Science.gov

Sample records for column reactor sbcr

  1. ENGINEERING DEVELOPMENT OF SLURRY BUBBLE COLUMN REACTOR (SBCR) TECHNOLOGY

    SciTech Connect

    Bernard A. Toseland, Ph.D.

    2000-01-01

    The major technical objectives of this program are threefold: (1) to develop the design tools and a fundamental understanding of the fluid dynamics of a slurry bubble column reactor to maximize reactor productivity, (2) to develop the mathematical reactor design models and gain an understanding of the hydrodynamic fundamentals under industrially relevant process conditions, and (3) to develop an understanding of the hydrodynamics and their interaction with the chemistries occurring in the bubble column reactor. Successful completion of these objectives will permit more efficient usage of the reactor column and tighter design criteria, increase overall reactor efficiency, and ensure a design that leads to stable reactor behavior when scaling up to large diameter reactors.

  2. ENGINEERING DEVELOPMENT OF SLURRY BUBBLE COLUMN REACTOR (SBCR) TECHNOLOGY

    SciTech Connect

    Bernard A. Toseland

    2002-09-30

    The major technical objectives of this program are threefold: (1) to develop the design tools and a fundamental understanding of the fluid dynamics of a slurry bubble column reactor to maximize reactor productivity, (2) to develop the mathematical reactor design models and gain an understanding of the hydrodynamic fundamentals under industrially relevant process conditions, and (3) to develop an understanding of the hydrodynamics and their interaction with the chemistries occurring in the bubble column reactor. Successful completion of these objectives will permit more efficient usage of the reactor column and tighter design criteria, increase overall reactor efficiency, and ensure a design that leads to stable reactor behavior when scaling up to large diameter reactors.

  3. Engineering Development of Slurry Bubble Column Reactor (SBCR) Technology

    SciTech Connect

    Toseland, B.A.

    1998-10-29

    The major technical objectives of this program are threefold: (1) to develop the design tools and a fundamental understanding of the fluid dynamics of a slurry bubble column reactor to maximize reactor productivity, (2) to develop the mathematical reactor design models and gain an understanding of the hydrodynamic fundamentals under industrially relevant process conditions, and (3) to develop an understanding of the hydrodynamics and their interaction with the chemistries occurring in the bubble column reactor. Successful completion of these objectives will permit more efficient usage of the reactor column and tighter design criteria, increase overall reactor efficiency, and ensure a design that leads to stable reactor behavior when scaling up to large diameter reactors.

  4. ENGINEERING DEVELOPMENT OF SLURRY BUBBLE COLUMN REACTOR (SBCR) TECHNOLOGY

    SciTech Connect

    Bernard A. Toseland, Ph.D.

    2000-06-01

    The major technical objectives of this program are threefold: (1) to develop the design tools and a fundamental understanding of the fluid dynamics of a slurry bubble column 0reactor to maximize reactor productivity, (2) to develop the mathematical reactor design models and gain an understanding of the hydrodynamic fundamentals under industrially relevant process conditions, and (3) to develop an understanding of the hydrodynamics and their interaction with the chemistries occurring in the bubble column reactor. Successful completion of these objectives will permit more efficient usage of the reactor column and tighter design criteria, increase overall reactor efficiency, and ensure a design that leads to stable reactor behavior when scaling up to large diameter reactors.

  5. ENGINEERING DEVELOPMENT OF SLURRY BUBBLE COLUMN REACTOR (SBCR) TECHNOLOGY

    SciTech Connect

    Bernard A. Toseland

    2001-03-31

    The major technical objectives of this program are threefold: (1) to develop the design tools and a fundamental understanding of the fluid dynamics of a slurry bubble column reactor to maximize reactor productivity, (2) to develop the mathematical reactor design models and gain an understanding of the hydrodynamic fundamentals under industrially relevant process conditions, and (3) to develop an understanding of the hydrodynamics and their interaction with the chemistries occurring in the bubble column reactor. Successful completion of these objectives will permit more efficient usage of the reactor column and tighter design criteria, increase overall reactor efficiency, and ensure a design that leads to stable reactor behavior when scaling up to large diameter reactors. Washington University's work for the quarter involved the study of the dynamic simulations of bubble columns in three dimensions. Work was also done in dynamic simulations of two-phase transient flow using CFDLIB. Ohio State measured the axial dispersion coefficients of the liquid phase. The steady-state thermal dispersion method was used to obtain the measurements. Iowa State followed the last quarter's work by using CFDLIB to simulate conditions described in the literature, with the objective of validating the simulation result. The group's work also led to a determination of the adequacy of periodic boundary conditions in representing small columns.

  6. Engineering Development of Slurry Bubble Column Reactor (SBCR) Technology

    SciTech Connect

    Puneet Gupta

    2002-07-31

    This report summarizes the procedures used and results obtained in determining radial gas holdup profiles, via gamma ray scanning, and in assessing liquid and gas mixing parameters, via radioactive liquid and gas tracers, during Fischer Tropsch synthesis. The objectives of the study were (i) to develop a procedure for detection of gas holdup radial profiles in operating reactors and (ii) to test the ability of the developed, previously described, engineering models to predict the observed liquid and gas mixing patterns. It was shown that the current scanning procedures were not precise enough to obtain an accurate estimate of the gas radial holdup profile and an improved protocol for future use was developed. The previously developed physically based model for liquid mixing was adapted to account for liquid withdrawal from the mid section of the column. The ability of our engineering mixing models for liquid and gas phase to predict both liquid and gas phase tracer response was established and illustrated.

  7. ADVANCED DIAGNOSTIC TECHNIQUES FOR THREE-PHASE SLURRY BUBBLE COLUMN REACTORS (SBCR)

    SciTech Connect

    M.H. Al-Dahhan; M.P. Dudukovic; L.S. Fan

    2001-07-25

    This report summarizes the accomplishment made during the second year of this cooperative research effort between Washington University, Ohio State University and Air Products and Chemicals. The technical difficulties that were encountered in implementing Computer Automated Radioactive Particle Tracking (CARPT) in high pressure SBCR have been successfully resolved. New strategies for data acquisition and calibration procedure have been implemented. These have been performed as a part of other projects supported by Industrial Consortium and DOE via contract DE-2295PC95051 which are executed in parallel with this grant. CARPT and Computed Tomography (CT) experiments have been performed using air-water-glass beads in 6 inch high pressure stainless steel slurry bubble column reactor at selected conditions. Data processing of this work is in progress. The overall gas holdup and the hydrodynamic parameters are measured by Laser Doppler Anemometry (LDA) in 2 inch slurry bubble column using Norpar 15 that mimic at room temperature the Fischer Tropsch wax at FT reaction conditions of high pressure and temperature. To improve the design and scale-up of bubble column, new correlations have been developed to predict the radial gas holdup and the time averaged axial liquid recirculation velocity profiles in bubble columns.

  8. ADVANCED DIAGNOSTIC TECHNIQUES FOR THREE-PHASE SLURRY BUBBLE COLUMN REACTORS(SBCR)

    SciTech Connect

    M.H. Al-Dahhan; L.S. Fan; M.P. Dudukovic

    2002-07-25

    This report summarizes the accomplishment made during the third year of this cooperative research effort between Washington University, Ohio State University and Air Products and Chemicals. Data processing of the performed Computer Automated Radioactive Particle Tracking (CARPT) experiments in 6 inch column using air-water-glass beads (150 {micro}m) system has been completed. Experimental investigation of time averaged three phases distribution in air-Therminol LT-glass beads (150 {micro}m) system in 6 inch column has been executed. Data processing and analysis of all the performed Computed Tomography (CT) experiments have been completed, using the newly proposed CT/Overall gas holdup methodology. The hydrodynamics of air-Norpar 15-glass beads (150 {micro}m) have been investigated in 2 inch slurry bubble column using Dynamic Gas Disengagement (DGD), Pressure Drop fluctuations, and Fiber Optic Probe. To improve the design and scale-up of bubble column reactors, a correlation for overall gas holdup has been proposed based on Artificial Neural Network and Dimensional Analysis.

  9. Engineering Development of Slurry Bubble Column Reactor (SBCR) Technology: Final quarterly technical progress no. 2, 1 July - 30 September 1995

    SciTech Connect

    Toseland, B.A.; Tischer, R.E.

    1997-12-31

    The major technical objectives of this program are threefold: (1) to develop the design tools and a fundamental understanding of the fluid dynamics of a slurry bubble column reactor to maximize reactor productivity, (2) to develop the mathematical reactor design models and gain an understanding of the hydrodynamic fundamentals under industrially relevant process conditions, and (3) to develop an understanding of the hydrodynamics and their interaction with the chemistries occurring in the bubble column reactor. Successful completion of these objectives will permit more efficient usage of the reactor column and tighter design criteria, increase overall reactor efficiency, and ensure a design that leads to stable reactor behavior when scaling up to large diameter reactors.

  10. Processes and catalysts for conducting fischer-tropsch synthesis in a slurry bubble column reactor

    DOEpatents

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    1999-01-01

    Processes and catalysts for conducting Fischer-Tropsch synthesis in a slurry bubble column reactor (SBCR). One aspect of the invention involves the use of cobalt catalysts without noble metal promotion in an SBCR. Another aspect involves using palladium promoted cobalt catalysts in an SBCR. Methods for preparing noble metal promoted catalysts via totally aqueous impregnation and procedures for producing attrition resistant catalysts are also provided.

  11. Processes and catalysts for conducting Fischer-Tropsch synthesis in a slurry bubble column reactor

    DOEpatents

    Singleton, A.H.; Oukaci, R.; Goodwin, J.G.

    1999-08-17

    Processes and catalysts are disclosed for conducting Fischer-Tropsch synthesis in a slurry bubble column reactor (SBCR). One aspect of the invention involves the use of cobalt catalysts without noble metal promotion in an SBCR. Another aspect involves using palladium promoted cobalt catalysts in an SBCR. Methods for preparing noble metal promoted catalysts via totally aqueous impregnation and procedures for producing attrition resistant catalysts are also provided. 1 fig.

  12. Nuclear reactor control column

    SciTech Connect

    Bachovchin, D.M.

    1982-08-10

    The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest crosssectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor.

  13. Nuclear reactor control column

    DOEpatents

    Bachovchin, Dennis M.

    1982-01-01

    The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest cross-sectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor.

  14. Design of slurry bubble column reactors: novel technique for optimum catalyst size selection contractual origin of the invention

    SciTech Connect

    Gamwo, Isaac K.; Gidaspow, Dimitri; Jung, Jonghwun

    2009-11-17

    A method for determining optimum catalyst particle size for a gas-solid, liquid-solid, or gas-liquid-solid fluidized bed reactor such as a slurry bubble column reactor (SBCR) for converting synthesis gas into liquid fuels considers the complete granular temperature balance based on the kinetic theory of granular flow, the effect of a volumetric mass transfer coefficient between the liquid and the gas, and the water gas shift reaction. The granular temperature of the catalyst particles representing the kinetic energy of the catalyst particles is measured and the volumetric mass transfer coefficient between the gas and liquid phases is calculated using the granular temperature. Catalyst particle size is varied from 20 .mu.m to 120 .mu.m and a maximum mass transfer coefficient corresponding to optimum liquid hydrocarbon fuel production is determined. Optimum catalyst particle size for maximum methanol production in a SBCR was determined to be in the range of 60-70 .mu.m.

  15. Incorporation of Reaction Kinetics into a Multiphase, Hydrodynamic Model of a Fischer Tropsch Slurry Bubble Column Reactor

    SciTech Connect

    Donna Guillen, PhD; Anastasia Gribik; Daniel Ginosar, PhD; Steven P. Antal, PhD

    2008-11-01

    This paper describes the development of a computational multiphase fluid dynamics (CMFD) model of the Fischer Tropsch (FT) process in a Slurry Bubble Column Reactor (SBCR). The CMFD model is fundamentally based which allows it to be applied to different industrial processes and reactor geometries. The NPHASE CMFD solver [1] is used as the robust computational platform. Results from the CMFD model include gas distribution, species concentration profiles, and local temperatures within the SBCR. This type of model can provide valuable information for process design, operations and troubleshooting of FT plants. An ensemble-averaged, turbulent, multi-fluid solution algorithm for the multiphase, reacting flow with heat transfer was employed. Mechanistic models applicable to churn turbulent flow have been developed to provide a fundamentally based closure set for the equations. In this four-field model formulation, two of the fields are used to track the gas phase (i.e., small spherical and large slug/cap bubbles), and the other two fields are used for the liquid and catalyst particles. Reaction kinetics for a cobalt catalyst is based upon values reported in the published literature. An initial, reaction kinetics model has been developed and exercised to demonstrate viability of the overall solution scheme. The model will continue to be developed with improved physics added in stages.

  16. Hydrodynamic and mass transfer parameters in a large-scale slurry bubble column reactor with high solid loading

    SciTech Connect

    Behkish, A.; Men, Z.; Inga, J.R.; Morsi, B.I.

    1999-07-01

    The effects of pressure (P), superficial gas velocity (UG) and solid concentration (CV) on the equilibrium Solubility (C*), gas holdup (eG), volumetric gas-liquid mass transfer coefficient (kLa) and bubble size distribution for methane (CH{sub 4}) in a liquid mixture of decanes were statistically studied in a large-scale (1-ft diameter, 10-ft high) slurry bubble column reactor (SBCR). Glass beads with volumetric concentrations of 0, 7.6%, 18%, 28.4% and 36% were used. The experiments were selected following the central composite statistical design approach. The kLa values were determined using the transient physical absorption technique; the gas holdup was measured using the manometric method and the bubble size distributions were measured using the Dynamic Gas Disengagement technique (DGD). The equilibrium solubility values appeared to follow Henry's Law in the 1--15 bar range. The eG values were found to increase with superficial gas velocity and pressure due to the increase of the volume fraction of the small and large gas bubbles. The eG values, however, decreased with solid concentration due to the increase of slurry viscosity. The kLa values appeared to have the same trend as eG values indicting that the mass transfer behavior in the SBCR was mainly controlled by the gas-liquid interfacial area. Also, statistical correlations relating kLa and eG to the main process variables were proposed.

  17. PROGRESS TOWARDS MODELING OF FISCHER TROPSCH SYNTHESIS IN A SLURRY BUBBLE COLUMN REACTOR

    SciTech Connect

    Donna Post Guillen; Tami Grimmett; Anastasia M. Gandrik; Steven P. Antal

    2010-11-01

    The Hybrid Energy Systems Testing (HYTEST) Laboratory is being established at the Idaho National Laboratory to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. A central component of the HYTEST is the slurry bubble column reactor (SBCR) in which the gas-to-liquid reactions will be performed to synthesize transportation fuels using the Fischer Tropsch (FT) process. SBCRs are cylindrical vessels in which gaseous reactants (for example, synthesis gas or syngas) is sparged into a slurry of liquid reaction products and finely dispersed catalyst particles. The catalyst particles are suspended in the slurry by the rising gas bubbles and serve to promote the chemical reaction that converts syngas to a spectrum of longer chain hydrocarbon products, which can be upgraded to gasoline, diesel or jet fuel. These SBCRs operate in the churn-turbulent flow regime which is characterized by complex hydrodynamics, coupled with reacting flow chemistry and heat transfer, that effect reactor performance. The purpose of this work is to develop a computational multiphase fluid dynamic (CMFD) model to aid in understanding the physico-chemical processes occurring in the SBCR. Our team is developing a robust methodology to couple reaction kinetics and mass transfer into a four-field model (consisting of the bulk liquid, small bubbles, large bubbles and solid catalyst particles) that includes twelve species: (1) CO reactant, (2) H2 reactant, (3) hydrocarbon product, and (4) H2O product in small bubbles, large bubbles, and the bulk fluid. Properties of the hydrocarbon product were specified by vapor liquid equilibrium calculations. The absorption and kinetic models, specifically changes in species concentrations, have been incorporated into the mass continuity equation. The reaction rate is determined based on the macrokinetic model for a cobalt catalyst developed by Yates and Satterfield [1]. The

  18. DEVELOPMENT OF A COMPUTATIONAL MULTIPHASE FLOW MODEL FOR FISCHER TROPSCH SYNTHESIS IN A SLURRY BUBBLE COLUMN REACTOR

    SciTech Connect

    Donna Post Guillen; Tami Grimmett; Anastasia M. Gribik; Steven P. Antal

    2011-12-01

    The Hybrid Energy Systems Testing (HYTEST) Laboratory at the Idaho National Laboratory was established to develop and test hybrid energy systems with the principal objective of reducing dependence on imported fossil fuels. A central component of the HYTEST is the slurry bubble column reactor (SBCR) in which the gas-to-liquid reactions are performed to synthesize transportation fuels using the Fischer Tropsch (FT) process. These SBCRs operate in the churn-turbulent flow regime, which is characterized by complex hydrodynamics, coupled with reacting flow chemistry and heat transfer. Our team is developing a research tool to aid in understanding the physicochemical processes occurring in the SBCR. A robust methodology to couple reaction kinetics and mass transfer into a four-field model (consisting of the bulk liquid, small bubbles, large bubbles and solid catalyst particles) consisting of thirteen species, which are CO reactant, H2 reactant, hydrocarbon product, and H2O product in small bubbles, large bubbles, and the bulk fluid plus catalyst is outlined. Mechanistic submodels for interfacial momentum transfer in the churn-turbulent flow regime are incorporated, along with bubble breakup/coalescence and two-phase turbulence submodels. The absorption and kinetic models, specifically changes in species concentrations, have been incorporated into the mass continuity equation. The reaction rate is based on the macrokinetic model for a cobalt catalyst developed by Yates and Satterfield. The model includes heat generation produced by the exothermic chemical reaction, as well as heat removal from a constant temperature heat exchanger. A property method approach is employed to incorporate vapor-liquid equilibrium (VLE) in a robust manner. Physical and thermodynamic properties as functions of changes in both pressure and temperature are obtained from VLE calculations performed external to the CMFD solver. The novelty of this approach is in its simplicity, as well as its

  19. Circulation in gas-slurry column reactors

    SciTech Connect

    Clark, N.; Kuhlman, J.; Celik, I.; Gross, R.; Nebiolo, E.; Wang, Yi-Zun.

    1990-08-15

    Circulation in bubble columns, such as those used in fischer-tropsch synthesis, detracts from their performance in that gas is carried on average more rapidly through the column, and the residence time distribution of the gas in the column is widened. Both of these factors influence mass-transfer operations in bubble columns. Circulation prediction and measurement has been undertaken using probes, one-dimensional models, laser Doppler velocimetry, and numerical modeling. Local void fraction was measured using resistance probes and a newly developed approach to determining air/water threshold voltage for the probe. A tall column of eight inch diameter was constructed of Plexiglas and the distributor plate was manufactured to distribute air evenly through the base of the column. Data were gathered throughout the volume at three different gas throughputs. Bubble velocities proved difficult to measure using twin probes with cross-correlation because of radial bubble movement. A series of three-dimensional mean and RMS bubble and liquid velocity measurements were also obtained for a turbulent flow in a laboratory model of a bubble column. These measurements have been made using a three-component laser Doppler velocimeter (LDV), to determine velocity distributions non-intrusively. Finally, the gas-liquid flow inside a vertically situated circular isothermal column reactor was simulated numerically. 74 refs., 170 figs., 5 tabs.

  20. KINETIC MODELING OF A FISCHER-TROPSCH REACTION OVER A COBALT CATALYST IN A SLURRY BUBBLE COLUMN REACTOR FOR INCORPORATION INTO A COMPUTATIONAL MULTIPHASE FLUID DYNAMICS MODEL

    SciTech Connect

    Anastasia Gribik; Doona Guillen, PhD; Daniel Ginosar, PhD

    2008-09-01

    Currently multi-tubular fixed bed reactors, fluidized bed reactors, and slurry bubble column reactors (SBCRs) are used in commercial Fischer Tropsch (FT) synthesis. There are a number of advantages of the SBCR compared to fixed and fluidized bed reactors. The main advantage of the SBCR is that temperature control and heat recovery are more easily achieved. The SBCR is a multiphase chemical reactor where a synthesis gas, comprised mainly of H2 and CO, is bubbled through a liquid hydrocarbon wax containing solid catalyst particles to produce specialty chemicals, lubricants, or fuels. The FT synthesis reaction is the polymerization of methylene groups [-(CH2)-] forming mainly linear alkanes and alkenes, ranging from methane to high molecular weight waxes. The Idaho National Laboratory is developing a computational multiphase fluid dynamics (CMFD) model of the FT process in a SBCR. This paper discusses the incorporation of absorption and reaction kinetics into the current hydrodynamic model. A phased approach for incorporation of the reaction kinetics into a CMFD model is presented here. Initially, a simple kinetic model is coupled to the hydrodynamic model, with increasing levels of complexity added in stages. The first phase of the model includes incorporation of the absorption of gas species from both large and small bubbles into the bulk liquid phase. The driving force for the gas across the gas liquid interface into the bulk liquid is dependent upon the interfacial gas concentration in both small and large bubbles. However, because it is difficult to measure the concentration at the gas-liquid interface, coefficients for convective mass transfer have been developed for the overall driving force between the bulk concentrations in the gas and liquid phases. It is assumed that there are no temperature effects from mass transfer of the gas phases to the bulk liquid phase, since there are only small amounts of dissolved gas in the liquid phase. The product from the

  1. DEVELOPMENT OF A COMPUTATIONAL MULTIPHASE FLOW MODEL FOR FISCHER TROPSCH SYNTHESIS IN A SLURRY BUBBLE COLUMN REACTOR

    SciTech Connect

    Donna Post Guillen; Tami Grimmett; Anastasia M. Gribik; Steven P. Antal

    2010-09-01

    The Hybrid Energy Systems Testing (HYTEST) Laboratory is being established at the Idaho National Laboratory to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. A central component of the HYTEST is the slurry bubble column reactor (SBCR) in which the gas-to-liquid reactions will be performed to synthesize transportation fuels using the Fischer Tropsch (FT) process. SBCRs are cylindrical vessels in which gaseous reactants (for example, synthesis gas or syngas) is sparged into a slurry of liquid reaction products and finely dispersed catalyst particles. The catalyst particles are suspended in the slurry by the rising gas bubbles and serve to promote the chemical reaction that converts syngas to a spectrum of longer chain hydrocarbon products, which can be upgraded to gasoline, diesel or jet fuel. These SBCRs operate in the churn-turbulent flow regime which is characterized by complex hydrodynamics, coupled with reacting flow chemistry and heat transfer, that effect reactor performance. The purpose of this work is to develop a computational multiphase fluid dynamic (CMFD) model to aid in understanding the physico-chemical processes occurring in the SBCR. Our team is developing a robust methodology to couple reaction kinetics and mass transfer into a four-field model (consisting of the bulk liquid, small bubbles, large bubbles and solid catalyst particles) that includes twelve species: (1) CO reactant, (2) H2 reactant, (3) hydrocarbon product, and (4) H2O product in small bubbles, large bubbles, and the bulk fluid. Properties of the hydrocarbon product were specified by vapor liquid equilibrium calculations. The absorption and kinetic models, specifically changes in species concentrations, have been incorporated into the mass continuity equation. The reaction rate is determined based on the macrokinetic model for a cobalt catalyst developed by Yates and Satterfield [1]. The

  2. Mathematical modeling of three-phase slurry bubble column reactors

    SciTech Connect

    Gamwo, I.K.; Soong, Y.; Schehl, R.R.; Zarochak, M.F.

    1994-12-31

    The behavior of gas-solid-liquid flow in a slurry bubble column reactor was simulated using a well-posed hydrodynamic model. The three phases under study are nitrogen, 5-{mu}m iron oxide, and SASOL wax. The phases volume fractions at various axial and radial positions in the column were computed. Preliminary results of axial solid volume fractions are consistent with experimental observations and demonstrate the potential of this method for design of such reactors. The overall objective of this study is to develop experimentally verified hydrodynamic and Fisher-Tropsch reaction models for slurry bubble column reactors.

  3. Hydrodynamic models for slurry bubble column reactors

    SciTech Connect

    Gidaspow, D.

    1995-12-31

    The objective of this investigation is to convert a {open_quotes}learning gas-solid-liquid{close_quotes} fluidization model into a predictive design model. This model is capable of predicting local gas, liquid and solids hold-ups and the basic flow regimes: the uniform bubbling, the industrially practical churn-turbulent (bubble coalescence) and the slugging regimes. Current reactor models incorrectly assume that the gas and the particle hold-ups (volume fractions) are uniform in the reactor. They must be given in terms of empirical correlations determined under conditions that radically differ from reactor operation. In the proposed hydrodynamic approach these hold-ups are computed from separate phase momentum balances. Furthermore, the kinetic theory approach computes the high slurry viscosities from collisions of the catalyst particles. Thus particle rheology is not an input into the model.

  4. Ultrasonic characterizations of slurries in a bubble column reactor

    SciTech Connect

    Soong, Y.; Gamwo, I.K.; Blackwell, A.G.; Harke, F.W.; Ladner, E.P.

    1999-05-01

    An indirect method (ultrasonic) and a direct technique were used to measure solid holdup in a bubble-column reactor. Nitrogen, water, and fine glass beads were used as the gas, liquid, and solid phases, respectively. The solid particle concentration in the slurry was varied from 5 to 30 wt %, and the gas superficial velocity was increased from 0.5 to 12 cm/s. The solid holdup measurements by the ultrasonic technique compared reasonably well with results obtained by the direct sampling technique.

  5. COMPUTATIONAL AND EXPERIMENTAL MODELING OF SLURRY BUBBLE COLUMN REACTORS

    SciTech Connect

    Paul C.K. Lam; Isaac K. Gamwo; Dimitri Gidaspow

    2002-05-01

    The objective of this study was to develop a predictive experimentally verified computational fluid dynamics (CFD) model for gas-liquid-solid flow. A three dimensional transient computer code for the coupled Navier-Stokes equations for each phase was developed and is appended in this report. The principal input into the model is the viscosity of the particulate phase which was determined from a measurement of the random kinetic energy of the 800 micron glass beads and a Brookfield viscometer. The details are presented in the attached paper titled ''CFD Simulation of Flow and Turbulence in a Slurry Bubble Column''. This phase of the work is in press in a referred journal (AIChE Journal, 2002) and was presented at the Fourth International Conference on Multiphase Flow (ICMF 2001) in New Orleans, May 27-June 1, 2001 (Paper No. 909). The computed time averaged particle velocities and concentrations agree with Particle Image Velocimetry (PIV) measurements of velocities and concentrations, obtained using a combination of gamma-ray and X-ray densitometers, in a slurry bubble column, operated in the bubbly-coalesced fluidization regime with continuous flow of water. Both the experiment and the simulation show a down-flow of particles in the center of the column and up-flow near the walls and nearly uniform particle concentration. Normal and shear Reynolds stresses were constructed from the computed instantaneous particle velocities. The PIV measurement and the simulation produced instantaneous particle velocities. The PIV measurement and the simulation produced similar nearly flat horizontal profiles of turbulent kinetic energy of particles. To better understand turbulence we studied fluidization in a liquid-solid bed. This work was also presented at the Fourth International Conference on Multiphase Flow (ICMF 2001, Paper No. 910). To understand turbulence in risers, measurements were done in the IIT riser with 530 micron glass beads using a PIV technique. This report

  6. Airlift column photobioreactors for Porphyridium sp. culturing: part I. effects of hydrodynamics and reactor geometry.

    PubMed

    Luo, Hu-Ping; Al-Dahhan, Muthanna H

    2012-04-01

    Photosynthetic microorganisms have been attracting world attention for their great potential as renewable energy sources in recent years. Cost effective production in large scale, however, remains a major challenge to overcome. It is known to the field that turbulence could help improving the performance of photobioreactors due to the so-called flashing light effects. Better understanding of the multiphase fluid dynamics and the irradiance distribution inside the reactor that cause the flashing light effects, as well as quantifying their impacts on the reactor performance, thus, are crucial for successful design and scale-up of photobioreactors. In this study, a species of red marine microalgae, Porphyridium sp., was grown in three airlift column photobioreactors (i.e., draft tube column, bubble column, and split column). The physical properties of the culture medium, the local fluid dynamics and the photobioreactor performances were investigated and are reported in this part of the manuscript. Results indicate that the presence of microalgae considerably affected the local multiphase flow dynamics in the studied draft tube column. Results also show that the split column reactor works slightly better than the draft tube and the bubble columns due to the spiral flow pattern inside the reactor. PMID:22068325

  7. Dynamic behavior of chemical exchange column in a water detritiation system for a fusion reactor

    SciTech Connect

    Yamanishi, T.; Iwai, Y.

