. E.; Golightly, M. J.; Case, A. W.; Smith, S.; Blake, J. B.; Kasper, J.; Looper, M. D.; Mazur, J. E.; Townsend, L. W.; Zeitlin, C.; Stubbs, T. J.

    2014-01-01

    High energy cosmic rays constantly bombard the lunar regolith, producing (via nuclear evaporation) secondary 'albedo' or 'splash' particles like protons and neutrons, some of which escape back to space. Lunar Prospector and the Lunar Reconnaissance Orbiter (LRO), have shown that the energy distribution of albedo neutrons is modulated by the elemental composition of the lunar regolith, and by ice deposits in permanently shadowed polar craters. Here we investigate an analogous phenomenon with high energy ((is) approximately 100 MeV) lunar albedo protons.

  5. The asteroid albedo scale. II - Laboratory polarimetry of dark carbon-bearing silicates

    NASA Technical Reports Server (NTRS)

    Zellner, B.; Lebertre, T.; Day, K.

    1977-01-01

    Laboratory reflection polarimetry is presented for eight samples of artificial, poorly crystalline magnesian silicates with varying admixtures of carbon black. The polarimetric slope-albedo law saturates for geometric albedos lower than about 0.05, and good agreement with the telescopic polarization-phase curves of C-type asteroids is found for albedos as low as 0.02. Thus the conclusion from thermal radiometry is confirmed that the C objects are very dark, darker than any known carbonaceous chondrite.

  6. Color and Streptomycetes1

    PubMed Central

    Pridham, Thomas G.

    1965-01-01

    A report summarizing the results of an international workshop on determination of color of streptomycetes is presented. The results suggest that the color systems which seem most practically appealing and effective to specialists on actinomycetes are those embracing a limited number of color names and groups. The broad groupings allow placement of isolates into reasonably well-defined categories based on color of aerial mycelium. Attempts to expand such systems (more color groups) lead to difficulties. It is common knowledge that many, if not all, of the individual groups would in these broad systems contain strains that differ in many other respects, e.g., spore-wall ornamentation, color of vegetative (substratal) mycelium, morphology of chains of spores, and numerous physiological criteria. Also, cultures of intermediate color can be found, which makes placement difficult. As it now stands, color as a criterion for characterization of streptomycetes and streptoverticillia is in questionable status. Although much useful color information can be obtained by an individual, the application of this information to that in the literature or its use in communication with other individuals leaves much to be desired. More objective methods of color determination are needed. At present, the most effective method that could be used internationally is the color-wheel system of Tresner and Backus. Furthermore, the significance of color in speciation of these organisms is an open question. Obviously, more critical work on the color problem is needed. PMID:14264847

  7. New technique to improve the accuracy of albedo neutron dosimeter evaluations

    NASA Astrophysics Data System (ADS)

    Hankins, D. E.

    The calibration factor for albedo neutron dosimeters varies greatly depending upon the energy of the neutrons in the exposure. Calibration results obtained over an eight-year period at each Lawrence Livermore National Laboratory facility where neutron exposure may occur were reviewed. A stronger relationship than expected was found between the ratio of the readings of the 9-in. to 3-in. spheres and the percent thermal. Readings from personnel and albedo badges were reviewed. The readings were consistent with the use of a calibration factor for the albedo dosimeter which varies with changes in the ratio of the personnel and albedo dosimeter TLD readings.

  8. Radii and albedos of asteroids 1, 2, 3, 4, 6, 15, 51, 433, and 511

    NASA Technical Reports Server (NTRS)

    Cruikshank, D. P.; Morrison, D.

    1973-01-01

    The following radii (in kilometers) and visual geometric albedos are derived for nine asteroids from 10- and 20-micron radiometry: 1 Ceres (540, .06); 2 Pallas (275, .08); 3 Juno (125, .14); 4 Vesta (270, .21); 6 Hebe (110, .16); 15 Eunomia (135, .15); 51 Nemausa (80, .05); 433 Eros (12, .07); and 511 Davida (180, .04). Vesta has the highest albedo measured for an asteroid, while Davida, the lowest-albedo object in the sample, is one of the darkest known objects in the solar system. The median of all asteroid albedos measured to date is 0.1.-

  9. Surface features on Mars: Ground-based albedo and radar compared with Mariner 9 topography

    NASA Technical Reports Server (NTRS)

    Frey, H.

    1973-01-01

    Earth-based albedo maps of Mars were compared with Mariner 9 television data and ground-based radar profiles to investigate the nature of the bright and dark albedo features. Little correlation was found except at the boundaries of classical albedo features, where some topographic control is indicated. Wind-blown dust models for seasonal and secular albedo variations are supported, but it is not clear whether the fines are derived from bright or dark parent rock. Mars, like the Earth and Moon, has probably generated two distinct types of crustal material.

  10. Investigating the spread in surface albedo for snow-covered forests in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Wang, Libo; Cole, Jason N. S.; Bartlett, Paul; Verseghy, Diana; Derksen, Chris; Brown, Ross; Salzen, Knut

    2016-02-01

    This study investigates the role of leaf/plant area index (LAI/PAI) specification on the large spread of winter albedo simulated by climate models. To examine the sensitivity of winter albedo to LAI, we perform a sensitivity analysis using two methods commonly used to compute albedo in snow-covered forests as well as diagnostic calculations within version 4.2 of the Canadian Atmospheric Model for which PAI is systematically varied. The results show that the simulated albedo is very sensitive to negative PAI biases, especially for smaller PAI values. The LAI and surface albedo of boreal forests in the presence of snow simulated by the Coupled Model Intercomparison Project Phase 5 (CMIP5) models are evaluated using satellite observations. The evaluation of CMIP5 models suggest that inaccurate tree cover fraction due to improper plant functional type specification or erroneous LAI parameterization in some models explains, in part, an observed positive bias in winter albedo over boreal forest regions of the Northern Hemisphere. This contributes to a large intermodel spread in simulated surface albedo in the presence of snow over these regions and is largely responsible for uncertainties in simulated snow-albedo feedback strength. Errors are largest (+20-40%) in models with large underestimation of LAI but are typically within ±15% when simulated LAI is within the observed range. This study underscores the importance of accurate representation of vegetation distribution and parameters in realistic simulation of surface albedo.

  11. Investigating the spread of surface albedo in snow covered forests in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Wang, Libo; Cole, Jason; Bartlett, Paul; Verseghy, Diana; Derksen, Chris; Brown, Ross; von Salzen, Knut

    2016-04-01

    This study investigates the role of leaf/plant area index (LAI/PAI) specification on the large spread of winter albedo simulated by climate models. To examine the sensitivity of winter albedo to LAI, we perform a sensitivity analysis using two methods commonly used to compute albedo in snow-covered forests as well as diagnostic calculations within version 4.2 of the Canadian Atmospheric Model for which PAI is systematically varied. The results show that the simulated albedo is very sensitive to negative PAI biases, especially for smaller PAI values. The LAI and surface albedo of boreal forests in the presence of snow simulated by the Coupled Model Intercomparison Project Phase 5 (CMIP5) models are evaluated using satellite observations. The evaluation of CMIP5 models suggest that inaccurate tree cover fraction due to improper plant functional type specification or erroneous LAI parameterization in some models explains, in part, an observed positive bias in winter albedo over boreal forest regions of the Northern Hemisphere. This contributes to a large intermodel spread in simulated surface albedo in the presence of snow over these regions and is largely responsible for uncertainties in simulated snow-albedo feedback strength. Errors are largest (+20-40 %) in models with large underestimation of LAI but are typically within ±15% when simulated LAI is within the observed range. This study underscores the importance of accurate representation of vegetation distribution and parameters in realistic simulation of surface albedo.

  12. Vegetation controls on northern high latitude snow-albedo feedback: observations and CMIP5 model simulations.

    PubMed

    Loranty, Michael M; Berner, Logan T; Goetz, Scott J; Jin, Yufang; Randerson, James T

    2014-02-01

    The snow-masking effect of vegetation exerts strong control on albedo in northern high latitude ecosystems. Large-scale changes in the distribution and stature of vegetation in this region will thus have important feedbacks to climate. The snow-albedo feedback is controlled largely by the contrast between snow-covered and snow-free albedo (Δα), which influences predictions of future warming in coupled climate models, despite being poorly constrained at seasonal and century time scales. Here, we compare satellite observations and coupled climate model representations of albedo and tree cover for the boreal and Arctic region. Our analyses reveal consistent declines in albedo with increasing tree cover, occurring south of latitudinal tree line, that are poorly represented in coupled climate models. Observed relationships between albedo and tree cover differ substantially between snow-covered and snow-free periods, and among plant functional type. Tree cover in models varies widely but surprisingly does not correlate well with model albedo. Furthermore, our results demonstrate a relationship between tree cover and snow-albedo feedback that may be used to accurately constrain high latitude albedo feedbacks in coupled climate models under current and future vegetation distributions. PMID:24039000

  13. A comparative study of the effects of albedo change on drought in semi-arid regions

    NASA Technical Reports Server (NTRS)

    Charney, J.; Quirk, W. J.; Chow, S.-H.; Kornfield, J.

    1977-01-01

    Numerical simulation studies of the effects of changes in albedo on rainfall involve comparisons of semiarid areas, lying at the boundary between a major desert and an adjacent monsoonal region, with areas of the same size located within the monsoonal region itself. The sensitivity of the rainfall to the ground hydrology was determined by performing the albedo simulations with two different evapotranspiration parameterizations, one giving too high evaporation over land and the other giving negligible evaporation over land. The evaporation rate is, in general, found to have as important an effect as changes in albedo. The mechanism by which an increase of albedo reduces the rainfall during conditions of high evaporation is considered.

  14. Estimation of shortwave hemispherical reflectance (albedo) from bidirectionally reflected radiance data

    NASA Technical Reports Server (NTRS)

    Starks, Patrick J.; Norman, John M.; Blad, Blaine L.; Walter-Shea, Elizabeth A.; Walthall, Charles L.

    1991-01-01

    An equation for estimating albedo from bidirectional reflectance data is proposed. The estimates of albedo are found to be greater than values obtained with simultaneous pyranometer measurements. Particular attention is given to potential sources of systematic errors including extrapolation of bidirectional reflectance data out to a view zenith angle of 90 deg, the use of inappropriate weighting coefficients in the numerator of the albedo equation, surface shadowing caused by the A-frame instrumentation used to measure the incoming and outgoing radiation fluxes, errors in estimates of the denominator of the proposed albedo equation, and a 'hot spot' contribution in bidirectional data measured by a modular multiband radiometer.

  15. Natural versus anthropogenic factors affecting low-level cloud albedo over the North Atlantic

    NASA Technical Reports Server (NTRS)

    Falkowski, Paul G.; Kim, Yongseung; Kolber, Zbigniew; Wilson, Cara; Wirick, Creighton; Cess, Robert

    1992-01-01

    Cloud albedo plays a key role in regulating earth's climate. Cloud albedo depends on column-integrated liquid water content and the density of cloud condensation nuclei, which consists primarily of submicrometer-sized aerosol sulfate particles. A comparison of two independent satellite data sets suggests that, although anthropogenic sulfate emissions may enhance cloud albedo immediately adjacent to the east coast of the United States, over the central North Atlantic Ocean the variability in albedo can be largely accounted for by natural marine and atmospheric processes that probably have remained relatively constant since the beginning of the industrial revolution.

  16. The Effect of Aerosol Deposition on Snow Albedo Reduction in the Sierra Nevada Mountains

    NASA Astrophysics Data System (ADS)

    Lee, W.; Liou, K.

    2008-12-01

    We investigate snow cover and albedo changes in the Sierra Nevada regions due to deposition of black carbon and dust particles from East Asia. We note that coal combustion reaches maximum in the winter, while dust storms originate in the Gobi Desert occur most frequently in April. We selected snow and albedo data from MODIS/Terra to examine albedo reduction in March and April from 2000 to 2008. To eliminate the contamination of albedo by bare land, only the pixels with 100% snow cover in the entire period were used. Analysis using the 8-day average snow cover and 16-day average surface albedo reveals that there is a small increasing trend of albedo reduction. We also show that a large snow albedo reduction in 2001 is possibly due to the strong dust storm event that occurred in April, 2001. Finally, composite time series have been made using daily data to demonstrate decrease in snow albedo after each snowfall event. We illustrate that the rate of albedo reduction increases by 0.01/day per year from 2000 to 2008.

  17. New technique to improve the accuracy of albedo neutron dosimeter evaluations

    SciTech Connect

    Hankins, D.E.

    1984-01-01

    The calibration factor for albedo neutron dosimeters varies greatly depending upon the energy of the neutrons in the exposure. Calibration results obtained over an eight-year period at each Lawrence Livermore National Laboratory facility where neutron exposure may occur were reviewed. A stronger relationship than expected was found between the ratio of the readings of the 9-in. to 3-in. spheres and the percent thermal. Readings from personnel and albedo badges were reviewed. The readings were consistent with the use of a calibration factor for the albedo dosimeter which varies with changes in the ratio of the personnel and albedo dosimeter TLD readings. 2 references, 6 figures. (ACR)

  18. Changes on albedo after a large forest fire in Mediterranean ecosystems

    NASA Astrophysics Data System (ADS)

    Quintano, Carmen; Fernández-Manso, Alfonso; Fernández-García, Victor; Marcos, Elena; Calvo, Leonor

    2015-09-01

    Fires are one of the main causes of environmental alteration in Mediterranean forest ecosystems. Albedo varies and evolves seasonally based on solar illumination. It is greatly influenced by changes on vegetation: vegetation growth, cutting/planting forests or forest fires. This work analyzes albedo variations due to a large forest fire that occurred on 19- 21 September 2012 in northwestern Spain. From this area, albedo post-fire images (immediately and 1-year after fire) were generated from Landsat 7 Enhanced Thematic Mapper (ETM+) data. Specifically we considered total shortwave albedo, total-, direct-, and diffuse-visible, and near-infrared albedo. Nine to twelve weeks after fire, 111 field plots were measured (27 unburned plots, 84 burned plots). The relationship between albedo values and thematic class (burned/unburned) was evaluated by one-way analysis of variance. Our results demonstrate that albedo changes were related to burned/unburned variable with statistical significance, indicating the importance of forestry areas as regulators of land surface energy fluxes and revealing the potential of post-fire albedo for assessing burned areas. Future research, however, is needed to evaluate the persistence of albedo changes.

  19. Natural Versus Anthropogenic Factors Affecting Low-Level Cloud Albedo over the North Atlantic.

    PubMed

    Falkowski, P G; Kim, Y; Kolber, Z; Wilson, C; Wirick, C; Cess, R

    1992-05-29

    Cloud albedo plays a key role in regulating Earth's climate. Cloud albedo depends on column-integrated liquid water content and the density of cloud condensation nuclei, which consists primarily of submicrometer-sized aerosol sulfate particles. A comparison of two independent satellite data sets suggests that, although anthropogenic sulfate emissions may enhance cloud albedo immediately adjacent to the east coast of the United States, over the central North Atlantic Ocean the variability in albedo can be largely accounted for by natural marine and atmospheric processes that probably have remained relatively constant since the beginning of the industrial revolution. PMID:17736762

  20. On the importance of interpolation schemes for albedo data from local to global grid

    NASA Astrophysics Data System (ADS)

    Preuschmann, Swantje; Jacob, Daniela; Löw, Alexander

    2013-04-01

    Surface albedo has a key role in Earth's radiation balance. As vegetation cover is influencing the albedo of solid surfaces, it is clear that land cover changes are leading to changes in the radiation balance and further are influencing the whole Earth's energy budget. It is obvious, that a forested area reflects sunlight differently compared to a sparsely vegetated area of shrubs. Different studies have shown, that certain land cover types (even compounds) have a characteristic annual cycle of the albedo (Moody et al. 2005 and Preuschmann, 2012). An annual cycle for one land cover type might vary in a year about 2%. The difference of the surface albedo of a forested area in summer to an agricultural area at the same time is only about 0.5%. A major question in climate modelling under future conditions is to analyse the impact of land cover changes onto climate. Nevertheless for different reasons it is not easy to describe surface albedo changes due to land cover changes within a climate model. One reason is that differences in the albedo of different surfaces are comparatively small. Another reason is based in the spatial resolution of a climate model. Climate models are operating on grids with horizontal resolutions of 10x10 km² for regional models up to about 200x200 km² for global models with a spectral resolution of T63. This means, that spatial (and also temporal) mean values of surface albedo are taken into account. Therefore one grid box of a climate model is representing a composition of different surface albedos. For model validation, it is of interest to compare the modelled albedo data with observed albedo data, but a comparison is not as trivial as it looks in the first sight. One problematic is the necessity of comparing different data types in the same horizontal and temporal resolution. Commonly used satellite based albedo data are available in 0.05° horizontal resolution, which is about 5 km at the equator, for several-day means and monthly

  1. Light, Color, and Mirrors.

    ERIC Educational Resources Information Center

    Tiburzi, Brian; Tamborino, Laurie; Parker, Gordon A.

    2000-01-01

    Describes an exercise in which students can use flashlights, mirrors, and colored paper to discover scientific principles regarding optics. Addresses the concepts of angles of incidence and reflection, colored vs. white light, and mirror images. (WRM)

  2. Tooth - abnormal colors

    MedlinePlus

    ... things can cause tooth discoloration. The change in color may affect the entire tooth, or appear as spots or ... the tooth enamel. Your genes affect your tooth color. Other things ... include: Congenital diseases Environmental factors Infections ...

  3. Coloring with defect

    SciTech Connect

    Cowen, L.J.; Goddard, W.; Jesurum, C.E.

    1997-06-01

    An (ordinary vertex) coloring is a partition of the vertices of a graph into independent sets. The chromatic number is the minimum number of colors needed to produce such a partition. This paper considers a relaxation of coloring in which the color classes partition the vertices into subgraphs of degree at most d. d is called the defect of the coloring. A graph which admits a vertex coloring into k color classes, where each vertex is adjacent to at most d self-colored neighbors is said to be (k, d) colorable. We consider defective coloring on graphs of bounded degree, bounded genus, and bounded chromatic number, presenting complexity results and algorithms. For bounded degree graphs, a classic result of Lovasz yields a (k, [{Delta}/k]) coloring for graphs with E edges of maximum degree {Delta} in O({Delta}E) time. For graphs of bounded genus, (2, d), for d > 0 and (3,1)-coloring are proved NP-Complete, even for planar graphs. Results of easily can be transformed to (3,2) color any planar graph in linear time. We show that any toroidal graph is (3,2)- and (5, 1)-colorable, and quadratic-time algorithms are presented that find the colorings. For higher surfaces, we give a linear time algorithm to (3, {radical}12{gamma} + 6) color a graph of genus {gamma} > 2. It is also shown that any graph of genus {gamma} is ({radical}12{gamma}/(d + 1) + 6, d) colorable, and an O(d{radical}{gamma}E + V) algorithm is presented that finds the coloring. These bounds are within a constant factor of what is required for the maximum clique embeddable in the surface. Reductions from ordinary vertex coloring show that (k, d) coloring is NP-complete, and there exists an c > 0 such that no polynomial time algorithm can n{sup {epsilon}}-approximate the defective chromatic number unless P = NP. Most approximation algorithms to approximately color 3-colorable graphs can be extend to allow defects.

  4. Color rendition engine.

    PubMed

    Zukauskas, Artūras; Vaicekauskas, Rimantas; Vitta, Pranciškus; Tuzikas, Arūnas; Petrulis, Andrius; Shur, Michael

    2012-02-27

    A source of white light with continuously tuned color rendition properties, such as color fidelity, as well as color saturating and color dulling ability has been developed. The source, which is composed of red (R), amber (A), green (G), and blue (B) light-emitting diodes, has a spectral power distribution varied as a weighted sum of "white" RGB and AGB blends. At the RGB and AGB end-points, the source has a highest color saturating and color dulling ability, respectively, as follows from the statistical analysis of the color-shift vectors for 1269 Munsell samples. The variation of the weight parameter allows for continuously traversing all possible metameric RAGB blends, including that with the highest color fidelity. The source was used in a psychophysical experiment on the estimation of the color appearance of familiar objects, such as vegetables, fruits, and soft-drink cans of common brands, at correlated color temperatures of 3000 K, 4500 K, and 6500 K. By continuously tuning the weight parameter, each of 100 subjects selected RAGB blends that, to their opinion, matched lighting characterized as "most saturating," "most dulling," "most natural," and "preferential". The end-point RGB and AGB blends have been almost unambiguously attributed to "most saturating" and "most dulling" lighting, respectively. RAGB blends that render a highest number of colors with high fidelity have, on average, been attributed to "most natural" lighting. The "preferential" color quality of lighting has, on average, been matched to RAGB blends that provide color rendition with fidelity somewhat reduced in favor of a higher saturation. Our results infer that tunable "color rendition engines" can validate color rendition metrics and provide lighting meeting specific needs and preferences to color quality. PMID:22418343

  5. Analytical modeling of thermoluminescent albedo detectors for neutron dosimetry.

    PubMed

    Glickstein, S S

    1983-02-01

    In order to gain an in-depth understanding of the neutron physics of a 6LiF TLD when used as an albedo neutron dosimeter, an analytical model was developed to simulate the response of a 6LiF chip. The analytical model was used to examine the sensitivity of the albedo TLD response to incident monoenergetic neutrons and to evaluate a multiple chip TLD neutron dosimeter. Contrary to initial experimental studies, which were hampered by statistical uncertainties, the analytical evaluation revealed that a three-energy-group detector could not reliably measure the dose equivalent to personnel exposed to multiple neutron spectra. The analysis clearly illustrates that there may be order of magnitude errors in the measured neutron dose if the dosimeter has not been calibrated for the same flux spectrum to which it is exposed. As a result of this analysis, it was concluded that, for personnel neutron monitoring, a present TLD badge must be calibrated for the neutron spectrum into which the badge is to be introduced. The analytical model used in this study can readily be adopted for evaluating other possible detectors and shield material that might be proposed in the future as suitable for use in neutron dosimetry applications. PMID:6826377

  6. Instrument Development for Single-Particle Albedo Measurements

    NASA Astrophysics Data System (ADS)

    Sanford, T. J.; Murphy, D. M.; Fox, R. W.

    2008-12-01

    The ASTER (Aerosol Scattering To Extinction Ratio) instrument simultaneously measures scattering and extinction by single aerosol particles from which the albedo for each particle can be determined. ASTER employs a high-Q laser cavity to amplify loses in the cavity caused by individual particles to produce measurable extinction signals. The instrument collects light in three separate channels representing backward, forward, and wide-angle scattering. The ratio of forward to total scattering provides a proxy measurement for particle size that Mie scattering calculations show to be largely independent of particle refractive index for diameters below about 2 micrometers. Laboratory measurements on particles of known sizes and scattering properties have been used to assess the performance of the instrument and as a guide for ongoing modifications for eventual field deployment. Results from the current version of the instrument will be presented and compared to previous ASTER data to demonstrate improved performance. Data taken from ambient air have shown modes of highly absorbing particles that would not have been evident from bulk measurements. The single-particle nature of the measurements will provide additional information to complement existing methods for measuring aerosol albedos in the atmosphere.

  7. Tackling regional climate change by leaf albedo bio-geoengineering.

    PubMed

    Ridgwell, Andy; Singarayer, Joy S; Hetherington, Alistair M; Valdes, Paul J

    2009-01-27

    The likelihood that continuing greenhouse-gas emissions will lead to an unmanageable degree of climate change has stimulated the search for planetary-scale technological solutions for reducing global warming ("geoengineering"), typically characterized by the necessity for costly new infrastructures and industries. We suggest that the existing global infrastructure associated with arable agriculture can help, given that crop plants exert an important influence over the climatic energy budget because of differences in their albedo (solar reflectivity) compared to soils and to natural vegetation. Specifically, we propose a "bio-geoengineering" approach to mitigate surface warming, in which crop varieties having specific leaf glossiness and/or canopy morphological traits are specifically chosen to maximize solar reflectivity. We quantify this by modifying the canopy albedo of vegetation in prescribed cropland areas in a global-climate model, and thereby estimate the near-term potential for bio-geoengineering to be a summertime cooling of more than 1 degrees C throughout much of central North America and midlatitude Eurasia, equivalent to seasonally offsetting approximately one-fifth of regional warming due to doubling of atmospheric CO(2). Ultimately, genetic modification of plant leaf waxes or canopy structure could achieve greater temperature reductions, although better characterization of existing intraspecies variability is needed first. PMID:19147356

  8. Lunar Proton Albedo Anomalies: Soil, Surveyors, and Statistics

    NASA Astrophysics Data System (ADS)

    Wilson, J. K.; Schwadron, N.; Spence, H. E.; Case, A. W.; Golightly, M. J.; Jordan, A.; Looper, M. D.; Petro, N. E.; Robinson, M. S.; Stubbs, T. J.; Zeitlin, C. J.; Blake, J. B.; Kasper, J. C.; Mazur, J. E.; Smith, S. S.; Townsend, L. W.

