Science.gov

Sample records for combination gene therapy

  1. Gene and Stem Cell Therapy: Alone or in Combination?

    PubMed Central

    Rafi, Mohammad A.

    2011-01-01

    Introduction Both gene and stem cell therapies hold great promise in the treatment of many genetic diseases and are currently focus of interest for many investigators. While both approaches are offering great and valuable treatment options for devastating and life-threatening diseases, they hold much greater promise in combination. Methods As there are multiple options in selecting gene transfer vehicles among the non-viral and viral vectors, there are also many options among the different transplantable cell types ranging from lineage-restricted progenitor cells to multipotent and pluripotent stem cells. Here, combination of the gene therapy and stem cell therapy is discussed. Results Several suc-cessful gene and stem cell therapies have been reported both in animal and human trials. Combination of the gene therapy and stem cell therapy can be carried out sequentially where the cell transplantation and the in vivo gene therapy are accomplished one after the other; or, as it is more commonly practiced, they can be carried out as ex vivo gene therapy where the transplantable cells are genetically modified outside the body before being transplanted into the body. Conclusion The combination of the stem-cell technology with gene therapy has the potential of providing both regenerative tissue and therapeutic material simultaneously; therefore, having the benefits of both technologies. PMID:23678430

  2. Synergistic nanomedicine by combined gene and photothermal therapy.

    PubMed

    Kim, Jinhwan; Kim, Jihoon; Jeong, Cherlhyun; Kim, Won Jong

    2016-03-01

    To date, various nanomaterials with the ability for gene delivery or photothermal effect have been developed in the field of biomedicine. The therapeutic potential of these nanomaterials has raised considerable interests in their use in potential next-generation strategies for effective anticancer therapy. In particular, the advancement of novel nanomedicines utilizing both therapeutic strategies of gene delivery and photothermal effect has generated much optimism regarding the imminent development of effective and successful cancer treatments. In this review, we discuss current research progress with regard to combined gene and photothermal therapy. This review focuses on synergistic therapeutic systems combining gene regulation and photothermal ablation as well as logically designed nano-carriers aimed at enhancing the delivery efficiency of therapeutic genes using the photothermal effect. The examples detailed in this review provide insight to further our understanding of combinatorial gene and photothermal therapy, thus paving the way for the design of promising nanomedicines. PMID:26748259

  3. Gene Therapy for Brain Cancer: Combination Therapies Provide Enhanced Efficacy and Safety

    PubMed Central

    Candolfi, Marianela; Kroeger, Kurt M.; Muhammad, A.K.M.G.; Yagiz, Kader; Farrokhi, Catherine; Pechnick, Robert N.; Lowenstein, Pedro R.; Castro, Maria G.

    2009-01-01

    Glioblastoma multiforme (GBM) is the most common primary brain cancer in adults. Despite significant advances in treatment and intensive research, the prognosis for patients with GBM remains poor. Therapeutic challenges for GBM include its invasive nature, the proximity of the tumor to vital brain structures often preventing total resection, and the resistance of recurrent GBM to conventional radiotherapy and chemotherapy. Gene therapy has been proposed as a useful adjuvant for GBM, to be used in conjunction with current treatment. Work from our laboratory has shown that combination of conditional cytotoxic with immunotherapeutic approaches for the treatment of GBM elicits regression of large intracranial tumor masses and anti-tumor immunological memory in syngeneic rodent models of GBM. In this review we examined the currently available animal models for GBM, including rodent transplantable models, endogenous rodent tumor models and spontaneous GBM in dogs. We discuss non-invasive surrogate end points to assess tumor progression and therapeutic efficacy, such as behavioral tests and circulating biomarkers. Growing preclinical and clinical data contradict the old dogma that cytotoxic anti-cancer therapy would lead to an immune-suppression that would impair the ability of the immune system to mount an anti-tumor response. The implications of the findings reviewed indicate that combination of cytotoxic therapy with immunotherapy will lead to synergistic antitumor efficacy with reduced neurotoxicity and supports the clinical implementation of combined cytotoxic-immunotherapeutic strategies for the treatment of patients with GBM. PMID:19860655

  4. Photothermal combined gene therapy achieved by polyethyleneimine-grafted oxidized mesoporous carbon nanospheres.

    PubMed

    Meng, Ying; Wang, Shanshan; Li, Chengyi; Qian, Min; Yan, Xueying; Yao, Shuangchao; Peng, Xiyue; Wang, Yi; Huang, Rongqin

    2016-09-01

    Combining controllable photothermal therapy and efficacious gene therapy in a single platform holds great promise in cancer therapy due to the enhanced combined therapeutic effects. Herein, polyethyleneimine-grafted oxidized mesoporous carbon nanospheres (OP) were developed for combined photothermal combined gene therapy in vitro and in vivo. The synthesized OP was characterized to have three dimensional spherical structure with uniformed diameter, ordered mesopores with graphitic domains, high water dispersion with zeta potential of +22 mV, and good biocompatibility. Consequently, OP was exploited as the photothermal convertor with strong NIR absorption and the gene vector via electrostatic interaction, which therefore cannot only deliver the therapeutic gene (pING4) to tumors for gene therapy, but also can eliminate the tumors by photothermal ablation. Moreover, the improved gene therapy accompanied by the NIR photothermally enhanced gene release was also well achieved based on OP. The excellent combined therapeutic effects demonstrated in vitro and in vivo suggested the OP's potential for cancer therapy. PMID:27258483

  5. Internal ribosome entry site-based vectors for combined gene therapy

    PubMed Central

    Renaud-Gabardos, Edith; Hantelys, Fransky; Morfoisse, Florent; Chaufour, Xavier; Garmy-Susini, Barbara; Prats, Anne-Catherine

    2015-01-01

    Gene therapy appears as a promising strategy to treat incurable diseases. In particular, combined gene therapy has shown improved therapeutic efficiency. Internal ribosome entry sites (IRESs), RNA elements naturally present in the 5’ untranslated regions of a few mRNAs, constitute a powerful tool to co-express several genes of interest. IRESs are translational enhancers allowing the translational machinery to start protein synthesis by internal initiation. This feature allowed the design of multi-cistronic vectors expressing several genes from a single mRNA. IRESs exhibit tissue specificity, and drive translation in stress conditions when the global cell translation is blocked, which renders them useful for gene transfer in hypoxic conditions occurring in ischemic diseases and cancer. IRES-based viral and non viral vectors have been used successfully in preclinical and clinical assays of combined gene therapy and resulted in therapeutic benefits for various pathologies including cancers, cardiovascular diseases and degenerative diseases. PMID:25699230

  6. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning.

    PubMed

    Aiuti, Alessandro; Slavin, Shimon; Aker, Memet; Ficara, Francesca; Deola, Sara; Mortellaro, Alessandra; Morecki, Shoshana; Andolfi, Grazia; Tabucchi, Antonella; Carlucci, Filippo; Marinello, Enrico; Cattaneo, Federica; Vai, Sergio; Servida, Paolo; Miniero, Roberto; Roncarolo, Maria Grazia; Bordignon, Claudio

    2002-06-28

    Hematopoietic stem cell (HSC) gene therapy for adenosine deaminase (ADA)-deficient severe combined immunodeficiency (SCID) has shown limited clinical efficacy because of the small proportion of engrafted genetically corrected HSCs. We describe an improved protocol for gene transfer into HSCs associated with nonmyeloablative conditioning. This protocol was used in two patients for whom enzyme replacement therapy was not available, which allowed the effect of gene therapy alone to be evaluated. Sustained engraftment of engineered HSCs with differentiation into multiple lineages resulted in increased lymphocyte counts, improved immune functions (including antigen-specific responses), and lower toxic metabolites. Both patients are currently at home and clinically well, with normal growth and development. These results indicate the safety and efficacy of HSC gene therapy combined with nonmyeloablative conditioning for the treatment of SCID. PMID:12089448

  7. Genes and Gene Therapy

    MedlinePlus

    ... a child can have a genetic disorder. Gene therapy is an experimental technique that uses genes to ... prevent disease. The most common form of gene therapy involves inserting a normal gene to replace an ...

  8. Genes and Gene Therapy

    MedlinePlus

    ... correctly, a child can have a genetic disorder. Gene therapy is an experimental technique that uses genes to ... or prevent disease. The most common form of gene therapy involves inserting a normal gene to replace an ...

  9. Expanding the therapeutic index of radiation therapy by combining in situ gene therapy in the treatment of prostate cancer.

    PubMed

    Tetzlaff, Michael T; Teh, Bin S; Timme, Terry L; Fujita, Tetsuo; Satoh, Takefumi; Tabata, Ken-Ichi; Mai, Wei-Yuan; Vlachaki, Maria T; Amato, Robert J; Kadmon, Dov; Miles, Brian J; Ayala, Gustavo; Wheeler, Thomas M; Aguilar-Cordova, Estuardo; Thompson, Timothy C; Butler, E Brian

    2006-02-01

    The advances in radiotherapy (3D-CRT, IMRT) have enabled high doses of radiation to be delivered with the least possible associated toxicity. However, the persistence of cancer (local recurrence after radiotherapy) despite these increased doses as well as distant failure suggesting the existence of micro-metastases, especially in the case of higher risk disease, have underscored the need for continued improvement in treatment strategies to manage local and micro-metastatic disease as definitively as possible. This has prompted the idea that an increase in the therapeutic index of radiotherapy might be achieved by combining it with in situ gene therapy. The goal of these combinatorial therapies is to maximize the selective pressure against cancer cell growth while minimizing treatment-associated toxicity. Major efforts utilizing different gene therapy strategies have been employed in conjunction with radiotherapy. We reviewed our and other published clinical trials utilizing this combined radio-genetherapy approach including their associated pre-clinical in vitro and in vivo models. The use of in situ gene therapy as an adjuvant to radiation therapy dramatically reduced cell viability in vitro and tumor growth in vivo. No significant worsening of the toxicities normally observed in single-modality approaches were identified in Phase I/II clinical studies. Enhancement of both local and systemic T-cell activation was noted with this combined approach suggesting anti-tumor immunity. Early clinical outcome including biochemical and biopsy data was very promising. These results demonstrate the increased therapeutic efficacy achieved by combining in situ gene therapy with radiotherapy in the management of local prostate cancer. The combined approach maximizes tumor control, both local-regional and systemic through radio-genetherapy induced cytotoxicity and anti-tumor immunity. PMID:16417399

  10. Suicide gene and cytokines combined nonviral gene therapy for spontaneous canine melanoma.

    PubMed

    Finocchiaro, L M E; Fiszman, G L; Karara, A L; Glikin, G C

    2008-03-01

    Canine spontaneous melanoma is a highly aggressive tumor resistant to current therapies. We evaluated the safety, efficacy and antitumor effects of direct intratumor injections of lipoplexes encoding herpes simplex thymidine kinase coadministrated with ganciclovir, and irradiated transgenic xenogeneic cells secreting 20-30 mug day(-1) of human granulocyte-macrophage colony-stimulating factor and interleukin-2. Toxicity was minimal or absent in all patients. This combined treatment (CT) induced tumor regression and a pronounced immune cell infiltration. The objective responses (47%: 21/45) averaged 80% of tumor mass loss. Local CT also induced systemic antitumor response evidenced by complete remission of one pulmonary metastasis and by the significantly higher percentage of metastasis-free patients (76: 34/45)) until the study ending compared to untreated (UC: 29%, 5/17), surgery-treated (CX: 48%, 11/23) or suicide gene-treated controls (SG: 56%, 9/16) (Fisher's exact test). CT significantly improved median survival time: 160 (57-509) days compared to UC (69 (10-169)), CX (82 (43-216)) or SG (94 (46-159)). CT also increased (P<0.00001, Kaplan-Meier analysis) metastasis-free survival: >509 (57-509) days with respect to UC: 41 (10-169), CX: 133 (43-216) and SG: >159 (41-159). Therefore, CT controlled tumor growth by delaying or preventing distant metastasis, thereby significantly extending survival and recovering the quality of life. PMID:18219342

  11. Near-infrared light triggered photodynamic therapy in combination with gene therapy using upconversion nanoparticles for effective cancer cell killing

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Liu, Kai; Yang, Guangbao; Cheng, Liang; He, Lu; Liu, Yumeng; Li, Yonggang; Guo, Liang; Liu, Zhuang

    2014-07-01

    Upconversion nanoparticles (UCNPs) have drawn much attention in cancer imaging and therapy in recent years. Herein, we for the first time report the use of UCNPs with carefully engineered surface chemistry for combined photodynamic therapy (PDT) and gene therapy of cancer. In our system, positively charged NaGdF4:Yb,Er UCNPs with multilayered polymer coatings are synthesized via a layer by layer strategy, and then loaded simultaneously with Chlorin e6 (Ce6), a photosensitizing molecule, and small interfering RNA (siRNA), which targets the Plk1 oncogene. On the one hand, under excitation by a near-infrared (NIR) light at 980 nm, which shows greatly improved tissue penetration compared with visible light, cytotoxic singlet oxygen can be generated via resonance energy transfer from UCNPs to photosensitizer Ce6, while the residual upconversion luminescence is utilized for imaging. On the other hand, the silencing of Plk1 induced by siRNA delivered with UCNPs could induce significant cancer cell apoptosis. As the result of such combined photodynamic and gene therapy, a remarkably enhanced cancer cell killing effect is realized. Our work thus highlights the promise of UCNPs for imaging guided combination therapy of cancer.Upconversion nanoparticles (UCNPs) have drawn much attention in cancer imaging and therapy in recent years. Herein, we for the first time report the use of UCNPs with carefully engineered surface chemistry for combined photodynamic therapy (PDT) and gene therapy of cancer. In our system, positively charged NaGdF4:Yb,Er UCNPs with multilayered polymer coatings are synthesized via a layer by layer strategy, and then loaded simultaneously with Chlorin e6 (Ce6), a photosensitizing molecule, and small interfering RNA (siRNA), which targets the Plk1 oncogene. On the one hand, under excitation by a near-infrared (NIR) light at 980 nm, which shows greatly improved tissue penetration compared with visible light, cytotoxic singlet oxygen can be generated via

  12. Lentiviral hematopoietic stem cell gene therapy for X-linked severe combined immunodeficiency.

    PubMed

    De Ravin, Suk See; Wu, Xiaolin; Moir, Susan; Anaya-O'Brien, Sandra; Kwatemaa, Nana; Littel, Patricia; Theobald, Narda; Choi, Uimook; Su, Ling; Marquesen, Martha; Hilligoss, Dianne; Lee, Janet; Buckner, Clarissa M; Zarember, Kol A; O'Connor, Geraldine; McVicar, Daniel; Kuhns, Douglas; Throm, Robert E; Zhou, Sheng; Notarangelo, Luigi D; Hanson, I Celine; Cowan, Mort J; Kang, Elizabeth; Hadigan, Coleen; Meagher, Michael; Gray, John T; Sorrentino, Brian P; Malech, Harry L

    2016-04-20

    X-linked severe combined immunodeficiency (SCID-X1) is a profound deficiency of T, B, and natural killer (NK) cell immunity caused by mutations inIL2RGencoding the common chain (γc) of several interleukin receptors. Gamma-retroviral (γRV) gene therapy of SCID-X1 infants without conditioning restores T cell immunity without B or NK cell correction, but similar treatment fails in older SCID-X1 children. We used a lentiviral gene therapy approach to treat five SCID-X1 patients with persistent immune dysfunction despite haploidentical hematopoietic stem cell (HSC) transplant in infancy. Follow-up data from two older patients demonstrate that lentiviral vector γc transduced autologous HSC gene therapy after nonmyeloablative busulfan conditioning achieves selective expansion of gene-marked T, NK, and B cells, which is associated with sustained restoration of humoral responses to immunization and clinical improvement at 2 to 3 years after treatment. Similar gene marking levels have been achieved in three younger patients, albeit with only 6 to 9 months of follow-up. Lentiviral gene therapy with reduced-intensity conditioning appears safe and can restore humoral immune function to posthaploidentical transplant older patients with SCID-X1. PMID:27099176

  13. Gene Therapy

    PubMed Central

    Baum, Bruce J

    2014-01-01

    Applications of gene therapy have been evaluated in virtually every oral tissue, and many of these have proved successful at least in animal models. While gene therapy will not be used routinely in the next decade, practitioners of oral medicine should be aware of the potential of this novel type of treatment that doubtless will benefit many patients with oral diseases. PMID:24372817

  14. Combined Alloreactive CTL Cellular Therapy with Prodrug Activator Gene Therapy in a Model of Breast Cancer Metastatic to the Brain

    PubMed Central

    Hickey, Michelle J.; Malone, Colin C.; Erickson, Kate L.; Lin, Amy; Soto, Horacio; Ha, Edward T.; Kamijima, Shuichi; Inagaki, Akihito; Takahashi, Masamichi; Kato, Yuki; Kasahara, Noriyuki; Mueller, Barbara M.; Kruse, Carol A.

    2013-01-01

    Purpose Individual or combined strategies of cellular therapy with alloreactive cytotoxic T lymphocytes (alloCTL) and gene therapy employing retroviral replicating vectors (RRV) encoding a suicide prodrug activating gene were explored for the treatment of breast tumors metastatic to the brain. Experimental Design AlloCTL, sensitized to the human leukocyte antigens of MDA-MB-231 breast cancer cells, were examined in vitro for anti-tumor functionality toward breast cancer targets. RRV encoding the yeast cytosine deaminase (CD) gene was tested in vivo for virus spread, ability to infect, and kill breast cancer targets when exposed to 5-fluorocytosine (5-FC). Individual and combination treatments were tested in subcutaneous and intracranial xenograft models with 231BR, a brain tropic variant. Results AlloCTL preparations were cytotoxic, proliferated and produced interferon-gamma when coincubated with target cells displaying relevant HLA. In vivo, intratumorally-placed alloCTL trafficked through one established intracranial 231BR focus to another in contralateral brain and induced tumor cell apoptosis. RRV-CD efficiently spread in vivo, infected 231BR and induced their apoptosis upon 5-FC exposure. Subcutaneous tumor volumes were significantly reduced in alloCTL and/or gene therapy treated groups compared to control groups. Mice with established intracranial 231BR tumors treated with combined alloCTL and RRV-CD had a median survival of 97.5 days compared with single modalities (50–83 days); all experimental treatment groups survived significantly longer than sham-treated groups (median survivals 31.5 or 40 days) and exhibited good safety/toxicity profiles. Conclusion The results indicate combining cellular and suicide gene therapies is a viable strategy for the treatment of established breast tumors in the brain. PMID:23780889

  15. Gene Therapy Model of X-linked Severe Combined Immunodeficiency Using a Modified Foamy Virus Vector

    PubMed Central

    Horino, Satoshi; Uchiyama, Toru; So, Takanori; Nagashima, Hiroyuki; Sun, Shu-lan; Sato, Miki; Asao, Atsuko; Haji, Yoichi; Sasahara, Yoji; Candotti, Fabio; Tsuchiya, Shigeru; Kure, Shigeo; Sugamura, Kazuo; Ishii, Naoto

    2013-01-01

    X-linked severe combined immunodeficiency (SCID-X1) is an inherited genetic immunodeficiency associated with mutations in the common cytokine receptor γ chain (γc) gene, and characterized by a complete defect of T and natural killer (NK) cells. Gene therapy for SCID-X1 using conventional retroviral (RV) vectors carrying the γc gene results in the successful reconstitution of T cell immunity. However, the high incidence of vector-mediated T cell leukemia, caused by vector insertion near or within cancer-related genes has been a serious problem. In this study, we established a gene therapy model of mouse SCID-X1 using a modified foamy virus (FV) vector expressing human γc. Analysis of vector integration in a human T cell line demonstrated that the FV vector integration sites were significantly less likely to be located within or near transcriptional start sites than RV vector integration sites. To evaluate the therapeutic efficacy, bone marrow cells from γc-knockout (γc-KO) mice were infected with the FV vector and transplanted into γc-KO mice. Transplantation of the FV-treated cells resulted in the successful reconstitution of functionally active T and B cells. These data suggest that FV vectors can be effective and may be safer than conventional RV vectors for gene therapy for SCID-X1. PMID:23990961

  16. In vitro therapeutic effect of PDT combined with VEGF-A gene therapy

    NASA Astrophysics Data System (ADS)

    Lecaros, Rumwald Leo G.; Huang, Leaf; Hsu, Yih-Chih

    2014-02-01

    Vascular endothelial growth factor A (VEGF-A), commonly known as VEGF, is one of the primary factors that affect tumor angiogenesis. It was found to be expressed in cancer cell lines including oral squamous cell carcinoma. Photodynamic therapy (PDT) is a novel therapeutic modality to treat cancer by using a photosensitizer which is activated by a light source to produce reactive oxygen species and mediates oxygen-independent hypoxic conditions to tumor. Another emerging treatment to cure cancer is the use of interference RNA (e.g. siRNA) to silence a specific mRNA sequence. VEGF-A was found to be expressed in oral squamous cell carcinoma and overexpressed after 24 hour post-PDT by Western blot analysis. Cell viability was found to decrease at 25 nM of transfected VEGF-A siRNA. In vitro combined therapy of PDT and VEGF-A siRNA showed better response as compared with PDT and gene therapy alone. The results suggest that PDT combined with targeted gene therapy has a potential mean to achieve better therapeutic outcome.

  17. Combining Cytotoxic and Immune-Mediated Gene Therapy to Treat Brain Tumors

    PubMed Central

    Curtin, James F.; King, Gwendalyn D.; Candolfi, Marianela; Greeno, Remy B.; Kroeger, Kurt M.; Lowenstein, Pedro R.; Castro, Maria G.

    2006-01-01

    Glioblastoma (GBM) is a type of intracranial brain tumor, for which there is no cure. In spite of advances in surgery, chemotherapy and radiotherapy, patients die within a year of diagnosis. Therefore, there is a critical need to develop novel therapeutic approaches for this disease. Gene therapy, which is the use of genes or other nucleic acids as drugs, is a powerful new treatment strategy which can be developed to treat GBM. Several treatment modalities are amenable for gene therapy implementation, e.g. conditional cytotoxic approaches, targeted delivery of toxins into the tumor mass, immune stimulatory strategies, and these will all be the focus of this review. Both conditional cytotoxicity and targeted toxin mediated tumor death, are aimed at eliminating an established tumor mass and preventing further growth. Tumors employ several defensive strategies that suppress and inhibit anti-tumor immune responses. A better understanding of the mechanisms involved in eliciting anti-tumor immune responses has identified promising targets for immunotherapy. Immunotherapy is designed to aid the immune system to recognize and destroy tumor cells in order to eliminate the tumor burden. Also, immune-therapeutic strategies have the added advantage that an activated immune system has the capability of recognizing tumor cells at distant sites from the primary tumor, therefore targeting metastasis distant from the primary tumor locale. Pre-clinical models and clinical trials have demonstrated that in spite of their location within the central nervous system (CNS), a tissue described as ‘immune privileged’, brain tumors can be effectively targeted by the activated immune system following various immunotherapeutic strategies. This review will highlight recent advances in brain tumor immunotherapy, with particular emphasis on advances made using gene therapy strategies, as well as reviewing other novel therapies that can be used in combination with immunotherapy. Another

  18. Combination gene therapy for liver metastasis of colon carcinoma in vivo.

    PubMed Central

    Chen, S H; Chen, X H; Wang, Y; Kosai, K; Finegold, M J; Rich, S S; Woo, S L

    1995-01-01

    The efficacy of combination therapy with a "suicide gene" and a cytokine gene to treat metastatic colon carcinoma in the liver was investigated. Tumor in the liver was generated by intrahepatic injection of a colon carcinoma cell line (MCA-26) in syngeneic BALB/c mice. Recombinant adenoviral vectors containing various control and therapeutic genes were injected directly into the solid tumors, followed by treatment with ganciclovir. While the tumors continued to grow in all animals treated with a control vector or a mouse interleukin 2 vector, those treated with a herpes simplex virus thymidine kinase vector, with or without the coadministration of the mouse interleukin 2 vector, exhibited dramatic necrosis and regression. However, only animals treated with both vectors developed an effective systemic antitumoral immunity against challenges of tumorigenic doses of parental tumor cells inoculated at distant sites. The antitumoral immunity was associated with the presence of MCA-26 tumor-specific cytolytic CD8+ T lymphocytes. The results suggest that combination suicide and cytokine gene therapy in vivo can be a powerful approach for treatment of metastatic colon carcinoma in the liver. Images Fig. 2 PMID:7708688

  19. Combination Gene Therapy for Liver Metastasis of Colon Carcinoma in vivo

    NASA Astrophysics Data System (ADS)

    Chen, Shu-Hsai; Chen, X. H. Li; Wang, Yibin; Kosai, Ken-Ichiro; Finegold, Milton J.; Rich, Susan S.

    1995-03-01

    The efficacy of combination therapy with a "suicide gene" and a cytokine gene to treat metastatic colon carcinoma in the liver was investigated. Tumor in the liver was generated by intrahepatic injection of a colon carcinoma cell line (MCA-26) in syngeneic BALB/c mice. Recombinant adenoviral vectors containing various control and therapeutic genes were injected directly into the solid tumors, followed by treatment with ganciclovir. While the tumors continued to grow in all animals treated with a control vector or a mouse interleukin 2 vector, those treated with a herpes simplex virus thymidine kinase vector, with or without the coadministration of the mouse interleukin 2 vector, exhibited dramatic necrosis and regression. However, only animals treated with both vectors developed an effective systemic antitumoral immunity against challenges of tumorigenic doses of parental tumor cells inoculated at distant sites. The antitumoral immunity was associated with the presence of MCA-26 tumor-specific cytolytic CD8^+ T lymphocytes. The results suggest that combination suicide and cytokine gene therapy in vivo can be a powerful approach for treatment of metastatic colon carcinoma in the liver.

  20. Combining cell transplants or gene therapy with deep brain stimulation for Parkinson's disease.

    PubMed

    Rowland, Nathan C; Starr, Philip A; Larson, Paul S; Ostrem, Jill L; Marks, William J; Lim, Daniel A

    2015-02-01

    Cell transplantation and gene therapy each show promise to enhance the treatment of Parkinson's disease (PD). However, because cell transplantation and gene therapy generally require direct delivery to the central nervous system, clinical trial design involves unique scientific, ethical, and financial concerns related to the invasive nature of the procedure. Typically, such biologics have been tested in PD patients who have not received any neurosurgical intervention. Here, we suggest that PD patients undergoing deep brain stimulation (DBS) device implantation are an ideal patient population for the clinical evaluation of cell transplantation and gene therapy. Randomizing subjects to an experimental group that receives the biologic concurrently with the DBS implantation-or to a control group that receives the DBS treatment alone-has several compelling advantages. First, this study design enables the participation of patients likely to benefit from DBS, many of whom simultaneously meet the inclusion criteria of biologic studies. Second, the need for a sham neurosurgical procedure is eliminated, which may reduce ethical concerns, promote patient recruitment, and enhance the blinding of surgical trials. Third, testing the biologic by "piggybacking" onto an established, reimbursable procedure should reduce the cost of clinical trials, which may allow a greater number of biologics to reach this critical stage of research translation. Finally, this clinical trial design may lead to combinatorial treatment strategies that provide PD patients with more durable control over disabling motor symptoms. By combining neuromodulation with biologics, we may also reveal important treatment paradigms relevant to other diseases of the brain. PMID:25521796

  1. Combinations Therapies.

    PubMed

    Reinmuth, Niels; Reck, Martin

    2015-01-01

    Immunotherapy of cancer encompasses different strategies that elicit or enhance the immune response against tumors. The first results from clinical studies have provided promising data for the treatment of lung cancer patients with immunomodulating monotherapies. To improve the potential benefit of cancer immunotherapy, synergistic combinations of the various immunotherapy approaches or of different elements within each of the immunotherapy approaches are being explored. The rationale typically involves different but complementary mechanisms of action, eventually impinging on more than one immune system mechanism. As a prominent example, the simultaneous blockade of PD-1 and CTLA-4 is giving rise to therapeutic synergy, while still offering room for efficacy improvement. Moreover, combinations of immunomodulating agents with chemotherapy or targeted molecules are being tested. Animal models suggest that immunotherapies in combination with these various options offer evidence for synergistic effects and are likely to radically change cancer treatment paradigms. However, data obtained so far indicate that toxic side effects are also potentiated, which may even restrict the selection of patients that are suitable for these combinational approaches. Advancing the field of combinatorial immunotherapy will require changes in the way investigational agents are clinically developed as well as novel experimental end-points for efficacy evaluation. However, this combined therapeutic manipulation of both tumor and stromal cells may lead to a dramatic change in the therapeutic options of lung cancer patients in any disease stage that can only grossly be appreciated by the current studies. PMID:26384009

  2. Gene Therapy Studies in a Canine Model of X-Linked Severe Combined Immunodeficiency

    PubMed Central

    De Ravin, Suk See; Malech, Harry L.; Sorrentino, Brian P.; Burtner, Christopher; Kiem, Hans-Peter

    2015-01-01

    Abstract Since the occurrence of T cell leukemias in the original human γ-retroviral gene therapy trials for X-linked severe combined immunodeficiency (XSCID), considerable effort has been devoted to developing safer vectors. This review summarizes gene therapy studies performed in a canine model of XSCID to evaluate the efficacy of γ-retroviral, lentiviral, and foamy viral vectors for treating XSCID and a novel method of vector delivery. These studies demonstrate that durable T cell reconstitution and thymopoiesis with no evidence of any serious adverse events and, in contrast to the human XSCID patients, sustained marking in myeloid cells and B cells with reconstitution of normal humoral immune function can be achieved for up to 5 years without any pretreatment conditioning. The presence of sustained levels of gene-marked T cells, B cells, and more importantly myeloid cells for almost 5 years is highly suggestive of transduction of either multipotent hematopoietic stem cells or very primitive committed progenitors. PMID:25603151

  3. A dual-targeting drug co-delivery system for tumor chemo- and gene combined therapy.

    PubMed

    Zhang, Fangrong; Li, Min; Su, Yujie; Zhou, Jianping; Wang, Wei

    2016-07-01

    Regulation of gene expression using p53 is a promising strategy for treatment of numerous cancers, and chemotherapeutic drug dichloroacetate (DCA) induces apoptosis and growth inhibition in tumor, without apparent toxicity in normal tissues. Combining DCA and p53 gene could be an effective way to treat tumors. The progress towards broad applications of DCA/p53 combination requires the development of safe and efficient vectors that target to specific cells. In this study, we developed a DSPE-PEG-AA (1,2-distearoryl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethyleneglycol-2000)] ammonium salt-anisamide) modified reconstituted high-density lipoprotein-based DCA/p53-loaded nanoparticles (DSPE-PEG-AA/rHDL/DCA-PEI/p53 complexes), which was fabricated as a drug/gene dual-targeting co-delivery system for potential cancer therapy. Here, DCA-PEI was utilized to effectively condense the p53 plasmid, to incorporate the plasmid into rHDL and to act as an antitumor drug to inhibit tumor cell growth. The DSPE-PEG-AA/rHDL/DCA-PEI/p53 complexes exhibited desirable and homogenous particle size, neutral surface charge and low cytotoxicity for normal cells in vitro. The results of confocal laser scanning microscopy (CLSM) and flow cytometry confirmed that the scavenger receptor class B type I (SR-BI) and sigma receptor mediated dual-targeting function of the complexes inducing efficient cytoplasmic drug delivery and gene transfection in human lung adenocarcinoma cell line A549. And in vivo investigation on nude mice bearing A549 tumor xenografts revealed that DSPE-PEG-AA/rHDL/DCA-PEI/p53 complexes possessed specific tumor targeting and strong antitumor activity. The work described here demonstrated that the DSPE-PEG-AA/rHDL/DCA-PEI/p53 complexes might offer a promising tool for effective cancer therapy. PMID:27127046

  4. Combination gene therapy targeting on interleukin-1β and RANKL for wear debris-induced aseptic loosening.

    PubMed

    Wang, H; Jia, T-H; Zacharias, N; Gong, W; Du, H-X; Wooley, P H; Yang, S-Y

    2013-02-01

    This study investigated the efficacy of a combination gene therapy to repress interleukin-1 (IL-1) and receptor activator of nuclear factor NF-kappa B ligand (RANKL) for the treatment of particulate debris-induced aseptic loosening, and tried to explore the molecular mechanism of the exogenous gene modifications on osteoclastogenesis. RAW cells activated by titanium particles were transduced with DFG-IL-1Ra (retroviral vector encoding IL-1 receptor antagonist) and AAV-OPG (adeno-associated viral vectors-osteoprotegerin) individually or in combination for 4 weeks. Pro-inflammatory cytokines in culture media were determined by enzyme-linked immunosorbent assay, and gene expressions of RANK, IL-1β, c-Fos, TRAF6, JNK1 and CPK were examined using real-time PCR. An established knee-implant-failure mouse model was employed to evaluate the efficacy of the in vivo double-gene therapy. The surgical implantation of a titanium alloy pin into the proximal tibia was followed by monthly challenge with titanium debris. Peri-implant gene transfers of IL-1Ra and OPG (respectively or in combination) were given 3 weeks after surgery. The combination of OPG and IL-1Ra gene transfer exhibited strong synergetic effects in blockage of inflammation and osteoclastogenesis at 8 weeks after gene modification. The combination therapy reversed peri-implant bone resorption and restored implant stability when compared with either single gene transduction. Real-time PCR data indicated that the action of IL-1Ra gene therapy may be mediated via the JNK1 pathway, while the reduction of osteoclastogenesis by OPG gene modification may be regulated by c-Fos expression. In addition, both gene modifications resulted in significant diminishment of TRAF6 expression. PMID:22318091

  5. Gene therapy in pancreatic cancer

    PubMed Central

    Liu, Si-Xue; Xia, Zhong-Sheng; Zhong, Ying-Qiang

    2014-01-01

    Pancreatic cancer (PC) is a highly lethal disease and notoriously difficult to treat. Only a small proportion of PC patients are eligible for surgical resection, whilst conventional chemoradiotherapy only has a modest effect with substantial toxicity. Gene therapy has become a new widely investigated therapeutic approach for PC. This article reviews the basic rationale, gene delivery methods, therapeutic targets and developments of laboratory research and clinical trials in gene therapy of PC by searching the literature published in English using the PubMed database and analyzing clinical trials registered on the Gene Therapy Clinical Trials Worldwide website (http://www. wiley.co.uk/genmed/ clinical). Viral vectors are main gene delivery tools in gene therapy of cancer, and especially, oncolytic virus shows brighter prospect due to its tumor-targeting property. Efficient therapeutic targets for gene therapy include tumor suppressor gene p53, mutant oncogene K-ras, anti-angiogenesis gene VEGFR, suicide gene HSK-TK, cytosine deaminase and cytochrome p450, multiple cytokine genes and so on. Combining different targets or combination strategies with traditional chemoradiotherapy may be a more effective approach to improve the efficacy of cancer gene therapy. Cancer gene therapy is not yet applied in clinical practice, but basic and clinical studies have demonstrated its safety and clinical benefits. Gene therapy will be a new and promising field for the treatment of PC. PMID:25309069

  6. Human Gene Therapy: Genes without Frontiers?

    ERIC Educational Resources Information Center

    Simon, Eric J.

    2002-01-01

    Describes the latest advancements and setbacks in human gene therapy to provide reference material for biology teachers to use in their science classes. Focuses on basic concepts such as recombinant DNA technology, and provides examples of human gene therapy such as severe combined immunodeficiency syndrome, familial hypercholesterolemia, and…

  7. Sustained long-term immune responses after in situ gene therapy combined with radiotherapy and hormonal therapy in prostate cancer patients

    SciTech Connect

    Fujita, Tetsuo; Teh, Bin S.; Mai, W.-Y.; Kusaka, Nobuyuki; Naruishi, Koji; Fattah, Elmoataz Abdel; Aguilar-Cordova, Estuardo; Butler, E. Brian; Thompson, Timothy C.

    2006-05-01

    Purpose: To explore long-term immune responses after combined radio-gene-hormonal therapy. Methods and Materials: Thirty-three patients with prostate specific antigen 10 or higher or Gleason score of 7 or higher or clinical stage T2b to T3 were treated with gene therapy that consisted of 3 separate intraprostatic injections of AdHSV-tk on Days 0, 56, and 70. Each injection was followed by 2 weeks of valacyclovir. Intensity-modulated radiation therapy was delivered 2 days after the second AdHSV-tk injection for 7 weeks. Hormonal therapy was initiated on Day 0 and continued for 4 months or 2.3 years. Blood samples were taken before, during, and after treatment. Lymphocytes were analyzed by fluorescent antibody cell sorting (FACS). Results: Median follow-up was 26 months (range, 4-48 months). The mean percentages of DR{sup +}CD8{sup +} T cells were increased at all timepoints up to 8 months. The mean percentages of DR{sup +}CD4{sup +} T cells were increased later and sustained longer until 12 months. Long-term (2.3 years) use of hormonal therapy did not affect the percentage of any lymphocyte population. Conclusions: Sustained long-term (up to 8 to 12 months) systemic T-cell responses were noted after combined radio-gene-hormonal therapy for prostate cancer. Prolonged use of hormonal therapy does not suppress this response. These results suggest the potential for sustained activation of cell-mediated immune responses against cancer.

  8. Gene therapy progress and prospects: gene therapy for diabetes mellitus.

    PubMed

    Yechoor, V; Chan, L

    2005-01-01

    Diabetes mellitus has long been targeted, as yet unsuccessfully, as being curable with gene therapy. The main hurdles have not only been vector-related toxicity but also the lack of physiological regulation of the expressed insulin. Recent advances in understanding the developmental biology of beta-cells and the transcriptional cascade that drives it have enabled both in vivo and ex vivo gene therapy combined with cell therapy to be used in animal models of diabetes with success. The associated developments in the stem cell biology and immunology have opened up further opportunities for gene therapy to be applied to target autoimmune diabetes. PMID:15496957

  9. Non-viral in vivo immune gene therapy of cancer: combined strategies for treatment of systemic disease.

    PubMed

    Tangney, M; Casey, G; Larkin, J O; Collins, C G; Soden, D; Cashman, J; Whelan, M C; O'Sullivan, G C

    2006-11-01

    Many patients with various types of cancers have already by the time of presentation, micrometastases in their tissues and are left after treatment in a minimal residual disease state [Am J Gastroenterol 95(12), 2000]. To prevent tumour recurrence these patients require a systemic based therapy, but current modalities are limited by toxicity or lack of efficacy. We have previously reported that immune reactivity to the primary tumour is an important regulator of micrometastases and determinant of prognosis. This suggests that recruitment of specific anti-tumour mechanisms within the primary tumour could be used advantageously for tumour control as either primary or neo-adjuvant treatments. Recently, we have focused on methods of stimulating immune eradication of solid tumours and minimal residual disease using gene therapy approaches. Gene therapy is now a realistic prospect and a number of delivery approaches have been explored, including the use of viral and non-viral vectors. Non-viral vectors have received significant attention since, in spite of their relative delivery inefficiency, they may be safer and have greater potential for delivery of larger genetic units. By in vivo electroporation of the primary tumour with plasmid expressing GM-CSF and B7-1, we aim to stimulate immune eradication of the treated tumour and associated metastases. In this symposium report, we describe an effective gene based approach for cancer immunotherapy by inducing cytokine and immune co-stimulatory molecule expression by the growing cells of the primary tumour using a plasmid electroporation gene delivery strategy. We discuss the potential for enhancement of this therapy by its application as a neoadjuvant to surgical excision and by its use in combination with suppressor T cell depletion. PMID:16612593

  10. Advances in combining gene therapy with cell and tissue engineering-based approaches to enhance healing of the meniscus.

    PubMed

    Cucchiarini, M; McNulty, A L; Mauck, R L; Setton, L A; Guilak, F; Madry, H

    2016-08-01

    Meniscal lesions are common problems in orthopaedic surgery and sports medicine, and injury or loss of the meniscus accelerates the onset of knee osteoarthritis (OA). Despite a variety of therapeutic options in the clinics, there is a critical need for improved treatments to enhance meniscal repair. In this regard, combining gene-, cell-, and tissue engineering-based approaches is an attractive strategy to generate novel, effective therapies to treat meniscal lesions. In the present work, we provide an overview of the tools currently available to improve meniscal repair and discuss the progress and remaining challenges for potential future translation in patients. PMID:27063441

  11. In Vitro and In Vivo Effect of 5-FC Combined Gene Therapy with TNF-α and CD Suicide Gene on Human Laryngeal Carcinoma Cell Line Hep-2

    PubMed Central

    Chai, Li-Ping; Wang, Zhang-Feng; Liang, Wei-Ying; Chen, Lei; Chen, Dan; Wang, An-Xun; Zhang, Zhao-Qiang

    2013-01-01

    This study was aimed to investigate the effect of combined cancer gene therapy with exogenous tumor necrosis factor-alpha (TNF-α) and cytosine deaminase (CD) suicide gene on laryngeal carcinoma cell line Hep-2 in vitro and in vivo. Transfection of the recombinant eukaryotic vectors of pcDNA3.1 (+) containing TNF-α and/or CD into Hep-2 cells resulted in expression of TNF-α and/or CD gene in vitro. The significant increase in apoptotic Hep-2 cells and decrease of Hep-2 cell proliferation were observed using 5-FC treatment combined with TNF-a expression by CD/5-FC suicide system. Moreover, bystander effect was also observed in the TNF-α and CD gene co-expression group. Laryngeal squamous cell carcinoma (LSCC) mice model was established by using BALB/c mice which different transfected Hep-2 cells with pcDNA3.1 (+) containing TNF-α and/or CD were applied subcutaneously. So these mice are divided into four groups, namely, Hep-2/TIC group; Hep-2/CD group; Hep-2/TNF-α group; Hep-2/0 group. At day 29 after cell inoculation, volume of grafted tumor had significant difference between each two of them (P<0.05). These results showed that the products of combined CD and TNF-α genes inhibited the growth of transplanted LSCC in mice model. So by our observed parameters and many others results, we hypothesized that 5-FC combined gene therapy with TNF-αand CD suicide gene should be an effective treatment on Laryngeal carcinoma. PMID:23593411

  12. Combination therapy with statins.

    PubMed

    Gylling, Helena; Miettinen, Tatu A

    2002-09-01

    Statins effectively inhibit cholesterol synthesis and are currently the most commonly used drugs for the treatment of hypercholesterolemia. However, patients with familial hypercholesterolemia and those unwilling to take, or who cannot tolerate statins, and patients with combined hyperlipidemia require a combination treatment. Statins combined with cholesterol malabsorption, caused, e.g., by plant stanol esters or ezetimibe (Schering-Plough Corp/Merck & Co Inc), or with bile acid malabsorption, caused by bile acid binding resins or guar gum, inhibit compensatory increases in cholesterol synthesis and effectively lower LDL cholesterol levels. Combination therapy of statins with fibrates should be controlled by lipidology experts. Recent information on indications and advantages of combining statins with n-3 fatty acids, hormone replacement therapy, or niacin, will also be discussed. PMID:12498007

  13. Complete destruction of deep-tissue buried tumors via combination of gene silencing and gold nanoechinus-mediated photodynamic therapy.

    PubMed

    Vijayaraghavan, Priya; Vankayala, Raviraj; Chiang, Chi-Shiun; Sung, Hsing-Wen; Hwang, Kuo Chu

    2015-09-01

    Cancer is one of the major diseases leading to human deaths. Complete destruction of deep tissue-buried tumors using non-invasive therapies is a grand challenge in clinical cancer treatments. Many therapeutic modalities were developed to tackle this problem, but only partial tumor suppression or delay growths were usually achieved. In this study, we report for the first time that complete destruction of deep tissue-buried tumors can be achieved by combination of gold nanoechinus (Au NEs)-mediated photodynamic therapy (PDT) and gene silencing under ultra-low doses of near infra-red (NIR) light irradiation (915 nm, 340 mW/cm(2); 1064 nm, 420 mW/cm(2)) in the first and second biological windows. The average lifespan of the mice treated by the above combined therapy is beyond 40 days, which are ∼ 2.6 times longer than that (15 days) observed from the anticancer drug doxorubicin-treated group. The current study points out a new direction for the therapeutic design to treat deeply seated tumors in future cancer treatments. PMID:26016691

  14. Monodisperse double-walled microspheres loaded with chitosan-p53 nanoparticles and doxorubicin for combined gene therapy and chemotherapy

    PubMed Central

    Xu, Qingxing; Xia, Yujie; Wang, Chi-Hwa; Pack, Daniel W.