    2008-07-15

    The dynamic behavior of a CECE column used for a demonstration reactor (DEMO) plant has been studied. In the case where the column was filled with natural water, the time required to achieve steady state was almost the same as that for the column operated under the total reflux mode. The manipulated variables were flow rate of the bottom stream for the control of the bottom tritium concentration, and flow rate of the hydrogen stream for the control of the top tritium concentration. For both the variables, the response curve was expressed by the first-order lag system, and a PID controller could be applied. (authors)

  8. Monolithic capillary column based glycoproteomic reactor for high-sensitive analysis of N-glycoproteome.

    PubMed

    Liu, Jing; Wang, Fangjun; Lin, Hui; Zhu, Jun; Bian, Yangyang; Cheng, Kai; Zou, Hanfa

    2013-03-01

    Despite the importance of protein N-glycosylation in a series of biological processes, in-depth characterization of protein glycosylation is still a challenge due to the high complexity of biological samples and the lacking of highly sensitive detection technologies. We developed a monolithic capillary column based glycoproteomic reactor enabling high-sensitive mapping of N-glycosylation sites from minute amounts of sample. Unlike the conventional proteomic reactors with only strong-cation exchange or hydrophilic-interaction chromatography columns, this novel glycoproteomic reactor was composed of an 8 cm long C12 hydrophobic monolithic capillary column for protein digestion and a 6 cm long organic-silica hybrid hydrophilic monolithic capillary column for glycopeptides enrichment and deglycosylation, which could complete whole-sample preparation including protein purification/desalting, tryptic digestion, enrichment, and deglycosylation of glycopeptides within about 3 h. The developed reactor exhibited high detection sensitivity in mapping of N-glycosylation sites by detection limit of horseradish peroxidase as low as 2.5 fmol. This reactor also demonstrated the ability in complex sample analysis, and in total, 486 unique N-glycosylation sites were reliably mapped in three replicate analyses of a protein sample extracted from ∼10(4) HeLa cells. PMID:23384158

  9. A new post-column reactor-laser induced fluorescence detector for capillary electrophoresis

    SciTech Connect

    Zhang Liling

    1996-01-02

    Capillary zone electrophoresis (CZE), a powerful separation method based on the differential migration of charged species under the influence of an electric field, has been widely used for separations covering from small ions to big biomolecules. Chapter 1 describes the method, then discusses detection of the separated analytes by laser induced fluorescence and by chemical derivatization, and the use of O-phthaldialdehyde (OPA) as a post-column reagent. Chapter 2 describes a post-column reactor which uses two narrow bore capillaries connected coaxially. This reactor differs from other coaxial reactors in terms of capillary dimensions, reagent flow control, ease of construction and most importantly, better limits of detection. The derivatization reagent is electroosmotically driven into the reaction capillary and the reagent flow rate is independently controlled by a high voltage power supply. Amino acids, amines and proteins, derivatized by OPA/2-mercaptoethanol using this post-column reactor coupled with LIF detection, show low attomole mass limits of detection, and for the first time, the authors demonstrate single cell capability with a post-column derivatization scheme. The single cell capability shows that this reactor could find applications in assaying non-fluorescent or electrochemically inactive components in individual biological cells in the future.

  10. Bell column downtube, reactors utilizing same and related methods

    SciTech Connect

    Turner, Terry D.; Bingham, Dennis N.; Benefiel, Bradley C.; Klinger, Kerry M.; Wilding, Bruce M.

    2015-12-22

    Reactors for carrying out a chemical reaction, as well as related components, systems and methods are provided. In accordance with one embodiment, a reactor is provided that includes a furnace and a crucible positioned for heating by the furnace. A downtube is disposed at least partially within the interior crucible along an axis. At least one structure is coupled with the downtube and extends substantially across the cross-sectional area of the interior volume taken in a direction substantially perpendicular to the axis. A plurality of holes is formed in the structure enabling fluid flow therethrough. The structure coupled with the downtube may include a lower body portion and an upper body portion coupled with the lower body portion, wherein the plurality of holes is formed in the lower body portion adjacent to, and radially outward from, a periphery of the upper body portion.

  11. Bacterial reductive dissolution of crystalline Fe(III) oxide in continuous-flow column reactors

    SciTech Connect

    Roden, E.E.; Urrutia, M.M.; Mann, C.J.

    2000-03-01

    Bacterial reductive dissolution of synthetic crystalline Fe(III) oxide-coated sand was studied in continuous-flow column reactors in comparison with parallel batch cultures. The cumulative amount of aqueous Fe(II) exported from the columns over a 6-month incubation period corresponded to (95.0 {+-} 3.7)% (n = 3) of their original Fe(III) content. Wet-chemical analysis revealed that only (6.5 {+-} 3.2)% of the initial Fe(III) content remained in the columns at the end of the experiment. The near-quantitative removal of Fe was visibly evidenced by extensive bleaching of color from the sand in the columns. In contrast to the column reactors, Fe(II) production quickly reached an asymptote in batch cultures, and only (13.0 {+-} 2.2)% (n = 3) of the Fe(III) oxide content was reduced. Sustained bacterial-cell growth occurred in the column reactors, leading to the production and export of a quantity of cells 100-fold greater than that added during inoculation. Indirect estimates of cell growth, based on the quantity of Fe(III) reduced, suggest that only an approximate doubling of initial cell abundance was likely to have occurred in the batch cultures. Their results indicate that removal of biogenic Fe(II) via aqueous-phase transport in the column reactors decreased the passivating influence of surface-bound Fe(II) on oxide reduction activity, thereby allowing a dramatic increase in the extent of Fe(III) oxide reduction and associated bacterial growth. These findings have important implications for understanding the fate of organic and inorganic contaminants whose geochemical behavior is linked to Fe(III) oxide reduction.

  12. COMPUTATIONAL AND EXPERIMENTAL MODELING OF SLURRY BUBBLE COLUMN REACTORS

    SciTech Connect

    Paul Lam; Dimitri Gidaspow

    2000-09-01

    The objective if this study was to develop a predictive experimentally verified computational fluid dynamics (CFD) model for gas-liquid-solid flow. A three dimensional transient computer code for the coupled Navier-Stokes equations for each phase was developed. The principal input into the model is the viscosity of the particulate phase which was determined from a measurement of the random kinetic energy of the 800 micron glass beads and a Brookfield viscometer. The computed time averaged particle velocities and concentrations agree with PIV measurements of velocities and concentrations, obtained using a combination of gamma-ray and X-ray densitometers, in a slurry bubble column, operated in the bubbly-coalesced fluidization regime with continuous flow of water. Both the experiment and the simulation show a down-flow of particles in the center of the column and up-flow near the walls and nearly uniform particle concentration. Normal and shear Reynolds stresses were constructed from the computed instantaneous particle velocities. The PIV measurement and the simulation produced instantaneous particle velocities. The PIV measurement and the simulation produced similar nearly flat horizontal profiles of turbulent kinetic energy of particles. This phase of the work was presented at the Chemical Reaction Engineering VIII: Computational Fluid Dynamics, August 6-11, 2000 in Quebec City, Canada. To understand turbulence in risers, measurements were done in the IIT riser with 530 micron glass beads using a PIV technique. The results together with simulations will be presented at the annual meeting of AIChE in November 2000.

  13. Hydrodynamics of the three-phase slurry Fischer-Tropsch bubble column reactors

    SciTech Connect

    Bukur, D.B.; Daly, J.G.; Patel, S.A.

    1990-09-01

    This report describes results of a study on hydrodynamics of three-phase bubble columns for Fischer-Tropsch synthesis. Experiments were conducted in two stainless bubble columns of 0.05 m and 0.21 m in diameter and 3 m tall, at 265{degrees}C and atmospheric pressure using nitrogen gas and two types of liquid medium (hydrotreated reactor wax designated FT-300, and raw reactor wax from fixed bed rectors at SASOL). The effects of solids types (iron oxide and silica), concentration (0--30 wt %), size (0--5 {mu}m and 20--44 {mu}m), slurry (liquid) velocity (up to 0.02 m/s) on the gas holdup and axial solids concentration profiles, were investigated. Phase volume fractions were determined using conventional (differential pressure measurements together with determination of slurry concentration along the column) and novel (dual energy nuclear density gauge) experimental techniques. Bubble size distribution and the Sauter mean bubble diameter were obtained using the dynamic gas disengagement (DGD) method. Flow regime transitions in both columns were determined using statistical analysis of both pressure and density fluctuations. Correlations for prediction of gas holdups and axial solids dispersion coefficient have been developed from experimental data obtained in this study. Data needed for calculation of the gas-liquid interfacial area (average gas holdup and Sauter mean bubble diameter) have been presented and can be used to estimate the mass transfer rate in slurry bubble column reactors. 105 refs., 19 figs., 38 tabs.

  14. Hydrodynamics of Fischer-Tropsch synthesis in slurry bubble column reactors: Final report

    SciTech Connect

    Bukur, D.B.; Daly, J.G.; Patel, S.A.; Raphael, M.L.; Tatterson, G.B.

    1987-06-01

    This report describes studies on hydrodynamics of bubble columns for Fischer-Tropsch synthesis. These studies were carried out in columns of 0.051 m and 0.229 m in diameter and 3 m tall to determine effects of operating conditions (temperature and gas flow rate), distributor type (sintered metal plate and single and multi-hole perforated plates) and liquid media (paraffin and reactor waxes) on gas hold-up and bubble size distribution. In experiments with the Fischer-Tropsch (F-T) derived paraffin wax (FT-300) for temperatures between 230 and 280/sup 0/C there is a range of gas velocities (transition region) where two values of gas hold-up (i.e., two flow regimes) are possible. Higher hold-ups were accompanied by the presence of foam (''foamy'' regime) whereas lower values were obtained in the absence of foam (''slug flow'' in the 0.051 m column, or ''churn-turbulent'' flow regime in the 0.229 m column). This type of behavior has been observed for the first time in a system with molten paraffin wax as the liquid medium. Several factors which have significant effect on foaming characteristics of this system were identified. Reactor waxes have much smaller tendency to foam and produce lower hold-ups due to the presence of larger bubbles. Finally, new correlations for prediction of the gas hold-up and the specific gas-liquid interfacial area were developed on the basis of results obtained in the present study. 49 refs., 99 figs., 19 tabs.

  15. Flow patterns in a slurry-bubble-column reactor under reaction conditions

    SciTech Connect

    Toselane, B.A.; Brown, D.M.; Zou, B.S.; Dudukovic, M.P.

    1995-12-31

    The gas and liquid radioactive tracer response curves obtained in an industrial bubble column reactor of height to diameter ratio of 10 are analyzed and the suitability of the axial dispersion model for interpretation of the results is discussed. The relationship between the tracer concentration distribution and measured detector response of the soluble gas tracer (Ar-41) is possibly dominated by the dissolved gas. The one dimensional axial dispersion model cannot match all the experimental observations well and the flow pattern of the undissolved gas cannot be determined with certainty.

  16. New irradiation facility for biomedical applications at the RA-3 reactor thermal column.

    PubMed

    Miller, M; Quintana, J; Ojeda, J; Langan, S; Thorp, S; Pozzi, E; Sztejnberg, M; Estryk, G; Nosal, R; Saire, E; Agrazar, H; Graiño, F

    2009-07-01

    A new irradiation facility has been developed in the RA-3 reactor in order to perform trials for the treatment of liver metastases using boron neutron capture therapy (BNCT). RA-3 is a production research reactor that works continuously five days a week. It had a thermal column with a small cross section access tunnel that was not accessible during operation. The objective of the work was to perform the necessary modifications to obtain a facility for irradiating a portion of the human liver. This irradiation facility must be operated without disrupting the normal reactor schedule and requires a highly thermalized neutron spectrum, a thermal flux of around 10(10) n cm(-2)s(-1) that is as isotropic and uniform as possible, as well as on-line instrumentation. The main modifications consist of enlarging the access tunnel inside the thermal column to the suitable dimensions, reducing the gamma dose rate at the irradiation position, and constructing properly shielded entrance gates enabled by logical control to safely irradiate and withdraw samples with the reactor at full power. Activation foils and a neutron shielded graphite ionization chamber were used for a preliminary in-air characterization of the irradiation site. The constructed facility is very practical and easy to use. Operational authorization was obtained from radioprotection personnel after confirming radiation levels did not significantly increase after the modification. A highly thermalized and homogenous irradiation field was obtained. Measurements in the empty cavity showed a thermal flux near 10(10) n cm(-2)s(-1), a cadmium ratio of 4100 for gold foils and a gamma dose rate of approximately 5 Gy h(-1). PMID:19406651

  17. Identification of bacteria coexisting with anammox bacteria in an upflow column type reactor.

    PubMed

    Qiao, Sen; Kawakubo, Yuki; Cheng, Yingjun; Nishiyama, Takashi; Fujii, Takao; Furukawa, Kenji

    2009-02-01

    Anammox process has attracted considerable attention in the recent years as an alternative to conventional nitrogen removal technologies. In this study, a column type reactor using a novel net type acrylic fiber (Biofix) support material was used for anammox treatment. The Biofix reactor was operated at a temperature of 25 degrees C (peak summer temperature, 31.5 degrees C). During more than 340 days of operation for synthetic wastewater treatment, the nitrogen loading rates of the reactor were increased to 3.6 kg-N/m(3)/d with TN removal efficiencies reaching 81.3%. When the reactor was used for raw anaerobic sludge digester liquor treatment, an average TN removal efficiency of 72% was obtained with highest removal efficiency of 81.6% at a nitrogen loading rate of 2.2 kg-N/m(3)/d. Results of extracellular polymeric substances (EPS) quantification revealed that protein was the most abundant component in the granular sludge and was found to be almost twice than that in the sludge attached to the biomass carriers. The anammox granules in the Biofix reactor illustrated a dense morphology substantiated by scanning electron microscopy and EPS results. The results of DNA analyses indicated that the anammox strain KSU-1 might prefer relatively low nutrient levels, while the anammox strain KU2 strain might be better suited at high nutrient concentration. Other types of bacteria were also identified with the potential of consuming dissolved oxygen in the influent and facilitating survival of anammox bacteria under aerobic conditions. PMID:18651231

  18. Tritum recovery system from waste water of fusion reactor using CECE and cryogenic-wall thermal diffusion column

    SciTech Connect

    Arita, T.; Yamanishi, T.; Iwai, Y.; Okuno, K.; Kobayashi, N.; Yamamoto, I.

    1996-12-31

    A system for recovery of tritium in water has been proposed. The system is composed of CECE (Combined Electrolysis Chemical Exchange) and CTD (Cryogenic-wall Thermal Diffusion) columns. A design study was carried out for the two cases: the waste water processing in fusion facilities; and the tritium recovery from heavy water in a fission reactor in Japan. The size and power consumption of the system can greatly be reduced by using the CECE column than the system of WD (Water Distillation) columns. The operation and maintenance of the CTD column are quite easier than the CD (Cryogenic Distillation) column. The proposed system would be applicable for some cases such as the waste water processing in tritium facilities, where the processing flow rate is relatively small. 11 refs., 4 figs., 6 tabs.

  19. Hydrodynamic models for slurry bubble column reactors. Seventh technical progress report, January--March 1996

    SciTech Connect

    Gidaspow, D.

    1996-04-01

    The objective of this investigation is to convert our ``learning gas solid-liquid`` fluidization model into a predictive design model. The IIT hydrodynamic model computes the phase velocities and the volume fractions of gas, liquid and particulate phase. Model verification involves a comparison of these computed velocities and volume fractions to experimental values. A hydrodynamic model for multiphase flows, based on the principles of mass, momentum and energy conservation for each phase, was developed and applied to model gas-liquid, gas-liquid-solid fluidization and gas-solid-solid separation. To simulate the industrial slurry bubble column reactors, a computer program based on the hydrodynamic model was written with modules for chemical reactions (e.g. the synthesis of methanol), phase changes and heat exchangers. In the simulations of gas-liquid two phases flow system, the gas hold-ups, computed with a variety of operating conditions such as temperature, pressure, gas and liquid velocities, agree well with the measurements obtained at Air Products` pilot plant. The hydrodynamic model has more flexible features than the previous empirical correlations in predicting the gas hold-up of gas-liquid two-phase flow systems. In the simulations of gas-liquid-solid bubble column reactors with and without slurry circulation, the code computes volume fractions, temperatures and velocity distributions for the gas, the liquid and the solid phases, as well as concentration distributions for the species (CO, H{sub 2}, CH{sub 3}0H, ... ), after startup from a certain initial state. A kinetic theory approach is used to compute a solid viscosity due to particle collisions. Solid motion and gas-liquid-solid mixing are observed on a color PCSHOW movie made from computed time series data. The steady state and time average catalyst concentration profiles, the slurry height and the rates of methanol production agree well with the measurements obtained at an Air Products` pilot plant.

  20. Design of Mixed Batch Reactor and Column Studies at Oak Ridge National Laboratory

    SciTech Connect

    Wu, Weimin; Criddle, Craig S.

    2015-11-16

    We (the Stanford research team) were invited as external collaborators to contribute expertise in environmental engineering and field research at the ORNL IFRC, Oak Ridge, TN, for projects carried out at the Argonne National Laboratory and funded by US DOE. Specifically, we assisted in the design of batch and column reactors using ORNL IFRC materials to ensure the experiments were relevant to field conditions. During the funded research period, we characterized ORNL IFRC groundwater and sediments in batch microcosm and column experiments conducted at ANL, and we communicated with ANL team members through email and conference calls and face-to-face meetings at the annual ERSP PI meeting and national meetings. Microcosm test results demonstrated that U(VI) in sediments was reduced to U(IV) when amended with ethanol. The reduced products were not uraninite but unknown U(IV) complexes associated with Fe. Fe(III) in solid phase was only partially reduced. Due to budget reductions at ANL, Stanford contributions ended in 2011.

  1. Non-catalytic alcoholysis process for production of biodiesel fuel by using bubble column reactor

    NASA Astrophysics Data System (ADS)

    Hagiwara, S.; Nabetani, H.; Nakajima, M.

    2015-04-01

    -edible lipids by use of the SMV reactor has not been examined yet. Therefore, this study aims to investigate the productivity of biodiesel produced from waste vegetable oils using the SMV reactor. Biodiesel fuel is a replacement for diesel as a fuel produced from biomass resources. It is generally produced as a FAME derived from vegetable oil by using alkaline catalyzed alcoholysis process. This alkaline method requires deacidification process prior to the reaction process and the alkaline catalyst removal process after the reaction. Those process increases the total cost of biodiesel fuel production. In order to solve the problems in the conventional alkaline catalyzed alcoholysis process, the authors proposed a non-catalytic alcoholysis process called the Superheated Methanol Vapor (SMV) method with bubble column reactor. So, this study aims to investigate the productivity of biodiesel produced from vegetable oils and other lipids using the SMV method with bubble column reactor.

  2. Hydrodynamic effects of air sparging on hollow fiber membranes in a bubble column reactor.

    PubMed

    Xia, Lijun; Law, Adrian Wing-Keung; Fane, Anthony G

    2013-07-01

    Air sparging is now a standard approach to reduce concentration polarization and fouling of membrane modules in membrane bioreactors (MBRs). The hydrodynamic shear stresses, bubble-induced turbulence and cross flows scour the membrane surfaces and help reduce the deposit of foulants onto the membrane surface. However, the detailed quantitative knowledge on the effect of air sparging remains lacking in the literature due to the complex hydrodynamics generated by the gas-liquid flows. To date, there is no valid model that describes the relationship between the membrane fouling performance and the flow hydrodynamics. The present study aims to examine the impact of hydrodynamics induced by air sparging on the membrane fouling mitigation in a quantitative manner. A modelled hollow fiber module was placed in a cylindrical bubble column reactor at different axial heights with the trans-membrane pressure (TMP) monitored under constant flux conditions. The configuration of bubble column without the membrane module immersed was identical to that studied by Gan et al. (2011) using Phase Doppler Anemometry (PDA), to ensure a good quantitative understanding of turbulent flow conditions along the column height. The experimental results showed that the meandering flow regime which exhibits high flow instability at the 0.3 m is more beneficial to fouling alleviation compared with the steady flow circulation regime at the 0.6 m. The filtration tests also confirmed the existence of an optimal superficial air velocity beyond which a further increase is of no significant benefit on the membrane fouling reduction. In addition, the alternate aeration provided by two air stones mounted at the opposite end of the diameter of the bubble column was also studied to investigate the associated flow dynamics and its influence on the membrane filtration performance. It was found that with a proper switching interval and membrane module orientation, the membrane fouling can be effectively

  3. Treatment of Copper Contaminated Municipal Wastewater by Using UASB Reactor and Sand-Chemically Carbonized Rubber Wood Sawdust Column.

    PubMed

    Biswas, Swarup; Mishra, Umesh

    2016-01-01

    The performance of a laboratory scale upflow anaerobic sludge blanket (UASB) reactor and its posttreatment unit of sand-chemically carbonized rubber wood sawdust (CCRWSD) column system for the treatment of a metal contaminated municipal wastewater was investigated. Copper ion contaminated municipal wastewater was introduced to a laboratory scale UASB reactor and the effluent from UASB reactor was then followed by treatment with sand-CCRWSD column system. The laboratory scale UASB reactor and column system were observed for a period of 121 days. After the posttreatment column the average removal of monitoring parameters such as copper ion concentration (91.37%), biochemical oxygen demand (BODT) (93.98%), chemical oxygen demand (COD) (95.59%), total suspended solid (TSS) (95.98%), ammonia (80.68%), nitrite (79.71%), nitrate (71.16%), phosphorous (44.77%), total coliform (TC) (99.9%), and fecal coliform (FC) (99.9%) was measured. The characterization of the chemically carbonized rubber wood sawdust was done by scanning electron microscope (SEM), X-ray fluorescence spectrum (XRF), and Fourier transforms infrared spectroscopy (FTIR). Overall the system was found to be an efficient and economical process for the treatment of copper contaminated municipal wastewater. PMID:26904681

  4. Treatment of Copper Contaminated Municipal Wastewater by Using UASB Reactor and Sand-Chemically Carbonized Rubber Wood Sawdust Column

    PubMed Central

    Biswas, Swarup; Mishra, Umesh

    2016-01-01

    The performance of a laboratory scale upflow anaerobic sludge blanket (UASB) reactor and its posttreatment unit of sand-chemically carbonized rubber wood sawdust (CCRWSD) column system for the treatment of a metal contaminated municipal wastewater was investigated. Copper ion contaminated municipal wastewater was introduced to a laboratory scale UASB reactor and the effluent from UASB reactor was then followed by treatment with sand-CCRWSD column system. The laboratory scale UASB reactor and column system were observed for a period of 121 days. After the posttreatment column the average removal of monitoring parameters such as copper ion concentration (91.37%), biochemical oxygen demand (BODT) (93.98%), chemical oxygen demand (COD) (95.59%), total suspended solid (TSS) (95.98%), ammonia (80.68%), nitrite (79.71%), nitrate (71.16%), phosphorous (44.77%), total coliform (TC) (99.9%), and fecal coliform (FC) (99.9%) was measured. The characterization of the chemically carbonized rubber wood sawdust was done by scanning electron microscope (SEM), X-ray fluorescence spectrum (XRF), and Fourier transforms infrared spectroscopy (FTIR). Overall the system was found to be an efficient and economical process for the treatment of copper contaminated municipal wastewater. PMID:26904681

  5. Zirconia promotion of Fischer-Tropsch cobalt catalysts: Behavior in fixed bed and slurry bubble column reactors

    SciTech Connect

    Oukaci, R.; Goodwin, J.G. Jr.; Marcelin, G.; Singleton, A.

    1995-12-01

    A series of cobalt-based F-T catalysts supported on alumina and silica were prepared with different loadings of Zr and with different sequences of impregnation of Co and Zr. All catalysts were extensively characterized by different methods. The catalysts were evaluated in terms of their activity and selectivity both in fixed bed and slurry bubble column reactors. Addition of ZrO{sub 2} to both Co/SiO{sub 2} and Co/Al{sub 2}O{sub 3} catalysts resulted in at least a two-to-threefold increase in the catalyst activity for F-T synthesis in the fixed bed reactor, depending on the sequence of impregnation of Co and Zr. In the slurry bubble column reactor the promotion effect was observed only for the SiO{sub 2}-supported catalyst.

  6. Zirconia promotion of Fischer-Tropsch cobalt catalysts: Behavior in fixed-bed and slurry bubble column reactors

    SciTech Connect

    Oukaci, R.; Goodwin, J.G. Jr.; Marcelin, G.; Singleton, A.

    1995-12-31

    A series of cobalt-based F-T catalysts supported on alumina and silica were prepared with different loadings of Zr and different sequence of impregnation of Co and Zr. All catalysts were extensively characterized by different methods. The catalysts were evaluated in terms of their activity and selectivity both in fixed bed and slurry bubble column reactors. Addition of ZrO{sub 2} to both CO/SO{sub 2} and Co/Al{sub 2}O{sub 3} catalysts resulted in at least a twofold increase in the catalyst activity for F-T synthesis in the fixed bed reactor. In the slurry bubble column reactor, a similar promotion effect was observed for the SO{sub 2}-supported catalysts, while the addition of Zr to a cobalt/alumina catalyst had a less significant effect.

  7. Preparation of uniform monomer droplets using packed column and continuous polymerization in tube reactor.

    PubMed

    Yasuda, Masahiro; Goda, Takashi; Ogino, Hiroyasu; Glomm, Wilhelm Robert; Takayanagi, Hiroaki

    2010-09-01

    A two-step continuous emulsification and polymerization process was developed in which monomer droplets having narrow size distribution were prepared and polymerized while retaining their monodispersity. In the emulsification step, a column packed with glass beads, of diameters ranging from 70microm to 1mm, was used to prepare a monomer O/W emulsion. Monomer droplets were dispersed with an aqueous solution of poly(vinyl alcohol) (PVA). The droplet size and -distribution was studied with respect to the effects of diameter of glass beads, concentration of PVA in water phase, degree of polymerization of PVA, ratio of mass flow of water phase to that of oil phase, linear velocity of water phase and viscosity of water phase and oil phase. Droplet size was found to be strongly dependent on the diameter of the packed glass beads, while the droplet size distribution was affected by the viscosities of the continuous and dispersed phases. Increasing the viscosity of the dispersed phase by addition of poly(styrene) to the monomer mixture resulted in a narrow size distribution of glycidyl methacrylate-ethylene glycol dimethacrylate droplets. Furthermore, these initiator-containing monomer droplets were polymerized by heating in a tubular reactor, from which polymer particles with a narrow size distribution could be synthesized. PMID:20566203

  8. From cheese whey to carotenes by Blakeslea trispora in a bubble column reactor.

    PubMed

    Roukas, Triantafyllos; Varzakakou, Maria; Kotzekidou, Parthena

    2015-01-01

    The effect of the aeration rate on carotene production from deproteinized hydrolyzed whey by Blakeslea trispora in a bubble column reactor was investigated. Aeration rate significantly affected carotene concentration and morphology of the fungus. Enhanced aeration caused change of the morphology of B. trispora from pellets with large projected area to pellets with small projected area. This morphological differentiation of the fungus was associated with a significant increase in carotene production. When deproteinized hydrolyzed whey was supplemented with 30 g/l Tween 80, 30 g/l Span 80, and 0.2 % (v/v) β-ionone, the highest carotene productivity (55.5 mg/g dry biomass/day or 405.0 mg/l/day) was obtained at an aeration rate of 4 vvm. This is the highest carotene productivity that has been reported among the agro-industrial by-products up to date. In this case, the carotenes produced consisted of β-carotene (67 %), γ-carotene (15 %), and lycopene (18 %). PMID:25248995

  9. Upflow column reactor design for dechlorination of chlorinated pulping wastes by Penicillium camemberti.

    PubMed

    Taşeli, Başak K; Gökçay, Celal F; Taşeli, Hasan

    2004-09-01

    A Penicillium camemberti strain isolated in our laboratory has been studied for its ability to degrade chlorinated pulping wastes, presumably containing a variety of chlorinated polyphenols. In batch tests, the highest removals (76% AOX, 61% color and 65% TOC) were obtained with 0.2 g/l feed acetate concentration. The tendency of the fungus to dechlorinate bleachery effluents better under non-shaking conditions and to attach onto surfaces suggested the use of immobilized cells rather than freely suspended ones in further exploitation of the process. An upflow glass wool packed column reactor established with this fungus could be operated for nearly two years in the laboratory. At best around 70% AOX could be removed from chlorinated pulping wastes in 7.3 h of contact with no aeration and with a minimal amount of carbon supplement (0.2 g/l). Finally, an asymptotic mathematical formula for determining Michaelis-Menten kinetic rates has been derived. The kinetic rates K(m) (the Michaelis constant or saturation constant for the substrate) and V(m) (the product of maximum rate for the enzymatic reaction and biomass concentration) were then calculated as 126.386 mg/l and 2.83017 mg/lh, respectively. PMID:15251223

  10. Evaluation of a subsurface oxygenation technique using colloidal gas aphron injections into packed column reactors

    SciTech Connect

    Wills, R.A.; Coles, P.

    1991-11-01

    Bioremediation may be a remedial technology capable of decontaminating subsurface environments. The objective of this research was to evaluate the use of colloidal gas aphron (CGA) injection, which is the injection of micrometer-size air bubbles in an aqueous surfactant solution, as a subsurface oxygenation technique to create optimal growth conditions for aerobic bacteria. Along with this, the capability of CGAs to act as a soil-washing agent and free organic components from a coal tar-contaminated matrix was examined. Injection of CGAs may be useful for remediation of underground coal gasification (UCG) sites. Because of this, bacteria and solid material from a UCG site located in northeastern Wyoming were used in this research. Colloidal gas aphrons were generated and pumped through packed column reactors (PCRS) containing post-burn core materials. For comparison, PCRs containing sand were also studied. Bacteria from this site were tested for their capability to degrade phenol, a major contaminant at the UCG site, and were also used to bioaugment the PCR systems. In this study we examined: (1) the effect of CGA injection on dissolved oxygen concentrations in the PCR effluents, (2) the effect of CGA, H[sub 2]O[sub 2], and phenol injections on bacterial populations, (3) the stability and transport of CGAs over distance, and (4) CGA injection versus H[sub 2]O[sub 2] injection as an oxygenation technique.

  11. Evaluation of a subsurface oxygenation technique using colloidal gas aphron injections into packed column reactors

    SciTech Connect

    Wills, R.A.; Coles, P.

    1991-11-01

    Bioremediation may be a remedial technology capable of decontaminating subsurface environments. The objective of this research was to evaluate the use of colloidal gas aphron (CGA) injection, which is the injection of micrometer-size air bubbles in an aqueous surfactant solution, as a subsurface oxygenation technique to create optimal growth conditions for aerobic bacteria. Along with this, the capability of CGAs to act as a soil-washing agent and free organic components from a coal tar-contaminated matrix was examined. Injection of CGAs may be useful for remediation of underground coal gasification (UCG) sites. Because of this, bacteria and solid material from a UCG site located in northeastern Wyoming were used in this research. Colloidal gas aphrons were generated and pumped through packed column reactors (PCRS) containing post-burn core materials. For comparison, PCRs containing sand were also studied. Bacteria from this site were tested for their capability to degrade phenol, a major contaminant at the UCG site, and were also used to bioaugment the PCR systems. In this study we examined: (1) the effect of CGA injection on dissolved oxygen concentrations in the PCR effluents, (2) the effect of CGA, H{sub 2}O{sub 2}, and phenol injections on bacterial populations, (3) the stability and transport of CGAs over distance, and (4) CGA injection versus H{sub 2}O{sub 2} injection as an oxygenation technique.