    2014-12-01

    Since the launch of LRO in 2009, the CRaTER instrument has been mapping albedo protons (~100 MeV) from the Moon. These protons are produced by nuclear spallation, a consequence of galactic cosmic ray (GCR) bombardment of the lunar regolith. Just as spalled neutrons and gamma rays reveal elemental abundances in the lunar regolith, albedo protons may be a complimentary method for mapping compositional variations. We presently find that the lunar maria have an average proton yield 0.9% ±0.3% higher than the average yield in the highlands; this is consistent with neutron data that is sensitive to the regolith's average atomic weight. We also see cases where two or more adjacent pixels (15° × 15°) have significantly anomalous yields above or below the mean. These include two high-yielding regions in the maria, and three low-yielding regions in the far-side highlands. Some of the regions could be artifacts of Poisson noise, but for completeness we consider possible effects from compositional anomalies in the lunar regolith, including pyroclastic flows, antipodes of fresh craters, and so-called "red spots". We also consider man-made landers and crash sites that may have brought elements not normally found in the lunar regolith.

  9. Soot climate forcing via snow and ice albedos

    PubMed Central

    Hansen, James; Nazarenko, Larissa

    2004-01-01

    Plausible estimates for the effect of soot on snow and ice albedos (1.5% in the Arctic and 3% in Northern Hemisphere land areas) yield a climate forcing of +0.3 W/m2 in the Northern Hemisphere. The “efficacy” of this forcing is ∼2, i.e., for a given forcing it is twice as effective as CO2 in altering global surface air temperature. This indirect soot forcing may have contributed to global warming of the past century, including the trend toward early springs in the Northern Hemisphere, thinning Arctic sea ice, and melting land ice and permafrost. If, as we suggest, melting ice and sea level rise define the level of dangerous anthropogenic interference with the climate system, then reducing soot emissions, thus restoring snow albedos to pristine high values, would have the double benefit of reducing global warming and raising the global temperature level at which dangerous anthropogenic interference occurs. However, soot contributions to climate change do not alter the conclusion that anthropogenic greenhouse gases have been the main cause of recent global warming and will be the predominant climate forcing in the future. PMID:14699053

  10. Reflectance, illumination, and appearance in color constancy

    PubMed Central

    McCann, John J.; Parraman, Carinna; Rizzi, Alessandro

    2013-01-01

    We studied color constancy using a pair of identical 3-D Color Mondrian displays. We viewed one 3-D Mondrian in nearly uniform illumination, and the other in directional, nonuniform illumination. We used the three dimensional structures to modulate the light falling on the painted surfaces. The 3-D structures in the displays were a matching set of wooden blocks. Across Mondrian displays, each corresponding facet had the same paint on its surface. We used only 6 chromatic, and 5 achromatic paints applied to 104 block facets. The 3-D blocks add shadows and multiple reflections not found in flat Mondrians. Both 3-D Mondrians were viewed simultaneously, side-by-side. We used two techniques to measure correlation of appearance with surface reflectance. First, observers made magnitude estimates of changes in the appearances of identical reflectances. Second, an author painted a watercolor of the 3-D Mondrians. The watercolor's reflectances quantified the changes in appearances. While constancy generalizations about illumination and reflectance hold for flat Mondrians, they do not for 3-D Mondrians. A constant paint does not exhibit perfect color constancy, but rather shows significant shifts in lightness, hue and chroma in response to the structure in the nonuniform illumination. Color appearance depends on the spatial information in both the illumination and the reflectances of objects. The spatial information of the quanta catch from the array of retinal receptors generates sensations that have variable correlation with surface reflectance. Models of appearance in humans need to calculate the departures from perfect constancy measured here. This article provides a dataset of measurements of color appearances for computational models of sensation. PMID:24478738

  11. Reflectance, illumination, and appearance in color constancy.

    PubMed

    McCann, John J; Parraman, Carinna; Rizzi, Alessandro

    2014-01-01

    We studied color constancy using a pair of identical 3-D Color Mondrian displays. We viewed one 3-D Mondrian in nearly uniform illumination, and the other in directional, nonuniform illumination. We used the three dimensional structures to modulate the light falling on the painted surfaces. The 3-D structures in the displays were a matching set of wooden blocks. Across Mondrian displays, each corresponding facet had the same paint on its surface. We used only 6 chromatic, and 5 achromatic paints applied to 104 block facets. The 3-D blocks add shadows and multiple reflections not found in flat Mondrians. Both 3-D Mondrians were viewed simultaneously, side-by-side. We used two techniques to measure correlation of appearance with surface reflectance. First, observers made magnitude estimates of changes in the appearances of identical reflectances. Second, an author painted a watercolor of the 3-D Mondrians. The watercolor's reflectances quantified the changes in appearances. While constancy generalizations about illumination and reflectance hold for flat Mondrians, they do not for 3-D Mondrians. A constant paint does not exhibit perfect color constancy, but rather shows significant shifts in lightness, hue and chroma in response to the structure in the nonuniform illumination. Color appearance depends on the spatial information in both the illumination and the reflectances of objects. The spatial information of the quanta catch from the array of retinal receptors generates sensations that have variable correlation with surface reflectance. Models of appearance in humans need to calculate the departures from perfect constancy measured here. This article provides a dataset of measurements of color appearances for computational models of sensation. PMID:24478738

  12. Color vision deficiencies

    NASA Astrophysics Data System (ADS)

    Vannorren, D.

    1982-04-01

    Congenital and acquired color vision defects are described in the context of physiological data. Light sources, photometry, color systems and test methods are described. A list of medicines is also presented. The practical social consequences of color vision deficiencies are discussed.

  13. Reimagining the Color Wheel

    ERIC Educational Resources Information Center

    Snyder, Jennifer

    2011-01-01

    Color wheels are a traditional project for many teachers. The author has used them in art appreciation classes for many years, but one problem she found when her pre-service art education students created colored wheels was that they were boring: simple circles, with pie-shaped pieces, which students either painted or colored in. This article…

  14. Sweetpotato Color Analyses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Color is an important attribute that contributes to the appearance of a sweetpotato genotype. A consumer uses color, along with geometric attributes (e.g., gloss, luster, sheen, texture, opaqueness, shape), to subjectively evaluate the appearance of a sweetpotato root. Color can be quantified by t...

  15. Biology of Skin Color.

    ERIC Educational Resources Information Center

    Corcos, Alain

    1983-01-01

    Information from scientific journals on the biology of skin color is discussed. Major areas addressed include: (1) biology of melanin, melanocytes, and melanosomes; (2) melanosome and human diversity; (3) genetics of skin color; and (4) skin color, geography, and natural selection. (JN)

  16. Color Discrimination Work Sample.

    ERIC Educational Resources Information Center

    Shawsheen Valley Regional Vocational-Technical High School, Billerica, MA.

    This manual contains a work sample intended to assess a handicapped student's ability to see likenesses or differences in colors or shades, identifying or matching certain colors, and selecting colors that go together. Section 1 describes the assessment and lists related occupations and DOT codes. Instructions to the evaluator are provided in the…

  17. Narrowband Angular Reflectance Properties of the Alkali Flats at White Sands, New Mexico

    NASA Technical Reports Server (NTRS)

    Whitlock, Charles H.; LeCroy, Stuart R.; Wheeler, Robert J.

    1994-01-01

    Results from helicopter measurements of the angular properties of surface reflectance for the alkali flats regions of the White Sands Missile Range are presented for the wavelength interval of 0.4 to 0.85 microns. This work was performed to allow accurate radiative transfer calculations over the region. Detailed tables and interpolation equations are given that permit other investigators to perform satellite calibrations over the alkali flats site. The effects of wavelength and soil moisture on narrowband angular reflectance are also investigated. Although there is a spectral variation in surface albedo, there is little spectral effect in Anisotropic Factor except in the forward scattering peak at solar zenith angles greater than 60 deg. The magnitude of the forward-scattering peak is also sensitive to soil moisture, with wet conditions causing a larger peak. The significance of this result is that angular reflectance properties at the center of the alkali flats usually will be different than those at the flats edge because moisture differences typically exist.

  18. Evaluation of the EUMETSAT Meteosat Surface Albedo Climate Data Record

    NASA Astrophysics Data System (ADS)

    Lattanzio, Alessio; Schulz, Joerg; Roebeling, Rob; Fell, Frank; Bennartz, Ralf; Cahill, Brownwyn; Muller, Jan-Peter; Shane, Neville; Trigo, Isabel; Watson, Gill

    2013-04-01

    Understanding the climate system, with its variability and changes, requires a joint long-term international commitment from research and governmental institutions. The Global Climate Observing System (GCOS) formulated scientific requirements for the needed global observations and products including a list of relevant parameters, the so called Essential Climate Variables (ECVs). The Sustained and Coordinated Processing of Environmental Satellite Data for Climate Monitoring (SCOPE-CM) activity, is answering to these requirements by establishing an international network of facilities to ensure a continuous and sustained generation of high-quality Climate Data Records (CDR) from satellite data in compliance with the GCOS principles and guidelines. Currently, SCOPE-CM represents a partnership between operational space agencies to coordinate the generation of CDRs. Within the SCOPE-CM framework the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) has generated the Meteosat Surface Albedo (MSA) Climate Data Record that comprises up to 25 years (1982-2010) of continuous surface albedo coverage for large areas of the Earth. As part of the SCOPE-CM activity on land surface albedo, involving the operational meteorological satellite agencies in Europe (EUMETSAT), in Japan (JMA: Japanese Meteorological Agency) and in the USA (NOAA: National Oceanic and Atmospheric Administration), the MSA CDR contributes to the creation of a global harmonised surface albedo record derived from all satellites in geostationary orbit. This presentation discusses the results of an evaluation study for the MSA CDR that has been performed by independent researchers in Europe and the US. The MSA CDR has been evaluated in terms of its internal consistency, its compatibility to other satellite-derived surface albedo products, its validity against in-situ observations of superior quality, and its temporal homogeneity. The evaluation of the MSA data record has revealed a

  19. Laser illuminated flat panel display

    SciTech Connect

    Veligdan, J.T.

    1995-12-31

    A 10 inch laser illuminated flat panel Planar Optic Display (POD) screen has been constructed and tested. This POD screen technology is an entirely new concept in display technology. Although the initial display is flat and made of glass, this technology lends itself to applications where a plastic display might be wrapped around the viewer. The display screen is comprised of hundreds of planar optical waveguides where each glass waveguide represents a vertical line of resolution. A black cladding layer, having a lower index of refraction, is placed between each waveguide layer. Since the cladding makes the screen surface black, the contrast is high. The prototype display is 9 inches wide by 5 inches high and approximately I inch thick. A 3 milliwatt HeNe laser is used as the illumination source and a vector scanning technique is employed.

  20. Graphene folding on flat substrates

    SciTech Connect

    Chen, Xiaoming; Zhao, Yadong; Ke, Changhong; Zhang, Liuyang; Wang, Xianqiao

    2014-10-28

    We present a combined experimental-theoretical study of graphene folding on flat substrates. The structure and deformation of the folded graphene sheet are experimentally characterized by atomic force microscopy. The local graphene folding behaviors are interpreted based on nonlinear continuum mechanics modeling and molecular dynamics simulations. Our study on self-folding of a trilayer graphene sheet reports a bending stiffness of about 6.57 eV, which is about four times the reported values for monolayer graphene. Our results reveal that an intriguing free sliding phenomenon occurs at the interlayer van der Waals interfaces during the graphene folding process. This work demonstrates that it is a plausible venue to quantify the bending stiffness of graphene based on its self-folding conformation on flat substrates. The findings reported in this work are useful to a better understanding of the mechanical properties of graphene and in the pursuit of its applications.

  1. Spring-summer albedo variations of Antarctic sea ice from 1982 to 2009

    NASA Astrophysics Data System (ADS)

    Shao, Zhu-De; Ke, Chang-Qing

    2015-06-01

    This study examined the spring-summer (November, December, January and February) albedo averages and trends using a dataset consisting of 28 years of homogenized satellite data for the entire Antarctic sea ice region and for five longitudinal sectors around Antarctica: the Weddell Sea (WS), the Indian Ocean sector (IO), the Pacific Ocean sector (PO), the Ross Sea (RS) and the Bellingshausen-Amundsen Sea (BS). Time series data of the sea ice concentrations and sea surface temperatures were used to analyse their relations to the albedo. The results indicated that the sea ice albedo increased slightly during the study period, at a rate of 0.314% per decade, over the Antarctic sea ice region. The sea ice albedos in the PO, the IO and the WS increased at rates of 2.599% per decade (confidence level 99.86%), 0.824% per decade and 0.413% per decade, respectively, and the steepest increase occurred in the PO. However, the sea ice albedo in the BS decreased at a rate of -1.617% per decade (confidence level 95.05%) and was near zero in the RS. The spring-summer average albedo over the Antarctic sea ice region was 50.24%. The highest albedo values were mainly found on the continental coast and in the WS; in contrast, the lowest albedo values were found on the outer edge of the sea ice, the RS and the Amery Ice Shelf. The average albedo in the western Antarctic sea ice region was distinctly higher than that in the east. The albedo was significantly positively correlated with sea ice concentration (SIC) and was significantly negatively correlated with sea surface temperature (SST); these scenarios held true for all five longitudinal sectors. Spatially, the higher surface albedos follow the higher SICs and lower SST patterns. The increasing albedo means that Antarctic sea ice region reflects more solar radiation and absorbs less, leading to a decrease in temperature and much snowfall on sea ice, and further resulted in an increase in albedo. Conversely, the decreasing albedo

  2. Impacts of Satellite-Based Snow Albedo Assimilation on Offline and Coupled Land Surface Model Simulations.

    PubMed

    Wang, Tao; Peng, Shushi; Krinner, Gerhard; Ryder, James; Li, Yue; Dantec-Nédélec, Sarah; Ottlé, Catherine

    2015-01-01

    Seasonal snow cover in the Northern Hemisphere is the largest component of the terrestrial cryosphere and plays a major role in the climate system through strong positive feedbacks related to albedo. The snow-albedo feedback is invoked as an important cause for the polar amplification of ongoing and projected climate change, and its parameterization across models is an important source of uncertainty in climate simulations. Here, instead of developing a physical snow albedo scheme, we use a direct insertion approach to assimilate satellite-based surface albedo during the snow season (hereafter as snow albedo assimilation) into the land surface model ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic EcosystEms) and assess the influences of such assimilation on offline and coupled simulations. Our results have shown that snow albedo assimilation in both ORCHIDEE and ORCHIDEE-LMDZ (a general circulation model of Laboratoire de Météorologie Dynamique) improve the simulation accuracy of mean seasonal (October throughout May) snow water equivalent over the region north of 40 degrees. The sensitivity of snow water equivalent to snow albedo assimilation is more pronounced in the coupled simulation than the offline simulation since the feedback of albedo on air temperature is allowed in ORCHIDEE-LMDZ. We have also shown that simulations of air temperature at 2 meters in ORCHIDEE-LMDZ due to snow albedo assimilation are significantly improved during the spring in particular over the eastern Siberia region. This is a result of the fact that high amounts of shortwave radiation during the spring can maximize its snow albedo feedback, which is also supported by the finding that the spatial sensitivity of temperature change to albedo change is much larger during the spring than during the autumn and winter. In addition, the radiative forcing at the top of the atmosphere induced by snow albedo assimilation during the spring is estimated to be -2.50 W m-2, the magnitude of

  3. Impacts of Satellite-Based Snow Albedo Assimilation on Offline and Coupled Land Surface Model Simulations

    PubMed Central

    Wang, Tao; Peng, Shushi; Krinner, Gerhard; Ryder, James; Li, Yue; Dantec-Nédélec, Sarah; Ottlé, Catherine

    2015-01-01

    Seasonal snow cover in the Northern Hemisphere is the largest component of the terrestrial cryosphere and plays a major role in the climate system through strong positive feedbacks related to albedo. The snow-albedo feedback is invoked as an important cause for the polar amplification of ongoing and projected climate change, and its parameterization across models is an important source of uncertainty in climate simulations. Here, instead of developing a physical snow albedo scheme, we use a direct insertion approach to assimilate satellite-based surface albedo during the snow season (hereafter as snow albedo assimilation) into the land surface model ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic EcosystEms) and assess the influences of such assimilation on offline and coupled simulations. Our results have shown that snow albedo assimilation in both ORCHIDEE and ORCHIDEE-LMDZ (a general circulation model of Laboratoire de Météorologie Dynamique) improve the simulation accuracy of mean seasonal (October throughout May) snow water equivalent over the region north of 40 degrees. The sensitivity of snow water equivalent to snow albedo assimilation is more pronounced in the coupled simulation than the offline simulation since the feedback of albedo on air temperature is allowed in ORCHIDEE-LMDZ. We have also shown that simulations of air temperature at 2 meters in ORCHIDEE-LMDZ due to snow albedo assimilation are significantly improved during the spring in particular over the eastern Siberia region. This is a result of the fact that high amounts of shortwave radiation during the spring can maximize its snow albedo feedback, which is also supported by the finding that the spatial sensitivity of temperature change to albedo change is much larger during the spring than during the autumn and winter. In addition, the radiative forcing at the top of the atmosphere induced by snow albedo assimilation during the spring is estimated to be -2.50 W m-2, the magnitude of

  4. Implications of albedo changes following afforestation on the benefits of forests as carbon sinks

    NASA Astrophysics Data System (ADS)

    Kirschbaum, M. U. F.; Whitehead, D.; Dean, S. M.; Beets, P. N.; Shepherd, J. D.; Ausseil, A.-G. E.

    2011-12-01

    Increased carbon storage with afforestation leads to a decrease in atmospheric carbon dioxide concentration and thus decreases radiative forcing and cools the Earth. However, afforestation also changes the reflective properties of the surface vegetation from more reflective pasture to relatively less reflective forest cover. This increase in radiation absorption by the forest constitutes an increase in radiative forcing, with a warming effect. The net effect of decreased albedo and carbon storage on radiative forcing depends on the relative magnitude of these two opposing processes. We used data from an intensively studied site in New Zealand's Central North Island that has long-term, ground-based measurements of albedo over the full short-wave spectrum from a developing Pinus radiata forest. Data from this site were supplemented with satellite-derived albedo estimates from New Zealand pastures. The albedo of a well-established forest was measured as 13 % and pasture albedo as 20 %. We used these data to calculate the direct radiative forcing effect of changing albedo as the forest grew. We calculated the radiative forcing resulting from the removal of carbon from the atmosphere as a decrease in radiative forcing of -104 GJ tC-1 yr-1. We also showed that the observed change in albedo constituted a direct radiative forcing of 2759 GJ ha-1 yr-1. Thus, following afforestation, 26.5 tC ha-1 needs to be stored in a growing forest to balance the increase in radiative forcing resulting from the observed albedo change. Measurements of tree biomass and albedo were used to estimate the net change in radiative forcing as the newly planted forest grew. Albedo and carbon-storage effects were of similar magnitude for the first four to five years after tree planting, but as the stand grew older, the carbon storage effect increasingly dominated. Averaged over the whole length of the rotation, the changes in albedo negated the benefits from increased carbon storage by 17-24 %.

  5. Bimodal albedo distributions in the ablation zone of the southwestern Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Moustafa, S. E.; Rennermalm, A. K.; Smith, L. C.; Miller, M. A.; Mioduszewski, J. R.

    2014-09-01

    Surface albedo is a key variable controlling solar radiation absorbed at the Greenland Ice Sheet (GrIS) surface, and thus, meltwater production. Recent decline in surface albedo over the GrIS has been linked to enhanced snow grain metamorphic rates and amplified ice-albedo feedback from atmospheric warming. However, the importance of distinct surface types on ablation zone albedo and meltwater production is still relatively unknown, and excluded in surface mass balance models. In this study, we analyze albedo and ablation rates using in situ and remotely-sensed data. Observations include: (1) a new high-quality in situ spectral albedo dataset collected with an Analytical Spectral Devices (ASD) spectroradiometer measuring at 325-1075 nm, along a 1.25 km transect during three days in June 2013; (2) broadband albedo at two automatic weather stations; and (3) daily MODerate Resolution Imaging Spectroradiometer (MODIS) albedo (MOD10A1) between 31 May and 30 August. We find that seasonal ablation zone albedos have a bimodal distribution, with two alternate states. This suggests that an abrupt switch from high to low albedo can be triggered by a modest melt event, resulting in amplified surface ablation rates. Our results show that such a shift corresponds to an observed melt rate percent difference increase of 51.6% during peak melt season (between 10-14 and 20-24 July 2013). Furthermore, our findings demonstrate that seasonal changes in GrIS ablation zone albedo are not exclusively a function of a darkening surface from ice crystal growth, but rather are controlled by changes in the fractional coverage of snow, bare ice, and impurity-rich surface types. As the climate continues to warm, regional climate models should consider the seasonal evolution of ice surface types in Greenland's ablation zone to improve projections of mass loss contributions to sea level rise.

  6. Bimodal Albedo Distributions in the Ablation Zone of the Southwestern Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Moustafa, S.; Rennermalm, A. K.; Smith, L. C.; Miller, M. A.; Mioduszewski, J.; Koenig, L.

    2014-12-01

    Surface albedo is a key variable controlling solar radiation absorbed at the Greenland Ice Sheet (GrIS) surface, and thus meltwater production. Recent decline in surface albedo over the GrIS has been linked to enhanced snow grain metamorphic rates and amplified ice-albedo feedback from atmospheric warming. However, the importance of distinct surface types on ablation zone albedo and meltwater production is still relatively unknown, and excluded in surface mass balance models. In this study, we analyze albedo and ablation rates (m d-1) using in situ and remotely-sensed data. Observations include: 1) a new high-quality in situ spectral albedo dataset collected with an Analytical Spectral Devices (ASD) spectroradiometer measuring at 325-1075 nm, along a 1.25 km transect during three days in June 2013; 2) broadband albedo at two automatic weather stations; and 3) daily MODerate Resolution Imaging Spectroradiometer (MODIS) albedo (MOD10A1) between 31 May and 30 August. We find that seasonal ablation zone albedos have a bimodal distribution, with two alternate states. This suggests that an abrupt switch from high to low albedo can be triggered by a modest melt event, resulting in amplified ablation rates. Our results show that such a shift corresponds to an observed melt rate percent difference increase of 51.6% during peak melt season (between 10-14 July and 20-24 July, 2013). Furthermore, our findings demonstrate that seasonal changes in GrIS ablation zone albedo are not exclusively a function of a darkening surface from ice crystal growth, but rather are controlled by changes in the fractional coverage of snow, bare ice, and impurity-rich surface types. As the climate continues to warm, regional climate models should consider the seasonal evolution of ice surface types in Greenland's ablation zone to improve projections of mass loss contributions to sea level rise.

  7. Effects of aerosol and horizontal inhomogeneity on the broadband albedo of marine stratus: Numerical simulations

    SciTech Connect

    Duda, D.P.; Stephens, G.L.; Stevens, B.; Cotton, W.R.