    2012-01-01

    We have designed and evaluated a dual anticancer delivery system to provide combined gene therapy and chemotherapy. Double-walled microspheres consisting of a poly(D,L-lactic-co-glycolic acid) (PLGA) core surrounded by a poly(lactic acid) (PLA) shell were fabricated via the precision particle fabrication (PPF) technique. We make use of the advantages of double-walled microspheres to deliver chitosan-DNA nanoparticles containing the gene encoding the p53 tumor suppressor protein (chi-p53) and/or doxorubicin (Dox), loaded in the shell and core phases, respectively. Different molecular weights of PLA were used to form the shell layer for each formulation. The microspheres were monodisperse with a mean diameter of 65 to 75 μm and uniform shell thickness of 8 to 17 μm. Blank and Dox-loaded microspheres typically exhibited a smooth surface with relatively few small pores, while chi-microspheres containing p53 nanoparticles, with and without Dox, presented rough and porous surfaces. The encapsulation efficiency of Dox was significantly higher when it was encapsulated alone compared to co-encapsulation with chi-p53 nanoparticles. The encapsulation efficiency of chi-p53 nanoparticles, on the other hand, was not affected by the presence of Dox. As desired, chi-p53 nanoparticles were released first, followed by simultaneous release of chi-p53 nanoparticles and Dox at a near zero-order rate. Thus, we have demonstrated that the PPF method is capable of producing double-walled microspheres and encapsulating dual agents for combined modality treatment, such as gene therapy and chemotherapy. PMID:22981564

  15. History of gene therapy.

    PubMed

    Wirth, Thomas; Parker, Nigel; Ylä-Herttuala, Seppo

    2013-08-10

    Two decades after the initial gene therapy trials and more than 1700 approved clinical trials worldwide we not only have gained much new information and knowledge regarding gene therapy in general, but also learned to understand the concern that has persisted in society. Despite the setbacks gene therapy has faced, success stories have increasingly emerged. Examples for these are the positive recommendation for a gene therapy product (Glybera) by the EMA for approval in the European Union and the positive trials for the treatment of ADA deficiency, SCID-X1 and adrenoleukodystrophy. Nevertheless, our knowledge continues to grow and during the course of time more safety data has become available that helps us to develop better gene therapy approaches. Also, with the increased understanding of molecular medicine, we have been able to develop more specific and efficient gene transfer vectors which are now producing clinical results. In this review, we will take a historical view and highlight some of the milestones that had an important impact on the development of gene therapy. We will also discuss briefly the safety and ethical aspects of gene therapy and address some concerns that have been connected with gene therapy as an important therapeutic modality. PMID:23618815

  16. Monotherapy versus combination therapy.

    PubMed

    Patel, Shilpa M; Saravolatz, Louis D

    2006-11-01

    The science of antibiotic therapy for infectious diseases continues to evolve. In many instances where empiric coverage is necessary, treatment with more than one agent is considered prudent. If an etiology is identified, antibiotics are modified based on culture and susceptibility data. Even when the organism is known, more than one antibiotic may be needed. Decisions about antibiotics should be made after assessments of pertinent clinical information, laboratory and microbiology information, ease of administration, patient compliance, potential adverse effects, cost, and available evidence supporting various treatment options. Clinicians also need to consider synergy and local resistance patterns in selecting therapeutic options. In this article, the authors outline monotherapy and combination therapy options for several common infectious diseases. PMID:17116443

  17. Combined gene therapy of endostatin and interleukin 12 with polyvinylpyrrolidone induces a potent antitumor effect on hepatoma

    PubMed Central

    Li, Pei-Yuan; Lin, Ju-Sheng; Feng, Zuo-Hua; He, Yu-Fei; Zhou, He-Jun; Ma, Xin; Cai, Xiao-Kun; Tian, De-An

    2004-01-01

    AIM: To study the antitumor effect of combined gene therapy of endostatin and interleukin 12 (IL-12) with polyvinylpyrrolidone (PVP) on mouse transplanted hepatoma. METHODS: Mouse endostatin eukaryotic plasmid (pSecES) with a mouse Igκ signal sequence inside and mouse IL-12 eukaryotic plasmid (pmIL-12) were transfected into BHK-21 cells respectively. Endostatin and IL-12 were assayed by ELISA from the supernant and used to culture endothelial cells and spleen lymphocytes individually. Proliferation of the latter was evaluated by MTT. H22 cells were inoculated into the leg muscle of mouse, which was injected intratumorally with pSecES/PVP, pmIL-12/PVP or pSecES + pmIL-12/PVP repeatedly. Tumor weight, serum endostatin and serum IL-12 were assayed. Tumor infiltrating lymphocytes, tumor microvessel density and apoptosis of tumor cells were also displayed by HE staining, CD31 staining and TUNEL. RESULTS: Endostatin and IL-12 were secreted after transfection, which could inhibit the proliferation of endothelial cells or promote the proliferation of spleen lymphocytes. Tumor growth was highly inhibited by 91.8% after injection of pSecES + pmIL-12/PVP accompanied by higher serum endostatin and IL-12, more infiltrating lymphocytes, fewer tumor vessels and more apoptosis cells compared with injection of pSecES/PVP, pmIL-12/PVP or vector/PVP. CONCLUSION: Mouse endostatin gene and IL-12 gene can be expressed after intratumoral injection with PVP. Angiogenesis of hepatoma can be inhibited synergisticly, lymphocytes can be activated to infiltrate, and tumor cells are induced to apoptosis. Hepatoma can be highly inhibited or eradiated. PMID:15259064

  18. Ex Vivo γ-Retroviral Gene Therapy of Dogs with X-linked Severe Combined Immunodeficiency and the Development of a Thymic T Cell Lymphoma

    PubMed Central

    Kennedy, Douglas R.; Hartnett, Brian J.; Kennedy, Jeffrey S.; Vernau, William; Moore, Peter F.; O’Malley, Thomas; Burkly, Linda C.; Henthorn, Paula S.; Felsburg, Peter J.

    2011-01-01

    We have previously shown that in vivo γ-retroviral gene therapy of dogs with X-linked severe combined immunodeficiency (XSCID) results in sustained T cell reconstitution and sustained marking in myeloid and B cells for up to 4 years with no evidence of any serious adverse effects. The purpose of this study was to determine whether ex vivo γ-retroviral gene therapy of XSCID dogs results in a similar outcome. Eight of 12 XSCID dogs treated with an average of dose of 5.8 × 106 transduced CD34+ cells/kg successfully engrafted producing normal numbers of gene-corrected CD45RA+ (naïve) T cells. However, this was followed by a steady decrease in CD45RA+ T cells, T cell diversity, and thymic output as measured by T cell receptor excision circles (TRECs) resulting in a T cell lymphopenia. None of the dogs survived past 11 months post treatment. At necropsy, few gene-corrected thymocytes were observed correlating with the TREC levels and one of the dogs was diagnosed with a thymic T cell lymphoma that was attributed to the gene therapy. This study highlights the outcome differences between the ex vivo and in vivo approach to γ-retroviral gene therapy and is the first to document a serious adverse event following gene therapy in a canine model of a human genetic disease. PMID:21536334

  19. Gene Therapy for Cartilage Repair

    PubMed Central

    Madry, Henning; Orth, Patrick; Cucchiarini, Magali

    2011-01-01

    The concept of using gene transfer strategies for cartilage repair originates from the idea of transferring genes encoding therapeutic factors into the repair tissue, resulting in a temporarily and spatially defined delivery of therapeutic molecules to sites of cartilage damage. This review focuses on the potential benefits of using gene therapy approaches for the repair of articular cartilage and meniscal fibrocartilage, including articular cartilage defects resulting from acute trauma, osteochondritis dissecans, osteonecrosis, and osteoarthritis. Possible applications for meniscal repair comprise meniscal lesions, meniscal sutures, and meniscal transplantation. Recent studies in both small and large animal models have demonstrated the applicability of gene-based approaches for cartilage repair. Chondrogenic pathways were stimulated in the repair tissue and in osteoarthritic cartilage using genes for polypeptide growth factors and transcription factors. Although encouraging data have been generated, a successful translation of gene therapy for cartilage repair will require an ongoing combined effort of orthopedic surgeons and of basic scientists. PMID:26069580

  20. B Cell Function in Severe Combined Immunodeficiency after Stem Cell or Gene Therapy: A Review

    PubMed Central

    Buckley, Rebecca H.

    2010-01-01

    While bone marrow transplantation has resulted in life-saving T cell reconstitution in infants with severe combined immunodeficiency (SCID), correction of B cell function has been more problematic. This review examines B cell reconstitution results presented in 19 reports from the United States and Europe on post-transplantation immune reconstitution in SCID over the past two decades. The analysis considered whether pre-transplantation conditioning regimens were used, the overall survival rate, the percentage with donor B cell chimerism, the percentage with B cell function, and the percentage of survivors requiring immunoglobulin (IG) replacement. The survival rates were higher at those Centers that did not use pre-transplant conditioning or post-transplantation graft-versus-host disease prophylaxis. The percentage of survivors with B cell chimerism and/or function was higher and the percentage requiring IG replacement was lower at those Centers that used pre-transplant conditioning. However there were substantial numbers of patients requiring IG replacement at all Centers. Thus, pre-transplant conditioning does not guarantee that B cell function will develop. Since most infants with SCID either present with serious infections or are diagnosed as newborns, one must decide whether there is justification for using agents that compromise innate immunity and have intrinsic toxicities to gain B cell immune reconstitution. PMID:20371393

  1. A pilot study of combined suicide/cytokine gene therapy in two patients with end-stage anaplastic thyroid carcinoma.

    PubMed

    Barzon, Luisa; Pacenti, Monia; Taccaliti, Augusto; Franchin, Elisa; Bruglia, Matteo; Boscaro, Marco; Palù, Giorgio

    2005-05-01

    This study represents the first report of gene therapy for anaplastic thyroid carcinoma, one of the most aggressive solid tumors in humans. Two patients with end-stage anaplastic thyroid carcinoma were treated by direct intratumor injection of retroviral vector producer cells followed by ganciclovir. The retroviral vector carried the human IL-2 gene and the suicide gene thymidine kinase of herpes simplex virus type 1. Treatment was safe and associated with only mild adverse events. Transduction of tumor cells and production of T helper type 1 cytokines was demonstrated in tumor biopsies. Gene therapy led also to a marked increase in T helper type 1 cytokine expression in peripheral blood mononuclear cells. Radiological evaluation of injected tumor masses demonstrated local tumor necrosis. PMID:15713704

  2. Combined antitumor gene therapy with herpes simplex virus-thymidine kinase and short hairpin RNA specific for mammalian target of rapamycin.

    PubMed

    Woo, Ha-Na; Lee, Won Il; Kim, Ji Hyun; Ahn, Jeonghyun; Han, Jeong Hee; Lim, Sue Yeon; Lee, Won Woo; Lee, Heuiran

    2015-12-01

    A proof-of-concept study is presented using dual gene therapy that employed a small hairpin RNA (shRNA) specific for mammalian target of rapamycin (mTOR) and a herpes simplex virus-thymidine kinase (HSV-TK) gene to inhibit the growth of tumors. Recombinant adeno-associated virus (rAAV) vectors containing a mutant TK gene (sc39TK) were transduced into HeLa cells, and the prodrug ganciclovir (GCV) was administered to establish a suicide gene-therapy strategy. Additionally, rAAV vectors expressing an mTOR-targeted shRNA were employed to suppress mTOR-dependent tumor growth. GCV selectively induced death in tumor cells expressing TK, and the mTOR-targeted shRNA altered the cell cycle to impair tumor growth. Combining the TK-GCV system with mTOR inhibition suppressed tumor growth to a greater extent than that achieved with either treatment alone. Furthermore, HSV-TK expression and mTOR inhibition did not mutually interfere with each other. In conclusion, gene therapy that combines the TK-GCV system and mTOR inhibition shows promise as a novel strategy for cancer therapy. PMID:26459571

  3. Vaginal gene therapy.

    PubMed

    Rodríguez-Gascón, Alicia; Del Pozo-Rodríguez, Ana; Isla, Arantxazu; Solinís, María Angeles

    2015-09-15

    In the last years, vaginal gene therapy has gained increasing attention mainly for the treatment and control of sexually transmitted infections. DNA delivery has been also suggested to improve reproductive outcomes for women with deficiencies in the female reproductive tract. Although no product has reached clinical phase, preclinical investigations reveal the potential of the vaginal tract as an effective administration route for gene delivery. This review focuses on the main advantages and challenges of vaginal gene therapy, and on the most used nucleic acid delivery systems, including viral and non-viral vectors. Additionally, the advances in the application of vaginal gene therapy for the treatment and/or prevention of infectious diseases such as the human immunodeficiency virus (HIV), the human papillomavirus (HPV) or the herpes simplex virus (HSV) are presented. PMID:26189799

  4. New combination therapies for asthma.

    PubMed

    Donohue, J F; Ohar, J A

    2001-03-01

    Combination products often have useful clinical benefits in asthma. The scientific rationale for combination therapy includes the fact that different agents have complimentary modes of action. Long-acting beta(2)-agonists have effects on airway smooth muscle, and inhaled corticosteroids have potent topical antiinflammatory effect. This combination has been shown to effectively reduce exacerbations and improve symptoms. Substantial clinical trial data provide a rationale for dual-control therapy supported by basic scientific data. Another combined therapy is inhaled steroids plus leukotriene-receptor antagonists, which provides the patient with two effective therapies. Leukotriene-receptor antagonist can also be combined with antihistamines for improved asthma control. Older therapies including theophylline and controlled release albuterol have been effectively added to inhaled corticosteroids, enabling a reduction in the dose of the inhaled steroids. Many other combination therapies are presently being tested. PMID:11224725

  5. Gene therapy in epilepsy

    PubMed Central

    Riban, Véronique; Fitzsimons, Helen L.; During, Matthew J.

    2009-01-01

    SUMMARY Results from animal models suggest gene therapy is a promising new approach for the treatment of epilepsy. Several candidate genes such as neuropeptide Y and galanin have been demonstrated in preclinical studies to have a positive effect on seizure activity. For a successful gene therapy-based treatment, efficient delivery of a transgene to target neurons is also essential. To this end, advances have been made in the areas of cell transplantation and in the development of recombinant viral vectors for gene delivery. Recombinant adeno-associated viral (rAAV) vectors in particular show promise for gene therapy of neurological disorders due to their neuronal tropism, lack of toxicity, and stable persistence in neurons, which results in robust, long-term expression of the transgene. rAAV vectors have been recently used in phase I clinical trials of Parkinson’s disease with an excellent safety profile. Prior to commencement of phase I trials for gene therapy of epilepsy, further preclinical studies are ongoing including evaluation of the therapeutic benefit in chronicmodels of epileptogenesis, as well as assessment of safety intoxicological studies. PMID:18717707

  6. Single low-dose cyclophosphamide combined with interleukin-12 gene therapy is superior to a metronomic schedule in inducing immunity against colorectal carcinoma in mice

    PubMed Central

    Malvicini, Mariana; Alaniz, Laura; Bayo, Juan; Garcia, Mariana; Piccioni, Flavia; Fiore, Esteban; Atorrasagasti, Catalina; Aquino, Jorge B.; Matar, Pablo; Mazzolini, Guillermo

    2012-01-01

    The use of conventional cytotoxic agents at metronomic schedules, alone or in combination with targeted agents or immunotherapy, is being explored as a promising anticancer strategy. We previously reported a potent antitumor effect of a single low-dose cyclophosphamide and interleukin-12 (IL-12) gene therapy against advanced gastrointestinal carcinoma, in mice. Here, we assessed whether the delivery of IL-12 by gene therapy together with metronomic cyclophosphamide exerts antitumor effects in a murine model of colorectal carcinoma. This combination therapy was able, at least in part, to reverse immunosuppression, by decreasing the number of regulatory T cells (Tregs) as well as of splenic myeloid-derived suppressor cells (MDSCs). However, metronomic cyclophosphamide plus IL-12 gene therapy failed to increase the number of tumor-infiltrating T lymphocytes and, more importantly, to induce a specific antitumor immune response. With respect to this, cyclophosphamide at a single low dose displayed a superior anticancer profile than the same drug given at a metronomic schedule. Our results may have important implications in the design of new therapeutic strategies against colorectal carcinoma using cyclophosphamide in combination with immunotherapy. PMID:23170252

  7. Targeted Therapies Combined With Immune Checkpoint Therapy.

    PubMed

    Prieto, Peter A; Reuben, Alexandre; Cooper, Zachary A; Wargo, Jennifer A

    2016-01-01

    The age of personalized medicine continues to evolve within clinical oncology with the arsenal available to clinicians in a variety of malignancies expanding at an exponential rate. The development and advancement of molecular treatment modalities, including targeted therapy and immune checkpoint blockade, continue to flourish. Treatment with targeted therapy (BRAF, MEK, and other small molecule inhibitors) can be associated with swift disease control and high response rates, but limited durability when used as monotherapy. Conversely, treatment with immune checkpoint blockade monotherapy regimens (anti-cytotoxic T-lymphocyte antigen 4 and anti-programmed cell death protein 1/programmed cell death protein 1 ligand) tends to have lower response rates than that observed with BRAF-targeted therapy, although these treatments may offer long-term durable disease control. With the advent of these forms of therapy, there was interest early on in empirically combining targeted therapy with immune checkpoint blockade with the hopes of preserving high response rates and adding durability; however, there is now strong scientific rationale for combining these forms of therapy-and early evidence of synergy in preclinical models of melanoma. Clinical trials combining these strategies are ongoing, and mature data regarding response rates and durability are not yet available. Synergy may ultimately be apparent; however, it has also become clear that complexities exist regarding toxicity when combining these therapies. Nonetheless, this increased appreciation of the complex interplay between oncogenic mutations and antitumor immunity has opened up tremendous opportunities for studying targeted agents and immunotherapy in combination, which extends far beyond melanoma to other solid tumors and also to hematologic malignancies. PMID:27111910

  8. Combining Clozapine and Talk Therapies.

    ERIC Educational Resources Information Center

    Mulroy, Kevin

    Clozapine is an antipsychotic medication used in the treatment of schizophrenia. This paper reviews articles concerning clozapine therapy. It considers its benefits and dangers in various situations, and how it can be successfully combined with talk therapies. Studies are reviewed concerning patients in outpatient clinics, partial hospitalization…

  9. Gene Therapy for Diseases and Genetic Disorders

    MedlinePlus

    ... notable advancements are the following: Gene Therapy for Genetic Disorders Severe Combined Immune Deficiency (ADA-SCID) ADA- ... in preclinical animal models of this disease. Other genetic disorders After many years of laboratory and preclinical ...

  10. Evaluation of radiation effects against C6 glioma in combination with vaccinia virus-p53 gene therapy

    NASA Technical Reports Server (NTRS)

    Gridley, D. S.; Andres, M. L.; Li, J.; Timiryasova, T.; Chen, B.; Fodor, I.; Nelson, G. A. (Principal Investigator)

    1998-01-01

    The primary objective of this study was to evaluate the antitumor effects of recombinant vaccinia virus-p53 (rVV-p53) in combination with radiation therapy against the C6 rat glioma, a p53 deficient tumor that is relatively radioresistant. VV-LIVP, the parental virus (Lister strain), was used as a control. Localized treatment of subcutaneous C6 tumors in athymic mice with either rVV-p53 or VV-LIVP together with tumor irradiation resulted in low tumor incidence and significantly slower tumor progression compared to the agents given as single modalities. Assays of blood and spleen indicated that immune system activation may account, at least partly, for the enhance tumor inhibition seen with combined treatment. No overt signs of treatment-related toxicity were noted.

  11. Multifunctional pDNA-Conjugated Polycationic Au Nanorod-Coated Fe3 O4 Hierarchical Nanocomposites for Trimodal Imaging and Combined Photothermal/Gene Therapy.

    PubMed

    Hu, Yang; Zhou, Yiqiang; Zhao, Nana; Liu, Fusheng; Xu, Fu-Jian

    2016-05-01

    It is very desirable to design multifunctional nanocomposites for theranostic applications via flexible strategies. The synthesis of one new multifunctional polycationic Au nanorod (NR)-coated Fe3 O4 nanosphere (NS) hierarchical nanocomposite (Au@pDM/Fe3 O4 ) based on the ternary assemblies of negatively charged Fe3 O4 cores (Fe3 O4 -PDA), polycation-modified Au nanorods (Au NR-pDM), and polycations is proposed. For such nanocomposites, the combined near-infrared absorbance properties of Fe3 O4 -PDA and Au NR-pDM are applied to photoacoustic imaging and photothermal therapy. Besides, Fe3 O4 and Au NR components allow the nanocomposites to serve as MRI and CT contrast agents. The prepared positively charged Au@pDM/Fe3 O4 also can complex plasmid DNA into pDNA/Au@pDM/Fe3 O4 and efficiently mediated gene therapy. The multifunctional applications of pDNA/Au@pDM/Fe3 O4 nanocomposites in trimodal imaging and combined photothermal/gene therapy are demonstrated using a xenografted rat glioma nude mouse model. The present study demonstrates that the proper assembly of different inorganic nanoparticles and polycations is an effective strategy to construct new multifunctional theranostic systems. PMID:26996155

  12. nanosheets for gene therapy

    NASA Astrophysics Data System (ADS)

    Kou, Zhongyang; Wang, Xin; Yuan, Renshun; Chen, Huabin; Zhi, Qiaoming; Gao, Ling; Wang, Bin; Guo, Zhaoji; Xue, Xiaofeng; Cao, Wei; Guo, Liang

    2014-10-01

    A new class of two-dimensional (2D) nanomaterial, transition metal dichalcogenides (TMDCs) such as MoS2, MoSe2, WS2, and WSe2 which have fantastic physical and chemical properties, has drawn tremendous attention in different fields recently. Herein, we for the first time take advantage of the great potential of MoS2 with well-engineered surface as a novel type of 2D nanocarriers for gene delivery and therapy of cancer. In our system, positively charged MoS2-PEG-PEI is synthesized with lipoic acid-modified polyethylene glycol (LA-PEG) and branched polyethylenimine (PEI). The amino end of positively charged nanomaterials can bind to the negatively charged small interfering RNA (siRNA). After detection of physical and chemical characteristics of the nanomaterial, cell toxicity was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Polo-like kinase 1 (PLK1) was investigated as a well-known oncogene, which was a critical regulator of cell cycle transmission at multiple levels. Through knockdown of PLK1 with siRNA carried by novel nanovector, qPCR and Western blot were used to measure the interfering efficiency; apoptosis assay was used to detect the transfection effect of PLK1. All results showed that the novel nanocarrier revealed good biocompatibility, reduced cytotoxicity, as well as high gene-carrying ability without serum interference, thus would have great potential for gene delivery and therapy.

  13. Saporin suicide gene therapy.

    PubMed

    Zarovni, Natasa; Vago, Riccardo; Fabbrini, Maria Serena

    2009-01-01

    New genes useful in suicide gene therapy are those encoding toxins such as plant ribosome-inactivating proteins (RIPs), which can irreversibly block protein synthesis, triggering apoptotic cell death. Plasmids expressing a cytosolic saporin (SAP) gene from common soapwort (Saponaria officinalis) are generated by placing the region encoding the mature plant toxin under the control of strong viral promoters and may be placed under tumor-specific promoters. The ability of the resulting constructs to inhibit protein synthesis is tested in cultured tumor cells co-transfected with a luciferase reporter gene. SAP expression driven by the cytomegalovirus (CMV) promoter (pCI-SAP) demonstrates that only 10 ng ofplasmid DNA per 1.6 x 10(4) B16 melanoma cells drastically reduces luciferase reporter activity to 18% of that in control cells (1). Direct intratumoral injections are performed in an aggressive melanoma model. B16 melanoma-bearing mice injected with pCI-SAP complexed with lipofectamine or N-(2,3-dioleoyloxy-1-propyl) trimethylammonium methyl sulfate (DOTAP) show a noteworthy attenuation in tumor growth, and this effect is significantly augmented by repeated administrations of the DNA complexes. Here, we describe in detail this cost-effective and safe suicide gene approach. PMID:19565907

  14. Cardiac Gene Therapy

    PubMed Central

    Chaanine, Antoine H.; Kalman, Jill; Hajjar, Roger J.

    2010-01-01

    Heart failure is a chronic progressive disorder where frequent and recurrent hospitalizations are associated with high mortality and morbidity. The incidence and the prevalence of this disease will increase with the increase in the number of the aging population of the United States. Understanding the molecular pathology and pathophysiology of this disease will uncover novel targets and therapies that can restore the function or attenuate the damage of malfunctioning cardiomyocytes by gene therapy that becomes an interesting and a promising field for the treatment of heart failure as well as other diseases in the future. Of equal importance is developing vectors and delivery methods that can efficiently transduce the majority of the cardiomyocytes, that can offer a long term expression and that can escape the host immune response. Recombinant adeno-associated virus vectors have the potential to become a promising novel therapeutic vehicles for molecular medicine in the future. PMID:21092890

  15. [Combination therapy for invasive aspergillosis].

    PubMed

    Ruiz-Camps, Isabel

    2011-03-01

    The frequency of invasive fungal infections, and specifically invasive aspergillosis, has increased in the last few decades. Despite the development of new antifungal agents, these infections are associated with high mortality, ranging from 40% to 80%, depending on the patient and the localization of the infection. To reduce these figures, several therapeutic strategies have been proposed, including combination therapy. Most of the available data on the efficacy of these combinations are from experimental models, in vitro data and retrospective observational studies or studies with a small number of patients that have included both patients in first-line treatment and those receiving rescue therapy; in addition there are many patients with possible forms of aspergillosis and few with demonstrated or probable forms. To date, there is no evidence that combination therapy has significantly higher efficacy than monotherapy; however, combination therapy could be indicated in severe forms of aspergillosis, or forms with central nervous involvement or extensive pulmonary involvement with respiratory insufficiency, etc. Among the combinations, the association of an echinocandin--the group that includes micafungin--with voriconazole or liposomal amphotericin B seems to show synergy. These combinations are those most extensively studied in clinical trials and therefore, although the grade of evidence is low, are recommended by the various scientific societies. PMID:21420576

  16. Endogenous MCM7 MicroRNA Cluster as a Novel Platform to Multiplex Small Interfering and Nucleolar RNAs for Combinational HIV-1 Gene Therapy

    PubMed Central

    Chung, Janet; Zhang, Jane; Li, Haitang; Ouellet, Dominique L.; DiGiusto, David L.

    2012-01-01

    Abstract Combinational therapy with small RNA inhibitory agents against multiple viral targets allows efficient inhibition of viral production by controlling gene expression at critical time points. Here we explore combinations of different classes of therapeutic anti-HIV-1 RNAs expressed from within the context of an intronic MCM7 (minichromosome maintenance complex component-7) platform that naturally harbors 3 microRNAs (miRNAs). We replaced the endogenous miRNAs with anti-HIV small RNAs, including small interfering RNAs (siRNAs) targeting HIV-1 tat and rev messages that function to induce post-transcriptional gene silencing by the RNA interference pathway, a nucleolar-localizing RNA ribozyme that targets the conserved U5 region of HIV-1 transcripts for degradation, and finally nucleolar trans-activation response (TAR) and Rev-binding element (RBE) RNA decoys designed to sequester HIV-1 Tat and Rev proteins inside the nucleolus. We demonstrate the versatility of the MCM7 platform in expressing and efficiently processing the siRNAs as miRNA mimics along with nucleolar small RNAs. Furthermore, three of the combinatorial constructs tested potently suppressed viral replication during a 1-month HIV challenge, with greater than 5-log inhibition compared with untransduced, HIV-1-infected CEM T lymphocytes. One of the most effective constructs contains an anti-HIV siRNA combined with a nucleolar-localizing U5 ribozyme and TAR decoy. This represents the first efficacious example of combining Drosha-processed siRNAs with small nucleolar ribonucleoprotein (snoRNP)-processed nucleolar RNA chimeras from a single intron platform for effective inhibition of viral replication. Moreover, we demonstrated enrichment/selection for cells expressing levels of the antiviral RNAs that provide optimal inhibition under the selective pressure of HIV. The combinations of si/snoRNAs represent a new paradigm for combinatorial RNA-based gene therapy applications. PMID:22834872

  17. Gene therapy in keratoconus

    PubMed Central

    Farjadnia, Mahgol; Naderan, Mohammad; Mohammadpour, Mehrdad

    2015-01-01

    Keratoconus (KC) is the most common ectasia of the cornea and is a common reason for corneal transplant. Therapeutic strategies that can arrest the progression of this disease and modify the underlying pathogenesis are getting more and more popularity among scientists. Cumulating data represent strong evidence of a genetic role in the pathogenesis of KC. Different loci have been identified, and certain mutations have also been mapped for this disease. Moreover, Biophysical properties of the cornea create an appropriate candidate of this tissue for gene therapy. Immune privilege, transparency and ex vivo stability are among these properties. Recent advantage in vectors, besides the ability to modulate the corneal milieu for accepting the target gene for a longer period and fruitful translation, make a big hope for stupendous results reasonable. PMID:25709266

  18. Prospects for gene therapy.

    PubMed

    Ali, Robin R

    2004-01-01

    Inherited retinal disease, which includes conditions such as retinitis pigmentosa (RP), affects about 1/3000 of the population in the Western world. It is characterized by gradual loss of vision and results from mutations in any one of 60 or so different genes. There are currently no effective treatments, but many of the genes have now been identified and their functions elucidated, providing a major impetus to develop gene-based treatments. Many of the disease genes are photoreceptor- or retinal pigment epithelium (RPE) cell specific. Since adeno-associated viral (AAV) vectors can be used for efficient gene transfer to these two cell types, we are developing AAV-mediated gene therapy approaches for inherited retinal degeneration using animal models that have defects in these cells. The retinal degeneration slow (rds or Prph2Rd2/Rd) mouse, a model of recessive RP, lacks a functional gene encoding peripherin 2, which is a photoreceptor-specific protein required for the formation of outer segment discs. We have previously demonstrated restoration of photoreceptor ultrastructure and function by AAV-mediated gene transfer of peripherin 2. We have now extended our assessment to central visual neuronal responses in order to show an improvement of central visual function. The Royal College of Surgeons (RCS) rat, provides another model of recessive RP. Here the defect is due to a defect in Mertk, a gene that is expressed in the RPE and encodes a receptor tyrosine kinase that is thought to be involved in the recognition and binding of outer segment debris. The gene defect results in the inability of the RPE to phagocytose the shed outer segments from photoreceptor cells. The resulting accumulation of debris between the RPE and the neuroretina leads to progressive loss of photoreceptor cells. AAV-mediated delivery of Mertk to the RPE results in reduction of debris indicating that the phagocytosing function of the RPE is restored and delays the degeneration of the

  19. Combined modality doxorubicin-based chemotherapy and chitosan-mediated p53 gene therapy using double-walled microspheres for treatment of human hepatocellular carcinoma

    PubMed Central

    Xu, Qingxing; Leong, Jiayu; Chua, Qi Yi; Chi, Yu Tse; Chow, Pierce Kah-Hoe; Pack, Daniel W.; Wang, Chi-Hwa

    2013-01-01

    The therapeutic efficiency of combined chemotherapy and gene therapy on human hepatocellular carcinoma HepG2 cells was investigated using double-walled microspheres that consisted of a poly(D,L-lactic-co-glycolic acid) (PLGA) core surrounded by a poly(L-lactic acid) (PLLA) shell layer and fabricated via the precision particle fabrication (PPF) technique. Here, double-walled microspheres were used to deliver doxorubicin (Dox) and/or chitosan-DNA nanoparticles containing the gene encoding the p53 tumor suppressor protein (chi-p53), loaded in the core and shell phases, respectively. Preliminary studies on chi-DNA nanoparticles were performed to optimize gene transfer to HepG2 cells. The transfection efficiency of chi-DNA nanoparticles was optimal at an N/P ratio of 7. In comparison to the 25-kDa branched polyethylenimine (PEI), chitosan showed no inherent toxicity towards the cells. Next, the therapeutic efficiencies of Dox and/or chi-p53 in microsphere formulations were compared to free drug(s) and evaluated in terms of growth inhibition, and cellular expression of tumor suppressor p53 and apoptotic caspase 3 proteins. Overall, the combined Dox and chi-p53 treatment exhibited enhanced cytotoxicity as compared to either Dox or chi-p53 treatments alone. Moreover, the antiproliferative effect was more substantial when cells were treated with microspheres than those treated with free drugs. High p53 expression was maintained during a five-day period, and was largely due to the controlled and sustained release of the microspheres. Moreover, increased activation of caspase 3 was observed, and was likely to have been facilitated by high levels of p53 expression. Overall, double-walled microspheres present a promising dual anticancer delivery system for combined chemotherapy and gene therapy. PMID:23578555

  20. Combined modality doxorubicin-based chemotherapy and chitosan-mediated p53 gene therapy using double-walled microspheres for treatment of human hepatocellular carcinoma.

    PubMed

    Xu, Qingxing; Leong, Jiayu; Chua, Qi Yi; Chi, Yu Tse; Chow, Pierce Kah-Hoe; Pack, Daniel W; Wang, Chi-Hwa

    2013-07-01

    The therapeutic efficiency of combined chemotherapy and gene therapy on human hepatocellular carcinoma HepG2 cells was investigated using double-walled microspheres that consisted of a poly(D,L-lactic-co-glycolic acid) (PLGA) core surrounded by a poly(L-lactic acid) (PLLA) shell layer and fabricated via the precision particle fabrication (PPF) technique. Here, double-walled microspheres were used to deliver doxorubicin (Dox) and/or chitosan-DNA nanoparticles containing the gene encoding the p53 tumor suppressor protein (chi-p53), loaded in the core and shell phases, respectively. Preliminary studies on chi-DNA nanoparticles were performed to optimize gene transfer to HepG2 cells. The transfection efficiency of chi-DNA nanoparticles was optimal at an N/P ratio of 7. In comparison to the 25-kDa branched polyethylenimine (PEI), chitosan showed no inherent toxicity towards the cells. Next, the therapeutic efficiencies of Dox and/or chi-p53 in microsphere formulations were compared to free drug(s) and evaluated in terms of growth inhibition, and cellular expression of tumor suppressor p53 and apoptotic caspase 3 proteins. Overall, the combined Dox and chi-p53 treatment exhibited enhanced cytotoxicity as compared to either Dox or chi-p53 treatments alone. Moreover, the antiproliferative effect was more substantial when cells were treated with microspheres than those treated with free drugs. High p53 expression was maintained during a five-day period, and was largely due to the controlled and sustained release of the microspheres. Moreover, increased activation of caspase 3 was observed, and was likely to have been facilitated by high levels of p53 expression. Overall, double-walled microspheres present a promising dual anticancer delivery system for combined chemotherapy and gene therapy. PMID:23578555

  1. Adenovirus Vectors for Gene Therapy, Vaccination and Cancer Gene Therapy

    PubMed Central

    Wold, William S.M.; Toth, Karoly

    2015-01-01

    Adenovirus vectors are the most commonly employed vector for cancer gene therapy. They are also used for gene therapy and as vaccines to express foreign antigens. Adenovirus vectors can be replication-defective; certain essential viral genes are deleted and replaced by a cassette that expresses a foreign therapeutic gene. Such vectors are used for gene therapy, as vaccines, and for cancer therapy. Replication-competent (oncolytic) vectors are employed for cancer gene therapy. Oncolytic vectors are engineered to replicate preferentially in cancer cells and to destroy cancer cells through the natural process of lytic virus replication. Many clinical trials indicate that replication-defective and replication-competent adenovirus vectors are safe and have therapeutic activity. PMID:24279313

  2. Identification of a set of genes associated with response to interleukin-2 and interferon-α combination therapy for renal cell carcinoma through genome-wide gene expression profiling

    PubMed Central

    MIZUMORI, OSAMU; ZEMBUTSU, HITOSHI; KATO, YOICHIRO; TSUNODA, TATSUHIKO; MIYA, FUYUKI; MORIZONO, TAKASHI; TSUKAMOTO, TAIJI; FUJIOKA, TOMOAKI; TOMITA, YOSHIHIKO; KITAMURA, TADAICHI; OZONO, SEIICHIRO; MIKI, TSUNEHARU; NAITO, SEIJI; AKAZA, HIDEYUKI; NAKAMURA, YUSUKE

    2010-01-01

    Interleukin (IL)-2 and interferon (IFN)-α combination therapy for metastatic renal cell carcinoma (RCC) improves the prognosis for a subset of patients, while some patients suffer from severe adverse drug reactions with little benefit. To establish a method to predict responses to this combination therapy (approximately 30% response rate), the gene expression profiles of primary RCCs were analyzed using an oligoDNA microarray consisting of 38,500 genes or ESTs, after enrichment of the cancer cell population by laser micro-beam microdissection. The analysis of 10 responders and 18 non-responders identified 24 genes that exhibited significant differential expression between the two groups. In addition, the patients whose tumors did not express HLA-DQA1 or HLA-DQB1 molecules demonstrated poor clinical response. Exclusion of patients with tumors lacking either of these two genes is likely to improve the response rate to IL-2 and IFN-α combination therapy from 30 to 67%, indicating that a simple pretreatment test provides useful information with which to subselect patients with renal cancer in order to improve the efficacy of this treatment and reduce unnecessary medical costs. PMID:22993625

  3. Magnetic nanoparticles: Applications in gene delivery and gene therapy.

    PubMed

    Majidi, Sima; Zeinali Sehrig, Fatemeh; Samiei, Mohammad; Milani, Morteza; Abbasi, Elham; Dadashzadeh, Kianoosh; Akbarzadeh, Abolfazl

    2016-06-01

    Gene therapy is defined as the direct transfer of genetic material to tissues or cells for the treatment of inherited disorders and acquired diseases. For gene delivery, magnetic nanoparticles (MNPs) are typically combined with a delivery platform to encapsulate the gene, and promote cell uptake. Delivery technologies that have been used with MNPs contain polymeric, viral, as well as non-viral platforms. In this review, we focus on targeted gene delivery using MNPs. PMID:25727710

  4. Optimized human CYP4B1 in combination with the alkylator prodrug 4-ipomeanol serves as a novel suicide gene system for adoptive T-cell therapies.

    PubMed

    Roellecke, K; Virts, E L; Einholz, R; Edson, K Z; Altvater, B; Rossig, C; von Laer, D; Scheckenbach, K; Wagenmann, M; Reinhardt, D; Kramm, C M; Rettie, A E; Wiek, C; Hanenberg, H

    2016-07-01

    Engineering autologous or allogeneic T cells to express a suicide gene can control potential toxicity in adoptive T-cell therapies. We recently reported the development of a novel human suicide gene system that is based on an orphan human cytochrome P450 enzyme, CYP4B1, and the naturally occurring alkylator prodrug 4-ipomeanol. The goal of this study was to systematically develop a clinically applicable self-inactivating lentiviral vector for efficient co-expression of CYP4B1 as an ER-located protein with two distinct types of cell surface proteins, either MACS selection genes for donor lymphocyte infusions after allogeneic stem cell transplantation or chimeric antigen receptors for retargeting primary T cells. The U3 region of the myeloproliferative sarcoma virus in combination with the T2A site was found to drive high-level expression of our CYP4B1 mutant with truncated CD34 or CD271 as MACS suitable selection markers. This lentiviral vector backbone was also well suited for co-expression of CYP4B1 with a codon-optimized CD19 chimeric antigen receptor (CAR) construct. Finally, 4-ipomeanol efficiently induced apoptosis in primary T cells that co-express mutant CYP4B1 and the divergently located MACS selection and CAR genes. In conclusion, we here developed a clinically suited lentiviral vector that supports high-level co-expression of cell surface proteins with a potent novel human suicide gene. PMID:27092941

  5. Impact of α-Targeted Radiation Therapy on Gene Expression in a Pre-Clinical Model for Disseminated Peritoneal Disease when Combined with Paclitaxel

    PubMed Central

    Yong, Kwon Joong; Milenic, Diane E.; Baidoo, Kwamena E.; Brechbiel, Martin W.

    2014-01-01

    To better understand the molecular basis of the enhanced cell killing effected by the combined modality of paclitaxel and 212Pb-trastuzumab (Pac/212Pb-trastuzumab), gene expression in LS-174T i.p. xenografts was investigated 24 h after treatment. Employing a real time quantitative PCR array (qRT-PCR array), 84 DNA damage response genes were quantified. Differentially expressed genes following therapy with Pac/212Pb-trastuzumab included those involved in apoptosis (BRCA1, CIDEA, GADD45α, GADD45γ, GML, IP6K3, PCBP4, PPP1R15A, RAD21, and p73), cell cycle (BRCA1, CHK1, CHK2, GADD45α, GML, GTSE1, NBN, PCBP4, PPP1R15A, RAD9A, and SESN1), and damaged DNA repair (ATRX, BTG2, EXO1, FEN1, IGHMBP2, OGG1, MSH2, MUTYH, NBN, PRKDC, RAD21, and p73). This report demonstrates that the increased stressful growth arrest conditions induced by the Pac/212Pb-trastuzumab treatment suppresses cell proliferation through the regulation of genes which are involved in apoptosis and damaged DNA repair including single and double strand DNA breaks. Furthermore, the study demonstrates that 212Pb-trastuzumab potentiation of cell killing efficacy results from the perturbation of genes related to the mitotic spindle checkpoint and BASC (BRCA1-associated genome surveillance complex), suggesting cross-talk between DNA damage repair and the spindle damage response. PMID:25268703

  6. Gene therapy on demand: site specific regulation of gene therapy.

    PubMed

    Jazwa, Agnieszka; Florczyk, Urszula; Jozkowicz, Alicja; Dulak, Jozef

    2013-08-10

    Since 1990 when the first clinical gene therapy trial was conducted, much attention and considerable promise have been given to this form of treatment. Gene therapy has been used with success in patients suffering from severe combined immunodeficiency syndromes (X-SCID and ADA-deficiency), Leber's congenital amaurosis, hemophilia, β-thalassemia and adrenoleukodystrophy. Last year, the first therapeutic vector (Glybera) for treatment of lipoprotein lipase deficiency has been registered in the European Union. Nevertheless, there are still several numerous issues that need to be improved to make this technique more safe, effective and easily accessible for patients. Introduction of the therapeutic gene to the given cells should provide the level of expression which will restore the production of therapeutic protein to normal values or will provide therapeutic efficacy despite not fully physiological expression. However, in numerous diseases the expression of therapeutic genes has to be kept at certain level for some time, and then might be required to be switched off to be activated again when worsening of the symptoms may aggravate the risk of disease relapse. In such cases the promoters which are regulated by local conditions may be more required. In this article the special emphasis is to discuss the strategies of regulation of gene expression by endogenous stimuli. Particularly, the hypoxia- or miRNA-regulated vectors offer the possibilities of tight but, at the same time, condition-dependent and cell-specific expression. Such means have been already tested in certain pathophysiological conditions. This creates the chance for the translational approaches required for development of effective treatments of so far incurable diseases. PMID:23566848

  7. Recombinant adeno-associated virus-mediated gene transfer for the potential therapy of adenosine deaminase-deficient severe combined immune deficiency.

    PubMed

    Silver, Jared N; Elder, Melissa; Conlon, Thomas; Cruz, Pedro; Wright, Amy J; Srivastava, Arun; Flotte, Terence R

    2011-08-01

    Severe combined immune deficiency due to adenosine deaminase (ADA) deficiency is a rare, potentially fatal pediatric disease, which results from mutations within the ADA gene, leading to metabolic abnormalities and ultimately profound immunologic and nonimmunologic defects. In this study, recombinant adeno-associated virus (rAAV) vectors based on serotypes 1 and 9 were used to deliver a secretory version of the human ADA (hADA) gene to various tissues to promote immune reconstitution following enzyme expression in a mouse model of ADA deficiency. Here, we report that a single-stranded rAAV vector, pTR2-CB-Igκ-hADA, (1) facilitated successful gene delivery to multiple tissues, including heart, skeletal muscle, and kidney, (2) promoted ectopic expression of hADA, and (3) allowed enhanced serum-based enzyme activity over time. Moreover, the rAAV-hADA vector packaged in serotype 9 capsid drove partial, prolonged, and progressive immune reconstitution in ADA-deficient mice. Overview Summary Gene therapies for severe combined immune deficiency due to adenosine deaminase (ADA) deficiency (ADA-SCID) over two decades have exclusively involved retroviral vectors targeted to lymphocytes and hematopoietic progenitor cells. These groundbreaking gene therapies represented an unprecedented revolution in clinical medicine but in most cases did not fully correct the immune deficiency and came with the potential risk of insertional mutagenesis. Alternatively, recombinant adeno-associated virus (rAAV) vectors have gained attention as valuable tools for gene transfer, having demonstrated no pathogenicity in humans, minimal immunogenicity, long-term efficacy, ease of administration, and broad tissue tropism (Muzyczka, 1992 ; Flotte et al., 1993 ; Kessler et al., 1996 ; McCown et al., 1996 ; Lipkowitz et al., 1999 ; Marshall, 2001 ; Chen et al., 2003 ; Conlon and Flotte, 2004 ; Griffey et al., 2005 ; Pacak et al., 2006 ; Stone et al., 2008 ; Liu et al., 2009 ; Choi et al., 2010

  8. Suppression of human breast tumors in NOD/SCID mice by CD44 shRNA gene therapy combined with doxorubicin treatment

    PubMed Central

    Van Pham, Phuc; Vu, Ngoc Bich; Duong, Thuy Thanh; Nguyen, Tam Thanh; Truong, Nhung Hai; Phan, Nhan Lu Chinh; Vuong, Tue Gia; Pham, Viet Quoc; Nguyen, Hoang Minh; Nguyen, Kha The; Nguyen, Nhung Thi; Nguyen, Khue Gia; Khat, Lam Tan; Van Le, Dong; Truong, Kiet Dinh; Phan, Ngoc Kim

    2012-01-01

    Background Breast cancer stem cells with a CD44+CD24− phenotype are the origin of breast tumors. Strong CD44 expression in this population indicates its important role in maintaining the stem cell phenotype. Previous studies show that CD44 down-regulation causes CD44+CD24− breast cancer stem cells to differentiate into non-stem cells that are sensitive to antitumor drugs and lose many characteristics of the original cells. In this study, we determined tumor suppression in non-obese severe combined immunodeficiency mice using CD44 shRNA therapy combined with doxorubicin treatment. Methods Tumor-bearing non-obese severe combined immunodeficiency mice were established by injection of CD44+CD24− cells. To track CD44+CD24− cells, green fluorescence protein was stably transduced using a lentiviral vector prior to injection into mice. The amount of CD44 shRNA lentiviral vector used for transduction was based on CD44 down-regulation by in vitro CD44 shRNA transduction. Mice were treated with direct injection of CD44 shRNA lentiviral vector into tumors followed by doxorubicin administration after 48 hours. The effect was evaluated by changes in the size and weight of tumors compared with that of the control. Results The combination of CD44 down-regulation and doxorubicin strongly suppressed tumor growth with significant differences in tumor sizes and weights compared with that of CD44 down-regulation or doxorubicin treatment alone. In the combination of CD44 down-regulation and doxorubicin group, the tumor weight was significantly decreased by 4.38-fold compared with that of the control group. Conclusion These results support a new strategy for breast cancer treatment by combining gene therapy with chemotherapy. PMID:22649280

  9. Gene therapy for CNS diseases - Krabbe disease.

    PubMed

    Rafi, Mohammad A

    2016-01-01

    This is a brief report of the 19th Annual Meeting of the American Society of Gene and Cell Therapy that took place from May 4th through May 7th, 2016 in Washington, DC, USA. While the meeting provided many symposiums, lectures, and scientific sessions this report mainly focuses on one of the sessions on the "Gene Therapy for central nervous system (CNS) Diseases" and specifically on the "Gene Therapy for the globoid cell leukodystrophy or Krabbe disease. Two presentations focused on this subject utilizing two animal models of this disease: mice and dog models. Different serotypes of adeno-associate viral vectors (AAV) alone or in combination with bone marrow transplantations were used in these research projects. The Meeting of the ASGCT reflected continuous growth in the fields of gene and cell therapy and brighter forecast for efficient treatment options for variety of human diseases. PMID:27525222

  10. Combined gene/cell therapies provide long-term and pervasive rescue of multiple pathological symptoms in a murine model of globoid cell leukodystrophy.