  12. Dynamic Modeling of Hydro- Formylation of 1-Decene on Rh/C Catalyst in Bubble Column Slurry Reactor

    NASA Astrophysics Data System (ADS)

    Upkare, Makarand M.; Rajurkar, Kalpendra B.; Das, Samir K.; Jaganathan, R.

    2010-10-01

    A dynamic model has been developed for the bubble column slurry reactor operating under non-isothermal conditions. The model consists of mass and heat balance equations for the gas and liquid phases and the catalyst particle. The model equations consisted of partial differential equations (PDE) which were converted to ordinary differential equations (ODE) by using finite difference relationships for the spatial derivatives and the ordinary differential equations for the time derivatives (Numerical Method of Lines-NMoL). The model was applied to describe the dynamic behaviour of bubble column slurry reactor during the hydroformylation of 1-decene on Rh/C catalyst. Model simulations were performed to obtain a meaningful path to steady state and to reproduce the other characteristics of the dynamic behaviour of the reactor. Under given conditions, the reaction required approximately 3750 seconds to reach the steady state concentrations at various reactor positions. It was observed with increase in the fluid velocities, the dynamics of the system was altered to 2500 seconds to reach the steady state condition. The effect of axial dispersion on the substrate concentration and the temperature rise along the reactor was further studied and discussed.

  13. Cost/performance comparison between pulse columns and centrifugal contactors designed to process Clinch River Breeder Reactor fuel

    SciTech Connect

    Ciucci, J.A. Jr.

    1983-12-01

    A comparison between pulse columns and centrifugal contactors was made to determine which type of equipment was more advantageous for use in the primary decontamination cycle of a remotely operated fuel reprocessing plant. Clinch River Breeder Reactor (CRBR) fuel was chosen as the fuel to be processed in the proposed 1 metric tonne/day reprocessing facility. The pulse columns and centrifugal contactors were compared on a performance and total cost basis. From this comparison, either the pulse columns or the centrifugal contactors will be recommended for use in a fuel reprocessing plant built to reprocess CRBR fuel. The reliability, solvent exposure to radiation, required time to reach steady state, and the total costs were the primary areas of concern for the comparison. The pulse column units were determined to be more reliable than the centrifugal contactors. When a centrifugal contactor motor fails, it can be remotely changed in less than one eight hour shift. Pulse columns expose the solvent to approximately five times as much radiation dose as the centrifugal contactor units; however, the proposed solvent recovery system adequately cleans the solvent for either case. The time required for pulse columns to reach steady state is many times longer than the time required for centrifugal contactors to reach steady state. The cost comparison between the two types of contacting equipment resulted in centrifugal contactors costing 85% of the total cost of pulse columns when the contactors were stacked on three levels in the module. If the centrifugal contactors were all positioned on the top level of a module with the unoccupied volume in the module occupied by other equipment, the centrifugal contactors cost is 66% of the total cost of pulse columns. Based on these results, centrifugal contactors are recommended for use in a remotely operated reprocessing plant built to reprocess CRBR fuel.

  14. Fischer-Tropsch Slurry Reactor modeling

    SciTech Connect

    Soong, Y.; Gamwo, I.K.; Harke, F.W.

    1995-12-31

    This paper reports experimental and theoretical results on hydrodynamic studies. The experiments were conducted in a hot-pressurized Slurry-Bubble Column Reactor (SBCR). It includes experimental results of Drakeol-10 oil/nitrogen/glass beads hydrodynamic study and the development of an ultrasonic technique for measuring solids concentration. A model to describe the flow behavior in reactors was developed. The hydrodynamic properties in a 10.16 cm diameter bubble column with a perforated-plate gas distributor were studied at pressures ranging from 0.1 to 1.36 MPa, and at temperatures from 20 to 200{degrees}C, using a dual hot-wire probe with nitrogen, glass beads, and Drakeol-10 oil as the gas, solid, and liquid phase, respectively. It was found that the addition of 20 oil wt% glass beads in the system has a slight effect on the average gas holdup and bubble size. A well-posed three-dimensional model for bed dynamics was developed from an ill-posed model. The new model has computed solid holdup distributions consistent with experimental observations with no artificial {open_quotes}fountain{close_quotes} as predicted by the earlier model. The model can be applied to a variety of multiphase flows of practical interest. An ultrasonic technique is being developed to measure solids concentration in a three-phase slurry reactor. Preliminary measurements have been made on slurries consisting of molten paraffin wax, glass beads, and nitrogen bubbles at 180 {degrees}C and 0.1 MPa. The data show that both the sound speed and attenuation are well-defined functions of both the solid and gas concentrations in the slurries. The results suggest possibilities to directly measure solids concentration during the operation of an autoclave reactor containing molten wax.

  15. Continuous production of L-phenylalanine by Rhodotorula glutinis immobilized cells using a column reactor.

    PubMed

    El-Batal, Ahmed I

    2002-01-01

    Studies have been conducted on L-phenylalanine (L-Phe) production and phenylalanine ammonia lyase (PAL) stabilization in the presence of several optimum effectors and reducing agents under bioconversion of transcinnamic acid (t-CA) conditions during repeated batch operations. L-Phe production was maximized and reuseability of PAL catalyst was extended to eight consecutive cycles (repeated batches) in the presence of optimum effectors (glutamic acid, polyethylene glycol and glycerol), thioglycolic acid and sparging with nitrogen gas. These best optimum bioconversion conditions desensitize the PAL catalyst to substantially elevated higher substrate t-CA concentrations and inhibit inactivation of PAL enzyme over longer reaction periods compared to the control. The fed batch mode operation of bioconversion of total t-CA (300 mM) to L-Phe was superior (65.2%, conversion), comparing with conventional batch and repeated batch (58.4%, conversion) operations after 120 h. Gamma irradiation process was employed to polymerize and crosslink polyvinyl alcohol (PVA) with N,N'-methylene-bisacrylamide (BIS) agent. The use of immobilized PAL biocatalyst containing cells in PVA-BIS copolymer gel carrier produced by radiation polymerization is obviously advantageous with regards to the yield of L-Phe which was increased in average 1.2-fold when compare to those obtained with free cells during optimum bioconversion process. When comparing the magnitudes of gamma irradiation effects on immobilized entrapped yeast cells in PVA-BIS copolymer gel carrier using scanning electron microscopy it was show that yeast cells were protected and capable to overcome these conditions and had normal shape and other features as free (unirradiated) intact yeast cells. Optimum conditions for continuous production of L-Phe by PVA-BIS copolymer carrier entrapped yeast cells in a packed bed column reactor in recycle fed-batch mode were investigated. Under these optimum conditions L-Phe accumulated to

  16. Effect of dense heat exchanging internals on the hydrodynamics of bubble column reactors using non-invasive measurement techniques

    NASA Astrophysics Data System (ADS)

    Al Mesfer, Mohammed Khloofh

    Given their efficiency and capital cost reduction, bubble/slurry bubble column reactors are the reactors of choice for Fischer-Tropsch (FT) synthesis, offering clean alternative fuels and chemicals. FT synthesis is an exothermic process that requires many heat exchanging tubes in order to remove heat efficiently and maintain the desired temperature and isothermal operating condition. The impact of the heat exchanging tubes (internals) on the hydrodynamics is not fully understood. Reliably designing and scaling up bubble column reactors requires proper understanding of hydrodynamics, as well as heat and mass transfer parameters. The main objective of this work is to advance the understanding of the effect of internals (25% covered cross-sectional area to meet FT needs) on hydrodynamics (gas holdup distribution, 3D liquid velocity, Reynolds stresses, turbulent kinetic energy, eddy diffusivity, etc.) in bubble columns. Single-source gamma-ray Computed Tomography (CT) and Radioactive Particle Tracking (RPT) were used for the first time to study the effect of dense internals and gas velocity on the phase holdup distribution and radial profiles, liquid velocity field and turbulent parameter profiles. The main findings obtained for the first time in this study can be summarized as follows: The presence of internals at a given superficial gas velocity causes: An increase in gas holdup and the axial centerline liquid velocity. A sharp decrease in turbulence parmeters. The increase in superficial gas velocity in the presence of internals causes: An increase in gas holdup, axial centerline liquid velocity and turbulent parameters.

  17. Evaluating Carriers for Immobilizing Saccharomyces cerevisiae for Ethanol Production in a Continuous Column Reactor

    PubMed Central

    Cha, Hye-Geun; Kim, Yi-Ok; Choi, Woon Yong; Kang, Do-Hyung; Lee, Hyeon-Yong

    2014-01-01

    We evaluated a more practical and cost-effective immobilization carriers for ethanol production using the yeast Saccharomyces cerevisiae. Three candidate materials-rice hull, rice straw, and sawdust-were tested for their cell-adsorption capacity and operational durability. Derivatizations of rice hull, rice straw, and sawdust with the optimal concentration of 0.5 M of 2-(diethylamino)ethyl chloride hydrochloride (DEAE · HCl) resulted in > 95% adsorption of the initial yeast cells at 2 hr for DEAE-rice hull and DEAE-sawdust and in only approximately 80% adsorption for DEAE-rice straw. In addition, DEAE-sawdust was found to be a more practical carrier for immobilizing yeast cells in terms of operational durability in shaking flask cultures with two different speeds of 60 and 150 rpm. Furthermore, the biosorption isotherms of DEAE-rice hull, -rice straw, and -sawdust for yeast cells revealed that the Qmax of DEAE-sawdust (82.6 mg/g) was greater than that of DEAE-rice hull and DEAE-rice straw. During the 404-hr of continuous column reactor operation using yeast cells immobilized on DEAE-sawdust, no serious detachment of the yeast cells from the DEAE-sawdust was recorded. Ethanol yield of approximately 3.04 g/L was produced steadily, and glucose was completely converted to ethanol at a yield of 0.375 g-ethanol/g-glucose (73.4% of the theoretical value). Thus, sawdust is a promising practical immobilization carrier for ethanol production, with significance in the production of bioethanol as a biofuel. PMID:25346601

  18. Evaluating Carriers for Immobilizing Saccharomyces cerevisiae for Ethanol Production in a Continuous Column Reactor.

    PubMed

    Cha, Hye-Geun; Kim, Yi-Ok; Choi, Woon Yong; Kang, Do-Hyung; Lee, Hyeon-Yong; Jung, Kyung-Hwan

    2014-09-01

    We evaluated a more practical and cost-effective immobilization carriers for ethanol production using the yeast Saccharomyces cerevisiae. Three candidate materials-rice hull, rice straw, and sawdust-were tested for their cell-adsorption capacity and operational durability. Derivatizations of rice hull, rice straw, and sawdust with the optimal concentration of 0.5 M of 2-(diethylamino)ethyl chloride hydrochloride (DEAE · HCl) resulted in > 95% adsorption of the initial yeast cells at 2 hr for DEAE-rice hull and DEAE-sawdust and in only approximately 80% adsorption for DEAE-rice straw. In addition, DEAE-sawdust was found to be a more practical carrier for immobilizing yeast cells in terms of operational durability in shaking flask cultures with two different speeds of 60 and 150 rpm. Furthermore, the biosorption isotherms of DEAE-rice hull, -rice straw, and -sawdust for yeast cells revealed that the Qmax of DEAE-sawdust (82.6 mg/g) was greater than that of DEAE-rice hull and DEAE-rice straw. During the 404-hr of continuous column reactor operation using yeast cells immobilized on DEAE-sawdust, no serious detachment of the yeast cells from the DEAE-sawdust was recorded. Ethanol yield of approximately 3.04 g/L was produced steadily, and glucose was completely converted to ethanol at a yield of 0.375 g-ethanol/g-glucose (73.4% of the theoretical value). Thus, sawdust is a promising practical immobilization carrier for ethanol production, with significance in the production of bioethanol as a biofuel. PMID:25346601

  19. A novel, post-column micro-membrane reactor for fluorescent analysis of protein in capillary electrophoresis.

    PubMed

    Liu, Fan; Zhang, Lingyi; Qian, Junhong; Ren, Jun; Gao, Fangyuan; Zhang, Weibing

    2013-11-01

    Based on the semipermeability of hollow fiber membranes, a post-column membrane reactor was developed for capillary electrophoresis (CE)-laser induced fluorescence (LIF) analysis of proteins by using a hollow fiber membrane to connect the separation and detection capillaries. The membrane length between the separation and detection capillaries was 1 mm. Driven by the chemical potential difference between the separation buffer inside the membrane and the fluorescence derivatization solution outside the membrane, the derivatization reagent can be easily drawn into hollow fiber membrane to react with proteins. Also, the separation buffer can be adjusted by the derivatization solution to match the conditions of derivatization without sample loss. The effect of the separation buffer on the derivatization reaction was investigated and the results showed that even a strong acidic solution and multiple additives can be adopted in the separation buffer without destroying the post-column derivatization of proteins. Under the optimized conditions, the highly sensitive detection of BSA was achieved with a detection limit of 3.3 nmol L(-1) and a linear calibration range from 0.007 to 0.1 mg mL(-1). The proposed CE-LIF system with a post-column membrane reactor was also successfully applied to the separation and detection of proteins in rat liver and loach muscle. PMID:24015400

  20. Measurement of bromate in bread by liquid chromatography with post-column flow reactor detection.

    PubMed

    Himata, K; Noda, M; Ando, S; Yamada, Y

    2000-01-01

    This method is suitable for the determination of bromate residues in a variety of baked goods. The peer-verified method trial was performed on white bread, multigrain bread, and coffee cake spiked with known levels of potassium bromate. The analytical portion is extracted with deionized water to remove bromate from the bulk of the baked product. The aqueous extract is carried through a series of steps to remove co-extractives that would interfere with the liquid chromatography (LC) in the determinative step or hasten the deterioration of the LC column. The extract is filtered before passing it through a reversed-phase solid-phase extraction (SPE) column and a cation-exchange column in the silver form to remove lipids and chloride, respectively. Ultrafiltration is then used to remove proteins with molecular weights of >30,000 daltons. Finally, a cation-exchange column in the sodium form is used to remove silver ions from the extract. The determinative step uses LC with a reversed-phase column and an ion-pairing agent in the mobile phase. Detection is based on the post-column reaction of bromate with o-dianisidine to form an oxidation product that is quantitated spectrophotometrically at 450 nm. Overall agreement between the submitting and peer laboratories was quite good. For bromate levels of 10-52 ppb, overall mean recoveries were 76.9 and 78.8% for the submitting and peer laboratories, respectively. The standard deviations were higher for the results of the peer laboratory, probably because of the generally higher level of baseline noise present in the chromatograms. The results demonstrate that the method provides adequate accuracy with low-fat as well as high-fat foods. Bromate at levels as low as 5 ppb (ng/g) can be detected with the method. PMID:10772172

  1. Environmentally friendly efficient coupling of n-heptane by sulfated tri-component metal oxides in slurry bubble column reactor.

    PubMed

    Ma, Hongzhu; Xiao, Jing; Wang, Bo

    2009-07-30

    SO(4)(2-)/M(x)O(y) is of the greatest interest in solid catalysts and green catalysts. Slurry bubble column reactors are of considerable interest in industrial processes and various biochemical processes. The cetane number (CN) has widely used diesel fuel quality parameter related to the ignition delay time (and combustion quality) of a fuel. CN improvement of diesel fuels is a difficult task that refiners will face in the near future. For that purpose, the tests were designed in which n-heptane is used as the reactant in the air or ozone atmosphere at room temperature (RT) and local atmospheric pressure (LAP) using different catalysts of sulfated tri-component metal oxides SO(4)(2-)/Fe(2)O(3)-TiO2-SnO(2) (SFTSn) and SO(4)(2-)/MnO(2)-TiO2-SnO(2) (SMTSn) in slurry bubble column reactor. The products distribution was analyzed by gas chromatography-mass spectrometry (GC-MS) method and the results show that the relative selectivity of long linear alkane (C(12)-C(28)) reaches the maximum (87.330%) when SMTSn is used as catalyst in flow air at 60 min. Diesel fuel components with higher cetane numbers can be easily obtained from this study. PMID:19124196

  2. Molten salt rolling bubble column, reactors utilizing same and related methods

    SciTech Connect

    Turner, Terry D.; Benefiel, Bradley C.; Bingham, Dennis N.; Klinger, Kerry M.; Wilding, Bruce M.

    2015-11-17

    Reactors for carrying out a chemical reaction, as well as related components, systems and methods are provided. In accordance with one embodiment, a reactor is provided that includes a furnace and a crucible positioned for heating by the furnace. The crucible may contain a molten salt bath. A downtube is disposed at least partially within the interior crucible along an axis. The downtube includes a conduit having a first end in communication with a carbon source and an outlet at a second end of the conduit for introducing the carbon material into the crucible. At least one opening is formed in the conduit between the first end and the second end to enable circulation of reaction components contained within the crucible through the conduit. An oxidizing material may be introduced through a bottom portion of the crucible in the form of gas bubbles to react with the other materials.

  3. Hydrodynamic models for slurry bubble column reactors. Fourth technical progress report

    SciTech Connect

    Gidaspow, D.

    1995-07-01

    The objective of this investigation is to convert our ``learning gas-solid-liquid`` fluidization model into a predictive design model. The IIT hydrodynamic model computes the phase velocities and volume fractions of gas, liquid and particulate phases. Model verification involves a comparison of these computed velocities and volume fractions to experimental values. The simulation of Air Product methanol reactors described in this paper are continuing. Granular temperatures and viscosities have been computed. Preliminary measurements of granular temperatures using the Air Product catalysts were obtained using our CCD camera.

  4. Effects of reactor decontamination complexing agents on soil adsorption-column studies

    SciTech Connect

    Serne, R. Jeffrey; Lindenmeier, Clark W.; Cantrell, Kirk J.; Owen, Antionette T.

    1999-12-01

    The effects of picolinate, an organic ligand used to decontaminate nuclear reactor cooling systems, in leachates generated from shallow-land burial (SLB) of low-level nuclear wastes (LLW) on soil adsorption was determined. Using batch adsorption tests and varying the concentration of picolinate, the adsorption tendencies of two metals [Ni(II) and U(VI)] and the ligand were measured as a function of solution pH. We found that when total metal concentrations were fixed at 10^-5 M, picolinate at ligand-to-metal [L:M] ratios $10 did significantly reduce adsorption of Ni but even at a L:M ratio of 100 there was no effect on U(VI) adsorption. These results are compared with data on other metals in the presence of picolinate and for metal adsorption in the presence of EDTA. We conclude that picolinic acid is less of a threat than EDTA in waste leachates to reduce metal adsorption (increase mobility) and that picolinate concentrations must reach or exceed 10^-4 M for the most impacted metals (i.e., those that form the very strongest complexes with picolinate). There are no leachate data on these decontamination agents for the common burial technique (disposal of de-watered resins in high integrity containers) that can be used to evaluate potential hazards of these organo-radionuclide complexes.

  5. Development of post-column enzymic reactors with immobilized alcohol oxidase for use in the high-performance liquid chromatographic assay of alcohols with electrochemical detection.

    PubMed

    Tagliaro, F; Schiavon, G; Dorizzi, R; Marigo, M

    1991-01-18

    The development of a very sensitive, direct injection high-performance liquid chromatographic method, using a post-column reactor with immobilized alcohol oxidase, was undertaken with the aim of determining methanol and ethanol levels in microlitre volumes of biological samples. After reversed-phase chromatography to separate methanol and ethanol, the analytes were enzymically converted into the respective aldehydes with formation of stoichiometric amounts of hydrogen peroxide, which could be measured via electrochemical oxidation at a platinum electrode. Some problems were encountered in the development of solid-phase enzymic reactors, using a delicate enzyme, that is prone to lose activity, such as alcohol oxidase. Owing to the slightly alkaline pH required for the optimum activity of alcohol oxidase, polymeric columns seemed to be preferable for the chromatography. HEMA copolymer was chosen as the stationary phase, but the methanol and ethanol peaks eluted close together and posed severe problems of limiting post-column band spreading. Reactors based on coarse supports for enzyme immobilization gave unacceptable band spreading, causing the methanol and ethanol peaks to overlap. On the other hand high-performance liquid chromatographic packings maintained the efficiency of the chromatographic separation, quite independently of the reactor volume. Polymeric supports proved superior to silicas in maintaining the enzyme activity. However, relevant changes in the enzyme substrate specificity were observed after immobilization. PMID:2061376

  6. A feasible method for growing fungal pellets in a column reactor inoculated with mycelium fragments and their application for dye bioaccumulation from aqueous solution.

    PubMed

    Xin, Baoping; Xia, Yunting; Zhang, Yang; Aslam, Hina; Liu, Changhao; Chen, Shi

    2012-02-01

    In the present paper, a feasible method was developed to grow fungal pellets in an air lift column reactor inoculated with mycelium fragments for improving separation effect of biomass from solution and reducing clogging effect of biomass; bioaccumulation of dye by the growing fungal pellets in the case of mycelium fragments inoculation was investigated. The results showed that inoculation with the mycelium fragments without any pre-treatment did not witness the formation of pellets; only pre-treated fragments using maize as both nucleus and carbon source for 72 h incubation guaranteed the formation of pellets in the air lift column reactor. Nearly 100% of dye removal was obtained by bioaccumulation of the growing pellets in successive three batches of dye wastewater treatment. The formation of pellets not only resulted in low clogging effect to promote mass transfer and dye bioaccumulation but also caused quick separation of dye-loaded biomass from treated wastewater. PMID:22196072

  7. Regeneration of barium carbonate from barium sulphide in a pilot-scale bubbling column reactor and utilization for acid mine drainage.

    PubMed

    Mulopo, J; Zvimba, J N; Swanepoel, H; Bologo, L T; Maree, J

    2012-01-01

    Batch regeneration of barium carbonate (BaCO(3)) from barium sulphide (BaS) slurries by passing CO(2) gas into a pilot-scale bubbling column reactor under ambient conditions was used to assess the technical feasibility of BaCO(3) recovery in the Alkali Barium Calcium (ABC) desalination process and its use for sulphate removal from high sulphate Acid Mine Drainage (AMD). The effect of key process parameters, such as BaS slurry concentration and CO(2) flow rate on the carbonation, as well as the extent of sulphate removal from AMD using the recovered BaCO(3) were investigated. It was observed that the carbonation reaction rate for BaCO(3) regeneration in a bubbling column reactor significantly increased with increase in carbon dioxide (CO(2)) flow rate whereas the BaS slurry content within the range 5-10% slurry content did not significantly affect the carbonation rate. The CO(2) flow rate also had an impact on the BaCO(3) morphology. The BaCO(3) recovered from the pilot-scale bubbling column reactor demonstrated effective sulphate removal ability during AMD treatment compared with commercial BaCO(3). PMID:22233912

  8. Removal of elemental mercury from flue gas by thermally activated ammonium persulfate in a bubble column reactor.

    PubMed

    Liu, Yangxian; Wang, Qian

    2014-10-21

    In this article, a novel technique on removal of elemental mercury (Hg(0)) from flue gas by thermally activated ammonium persulfate ((NH4)(2)S(2)O(8)) has been developed for the first time. Some experiments were carried out in a bubble column reactor to evaluate the effects of process parameters on Hg(0) removal. The mechanism and kinetics of Hg(0) removal are also studied. The results show that the parameters, (NH4)(2)S(2)O(8) concentration, activation temperature and solution pH, have significant impacts on Hg(0) removal. The parameters, Hg(0), SO2 and NO concentration, only have small effects on Hg(0) removal. Hg(0) is removed by oxidations of (NH4)(2)S(2)O(8), sulfate and hydroxyl free radicals. When (NH4)(2)S(2)O(8) concentration is more than 0.1 mol/L and solution pH is lower than 9.71, Hg(0) removal by thermally activated (NH4)(2)S(2)O(8) meets a pseudo-first-order fast reaction with respect to Hg(0). However, when (NH4)(2)S(2)O(8) concentration is less than 0.1 mol/L or solution pH is higher than 9.71, the removal process meets a moderate speed reaction with respect to Hg(0). The above results indicate that this technique is a feasible method for emission control of Hg(0) from flue gas. PMID:25251199

  9. Monitoring Uranium Transformations Determined by the Evolution of Biogeochemical Processes: Design of Mixed Batch Reactor and Column Studies at Oak Ridge National Laboratory

    SciTech Connect

    Criddle, Craig S.; Wu, Weimin

    2013-04-17

    With funds provided by the US DOE, Argonne National Laboratory subcontracted the design of batch and column studies to a Stanford University team with field experience at the ORNL IFRC, Oak Ridge, TN. The contribution of the Stanford group ended in 2011 due to budget reduction in ANL. Over the funded research period, the Stanford research team characterized ORNL IFRC groundwater and sediments and set up microcosm reactors and columns at ANL to ensure that experiments were relevant to field conditions at Oak Ridge. The results of microcosm testing demonstrated that U(VI) in sediments was reduced to U(IV) with the addition of ethanol. The reduced products were not uraninite but were instead U(IV) complexes associated with Fe. Fe(III) in solid phase was only partially reduced. The Stanford team communicated with the ANL team members through email and conference calls and face to face at the annual ERSP PI meeting and national meetings.

  10. Simulating distal gut mucosal and luminal communities using packed-column biofilm reactors and an in vitro chemostat model.

    PubMed

    McDonald, Julie A K; Fuentes, Susana; Schroeter, Kathleen; Heikamp-deJong, Ineke; Khursigara, Cezar M; de Vos, Willem M; Allen-Vercoe, Emma

    2015-01-01

    In vivo studies of human mucosal gut microbiota are often limited to end-point analyses and confounded by bowel cleansing procedures. Therefore, we used biofilm reactors to incorporate a simulated mucosal environment into an in vitro gut chemostat model. Communities developed were complex, reproducible, distinct, and representative of in vivo communities. PMID:25462016

  11. Continuous enzymatic biodiesel production from coconut oil in two-stage packed-bed reactor incorporating an extracting column to remove glycerol formed as by-product.

    PubMed

    Costa E Silva, William; Freitas, Larissa; Oliveira, Pedro C; de Castro, Heizir F

    2016-10-01

    The transesterification of coconut oil with ethanol catalyzed by Burkholderia cepacia lipase immobilized on polysiloxane-polyvinyl alcohol was performed in a continuous flow. The experimental design consisted of a two-stage packed-bed reactor incorporating a column with cationic resin (Lewatit GF 202) to remove the glycerol formed as by-product and the reactor performance was quantified for three different flow rates corresponding to space-times from 10 to 14 h. The influence of space-time on the ethyl ester (FAEE) concentrations, yields and productivities was determined. The reactor operation was demonstrated for space-time of 14 h attaining FAEE concentrations of 58.5 ± 0.87 wt%, FAEE yields of 97.3 ± 1.9 % and productivities of 41.6  ± 1.0 mgester g medium (-1)  h(-1). Biodiesel purified samples showed average kinematic viscosity values of 5.5 ± 0.3 mm(2) s(-1) that meet the criteria established by the American National Standard ASTM (D6751). The immobilized lipase was found to be stable regarding its morphological and catalytic characteristics, showing half-life time (t 1/2) around 1540 h. The continuous packed-bed reactor connected in series with simultaneous glycerol removal has a great potential to attain high level of transesterification yields, raising biodiesel productivity. PMID:27277745

  12. Flow Analysis of Amino Acids by Using a Newly Developed Aminoacyl-tRNA Synthetase-Immobilized, Small Reactor Column-Based Assay.

    PubMed

    Kugimiya, Akimitsu; Konishi, Hidenori; Fukada, Rie

    2016-03-01

    Abnormal concentrations of amino acids in blood and urine can be indicative of several diseases, including cancer and diabetes. Therefore, analyses that examine amino acid concentrations are useful for the diagnosis of such diseases. In this study, we developed an enzyme-immobilized, small reactor column for flow analysis of amino acid concentrations. For the recognition of asparagine and lysine, asparaginyl-tRNA synthetase and lysyl-tRNA synthase were immobilized onto microparticles, respectively, and coupled with coloration reagents for spectrophotometric detection. This assay has some advantages in the analytical field, such as the ability to detect small amounts of analyte, allowing for the use of a small reaction volume, and ensuring a rapid and efficient reaction rate. This approach provided selective quantitation of up to 480 μM of asparagine and lysine in 200 mM Tris-HCl buffer (pH 8.0). PMID:26554858

  13. Attachment of Acidithiobacillus ferrooxidans and Leptospirillum ferriphilum cultured under varying conditions to pyrite, chalcopyrite, low-grade ore and quartz in a packed column reactor.

    PubMed

    Africa, Cindy-Jade; van Hille, Robert P; Harrison, Susan T L

    2013-02-01

    The attachment of Acidithiobacillus ferrooxidans and Leptospirillum ferriphilum spp. grown on ferrous medium or adapted to a pyrite mineral concentrate to four mineral substrata, namely, chalcopyrite and pyrite concentrates, a low-grade chalcopyrite ore (0.5 wt%) and quartzite, was investigated. The quartzite represented a typical gangue mineral and served as a control. The attachment studies were carried out in a novel particle-coated column reactor. The saturated reactor containing glass beads, which were coated with fine mineral concentrates, provided a quantifiable surface area of mineral concentrate and maintained good fluid flow. A. ferrooxidans and Leptospirillum spp. had similar attachment characteristics. Enhanced attachment efficiency occurred with bacteria grown on sulphide minerals relative to those grown on ferrous sulphate in an ore-free environment. Selective attachment to sulphide minerals relative to gangue materials occurred, with mineral adapted cultures attaching to the minerals more efficiently than ferrous grown cultures. Mineral-adapted cultures showed highest levels of attachment to pyrite (74% and 79% attachment for A. ferrooxidans and L. ferriphilum, respectively). This was followed by attachment of mineral-adapted cultures to chalcopyrite (63% and 58% for A. ferrooxidans and L. ferriphilum, respectively). A. ferrooxidans and L. ferriphilum exhibited lower levels of attachment to low-grade ore and quartz relative to the sulphide minerals. PMID:22410741

  14. Dose estimation in B16 tumour bearing mice for future irradiation in the thermal column of the TRIGA reactor after B/Gd/LDL adduct infusion.