    1996-12-15

    Recent estimates of the effect of increasing of anthropogenic sulfate aerosol on the radiative forcing of the atmosphere have indicated that its impact may be comparable in magnitude to the effect from increases in CO{sub 2}. Much of this impact is expected from the effects of the aerosol on cloud microphysics and the subsequent impact on cloud albedo. A solar broadband version of a 2D radiative transfer model was used to quantify the impact of enhanced aerosol concentrations and horizontal inhomogeneity on the solar broadband albedo of marine stratus. The results of the radiative transfer calculations indicated that in unbroken marine stratus clouds the net horizontal transport of photons over a domain of a few kilometers was nearly zero, and the domain-average broadband albedo computed in a 2D cross section was nearly identical to the domain average calculated from a series of independent pixel approximation (IPA) calculations of the same cross section. However, the horizontal inhomogeneity does affect the cloud albedo compared to plane-parallel approximation (PPA) computations due to the nonlinear relationship between albedo and optical depth. The reduction in cloud albedo could be related to the variability of the distribution of log (cloud optical depth). These results extend the finding of Cahalan et al. to broadband solar albedos in a more realistic cloud model and suggest that accurate computation of domain-averaged broadband albedos in unbroken (or nearly unbroken) marine stratus can be made using IPA calculations with 1D radiative transfer models. Computations of the mean albedo over portions of the 3D RAMS domain show the relative increase in cloud albedo due to a 67% increase in the boundary-layer average CCN concentration was between 6% and 9%. The effects of cloud inhomogeneity on the broadband albedo as measured from the PPA bias ranged from 3% to 5%. 25 refs., 8 figs., 4 tabs.

  8. Flat panel planar optic display

    SciTech Connect

    Veligdan, J.T.

    1994-11-01

    A prototype 10 inch flat panel Planar Optic Display, (POD), screen has been constructed and tested. This display screen is comprised of hundreds of planar optic class sheets bonded together with a cladding layer between each sheet where each glass sheet represents a vertical line of resolution. The display is 9 inches wide by 5 inches high and approximately 1 inch thick. A 3 milliwatt HeNe laser is used as the illumination source and a vector scanning technique is employed.

  9. Residue management at Rocky Flats

    SciTech Connect

    Olencz, J.

    1995-12-31

    Past plutonium production and manufacturing operations conducted at the Rocky Flats Environmental Technology Site (RFETS) produced a variety of plutonium-contaminated by-product materials. Residues are a category of these materials and were categorized as {open_quotes}materials in-process{close_quotes} to be recovered due to their inherent plutonium concentrations. In 1989 all RFETS plutonium production and manufacturing operations were curtailed. This report describes the management of plutonium bearing liquid and solid wastes.

  10. Flat space physics from holography

    SciTech Connect

    Bousso, Raphael

    2004-02-06

    We point out that aspects of quantum mechanics can be derived from the holographic principle, using only a perturbative limit of classical general relativity. In flat space, the covariant entropy bound reduces to the Bekenstein bound. The latter does not contain Newton's constant and cannot operate via gravitational backreaction. Instead, it is protected by--and in this sense, predicts--the Heisenberg uncertainty principle.

  11. Flat heat pipe design, construction, and analysis

    SciTech Connect

    Voegler, G.; Boughey, B.; Cerza, M.; Lindler, K.W.

    1999-08-02

    This paper details the design, construction and partial analysis of a low temperature flat heat pipe in order to determine the feasibility of implementing flat heat pipes into thermophotovoltaic (TPV) energy conversion systems.

  12. Flat beams in the SLC

    SciTech Connect

    Adolphsen, C.; Barklow, T.; Burke, D.

    1993-05-01

    The Stanford Linear collider was designed to operate with round beams; horizontal and vertical emittance made equal in the damping rings. The main motivation was to facilitate the optical matching through beam lines with strong coupling elements like the solenoid spin rotator magnets and the SLC arcs. Tests in 1992 showed that ``flat`` beams with a vertical to horizontal emittance ratio of around 1/10 can be successfully delivered to the end of the linac. Techniques developed to measure and control the coupling of the SLC arcs allow these beams to be transported to the Interaction Point (IP). Before flat beams could be used for collisions with polarized electrons, a new method of rotating the electron spin orientation with vertical arc orbit bumps had to be developed. Early in the 1993 run, the SLC was switched to ``flat`` beam operation. Within a short time the peak luminosity of the previous running cycle was reached and then surpassed. The average daily luminosity is now a factor of about two higher than the best achieved last year. In the following we present an overview of the problems encountered and their solutions for different parts of the SLC.

  13. 49 CFR 231.6 - Flat cars.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Flat cars. 231.6 Section 231.6 Transportation... TRANSPORTATION RAILROAD SAFETY APPLIANCE STANDARDS § 231.6 Flat cars. (Cars with sides 12 inches or less above the floor may be equipped the same as flat cars.) (a) Hand brakes—(1) Number. Same as specified...

  14. 49 CFR 231.6 - Flat cars.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Flat cars. 231.6 Section 231.6 Transportation... TRANSPORTATION RAILROAD SAFETY APPLIANCE STANDARDS § 231.6 Flat cars. (Cars with sides 12 inches or less above the floor may be equipped the same as flat cars.) (a) Hand brakes—(1) Number. Same as specified...

  15. 49 CFR 231.6 - Flat cars.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Flat cars. 231.6 Section 231.6 Transportation... TRANSPORTATION RAILROAD SAFETY APPLIANCE STANDARDS § 231.6 Flat cars. (Cars with sides 12 inches or less above the floor may be equipped the same as flat cars.) (a) Hand brakes—(1) Number. Same as specified...

  16. 49 CFR 231.6 - Flat cars.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Flat cars. 231.6 Section 231.6 Transportation... TRANSPORTATION RAILROAD SAFETY APPLIANCE STANDARDS § 231.6 Flat cars. (Cars with sides 12 inches or less above the floor may be equipped the same as flat cars.) (a) Hand brakes—(1) Number. Same as specified...

  17. Flat mites of the world - Edition 2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Flat Mites of the World has an interactive key, fact sheets, descriptions, and images to aid in the identification of flat mites (Acari: Trombidiformes: Tetranychoidea: Tenuipalpidae) worldwide. The tool will help identify 36 genera of flat mites, including specific diagnostics for 13 species of...

  18. Industrial Color Inspection

    NASA Astrophysics Data System (ADS)

    McCamy, C. S.

    1986-10-01

    Color is a very important property of many products and an essential feature of some. The commercial value of color is evident in the fact that customers reject product that is satisfactory in every other way, but is not the right color. Color isrumerically specified, measured, and controlled just as length or weight are. It has three dimensions: Hue, Value, and Chroma, and may be represented in a three-dimensional space. Colors of objects depend on the illumination and pairs of colors may match in one light but not in another. Controlled illumination is required for color matching. Illuminants were standardized by the International Commission on Illumination (CIE). As a basis for color measurement, the CIE adopted three spectral sensitivity functions representing a standard observer. Color may be measured by instruments using standard illumination and simulating the standard observer. It is better to measure spectral reflectance or transmittance and compute colorimetric quantities. Color may be inspected on a production line and the data obtained can be used to control the process. When production cannot be controlled as precisely as required, product may be sorted by color.

  19. Watermarking spot colors

    NASA Astrophysics Data System (ADS)

    Alattar, Osama M.; Reed, Alastair M.

    2003-06-01

    Watermarking of printed materials has usually focused on process inks of cyan, magenta, yellow and black (CMYK). In packaging, almost three out of four printed materials include spot colors. Spot colors are special premixed inks, which can be produced in a vibrant range of colors, often outside the CMYK color gamut. In embedding a watermark into printed material, a common approach is to modify the luminance value of each pixel in the image. In the case of process color work pieces, the luminance change can be scaled to the C, M, Y and K channels using a weighting function, to produce the desired change in luminance. In the case of spot color art designs, there is only one channel available and the luminance change is applied to this channel. In this paper we develop a weighting function to embed the watermark signal across the range of different spot colors. This weighting function normalizes visibility effect and signal robustness across a wide range of different spot colors. It normalizes the signal robustness level over the range of an individual spot color"s intensity levels. Further, it takes into account the sensitivity of the capturing device to the different spot colors.

  20. True Colors Shining Through

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image mosaic illustrates how scientists use the color calibration targets (upper left) located on both Mars Exploration Rovers to fine-tune the rovers' sense of color. In the center, spectra, or light signatures, acquired in the laboratory of the colored chips on the targets are shown as lines. Actual data from Mars Exploration Rover Spirit's panoramic camera is mapped on top of these lines as dots. The plot demonstrates that the observed colors of Mars match the colors of the chips, and thus approximate the red planet's true colors. This finding is further corroborated by the picture taken on Mars of the calibration target, which shows the colored chips as they would appear on Earth.

  1. Relating color working memory and color perception.

    PubMed

    Allred, Sarah R; Flombaum, Jonathan I

    2014-11-01

    Color is the most frequently studied feature in visual working memory (VWM). Oddly, much of this work de-emphasizes perception, instead making simplifying assumptions about the inputs served to memory. We question these assumptions in light of perception research, and we identify important points of contact between perception and working memory in the case of color. Better characterization of its perceptual inputs will be crucial for elucidating the structure and function of VWM. PMID:25038028

  2. Impurities in Snow: Effects on Spectral Albedo of Prairie Snowpacks

    NASA Astrophysics Data System (ADS)

    Morris, J. N.; Klein, A. G.

    2007-12-01

    While extensive research on soot in snow has been done in the Polar Regions, there remains a lack of observations addressing the effect of soot on snow albedo in North American prairie snowpacks which causes uncertainty to the overall global effect that soot in snow has on climate. Measurements of snow impurities in freshly fallen prairie snowpacks in northwestern Iowa and central Texas collected from February 28 - March 5, 2007 and April 6, 2007, respectively. Two significant snowfall events occurred in northwestern Iowa during the study; the second snowfall event produced the most severe blizzard conditions in northwestern Iowa in the last thirty years. An unusual snowfall event in central Texas offered a unique sampling opportunity Several types of sites were sampled during the field campaign; this includes: frozen lakes with minimal human impact, agricultural fields impacted by agricultural dust, and human impacted sample sites. At twelve sites in northwestern Iowa samples were collected on multiple days and for both snow events to examine changes in snow impurities over time. At all site locations snow samples, temperature, density, and grain size were recorded. Snow reflectance and snow radiance was collected at a subset of the sites with an ASD VNIR Spectroradiometer (350 - 1500 nm). Snow impurities of light-absorbing particulate matter were measured by filtering the meltwater through a nuclepore 0.4 micrometer filter. Impurity concentration was determined by comparing the filters against a set of standards. A photometer will provide a more exact determination of snow impurities in the near future. Preliminary soot observations indicate prairie snow pack concentrations ranging from 1 ngC/g to 236 ngC/g with an average of 61.4 ngC/g. These measurements are within range of previously published values in the Arctic and can lower snow albedo. Differences in soot concentrations were observed between the two Iowa snowfall events. Impurity concentrations measured

  3. Connection between the spherical albedo and the observable characteristics of a planetary atmosphere

    SciTech Connect

    Fomin, N.N.; Yanovitskii, E.G.

    1986-07-01

    Semiempirical dependences of the geometrical albedo and the reflection coefficient at the center of a planetary disk on the spherical albedo are found. The nonsteady analogs of these quantities are studied on the basis of the approximate equations obtained. These analogs can be used in the analysis of radiation transfer in forbidden molecular absorption bands.

  4. Main-belt asteroids with WISE/NEOWISE: Near-infrared albedos

    SciTech Connect

    Masiero, Joseph R.; Mainzer, A. K.; Nugent, C. R.; Bauer, J. M.; Stevenson, R.; Sonnett, S.

    2014-08-20

    We present revised near-infrared albedo fits of 2835 main-belt asteroids observed by WISE/NEOWISE over the course of its fully cryogenic survey in 2010. These fits are derived from reflected-light near-infrared images taken simultaneously with thermal emission measurements, allowing for more accurate measurements of the near-infrared albedos than is possible for visible albedo measurements. Because our sample requires reflected light measurements, it undersamples small, low-albedo asteroids, as well as those with blue spectral slopes across the wavelengths investigated. We find that the main belt separates into three distinct groups of 6%, 16%, and 40% reflectance at 3.4 μm. Conversely, the 4.6 μm albedo distribution spans the full range of possible values with no clear grouping. Asteroid families show a narrow distribution of 3.4 μm albedos within each family that map to one of the three observed groupings, with the (221) Eos family being the sole family associated with the 16% reflectance 3.4 μm albedo group. We show that near-infrared albedos derived from simultaneous thermal emission and reflected light measurements are important indicators of asteroid taxonomy and can identify interesting targets for spectroscopic follow-up.

  5. ANALYTIC MODELS FOR ALBEDOS, PHASE CURVES, AND POLARIZATION OF REFLECTED LIGHT FROM EXOPLANETS

    SciTech Connect

    Madhusudhan, Nikku; Burrows, Adam E-mail: burrows@astro.princeton.edu

    2012-03-01

    New observational facilities are becoming increasingly capable of observing reflected light from transiting and directly imaged extrasolar planets. In this study, we provide an analytic framework to interpret observed phase curves, geometric albedos, and polarization of giant planet atmospheres. We compute the observables for non-conservative Rayleigh scattering in homogeneous semi-infinite atmospheres using both scalar and vector formalisms. In addition, we compute phase curves and albedos for Lambertian, isotropic, and anisotropic scattering phase functions. We provide analytic expressions for geometric albedos and spherical albedos as a function of the scattering albedo for Rayleigh scattering in semi-infinite atmospheres. Given an observed geometric albedo our prescriptions can be used to estimate the underlying scattering albedo of the atmosphere, which in turn is indicative of the scattering and absorptive properties of the atmosphere. We also study the dependence of polarization in Rayleigh scattering atmospheres on the orbital parameters of the planet-star system, particularly on the orbital inclination. We show how the orbital inclination of non-transiting exoplanets can be constrained from their observed polarization parameters. We consolidate the formalism, solution techniques, and results from analytic models available in the literature, often scattered in various sources, and present a systematic procedure to compute albedos, phase curves, and polarization of reflected light.

  6. MAIN BELT ASTEROIDS WITH WISE/NEOWISE. I. PRELIMINARY ALBEDOS AND DIAMETERS

    SciTech Connect

    Masiero, Joseph R.; Mainzer, A. K.; Bauer, J. M.; Eisenhardt, P. R. M.; DeBaun, E.; Elsbury, D.; Gautier, T. IV; Gomillion, S.; Wilkins, A.; Cutri, R. M.; Dailey, J.; McMillan, R. S.; Spahr, T. B.; Skrutskie, M. F.; Tholen, D.; Walker, R. G.; Wright, E. L.

    2011-11-10

    We present initial results from the Wide-field Infrared Survey Explorer (WISE), a four-band all-sky thermal infrared survey that produces data well suited for measuring the physical properties of asteroids, and the NEOWISE enhancement to the WISE mission allowing for detailed study of solar system objects. Using a NEATM thermal model fitting routine, we compute diameters for over 100,000 Main Belt asteroids from their IR thermal flux, with errors better than 10%. We then incorporate literature values of visible measurements (in the form of the H absolute magnitude) to determine albedos. Using these data we investigate the albedo and diameter distributions of the Main Belt. As observed previously, we find a change in the average albedo when comparing the inner, middle, and outer portions of the Main Belt. We also confirm that the albedo distribution of each region is strongly bimodal. We observe groupings of objects with similar albedos in regions of the Main Belt associated with dynamical breakup families. Asteroid families typically show a characteristic albedo for all members, but there are notable exceptions to this. This paper is the first look at the Main Belt asteroids in the WISE data, and only represents the preliminary, observed raw size, and albedo distributions for the populations considered. These distributions are subject to survey biases inherent to the NEOWISE data set and cannot yet be interpreted as describing the true populations; the debiased size and albedo distributions will be the subject of the next paper in this series.

  7. Intercomparison Between in situ and AVHRR Polar Pathfinder-Derived Surface Albedo over Greenland

    NASA Technical Reports Server (NTRS)

    Stroeve, Julienne C.; Box, Jason E.; Fowler, Charles; Haran, Terence; Key, Jeffery

    2001-01-01

    The Advanced Very High Resolution (AVHRR) Polar Pathfinder Data (APP) provides the first long time series of consistent, calibrated surface albedo and surface temperature data for the polar regions. Validations of these products have consisted of individual studies that analyzed algorithm performance for limited regions and or time periods. This paper reports on comparisons made between the APP-derived surface albedo and that measured at fourteen automatic weather stations (AWS) around the Greenland ice sheet from January 1997 to August 1998. Results show that satellite-derived surface albedo values are on average 10% less than those measured by the AWS stations. However, the station measurements tend to be biased high by about 4% and thus the differences in absolute albedo may be less (e.g. 6%). In regions of the ice sheet where the albedo variability is small, such as the dry snow facies, the APP albedo uncertainty exceeds the natural variability. Further work is needed to improve the absolute accuracy of the APP-derived surface albedo. Even so, the data provide temporally and spatially consistent estimates of the Greenland ice sheet albedo.

  8. ALBEDO MODELS FOR SNOW AND ICE ON A FRESHWATER LAKE. (R824801)

    EPA Science Inventory

    Abstract

    Snow and ice albedo measurements were taken over a freshwater lake in Minnesota for three months during the winter of 1996¯1997 for use in a winter lake water quality model. The mean albedo of new snow was measured as 0.83±0.028, while the...

  9. Colors, colored overlays, and reading skills

    PubMed Central

    Uccula, Arcangelo; Enna, Mauro; Mulatti, Claudio

    2014-01-01

    In this article, we are concerned with the role of colors in reading written texts. It has been argued that colored overlays applied above written texts positively influence both reading fluency and reading speed. These effects would be particularly evident for those individuals affected by the so called Meares-Irlen syndrome, i.e., who experience eyestrain and/or visual distortions – e.g., color, shape, or movement illusions – while reading. This condition would interest the 12–14% of the general population and up to the 46% of the dyslexic population. Thus, colored overlays have been largely employed as a remedy for some aspects of the difficulties in reading experienced by dyslexic individuals, as fluency and speed. Despite the wide use of colored overlays, how they exert their effects has not been made clear yet. Also, according to some researchers, the results supporting the efficacy of colored overlays as a tool for helping readers are at least controversial. Furthermore, the very nature of the Meares-Irlen syndrome has been questioned. Here we provide a concise, critical review of the literature. PMID:25120525

  10. Multi-modal albedo distributions in the ablation area of the southwestern Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Moustafa, S. E.; Rennermalm, A. K.; Smith, L. C.; Miller, M. A.; Mioduszewski, J. R.; Koenig, L. S.; Hom, M. G.; Shuman, C. A.

    2015-05-01

    Surface albedo is a key variable controlling solar radiation absorbed at the Greenland Ice Sheet (GrIS) surface and, thus, meltwater production. Recent decline in surface albedo over the GrIS has been linked to enhanced snow grain metamorphic rates, earlier snowmelt, and amplified melt-albedo feedback from atmospheric warming. However, the importance of distinct surface types on ablation area albedo and meltwater production is still relatively unknown. In this study, we analyze albedo and ablation rates using in situ and remotely sensed data. Observations include (1) a new high-quality in situ spectral albedo data set collected with an Analytical Spectral Devices Inc. spectroradiometer measuring at 325-1075 nm along a 1.25 km transect during 3 days in June 2013; (2) broadband albedo at two automatic weather stations; and (3) daily MODerate Resolution Imaging Spectroradiometer (MODIS) albedo (MOD10A1) between 31 May and 30 August 2012 and 2013. We find that seasonal ablation area albedos in 2013 have a bimodal distribution, with snow and ice facies characterizing the two peaks. Our results show that a shift from a distribution dominated by high to low albedos corresponds to an observed melt rate increase of 51.5% (between 10-14 July and 20-24 July 2013). In contrast, melt rate variability caused by albedo changes before and after this shift was much lower and varied between ~10 and 30% in the melting season. Ablation area albedos in 2012 exhibited a more complex multimodal distribution, reflecting a transition from light to dark-dominated surface, as well as sensitivity to the so called "dark-band" region in southwest Greenland. In addition to a darkening surface from ice crystal growth, our findings demonstrate that seasonal changes in GrIS ablation area albedos are controlled by changes in the fractional coverage of snow, bare ice, and impurity-rich surface types. Thus, seasonal variability in ablation area albedos appears to be regulated primarily as a function

  11. Color Reproduction with a Smartphone

    ERIC Educational Resources Information Center

    Thoms, Lars-Jochen; Colicchia, Giuseppe; Girwidz, Raimund

    2013-01-01

    The world is full of colors. Most of the colors we see around us can be created on common digital displays simply by superposing light with three different wavelengths. However, no mixture of colors can produce a fully pure color identical to a spectral color. Using a smartphone, students can investigate the main features of primary color addition…

  12. Map of mixed prairie grassland vegetation, Rocky Flats, Colorado

    SciTech Connect

    Clark, S J.V.; Webber, P J; Komarkova, V; Weber, W A

    1980-01-01

    A color vegetation map at the scale of 1:12,000 of the area surrounding the Rocky Flats, Rockwell International Plant near Boulder, Colorado, provides a permanent record of baseline data which can be used to monitor changes in both vegetation and environment and thus to contribute to future land management and land-use policies. Sixteen mapping units based on species composition were identified, and characterized by two 10-m/sup 2/ vegetation stands each. These were grouped into prairie, pasture, and valley side on the basis of their species composition. Both the mapping units and these major groups were later confirmed by agglomerative clustering analysis of the 32 vegetation stands on the basis of species composition. A modified Bray and Curtis ordination was used to determine the environmental factor complexes controlling the distribution of vegetation at Rocky flats. Recommendations are made for future policies of environmental management and predictions of the response to environmental change of the present vegetation at the Rocky Flats site.

  13. Surface Albedo in Cities: Case Study in Sapporo and Tokyo, Japan

    NASA Astrophysics Data System (ADS)

    Sugawara, Hirofumi; Takamura, Tamio

    2014-12-01

    The surface albedo of two large cities in Japan was measured using a pyranometer mounted on a helicopter to avoid the bidirectional reflectance distribution. The daytime albedo was 0.12 in the cities, which was less than that of a nearby forest (0.16). The albedo was dependent on building structure in the cities; the albedo was lower in areas with more buildings, and decreased as the aspect ratio of street canyons increased. There are two reasons for this dependency: the multiple reflection of radiation in the building canopy, as has been shown in many previous studies, and the sparse vegetation in urban areas. These two factors concurrently determine the albedo in a real city, where the vegetation amount decreases as the plan roof ratio increases.

  14. ARM Climate Research Facility Spectral Surface Albedo Value-Added Product (VAP) Report

    SciTech Connect

    McFarlane, S; Gaustad, K; Long, C; Mlawer, E

    2011-07-15

    This document describes the input requirements, output data products, and methodology for the Spectral Surface Albedo (SURFSPECALB) value-added product (VAP). The SURFSPECALB VAP produces a best-estimate near-continuous high spectral resolution albedo data product using measurements from multifilter radiometers (MFRs). The VAP first identifies best estimates for the MFR downwelling and upwelling shortwave irradiance values, and then calculates narrowband spectral albedo from these best-estimate irradiance values. The methodology for finding the best-estimate values is based on a simple process of screening suspect data and backfilling screened and missing data with estimated values when possible. The resulting best-estimate MFR narrowband spectral albedos are used to determine a daily surface type (snow, 100% vegetation, partial vegetation, or 0% vegetation). For non-snow surfaces, a piecewise continuous function is used to estimate a high spectral resolution albedo at 1 min temporal and 10 cm-1 spectral resolution.

  15. Pluto and Charon: Surface Colors and Compositions - A Hypothesis

    NASA Technical Reports Server (NTRS)

    Cruikshank, D. P.