    PubMed

    Ricca, Alessandra; Rufo, Nicole; Ungari, Silvia; Morena, Francesco; Martino, Sabata; Kulik, Wilem; Alberizzi, Valeria; Bolino, Alessandra; Bianchi, Francesca; Del Carro, Ubaldo; Biffi, Alessandra; Gritti, Angela

    2015-06-15

    Globoid cell leukodystrophy (GLD) is a lysosomal storage disease caused by deficient activity of β-galactocerebrosidase (GALC). The infantile forms manifest with rapid and progressive central and peripheral demyelination, which represent a major hurdle for any treatment approach. We demonstrate here that neonatal lentiviral vector-mediated intracerebral gene therapy (IC GT) or transplantation of GALC-overexpressing neural stem cells (NSC) synergize with bone marrow transplant (BMT) providing dramatic extension of lifespan and global clinical-pathological rescue in a relevant GLD murine model. We show that timely and long-lasting delivery of functional GALC in affected tissues ensured by the exclusive complementary mode of action of the treatments underlies the outstanding benefit. In particular, the contribution of neural stem cell transplantation and IC GT during the early asymptomatic stage of the disease is instrumental to enhance long-term advantage upon BMT. We clarify the input of central nervous system, peripheral nervous system and periphery to the disease, and the relative contribution of treatments to the final therapeutic outcome, with important implications for treatment strategies to be tried in human patients. This study gives proof-of-concept of efficacy, tolerability and clinical relevance of the combined gene/cell therapies proposed here, which may constitute a feasible and effective therapeutic opportunity for children affected by GLD. PMID:25749991

  11. Combined gene/cell therapies provide long-term and pervasive rescue of multiple pathological symptoms in a murine model of globoid cell leukodystrophy

    PubMed Central

    Ricca, Alessandra; Rufo, Nicole; Ungari, Silvia; Morena, Francesco; Martino, Sabata; Kulik, Wilem; Alberizzi, Valeria; Bolino, Alessandra; Bianchi, Francesca; Del Carro, Ubaldo; Biffi, Alessandra; Gritti, Angela

    2015-01-01

    Globoid cell leukodystrophy (GLD) is a lysosomal storage disease caused by deficient activity of β-galactocerebrosidase (GALC). The infantile forms manifest with rapid and progressive central and peripheral demyelination, which represent a major hurdle for any treatment approach. We demonstrate here that neonatal lentiviral vector-mediated intracerebral gene therapy (IC GT) or transplantation of GALC-overexpressing neural stem cells (NSC) synergize with bone marrow transplant (BMT) providing dramatic extension of lifespan and global clinical–pathological rescue in a relevant GLD murine model. We show that timely and long-lasting delivery of functional GALC in affected tissues ensured by the exclusive complementary mode of action of the treatments underlies the outstanding benefit. In particular, the contribution of neural stem cell transplantation and IC GT during the early asymptomatic stage of the disease is instrumental to enhance long-term advantage upon BMT. We clarify the input of central nervous system, peripheral nervous system and periphery to the disease, and the relative contribution of treatments to the final therapeutic outcome, with important implications for treatment strategies to be tried in human patients. This study gives proof-of-concept of efficacy, tolerability and clinical relevance of the combined gene/cell therapies proposed here, which may constitute a feasible and effective therapeutic opportunity for children affected by GLD. PMID:25749991

  12. Gene therapy for prostate cancer.

    PubMed

    Tangney, Mark; Ahmad, Sarfraz; Collins, Sara A; O'Sullivan, Gerald C

    2010-05-01

    Cancer remains a leading cause of morbidity and mortality. Despite advances in understanding, detection, and treatment, it accounts for almost one-fourth of all deaths per year in Western countries. Prostate cancer is currently the most commonly diagnosed noncutaneous cancer in men in Europe and the United States, accounting for 15% of all cancers in men. As life expectancy of individuals increases, it is expected that there will also be an increase in the incidence and mortality of prostate cancer. Prostate cancer may be inoperable at initial presentation, unresponsive to chemotherapy and radiotherapy, or recur following appropriate treatment. At the time of presentation, patients may already have metastases in their tissues. Preventing tumor recurrence requires systemic therapy; however, current modalities are limited by toxicity or lack of efficacy. For patients with such metastatic cancers, the development of alternative therapies is essential. Gene therapy is a realistic prospect for the treatment of prostate and other cancers, and involves the delivery of genetic information to the patient to facilitate the production of therapeutic proteins. Therapeutics can act directly (eg, by inducing tumor cells to produce cytotoxic agents) or indirectly by upregulating the immune system to efficiently target tumor cells or by destroying the tumor's vasculature. However, technological difficulties must be addressed before an efficient and safe gene medicine is achieved (primarily by developing a means of delivering genes to the target cells or tissue safely and efficiently). A wealth of research has been carried out over the past 20 years, involving various strategies for the treatment of prostate cancer at preclinical and clinical trial levels. The therapeutic efficacy observed with many of these approaches in patients indicates that these treatment modalities will serve as an important component of urological malignancy treatment in the clinic, either in isolation or

  13. Gene Therapy Targeting Glaucoma: Where Are We?

    PubMed Central

    Liu, Xuyang; Rasmussen, Carol A.; Gabelt, B’Ann T.; Brandt, Curtis R.; Kaufman, Paul L.

    2010-01-01

    In a chronic disease such as glaucoma, a therapy that provides a long lasting local effect, with minimal systemic side effects, while circumventing the issue of patient compliance, is very attractive. The field of gene therapy is growing rapidly and ocular applications are expanding. Our understanding of the molecular pathogenesis of glaucoma is leading to greater specificity in ocular tissue targeting. Improvements in gene delivery techniques, refinement of vector construction methods, and development of better animal models combine to bring this potential therapy closer to reality. PMID:19539835

  14. Gene therapy: progress and predictions

    PubMed Central

    Collins, Mary; Thrasher, Adrian

    2015-01-01

    The first clinical gene delivery, which involved insertion of a marker gene into lymphocytes from cancer patients, was published 25 years ago. In this review, we describe progress since then in gene therapy. Patients with some inherited single-gene defects can now be treated with their own bone marrow stem cells that have been engineered with a viral vector carrying the missing gene. Patients with inherited retinopathies and haemophilia B can also be treated by local or systemic injection of viral vectors. There are also a number of promising gene therapy approaches for cancer and infectious disease. We predict that the next 25 years will see improvements in safety, efficacy and manufacture of gene delivery vectors and introduction of gene-editing technologies to the clinic. Gene delivery may also prove a cost-effective method for the delivery of biological medicines. PMID:26702034

  15. Gene Therapy for Retinal Diseases

    PubMed Central

    Samiy, Nasrollah

    2014-01-01

    Gene therapy has a growing research potential particularly in the field of ophthalmic and retinal diseases owing to three main characteristics of the eye; accessibility in terms of injections and surgical interventions, its immune-privileged status facilitating the accommodation to the antigenicity of a viral vector, and tight blood-ocular barriers which save other organs from unwanted contamination. Gene therapy has tremendous potential for different ocular diseases. In fact, the perspective of gene therapy in the field of eye research does not confine to exclusive monogenic ophthalmic problems and it has the potential to include gene based pharmacotherapies for non-monogenic problems such as age related macular disease and diabetic retinopathy. The present article has focused on how gene transfer into the eye has been developed and used to treat retinal disorders with no available therapy at present. PMID:25709778

  16. Association of ITPA gene polymorphisms and the risk of ribavirin-induced anemia in HIV/hepatitis C virus (HCV)-coinfected patients receiving HCV combination therapy.

    PubMed

    Domingo, Pere; Guardiola, Josep M; Salazar, Juliana; Torres, Ferran; Mateo, M Gracia; Pacho, Cristina; Del Mar Gutierrez, M; Lamarca, Karuna; Fontanet, Angels; Martin, Jordi; Muñoz, Jessica; Vidal, Francesc; Baiget, Montserrat

    2012-06-01

    Polymorphisms of the ITPA gene have been associated with anemia during combination therapy in hepatitis C virus (HCV)-monoinfected patients. Our aim was to confirm this association in HIV/HCV-coinfected patients. In this prospective, observational study, 73 HIV/HCV-coinfected patients treated with pegylated interferon plus ribavirin (RBV) were enrolled. Two single nucleotide polymorphisms within or adjacent to the ITPA gene (rs1127354 and rs7270101) were genotyped. The associations between the ITPA genotype and anemia or treatment outcome were examined. Fifty-nine patients (80.8%) had CC at rs1127354, whereas 14 (19.2%) had a CA/AA ITPA genotype. Percent decreases from baseline hemoglobin level were significantly greater in patients with the CC genotype than in those with the CA/AA genotype at week 4 (P = 0.0003), week 12 (P < 0.0001), and week 36 (P = 0.0102) but not at the end of treatment. RBV dose reduction was more often needed in patients with the CC genotype than in those with the CA/AA genotype (odds ratio [OR] = 11.81; 95% confidence interval [CI] = 1.45 to 256.17; P = 0.0039), as was erythropoietin therapy (OR = 8.28; 95% CI = 1.04 to 371.12; P = 0.0057). Risk factors independently associated with percent hemoglobin nadir decrease were RBV dose reduction (OR = 11.72; 95% CI = 6.82 to 16.63; P < 0.001), baseline hemoglobin (OR = 1.69; 95% CI = 0.23 to 3.15; P = 0.024), and body mass index (OR = -0.7; 95% CI = -1.43 to 0.03; P = 0.061). ITPA polymorphism was not an independent predictor of sustained virological response. Polymorphisms at rs1127354 in the ITPA gene influence hemoglobin levels during combination HCV therapy and the need for RBV dose reduction and erythropoietin use in HIV/HCV-coinfected patients. PMID:22430973

  17. Association of ITPA Gene Polymorphisms and the Risk of Ribavirin-Induced Anemia in HIV/Hepatitis C Virus (HCV)-Coinfected Patients Receiving HCV Combination Therapy

    PubMed Central

    Guardiola, Josep M.; Salazar, Juliana; Torres, Ferran; Mateo, M. Gracia; Pacho, Cristina; del Mar Gutierrez, M.; Lamarca, Karuna; Fontanet, Angels; Martin, Jordi; Muñoz, Jessica; Vidal, Francesc; Baiget, Montserrat

    2012-01-01

    Polymorphisms of the ITPA gene have been associated with anemia during combination therapy in hepatitis C virus (HCV)-monoinfected patients. Our aim was to confirm this association in HIV/HCV-coinfected patients. In this prospective, observational study, 73 HIV/HCV-coinfected patients treated with pegylated interferon plus ribavirin (RBV) were enrolled. Two single nucleotide polymorphisms within or adjacent to the ITPA gene (rs1127354 and rs7270101) were genotyped. The associations between the ITPA genotype and anemia or treatment outcome were examined. Fifty-nine patients (80.8%) had CC at rs1127354, whereas 14 (19.2%) had a CA/AA ITPA genotype. Percent decreases from baseline hemoglobin level were significantly greater in patients with the CC genotype than in those with the CA/AA genotype at week 4 (P = 0.0003), week 12 (P < 0.0001), and week 36 (P = 0.0102) but not at the end of treatment. RBV dose reduction was more often needed in patients with the CC genotype than in those with the CA/AA genotype (odds ratio [OR] = 11.81; 95% confidence interval [CI] = 1.45 to 256.17; P = 0.0039), as was erythropoietin therapy (OR = 8.28; 95% CI = 1.04 to 371.12; P = 0.0057). Risk factors independently associated with percent hemoglobin nadir decrease were RBV dose reduction (OR = 11.72; 95% CI = 6.82 to 16.63; P < 0.001), baseline hemoglobin (OR = 1.69; 95% CI = 0.23 to 3.15; P = 0.024), and body mass index (OR = −0.7; 95% CI = −1.43 to 0.03; P = 0.061). ITPA polymorphism was not an independent predictor of sustained virological response. Polymorphisms at rs1127354 in the ITPA gene influence hemoglobin levels during combination HCV therapy and the need for RBV dose reduction and erythropoietin use in HIV/HCV-coinfected patients. PMID:22430973

  18. Gene Therapy for Lung Cancer.

    PubMed

    Lara-Guerra, Humberto; Roth, Jack A

    2016-01-01

    Gene therapy was originally conceived to treat monogenic diseases. The replacement of a defective gene with a functional gene can theoretically cure the disease. In cancer, multiple genetic defects are present and the molecular profile changes during the course of the disease, making the replacement of all defective genes impossible. To overcome these difficulties, various gene therapy strategies have been adopted, including immune stimulation, transfer of suicide genes, inhibition of driver oncogenes, replacement of tumor-suppressor genes that could mediate apoptosis or anti-angiogenesis, and transfer of genes that enhance conventional treatments such as radiotherapy and chemotherapy. Some of these strategies have been tested successfully in non-small-cell lung cancer patients and the results of laboratory studies and clinical trials are reviewed herein. PMID:27481008

  19. Human Studies of Angiogenic Gene Therapy

    PubMed Central

    Gupta, Rajesh; Tongers, Jörn; Losordo, Douglas W.

    2009-01-01

    Despite significant advances in medical, interventional, and surgical therapy for coronary and peripheral arterial disease, the burden of these illnesses remains high. To address this unmet need, the science of therapeutic angiogenesis has been evolving for almost two decades. Early pre-clinical studies and phase I clinical trials achieved promising results with growth factors administered as recombinant proteins or as single-agent gene therapies, and data accumulated through 10 years of clinical trials indicate that gene therapy has an acceptable safety profile. However, more rigorous phase II and phase III clinical trials have failed to unequivocally demonstrate that angiogenic agents are beneficial under the conditions and in the patients studied to date. Investigators have worked to understand the biology of the vascular system and to incorporate their findings into new treatments for patients with ischemic disease. Recent gene- and cell-therapy trials have demonstrated the bioactivity of several new agents and treatment strategies. Collectively, these observations have renewed interest in the mechanisms of angiogenesis and deepened our understanding of the complexity of vascular regeneration. Gene therapy that incorporates multiple growth factors, approaches that combine cell and gene therapy, and the administration of "master switch" agents that activate numerous downstream pathways are among the credible and plausible steps forward. In this review, we will examine the clinical development of angiogenic therapy, summarize several of the lessons learned during the conduct of these trials, and suggest how this prior experience may guide the conduct of future preclinical investigations and clinical trials. PMID:19815827

  20. Strategies in Gene Therapy for Glioblastoma

    PubMed Central

    Kwiatkowska, Aneta; Nandhu, Mohan S.; Behera, Prajna; Chiocca, E. Antonio; Viapiano, Mariano S.

    2013-01-01

    Glioblastoma (GBM) is the most aggressive form of brain cancer, with a dismal prognosis and extremely low percentage of survivors. Novel therapies are in dire need to improve the clinical management of these tumors and extend patient survival. Genetic therapies for GBM have been postulated and attempted for the past twenty years, with variable degrees of success in pre-clinical models and clinical trials. Here we review the most common approaches to treat GBM by gene therapy, including strategies to deliver tumor-suppressor genes, suicide genes, immunomodulatory cytokines to improve immune response, and conditionally-replicating oncolytic viruses. The review focuses on the strategies used for gene delivery, including the most common and widely used vehicles (i.e., replicating and non-replicating viruses) as well as novel therapeutic approaches such as stem cell-mediated therapy and nanotechnologies used for gene delivery. We present an overview of these strategies, their targets, different advantages, and challenges for success. Finally, we discuss the potential of gene therapy-based strategies to effectively attack such a complex genetic target as GBM, alone or in combination with conventional therapy. PMID:24202446

  1. Gene therapy on the move

    PubMed Central

    Kaufmann, Kerstin B; Büning, Hildegard; Galy, Anne; Schambach, Axel; Grez, Manuel

    2013-01-01

    The first gene therapy clinical trials were initiated more than two decades ago. In the early days, gene therapy shared the fate of many experimental medicine approaches and was impeded by the occurrence of severe side effects in a few treated patients. The understanding of the molecular and cellular mechanisms leading to treatment- and/or vector-associated setbacks has resulted in the development of highly sophisticated gene transfer tools with improved safety and therapeutic efficacy. Employing these advanced tools, a series of Phase I/II trials were started in the past few years with excellent clinical results and no side effects reported so far. Moreover, highly efficient gene targeting strategies and site-directed gene editing technologies have been developed and applied clinically. With more than 1900 clinical trials to date, gene therapy has moved from a vision to clinical reality. This review focuses on the application of gene therapy for the correction of inherited diseases, the limitations and drawbacks encountered in some of the early clinical trials and the revival of gene therapy as a powerful treatment option for the correction of monogenic disorders. PMID:24106209

  2. [Combination therapy of hypopharyngeal cancer].

    PubMed

    Miyahara, H

    1987-06-01

    Between 1978 and 1983, ninety-three patients with cancer of the hypopharynx were treated. They were evaluated as to sex, age, primary site, TNM classification, stage, habits of smoking and drinking, past history of irradiation, treatment modality and end results. Eighty-seven percent of the patients visited us at as late a stage as advanced stage III or IV, and were treated mainly by combined therapy involving irradiation and pharyngolaryngoesophagectomy. The 3-year and 5-year survival rates were 38.6% and 33.3%, respectively. After December 1983, 14 new patients with advanced disease including three with coervical esophageal cancer were treated with neo-adjuvant combination chemotherapy which included cisplatin, peplomycin, methotrexate, and bleomycin over two courses of therapy. The response rate (CR + PR) was high, being 82% for the primary tumor and 78% for the metastatic node. Histopathological effects of neo-adjuvant chemotherapy were studied in the resected specimens. The evaluation was based on the Ohboshi-Shimosato classification. The histological effects did not agree with the clinical effects. Grade II b change was evaluated mostly in CR cases and grade II a change was seen in PR cases. It thus seems that neo-adjuvant chemotherapy prior to surgery and/or radiation including cisplatin and other agents is very useful as a multidisciplinary treatment for cancer of the hypopharynx. PMID:3592715

  3. Gene Therapy for "Bubble Boy" Disease.

    PubMed

    Hoggatt, Jonathan

    2016-07-14

    Adenosine deaminase (ADA) deficiency results in the accumulation of toxic metabolites that destroy the immune system, causing severe combined immunodeficiency (ADA-SCID), often referred to as the "bubble boy" disease. Strimvelis is a European Medicines Agency approved gene therapy for ADA-SCID patients without a suitable bone marrow donor. PMID:27419862

  4. Vectors for cancer gene therapy.

    PubMed

    Zhang, J; Russell, S J

    1996-09-01

    Many viral and non-viral vector systems have now been developed for gene therapy applications. In this article, the pros and cons of these vector systems are discussed in relation to the different cancer gene therapy strategies. The protocols used in cancer gene therapy can be broadly divided into six categories including gene transfer to explanted cells for use as cell-based cancer vaccines; gene transfer to a small number of tumour cells in situ to achieve a vaccine effect; gene transfer to vascular endothelial cells (VECs) lining the blood vessels of the tumour to interfere with tumour angiogenesis; gene transfer to T lymphocytes to enhance their antitumour effector capability; gene transfer to haemopoietic stem cells (HSCs) to enhance their resistance to cytotoxic drugs and gene transfer to a large number of tumour cells in situ to achieve nonimmune tumour reduction with or without bystander effect. Each of the six strategies makes unique demands on the vector system and these are discussed with reference to currently available vectors. Aspects of vector biology that are in need of further development are discussed in some detail. The final section points to the potential use of replicating viruses as delivery vehicles for efficient in vivo gene transfer to disseminated cancers. PMID:9034598

  5. Gene Therapy in Heart Failure

    PubMed Central

    Vinge, Leif Erik; Raake, Philip W.; Koch, Walter J.

    2008-01-01

    With increasing knowledge of basic molecular mechanisms governing the development of heart failure (HF), the possibility of specifically targeting key pathological players is evolving. Technology allowing for efficient in vivo transduction of myocardial tissue with long-term expression of a transgene enables translation of basic mechanistic knowledge into potential gene therapy approaches. Gene therapy in HF is in its infancy clinically with the predominant amount of experience being from animal models. Nevertheless, this challenging and promising field is gaining momentum as recent preclinical studies in larger animals have been carried out and, importantly, there are 2 newly initiated phase I clinical trials for HF gene therapy. To put it simply, 2 parameters are needed for achieving success with HF gene therapy: (1) clearly identified detrimental/beneficial molecular targets; and (2) the means to manipulate these targets at a molecular level in a sufficient number of cardiac cells. However, several obstacles do exist on our way to efficient and safe gene transfer to human myocardium. Some of these obstacles are discussed in this review; however, it primarily focuses on the molecular target systems that have been subjected to intense investigation over the last decade in an attempt to make gene therapy for human HF a reality. PMID:18566312

  6. Gene Therapy for Cardiovascular Disease

    PubMed Central

    2003-01-01

    The last decade has seen substantial advances in the development of gene therapy strategies and vector technology for the treatment of a diverse number of diseases, with a view to translating the successes observed in animal models into the clinic. Perhaps the overwhelming drive for the increase in vascular gene transfer studies is the current lack of successful long-term pharmacological treatments for complex cardiovascular diseases. The increase in cardiovascular disease to epidemic proportions has also led many to conclude that drug therapy may have reached a plateau in its efficacy and that gene therapy may represent a realistic solution to a long-term problem. Here, we discuss gene delivery approaches and target diseases. PMID:12721517

  7. Gene therapy for primary immunodeficiencies.

    PubMed

    Fischer, A; Hacein-Bey Abina, S; Touzot, F; Cavazzana, M

    2015-12-01

    Gene therapy has effectively entered Medicine via the field of primary immunodeficiencies (PID). Because hematopoietic stem cells are accessible and because it was understood that genetic correction of lymphocyte progenitor cells carrying a genetic defect impairing differentiation, could result in the production of long-lived T lymphocytes, it was reasoned that ex vivo gene transfer in hematopoietic cells could lead to disease phenotype correction. Retroviral vectors were designed to ex vivo transduce such cells. This has indeed been shown to lead to sustained correction of the T cell immunodeficiency associated with two forms of severe combined immunodeficiencies (SCID) for now more than ten years. Occurrence in some patients of genotoxicity related to retroviral vectors integration close to and transactivation of oncogenes has led to the development of retroviral vectors devoid of its enhancer element. Results of recent trials performed for several forms of PID indeed suggest that their use is both safe and efficacious. It is thus anticipated that their application to the treatment of many more life threatening PID will be developed over the coming years. PMID:25708106

  8. Cytokine-enhanced vaccine and interferon-β plus suicide gene as combined therapy for spontaneous canine sarcomas.

    PubMed

    Finocchiaro, Liliana M E; Villaverde, Marcela S; Gil-Cardeza, María L; Riveros, María D; Glikin, Gerardo C

    2011-10-01

    Eleven soft tissue- and five osteosarcoma canine patients were subjected to: (i) periodic subcutaneous injection of irradiated xenogeneic cells secreting hGM-CSF and hIL-2 mixed with allogeneic or autologous tumor homogenates; and (ii) injections of cIFN-β and HSVtk-carrying lipoplexes and ganciclovir, marginal (after surgery) and/or intratumoral (in the case of partial tumor resection, local relapse or small surface tumors). This treatment alone (4 patients) or as surgery adjuvant (12 patients), was safe and well tolerated. In those patients presenting local disease (6/11), the suicide gene plus cIFN-β treatment induced local antitumor activity evidenced by the objective responses (3 complete, 2 partial) and stable diseases (2). In addition, the treatment prevented or delayed local relapse, regional metastases (lymph nodes developed only in 3/16) and distant metastases (0/16), suggesting a strong systemic antitumor immunity. The most encouraging result was the long survival times of 10 patients (>1 year, with good quality of life). PMID:21300385

  9. Gene Therapy in Corneal Transplantation

    PubMed Central

    Qazi, Yureeda; Hamrah, Pedram

    2014-01-01

    Corneal transplantation is the most commonly performed organ transplantation. Immune privilege of the cornea is widely recognized, partly because of the relatively favorable outcome of corneal grafts. The first-time recipient of corneal allografts in an avascular, low-risk setting can expect a 90% success rate without systemic immunosuppressive agents and histocompatibility matching. However, immunologic rejection remains the major cause of graft failure, particularly in patients with a high risk for rejection. Corticosteroids remain the first-line therapy for the prevention and treatment of immune rejection. However, current pharmacological measures are limited in their side-effect profiles, repeated application, lack of targeted response, and short duration of action. Experimental ocular gene therapy may thus present new horizons in immunomodulation. From efficient viral vectors to sustainable alternative splicing, we discuss the progress of gene therapy in promoting graft survival and postulate further avenues for gene-mediated prevention of allogeneic graft rejection. PMID:24138037

  10. Combination of pGL1-TNF-alpha gene and radiation (proton and gamma-ray) therapy against brain tumor.

    PubMed

    Gridley, D S; Li, J; Kajioka, E H; Andres, M L; Moyers, M F; Slater, J M

    2000-01-01

    The major goal of this study was to determine if treatment with the newly constructed plasmid vector for tumor necrosis factor-alpha (pGL1-TNF-alpha) could enhance the radiation-induced growth reduction of C6 rat glioma. In addition, two different forms of ionizing radiation (gamma-rays and protons) were utilized. Body and spleen mass, leukocyte blastogenesis, and flow cytometry analysis of cell populations in blood and spleen were performed to detect toxicity, if any, and to identify mechanisms that may correlate with the anti-tumor action of combination therapy. C6 tumor cells were implanted subcutaneously into athymic mice and allowed to become established before treatment initiation. pGL1-TNF-alpha was injected into the implanted tumors, which were then irradiated 16-18 hr later; each modality was administered three times over 8-9 days. The addition of pGL1-TNF-alpha significantly enhanced the anti-tumor effect of radiation (p < 0.05). The effect was more than additive, since pGL1-TNF-alpha alone did not slow tumor progression and radiation alone had only a modest effect. Administration of pGL1-TNF-alpha together with proton radiation resulted in tumor volumes that were 23% smaller than those following pGL1-TNF-alpha + gamma-ray treatment; a similar differential in tumor size was observed in the groups receiving only radiation. Body weights and blood and spleen cell analyses did not reveal treatment-related toxicity. High basal proliferation of blood leukocytes and increased B cell levels in the spleen were associated with pGL1-TNF-alpha + 60Co (gamma-radiation) or proton treatment. Overall, the results suggest that the pGL1-TNF-alpha/radiation combination is effective and safe under the conditions employed. This is the first study to combine gene and proton radiation therapy and to show, under controlled experimental conditions, that proton radiation may have a greater effect against malignant tumors compared to the same physical dose of gamma-radiation. PMID

  11. Gene therapy for Parkinson's disease.

    PubMed

    Lawlor, Patricia A; During, Matthew J

    2004-03-01

    Parkinson's disease (PD) is a debilitating neurodegenerative disorder arising from loss of dopaminergic neurons in the substantia nigra pars compacta and subsequent depletion of striatal dopamine levels, which results in distressing motor symptoms. The current standard pharmacological treatment for PD is direct replacement of dopamine by treatment with its precursor, levodopa (L-dopa). However, this does not significantly alter disease progression and might contribute to the ongoing pathology. Several features of PD make this disease one of the most promising targets for clinical gene therapy of any neurological disease. The confinement of the major pathology to a compact, localised neuronal population and the anatomy of the basal ganglia circuitry mean that global gene transfer is not required and there are well-defined sites for gene transfer. The multifactorial aetiology of idiopathic PD means that it is unlikely any single gene will cure the disease, and as a result at least three separate gene-transfer strategies are currently being pursued: transfer of genes for enzymes involved in dopamine production; transfer of genes for growth factors involved in dopaminergic cell survival and regeneration; and transfer of genes to reset neuronal circuitry by switching cellular phenotype. The merits of these strategies are discussed here, along with remaining hurdles that might impede transfer of gene therapy technology to the clinic as a treatment for PD. PMID:15000692

  12. [Review of cancer gene therapy].

    PubMed

    Tani, K

    2000-09-01

    Since the first introduction of gene-marking technology to the clinical field in 1989 by Rosenberg et al, more than 4,000 patients have participated gene therapy clinical trials worldwide. Most of those patients had malignancies. Nearly 90% of clinical trials, however, are still in phase I-II stage, and only 3 protocols are in the phase III stage in early 2000. As current clinical gene therapy protocols are intended essentially to examine the safety and feasibility of the new strategy, more careful and steady steps may be required before these clinical trials really produce clinical benefits. Focused on cancer gene therapy, direct and indirect approaches are undertaken. In the direct approach, HSV-TK, HLA-B7, or p53 tumor suppressor gene therapies are the three major approaches historically. In for the indirect approach, cytokine or adhesion molecule gene-transferred tumor cells or immunocompetent cells are considered to be promising to enhance patients' antitumor immunity. In particular, we have concentrated on developing immuno gene therapy using GM-CSF-transduced autologous tumor cells. We have already recruited three patients with stage IV renal cell cancer. In all patients, peripheral blood T cells were mobilized after vaccination with GM-CSF-transduced tumor cells, and two of the three patients showed the persistence of cytotoxic T cells against autologous tumor cells. Clinically, one patient has been followed up with stable disease for more than one year since the start of vaccination. Further clinical studies are required to obtain conclusive results. PMID:11022677

  13. Combination of doxorubicin-based chemotherapy and polyethylenimine/p53 gene therapy for the treatment of lung cancer using porous PLGA microparticles.

    PubMed

    Shi, Xiaozheng; Li, Chunjie; Gao, Sai; Zhang, Lingfei; Han, Haobo; Zhang, Jianxu; Shi, Wei; Li, Quanshun

    2014-10-01

    In this study, porous PLGA microparticles for the co-delivery of doxorubicin and PEI25K/p53 were successfully prepared by the water-oil-water emulsion solvent evaporation method, using ammonium bicarbonate as a porogen. The porous microparticles were obtained with a mean diameter of 22.9±11.8μm as determined by laser scattering particle size analysis. The particles' surface porous morphology and distributions of doxorubicin and p53 were systematically characterized by scanning electron microscopy, flow cytometry, fluorescence microscopy and confocal laser scanning microscopy, revealing that doxorubicin and the plasmid were successfully co-encapsulated. Encapsulation efficiencies of 88.2±1.7% and 36.5±7.5% were achieved for doxorubicin and the plasmid, respectively, demonstrating that the porous structure did not adversely affect payload encapsulation. Microparticles harboring both doxorubicin and PEI25K/p53 exhibited enhanced tumor growth inhibition and apoptosis induction compared to those loaded with either agent alone in A549 human lung adenocarcinoma cells. Overall, the porous PLGA microparticles provide a promising anticancer delivery system for combined chemotherapy and gene therapy, and have great potential as a tool for sustained local drug delivery by inhalation. PMID:25082753

  14. Gene therapy for paediatric leukaemia.

    PubMed

    Rousseau, R F; Bollard, C M; Heslop, H E

    2001-07-01

    Improvements in the chemotherapeutic and transplant regimens have had a significant impact in improving survival rates for paediatric leukaemia. However, there are still important problems to address including what options are available for patients with chemoresistant disease and what strategies are available to avoid the concerns regarding the toxicity associated with highly cytotoxic treatment regimens. Gene therapy and immunotherapy protocols hold great promise. Using gene transfer of a marker gene, a number of biological issues in the therapy of leukaemia have been addressed. For example, by gene marking autologous bone marrow grafts it has been possible to demonstrate that infused marrow contributes to relapse in acute and chronic myeloid leukaemias. In the allogeneic transplant setting, genetically modified T-cells have proven valuable for the prophylaxis and treatment of viral diseases and may have an important role in preventing or treating disease relapse. Gene transfer is also being used to modify tumour function, enhance immunogenicity, and confer drug-resistance to normal haematopoietic stem cells. With the continued scientific advancements in this field, gene therapy will almost certainly have a major impact on the treatment of paediatric leukaemia in the future. PMID:11727502

  15. Experimental therapies: gene therapies and oncolytic viruses.

    PubMed

    Hulou, M Maher; Cho, Choi-Fong; Chiocca, E Antonio; Bjerkvig, Rolf

    2016-01-01

    Glioblastoma is the most common and aggressive primary brain tumor in adults. Over the past three decades, the overall survival time has only improved by a few months, therefore novel alternative treatment modalities are needed to improve clinical management strategies. Such strategies should ultimately extend patient survival. At present, the extensive insight into the molecular biology of gliomas, as well as into genetic engineering techniques, has led to better decision processes when it comes to modifying the genome to accommodate suicide genes, cytokine genes, and tumor suppressor genes that may kill cancer cells, and boost the host defensive immune system against neoantigenic cytoplasmic and nuclear targets. Both nonreplicative viral vectors and replicating oncolytic viruses have been developed for brain cancer treatment. Stem cells, microRNAs, nanoparticles, and viruses have also been designed. These have been armed with transgenes or peptides, and have been used both in laboratory-based experiments as well as in clinical trials, with the aim of improving selective killing of malignant glioma cells while sparing normal brain tissue. This chapter reviews the current status of gene therapies for malignant gliomas and highlights the most promising viral and cell-based strategies under development. PMID:26948355

  16. Ethics of Gene Therapy Debated.

    ERIC Educational Resources Information Center

    Borman, Stu

    1991-01-01

    Presented are the highlights of a press conference featuring biomedical ethicist LeRoy Walters of Georgetown University and attorney Andrew Kimbrell of the Foundation on Economic Trends. The opposing points of view of these two speakers serve to outline the pros and cons of the gene therapy issue. (CW)

  17. Combining Individual Psychodynamics with Structural Family Therapy.

    ERIC Educational Resources Information Center

    Melito, Richard

    1988-01-01

    Presents integrative framework for combining central aspects of individual psychodynamics with structural family therapy in meaningful way. Explains how framework derives from developmental perspective. Presents case example to illustrate combined approach and demonstrate its utility. (Author/NB)

  18. [Gene therapy for osteoarticular disorders].

    PubMed

    Gouze, Jean-Noël; Evans, Christopher H; Ghivizzani, Steven C; Gouze, Elvire

    2007-03-01

    Osteoarticular disorders are the major cause of disability in Europe and North America. It is estimated that rheumatoid arthritis affects 1 % of the population and that more than two third of people over age 55 develop osteoarthritis. Because there are no satisfactory treatments, gene therapy offers a new therapeutic approach. The delivery of cDNA encoding anti-arthritic proteins to articular cells has shown therapeutic efficacy in numerous animal models in vivo. Through the development and the experimental progresses that have been made for both rheumatoid arthritis and osteoarthritis, this review discusses the different gene therapy strategies available today and the safety issues with which they may be associated. Among the different vectors available today, adeno-associated virus seems the best candidate for a direct in vivo gene delivery approach for the treatment of joint disorders. PMID:17349293

  19. Gene Therapy for Coagulation Disorders.

    PubMed

    Swystun, Laura L; Lillicrap, David

    2016-04-29

    Molecular genetic details of the human coagulation system were among the first successes of the genetic revolution in the 1980s. This information led to new molecular diagnostic strategies for inherited disorders of hemostasis and the development of recombinant clotting factors for the treatment of the common inherited bleeding disorders. A longer term goal of this knowledge has been the establishment of gene transfer to provide continuing access to missing or defective hemostatic proteins. Because of the relative infrequency of inherited coagulation factor disorders and the availability of safe and effective alternative means of management, the application of gene therapy for these conditions has been slow to realize clinical application. Nevertheless, the tools for effective and safe gene transfer are now much improved, and we have started to see examples of clinical gene therapy successes. Leading the way has been the use of adeno-associated virus-based strategies for factor IX gene transfer in hemophilia B. Several small phase 1/2 clinical studies using this approach have shown prolonged expression of therapeutically beneficial levels of factor IX. Nevertheless, before the application of gene therapy for coagulation disorders becomes widespread, several obstacles need to be overcome. Immunologic responses to the vector and transgenic protein need to be mitigated, and production strategies for clinical grade vectors require enhancements. There is little doubt that with the development of more efficient and facile strategies for genome editing and the application of other nucleic acid-based approaches to influence the coagulation system, the future of genetic therapies for hemostasis is bright. PMID:27126652

  20. Treating Immunodeficiency through HSC Gene Therapy.

    PubMed

    Booth, Claire; Gaspar, H Bobby; Thrasher, Adrian J

    2016-04-01

    Haematopoietic stem cell (HSC) gene therapy has been successfully employed as a therapeutic option to treat specific inherited immune deficiencies, including severe combined immune deficiencies (SCID) over the past two decades. Initial clinical trials using first-generation gamma-retroviral vectors to transfer corrective DNA demonstrated clinical benefit for patients, but were associated with leukemogenesis in a number of cases. Safer vectors have since been developed, affording comparable efficacy with an improved biosafety profile. These vectors are now in Phase I/II clinical trials for a number of immune disorders with more preclinical studies underway. Targeted gene editing allowing precise DNA correction via platforms such as ZFNs, TALENs and CRISPR/Cas9 may now offer promising strategies to improve the safety and efficacy of gene therapy in the future. PMID:26993219

  1. Gene Therapy and Children (For Parents)

    MedlinePlus

    ... screenings or other regular exams. previous continue The Future of Gene Therapy To cure genetic diseases, scientists ... Gene therapy's potential to revolutionize medicine in the future is exciting, and hopes are high for its ...

  2. Theranostic Imaging of Cancer Gene Therapy.

    PubMed

    Sekar, Thillai V; Paulmurugan, Ramasamy

    2016-01-01

    Gene-directed enzyme prodrug therapy (GDEPT) is a promising therapeutic approach for treating cancers of various phenotypes. This strategy is independent of various other chemotherapeutic drugs used for treating cancers where the drugs are mainly designed to target endogenous cellular mechanisms, which are different in various cancer subtypes. In GDEPT an external enzyme, which is different from the cellular proteins, is expressed to convert the injected prodrug in to a toxic metabolite, that normally kill cancer cells express this protein. Theranostic imaging is an approach used to directly monitor the expression of these gene therapy enzymes while evaluating therapeutic effect. We recently developed a dual-GDEPT system where we combined mutant human herpes simplex thymidine kinase (HSV1sr39TK) and E. coli nitroreductase (NTR) enzyme, to improve therapeutic efficiency of cancer gene therapy by simultaneously injecting two prodrugs at a lower dose. In this approach we use two different prodrugs such as ganciclovir (GCV) and CB1954 to target two different cellular mechanisms to kill cancer cells. The developed dual GDEPT system was highly efficacious than that of either of the system used independently. In this chapter, we describe the complete protocol involved for in vitro and in vivo imaging of therapeutic cancer gene therapy evaluation. PMID:27424910

  3. Combination Antifungal Therapy for Invasive Aspergillosis Revisited

    PubMed Central

    Panackal, Anil A.

    2016-01-01

    Invasive aspergillosis (IA) causes significant morbidity and mortality among immunocompromised hosts. Combination therapy with mold-active triazoles and echinocandins has been used with the hope of improving outcomes over monotherapy, especially in the setting of refractory disease. Herein, I update our prior systematic review and meta-analysis on combination therapy for salvage IA in the context of the recently published randomized clinical trial of combination therapy for primary IA. Clinicians should consider combination antifungals for IA in refractory disease despite immune reconstitution when there are concerns for resistance or pharmacokinetic variability. PMID:27441304

  4. [Realities and hopes of gene therapy].

    PubMed

    Zdanov, R I; Semenova, N V; Archakov, A I

    2000-01-01

    The work represents an introduction article of editors of special issue of the magazine devoted to gene therapy and therapeutics. The main results of clinical gene therapy in the past decade are critically considered in connection with a changes of paradigms of the field. They are: 1) change of the main target of genetic therapy--correction of defects in chromosomes--onto expression and/or output of target genes for gene therapy; 2) transfer from gene transplantation to cell transplantation; 3) tendency for the use of safe/non-viral vectors instead of viral ones.; and 4) conflict of interests in gene therapy. Outlooks in the field are discussed. PMID:11033881

  5. Statin combination therapy and cardiovascular risk reduction.

    PubMed

    Toth, Peter P; Farnier, Michel; Tomassini, Joanne E; Foody, JoAnne M; Tershakovec, Andrew M

    2016-05-01

    In numerous clinical trials, lowering LDL-C with statin therapy has been demonstrated to reduce the risk of cardiovascular disease (CVD) in primary and secondary prevention settings. Guidelines recommend statins for first-line therapy in cholesterol-lowering management of patients with CVD risk. Despite increased statin monotherapy use over the last decade, a number of patients with high CVD risk do not achieve optimal LDL-C lowering. Guidelines recommend consideration of statin combination therapy with nonstatin agents for these patients. However, combination therapy approaches have been hampered by neutral findings. Recently, ezetimibe added to simvastatin therapy reduced cardiovascular events in acute coronary syndrome patients, more than simvastatin alone. This article provides an overview of various agents in combination with statin therapy on cardiovascular outcomes. Other lipid-lowering agents in development, including PCSK9 and CETP inhibitors in development, are also described. PMID:27079178

  6. Vitamin D-related gene polymorphisms do not influence the outcome and serum vitamin D level in pegylated interferon/ribavirin therapy combined with protease inhibitor for patients with genotype 1b chronic hepatitis C.

    PubMed

    Arai, Taeang; Atsukawa, Masanori; Tsubota, Akihito; Kondo, Chisa; Shimada, Noritomo; Abe, Hiroshi; Itokawa, Norio; Nakagawa, Ai; Okubo, Tomomi; Aizawa, Yoshio; Iwakiri, Katsuhiko

    2015-11-01

    Although several vitamin D-related gene polymorphisms were reported to affect the outcome of pegylated interferon/ribavirin (PR) therapy in chronic hepatitis C patients, there are no reports on the impact of the vitamin D-related gene polymorphisms in PR therapy combined with protease inhibitor (PI). Vitamin D-related gene polymorphisms were determined in 177 genotype 1b-infected chronic hepatitis C patients who received 12 weeks of PR therapy with telaprevir, a first-generation PI, followed by 12 weeks of PR therapy. The sustained virologic response (SVR) rate was 83.1% (147 of 177 patients). The frequencies of vitamin D-related gene polymorphisms were: 83 non-TT and 94 TT genotypes for GC, 97 non-AA and 80 AA genotypes for DHCR7, 151 non-AA and 26 AA genotypes for CYP2R1, 162 non-GG and 15 GG genotypes for CYP27B1, and 105 non-GG and 72 GG genotypes for VDR gene. Multivariate analysis extracted IL28B TT genotype (P = 2.05 × 10(-6)) and serum 25(OH) D3 level (P = 0.024) as independent factors contributing to the achieving of SVR. The SVR rate in IL28B TT genotype patients with serum 25(OH) D3 level of < 25 ng/ml was significantly low compared to other patients. None of the vitamin D-related gene polymorphisms affected the treatment outcome and serum 25(OH) D3 level. In conclusions, the IL28B polymorphism and serum 25(OH) D3 level contributed significantly and independently to SVR in PR combined with PI for genotype 1b-infected chronic hepatitis C patients. However, none of vitamin D-related gene polymorphisms had an impact on the treatment outcome and serum 25(OH) D3 level. PMID:25964133

  7. Muscle Gene Therapy for Hemophilia

    PubMed Central

    Sabatino, Denise E.; Arruda, Valder R.

    2013-01-01

    Muscle-directed gene therapy for hemophilia is an attractive strategy for expression of therapeutic levels of clotting factor as evident from preclinical studies and an early phase clinical trial. Notably, local FIX expression by AAV-mediated direct intramuscular injection to skeletal muscle persists for years. Development of intravascular delivery of AAV vector approaches to skeletal muscle resulted in vector in widespread areas of the limb and increased expression of FIX in hemophilia B dogs. The use of FIX variants with improved biological activity may provide the opportunity to increase the efficacy of these approaches. Studies for hemophilia A are less developed at this point, but utilizing transgenes that improve hemostasis independent of FIX and FVIII has potential therapeutic application for both hemophilia A and B. Continuous monitoring of humoral and T cell responses to the transgene and AAV capsid in human trials will be critical for the translation of these promising approaches for muscle gene therapy for hemophilia. PMID:24883231

  8. Experimental Evolution of Resistance to Artemisinin Combination Therapy Results in Amplification of the mdr1 Gene in a Rodent Malaria Parasite

    PubMed Central

    Rodrigues, Louise A.; Henriques, Gisela; Borges, Sofia T.; Hunt, Paul; Sanchez, Cecília P.; Martinelli, Axel; Cravo, Pedro

    2010-01-01

    Background Lacking suitable alternatives, the control of malaria increasingly depends upon Artemisinin Combination Treatments (ACT): resistance to these drugs would therefore be disastrous. For ACTs, the biology of resistance to the individual components has been investigated, but experimentally induced resistance to component drugs in combination has not been generated. Methodology/Principal Findings We have used the rodent malaria parasite Plasmodium chabaudi to select in vivo resistance to the artesunate (ATN) + mefloquine (MF) version of ACT, through prolonged exposure of parasites to both drugs over many generations. The selection procedure was carried out over twenty-seven consecutive sub-inoculations under increasing ATN + MF doses, after which a genetically stable resistant parasite, AS-ATNMF1, was cloned. AS-ATNMF1 showed increased resistance to ATN + MF treatment and to artesunate or mefloquine administered separately. Investigation of candidate genes revealed an mdr1 duplication in the resistant parasites and increased levels of mdr1 transcripts and protein. There were no point mutations in the atpase6 or ubp1genes. Conclusion Resistance to ACTs may evolve even when the two drugs within the combination are taken simultaneously and amplification of the mdr1 gene may contribute to this phenotype. However, we propose that other gene(s), as yet unidentified, are likely to be involved. PMID:20657645

  9. Gene therapy approaches for spinal cord injury

    NASA Astrophysics Data System (ADS)

    Bright, Corinne

    As the biomedical engineering field expands, combination technologies are demonstrating enormous potential for treating human disease. In particular, intersections between the rapidly developing fields of gene therapy and tissue engineering hold promise to achieve tissue regeneration. Nonviral gene therapy uses plasmid DNA to deliver therapeutic proteins in vivo for extended periods of time. Tissue engineering employs biomedical materials, such as polymers, to support the regrowth of injured tissue. In this thesis, a combination strategy to deliver genes and drugs in a polymeric scaffold was applied to a spinal cord injury model. In order to develop a platform technology to treat spinal cord injury, several nonviral gene delivery systems and polymeric scaffolds were evaluated in vitro and in vivo. Nonviral vector trafficking was evaluated in primary neuronal culture to develop an understanding of the barriers to gene transfer in neurons and their supporting glia. Although the most efficient gene carrier in vitro differed from the optimal gene carrier in vivo, confocal and electron microscopy of these nonviral vectors provided insights into the interaction of these vectors with the nucleus. A novel pathway for delivering nanoparticles into the nuclei of neurons and Schwann cells via vesicle trafficking was observed in this study. Reporter gene expression levels were evaluated after direct and remote delivery to the spinal cord, and the optimal nonviral vector, dose, and delivery strategy were applied to deliver the gene encoding the basic fibroblast growth factor (bFGF) to the spinal cord. An injectable and biocompatible gel, composed of the amphiphillic polymer poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG) was evaluated as a drug and gene delivery system in vitro, and combined with the optimized nonviral gene delivery system to treat spinal cord injury. Plasmid DNA encoding the bFGF gene and the therapeutic NEP1--40 peptide

  10. Advances of gene therapy for primary immunodeficiencies

    PubMed Central

    Candotti, Fabio

    2016-01-01

    In the recent past, the gene therapy field has witnessed a remarkable series of successes, many of which have involved primary immunodeficiency diseases, such as X-linked severe combined immunodeficiency, adenosine deaminase deficiency, chronic granulomatous disease, and Wiskott-Aldrich syndrome. While such progress has widened the choice of therapeutic options in some specific cases of primary immunodeficiency, much remains to be done to extend the geographical availability of such an advanced approach and to increase the number of diseases that can be targeted. At the same time, emerging technologies are stimulating intensive investigations that may lead to the application of precise genetic editing as the next form of gene therapy for these and other human genetic diseases. PMID:27508076

  11. Successful Combination of Sequential Gene Therapy and Rescue Allo-HSCT in Two Children with X-CGD - Importance of Timing.