    PubMed

    Protti, N; Ballarini, F; Bortolussi, S; Bruschi, P; Stella, S; Geninatti, S; Alberti, D; Aime, S; Altieri, S

    2011-12-01

    To test the efficacy of a new (10)B-vector compound, the B/Gd/LDL adduct synthesised at Torino University, in vivo irradiations of murine tumours are in progress at the TRIGA Mark II reactor of the Pavia University. A localised B16 melanoma tumour is generated in C57BL/6 mice and subsequently infused with the adduct. During the irradiation, the mouse will be put in a shield to protect the whole body except the tumour in the back-neck area. To optimise the treatment set-up, MCNP simulations were performed. A very simplified mouse model was built using MCNP geometry capabilities, as well as the geometry of the shield made of 99% (10)B enriched boric acid. A hole in the shield is foreseen in correspondence of the back-neck region. Many configurations of the shield were tested in terms of neutron flux, dose distribution and mean induced activity in the tumour region and in the radiosensitive organs of the mouse. In the final set-up, up to five mice can be treated simultaneously in the reactor thermal column and the neutron fluence in the tumour region for 10 min of irradiation is of about 5×10(12) cm(-2). PMID:21459587

  15. Effect of operating variables on the gas holdup in a large-scale slurry bubble column reactor operating with an organic liquid mixture

    SciTech Connect

    Inga, J.R.; Morsi, B.I.

    1999-03-01

    The effects of gas velocity, system pressure, and catalyst loading on gas holdup of H{sub 2}, N{sub 2}, CO, and CH{sub 4} in an organic mixture of hexanes were investigated in a 0.316 m diameter, 2.8 m height slurry bubble column reactor operating with a commercial Fischer-Tropsch iron-based catalyst. The data were obtained in the churn-turbulent flow regime with catalyst loading up to 50 wt % and a system pressure up to 8 bar. The hydrostatic pressure head method and the dynamic gas disengagement technique were employed to obtain the gas holdup profile and the values corresponding to different gas bubble sizes in the reactor. The experimental data showed that the gas holdup consists mainly of two classes of gas bubbles, small and large. The gas holdup data for the gases used were found to increase with pressure and superficial gas velocity due to the increase of the volume fraction of the small and large gas bubbles, respectively. The increase of catalyst loading, however, appeared to decrease the gas holdup values, due to the decrease of the volume fraction of the small gas bubbles. Statistical and empirical correlations for gas holdup data were proposed.

  16. Airlift column photobioreactors for Porphyridium sp. culturing: Part II. verification of dynamic growth rate model for reactor performance evaluation.

    PubMed

    Luo, Hu-Ping; Al-Dahhan, Muthanna H

    2012-04-01

    Dynamic growth rate model has been developed to quantify the impact of hydrodynamics on the growth of photosynthetic microorganisms and to predict the photobioreactor performance. Rigorous verification of such reactor models, however, is rare in the literature. In this part of work, verification of a dynamic growth rate model developed in Luo and Al-Dahhan (2004) [Biotech Bioeng 85(4): 382-393] was attempted using the experimental results reported in Part I of this work and results from literature. The irradiance distribution inside the studied reactor was also measured at different optical densities and successfully correlated by the Lambert-Beer Law. When reliable hydrodynamic data were used, the dynamic growth rate model successfully predicted the algae's growth rate obtained in the experiments in both low and high irradiance regime indicating the robustness of this model. The simulation results also indicate the hydrodynamics is significantly different between the real algae culturing system and an air-water system that signifies the importance in using reliable data input for the growth rate model. PMID:22068388

  17. REVIEW OF EXPERIMENTAL CAPABILITIES AND HYDRODYNAMIC DATA FOR VALIDATION OF CFD-BASED PREDICTIONS FOR SLURRY BUBBLE COLUMN REACTORS

    SciTech Connect

    Donna Post Guillen; Daniel S. Wendt; Steven P. Antal; Michael Z. Podowski

    2007-11-01

    The purpose of this paper is to document the review of several open-literature sources of both experimental capabilities and published hydrodynamic data to aid in the validation of a Computational Fluid Dynamics (CFD) based model of a slurry bubble column (SBC). The review included searching the Web of Science, ISI Proceedings, and Inspec databases, internet searches as well as other open literature sources. The goal of this study was to identify available experimental facilities and relevant data. Integral (i.e., pertaining to the SBC system), as well as fundamental (i.e., separate effects are considered), data are included in the scope of this effort. The fundamental data is needed to validate the individual mechanistic models or closure laws used in a Computational Multiphase Fluid Dynamics (CMFD) simulation of a SBC. The fundamental data is generally focused on simple geometries (i.e., flow between parallel plates or cylindrical pipes) or custom-designed tests to focus on selected interfacial phenomena. Integral data covers the operation of a SBC as a system with coupled effects. This work highlights selected experimental capabilities and data for the purpose of SBC model validation, and is not meant to be an exhaustive summary.

  18. REVIEW OF EXPERIMENTAL CAPABILITIES AND HYDRODYNAMIC DATA FOR VALIDATION OF CFD BASED PREDICTIONS FOR SLURRY BUBBLE COLUMN REACTORS

    SciTech Connect

    Donna Post Guillen; Daniel S. Wendt

    2007-11-01

    The purpose of this paper is to document the review of several open-literature sources of both experimental capabilities and published hydrodynamic data to aid in the validation of a Computational Fluid Dynamics (CFD) based model of a slurry bubble column (SBC). The review included searching the Web of Science, ISI Proceedings, and Inspec databases, internet searches as well as other open literature sources. The goal of this study was to identify available experimental facilities and relevant data. Integral (i.e., pertaining to the SBC system), as well as fundamental (i.e., separate effects are considered), data are included in the scope of this effort. The fundamental data is needed to validate the individual mechanistic models or closure laws used in a Computational Multiphase Fluid Dynamics (CMFD) simulation of a SBC. The fundamental data is generally focused on simple geometries (i.e., flow between parallel plates or cylindrical pipes) or custom-designed tests to focus on selected interfacial phenomena. Integral data covers the operation of a SBC as a system with coupled effects. This work highlights selected experimental capabilities and data for the purpose of SBC model validation, and is not meant to be an exhaustive summary.

  19. Technology development for cobalt F-T catalysts. Topical report No.3, Zirconia promotion of Fischer-Tropsch cobalt catalysts: Behavior in fixed-bed and slurry bubble column reactors

    SciTech Connect

    Oukaci, R.; Marcelin, G.; Goodwin, J.G. Jr.

    1995-01-17

    A series of cobalt-based F-T catalysts supported on alumina and silica were prepared with different loadings of Zr and different sequences of impregnation of Co and Zr. All catalysts were extensively characterized by different methods. The catalysts were evaluated in terms of their activity and selectivity both in fixed bed and slurry bubble column reactors. Addition of ZrO{sub 2} to both Co/SiO{sub 2} and Co/Al{sub 2}O{sub 3} catalysts resulted in at least a twofold increase in the catalyst activity for F-T synthesis in the fixed bed reactor. In the slurry bubble column reactor, a similar promotion effect was observed for the SiO{sub 2}-supported catalysts, while the addition of Zr to a cobalt/alumina catalyst had a less significant effect.

  20. Calculations of dose distributions in the lungs of a rat model irradiated in the thermal column of the TRIGA reactor in Pavia.

    PubMed

    Protti, N; Bortolussi, S; Stella, S; Gadan, M A; De Bari, A; Ballarini, F; Bruschi, P; Ferrari, C; Clerici, A M; Zonta, C; Bakeine, J G; Dionigi, P; Zonta, A; Altieri, S

    2009-07-01

    To test the possibility to apply boron neutron capture therapy (BNCT) to lung tumors, some rats are planned to be irradiated in the thermal column of the TRIGA reactor of the University of Pavia. Before the irradiation, lung metastases will be induced in BDIX rats, which will be subsequently infused with boronophenylalanine (BPA). During the irradiation, the rats will be positioned in a box designed to shield the whole animal except the thorax area. In order to optimize the irradiation set-up and to design a suitable shielding box, a set of calculations were performed with the MCNP Monte Carlo transport code. A rat model was constructed using the MCNP geometry capabilities and was positioned in a box with walls filled with lithium carbonate. A window was opened in front of the lung region. Different shapes of the holder and of the window were tested and analyzed in terms of the dose distribution obtained in the lungs and of the dose absorbed by the radiosensitive organs in the rat. The best configuration of the holder ensures an almost uniform thermal neutron flux inside the lungs (Phi(max)/Phi(min)=1.5), an irradiation time about 10 min long, to deliver at least 40 Gy(w) to the tumor, a mean lung dose of 5.9+/-0.4 Gy(w), and doses absorbed by all the other healthy tissues below the tolerance limits. PMID:19406647

  1. Production of Diacylglycerol-enriched Oil by Glycerolysis of Soybean Oil using a Bubble Column Reactor in a Solvent-free System.

    PubMed

    Zhang, Ning; Yang, Xue; Fu, Junning; Chen, Qiong; Song, Ziliang; Wang, Yong

    2016-03-01

    In this study, diacylglycerol-enriched soybean oil (DESO) was synthesized through Lipozyme 435-catalyzed glycerolysis of soybean oil (SO) in a solvent-free system using a modified bubble column reactor. The effects of enzyme load, mole ratio of glycerol to soybean oil, reaction temperature, gas flow and reaction time on DAG production were investigated. The selected conditions were established as being enzyme load of 4 wt% (mass of substrates), glycerol/soybean oil mole ratio of 20:1, reaction temperature of 80°C, gas flow of 10.6 cm/min, and a reaction time of 2.5 h, obtaining the DAG content of 49.4±0.5 wt%. The reusability of Lipozyme 435 was evaluated by monitoring the contents of DAG, monoacylglycerol (MAG) and triacylglycerol (TAG) in 10 consecutive runs. After purified by one-step molecular distillation, the DAG content of 63.5±0.3 wt% was achieved in DESO. The mole ratio of 1, 3-DAG to 1, 2-DAG was 2:1 and the fatty acid composition had no significant difference from that of soybean oil. However, the thermal properties of DESO and SO had considerable differences. Polymorphic form of DESO were mainly the β form and minor amounts of the β' form. Granular aggregation and round-shaped crystals were detected in DESO. PMID:26876674

  2. Successive pretreatment and enzymatic saccharification of sugarcane bagasse in a packed bed flow-through column reactor aiming to support biorefineries.

    PubMed

    Terán-Hilares, R; Reséndiz, A L; Martínez, R T; Silva, S S; Santos, J C

    2016-03-01

    A packed bed flow-through column reactor (PBFTCR) was used for pretreatment and subsequent enzymatic hydrolysis of sugarcane bagasse (SCB). Alkaline pretreatment was performed at 70 °C for 4h with fresh 0.3M NaOH solution or with liquor recycled from a previous pretreatment batch. Scheffersomyces stipitis NRRL-Y7124 was used for fermentation of sugars released after enzymatic hydrolysis (20 FPU g(-1) of dry SCB). The highest results for lignin removal were 61% and 52%, respectively, observed when using fresh NaOH or the first reuse of the liquor. About 50% of cellulosic and 57% of hemicellulosic fractions of pretreated SCBs were enzymatically hydrolyzed and the maximum ethanol production was 23.4 g L(-1) (ethanol yield of 0.4 gp gs(-1)), with near complete consumption of both pentoses and hexoses present in the hydrolysate during the fermentation. PBFTCR as a new alternative for SCB-biorefineries is presented, mainly considering its simple configuration and efficiency for operating with a high solid:liquid ratio. PMID:26720138

  3. HYDRODYNAMIC MODELS FOR SLURRY BUBBLE COLUMN REACTORS. FINAL TECHNICAL REPORT ALSO INCLUDES THE QUARTERLY TECHNICAL REPORT FOR THE PERIOD 01/01/1997 - 03/31/1997.

    SciTech Connect

    DIMITRI GIDASPOW

    1997-08-15

    The objective of this study is to develop a predictive experimentally verified computational fluid dynamic (CFD) three phase model. It predicts the gas, liquid and solid hold-ups (volume fractions) and flow patterns in the industrially important bubble-coalesced (churn-turbulent) regime. The input into the model can be either particulate viscosities as measured with a Brookfield viscometer or effective restitution coefficient for particles. A combination of x-ray and {gamma}-ray densitometers was used to measure solid and liquid volume fractions. There is a fair agreement between the theory and the experiment. A CCD camera was used to measure instantaneous particle velocities. There is a good agreement between the computed time average velocities and the measurements. There is an excellent agreement between the viscosity of 800 {micro}m glass beads obtained from measurement of granular temperature (random kinetic energy of particles) and the measurement using a Brookfield viscometer. A relation between particle Reynolds stresses and granular temperature was found for developed flow. Such measurement and computations gave a restitution coefficient for a methanol catalyst to be about 0.9. A transient, two-dimensional hydrodynamic model for production of methanol from syn-gas in an Air Products/DOE LaPorte slurry bubble column reactor was developed. The model predicts downflow of catalyst at the walls and oscillatory particle and gas flow at the center, with a frequency of about 0.7 Hertz. The computed temperature variation in the rector with heat exchangers was only about 5 K, indicating good thermal management. The computed slurry height, the gas holdup and the rate of methanol production agree with LaPorte's reported data. Unlike the previous models in the literature, this model computes the gas and the particle holdups and the particle rheology. The only adjustable parameter in the model is the effective particle restitution coefficient.

  4. GRAPHITE BLOCKS ARE ARRAYED IN "THERMAL COLUMN" ON NORTH SIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GRAPHITE BLOCKS ARE ARRAYED IN "THERMAL COLUMN" ON NORTH SIDE OF REACTOR. INL NEGATIVE NO. 4000. Unknown Photographer, 12/28/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  5. Telescoping columns

    NASA Astrophysics Data System (ADS)

    Mazur, J. T.

    1980-12-01

    An extendable column is described which consists of several axially elongated rigid structural sections nested within one another. Each section includes a number of rotatably attached screws running along its length. The next inner section includes threaded lugs oriented to threadingly engage the screws. The column is extended or retracted upon rotation of the screws. The screws of each section are selectively rotated by a motor and an engagement mechanism.

  6. REACTOR

    DOEpatents

    Szilard, L.

    1963-09-10

    A breeder reactor is described, including a mass of fissionable material that is less than critical with respect to unmoderated neutrons and greater than critical with respect to neutrons of average energies substantially greater than thermal, a coolant selected from sodium or sodium--potassium alloys, a control liquid selected from lead or lead--bismuth alloys, and means for varying the quantity of control liquid in the reactor. (AEC)

  7. REACTOR

    DOEpatents

    Christy, R.F.

    1961-07-25

    A means is described for co-relating the essential physical requirements of a fission chain reaction in order that practical, compact, and easily controllable reactors can be built. These objects are obtained by employing a composition of fissionsble isotope and moderator in fluid form in which the amount of fissionsble isotcpe present governs the reaction. The size of the reactor is no longer a critical factor, the new criterion being the concentration of the fissionable isotope.

  8. PULSE COLUMN

    DOEpatents

    Grimmett, E.S.

    1964-01-01

    This patent covers a continuous countercurrent liquidsolids contactor column having a number of contactor states each comprising a perforated plate, a layer of balls, and a downcomer tube; a liquid-pulsing piston; and a solids discharger formed of a conical section at the bottom of the column, and a tubular extension on the lowest downcomer terminating in the conical section. Between the conical section and the downcomer extension is formed a small annular opening, through which solids fall coming through the perforated plate of the lowest contactor stage. This annular opening is small enough that the pressure drop thereacross is greater than the pressure drop upward through the lowest contactor stage. (AEC)

  9. REACTOR

    DOEpatents

    Roman, W.G.

    1961-06-27

    A pressurized water reactor in which automatic control is achieved by varying the average density of the liquid moderator-cooiant is patented. Density is controlled by the temperature and power level of the reactor ftself. This control can be effected by the use of either plate, pellet, or tubular fuel elements. The fuel elements are disposed between upper and lower coolant plenum chambers and are designed to permit unrestricted coolant flow. The control chamber has an inlet opening communicating with the lower coolant plenum chamber and a restricted vapor vent communicating with the upper coolant plenum chamber. Thus, a variation in temperature of the fuel elements will cause a variation in the average moderator density in the chamber which directly affects the power level of the reactor.

  10. REACTORS

    DOEpatents

    Spitzer, L. Jr.

    1961-10-01

    Thermonuclear reactors, methods, and apparatus are described for controlling and confining high temperature plasma. Main axial confining coils in combination with helical windings provide a rotational transform that avoids the necessity of a figure-eight shaped reactor tube. The helical windings provide a multipolar helical magnetic field transverse to the axis of the main axial confining coils so as to improve the effectiveness of the confining field by counteracting the tendency of the more central lines of force in the stellarator tube to exchange positions with the magnetic lines of force nearer the walls of the tube. (AEC)

  11. Slurry bubble column hydrodynamics

    NASA Astrophysics Data System (ADS)

    Rados, Novica

    Slurry bubble column reactors are presently used for a wide range of reactions in both chemical and biochemical industry. The successful design and scale up of slurry bubble column reactors require a complete understanding of multiphase fluid dynamics, i.e. phase mixing, heat and mass transport characteristics. The primary objective of this thesis is to improve presently limited understanding of the gas-liquid-solid slurry bubble column hydrodynamics. The effect of superficial gas velocity (8 to 45 cm/s), pressure (0.1 to 1.0 MPa) and solids loading (20 and 35 wt.%) on the time-averaged solids velocity and turbulent parameter profiles has been studied using Computer Automated Radioactive Particle Tracking (CARPT). To accomplish this, CARPT technique has been significantly improved for the measurements in highly attenuating systems, such as high pressure, high solids loading stainless steel slurry bubble column. At a similar set of operational conditions time-averaged gas and solids holdup profiles have been evaluated using the developed Computed Tomography (CT)/Overall gas holdup procedure. This procedure is based on the combination of the CT scans and the overall gas holdup measurements. The procedure assumes constant solids loading in the radial direction and axially invariant cross-sectionally averaged gas holdup. The obtained experimental holdup, velocity and turbulent parameters data are correlated and compared with the existing low superficial gas velocities and atmospheric pressure CARPT/CT gas-liquid and gas-liquid-solid slurry data. The obtained solids axial velocity radial profiles are compared with the predictions of the one dimensional (1-D) liquid/slurry recirculation phenomenological model. The obtained solids loading axial profiles are compared with the predictions of the Sedimentation and Dispersion Model (SDM). The overall gas holdup values, gas holdup radial profiles, solids loading axial profiles, solids axial velocity radial profiles and solids

  12. REACTOR

    DOEpatents

    Spitzer, L. Jr.

    1962-01-01

    The system conteraplates ohmically heating a gas to high temperatures such as are useful in thermonuclear reactors of the stellarator class. To this end the gas is ionized and an electric current is applied to the ionized gas ohmically to heat the gas while the ionized gas is confined to a central portion of a reaction chamber. Additionally, means are provided for pumping impurities from the gas and for further heating the gas. (AEC)

  13. Reactor

    DOEpatents

    Evans, Robert M.

    1976-10-05

    1. A neutronic reactor having a moderator, coolant tubes traversing the moderator from an inlet end to an outlet end, bodies of material fissionable by neutrons of thermal energy disposed within the coolant tubes, and means for circulating water through said coolant tubes characterized by the improved construction wherein the coolant tubes are constructed of aluminum having an outer diameter of 1.729 inches and a wall thickness of 0.059 inch, and the means for circulating a liquid coolant through the tubes includes a source of water at a pressure of approximately 350 pounds per square inch connected to the inlet end of the tubes, and said construction including a pressure reducing orifice disposed at the inlet ends of the tubes reducing the pressure of the water by approximately 150 pounds per square inch.

  14. Simultaneous determination of imidacloprid and carbendazim in water samples by ion chromatography with fluorescence detector and post-column photochemical reactor.

    PubMed

    Subhani, Qamar; Huang, Zhongping; Zhu, Zuoyi; Zhu, Yan

    2013-11-15

    A new analytical method has been developed and validated for the simultaneous determination of pesticides from different classes using ion chromatography-online photochemical derivatisation-fluorescence detector (IC-hv-FD). Fluorimetric detection was performed at λex/λem=332 nm/367 nm for imidacloprid and then detector was set at λex/λem=247 nm/470 nm for carbendazim. The two pesticides imidacloprid and carbendazim were successfully separated isocratically on an IonPac(®) AS11 (250 mm × 4 mm i.d; 13 µm particle size, Dionex) anion-exchange column using 40 mM KOH with 10% (v/v) acetonitrile and pumped at a flow rate of 1.0 mL min(-1). Under the optimized conditions, the limit of detection (LOD, S/N=3) of imidacloprid and carbendazim were 7.8 µg L(-1) and 67 µg L(-1), respectively. The experimental results showed that there was good linearity with a correlation coefficient (r)≥0.9966 over the range of 0.05-10 mg L(-1) for imidacloprid and 0.2-15 mg L(-1) for carbendazim. Good reproducibility with a relative standard deviation (RSD, n=7) less than 4.5%. Finally, the proposed method was applied with satisfactory results to the analysis of these pesticides in ground water, lake water and river water without any pre-treatment of samples. The average spiked recoveries were in the range of 90-104%. PMID:24148383

  15. Modeling of column apparatuses: A review

    SciTech Connect

    Doichinova, M. E-mail: petyabs@yahoo.com; Popova-Krumova, P. E-mail: petyabs@yahoo.com

    2013-12-18

    This paper presents a review of the modeling method on the base of the physical approximations of the mechanics of continua, which have been developed for processes in column apparatuses. This method includes diffusion type of model for modeling of mass transfer with chemical reaction in column apparatuses with and without circulation zones. The diffusion type of model is used for modeling of scale effect in column apparatuses too. The study concluded that the proposal method is possibility for investigation the influence of radial non uniformity of the velocity distribution on the process efficiency, influence of zones breadths on the mass transfer efficiency in the column. The method of the column apparatuses modeling can be used for modeling of physical and chemical absorption, chemical adsorption, homogeneous and heterogeneous (catalytic) chemical reactions, airlift reactors for chemical and photochemical reactions.

  16. Modeling of column apparatuses: A review

    NASA Astrophysics Data System (ADS)

    Doichinova, M.; Popova-Krumova, P.

    2013-12-01

    This paper presents a review of the modeling method on the base of the physical approximations of the mechanics of continua, which have been developed for processes in column apparatuses. This method includes diffusion type of model for modeling of mass transfer with chemical reaction in column apparatuses with and without circulation zones. The diffusion type of model is used for modeling of scale effect in column apparatuses too. The study concluded that the proposal method is possibility for investigation the influence of radial non uniformity of the velocity distribution on the process efficiency, influence of zones breadths on the mass transfer efficiency in the column. The method of the column apparatuses modeling can be used for modeling of physical and chemical absorption, chemical adsorption, homogeneous and heterogeneous (catalytic) chemical reactions, airlift reactors for chemical and photochemical reactions.

  17. Column Liquid Chromatography.

    ERIC Educational Resources Information Center

    Majors, Ronald E.; And Others

    1984-01-01

    Reviews literature covering developments of column liquid chromatography during 1982-83. Areas considered include: books and reviews; general theory; columns; instrumentation; detectors; automation and data handling; multidimensional chromatographic and column switching techniques; liquid-solid chromatography; normal bonded-phase, reversed-phase,…

  18. Hydrodynamic models for slurry bubble column reactors

    SciTech Connect

    Dimitri Gidaspow

    1996-10-01

    The objective of this investigation is to convert learning gas-solid-liquid fluidization model into a predictive design model. The IIT hydrodynamic model computers the phase velocities and the volume fi-actions of gas, liquid and particulate phases. Model verification involves a comparison of these computed velocities and volume fractions to experimental values. As promised in the SIXTH TECHNICAL PROGRESS REPORT, January 1996, this report presents measurements of radial distribution function for 450 micron glass particles in liquid-solid fluidized bed. The report is in the form of a preliminary paper. The authors need the radial distribution function to compute the viscosity and the equation of state for particles. The principal results are as follows: (1) The measured radial distribution function, g{sub 0}, is a monotonic function of the solid volume fraction. The values of the radial distribution function g{sub 0} are in the range of the predictions from Bagnold equation and Carnahan and Starling equation. (2) The position of the first peak of the radial distribution function does not lie at r = d at contact (d is particle diameter). This differs from the predications from the hard sphere model and the measurements in the gas-solid system (Gidaspow and Huilin, 1996). This is due to a liquid film lubrication effect in the liquid-solid system.

  19. PRTR ion exchange vault column sampling

    SciTech Connect

    Cornwell, B.C.

    1995-03-14

    This report documents ion exchange column sampling and Non Destructive Assay (NDA) results from activities in 1994, for the Plutonium Recycle Test Reactor (PRTR) ion exchange vault. The objective was to obtain sufficient information to prepare disposal documentation for the ion exchange columns found in the PRTR Ion exchange vault. This activity also allowed for the monitoring of the liquid level in the lower vault. The sampling activity contained five separate activities: (1) Sampling an ion exchange column and analyzing the ion exchange media for purpose of waste disposal; (2) Gamma and neutron NDA testing on ion exchange columns located in the upper vault; (3) Lower vault liquid level measurement; (4) Radiological survey of the upper vault; and (5) Secure the vault pending waste disposal.

  20. Nuclear reactor control

    DOEpatents

    Cawley, William E.; Warnick, Robert F.

    1982-01-01

    1. In a nuclear reactor incorporating a plurality of columns of tubular fuel elements disposed in horizontal tubes in a mass of graphite wherein water flows through the tubes to cool the fuel elements, the improvement comprising at least one control column disposed in a horizontal tube including fewer fuel elements than in a normal column of fuel elements and tubular control elements disposed at both ends of said control column, and means for varying the horizontal displacement of the control column comprising a winch at the upstream end of the control column and a cable extending through the fuel and control elements and attached to the element at the downstream end of the column.

  1. Inelastic column behavior

    NASA Technical Reports Server (NTRS)

    Duberg, John E; Wilder, Thomas W , III

    1952-01-01

    The significant findings of a theoretical study of column behavior in the plastic stress range are presented. When the behavior of a straight column is regarded as the limiting behavior of an imperfect column as the initial imperfection (lack of straightness) approaches zero, the departure from the straight configuration occurs at the tangent-modulus load. Without such a concept of the behavior of a straight column, one is led to the unrealistic conclusion that lateral deflection of the column can begin at any load between the tangent-modulus value and the Euler load, based on the original elastic modulus. A family of curves showing load against lateral deflection is presented for idealized h-section columns of various lengths and of various materials that have a systematic variation of their stress-strain curves.

  2. Distillation Column Modeling Tools

    SciTech Connect

    2001-09-01

    Advanced Computational and Experimental Techniques will Optimize Distillation Column Operation. Distillation is a low thermal efficiency unit operation that currently consumes 4.8 quadrillion BTUs of energy...

  3. NORTH BASEMENT WALL. IBEAM COLUMNS HAVE BEEN ENCASED IN CONCRETE. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTH BASEMENT WALL. I-BEAM COLUMNS HAVE BEEN ENCASED IN CONCRETE. STEEL BEAMS LAY ACROSS FIRST FLOOR AWAITING CONCRETE POUR. CAMERA LOOKS SOUTHWEST. INL NEGATIVE NO. 735. Unknown Photographer, 10/6/1950 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  4. Inflatable Column Structure

    NASA Technical Reports Server (NTRS)

    Hedgepeth, J. M.

    1985-01-01

    Lightweight structural member easy to store. Billowing between circumferential loops of fiber inflated column becomes series of cells. Each fiber subjected to same tension along entire length (though tension is different in different fibers). Member is called "isotensoid" column. Serves as jack for automobiles or structures during repairs. Also used as support for temporary bleachers or swimming pools.

  5. JCE Feature Columns

    NASA Astrophysics Data System (ADS)

    Holmes, Jon L.

    1999-05-01

    The Features area of JCE Online is now readily accessible through a single click from our home page. In the Features area each column is linked to its own home page. These column home pages also have links to them from the online Journal Table of Contents pages or from any article published as part of that feature column. Using these links you can easily find abstracts of additional articles that are related by topic. Of course, JCE Online+ subscribers are then just one click away from the entire article. Finding related articles is easy because each feature column "site" contains links to the online abstracts of all the articles that have appeared in the column. In addition, you can find the mission statement for the column and the email link to the column editor that I mentioned above. At the discretion of its editor, a feature column site may contain additional resources. As an example, the Chemical Information Instructor column edited by Arleen Somerville will have a periodically updated bibliography of resources for teaching and using chemical information. Due to the increase in the number of these resources available on the WWW, it only makes sense to publish this information online so that you can get to these resources with a simple click of the mouse. We expect that there will soon be additional information and resources at several other feature column sites. Following in the footsteps of the Chemical Information Instructor, up-to-date bibliographies and links to related online resources can be made available. We hope to extend the online component of our feature columns with moderated online discussion forums. If you have a suggestion for an online resource you would like to see included, let the feature editor or JCE Online (jceonline@chem.wisc.edu) know about it. JCE Internet Features JCE Internet also has several feature columns: Chemical Education Resource Shelf, Conceptual Questions and Challenge Problems, Equipment Buyers Guide, Hal's Picks, Mathcad

  6. Glass-silicon column

    DOEpatents

    Yu, Conrad M.

    2003-12-30

    A glass-silicon column that can operate in temperature variations between room temperature and about 450.degree. C. The glass-silicon column includes large area glass, such as a thin Corning 7740 boron-silicate glass bonded to a silicon wafer, with an electrode embedded in or mounted on glass of the column, and with a self alignment silicon post/glass hole structure. The glass/silicon components are bonded, for example be anodic bonding. In one embodiment, the column includes two outer layers of silicon each bonded to an inner layer of glass, with an electrode imbedded between the layers of glass, and with at least one self alignment hole and post arrangement. The electrode functions as a column heater, and one glass/silicon component is provided with a number of flow channels adjacent the bonded surfaces.