    2016-01-01

    The surface of Pluto displays an array of colors ranging from yellow to red to brown, while the surface of Charon is largely gray with a north polar zone of red color similar to regions on Pluto. Pluto's surface shows layers of intensely colored material in tilted and transported blocks, and fractured geo-graphical units. This arrangement suggests episodes of formation or deposition of that material interspersed with episodes of emplacement of ices having little or no color. The ices identified on the surfaces of these two bodies (N2, CH4, CO, C2H6, H2O on Pluto, and H2O and NH3 on Charon) are colorless, as are nearly all ices in a powdery state. The colors on Pluto probably arise from the in situ formation of a macro-molecular carbonaceous material generated by energetic processing of the ices on the surface. Laboratory experiments producing refractory tholins particularly relevant to Pluto explored the chemistry of both UV and low-energy electron bombardment of a mix of Pluto ices (N2:CH4:CO = 100:1:1). We can term this Pluto ice tholin PIT. Water ice in the crystalline state characterizes Charon's surface, and while most of Charon's surface is neutral in color, with geometric albedo approximately 0.38, the polar zone and a light cover of fainter but similar reddish color over some surface regions suggest a common origin with the colored material on Pluto. NH3 or NH3 x nH2O was identified from disk-integrated Earth-based spectra, and a few concentrated NH3 exposures have been found in the New Horizons spectral images.

  16. Global Monitoring of Martian Surface Albedo Changes from Orbital Observations

    NASA Astrophysics Data System (ADS)

    Geissler, P.; Enga, M.; Mukherjee, P.

    2013-12-01

    Martian surface changes were first observed from orbit during the Mariner 9 and Viking Orbiter missions. They were found to be caused by eolian processes, produced by deposition of dust during regional and global dust storms and subsequent darkening of the surface through erosion and transportation of dust and sand. The albedo changes accumulated in the 20 years between Viking and Mars Global Surveyor were sufficient to alter the global circulation of winds and the climate of Mars according to model calculations (Fenton et al., Nature 2007), but little was known about the timing or frequency of the changes. Since 1999, we have had the benefit of continuous monitoring by a series of orbiting spacecraft that continues today with Mars Reconnaissance Orbiter, Mars Odyssey, and Mars Express. Daily synoptic observations enable us to determine whether the surface albedo changes are gradual or episodic in nature and to record the seasons that the changes take place. High resolution images of surface morphology and atmospheric phenomena help identify the physical mechanisms responsible for the changes. From these data, we hope to learn the combinations of atmospheric conditions and sediment properties that produce surface changes on Mars and possibly predict when they will take place in the future. Martian surface changes are particularly conspicuous in low albedo terrain, where even a thin layer of bright dust brightens the surface drastically. Equatorial dark areas are repeatedly coated and recoated by dust, which is later shed from the surface by a variety of mechanisms. An example is Syrtis Major, suddenly buried in bright dust by the global dust storm of 2001. Persistent easterly winds blew much of the dust cover away over the course of the next Martian year, but episodic changes continue today, particularly during southern summer when regional dust storms are rife. Another such region is Solis Planum, south of the Valles Marineris, where changes take place

  17. The Albedo Dichotomy of Iapetus Measured at UV Wavelengths

    NASA Technical Reports Server (NTRS)

    Hendrix, Amanda R.; Hansen, Candice J.

    2007-01-01

    The dramatic hemispheric dichotomy in albedo displayed by Saturn's moon Iapetus has intrigued astronomers for centuries. Here we report on far-ultraviolet observations of Iapetus' bright and dark terrains from Cassini. We compare the reflectance spectra of Iapetus's dark terrain, Hyperion and Phoebe and find that both Phoebe and Hyperion are richer in water ice than Iapetus' dark terrain. Spectra of the lowest latitudes of the dark terrain display the diagnostic water ice absorption feature; water ice amounts increase within the dark material away from the apex (at 90 deg W longitude, the center of the dark leading hemisphere), consistent with thermal segregation of water ice. The water ice in the darkest, warmest low latitude regions is not expected to be stable and may be a sign of ongoing or recent emplacement of the dark material from an exogenic source.

  18. Cassini VIMS Preliminary Exploration of Titan's Surface Hemispheric Albedo Dichotomy

    NASA Technical Reports Server (NTRS)

    Nelson, R. M.; Brown, R. H.; Hapke, B. W.; Smythe, W. D.; Kamp, L.; Boryta, M.; Baines, K. H.; Bellucci, G.; Bibring, J.-P.; Buratti, B. J.

    2005-01-01

    We present preliminary evidence that suggests a hemispheric albedo dichotomy on Titan, the largest planetary satellite in the Solar System. We have also studied the photometric properties of several dark circular features on Titan's surface to test if they might be of impact origin. The evidence is derived from photometric analysis of selected surface regions taken at different Titanian longitudes and solar phase angles using images from the Cassini Saturn Orbiter Visual and Infrared Mapping Spectrometer (VIMS). The VIMS instrument is able to image Titan's surface at spectral windows (e.g. 2.02 microns) in its atmosphere where methane, the principal atmospheric absorber is transparent. Additional information is included in the original extended abstract.

  19. Phase curve and albedo of asteroid 5534 Annefrank

    NASA Technical Reports Server (NTRS)

    Newburn, R. L., Jr.; Duxbury, T. C.; Hanner, M.; Semenov, B. V.; Hirst, E. E.; Bhat, R. S.; Bhaskaran, S.; Wang, T. M.

    2003-01-01

    Seventy-two images of the S-class asteroid 5535 Annefrank, acquired on 2 November 2002 at target ranges of 11,415??8.5 km, were transmitted to Earth as a part of an engineering readiness test of the Stardust mission. Forty-four of these were used to create a phase curve extending to 134, the largest angle yet achieved for any S-class asteroid. Flux fell by more than six magnitudes between the extrapolated 0 and 134. A maximum illuminated cross section of 16 km2 was seen at a phase angle of 47.2. Assuming a camera efficiency of 75%, a broadband (470?? nm) geometric albedo of 0.24 was derived for Annefrank.

  20. Correlating Pluto's Albedo Distribution to Long Term Insolation Patterns

    NASA Astrophysics Data System (ADS)

    Earle, Alissa M.; Binzel, Richard P.; Stern, S. Alan; Young, Leslie A.; Buratti, Bonnie J.; Ennico, Kimberly; Grundy, Will M.; Olkin, Catherine B.; Spencer, John R.; Weaver, Hal A.

    2015-11-01

    NASA's New Horizons' reconnaissance of the Pluto system has revealed striking albedo contrasts from polar to equatorial latitudes on Pluto, as well as sharp boundaries for longitudinal variations. These contrasts suggest Pluto undergoes dynamic evolution that drives the redistribution of volatiles. Using the New Horizons results as a template, in this talk we will explore the volatile migration process driven seasonally on Pluto considering multiple timescales. These timescales include the current orbit (248 years) as well as the timescales for obliquity precession (amplitude of 23 degrees over 3 Myrs) and regression of the orbital longitude of perihelion (3.7 Myrs). We will build upon the long-term insolation history model described by Earle and Binzel (2015, Icarus 250, 405-412) with the goal of identifying the most critical timescales that drive the features observed in Pluto’s current post-perihelion epoch. This work was supported by the NASA New Horizons Project.

  1. Contribution to polar albedo from a mesospheric aerosol layer

    NASA Technical Reports Server (NTRS)

    Hummel, J. R.

    1977-01-01

    An examination is made of the impact of a layer of particulate matter, assumed to be ice crystals, on the albedo of the polar region. The model is time dependent, includes the growth of the layer, and incorporates the diffuse nature of radiation reflected from the surface and atmosphere. Although the magnitude of the effect is about an order of magnitude less than previous results, the impact is one of heating instead of cooling. It is also shown that ignoring the diffuse nature of the radiation reflected from the underlying earth-atmosphere system, as has been done in many previous simple models, can result in overestimation of the climatological impact of aerosols in sign and magnitude by a factor of up to 4-6.

  2. A digital file of the lunar normal Albedo

    USGS Publications Warehouse

    Wildey, R.L.

    1977-01-01

    A digital file of the normal albedo of the Moon has been produced at a resolution of about 1/550 of a lunar diameter (about 6.3 km). The file was produced from five photographs taken with the 61-cm reflector of the Northern Arizona University Astrophysical Observatory. No mosaicking was necessary. Spatial control is selenodetic rather than landmark-morphologic. Photometric control is provided through a combination of electrography and regular photoelectric photometry. Pixel photometric function corrections are employed. The file was provided as data base for the Lunar Consortium. Brief discussion of the scientific implications of the frequency histogram is offered, and the negligibility of lunar limb darkening below e{open} = 77?? is affirmed. It is specifically desired not to withhold these data from publication while more significant and detailed scientific interpretation is carried on. ?? 1977 D. Reidel Publishing Company, Dordrecht-Holland.

  3. Oberon - Color photometry from Voyager and its geological implications

    NASA Technical Reports Server (NTRS)

    Helfenstein, Paul; Hillier, John; Weitz, Catherine; Veverka, Joseph

    1991-01-01

    The surface of the Uranian satellite Oberon is characterized on the basis of ground-based and Voyager photometric observations. Disk-integrated phase-curve and disk-resolved data are presented in extensive tables, graphs, maps, and black-and-white and false-color images and discussed in terms of fits to the Hapke (1986) parameters, local variations in albedo and color, and their possible geological significance. It is found that most of the leading hemisphere is covered with dark materials like those in the crater floors, while the trailing hemisphere has patches of the dark material on a surface with a higher proportion of icy materials which are spectrally neutral.

  4. The nature of colors

    NASA Astrophysics Data System (ADS)

    da Pos, Osvaldo

    2002-06-01

    Color is a visible aspect of objects and lights, and as such is an objective characteristic of our phenomenal world. Correspondingly also objects and lights are objective, although their subjectivity cannot be disregarded since they belong to our phenomenal world. The distinction between perception and sensation deals with colors seen either in complex displays or in isolation. Reality of colors is apparently challenged by virtual reality, while virtual reality is a good example of what colors are. It seems difficult to combine that aspect of reality colors have in our experience and the concept that colors represent something in the external environment: the distinction between stimulation and perceived object is crucial for understanding the relationships between phenomenal world and physical reality. A modern concept of isomorphism seems useful in interpreting the role of colors. The relationship between the psychological structure of colors and the physical stimulation is enlightened by the analysis of pseudocolors. The perceptual, subjective characteristics of colors go along with the subjectivity of scientific concepts. Colors, emotions, and concepts are all in some people's mind: none of them is independent of the subject mind. Nevertheless they can be communicated from person to person by an appropriate scientific terminology.

  5. The Diversity of Hydrated Material on Low-Albedo Asteroids

    NASA Astrophysics Data System (ADS)

    Rivkin, Andrew S.

    2010-10-01

    Introduction: Low albedo asteroids are associated with the carbonaceous chondrites. They dominate the asteroid belt, with the C complex the most common spectral class in the middle to outer belt [1]. Water/OH as ice or bound into minerals strongly absorbs in the 3-µm spectral region. While water in the Earth's atmosphere makes this spectral region a relatively difficult one to work in, decades of successful observations have been obtained [2-5], mostly using the NASA IRTF on Mauna Kea, with the SpeX instrument the main workhorse during the 21st century [6]. Results: We have made over 100 observations of several dozen low albedo asteroids since 2002. This survey has led to the identification of ice on the surface of 24 Themis [7] and the identification of brucite and carbonates on the surface of 1 Ceres [8,9]. It has also demonstrated the diversity of hydrated material in the asteroid belt, with spectral shapes ranging from CM-like to Ceres-like, and other yet-unidentified materials. There appear to be at least 4 plausible spectral classes, including one "anhydrous” group. I will present the results of the survey so far, implications of what we have found so far, and future directions. This work is supported by the NASA Planetary Astronomy Program.References: [1] Bus S. J and Binzel R. P. 2002, Icarus. [2] Lebofsky L. A. 1978, Mon. Notes Royal Ast. Soc.. [3] Feierberg, M. A., et al. 1981, Geochem Cosmochem. Acta. [4] Jones T. D. et al. 1990, Icarus. [5] Rivkin A. S. et al. 2003, Met. Plan. Sci. . [6] Rayner, J. T. et al. 2003, Pub. Ast. Soc. Pac. . [7] Rivkin, A. S. and Emery, J. P. 2010, Nature. [8] Rivkin A. S. et al. 2006, Icarus . [9] Milliken, R. E. and Rivkin, A. S. 2009, Nature Geosc. .

  6. Water Ice Albedo Variations on the Martian Northern Polar Cap

    NASA Technical Reports Server (NTRS)

    Hale, A. S.; Bass, D. S.; Tamppari, L. K.

    2003-01-01

    The Viking Orbiters determined that the surface of Mars northern residual cap is water ice. Many researchers have related observed atmospheric water vapor abundances to seasonal exchange between reservoirs such as the polar caps, but the extent to which the exchange between the surface and the atmosphere remains uncertain. Early studies of the ice coverage and albedo of the northern residual Martian polar cap using Mariner 9 and Viking images reported that there were substantial internannual differences in ice deposition on the polar cap, a result which suggested a highly variable Martian climate. However, some of the data used in these studies were obtained at differing values of heliocentric solar longitude (L(sub s)). Reevaluation of this dataset indicated that the residual cap undergoes seasonal brightening throughout the summer, and indicated that this process repeats from year to year. In this study we continue to compare Mariner 9 and Viking Orbiter imaging observations and thermal data of the north residual polar cap to data acquired with Mars Global Surveyor s Mars Orbiter Camera (MOC) instrument. In the current study, our goal is to examine all released data from MGS MOC in the northern summer season, along with applicable TES data in order to better understand the albedo variations in the northern summer and their implications on water transport. To date, work has focused primarily on the MOC dataset. In 1999, data acquisition of the northern polar regions began at L(sub s) = 107, although there was little north polar data acquired from L(sub s)= 107 to L(sub s) = 109. We examined a total of 409 images from L(sub s) = 107 to L(sub s)=148. We have also examined data from 2000 from L(sub s)= 93 to L(sub s)= 110; additional progress is ongoing. Here we present a progress report of our observations, and continue to determine their implications for the Martian water cycle.

  7. Mars: Correcting surface albedo observations for effects of atmospheric dust loading

    NASA Technical Reports Server (NTRS)

    Lee, S. W.; Clancy, R. T.

    1992-01-01

    We have developed a radiative transfer model which allows the effects of atmospheric dust loading on surface albedo to be investigated. This model incorporates atmospheric dust opacity, the single scattering albedo and particle phase function of atmospheric dust, the bidirectional reflectance of the surface, and variable lighting and viewing geometry. The most recent dust particle properties are utilized. The spatial and temporal variability of atmospheric opacity (Tan) strongly influences the radiative transfer modelling results. We are currently using the approach described to determine Tan for IRTM mapping sequences of selected regions. This approach allows Tan to be determined at the highest spatial and temporal resolution supported by the IRTM data. Applying the radiative transfer modelling and determination of Tan described, IRTM visual brightness observations can be corrected for the effects of atmospheric dust loading a variety of locations and times. This approach allows maps of 'dust-corrected surface albedo' to be constructed for selected regions. Information on the variability of surface albedo and the amount of dust deposition/erosion related to such variability results. To date, this study indicates that atmospheric dust loading has a significant effect on observations of surface albedo, amounting to albedo corrections of as much as several tens of percent. This correction is not constant or linear, but depends upon surface albedo, viewing and lighting geometry, the dust and surface phase functions, and the atmospheric opacity. It is clear that the quantitative study of surface albedo, especially where small variations in observed albedo are important (such as photometric analyses), needs to account for the effects of the atmospheric dust loading. Maps of 'dust-corrected surface albedo' will be presented for a number of regions.

  8. Surface albedo darkening from wildfires in northern sub-Saharan Africa

    NASA Astrophysics Data System (ADS)

    Gatebe, C. K.; Ichoku, C. M.; Poudyal, R.; Román, M. O.; Wilcox, E.

    2014-05-01

    Northern sub-Saharan Africa (NSSA) has a wide variety of climate zones or biomes, where albedo dynamics are highly coupled with vegetation dynamics and fire disturbances. Quantifying surface albedo variations due to fire disturbances on time scales of several months to several years is complex and is made worse by lack of accurate and spatially consistent surface albedo data. Here, we estimate the surface albedo effect from wildfires in different land cover types in the NSSA region using Moderate Resolution Imaging Spectroradiometer (MODIS) multi-year observational data (2003-11). The average decrease in albedo after fires at the scale of 1 km MODIS footprint is -0.002 02 ± 0.000 03 for woody savanna and -0.002 22 ± 0.000 03 for savanna. These two land cover types together account for >86% of the total MODIS fire count between 2003 and 2011. We found that only a small fraction of the pixels (≦̸10%) burn in two successive years and about 47% had any fire recurrence in 9 years. The study also derived the trajectories of post-fire albedo dynamics from the percentages of pixels that recover to pre-fire albedo values each year. We found that the persistence of surface albedo darkening in most land cover types in the NSSA region is limited to about 6-7 years, after which at least 99% of the burnt pixels recover to their pre-fire albedo. Our results provide critical information for deriving necessary input to various models used in determining the effects of albedo change due to wild fires in the NSSA region.

  9. A flat laser array aperture

    NASA Astrophysics Data System (ADS)

    Papadakis, Stergios J.; Ricciardi, Gerald F.; Gross, Michael C.; Krill, Jerry A.

    2010-04-01

    We describe a design concept for a flat (or conformal) thin-plate laser phased-array aperture. The aperture consists of a substrate supporting a grid of single-mode optical waveguides fabricated from a linear electro-optic material. The waveguides are coupled to a single laser source or detector. An arrangement of electrodes provides for two-dimensional beam steering by controlling the phase of the light entering the grid. The electrodes can also be modulated to simultaneously provide atmospheric turbulence modulation for long-range free-space optical communication. An approach for fabrication is also outlined.

  10. Charlie Flats and El Capitan

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Click on image for larger view

    This mosaic image taken by the Mars Exploration Rover Opportunity's panoramic camera shows two regions of the rock outcrop at Meridiani Planum, Mars. The region on the left, dubbed 'Charlie Flats,' was imaged because it contains an assortment of small grains, pebbles and spherules, as well as both dark and light soil deposits. The region on the right, nicknamed 'El Capitan,' is where Opportunity is parked and is doing work as of Sol 33 of its mission (February 26, 2004).

  11. Flat Subduction and Dynamic Topography

    NASA Astrophysics Data System (ADS)

    Lithgow-Bertelloni, C. R.; Dávila, F. M.; Eakin, C. M.; Crameri, F.

    2014-12-01

    Mantle dynamics manifests at the surface via the horizontal motions of plates and the vertical deflections that influence topography and the non-hydrostatic geoid. The pioneering work of Mitrovica et al. (1989) and Gurnis (1990) on this dynamic topography revolutionized our understanding of sedimentary basin formation, sea level changes and continental flooding. The temporal evolution of subduction can explain the migration of basins and even the drainage reversal of the Amazon (Shephard et al., 2012; Eakin et al., 2014). Until recently, flat subduction has been seen as enhancing downward deflection of the overriding plate and increasing flooding. However, this interpretation depends crucially on the details of the morphology and density structure of the slab, which controls the loci and amplitude of the deflection. We tend to ignore morphological details in mantle dynamics because flow can smooth out short wavelength variations. We have shown instead that details matter! Using South America as a natural laboratory because of the large changes in morphology of the Nazca slab along strike, we show that downward deflection of the overriding plate and hence basin formation, do not occur over flat segments but at the leading edge, where slabs plunge back into the mantle. This is true in both Argentina and Peru. The temporal evolution from a 'normally' dipplng slab to a flat slab leads to uplift over flat segments rather than enhanced subsidence. Critical for this result is the use of a detailed morphological model of the present-day Nazca slab with a spatial resolution of 50-100 km and based on relocated seismicity and magnetotelluric results. The density structure of the slab, due to age and the presence of overthickened crust from aseismic ridge subduction is essential. Overthickened crust leads to buoyant slabs. We reproduce formation and deposition of the Acres-Solimoes basin and the evolution of the Amazon drainage basin in Peru as well as the Mar Chiquita

  12. Albedo estimates for land surface models and support for a new paradigm based on foliage nitrogen concentration

    SciTech Connect

    Hollinger, D.; Ollinger, S. V.; Richardson, A. D.; Martin, M. E.; Meyers, T. P.; Dail, D. B.; Scott, N. A.; Arkebauer, T. J.; Baldocchi, D. D.; Clark, K. L.; Curtis, Peter; Davis, K. J.; Desai, Desai Ankur R.; Dragoni, Danilo; Goulden, M. L.; Gu, Lianhong; Katul, G. G.; Pallardy, Stephen G.; Pawu, K. T.; Schmid, H. P.; Stoy, P. C.; Suyker, A. E.; Verma, Shashi

    2009-02-01

    Vegetation albedo is a critical component of the Earth s climate system, yet efforts to evaluate and improve albedo parameterizations in climate models have lagged relative to other aspects of model development. Here, we calculated growing season albedos for deciduous and evergreen forests, crops, and grasslands based on over 40 site-years of data from the AmeriFlux network and compared them with estimates presently used in the land surface formulations of a variety of climate models. Generally, the albedo estimates used in land surface models agreed well with this data compilation. However, a variety of models using fixed seasonal estimates of albedo overestimated the growing season albedo of northerly evergreen trees. In contrast, climatemodels that rely on a common two-stream albedo submodel provided accurate predictions of boreal needle-leaf evergreen albedo but overestimated grassland albedos. Inverse analysis showed that parameters of the two-stream model were highly correlated. Consistent with recent observations based on remotely sensed albedo, the AmeriFlux dataset demonstrated a tight linear relationship between canopy albedo and foliage nitrogen concentration (for forest vegetation: albedo 50.0110.071%N, r250.91; forests, grassland, and maize: albedo50.0210.067%N, r250.80). However, this relationship saturated at the higher nitrogen concentrations displayed by soybean foliage. We developed similar relationships between a foliar parameter used in the two-stream albedo model and foliage nitrogen concentration. These nitrogen-based relationships can serve as the basis for a new approach to land surface albedo modeling that simplifies albedo estimation while providing a link to other important ecosystem processes.

  13. 2007 TY430: An Ultra-Red, High Albedo, Low Density, Wide, Equal Sized Plutino Binary

    NASA Astrophysics Data System (ADS)

    Sheppard, S. S.; Ragozzine, D.; Trujillo, C.

    2011-10-01

    Kuiper Belt object 2007 TY430 is the first equal sized binary known in the 3:2 mean motion resonance with Neptune. The two components can have a separation of over 1 arcsecond and are on average less than 0.1 magnitudes different in apparent magnitude with identical ultra-red colors (g - i =1.49 ± 0.01) . Using nearly monthly observations of 2007 TY430 from 2007-2011 with the Gemini telescope, the orbit of the mutual components were found to have a period of 961.2 ± 4.6 days with a semimajor axis of 21000 ±160 km and eccentricity of 0.1529 ± 0.0028 . The inclination with respect to the ecliptic is 15.68 ± 0.22 degrees, where the extensive observations have allowed the mirror orbit to be eliminated as a possibility. A total mass for the binary system was found to be 7.90 ± 0.21×1017 kg. Equal sized, wide binaries and ultra-red colors are common in the low inclination ``cold'' classical part of the Kuiper Belt and likely formed through some sort of three body interactions within a much denser Kuiper Belt. The physical and binary orbital properties of 2007 TY430 indicate it had a formation history similar to the cold classical population. Numerical simulations suggest 2007 TY430 is moderately unstable in the outer part of the 3:2 resonance and thus 2007 TY430 is likely an escaped ``cold'' classical object that got ``stuck'' into the 3:2 resonance. Similar to the equal sized, wide binaries in the cold classical population, the binary 2007 TY430 requires a high albedo and very low density structure to obtain the total mass found for the pair. For a realistic minimum density of 0.5 g/cm3 the albedo of 2007 TY430 would be greater than 0.17. For reasonable densities, the radii of either component should be less than 60 km, and thus the relatively low eccentricity of the binary is interesting since no tides should be operating on the bodies at their large distances from each other. The low prograde inclination of the binary also makes it unlikely the Kozai mechanism

  14. Colored Diffraction Catastrophes

    NASA Astrophysics Data System (ADS)

    Berry, M. V.; Klein, S.