    PubMed

    Siler, Ulrich; Paruzynski, Anna; Holtgreve-Grez, Heidi; Kuzmenko, Elena; Koehl, Ulrike; Renner, Eleonore D; Alhan, Canan; de Loosdrecht, Arjan A van; Schwäble, Joachim; Pfluger, Thomas; Tchinda, Joelle; Schmugge, Markus; Jauch, Anna; Naundorf, Sonja; Kühlcke, Klaus; Notheis, Gundula; Güngor, Tayfun; Kalle, Christof V; Schmidt, Manfred; Grez, Manuel; Seger, Reinhard; Reichenbach, Janine

    2015-01-01

    We report on a series of sequential events leading to long-term survival and cure of pediatric X-linked chronic granulomatous disease (X-CGD) patients after gamma-retroviral gene therapy (GT) and rescue HSCT. Due to therapyrefractory life-threatening infections requiring hematopoietic stem cell transplantation (HSCT) but absence of HLAidentical donors, we treated 2 boys with X-CGD by GT. Following GT both children completely resolved invasive Aspergillus nidulans infections. However, one child developed dual insertional activation of ecotropic viral integration site 1 (EVI1) and signal transducer and activator of transcription 3 (STAT3) genes, leading to myelodysplastic syndrome (MDS) with monosomy 7. Despite resistance to mismatched allo-HSCT with standard myeloablative conditioning, secondary intensified rescue allo-HSCT resulted in 100 % donor chimerism and disappearance of MDS. The other child did not develop MDS despite expansion of a clone with a single insertion in the myelodysplasia syndrome 1 (MDS1) gene and was cured by early standard allo-HSCT. The slowly developing dominance of clones harboring integrations in MDS1-EVI1 may guide clinical intervention strategies, i.e. early rescue allo-HSCT, prior to malignant transformation. GT was essential for both children to survive and to clear therapy-refractory infections, and future GT with safer lentiviral self-inactivated (SIN) vectors may offer a therapeutic alternative for X-CGD patients suffering from life-threatening infections and lacking HLA-identical HSC donors. PMID:25981636

  12. Recent Advances in Combined Modality Therapy

    PubMed Central

    Nyati, Mukesh K.; Morgan, Meredith A.; Lawrence, Theodore S.

    2010-01-01

    Combined modality therapy emerged from preclinical data showing that carefully chosen drugs could enhance the sensitivity of tumor cells to radiation while having nonoverlapping toxicities. Recent advances in molecular biology involving the identification of cellular receptors, enzymes, and pathways involved in tumor growth and immortality have resulted in the development of biologically targeted drugs. This review highlights the recent clinical data in support of newer generation cytotoxic chemotherapies and systemic targeted agents in combination with radiation therapy. PMID:20413642

  13. Rifampin Combination Therapy for Nonmycobacterial Infections

    PubMed Central

    Forrest, Graeme N.; Tamura, Kimberly

    2010-01-01

    Summary: The increasing emergence of antimicrobial-resistant organisms, especially methicillin-resistant Staphylococcus aureus (MRSA), has resulted in the increased use of rifampin combination therapy. The data supporting rifampin combination therapy in nonmycobacterial infections are limited by a lack of significantly controlled clinical studies. Therefore, its current use is based upon in vitro or in vivo data or retrospective case series, all with major limitations. A prominent observation from this review is that rifampin combination therapy appears to have improved treatment outcomes in cases in which there is a low organism burden, such as biofilm infections, but is less effective when effective surgery to obtain source control is not performed. The clinical data support rifampin combination therapy for the treatment of prosthetic joint infections due to methicillin-sensitive S. aureus (MSSA) after extensive debridement and for the treatment of prosthetic heart valve infections due to coagulase-negative staphylococci. Importantly, rifampin-vancomycin combination therapy has not shown any benefit over vancomycin monotherapy against MRSA infections either clinically or experimentally. Rifampin combination therapy with daptomycin, fusidic acid, and linezolid needs further exploration for these severe MRSA infections. Lastly, an assessment of the risk-benefits is needed before the addition of rifampin to other antimicrobials is considered to avoid drug interactions or other drug toxicities. PMID:20065324

  14. Gene Therapy in the Cornea: 2005-present

    PubMed Central

    Mohan, Rajiv R.; Tovey, Jonathan C.K.; Sharma, Ajay; Tandon, Ashish

    2011-01-01

    Successful restoration of vision in human patients with gene therapy affirmed its promise to cure ocular diseases and disorders. The efficacy of gene therapy is contingent upon vector and mode of therapeutic DNA introduction into targeted cells/tissues. The cornea is an ideal tissue for gene therapy due to its ease of access and relative immune-privilege. Considerable progress has been made in the field of corneal gene therapy in last 5 years. Several new gene transfer vectors, techniques and approaches have evolved. Although corneal gene therapy is still in its early stages of development, the potential of gene-based interventions to treat corneal abnormalities have begun to surface. Identification of next generation viral and nanoparticle vectors, characterization of delivered gene levels, localization, and duration in the cornea, and significant success in controlling corneal disorders, particularly fibrosis and angiogenesis, in experimental animal disease models, with no major side effects have propelled gene therapy a step closer towards establishing gene-based therapies for corneal blindness. Recently, researchers have assessed the delivery of therapeutic genes for corneal diseases and disorders due to trauma, infections, chemical, mechanical, and surgical injury, and/or abnormal wound healing. This review provides an update on the developments in gene therapy for corneal diseases and discusses the barriers that hinder its utilization for delivering genes in the cornea. PMID:21967960

  15. Pharmacological properties of combination therapies for hypertension.

    PubMed

    Abernethy, D R

    1997-03-01

    Single drug therapy for the treatment of hypertension has traditionally been a standard of practice. More recently combination therapy as first-line treatment has gained acceptance both by the medical practice community and the US Food and Drug Administration. The advantages of combinations may be a synergistic or additive antihypertensive effect, metabolic improvement, or both. The combination of a thiazide-type diuretic and a potassium-sparing diuretic has been quite useful in the past to prevent the need for potassium supplementation. The combination of beta-adrenoceptor blockade and a thiazide diuretic results in an additive antihypertensive effect that permits the effective use of very low thiazide doses. The mechanism of antihypertensive effects of each member of the combination are complimentary with increased sympathetic outflow and renin-angiotensin axis activation induced by the diuretic being blunted by beta1-adrenergic blockade. Combinations not used as first-line therapy, such as angiotensin converting enzyme inhibitors or angiotensin receptor blockade and a thiazide diuretic, have complimentary antihypertensive mechanisms and have been useful in treating patient groups who do not respond well to converting enzyme inhibitor monotherapy. The combination of a calcium antagonist with diuretic therapy has an additive hypertensive effect as well; however, the complimentary mechanisms are less obvious. Finally, the combination of angiotensin converting enzyme inhibition and calcium antagonist therapy has been useful in selected patients, but again the complimentary mechanisms are less obvious. As first-line therapy, combinations for diuretics and beta1-receptor blockers have been useful for achieving increased antihypertensive effect with decreased adverse drug effect. PMID:9056702

  16. Gene therapy for bone healing

    PubMed Central

    Evans, Christopher H.

    2015-01-01

    Clinical problems in bone healing include large segmental defects, nonunion and delayed union of fractures, and spinal fusions. Gene-transfer technologies have the potential to aid healing by permitting the local delivery and sustained expression of osteogenic gene products within osseous lesions. Key questions for such an approach include the choice of transgene, vector and gene-transfer strategy. Most experimental data have been obtained using cDNAs encoding osteogenic growth factors such as bone morphogenetic protein-2 (BMP-2), BMP-4 and BMP-7, in conjunction with both nonviral and viral vectors using in vivo and ex vivo delivery strategies. Proof of principle has been convincingly demonstrated in small-animal models. Relatively few studies have used large animals, but the results so far are encouraging. Once a reliable method has been developed, it will be necessary to perform detailed pharmacological and toxicological studies, as well as satisfy other demands of the regulatory bodies, before human clinical trials can be initiated. Such studies are very expensive and often protracted. Thus, progress in developing a clinically useful gene therapy for bone healing is determined not only by scientific considerations, but also by financial constraints and the ambient regulatory environment. PMID:20569532

  17. Targeting Herpetic Keratitis by Gene Therapy

    PubMed Central

    Elbadawy, Hossein Mostafa; Gailledrat, Marine; Desseaux, Carole; Ponzin, Diego; Ferrari, Stefano

    2012-01-01

    Ocular gene therapy is rapidly becoming a reality. By November 2012, approximately 28 clinical trials were approved to assess novel gene therapy agents. Viral infections such as herpetic keratitis caused by herpes simplex virus 1 (HSV-1) can cause serious complications that may lead to blindness. Recurrence of the disease is likely and cornea transplantation, therefore, might not be the ideal therapeutic solution. This paper will focus on the current situation of ocular gene therapy research against herpetic keratitis, including the use of viral and nonviral vectors, routes of delivery of therapeutic genes, new techniques, and key research strategies. Whereas the correction of inherited diseases was the initial goal of the field of gene therapy, here we discuss transgene expression, gene replacement, silencing, or clipping. Gene therapy of herpetic keratitis previously reported in the literature is screened emphasizing candidate gene therapy targets. Commonly adopted strategies are discussed to assess the relative advantages of the protective therapy using antiviral drugs and the common gene therapy against long-term HSV-1 ocular infections signs, inflammation and neovascularization. Successful gene therapy can provide innovative physiological and pharmaceutical solutions against herpetic keratitis. PMID:23326647

  18. Immunomodulatory gene therapy in lysosomal storage disorders

    PubMed Central

    Koeberl, D.D.; Kishnani, P.S.

    2010-01-01

    Significant advances in therapy for lysosomal storage disorders have occurred with an accelerating pace over the past decade. Although enzyme replacement therapy has improved the outcome of lysosomal storage disorders, antibody responses have occurred and sometimes prevented efficacy, especially in cross-reacting immune material negative patients with Pompe disease. Preclinical gene therapy experiments have revealed the relevance of immune responses to long-term efficacy. The choice of regulatory cassette played a critical role in evading humoral and cellular immune responses to gene therapy in knockout mouse models, at least in adult animals. Liver-specific regulatory cassettes prevented antibody formation and enhanced the efficacy of gene therapy. Regulatory T cells prevented transgene directed immune responses, as shown by adoptive transfer of antigen-specific immune tolerance to enzyme therapy. Immunomodulatory gene therapy with a very low vector dose could enhance the efficacy of enzyme therapy in Pompe disease and other lysosomal storage disorders. PMID:19807648

  19. Immunomodulatory gene therapy in lysosomal storage disorders.

    PubMed

    Koeberl, Dwight D; Kishnani, Priya S

    2009-12-01

    Significant advances in therapy for lysosomal storage disorders have occurred with an accelerating pace over the past decade. Although enzyme replacement therapy has improved the outcome of lysosomal storage disorders, antibody responses have occurred and sometimes prevented efficacy, especially in cross-reacting immune material negative patients with Pompe disease. Preclinical gene therapy experiments have revealed the relevance of immune responses to long-term efficacy. The choice of regulatory cassette played a critical role in evading humoral and cellular immune responses to gene therapy in knockout mouse models, at least in adult animals. Liver-specific regulatory cassettes prevented antibody formation and enhanced the efficacy of gene therapy. Regulatory T cells prevented transgene directed immune responses, as shown by adoptive transfer of antigen-specific immune tolerance to enzyme therapy. Immunomodulatory gene therapy with a very low vector dose could enhance the efficacy of enzyme therapy in Pompe disease and other lysosomal storage disorders. PMID:19807648

  20. Promising combination therapies with gemcitabine.

    PubMed

    Robinson, Blaine W; Ostruszka, Leo; Im, Michael M; Shewach, Donna S

    2004-04-01

    Because treatment regimens for breast cancer commonly include gemcitabine, we evaluated two promising combinations in preclinical studies: gemcitabine (Gemzar; Eli Lilly and Company, Indianapolis, IN) with either ionizing radiation or docetaxel (Taxotere; Aventis Pharmaceuticals, Inc, Parsippany, NJ). In breast cancer cell lines that expressed either wild-type p53 (MCF-7) or mutant p53 (MCF-7/Adr), sensitivity to the cytotoxic effects of gemcitabine during a 24-hour incubation was similar (IC(50) values 80 and 60 nmol/L in MCF-7 and MCF-7/Adr, respectively). Both cell lines were well radiosensitized by gemcitabine at the corresponding IC(50), with radiation enhancement ratios of 1.6 to 1.7. Although the MCF-7 cells accumulated nearly twice as much gemcitabine triphosphate compared with the MCF-7/Adr cells, a similar reduction in 2'-deoxyadenosine 5'-triphosphate pools was observed. While the number of dying cells, as measured by sub-G1 DNA content or S-phase cells unable to replicate DNA, differed between the wild-type p53 or mutant p53-expressing cell lines, neither parameter correlated with radiosensitization. Docetaxel was a more potent cytotoxic agent than gemcitabine in MCF-7 cells (IC(50) = 1 nmol/L). Strong synergistic cytotoxicity was observed in cells treated with gemcitabine (24 hours) followed by docetaxel (24 hours) or the reverse sequence. However, simultaneous addition of the two drugs was antagonistic. To determine whether synergy with radiation or docetaxel was mediated by increased DNA damage, DNA double-strand breaks (double-strand breaks) were measured by immunostaining for phosphorylated H2AX. Ionizing radiation produced more double-strand breaks than gemcitabine alone, while no significant double-strand breaks formed with docetaxel alone. The addition of docetaxel or ionizing radiation to gemcitabine-treated cells did not increase H2AX foci formation. These results show that the combination of gemcitabine with ionizing radiation or docetaxel

  1. Targeted Gene Therapy of Cancer: Second Amendment toward Holistic Therapy.

    PubMed

    Barar, Jaleh; Omidi, Yadollah

    2013-01-01

    It seems solid tumors are developing smart organs with specialized cells creating specified bio-territory, the so called "tumor microenvironment (TME)", in which there is reciprocal crosstalk among cancer cells, immune system cells and stromal cells. TME as an intricate milieu also consists of cancer stem cells (CSCs) that can resist against chemotherapies. In solid tumors, metabolism and vascularization appears to be aberrant and tumor interstitial fluid (TIF) functions as physiologic barrier. Thus, chemotherapy, immunotherapy and gene therapy often fail to provide cogent clinical outcomes. It looms that it is the time to accept the fact that initiation of cancer could be generation of another form of life that involves a cluster of thousands of genes, while we have failed to observe all aspects of it. Hence, the current treatment modalities need to be re-visited to cover all key aspects of disease using combination therapy based on the condition of patients. Perhaps personalized cluster of genes need to be simultaneously targeted. PMID:23878787

  2. Cardiac gene therapy: are we there yet?

    PubMed

    Matkar, P N; Leong-Poi, H; Singh, K K

    2016-08-01

    The incidence of cardiovascular disease (CVD) is increasing throughout the world and is associated with elevated morbidity and mortality. Gene therapy to treat cardiac dysfunction is gaining importance because of the limited therapeutic benefit offered by pharmacotherapies. The growing knowledge of the complex signaling pathways and the development of sophisticated vectors and delivery systems, are facilitating identification and targeting of specific molecular candidates involved in initiation and progression of CVDs. Several preclinical and clinical studies have shown the therapeutic efficiency of gene therapy in different disease models and patients. Hence, gene therapy might plausibly become an unconventional treatment modality for CVD patients. In this review, we summarize the gene delivery carriers, modes of delivery, recent preclinical/clinical studies and potential therapeutic targets. We also briefly discuss the existing limitations of gene therapy, technical challenges surrounding gene carriers and delivery systems, and some approaches to overcome these limitations for bringing CVD gene therapy one step closer to reality. PMID:27128687

  3. Gene therapy in monogenic congenital myopathies.

    PubMed

    Guan, Xuan; Goddard, Melissa A; Mack, David L; Childers, Martin K

    2016-04-15

    Current treatment options for patients with monogenetic congenital myopathies (MCM) ameliorate the symptoms of the disorder without resolving the underlying cause. However, gene therapies are being developed where the mutated or deficient gene target is replaced. Preclinical findings in animal models appear promising, as illustrated by gene replacement for X-linked myotubular myopathy (XLMTM) in canine and murine models. Prospective applications and approaches to gene replacement therapy, using these disorders as examples, are discussed in this review. PMID:26454198

  4. Combined therapy in the treatment of dyslipidemia.

    PubMed

    Reiner, Zeljko

    2010-02-01

    This systematic review analyses the efficacy, tolerability and safety of combinations of different medicines used to treat dyslipidemias in clinical practice. A PubMed search up to January 2009, was conducted to identify relevant studies. Criteria used to identify studies included (1) English language, (2) published studies with original data or meta-analyses in peer-reviewed journals. Although statin treatment is a mainstay of dyslipidemia management today, complementary effects of other lipid-lowering and/or HDL-cholesterol-raising therapies might substantially increase the clinical benefits not only in the small minority of patients with severe dyslipidemias but in others as well. These therapies include combinations with bile acid sequestrants (cholestyramine, colestipol, colesevelam), ezetimibe, niacin, plant sterols, fibrates (fenofibrate, bezafibrate, gemfibrozil), and prescription omega-3 fatty acids. Therapeutic approaches which incorporate the use of multiple drugs combinations for dyslipidemia treatment should be more widely adopted since combination therapy might offer a means to increase the number of patients able to meet their lipoprotein goals according to the guidelines. However, it has to be stated that for most of these combination therapies data on cardiovascular outcomes are still lacking. PMID:19682080

  5. Bone Marrow Gene Therapy for HIV/AIDS

    PubMed Central

    Herrera-Carrillo, Elena; Berkhout, Ben

    2015-01-01

    Bone marrow gene therapy remains an attractive option for treating chronic immunological diseases, including acquired immunodeficiency syndrome (AIDS) caused by human immunodeficiency virus (HIV). This technology combines the differentiation and expansion capacity of hematopoietic stem cells (HSCs) with long-term expression of therapeutic transgenes using integrating vectors. In this review we summarize the potential of bone marrow gene therapy for the treatment of HIV/AIDS. A broad range of antiviral strategies are discussed, with a particular focus on RNA-based therapies. The idea is to develop a durable gene therapy that lasts the life span of the infected individual, thus contrasting with daily drug regimens to suppress the virus. Different approaches have been proposed to target either the virus or cellular genes encoding co-factors that support virus replication. Some of these therapies have been tested in clinical trials, providing proof of principle that gene therapy is a safe option for treating HIV/AIDS. In this review several topics are discussed, ranging from the selection of the antiviral molecule and the viral target to the optimal vector system for gene delivery and the setup of appropriate preclinical test systems. The molecular mechanisms used to formulate a cure for HIV infection are described, including the latest antiviral strategies and their therapeutic applications. Finally, a potent combination of anti-HIV genes based on our own research program is described. PMID:26193303

  6. Gene therapy oversight: lessons for nanobiotechnology.

    PubMed

    Wolf, Susan M; Gupta, Rishi; Kohlhepp, Peter

    2009-01-01

    Oversight of human gene transfer research ("gene therapy") presents an important model with potential application to oversight of nanobiology research on human participants. Gene therapy oversight adds centralized federal review at the National Institutes of Health's Office of Biotechnology Activities and its Recombinant DNA Advisory Committee to standard oversight of human subjects research at the researcher's institution (by the Institutional Review Board and, for some research, the Institutional Biosafety Committee) and at the federal level by the Office for Human Research Protections. The Food and Drug Administration's Center for Biologics Evaluation and Research oversees human gene transfer research in parallel, including approval of protocols and regulation of products. This article traces the evolution of this dual oversight system; describes how the system is already addressing nanobiotechnology in gene transfer: evaluates gene therapy oversight based on public opinion, the literature, and preliminary expert elicitation; and offers lessons of the gene therapy oversight experience for oversight of nanobiotechnology. PMID:20122108

  7. Combination stem cell therapy for heart failure

    PubMed Central

    2010-01-01

    Patients with congestive heart failure (CHF) that are not eligible for transplantation have limited therapeutic options. Stem cell therapy such as autologous bone marrow, mobilized peripheral blood, or purified cells thereof has been used clinically since 2001. To date over 1000 patients have received cellular therapy as part of randomized trials, with the general consensus being that a moderate but statistically significant benefit occurs. Therefore, one of the important next steps in the field is optimization. In this paper we discuss three ways to approach this issue: a) increasing stem cell migration to the heart; b) augmenting stem cell activity; and c) combining existing stem cell therapies to recapitulate a "therapeutic niche". We conclude by describing a case report of a heart failure patient treated with a combination stem cell protocol in an attempt to augment beneficial aspects of cord blood CD34 cells and mesenchymal-like stem cells. PMID:20398245

  8. Gene therapy of metachromatic leukodystrophy.

    PubMed

    Matzner, Ulrich; Gieselmann, Volkmar

    2005-01-01

    Metachromatic leukodystrophy (MLD) is a lysosomal storage disease that is caused by a deficiency of arylsulfatase A (ASA). The deficiency results in the intralysosomal accumulation of the acidic sphingolipid 3-O-sulfogalactosyl-ceramide (sulfatide). Patients suffer from progressive demyelination and die from multiple neurological deficits. Curative treatment is not available. ASA bears mannose 6-phosphate residues which function as recognition markers in endosome/lysosome-specific targeting pathways. The endocytic targeting route can be exploited to deliver exogenous ASA to the lysosomes of ASA-deficient cells. ASA knockout mice, which develop a disorder related to MLD, have therefore been treated by ex vivo and in vivo gene therapy. Following transplantation of bone marrow cells overexpressing ASA from a retroviral vector, donor-type cells secrete ASA, which is endocytosed by recipient cells. The enzyme transfer results in the metabolic cross-correction of recipient cells and the improvement of biochemical, histological and clinical parameters. For the transfer of the ASA cDNA to non-dividing cells, adenovirus, adeno-associated virus and lentivirus vectors have been constructed. Such vectors might be particularly advantageous for direct ASA gene delivery to the brain, which is the main site of disease in MLD. PMID:15709909

  9. Gene Therapy For Ischemic Heart Disease

    PubMed Central

    Lavu, Madhav; Gundewar, Susheel; Lefer, David J.

    2010-01-01

    Current pharmacologic therapy for ischemic heart disease suffers multiple limitations such as compliance issues and side effects of medications. Revascularization procedures often end with need for repeat procedures. Patients remain symptomatic despite maximal medical therapy. Gene therapy offers an attractive alternative to current pharmacologic therapies and may be beneficial in refractory disease. Gene therapy with isoforms of growth factors such as VEGF, FGF and HGF induces angiogenesis, decreases apoptosis and leads to protection in the ischemic heart. Stem cell therapy augmented with gene therapy used for myogenesis has proven to be beneficial in numerous animal models of myocardial ischemia. Gene therapy coding for antioxidants, eNOS, HSP, mitogen-activated protein kinase and numerous other anti apoptotic proteins have demonstrated significant cardioprotection in animal models. Clinical trials have demonstrated safety in humans apart from symptomatic and objective improvements in cardiac function. Current research efforts are aimed at refining various gene transfection techniques and regulation of gene expression in vivo in the heart and circulation to improve clinical outcomes in patients that suffer from ischemic heart disease. In this review article we will attempt to summarize the current state of both preclinical and clinical studies of gene therapy to combat myocardial ischemic disease. PMID:20600100

  10. Gene therapy for high-grade glioma

    PubMed Central

    Natsume, Atsushi

    2008-01-01

    The treatment of high-grade gliomas remains difficult despite recent advances in surgery, radiotherapy and chemotherapy. True advances may emerge from the increasing understanding in molecular biology and discovery of novel mechanisms for the delivery of tumoricidal agents. In an attempt to overcome this formidable neoplasm, molecular approaches using gene therapy have been investigated clinically since 1992. The clinical trials have mainly been classified into three approaches: suicide gene therapy, immune gene therapy and oncolytic viral therapy. In this article, we review these approaches, which have been studied in previous and ongoing clinical trials. PMID:19262115

  11. Advancements in gene transfer-based therapy for hemophilia A

    PubMed Central

    Doering, Christopher B; Spencer, H Trent

    2010-01-01

    Gene therapy has promised clinical benefit to those suffering with hemophilia A, but this benefit has not yet been realized. However, during the past two decades, basic and applied gene therapy research has progressed and the goal of gene therapy for hemophilia A is once again in our sights. The hemophilia A patient population suffers from a disease that requires invasive, lifelong management, is exorbitantly expensive to treat, has geographically limited treatment access and can become untreatable due to immune reactions to the treatment product. Subsequent to the cloning of the factor VIII gene and cDNA in the early 1980s, academic and commercial research laboratories began to pursue gene transfer-based therapies to supplement or supplant the available protein replacement therapy. However, to date, clinical trials for gene therapy of hemophilia A have been unsuccessful. Three trials have been conducted with each having tested a different gene-transfer strategy and each demonstrating that there is a considerable barrier to achieving sustained expression of therapeutic amounts of factor VIII. Recent progress has been made in gene-transfer technology and, relevant to hemophilia A, towards increasing the biosynthetic efficiency of factor VIII. These advances are now being combined to develop novel strategies to treat and possibly cure hemophilia A. PMID:20577574

  12. Mixture dynamics: Combination therapy in oncology.

    PubMed

    Gabrielsson, Johan; Gibbons, Francis D; Peletier, Lambertus A

    2016-06-10

    In recent years combination therapies have become increasingly popular in most therapeutic areas. We present a qualitative and quantitative approach and elucidate some of the challenges and solutions to a more optimal therapy. For tumor growth this involves the study of semi-mechanistic cell-growth/kill models with multiple sites of action. We introduce such models and analyze their dynamic properties using simulations and mathematical analysis. This is done for two specific case studies, one involving a single compound and one a combination of two compounds. We generalize the notion of Tumor Static Concentration to cases when two compounds are involved and develop a graphical method for determining the optimal combination of the two compounds, using ideas akin to those used in studies employing isobolograms. In studying the dynamics of the second case study we focus, not only on the different concentrations, but also on the different dosing regimens and pharmacokinetics of the two compounds. PMID:27050307

  13. Combination therapy for the treatment of dyslipidemia.

    PubMed

    Streja, Dan

    2004-03-01

    Statins have been proven to reduce cardiovascular risk, and guidelines for cardiovascular prevention recommend statin therapy in a wide range of patients. However, in spite of the dramatic success in large randomized clinical trials, two thirds of patients administered statins are not protected against cardiovascular events. This has prompted a search for additional targets for therapy. The pandemic of metabolic syndrome and type 2 diabetes has led to a dramatic increase in the prevalence of dyslipidemia. This, in turn, has prompted a resurgence of the search for drugs and algorithms that favorably affect high-density lipoprotein (HDL) and very low-density lipoprotein (VLDL) metabolism and function. Fibrates are the best-studied class of agents to be used as an addition to statins since they have also been proven to reduce clinical events as a monotherapy. However, there is a need for large safety trials of statin-fibrate combination therapy. Statin-niacin combination therapy has proven to be safe and effective in altering lipoprotein pattern. Randomized clinical trials and more research on the mechanism of action of niacin are necessary. Inhibitors of cholesterol ester transfer protein and HDL therapy drugs are in early developmental stages, and are the most promising potential additions to the current arsenal. PMID:15083597

  14. [Gene therapy with cytokines against cervical cancer].

    PubMed

    Bermúdez-Morales, Victor Hugo; Peralta-Zaragoza, Oscar; Madrid-Marina, Vicente

    2005-01-01

    Gene therapy is an excellent alternative for treatment of many diseases. Capacity to manipulate the DNA has allowed direct the gene therapy to correct the function of an altered gene, to increase the expression of a gene and to favour the activation of the immune response. This way, it can intend the use of the DNA like medication able to control, to correct or to cure many diseases. Gene therapy against cancer has an enormous potential, and actually the use of the DNA has increased to control diverse cancer in animal models, with very encouraging results that have allowed its applications in experimental protocols in human. This work concentrates a review of the foundations of the gene therapy and its application on cervical cancer, from the point of view of the alterations of the immune system focused on the tumour micro-environment, and the use of the cytokines as immunomodulators. PMID:16983992

  15. Combination Therapy Accelerates Diabetic Wound Closure

    PubMed Central

    Allen Jr., Robert J.; Soares, Marc A.; Haberman, Ilyse D.; Szpalski, Caroline; Schachar, Jeffrey; Lin, Clarence D.; Nguyen, Phuong D.; Saadeh, Pierre B.; Warren, Stephen M.

    2014-01-01

    Background Non-healing foot ulcers are the most common cause of non-traumatic amputation and hospitalization amongst diabetics in the developed world. Impaired wound neovascularization perpetuates a cycle of dysfunctional tissue repair and regeneration. Evidence implicates defective mobilization of marrow-derived progenitor cells (PCs) as a fundamental cause of impaired diabetic neovascularization. Currently, there are no FDA-approved therapies to address this defect. Here we report an endogenous PC strategy to improve diabetic wound neovascularization and closure through a combination therapy of AMD3100, which mobilizes marrow-derived PCs by competitively binding to the cell surface CXCR4 receptor, and PDGF-BB, which is a protein known to enhance cell growth, progenitor cell migration and angiogenesis. Methods and Results Wounded mice were assigned to 1 of 5 experimental arms (n = 8/arm): saline treated wild-type, saline treated diabetic, AMD3100 treated diabetic, PDGF-BB treated diabetic, and AMD3100/PDGF-BB treated diabetic. Circulating PC number and wound vascularity were analyzed for each group (n = 8/group). Cellular function was assessed in the presence of AMD3100. Using a validated preclinical model of type II diabetic wound healing, we show that AMD3100 therapy (10 mg/kg; i.p. daily) alone can rescue diabetes-specific defects in PC mobilization, but cannot restore normal wound neovascularization. Through further investigation, we demonstrate an acquired trafficking-defect within AMD3100-treated diabetic PCs that can be rescued by PDGF-BB (2 μg; topical) supplementation within the wound environment. Finally, we determine that combination therapy restores diabetic wound neovascularization and accelerates time to wound closure by 40%. Conclusions Combination AMD3100 and PDGF-BB therapy synergistically improves BM PC mobilization and trafficking, resulting in significantly improved diabetic wound closure and neovascularization. The success of this

  16. Gene therapy for CNS diseases – Krabbe disease

    PubMed Central

    Rafi, Mohammad A.

    2016-01-01

    Summary This is a brief report of the 19th Annual Meeting of the American Society of Gene and Cell Therapy that took place from May 4th through May 7th, 2016 in Washington, DC, USA. While the meeting provided many symposiums, lectures, and scientific sessions this report mainly focuses on one of the sessions on the "Gene Therapy for central nervous system (CNS) Diseases" and specifically on the "Gene Therapy for the globoid cell leukodystrophy or Krabbe disease. Two presentations focused on this subject utilizing two animal models of this disease: mice and dog models. Different serotypes of adeno-associate viral vectors (AAV) alone or in combination with bone marrow transplantations were used in these research projects. The Meeting of the ASGCT reflected continuous growth in the fields of gene and cell therapy and brighter forecast for efficient treatment options for variety of human diseases. PMID:27525222

  17. Mechanism of enhanced responses after combination photodynamic therapy (cPDT) in carcinoma cells involves C/EBP-mediated transcriptional upregulation of the coproporphyrinogen oxidase (CPO) gene

    NASA Astrophysics Data System (ADS)

    Anand, Sanjay; Hasan, Tayyaba; Maytin, Edward V.

    2013-03-01

    Photodynamic therapy (PDT) with aminolevulinate (ALA) is widely accepted as an effective treatment for superficial carcinomas and pre-cancers. However, PDT is still suboptimal for deeper tumors, mainly due to inadequate ALA penetration and subsequent conversion to PpIX. We are interested in improving the effectiveness of photodynamic therapy (PDT) for deep tumors, using a combination approach (cPDT) in which target protoporphyrin (PpIX) levels are significantly enhanced by differentiation caused by giving Vitamin D or methotrexate (MTX) for 3 days prior to ALAPDT. In LNCaP and MEL cells, a strong correlation between inducible differentiation and expression of C/EBP transcription factors, as well as between differentiation and mRNA levels of CPO (a key heme-synthetic enzyme), indicates the possibility of CPO transcriptional regulation by the C/EBPs. Sequence analysis of the first 1300 base pairs of the murine CPO upstream region revealed 15 consensus C/EBP binding sites. Electrophoretic Mobility Shift Assays (EMSA) proved that these sites form specific complexes that have strong, moderate or weak affinities for C/EBPs. However, in the context of the full-length CPO promoter, inactivation of any type of site (strong or weak) reduced CPO promoter activity (luciferase assay) to nearly the same extent, suggesting cooperative interactions. A comparative analysis of murine and human CPO promoters revealed possible protein-protein interactions between C/EBPs and several neighboring transcription factors such as NFkB, Sp1, AP-1, CBP/p300 and CREB (an enhanceosome complex). Overall, these results confirm that C/EBP's are important for CPO expression via complex mechanisms which upregulate PpIX and enhance the outcome of cPDT.

  18. The Combination of CRISPR/Cas9 and iPSC Technologies in the Gene Therapy of Human β-thalassemia in Mice

    PubMed Central

    Ou, Zhanhui; Niu, Xiaohua; He, Wenyin; Chen, Yuchang; Song, Bing; Xian, Yexing; Fan, Di; Tang, Daolin; Sun, Xiaofang

    2016-01-01

    β-thalassemia results from point mutations or small deletions in the β-globin (HBB) gene that ultimately cause anemia. The generation of induced pluripotent stem cells (iPSCs) from the somatic cells of patients in combination with subsequent homologous recombination-based gene correction provides new approaches to cure this disease. CRISPR/Cas9 is a genome editing tool that is creating a buzz in the scientific community for treating human diseases, especially genetic disorders. Here, we reported that correction of β-thalassemia mutations in patient-specific iPSCs using the CRISPR/Cas9 tool promotes hematopoietic differentiation in vivo. CRISPR/Cas9-corrected iPSC-derived hematopoietic stem cells (HSCs) were injected into sublethally-irradiated NOD-scid-IL2Rg−/− (NSI) mice. HBB expression was observed in these HSCs after hematopoietic differentiation in the NSI mice. Importantly, no tumor was found in the livers, lungs, kidneys, or bone marrow at 10 weeks in the NSI mice after implantation with these HSCs. Collectively, our findings demonstrated that CRISPR/Cas9 successfully corrects β-thalassemia mutations in patient-specific iPSCs. These CRISPR/Cas9-corrected iPSC-derived HSCs express normal HBB in mice without tumorigenic potential, suggesting a safe strategy for personalized treatment of β-thalassemia. PMID:27581487

  19. The Combination of CRISPR/Cas9 and iPSC Technologies in the Gene Therapy of Human β-thalassemia in Mice.

    PubMed

    Ou, Zhanhui; Niu, Xiaohua; He, Wenyin; Chen, Yuchang; Song, Bing; Xian, Yexing; Fan, Di; Tang, Daolin; Sun, Xiaofang

    2016-01-01

    β-thalassemia results from point mutations or small deletions in the β-globin (HBB) gene that ultimately cause anemia. The generation of induced pluripotent stem cells (iPSCs) from the somatic cells of patients in combination with subsequent homologous recombination-based gene correction provides new approaches to cure this disease. CRISPR/Cas9 is a genome editing tool that is creating a buzz in the scientific community for treating human diseases, especially genetic disorders. Here, we reported that correction of β-thalassemia mutations in patient-specific iPSCs using the CRISPR/Cas9 tool promotes hematopoietic differentiation in vivo. CRISPR/Cas9-corrected iPSC-derived hematopoietic stem cells (HSCs) were injected into sublethally-irradiated NOD-scid-IL2Rg-/- (NSI) mice. HBB expression was observed in these HSCs after hematopoietic differentiation in the NSI mice. Importantly, no tumor was found in the livers, lungs, kidneys, or bone marrow at 10 weeks in the NSI mice after implantation with these HSCs. Collectively, our findings demonstrated that CRISPR/Cas9 successfully corrects β-thalassemia mutations in patient-specific iPSCs. These CRISPR/Cas9-corrected iPSC-derived HSCs express normal HBB in mice without tumorigenic potential, suggesting a safe strategy for personalized treatment of β-thalassemia. PMID:27581487

  20. Emerging targets for combination therapy in melanomas.

    PubMed

    Saito, Renata de Freitas; Tortelli, Tharcísio Citrângulo; Jacomassi, Mayara D'Auria; Otake, Andréia Hanada; Chammas, Roger

    2015-11-14

    Cutaneous melanomas are often difficult to treat when diagnosed in advanced stages. Melanoma cells adapt to survive in extreme environmental conditions and are among the tumors with larger genomic instability. Here we discuss some intrinsic and extrinsic mechanisms of resistance of melanoma cells to both conventional and target therapies, such as autophagy, adaptation to endoplasmic reticulum stress, metabolic reprogramming, mechanisms of tumor repopulation and the role of extracellular vesicles in this later phenomenon. These biological processes are potentially targetable and thus provide a platform for research and discovery of new drugs for combination therapy to manage melanoma patient treatment. PMID:26450371

  1. Combined Therapy of Gastrointestinal Stromal Tumors.

    PubMed

    Rutkowski, Piotr; Hompes, Daphne

    2016-10-01

    Radical surgery is the mainstay of therapy for primary resectable, localized gastrointestinal stromal tumors (GIST). Nevertheless, approximately 40% to 50% of patients with potentially curative resections develop recurrent or metastatic disease. The introduction of imatinib mesylate has revolutionized the therapy of advanced (inoperable and/or metastatic) GIST and has become the standard of care in treatment of patients with advanced GIST. This article discusses the proper selection of candidates for adjuvant and neoadjuvant treatment in locally advanced GIST, exploring the available evidence behind the combination of preoperative imatinib and surgery. PMID:27591496

  2. Adenoviral Vectors for Hemophilia Gene Therapy

    PubMed Central

    Brunetti-Pierri, N; Ng, Philip

    2013-01-01

    Hemophilia is an inherited blood clotting disorder resulting from deficiency of blood coagulation factors. Current standard of care for hemophilia patients is frequent intravenous infusions of the missing coagulation factor. Gene therapy for hemophilia involves the introduction of a normal copy of the deficient coagulation factor gene thereby potentially offering a definitive cure for the bleeding disorder. A variety of approaches have been pursued for hemophilia gene therapy and this review article focuses on those that use adenoviral vectors. PMID:24883229

  3. Novel approaches and mechanisms in hematopoietic stem cell gene therapy.

    PubMed

    Bigger, Brian W; Wynn, Robert F

    2014-04-01

    Hematopoietic stem cell gene therapy is one of the most exciting clinical tools to emerge from the gene therapy stable. This technology combines the expansion capability of hematopoietic stem cells, capable of replacing the entire blood and immune system of an individual, with the capacity for long-term replacement of one or more gene copies using integrating gene therapy vectors. Hematopoietic stem cell gene therapy benefits significantly from the pre-existing experience of standard blood and marrow transplantation, whilst at the same time having the capacity to deliver a safer and more effective therapy to a wider range of diseases. In this review we summarize the potential of hematopoietic stem cell gene therapy to expand the scope of hematopoietic stem cell transplantation, including the evolution of vector delivery systems and the success and failures of current clinical experience with this treatment. In particular we deal with the incidence of vector mediated transformation in patients and the steps that have been taken to minimize this risk. Finally we discuss the innovations in preclinical development that are likely to drive the future of this field, including the expansion to many more genetic diseases, particularly those affecting the brain. PMID:24759625

  4. MiRNA-21 silencing mediated by tumor-targeted nanoparticles combined with sunitinib: A new multimodal gene therapy approach for glioblastoma.

    PubMed

    Costa, Pedro M; Cardoso, Ana L; Custódia, Carlos; Cunha, Pedro; Pereira de Almeida, Luís; Pedroso de Lima, Maria C

    2015-06-10

    Malignant brain tumors, including glioblastoma (GBM), are among the most lethal human cancers, due to their tremendous invasive capacity and limited therapeutic options. Despite remarkable advances in cancer theranostics, which resulted in significant improvement of clinical outcomes, GBM relapse is very frequent and patient survival remains under one year. The elucidation of the role of abnormally-expressed miRNAs in different steps of GBM pathogenesis and in tumor resistance to therapy paved the way for the development of new miRNA-based therapeutic approaches targeting this disease, aiming at increasing specific tumor cell killing and, ultimately, cancer eradication. Here, we demonstrate that intravenously-administered chlorotoxin (CTX)-coupled (targeted) stable nucleic acid lipid particle (SNALP)-formulated anti-miR-21 oligonucleotides accumulate preferentially within brain tumors and promote efficient miR-21 silencing, which results in increased mRNA and protein levels of its target RhoB, while showing no signs of systemic immunogenicity. Decreased tumor cell proliferation and tumor size, as well as enhanced apoptosis activation and, to a lesser extent, improvement of animal survival, were also observed in GBM-bearing mice upon systemic delivery of targeted nanoparticle-formulated anti-miR-21 oligonucleotides and exposure to the tyrosine kinase inhibitor sunitinib. Overall, our results provide evidence that CTX-coupled SNALPs are a reliable and efficient system for systemic delivery of anti-miRNA oligonucleotides. Moreover, although further studies are still necessary to demonstrate a therapeutic benefit in a clinical context, our findings suggest that miRNA modulation by the targeted nanoparticles combined with anti-angiogenic chemotherapy may hold promise as an attractive approach towards GBM treatment. PMID:25861727

  5. Targeted Gene Therapies: Tools, Applications, Optimization

    PubMed Central

    Humbert, Olivier; Davis, Luther; Maizels, Nancy

    2012-01-01

    Many devastating human diseases are caused by mutations in a single gene that prevent a somatic cell from carrying out its essential functions, or by genetic changes acquired as a result of infectious disease or in the course of cell transformation. Targeted gene therapies have emerged as potential strategies for treatment of such diseases. These therapies depend upon rare-cutting endonucleases to cleave at specific sites in or near disease genes. Targeted gene correction provides a template for homology-directed repair, enabling the cell's own repair pathways to erase the mutation and replace it with the correct sequence. Targeted gene disruption ablates the disease gene, disabling its function. Gene targeting can also promote other kinds of genome engineering, including mutation, insertion, or gene deletion. Targeted gene therapies present significant advantages compared to approaches to gene therapy that depend upon delivery of stably expressing transgenes. Recent progress has been fueled by advances in nuclease discovery and design, and by new strategies that maximize efficiency of targeting and minimize off-target damage. Future progress will build on deeper mechanistic understanding of critical factors and pathways. PMID:22530743

  6. Convergence of gene and cell therapy.

    PubMed

    Bersenev, Alexey; Levine, Bruce L

    2012-11-01

    Gene therapy and cell therapy have followed similar roller coaster paths of rising public expectations and disappointment over the past two decades. There is now reason to believe that momentum in the field has reached the point where the successes will be more frequent. The use of gene-modified cells has opened new avenues for engineering desired cell properties, for the use of cells as vehicles for gene delivery, and for tracking cells and controlling cell persistence after transplantation. Some notable recent clinical developments in cellular engineering by gene transfer offer lessons on how the field has emerged, and hint at additional future clinical applications. PMID:23210811

  7. Getting arthritis gene therapy into the clinic

    PubMed Central

    Evans, Christopher H.; Ghivizzani, Steven C.; Robbins, Paul D.