  7. Applicability of hydroxylamine nitrate reductant in pulse-column contactors

    SciTech Connect

    Reif, D.J.

    1983-05-01

    Uranium and plutonium separations were made from simulated breeder reactor spent fuel dissolver solution with laboratory-sized pulse column contactors. Hydroxylamine nitrate (HAN) was used for reduction of plutonium (1V). An integrated extraction-partition system, simulating a breeder fuel reprocessing flowsheet, carried out a partial partition of uranium and plutonium in the second contactor. Tests have shown that acceptable coprocessing can be ontained using HAN as a plutonium reductant. Pulse column performance was stable even though gaseous HAN oxidation products were present in the column. Gas evolution rates up to 0.27 cfm/ft/sup 2/ of column cross section were tested and found acceptable.

  8. Distillation Column Flooding Predictor

    SciTech Connect

    George E. Dzyacky

    2010-11-23

    The Flooding Predictor™ is a patented advanced control technology proven in research at the Separations Research Program, University of Texas at Austin, to increase distillation column throughput by over 6%, while also increasing energy efficiency by 10%. The research was conducted under a U. S. Department of Energy Cooperative Agreement awarded to George Dzyacky of 2ndpoint, LLC. The Flooding Predictor™ works by detecting the incipient flood point and controlling the column closer to its actual hydraulic limit than historical practices have allowed. Further, the technology uses existing column instrumentation, meaning no additional refining infrastructure is required. Refiners often push distillation columns to maximize throughput, improve separation, or simply to achieve day-to-day optimization. Attempting to achieve such operating objectives is a tricky undertaking that can result in flooding. Operators and advanced control strategies alike rely on the conventional use of delta-pressure instrumentation to approximate the column’s approach to flood. But column delta-pressure is more an inference of the column’s approach to flood than it is an actual measurement of it. As a consequence, delta pressure limits are established conservatively in order to operate in a regime where the column is never expected to flood. As a result, there is much “left on the table” when operating in such a regime, i.e. the capacity difference between controlling the column to an upper delta-pressure limit and controlling it to the actual hydraulic limit. The Flooding Predictor™, an innovative pattern recognition technology, controls columns at their actual hydraulic limit, which research shows leads to a throughput increase of over 6%. Controlling closer to the hydraulic limit also permits operation in a sweet spot of increased energy-efficiency. In this region of increased column loading, the Flooding Predictor is able to exploit the benefits of higher liquid

  9. Microminiature gas chromatographic column

    NASA Technical Reports Server (NTRS)

    Donaldson, R. W., Jr.

    1972-01-01

    Techniques commonly used for fabrication of integrated circuits are utilized to produce long capillary tubes for microminiature chromatographs. Method involves bonding of flat silicon plate to top of spirally grooved silicon chip to close groove and form capillary column.

  10. Distillation Column Flooding Predictor

    SciTech Connect

    2002-02-01

    This factsheet describes a research project whose goal is to develop the flooding predictor, an advanced process control strategy, into a universally useable tool that will maximize the separation yield of a distillation column.

  11. Towards Atomic Column-by-Column Spectroscopy

    SciTech Connect

    Pennycook, S.J.; Rafferty, B.

    1998-09-06

    The optical arrangement of the scanning transmission electron microscope (STEM) is ideally suited for performing analysis of individual atomic columns in materials. Using the incoherent Z-contrast image as a reference, and arranging incoherent conditions also for the spectroscopy, a precise correspondence is ensured between features in the inelastic image and elastic signals. In this way the exact probe position needed to maximise the inelastic signal from a selected column can be located and monitored during the analysis using the much higher intensity elastic signal. Although object functions for EELS are typically less than 1 {Angstrom} full width at half maximum, this is still an order of magnitude larger than the corresponding object functions for elastic (or diffuse) scattering used to form the Z-contrast image. Therefore the analysis is performed with an effective probe that is significantly broader than that used for the reference Z-contrast image. For a 2.2 {Angstrom} probe the effective probe is of the order of 2.5 {Angstrom}, while for a 1.3 {Angstrom} probe the effective probe is 1.6 {Angstrom}. Such increases in effective probe size can significantly reduce or even eliminate contrast between atomic columns that are visible in the image. However, this is only true if we consider circular collector apertures. Calculations based upon the theory of Maslen and Rossouw (Maslen and Rossouw 1984; Rossouw and Maslen 1984) show that employing an annular aperture can reduce the FWHM of the inelastic object function down to values close 0.1 {Angstrom}. With practical aperture sizes it should be possible to achieve this increased spatial resolution without loosing too much signal.

  12. Pressure effects on bubble-column flow characteristics

    SciTech Connect

    Adkins, D.R.; Shollenberger, K.A.; O`Hern, T.J.; Torczynski, J.R.

    1996-03-01

    Bubble-column reactors are used in the chemical processing industry for two-phase and three-phase chemical reactions. Hydrodynamic effects must be considered when attempting to scale these reactors to sizes of industrial interest, and diagnostics are needed to acquire data for the validation of multiphase scaling predictions. This paper discusses the use of differential pressure (DP) and gamma- densitometry tomography (GDT) measurements to ascertain the gas distribution in a two-phase bubble column reactor. Tests were performed on an industrial scale reactor (3-m tall, 0.48-m inside diameter) using a 5-Curie cesium-137 source with a sodium-iodide scintillation detector. GDT results provide information on the time- averaged cross-sectional distribution of gas in the liquid, and DP measurements provide information on the time and volume averaged axial distribution of gas. Close agreement was observed between the two methods of measuring the gas distribution in the bubble column. The results clearly show that, for a fixed volumetric flowrate through the reactor, increasing the system pressure leads to an increase in the gas volume fraction or ``gas holdup`` in the liquid. It is also shown from this work that GDT can provide useful diagnostic information on industrial scale bubble-column reactors.

  13. Eruption column physics

    SciTech Connect

    Valentine, G.A.

    1997-03-01

    In this paper the author focuses on the fluid dynamics of large-scale eruption columns. The dynamics of these columns are rooted in multiphase flow phenomena, so a major part of the paper sets up a foundation on that topic that allows one to quickly assess the inherent assumptions made in various theoretical and experimental approaches. The first part is centered on a set of complex differential equations that describe eruption columns, but the focus is on a general understanding of important physical processes rather than on the mathematics. The author discusses briefly the relative merits and weaknesses of different approaches, emphasizing that the largest advances in understanding are made by combining them. He then focuses on dynamics of steady eruption columns and then on transient phenomena. Finally he briefly reviews the effects of varying behavior of the ambient medium through which an eruption column moves. These final sections will emphasize concepts and a qualitative understanding of eruption dynamics. This paper relies on principles of continuum mechanics and transport processes but does not go into detail on the development of those principles. 36 refs., 36 figs., 3 tabs.

  14. Columns in Clay

    ERIC Educational Resources Information Center

    Leenhouts, Robin

    2010-01-01

    This article describes a clay project for students studying Greece and Rome. It provides a wonderful way to learn slab construction techniques by making small clay column capitols. With this lesson, students learn architectural vocabulary and history, understand the importance of classical architectural forms and their influence on today's…

  15. A Column Dispersion Experiment.

    ERIC Educational Resources Information Center

    Corapcioglu, M. Y.; Koroglu, F.

    1982-01-01

    Crushed glass and a Rhodamine B solution are used in a one-dimensional optically scanned column experiment to study the dispersion phenomenon in porous media. Results indicate that the described model gave satisfactory results and that the dispersion process in this experiment is basically convective. (DC)

  16. Bubble column apparatus for separating wax from catalyst slurry

    SciTech Connect

    Neathery, James K.; Davis, Burtron H.

    2004-07-13

    Novel methods and devices for production of liquid hydrocarbon products from gaseous reactants are disclosed. In one aspect, a method for separating a liquid hydrocarbon, typically a wax, from a catalyst containing slurry is provided, comprising passing the slurry through at least one downcomer extending from an overhead separation chamber and discharging into the bottom of a slurry bubble column reactor. The downcomer includes a cross-flow filtration element for separating a substantially particle-free liquid hydrocarbon for downstream processing. In another aspect, a method for promoting plug-flow movement in a recirculating slurry bubble column reactor is provided, comprising discharging the recirculating slurry into the reactor through at least one downcomer which terminates near the bottom of the reactor. Devices for accomplishing the above methods are also provided.

  17. Gas holdup in slurry bubble columns: Effect of column diameter and slurry concentrations

    SciTech Connect

    Krishna, R.; Swart, J.W.A. de; Ellenberger, J.; Martina, G.B.; Maretto, C.

    1997-02-01

    In processes for converting natural gas to liquid fuels, bubble-column reactors are finding increasing application. To study the influence of particle concentration on the hydrodynamics of bubble-column slurry reactors operating in the heterogeneous flow regime, experiments were carried out in 0.10, 0.19, and 0.38-m-dia. columns using paraffinic oil as the liquid phase and slurry concentrations of up to 36 vol. %. To interpret experimental results a generalization of the two-phase model for gas-solid fluid beds was used to describe bubble hydrodynamics. The two phases identified are: a dilute phase consisting of fast-rising large bubbles that traverse the column virtually in plug flow and a dense phase that is identified with the liquid phase along with solid particles and entrained small bubbles. The dense phase suffers backmixing considerably. Dynamic gas disengagement was experimented in the heterogeneous flow regime to determine the gas voidage in dilute and dense phases. Experimental data show that increasing the solid concentration decreases the total gas holdup significantly, but the influence on the dilute-phase gas holdup is small. The dense-phase gas voidage significantly decreases gas holdup due to enhanced coalescence of small bubbles resulting from introduction of particles. The dense-phase gas voidage is practically independent of the column diameter. The dilute-phase gas holdup, on the other hand, decreases with increasing column diameter, and this dependence could be described adequately with a slight modification of the correlation of Krishna and Ellenberger developed for gas-liquid systems.

  18. 11. TIMBER COLUMN AND CAST IRON COLUMN CAP IN FIFTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. TIMBER COLUMN AND CAST IRON COLUMN CAP IN FIFTH FLOOR WAREHOUSE SPACE. VIEW TO SOUTHWEST. - Commercial & Industrial Buildings, Becker-Hazelton Company Warehouse, 280 Iowa Street, Dubuque, Dubuque County, IA

  19. Microfabricated packed gas chromatographic column

    DOEpatents

    Kottenstette, Richard; Matzke, Carolyn M.; Frye-Mason, Gregory C.

    2003-12-16

    A new class of miniaturized gas chromatographic columns has been invented. These chromatographic columns are formed using conventional micromachining techniques, and allow packed columns having lengths on the order of a meter to be fabricated with a footprint on the order of a square centimeter.

  20. Why Hexagonal Basalt Columns?

    PubMed

    Hofmann, Martin; Anderssohn, Robert; Bahr, Hans-Achim; Weiß, Hans-Jürgen; Nellesen, Jens

    2015-10-01

    Basalt columns with their preferably hexagonal cross sections are a fascinating example of pattern formation by crack propagation. Junctions of three propagating crack faces rearrange such that the initial right angles between them tend to approach 120°, which enables the cracks to form a pattern of regular hexagons. To promote understanding of the path on which the ideal configuration can be reached, two periodically repeatable models are presented here involving linear elastic fracture mechanics and applying the principle of maximum energy release rate. They describe the evolution of the crack pattern as a transition from rectangular start configuration to the hexagonal pattern. This is done analytically and by means of three-dimensional finite element simulation. The latter technique reproduces the curved crack path involved in this transition. PMID:26550724

  1. Investigation of Gas Holdup in a Vibrating Bubble Column

    NASA Astrophysics Data System (ADS)

    Mohagheghian, Shahrouz; Elbing, Brian

    2015-11-01

    Synthetic fuels are part of the solution to the world's energy crisis and climate change. Liquefaction of coal during the Fischer-Tropsch process in a bubble column reactor (BCR) is a key step in production of synthetic fuel. It is known from the 1960's that vibration improves mass transfer in bubble column. The current study experimentally investigates the effect that vibration frequency and amplitude has on gas holdup and bubble size distribution within a bubble column. Air (disperse phase) was injected into water (continuous phase) through a needle shape injector near the bottom of the column, which was open to atmospheric pressure. The air volumetric flow rate was measured with a variable area flow meter. Vibrations were generated with a custom-made shaker table, which oscillated the entire column with independently specified amplitude and frequency (0-30 Hz). Geometric dependencies can be investigated with four cast acrylic columns with aspect ratios ranging from 4.36 to 24, and injector needle internal diameters between 0.32 and 1.59 mm. The gas holdup within the column was measured with a flow visualization system, and a PIV system was used to measure phase velocities. Preliminary results for the non-vibrating and vibrating cases will be presented.

  2. SPIRAL CONTACTOR FOR SOLVENT EXTRACTION COLUMN

    DOEpatents

    Cooley, C.R.

    1961-06-13

    The patented extraction apparatus includes a column, perforated plates extending across the column, liquid pulse means connected to the column, and an imperforate spiral ribbon along the length of the column.

  3. Buckling of a holey column.

    PubMed

    Pihler-Puzović, D; Hazel, A L; Mullin, T

    2016-09-14

    We report the results from a combined experimental and numerical investigation of buckling in a novel variant of an elastic column under axial load. We find that including a regular line of centred holes in the column can prevent conventional, global, lateral buckling. Instead, the local microstructure introduced by the holes allows the column to buckle in an entirely different, internal, mode in which the holes are compressed in alternate directions, but the column maintains the lateral reflection symmetry about its centreline. The internal buckling mode can be accommodated within a smaller external space than the global one; and it is the preferred buckling mode over an intermediate range of column lengths for sufficiently large holes. For very short or sufficiently long columns a modification of the classical, global, lateral buckling is dominant. PMID:27501288

  4. Dual dorsal columns: a review.

    PubMed

    Beck, C H

    1976-02-01

    Recent evidence indicates that Wall (1970) may have been premature in concluding that dorsal column lesions produce no discernable sensory defects. Much of the negative evidence Wall presented to support this view is inconclusive. In addition several studies have reported significant sensory deficits in animals with severed dorsal columns. On the other hand, the literature strongly supports Wall's view that dorsal column lesions cause motor disturbances. A review of the anatomical and electrophysiological literature reveals growing evidence for the dissociation of two major subsystems relaying in the dorsal column nuclei. The possible functions of these two systems are discussed. PMID:814988

  5. METHOD AND APPARATUS FOR CONTROL OF A NUCLEAR REACTOR

    DOEpatents

    Cawley, W.E.

    1962-12-11

    A method and apparatus are described for controlling an overmoderated nuclear reactor containing columns of fuel elements aligned in a plurality of coolant tubes in a stream of coolant water. The invention includes means for adjusting the distance between halves of the fuel element column to vary the relative proportion of fuel and moderator at the center of the reactor. (AEC)

  6. 45. MAIN MEETING ROOM COLUMNS. Ends of gallery columns identified ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. MAIN MEETING ROOM COLUMNS. Ends of gallery columns identified at the time of removal for transfer to the George School for re-erection. The stamp reads, 'REMOVED FROM 12th ST. MTG HSE PHILA 1972'. - Twelfth Street Meeting House, 20 South Twelfth Street, Philadelphia, Philadelphia County, PA

  7. Continuous-flow stereoselective organocatalyzed Diels-Alder reactions in a chiral catalytic "homemade" HPLC column.

    PubMed

    Chiroli, Valerio; Benaglia, Maurizio; Cozzi, Franco; Puglisi, Alessandra; Annunziata, Rita; Celentano, Giuseppe

    2013-07-19

    Continuous-flow organocatalyzed Diels-Alder reactions have been performed with excellent enantioselectivity for the first time in a chiral "homemade" HPLC column, packed with silica on which a MacMillan catalyst has been supported by a straightforward immobilization procedure. The versatility of the system was also proven by running with the same column continuous-flow stereoselective reactions with three different substrates, showing that the catalytic reactor may efficiently work in continuo for more than 150 h; the regeneration of the HPLC column was also demonstrated, allowing to further extend the activity of the reactor to more than 300 operating hours. PMID:23808663

  8. Dorsal column stimulator applications

    PubMed Central

    Yampolsky, Claudio; Hem, Santiago; Bendersky, Damián

    2012-01-01

    Background: Spinal cord stimulation (SCS) has been used to treat neuropathic pain since 1967. Following that, technological progress, among other advances, helped SCS become an effective tool to reduce pain. Methods: This article is a non-systematic review of the mechanism of action, indications, results, programming parameters, complications, and cost-effectiveness of SCS. Results: In spite of the existence of several studies that try to prove the mechanism of action of SCS, it still remains unknown. The mechanism of action of SCS would be based on the antidromic activation of the dorsal column fibers, which activate the inhibitory interneurons within the dorsal horn. At present, the indications of SCS are being revised constantly, while new applications are being proposed and researched worldwide. Failed back surgery syndrome (FBSS) is the most common indication for SCS, whereas, the complex regional pain syndrome (CRPS) is the second one. Also, this technique is useful in patients with refractory angina and critical limb ischemia, in whom surgical or endovascular treatment cannot be performed. Further indications may be phantom limb pain, chronic intractable pain located in the head, face, neck, or upper extremities, spinal lumbar stenosis in patients who are not surgical candidates, and others. Conclusion: Spinal cord stimulation is a useful tool for neuromodulation, if an accurate patient selection is carried out prior, which should include a trial period. Undoubtedly, this proper selection and a better knowledge of its underlying mechanisms of action, will allow this cutting edge technique to be more acceptable among pain physicians. PMID:23230533

  9. Simulated Ionian Column Densities

    NASA Astrophysics Data System (ADS)

    Walker, Andrew C.; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.; Moore, C. H.

    2010-10-01

    The sublimation atmosphere of Io is modeled using the direct simulation Monte Carlo (DSMC) method. These three-dimensional simulations improve upon previous work by implementing a more accurate two-component surface temperature model. This surface temperature model solves the one-dimensional heat conduction equation with depth for every 1° by 1° surface element. It also includes the following physics: Jovian eclipse, reflected sunlight from Jupiter, latent heat of sublimation/condensation, hot spots, endogenic heating, and independent thermal inertias and albedos for the frost and non-frost surfaces. These simulations model only the dominant dayside atmospheric species, SO2. The non-equilibrium rotational and vibrational energy states of SO2 are treated as well as photo-emission from those states. Plasma heating of the atmosphere by high energy ions and electrons from the Jovian plasma torus is also modeled via a plasma energy flux. Resulting column densities are compared to recent observations in an attempt to constrain the thermal parameters for the frost and non-frost surfaces.

  10. Buckling testing of composite columns

    NASA Astrophysics Data System (ADS)

    Barbero, Ever; Tomblin, John

    1992-11-01

    Euler buckling test results are presented for large composite columns relevant to the mass production of composite structural members by pultrusion. The experimental procedure employed yields highly reproducible and accurate results. All percentage differences between theory and experiment are below 6.2 percent; the theoretically predicted long-column buckling load is accurate even in the case of the most complex composite materials.

  11. Mush Column Magma Chambers

    NASA Astrophysics Data System (ADS)

    Marsh, B. D.

    2002-12-01

    Magma chambers are a necessary concept in understanding the chemical and physical evolution of magma. The concept may well be similar to a transfer function in circuit or time series analysis. It does what needs to be done to transform source magma into eruptible magma. In gravity and geodetic interpretations the causative body is (usually of necessity) geometrically simple and of limited vertical extent; it is clearly difficult to `see' through the uppermost manifestation of the concentrated magma. The presence of plutons in the upper crust has reinforced the view that magma chambers are large pots of magma, but as in the physical representation of a transfer function, actual magma chambers are clearly distinct from virtual magma chambers. Two key features to understanding magmatic systems are that they are vertically integrated over large distances (e.g., 30-100 km), and that all local magmatic processes are controlled by solidification fronts. Heat transfer considerations show that any viable volcanic system must be supported by a vertically extensive plumbing system. Field and geophysical studies point to a common theme of an interconnected stack of sill-like structures extending to great depth. This is a magmatic Mush Column. The large-scale (10s of km) structure resembles the vertical structure inferred at large volcanic centers like Hawaii (e.g., Ryan et al.), and the fine scale (10s to 100s of m) structure is exemplified by ophiolites and deeply eroded sill complexes like the Ferrar dolerites of the McMurdo Dry Valleys, Antarctica. The local length scales of the sill reservoirs and interconnecting conduits produce a rich spectrum of crystallization environments with distinct solidification time scales. Extensive horizontal and vertical mushy walls provide conditions conducive to specific processes of differentiation from solidification front instability to sidewall porous flow and wall rock slumping. The size, strength, and time series of eruptive behavior

  12. ETRA, TRA642. ON BASEMENT FLOOR. IBEAM COLUMNS SUPPORTING CONSOLE FLOOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETRA, TRA-642. ON BASEMENT FLOOR. I-BEAM COLUMNS SUPPORTING CONSOLE FLOOR HAVE BEEN SURROUNDED BY CONCRETE IN RECTANGULAR PILLARS. BASEMENT FLOOR IS BEING PREPARED FOR PLACEMENT OF CONCRETE. ABOVE CEILING IS CONSOLE FLOOR, IN WHICH CUT-OUT HAS PRESERVED SPACE FOR REACTOR AND ITS SHIELDING. CIRCULAR FORM IN REACTOR AREA IS CONCRETE FORMING. NOTE VERTICAL CONDUIT AT INTERVALS AROUND REACTOR PITS. INL NEGATIVE NO. 56-1237. Jack L. Anderson, Photographer, 4/17/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  13. Post column derivatisation analyses review. Is post-column derivatisation incompatible with modern HPLC columns?

    PubMed

    Jones, Andrew; Pravadali-Cekic, Sercan; Dennis, Gary R; Shalliker, R Andrew

    2015-08-19

    Post Column derivatisation (PCD) coupled with high performance liquid chromatography or ultra-high performance liquid chromatography is a powerful tool in the modern analytical laboratory, or at least it should be. One drawback with PCD techniques is the extra post-column dead volume due to reaction coils used to enable adequate reaction time and the mixing of reagents which causes peak broadening, hence a loss of separation power. This loss of efficiency is counter-productive to modern HPLC technologies, -such as UHPLC. We reviewed 87 PCD methods published from 2009 to 2014. We restricted our review to methods published between 2009 and 2014, because we were interested in the uptake of PCD methods in UHPLC environments. Our review focused on a range of system parameters including: column dimensions, stationary phase and particle size, as well as the geometry of the reaction loop. The most commonly used column in the methods investigated was not in fact a modern UHPLC version with sub-2-micron, (or even sub-3-micron) particles, but rather, work-house columns, such as, 250 × 4.6 mm i.d. columns packed with 5 μm C18 particles. Reaction loops were varied, even within the same type of analysis, but the majority of methods employed loop systems with volumes greater than 500 μL. A second part of this review illustrated briefly the effect of dead volume on column performance. The experiment evaluated the change in resolution and separation efficiency of some weak to moderately retained solutes on a 250 × 4.6 mm i.d. column packed with 5 μm particles. The data showed that reaction loops beyond 100 μL resulted in a very serious loss of performance. Our study concluded that practitioners of PCD methods largely avoid the use of UHPLC-type column formats, so yes, very much, PCD is incompatible with the modern HPLC column. PMID:26343427

  14. Tritium Isotope Separation Using Adsorption-Distillation Column

    SciTech Connect

    Fukada, Satoshi

    2005-07-15

    In order to miniaturize the height of a distillation tower for the detritiation of waste water from fusion reactors, two experiments were conducted: (1) liquid frontal chromatography of tritium water eluting through an adsorption column and (2) water distillation using a column packed with adsorbent particles. The height of the distillation tower depends on the height equivalent to a theoretical plate, HETP, and the equilibrium isotope separation factor, {alpha}{sub H-T}{sup equi}. The adsorption action improved not only HETP but also {alpha}{sub H-T}{sup equi}. Since the adsorption-distillation method proposed here can shorten the tower height with keeping advantages of the distillation, it may bring an excellent way for miniaturizing the distillation tower to detritiate a large amount of waste water from fusion reactors.

  15. Low exchange element for nuclear reactor

    DOEpatents

    Brogli, Rudolf H.; Shamasunder, Bangalore I.; Seth, Shivaji S.

    1985-01-01

    A flow exchange element is presented which lowers temperature gradients in fuel elements and reduces maximum local temperature within high temperature gas-cooled reactors. The flow exchange element is inserted within a column of fuel elements where it serves to redirect coolant flow. Coolant which has been flowing in a hotter region of the column is redirected to a cooler region, and coolant which has been flowing in the cooler region of the column is redirected to the hotter region. The safety, efficiency, and longevity of the high temperature gas-cooled reactor is thereby enhanced.

  16. Self-regenerating column chromatography

    DOEpatents

    Park, W.K.

    1995-05-30

    The present invention provides a process for treating both cations and anions by using a self-regenerating, multi-ionic exchange resin column system which requires no separate regeneration steps. The process involves alternating ion-exchange chromatography for cations and anions in a multi-ionic exchange column packed with a mixture of cation and anion exchange resins. The multi-ionic mixed-charge resin column works as a multi-function column, capable of independently processing either cationic or anionic exchange, or simultaneously processing both cationic and anionic exchanges. The major advantage offered by the alternating multi-function ion exchange process is the self-regeneration of the resins.

  17. Self-regenerating column chromatography

    SciTech Connect

    Park, Woo K.

    1994-12-31

    The present invention provides a process for treating both cations and anions by using a self-regenerating, multi-ionic exchange resin column system which requires no separate regeneration steps. The process involves alternation ion-exchange chromatography for cations and anions in a multi-ionic exchange column packed with a mixture of cation and anion exchange resins. The multi-ionic mixed-charge resin column works as a multifunction column, capable of independently processing either cationic or anionic exchange, or simultaneously processing both cationic and anionic exchanges. The major advantage offered by the alternating multifunction ion exchange process is the self-regeneration of the resins. Applications are to separation of nitrogen and sulfur isotopes.

  18. LIQUID-LIQUID EXTRACTION COLUMNS

    DOEpatents

    Thornton, J.D.

    1957-12-31

    This patent relates to liquid-liquid extraction columns having a means for pulsing the liquid in the column to give it an oscillatory up and down movement, and consists of a packed column, an inlet pipe for the dispersed liquid phase and an outlet pipe for the continuous liquid phase located in the direct communication with the liquid in the lower part of said column, an inlet pipe for the continuous liquid phase and an outlet pipe for the dispersed liquid phase located in direct communication with the liquid in the upper part of said column, a tube having one end communicating with liquid in the lower part of said column and having its upper end located above the level of said outlet pipe for the dispersed phase, and a piston and cylinder connected to the upper end of said tube for applying a pulsating pneumatic pressure to the surface of the liquid in said tube so that said surface rises and falls in said tube.

  19. Radiotracer Imaging of Sediment Columns

    NASA Astrophysics Data System (ADS)

    Moses, W. W.; O'Neil, J. P.; Boutchko, R.; Nico, P. S.; Druhan, J. L.; Vandehey, N. T.

    2010-12-01

    Nuclear medical PET and SPECT cameras routinely image radioactivity concentration of gamma ray emitting isotopes (PET - 511 keV; SPECT - 75-300 keV). We have used nuclear medical imaging technology to study contaminant transport in sediment columns. Specifically, we use Tc-99m (T1/2 = 6 h, Eγ = 140 keV) and a SPECT camera to image the bacteria mediated reduction of pertechnetate, [Tc(VII)O4]- + Fe(II) → Tc(IV)O2 + Fe(III). A 45 mL bolus of Tc-99m (32 mCi) labeled sodium pertechnetate was infused into a column (35cm x 10cm Ø) containing uranium-contaminated subsurface sediment from the Rifle, CO site. A flow rate of 1.25 ml/min of artificial groundwater was maintained in the column. Using a GE Millennium VG camera, we imaged the column for 12 hours, acquiring 44 frames. As the microbes in the sediment were inactive, we expected most of the iron to be Fe(III). The images were consistent with this hypothesis, and the Tc-99m pertechnetate acted like a conservative tracer. Virtually no binding of the Tc-99m was observed, and while the bolus of activity propagated fairly uniformly through the column, some inhomogeneity attributed to sediment packing was observed. We expect that after augmentation by acetate, the bacteria will metabolically reduce Fe(III) to Fe(II), leading to significant Tc-99m binding. Imaging sediment columns using nuclear medicine techniques has many attractive features. Trace quantities of the radiolabeled compounds are used (micro- to nano- molar) and the half-lives of many of these tracers are short (<1 day). This allows multiple measurements to be made on the same column and thus the sediment biology to be monitored non-invasively over time (i.e. after an augmentation has been introduced) and minimizes long-lived radioactive waste. Different parameters can be measured, depending on the tracer type and delivery. A constant infusion of a conservative tracer, such as the positron emitter Br-76 (T1/2= 16.2 hr), measures the exclusion fraction (as

  20. FRACTIONATING COLUMN PRODUCT COLLECTOR CONTROL

    DOEpatents

    Paxson, G.D. Jr.

    1964-03-10

    Means for detecting minute fluid products from a chemical separation column and for advancing a collector tube rack in order to automatically separate and collect successive fractionated products are described. A charge is imposed on the forming drops at the column orifice to create an electric field as the drop falls in the vicinity of a sensing plate. The field is detected by an electrometer tube coupled to the plate causing an output signal to actuate rotation of a collector turntable rack, thereby positioning new collectors under the orifice. The invention provides reliable automatic collection independent of drop size, rate of fall, or chemical composition. (AEC)

  1. Triangular Helical Column for Centrifugal Countercurrent Chromatography.

    PubMed

    Ito, Yoichiro; Yu, Henry

    2009-01-01

    Effective column space and stationary phase retention have been improved by changing the configuration of the helical column originally used for toroidal coil countercurrent chromatography. The use of an equilateral triangular core for the helix column doubles effective column space and retains the stationary phase over 40% of the total column capacity without increasing the column pressure. The present results suggest that the stationary phase retention and the peak resolution will be further improved using new column designs fabricated by a new technology called "laser sintering for rapid prototyping." PMID:20046940

  2. NEUTRONIC REACTOR

    DOEpatents

    Fermi, E.; Zinn, W.H.; Anderson, H.L.