    1996-03-01

    On fine scales, caustics produced with white light show vividly colored diffraction fringes. For caustics described by the elementary catastrophes of singularity theory, the colors are characteristic of the type of singularity. We study the diffraction colors of the fold and cusp catastrophes. The colors can be simulated computationally as the superposition of monochromatic patterns for different wavelengths. Far from the caustic, where the luminosity contrast is negligible, the fringe colors persist; an asymptotic theory explains why. Experiments with caustics produced by refraction through irregular bathroom-window glass show good agreement with theory. Colored fringes near the cusp reveal fine lines that are not present in any of the monochromatic components; these lines are explained in terms of partial decoherence between rays with widely differing path differences.

  15. Color scene analysis

    NASA Astrophysics Data System (ADS)

    Celenk, Mehmet

    1994-05-01

    This paper describes a color scene analysis method for the object surfaces appearing in the noisy and imperfect images of natural scenes. It is developed based on the spatial and spectral grouping property of the human visual system. The uniformly colored surfaces are recognized by their monomodal 3-D color distributions and extracted in the spatial domain using the lightness and chromaticity network of the Munsell system. The textured image regions are identified by their irregular histogram distributions and isolated in the image plane using the Julesz connectivity detection rules. The method is applied to various color images corrupted by noise and degraded heavily by under-sampling and low color-contrast imperfections. The method was able to detect all the uniformly colored and heavily textured object areas in these images.

  16. Digital color representation

    DOEpatents

    White, James M.; Faber, Vance; Saltzman, Jeffrey S.

    1992-01-01

    An image population having a large number of attributes is processed to form a display population with a predetermined smaller number of attributes which represent the larger number of attributes. In a particular application, the color values in an image are compressed for storage in a discrete lookup table (LUT) where an 8-bit data signal is enabled to form a display of 24-bit color values. The LUT is formed in a sampling and averaging process from the image color values with no requirement to define discrete Voronoi regions for color compression. Image color values are assigned 8-bit pointers to their closest LUT value whereby data processing requires only the 8-bit pointer value to provide 24-bit color values from the LUT.

  17. Color image segmentation

    NASA Astrophysics Data System (ADS)

    McCrae, Kimberley A.; Ruck, Dennis W.; Rogers, Steven K.; Oxley, Mark E.

    1994-03-01

    The most difficult stage of automated target recognition is segmentation. Current segmentation problems include faces and tactical targets; previous efforts to segment these objects have used intensity and motion cues. This paper develops a color preprocessing scheme to be used with the other segmentation techniques. A neural network is trained to identify the color of a desired object, eliminating all but that color from the scene. Gabor correlations and 2D wavelet transformations will be performed on stationary images; and 3D wavelet transforms on multispectral data will incorporate color and motion detection into the machine visual system. The paper will demonstrate that color and motion cues can enhance a computer segmentation system. Results from segmenting faces both from the AFIT data base and from video taped television are presented; results from tactical targets such as tanks and airplanes are also given. Color preprocessing is shown to greatly improve the segmentation in most cases.

  18. Colored diffraction catastrophes.

    PubMed Central

    Berry, M V; Klein, S

    1996-01-01

    On fine scales, caustics produced with white light show vividly colored diffraction fringes. For caustics described by the elementary catastrophes of singularity theory, the colors are characteristic of the type of singularity. We study the diffraction colors of the fold and cusp catastrophes. The colors can be simulated computationally as the superposition of monochromatic patterns for different wavelengths. Far from the caustic, where the luminosity contrast is negligible, the fringe colors persist; an asymptotic theory explains why. Experiments with caustics produced by refraction through irregular bathroom-window glass show good agreement with theory. Colored fringes near the cusp reveal fine lines that are not present in any of the monochromatic components; these lines are explained in terms of partial decoherence between rays with widely differing path differences. Images Fig. 1 Fig. 2 Fig. 3 Fig. 6 Fig. 8 Fig. 9 Fig. 10 PMID:11607642

  19. SWIM: A Semi-Analytical Ocean Color Inversion Algorithm for Optically Shallow Waters

    NASA Technical Reports Server (NTRS)

    McKinna, Lachlan I. W.; Werdell, P. Jeremy; Fearns, Peter R. C. S.; Weeks, Scarla J.; Reichstetter, Martina; Franz, Bryan A.; Shea, Donald M.; Feldman, Gene C.

    2014-01-01

    Ocean color remote sensing provides synoptic-scale, near-daily observations of marine inherent optical properties (IOPs). Whilst contemporary ocean color algorithms are known to perform well in deep oceanic waters, they have difficulty operating in optically clear, shallow marine environments where light reflected from the seafloor contributes to the water-leaving radiance. The effect of benthic reflectance in optically shallow waters is known to adversely affect algorithms developed for optically deep waters [1, 2]. Whilst adapted versions of optically deep ocean color algorithms have been applied to optically shallow regions with reasonable success [3], there is presently no approach that directly corrects for bottom reflectance using existing knowledge of bathymetry and benthic albedo.To address the issue of optically shallow waters, we have developed a semi-analytical ocean color inversion algorithm: the Shallow Water Inversion Model (SWIM). SWIM uses existing bathymetry and a derived benthic albedo map to correct for bottom reflectance using the semi-analytical model of Lee et al [4]. The algorithm was incorporated into the NASA Ocean Biology Processing Groups L2GEN program and tested in optically shallow waters of the Great Barrier Reef, Australia. In-lieu of readily available in situ matchup data, we present a comparison between SWIM and two contemporary ocean color algorithms, the Generalized Inherent Optical Property Algorithm (GIOP) and the Quasi-Analytical Algorithm (QAA).

  20. Landsat Estimate of Albedo Change from Fire in the Alaskan Boreal Region

    NASA Astrophysics Data System (ADS)

    French, N. H.

    2001-05-01

    The impact of fire on boreal land cover is substantial with dramatic implications for the exchange of carbon and energy between the land and atmosphere. One of the primary mechanisms through which ecosystem characteristics are able to influence surface-atmosphere energy exchange is by influencing the radiation balance. Land surface albedo defines how much shortwave energy is "captured" by the system and is key in determining surface net radiation. The purpose of this study is to quantify and map the change in summertime land surface albedo from fire disturbance in a black spruce dominated landscape in Alaska. The study was conducted at a set of three fire-disturbed sites located near the town of Delta Junction. Five Landsat TM and ETM images from late August/early September for 1986 to 1999 were the primary data used. Albedo change was derived using the six reflective bands of Landsat (bands 1-5 and 7). The images were used to map albedo change at each of the three burn sites from the fire disturbance itself and from vegetation regrowth at the two older burn scars. Field measurements of albedo were also collected and are used to complement the remote sensing-based results. The results show that albedo change is spatially and temporally variable based on pre-burn vegetation, canopy density, burn severity, and site age. In moderately burned, medium density black spruce, the most typical burn conditions in Alaska, no significant change in albedo was found within the first year after the burn (+/-1%). At sites with some deciduous vegetation in the pre-burn canopy, albedo decreased (4%). In areas of severe burn, albedo increased (2-3%). Most notably, at all sites albedo increased after several years of vegetation growth (7 to 10%) due to the transition to herbaceous and deciduous vegetation. Similar results were found with the tower-based measurements at these sites. The albedo changes measured in this study have important implications for net radiation and surface

  1. The dependence of the ice-albedo feedback on atmospheric properties.

    PubMed

    von Paris, P; Selsis, F; Kitzmann, D; Rauer, H

    2013-10-01

    Ice-albedo feedback is a potentially important destabilizing effect for the climate of terrestrial planets. It is based on the positive feedback between decreasing surface temperatures, an increase of snow and ice cover, and an associated increase in planetary albedo, which then further decreases surface temperature. A recent study shows that for M stars, the strength of the ice-albedo feedback is reduced due to the strong spectral dependence of stellar radiation and snow/ice albedos; that is, M stars primarily emit in the near IR, where the snow and ice albedo is low, and less in the visible, where the snow/ice albedo is high. This study investigates the influence of the atmosphere (in terms of surface pressure and atmospheric composition) on this feedback, since an atmosphere was neglected in previous studies. A plane-parallel radiative transfer model was used for the calculation of planetary albedos. We varied CO₂ partial pressures as well as the H₂O, CH₄, and O₃ content in the atmosphere for planets orbiting Sun-like and M type stars. Results suggest that, for planets around M stars, the ice-albedo effect is significantly reduced, compared to planets around Sun-like stars. Including the effects of an atmosphere further suppresses the sensitivity to the ice-albedo effect. Atmospheric key properties such as surface pressure, but also the abundance of radiative trace gases, can considerably change the strength of the ice-albedo feedback. For dense CO₂ atmospheres of the order of a few to tens of bar, atmospheric rather than surface properties begin to dominate the planetary radiation budget. At high CO₂ pressures, the ice-albedo feedback is strongly reduced for planets around M stars. The presence of trace amounts of H₂O and CH₄ in the atmosphere also weakens the ice-albedo effect for both stellar types considered. For planets around Sun-like stars, O₃ could also lead to a very strong decrease of the ice-albedo feedback at high CO₂ pressures

  2. The Dependence of the Ice-Albedo Feedback on Atmospheric Properties

    PubMed Central

    Selsis, F.; Kitzmann, D.; Rauer, H.

    2013-01-01

    Abstract Ice-albedo feedback is a potentially important destabilizing effect for the climate of terrestrial planets. It is based on the positive feedback between decreasing surface temperatures, an increase of snow and ice cover, and an associated increase in planetary albedo, which then further decreases surface temperature. A recent study shows that for M stars, the strength of the ice-albedo feedback is reduced due to the strong spectral dependence of stellar radiation and snow/ice albedos; that is, M stars primarily emit in the near IR, where the snow and ice albedo is low, and less in the visible, where the snow/ice albedo is high. This study investigates the influence of the atmosphere (in terms of surface pressure and atmospheric composition) on this feedback, since an atmosphere was neglected in previous studies. A plane-parallel radiative transfer model was used for the calculation of planetary albedos. We varied CO2 partial pressures as well as the H2O, CH4, and O3 content in the atmosphere for planets orbiting Sun-like and M type stars. Results suggest that, for planets around M stars, the ice-albedo effect is significantly reduced, compared to planets around Sun-like stars. Including the effects of an atmosphere further suppresses the sensitivity to the ice-albedo effect. Atmospheric key properties such as surface pressure, but also the abundance of radiative trace gases, can considerably change the strength of the ice-albedo feedback. For dense CO2 atmospheres of the order of a few to tens of bar, atmospheric rather than surface properties begin to dominate the planetary radiation budget. At high CO2 pressures, the ice-albedo feedback is strongly reduced for planets around M stars. The presence of trace amounts of H2O and CH4 in the atmosphere also weakens the ice-albedo effect for both stellar types considered. For planets around Sun-like stars, O3 could also lead to a very strong decrease of the ice-albedo feedback at high CO2 pressures. Key Words

  3. Ghostscript color management

    NASA Astrophysics Data System (ADS)

    Vrhel, Michael J.; Johnston, Raymond

    2011-01-01

    This document introduces an updated color architecture that has been designed for Ghostscript. Ghostscript is a well known open source document rendering and conversion engine. Prior to this update, the handling of color in Ghostscript was based primarily upon PostScript color management. The new design results in a flexible ICC-based architecture that works well in Ghostscript's multi-threaded rendering environment.

  4. Development of a high spectral resolution surface albedo product for the ARM Southern Great Plains Central Facility

    SciTech Connect

    McFarlane, Sally A.; Gaustad, Krista L.; Mlawer, Eli J.; Long, Charles N.; Delamere, Jennifer

    2011-09-01

    We present a method for identifying dominant surface type and estimating high spectral resolution surface albedo at the Atmospheric Radiation Measurement (ARM) facility at the Southern Great Plains (SGP) site in Oklahoma for use in radiative transfer calculations. Given a set of 6-channel narrowband visible and near-infrared irradiance measurements from upward and downward looking multi-filter radiometers (MFRs), four different surface types (snow-covered, green vegetation, partial vegetation, non-vegetated) can be identified. A normalized difference vegetation index (NDVI) is used to distinguish between vegetated and non-vegetated surfaces, and a scaled NDVI index is used to estimate the percentage of green vegetation in partially vegetated surfaces. Based on libraries of spectral albedo measurements, a piecewise continuous function is developed to estimate the high spectral resolution surface albedo for each surface type given the MFR albedo values as input. For partially vegetated surfaces, the albedo is estimated as a linear combination of the green vegetation and non-vegetated surface albedo values. The estimated albedo values are evaluated through comparison to high spectral resolution albedo measurements taken during several Intensive Observational Periods (IOPs) and through comparison of the integrated spectral albedo values to observed broadband albedo measurements. The estimated spectral albedo values agree well with observations for the visible wavelengths constrained by the MFR measurements, but have larger biases and variability at longer wavelengths. Additional MFR channels at 1100 nm and/or 1600 nm would help constrain the high resolution spectral albedo in the near infrared region.

  5. Development of a high spectral resolution surface albedo product for the ARM Southern Great Plains central facility

    NASA Astrophysics Data System (ADS)

    McFarlane, S. A.; Gaustad, K. L.; Mlawer, E. J.; Long, C. N.; Delamere, J.

    2011-05-01

    We present a method for identifying dominant surface type and estimating high spectral resolution surface albedo at the Atmospheric Radiation Measurement (ARM) facility at the Southern Great Plains (SGP) site in Oklahoma for use in radiative transfer calculations. Given a set of 6-channel narrowband visible and near-infrared irradiance measurements from upward and downward looking multi-filter radiometers (MFRs), four different surface types (snow-covered, green vegetation, partial vegetation, non-vegetated) can be identified. A normalized difference vegetation index (NDVI) is used to distinguish between vegetated and non-vegetated surfaces, and a scaled NDVI index is used to estimate the percentage of green vegetation in partially vegetated surfaces. Based on libraries of spectral albedo measurements, a piecewise continuous function is developed to estimate the high spectral resolution surface albedo for each surface type given the MFR albedo values as input. For partially vegetated surfaces, the albedo is estimated as a linear combination of the green vegetation and non-vegetated surface albedo values. The estimated albedo values are evaluated through comparison to high spectral resolution albedo measurements taken during several Intensive Observational Periods (IOPs) and through comparison of the integrated spectral albedo values to observed broadband albedo measurements. The estimated spectral albedo values agree well with observations for the visible wavelengths constrained by the MFR measurements, but have larger biases and variability at longer wavelengths. Additional MFR channels at 1100 nm and/or 1600 nm would help constrain the high resolution spectral albedo in the near infrared region.

  6. Development of a high spectral resolution surface albedo product for the ARM Southern Great Plains central facility

    NASA Astrophysics Data System (ADS)

    McFarlane, S. A.; Gaustad, K. L.; Mlawer, E. J.; Long, C. N.; Delamere, J.

    2011-09-01

    We present a method for identifying dominant surface type and estimating high spectral resolution surface albedo at the Atmospheric Radiation Measurement (ARM) facility at the Southern Great Plains (SGP) site in Oklahoma for use in radiative transfer calculations. Given a set of 6-channel narrowband visible and near-infrared irradiance measurements from upward and downward looking multi-filter radiometers (MFRs), four different surface types (snow-covered, green vegetation, partial vegetation, non-vegetated) can be identified. A normalized difference vegetation index (NDVI) is used to distinguish between vegetated and non-vegetated surfaces, and a scaled NDVI index is used to estimate the percentage of green vegetation in partially vegetated surfaces. Based on libraries of spectral albedo measurements, a piecewise continuous function is developed to estimate the high spectral resolution surface albedo for each surface type given the MFR albedo values as input. For partially vegetated surfaces, the albedo is estimated as a linear combination of the green vegetation and non-vegetated surface albedo values. The estimated albedo values are evaluated through comparison to high spectral resolution albedo measurements taken during several Intensive Observational Periods (IOPs) and through comparison of the integrated spectral albedo values to observed broadband albedo measurements. The estimated spectral albedo values agree well with observations for the visible wavelengths constrained by the MFR measurements, but have larger biases and variability at longer wavelengths. Additional MFR channels at 1100 nm and/or 1600 nm would help constrain the high resolution spectral albedo in the near infrared region.

  7. Closing Rocky Flats by 2006

    SciTech Connect

    Tuor, N. R.; Schubert, A. L.

    2002-02-26

    Safely accelerating the closure of Rocky Flats to 2006 is a goal shared by many: the State of Colorado, the communities surrounding the site, the U.S. Congress, the Department of Energy, Kaiser-Hill and its team of subcontractors, the site's employees, and taxpayers across the country. On June 30, 2000, Kaiser-Hill (KH) submitted to the Department of Energy (DOE), KH's plan to achieve closure of Rocky Flats by December 15, 2006, for a remaining cost of $3.96 billion (February 1, 2000, to December 15, 2006). The Closure Project Baseline (CPB) is the detailed project plan for accomplishing this ambitious closure goal. This paper will provide a status report on the progress being made toward the closure goal. This paper will: provide a summary of the closure contract completion criteria; give the current cost and schedule variance of the project and the status of key activities; detail important accomplishments of the past year; and discuss the challenges ahead.

  8. Color Sequence of Triton Approach Images

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Triton Voyager 2 approach sequence with latitude-longitude grid superposed. The color image was reconstructed by making a computer composite of three black and white images taken through red, green, and blue filters. Details on Triton's surface unfold dramatically in this sequence of approach images. South Pole near the bottom of the images at the convergence of lines of longitude. Resolution changes from about 60 km/pixel (37 mi/pixel) in the image at upper left taken from a distance of 500,000 (311,000 mi) to about 5 km/pixel (3.1 mi/pixel) for the image at lower right. Global and regional albedo features are visible in all of the images. The albedo features can be tracked in successive images and show that Triton has undergone about 3/4 of a rotation during the 4.3-day interval over which these images were obtained. A southern polar cap of bright pink, yellow, and white materials covers nearly all of the southern hemisphere; these materials consist of nitrogen ice with traces of other substances, including frozen methane and carbon monoxide. Feeble ultraviolet radiation from the sun is thought to act on methane to cause chemical reactions to the pinkish yellowish substances. At the time of the Voyager 2 flyby (Jan. 1989) Triton's southern hemisphere was starting the summer season and the South Pole was canted toward the sun day and night, such that the polar cap was sublimating under the relatively 'hot' summer sun (surface temperature about 38 K, about -391 degree F). Numerous dark streaks on the southern polar nitrogen-ice cap are thought to consist of dark dust deposited by prevailing winds in Triton's tenuous nitrogen atmosphere. A bluish band, seen in all of the images, nearly circumstances Triton's equator; this band is thought to consist of fairly nitrogen frost, perhaps deposited in the decade prior to Voyager 2's flyby.

  9. Fingers that change color

    MedlinePlus

    ... conditions can cause fingers or toes to change color: Buerger disease Chilblains. Painful inflammation of small blood vessels. Cryoglobulinemia Frostbite Necrotizing vasculitis Peripheral artery disease ...

  10. The Colors of 'Endurance'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This false-color image shows visible mineral changes between the materials that make up the rim of the impact crater known as 'Endurance.' The image was taken by the panoramic camera on NASA's Mars Exploration Rover Opportunity using all 13 color filters. The cyan blue color denotes basalts, whereas the dark green color denotes a mixture of iron oxide and basaltic materials. Reds and yellows indicate dusty material containing sulfates. Scientists are very interested in exploring the interior and exterior material around the crater's rim for clues to the processes that formed the crater, as well as the rocks and textures that define the crater.

  11. Crater Floor in Color

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 5 May 2004 This daytime visible color image was collected on November 18, 2003 during the Southern Summer season in Terra Cimmeria.

    This daytime visible color image was collected on September 4, 2002 during the Northern Spring season in Vastitas Borealis. The THEMIS VIS camera is capable of capturing color images of the martian surface using its five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from the use of multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    Image information: VIS instrument. Latitude -23.7, Longitude 135.6 East (224.4 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with

  12. Color mixing models

    NASA Astrophysics Data System (ADS)

    Harrington, Steven J.

    1992-05-01

    In black-and-white printing the page image can be represented within a computer as an array of binary values indicating whether or not pixels should be inked. The Boolean operators of AND, OR, and EXCLUSIVE-OR are often used when adding new objects to the image array. For color printing the page may be represented as an array of continuous tone color values, and the generalization of these logic functions to gray-scale or full-color images is, in general, not defined or understood. When incrementally composing a page image new colors can replace old in an image buffer, or new colors and old can be combined according to some mixing function to form a composite color which is stored. This paper examines the properties of the Boolean operations and suggests full-color mixing functions which preserve the desired properties. These functions can be used to combine colored images, giving various transparency effects. The relationships between the mixing functions and physical models of color mixing are also discussed.

  13. Polarization encoded color camera.

    PubMed

    Schonbrun, Ethan; Möller, Guðfríður; Di Caprio, Giuseppe

    2014-03-15

    Digital cameras would be colorblind if they did not have pixelated color filters integrated into their image sensors. Integration of conventional fixed filters, however, comes at the expense of an inability to modify the camera's spectral properties. Instead, we demonstrate a micropolarizer-based camera that can reconfigure its spectral response. Color is encoded into a linear polarization state by a chiral dispersive element and then read out in a single exposure. The polarization encoded color camera is capable of capturing three-color images at wavelengths spanning the visible to the near infrared. PMID:24690806

  14. Visual color image processing

    NASA Astrophysics Data System (ADS)

    Qiu, Guoping; Schaefer, Gerald

    1999-12-01

    In this paper, we propose a color image processing method by combining modern signal processing technique with knowledge about the properties of the human color vision system. Color signals are processed differently according to their visual importance. The emphasis of the technique is on the preservation of total visual quality of the image and simultaneously taking into account computational efficiency. A specific color image enhancement technique, termed Hybrid Vector Median Filtering is presented. Computer simulations have been performed to demonstrate that the new approach is technically sound and results are comparable to or better than traditional methods.

  15. Near-Infrared Colors of the Binary Kuiper Belt Object 1998 WW31

    NASA Astrophysics Data System (ADS)

    Takato, Naruhisa; Fuse, Tetsuharu; Gaessler, Wolfgang; Goto, Miwa; Kanzawa, Tomio; Kobayashi, Naoto; Minowa, Yosuke; Oya, Shin; Pyo, Tae-Soo; Saint-Jacque, D.; Takami, Hideki; Terada, Hiroshi; Hayano, Yutaka; Iye, Masanori; Kamata, Yukiko; Tokunaga, A. T.

    2003-06-01

    We have measured near-infrared colors of the binary Kuiper Belt object (KBO) 1998 WW31 using the Subaru Telescope with adaptive optics. The satellite was detected near its perigee and apogee (0.18'' and 1.2'' apart from the primary). The primary and the satellite have similar H-K colors, while the satellite is redder than the primary in J-H. Combined with the R band magnitude previously published by Veillet et al., 2002, the color of the primary is consistent with that of optically red KBOs. The satellite's R-, J-, H-colors suggest the presence of ~1 μm absorption band due to rock-forming minerals. If the surface of the satellite is mainly composed by olivine, the satellite's albedo is higher value than the canonically assumed value of 4%.

  16. Color reproduction with a smartphone

    NASA Astrophysics Data System (ADS)

    Thoms, Lars-Jochen; Colicchia, Giuseppe; Girwidz, Raimund

    2013-10-01

    The world is full of colors. Most of the colors we see around us can be created on common digital displays simply by superposing light with three different wavelengths. However, no mixture of colors can produce a fully pure color identical to a spectral color. Using a smartphone, students can investigate the main features of primary color addition and understand how colors are made on digital displays.

  17. Using Remote Sensing to Quantify Roof Albedo in Seven California Cities

    NASA Astrophysics Data System (ADS)

    Ban-Weiss, G. A.; Woods, J.; Millstein, D.; Levinson, R.