    2012-01-01

    Gene transfer technologies enable the controlled, targeted and sustained expression of gene products at precise anatomical locations, such as the joint. In this way, they offer the potential for more-effective, less-expensive treatments of joint diseases with fewer extra-articular adverse effects. A large body of preclinical data confirms the utility of intra-articular gene therapy in animal models of rheumatoid arthritis and osteoarthritis. However, relatively few clinical trials have been conducted, only one of which has completed phase II. This article summarizes the status in 2010 of the clinical development of gene therapy for arthritis, identifies certain constraints to progress and suggests possible solutions. PMID:21135882

  8. European attitudes to gene therapy and pharmacogenetics.

    PubMed

    Hudson, John; Orviska, Marta

    2011-10-01

    Views on pharmacogenetics and gene therapy systematically differ across European countries. But despite a complex regulatory regime there is a balance of support, albeit laced with considerable uncertainty. PMID:21745587

  9. Fixed-dose combination therapy for psoriasis.

    PubMed

    Guenther, Lyn C

    2004-01-01

    Fixed-dose combination therapy offers stable products containing two or more medications with different mechanisms of action and safety profiles. It is also convenient for patients since only one product rather than two or more needs to be applied. Topical corticosteroids are often the mainstay of therapy in psoriasis. Diprosalic and Nerisalic contain a topical corticosteroid (betamethasone dipropionate and diflucortolone, respectively) and salicylic acid. A left/right study showed that both products have comparable efficacy. It has also been shown that betamethasone dipropionate + salicylic acid ointment has similar efficacy to clobetasol and calcipotriene (calcipotriol) ointments. Betamethasone dipropionate + salicylic acid lotion has similar efficacy to clobetasol lotion. Faster improvement of scaling, itching, and redness was noted with betamethasone dipropionate + salicylic acid lotion compared with betamethasone dipropionate alone. Dovobet (Daivobet) ointment is a fixed-dose combination product containing betamethasone dipropionate and calcipotriene. Clinical studies have shown that it has greater efficacy and a faster speed of onset than the individual components or tacalcitol. Once daily and twice daily treatments have similar efficacy. Psoriasis Area and Severity Index reductions of approximately 40% after 1 week and 70% after 4 weeks of therapy were consistently noted in six large international studies involving >6000 patients. Betamethasone dipropionate + calcipotriene treatment is associated with approximately 75% less adverse cutaneous events as compared with tacalcitol, 50% less compared with calcipotriene, and a similar number as treatment with betamethasone dipropionate. PMID:15109271

  10. Combination therapy for metastatic renal cell carcinoma

    PubMed Central

    Buonerba, Carlo; Di Lorenzo, Giuseppe

    2016-01-01

    Current therapy for metastatic clear cell renal cell carcinoma (RCC) consists of the serial administration of single agents. Combinations of VEGF and mTOR inhibitors have been disappointing in previous randomized trials. However, the combination of lenvatinib, a multitargeted agent that inhibits VEGF as well as FGF receptors, and everolimus demonstrated promising results in a randomized phase II trial. Moreover, the emergence of programmed cell death 1 (PD-1) and programmed cell death ligand 1 (PD-L1) inhibitors has spawned the investigation of combinations of these agents with VEGF inhibitors and cytotoxic T-lymphocyte antigen 4 (CTLA-4) inhibitors. These ongoing phase III trials in conjunction with the development of predictive biomarkers and agents inhibiting novel therapeutic targets may provide much needed advances in this still largely incurable disease. PMID:27047959

  11. Gene therapy for primary immunodeficiencies: Part 1.

    PubMed

    Cavazzana-Calvo, Marina; Fischer, Alain; Hacein-Bey-Abina, Salima; Aiuti, Alessandro

    2012-10-01

    Over 60 patients affected by SCID due to IL2RG deficiency (SCID-X1) or adenosine deaminase (ADA)-SCID have received hematopoietic stem cell gene therapy in the past 15 years using gammaretroviral vectors, resulting in immune reconstitution and clinical benefit in the majority of them. However, the occurrence of insertional oncogenesis in the SCID-X1 trials has led to the development of new clinical trials based on integrating vectors with improved safety design as well as investigation on new technologies for highly efficient gene targeting and site-specific gene editing. Here we will present the experience and perspectives of gene therapy for SCID-X1 and ADA-SCID and discuss the pros and cons of gene therapy in comparison to allogeneic transplantation. PMID:22981681

  12. Chemogenomics and orthology-based design of antibiotic combination therapies.

    PubMed

    Chandrasekaran, Sriram; Cokol-Cakmak, Melike; Sahin, Nil; Yilancioglu, Kaan; Kazan, Hilal; Collins, James J; Cokol, Murat

    2016-01-01

    Combination antibiotic therapies are being increasingly used in the clinic to enhance potency and counter drug resistance. However, the large search space of candidate drugs and dosage regimes makes the identification of effective combinations highly challenging. Here, we present a computational approach called INDIGO, which uses chemogenomics data to predict antibiotic combinations that interact synergistically or antagonistically in inhibiting bacterial growth. INDIGO quantifies the influence of individual chemical-genetic interactions on synergy and antagonism and significantly outperforms existing approaches based on experimental evaluation of novel predictions in Escherichia coli Our analysis revealed a core set of genes and pathways (e.g. central metabolism) that are predictive of antibiotic interactions. By identifying the interactions that are associated with orthologous genes, we successfully estimated drug-interaction outcomes in the bacterial pathogens Mycobacterium tuberculosis and Staphylococcus aureus, using the E. coli INDIGO model. INDIGO thus enables the discovery of effective combination therapies in less-studied pathogens by leveraging chemogenomics data in model organisms. PMID:27222539

  13. The Association of Substitutions in the Hepatitis C Virus Subtype 1b Core Gene and IL28B Polymorphisms With the Response to Peg-IFNα-2a/RBV Combination Therapy in Azerbaijani Patients

    PubMed Central

    Bokharaei-Salim, Farah; Salehi-Vaziri, Mostafa; Sadeghi, Farzin; Esghaei, Maryam; Monavari, Seyed Hamidreza; Alavian, Seyed Moayed; Fakhim, Shahin; Keyvani, Hossein

    2016-01-01

    Background The hepatitis C virus (HCV) infection has been identified as a leading cause of progressive liver diseases worldwide. Despite new treatment strategies, pegylated interferon alfa-2a (Peg-IFNα-2a), in combination with ribavirin (RBV), still represents the gold standard of therapy for hepatitis C in developing countries. Objectives The aim of this study was to investigate the association of substitutions in the HCV subtype 1b (HCV-1b) core protein and the rs12979860 polymorphism in the interleukin 28B gene (IL28B) with the response to Peg-IFNα-2a/RBV combination therapy in Azerbaijani patients. Patients and Methods A total of fifty-one chronically HCV-1b-infected Azerbaijani patients were enrolled in this cross-sectional study from March 2010 to June 2015. After RNA extraction from pre-treatment plasma, the core region of the HCV genome was amplified using the nested reverse transcription (RT) polymerase chain reaction (PCR) method, followed by standard sequencing. In addition, genomic DNA was extracted from peripheral blood mononuclear cell (PBMC) specimens, and the rs12979860 single nucleotide polymorphism (SNP) was identified using a PCR-restriction fragment length polymorphism (PCR-RFLP) assay. Results In this study, a significant association was observed between the non-responders and relapsers to antiviral therapy and substitutions in the HCV-1b core region at positions 43 (R43K, P = 0.047), 70 (R70Q, P < 0.001), 91 (M91L, P = 0.037), and 106 (S106N, P = 0.018). Concerning the IL28B polymorphism, the results showed that sustained virological response was significantly associated with homozygous CC patients (P = 0.009) as compared with other genotypes, while homozygous TT subjects were associated with HCV relapse after therapy (P = 0.006). Conclusions The data of the present study suggest that amino acid substitutions at position 43, 70, 91, and 106 in the HCV-1b core protein are correlated with the response to the Peg-IFNα-2a/RBV treatment in

  14. Virotherapy: cancer gene therapy at last?

    PubMed Central

    Bilsland, Alan E.; Spiliopoulou, Pavlina; Evans, T. R. Jeffry

    2016-01-01

    For decades, effective cancer gene therapy has been a tantalising prospect; for a therapeutic modality potentially able to elicit highly effective and selective responses, definitive efficacy outcomes have often seemed out of reach. However, steady progress in vector development and accumulated experience from previous clinical studies has finally led the field to its first licensed therapy. Following a pivotal phase III trial, Imlygic (talimogene laherparepvec/T-Vec) received US approval as a treatment for cutaneous and subcutaneous melanoma in October 2015, followed several weeks later by its European authorisation. These represent the first approvals for an oncolytic virotherapy. Imlygic is an advanced-generation herpesvirus-based vector optimised for oncolytic and immunomodulatory activities. Many other oncolytic agents currently remain in development, providing hope that current success will be followed by other diverse vectors that may ultimately come to constitute a new class of clinical anti-cancer agents. In this review, we discuss some of the key oncolytic viral agents developed in the adenovirus and herpesvirus classes, and the prospects for further enhancing their efficacy by combining them with novel immunotherapeutic approaches.

  15. Clinical applications of gene therapy for primary immunodeficiencies.

    PubMed

    Cicalese, Maria Pia; Aiuti, Alessandro

    2015-04-01

    Primary immunodeficiencies (PIDs) have represented a paradigmatic model for successes and pitfalls of hematopoietic stem cells gene therapy. First clinical trials performed with gamma retroviral vectors (γ-RV) for adenosine deaminase severe combined immunodeficiency (ADA-SCID), X-linked SCID (SCID-X1), and Wiskott-Aldrich syndrome (WAS) showed that gene therapy is a valid therapeutic option in patients lacking an HLA-identical donor. No insertional mutagenesis events have been observed in more than 40 ADA-SCID patients treated so far in the context of different clinical trials worldwide, suggesting a favorable risk-benefit ratio for this disease. On the other hand, the occurrence of insertional oncogenesis in SCID-X1, WAS, and chronic granulomatous disease (CGD) RV clinical trials prompted the development of safer vector construct based on self-inactivating (SIN) retroviral or lentiviral vectors (LVs). Here we present the recent results of LV-mediated gene therapy for WAS showing stable multilineage engraftment leading to hematological and immunological improvement, and discuss the differences with respect to the WAS RV trial. We also describe recent clinical results of SCID-X1 gene therapy with SIN γ-RV and the perspectives of targeted genome editing techniques, following early preclinical studies showing promising results in terms of specificity of gene correction. Finally, we provide an overview of the gene therapy approaches for other PIDs and discuss its prospects in relation to the evolving arena of allogeneic transplant. PMID:25860576

  16. Prospects for retinal gene replacement therapy.

    PubMed

    Smith, Alexander J; Bainbridge, James W; Ali, Robin R

    2009-04-01

    Inherited retinal degeneration, which includes conditions such as retinitis pigmentosa and Leber congenital amaurosis (LCA), affects approximately 1/3000 of the population in the Western world. It is characterized by loss of vision and results from mutations in any one of >100 different genes. There are currently no effective treatments, but many of the genes have now been identified and their functions elucidated, providing a major impetus to develop gene-based treatments. Preliminary results from three clinical trials indicate that the treatment of a form of LCA by gene therapy can be safe and effective. Here, we discuss the potential for treating other forms of retinal degeneration by gene therapy, focusing on the gene defects that are likely to be the most amenable to treatment. PMID:19303164

  17. Combination Therapies in Ophthalmology: Implications for Intravitreal Delivery

    PubMed Central

    Peyman, Gholam A.; Hosseini, Kamran

    2011-01-01

    Most pathological processes involve complex molecular pathways that can only be modified or blocked by a combination of medications. Combination therapy has become a common practice in medicine. In ophthalmology, this approach has been used effectively to treat bacterial, fungal, proliferative/neoplastic, and inflammatory eye diseases and vascular proliferation. Combination therapy also encompasses the synergistic effect of electromagnetic radiation and medications. However, combination therapy can augment inherent complications of individual interventions, therefore vigilance is required. Complications of combination therapy include potential incompatibility among compounds and tissue toxicity. Understanding these effects will assist the ophthalmologist in his decision to maximize the benefits of combination therapy while avoiding an unfavorable outcome. PMID:22454705

  18. Gene replacement therapy for hereditary emphysema

    SciTech Connect

    Skolnick, A.

    1989-11-10

    Investigators suggest that human trials of gene therapy to correct a genetic disorder that usually leads to emphysema early in life may be only a few years away. Speaking at the American Lung Association's Second Annual Science Writers' Forum, R. G. Crystal, chief of the Pulmonary Branch of the National Heart, Lung, and Blood Institute offered an explanation of how hereditary emphysema may be more amenable to genetic therapy than other such diseases. In persons who lack a functioning gene for alpha{sup 1}-antitrypsin, a proteolytic enzyme, neutrophil elastase, attacks the walls of the lungs' alveoli, eventually leading to progressive pulmonary function loss. Two animal models of gene insertion are described.

  19. Why commercialization of gene therapy stalled; examining the life cycles of gene therapy technologies.

    PubMed

    Ledley, F D; McNamee, L M; Uzdil, V; Morgan, I W

    2014-02-01

    This report examines the commercialization of gene therapy in the context of innovation theories that posit a relationship between the maturation of a technology through its life cycle and prospects for successful product development. We show that the field of gene therapy has matured steadily since the 1980s, with the congruent accumulation of >35 000 papers, >16 000 US patents, >1800 clinical trials and >$4.3 billion in capital investment in gene therapy companies. Gene therapy technologies comprise a series of dissimilar approaches for gene delivery, each of which has introduced a distinct product architecture. Using bibliometric methods, we quantify the maturation of each technology through a characteristic life cycle S-curve, from a Nascent stage, through a Growing stage of exponential advance, toward an Established stage and projected limit. Capital investment in gene therapy is shown to have occurred predominantly in Nascent stage technologies and to be negatively correlated with maturity. Gene therapy technologies are now achieving the level of maturity that innovation research and biotechnology experience suggest may be requisite for efficient product development. Asynchrony between the maturation of gene therapy technologies and capital investment in development-focused business models may have stalled the commercialization of gene therapy. PMID:24305420

  20. Targeted polymeric nanoparticles for cancer gene therapy

    PubMed Central

    Kim, Jayoung; Wilson, David R.; Zamboni, Camila G.; Green, Jordan J.

    2015-01-01

    In this article, advances in designing polymeric nanoparticles for targeted cancer gene therapy are reviewed. Characterization and evaluation of biomaterials, targeting ligands, and transcriptional elements are each discussed. Advances in biomaterials have driven improvements to nanoparticle stability and tissue targeting, conjugation of ligands to the surface of polymeric nanoparticles enable binding to specific cancer cells, and the design of transcriptional elements has enabled selective DNA expression specific to the cancer cells. Together, these features have improved the performance of polymeric nanoparticles as targeted non-viral gene delivery vectors to treat cancer. As polymeric nanoparticles can be designed to be biodegradable, non-toxic, and to have reduced immunogenicity and tumorigenicity compared to viral platforms, they have significant potential for clinical use. Results of polymeric gene therapy in clinical trials and future directions for the engineering of nanoparticle systems for targeted cancer gene therapy are also presented. PMID:26061296

  1. What Is Next for Retinal Gene Therapy?

    PubMed Central

    Vandenberghe, Luk H.

    2015-01-01

    The field of gene therapy for retinal blinding disorders is experiencing incredible momentum, justified by hopeful results in early stage clinical trials for inherited retinal degenerations. The premise of the use of the gene as a drug has come a long way, and may have found its niche in the treatment of retinal disease. Indeed, with only limited treatment options available for retinal indications, gene therapy has been proven feasible, safe, and effective and may lead to durable effects following a single injection. Here, we aim at putting into context the promise and potential, the technical, clinical, and economic boundaries limiting its application and development, and speculate on a future in which gene therapy is an integral component of ophthalmic clinical care. PMID:25877395

  2. Combination immunotherapy and photodynamic therapy for cancer

    NASA Astrophysics Data System (ADS)

    Hamblin, Michael R.; Castano, Ana P.; Mroz, Pawel

    2006-02-01

    Cancer is a leading cause of death among modern people largely due to metastatic disease. The ideal cancer treatment should target both the primary tumor and the metastases with minimal toxicity towards normal tissue. This is best accomplished by priming the body's immune system to recognize the tumor antigens so that after the primary tumor is destroyed, distant metastases will also be eradicated. Photodynamic therapy (PDT) involves the IV administration of photosensitizers followed by illumination of the tumor with red light producing reactive oxygen species leading to vascular shutdown and tumor cell death. Anti-tumor immunity is stimulated after PDT due to the acute inflammatory response, generation of tumor-specific antigens, and induction of heat-shock proteins. Combination regimens using PDT and immunostimulating treatments are likely to even further enhance post-PDT immunity. These immunostimulants are likely to include products derived from pathogenic microorganisms that are effectively recognized by Toll-like receptors and lead to upregulation of transcription factors for cytokines and inflammatory mediators. The following cascade of events causes activation of macrophages, dendritic and natural killer cells. Exogenous cytokine administration can be another way to increase PDT-induced immunity as well as treatment with a low dose of cyclophosphamide that selectively reduces T-regulatory cells. Although so far these combination therapies have only been used in animal models, their use in clinical trials should receive careful consideration.

  3. Effect of Single Nucleotide Polymorphisms in Cytochrome P450 Isoenzyme and N-Acetyltransferase 2 Genes on the Metabolism of Artemisinin-Based Combination Therapies in Malaria Patients from Cambodia and Tanzania

    PubMed Central

    Staehli Hodel, Eva Maria; Csajka, Chantal; Ariey, Frédéric; Guidi, Monia; Kabanywanyi, Abdunoor Mulokozi; Duong, Socheat; Decosterd, Laurent Arthur; Olliaro, Piero; Genton, Blaise

    2013-01-01

    The pharmacogenetics of antimalarial agents are poorly known, although the application of pharmacogenetics might be critical in optimizing treatment. This population pharmacokinetic-pharmacogenetic study aimed at assessing the effects of single nucleotide polymorphisms (SNPs) in cytochrome P450 isoenzyme genes (CYP, namely, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4, and CYP3A5) and the N-acetyltransferase 2 gene (NAT2) on the pharmacokinetics of artemisinin-based combination therapies in 150 Tanzanian patients treated with artemether-lumefantrine, 64 Cambodian patients treated with artesunate-mefloquine, and 61 Cambodian patients treated with dihydroartemisinin-piperaquine. The frequency of SNPs varied with the enzyme and the population. Higher frequencies of mutant alleles were found in Cambodians than Tanzanians for CYP2C9*3, CYP2D6*10 (100C→T), CYP3A5*3, NAT2*6, and NAT2*7. In contrast, higher frequencies of mutant alleles were found in Tanzanians for CYP2D6*17 (1023C→T and 2850C→T), CYP3A4*1B, NAT2*5, and NAT2*14. For 8 SNPs, no significant differences in frequencies were observed. In the genetic-based population pharmacokinetic analyses, none of the SNPs improved model fit. This suggests that pharmacogenetic data need not be included in appropriate first-line treatments with the current artemisinin derivatives and quinolines for uncomplicated malaria in specific populations. However, it cannot be ruled out that our results represent isolated findings, and therefore more studies in different populations, ideally with the same artemisinin-based combination therapies, are needed to evaluate the influence of pharmacogenetic factors on the clearance of antimalarials. PMID:23229480

  4. Employment of Salmonella in Cancer Gene Therapy.

    PubMed

    Lee, Che-Hsin

    2016-01-01

    One of the primary limitations of cancer gene therapy is lack of selectivity of the therapeutic gene to tumor cells. Current efforts are focused on discovering and developing tumor-targeting vectors that selectively target only cancer cells but spare normal cells to improve the therapeutic index. The use of preferentially tumor-targeting bacteria as vectors is one of the innovative approaches for the treatment of cancer. This is based on the observation that some obligate or facultative-anaerobic bacteria are capable of multiplying selectively in tumors and inhibiting their growth. In this study, we exploited attenuated Salmonella as a tumoricidal agent and a vector to deliver genes for tumor-targeted gene therapy. Attenuated Salmonella, carrying a eukaryotic expression plasmid encoding an anti-angiogenic gene, was used to evaluate its' ability for tumor targeting and gene delivery in murine tumor models. We also investigated the use of a polymer to modify or shield Salmonella from the pre-existing immune response in the host in order to improve gene delivery to the tumor. These results suggest that tumor-targeted gene therapy using Salmonella carrying a therapeutic gene, which exerts tumoricidal and anti-angiogenic activities, represents a promising strategy for the treatment of tumors. PMID:26846804

  5. Transcriptionally targeted gene therapy to detect and treat cancer

    PubMed Central

    Wu, Lily; Johnson, Mai; Sato, Makoto

    2010-01-01

    The greatest challenge in cancer treatment is to achieve the highest levels of specificity and efficacy. Cancer gene therapy could be designed specifically to express therapeutic genes to induce cancer cell destruction. Cancer-specific promoters are useful tools to accomplish targeted expression; however, high levels of gene expression are needed to achieve therapeutic efficacy. Incorporating an imaging reporter gene in tandem with the therapeutic gene will allow tangible proof of principle that gene expression occurs at the correct location and at a sufficient level. Gene-based imaging can advance cancer detection and diagnosis. By combining the cancer-targeted imaging and therapeutic strategies, the exciting prospect of a ‘one-two punch’ to find hidden, disseminated cancer cells and destroy them simultaneously can potentially be realized. PMID:14557054

  6. Systemic therapy and synergies by combination.

    PubMed

    Wörns, Marcus-Alexander

    2013-01-01

    After years of therapeutic nihilism due to the inefficacy of conventional cytotoxic chemotherapy, the multikinase inhibitor sorafenib was the first agent to demonstrate a significant improvement in the survival of patients with advanced hepatocellular carcinoma (HCC). However, survival benefits on sorafenib treatment remain modest in clinical practice and developing more effective systemic therapies is challenging. No other targeted agent or regimen has proven efficacy to improve survival in a phase III trial in the first- or second-line setting, and no standard treatment option currently exists outside of clinical trials for patients with acquired resistance or intolerance to sorafenib. In contrast to other malignancies, no oncogene addiction has been identified in hepatocarcinogenesis thus far, which may explain why currently tested agents do not achieve sustained partial or complete response in the majority of patients. Several agents with mainly antiangiogenic properties are currently in phase II and III development, including brivanib, ramucirumab, everolimus, tivantinib and resminostat. In addition, the role of molecularly targeted therapy (MTT) in earlier stages of the disease in combination with transcatheter arterial chemoembolization or in the adjuvant setting after potentially curative approaches is under investigation. The identification of the key driver mutations and the assessment of relevant targets for specific subpopulations of patients according to their biomarker-based profile will hopefully lead to a more personalized medicine. This article attempts to provide a concise overview on recent developments of MTT in the phase II-III setting in advanced HCC with an additional focus on synergistic combinations and combined treatment approaches. PMID:23797131

  7. Gene Therapy for Neurologic Manifestations of Mucopolysaccharidoses

    PubMed Central

    Wolf, Daniel A.; Banerjee, Sharbani; Hackett, Perry B.; Whitley, Chester B.; McIvor, R. Scott; Low, Walter C.

    2015-01-01

    Introduction Mucopolysaccharidoses are a family of lysosomal disorders caused by mutations in genes that encode enzymes involved in the catabolism of glycoaminoglycans. These mutations affect multiple organ systems and can be particularly deleterious to the nervous system. At the present time, enzyme replacement therapy and hematopoietic stem-cell therapy are used to treat patients with different forms of these disorders. However, to a great extent the nervous system is not adequately responsive to current therapeutic approaches. Areas Covered Recent advances in gene therapy show great promise for treating mucopolysaccharidoses. This article reviews the current state of the art for routes of delivery in developing genetic therapies for treating the neurologic manifestations of mucopolysaccharidoses. Expert Opinion Gene therapy for treating neurological manifestations of mucopolysaccharidoses can be achieved by intraventricular, intrathecal, intranasal, and systemic administration. The intraventricular route of administration appears to provide the most wide-spread distribution of gene therapy vectors to the brain. The intrathecal route of delivery results in predominant distribution to the caudal areas of the brain while the intranasal route of delivery results in good distribution to the rostral areas of brain. The systemic route of delivery via intravenous delivery can also achieve wide spread delivery to the CNS, however, the distribution to the brain is greatly dependent on the vector system. Intravenous delivery using lentiviral vectors appear to be less effective than adeno-associated viral (AAV) vectors. Moreover, some subtypes of AAV vectors are more effective than others in crossing the blood-brain-barrier. In summary, the recent advances in gene vector technology and routes of delivery to the CNS will facilitate the clinical translation of gene therapy for the treatment of the neurological manifestations of mucopolysaccharidoses. PMID:25510418

  8. Gene therapy legislation in The Netherlands.

    PubMed

    Bleijs, D A; Haenen, I T W C; Bergmans, J E N

    2007-10-01

    Several regulatory organisations are involved in the assessment of clinical gene therapy trials involving genetically modified organisms (GMOs) in The Netherlands. Medical, ethical and scientific aspects are, for instance, evaluated by the Central Committee on Research Involving Human Subjects (CCMO). The Ministry of Housing, Spatial Planning and the Environment (VROM) is the competent authority for the environmental risk assessment according to the deliberate release Directive 2001/18/EC. A Gene Therapy Office has been established in order to streamline the different national review processes and to enable the official procedures to be completed as quickly as possible. Although the Gene Therapy Office improved the application process at the national level, there is a difference of opinion between the EU member states with respect to the EU Directive according to which gene therapy trials are assessed, that urges for harmonisation. This review summarises the gene therapy legislation in The Netherlands and in particular The Netherlands rationale to follow Directive 2001/18/EC for the environmental risk assessment. PMID:17721872

  9. International perceptions and approval of gene therapy.

    PubMed

    Macer, D R; Akiyama, S; Alora, A T; Asada, Y; Azariah, J; Azariah, H; Boost, M V; Chatwachirawong, P; Kato, Y; Kaushik, V

    1995-06-01

    Gene therapy is in clinical trials in a number of countries, raising the question of whether different ethical standards can be justified in different countries. One key issue is how divergent are the perceptions and bioethical reasoning of peoples around the world. An International Bioethics Survey with 150 questions, including 35 open ones, was developed to look at how people think about diseases, life, nature, and selected issues of science and technology, biotechnology, genetic engineering, genetic screening, and gene therapy. The mail response survey was conducted in 1993 among the public in Australia, India, Israel, Japan, New Zealand, Russia, and Thailand, and the same written survey was conducted among university students in Australia, Hong Kong, India, Japan, New Zealand, The Philippines, Russia, Singapore, and Thailand. Similar questions were included in an international high school education bioethics survey among high school teachers in Australia, Japan, and New Zealand. Further international comparisons to the United States and Europe are made. About three-quarters of all samples supported personal use of gene therapy, with higher support for children's use of gene therapy. The diversity of views was generally similar within each country. The major reasons given were to save life and increase the quality of life. About 5-7% rejected gene therapy, considering it to be playing God, or unnatural. There was very little concern about eugenics (0.5-2%), and more respondents gave supportive reasons like "improving genes," especially in Thailand and India. Support for specific applications was significantly less for "improving physical characters," "improving intelligence," or "making people more ethical" than for curing diseases like cancer or diabetes, but there was little difference between inheritable or noninheritable gene therapy. PMID:7548279

  10. Microneedles As a Delivery System for Gene Therapy

    PubMed Central

    Chen, Wei; Li, Hui; Shi, De; Liu, Zhenguo; Yuan, Weien

    2016-01-01

    Gene delivery systems can be divided to two major types: vector-based (either viral vector or non-viral vector) and physical delivery technologies. Many physical carriers, such as electroporation, gene gun, ultrasound start to be proved to have the potential to enable gene therapy. A relatively new physical delivery technology for gene delivery consists of microneedles (MNs), which has been studied in many fields and for many molecule types and indications. Microneedles can penetrate the stratum corneum, which is the main barrier for drug delivery through the skin with ease of administration and without significant pain. Many different kinds of MNs, such as metal MNs, coated MNs, dissolving MNs have turned out to be promising in gene delivery. In this review, we discussed the potential as well as the challenges of utilizing MNs to deliver nucleic acids for gene therapy. We also proposed that a combination of MNs and other gene delivery approaches may lead to a better delivery system for gene therapy. PMID:27303298

  11. Microneedles As a Delivery System for Gene Therapy.

    PubMed

    Chen, Wei; Li, Hui; Shi, De; Liu, Zhenguo; Yuan, Weien

    2016-01-01

    Gene delivery systems can be divided to two major types: vector-based (either viral vector or non-viral vector) and physical delivery technologies. Many physical carriers, such as electroporation, gene gun, ultrasound start to be proved to have the potential to enable gene therapy. A relatively new physical delivery technology for gene delivery consists of microneedles (MNs), which has been studied in many fields and for many molecule types and indications. Microneedles can penetrate the stratum corneum, which is the main barrier for drug delivery through the skin with ease of administration and without significant pain. Many different kinds of MNs, such as metal MNs, coated MNs, dissolving MNs have turned out to be promising in gene delivery. In this review, we discussed the potential as well as the challenges of utilizing MNs to deliver nucleic acids for gene therapy. We also proposed that a combination of MNs and other gene delivery approaches may lead to a better delivery system for gene therapy. PMID:27303298

  12. NIH modifies gene therapy research guidelines.

    PubMed

    Levine, Carol

    1985-06-01

    In response to public comments on the first draft of its "Points to Consider in the Design and Submission of Human Somatic-Cell Gene Therapy Protocols," the Working Group on Human Gene Therapy of the National Institutes of Health has issued a revised set of guidelines for researchers. This second draft spells out the need for public review of gene therapy protocols, the Working Group's willingness to review selected protocols before the completion of animal studies, and requirements for informed consent to long-term follow-up and to autopsy in the event of death. The document also expresses the Working Group's concern that researchers and the public be kept fully informed of the results of such studies. PMID:11643786

  13. Moving forward: cystic fibrosis gene therapy.

    PubMed

    Griesenbach, Uta; Alton, Eric W F W

    2013-10-15

    Since cloning of the CFTR gene more than 20 years ago a large number of pre-clinical and clinical CF gene therapy studies have been performed and a vast amount of information and know-how has been generated. Here, we will review key studies with a particular emphasis on clinical findings. We have learnt that the lung is a more difficult target than originally anticipated, and we describe the strength and weaknesses of the most commonly used airway gene transfer agents (GTAs). In our view, one of the most significant developments in recent years is the generation of lentiviral vectors, which efficiently transduce lung tissue. However, focused and co-ordinated efforts assessing lentiviral vector safety and scaling up of production will be required to move this vector into clinical lung gene therapy studies. PMID:23918661

  14. Macrophage mediated PCI enhanced gene-directed enzyme prodrug therapy

    NASA Astrophysics Data System (ADS)

    Christie, Catherine E.; Zamora, Genesis; Kwon, Young J.; Berg, Kristian; Madsen, Steen J.; Hirschberg, Henry

    2015-03-01

    Photochemical internalization (PCI) is a photodynamic therapy-based approach for improving the delivery of macromolecules and genes into the cell cytosol. Prodrug activating gene therapy (suicide gene therapy) employing the transduction of the E. coli cytosine deaminase (CD) gene into tumor cells, is a promising method. Expression of this gene within the target cell produces an enzyme that converts the nontoxic prodrug, 5-FC, to the toxic metabolite, 5-fluorouracil (5-FU). 5-FC may be particularly suitable for brain tumors, because it can readily cross the bloodbrain barrier (BBB). In addition the bystander effect, where activated drug is exported from the transfected cancer cells into the tumor microenvironment, plays an important role by inhibiting growth of adjacent tumor cells. Tumor-associated macrophages (TAMs) are frequently found in and around glioblastomas. Monocytes or macrophages (Ma) loaded with drugs, nanoparticles or photosensitizers could therefore be used to target tumors by local synthesis of chemo attractive factors. The basic concept is to combine PCI, to enhance the ex vivo transfection of a suicide gene into Ma, employing specially designed core/shell NP as gene carrier.

  15. Radiopharmaceutical and Gene Therapy Program

    SciTech Connect

    Buchsbaum, Donald J.

    2006-02-09

    The objective of our research program was to determine whether novel receptors can be induced in solid cancers as a target for therapy with radiolabeled unmodified peptides that bind to the receptors. The hypothesis was that induction of a high number of receptors on the surface of these cancer cells would result in an increased uptake of the radiolabeled monomeric peptides as compared to published results with radiolabeled antibodies or peptides to naturally expressed antigens or receptors, and therefore a better therapeutic outcome. The following is a summary of published results.

  16. [Gene therapy for inherited retinal dystrophies].

    PubMed

    Côco, Monique; Han, Sang Won; Sallum, Juliana Maria Ferraz

    2009-01-01

    The inherited retinal dystrophies comprise a large number of disorders characterized by a slow and progressive retinal degeneration. They are the result of mutations in genes that express in either the photoreceptor cells or the retinal pigment epithelium. The mode of inheritance can be autosomal dominant, autosomal recessive, X linked recessive, digenic or mitochondrial DNA inherited. At the moment, there is no treatment for these conditions and the patients can expect a progressive loss of vision. Accurate genetic counseling and support for rehabilitation are indicated. Research into the molecular and genetic basis of disease is continually expanding and improving the prospects for rational treatments. In this way, gene therapy, defined as the introduction of exogenous genetic material into human cells for therapeutic purposes, may ultimately offer the greatest treatment for the inherited retinal dystrophies. The eye is an attractive target for gene therapy because of its accessibility, immune privilege and translucent media. A number of retinal diseases affecting the eye have known gene defects. Besides, there is a well characterized animal model for many of these conditions. Proposals for clinical trials of gene therapy for inherited retinal degenerations owing to defects in the gene RPE65, have recently received ethical approval and the obtained preliminary results brought large prospects in the improvement on patient's quality of life. PMID:19820803

  17. Gene therapies for inherited skin disorders.

    PubMed

    Abdul-Wahab, Alya; Qasim, Waseem; McGrath, John A

    2014-06-01

    Skin is an amenable organ for gene replacement and gene editing therapeutics. Its accessibility makes it well-suited for direct topical gene delivery, grafting of genetically corrected cells, and monitoring of possible adverse events. Monogenic recessive disorders with a clinically severe or life-threatening phenotype provide the best candidate diseases for the introduction of a single normal copy of the gene into the target cell, usually keratinocytes. Preclinical studies have shown impressive results in terms of gene correction using both in vivo and ex vivo approaches. The clinical application of gene replacement or genomic editing as potential therapies for inherited skin disorders, however, has been held back by the inadequacy of delivery vectors and concerns from regulatory agencies regarding safety; thus translation to clinical trials has been slow. Over the past 15 years, cell culture and animal models have shown efficient gene correction techniques as preludes to treat inherited skin disorders such as junctional epidermolysis bullosa, dystrophic epidermolysis bullosa, xeroderma pigmentosum, lamellar ichthyosis and Netherton syndrome, but so far only one patient has been treated in a clinical trial. This article reviews the current status of gene therapies for patients with inherited skin diseases and explores future perspectives. PMID:25085667

  18. Developments in gene therapy for muscular dystrophy.

    PubMed

    Hartigan-O'Connor, D; Chamberlain, J S

    Gene therapy for muscular dystrophy (MD) presents significant challenges, including the large amount of muscle tissue in the body, the large size of many genes defective in different muscular dystrophies, and the possibility of a host immune response against the therapeutic gene. Overcoming these challenges requires the development and delivery of suitable gene transfer vectors. Encouraging progress has been made in modifying adenovirus (Ad) vectors to reduce immune response and increase capacity. Recently developed gutted Ad vectors can deliver full-length dystrophin cDNA expression vectors to muscle tissue. Using muscle-specific promoters to drive dystrophin expression, a strong immune response has not been observed in mdx mice. Adeno-associated virus (AAV) vectors can deliver small genes to muscle without provocation of a significant immune response, which should allow long-term expression of several MD genes. AAV vectors have also been used to deliver sarcoglycan genes to entire muscle groups. These advances and others reviewed here suggest that barriers to gene therapy for MD are surmountable. PMID:10679969

  19. Gene Insertion Into Genomic Safe Harbors for Human Gene Therapy.

    PubMed

    Papapetrou, Eirini P; Schambach, Axel

    2016-04-01

    Genomic safe harbors (GSHs) are sites in the genome able to accommodate the integration of new genetic material in a manner that ensures that the newly inserted genetic elements: (i) function predictably and (ii) do not cause alterations of the host genome posing a risk to the host cell or organism. GSHs are thus ideal sites for transgene insertion whose use can empower functional genetics studies in basic research and therapeutic applications in human gene therapy. Currently, no fully validated GSHs exist in the human genome. Here, we review our formerly proposed GSH criteria and discuss additional considerations on extending these criteria, on strategies for the identification and validation of GSHs, as well as future prospects on GSH targeting for therapeutic applications. In view of recent advances in genome biology, gene targeting technologies, and regenerative medicine, gene insertion into GSHs can potentially catalyze nearly all applications in human gene therapy. PMID:26867951

  20. ORTHOPAEDIC GENE THERAPY – LOST IN TRANSLATION?

    PubMed Central

    Evans, C.H.; Ghivizzani, S.C.; Robbins, P.D.

    2011-01-01

    Orthopaedic gene therapy has been the topic of considerable research for two decades. The preclinical data are impressive and many orthopaedic conditions are well suited to genetic therapies. But there have been few clinical trials and no FDA-approved product exists. This paper examines why this is so. The reasons are multifactorial. Clinical translation is expensive and difficult to fund by traditional academic routes. Because gene therapy is viewed as unsafe and risky, it does not attract major funding from the pharmaceutical industry. Start-up companies are burdened by the complex intellectual property environment and difficulties in dealing with the technology transfer offices of major universities. Successful translation requires close interactions between scientists, clinicians and experts in regulatory and compliance issues. It is difficult to create such a favourable translational environment. Other promising fields of biological therapy have contemplated similar frustrations approximately 20 years after their founding, so there seem to be more general constraints on translation that are difficult to define. Gene therapy has noted some major clinical successes in recent years, and a sense of optimism is returning to the field. We hope that orthopaedic applications will benefit collaterally from this upswing and move expeditiously into advanced clinical trials. PMID:21948071

  1. Gene Therapy and Targeted Toxins for Glioma

    PubMed Central

    Castro, Maria G.; Candolfi, Marianela; Kroeger, Kurt; King, Gwendalyn D.; Curtin, James F.; Yagiz, Kader; Mineharu, Yohei; Assi, Hikmat; Wibowo, Mia; Muhammad, AKM Ghulam; Foulad, David; Puntel, Mariana; Lowenstein, Pedro R.

    2011-01-01

    The most common primary brain tumor in adults is glioblastoma. These tumors are highly invasive and aggressive with a mean survival time of nine to twelve months from diagnosis to death. Current treatment modalities are unable to significantly prolong survival in patients diagnosed with glioblastoma. As such, glioma is an attractive target for developing novel therapeutic approaches utilizing gene therapy. This review will examine the available preclinical models for glioma including xenographs, syngeneic and genetic models. Several promising therapeutic targets are currently being pursued in pre-clinical investigations. These targets will be reviewed by mechanism of action, i.e., conditional cytotoxic, targeted toxins, oncolytic viruses, tumor suppressors/oncogenes, and immune stimulatory approaches. Preclinical gene therapy paradigms aim to determine which strategies will provide rapid tumor regression and long-term protection from recurrence. While a wide range of potential targets are being investigated preclinically, only the most efficacious are further transitioned into clinical trial paradigms. Clinical trials reported to date are summarized including results from conditionally cytotoxic, targeted toxins, oncolytic viruses and oncogene targeting approaches. Clinical trial results have not been as robust as preclinical models predicted; this could be due to the limitations of the GBM models employed. Once this is addressed, and we develop effective gene therapies in models that better replicate the clinical scenario, gene therapy will provide a powerful approach to treat and manage brain tumors. PMID:21453286

  2. Gene Therapy and Targeted Toxins for Glioma

    PubMed Central

    King, Gwendalyn D.; Curtin, James F.; Candolfi, Marianela; Kroeger, Kurt; Lowenstein, Pedro R.; Castro, Maria G.

    2006-01-01

    The most common primary brain tumor in adults is glioblastoma. These tumors are highly invasive and aggressive with a mean survival time of nine to twelve months from diagnosis to death. Current treatment modalities are unable to significantly prolong survival in patients diagnosed with glioblastoma. As such, glioma is an attractive target for developing novel therapeutic approaches utilizing gene therapy. This review will examine the available preclinical models for glioma including xenographs, syngeneic and genetic models. Several promising therapeutic targets are currently being pursued in pre-clinical investigations. These targets will be reviewed by mechanism of action, i.e., conditional cytotoxic, targeted toxins, oncolytic viruses, tumor suppressors/oncogenes, and immune stimulatory approaches. Preclinical gene therapy paradigms aim to determine which strategies will provide rapid tumor regression and long-term protection from recurrence. While a wide range of potential targets are being investigated preclinically, only the most efficacious are further transitioned into clinical trial paradigms. Clinical trials reported to date are summarized including results from conditionally cytotoxic, targeted toxins, oncolytic viruses and oncogene targeting approaches. Clinical trial results have not been as robust as preclinical models predicted, this could be due to the limitations of the GBM models employed. Once this is addressed, and we develop effective gene therapies in models that better replicate the clinical scenario, gene therapy will provide a powerful approach to treat and manage brain tumors. PMID:16457645

  3. The gene therapy revolution in ophthalmology

    PubMed Central

    Al-Saikhan, Fahad I.

    2013-01-01

    The advances in gene therapy hold significant promise for the treatment of ophthalmic conditions. Several studies using animal models have been published. Animal models on retinitis pigmentosa, Leber’s Congenital Amaurosis (LCA), and Stargardt disease have involved the use of adeno-associated virus (AAV) to deliver functional genes into mice and canines. Mice models have been used to show that a mutation in cGMP phosphodiesterase that results in retinitis pigmentosa can be corrected using rAAV vectors. Additionally, rAAV vectors have been successfully used to deliver ribozyme into mice with a subsequent improvement in autosomal dominant retinitis pigmentosa. By using dog models, researchers have made progress in studying X-linked retinitis pigmentosa which results from a RPGR gene mutation. Mouse and canine models have also been used in the study of LCA. The widely studied form of LCA is LCA2, resulting from a mutation in the gene RPE65. Mice and canines that were injected with normal copies of RPE65 gene showed signs such as improved retinal pigment epithelium transduction, visual acuity, and functional recovery. Studies on Stargardt disease have shown that mutations in the ABCA4 gene can be corrected with AAV vectors, or nanoparticles. Gene therapy for the treatment of red–green color blindness was successful in squirrel monkeys. Plans are at an advanced stage to begin clinical trials. Researchers have also proved that CD59 can be used with AMD. Gene therapy is also able to treat primary open angle glaucoma (POAG) in animal models, and studies show it is economically viable. PMID:24227970

  4. Gene and splicing therapies for neuromuscular diseases.

    PubMed

    Benchaouir, Rachid; Robin, Valerie; Goyenvalle, Aurelie

    2015-01-01

    Neuromuscular disorders (NMD) are heterogeneous group of genetic diseases characterized by muscle weakness and wasting. Duchenne Muscular dystrophy (DMD) and Spinal muscular atrophy (SMA) are two of the most common and severe forms in humans and although the molecular mechanisms of these diseases have been extensively investigated, there is currently no effective treatment. However, new gene-based therapies have recently emerged with particular noted advances in using conventional gene replacement strategies and RNA-based technology. Whilst proof of principle have been demonstrated in animal models, several clinical trials have recently been undertaken to investigate the feasibility of these strategies in patients. In particular, antisense mediated exon skipping has shown encouraging results and hold promise for the treatment of dystrophic muscle. In this review, we summarize the recent progress of therapeutic approaches to neuromuscular diseases, with an emphasis on gene therapy and splicing modulation for DMD and SMA, focusing on the advantages offered by these technologies but also their challenges. PMID:25961553

  5. Methods to improve cardiac gene therapy expression.

    PubMed

    Scimia, Maria Cecilia; Sydnes, Kate E; Zuppo, Daniel A; Koch, Walter J

    2014-11-01

    Gene therapy strategies are becoming a valuable approach for the treatment of heart failure. Some trials are ongoing and others are being organized. Vascular access in clinical experimentation is still the chosen modality of delivery, but many other approaches are in research and development. A successful gene therapy strategy involves not only the choice of the right vector and gene, but also the correct delivery strategy that allows for transduction of the highest percentage of cardiomyocytes, limited spilling of virus into other organs and the possibility to correlate the amount of injected virus to the rate of the expression within the cardiac tissue. The authors will first concentrate on clarifying what the barriers are that the virus has to overcome in order to reach the nuclei of the target organs and methodologies that have been tested to improve the range of expression. PMID:25340284

  6. Gene Therapy and Wound Healing

    PubMed Central

    Eming, Sabine A.; Krieg, Thomas; Davidson, Jeffrey M

    2007-01-01

    Wound repair involves the sequential interaction of various cell types, extracellular matrix molecules, and soluble mediators. During the past 10 years, much new information on signals controlling wound cell behavior has emerged. This knowledge has led to a number of novel_therapeutic strategies. In particular, the local delivery of pluripotent growth factor molecules to the injured tissue has been intensively investigated over the past decade. Limited success of clinical trails indicates that a crucial aspect of the growth factor wound-healing strategy is the effective delivery of these polypeptides to the wound site. A molecular approach in which genetically modified cells synthesize and deliver the desired growth factor in regulated fashion has been used to overcome the limitations associated with the (topical) application of recombinant growth factor proteins. We have summarized the molecular and cellular basis of repair mechanisms and their failure, and we give an overview of techniques and studies applied to gene transfer in tissue repair. PMID:17276205

  7. [Gene therapy in lysosomal diseases].

    PubMed

    Moullier, P; Salvetti, A; Bohl, D; Danos, O; Heard, J M

    1996-01-01

    The study of the mechanisms of secretion and recapture of lysosomal enzymes has lead to the proposal of a treatment of lysosomal diseases by enzyme replacement. Autologous implants of genetically modified cells which secrete enzymes ensure systemic distribution of the lacking enzyme. A procedure which permits reimplantation of genetically modified fibroblasts is described. The stable secretion of human glucuronidase by autologous fibroblasts was thus obtained in animal species. This approach should by applicable to the treatment of Hurler's syndrome by obtaining the production and distribution of alpha-L-iduronidase in patients lacking this enzyme by retroviral transfer of the human alpha-L-iduronidase gene to cultured fibroblasts and by preparation of implants. PMID:8881268

  8. Artemisinin combination therapy for vivax malaria?

    PubMed Central

    Douglas, Nicholas M.; Anstey, Nicholas M.; Angus, Brian J.; Nosten, Francois; Price, Ric N.

    2012-01-01

    Early parasitological diagnosis and treatment with artemisinin-based combination therapies (ACT) are seen as key components of global malaria elimination programmes. In general, use of ACTs has been limited to patients with falciparum malaria whereas blood-stage P. vivax infections are mostly still treated with chloroquine. We review the evidence for the relative benefits and disadvantages of the existing ‘separate’ treatment approach versus a ‘unified’ ACT-based strategy for treating P. falciparum and P. vivax infections in regions where both species are endemic (co-endemic). The ‘separate’ treatment scenario is justifiable where P. vivax remains sensitive to chloroquine and providing that diagnostic tests reliably distinguish P. vivax from P. falciparum. However, with the high frequency of misdiagnosis in routine practice and the rise and spread of chloroquine-resistant P. vivax, there may be a compelling rationale for a unified ACT-based strategy for vivax and falciparum malaria in all co-endemic areas. Analyses of the cost-effectiveness of ACTs for both Plasmodium species are required to assess the role of these drugs in vivax malaria control and elimination efforts. PMID:20510281

  9. Combined therapy for post-irradiation infection

    SciTech Connect

    Elliott, T.B.; Madonna, G.S.; Ledney, G.D.; Brook, I.