    1958-09-16

    Means are presenied for increasing the reproduction ratio of a gaphite- moderated neutronic reactor by diminishing the neutron loss due to absorption or capture by gaseous impurities within the reactor. This means comprised of a fluid-tight casing or envelope completely enclosing the reactor and provided with a valve through which the casing, and thereby the reactor, may be evacuated of atmospheric air.

  3. Process for the production of ultrahigh purity silane with recycle from separation columns

    DOEpatents

    Coleman, Larry M.

    1982-07-20

    Tri- and dichlorosilanes formed by hydrogenation in the course of the reaction of metallurgical silicon, hydrogen and recycle silicon tetrachloride are employed as feed into a separation column arrangement of sequential separation columns and redistribution reactors which processes the feed into ultrahigh purity silane and recycle silicon tetrachloride. A slip stream is removed from the bottom of two sequential columns and added to the recycle silicon tetrachloride process stream causing impurities in the slip streams to be subjected to reactions in the hydrogenation step whereby waste materials can be formed and readily separated.

  4. Process for the production of ultrahigh purity silane with recycle from separation columns

    NASA Technical Reports Server (NTRS)

    Coleman, Larry M. (Inventor)

    1982-01-01

    Tri- and dichlorosilanes formed by hydrogenation in the course of the reaction of metallurgical silicon, hydrogen and recycle silicon tetrachloride are employed as feed into a separation column arrangement of sequential separation columns and redistribution reactors which processes the feed into ultrahigh purity silane and recycle silicon tetrachloride. A slip stream is removed from the bottom of two sequential columns and added to the recycle silicon tetrachloride process stream causing impurities in the slip streams to be subjected to reactions in the hydrogenation step whereby waste materials can be formed and readily separated.

  5. REACTOR MODERATOR STRUCTURE

    DOEpatents

    Fraas, A.P.; Tudor, J.J.

    1963-08-01

    An improved moderator structure for nuclear reactors consists of moderator blocks arranged in horizontal layers to form a multiplicity of vertically stacked columns of blocks. The blocks in each vertical column are keyed together, and a ceramic grid is disposed between each horizontal layer of blocks. Pressure plates cover- the lateral surface of the moderator structure in abutting relationship with the peripheral terminal lengths of the ceramic grids. Tubular springs are disposed between the pressure plates and a rigid external support. The tubular springs have their axes vertically disposed to facilitate passage of coolant gas through the springs and are spaced apart a selected distance such that at sonae preselected point of spring deflection, the sides of the springs will contact adjacent springs thereby causing a large increase in resistance to further spring deflection. (AEC)

  6. Pepsin-modified chiral monolithic column for affinity capillary electrochromatography.

    PubMed

    Hong, Tingting; Chi, Cuijie; Ji, Yibing

    2014-11-01

    Pepsin-modified affinity monolithic capillary electrochromatography, a novel microanalysis system, was developed by the covalent bonding of pepsin on silica monolith. The column was successfully applied in the chiral separation of (±)-nefopam. Furthermore, the electrochromatographic performance of the pepsin-functionalized monolith for enantiomeric analysis was evaluated in terms of protein content, pH of running buffer, sample volume, buffer concentration, applied voltage, and capillary temperature. The relative standard deviation (%RSD) values of retention time (intraday <0.53, n = 10; interday <0.53, n = 10; column-to-column <0.70, n = 20; and batch-to-batch <0.80, n = 20) indicated satisfactory stability of these columns. No appreciable change was observed in retention and resolution for chiral recognition of (±)-nefopam in 50 days with 100 injections. The proteolytic activity of this stationary phase was further characterized with bovine serum albumin as substrate for online protein digestion. As for monolithic immobilized enzyme reactor, successive protein injections confirmed both the operational stability and ability to reuse the bioreactor for at least 20 digestions. It implied that the affinity monolith used in this research opens a new path of exploring particularly versatile class of enzymes to develop enzyme-modified affinity capillary monolith for enantioseparation. PMID:25146884

  7. Eruption column modeling of supervolcanoes

    NASA Astrophysics Data System (ADS)

    Dobran, F.

    2010-12-01

    Eruption columns consists of multiphase mixtures of gases and particulate matter in thermodynamic non-equilibrium, and tracking the multitude of interfaces associated with the liquid, solid, and plastic bodies of a wide spectrum of sizes is not practical. The current modeling practice is to use different averaging procedures by employing single-phase continuum models or those from the kinetic theory, together with various conditions that specify the microphysical processes of mixtures. But these models are inadequate to model the eruption columns of supervolcanoes, where the plumes reach the stratosphere and phase change processes contribute to the columns’ dispersion properties on the regional and global scales. A more effective multiphase flow modeling procedure is presented and its computer implementation is discussed.

  8. Stability of elastically supported columns

    NASA Technical Reports Server (NTRS)

    Niles, Alfred S; Viscovich, Steven J

    1942-01-01

    A criterion is developed for the stiffness required of elastic lateral supports at the ends of a compression member to provide stability. A method based on this criterion is then developed for checking the stability of a continuous beam-column. A related method is also developed for checking the stability of a member of a pin-jointed truss against rotation in the plane of the truss.

  9. Beam Studies with Electron Columns

    SciTech Connect

    Shiltsev, V.; Valishev, A.; Kuznetsov, G.; Kamerdzhiev, V.; Romanov, A.; /Novosibirsk, IYF

    2009-04-01

    We report preliminary results of experimental studies of 'electron columns' in the Tevatron and in a specialized test setup. In the Tevatron, a beam of 150 GeV protons ionizes residual gas and ionization electrons are stored in an electrostatic trap immersed into strong longitudinal magnetic field. Shifts of proton betatron frequencies are observed. In the test setup, we observe effects pointing to accumulation and escape of ionization electrons.

  10. Water Column Methylation in Estuaries

    NASA Astrophysics Data System (ADS)

    Schartup, A. T.; Calder, R.; Soerensen, A. L.; Mason, R. P.; Balcom, P. H.; Sunderland, E. M.

    2014-12-01

    Methylmercury (MeHg) is a neurotoxin that bioaccumulates in aquatic food webs and affects humans and wildlife through fish consumption. Many studies have measured active methylation/demethylation in ocean margin sediments but few have reported similar rates for the marine water column. This presentation will review available evidence for water column methylation in estuaries, including new experimental measurements of methylation/demethylation rates from a deep subarctic fjord in Labrador Canada collected in Spring and Fall of 2012-2013. We used these and other data to construct a mass budget for MeHg in the estuary and show that water column methylation (with rates ranging from 1.5 to 2.8 % day-1), is the largest contributor, followed by inputs from rivers (4.9 mol year-1), to the in situ pool of MeHg available for uptake by biota. By contrast, the sediment in this system is a net sink for MeHg (-1.5 mol year-1). We discuss the relationship between observed MeHg and other ancillary environmental factors (organic carbon, sulfur and nutrients) as well as implications for the response time of fish to future changes in mercury inputs.

  11. Computational Modeling of Multiphase Reactors.

    PubMed

    Joshi, J B; Nandakumar, K

    2015-01-01

    Multiphase reactors are very common in chemical industry, and numerous review articles exist that are focused on types of reactors, such as bubble columns, trickle beds, fluid catalytic beds, etc. Currently, there is a high degree of empiricism in the design process of such reactors owing to the complexity of coupled flow and reaction mechanisms. Hence, we focus on synthesizing recent advances in computational and experimental techniques that will enable future designs of such reactors in a more rational manner by exploring a large design space with high-fidelity models (computational fluid dynamics and computational chemistry models) that are validated with high-fidelity measurements (tomography and other detailed spatial measurements) to provide a high degree of rigor. Understanding the spatial distributions of dispersed phases and their interaction during scale up are key challenges that were traditionally addressed through pilot scale experiments, but now can be addressed through advanced modeling. PMID:26134737

  12. Method for packed column separations and purifications

    DOEpatents

    Holman, David A.; Bruckner-Lea, Cynthia J.; Brockman, Fred J.; Chandler, Darrell P.

    2006-08-15

    The invention encompasses a method of packing and unpacking a column chamber. A mixture of a fluid and a matrix material are introduced through a column chamber inlet so that the matrix material is packed within a column chamber to form a packed column. The column chamber having the column chamber inlet or first port for receiving the mixture further has an outlet port and an actuator port. The outlet port is partially closed for capturing the matrix material and permitting the fluid to flow therepast by rotating relative one to the other of a rod placed in the actuator port. Further rotation relative one to the other of the rod and the column chamber opens the outlet and permits the matrix material and the fluid to flow therethrough thereby unpacking the matrix material from the column chamber.

  13. Lightweight structural columns. [space erectable trusses

    NASA Technical Reports Server (NTRS)

    Bush, H. G. (Inventor)

    1981-01-01

    Lightweight half-lengths of columns for truss structures are described. The columns are adapted for nestable storage and transport to facilitate fabrication of large area truss structures at a remote site and particularly adaptable for space applications.

  14. Temperature programmable microfabricated gas chromatography column

    DOEpatents

    Manginell, Ronald P.; Frye-Mason, Gregory C.

    2003-12-23

    A temperature programmable microfabricated gas chromatography column enables more efficient chemical separation of chemical analytes in a gas mixture by the integration of a resistive heating element and temperature sensing on the microfabricated column. Additionally, means are provided to thermally isolate the heated column from their surroundings. The small heat capacity and thermal isolation of the microfabricated column improves the thermal time response and power consumption, both important factors for portable microanalytical systems.

  15. BOILING REACTORS

    DOEpatents

    Untermyer, S.

    1962-04-10

    A boiling reactor having a reactivity which is reduced by an increase in the volume of vaporized coolant therein is described. In this system unvaporized liquid coolant is extracted from the reactor, heat is extracted therefrom, and it is returned to the reactor as sub-cooled liquid coolant. This reduces a portion of the coolant which includes vaporized coolant within the core assembly thereby enhancing the power output of the assembly and rendering the reactor substantially self-regulating. (AEC)

  16. 29 CFR 1926.755 - Column anchorage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Column anchorage. 1926.755 Section 1926.755 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.755 Column anchorage. (a) General requirements for erection stability. (1) All columns shall be anchored by a minimum of 4...

  17. 29 CFR 1926.755 - Column anchorage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Column anchorage. 1926.755 Section 1926.755 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.755 Column anchorage. (a) General requirements for erection stability. (1) All columns shall be anchored by a minimum of 4...

  18. NEUTRONIC REACTOR

    DOEpatents

    Daniels, F.

    1959-10-27

    A reactor in which at least a portion of the moderator is in the form of movable refractory balls is described. In addition to their moderating capacity, these balls may serve as carriers for fissionable material or fertile material, or may serve in a coolant capacity to remove heat from the reactor. A pneumatic system is used to circulate the balls through the reactor.

  19. CONVECTION REACTOR

    DOEpatents

    Hammond, R.P.; King, L.D.P.

    1960-03-22

    An homogeneous nuclear power reactor utilizing convection circulation of the liquid fuel is proposed. The reactor has an internal heat exchanger looated in the same pressure vessel as the critical assembly, thereby eliminating necessity for handling the hot liquid fuel outside the reactor pressure vessel during normal operation. The liquid fuel used in this reactor eliminates the necessity for extensive radiolytic gas rocombination apparatus, and the reactor is resiliently pressurized and, without any movable mechanical apparatus, automatically regulates itself to the condition of criticality during moderate variations in temperature snd pressure and shuts itself down as the pressure exceeds a predetermined safe operating value.

  20. Research reactors

    SciTech Connect

    Tonneson, L.C.; Fox, G.J.

    1996-04-01

    There are currently 284 research reactors in operation, and 12 under construction around the world. Of the operating reactors, nearly two-thirds are used exclusively for research, and the rest for a variety of purposes, including training, testing, and critical assembly. For more than 50 years, research reactor programs have contributed greatly to the scientific and educational communities. Today, six of the world`s research reactors are being shut down, three of which are in the USA. With government budget constraints and the growing proliferation concerns surrounding the use of highly enriched uranium in some of these reactors, the future of nuclear research could be impacted.

  1. Performance evaluation and effect of biogas circulation rate of a bubble column for biological desulfurization.

    PubMed

    Kobayashi, Takuro; Xu, Kai-Qin; Li, Yu-You; Inamori, Yuhei

    2012-01-01

    Biological desulfurization using a bubble column reactor was investigated in a continuous biogas treatment. Rapid biogas circulation between the digester and the bubble column for biological desulfurization was used to stimulate the gas-liquid mass transfer of H(2)S. A positive correlation between the biogas circulation rate and H(2)S removal rate was observed. Moreover, the increase in the circulation rate stimulated the O(2) mass transfer, eventually translating into an increase in sulfate production from the oxidation of H(2)S. Throughout the continuous experiment, the reactor retained sufficient levels of sulfide-oxidizing bacteria. A comparison of the results of the continuous biogas treatment and batch tests suggests that the gas-liquid mass transfer rate of H(2)S was the rate-limiting step in the biological desulfurization in the reactor, indicating that the mass transfer efficiency of H(2)S needs to be improved to enhance the desulfurization performance. PMID:22925864

  2. Axisymmetric collapses of granular columns

    NASA Astrophysics Data System (ADS)

    Lube, Gert; Huppert, Herbert E.; Sparks, R. Stephen J.; Hallworth, Mark A.

    2004-06-01

    Experimental observations of the collapse of initially vertical columns of small grains are presented. The experiments were performed mainly with dry grains of salt or sand, with some additional experiments using couscous, sugar or rice. Some of the experimental flows were analysed using high-speed video. There are three different flow regimes, dependent on the value of the aspect ratio a {=} h_i/r_i, where h_i and r_i are the initial height and radius of the granular column respectively. The differing forms of flow behaviour are described for each regime. In all cases a central, conically sided region of angle approximately 59(°) , corresponding to an aspect ratio of 1.7, remains undisturbed throughout the motion. The main experimental results for the final extent of the deposit and the time for emplacement are systematically collapsed in a quantitative way independent of any friction coefficients. Along with the kinematic data for the rate of spread of the front of the collapsing column, this is interpreted as indicating that frictional effects between individual grains in the bulk of the moving flow only play a role in the last instant of the flow, as it comes to an abrupt halt. For a {<} 1.7, the measured final runout radius, r_infty, is related to the initial radius by r_infty {=} r_i(1 {+} 1.24a); while for 1.7 {<} a the corresponding relationship is r_infty {=} r_i(1 {+} 1.6a(1/2) ). The time, t_infty, taken for the grains to reach r_infty is given by t_infty {=} 3(h_i/g)(1/2} {=} 3(r_i/g)({1/2}a^{1/2)) , where g is the gravitational acceleration. The insights and conclusions gained from these experiments can be applied to a wide range of industrial and natural flows of concentrated particles. For example, the observation of the rapid deposition of the grains can help explain details of the emplacement of pyroclastic flows resulting from the explosive eruption of volcanoes.

  3. Novel techniques for slurry bubble column hydrodynamics

    SciTech Connect

    Dudukovic, M.P.

    1999-05-14

    The objective of this cooperative research effort between Washington University, Ohio State University and Exxon Research Engineering Company was to improve the knowledge base for scale-up and operation of slurry bubble column reactors for syngas conversion and other coal conversion processes by increased reliance on experimentally verified hydrodynamic models. During the first year (July 1, 1995--June 30, 1996) of this three year program novel experimental tools (computer aided radioactive particle tracking (CARPT), particle image velocimetry (PIV), heat probe, optical fiber probe and gamma ray tomography) were developed and tuned for measurement of pertinent hydrodynamic quantities, such as velocity field, holdup distribution, heat transfer and bubble size. The accomplishments were delineated in the First Technical Annual Report. The second year (July, 1996--June 30, 1997) was spent on further development and tuning of the novel experimental tools (e.g., development of Monte Carlo calibration for CARPT, optical probe development), building up the hydrodynamic data base using these tools and comparison of the two techniques (PIV and CARPT) for determination of liquid velocities. A phenomenological model for gas and liquid backmixing was also developed. All accomplishments were summarized in the Second Annual Technical Report. During the third and final year of the program (July 1, 1997--June 30, 1998) and during the nine months no cost extension, the high pressure facility was completed and a set of data was taken at high pressure conditions. Both PIV, CT and CARPT were used. More fundamental hydrodynamic modeling was also undertaken and model predictions were compared to data. The accomplishments for this period are summarized in this report.

  4. Oscillating water column structural model

    SciTech Connect

    Copeland, Guild; Bull, Diana L; Jepsen, Richard Alan; Gordon, Margaret Ellen

    2014-09-01

    An oscillating water column (OWC) wave energy converter is a structure with an opening to the ocean below the free surface, i.e. a structure with a moonpool. Two structural models for a non-axisymmetric terminator design OWC, the Backward Bent Duct Buoy (BBDB) are discussed in this report. The results of this structural model design study are intended to inform experiments and modeling underway in support of the U.S. Department of Energy (DOE) initiated Reference Model Project (RMP). A detailed design developed by Re Vision Consulting used stiffeners and girders to stabilize the structure against the hydrostatic loads experienced by a BBDB device. Additional support plates were added to this structure to account for loads arising from the mooring line attachment points. A simplified structure was designed in a modular fashion. This simplified design allows easy alterations to the buoyancy chambers and uncomplicated analysis of resulting changes in buoyancy.

  5. NEUTRONIC REACTOR

    DOEpatents

    Fraas, A.P.; Mills, C.B.

    1961-11-21

    A neutronic reactor in which neutron moderation is achieved primarily in its reflector is described. The reactor structure consists of a cylindrical central "island" of moderator and a spherical moderating reflector spaced therefrom, thereby providing an annular space. An essentially unmoderated liquid fuel is continuously passed through the annular space and undergoes fission while contained therein. The reactor, because of its small size, is particularly adapted for propulsion uses, including the propulsion of aircraft. (AEC)

  6. REACTOR COOLING

    DOEpatents

    Quackenbush, C.F.

    1959-09-29

    A nuclear reactor with provisions for selectively cooling the fuel elements is described. The reactor has a plurality of tubes extending throughout. Cylindrical fuel elements are disposed within the tubes and the coolant flows through the tubes and around the fuel elements. The fuel elements within the central portion of the reactor are provided with roughened surfaces of material. The fuel elements in the end portions of the tubes within the reactor are provlded with low conduction jackets and the fuel elements in the region between the central portion and the end portions are provided with smooth surfaces of high heat conduction material.

  7. Characterization of polyacrylamide based monolithic columns.

    PubMed

    Plieva, Fatima M; Andersson, Jonatan; Galaev, Igor Yu; Mattiasson, Bo

    2004-07-01

    Supermacroporous monolithic polyacrylamide (pAAm)-based columns have been prepared by radical cryo-copolymerization (copolymerization in the moderately frozen system) of acrylamide with functional co-monomer, allyl glycidyl ether (AGE), and cross-linker N,N'-methylene-bis-acrylamide (MBAAm) directly in glass columns (ID 10 mm). The monolithic columns have uniform supermacroporous sponge-like structure with interconnected supermacropores of pore size 5-100 microm. The monoliths can be dried and stored in the dry state. High mechanical stability of the monoliths allowed sterilization by autoclaving. Column-to-column reproducibility of pAAm-monoliths was demonstrated on 5 monolithic columns from different batches prepared under the same cryostructuration conditions. PMID:15354560

  8. MTR BUILDING INTERIOR, TRA603. CAMERA FACING SOUTHEAST CORNER OF REACTOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR BUILDING INTERIOR, TRA-603. CAMERA FACING SOUTHEAST CORNER OF REACTOR FLOOR. SUPPLIES AND EQUIPMENT RELATE TO MOCK-UP PROJECT. NOTE PRECAST WALL PANELS SUPPORTED BY VERTICAL COLUMNS OF REINFORCED CONCRETE. INL NEGATIVE NO. HD46-4-2. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  9. REDISTRIBUTOR FOR LIQUID-LIQUID EXTRACTION COLUMNS

    DOEpatents

    Bradley, J.G.

    1957-10-29

    An improved baffle plate construction to intimately mix immiscible liquid solvents for solvent extraction processes in a liquid-liquid pulse column is described. To prevent the light and heavy liquids from forming separate continuous homogeneous vertical channels through sections of the column, a baffle having radially placed rectangular louvers with deflection plates opening upon alternate sides of the baffle is placed in the column, normal to the axis. This improvement substantially completely reduces strippiig losses due to poor mixing.

  10. Transverse Reinforcement in Reinforced Concrete Columns

    NASA Astrophysics Data System (ADS)

    Gramblička, Štefan; Veróny, Peter

    2013-11-01

    In the article we are dealing with the influence of transverse reinforcement to the resistance of a cross-section of the reinforced concrete columns and also with the effective detailing of the column reinforcement. We are verifying the correctness of design guides for detailing of transverse reinforcement. We are also taking into account the diameter of stirrups and its influence over transverse deformation of column.

  11. Soil column leaching of pesticides.

    PubMed

    Katagi, Toshiyuki

    2013-01-01

    In this review, I address the practical and theoretical aspects of pesticide soil mobility.I also address the methods used to measure mobility, and the factors that influence it, and I summarize the data that have been published on the column leaching of pesticides.Pesticides that enter the unsaturated soil profile are transported downwards by the water flux, and are adsorbed, desorbed, and/or degraded as they pass through the soil. The rate of passage of a pesticide through the soil depends on the properties of the pesticide, the properties of the soil and the prevailing environmental conditions.Because large amounts of many different pesticides are used around the world, they and their degradates may sometimes contaminate groundwater at unacceptable levels.It is for this reason that assessing the transport behavior and soil mobility of pesticides before they are sold into commerce is important and is one indispensable element that regulators use to assess probable pesticide safety. Both elementary soil column leaching and sophisticated outdoor lysimeter studies are performed to measure the leaching potential for pesticides; the latter approach more reliably reflects probable field behavior, but the former is useful to initially profile a pesticide for soil mobility potential.Soil is physically heterogeneous. The structure of soil varies both vertically and laterally, and this variability affects the complex flow of water through the soil profile, making it difficult to predict with accuracy. In addition, macropores exist in soils and further add to the complexity of how water flow occurs. The degree to which soil is tilled, the density of vegetation on the surface, and the type and amounts of organic soil amendments that are added to soil further affect the movement rate of water through soil, the character of soil adsorption sites and the microbial populations that exist in the soil. Parameters that most influence the rate of pesticide mobility in soil are

  12. MRSQ informatics education columns: passing the baton.

    PubMed

    Hasman, Linda; Hoberecht, Toni; Pullen, Kimberly

    2012-01-01

    This is the last Informatics Education column under the current editors. The outgoing co-editor identifies several key themes that describe the column during her tenure. The main theme discovered while reviewing the columns published over the last five years is technology. Technological changes and advances have affected the way in which librarians conduct instruction, such as incorporating e-learning with traditional workshops and in-class sessions. Technology plays a key role in all of the themes that emerged. The incoming editors imagine what the future themes will be for the Informatics Education column. PMID:23092421

  13. Micro cell isolation column for allergic diagnosis

    NASA Astrophysics Data System (ADS)

    Kobayashi, Koichiro; Sakamoto, Kenji; Yanase, Yuhki; Hide, Michihiro; Miyake, Ryo

    2016-03-01

    We suggest a new micro cell isolation column of basophils for an allergic diagnostic system for detecting human basophils activations. Surface plasmon resonance imaging (SPRI) biosensors using human basophils allow allergic diagnosis of less than 1 ml of peripheral blood. However, an isolation of basophils from a small amount of blood is not easy. In this study, we constructed a new micro cell isolation column for basophils with poly(dimethylsiloxane) (PDMS) microflow pass including magnetic particles. Furthermore, we determined whether leukocytes were captured by the micro cell isolation column from a small amount of blood. We can isolate basophils from other leukocytes by using the micro cell isolation column.

  14. Interstitial gas effect on vibrated granular columns

    NASA Astrophysics Data System (ADS)

    Pastenes, Javier C.; Géminard, Jean-Christophe; Melo, Francisco

    2014-06-01

    Vibrated granular materials have been intensively used to investigate particle segregation, convection, and heaping. We report on the behavior of a column of heavy grains bouncing on an oscillating solid surface. Measurements indicate that, for weak effects of the interstitial gas, the temporal variations of the pressure at the base of the column are satisfactorily described by considering that the column, despite the observed dilation, behaves like a porous solid. In addition, direct observation of the column dynamics shows that the grains of the upper and lower surfaces are in free fall in the gravitational field and that the dilation is due to a small delay between their takeoff times.

  15. NEUTRONIC REACTOR

    DOEpatents

    Metcalf, H.E.; Johnson, H.W.

    1961-04-01

    BS>A nuclear reactor incorporating fuel rods passing through a moderator and including tubes of a material of higher Thermal conductivity than the fuel in contact with the fuel is described. The tubes extend beyond the active portion of the reactor into contant with a fiuld coolant.

  16. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.

    1958-04-22

    A nuclear reactor for isotope production is described. This reactor is designed to provide a maximum thermal neutron flux in a region adjacent to the periphery of the reactor rather than in the center of the reactor. The core of the reactor is generally centrally located with respect tn a surrounding first reflector, constructed of beryllium. The beryllium reflector is surrounded by a second reflector, constructed of graphite, which, in tune, is surrounded by a conventional thermal shield. Water is circulated through the core and the reflector and functions both as a moderator and a coolant. In order to produce a greatsr maximum thermal neutron flux adjacent to the periphery of the reactor rather than in the core, the reactor is designed so tbat the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the materials in the reflector is approximately twice the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the material of the core of the reactor.

  17. Compact Reactor

    SciTech Connect

    Williams, Pharis E.

    2007-01-30

    Weyl's Gauge Principle of 1929 has been used to establish Weyl's Quantum Principle (WQP) that requires that the Weyl scale factor should be unity. It has been shown that the WQP requires the following: quantum mechanics must be used to determine system states; the electrostatic potential must be non-singular and quantified; interactions between particles with different electric charges (i.e. electron and proton) do not obey Newton's Third Law at sub-nuclear separations, and nuclear particles may be much different than expected using the standard model. The above WQP requirements lead to a potential fusion reactor wherein deuterium nuclei are preferentially fused into helium nuclei. Because the deuterium nuclei are preferentially fused into helium nuclei at temperatures and energies lower than specified by the standard model there is no harmful radiation as a byproduct of this fusion process. Therefore, a reactor using this reaction does not need any shielding to contain such radiation. The energy released from each reaction and the absence of shielding makes the deuterium-plus-deuterium-to-helium (DDH) reactor very compact when compared to other reactors, both fission and fusion types. Moreover, the potential energy output per reactor weight and the absence of harmful radiation makes the DDH reactor an ideal candidate for space power. The logic is summarized by which the WQP requires the above conditions that make the prediction of DDH possible. The details of the DDH reaction will be presented along with the specifics of why the DDH reactor may be made to cause two deuterium nuclei to preferentially fuse to a helium nucleus. The presentation will also indicate the calculations needed to predict the reactor temperature as a function of fuel loading, reactor size, and desired output and will include the progress achieved to date.

  18. NUCLEAR REACTOR

    DOEpatents

    Moore, R.V.; Bowen, J.H.; Dent, K.H.

    1958-12-01

    A heterogeneous, natural uranium fueled, solid moderated, gas cooled reactor is described, in which the fuel elements are in the form of elongated rods and are dlsposed within vertical coolant channels ln the moderator symmetrically arranged as a regular lattice in groups. This reactor employs control rods which operate in vertical channels in the moderator so that each control rod is centered in one of the fuel element groups. The reactor is enclosed in a pressure vessel which ls provided with access holes at the top to facilitate loading and unloadlng of the fuel elements, control rods and control rod driving devices.

  19. Contributions to reversed-phase column selectivity: III. Column hydrogen-bond basicity.

    PubMed

    Carr, P W; Dolan, J W; Dorsey, J G; Snyder, L R; Kirkland, J J

    2015-05-22

    Column selectivity in reversed-phase chromatography (RPC) can be described in terms of the hydrophobic-subtraction model, which recognizes five solute-column interactions that together determine solute retention and column selectivity: hydrophobic, steric, hydrogen bonding of an acceptor solute (i.e., a hydrogen-bond base) by a stationary-phase donor group (i.e., a silanol), hydrogen bonding of a donor solute (e.g., a carboxylic acid) by a stationary-phase acceptor group, and ionic. Of these five interactions, hydrogen bonding between donor solutes (acids) and stationary-phase acceptor groups is the least well understood; the present study aims at resolving this uncertainty, so far as possible. Previous work suggests that there are three distinct stationary-phase sites for hydrogen-bond interaction with carboxylic acids, which we will refer to as column basicity I, II, and III. All RPC columns exhibit a selective retention of carboxylic acids (column basicity I) in varying degree. This now appears to involve an interaction of the solute with a pair of vicinal silanols in the stationary phase. For some type-A columns, an additional basic site (column basicity II) is similar to that for column basicity I in primarily affecting the retention of carboxylic acids. The latter site appears to be associated with metal contamination of the silica. Finally, for embedded-polar-group (EPG) columns, the polar group can serve as a proton acceptor (column basicity III) for acids, phenols, and other donor solutes. PMID:25890437

  20. NUCLEAR REACTOR

    DOEpatents

    Sherman, J.; Sharbaugh, J.E.; Fauth, W.L. Jr.; Palladino, N.J.; DeHuff, P.G.

    1962-10-23

    A nuclear reactor incorporating seed and blanket assemblies is designed. Means are provided for obtaining samples of the coolant from the blanket assemblies and for varying the flow of coolant through the blanket assemblies. (AEC)

  1. NEUTRONIC REACTOR

    DOEpatents

    Anderson, H.L.