    2013-12-01

    Cool roofs reflect sunlight and therefore can reduce cooling energy use in buildings. Further, since roofs cover about 20-25% of cities, wide spread deployment of cool roofs could mitigate the urban heat island effect and partially counter urban temperature increases associated with global climate change. Accurately predicting the potential for increasing urban albedo using reflective roofs and its associated energy use and climate benefits requires detailed knowledge of the current stock of roofs at the city scale. Until now this knowledge has been limited due to a lack of availability of albedo data with sufficient spatial coverage, spatial resolution, and spectral information. In this work we use a novel source of multiband aerial imagery to derive the albedos of individual roofs in seven California cities: Los Angeles, Long Beach, San Diego, Bakersfield, Sacramento, San Francisco, and San Jose. The radiometrically calibrated, remotely sensed imagery has high spatial resolution (1 m) and four narrow (less than 0.1 μm wide) band reflectances: blue, green, red, and near-infrared. To derive the albedo of roofs in each city, we first locate roof pixels within GIS building outlines. Next we use laboratory measurements of the solar spectral reflectances of 190 roofing products to empirically relate solar reflectance (albedo) to reflectances in the four narrow bands; the root-mean-square of the residuals for the albedo prediction is 0.016. Albedos computed from remotely sensed reflectances are calibrated to ground measurements of roof albedo in each city. The error (both precision and accuracy) of albedo values is presented for each city. The area-weighted mean roof albedo (× standard deviation) for each city ranges from 0.17 × 0.08 (Los Angeles) to 0.29 × 0.15 (San Diego). In each city most roofs have low albedo in the range of 0.1 to 0.3. Roofs with albedo greater than 0.4 comprise less than 3% of total roofs and 7% of total roof area in each city. The California

  18. Ida and Dactyl: Spectral reflectance and color variations

    USGS Publications Warehouse

    Veverka, J.; Helfenstein, P.; Lee, P.; Thomas, P.; McEwen, A.; Belton, M.; Klaasen, K.; Johnson, T.V.; Granahan, J.; Fanale, F.; Geissler, P.; Head, J. W., III

    1996-01-01

    Galileo SSI color data between 0.4 and 1.0 ??m demonstrate that both Ida and Dactyl are S-type asteroids with similar, but distinct spectra. Small but definite color variations are also observed on Ida itself and involve both the blue part of the spectrum and the depth of the 1-??m pyroxene-olivine band. Ida's surface can be classified into two color terrains: Terrain A has a shallower 1-??m absorption and a steeper visible red slope than does Terrain B. Qualitatively, the color-albedo systematics of these two terrains follow those noted for color units on Gaspra and the variations in 1-??m band depth with weathering described by Gaffey et al. (Gaffey, M. J., J. F. Bell, R. H. Brown, T. H. Burbine, J. Piatek, K. L. Reed, and D. A. Chaky 1993. Icarus 106, 573-602). Terrain A, with its slightly lower albedo, its shallower 1-??m band, and its slightly steeper visible red slope relative to Terrain B could be interpreted as the "more processed," "more mature," or the "more weathered" of the two terrains. Consistent with this interpretation is that Terrain A appears to be the ubiquitous background on most of Ida, while Terrain B is correlated with some small craters as well as with possible ejecta from the 10-km Azzurra impact structure. Because of these trends, it is less likely that differences between Terrains A and B are caused by an original compositional inhomogeneity within the body of Ida, although they do fall within the range known to occur within the Koronis family. The spectrum of Dactyl is similar to, but definitely different from, that of Terrain B on Ida. It does not conform to the pattern that obtains between the colors and albedos of Terrains A and B: the satellite's 1-??m band is deeper than that of Terrain B, but its albedo is lower, rather than higher. By itself, the deeper band depth could be interpreted, following Gaffey et al., to mean that Dactyl is a less weathered version of Terrain B on Ida, but such an interpretation is at odds with Dactyl

  19. Correction of broadband snow albedo measurements affected by unknown slope and sensor tilts

    NASA Astrophysics Data System (ADS)

    Weiser, Ursula; Olefs, Marc; Schöner, Wolfgang; Weyss, Gernot; Hynek, Bernhard

    2016-04-01

    Geometric effects induced by the underlying terrain slope or by tilt errors of the radiation sensors lead to an erroneous measurement of snow or ice albedo. Consequently, artificial diurnal albedo variations in the order of 1-20 % are observed. The present paper proposes a general method to correct tilt errors of albedo measurements in cases where tilts of both the sensors and the slopes are not accurately measured or known. We demonstrate that atmospheric parameters for this correction model can either be taken from a nearby well-maintained and horizontally levelled measurement of global radiation or alternatively from a solar radiation model. In a next step the model is fitted to the measured data to determine tilts and directions of sensors and the underlying terrain slope. This then allows us to correct the measured albedo, the radiative balance and the energy balance. Depending on the direction of the slope and the sensors a comparison between measured and corrected albedo values reveals obvious over- or underestimations of albedo. It is also demonstrated that differences between measured and corrected albedo are generally highest for large solar zenith angles.

  20. Atmospheric and Surface Contributions to Planetary Albedo and their Relationship to the Total Meridional Energy Transport

    NASA Astrophysics Data System (ADS)

    Donohoe, A.; Battisti, D. S.

    2010-12-01

    The meridional distribution of incident solar radiation and planetary albedo both contribute to the equator-to-pole gradient in absorbed solar radiation (ASR) in the observed climate system. While the former component is determined by the Earth-Sun geometry and composes 60% of the equator-to-pole gradient in ASR, the latter component makes a significant (40%) contribution to the ASR gradient and is potentially a function of climate state due to its dependence on both atmospheric and surface albedo. In turn, the equator-to-pole gradient in planetary albedo is found to be primarily (86% -89%) dictated by atmospheric albedo with meridional gradients in surface albedo playing a much smaller role in forcing the climate system on the equator-to-pole scale. Simulations of the pre-industrial climate system using the CMIP3 coupled models show large differences in the equator-to-pole gradient in planetary albedo which are mainly due to differences in the simulated cloud distribution, with surface processes playing a much smaller role. The inter-model spread in total meridional heat transport is also primarily (85% of the inter-model spread) due to differences in the simulated cloud distribution. Further model simulations demonstrate that the surface albedo changes associated with moving from the present climate to an ice free climate have a small effect on the equator-to-pole gradient of ASR as compared to the uncertainty in simulated cloud distributions, and hence a small effect on the meridional heat transport.

  1. Variation in foliar nitrogen and albedo in response to nitrogen fertilization and elevated CO2.

    PubMed

    Wicklein, Haley F; Ollinger, Scott V; Martin, Mary E; Hollinger, David Y; Lepine, Lucie C; Day, Michelle C; Bartlett, Megan K; Richardson, Andrew D; Norby, Richard J

    2012-08-01

    Foliar nitrogen has been shown to be positively correlated with midsummer canopy albedo and canopy near infrared (NIR) reflectance over a broad range of plant functional types (e.g., forests, grasslands, and agricultural lands). To date, the mechanism(s) driving the nitrogen–albedo relationship have not been established, and it is unknown whether factors affecting nitrogen availability will also influence albedo. To address these questions, we examined variation in foliar nitrogen in relation to leaf spectral properties, leaf mass per unit area, and leaf water content for three deciduous species subjected to either nitrogen (Harvard Forest, MA, and Oak Ridge, TN) or CO(2) fertilization (Oak Ridge, TN). At Oak Ridge, we also obtained canopy reflectance data from the airborne visible/infrared imaging spectrometer (AVIRIS) to examine whether canopy-level spectral responses were consistent with leaf-level results. At the leaf level, results showed no differences in reflectance or transmittance between CO(2) or nitrogen treatments, despite significant changes in foliar nitrogen. Contrary to our expectations, there was a significant, but negative, relationship between foliar nitrogen and leaf albedo, a relationship that held for both full spectrum leaf albedo as well as leaf albedo in the NIR region alone. In contrast, remote sensing data indicated an increase in canopy NIR reflectance with nitrogen fertilization. Collectively, these results suggest that altered nitrogen availability can affect canopy albedo, albeit by mechanisms that involve canopy-level processes rather than changes in leaf-level reflectance. PMID:22294028

  2. A global assessment of forest surface albedo and its relationships with climate and atmospheric nitrogen deposition.

    PubMed

    Leonardi, Stefano; Magnani, Federico; Nolè, Angelo; Van Noije, Twan; Borghetti, Marco

    2015-01-01

    We present a global assessment of the relationships between the short-wave surface albedo of forests, derived from the MODIS satellite instrument product at 0.5° spatial resolution, with simulated atmospheric nitrogen deposition rates (Ndep ), and climatic variables (mean annual temperature Tm and total annual precipitation P), compiled at the same spatial resolution. The analysis was performed on the following five forest plant functional types (PFTs): evergreen needle-leaf forests (ENF); evergreen broad-leaf forests (EBF); deciduous needle-leaf forests (DNF); deciduous broad-leaf forests (DBF); and mixed-forests (MF). Generalized additive models (GAMs) were applied in the exploratory analysis to assess the functional nature of short-wave surface albedo relations to environmental variables. The analysis showed evident correlations of albedo with environmental predictors when data were pooled across PFTs: Tm and Ndep displayed a positive relationship with forest albedo, while a negative relationship was detected with P. These correlations are primarily due to surface albedo differences between conifer and broad-leaf species, and different species geographical distributions. However, the analysis performed within individual PFTs, strengthened by attempts to select 'pure' pixels in terms of species composition, showed significant correlations with annual precipitation and nitrogen deposition, pointing toward the potential effect of environmental variables on forest surface albedo at the ecosystem level. Overall, our global assessment emphasizes the importance of elucidating the ecological mechanisms that link environmental conditions and forest canopy properties for an improved parameterization of surface albedo in climate models. PMID:25044609

  3. A controlled snowmaking experiment testing the relation between black carbon content and reduction of snow albedo

    NASA Astrophysics Data System (ADS)

    Brandt, Richard E.; Warren, Stephen G.; Clarke, Antony D.

    2011-04-01

    Radiative transfer modeling of the reduction of snow albedo by black carbon (BC) requires experimental verification. In natural snow the albedo reduction is at most a few percent, and even with accurate measurements, attribution is ambiguous because snow albedo depends on other variables. In this experiment, artificial snowpacks are made by freezing of water droplets produced by a snowmaking machine in an open field, using water with and without added soot, in amounts about 100 times natural background soot levels, so as to obtain a large signal on albedo. The optically effective snow grain size is determined from the measured near-infrared albedo; matching the measured visible albedo then requires addition of BC to the radiative transfer model. The BC content of the artificial snowpacks is measured by filtering the meltwater; the filters are analyzed by a laboratory spectrophotometer as is done for filters from samples of natural snow. The BC content indicated by the filters agrees with that required in the model to match the observed albedo, but significant uncertainties remain, so further experiments are needed.

  4. Estimation of Instantaneous TOA Albedo at 670 nm over Ice Clouds from POLDER Multidirectional Measurements

    NASA Technical Reports Server (NTRS)

    Sun, W.; Loeb, N. G.; Kato, S.

    2003-01-01

    An algorithm that determines the 670-nm top-of-atmosphere (TOA) albedo of ice clouds over ocean using Polarization and Directionality of the Earth's Reflectance ( POLDER) multidirectional measurements is developed. A plane-parallel layer of ice cloud with various optical thicknesses and light scattering phase functions is assumed. For simplicity, we use a double Henyey-Greenstein phase function to approximate the volume-averaged phase function of the ice clouds. A multidirectional reflectance best-fit match between theoretical and POLDER reflectances is used to infer effective cloud optical thickness, phase function and TOA albedo. Sensitivity tests show that while the method does not provide accurate independent retrievals of effective cloud optical depth and phase function, TOA albedo retrievals are accurate to within similar to 3% for both a single layer of ice clouds or a multilayer system of ice clouds and water clouds. When the method is applied to POLDER measurements and retrieved albedos are compared with albedos based on empirical angular distribution models (ADMs), zonal albedo differences are generally smaller than similar to 3%. When albedos are compared with those on the POLDER-I ERB and Cloud product, the differences can reach similar to 15% at small solar zenith angles.

  5. Albedo of Surface CO2 Deposits in Mars' Residual South Polar Cap

    NASA Astrophysics Data System (ADS)

    James, P. B.; Wolff, M. J.; Bonev, B.

    2014-12-01

    The albedo of surface CO2 deposits in the Residual South Polar Cap (RSPC) of Mars controls their net condensation / sublimation over a martian year and is therefore a crucial parameter in determining RSPC stability. The albedo used in previous analyses is obtained by dividing I/F, determined from radiometrically calibrated imaging data, by the cosine of the incidence angle. Because of atmospheric aerosols, the albedo calculated from I/F above the atmosphere is not the surface albedo that enters into stability considerations. In order to determine the surface albedo, we interpolate optical depths determined from CRISM EPF measurements to provide estimates of the dust and ice opacities over the RSPC (Wolff et al., 2009) and use these to determine the actual surface albedos from MARCI images using the radiative transport program DISORT (Stamnes et al., 1988). Assuming that dust is the only contributor to atmospheric opacity, the retrieved surface albedos for the longer wavelength MARCI filters in MY 28 and 29 are found to be consistent despite very different dust opacities in the two years (James et al., 2014). However, this model fails to reproduce the short wavelength behavior in early summer. We consider possible modifications of the dust only model that could explain the discrepancy.

  6. The Effect of Black Carbon and Snow Grain Size on Snow Surface Albedo

    NASA Astrophysics Data System (ADS)

    Hadley, O. L.; Kirchstetter, T.; Flanner, M.

    2009-12-01

    Black carbon (BC) has been measured in snow and ice cores at levels that climate models predict are high enough to be the second leading cause in arctic ice melt and glacial retreat after greenhouse gas warming. BC deposited on snow reduces the snow surface albedo; however, in addition to BC content, snow albedo also depends on sky cover, solar angle, snow grain size and shape, surface roughness, and depth. Quantifying the albedo reduction due to BC separately from these other variables is difficult to achieve in field measurements. We are conducting laboratory experiments that isolate the effect of BC and snow grain size on snow albedo. Snow is made by spraying and freezing drops of water; BC contaminated snow is made from BC hydrosol. Snow albedo is measured with a spectrometer equipped with an integrating sphere over the entire visible spectrum (400-1000 nm). Snow grain size distribution and shape are characterized using a digital microscope to calculate the effective radius of the snow. Measured snow albedo is compared to that predicted using the Snow, Ice, and Aerosol Radiative Model. Preliminary results indicate good agreement between measured and modeled albedo for pure and BC contaminated snow.

  7. Evaluation of Moderate-Resolution Imaging Spectroradiometer (MODIS) Snow Albedo Product (MCD43A) over Tundra

    NASA Technical Reports Server (NTRS)

    Wang, Zhuosen; Schaaf, Crystal B.; Chopping, Mark J.; Strahler, Alan H.; Wang, Jindi; Roman, Miguel O.; Rocha, Adrian V.; Woodcock, Curtis E.; Shuai, Yanmin

    2012-01-01

    This study assesses the MODIS standard Bidirectional Reflectance Distribution Function (BRDF)/Albedo product, and the daily Direct Broadcast BRDF/Albedo algorithm at tundra locations under large solar zenith angles and high anisotropic diffuse illumination and multiple scattering conditions. These products generally agree with ground-based albedo measurements during the snow cover period when the Solar Zenith Angle (SZA) is less than 70deg. An integrated validation strategy, including analysis of the representativeness of the surface heterogeneity, is performed to decide whether direct comparisons between field measurements and 500- m satellite products were appropriate or if the scaling of finer spatial resolution airborne or spaceborne data was necessary. Results indicate that the Root Mean Square Errors (RMSEs) are less than 0.047 during the snow covered periods for all MCD43 albedo products at several Alaskan tundra areas. The MCD43 1- day daily albedo product is particularly well suited to capture the rapidly changing surface conditions during the spring snow melt. Results also show that a full expression of the blue sky albedo is necessary at these large SZA snow covered areas because of the effects of anisotropic diffuse illumination and multiple scattering. In tundra locations with dark residue as a result of fire, the MODIS albedo values are lower than those at the unburned site from the start of snowmelt.

  8. Analysis of earth albedo effect on sun sensor measurements based on theoretical model and mission experience

    NASA Technical Reports Server (NTRS)

    Brasoveanu, Dan; Sedlak, Joseph

    1998-01-01

    Analysis of flight data from previous missions indicates that anomalous Sun sensor readings could be caused by Earth albedo interference. A previous Sun sensor study presented a detailed mathematical model of this effect. The model can be used to study the effect of both diffusive and specular reflections and to improve Sun angle determination based on perturbed Sun sensor measurements, satellite position, and an approximate knowledge of attitude. The model predicts that diffuse reflected light can cause errors of up to 10 degrees in Coarse Sun Sensor (CSS) measurements and 5 to 10 arc sec in Fine Sun Sensor (FSS) measurements, depending on spacecraft orbit and attitude. The accuracy of these sensors is affected as long as part of the illuminated Earth surface is present in the sensor field of view. Digital Sun Sensors (DSS) respond in a different manner to the Earth albedo interference. Most of the time DSS measurements are not affected, but for brief periods of time the Earth albedo can cause errors which are a multiple of the sensor least significant bit and may exceed one degree. This paper compares model predictions with Tropical Rainfall Measuring Mission (TRMM) CSS measurements in order to validate and refine the model. Methods of reducing and mitigating the impact of Earth albedo are discussed. ne CSS sensor errors are roughly proportional to the Earth albedo coefficient. Photocells that are sensitive only to ultraviolet emissions would reduce the effective Earth albedo by up to a thousand times, virtually eliminating all errors caused by Earth albedo interference.

  9. Relations between albedos and emissivities from MODIS and ASTER data over North African Desert

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Dickinson, R. E.; Ogawa, K.; Tian, Y.; Jin, M.; Schmugge, T.; Tsvetsinskaya, E.

    2003-10-01

    This paper analyzes relations among MODIS surface albedos, ASTER broadband (3-14 μm) emissivities, and a soil taxonomy map over the arid areas of Algeria, Libya, and Tunisia in North Africa at 30 second (about 1 km) and 2 minute (about 4 km) spatial resolutions. The MODIS albedo data are from 7 spectral bands and 3 broadbands during dust-free seasons and the emissivity data are derived from a linear combination of the waveband emissivities of the ASTER five thermal infrared channels. Both albedo and emissivity data in the study region show similar considerable spatial variability, larger than assumed by most climate models, and such variability is related to the surface types (sands, rock, and soil orders). Emissivity over bare soils exhibits statistically significant correlations with albedos at both broadbands and most of spectral bands and decreases linearly with albedos. Albedo and emissivity are more strongly correlated with each other than either is to the surface types, apparently because of their higher resolution either spatially or in surface mineralogy. This paper provides guidance for the possible inclusion of such correlation to specify albedo and emissivity in climate models.

  10. Polar Cap Colors

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 12 May 2004 This daytime visible color image was collected on June 6, 2003 during the Southern Spring season near the South Polar Cap Edge.

    The THEMIS VIS camera is capable of capturing color images of the martian surface using its five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from the use of multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    Image information: VIS instrument. Latitude -77.8, Longitude 195 East (165 West). 38 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA

  11. Navigation lights color study

    NASA Astrophysics Data System (ADS)

    Barbosa, Jose G.; Alberg, Matthew T.

    2015-05-01

    The chromaticity of navigation lights are defined by areas on the International Commission on Illumination (CIE) 1931 chromaticity diagram. The corner coordinates for these areas are specified in the International Regulations for Prevention of Collisions at Sea, 1972 (72 COLREGS). The navigation light's color of white, red, green, and yellow are bounded by these areas. The chromaticity values specified by the COLREGS for navigation lights were intended for the human visual system (HVS). The HVS can determine the colors of these lights easily under various conditions. For digital color camera imaging systems the colors of these lights are dependent on the camera's color spectral sensitivity, settings, and color correction. At night the color of these lights are used to quickly determine the relative course of vessels. If these lights are incorrectly identified or there is a delay in identifying them this could be a potential safety of ship concern. Vessels that use camera imaging systems exclusively for sight, at night, need to detect, identify, and discriminate navigation lights for navigation and collision avoidance. The introduction of light emitting diode (LED) lights and lights with different spectral signatures have the potential to be imaged very differently with an RGB color filter array (CFA) color camera than with the human eye. It has been found that some green navigation lights' images appear blue verse green. This has an impact on vessels that use camera imaging systems exclusively for navigation. This paper will characterize color cameras ability to properly reproducing navigation lights' color and survey a set of navigation light to determine if they conform to the COLREGS.

  12. Color Mosaics and Multispectral Analyses of Mars Reconnaissance Orbit Mars Color Imager (MARCI) Observations

    NASA Astrophysics Data System (ADS)

    Bell, J. F.; Anderson, R. B.; Kressler, K.; Wolff, M. J.; Cantor, B.; Science; Operations Teams, M.

    2008-12-01

    The Mars Color Imager (MARCI) on the Mars Reconnaissance Orbiter (MRO) spacecraft is a is a wide-angle, multispectral Charge-Coupled Device (CCD) "push-frame" imaging camera designed to provide frequent, synoptic-scale imaging of Martian atmospheric and surface features and phenomena. MARCI uses a 1024x1024 pixel interline transfer CCD detector that has seven narrowband interference filters bonded directly to the CCD. Five of the filters are in the visible to short-wave near-IR wavelength range (MARCI-VIS: 437, 546, 604, 653, and 718 nm) and two are in the UV (MARCI-UV: 258 and 320 nm). During the MRO primary mission (November 2006 through November 2008), the instrument has acquired data swaths on the dayside of the planet, at an equator-crossing local solar time of about 3:00 p.m. We are analyzing the MARCI-VIS multispectral imaging data from the MRO primary mission in order to investigate (a) color variations in the surface and their potential relationship to variations in iron mineralogy; and (b) the time variability of surface albedo features at the approx. 1 km/pixel scale typical of MARCI nadir-pointed observations. Raw MARCI images were calibrated to radiance factor (I/F) using pre-flight and in-flight calibration files and a pipeline calibration process developed by the science team. We are using these calibrated MARCI files to generate map-projected mosaics of each of the 30 USGS standard quadrangles on Mars in each of the five MARCI-VIS bands. Our mosaicking software searches the MARCI data set to identify files that match a user- defined set of limits such as latitude, longitude, Ls, incidence angle, emission angle, and year. Each of the files matching the desired criteria is then map-projected and inserted in series into an output mosaic covering the desired lat/lon range. In cases of redundant coverage of the same pixels by different files, the user can set the program to use the pixel with the lowest I/F value for each individual MARCI-VIS band, thus

  13. Impacts of Synoptic Weather Patterns on Snow Albedo at Sites in New England

    NASA Astrophysics Data System (ADS)

    Adolph, A. C.; Albert, M. R.; Lazarcik, J.; Dibb, J. E.; Amante, J.; Price, A. N.

    2015-12-01

    Winter snow in the northeastern United States has changed over the last several decades, resulting in shallower snow packs, fewer days of snow cover and increasing precipitation falling as rain in the winter. In addition to these changes which cause reductions in surface albedo, increasing winter temperatures also lead to more rapid snow grain growth, resulting in decreased snow reflectivity. We present in-situ measurements and analyses to test the sensitivity of seasonal snow albedo to varying weather conditions at sites in New England. In particular, we investigate the impact of temperature on snow albedo through melt and grain growth, the impact of precipitation event frequency on albedo through snow "freshening," and the impact of storm path on snow structure and snow albedo. Over three winter seasons between 2013 and 2015, in-situ snow characterization measurements were made at three non-forested sites across New Hampshire. These near-daily measurements include spectrally resolved albedo, snow optical grain size determined through contact spectroscopy, snow depth, snow density and local meteorological parameters. Combining this information with storm tracks derived from HYSPLIT modeling, we quantify the current sensitivity of northeastern US snow albedo to temperature as well as precipitation type, frequency and path. Our analysis shows that southerly winter storms result in snow with a significantly lower albedo than storms which come from across the continental US or the Atlantic Ocean. Interannual variability in temperature and statewide spatial variability in snowfall rates at our sites show the relative importance of snowfall amount and temperatures in albedo evolution over the course of the winter.