    1989-01-01

    Increased susceptibility to bacterial infection, probably by translocation from the intestinal flora, can be a lethal complication for 2-3 weeks after exposure to ionizing radiation. Antibiotics alone do not provide adequate therapy for induced infections in neutropenic mice. Because some substances that are derived from bacterial cell walls activate macrophages and stimulate nonspecific resistance to infection, such agents might be used to prevent or treat postirradiation infections. In this study, a cell-wall glycolipid, trehalose dimycolate (TDM), was evaluated together with a third-generation cephalosporin, ceftriaxone, for their separate and combined effects on survival of B6D2F1 female mice that were exposed to the sublethal dose of 7.0 Gy Co radiation and challenged s.c. with lethal doses of Klebsiella pneumoniae. A single injection of TDM inoculated i.p. 1 hr postirradiation increased 30-day survival to 80% after a lethal challenge by K. pneumoniae 4 days later. When the challenge dose of K. pneumoniae was increased to 5000 Ld 50/30 on Day 4, all mice died.

  10. Aerosolized Medications for Gene and Peptide Therapy.

    PubMed

    Laube, Beth L

    2015-06-01

    Inhalation therapy has matured to include drugs that: (1) deliver nucleic acids that either lead to the restoration of a gene construct or protein coding sequence in a population of cells or suppress or disrupt production of an abnormal gene product (gene therapy); (2) deliver peptides that target lung diseases such as asthma, sarcoidosis, pulmonary hypertension, and cystic fibrosis; and (3) deliver peptides to treat diseases outside the lung whose target is the systemic circulation (systemic drug delivery). These newer applications for aerosol therapy are the focus of this paper, and I discuss the status of each and the challenges that remain to their successful development. Drugs that are highlighted include: small interfering ribonucleic acid to treat lung cancer and Mycobacterium tuberculosis; vectors carrying the normal alpha-1 antitrypsin gene to treat alpha-1 antitrypsin deficiency; vectors carrying the normal cystic fibrosis transmembrane conductance regulator gene to treat cystic fibrosis; vasoactive intestinal peptide to treat asthma, pulmonary hypertension, and sarcoidosis; glutathione to treat cystic fibrosis; granulocyte-macrophage colony-stimulating factor to treat pulmonary alveolar proteinosis; calcitonin for postmenopausal osteoporosis; and insulin to treat diabetes. The success of these new aerosol applications will depend on many factors, such as: (1) developing gene therapy formulations that are safe for acute and chronic administrations to the lung, (2) improving the delivery of the genetic material beyond the airway mucus barrier and cell membrane and transferring the material to the cell cytoplasm or the cell nucleus, (3) developing aerosol devices that efficiently deliver genetic material and peptides to their lung targets over a short period of time, (4) developing devices that increase aerosol delivery to the lungs of infants, (5) optimizing the bioavailability of systemically delivered peptides, and (6) developing peptide formulations for

  11. Effectiveness of Combined Modality Radiotherapy of Orthotopic Human Squamous Cell Carcinomas in Nu/Nu Mice Using Cetuximab, Tirapazamine and MnSOD-Plasmid Liposome Gene Therapy

    PubMed Central

    EPPERLY, MICHAEL W.; LAI, STEPHEN Y.; KANAI, ANTHONY J.; MASON, NEAL; LOPRESI, BRIAN; DIXON, TRACEY; FRANICOLA, DARCY; NIU, YUNYUN; WILSON, WILLIAM R.; GREENBERGER, JOEL S.

    2010-01-01

    Hypoxic regions limit the radiocontrollability of head and neck carcinomas. Whether or not combinations of plasmid/liposome mediated overexpression of normal tissue protective manganese superoxide dismutase (MnSOD), cetuximab (C225), and the hypoxic cytotoxin tirapazamine (TPZ) enhanced radiotherapeutic effects was tested in a CAL-33 orthotopic mouse cheek tumor model. The tumor volume continued to increase in the control (untreated) mice, with a ninefold increase by 10 days when the tumors exceeded 2 cm3. The mice receiving 14 Gy only showed reduced tumor growth to 3.1±0.1 fold at day 10. The mice receiving MnSOD-PL, C225, TPZ plus 14 Gy had the best outcome with 0.7±0.1 fold increase in tumor volume by 10 days (p=0.015) compared to irradiation only. The addition of MnSOD-PL, TPZ, and C225 to irradiation optimized the therapeutic ratio for the local control of hypoxic region-containing CAL-33 orthotopic tumors. PMID:20133969

  12. Effectiveness of combined modality radiotherapy of orthotopic human squamous cell carcinomas in Nu/Nu mice using cetuximab, tirapazamine and MnSOD-plasmid liposome gene therapy.

    PubMed

    Epperly, Michael W; Lai, Stephen Y; Kanai, Anthony J; Mason, Neal; Lopresi, Brian; Dixon, Tracey; Franicola, Darcy; Niu, Yunyun; Wilson, William R; Greenberger, Joel S

    2010-01-01

    Hypoxic regions limit the radiocontrollability of head and neck carcinomas. Whether or not combinations of plasmid/liposome mediated overexpression of normal tissue protective manganese superoxide dismutase (MnSOD), cetuximab (C225), and the hypoxic cytotoxin tirapazamine (TPZ) enhanced radiotherapeutic effects was tested in a CAL-33 orthotopic mouse cheek tumor model. The tumor volume continued to increase in the control (untreated) mice, with a ninefold increase by 10 days when the tumors exceeded 2 cm(3). The mice receiving 14 Gy only showed reduced tumor growth to 3.1+/-0.1 fold at day 10. The mice receiving MnSOD-PL, C225, TPZ plus 14 Gy had the best outcome with 0.7+/-0.1 fold increase in tumor volume by 10 days (p=0.015) compared to irradiation only. The addition of MnSOD-PL, TPZ, and C225 to irradiation optimized the therapeutic ratio for the local control of hypoxic region-containing CAL-33 orthotopic tumors. PMID:20133969

  13. Gene therapy for primary immunodeficiencies: current status and future prospects.

    PubMed

    Qasim, Waseem; Gennery, Andrew R

    2014-06-01

    Gene therapy using autologous haematopoietic stem cells offers a valuable treatment option for patients with primary immunodeficiencies who do not have access to an HLA-matched donor, although such treatments have not been without their problems. This review details gene therapy trials for X-linked and adenosine deaminase (ADA)-deficient severe combined immunodeficiency (SCID), Wiskott-Aldrich syndrome (WAS) and chronic granulomatous disease (CGD). X-linked SCID was chosen for gene therapy because of previous 'natural' genetic correction through a reversion event in a single lymphoid precursor, demonstrating limited thymopoiesis and restricted T-lymphocyte receptor repertoire, showing selective advantage of progenitors possessing the wild-type gene. In early studies, patients were treated with long terminal repeats-intact gamma-retroviral vectors, without additional chemotherapy. Early results demonstrated gene-transduced cells, sustained thymopoiesis, and a diverse T-lymphocyte repertoire with normal function. Serious adverse effects were subsequently reported in 5 of 20 patients, with T-lymphocyte leukaemia developing, secondary to the viral vector integrating adjacent to a known oncogene. New trials using self-inactivating gamma-retroviral vectors are progressing. Trials for ADA-SCID using gamma-retroviral vectors have been successful, with no similar serious adverse effects reported; trials using lentiviral vectors are in progress. Patients with WAS and CGD treated with early gamma-retroviral vectors have developed similar lymphoproliferative adverse effects to those seen in X-SCID--current trials are using new-generation vectors. Targeted gene insertion using homologous recombination of corrected gene sequences by cellular DNA repair pathways following targeted DNA breakage will improve efficacy and safety of gene therapy. A number of new techniques are discussed. PMID:24848753

  14. An Integrative Pharmacogenomic Approach Identifies Two-drug Combination Therapies for Personalized Cancer Medicine

    PubMed Central

    Liu, Yin; Fei, Teng; Zheng, Xiaoqi; Brown, Myles; Zhang, Peng; Liu, X. Shirley; Wang, Haiyun

    2016-01-01

    An individual tumor harbors multiple molecular alterations that promote cell proliferation and prevent apoptosis and differentiation. Drugs that target specific molecular alterations have been introduced into personalized cancer medicine, but their effects can be modulated by the activities of other genes or molecules. Previous studies aiming to identify multiple molecular alterations for combination therapies are limited by available data. Given the recent large scale of available pharmacogenomic data, it is possible to systematically identify multiple biomarkers that contribute jointly to drug sensitivity, and to identify combination therapies for personalized cancer medicine. In this study, we used pharmacogenomic profiling data provided from two independent cohorts in a systematic in silico investigation of perturbed genes cooperatively associated with drug sensitivity. Our study predicted many pairs of molecular biomarkers that may benefit from the use of combination therapies. One of our predicted biomarker pairs, a mutation in the BRAF gene and upregulated expression of the PIM1 gene, was experimentally validated to benefit from a therapy combining BRAF inhibitor and PIM1 inhibitor in lung cancer. This study demonstrates how pharmacogenomic data can be used to systematically identify potentially cooperative genes and provide novel insights to combination therapies in personalized cancer medicine. PMID:26916442

  15. An Integrative Pharmacogenomic Approach Identifies Two-drug Combination Therapies for Personalized Cancer Medicine.

    PubMed

    Liu, Yin; Fei, Teng; Zheng, Xiaoqi; Brown, Myles; Zhang, Peng; Liu, X Shirley; Wang, Haiyun

    2016-01-01

    An individual tumor harbors multiple molecular alterations that promote cell proliferation and prevent apoptosis and differentiation. Drugs that target specific molecular alterations have been introduced into personalized cancer medicine, but their effects can be modulated by the activities of other genes or molecules. Previous studies aiming to identify multiple molecular alterations for combination therapies are limited by available data. Given the recent large scale of available pharmacogenomic data, it is possible to systematically identify multiple biomarkers that contribute jointly to drug sensitivity, and to identify combination therapies for personalized cancer medicine. In this study, we used pharmacogenomic profiling data provided from two independent cohorts in a systematic in silico investigation of perturbed genes cooperatively associated with drug sensitivity. Our study predicted many pairs of molecular biomarkers that may benefit from the use of combination therapies. One of our predicted biomarker pairs, a mutation in the BRAF gene and upregulated expression of the PIM1 gene, was experimentally validated to benefit from a therapy combining BRAF inhibitor and PIM1 inhibitor in lung cancer. This study demonstrates how pharmacogenomic data can be used to systematically identify potentially cooperative genes and provide novel insights to combination therapies in personalized cancer medicine. PMID:26916442

  16. Progress in gene targeting and gene therapy for retinitis pigmentosa

    SciTech Connect

    Farrar, G.J.; Humphries, M.M.; Erven, A.

    1994-09-01

    Previously, we localized disease genes involved in retinitis pigmentosa (RP), an inherited retinal degeneration, close to the rhodopsin and peripherin genes on 3q and 6p. Subsequently, we and others identified mutations in these genes in RP patients. Currently animal models for human retinopathies are being generated using gene targeting by homologous recombination in embryonic stem (ES) cells. Genomic clones for retinal genes including rhodopsin and peripherin have been obtained from a phage library carrying mouse DNA isogenic with the ES cell line (CC1.2). The peripherin clone has been sequenced to establish the genomic structure of the mouse gene. Targeting vectors for rhodopsin and peripherin including a neomycin cassette for positive selection and thymidine kinase genes enabling selection against random intergrants are under construction. Progress in vector construction will be presented. Simultaneously we are developing systems for delivery of gene therapies to retinal tissues utilizing replication-deficient adenovirus (Ad5). Efficacy of infection subsequent to various methods of intraocular injection and with varying viral titers is being assayed using an adenovirus construct containing a CMV promoter LacZ fusion as reporter and the range of tissues infected and the level of duration of LacZ expression monitored. Viral constructs with the LacZ reporter gene under the control of retinal specific promoters such as rhodopsin and IRBP cloned into pXCJL.1 are under construction. An update on developments in photoreceptor cell-directed expression of virally delivered genes will be presented.

  17. Gene Tests May Improve Therapy for Endometrial Cancer

    MedlinePlus

    ... External link, please review our exit disclaimer . Subscribe Gene Tests May Improve Therapy for Endometrial Cancer By analyzing genes in hundreds of endometrial tumors, scientists identified details ...

  18. Newer Gene Editing Technologies toward HIV Gene Therapy

    PubMed Central

    Manjunath, N.; Yi, Guohua; Dang, Ying; Shankar, Premlata

    2013-01-01

    Despite the great success of highly active antiretroviral therapy (HAART) in ameliorating the course of HIV infection, alternative therapeutic approaches are being pursued because of practical problems associated with life-long therapy. The eradication of HIV in the so-called “Berlin patient” who received a bone marrow transplant from a CCR5-negative donor has rekindled interest in genome engineering strategies to achieve the same effect. Precise gene editing within the cells is now a realistic possibility with recent advances in understanding the DNA repair mechanisms, DNA interaction with transcription factors and bacterial defense mechanisms. Within the past few years, four novel technologies have emerged that can be engineered for recognition of specific DNA target sequences to enable site-specific gene editing: Homing Endonuclease, ZFN, TALEN, and CRISPR/Cas9 system. The most recent CRISPR/Cas9 system uses a short stretch of complementary RNA bound to Cas9 nuclease to recognize and cleave target DNA, as opposed to the previous technologies that use DNA binding motifs of either zinc finger proteins or transcription activator-like effector molecules fused to an endonuclease to mediate sequence-specific DNA cleavage. Unlike RNA interference, which requires the continued presence of effector moieties to maintain gene silencing, the newer technologies allow permanent disruption of the targeted gene after a single treatment. Here, we review the applications, limitations and future prospects of novel gene-editing strategies for use as HIV therapy. PMID:24284874

  19. Noninvasive Tracking of Gene Transcript and Neuroprotection after Gene Therapy

    PubMed Central

    Ren, Jiaqian; Chen, Y. Iris; Liu, Christina H.; Chen, Po-Chih; Prentice, Howard; Wu, Jang-Yen; Liu, Philip K.

    2015-01-01

    Gene therapy holds exceptional potential for translational medicine by improving the products of defective genes in diseases and/or providing necessary biologics from endogenous sources during recovery processes. However, validating methods for the delivery, distribution and expression of the exogenous genes from such therapy can generally not be applicable to monitor effects over the long term because they are invasive. We report here that human granulocyte colony-stimulating factor (hG-CSF) cDNA encoded in scAAV-type 2 adeno-associated virus, as delivered through eye drops at multiple time points after cerebral ischemia using bilateral carotid occlusion for 60 min (BCAO-60) led to significant reduction in mortality rates, cerebral atrophy, and neurological deficits in C57black6 mice. Most importantly, we validated hG-CSF cDNA expression using translatable magnetic resonance imaging (MRI) in living brains. This noninvasive approach for monitoring exogenous gene expression in the brains has potential for great impact in the area of experimental gene therapy in animal models of heart attack, stroke, Alzheimer’s dementia, Parkinson’s disorder and amyotrophic lateral sclerosis, and the translation of such techniques to emergency medicine. PMID:26207935

  20. Noninvasive tracking of gene transcript and neuroprotection after gene therapy.

    PubMed

    Ren, J; Chen, Y I; Liu, C H; Chen, P-C; Prentice, H; Wu, J-Y; Liu, P K

    2016-01-01

    Gene therapy holds exceptional potential for translational medicine by improving the products of defective genes in diseases and/or providing necessary biologics from endogenous sources during recovery processes. However, validating methods for the delivery, distribution and expression of the exogenous genes from such therapy can generally not be applicable to monitor effects over the long term because they are invasive. We report here that human granulocyte colony-stimulating factor (hG-CSF) complimentary DNA (cDNA) encoded in self-complementary adeno-associated virus-type 2 adeno-associated virus, as delivered through eye drops at multiple time points after cerebral ischemia using bilateral carotid occlusion for 60 min (BCAO-60) led to significant reduction in mortality rates, cerebral atrophy and neurological deficits in C57black6 mice. Most importantly, we validated hG-CSF cDNA expression using translatable magnetic resonance imaging (MRI) in living brains. This noninvasive approach for monitoring exogenous gene expression in the brains has potential for great impact in the area of experimental gene therapy in animal models of heart attack, stroke, Alzheimer's dementia, Parkinson's disorder and amyotrophic lateral sclerosis, and the translation of such techniques to emergency medicine. PMID:26207935

  1. Gene Therapy Shows Early Promise Against Heart Failure

    MedlinePlus

    ... nlm.nih.gov/medlineplus/news/fullstory_158046.html Gene Therapy Shows Early Promise Against Heart Failure Inserting new ... who suffer from heart failure: A trial using gene therapy appears to have boosted patients' cardiac function. "This ...

  2. Gene Therapy May Offer Hope for 'Bubble Boy' Disease

    MedlinePlus

    ... nlm.nih.gov/medlineplus/news/fullstory_158415.html Gene Therapy May Offer Hope for 'Bubble Boy' Disease ... WEDNESDAY, April 20, 2016 (HealthDay News) -- A new gene therapy shows preliminary promise against so-called "Bubble ...

  3. Gene Therapy for the Treatment of Primary Immune Deficiencies.

    PubMed

    Kuo, Caroline Y; Kohn, Donald B

    2016-05-01

    The use of gene therapy in the treatment of primary immune deficiencies (PID) has advanced significantly in the last decade. Clinical trials for X-linked severe combined immunodeficiency, adenosine deaminase deficiency (ADA), chronic granulomatous disease, and Wiskott-Aldrich syndrome have demonstrated that gene transfer into hematopoietic stem cells and autologous transplant can result in clinical improvement and is curative for many patients. Unfortunately, early clinical trials were complicated by vector-related insertional mutagenic events for several diseases with the exception of ADA-deficiency SCID. These results prompted the current wave of clinical trials for primary immunodeficiency using alternative retro- or lenti-viral vector constructs that are self-inactivating, and they have shown clinical efficacy without leukemic events thus far. The field of gene therapy continues to progress, with improvements in viral vector profiles, stem cell culturing techniques, and site-specific genome editing platforms. The future of gene therapy is promising, and we are quickly moving towards a time when it will be a standard cellular therapy for many forms of PID. PMID:27056559

  4. Gene therapy for lysosomal disorders.

    PubMed

    Naffakh, N; Bohl, D; Salvetti, A; Moullier, P; Danos, O; Heard, J M

    1994-01-01

    Genetic defects of lysosomal hydrolases result in severe storage diseases and treatments based on enzyme replacement have been proposed. In mice lacking beta-glucuronidase, which develop a disease homologous to human mucopolysaccharidosis type VII (MPS VII, sly syndrome), we have used autologous implants of genetically-modified cells for the continuous in vivo production of the enzyme. A retroviral vector containing the human beta-glucuronidase cDNA under the control of the mouse phosphoglycerate kinase promoter was used to infect primary skin fibroblasts, bone marrow cells, or myoblasts from mutant MPS VII animals. The fibroblasts were embedded into collagen lattices and reimplanted into the peritoneal cavity of recipient MPS VII mice. All animals, when analysed 10 to 155 days later, expressed beta-glucuronidase from the vascularised neo-organs that developed after implantation, and accumulated the enzyme in their tissues. A complete disappearance of the lysosomal storage lesions was observed in their liver and spleen. This procedure has been scaled up for long term lysosomal enzyme delivery in dogs. The bone marrow cells were used for partial hematopoietic reconstruction of sublethally irradiated MPS VII mice. Five months after gene transfer, animals in which under 5% of genetically-modified hematopoietic cells were detected in the spleen showed a drastic reduction of lysosomal storage lesions in the liver and spleen. Genetically-modified myoblasts were transplanted into injured muscles, where they participated in the regeneration of a significant proportion of muscle fibers. Enzyme secretion and liver uptake were observed for at least one month.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8177709

  5. Gene Therapy for Duchenne muscular dystrophy

    PubMed Central

    Ramos, Julian; Chamberlain, Jeffrey S

    2015-01-01

    Introduction Duchenne muscular dystrophy (DMD) is a relatively common inherited disorder caused by defective expression of the protein dystrophin. The most direct approach to treating this disease would be to restore dystrophin production in muscle. Recent progress has greatly increased the prospects for successful gene therapy of DMD, and here we summarize the most promising developments. Areas Covered Gene transfer using vectors derived from adeno-associated virus (AAV) has emerged as a promising method to restore dystrophin production in muscles bodywide, and represents a treatment option applicable to all DMD patients. Using information gleaned from PubMed searches of the literature, attendance at scientific conferences and results from our own lab, we provide an overview of the potential for gene therapy of DMD using AAV vectors including a summary of promising developments and issues that need to be resolved prior to large-scale therapeutic implementation. Expert Opinion Of the many approaches being pursued to treat DMD and BMD, gene therapy based on AAV-mediated delivery of microdystrophin is the most direct and promising method to treat the cause of the disorder. The major challenges to this approach are ensuring that microdystrophin can be delivered safely and efficiently without eliciting an immune response. PMID:26594599

  6. Gene and stem cell therapy for diabetes.

    PubMed

    Calne, Roy Y; Ghoneim, Mohamed A; Lee, K O; Uin, Gan Shu

    2013-01-01

    Gene and stem cell therapy has been on the scientific agenda in many laboratories for more than 20 years. The literature is enormous, but practical applications have been few. Recently advances in stem cell biology and gene therapy are clarifying some of the issues. I have made a few observations concerning our own studies on bone marrow mesenchymal stem cells cultured to produce a small percentage of insulin-producing cells and human insulin gene engineered into Lenti and AA viruses. The aim of clinical application would still seem to be several years away, if all goes well. The first step will be to produce enough insulin-secreting cells to be of potential value to patients. The next crucial question will be how to persuade the cells to respond to blood glucose levels swiftly and appropriately. With both stem cell and gene therapy, another important factor will be to ensure that any positive results will continue long enough to be preferable to insulin injections. PMID:25095498

  7. Suicide Gene Therapy for Cancer - Current Strategies.

    PubMed

    Zarogoulidis, Paul; Darwiche, Kaid; Sakkas, Antonios; Yarmus, Lonny; Huang, Haidong; Li, Qiang; Freitag, Lutz; Zarogoulidis, Konstantinos; Malecki, Marek

    2013-08-01

    Current cancer treatments may create profound iatrogenic outcomes. The adverse effects of these treatments still remain, as the serious problems that practicing physicians have to cope with in clinical practice. Although, non-specific cytotoxic agents constitute an effective treatment modality against cancer cells, they also tend to kill normal, quickly dividing cells. On the other hand, therapies targeting the genome of the tumors are both under investigation, and some others are already streamlined to clinical practice. Several approaches have been investigated in order to find a treatment targeting the cancer cells, while not affecting the normal cells. Suicide gene therapy is a therapeutic strategy, in which cell suicide inducing transgenes are introduced into cancer cells. The two major suicide gene therapeutic strategies currently pursued are: cytosine deaminase/5-fluorocytosine and the herpes simplex virus/ganciclovir. The novel strategies include silencing gene expression, expression of intracellular antibodies blocking cells' vital pathways, and transgenic expression of caspases and DNases. We analyze various elements of cancer cells' suicide inducing strategies including: targets, vectors, and mechanisms. These strategies have been extensively investigated in various types of cancers, while exploring multiple delivery routes including viruses, non-viral vectors, liposomes, nanoparticles, and stem cells. We discuss various stages of streamlining of the suicide gene therapy into clinical oncology as applied to different types of cancer. Moreover, suicide gene therapy is in the center of attention as a strategy preventing cancer from developing in patients participating in the clinical trials of regenerative medicine. In oncology, these clinical trials are aimed at regenerating, with the aid of stem cells, of the patients' organs damaged by pathologic and/or iatrogenic factors. However, the stem cells carry the risk of neoplasmic transformation. We discuss

  8. Inhibition of nuclear factor-{kappa}B and target genes during combined therapy with proteasome inhibitor bortezomib and reirradiation in patients with recurrent head-and-neck squamous cell carcinoma

    SciTech Connect

    Van Waes, Carter . E-mail: vanwaesc@nidcd.nih.gov; Chang, Angela A.; Lebowitz, Peter F.; Druzgal, Colleen H.; Chen, Zhong; Elsayed, Yusri A.; Sunwoo, John B.; Rudy, Susan; Morris, John C.; Mitchell, James B.; Camphausen, Kevin; Gius, David; Adams, Julian; Sausville, Edward A.; Conley, Barbara A.

    2005-12-01

    Purpose: To examine the effects the proteasome inhibitor bortezomib (VELCADE) on transcription factor nuclear factor-{kappa}B (NF-{kappa}B) and target genes and the feasibility of combination therapy with reirradiation in patients with recurrent head-and-neck squamous cell carcinoma (HNSCC). Methods and Materials: The tolerability and response to bortezomib 0.6 mg/m{sup 2} and 0.9 mg/m{sup 2} given twice weekly concurrent with daily reirradiation to 50-70 Gy was explored. Blood proteasome inhibition and NF-{kappa}B-modulated cytokines and factors were measured. Proteasome inhibition, nuclear localization of NF-{kappa}B phospho-p65, apoptosis, and expression of NF-{kappa}B-modulated mRNAs were compared in serial biopsies from accessible tumors. Results: The maximally tolerated dose was exceeded, and study was limited to 7 and 2 patients, respectively, given bortezomib 0.6 mg/m{sup 2} and 0.9 mg/m{sup 2}/dose with reirradiation. Grade 3 hypotension and hyponatremia were dose limiting. Mucositis was Grade 3 or less and was delayed. The mean blood proteasome inhibition at 1, 24, and 48 h after 0.6 mg/m{sup 2} was 32%, 16%, and 7% and after 0.9 mg/m{sup 2} was 56%, 26%, and 14%, respectively. Differences in proteasome and NF-{kappa}B activity, apoptosis, and expression of NF-{kappa}B-modulated cell cycle, apoptosis, and angiogenesis factor mRNAs were detected in 2 patients with minor tumor reductions and in serum NF-{kappa}B-modulated cytokines in 1 patient with a major tumor reduction. Conclusions: In combination with reirradiation, the maximally tolerated dose of bortezomib was exceeded at a dose of 0.6 mg/m{sup 2} and the threshold of proteasome inhibition. Although this regimen with reirradiation is not feasible, bortezomib induced detectable differences in NF-{kappa}B localization, apoptosis, and NF-{kappa}B-modulated genes and cytokines in tumor and serum in association with tumor reduction, indicating that other schedules of bortezomib combined with primary

  9. New gene therapy strategies for hepatic fibrosis

    PubMed Central

    Salazar-Montes, Adriana M; Hernández-Ortega, Luis D; Lucano-Landeros, Martha S; Armendariz-Borunda, Juan

    2015-01-01

    The liver is the largest internal organ of the body, which may suffer acute or chronic injury induced by many factors, leading to cirrhosis and hepatocarcinoma. Cirrhosis is the irreversible end result of fibrous scarring and hepatocellular regeneration, characterized by diffuse disorganization of the normal hepatic structure, regenerative nodules and fibrotic tissue. Cirrhosis is associated with a high co-morbidity and mortality without effective treatment, and much research has been aimed at developing new therapeutic strategies to guarantee recovery. Liver-based gene therapy has been used to downregulate specific genes, to block the expression of deleterious genes, to delivery therapeutic genes, to prevent allograft rejection and to augment liver regeneration. Viral and non-viral vectors have been used, with viral vectors proving to be more efficient. This review provides an overview of the main strategies used in liver-gene therapy represented by non-viral vectors, viral vectors, novel administration methods like hydrodynamic injection, hybrids of two viral vectors and blocking molecules, with the hope of translating findings from the laboratory to the patient´s bed-side. PMID:25852266

  10. Gene therapy: prospects for glycolipid storage diseases.

    PubMed Central

    Gieselmann, Volkmar; Matzner, Ulrich; Klein, Diana; Mansson, Jan Eric; D'Hooge, Rudi; DeDeyn, Peter D; Lüllmann Rauch, Renate; Hartmann, Dieter; Harzer, Klaus

    2003-01-01

    Lysosomal storage diseases comprise a group of about 40 disorders, which in most cases are due to the deficiency of a lysosomal enzyme. Since lysosomal enzymes are involved in the degradation of various compounds, the diseases can be further subdivided according to which pathway is affected. Thus, enzyme deficiencies in the degradation pathway of glycosaminoglycans cause mucopolysaccharidosis, and deficiencies affecting glycopeptides cause glycoproteinosis. In glycolipid storage diseases enzymes are deficient that are involved in the degradation of sphingolipids. Mouse models are available for most of these diseases, and some of these mouse models have been used to study the applicability of in vivo gene therapy. We review the rationale for gene therapy in lysosomal disorders and present data, in particular, about trials in an animal model of metachromatic leukodystrophy. The data of these trials are compared with those obtained with animal models of other lysosomal diseases. PMID:12803926

  11. Gene therapy: prospects for glycolipid storage diseases.

    PubMed

    Gieselmann, Volkmar; Matzner, Ulrich; Klein, Diana; Mansson, Jan Eric; D'Hooge, Rudi; DeDeyn, Peter D; Lüllmann Rauch, Renate; Hartmann, Dieter; Harzer, Klaus

    2003-05-29

    Lysosomal storage diseases comprise a group of about 40 disorders, which in most cases are due to the deficiency of a lysosomal enzyme. Since lysosomal enzymes are involved in the degradation of various compounds, the diseases can be further subdivided according to which pathway is affected. Thus, enzyme deficiencies in the degradation pathway of glycosaminoglycans cause mucopolysaccharidosis, and deficiencies affecting glycopeptides cause glycoproteinosis. In glycolipid storage diseases enzymes are deficient that are involved in the degradation of sphingolipids. Mouse models are available for most of these diseases, and some of these mouse models have been used to study the applicability of in vivo gene therapy. We review the rationale for gene therapy in lysosomal disorders and present data, in particular, about trials in an animal model of metachromatic leukodystrophy. The data of these trials are compared with those obtained with animal models of other lysosomal diseases. PMID:12803926

  12. Pluripotent Stem Cells and Gene Therapy

    PubMed Central

    Simara, Pavel; Motl, Jason A.; Kaufman, Dan S.

    2013-01-01

    Human pluripotent stem cells represent an accessible cell source for novel cell-based clinical research and therapies. With the realization of induced pluripotent stem cells (iPSCs), it is possible to produce almost any desired cell type from any patient's cells. Current developments in gene modification methods have opened the possibility for creating genetically corrected human iPSCs for certain genetic diseases that could be used later in autologous transplantation. Promising preclinical studies have demonstrated correction of disease-causing mutations in a number of hematological, neuronal and muscular disorders. This review aims to summarize these recent advances with a focus on iPSC generation techniques, as well as gene modification methods. We will then further discuss some of the main obstacles remaining to be overcome before successful application of human pluripotent stem cell-based therapy arrives in the clinic and what the future of stem cell research may look like. PMID:23353080

  13. Gene mutations and molecularly targeted therapies in acute myeloid leukemia

    PubMed Central

    Hatzimichael, Eleftheria; Georgiou, Georgios; Benetatos, Leonidas; Briasoulis, Evangelos

    2013-01-01

    Acute myelogenous leukemia (AML) can progress quickly and without treatment can become fatal in a short period of time. However, over the last 30 years fine-tuning of therapeutics have increased the rates of remission and cure. Cytogenetics and mutational gene profiling, combined with the option of allogeneic hematopoietic stem cell transplantation offered in selected patients have further optimized AML treatment on a risk stratification basis in younger adults. However there is still an unmet medical need for effective therapies in AML since disease relapses in almost half of adult patients becoming refractory to salvage therapy. Improvements in the understanding of molecular biology of cancer and identification of recurrent mutations in AML provide opportunities to develop targeted therapies and improve the clinical outcome. In the spectrum of identified gene mutations, primarily targetable lesions are gain of function mutations of tyrosine kinases FLT3, JAK2 and cKIT for which specific, dual and multi-targeted small molecule inhibitors have been developed. A number of targeted compounds such as sorafenib, quizartinib, lestaurtinib, midostaurin, pacritinib, PLX3397 and CCT137690 are in clinical development. For loss-of-function gene mutations, which are mostly biomarkers of favorable prognosis, combined therapeutic approaches can maximize the therapeutic efficacy of conventional therapy. Apart from mutated gene products, proteins aberrantly overexpressed in AML appear to be clinically significant therapeutic targets. Such a molecule for which targeted inhibitors are currently in clinical development is PLK1. We review characteristic gene mutations, discuss their biological functions and clinical significance and present small molecule compounds in clinical development, which are expected to have a role in treating AML subtypes with characteristic molecular alterations. PMID:23358589

  14. [Cellular therapy and gene therapy: perspectives in neuromuscular pathology].

    PubMed

    Fardeau, M

    1993-10-01

    Identification of the gene coding for the protein (dystrophin) which is lacking or abnormal in Duchenne or Becker type human muscular dystrophies was a decisive turning point in neuro-muscular pathology. Since that time, a considerable number of gene abnormalities have been identified or at least localized. The severity of these diseases, their steady evolution and the absence of any efficient drug therapy, have lead to the development of new therapeutic approaches based on restoring the genetic capacities of the muscle cell. There are two possibilities for therapy. The first is based on the transfer of myogenic cells derived from the 'satellite' cells normally present at the periphery of muscle fibers. The results obtained from a murine model of Duchenne dystrophy ('mdx' mouse) were very promising. However, the results from application of the same techniques to the canine model (GRMDX) or to affected children are, at the present time, disappointing. A number of biological questions remain to be solved before this technique can be more extensively applied to humans. The second possibility is based on gene transfer, through a viral vector. The adenovirus is presently a possible vector. The first experimental results, on 'mdx' mice, are again very encouraging. Extension of these studies to the canine model is a necessary prerequisite for any human application. It should be noted that these two approaches are complementary. Their future applications may depend on the diffuse or selective nature of the skeletal muscle atrophy, and on whether cardiac and respiratory muscles are involved. PMID:8290312

  15. Gene delivery systems for gene therapy in tissue engineering and central nervous system applications.

    PubMed

    Giordano, C; Causa, F; Bianco, F; Perale, G; Netti, P A; Ambrosio, L; Cigada, A

    2008-12-01

    The present review aims to describe the potential applications of gene delivery systems to tissue engineering and central nervous system diseases. Some key experimental work has been done with interesting results, but the subject is far from being fully explored. The combined approach of gene therapy and material science has a huge potential to improve the therapeutic approaches now available for a wide range of medical applications. Focus is given to this multidisciplinary strategy in neurodegenerative pathologies, where the use of polymeric matrices as gene carriers might make a crucial difference. PMID:19115193

  16. Gene therapy approaches to regenerating bone

    PubMed Central

    Bleich, Nadav Kimelman; Kallai, Ilan; Lieberman, Jay R.; Schwarz, Edward M.; Pelled, Gadi; Gazit, Dan

    2013-01-01

    Bone formation and regeneration therapies continue to require optimization and improvement because many skeletal disorders remain undertreated. Clinical solutions to nonunion fractures and osteoporotic vertebral compression fractures, for example, remain suboptimal and better therapeutic approaches must be created. The widespread use of recombinant human bone morphogenetic proteins (rhBMPs) for spine fusion was recently questioned by a series of reports in a special issue of The Spine Journal, which elucidated the side effects and complications of direct rhBMP treatments. Gene therapy—both direct (in vivo) and cell-mediated (ex vivo)—has long been studied extensively to provide much needed improvements in bone regeneration. In this article, we review recent advances in gene therapy research whose aims are in vivo or ex vivo bone regeneration or formation. We examine appropriate vectors, safety issues, and rates of bone formation. The use of animal models and their relevance for translation of research results to the clinical setting are also discussed in order to provide the reader with a critical view. Finally, we elucidate the main challenges and hurdles faced by gene therapy aimed at bone regeneration as well as expected future trends in this field. PMID:22429662

  17. Hyperbaric oxygen in chronic traumatic brain injury: oxygen, pressure, and gene therapy.

    PubMed

    Harch, Paul G

    2015-01-01

    Hyperbaric oxygen therapy is a treatment for wounds in any location and of any duration that has been misunderstood for 353 years. Since 2008 it has been applied to the persistent post-concussion syndrome of mild traumatic brain injury by civilian and later military researchers with apparent conflicting results. The civilian studies are positive and the military-funded studies are a mixture of misinterpreted positive data, indeterminate data, and negative data. This has confused the medical, academic, and lay communities. The source of the confusion is a fundamental misunderstanding of the definition, principles, and mechanisms of action of hyperbaric oxygen therapy. This article argues that the traditional definition of hyperbaric oxygen therapy is arbitrary. The article establishes a scientific definition of hyperbaric oxygen therapy as a wound-healing therapy of combined increased atmospheric pressure and pressure of oxygen over ambient atmospheric pressure and pressure of oxygen whose main mechanisms of action are gene-mediated. Hyperbaric oxygen therapy exerts its wound-healing effects by expression and suppression of thousands of genes. The dominant gene actions are upregulation of trophic and anti-inflammatory genes and down-regulation of pro-inflammatory and apoptotic genes. The combination of genes affected depends on the different combinations of total pressure and pressure of oxygen. Understanding that hyperbaric oxygen therapy is a pressure and oxygen dose-dependent gene therapy allows for reconciliation of the conflicting TBI study results as outcomes of different doses of pressure and oxygen. PMID:26171141

  18. Combining Locoregional Therapies in the Treatment of Hepatocellular Carcinoma

    PubMed Central

    Higgins, Mikhail C. S. S.; Soulen, Michael C.

    2013-01-01

    In an effort to promote more durable local control of larger lesions, thermal ablation has been combined with chemical ablative techniques and with vaso-occlusive procedures such as chemoembolization and bland embolization in an effort to mitigate the limitations inherent in the use of any single treatment for hepatocellular carcinoma (HCC) >3 cm. The heat-sink effect is the underlying principle for combining vaso-occlusive therapies with ablative techniques. Combination therapies do present viable options for abrogating tumor progression and potentially downsizing tumors to facilitate transplant. We discuss the two most commonly used combination locoregional therapies by the interventionalist and the evidence defining the best techniques in practice. PMID:24436520

  19. Gene therapy for ocular diseases meditated by ultrasound and microbubbles (Review)

    PubMed Central

    WAN, CAIFENG; LI, FENGHUA; LI, HONGLI

    2015-01-01

    The eye is an ideal target organ for gene therapy as it is easily accessible and immune-privileged. With the increasing insight into the underlying molecular mechanisms of ocular diseases, gene therapy has been proposed as an effective approach. Successful gene therapy depends on efficient gene transfer to targeted cells to prove stable and prolonged gene expression with minimal toxicity. At present, the main hindrance regarding the clinical application of gene therapy is not the lack of an ideal gene, but rather the lack of a safe and efficient method to selectively deliver genes to target cells and tissues. Ultrasound-targeted microbubble destruction (UTMD), with the advantages of high safety, repetitive applicability and tissue targeting, has become a potential strategy for gene- and drug delivery. When gene-loaded microbubbles are injected, UTMD is able to enhance the transport of the gene to the targeted cells. High-amplitude oscillations of microbubbles act as cavitation nuclei which can effectively focus ultrasound energy, produce oscillations and disruptions that increase the permeability of the cell membrane and create transient pores in the cell membrane. Thereby, the efficiency of gene therapy can be significantly improved. The UTMD-mediated gene delivery system has been widely used in pre-clinical studies to enhance gene expression in a site-specific manner in a variety of organs. With reasonable application, the effects of sonoporation can be spatially and temporally controlled to improve localized tissue deposition of gene complexes for ocular gene therapy applications. In addition, appropriately powered, focused ultrasound combined with microbubbles can induce a reversible disruption of the blood-retinal barrier with no significant side effects. The present review discusses the current status of gene therapy of ocular diseases as well as studies on gene therapy of ocular diseases meditated by UTMD. PMID:26151686

  20. Consensus gene regulatory networks: combining multiple microarray gene expression datasets

    NASA Astrophysics Data System (ADS)

    Peeling, Emma; Tucker, Allan

    2007-09-01

    In this paper we present a method for modelling gene regulatory networks by forming a consensus Bayesian network model from multiple microarray gene expression datasets. Our method is based on combining Bayesian network graph topologies and does not require any special pre-processing of the datasets, such as re-normalisation. We evaluate our method on a synthetic regulatory network and part of the yeast heat-shock response regulatory network using publicly available yeast microarray datasets. Results are promising; the consensus networks formed provide a broader view of the potential underlying network, obtaining an increased true positive rate over networks constructed from a single data source.

  1. Creating a cardiac pacemaker by gene therapy.

    PubMed

    Anghel, Traian M; Pogwizd, Steven M

    2007-02-01

    While electronic cardiac pacing in its various modalities represents standard of care for treatment of symptomatic bradyarrhythmias and heart failure, it has limitations ranging from absent or rudimentary autonomic modulation to severe complications. This has prompted experimental studies to design and validate a biological pacemaker that could supplement or replace electronic pacemakers. Advances in cardiac gene therapy have resulted in a number of strategies focused on beta-adrenergic receptors as well as specific ion currents that contribute to pacemaker function. This article reviews basic pacemaker physiology, as well as studies in which gene transfer approaches to develop a biological pacemaker have been designed and validated in vivo. Additional requirements and refinements necessary for successful biopacemaker function by gene transfer are discussed. PMID:17139515

  2. Combination therapy for erectile dysfunction: an update review

    PubMed Central

    Dhir, Rohit R; Lin, Hao-Cheng; Canfield, Steven E; Wang, Run

    2011-01-01

    The introduction of oral phosphodiesterase-5 inhibitors (PDE5Is) in the late 1990s and early 2000s revolutionized the field of sexual medicine and PDE5Is are currently first-line monotherapy for erectile dysfunction (ED). However, a significant proportion of patients with complex ED will be therapeutic non-responders to PDE5I monotherapy. Combination therapy has recently been adopted for more refractory cases of ED, but a critical evaluation of current combination therapies is lacking. A thorough PubMed and Cochrane Library search was conducted focusing on the effectiveness of combination therapies for ED in therapeutic non-responders to PDE5I therapy. Journal articles spanning the time period between January 1990 and December 2010 were reviewed. Criteria included all pertinent review articles, randomized controlled trials, cohort studies and retrospective analyses. References from retrieved articles were also manually scanned for additional relevant publications. Published combination therapies include PDE5I plus vacuum erectile device (VED), intraurethral medication, intracavernosal injection (ICI), androgen supplement, α-blocker or miscellaneous combinations. Based on this review, some of these combination treatments appeared to be quite effective in preliminary testing. Caution must be advised, however, as the majority of combination therapy articles in the last decade have numerous limitations including study biases and small subject size. Regardless of limitations, present combination therapy research provides a solid foundation for future studies in complex ED management. PMID:21423198

  3. Concepts in Gene Therapy for Cartilage Repair

    PubMed Central

    Steinert, Andre F.; Nöth, Ulrich; Tuan, Rocky S.

    2009-01-01

    Summary Once articular cartilage is injured, it has a very limited capacity for self-repair. Although current surgical therapeutic procedures to cartilage repair are clinically useful, they cannot restore a normal articular surface. Current research offers a growing number of bioactive reagents, including proteins and nucleic acids, that may be used to augment different aspects of the repair process. As these agents are difficult to administer effectively, gene transfer approaches are being developed to provide their sustained synthesis at sites of repair. To augment regeneration of articular cartilage, therapeutic genes can be delivered to the synovium, or directly to the cartilage lesion. Gene delivery to the cells of the synovial lining is generally considered more suitable for chondroprotective approaches, based on the expression of anti-inflammatory mediators. Gene transfer targeted to cartilage defects can be achieved by either direct vector administration to cells located at or surrounding the defects, or by transplantation of genetically modified chondrogenic cells into the defect. Several studies have shown that exogenous cDNAs encoding growth factors can be delivered locally to sites of cartilage damage, where they are expressed at therapeutically relevant levels. Furthermore, data is beginning to emerge indicating, that efficient delivery and expression of these genes is capable of influencing a repair response toward the synthesis of a more hyaline cartilage repair tissue in vivo. This review presents the current status of gene therapy for cartilage healing and highlights some of the remaining challenges. PMID:18313477

  4. Pirfenidone enhances the efficacy of combined radiation and sunitinib therapy

    SciTech Connect

    Choi, Seo-Hyun; Nam, Jae-Kyung; Jang, Junho; Lee, Hae-June Lee, Yoon-Jin

    2015-06-26

    Radiotherapy is a widely used treatment for many tumors. Combination therapy using anti-angiogenic agents and radiation has shown promise; however, these combined therapies are reported to have many limitations in clinical trials. Here, we show that radiation transformed tumor endothelial cells (ECs) to fibroblasts, resulting in reduced vascular endothelial growth factor (VEGF) response and increased Snail1, Twist1, Type I collagen, and transforming growth factor (TGF)-β release. Irradiation of radioresistant Lewis lung carcinoma (LLC) tumors greater than 250 mm{sup 3} increased collagen levels, particularly in large tumor vessels. Furthermore, concomitant sunitinib therapy did not show a significant difference in tumor inhibition versus radiation alone. Thus, we evaluated multimodal therapy that combined pirfenidone, an inhibitor of TGF-induced collagen production, with radiation and sunitinib treatment. This trimodal therapy significantly reduced tumor growth, as compared to radiation alone. Immunohistochemical analysis revealed that radiation-induced collagen deposition and tumor microvessel density were significantly reduced with trimodal therapy, as compared to radiation alone. These data suggest that combined therapy using pirfenidone may modulate the radiation-altered tumor microenvironment, thereby enhancing the efficacy of radiation therapy and concurrent chemotherapy. - Highlights: • Radiation changes tumor endothelial cells to fibroblasts. • Radio-resistant tumors contain collagen deposits, especially in tumor vessels. • Pirfenidone enhances the efficacy of combined radiation and sunitinib therapy. • Pirfenidone reduces radiation-induced collagen deposits in tumors.

  5. Investigation of different combinations of estrogen therapy and radiation therapy on prostatic adenocarcinoma (R-3327)

    SciTech Connect

    Camuzzi, F.; Block, N.L.; Stover, B.; Gottlieb, C.; Charyulu, K.; Politano, V.A.

    1980-05-01

    The relative effectiveness of different combinations of estrogen therapy and radiation therapy against the R-3327 prostatic adenocarcinoma of the Copenhagen rat was studied. Because of similar actions of estrogens and radiation in the cell cycle, and possibly antagonistic effects reported in the clinical literature, we looked for an antagonism between these two therapeutic modalities. Radiation therapy consistently showed a greater tumor inhibitory effect than estrogen therapy alone at the dose tested. Combinations of radiation therapy with hormonal manipulation did not appear to show a greater inhibition of tumor growth than radiation therapy alone. There also did not appear to be an antagonistic effect between these two modalities in this system.