    1960-09-20

    A nuclear reactor is described comprising fissionable material dispersed in graphite blocks, helium filling the voids of the blocks and the spaces therebetween, and means other than the helium in thermal conductive contact with the graphite for removing heat.

  2. NEUTRONIC REACTOR

    DOEpatents

    Hurwitz, H. Jr.; Brooks, H.; Mannal, C.; Payne, J.H.; Luebke, E.A.

    1959-03-24

    A reactor of the heterogeneous, liquid cooled type is described. This reactor is comprised of a central region of a plurality of vertically disposed elongated tubes surrounded by a region of moderator material. The central region is comprised of a central core surrounded by a reflector region which is surrounded by a fast neutron absorber region, which in turn is surrounded by a slow neutron absorber region. Liquid sodium is used as the primary coolant and circulates through the core which contains the fuel elements. Control of the reactor is accomplished by varying the ability of the reflector region to reflect neutrons back into the core of the reactor. For this purpose the reflector is comprised of moderator and control elements having varying effects on reactivity, the control elements being arranged and actuated by groups to give regulation, shim, and safety control.

  3. NEUTRONIC REACTOR

    DOEpatents

    Fermi, E.

    1960-04-01

    A nuclear reactor is described consisting of blocks of graphite arranged in layers, natural uranium bodies disposed in holes in alternate layers of graphite blocks, and coolant tubes disposed in the layers of graphite blocks which do not contain uranium.

  4. REACTOR SHIELD

    DOEpatents

    Wigner, E.P.; Ohlinger, L.E.; Young, G.J.; Weinberg, A.M.

    1959-02-17

    Radiation shield construction is described for a nuclear reactor. The shield is comprised of a plurality of steel plates arranged in parallel spaced relationship within a peripheral shell. Reactor coolant inlet tubes extend at right angles through the plates and baffles are arranged between the plates at right angles thereto and extend between the tubes to create a series of zigzag channels between the plates for the circulation of coolant fluid through the shield. The shield may be divided into two main sections; an inner section adjacent the reactor container and an outer section spaced therefrom. Coolant through the first section may be circulated at a faster rate than coolant circulated through the outer section since the area closest to the reactor container is at a higher temperature and is more radioactive. The two sections may have separate cooling systems to prevent the coolant in the outer section from mixing with the more contaminated coolant in the inner section.

  5. NUCLEAR REACTOR

    DOEpatents

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  6. Microwaves Scattering by Underdense Inhomogeneous Plasma Column

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Ouyang, Jiting

    2016-03-01

    The scattering characteristics of microwaves (MWs) by an underdense inhomogeneous plasma column have been investigated. The plasma column is generated by hollow cathode discharge (HCD) in a glass tube filled with low pressure argon. The plasma density in the column can be varied by adjusting the discharge current. The scattering power of X-band MWs by the column is measured at different discharge currents and receiving angles. The results show that the column can affect the properties of scattering wave significantly regardless of its plasma frequency much lower than the incident wave frequency. The power peak of the scattering wave shifts away from 0° to about ±15° direction. The finite-different time-domain (FDTD) method is employed to analyze the wave scattering by plasma column with different electron density distributions. The reflected MW power from a metal plate located behind the column is also measured to investigate the scattering effect on reducing MW reflectivity of a metal target. This study is expected to deepen the understanding of plasma-electromagnetic wave interaction and expand the applications concerning plasma antenna and plasma stealth.

  7. Mechanical interactions of UIS support columns. [LMFBR

    SciTech Connect

    Kennedy, J.M.; Belytschko, T.B.

    1983-01-01

    Code development involving above-core structures (ACS) has recently focused on modeling the complexities of mechanical interactions in the ACS support columns which play a very important role in their behavior. These developments are directed toward two considerations: (1) the prediction of the forces exerted by the column in a hypothetical core-disruptive accident (HCDA) in order that the motion of the ACS can be predicted in a coupled fluid-structure analysis, (2) the calculation of the strains and deformations of the support columns so that situations which lead to complete failure can be identified. Finite element capabilities have been developed to handle various types of plant design for the analysis of coupled hydrodynamics and structural response. Beam elements, which previously represented the support columns were able to account for geometric nonlinearities and material nonlinearities, however, changes in the column cross section were not treated. Therefore, one of the aims of this study was to examine the effect of the change in cross section on the behavior of the support columns. A second effect which has been studied is the behavior of support columns consisting of two concentric cylinders.

  8. NUCLEAR REACTOR

    DOEpatents

    Anderson, C.R.

    1962-07-24

    A fluidized bed nuclear reactor and a method of operating such a reactor are described. In the design means are provided for flowing a liquid moderator upwardly through the center of a bed of pellets of a nentron-fissionable material at such a rate as to obtain particulate fluidization while constraining the lower pontion of the bed into a conical shape. A smooth circulation of particles rising in the center and falling at the outside of the bed is thereby established. (AEC)

  9. NUCLEAR REACTOR

    DOEpatents

    Breden, C.R.; Dietrich, J.R.

    1961-06-20

    A water-soluble non-volatile poison may be introduced into a reactor to nullify excess reactivity. The poison is removed by passing a side stream of the water containing the soluble poison to an evaporation chamber. The vapor phase is returned to the reactor to decrease the concentration of soluble poison and the liquid phase is returned to increase the concentration of soluble poison.

  10. How to Calculate Molecular Column Density

    NASA Astrophysics Data System (ADS)

    Mangum, Jeffrey G.; Shirley, Yancy L.

    2015-03-01

    The calculation of the molecular column density from molecular spectral (rotational or ro-vibrational) transition measurements is one of the most basic quantities derived from molecular spectroscopy. Starting from first principles where we describe the basic physics behind the radiative and collisional excitation of molecules and the radiative transfer of their emission, we derive a general expression for the molecular column density. As the calculation of the molecular column density involves a knowledge of the molecular energy level degeneracies, rotational partition functions, dipole moment matrix elements, and line strengths, we include generalized derivations of these molecule-specific quantities. Given that approximations to the column density equation are often useful, we explore the optically thin, optically thick, and low-frequency limits to our derived general molecular column density relation. We also evaluate the limitations of the common assumption that the molecular excitation temperature is constant and address the distinction between beam-averaged and source-averaged column densities. As non-LTE approaches to the calculation of molecular spectral line column density have become quite common, we summarize non-LTE models that calculate molecular cloud volume densities, kinetic temperatures, and molecular column densities. We conclude our discussion of the molecular column density with worked examples for C18O, C17O, N2H+, NH3, and H2CO. Ancillary information on some subtleties involving line profile functions, conversion between integrated flux and brightness temperature, the calculation of the uncertainty associated with an integrated intensity measurement, the calculation of spectral line optical depth using hyperfine or isotopologue measurements, the calculation of the kinetic temperature from a symmetric molecule excitation temperature measurement, and relative hyperfine intensity calculations for NH3 are presented in appendices. The intent of

  11. NUCLEAR REACTOR

    DOEpatents

    Grebe, J.J.

    1959-07-14

    High temperature reactors which are uniquely adapted to serve as the heat source for nuclear pcwered rockets are described. The reactor is comprised essentially of an outer tubular heat resistant casing which provides the main coolant passageway to and away from the reactor core within the casing and in which the working fluid is preferably hydrogen or helium gas which is permitted to vaporize from a liquid storage tank. The reactor core has a generally spherical shape formed entirely of an active material comprised of fissile material and a moderator material which serves as a diluent. The active material is fabricated as a gas permeable porous material and is interlaced in a random manner with very small inter-connecting bores or capillary tubes through which the coolant gas may flow. The entire reactor is divided into successive sections along the direction of the temperature gradient or coolant flow, each section utilizing materials of construction which are most advantageous from a nuclear standpoint and which at the same time can withstand the operating temperature of that particular zone. This design results in a nuclear reactor characterized simultaneously by a minimum critiral size and mass and by the ability to heat a working fluid to an extremely high temperature.

  12. Preparation and performance of immobilized yeast cells in columns containing no inert carrier. [Schizosaccharomyces pombe

    SciTech Connect

    Hsiao, H.Y.; Chiang, L.C.; Yang, C.M.; Chen, L.F.; Tsao, G.T.

    1983-02-01

    Schizosaccharomyes pombe was cultivated in a medium of glucose (10 g/l), malt extract (3 g/l), yeast extract (3 g/l), and bactopeptone (5 g/l) to form flocs. More than 95% of the cell population were flocculated. Variation in glucose concentration (from 10 to 11 g/l) did not affect flocculation. Yeast extract helped induce flocculation. Application of the immobilized yeast for the continuous production of ethanol was tested in a column reactor. Soft yeast flocs (50-200 mesh) underwent morphological changes to heavy particles (0.1-9.3 cm diameter) after continuously being fed with fresh substrates in the column. Productivity as high as 87 g EtOH/l/hour was obtained when a 150 g/l glucose medium was fed. The performance of this yeast reactor was stable over a two-month period. The ethanol yield was 97% of the theoretical maximum based upon glucose consumed. (Refs. 16).

  13. Neural network modeling of distillation columns

    SciTech Connect

    Baratti, R.; Vacca, G.; Servida, A.

    1995-06-01

    Neural network modeling (NNM) was implemented for monitoring and control applications on two actual distillation columns: the butane splitter tower and the gasoline stabilizer. The two distillation columns are in operation at the SARAS refinery. Results show that with proper implementation techniques NNM can significantly improve column operation. The common belief that neural networks can be used as black-box process models is not completely true. Effective implementation always requires a minimum degree of process knowledge to identify the relevant inputs to the net. After background and generalities on neural network modeling, the paper describes efforts on the development of neural networks for the two distillation units.

  14. Redesigned Air-Column Resonance Apparatus

    NASA Astrophysics Data System (ADS)

    Singh, Gurbax; Graf, Erlend H.

    2003-02-01

    This paper describes a redesigned air-column resonance apparatus that offers several advantages over the traditional one.2 It does away with water or the long rod to vary the length of the air column. Instead a specially designed piston is moved inside a plastic or glass tube by external magnets to vary the length of the air column. Plastic tubes of various sizes are commercially available,3 but we salvaged one from an old commercial resonance apparatus. The tube has 2.85-cm inner and 3.15-cm outer diameter, respectively. The redesigned resonance apparatus can be operated in either the horizontal or the vertical position.

  15. Recent advances in the preparation and application of monolithic capillary columns in separation science.

    PubMed

    Hong, Tingting; Yang, Xi; Xu, Yujing; Ji, Yibing

    2016-08-10

    Novel column technologies involving various materials and efficient reactions have been investigated for the fabrication of monolithic capillary columns in the field of analytical chemistry. In addition to the development of these miniaturized systems, a variety of microscale separation applications have achieved noteworthy results, providing a stepping stone for new types of chromatographic columns with improved efficiency and selectivity. Three novel strategies for the preparation of capillary monoliths, including ionic liquid-based approaches, nanoparticle-based approaches and "click chemistry", are highlighted in this review. Furthermore, we present the employment of state-of-the-art capillary monolithic stationary phases for enantioseparation, solid-phase microextraction, mixed-mode separation and immobilized enzyme reactors. The review concludes with recommendations for future studies and improvements in this field of research. PMID:27282747

  16. Heat transfer and bubble dynamics in slurry bubble columns for Fischer-Tropsch clean alternative energy

    NASA Astrophysics Data System (ADS)

    Wu, Chengtian

    With the increasing demand for alternative energy resources, the Fischer-Tropsch (FT) process that converts synthesis gas into clean liquid fuels has attracted more interest from the industry. Slurry bubble columns are the most promising reactors for FT synthesis due to their advantages over other reactors. Successful operation, design, and scale-up of such reactors require detailed knowledge of hydrodynamics, bubble dynamics, and transport characteristics. However, most previous studies have been conducted at ambient pressure or covered only low superficial gas velocities. The objectives of this study were to experimentally investigate the heat transfer coefficient and bubble dynamics in slurry bubble columns at conditions that can mimic FT conditions. The air-C9C 11-FT catalysts/glass beads systems were selected to mimic the physical properties of the gas, liquid, and solid phases at commercial FT operating conditions. A heat transfer coefficient measurement technique was developed, and for the first time, this technique was applied in a pilot scale (6-inch diameter) high pressure slurry bubble column. The effects of superficial gas velocity, pressure, solids loading, and liquid properties on the heat transfer coefficients were investigated. Since the heat transfer coefficient can be affected by the bubble properties (Kumar et al., 1992), in this work bubble dynamics (local gas holdup, bubble chord length, apparent bubble frequency, specific interfacial area, and bubble velocity) were studied using the improved four-point optical probe technique (Xue et al., 2003; Xue, 2004). Because the four-point optical technique had only been successfully applied in a churn turbulent flow bubble column (Xue, 2004), this technique was first assessed in a small scale slurry bubble column in this study. Then the bubble dynamics were studied at the same conditions as the heat transfer coefficient investigation in the same pilot scale column. The results from four-point probe

  17. Use of MiniColumns for linear isotherm parameter estimation and prediction of benchtop column performance.

    PubMed

    Keller, William R; Evans, Steven T; Ferreira, Gisela; Robbins, David; Cramer, Steven M

    2015-10-30

    In this paper, a comparison between experimental chromatography data and column simulations is carried out to determine the efficacy of using miniaturized chromatography columns (MiniColumns) for both column modeling parameter estimation and process development. Normalization of the data with respect to column volumes along with appropriate translations to account for system differences is shown to result in comparability of the experimental data for the MiniColumn and benchtop systems. A parameter estimation protocol is then employed to determine the linear steric mass-action (SMA) isotherm and lumped mass transport parameters for two cation exchange resins. The models are then validated and simulations using different parameter sets from the MiniColumn and benchtop systems are shown to result in similar predicted chromatography profiles and calculated retention volumes. The parameters generated from the MiniColumn system are demonstrated to be well suited for predicting experimental data from the benchtop system. These simulation results, the ability to operate MiniColumns in parallel, and the significantly lower material requirements per experiment support an industry trend toward increased usage of miniaturized chromatography columns as a scale-down model for process development. PMID:26422303

  18. Open Tubular Lab-On-Column/Mass Spectrometry for Targeted Proteomics of Nanogram Sample Amounts

    PubMed Central

    Hustoft, Hanne Kolsrud; Vehus, Tore; Brandtzaeg, Ole Kristian; Krauss, Stefan; Greibrokk, Tyge; Wilson, Steven Ray; Lundanes, Elsa

    2014-01-01

    A novel open tubular nanoproteomic platform featuring accelerated on-line protein digestion and high-resolution nano liquid chromatography mass spectrometry (LC-MS) has been developed. The platform features very narrow open tubular columns, and is hence particularly suited for limited sample amounts. For enzymatic digestion of proteins, samples are passed through a 20 µm inner diameter (ID) trypsin + endoproteinase Lys-C immobilized open tubular enzyme reactor (OTER). Resulting peptides are subsequently trapped on a monolithic pre-column and transferred on-line to a 10 µm ID porous layer open tubular (PLOT) liquid chromatography LC separation column. Wnt/ß-catenein signaling pathway (Wnt-pathway) proteins of potentially diagnostic value were digested+detected in targeted-MS/MS mode in small cell samples and tumor tissues within 120 minutes. For example, a potential biomarker Axin1 was identifiable in just 10 ng of sample (protein extract of ∼1,000 HCT15 colon cancer cells). In comprehensive mode, the current OTER-PLOT set-up could be used to identify approximately 1500 proteins in HCT15 cells using a relatively short digestion+detection cycle (240 minutes), outperforming previously reported on-line digestion/separation systems. The platform is fully automated utilizing common commercial instrumentation and parts, while the reactor and columns are simple to produce and have low carry-over. These initial results point to automated solutions for fast and very sensitive MS based proteomics, especially for samples of limited size. PMID:25222838

  19. A Versatile, Automatic Chromatographic Column Packing Device

    ERIC Educational Resources Information Center

    Barry, Eugene F.; And Others

    1977-01-01

    Describes an inexpensive apparatus for packing liquid and gas chromatographic columns of high efficiency. Consists of stainless steel support struts, an Automat Getriebmotor, and an associated three-pulley system capable of 10, 30, and 300 rpm. (MLH)

  20. AVIRIS Spectrometer Maps Total Water Vapor Column

    NASA Technical Reports Server (NTRS)

    Conel, James E.; Green, Robert O.; Carrere, Veronique; Margolis, Jack S.; Alley, Ronald E.; Vane, Gregg A.; Bruegge, Carol J.; Gary, Bruce L.

    1992-01-01

    Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) processes maps of vertical-column abundances of water vapor in atmosphere with good precision and spatial resolution. Maps provide information for meteorology, climatology, and agriculture.

  1. The accretion column of AE Aqr

    NASA Astrophysics Data System (ADS)

    Rodrigues, Claudia; Costa, D. Joaquim; Luna, Gerardo; Lima, Isabel J.; Silva, Karleyne M. G.; De Araujo, Jose Carlos N.; Coelho, Jaziel

    2016-07-01

    AE Aqr is a magnetic cataclysmic variable, whose white dwarf rotates at the very fast rate of 33 s modulating the flux from high-energies to optical wavelengths. There are many studies of the origin of its emission, which consider emission from a rotating magnetic field or from an accretion column. Recently, MAGIC observations have discarded AE Aqr emission in very high energy gamma-rays discarding non-thermal emission. Furthermore, soft and hard X-ray data from Swift and NuSTAR were fitted using thermal models. Here we present the modelling of AE Aqr X-ray spectra and light curve considering the emission of a magnetic accretion column using the Cyclops code. The model takes into consideration the 3D geometry of the system, allowing to properly represent the white-dwarf auto eclipse, the pre-shock column absorption, and the varying density and temperature of a tall accretion column.

  2. Modeling Tropical Precipitation in a Single Column.

    NASA Astrophysics Data System (ADS)

    Sobel, Adam H.; Bretherton, Christopher S.

    2000-12-01

    A modified formulation of the traditional single column model for representing a limited area near the equator is proposed. This formulation can also be considered a two-column model in the limit as the area represented by one of the columns becomes very large compared to the other. Only a single column is explicitly modeled, but its free tropospheric temperature, rather than its mean vertical velocity, is prescribed. This allows the precipitation and vertical velocity to be true prognostic variables, as in prior analytical theories of tropical precipitation. Two models developed by other authors are modified according to the proposed formulation. The first is the intermediate atmospheric model of J. D. Neelin and N. Zeng, but with the horizontal connections between columns broken, rendering it a set of disconnected column models. The second is the column model of N. O. Rennó, K. A. Emanuel, and P. H. Stone. In the first model, the set of disconnected column models is run with a fixed temperature that is uniform in the Tropics, and insolation, SST, and surface wind speed taken from a control run of the original model. The column models produce a climatological precipitation field that is grossly similar to that of the control run, despite that the circulation implied by the column models is not required to conserve mass. The addition of horizontal moisture advection by the wind from the control run substantially improves the simulation in dry regions. In the second model the sensitivity of the modeled steady-state precipitation and relative humidity to varying SST and wind speed is examined. The transition from shallow to deep convection is simulated in a `Lagrangian' calculation in which the column model is subjected to an SST that increases in time. In this simulation, the onset of deep convection is delayed to a higher SST than in the steady-state case, due to the effect of horizontal moisture advection (viewed in a Lagrangian reference frame). In both of the

  3. Research reactors - an overview

    SciTech Connect

    West, C.D.

    1997-03-01

    A broad overview of different types of research and type reactors is provided in this paper. Reactor designs and operating conditions are briefly described for four reactors. The reactor types described include swimming pool reactors, the High Flux Isotope Reactor, the Mark I TRIGA reactor, and the Advanced Neutron Source reactor. Emphasis in the descriptions is placed on safety-related features of the reactors. 7 refs., 7 figs., 2 tabs.

  4. Flow in a metal hydride chromatographic column

    SciTech Connect

    Nichols, G.S.

    1990-01-01

    The flow of hydrogen isotopes in a metal hydride chromatographic column is calculated by a one-dimensional finite difference method. The Ergun equation is used to define the gas flow; and equilibrium pressure isotherms are used to define the column holdup. Solid phase loadings are shown to move as a wave front on absorption, but remain more uniform on desorption. 3 refs., 4 figs.

  5. Magnetic Shaping of Molten Metal Columns

    NASA Astrophysics Data System (ADS)

    Shercliff, J. A.

    1981-04-01

    In continuous casting the vertically falling liquid column may be shaped by externally applied, horizontal, high-frequency magnetic fields. The free-boundary problem with allowance for surface tension is solved in a two-dimensional approximation by combined complex-variable and numerical methods in the cases where the far field is either uniform or of quadrupole form, or where the field is produced by four vertical conductors centred on the column. Stirring of the fluid is ignored.

  6. NEUTRONIC REACTOR

    DOEpatents

    Ohlinger, L.A.; Wigner, E.P.; Weinberg, A.M.; Young, G.J.

    1958-09-01

    This patent relates to neutronic reactors of the heterogeneous water cooled type, and in particular to a fuel element charging and discharging means therefor. In the embodiment illustrated the reactor contains horizontal, parallel coolant tubes in which the fuel elements are disposed. A loading cart containing a magnzine for holding a plurality of fuel elements operates along the face of the reactor at the inlet ends of the coolant tubes. The loading cart is equipped with a ram device for feeding fuel elements from the magazine through the inlot ends of the coolant tubes. Operating along the face adjacent the discharge ends of the tubes there is provided another cart means adapted to receive irradiated fuel elements as they are forced out of the discharge ends of the coolant tubes by the incoming new fuel elements. This cart is equipped with a tank coataining a coolant, such as water, into which the fuel elements fall, and a hydraulically operated plunger to hold the end of the fuel element being discharged. This inveation provides an apparatus whereby the fuel elements may be loaded into the reactor, irradiated therein, and unloaded from the reactor without stopping the fiow of the coolant and without danger to the operating personnel.

  7. Quality improvements of cell membrane chromatographic column.

    PubMed

    Ding, Xuan; Chen, Xiaofei; Cao, Yan; Jia, Dan; Wang, Dongyao; Zhu, Zhenyu; Zhang, Juping; Hong, Zhanying; Chai, Yifeng

    2014-09-12

    Cell Membrane Chromatography (CMC) is a biological affinity chromatographic method using a silica stationary phase covered with specific cell membrane. However, its short life span and poor quality control was highlighted in a lot of research articles. In this study, special attention has been paid to the disruption, cell load and packing procedure in order to improve the quality of the CMC columns. Hereto, two newly established CMC models, HSC-T6/CMC and SMMC-7721/CMC have been developed and used in this research project. The optimization of the abovementioned parameters resulted in a better reproducibility of the retention time of the compound GFT (RSD<10%) and improved significantly the quality of the CMC columns. 3.5×10(7)cells were the optimal cell load for the preparation of the CMC columns, the disruption condition was optimized to 5 cycles (400W and 20s interval per cycle) by an ultrasonic processor reducing the total time of cell disruption to 1.5min and the packing flow rate was optimized by applying a linear gradient program. Additionally, 4% paraformaldehyde (PFA) was employed to improve the column quality and prolong the column life span. The results showed that the retention time was longer with PFA treated columns than the ones obtained with the control groups. PMID:25115453

  8. Gas Chromatograph Method Optimization Trade Study for RESOLVE: 20-meter Column v. 8-meter Column

    NASA Technical Reports Server (NTRS)

    Huz, Kateryna

    2014-01-01

    RESOLVE is the payload on a Class D mission, Resource Prospector, which will prospect for water and other volatile resources at a lunar pole. The RESOLVE payload's primary scientific purpose includes determining the presence of water on the moon in the lunar regolith. In order to detect the water, a gas chromatograph (GC) will be used in conjunction with a mass spectrometer (MS). The goal of the experiment was to compare two GC column lengths and recommend which would be best for RESOLVE's purposes. Throughout the experiment, an Inficon Fusion GC and an Inficon Micro GC 3000 were used. The Fusion had a 20m long column with 0.25mm internal diameter (Id). The Micro GC 3000 had an 8m long column with a 0.32mm Id. By varying the column temperature and column pressure while holding all other parameters constant, the ideal conditions for testing with each column length in their individual instrument configurations were determined. The criteria used for determining the optimal method parameters included (in no particular order) (1) quickest run time, (2) peak sharpness, and (3) peak separation. After testing numerous combinations of temperature and pressure, the parameters for each column length that resulted in the most optimal data given my three criteria were selected. The ideal temperature and pressure for the 20m column were 95 C and 50psig. At this temperature and pressure, the peaks were separated and the retention times were shorter compared to other combinations. The Inficon Micro GC 3000 operated better at lower temperature mainly due to the shorter 8m column. The optimal column temperature and pressure were 70 C and 30psig. The Inficon Micro GC 3000 8m column had worse separation than the Inficon Fusion 20m column, but was able to separate water within a shorter run time. Therefore, the most significant tradeoff between the two column lengths was peak separation of the sample versus run time. After performing several tests, it was concluded that better

  9. Mass transfer model liquid phase catalytic exchange column simulation applicable to any column composition profile

    SciTech Connect

    Busigin, A.

    2015-03-15

    Liquid Phase Catalytic Exchange (LPCE) is a key technology used in water detritiation systems. Rigorous simulation of LPCE is complicated when a column may have both hydrogen and deuterium present in significant concentrations in different sections of the column. This paper presents a general mass transfer model for a homogenous packed bed LPCE column as a set of differential equations describing composition change, and equilibrium equations to define the mass transfer driving force within the column. The model is used to show the effect of deuterium buildup in the bottom of an LPCE column from non-negligible D atom fraction in the bottom feed gas to the column. These types of calculations are important in the design of CECE (Combined Electrolysis and Catalytic Exchange) water detritiation systems.

  10. Reactive Transport Modeling of Microbially-Mediated Chromate Reduction in 1-D Soil Columns

    NASA Astrophysics Data System (ADS)

    Qiu, H.; Viamajala, S.; Alam, M. M.; Peyton, B. M.; Petersen, J. N.; Yonge, D. R.

    2002-12-01

    Cr(VI) reduction tests were performed with the well known metal reducing bacterium Shewanella oneidensis MR-1 in liquid phase batch reactors and continuous flow soil columns under anaerobic conditions. In the batch tests, the cultures were grown with fumarate as the terminal electron acceptor and lactate as the electron donor in a simulated groundwater medium to determine yield coefficients and specific growth rates. The bench-scale soil column experiments were carried out with MR-1 to test the hypothesis that the kinetic parameters obtained in batch studies, combined with microbial attachment /detachment processes, will accurately predict reactive transport of Cr(VI) during bacterial Cr(VI) reduction in a soil matrix. Cr(VI)-free simulated groundwater media containing fumarate as the limiting substrate and lactate was supplied to a 2.1cm (ID) x 15 cm soil column inoculated with MR-1 for a duration of 9 residence times to allow for biomass to build-up in the column. Thereafter the column was supplied with both Cr(VI) and substrate. The concentrations of effluent substrate, biomass and Cr(VI) were monitored on a periodic basis and attached biomass in the column was measured in the termination of each column test. A reactive transport model was developed in which 6 governing equations deal with Cr(VI) bioreaction, fumarate (as electron donor) consumption, aqueous biomass growth and transport, solid biomass detachment and attachment kinetics, aqueous and solid phase enzyme reaction and transport, respectively. The model incorporating the enzyme reaction kinetics for Cr(VI) reduction, Monod kinetic expressions for substrate depletion, nonlinear attachment and detachment kinetics for aqueous and solid phase microorganism concentration, was solved by a fully implicit, finite-difference procedure using RT3D (A Modular Computer Code for Reactive Multi-species Transport in 3-Dimensional Groundwater Systems) platform in one dimension. Cr(VI)-free column data was used to

  11. POWER REACTOR

    DOEpatents

    Zinn, W.H.

    1958-07-01

    A fast nuclear reactor system ls described for producing power and radioactive isotopes. The reactor core is of the heterogeneous, fluid sealed type comprised of vertically arranged elongated tubular fuel elements having vertical coolant passages. The active portion is surrounded by a neutron reflector and a shield. The system includes pumps and heat exchangers for the primary and secondary coolant circuits. The core, primary coolant pump and primary heat exchanger are disposed within an irapenforate tank which is filled with the primary coolant, in this case a liquid metal such as Na or NaK, to completely submerge these elements. The tank is completely surrounded by a thick walled concrete shield. This reactor system utilizes enriched uranium or plutonium as the fissionable material, uranium or thorium as a diluent and thorium or uranium containing less than 0 7% of the U/sup 235/ isotope as a fertile material.

  12. NEUTRONIC REACTORS

    DOEpatents

    Wigner, E.P.; Young, G.J.

    1958-10-14

    A method is presented for loading and unloading rod type fuel elements of a neutronic reactor of the heterogeneous, solld moderator, liquid cooled type. In the embodiment illustrated, the fuel rods are disposed in vertical coolant channels in the reactor core. The fuel rods are loaded and unloaded through the upper openings of the channels which are immersed in the coolant liquid, such as water. Unloading is accomplished by means of a coffer dam assembly having an outer sleeve which is placed in sealing relation around the upper opening. A radiation shield sleeve is disposed in and reciprocable through the coffer dam sleeve. A fuel rod engaging member operates through the axial bore in the radiation shield sleeve to withdraw the fuel rod from its position in the reactor coolant channel into the shield, the shield snd rod then being removed. Loading is accomplished in the reverse procedure.

  13. Catalytic reactor

    DOEpatents

    Aaron, Timothy Mark; Shah, Minish Mahendra; Jibb, Richard John

    2009-03-10

    A catalytic reactor is provided with one or more reaction zones each formed of set(s) of reaction tubes containing a catalyst to promote chemical reaction within a feed stream. The reaction tubes are of helical configuration and are arranged in a substantially coaxial relationship to form a coil-like structure. Heat exchangers and steam generators can be formed by similar tube arrangements. In such manner, the reaction zone(s) and hence, the reactor is compact and the pressure drop through components is minimized. The resultant compact form has improved heat transfer characteristics and is far easier to thermally insulate than prior art compact reactor designs. Various chemical reactions are contemplated within such coil-like structures such that as steam methane reforming followed by water-gas shift. The coil-like structures can be housed within annular chambers of a cylindrical housing that also provide flow paths for various heat exchange fluids to heat and cool components.