  14. Remote sensing albedo product validation over heterogenicity surface based on WSN: preliminary results and its uncertainty

    NASA Astrophysics Data System (ADS)

    Wu, Xiaodan; Wen, Jianguang; Xiao, Qing; Peng, Jingjing; Liu, Qiang; Dou, Baocheng; Tang, Yong; Li, Xiuhong

    2014-11-01

    The evaluation of uncertainty in satellite-derived albedo products is critical to ensure their accuracy, stability and consistency for studying climate change. In this study, we assess the Moderate-resolution Imaging Spectroradiometer(MODIS) albedo 8 day standard product MOD43B3 using the ground-based albedometer measurement based on the wireless sensor network (WSN) technology. The experiment have been performed in Huailai, Hubei province. A 1.5 km*2 km area are selected as study region, which locates between 115.78° E-115.80° E and 40.35° N-40.37° N. This area is characterized by its distinct landscapes: bare ground between January and April, corn from May to Octorber. That is, this area is relatively homegeneous from January to Octorber, but in Novermber and December, the surface is very heterogeneous because of straw burning, as well as snow fall and snow melting. It is a big challenge to validate the MODIS albedo products because of the vast difference in spatial resolution between ground measurement and satellite measurement. Here, we use the HJ albedo products as the bridge that link the ground measurement with satellite data. Firstly, we analyses the spatial representativeness of the WSN site under green-up, dormant and snow covered situations to decide whether direct comparison between ground-based measurement and MODIS albedo can be made. The semivariogram is used here to describe the ground hetergeneity around the WSN site. In addition, the bias between the average albedo of the certain neighborhood centered at the WSN site and the center pixel albedo is also calculated.Then we compare the MOD43B3 value with the ground-based value. Result shows that MOD43B3 agree with in situ well during the growing season, however, there are relatively large difference between ground albedos and MCD43B3 albedos during dormant and snow-coverd periods.

  15. On Spectral Invariance of Single Scattering Albedo for Weakly Absorbing Wavelengths

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander

    2012-01-01

    The single scattering albedo omega (sub 0 lambda) in atmospheric radiative transfer is the ratio of the scattering coefficient to the total extinction coefficient. For cloud water droplets both the scattering and absorption coefficients, thus the single scattering albedo, are functions of wavelength A and droplet size r. In this presentation we will show that for water droplets at weakly absorbing wavelengths, the ratio omega (sub 0 lambda)(r). The slope and intercept of the linear function are wavelength independent and sum to unity. This relationship allows for a representation of any single scattering albedo omega (sub 0 lambda) via one known spectrum omega (sub 0 lambda)(r(sub o)). We will provide a simple physical explanation of the discovered relationship. In addition to water droplets, similar linear relationships were found for the single scattering albedo of non-spherical ice crystals. The single scattering albedo $\\omega _ {0\\lambda }$ in atmospheric radiative transfer is the ratio of the scattering coefficient to the total extinction coefficient. For cloud water droplets both the scattering and absorption coefficients, and thus the single scattering albedo, are functions of wavelength $\\lambda $ and droplet size $r$. We show that for water droplets at weakly absorbing wavelengths, the ratio $\\omega _ {0\\lambda } (r)$/$\\omega _ {0\\lambda } (r_{0})$ of two single scattering albedo spectra for two different droplet sizes is a linear function of $\\omega _{0\\lambda }(r)$. The slope and intercept of the linear function are wavelength independent and sum to unity. This relationship allows for a representation of any single scattering albedo $\\omega_{0\\lambda }(r)$ via one known spectrum $\\omega_{0\\lambda }(r_{0})$. We provide a simple physical explanation of the discovered relationship. Similar linear relationships characterize the single scattering albedo of non-spherical ice crystals.

  16. Radiative forcing bias of simulated surface albedo modifications linked to forest cover changes at northern latitudes

    NASA Astrophysics Data System (ADS)

    Bright, R. M.; Myhre, G.; Astrup, R.; Antón-Fernández, C.; Strømman, A. H.

    2015-04-01

    In the presence of snow, the bias in the prediction of surface albedo by many climate models remains difficult to correct due to the difficulties of separating the albedo parameterizations from those describing snow and vegetation cover and structure. This can be overcome by extracting the albedo parameterizations in isolation, by executing them with observed meteorology and information on vegetation structure, and by comparing the resulting predictions to observations. Here, we employ an empirical data set of forest structure and daily meteorology for three snow cover seasons and for three case regions in boreal Norway to compute and evaluate predicted albedo to those based on daily MODIS retrievals. Forest and adjacent open area albedos are subsequently used to estimate bias in top-of-the-atmosphere (TOA) radiative forcings (RF) from albedo changes (Δα, Open-Forest) connected to land use and land cover changes (LULCC). As expected, given the diversity of approaches by which snow masking by tall-statured vegetation is parameterized, the magnitude and sign of the albedo biases varied considerably for forests. Large biases at the open sites were also detected, which was unexpected given that these sites were snow-covered throughout most of the analytical time period, therefore eliminating potential biases linked to snow-masking parameterizations. Biases at the open sites were mostly positive, exacerbating the strength of vegetation masking effects and hence the simulated LULCC Δα RF. Despite the large biases in both forest and open area albedos by some schemes in some months and years, the mean Δα RF bias over the 3-year period (November-May) was considerably small across models (-2.1 ± 1.04 Wm-2; 21 ± 11%); four of six models had normalized mean absolute errors less than 20%. Identifying systematic sources of the albedo prediction biases proved challenging, although for some schemes clear sources were identified.

  17. Migration of Frosts from High-Albedo Regions of Pluto: what New Horizons Reveals

    NASA Astrophysics Data System (ADS)

    Buratti, Bonnie J.; Stern, S. A.; Weaver, Hal A.; Young, Leslie A.; Olkin, Cathy B.; Ennico, Kimberly; Binzel, Richard P.; Zangari, Amanda; Earle, Alissa M.

    2015-11-01

    With its high eccentricity and obliquity, Pluto should exhibit seasonal volatile transport on its surface. Several lines of evidence support this transport: doubling of Pluto’s atmospheric pressure over the past two decades (Young et al., 2013, Ap. J. 766, L22; Olkin et al., 2015, Icarus 246, 230); changes in its historical rotational light curve, once all variations due to viewing geometry have been modelled (Buratti et al., 2015; Ap. J. 804, L6); and changes in HST albedo maps (Buie et al., 2010, Astron. J. 139, 1128). New Horizons LORRI images reveal that the region of greatest albedo change is not the polar cap(s) of Pluto, but the feature informally named Tombaugh Regio (TR). This feature has a normal reflectance as high as ~0.8 in some places, and it is superposed on older, lower-albedo pre-existing terrain with an albedo of only ~0.10. This contrast is larger than any other body in the Solar System, except for Iapetus. This albedo dichotomy leads to a complicated system of cold-trapping and thermal segregation, beyond the simple picture of seasonal volatile transport. Whatever the origin of TR, it initially acted as a cold trap, as the temperature differential between the high and low albedo regions could be enormous, possibly approaching 20K, based on their albedo differences and assuming their normalized phase curves are similar. This latter assumption will be refined as the full New Horizons data set is returned.Over six decades of ground-based photometry suggest that TR has been decreasing in albedo over the last 25 years. Possible causes include changing insolation angles, or sublimation from the edges where the high-albedo material impinges on a much warmer substrate.Funding by the NASA New Horizons Project acknowledged.

  18. High color-rendering warm-white lamps using quantum-dot color conversion films.

    PubMed

    Lien, Jiun-Yi; Chen, Chih-Jung; Chiang, Ray-Kuang; Wang, Sue-Lein

    2016-07-11

    Colloidal quantum dots are promising next-generation phosphors to enhance the color rendition of light-emitting diodes (LEDs) while minimizing the brightness droop. In order to exploit the beneficial tunability of quantum dots for highly efficient devices, optimization and determination of the performance limit are of crucial importance. In this work, a facile preparation process of red-emission quantum dot films and simulation algorithm for fitting this film with two commercial LED flat lamps to the optimized performance are developed. Based on the algorithm, one lamp improves from cold-white light (8669 K) with poor color rendition (Ra = 72) and luminous efficacy (85 lm/W) to warm-white light (2867 K) with Ra = 90.8 and R9 = 74.9, and the other reaches Ra = 93 ∼ 95. Impressively, the brightness droop is only about 15 ∼ 20% and the luminous efficacy of 68 lm/W is achieved. Furthermore, our device shows reliability over 1000 hours with only PET (polyethylene-terephthalate) films as the barrier, indicating that this auxiliary red-emission film can be easily applied to improve the color rendition of most commercial LED flat lamps. PMID:27410891

  19. High color-rendering warm-white lamps using quantum-dot color conversion films

    NASA Astrophysics Data System (ADS)

    Lien, Jiun-Yi; Chen, Chih-Jung; Chiang, Ray-Kuang; Wang, Sue-Lein

    2016-07-01

    Colloidal quantum dots are promising next-generation phosphors to enhance the color rendition of light-emitting devices (LEDs) while minimizing the brightness drop. In order to exploit the beneficial tunability of quantum dots for highly efficient devices, optimization and determination of the performance limit are of crucial importance. In this work, a facile preparation process of red-emission quantum dot films and simulation algorithm for fitting this film with two commercial LED flat lamps to the optimized performance are developed. Based on the algorithm, one lamp improves from cold-white light (8669 K) with poor color rendition ($R_{a}=72$) and luminous efficacy (85 lm/W) to warm-white light (2867 K) with $R_{a}=90.8$ and $R_{9}=74.9$, and the other reaches $R_{a}=93\\sim95$. Impressively, the brightness drop is only about $15\\sim20\\%$. Furthermore, our device shows reliability over 1000 hours with only PET (polyethylene-terephthalate) films as the barrier, indicating that this auxiliary red-emission film can be easily applied to improve the color rendition of most commercial LED flat lamps.

  20. Climate implications of including albedo effects in terrestrial carbon policy

    NASA Astrophysics Data System (ADS)

    Jones, A. D.; Collins, W.; Torn, M. S.; Calvin, K. V.

    2012-12-01

    Proposed strategies for managing terrestrial carbon in order to mitigate anthropogenic climate change, such as financial incentives for afforestation, soil carbon sequestration, or biofuel production, largely ignore the direct effects of land use change on climate via biophysical processes that alter surface energy and water budgets. Subsequent influences on temperature, hydrology, and atmospheric circulation at regional and global scales could potentially help or hinder climate stabilization efforts. Because these policies often rely on payments or credits expressed in units of CO2-equivalents, accounting for biophysical effects would require a metric for comparing the strength of biophysical climate perturbation from land use change to that of emitting CO2. One such candidate metric that has been suggested in the literature on land use impacts is radiative forcing, which underlies the global warming potential metric used to compare the climate effects of various greenhouse gases with one another. Expressing land use change in units of radiative forcing is possible because albedo change results in a net top-of-atmosphere radiative flux change. However, this approach has also been critiqued on theoretical grounds because not all climatic changes associated with land use change are principally radiative in nature, e.g. changes in hydrology or the vertical distribution of heat within the atmosphere, and because the spatial scale of land use change forcing differs from that of well-mixed greenhouse gases. To explore the potential magnitude of this discrepancy in the context of plausible scenarios of future land use change, we conduct three simulations with the Community Climate System Model 4 (CCSM4) utilizing a slab ocean model. Each simulation examines the effect of a stepwise change in forcing relative to a pre-industrial control simulation: 1) widespread conversion of forest land to crops resulting in approximately 1 W/m2 global-mean radiative forcing from albedo

  1. Stochastic approach to flat direction during inflation

    SciTech Connect

    Kawasaki, Masahiro; Takesako, Tomohiro E-mail: takesako@icrr.u-tokyo.ac.jp

    2012-08-01

    We revisit the time evolution of a flat and non-flat direction system during inflation. In order to take into account quantum noises in the analysis, we base on stochastic formalism and solve coupled Langevin equations numerically. We focus on a class of models in which tree-level Hubble-induced mass is not generated. Although the non-flat directions can block the growth of the flat direction's variance in principle, the blocking effects are suppressed by the effective masses of the non-flat directions. We find that the fate of the flat direction during inflation is determined by one-loop radiative corrections and non-renormalizable terms as usually considered, if we remove the zero-point fluctuation from the noise terms.

  2. Albedo protons and electrons at ISS - an important contribution to astronaut dose?

    NASA Astrophysics Data System (ADS)

    Norman, R. B.; Slaba, T. C.; Badavi, F. F.; Mertens, C. J.; Blattnig, S.

    2015-12-01

    Albedo particles, which are created by cosmic ray interactions in the atmosphere and are moving upwards away from the surface of the earth, are often considered a negligible contribution to astronaut radiation exposure on the International Space Station (ISS). Models of astronaut exposure, however, consistently underestimate measurements onboard ISS when these albedo particles are neglected. Recent measurements by instruments on ISS (AMS, PAMELA, and SEDA-AP) hint that there are high energy protons and electrons which are not being modeled and that may contribute to radiation exposure on ISS. Estimates of the contribution of radiation exposure on ISS due to albedo particles, along with open questions, will be discussed.

  3. Quantifying the missing link between albedo and productivity of boreal forests

    NASA Astrophysics Data System (ADS)

    Hovi, Aarne; Liang, Jingjing; Korhonen, Lauri; Kobayashi, Hideki; Rautiainen, Miina

    2016-04-01

    Albedo and fraction of absorbed photosynthetically active radiation (FAPAR) determine the shortwave radiation balance and productivity of forests. Several studies have examined the relation between forest structure and albedo in the boreal zone. Studies regarding FAPAR are fewer and the relations between albedo and FAPAR are still poorly understood. To study these relations we simulated shortwave black sky albedo and canopy FAPAR, using the FRT forest reflectance model. We used two sets of field plots as input data. The plots were located in Alaska, USA (N = 584) and in Finland (N = 506) between Northern latitudes of 60° and 68° , and they represent naturally grown and more intensively managed (regularly thinned) forests, respectively. The simulations were carried out with sun zenith angles (SZA) typical to the biome, ranging from 40° to 80° . The simulated albedos in coniferous plots decreased with increasing tree height, whereas canopy FAPAR showed an opposite trend. The albedo of broadleaved plots was notably higher than that of coniferous plots. No species differences in canopy FAPAR were seen, except for pine forests in Finland that showed lowest FAPAR among species. Albedo and canopy FAPAR were negatively correlated (r ranged from -0.93 to -0.69) in coniferous plots. The correlations were notably weaker (r ranged from -0.64 to 0.05) if plots with broadleaved trees were included. To show the influence of forest management, we further examined the response of albedo and FAPAR to forest density (basal area) and fraction of broadleaved trees. Plots with low basal area showed high albedos but also low canopy FAPAR. When comparing the sparse plots to dense ones, the relative decrease in canopy FAPAR was larger than the relative increase in albedo. However, at large SZAs the basal area could be lowered to approx. 20 m2 ha‑1 before FAPAR was notably reduced. Increasing the proportion of broadleaved trees from 0% to 100% increased the albedos to approximately

  4. Global Survey of the Relationship Between Cloud Droplet Size and Albedo Using ISCCP

    NASA Technical Reports Server (NTRS)

    Han, Qingyuan; Rossow, William B.; Chou, Joyce; Welch, Ronald M.

    1997-01-01

    The possible indirect aerosol effect on climate is examined. First, the spatial relationship is checked between cloud droplet radii and cloud albedo in different areas where aerosol concentration are known to differ significantly. Second, the temporal relationship between r(sub e) and cloud albedo is explored for each 2.5 deg x 2.5 deg grid box to reveal in which regions of the globe the variations of cloud albedo are correlated with changes in r(sub e) consistent with the indirect aerosol effect hypothesis.

  5. Retrieval of surface albedo over the Railroad Valley playa from AVIRIS measurements

    NASA Astrophysics Data System (ADS)

    Taylor, T.; O'Brien, D.; O'Dell, C. W.; kuze, A.

    2011-12-01

    High spatial resolution spectra, measured by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) in the 0.76, 1.6 and 2.0 micron bands, are used to retrieve albedo over a bright desert surface in support of the GOSAT vicarious calibration campaign. The albedo retrieval consists of a simple, linear least squares (LLS) fitting routine, coupled with a radiative transfer model. The retrieved albedos are used as inputs to a separate radiative transfer code used to model top of the atmosphere (TOA) radiances. These TOA radiances are then compared to those measured by GOSAT, thus providing the basis for the vicarious calibration of the GOSAT sensors.

  6. Empirical models of monthly and annual surface albedo in managed boreal forests of Norway

    NASA Astrophysics Data System (ADS)

    Bright, Ryan M.; Astrup, Rasmus; Strømman, Anders H.

    2013-04-01

    As forest management activities play an increasingly important role in climate change mitigation strategies of Nordic regions such as Norway, Sweden, and Finland -- the need for a more comprehensive understanding of the types and magnitude of biogeophysical climate effects and their various tradeoffs with the global carbon cycle becomes essential to avoid implementation of sub-optimal policy. Forest harvest in these regions reduces the albedo "masking effect" and impacts Earth's radiation budget in opposing ways to that of concomitant carbon cycle perturbations; thus, policies based solely on biogeochemical considerations in these regions risk being counterproductive. There is therefore a need to better understand how human disturbances (i.e., forest management activities) affect important biophysical factors like surface albedo. An 11-year remotely sensed surface albedo dataset coupled with stand-level forest management data for a variety of stands in Norway's most productive logging region are used to develop regression models describing temporal changes in monthly and annual forest albedo following clear-cut harvest disturbance events. Datasets are grouped by dominant tree species and site indices (productivity), and two alternate multiple regression models are developed and tested following a potential plus modifier approach. This resulted in an annual albedo model with statistically significant parameters that explains a large proportion of the observed variation, requiring as few as two predictor variables: i) average stand age - a canopy modifier predictor of albedo, and ii) stand elevation - a local climate predictor of a forest's potential albedo. The same model structure is used to derive monthly albedo models, with models for winter months generally found superior to summer models, and conifer models generally outperforming deciduous. We demonstrate how these statistical models can be applied to routine forest inventory data to predict the albedo

  7. Measurement of the absolute hohlraum wall albedo under ignition foot drive conditions

    SciTech Connect

    Suter, L J; Wallace, R J; Hammel, B A; Weber, F A; Landen, O L; Campbell, K M; DeWald, E L; Glenzer, S H; Rosen, M D; Jones, O S; Turner, R E; Kauffmann, R L; Hammer, J H

    2003-11-25

    We present the first measurements of the absolute albedos of hohlraums made from gold or from high-Z mixtures. The measurements are performed over the range of radiation temperatures (70-100 eV) expected during the foot of an indirect-drive temporally-shaped ignition laser pulse, where accurate knowledge of the wall albedo (i.e. soft x-ray wall re-emission) is most critical for determining capsule radiation symmetry. We find that the gold albedo agrees well with calculations using the super transition array opacity model, potentially providing additional margin for ICF ignition.

  8. Colorful Underwater Sea Creatures

    ERIC Educational Resources Information Center

    McCutcheon, Heather

    2011-01-01

    In this article, the author describes a project wherein students created colorful underwater sea creatures. This project began with a discussion about underwater sea creatures and how they live. The first step was making the multi-colored tissue paper that would become sea creatures and seaweed. Once students had the shapes of their sea creatures…

  9. Equivalent Colorings with "Maple"

    ERIC Educational Resources Information Center

    Cecil, David R.; Wang, Rongdong

    2005-01-01

    Many counting problems can be modeled as "colorings" and solved by considering symmetries and Polya's cycle index polynomial. This paper presents a "Maple 7" program link http://users.tamuk.edu/kfdrc00/ that, given Polya's cycle index polynomial, determines all possible associated colorings and their partitioning into equivalence classes. These…

  10. 3-D Color Wheels

    ERIC Educational Resources Information Center

    DuBois, Ann

    2010-01-01

    The blending of information from an academic class with projects from art class can do nothing but strengthen the learning power of the student. Creating three-dimensional color wheels provides the perfect opportunity to combine basic geometry knowledge with color theory. In this article, the author describes how her seventh-grade painting…

  11. Color names, color categories, and color-cued visual search: Sometimes, color perception is not categorical

    PubMed Central

    Brown, Angela M; Lindsey, Delwin T; Guckes, Kevin M

    2011-01-01

    The relation between colors and their names is a classic case-study for investigating the Sapir-Whorf hypothesis that categorical perception is imposed on perception by language. Here, we investigate the Sapir-Whorf prediction that visual search for a green target presented among blue distractors (or vice versa) should be faster than search for a green target presented among distractors of a different color of green (or for a blue target among different blue distractors). Gilbert, Regier, Kay & Ivry (2006) reported that this Sapir-Whorf effect is restricted to the right visual field (RVF), because the major brain language centers are in the left cerebral hemisphere. We found no categorical effect at the Green|Blue color boundary, and no categorical effect restricted to the RVF. Scaling of perceived color differences by Maximum Likelihood Difference Scaling (MLDS) also showed no categorical effect, including no effect specific to the RVF. Two models fit the data: a color difference model based on MLDS and a standard opponent-colors model of color discrimination based on the spectral sensitivities of the cones. Neither of these models, nor any of our data, suggested categorical perception of colors at the Green|Blue boundary, in either visual field. PMID:21980188

  12. Peripheral Color Demo

    PubMed Central

    2015-01-01

    A set of structured demonstrations of the vividness of peripheral color vision is provided by arrays of multicolored disks scaled with eccentricity. These demonstrations are designed to correct the widespread misconception that peripheral color vision is weak or nonexistent. PMID:27551354

  13. Dynamic egg color mimicry.

    PubMed

    Hanley, Daniel; Šulc, Michal; Brennan, Patricia L R; Hauber, Mark E; Grim, Tomáš; Honza, Marcel

    2016-06-01

    Evolutionary hypotheses regarding the function of eggshell phenotypes, from solar protection through mimicry, have implicitly assumed that eggshell appearance remains static throughout the laying and incubation periods. However, recent research demonstrates that egg coloration changes over relatively short, biologically relevant timescales. Here, we provide the first evidence that such changes impact brood parasite-host eggshell color mimicry during the incubation stage. First, we use long-term data to establish how rapidly the Acrocephalus arundinaceus Linnaeus (great reed warbler) responded to natural parasitic eggs laid by the Cuculus canorus Linnaeus (common cuckoo). Most hosts rejected parasitic eggs just prior to clutch completion, but the host response period extended well into incubation (~10 days after clutch completion). Using reflectance spectrometry and visual modeling, we demonstrate that eggshell coloration in the great reed warbler and its brood parasite, the common cuckoo, changes rapidly, and the extent of eggshell color mimicry shifts dynamically over the host response period. Specifically, 4 days after being laid, the host should notice achromatic color changes to both cuckoo and warbler eggs, while chromatic color changes would be noticeable after 8 days. Furthermore, we demonstrate that the perceived match between host and cuckoo eggshell color worsened over the incubation period. These findings have important implications for parasite-host coevolution dynamics, because host egg discrimination may be aided by disparate temporal color changes in host and parasite eggs. PMID:27516874

  14. Language and Color Symbolism.

    ERIC Educational Resources Information Center

    Anderson, Earl R.

    1977-01-01

    Suggests discussion and a writing assignment on the ways color terms have changed from Old English and Indo-European roots; urges a study of Black-White polarity that goes beyond racial connotations of those terms. Provides informative materials on many specific color terms. (TJ)

  15. Spirit's View from 'Engineering Flats'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Figure 1 [figure removed for brevity, see original site] Figure 2

    This 360-degree view from a site dubbed 'Engineering Flats' combines several frames taken by the navigation camera on NASA's Mars Exploration Rover Spirit during the rover's 182nd martian day, or sol (July 7, 2004). Spirit had driven to this spot in the 'Columbia Hills' for four sols of engineering work on its right front wheel and a recalibration of positioning accuracy for tools on its robotic arm. The wheel tracks just beyond the rover's shadow indicate where Spirit had spent the preceding three weeks examining rocks in and near 'Hank's Hollow.' The view is presented in a cylindrical projection with geometric seam correction.

    Figure 1 is the left-eye view of a stereo pair and Figure 2 is the right-eye view of a stereo pair.

  16. Flat disc, radially nonhomogeneous, lenses

    NASA Astrophysics Data System (ADS)

    Cornbleet, S.