  6. Gene therapy approaches against cancer using in vivo and ex vivo gene transfer of interleukin-12.

    PubMed

    Hernandez-Alcoceba, Ruben; Poutou, Joanna; Ballesteros-Briones, María Cristina; Smerdou, Cristian

    2016-02-01

    IL-12 is an immunostimulatory cytokine with strong antitumor properties. Systemic administration of IL-12 in cancer patients led to severe toxic effects, prompting the development of gene therapy vectors able to express this cytokine locally in tumors. Both nonviral and viral vectors have demonstrated a high antitumor efficacy in preclinical tumor models. Some of these vectors, including DNA electroporation, adenovirus and ex vivo transduced dendritic cells, were tested in patients, showing low toxicity and moderate antitumor efficacy. IL-12 activity can be potentiated by molecules with immunostimulatory, antiangiogenic or cytotoxic activity. These combination therapies are of clinical interest because they could lower the threshold for IL-12 efficacy, increasing the therapeutic potential of gene therapy and preventing the toxicity mediated by this cytokine. PMID:26786809

  7. Combination Therapy for Advanced Kaposi Sarcoma

    Cancer.gov

    In this clinical trial, adult patients with any form of advanced Kaposi sarcoma will be treated with liposomal doxorubicin and bevacizumab every 3 weeks for a maximum of six treatments.  Patients who respond to this therapy or have stable disease will rec

  8. Saporin as a novel suicide gene in anticancer gene therapy.

    PubMed

    Zarovni, N; Vago, R; Soldà, T; Monaco, L; Fabbrini, M S

    2007-02-01

    We used a non-viral gene delivery approach to explore the potential of the plant saporin (SAP) gene as an alternative to the currently employed suicide genes in cancer therapy. Plasmids expressing cytosolic SAP were generated by placing the region encoding the mature plant ribosome-inactivating protein under the control of cytomegalovirus (CMV) or simian virus 40 (SV40) promoters. Their ability to inhibit protein synthesis was first tested in cultured tumor cells co-transfected with a luciferase reporter gene. In particular, SAP expression driven by CMV promoter (pCI-SAP) demonstrated that only 10 ng of plasmid per 1.6 x 10(4) B16 cells drastically reduced luciferase activity to 18% of that in control cells. Direct intratumoral injection of pCI-SAP complexed with either lipofectamine or N-(2,3-dioleoyloxy-1-propyl) trimethylammonium methyl sulfate (DOTAP) in B16 melanoma-bearing mice resulted in a noteworthy attenuation of tumor growth. This antitumor effect was increased in mice that received repeated intratumoral injections. A SAP catalytic inactive mutant (SAP-KQ) failed to exert any antitumor effect demonstrating that this was specifically owing to the SAP N-glycosidase activity. Our overall data strongly suggest that the gene encoding SAP, owing to its rapid and effective action and its independence from the proliferative state of target cells might become a suitable candidate suicide gene for oncologic applications. PMID:17008932

  9. Pronounced antitumor effects and tumor radiosensitization of double suicide gene therapy.

    PubMed

    Rogulski, K R; Zhang, K; Kolozsvary, A; Kim, J H; Freytag, S O

    1997-11-01

    The efficacy of HSV-1 thymidine kinase (TK) and Escherichia coli cytosine deaminase (CD) suicide gene therapies as cancer treatments are currently being examined in humans. We demonstrated previously that compared to single suicide gene therapy, greater levels of targeted cytotoxicity and radiosensitization can be achieved in vitro by genetically modifying tumor cells to express CD and HSV-1 TK concomitantly, as a fusion protein. In the present study, the efficacy of the combined double suicide gene therapy/radiotherapy approach was examined in vivo. Nude mice were injected either s.c. or i.m. with 9L gliosarcoma cells expressing an E. coli CD/HSV-1 TK fusion gene. Double suicide gene therapy using 5-fluorocytosine (500 mg/kg) and ganciclovir (30 mg/kg) proved to be markedly better at delaying tumor growth and achieving a tumor cure than single suicide gene therapy, which used 5-fluorocytosine or ganciclovir administered independently. Importantly, double suicide gene therapy was highly effective against large experimental tumors (>2 cm3), reducing tumor volume an average of 99% and producing a 40% tumor cure. Moreover, double suicide gene therapy profoundly potentiated the antitumor effects of radiation. The results indicate that double suicide gene therapy, particularly when coupled with radiotherapy, may represent a highly effective means of eradicating tumors. PMID:9815600

  10. Diverse array-designed modes of combination therapies in Fangjiomics.

    PubMed

    Liu, Jun; Wang, Zhong

    2015-06-01

    In line with the complexity of disease networks, diverse combination therapies have been demonstrated potential in the treatment of different patients with complex diseases in a personal combination profile. However, the identification of rational, compatible and effective drug combinations remains an ongoing challenge. Based on a holistic theory integrated with reductionism, Fangjiomics systematically develops multiple modes of array-designed combination therapies. We define diverse "magic shotgun" vertical, horizontal, focusing, siege and dynamic arrays according to different spatiotemporal distributions of hits on targets, pathways and networks. Through these multiple adaptive modes for treating complex diseases, Fangjiomics may help to identify rational drug combinations with synergistic or additive efficacy but reduced adverse side effects that reverse complex diseases by reconstructing or rewiring multiple targets, pathways and networks. Such a novel paradigm for combination therapies may allow us to achieve more precise treatments by developing phenotype-driven quantitative multi-scale modeling for rational drug combinations. PMID:25864646

  11. Hyperbilirubinemia without Transaminitis during Combined Therapy with Daclatasvir and Asunaprevir.

    PubMed

    Baba, Hayato; Tajiri, Kazuto; Nagata, Kohei; Kawai, Kengo; Minemura, Masami; Sugiyama, Toshiro

    2016-01-01

    Daclatasvir (DCV) and asunaprevir (ASV) are direct-acting antivirals (DAAs) used in the treatment of chronic hepatitis C virus (HCV) infection. Combined therapy with DCV and ASV shows high efficacy and safety even in patients with cirrhosis. We encountered a patient exhibiting severe hyperbilirubinemia during combined therapy, which is an unreported side effect of DCV and ASV. A 78-year-old woman with cirrhosis developed hyperbilirubinemia >10 mg/dl without transaminitis 3 weeks after starting combined therapy. We suspected DAAs-induced liver disorder and discontinued treatment, which resulted in the improvement of hyperbilirubinemia. Caution is required in the use of DAAs for patients with advanced cirrhosis. PMID:27504082

  12. Current concepts in combination antibiotic therapy for critically ill patients

    PubMed Central

    Ahmed, Armin; Azim, Afzal; Gurjar, Mohan; Baronia, Arvind Kumar

    2014-01-01

    Widespread emergence of multidrug resistant (MDR) bacterial pathogens is a problem of global dimension. MDR infections are difficult to treat and frequently associated with high mortality. More than one antibiotic is commonly used to treat such infections, but scientific evidence does not favor use of combination therapy in most cases. However, there are certain subgroups where combination therapy may be beneficial, e.g. sepsis due to carbapenem-resistant Enterobacteriaceae (CRE), bacteremic pneumococcal pneumonia, and patients with multiple organ failure. Well-designed prospective studies are needed to clearly define the role of combination therapy in these subgroups. PMID:24914260

  13. Hyperbilirubinemia without Transaminitis during Combined Therapy with Daclatasvir and Asunaprevir

    PubMed Central

    Baba, Hayato; Tajiri, Kazuto; Nagata, Kohei; Kawai, Kengo; Minemura, Masami; Sugiyama, Toshiro

    2016-01-01

    Daclatasvir (DCV) and asunaprevir (ASV) are direct-acting antivirals (DAAs) used in the treatment of chronic hepatitis C virus (HCV) infection. Combined therapy with DCV and ASV shows high efficacy and safety even in patients with cirrhosis. We encountered a patient exhibiting severe hyperbilirubinemia during combined therapy, which is an unreported side effect of DCV and ASV. A 78-year-old woman with cirrhosis developed hyperbilirubinemia >10 mg/dl without transaminitis 3 weeks after starting combined therapy. We suspected DAAs-induced liver disorder and discontinued treatment, which resulted in the improvement of hyperbilirubinemia. Caution is required in the use of DAAs for patients with advanced cirrhosis. PMID:27504082

  14. The Muscular Dystrophies: From Genes to Therapies

    PubMed Central

    Porter, Neil C; Bloch, Robert J

    2015-01-01

    The genetic basis of many muscular disorders, including many of the more common muscular dystrophies, is now known. Clinically, the recent genetic advances have improved diagnostic capabilities, but they have not yet provided clues about treatment or management. Thanks to better management strategies and therapeutic interventions, however, many patients with a muscular dystrophy are more active and are living longer. Physical therapists, therefore, are more likely to see a patient with a muscular dystrophy, so understanding these muscle disorders and their management is essential. Physical therapy offers the most promise in caring for the majority of patients with these conditions, because it is unlikely that advances in gene therapy will significantly alter their clinical treatment in the near future. This perspective covers some of the basic molecular biological advances together with the clinical manifestations of the muscular dystrophies and the latest approaches to their management. PMID:16305275

  15. Study of the combined treatment of lung cancer using gene-loaded immunomagnetic albumin nanospheres in vitro and in vivo

    PubMed Central

    Zhang, Hao; Liang, Chen; Hou, Xinxin; Wang, Ling; Zhang, Dongsheng

    2016-01-01

    Combination therapy for lung cancer has garnered widespread attention. Radiation therapy, gene therapy, and molecular targeted therapy for lung cancer have certain effects, but the disadvantages of these treatment methods are evident. Combining these methods can decrease their side effects and increase their curative effects. In this study, we constructed a pYr-ads-8-5HRE-cfosp-iNOS-IFNG plasmid (a gene circuit that can express IFNγ), which is a gene circuit, and used that plasmid together with C225 (cetuximab) to prepare gene-loaded immunomagnetic albumin nanospheres (IMANS). Moreover, we investigated the therapeutic effects of gene-loaded IMANS in combination with radiation therapy on human lung cancer in vitro and in vivo. The results showed that this gene circuit was successively constructed and confirmed that the expression of INFγ was increased due to the gene circuit. Gene-loaded IMANS combined with radiation therapy demonstrated improved results in vitro and in vivo. In conclusion, gene-loaded IMANS enhanced the efficacy of combination therapy, solved problems related to gene transfer, and specifically targeted lung cancer cells. PMID:27042059

  16. Cell Targeting in Anti-Cancer Gene Therapy

    PubMed Central

    Lila, Mohd Azmi Mohd; Siew, John Shia Kwong; Zakaria, Hayati; Saad, Suria Mohd; Ni, Lim Shen; Abdullah, Jafri Malin

    2004-01-01

    Gene therapy is a promising approach towards cancer treatment. The main aim of the therapy is to destroy cancer cells, usually by apoptotic mechanisms, and preserving others. However, its application has been hindered by many factors including poor cellular uptake, non-specific cell targeting and undesirable interferences with other genes or gene products. A variety of strategies exist to improve cellular uptake efficiency of gene-based therapies. This paper highlights advancements in gene therapy research and its application in relation to anti-cancer treatment. PMID:22977356

  17. Gene therapy: Into the home stretch

    SciTech Connect

    Culliton, B.J.

    1990-08-31

    Tumors cannot live without blood. Shut off the blood vessels that feed a tumor and the tumor will turn black and shrivel away. That simple idea lies behind the first attempt to cure a disease by gene therapy, expected to take place at the National Cancer Institute in the next few weeks. When it does, it will test a technique that worked like a charm in mice. When a potent natural killer called tumor necrosis factor, or TNF, is injected into the bloodstream of mice, it begins to shrink tumors within hours, sometimes even minutes. But so far, attempts to recreate that miracle in people with cancer have not fared as well. TNF has been given intravenously to more than 35 patients in experiments that were a failure. Researchers hope to deliver TNF in much larger doses directly to a tumor by packaging the gene for TNF inside special lymphocytes that have a natural affinity for cancer.

  18. Combination Therapies for Traumatic Brain Injury: Prospective Considerations

    PubMed Central

    Hicks, Ramona

    2009-01-01

    Abstract Traumatic brain injury (TBI) initiates a cascade of numerous pathophysiological events that evolve over time. Despite the complexity of TBI, research aimed at therapy development has almost exclusively focused on single therapies, all of which have failed in multicenter clinical trials. Therefore, in February 2008 the National Institute of Neurological Disorders and Stroke, with support from the National Institute of Child Health and Development, the National Heart, Lung, and Blood Institute, and the Department of Veterans Affairs, convened a workshop to discuss the opportunities and challenges of testing combination therapies for TBI. Workshop participants included clinicians and scientists from a variety of disciplines, institutions, and agencies. The objectives of the workshop were to: (1) identify the most promising combinations of therapies for TBI; (2) identify challenges of testing combination therapies in clinical and pre-clinical studies; and (3) propose research methodologies and study designs to overcome these challenges. Several promising combination therapies were discussed, but no one combination was identified as being the most promising. Rather, the general recommendation was to combine agents with complementary targets and effects (e.g., mechanisms and time-points), rather than focusing on a single target with multiple agents. In addition, it was recommended that clinical management guidelines be carefully considered when designing pre-clinical studies for therapeutic development. To overcome the challenges of testing combination therapies it was recommended that statisticians and the U.S. Food and Drug Administration be included in early discussions of experimental design. Furthermore, it was agreed that an efficient and validated screening platform for candidate therapeutics, sensitive and clinically relevant biomarkers and outcome measures, and standardization and data sharing across centers would greatly facilitate the development of

  19. Combination Therapies for Lysosomal Storage Diseases: A Complex Answer to a Simple Problem.

    PubMed

    Macauley, Shannon L

    2016-06-01

    Abstract Lysosomal storage diseases (LSDs) are a group of 40-50 rare monogenic disorders that result in disrupted lysosomal function and subsequent lysosomal pathology. Depending on the protein or enzyme deficiency associated with each disease, LSDs affect an array of organ systems and elicit a complex set of secondary disease mechanisms that make many of these disorders difficult to fully treat. The etiology of most LSDs is known and the innate biology of lysosomal enzymes favors therapeutic intervention, yet most attempts at treating LSDs with enzyme replacement strategies fall short of being curative. Even with the advent of more sophisticated approaches, like substrate reduction therapy, pharmacologic chaperones, gene therapy or stem cell therapy, comprehensive treatments for LSDs have yet to be achieved. Given the limitations with individual therapies, recent research has focused on using a combination approach to treat LSDs. By coupling protein-, cell-, and gene- based therapies with small molecule drugs, researchers have found greater success in eradicating the clinical features of disease. This review seeks to discuss the positive and negatives of singular therapies used to treat LSDs, and discuss how, in combination, studies have demonstrated a more holistic benefit on pathological and functional parameters. By optimizing routes of delivery, therapeutic timing, and targeting secondary disease mechanisms, combination therapy represents the future for LSD treatment. PMID:27491211

  20. Retinal Gene Therapy: Current Progress and Future Prospects

    PubMed Central

    Ku, Cristy A.; Pennesi, Mark E.

    2015-01-01

    Clinical trials treating inherited retinal dystrophy caused by RPE65 mutations had put retinal gene therapy at the forefront of gene therapy. Both successes and limitations in these clinical trials have fueled developments in gene vectors, which continue to further advance the field. These novel gene vectors aim to more safely and efficiently transduce retinal cells, expand the gene packaging capacity of AAV, and utilize new strategies to correct the varying mechanisms of dysfunction found with inherited retinal dystrophies. With recent clinical trials and numerous pre-clinical studies utilizing these novel vectors, the future of ocular gene therapy continues to hold vast potential. PMID:26609316

  1. Glucagon-Like Peptide-1 Gene Therapy

    PubMed Central

    Rowzee, Anne M.; Cawley, Niamh X.; Chiorini, John A.; Di Pasquale, Giovanni

    2011-01-01

    Glucagon-like peptide 1 (GLP-1) is a small peptide component of the prohormone, proglucagon, that is produced in the gut. Exendin-4, a GLP-1 receptor agonist originally isolated from the saliva of H. suspectum or Gila monster, is a peptide that shares sequence and functional homology with GLP-1. Both peptides have been demonstrated to stimulate insulin secretion, inhibit glucagon secretion, promote satiety and slow gastric emptying. As such, GLP-1 and Exendin-4 have become attractive pharmaceutical targets as an adjunctive therapy for individuals with type II diabetes mellitus, with several products currently available clinically. Herein we summarize the cell biology leading to GLP-1 production and secretion from intestinal L-cells and the endocrine functions of this peptide and Exendin-4 in humans. Additionally, gene therapeutic applications of GLP-1 and Exendin-4 are discussed with a focus on recent work using the salivary gland as a gene therapy target organ for the treatment of diabetes mellitus. PMID:21747830

  2. Gene Therapy May Offer Hope for 'Bubble Boy' Disease

    MedlinePlus

    ... html Gene Therapy May Offer Hope for 'Bubble Boy' Disease Preliminary research tries new approach to rebuild ... therapy shows preliminary promise against so-called "Bubble Boy" disease, researchers report. A small, early-stage trial ...

  3. Perspectives on best practices for gene therapy programs.

    PubMed

    Cheever, Thomas R; Berkley, Dale; Braun, Serge; Brown, Robert H; Byrne, Barry J; Chamberlain, Jeffrey S; Cwik, Valerie; Duan, Dongsheng; Federoff, Howard J; High, Katherine A; Kaspar, Brian K; Klinger, Katherine W; Larkindale, Jane; Lincecum, John; Mavilio, Fulvio; McDonald, Cheryl L; McLaughlin, James; Weiss McLeod, Bonnie; Mendell, Jerry R; Nuckolls, Glen; Stedman, Hansell H; Tagle, Danilo A; Vandenberghe, Luk H; Wang, Hao; Wernett, Pamela J; Wilson, James M; Porter, John D; Gubitz, Amelie K

    2015-03-01

    With recent successes in gene therapy trials for hemophilia and retinal diseases, the promise and prospects for gene therapy are once again garnering significant attention. To build on this momentum, the National Institute of Neurological Disorders and Stroke and the Muscular Dystrophy Association jointly hosted a workshop in April 2014 on "Best Practices for Gene Therapy Programs," with a focus on neuromuscular disorders. Workshop participants included researchers from academia and industry as well as representatives from the regulatory, legal, and patient advocacy sectors to cover the gamut from preclinical optimization to intellectual property concerns and regulatory approval. The workshop focused on three key issues in the field: (1) establishing adequate scientific premise for clinical trials in gene therapy, (2) addressing regulatory process issues, and (3) intellectual property and commercialization issues as they relate to gene therapy. The outcomes from the discussions at this workshop are intended to provide guidance for researchers and funders in the gene therapy field. PMID:25654329

  4. Fixed-combination and emerging glaucoma therapies.

    PubMed

    Woodward, David F; Chen, June

    2007-05-01

    Ocular hypotensive agents are the only approved pharmacotherapy for glaucoma. Despite significant advances during the past two decades, a large proportion of glaucoma patients require more than one drug. The most recent additions to the armamentarium of antiglaucoma drugs are fixed-combination products for the glaucoma patient who is insufficiently responsive to monotherapy. Fixed-combination products have the combined efficacy of two ocular hypotensive drugs, and the convenience of a two-drug treatment regimen in a single container, which may aid patient adherence to treatment. Available fixed-combination products consist of timolol 0.5% as an invariant with brimonidine 0.2%, dorzolamide 2%, travoprost 0.004%, latanoprost 0.005% or bimatoprost 0.03%. Research on more advanced antiglaucoma medications continues. Promising new directions appear to be the Rho-kinase inhibitors, microtubule-disrupting agents, serotonergics and cannabimimetics. Efforts continue to improve existing antiglaucoma drugs in an attempt to design second-generation cholinomimetics, adrenergics, prostaglandins and prostamides. PMID:17604504

  5. A combination therapy for cystic fibrosis.

    PubMed

    Brodsky, Jeffrey L; Frizzell, Raymond A

    2015-09-24

    The most prevalent form of cystic fibrosis arises from an amino acid deletion in the cystic fibrosis transmembrane conductance regulator, CFTR. A recently approved treatment for individuals homozygous for this mutation combines a chemical corrector, which helps CFTR fold, and a potentiator that increases CFTR channel activity. PMID:26406363

  6. HT update: spotlight on estradiol/norethindrone acetate combination therapy

    PubMed Central

    Casey, Colleen L; Murray, Christine A

    2008-01-01

    The goal of postmenopausal hormone therapy is to alleviate the symptoms that are associated with the loss of estrogen. Many formulations of estrogen and progestin are available, depending on the needs and circumstances of each individual woman. For postmenopausal women, the choice of whether or not to begin therapy requires knowledge of the risks and benefits of estrogen and/or progestin replacement. The purpose of this review is to describe the risks and benefits of hormonal therapy, focusing on estradiol/norethindrone acetate combination therapy. PMID:18488874

  7. Assessment of combination therapy in BALB/c mice injected with carbapenem-resistant Enterobacteriaceae strains

    PubMed Central

    Salloum, Noor A.; Kissoyan, Kohar Annie B.; Fadlallah, Sukayna; Cheaito, Katia; Araj, George F.; Wakim, Rima; Kanj, Souha; Kanafani, Zeina; Dbaibo, Ghassan; Matar, Ghassan M.

    2015-01-01

    Monotherapeutic options for carbapenem resistant infections are limited. Studies suggest that combination therapy may be associated with better outcomes than monotherapies. However, this is still controversial. This study assessed, the efficacy of combination therapy against carbapenem resistant Enterobacteriaceae harboring singly various extended spectrum beta lactamase or carbapenemase encoding genes. Thus, four isolates harboring either blaCTXM-15, blaCTXM-15 and blaOXA-48, blaNDM-1, or blaKPC-2 genes were selected for testing. Minimal inhibitory concentration was determined by broth dilution method. Gene transcript levels on single and combined treatments were done in vitro and in vivo by qRT-PCR. Assessment of treatments was done in BALB/c mice according to a specific protocol. As such, the qRT-PCR revealed a significant decrease of transcript levels in all isolates upon using rifampicin or tigecycline, singly or in combination with colistin. However, variable levels were obtained using colistin singly or in combination with meropenem or fosfomycin. In vivo assessment showed that all combinations used were effective against isolates harboring blaCTXM-15, blaOXA-48, and blaNDM-1. Conversely, the most significant combination against the isolate harboring blaKPC-2 gene was colistin with either carbapenem, fosfomycin, or kanamycin. As a conclusion, combination therapy selected based on the type of carbapenemase produced, appeared to be non-toxic and might be effective in BALB/c mice. Therefore, the use of a rationally optimized combination therapy might lead to better results than monotherapy, however, clinical trials are needed for human consumption. PMID:26441926

  8. Assessment of combination therapy in BALB/c mice injected with carbapenem-resistant Enterobacteriaceae strains.

    PubMed

    Salloum, Noor A; Kissoyan, Kohar Annie B; Fadlallah, Sukayna; Cheaito, Katia; Araj, George F; Wakim, Rima; Kanj, Souha; Kanafani, Zeina; Dbaibo, Ghassan; Matar, Ghassan M

    2015-01-01

    Monotherapeutic options for carbapenem resistant infections are limited. Studies suggest that combination therapy may be associated with better outcomes than monotherapies. However, this is still controversial. This study assessed, the efficacy of combination therapy against carbapenem resistant Enterobacteriaceae harboring singly various extended spectrum beta lactamase or carbapenemase encoding genes. Thus, four isolates harboring either bla CTXM-15, bla CTXM-15 and bla OXA-48, bla NDM-1, or bla KPC-2 genes were selected for testing. Minimal inhibitory concentration was determined by broth dilution method. Gene transcript levels on single and combined treatments were done in vitro and in vivo by qRT-PCR. Assessment of treatments was done in BALB/c mice according to a specific protocol. As such, the qRT-PCR revealed a significant decrease of transcript levels in all isolates upon using rifampicin or tigecycline, singly or in combination with colistin. However, variable levels were obtained using colistin singly or in combination with meropenem or fosfomycin. In vivo assessment showed that all combinations used were effective against isolates harboring bla CTXM-15, bla OXA-48, and bla NDM-1. Conversely, the most significant combination against the isolate harboring bla KPC-2 gene was colistin with either carbapenem, fosfomycin, or kanamycin. As a conclusion, combination therapy selected based on the type of carbapenemase produced, appeared to be non-toxic and might be effective in BALB/c mice. Therefore, the use of a rationally optimized combination therapy might lead to better results than monotherapy, however, clinical trials are needed for human consumption. PMID:26441926

  9. Combination therapies for the endoscopic treatment of gastrointestinal bleeding.

    PubMed

    Hiele, M; Rutgeerts, P

    2000-06-01

    This review discusses the background and analysis of data in the literature regarding the effect of a combination of endoscopic therapies on the treatment of bleeding gastroduodenal ulcers. Although these techniques are commonly used, convincing data to support combinations of injection therapies are scarce, and various studies give somewhat conflicting results. In one study, a combination of the injection of adrenaline and a high dose of thrombin was superior to using adrenaline alone. The combination of injection therapy with a thermal method tends to give better results than injection therapy alone in several studies, but the difference is only statistically significant in one study (which uses the gold probe). The data regarding a combination of injection therapy with haemostatic clips are somewhat discordant regarding the effect of the haemoclip itself, but none of the studies found an advantage of combining the two modalities. Some studies suggest that subgroups may exist, such as ulcers with spurting haemorrhage, in which combined treatment might be more useful. PMID:10952808

  10. Tumorigenicity of a combination of psoriasis therapies.

    PubMed Central

    Phillips, D. H.; Alldrick, A. J.

    1994-01-01

    Coal tar, a tumour initiator, and dithranol, a tumour promoter, are used in the treatment of psoriasis. Topical treatment of mice with pharmaceutical formulations of these two agents, at therapeutic doses, induced skin papillomas in a classical two-stage carcinogenesis protocol, while treatment with either agent alone did not. This finding has implications for the use of both agents in combination in the treatment of psoriasis. Images Figure 1 PMID:8198968

  11. Combination of phytochemicals as adjuvants for cancer therapy.

    PubMed

    Ho, John W S; Cheung, Matt W M

    2014-01-01

    Newer treatments of advanced human cancer are based on combination of cancer drugs that have different mechanism of actions yet the combination strategy may potentiate the anti-cancer effects and cytotoxicity. Recent studies suggest that cancer growth can be inhibited more effectively by combination of phytochemicals that affect different pathways. The apoptotic activity can be modulated by intrinsic and extrinsic molecules. The combination of anti-tumor phytochemicals can be more effective in modulating different signaling pathways associated with tumor cell growth which is the common target for anti-tumor action. Combinations of cytotoxic anti-tumor agents and inhibitors from phytochemicals are believed to act together producing inhibitory mechanisms on cancer growth. This combination strategy shows promise on cancer therapy. However, the combination of phytochemicals in cancer therapy needs to be further investigated to develop a better treatment strategy. Recent patents on anti-tumor phytochemicals are reviewed in this article. PMID:24942759

  12. Combined photovacuum therapy of copulative dysfunction

    NASA Astrophysics Data System (ADS)

    Menyaev, Yulian A.; Zharov, Vladimir P.; Mishanin, Evgeniy A.; Kuzmich, Aleksandr P.; Bessonov, Sergey E.

    2006-02-01

    One of the important problems of modern medicine is treatment of urogenital diseases. 1-2 There is a set of the treatment methods for such problems, but any of them does not obey the modern physicians completely. 3-4 Our aim is to present the new combined therapeutic apparatus called "Yarovit" (produced in Russia, in collaboration between Bauman Moscow State University of Technology and Scientific Production Association and Medical Center "Yarovit") which successfully applied in clinics for cure the patients with copulative dysfunction diseases. 5-6 At this apparatus "Yarovit" (description model have abbreviation AMVL-0 1) there is a combination of vacuum decompression (0.1-0.4 kgs/cm2) and light emitting diodes matrix system (660 nm, 1-3 mW/cm2). In treatment procedure apparatus can be applied together with expanded module "Intratherm" (39 °C on average), which has rectal heating elements. The latest clinical studies were made together with volunteer participation of more then one hundred patients, and received results showed the good dynamic of healing. That let to conclude these combinations of physical therapeutic methods supplement each other and in conjunction provides a significant clinical effect. The further developments of such apparatuses are discussed.

  13. Lentiviral Vectors and Cystic Fibrosis Gene Therapy

    PubMed Central

    Castellani, Stefano; Conese, Massimo

    2010-01-01

    Cystic fibrosis (CF) is a chronic autosomic recessive syndrome, caused by mutations in the CF Transmembrane Conductance Regulator (CFTR) gene, a chloride channel expressed on the apical side of the airway epithelial cells. The lack of CFTR activity brings a dysregulated exchange of ions and water through the airway epithelium, one of the main aspects of CF lung disease pathophysiology. Lentiviral (LV) vectors, of the Retroviridae family, show interesting properties for CF gene therapy, since they integrate into the host genome and allow long-lasting gene expression. Proof-of-principle that LV vectors can transduce the airway epithelium and correct the basic electrophysiological defect in CF mice has been given. Initial data also demonstrate that LV vectors can be repeatedly administered to the lung and do not give rise to a gross inflammatory process, although they can elicit a T cell-mediated response to the transgene. Future studies will clarify the efficacy and safety profile of LV vectors in new complex animal models with CF, such as ferrets and pigs. PMID:21994643

  14. Sui generis: gene therapy and delivery systems for the treatment of glioblastoma

    PubMed Central

    Kane, J. Robert; Miska, Jason; Young, Jacob S.; Kanojia, Deepak; Kim, Julius W.; Lesniak, Maciej S.

    2015-01-01

    Gene therapy offers a multidimensional set of approaches intended to treat and cure glioblastoma (GBM), in combination with the existing standard-of-care treatment (surgery and chemoradiotherapy), by capitalizing on the ability to deliver genes directly to the site of neoplasia to yield antitumoral effects. Four types of gene therapy are currently being investigated for their potential use in treating GBM: (i) suicide gene therapy, which induces the localized generation of cytotoxic compounds; (ii) immunomodulatory gene therapy, which induces or augments an enhanced antitumoral immune response; (iii) tumor-suppressor gene therapy, which induces apoptosis in cancer cells; and (iv) oncolytic virotherapy, which causes the lysis of tumor cells. The delivery of genes to the tumor site is made possible by means of viral and nonviral vectors for direct delivery of therapeutic gene(s), tumor-tropic cell carriers expressing therapeutic gene(s), and “intelligent” carriers designed to increase delivery, specificity, and tumoral toxicity against GBM. These vehicles are used to carry genetic material to the site of pathology, with the expectation that they can provide specific tropism to the desired site while limiting interaction with noncancerous tissue. Encouraging preclinical results using gene therapies for GBM have led to a series of human clinical trials. Although there is limited evidence of a therapeutic benefit to date, a number of clinical trials have convincingly established that different types of gene therapies delivered by various methods appear to be safe. Due to the flexibility of specialized carriers and genetic material, the technology for generating new and more effective therapies already exists. PMID:25746089

  15. Combination therapy: New hope for alcoholic hepatitis?

    PubMed

    Gao, Bin; Shah, Vijay H

    2015-09-01

    Alcoholic hepatitis (AH) is a severe form of alcoholic liver disease with high mortality. The pathogenesis of AH is not fully understood, but it is generally believed that inflammation is a key factor leading to liver failure in AH. Steroids, which have broad immunosuppressive effects, have been used for the treatment of AH over the last forty years. Steroids elicit modest improvement in short-term survival rate in patients with severe AH, but also cause severe side effects. Several specific inflammatory targets (e.g., IL-1, LPS, and gut microbiota) are currently under investigation for the treatment of AH with the goal to obviate or reduce steroid administration. In addition to inflammation, impaired liver regeneration is another major cause of liver failure in AH, which deteriorates further after steroid treatment because inflammation plays a key role in promoting liver repair. Interleukin-22 (IL-22) is a promising drug for the treatment of AH because of its hepatoprotective and anti-fibrotic functions and relatively few known side effects. In addition, IL-22 treatment also ameliorates bacterial infection and kidney injury, two major complications associated with severe AH. IL-22 is currently under investigation in preclinical and clinical studies and may hold great promise for AH by providing more beneficial effects and fewer side effects than current therapies. PMID:26193867

  16. Prospectives for Gene Therapy of Retinal Degenerations

    PubMed Central

    Thumann, Gabriele

    2012-01-01

    Retinal degenerations encompass a large number of diseases in which the retina and associated retinal pigment epithelial (RPE) cells progressively degenerate leading to severe visual disorders or blindness. Retinal degenerations can be divided into two groups, a group in which the defect has been linked to a specific gene and a second group that has a complex etiology that includes environmental and genetic influences. The first group encompasses a number of relatively rare diseases with the most prevalent being Retinitis pigmentosa that affects approximately 1 million individuals worldwide. Attempts have been made to correct the defective gene by transfecting the appropriate cells with the wild-type gene and while these attempts have been successful in animal models, human gene therapy for these inherited retinal degenerations has only begun recently and the results are promising. To the second group belong glaucoma, age-related macular degeneration (AMD) and diabetic retinopathy (DR). These retinal degenerations have a genetic component since they occur more often in families with affected probands but they are also linked to environmental factors, specifically elevated intraocular pressure, age and high blood sugar levels respectively. The economic and medical impact of these three diseases can be assessed by the number of individuals affected; AMD affects over 30 million, DR over 40 million and glaucoma over 65 million individuals worldwide. The basic defect in these diseases appears to be the relative lack of a neurogenic environment; the neovascularization that often accompanies these diseases has suggested that a decrease in pigment epithelium-derived factor (PEDF), at least in part, may be responsible for the neurodegeneration since PEDF is not only an effective neurogenic and neuroprotective agent but also a potent inhibitor of neovascularization. In the last few years inhibitors of vascularization, especially antibodies against vascular endothelial cell

  17. Drug combination therapy increases successful drug repositioning.

    PubMed

    Sun, Wei; Sanderson, Philip E; Zheng, Wei

    2016-07-01

    Repositioning of approved drugs has recently gained new momentum for rapid identification and development of new therapeutics for diseases that lack effective drug treatment. Reported repurposing screens have increased dramatically in number in the past five years. However, many newly identified compounds have low potency; this limits their immediate clinical applications because the known, tolerated plasma drug concentrations are lower than the required therapeutic drug concentrations. Drug combinations of two or more compounds with different mechanisms of action are an alternative approach to increase the success rate of drug repositioning. PMID:27240777

  18. Combined cannabinoid therapy via an oromucosal spray.

    PubMed

    Perez, Jordi

    2006-08-01

    Extensive basic science research has identified the potential therapeutic benefits of active compounds extracted from the Cannabis sativa L. plant (the cannabinoids). It is recognized that a significant proportion of patients suffering with the debilitating symptoms of pain and spasticity in multiple sclerosis or other conditions smoke cannabis despite the legal implications and stigma associated with this controlled substance. GW Pharmaceuticals have developed Sativex (GW- 1,000-02), a combined cannabinoid medicine that delivers and maintains therapeutic levels of two principal cannabinoids, delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), via an oromucosal pump spray, that aims to minimize psychotropic side effects. Sativex has proved to be well tolerated and successfully self-administered and self-titrated in both healthy volunteers and patient cohorts. Clinical assessment of this combined cannabinoid medicine has demonstrated efficacy in patients with intractable pain (chronic neuropathic pain, pain due to brachial plexus nerve injury, allodynic peripheral neuropathic pain and advanced cancer pain), rheumatoid arthritis and multiple sclerosis (bladder problems, spasticity and central pain), with no significant intoxication-like symptoms, tolerance or withdrawal syndrome. PMID:16969427

  19. Baculovirus vectors for antiangiogenesis-based cancer gene therapy.

    PubMed

    Luo, W-Y; Shih, Y-S; Lo, W-H; Chen, H-R; Wang, S-C; Wang, C-H; Chien, C-H; Chiang, C-S; Chuang, Y-J; Hu, Y-C

    2011-09-01

    Baculovirus is an insect virus that is non-pathogenic to humans and has emerged as a promising gene therapy vector. Since solid tumor growth/metastasis critically relies on angiogenesis and hEA, a fusion protein comprising human endostatin and angiostatin, exhibits potent antiangiogenic and antitumor efficacy in mouse models; this study aimed to evaluate the feasibility of baculovirus for hEA expression and antiangiogenesis-based cancer gene therapy. Toward this end, we constructed Bac-hEA that mediated transient hEA expression and Bac-ITR-hEA that exploited the adeno-associated virus inverted terminal repeats (ITRs) for prolonged hEA expression. Western blot and ELISA analyses showed that both Bac-hEA and Bac-ITR-hEA expressed hEA in transduced mammalian cells, yet Bac-ITR-hEA only marginally prolonged the hEA expression. In comparison with Bac-hEA, nonetheless, Bac-ITR-hEA significantly enhanced the hEA expression level that concurred with augmented antiangiogenic properties, as demonstrated by cell proliferation, migration and tubule network formation assays. Importantly, intratumoral injection of Bac-ITR-hEA into prostate cancer mouse models, when compared with Bac-hEA, exerted stronger antiangiogenic effects in vivo, more potently inhibited tumor growth and significantly prolonged mouse survival. This study collectively supported the notion that hEA is an effective antiangiogenic protein and proved the potential of baculovirus as a vector for antiangiogenesis-based cancer therapy, which may be combined with chemotherapy, radiotherapy or gene therapies using other vectors. PMID:21701531

  20. Gene therapy enhances chemotherapy tolerance and efficacy in glioblastoma patients

    PubMed Central

    Adair, Jennifer E.; Johnston, Sandra K.; Mrugala, Maciej M.; Beard, Brian C.; Guyman, Laura A.; Baldock, Anne L.; Bridge, Carly A.; Hawkins-Daarud, Andrea; Gori, Jennifer L.; Born, Donald E.; Gonzalez-Cuyar, Luis F.; Silbergeld, Daniel L.; Rockne, Russell C.; Storer, Barry E.; Rockhill, Jason K.; Swanson, Kristin R.; Kiem, Hans-Peter

    2014-01-01

    BACKGROUND. Temozolomide (TMZ) is one of the most potent chemotherapy agents for the treatment of glioblastoma. Unfortunately, almost half of glioblastoma tumors are TMZ resistant due to overexpression of methylguanine methyltransferase (MGMThi). Coadministration of O6-benzylguanine (O6BG) can restore TMZ sensitivity, but causes off-target myelosuppression. Here, we conducted a prospective clinical trial to test whether gene therapy to confer O6BG resistance in hematopoietic stem cells (HSCs) improves chemotherapy tolerance and outcome. METHODS. We enrolled 7 newly diagnosed glioblastoma patients with MGMThi tumors. Patients received autologous gene-modified HSCs following single-agent carmustine administration. After hematopoietic recovery, patients underwent O6BG/TMZ chemotherapy in 28-day cycles. Serial blood samples and tumor images were collected throughout the study. Chemotherapy tolerance was determined by the observed myelosuppression and recovery following each cycle. Patient-specific biomathematical modeling of tumor growth was performed. Progression-free survival (PFS) and overall survival (OS) were also evaluated. RESULTS. Gene therapy permitted a significant increase in the mean number of tolerated O6BG/TMZ cycles (4.4 cycles per patient, P < 0.05) compared with historical controls without gene therapy (n = 7 patients, 1.7 cycles per patient). One patient tolerated an unprecedented 9 cycles and demonstrated long-term PFS without additional therapy. Overall, we observed a median PFS of 9 (range 3.5–57+) months and OS of 20 (range 13–57+) months. Furthermore, biomathematical modeling revealed markedly delayed tumor growth at lower cumulative TMZ doses in study patients compared with patients that received standard TMZ regimens without O6BG. CONCLUSION. These data support further development of chemoprotective gene therapy in combination with O6BG and TMZ for the treatment of glioblastoma and potentially other tumors with overexpression of MGMT. TRIAL

  1. Genetically engineering adenoviral vectors for gene therapy.

    PubMed

    Coughlan, Lynda

    2014-01-01

    Adenoviral (Ad) vectors are commonly used for various gene therapy applications. Significant advances in the genetic engineering of Ad vectors in recent years has highlighted their potential for the treatment of metastatic disease. There are several methods to genetically modify the Ad genome to incorporate retargeting peptides which will redirect the natural tropism of the viruses, including homologous recombination in bacteria or yeast. However, homologous recombination in yeast is highly efficient and can be achieved without the need for extensive cloning strategies. In addition, the method does not rely on the presence of unique restriction sites within the Ad genome and the reagents required for this method are widely available and inexpensive. Large plasmids containing the entire adenoviral genome (~36 kbp) can be modified within Saccharomyces cerevisiae yeast and genomes easily rescued in Escherichia coli hosts for analysis or amplification. A method for two-step homologous recombination in yeast is described in this chapter. PMID:24243238

  2. Engineering AAV receptor footprints for gene therapy.

    PubMed

    Madigan, Victoria J; Asokan, Aravind

    2016-06-01

    Adeno-associated viruses (AAV) are currently at the forefront of human gene therapy clinical trials as recombinant vectors. Significant progress has been made in elucidating the structure, biology and tropisms of different naturally occurring AAV isolates in the past decade. In particular, a spectrum of AAV capsid interactions with host receptors have been identified and characterized. These studies have enabled a better understanding of key determinants of AAV cell recognition and entry in different hosts. This knowledge is now being applied toward engineering new, lab-derived AAV capsids with favorable transduction profiles. The current review conveys a structural perspective of capsid-glycan interactions and provides a roadmap for generating synthetic strains by engineering AAV receptor footprints. PMID:27262111

  3. The Application of Nanoparticles in Gene Therapy and Magnetic Resonance Imaging

    PubMed Central

    HERRANZ, FERNANDO; ALMARZA, ELENA; RODRÍGUEZ, IGNACIO; SALINAS, BEATRIZ; ROSELL, YAMILKA; DESCO, MANUEL; BULTE, JEFF W.; RUIZ-CABELLO, JESÚS

    2012-01-01

    The combination of nanoparticles, gene therapy, and medical imaging has given rise to a new field known as gene theranostics, in which a nanobioconjugate is used to diagnose and treat the disease. The process generally involves binding between a vector carrying the genetic information and a nanoparticle, which provides the signal for imaging. The synthesis of this probe generates a synergic effect, enhancing the efficiency of gene transduction and imaging contrast. We discuss the latest approaches in the synthesis of nanoparticles for magnetic resonance imaging, gene therapy strategies, and their conjugation and in vivo application. PMID:21484943

  4. Nonviral gene delivery systems by the combination of bubble liposomes and ultrasound.

    PubMed

    Omata, Daiki; Negishi, Yoichi; Suzuki, Ryo; Oda, Yusuke; Endo-Takahashi, Yoko; Maruyama, Kazuo

    2015-01-01

    The combination of therapeutic ultrasound (US) and nano/microbubbles is an important system for establishing a novel and noninvasive gene delivery system. Genes are delivered more efficiently using this system compared with a conventional nonviral vector system such as the lipofection method, resulting in higher gene expression. This higher efficiency is due to the gene being delivered into the cytosol and bypassing the endocytosis pathway. Many in vivo studies have demonstrated US-mediated gene delivery with nano/microbubbles, and several gene therapy feasibility studies for various diseases have been reported. In addition, nano/microbubbles can deliver genes site specifically by the control of US exposure site. In the present review, we summarize the gene delivery systems by the combination of nano/microbubbles and US, describe their properties, and assess applications and challenges of US theranostics. PMID:25620007

  5. Prospects for Gene Therapy in the Fragile X Syndrome

    ERIC Educational Resources Information Center

    Rattazzi, Mario C.; LaFauci, Giuseppe; Brown, W. Ted

    2004-01-01

    Gene therapy is unarguably the definitive way to treat, and possibly cure, genetic diseases. A straightforward concept in theory, in practice it has proven difficult to realize, even when directed to easily accessed somatic cell systems. Gene therapy for diseases in which the central nervous system (CNS) is the target organ presents even greater…

  6. Gene therapy in head and neck cancer: a review

    PubMed Central

    Chisholm, E; Bapat, U; Chisholm, C; Alusi, G; Vassaux, G

    2007-01-01

    Gene therapy for cancer is a rapidly evolving field with head and neck squamous cell cancer being one of the more frequently targeted cancer types. The number of clinical trials in the UK is growing and there is already a commercially available agent in China. Various gene therapy strategies along with delivery mechanisms for targeting head and neck cancer are reviewed. PMID:18057169

  7. Gastrointestinal Toxicities With Combined Antiangiogenic and Stereotactic Body Radiation Therapy

    PubMed Central

    Pollom, Erqi L.; Deng, Lei; Pai, Reetesh K.; Brown, J. Martin; Giaccia, Amato; Loo, Billy W.; Shultz, David B.; Le, Quynh Thu; Koong, Albert C.; Chang, Daniel T.

    2016-01-01

    Combining the latest targeted biologic agents with the most advanced radiation technologies has been an exciting development in the treatment of cancer patients. Stereotactic body radiation therapy (SBRT) is an ablative radiation approach that has become established for the treatment of a variety of malignancies, and it has been increasingly used in combination with biologic agents, including those targeting angiogenesis-specific pathways. Multiple reports have emerged describing unanticipated toxicities arising from the combination of SBRT and angiogenesis-targeting agents, particularly of late luminal gastrointestinal toxicities. In this review, we summarize the literature describing these toxicities, explore the biological mechanism of action of toxicity with the combined use of antiangiogenic therapies, and discuss areas of future research, so that this combination of treatment modalities can continue to be used in broader clinical contexts. PMID:26068491

  8. Gastrointestinal Toxicities With Combined Antiangiogenic and Stereotactic Body Radiation Therapy

    SciTech Connect

    Pollom, Erqi L.; Deng, Lei; Pai, Reetesh K.; Brown, J. Martin; Giaccia, Amato; Loo, Billy W.; Shultz, David B.; Le, Quynh Thu; Koong, Albert C.; Chang, Daniel T.