  14. NUCLEAR REACTOR

    DOEpatents

    Christy, R.F.

    1958-07-15

    A nuclear reactor of the homogeneous liquid fuel type is described wherein the fissionable isotope is suspended or dissolved in a liquid moderator such as water. The reactor core is comprised essentially of a spherical vessel for containing the reactive composition surrounded by a reflector, preferably of beryllium oxide. The reactive composition may be an ordinary water solution of a soluble salt of uranium, the quantity of fissionable isotope in solution being sufficient to provide a critical mass in the vessel. The liquid fuel is stored in a tank of non-crtttcal geometry below the reactor vessel and outside of the reflector and is passed from the tank to the vessel through a pipe connecting the two by air pressure means. Neutron absorbing control and safety rods are operated within slots in the reflector adjacent to the vessel.

  15. Bioconversion reactor

    DOEpatents

    McCarty, Perry L.; Bachmann, Andre

    1992-01-01

    A bioconversion reactor for the anaerobic fermentation of organic material. The bioconversion reactor comprises a shell enclosing a predetermined volume, an inlet port through which a liquid stream containing organic materials enters the shell, and an outlet port through which the stream exits the shell. A series of vertical and spaced-apart baffles are positioned within the shell to force the stream to flow under and over them as it passes from the inlet to the outlet port. The baffles present a barrier to the microorganisms within the shell causing them to rise and fall within the reactor but to move horizontally at a very slow rate. Treatment detention times of one day or less are possible.

  16. REACTOR CONTROL

    DOEpatents

    Fortescue, P.; Nicoll, D.

    1962-04-24

    A control system employed with a high pressure gas cooled reactor in which a control rod is positioned for upward and downward movement into the neutron field from a position beneath the reactor is described. The control rod is positioned by a coupled piston cylinder releasably coupled to a power drive means and the pressurized coolant is directed against the lower side of the piston. The coolant pressure is offset by a higher fiuid pressure applied to the upper surface of the piston and means are provided for releasing the higher pressure on the upper side of the piston so that the pressure of the coolant drives the piston upwardly, forcing the coupled control rod into the ncutron field of the reactor. (AEC)

  17. Bioconversion reactor

    SciTech Connect

    McCarty, P.L.; Bachmann, A.

    1992-02-25

    A bioconversion reactor is described for the anaerobic fermentation of organic material. The bioconversion reactor comprises a shell enclosing a predetermined volume, an inlet port through which a liquid stream containing organic materials enters the shell, and an outlet port through which the stream exits the shell. A series of vertical and spaced-apart baffles are positioned within the shell to force the stream to flow under and over them as it passes from the inlet to the outlet port. The baffles present a barrier to the microorganisms within the shell causing them to rise and fall within the reactor but to move horizontally at a very slow rate. Treatment detention times of one day or less are possible. 7 figs.

  18. Cometabolic degradation of trichloroethylene in a bubble column bioscrubber.

    PubMed

    Hecht, V; Brebbermann, D; Bremer, P; Deckwer, W D

    1995-08-20

    A bubble column bioreactor was used as bioscrubber to carry out a feasibility study for the cometabolic degradation of trichloroethylene (TCE). Phenol was used as cosubstrate and inducer. The bioreactor was operated like a conventional chemostat with regard to the cosubstrate and low dilution rates were used to minimize the liquid outflow. TCE degradation measurements were carried out using superficial gas velocities between 0.47and 4.07 cm s(-1) and TCE gas phase loads between 0.07 and 0.40 mg L(-1) Depending on the superficial gas velocity used, degrees of conversion between 30% and 80% were obtained. A simplified reactor model using plug flow for the gas phase, mixed flow for the liquid phase, and pseudo first order reaction kinetics for the conversionof TCE was established. The model is able to give a reasonable approximation of the experimental data. TCE degradation at the used experimental conditions is mainly limited by reaction rate rather than by mass transfer rate. The model can be used to calculate the reactor volume and the biomass concentration for a required conversion. (c) 1995 John Wiley & Sons Inc. PMID:18623422

  19. NUCLEAR REACTOR

    DOEpatents

    Young, G.

    1963-01-01

    This patent covers a power-producing nuclear reactor in which fuel rods of slightly enriched U are moderated by heavy water and cooled by liquid metal. The fuel rods arranged parallel to one another in a circle are contained in a large outer closed-end conduit that extends into a tank containing the heavy water. Liquid metal is introduced into the large conduit by a small inner conduit that extends within the circle of fuel rods to a point near the lower closed end of the outer conduit. (AEC) Production Reactors

  20. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.; Weinberg, A.W.; Young, G.J.

    1958-04-15

    A nuclear reactor which uses uranium in the form of elongated tubes as fuel elements and liquid as a coolant is described. Elongated tubular uranium bodies are vertically disposed in an efficient neutron slowing agent, such as graphite, for example, to form a lattice structure which is disposed between upper and lower coolant tanks. Fluid coolant tubes extend through the uranium bodies and communicate with the upper and lower tanks and serve to convey the coolant through the uranium body. The reactor is also provided with means for circulating the cooling fluid through the coolant tanks and coolant tubes, suitable neutron and gnmma ray shields, and control means.

  1. Column Selection for Biomedical Analysis Supported by Column Classification Based on Four Test Parameters

    PubMed Central

    Plenis, Alina; Rekowska, Natalia; Bączek, Tomasz

    2016-01-01

    This article focuses on correlating the column classification obtained from the method created at the Katholieke Universiteit Leuven (KUL), with the chromatographic resolution attained in biomedical separation. In the KUL system, each column is described with four parameters, which enables estimation of the FKUL value characterising similarity of those parameters to the selected reference stationary phase. Thus, a ranking list based on the FKUL value can be calculated for the chosen reference column, then correlated with the results of the column performance test. In this study, the column performance test was based on analysis of moclobemide and its two metabolites in human plasma by liquid chromatography (LC), using 18 columns. The comparative study was performed using traditional correlation of the FKUL values with the retention parameters of the analytes describing the column performance test. In order to deepen the comparative assessment of both data sets, factor analysis (FA) was also used. The obtained results indicated that the stationary phase classes, closely related according to the KUL method, yielded comparable separation for the target substances. Therefore, the column ranking system based on the FKUL-values could be considered supportive in the choice of the appropriate column for biomedical analysis. PMID:26805819

  2. Mathematical modeling of Fischer-Tropsch synthesis in an industrial slurry bubble column - article no. A 23

    SciTech Connect

    Nasim Hooshyar; Shohreh Fatemi; Mohammad Rahmani

    2009-07-01

    The increase in society's need for fuels and decrease in crude oil resources are important reasons to make more interest for both academic and industry in converting gas to liquids. Fischer-Tropsch synthesis is one of the most attractive methods of Gas-to-Liquids (GTL) processes and the reactor in which, this reaction occurs, is the heart of this process. This work deals with modeling of a commercial size slurry bubble column reactor by two different models, i.e. single bubble class model (SBCM) and double bubble class model (DBCM). The reactor is assumed to work in a churn-turbulent flow regime and the reaction kinetic is a Langmuir-Hinshelwood type. Cobalt-based catalyst is used for this study as it plays an important role in preparing heavy cuts and the higher yield of the liquid products. Parameter sensitivity analysis was carried out for different conditions such as catalyst concentration, superficial gas velocity, H{sub 2} over CO ratio, and column diameter. The results of the SBCM and DBCM revealed that there is no significant difference between single and double bubble class models in terms of temperature, concentration and conversion profiles in the reactor, so the simpler SBCM with less number of model parameters can be a good and reliable model of choice for analyzing the slurry bubble column reactors.

  3. Experimental investigation of bubble column hydrodynamics: Effect of elevated pressure and superficial gas velocity

    NASA Astrophysics Data System (ADS)

    Ong, Booncheng

    Bubble column reactors are widely used in the chemical and biochemical industries. They were reactors of choice in syngas conversion to clean fuels and chemicals. Most of the current applications of bubble column reactors in the chemical process industry require operation at high-pressure conditions. Further, to enhance the volumetric productivity, high gas flow rates are employed. The fundamental description of bubble column hydrodynamics under these conditions is very complex and complete understanding has not yet been established in spite of concerted research efforts. In order to improve our ability to quantify phenomena in bubble columns, it is essential that precise and quality experimental information is available to advance the state of the art in bubble column design and operation. In this study, measurements of gas holdup from Computed Tomography, and of time-averaged liquid velocity and turbulence from Computer Automated Radioactive Particle Tracking are obtained in a 6.4″ diameter stainless steel bubble column at elevated pressure and at high superficial gas velocity with different gas spargers. It is shown quantitatively that deep in the churn-turbulent regime, gas holdup and liquid recirculation increase with pressure and superficial gas velocity while sparger effects are predominantly confined to the distributor zone. Additionally, an increase in pressure results in the reduction of turbulent normal stresses and eddy diffusivities most likely due to a reduction in bubble size. Based on the experimental data obtained from this study, a correction factor to the correlation of Zehner (1986) for predicting the centerline liquid velocity is developed to account for pressure effect on liquid recirculation. The correction factor indicates an one-eighth power dependency on gas density. Comparison of the experimentally estimated eddy viscosity with the model of Ohnuki and Akimoto (2001) suggests that the contribution of bubble-induced turbulence to the

  4. METHOD OF OPERATING A HEAVY WATER MODERATED REACTOR

    DOEpatents

    Vernon, H.C.

    1962-08-14

    A method of removing fission products from the heavy water used in a slurry type nuclear reactor is described. According to the process the slurry is steam distilled with carbon tetrachloride so that at least a part of the heavy water and carbon tetrachloride are vaporized; the heavy water and carbon tetrachloride are separated; the carbon tetrachloride is returned to the steam distillation column at different points in the column to aid in depositing the slurry particles at the bottom of the column; and the heavy water portion of the condensate is purified. (AEC)

  5. Sonochemical Reactors.

    PubMed

    Gogate, Parag R; Patil, Pankaj N

    2016-10-01

    Sonochemical reactors are based on the generation of cavitational events using ultrasound and offer immense potential for the intensification of physical and chemical processing applications. The present work presents a critical analysis of the underlying mechanisms for intensification, available reactor configurations and overview of the different applications exploited successfully, though mostly at laboratory scales. Guidelines have also been presented for optimum selection of the important operating parameters (frequency and intensity of irradiation, temperature and liquid physicochemical properties) as well as the geometric parameters (type of reactor configuration and the number/position of the transducers) so as to maximize the process intensification benefits. The key areas for future work so as to transform the successful technique at laboratory/pilot scale into commercial technology have also been discussed. Overall, it has been established that there is immense potential for sonochemical reactors for process intensification leading to greener processing and economic benefits. Combined efforts from a wide range of disciplines such as material science, physics, chemistry and chemical engineers are required to harness the benefits at commercial scale operation. PMID:27573503

  6. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.

    1960-09-27

    A unit assembly is described for a neutronic reactor comprising a tube and plurality of spaced parallel sandwiches in the tube extending lengthwise thereof, each sandwich including a middle plate having a central opening for plutonium and other openings for fertile material at opposite ends of the plate.

  7. NEUTRONIC REACTOR

    DOEpatents

    Creutz, E.C.; Ohlinger, L.A.; Weinberg, A.M.; Wigner, E.P.; Young, G.J.

    1959-10-27

    BS>A reactor cooled by water, biphenyl, helium, or other fluid with provision made for replacing the fuel rods with the highest plutonium and fission product content without disassembling the entire core and for promptly cooling the rods after their replacement in order to prevent build-up of heat from fission product activity is described.

  8. Neutronic reactor

    DOEpatents

    Wende, Charles W. J.; Babcock, Dale F.; Menegus, Robert L.

    1983-01-01

    A nuclear reactor includes an active portion with fissionable fuel and neutron moderating material surrounded by neutron reflecting material. A control element in the active portion includes a group of movable rods constructed of neutron-absorbing material. Each rod is movable with respect to the other rods to vary the absorption of neutrons and effect control over neutron flux.

  9. Neutronic reactor

    DOEpatents

    Wende, Charles W. J.

    1976-08-17

    A safety rod for a nuclear reactor has an inner end portion having a gamma absorption coefficient and neutron capture cross section approximately equal to those of the adjacent shield, a central portion containing materials of high neutron capture cross section and an outer end portion having a gamma absorption coefficient at least equal to that of the adjacent shield.

  10. Neutronic reactor

    DOEpatents

    Carleton, John T.

    1977-01-25

    A graphite-moderated nuclear reactor includes channels between blocks of graphite and also includes spacer blocks between adjacent channeled blocks with an axis of extension normal to that of the axis of elongation of the channeled blocks to minimize changes in the physical properties of the graphite as a result of prolonged neutron bombardment.

  11. Post Column Derivatization Using Reaction Flow High Performance Liquid Chromatography Columns.

    PubMed

    Jones, Andrew; Pravadali-Cekic, Sercan; Hua, Stanley; Kocic, Danijela; Camenzuli, Michelle; Dennis, Gary; Shalliker, Andrew

    2016-01-01

    A protocol for the use of reaction flow high performance liquid chromatography columns for methods employing post column derivatization (PCD) is presented. A major difficulty in adapting PCD to modern HPLC systems and columns is the need for large volume reaction coils that enable reagent mixing and then the derivatization reaction to take place. This large post column dead volume leads to band broadening, which results in a loss of observed separation efficiency and indeed detection in sensitivity. In reaction flow post column derivatization (RF-PCD) the derivatization reagent(s) are pumped against the flow of mobile phase into either one or two of the outer ports of the reaction flow column where it is mixed with column effluent inside a frit housed within the column end fitting. This technique allows for more efficient mixing of the column effluent and derivatization reagent(s) meaning that the volume of the reaction loops can be minimized or even eliminated altogether. It has been found that RF-PCD methods perform better than conventional PCD methods in terms of observed separation efficiency and signal to noise ratio. A further advantage of RF-PCD techniques is the ability to monitor effluent coming from the central port in its underivatized state. RF-PCD has currently been trialed on a relatively small range of post column reactions, however, there is currently no reason to suggest that RF-PCD could not be adapted to any existing one or two component (as long as both reagents are added at the same time) post column derivatization reaction. PMID:27168419

  12. Modeling of rotating disc contactor (RDC) column

    NASA Astrophysics Data System (ADS)

    Ismail, Wan Nurul Aiffah; Zakaria, Siti Aisyah; Noor, Nor Fashihah Mohd; Sulong, Ibrahim; Arshad, Khairil Anuar

    2014-12-01

    Liquid-liquid extraction is one of the most important separation processes. Different kinds of liquid-liquid extractor such as Rotating Disc Contactor (RDC) Column being used in industries. The study of liquid-liquid extraction in an RDC column has become a very important subject to be discussed not just among chemical engineers but mathematician as well. In this research, the modeling of small diameter RDC column using the chemical system involving cumene/isobutryric asid/water are analyzed by the method of Artificial Neural Network (ANN). In the previous research, we begin the process of analyzed the data using methods of design of the experiments (DOE) to identify which factor and their interaction factor are significant and to determine the percentage of contribution of the variance for each factor. From the result obtained, we continue the research by discussed the development and validation of an artificial neural network model in estimating the concentration of continuous and concentration of dispersed outlet for an RDC column. It is expected that an efficient and reliable model will be formed to predict RDC column performance as an alternative to speed up the simulation process.

  13. Counterflow isotachophoresis in a monolithic column.

    PubMed

    Liu, Bingwen; Cong, Yongzheng; Ivory, Cornelius F

    2014-09-01

    This study describes stationary counterflow isotachophoresis (ITP) in a poly(acrylamide-co-N,N'-methylenebisacrylamide) monolithic column as a means for improving ITP processing capacity and reducing dispersion. The flow profile in the monolith was predicted using COMSOL's Brinkman Equation application mode, which revealed that the flow profile was mainly determined by monolith permeability. As monolith permeability decreases, the flow profile changes from a parabolic shape to a plug shape. An experimental monolithic column was prepared in a fused-silica capillary using an ultraviolet-initiated polymerization method. A monolithic column made from 8% (wt.) monomer was chosen for the stationary counterflow ITP experiments. Counterflow ITP in the monolithic column showed undistorted analyte zones with significantly reduced dispersion compared to the severe dispersion observed in an open capillary. Particularly, for r-phycoerythrin focused by counterflow ITP, its zone width in the monolithic column was only one-third that observed in an open capillary. These experiments demonstrate that stationary counterflow ITP in monoliths can be a robust and practical electrofocusing method. PMID:24935025

  14. Analysis of stone-column reinforced foundations

    NASA Astrophysics Data System (ADS)

    Lee, J. S.; Pande, G. N.

    1998-12-01

    A numerical model is proposed to analyse elastic as well as elastoplastic behaviour of stone-column reinforced foundations. The stone-columns are assumed to be dispersed within the in situ soil and a homogenization technique is invoked to establish equivalent material properties for in situ soil and stone-column composite. The difficulties encountered in carrying out elastoplastic analyses of composite materials are overcome by adopting a separate yield function for each of the constituent materials and a sub-iteration procedure within an implicit backward Euler stress integration scheme. In the proposed procedure, equilibrium as well as kinematic conditions implied in the homogenization procedure are satisfied for both elastic as well as elastoplastic stress states.The proposed model is implemented in an axi-symmetric finite element code and numerical prediction is made for the behaviour of model circular footings resting on stone-column reinforced foundations. This prediction indicates good agreement with experimental observation. Finally, a new scheme in which the length of stone-column is variable is proposed and its behaviour is examined through a numerical example.

  15. Synthesis of octane enhancers during slurry-phase Fischer-Tropsch. [801Methyl tert-butyl ether

    SciTech Connect

    Marcelin, G.

    1992-06-24

    The objective of this project is to investigate three possible routes to the formation of ethers, in particular methyl tert-butyl ether (MTBE), during slurry phase Fischer-Tropsch reaction. The three reaction schemes to be investigated are: (1) Addition of isobutylene during the formation of methanol and/or higher alcohols directly from CO and H{sub 2} during slurry-phase Fischer-Tropsch. (2) Addition of isobutylene to FT liquid products including alcohols in a slurry-phase reactor containing an MTBE or other acid catalyst. (3) Addition of methanol to slurry phase FT synthesis making iso-olefins. During the sixth quarter we completed the construction of the slurry bubble column reactor (SBCR), conducted initial shake-down experiments in a cold-flow mode, and finalized the selection process of the acid catalysts for conversion of syngas-produced alcohols and isobutylene to MTBE (scheme 2). Tasks 3, 4, and 5 are awaiting complete implementation of the SBCR system.

  16. Synthesis of octane enhancers during slurry-phase Fischer-Tropsch. Quarterly technical progress report No. 6, January 1, 1992--March 31, 1992

    SciTech Connect

    Marcelin, G.

    1992-06-24

    The objective of this project is to investigate three possible routes to the formation of ethers, in particular methyl tert-butyl ether (MTBE), during slurry phase Fischer-Tropsch reaction. The three reaction schemes to be investigated are: (1) Addition of isobutylene during the formation of methanol and/or higher alcohols directly from CO and H{sub 2} during slurry-phase Fischer-Tropsch. (2) Addition of isobutylene to FT liquid products including alcohols in a slurry-phase reactor containing an MTBE or other acid catalyst. (3) Addition of methanol to slurry phase FT synthesis making iso-olefins. During the sixth quarter we completed the construction of the slurry bubble column reactor (SBCR), conducted initial shake-down experiments in a cold-flow mode, and finalized the selection process of the acid catalysts for conversion of syngas-produced alcohols and isobutylene to MTBE (scheme 2). Tasks 3, 4, and 5 are awaiting complete implementation of the SBCR system.

  17. Non-planar microfabricated gas chromatography column

    DOEpatents

    Lewis, Patrick R.; Wheeler, David R.

    2007-09-25

    A non-planar microfabricated gas chromatography column comprises a planar substrate having a plurality of through holes, a top lid and a bottom lid bonded to opposite surfaces of the planar substrate, and inlet and outlet ports for injection of a sample gas and elution of separated analytes. A plurality of such planar substrates can be aligned and stacked to provide a longer column length having a small footprint. Furthermore, two or more separate channels can enable multi-channel or multi-dimensional gas chromatography. The through holes preferably have a circular cross section and can be coated with a stationary phase material or packed with a porous packing material. Importantly, uniform stationary phase coatings can be obtained and band broadening can be minimized with the circular channels. A heating or cooling element can be disposed on at least one of the lids to enable temperature programming of the column.

  18. Neutron camera employing row and column summations

    DOEpatents

    Clonts, Lloyd G.; Diawara, Yacouba; Donahue, Jr, Cornelius; Montcalm, Christopher A.; Riedel, Richard A.; Visscher, Theodore

    2016-06-14

    For each photomultiplier tube in an Anger camera, an R.times.S array of preamplifiers is provided to detect electrons generated within the photomultiplier tube. The outputs of the preamplifiers are digitized to measure the magnitude of the signals from each preamplifier. For each photomultiplier tube, a corresponding summation circuitry including R row summation circuits and S column summation circuits numerically add the magnitudes of the signals from preamplifiers for each row and for each column to generate histograms. For a P.times.Q array of photomultiplier tubes, P.times.Q summation circuitries generate P.times.Q row histograms including R entries and P.times.Q column histograms including S entries. The total set of histograms include P.times.Q.times.(R+S) entries, which can be analyzed by a position calculation circuit to determine the locations of events (detection of a neutron).

  19. Final Report, Distillation Column Flooding Predictor

    SciTech Connect

    George E. Dzyacky

    2003-05-31

    The Flooding Predictor is an advanced process control strategy comprising a patented pattern-recognition methodology that identifies pre-flood patterns discovered to precede flooding events in distillation columns. The grantee holds a U.S. patent on the modeling system. The technology was validated at the Separations Research Program, The University of Texas at Austin under a grant from the U. S. Department of Energy, Inventions & Innovation Program. Distillation tower flooding occurs at abnormally high vapor and/or liquid rates. The loss in tray efficiencies is attributed to unusual behavior of liquid inventories inside the column leading to conditions of flooding of the space in between trays with liquid. Depending on the severity of the flood condition, consequences range from off spec products to equipment damage and tower shutdown. This non-intrusive pattern recognition methodology, processes signal data obtained from existing column instrumentation. Once the pattern is identified empirically, it is modeled and coded into the plant's distributed control system. The control system is programmed to briefly "unload" the tower each time the pattern appears. The unloading takes the form of a momentary reduction in column severity, e.g., decrease bottom temperature, reflux or tower throughput. Unloading the tower briefly at the pre-flood state causes long-term column operation to become significantly more stable - allowing an increase in throughput and/or product purity. The technology provides a wide range of value between optimization and flooding. When a distillation column is not running at capacity, it should be run in such a way ("pushed") that optimal product purity is achieved. Additional benefits include low implementation and maintenance costs, and a high level of console operator acceptance. The previous commercial applications experienced 98% uptime over a four-year period. Further, the technology is unique in its ability to distinguish between different

  20. Fluorescence probe assisted post-column detection for lipid analysis in microbore-LC.

    PubMed

    Caudron, E; Zhou, J Y; Chaminade, P; Baillet, A; Prognon, P

    2005-04-29

    A general approach, still few exploited so far and never associated with microbore-LC, consisting of detection of various lipid classes (i.e. phospholipids, triglycerides, ceramides and glycosphingolipids) by non-covalent association with 1,6-diphenyl-1,3,5-hexatriene (DPH) fluorescence probe is developed. This mode of detection was coupled with non-aqueous reversed-phase microbore-LC (C18) by using classical post-column fluorescence detection. The classical LC system was first adapted to microbore-chromatography (internal diameter 1 mm) without apparatus miniaturization of the solvent delivery system and the detection cell. For this purpose, the detection parameters (probe concentration, post-column flow rate, post-column reactor length and post-column system temperature) were optimized by a central composite design (CCD) using a mixture of phosphatidylcholine (PC) species as a lipid model and DPH (lambda(ex) = 350 nm, lambda(em) = 430 nm) as a fluorescence probe. The optimal conditions of detection for the various molecular species of PC were determined for a DPH concentration of 3.35 micromol/L, a post-column flow rate of 0.5 mL/min, a reactor length of 1.4 m and a temperature of 35 degrees C. The fluorescence response was linear over a wide range of PC species from 5 microg/mL to 100 microg/mL and the lower limit of detection (signal/noise = 3) was about 1 microg/mL, that is equivalent to evaporative light scattering detection (ELSD). Others molecular species of various classes of lipids, i.e. triglycerides, ceramides and glycosphingolipids were also easily detected. Thus, this study demonstrated the versatility of the proposed system of detection which was shown to be sensitive, easy to perform, non-destructive and allowed, in contrast to ELSD, for a linear response with various polarity lipid classes. PMID:15887484

  1. Optical Measurement Technique for Space Column Characterization

    NASA Technical Reports Server (NTRS)

    Barrows, Danny A.; Watson, Judith J.; Burner, Alpheus W.; Phelps, James E.

    2004-01-01

    A simple optical technique for the structural characterization of lightweight space columns is presented. The technique is useful for determining the coefficient of thermal expansion during cool down as well as the induced strain during tension and compression testing. The technique is based upon object-to-image plane scaling and does not require any photogrammetric calibrations or computations. Examples of the measurement of the coefficient of thermal expansion are presented for several lightweight space columns. Examples of strain measured during tension and compression testing are presented along with comparisons to results obtained with Linear Variable Differential Transformer (LVDT) position transducers.

  2. 29 CFR 1926.756 - Beams and columns.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Beams and columns. 1926.756 Section 1926.756 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.756 Beams and columns. (a.... (c) (1) Double connections at columns and/or at beam webs over a column. When two structural...

  3. 29 CFR 1926.756 - Beams and columns.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Beams and columns. 1926.756 Section 1926.756 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.756 Beams and columns. (a.... (c) (1) Double connections at columns and/or at beam webs over a column. When two structural...

  4. 29 CFR 1926.756 - Beams and columns.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Beams and columns. 1926.756 Section 1926.756 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.756 Beams and columns. (a.... (c) (1) Double connections at columns and/or at beam webs over a column. When two structural...

  5. 29 CFR 1926.756 - Beams and columns.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Beams and columns. 1926.756 Section 1926.756 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.756 Beams and columns. (a.... (c) (1) Double connections at columns and/or at beam webs over a column. When two structural...

  6. Integrated process of distillation with side reactors for synthesis of organic acid esters

    SciTech Connect

    Panchal, Chandrakant B; Prindle, John C; Kolah, Aspri; Miller, Dennis J; Lira, Carl T

    2015-11-04

    An integrated process and system for synthesis of organic-acid esters is provided. The method of synthesizing combines reaction and distillation where an organic acid and alcohol composition are passed through a distillation chamber having a plurality of zones. Side reactors are used for drawing off portions of the composition and then recycling them to the distillation column for further purification. Water is removed from a pre-reactor prior to insertion into the distillation column. An integrated heat integration system is contained within the distillation column for further purification and optimizing efficiency in the obtaining of the final product.

  7. NEUTRONIC REACTOR

    DOEpatents

    Wade, E.J.

    1958-09-16

    This patent relates to a reflector means for a neutronic reactor. A reflector comprised of a plurality of vertically movable beryllium control members is provided surrounding the sides of the reactor core. An absorber of fast neutrons comprised of natural uramum surrounds the reflector. An absorber of slow neutrons surrounds the absorber of fast neutrons and is formed of a plurality of beryllium blocks having natural uranium members distributcd therethrough. in addition, a movable body is positioned directly below the core and is comprised of a beryllium reflector and an absorbing member attached to the botiom thereof, the absorbing member containing a substance selected from the goup consisting of natural urantum and Th/sup 232/.

  8. REACTOR MONITORING

    DOEpatents

    Bugbee, S.J.; Hanson, V.F.; Babcock, D.F.

    1959-02-01

    A neutron density inonitoring means for reactors is described. According to this invention a tunnel is provided beneath and spaced from the active portion of the reactor and extends beyond the opposite faces of the activc portion. Neutron beam holes are provided between the active portion and the tunnel and open into the tunnel near the middle thereof. A carriage operates back and forth in the tunnel and is adapted to convey a neutron detector, such as an ion chamber, and position it beneath one of the neutron beam holes. This arrangement affords convenient access of neutron density measuring instruments to a location wherein direct measurement of neutron density within the piles can be made and at the same time affords ample protection to operating personnel.

  9. REACTOR UNLOADING

    DOEpatents

    Leverett, M.C.

    1958-02-18

    This patent is related to gas cooled reactors wherein the fuel elements are disposed in vertical channels extending through the reactor core, the cooling gas passing through the channels from the bottom to the top of the core. The invention is a means for unloading the fuel elements from the core and comprises dump values in the form of flat cars mounted on wheels at the bottom of the core structure which support vertical stacks of fuel elements. When the flat cars are moved, either manually or automatically, for normal unloading purposes, or due to a rapid rise in the reproduction ratio within the core, the fuel elements are permtted to fall by gravity out of the core structure thereby reducing the reproduction ratio or stopping the reaction as desired.

  10. Nuclear reactor

    DOEpatents

    Wade, Elman E.

    1979-01-01

    A nuclear reactor including two rotatable plugs and a positive top core holddown structure. The top core holddown structure is divided into two parts: a small core cover, and a large core cover. The small core cover, and the upper internals associated therewith, are attached to the small rotating plug, and the large core cover, with its associated upper internals, is attached to the large rotating plug. By so splitting the core holddown structures, under-the-plug refueling is accomplished without the necessity of enlarging the reactor pressure vessel to provide a storage space for the core holddown structure during refueling. Additionally, the small and large rotating plugs, and their associated core covers, are arranged such that the separation of the two core covers to permit rotation is accomplished without the installation of complex lifting mechanisms.