    1980-12-01

    A plane surfaced lens can be constructed through the use of a radially nonhomogenous medium, with axial symmetry. The rays from an axial source are incident on the plane front surface, perpendicular to the axis, where the assumption is made that the rays obey Snell's laws locally as for an infinite uniform medium. The curved ray paths are then given by the standard ray integral and are taken up to the point where each ray becomes horizontal. For certain polynomial functions describing the refractive index, the ray integral is an incomplete elliptic integral of the first kind, and trial functions can be inserted, such that the rays have become horizontal all at a second plane surface, thus creating a flat disk lens. The total symmetry of the design provides for many advantageous properties.

  17. Color spaces for color-gamut mapping

    NASA Astrophysics Data System (ADS)

    McCann, John J.

    1999-10-01

    Before doing extensive color gamut experiments, we wanted to test the uniformity of CIE L*a*b*. This paper shows surprisingly large discrepancies between CIE L*a*b* and isotropic observation-based color spaces, such as Munsell: (1) L*a*b* chroma exaggerate yellows and underestimate blues. (2) The average discrepancy between L*a*b* and ideal is 27%. (3) Chips with identical L*a*b* hue angles are not the same color. L*a*b* introduces errors larger than many gamut mapping corrections. We have isotropic data in the Munsell Book. Computers allow 3D lookup tables to convert instantly any measured L*a*b* to interpolated Munsell Book values. We call this space ML, Ma, and Mb in honor of Munsell. LUTs have been developed for both LabtoMLab and MLabtoLab. With this zero-error, isotropic space we can return our attention to the original problem of color-gamut image processing.

  18. Flat laminated microbial mat communities

    NASA Astrophysics Data System (ADS)

    Franks, Jonathan; Stolz, John F.

    2009-10-01

    Flat laminated microbial mats are complex microbial ecosystems that inhabit a wide range of environments (e.g., caves, iron springs, thermal springs and pools, salt marshes, hypersaline ponds and lagoons, methane and petroleum seeps, sea mounts, deep sea vents, arctic dry valleys). Their community structure is defined by physical (e.g., light quantity and quality, temperature, density and pressure) and chemical (e.g., oxygen, oxidation/reduction potential, salinity, pH, available electron acceptors and donors, chemical species) parameters as well as species interactions. The main primary producers may be photoautotrophs (e.g., cyanobacteria, purple phototrophs, green phototrophs) or chemolithoautophs (e.g., colorless sulfur oxidizing bacteria). Anaerobic phototrophy may predominate in organic rich environments that support high rates of respiration. These communities are dynamic systems exhibiting both spatial and temporal heterogeneity. They are characterized by steep gradients with microenvironments on the submillimeter scale. Diel oscillations in the physical-chemical profile (e.g., oxygen, hydrogen sulfide, pH) and species distribution are typical for phototroph-dominated communities. Flat laminated microbial mats are often sites of robust biogeochemical cycling. In addition to well-established modes of metabolism for phototrophy (oxygenic and non-oxygenic), respiration (both aerobic and anaerobic), and fermentation, novel energetic pathways have been discovered (e.g., nitrate reduction couple to the oxidation of ammonia, sulfur, or arsenite). The application of culture-independent techniques (e.g., 16S rRNA clonal libraries, metagenomics), continue to expand our understanding of species composition and metabolic functions of these complex ecosystems.

  19. Image color reduction method for color-defective observers using a color palette composed of 20 particular colors

    NASA Astrophysics Data System (ADS)

    Sakamoto, Takashi

    2015-01-01

    This study describes a color enhancement method that uses a color palette especially designed for protan and deutan defects, commonly known as red-green color blindness. The proposed color reduction method is based on a simple color mapping. Complicated computation and image processing are not required by using the proposed method, and the method can replace protan and deutan confusion (p/d-confusion) colors with protan and deutan safe (p/d-safe) colors. Color palettes for protan and deutan defects proposed by previous studies are composed of few p/d-safe colors. Thus, the colors contained in these palettes are insufficient for replacing colors in photographs. Recently, Ito et al. proposed a p/dsafe color palette composed of 20 particular colors. The author demonstrated that their p/d-safe color palette could be applied to image color reduction in photographs as a means to replace p/d-confusion colors. This study describes the results of the proposed color reduction in photographs that include typical p/d-confusion colors, which can be replaced. After the reduction process is completed, color-defective observers can distinguish these confusion colors.

  20. Flat conductor cable design, manufacture, and installation

    NASA Technical Reports Server (NTRS)

    Angele, W.; Hankins, J. D.

    1973-01-01

    Pertinent information for hardware selection, design, manufacture, and quality control necessary for flat conductor cable interconnecting harness application is presented. Comparisons are made between round wire cable and flat conductor cable. The flat conductor cable interconnecting harness systems show major cost, weight, and space savings, plus increased system performance and reliability. The design application section includes electrical characteristics, harness design and development, and a full treatise on EMC considerations. Manufacturing and quality control sections pertain primarily to the developed conductor-contact connector system and special flat conductor cable to round wire cable transitions.

  1. Flat-band engineering of mobility edges

    NASA Astrophysics Data System (ADS)

    Danieli, Carlo; Bodyfelt, Joshua D.; Flach, Sergej

    2015-06-01

    Properly modulated flat-band lattices have a divergent density of states at the flat-band energy. Quasiperiodic modulations are known to host a metal-insulator transition already in one space dimension. Their embedding into flat-band geometries consequently allows for a precise engineering and fine tuning of mobility edges. We obtain analytic expressions for singular mobility edges for two flat-band lattice examples. In particular, we engineer cases with arbitrarily small energy separations of mobility edge, zeroes, and divergencies.

  2. Subpixel variability of MODIS albedo retrievals and its importance for ice sheet surface melting in southwestern Greenland's ablation zone

    NASA Astrophysics Data System (ADS)

    Moustafa, S.; Rennermalm, A. K.; Roman, M. O.; Koenig, L.; Smith, L. C.; Schaaf, C.; Wang, Z.; Mioduszewski, J.

    2013-12-01

    On the Greenland ice sheet, albedo declined across 70% of its surface since 2000, with the greatest reduction in the lower 600 m of the southwestern ablation zone. Because albedo plays a prominent role in the ice sheet surface energy balance, its decline has resulted in near doubling of meltwater production. To characterize ice sheet albedo, Moderate Imaging Spectrometer (MODIS) surface albedo products are typically used. However, it is unclear how the spatial variability of albedo within a MODIS pixel influences surface melting and whether it can be considered a linear function of albedo. In this study, high spatiotemporal resolution measurements of spectral albedo and ice sheet surface ablation were collected along a ~ 1.3 km transect during June 2013 within the Akuliarusiarsuup Kuua (AK) River watershed in southwest Greenland. Spectral measurements were made at 325-1075 nm using a Analytical Spectral Devices (ASD) spectroradiometer, fitted with a Remote Cosine Receptor (RCR). In situ albedo measurements are compared with the daily MODIS albedo product (MCD43A) to analyze how space, time, surface heterogeneity, atmospheric conditions, and solar zenith angle geometry govern albedo at different scales. Finally, analysis of sub-pixel albedo and ablation reveal its importance on meltwater production in the lower parts of the ice sheet margin.

  3. Geomorphic Surface Maps of Northern Frenchman Flat, Nevada Test Site, Southern Nevada

    SciTech Connect

    Bechtel Nevada

    2005-08-01

    Large-scale (1:6000) surficial geology maps of northern Frenchman Flat were developed in 1995 as part of comprehensive site characterization required to operate a low-level radioactive waste disposal facility in that area. Seven surficial geology maps provide fundamental data on natural processes and are the platform needed to reconstruct the Quaternary history of northern Frenchman Flat. Reconstruction of the Quaternary history provides an understanding of the natural processes that act to develop the landscape, and the time-frames involved in landscape development. The mapping was conducted using color and color-infrared aerial photographs and field verification of map unit composition and boundaries. Criteria for defining the map unit composition of geomorphic surface units are based on relative geomorphic position, landform morphology, and degree of preservation of surface morphology. Seven geomorphic surfaces (Units 1 through 7) are recognized, spanning from the early Quaternary to present time.

  4. 'Endurance Crater's' Dazzling Dunes (false-color)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    As NASA's Mars Exploration Rover Opportunity creeps farther into 'Endurance Crater,' the dune field on the crater floor appears even more dramatic. This false-color image taken by the rover's panoramic camera shows that the dune crests have accumulated more dust than the flanks of the dunes and the flat surfaces between them. Also evident is a 'blue' tint on the flat surfaces as compared to the dune flanks. This results from the presence of the hematite-containing spherules ('blueberries') that accumulate on the flat surfaces.

    Sinuous tendrils of sand less than 1 meter (3.3 feet) high extend from the main dune field toward the rover. Scientists hope to send the rover down to one of these tendrils in an effort to learn more about the characteristics of the dunes. Dunes are a common feature across the surface of Mars, and knowledge gleaned from investigating the Endurance dunes close-up may apply to similar dunes elsewhere.

    Before the rover heads down to the dunes, rover drivers must first establish whether the slippery slope that leads to them is firm enough to ensure a successful drive back out of the crater. Otherwise, such hazards might make the dune field a true sand trap.

  5. Hydrocarbon photochemistry and Lyman alpha albedo of Jupiter

    NASA Technical Reports Server (NTRS)

    Yung, Y. L.; Strobel, D. F.

    1980-01-01

    A combined study of hydrocarbon and atomic hydrogen photochemistry is made to calculate self-consistently the L alpha albedo of Jupiter. It is shown that the L alpha emissions observed by Voyagers I and II can be explained by resonance scattering of sunlight. Precipitation of energetic particles from the magnetosphere can provide the large required source of atomic hydrogen, although the contribution of direct particle excitation to the disk-averaged brightness is insignificant. The variability of the L alpha brightness inferred from many observations in recent years is examined. The large difference in the brightness of the He 584 A resonance line observed by Pioneer and Voyager is briefly discussed. Driving the photochemistry by solar ultraviolet radiation alone yields a maximum mixing ratio of C2H6 + C2H2 at 0.01 atm of about 4 x 10 to the -6th. The possibility of additional CH4 dissociation from precipitation of magnetospheric particles is discussed. The photochemistry of C2H2 and C2H3 is sufficiently uncertain not to permit accurate calculations of their densities and the ratio C2H6/C2H2.

  6. A Cloud Hydrology and Albedo Synthesis Mission (CHASM)

    NASA Technical Reports Server (NTRS)

    Davies, Roger

    2004-01-01

    This slide presentation reviews the Cloud Hydrology and Albedo Synthesis Mission (CHASM). The interaction of clouds with radiation and the hydrological cycle represents a huge uncertainty in our understanding of climate science and the modeling of climate system feedbacks. Despite the recognized need for a unified treatment of cloud processes, the present global average values of remotely sensed cloud liquid water and theoretically accepted values used for cloud physics and precipitation modeling differ by an order of magnitude. This is due in part to sampling and saturation effects, as well as to threedimensional cloud structure effects. In recent work with the Multiangle Imaging SpectroRadiometer (MISR) on Terra, we have gained new insights as to how the remote sensing approach could be significantly improved using a new instrument that combines passive optical (visible and near infrared) and microwave measurements, both as pushbroom scanners with multiple viewing angles, to the degree that measurements of liquid water path over deep convective clouds over land also become possible. This instrument would also have the ability of measuring height-resolved cloud-tracked winds using a hyper stereo retrieval technique. Deployment into a precessing low earth orbit would be optimal for measuring diurnal cloud activity. We have explored an instrument design concept for this that looks promising if we can establish partnerships that provide launch and bus capabilities.

  7. Landsat Estimate of Albedo Change from Fire in the Alaskan Boreal Region

    NASA Astrophysics Data System (ADS)

    French, N. H.; French, N. H.

    2001-12-01

    The impact of fire on boreal land cover is substantial with dramatic implications for the exchange of carbon and energy between the land and atmosphere. One of the primary mechanisms through which ecosystems can influence surface-atmosphere energy exchange is by affecting radiation balance. Land surface albedo defines how much shortwave energy is "captured" by the system and is key in determining surface net radiation. The radiation balance and net energy exchange, in turn is an important factor in regulating carbon balance by influencing site temperature, moisture, and , therefore, the biotic exchange of carbon. The purpose of this study was to quantify and map the change in summertime land surface albedo from fire disturbance in a black spruce dominated landscape in Alaska. The study was conducted at a set of three fire-disturbed sites located near Delta Junction. Five Landsat TM and ETM images from late August/early September for 1986 to 1999 were the primary data used. Albedo change was derived using the six reflective bands of Landsat (bands 1-5 and 7). The images were used to map albedo change at each of the three burn sites from the fire disturbance itself and from vegetation regrowth at the two older burn scars. Field measurements of albedo were also collected and were used to complement the remote sensing-based results. The results show that fire disturbance can cause an increase, decrease or no significant change in summertime land surface albedo. Albedo change is spatially and temporally variable based on pre-burn vegetation, canopy density, burn severity, and site age. Moderately burned, medium density black spruce, the most typical burn conditions in Alaska, experienced a very small decrease and often insignificant change in albedo. Dense and medium density spruce sites nearly always showed no change in albedo from the fire disturbance. Sparse density spruce and the vegetation types with large amounts of deciduous or herbaceous cover generally

  8. The surface abundance and stratigraphy of lunar rocks from data about their albedo

    NASA Technical Reports Server (NTRS)

    Shevchenko, V. V.

    1977-01-01

    The data pf ground-based studies and surveys of the lunar surface by the Zond and Apollo spacecraft have been used to construct an albedo map covering 80 percent of the lunar sphere. Statistical analysis of the distribution of areas with various albedos shows several types of lunar surface. Comparison of albedo data for maria and continental areas with the results of geochemical orbital surveys allows the identification of the types of surface with known types of lunar rock. The aluminum/silcon and magnesium/silicon ratios as measured by the geochemical experiments on the Apollo 15 and Apollo 16 spacecraft were used as an indication of the chemical composition of the rock. The relationship of the relative aluminum content to the age of crystalline rocks allows a direct dependence to be constructed between the mean albedo of areas and the age of the rocks of which they are composed.

  9. Spatially Complete Surface Albedo Data Sets: Value-Added Products Derived from Terra MODIS Land Products

    NASA Technical Reports Server (NTRS)

    Moody, Eric G.; King, Michael D.; Platnick, Steven; Schaaf, Crystal B.; Gao, Feng

    2004-01-01

    Spectral land surface albedo is an important parameter for describing the radiative properties of the Earth. Accordingly it reflects the consequences of natural and human interactions, such as anthropogenic, meteorological, and phenological effects, on global and local climatological trends. Consequently, albedos are integral parts in a variety of research areas, such as general circulation models (GCMs), energy balance studies, modeling of land use and land use change, and biophysical, oceanographic, and meteorological studies. Recent observations of diffuse bihemispherical (white-sky) and direct beam directional hemispherical (black-sky ) land surface albedo included in the MOD43B3 product from MODIS instruments aboard NASA's Terra and Aqua satellite platforms have provided researchers with unprecedented spatial, spectral, and temporal characteristics. Cloud and seasonal snow cover, however, curtail retrievals to approximately half the global land surfaces on an annual equal-angle basis, precluding MOD43B3 albedo products from direct inclusion in some research projects and production environments.

  10. Temporal and spatial mapping of atmospheric dust opacity and surface albedo on Mars

    NASA Technical Reports Server (NTRS)

    Lee, S. W.; Clancy, R. T.; Gladstone, G. R.; Martin, T. Z.

    1993-01-01

    The Mariner 9 and Viking missions provided abundant evidence that eolian processes are active over much of the surface of Mars. Past studies have demonstrated that variations in regional albedo and wind streak patterns are indicative of sediment transport through a region, while thermal inertia data (derived from the Viking Infrared Thermal Mapper (IRTM) datasets) are indicative of the degree of surface mantling by dust deposits. We are making use of the method developed by T. Z. Martin to determine dust opacity from IRTM thermal observations. We have developed a radiative transfer model that allows corrections for the effects of atmospheric dust loading on observations of surface albedo to be made. This approach to determining 'dust-corrected surface albedo' incorporates the atmospheric dust opacity, the single-scattering albedo and particle phase function of atmospheric dust, the bidirectional reflectance of the surface, and accounts for variable lighting and viewing geometry.

  11. The albedo, effective temperature, and energy balance of Uranus, as determined from Voyager IRIS data

    NASA Technical Reports Server (NTRS)

    Pearl, J. C.; Conrath, B. J.; Hanel, R. A.; Pirraglia, J. A.; Coustenis, A.

    1990-01-01

    The albedo, T(eff), and energy balance of Uranus are presently derived from Voyager IR Spectrometer and Radiometer data. By obtaining the absolute phase curve of Uranus, it has become possible to evaluate the Bond albedo without making separate determinations of the geometric albedo and phase integral. An orbital mean value for the bolometric Bond albedo of 0.3 + or - 0.049 yields an equilibrium temperature of 58.2 + or - 1.0 K. Thermal spectra from pole-to-pole latitude coverage establish a T(eff) of 59.1 + or - 0.3 K, leading to an energy balance of 1.06 + or - 0.08 for Uranus.

  12. Solar Wind Interaction with Lunar Crustal Magnetic Fields: Relation to Albedo Swirls

    NASA Technical Reports Server (NTRS)

    Mitchell, D. L.; Lin, R. P.; Harrison, L.; Halekas, J. S.; Hood, L. L.; Acuna, M. H.; Binder, A. B.

    2000-01-01

    The Magnetometer/Electron Reflectometer onboard Lunar Prospector has observed the solar wind interaction with remanent crustal magnetic fields at altitudes from 20 to 120 km. This interaction may be responsible for the formation of albedo swirls.

  13. Regional Mapping of the Lunar Crustal Magnetic Field: Correlation of Strong Anomalies with Curvilinear Albedo Markings

    NASA Technical Reports Server (NTRS)

    Hood, L. L.; Yingst, A.; Zakharian, A.; Lin, R. P.; Mitchell, D. L.; Halekas, J.; Acuna, M. H.; Binder, A. B.

    2000-01-01

    Using high-resolution regional Lunar Prospector magnetometer magnetic field maps, we report here a close correlation of the strongest individual crustal anomalies with unusual curvilinear albedo markings of the Reiner Gamma class.

  14. Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography.

    PubMed

    Oldenburg, Amy L; Hansen, Matthew N; Zweifel, Daniel A; Wei, Alexander; Boppart, Stephen A

    2006-07-24

    Plasmon-resonant gold nanorods are demonstrated as low backscattering albedo contrast agents for optical coherence tomography (OCT). We define the backscattering albedo, a', as the ratio of the backscattering to extinction coefficient. Contrast agents which modify a' within the host tissue phantoms are detected with greater sensitivity by the differential OCT measurement of both a' and extinction. Optimum sensitivity is achieved by maximizing the difference between contrast agents and tissue, |a'(ca) - a'(tiss)|. Low backscattering albedo gold nanorods (14x 44 nm; lambda(max) = 780 nm) within a high backscattering albedo tissue phantom with an uncertainty in concentration of 20% (randomized 2+/-0.4% intralipid) were readily detected at 82 ppm (by weight) in a regime where extinction alone could not discriminate nanorods. The estimated threshold of detection was 30 ppm. PMID:19516854

  15. Atmospheric effects on the mapping of Martian thermal inertia and thermally derived albedo

    NASA Technical Reports Server (NTRS)

    Hayashi, Joan N.; Jakosky, Bruce M.; Haberle, Robert M.

    1995-01-01

    We examine the effects of a dusty CO2 atmosphere on the thermal inertia and thermally derived albedo of Mars and we present a new map of thermal inertias. This new map was produced using a coupled surface atmosphere (CSA) model, dust opacities from Viking infrared thermal mapper (IRTM) data, and CO2 columns based on topography. The CSA model thermal inertias are smaller than the 2% model thermal inertias, with the difference largest at large thermal inertia. Although the difference between the thermal inertias obtained with the two models is moderate for much of the region studied, it is largest in regions of either high dust opacity or of topographic lows, including the Viking Lander 1 site and some geologically interesting regions. The CSA model thermally derived albedos do not acurately predict the IRTM measured albedos and are very similar to the thermally derived albedos obtained with models making the 2% assumption.

  16. Atmospheric effects on the mapping of Martian thermal inertia and thermally derived albedo

    NASA Technical Reports Server (NTRS)

    Hayashi, J. N.; Jakosky, B. M.; Haberle, R. M.

    1994-01-01

    The most widely used thermal inertia data for Mars assumes the atmospheric contribution is constant and equal to 2 percent of the maximum solar insolation. Haberle and Jakosky investigated the effect of including a dusty CO2 atmosphere and sensible heat exchange with the surface on thermal inertia. We recently utilized Haberle and Jakosky's coupled surface-atmosphere model to investigate the effects of such an atmosphere on the thermally derived albedo. The thermally derived albedo is the albedo which, together with the thermal inertia, provides model surface temperatures which best match the observed temperatures. New maps are presented of thermal inertia and thermally derived albedo which incorporate dust opacities derived from IRTM data.

  17. Atmospheric effects on the mapping of Martian thermal inertia and thermally derived albedo

    NASA Technical Reports Server (NTRS)

    Hayashi, Joan N.; Jakosky, Bruce M.; Haberle, Robert M.

    1995-01-01

    We examine the effects of a dusty C02 atmosphere on the thermal inertia and thermally derived albedo of Mars and we present a new map of thermal inertias. This new map was produced using a coupled surface atmosphere (CSA) model, dust opacities from Viking infrared thermal mapper (IRTM) data, and C02 columns based on topography. The CSA model thermal inertias are smaller than the 2% model thermal inertias, with the difference largest at large thermal inertia. Although the difference between the thermal inertias obtained with the two models is moderate for much of the region studied, it is largest in regions of either high dust opacity or of topographic lows, including the Viking Lander 1 site and some geologically interesting regions. The CSA model thermally derived albedos do not accurately predict the IRTM measured albedos and are very similar to the thermally derived albedos obtained with models making the 2% assumption.

  18. Operational comparison of TLD albedo dosemeters and solid state nuclear tracks detectors in fuel fabrication facilities.

    PubMed

    Tsujimura, N; Takada, C; Yoshida, T; Momose, T

    2007-01-01

    The authors carried out an operational study that compared the use of TLD albedo dosemeters and solid state nuclear tracks detector in plutonium environments of Japan Nuclear Cycle Development Institute, Tokai Works. A selected group of workers engaged in the fabrication process of MOX (Plutonium-Uranium mixed oxide) fuel wore both TLD albedo dosemeters and solid state nuclear tracks detectors. The TL readings were generally proportional to the counted etch-pits, and thus the dose equivalent results obtained from TLD albedo dosemeter agreed with those from solid state nuclear tracks detector within a factor of 1.5. This result indicates that, in the workplaces of the MOX fuel plants, the neutron spectrum remained almost constant in terms of time and space, and the appropriate range of field-specific correction with spectrum variations was small in albedo dosimetry. PMID:17337735

  19. The extreme ultraviolet albedos of the planet Mercury and of the moon

    NASA Technical Reports Server (NTRS)

    Wu, H. H.; Broadfoot, A. L.

    1977-01-01

    The albedo of the moon in the far UV was measured by Mariner 10 at a solar phase angle of 74 deg, and the geometric albedo of Mercury was measured in same wavelength range (584-1657 A) at solar phase angles ranging from 50 to 120 deg. For both the moon and Mercury there is a general increase in albedo for wavelengths decreasing from 1657 to 584 A. The ratio of the albedos of Mercury and the moon increases from about 0.6 to 0.8 in the range 600-1600 A. This merely points to a difference in the surfaces of the moon and Mercury, there being insufficient data to make any conclusions regarding the nature of the difference.

  20. TNO and Centaur Diameters, Albedos, and Densities V4.0

    NASA Astrophysics Data System (ADS)

    Johnston, W. R.

    2016-07-01

    This data set is a compilation of published diameters, albedos, and densities for Transneptunian Objects (TNOs) and Centaurs. A total of 190 objects are listed, many with more than one entry. This version covers published values through 31 March 2016.