    2015-07-01

    Combining the latest targeted biologic agents with the most advanced radiation technologies has been an exciting development in the treatment of cancer patients. Stereotactic body radiation therapy (SBRT) is an ablative radiation approach that has become established for the treatment of a variety of malignancies, and it has been increasingly used in combination with biologic agents, including those targeting angiogenesis-specific pathways. Multiple reports have emerged describing unanticipated toxicities arising from the combination of SBRT and angiogenesis-targeting agents, particularly of late luminal gastrointestinal toxicities. In this review, we summarize the literature describing these toxicities, explore the biological mechanism of action of toxicity with the combined use of antiangiogenic therapies, and discuss areas of future research, so that this combination of treatment modalities can continue to be used in broader clinical contexts.

  9. Challenges, solutions, and recommendations for Alzheimer's disease combination therapy.

    PubMed

    Hendrix, James A; Bateman, Randall J; Brashear, H Robert; Duggan, Cynthia; Carrillo, Maria C; Bain, Lisa J; DeMattos, Ronald; Katz, Russell G; Ostrowitzki, Susanne; Siemers, Eric; Sperling, Reisa; Vitolo, Ottavio V

    2016-05-01

    Given the complex neuropathology Alzheimer's disease (AD), combination therapy may be necessary for effective treatment. However, scientific, pragmatic, regulatory, and business challenges need to be addressed before combination therapy for AD can become a reality. Leaders from academia and industry, along with a former member of the Food and Drug Administration and the Alzheimer's Association, have explored these challenges and here propose a strategy to facilitate proof-of-concept combination therapy trials in the near future. First, a more integrated understanding of the complex pathophysiology and progression of AD is needed to identify the appropriate pathways and the disease stage to target. Once drug candidates are identified, novel clinical trial designs and selection of appropriate outcome assessments will be needed to enable definition and evaluation of the appropriate dose and dosing regimen and determination of efficacy. Success in addressing this urgent problem will only be achieved through collaboration among multiple stakeholders. PMID:27017906

  10. Pharmacogenetics and the Development of Personalized Approaches for Combination Therapy in Asthma

    PubMed Central

    Miller, Stacey M.

    2013-01-01

    Asthma is a common, chronic disease of the airways that is treated with a combination of different therapies. The combination of LABA and ICS therapy results in a synergistic interaction that is efficacious in improving asthma symptom control; however, genetic variation has the potential to alter therapeutic efficacy. Both agents mediate complex molecular pathways consisting of gene variation that has been investigated with the analysis of candidate genes in the β2-adrenergic receptor and glucocorticoid pathway. These pharmacogenetic studies have been limited to retrospective analyses of clinical trial cohorts and a small number of prospective, genotype-stratified trials. More recently, genome-wide association studies in combination with replication in additional cohorts and in vitro cell-based models have been used to identify novel pathway-related pharmacogenetic variations. This review of the pharmacogenetics of the β2-adrenergic receptor and glucocorticoid pathways highlights the genotypic effects of variation in multiple genes from interacting pathways which may contribute to differential responses to inhaled beta agonists and glucocorticoids. As our understanding of these genetic mechanisms improves, panels of biomarkers may be developed to determine which combination therapies are the most effective with the least risk to an individual asthma patient. Before we can usher in an era of personalized medicine for asthma, it is first important to improve our ability to analyze large volumes of genetic data in large clinical trial cohorts using a combination of study designs, analytical methods, and in vitro functional studies. PMID:23912588

  11. Combination Therapy with Budesonide and Salmeterol in Experimental Allergic Inflammation.

    PubMed

    Pappová, L; Jošková, M; Kazimierová, I; Šutovská, M; Fraňová, S

    2016-01-01

    The aim of this study was to determinate bronchodilator, antitussive, and ciliomodulatory activity of inhaled combination therapy with budesonide and salmeterol, and to correlate the results with the anti-inflammatory effect. The experiments were performed using two models of allergic inflammation (21 and 28 days long sensitization with ovalbumine) in guinea pigs. The animals were treated daily by aerosols of budesonide (1 mM), salmeterol (0.17 mM), and a half-dose combination of the two drugs. Antitussive and bronchodilator activities were evaluated in vivo. The ciliary beat frequency (CBF) was assessed in vitro in tracheal brushed samples, and inflammatory cytokines (IL-4, IL-5, IL-13, GM-CSF, and TNF-α) were determined in bronchoalveolar lavage fluid (BALF). We found that the combination therapy significantly decreased the number of cough efforts, airway reactivity, and the level of inflammatory cytokines in both models of allergic asthma. Three weeks long sensitization led to an increase in CBF and all three therapeutic approaches have shown a ciliostimulatory effect in order: salmeterol < budesonid < combination therapy. Four weeks long ovalbumine sensitization, on the other hand, decreased the CBF, increased IL-5, and decreased IL-13. In this case, only the combination therapy was able to stimulate the CBF. We conclude that a half-dose combination therapy of budesonide and salmeterol shows comparable antitussive, bronchodilator, and the anti-inflammatory effect to a full dose therapy with budesonide alone, but had a more pronounced stimulatory effect on the CBF. PMID:27329088

  12. Viral Vectors for Gene Therapy: Current State and Clinical Perspectives.

    PubMed

    Lukashev, A N; Zamyatnin, A A

    2016-07-01

    Gene therapy is the straightforward approach for the application of recent advances in molecular biology into clinical practice. One of the major obstacles in the development of gene therapy is the delivery of the effector to and into the target cell. Unfortunately, most methods commonly used in laboratory practice are poorly suited for clinical use. Viral vectors are one of the most promising methods for gene therapy delivery. Millions of years of evolution of viruses have resulted in the development of various molecular mechanisms for entry into cells, long-term survival within cells, and activation, inhibition, or modification of the host defense mechanisms at all levels. The relatively simple organization of viruses, small genome size, and evolutionary plasticity allow modifying them to create effective instruments for gene therapy approaches. This review summarizes the latest trends in the development of gene therapy, in particular, various aspects and prospects of the development of clinical products based on viral delivery systems. PMID:27449616

  13. A snapshot of gene therapy in Latin America.

    PubMed

    Linden, Rafael; Matte, Ursula

    2014-03-01

    Gene therapy attempts the insertion and expression of exogenous genetic material in cells for therapeutic purposes. Conceived in the 1960s, gene therapy reached its first clinical trial at the end of the 1980s and by December 2013 around 600 genuine open clinical trials of gene therapy were registered at NIH Clinical Trials Database. Here, we summarize the current efforts towards the development of gene therapy in Latin America. Our survey shows that the number of scientists involved in the development of gene therapy and DNA vaccines in Latin America is still very low. Higher levels of investment in this technology are necessary to boost the advancement of innovation and intellectual property in this field in a way that would ease both the social and financial burden of various medical conditions in Latin America. PMID:24764763

  14. A snapshot of gene therapy in Latin America

    PubMed Central

    Linden, Rafael; Matte, Ursula

    2014-01-01

    Gene therapy attempts the insertion and expression of exogenous genetic material in cells for therapeutic purposes. Conceived in the 1960s, gene therapy reached its first clinical trial at the end of the 1980s and by December 2013 around 600 genuine open clinical trials of gene therapy were registered at NIH Clinical Trials Database. Here, we summarize the current efforts towards the development of gene therapy in Latin America. Our survey shows that the number of scientists involved in the development of gene therapy and DNA vaccines in Latin America is still very low. Higher levels of investment in this technology are necessary to boost the advancement of innovation and intellectual property in this field in a way that would ease both the social and financial burden of various medical conditions in Latin America. PMID:24764763

  15. Drug Delivery Systems and Combination Therapy by Using Vinca Alkaloids

    PubMed Central

    Lee, Chun-Ting; Huang, Yen-Wei; Yang, Chih-Hui; Huang, Keng-Shiang

    2015-01-01

    Developing new methods for chemotherapy drug delivery has become a topic of great concern. Vinca alkaloids are among the most widely used chemotherapy reagents for tumor therapy; however, their side effects are particularly problematic for many medical doctors. To reduce the toxicity and enhance the therapeutic efficiency of vinca alkaloids, many researchers have developed strategies such as using liposome-entrapped drugs, chemical- or peptide-modified drugs, polymeric packaging drugs, and chemotherapy drug combinations. This review mainly focuses on the development of a vinca alkaloid drug delivery system and the combination therapy. Five vinca alkaloids (eg, vincristine, vinblastine, vinorelbine, vindesine, and vinflunine) are reviewed. PMID:25877096

  16. Drug delivery systems and combination therapy by using vinca alkaloids.

    PubMed

    Lee, Chun-Ting; Huang, Yen-Wei; Yang, Chih-Hui; Huang, Keng-Shiang

    2015-01-01

    Developing new methods for chemotherapy drug delivery has become a topic of great concern. Vinca alkaloids are among the most widely used chemotherapy reagents for tumor therapy; however, their side effects are particularly problematic for many medical doctors. To reduce the toxicity and enhance the therapeutic efficiency of vinca alkaloids, many researchers have developed strategies such as using liposome-entrapped drugs, chemical- or peptide-modified drugs, polymeric packaging drugs, and chemotherapy drug combinations. This review mainly focuses on the development of a vinca alkaloid drug delivery system and the combination therapy. Five vinca alkaloids (eg, vincristine, vinblastine, vinorelbine, vindesine, and vinflunine) are reviewed. PMID:25877096

  17. Advances in Gene Therapy for Diseases of the Eye

    PubMed Central

    Petit, Lolita; Khanna, Hemant; Punzo, Claudio

    2016-01-01

    Over the last few years, huge progress has been made with regard to the understanding of molecular mechanisms underlying the pathogenesis of neurodegenerative diseases of the eye. Such knowledge has led to the development of gene therapy approaches to treat these devastating disorders. Challenges regarding the efficacy and efficiency of therapeutic gene delivery have driven the development of novel therapeutic approaches, which continue to evolve the field of ocular gene therapy. In this review article, we will discuss the evolution of preclinical and clinical strategies that have improved gene therapy in the eye, showing that treatment of vision loss has a bright future. PMID:27178388

  18. Advances in Gene Therapy for Diseases of the Eye.

    PubMed

    Petit, Lolita; Khanna, Hemant; Punzo, Claudio

    2016-08-01

    Over the last few years, huge progress has been made with regard to the understanding of molecular mechanisms underlying the pathogenesis of neurodegenerative diseases of the eye. Such knowledge has led to the development of gene therapy approaches to treat these devastating disorders. Challenges regarding the efficacy and efficiency of therapeutic gene delivery have driven the development of novel therapeutic approaches, which continue to evolve the field of ocular gene therapy. In this review article, we will discuss the evolution of preclinical and clinical strategies that have improved gene therapy in the eye, showing that treatment of vision loss has a bright future. PMID:27178388

  19. Biosensor-controlled gene therapy/drug delivery with nanoparticles for nanomedicine

    NASA Astrophysics Data System (ADS)

    Prow, Tarl W.; Rose, William A.; Wang, Nan; Reece, Lisa M.; Lvov, Yuri; Leary, James F.

    2005-04-01

    Nanomedicine involves cell-by-cell regenerative medicine, either repairing cells one at a time or triggering apoptotic pathways in cells that are not repairable. Multilayered nanoparticle systems are being constructed for the targeted delivery of gene therapy to single cells. Cleavable shells containing targeting, biosensing, and gene therapeutic molecules are being constructed to direct nanoparticles to desired intracellular targets. Therapeutic gene sequences are controlled by biosensor-activated control switches to provide the proper amount of gene therapy on a single cell basis. The central idea is to set up gene therapy "nanofactories" inside single living cells. Molecular biosensors linked to these genes control their expression. Gene delivery is started in response to a biosensor detected problem; gene delivery is halted when the cell response indicates that more gene therapy is not needed. Cell targeting of nanoparticles, both nanocrystals and nanocapsules, has been tested by a combination of fluorescent tracking dyes, fluorescence microscopy and flow cytometry. Intracellular targeting has been tested by confocal microscopy. Successful gene delivery has been visualized by use of GFP reporter sequences. DNA tethering techniques were used to increase the level of expression of these genes. Integrated nanomedical systems are being designed, constructed, and tested in-vitro, ex-vivo, and in small animals. While still in its infancy, nanomedicine represents a paradigm shift in thinking-from destruction of injured cells by surgery, radiation, chemotherapy to cell-by-cell repair within an organ and destruction of non-repairable cells by natural apoptosis.

  20. Gene therapy trials in the UK: is haemophilia a suitable 'model'?

    PubMed

    2004-01-01

    Gene therapy may be the next major advance for treatment of many diseases, and severe haemophilia (an inherited deficiency of coagulation factor VIII or IX) is a useful model. Progress in gene therapy has been slowed down following fatal multi-organ failure during an adenovirus vector trial for ornithine-transcarbamylase deficiency and two episodes of leukaemia in a retroviral vector trial for severe combined immunodeficiency trial. A small number of early haemophilia clinical trials are in progress or reported. This paper considers ethical and statutory issues related to gene therapy for severe haemophilia within the UK and how these can be addressed through a well-established national network of haemophilia centres. It is likely that these issues will be relevant to clinicians considering gene therapy for other diseases. PMID:14998268

  1. Optimal combination of antiangiogenic therapy for hepatocellular carcinoma

    PubMed Central

    Ch’ang, Hui-Ju

    2015-01-01

    The success of sorafenib in prolonging survival of patients with hepatocellular carcinoma (HCC) makes therapeutic inhibition of angiogenesis a component of treatment for HCC. To enhance therapeutic efficacy, overcome drug resistance and reduce toxicity, combination of antiangiogenic agents with chemotherapy, radiotherapy or other targeted agents were evaluated. Nevertheless, the use of antiangiogenic therapy remains suboptimal regarding dosage, schedule and duration of therapy. The issue is further complicated by combination antiangiogenesis to other cytotoxic or biologic agents. There is no way to determine which patients are most likely respond to a given form of antiangiogenic therapy. Activation of alternative pathways associated with disease progression in patients undergoing antiangiogenic therapy has also been recognized. There is increasing importance in identifying, validating and standardizing potential response biomarkers for antiangiogenesis therapy for HCC patients. In this review, biomarkers for antiangiogenesis therapy including systemic, circulating, tissue and imaging ones are summarized. The strength and deficit of circulating and imaging biomarkers were further demonstrated by a series of studies in HCC patients receiving radiotherapy with or without thalidomide. PMID:26261692

  2. The Impact of Interleukin 28b Gene Polymorphism on the Virological Response to Combined Pegylated Interferon and Ribavirin Therapy in Chronic HCV Genotype 4 Infected Egyptian Patients Using Data Mining Analysis

    PubMed Central

    Khairy, Marwa; Fouad, Rabab; Mabrouk, Mahassen; El-Akel, Wafaa; Awad, Abu Bakr; Salama, Rabab; Elnegouly, Mayada; Shaker, Olfat

    2013-01-01

    Background: Chronic HCV represents one of the common causes of chronic liver disease worldwide with Egypt having the highest prevalence, namely genotype 4. Interleukin IL-28B gene polymorphism has been shown to relate to HCV treatment response, mainly in genotype1. Objectives: We aim to evaluate the predictive power of the rs12979860 IL28B SNP and its protein for treatment response in genotype 4 Egyptian patients by regression analysis and decision tree analysis. Patients and Methods: The study included 263 chronic HCV Egyptian patients receiving peg-interferon and ribavirin therapy. Patients were classified into 3 groups; non responders (83patients), relapsers (76patients) and sustained virological responders (104 patients). Serum IL 28 B was performed, DNA was extracted and analyzed by direct sequencing of the SNP rs 12979860 of IL28B gene. Results: CT, CC and TT represented 56 %, 25 % and 19% of the patients, respectively. Absence of C allele (TT genotype) was significantly correlated with the early failure of response while CC was associated with sustained virological response. The decision tree showed that baseline alpha fetoprotein (AFP ≤ 2.68 ng/ml) was the variable of initial split (the strongest predictor of response) confirmed by regression analysis. Patients with TT genotype had the highest probability of failure of response. Conclusions: Absence of the C allele was significantly associated with failure of response. The presence of C allele was associated with a favorable outcome. AFP is a strong baseline predictor of HCV treatment response. A decision tree model is useful for predicting the probability of response to therapy. PMID:24065997

  3. Combination therapy: the propitious rationale for drug development.

    PubMed

    Phougat, Neetu; Khatri, Savita; Singh, Anu; Dangi, Mrridula; Kumar, Manish; Dabur, Rajesh; Chhillar, Anil Kumar

    2014-01-01

    Therapeutic options for many infections are extremely limited and at crisis point. We run the risk of entering a second pre-antibiotic era. There had been no miracle drug for the patients infected by resistant microbial pathogens. Most of the very few new drugs under development have problems with their toxicity, or pharmacokinetics and pharmacodynamics. We are already decades behind in the discovery, characterization and development of new antimicrobials. In that scenario, we could not imagine surviving without newer and effective antimicrobial agents. Bacteria have been the champions of evolution and are still evolving continuously, where they pose serious challenges for humans. Along with the crisis of evolving resistance, the condition is made worst by the meager drug pipeline for new antimicrobials. Despite ongoing efforts only 2 new antibiotics (Telavancin in 2009 and Ceftaroline fosamil in 2010) have been approved since 2009 pipeline status report of Infectious Disease Society of America (IDSA). Recent approval of new combination based antiviral drugs such as Stribild (combination of four drugs for HIV treatment) and Menhibrix (combination vaccine to prevent meningococcal disease and Haemophilus influenzae type b in children) proves that combination therapy is still the most promising approach to combat the ever evolving pathogens. Combination therapy involves the drug repurposing and regrouping of the existing antimicrobial agents to provide a synergistic approach for management of infectious diseases. This review article is an effort to highlight the challenges in new drug development and potential of combination drug therapy to deal with them. PMID:24138510

  4. Biologic therapy and gene therapy in the multimodality treatment of malignant pleural mesothelioma.

    PubMed

    Viti, Andrea; Bertolaccini, Luca; Terzi, Alberto

    2015-10-01

    The last years have witnessed an abrupt paradigm shift in cancer treatment owing to the discoveries concerning the relationships between the immune system and neoplastic cells. In the field of malignant mesothelioma, which, despite painstaking efforts, remains an incurable form of cancer, the researchers' attention has been seized by a variety of new biologic approaches, including both viral gene therapy and active immunotherapy. The former is meant to induce programmed cell death by introducing a specific gene in the target cell, this gene encoding a specific protein with anticancer activity. Active immunotherapy, on the other hand, tires to induce an active response of the immune system, whose surveillance may be easily dodged by cancer cells. In fact, this mechanism seems to play an important role in the development, growth and diffusion of malignant mesothelioma which easily manages to hinder the immune response. A thorough understanding of the relationships existing between mesothelioma and immune system is the basis for the success of those immune therapies, which are showing promising results in the preclinical setting, especially when combined with other approaches, such as cytoreductive surgery. PMID:26605294

  5. Combination therapy for malaria in Africa: hype or hope?

    PubMed Central

    Bloland, P. B.; Ettling, M.; Meek, S.

    2000-01-01

    The development of resistance to drugs poses one of the greatest threats to malaria control. In Africa, the efficacy of readily affordable antimalarial drugs is declining rapidly, while highly efficacious drugs tend to be too expensive. Cost-effective strategies are needed to extend the useful life spans of antimalarial drugs. Observations in South-East Asia on combination therapy with artemisinin derivatives and mefloquine indicate that the development of resistance to both components is slowed down. This suggests the possibility of a solution to the problem of drug resistance in Africa, where, however, there are major obstacles in the way of deploying combination therapy effectively. The rates of transmission are relatively high, a large proportion of asymptomatic infection occurs in semi-immune persons, the use of drugs is frequently inappropriate and ill-informed, there is a general lack of laboratory diagnoses, and public health systems in sub-Saharan Africa are generally weak. Furthermore, the cost of combination therapy is comparatively high. We review combination therapy as used in South-East Asia and outline the problems that have to be overcome in order to adopt it successfully in sub-Saharan Africa. PMID:11196485

  6. [Panzytopenia from combination therapy with azathioprin and allopurinol].

    PubMed

    Seidel, W

    2004-10-01

    Azathioprine has been used in rheumatology for more than twenty years. Indications are collagen diseases with multiorgan involvement, where co-medications are frequently necessary. We describe a patient suffering from pancytopenia following a combination therapy of azathioprine and allopurinol because of lupus erythematodes and diabetic nephropathy with hyperuricemia. PMID:15517303

  7. 75 FR 65640 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-26

    ... HUMAN SERVICES Food and Drug Administration Cellular, Tissue and Gene Therapies Advisory Committee... and Gene Therapies Advisory Committee. General Function of the Committee: To provide advice and... Tumor Vaccines and Biotechnology Branch, Office of Cellular, Tissue and Gene Therapies, Center...

  8. Retroviral Integrations in Gene Therapy Trials

    PubMed Central

    Biasco, Luca; Baricordi, Cristina; Aiuti, Alessandro

    2012-01-01

    γ-Retroviral and lentiviral vectors allow the permanent integration of a therapeutic transgene in target cells and have provided in the last decade a delivery platform for several successful gene therapy (GT) clinical approaches. However, the occurrence of adverse events due to insertional mutagenesis in GT treated patients poses a strong challenge to the scientific community to identify the mechanisms at the basis of vector-driven genotoxicity. Along the last decade, the study of retroviral integration sites became a fundamental tool to monitor vector–host interaction in patients overtime. This review is aimed at critically revising the data derived from insertional profiling, with a particular focus on the evidences collected from GT clinical trials. We discuss the controversies and open issues associated to the interpretation of integration site analysis during patient's follow up, with an update on the latest results derived from the use of high-throughput technologies. Finally, we provide a perspective on the future technical development and on the application of these studies to address broader biological questions, from basic virology to human hematopoiesis. PMID:22252453

  9. Duchenne muscular dystrophy gene therapy in the canine model.

    PubMed

    Duan, Dongsheng

    2015-03-01

    Duchenne muscular dystrophy (DMD) is an X-linked lethal muscle disease caused by dystrophin deficiency. Gene therapy has significantly improved the outcome of dystrophin-deficient mice. Yet, clinical translation has not resulted in the expected benefits in human patients. This translational gap is largely because of the insufficient modeling of DMD in mice. Specifically, mice lacking dystrophin show minimum dystrophic symptoms, and they do not respond to the gene therapy vector in the same way as human patients do. Further, the size of a mouse is hundredfolds smaller than a boy, making it impossible to scale-up gene therapy in a mouse model. None of these limitations exist in the canine DMD (cDMD) model. For this reason, cDMD dogs have been considered a highly valuable platform to test experimental DMD gene therapy. Over the last three decades, a variety of gene therapy approaches have been evaluated in cDMD dogs using a number of nonviral and viral vectors. These studies have provided critical insight for the development of an effective gene therapy protocol in human patients. This review discusses the history, current status, and future directions of the DMD gene therapy in the canine model. PMID:25710459

  10. Duchenne Muscular Dystrophy Gene Therapy in the Canine Model

    PubMed Central

    2015-01-01

    Abstract Duchenne muscular dystrophy (DMD) is an X-linked lethal muscle disease caused by dystrophin deficiency. Gene therapy has significantly improved the outcome of dystrophin-deficient mice. Yet, clinical translation has not resulted in the expected benefits in human patients. This translational gap is largely because of the insufficient modeling of DMD in mice. Specifically, mice lacking dystrophin show minimum dystrophic symptoms, and they do not respond to the gene therapy vector in the same way as human patients do. Further, the size of a mouse is hundredfolds smaller than a boy, making it impossible to scale-up gene therapy in a mouse model. None of these limitations exist in the canine DMD (cDMD) model. For this reason, cDMD dogs have been considered a highly valuable platform to test experimental DMD gene therapy. Over the last three decades, a variety of gene therapy approaches have been evaluated in cDMD dogs using a number of nonviral and viral vectors. These studies have provided critical insight for the development of an effective gene therapy protocol in human patients. This review discusses the history, current status, and future directions of the DMD gene therapy in the canine model. PMID:25710459

  11. Safety profile, efficacy, and biodistribution of a bicistronic high-capacity adenovirus vector encoding a combined immunostimulation and cytotoxic gene therapy as a prelude to a phase I clinical trial for glioblastoma

    SciTech Connect

    Puntel, Mariana; Ghulam, Muhammad A.K.M.; Farrokhi, Catherine; VanderVeen, Nathan; Paran, Christopher; Appelhans, Ashley; Kroeger, Kurt M.; Salem, Alireza; Lacayo, Liliana; Pechnick, Robert N.; Kelson, Kyle R.; Kaur, Sukhpreet; Kennedy, Sean; Palmer, Donna; Ng, Philip; and others

    2013-05-01

    Adenoviral vectors (Ads) are promising gene delivery vehicles due to their high transduction efficiency; however, their clinical usefulness has been hampered by their immunogenicity and the presence of anti-Ad immunity in humans. We reported the efficacy of a gene therapy approach for glioma consisting of intratumoral injection of Ads encoding conditionally cytotoxic herpes simplex type 1 thymidine kinase (Ad-TK) and the immunostimulatory cytokine fms-like tyrosine kinase ligand 3 (Ad-Flt3L). Herein, we report the biodistribution, efficacy, and neurological and systemic effects of a bicistronic high-capacity Ad, i.e., HC-Ad-TK/TetOn-Flt3L. HC-Ads elicit sustained transgene expression, even in the presence of anti-Ad immunity, and can encode large therapeutic cassettes, including regulatory elements to enable turning gene expression “on” or “off” according to clinical need. The inclusion of two therapeutic transgenes within a single vector enables a reduction of the total vector load without adversely impacting efficacy. Because clinically the vectors will be delivered into the surgical cavity, normal regions of the brain parenchyma are likely to be transduced. Thus, we assessed any potential toxicities elicited by escalating doses of HC-Ad-TK/TetOn-Flt3L (1 × 10{sup 8}, 1 × 10{sup 9}, or 1 × 10{sup 10} viral particles [vp]) delivered into the rat brain parenchyma. We assessed neuropathology, biodistribution, transgene expression, systemic toxicity, and behavioral impact at acute and chronic time points. The results indicate that doses up to 1 × 10{sup 9} vp of HC-Ad-TK/TetOn-Flt3L can be safely delivered into the normal rat brain and underpin further developments for its implementation in a phase I clinical trial for glioma. - Highlights: ► High capacity Ad vectors elicit sustained therapeutic gene expression in the brain. ► HC-Ad-TK/TetOn-Flt3L encodes two therapeutic genes and a transcriptional switch. ► We performed a dose escalation study at

  12. Adeno-associated virus (AAV) gene delivery in stem cell therapy.

    PubMed

    Brown, Nolan J; Hirsch, Matthew L

    2015-11-01

    The past 30 years have witnessed the development of cell and gene therapies for the treatment of diverse human diseases. Each of these approaches has inherent advantages and disadvantages; however, the two methods align in that, essentially, they are both methods of foreign DNA delivery to complement, eradicate, or supplement nucleotide sequences important for human health. As discussed herein, the combination of these therapies (gene therapy in stem cells), particularly in an ex vivo context, offers powerful genetic engineering which is applicable to the treatment of both genetic and acquired maladies ranging from blood diseases to the treatment of HIV infection. Of the existing gene therapy approaches, including non-viral and viral vectors, those based on adeno-associated virus (AAV) are currently at the forefront as they have been safely used in hundreds of clinical trials and have demonstrated remarkable success in treating blindness and hemophilia B. However, AAV vectors used in combination with cell-based therapies have not transitioned to the clinic. Instead, adenoviral, retroviral, and lentiviral vectors are the preferred choice for the modification of stem cells prior to patient infusion. This review provides a general background of AAV gene therapy and cell therapies, and highlights reports demonstrating apparently conflicting data of productive transduction and vector-induced toxicity using recombinant AAV in stem and stem-like cells. PMID:26645905

  13. Gene Therapy, Early Promises, Subsequent Problems, and Recent Breakthroughs

    PubMed Central

    Razi Soofiyani, Saeideh; Baradaran, Behzad; Lotfipour, Farzaneh; Kazemi, Tohid; Mohammadnejad, Leila

    2013-01-01

    Gene therapy is one of the most attractive fields in medicine. The concept of gene delivery to tissues for clinical applications has been discussed around half a century, but scientist’s ability to manipulate genetic material via recombinant DNA technology made this purpose to reality. Various approaches, such as viral and non-viral vectors and physical methods, have been developed to make gene delivery safer and more efficient. While gene therapy initially conceived as a way to treat life-threatening disorders (inborn errors, cancers) refractory to conventional treatment, to date gene therapy is considered for many non–life-threatening conditions including those adversely influence on a patient’s quality of life. Gene therapy has made significant progress, including tangible success, although much slower than was initially predicted. Although, gene therapies still at a fairly primitive stage, it is firmly science based. There is justifiable hope that with enhanced pathobiological understanding and biotechnological improvements, gene therapy will be a standard part of clinical practice within 20 years. PMID:24312844

  14. Building a roadmap for developing combination therapies for Alzheimer's disease.

    PubMed

    Perry, Daniel; Sperling, Reisa; Katz, Russell; Berry, Donald; Dilts, David; Hanna, Debra; Salloway, Stephen; Trojanowski, John Q; Bountra, Chas; Krams, Michael; Luthman, Johan; Potkin, Steven; Gribkoff, Val; Temple, Robert; Wang, Yaning; Carrillo, Maria C; Stephenson, Diane; Snyder, Heather; Liu, Enchi; Ware, Tony; McKew, John; Fields, F Owen; Bain, Lisa J; Bens, Cynthia

    2015-03-01

    Combination therapy has proven to be an effective strategy for treating many of the world's most intractable diseases. A growing number of investigators in academia, industry, regulatory agencies, foundations and advocacy organizations are interested in pursuing a combination approach to treating Alzheimer's disease. A meeting co-hosted by the Accelerate Cure/Treatments for Alzheimer's Disease Coalition, the Critical Path Institute and the Alzheimer's Association addressed challenges in designing clinical trials to test multiple treatments in combination and outlined a roadmap for making such trials a reality. PMID:25708309

  15. Germ-line gene therapy and the medical imperative.

    PubMed

    Munson, Ronald; Davis, Lawrence H

    1992-06-01

    Somatic cell gene therapy has yielded promising results. If germ cell gene therapy can be developed, the promise is even greater: hundreds of genetic diseases might be virtually eliminated. But some claim the procedure is morally unacceptable. We thoroughly and sympathetically examine several possible reasons for this claim but find them inadequate. There is no moral reason, then, not to develop and employ germ-line gene therapy. Taking the offensive, we argue next that medicine has a prima facie moral obligation to do so. PMID:11645742

  16. Synergistic combination dry powders for inhaled antimicrobial therapy

    NASA Astrophysics Data System (ADS)

    Heng, Desmond; Lee, Sie Huey; Teo, Jeanette; Ng, Wai Kiong; Chan, Hak-Kim; Tan, Reginald B. H.

    2013-06-01

    Combination products play an important role in medicine as they offer improved clinical effectiveness, enhanced patient adherence, and reduced administrative costs. In combination antimicrobial therapy, the desired outcome is to extend the antimicrobial spectrum and to achieve a possible synergistic effect. However, adverse antagonistic species may sometimes emerge from such combinations, leading to treatment failure. Therefore, it is crucial to screen the drug candidates for compatibility and possible antagonistic interactions. This work aims to develop a novel synergistic dry powder inhaler (DPI) formulation for antimicrobial combination therapy via the pulmonary route. Binary and ternary combinations were prepared via spray drying on a BUCHI® Nano Spray Dryer B-90. All powders were within the respirable size range, and were consisted of spherical particles that were slightly corrugated. The powers yielded fine particle fractions (of the loaded dose) of over 40% when dispersed using an Aerolizer® DPI at 60 L/min. Time-kill studies carried out against common respiratory tract pathogenic bacteria Pseudomonas aeruginosa, Staphylococcus aureus, Klebsiella pneumonia and Acinetobacter baumannii at 1x the minimum inhibitory concentration (MIC) over 24 hours revealed no antagonistic behavior for both combinations. While the interactions were generally found to be indifferent, a favorable synergistic effect was detected in the binary combination when it was tested against Pseudomonas aeruginosa bacteria.

  17. Current progress in suicide gene therapy for cancer.

    PubMed

    Yazawa, Kazuyuki; Fisher, William E; Brunicardi, F Charles

    2002-07-01

    Standard chemotherapeutic agents and ionizing radiation destroy dividing cells. Because tumor cells divide more rapidly than normal cells, there is a therapeutic index in which damage to the cancer cells is maximized while keeping the toxicity to the normal host cells acceptable. Suicide gene therapy strives to deliver genes to the cancer cells, which convert nontoxic prodrugs into active chemotherapeutic agents. With this strategy, the systemically administered prodrug is converted to the active chemotherapeutic agent only in cancer cells, thereby allowing a maximal therapeutic effect while limiting systemic toxicity. A literature search was conducted using the MEDLINE database from 1990 to 2001 to identify articles related to suicide gene therapy for cancer. A number of suicide gene systems have been identified, including the herpes simplex virus thymidine kinase gene, the cytosine deaminase gene, the varicella-zoster virus thymidine kinase gene, the nitroreductase gene, the Escherichia coli gpt gene, and the E. coli Deo gene. Various vectors, including liposomes, retroviruses, and adenoviruses, have been used to transfer these suicide genes to tumor cells. These strategies have been effective in cell culture experiments, laboratory animals, and some early clinical trials. Advances in tissue- and cell-specific delivery of suicide genes using specific promoters will improve the clinical utility of suicide gene therapy. PMID:11948367

  18. The role of combination medical therapy in benign prostatic hyperplasia.

    PubMed

    Greco, K A; McVary, K T

    2008-12-01

    To review key trials of monotherapy and combination therapy of alpha(1)-adrenergic receptor antagonists (alpha(1)-ARAs), 5alpha-reductase inhibitors (5alphaRIs) and anti-muscarinic agents in the treatment of lower urinary tract symptoms (LUTS) associated with benign prostatic hyperplasia (BPH). To assess the safety and efficacy of combination therapies for LUTS associated with BPH, a search of the MEDLINE and Cochrane databases (1976-2008) was conducted for relevant trials and reviews using the terms benign prostatic hyperplasia, lower urinary tract symptoms, alpha(1)-adrenergic receptor antagonists, 5alpha-reductase inhibitors, anti-muscarinics, anticholinergics, combination therapy, alfuzosin, doxazosin, tamsulosin, terazosin, dutasteride, finasteride, tolterodine, flavoxate, propiverine, oxybutynin, erectile dysfunction, sildenafil, vardenafil and tadalafil. Data from the Medical Therapy of Prostatic Symptoms (MTOPS) study indicated a role for long-term use of alpha(1)-ARAs and 5alphaRIs in combination. In the MTOPS study, combination therapy with the alpha(1)-ARA doxazosin and the 5alphaRI finasteride was significantly more effective than either component alone in reducing symptoms (P=0.006 vs doxazosin monotherapy; P<0.001 vs finasteride monotherapy) and in lowering the rate of clinical progression (P<0.001 vs either monotherapy). These findings were confirmed by the 2-year preliminary results of the Combination of Avodart and Tamsulosin study. In this study, combination therapy of the alpha(1)-ARA tamsulosin and the 5alphaRI dutasteride resulted in a significantly greater decrease in International Prostate Symptom Score (IPSS) when compared with either monotherapy. Several recent trials have studied the efficacy of combining alpha(1)-ARAs and anti-muscarinic agents in the treatment of BPH. These studies have found this combination to result in statistically significant benefits in quality of life scores, patient satisfaction, urinary frequency, storage

  19. Gene Therapy and Cell-Based Therapies for Therapeutic Angiogenesis in Peripheral Artery Disease

    PubMed Central

    Nakagami, Hironori; Koriyama, Hiroshi; Morishita, Ryuichi

    2013-01-01

    Gene therapy and cell-based therapy have emerged as novel therapies to promote therapeutic angiogenesis in critical limb ischemia (CLI) caused by peripheral artery disease (PAD). Although researchers initially focused on gene therapy using proangiogenic factors, such as vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), and hepatocyte growth factors (HGF), cell therapy using bone marrow mononuclear cells (BMMNCs), mesenchymal stem cells (BMMSCs), G-CSF-mobilized peripheral blood mononuclear cells (M-PBMNCs), and endothelial progenitor cells (EPCs) have also been extensively studied. Based on the elaborate studies and favorable results of basic research, some clinical phase I/II trials have been performed, and the results demonstrate the safety of these approaches and their potential for symptomatic improvement in CLI. However, the phase 3 clinical trials have thus far been limited to gene therapy using the HGF gene. Further studies using well-designed larger placebo-controlled and long-term randomized control trials (RCTs) will clarify the effectiveness of gene therapy and cell-based therapy for the treatment of CLI. Furthermore, the development of efficient gene transfer systems and effective methods for keeping transplanted cells healthy will make these novel therapies more effective and ease the symptoms of CLI. PMID:24294599

  20. The interplay of post-translational modification and gene therapy

    PubMed Central

    Osamor, Victor Chukwudi; Chinedu, Shalom N; Azuh, Dominic E; Iweala, Emeka Joshua; Ogunlana, Olubanke Olujoke

    2016-01-01

    Several proteins interact either to activate or repress the expression of other genes during transcription. Based on the impact of these activities, the proteins can be classified into readers, modifier writers, and modifier erasers depending on whether histone marks are read, added, or removed, respectively, from a specific amino acid. Transcription is controlled by dynamic epigenetic marks with serious health implications in certain complex diseases, whose understanding may be useful in gene therapy. This work highlights traditional and current advances in post-translational modifications with relevance to gene therapy delivery. We report that enhanced understanding of epigenetic machinery provides clues to functional implication of certain genes/gene products and may facilitate transition toward revision of our clinical treatment procedure with effective fortification of gene therapy delivery. PMID:27013864

  1. The interplay of post-translational modification and gene therapy.

    PubMed

    Osamor, Victor Chukwudi; Chinedu, Shalom N; Azuh, Dominic E; Iweala, Emeka Joshua; Ogunlana, Olubanke Olujoke

    2016-01-01

    Several proteins interact either to activate or repress the expression of other genes during transcription. Based on the impact of these activities, the proteins can be classified into readers, modifier writers, and modifier erasers depending on whether histone marks are read, added, or removed, respectively, from a specific amino acid. Transcription is controlled by dynamic epigenetic marks with serious health implications in certain complex diseases, whose understanding may be useful in gene therapy. This work highlights traditional and current advances in post-translational modifications with relevance to gene therapy delivery. We report that enhanced understanding of epigenetic machinery provides clues to functional implication of certain genes/gene products and may facilitate transition toward revision of our clinical treatment procedure with effective fortification of gene therapy delivery. PMID:27013864

  2. Duchenne muscular dystrophy gene therapy: Lost in translation?

    PubMed Central

    Duan, Dongsheng

    2011-01-01

    A milestone of molecular medicine is the identification of dystrophin gene mutation as the cause of Duchenne muscular dystrophy (DMD). Over the last 2 decades, major advances in dystrophin biology and gene delivery technology have created an opportunity to treat DMD with gene therapy. Remarkable success has been achieved in treating dystrophic mice. Several gene therapy strategies, including plasmid transfer, exon skipping, and adeno-associated virus-mediated microdystrophin therapy, have entered clinical trials. However, therapeutic benefit has not been realized in DMD patients. Bridging the gap between mice and humans is no doubt the most pressing issue facing DMD gene therapy now. In contrast to mice, dystrophin-deficient dogs are genetically and phenotypically similar to human patients. Preliminary gene therapy studies in the canine model may offer critical insights that cannot be obtained from murine studies. It is clear that the canine DMD model may represent an important link between mice and humans. Unfortunately, our current knowledge of dystrophic dogs is limited, and the full picture of disease progression remains to be clearly defined. We also lack rigorous outcome measures (such as in situ force measurement) to monitor therapeutic efficacy in dystrophic dogs. Undoubtedly, maintaining a dystrophic dog colony is technically demanding, and the cost of dog studies cannot be underestimated. A carefully coordinated effort from the entire DMD community is needed to make the best use of the precious dog resource. Successful DMD gene therapy may depend on valid translational studies in dystrophin-deficient dogs. PMID:21691429

  3. Gene Therapy from the perspective of Systems Biology

    PubMed Central

    Mac Gabhann, Feilim; Annex, Brian H.

    2010-01-01

    Gene therapy research has expanded from its original concept of replacing absent or defective DNA with functional DNA for transcription. Genetic material may be delivered via multiple vectors, including naked plasmid DNA, viruses and even cells with the goal of increasing gene expression; and the targeting of specific tissues or cell types is aimed at decreasing risks of systemic or side effects. As with the development of any drug, there is an amount of empiricism in the choice of gene target, route of administration, dosing and in particular the scaling-up from pre-clinical models to clinical trials. Systems Biology, whose arsenal includes high-throughput experimental and computational studies that account for the complexities of host-disease-therapy interactions, holds significant promise in aiding the development and optimization of gene therapies, including personalized therapies and the identification of biomarkers for success of these strategies. In this review we describe some of the obstacles and successes in gene therapy, using the specific example of growth factor gene delivery to promote angiogenesis and blood vessel remodeling in ischemic diseases; we also make references to anti-angiogenic gene therapy in cancer. The opportunities for Systems Biology and in silico modeling to improve on current outcomes are highlighted. PMID:20886389

  4. Stem Cell Gene Therapy for Fanconi Anemia: Report from the 1st International Fanconi Anemia Gene Therapy Working Group Meeting

    PubMed Central

    Tolar, Jakub; Adair, Jennifer E; Antoniou, Michael; Bartholomae, Cynthia C; Becker, Pamela S; Blazar, Bruce R; Bueren, Juan; Carroll, Thomas; Cavazzana-Calvo, Marina; Clapp, D Wade; Dalgleish, Robert; Galy, Anne; Gaspar, H Bobby; Hanenberg, Helmut; Von Kalle, Christof; Kiem, Hans-Peter; Lindeman, Dirk; Naldini, Luigi; Navarro, Susana; Renella, Raffaele; Rio, Paula; Sevilla, Julián; Schmidt, Manfred; Verhoeyen, Els; Wagner, John E; Williams, David A; Thrasher, Adrian J

    2011-01-01

    Survival rates after allogeneic hematopoietic cell transplantation (HCT) for Fanconi anemia (FA) have increased dramatically since 2000. However, the use of autologous stem cell gene therapy, whereby the patient's own blood stem cells are modified to express the wild-type gene product, could potentially avoid the early and late complications of allogeneic HCT. Over the last decades, gene therapy has experienced a high degree of optimism interrupted by periods of diminished expectation. Optimism stems from recent examples of successful gene correction in several congenital immunodeficiencies, whereas diminished expectations come from the realization that gene therapy will not be free of side effects. The goal of the 1st International Fanconi Anemia Gene Therapy Working Group Meeting was to determine the optimal strategy for moving stem cell gene therapy into clinical trials for individuals with FA. To this end, key investigators examined vector design, transduction method, criteria for large-scale clinical-grade vector manufacture, hematopoietic cell preparation, and eligibility criteria for FA patients most likely to benefit. The report summarizes the roadmap for the development of gene therapy for FA. PMID:21540837

  5. Current perspectives on combination therapy in the management of hypertension

    PubMed Central

    Mallat, Samir G; Itani, Houssam S; Tanios, Bassem Y

    2013-01-01

    Hypertension (HTN) is a worldwide health problem and a major preventable risk factor for cardiovascular (CV) events. Achieving an optimal blood pressure (BP) target for patients with HTN will often require more than one BP-lowering drug. Combination therapy is not only needed, but also confers many advantages such as better efficacy and a better tolerability. A better compliance and simplicity of treatment is noted with the single-pill combination (SPC). In addition, for those patients who do not achieve BP target when receiving dual combinations, triple SPCs are now available, and their efficacy and safety have been tested in large clinical trials. BP-lowering drugs used in combination therapy should have complementary mechanisms of action, leading to an additive BP-lowering effect and improvement in overall tolerability, achieved by decreasing the incidence of adverse effects. On the basis of large, outcome-driven trials, preferred dual combinations include an angiotensin receptor antagonist (ARB) or an angiotensin converting enzyme inhibitor (ACEI) combined with a calcium channel blocker (CCB), or an ARB or ACEI combined with a diuretic. Acceptable dual combinations include a direct rennin inhibitor (DRI) and a CCB, a DRI and a diuretic, a beta-blocker and a diuretic, a CCB and a diuretic, a CCB and a beta-blocker, a dihydropyridine CCB and a non-dihydropyridine CCB, and a thiazide diuretic combined with a potassium-sparing diuretic. Some combinations are not recommended and may even be harmful, such as dual renin angiotensin aldosterone system inhibition. Currently available triple SPCs combine a renin angiotensin aldosterone system inhibitor with a CCB and a diuretic. Combination therapy as an initial approach is advocated in patients with a systolic BP more than 20 mmHg and/or a diastolic BP more than 10 mmHg above target and in patients with high CV risk. In addition, using SPCs has been stressed and favored in recent international guidelines. Recently

  6. Tmc gene therapy restores auditory function in deaf mice.

    PubMed

    Askew, Charles; Rochat, Cylia; Pan, Bifeng; Asai, Yukako; Ahmed, Hena; Child, Erin; Schneider, Bernard L; Aebischer, Patrick; Holt, Jeffrey R

    2015-07-01

    Genetic hearing loss accounts for up to 50% of prelingual deafness worldwide, yet there are no biologic treatments currently available. To investigate gene therapy as a potential biologic strategy for restoration of auditory function in patients with genetic hearing loss, we tested a gene augmentation approach in mouse models of genetic deafness. We focused on DFNB7/11 and DFNA36, which are autosomal recessive and dominant deafnesses, respectively, caused by mutations in transmembrane channel-like 1 (TMC1). Mice that carry targeted deletion of Tmc1 or a dominant Tmc1 point mutation, known as Beethoven, are good models for human DFNB7/11 and DFNA36. We screened several adeno-associated viral (AAV) serotypes and promoters and identified AAV2/1 and the chicken β-actin (Cba) promoter as an efficient combination for driving the expression of exogenous Tmc1 in inner hair cells in vivo. Exogenous Tmc1 or its closely related ortholog, Tmc2, were capable of restoring sensory transduction, auditory brainstem responses, and acoustic startle reflexes in otherwise deaf mice, suggesting that gene augmentation with Tmc1 or Tmc2 is well suited for further development as a strategy for restoration of auditory function in deaf patients who carry TMC1 mutations. PMID:26157030

  7. The efficacy of tenofovir-based therapy in patients showing suboptimal response to entecavir-adefovir combination therapy

    PubMed Central

    Kim, Jeong Han; Ahn, Sung Hyun; Ko, Soon Young; Choe, Won Hyeok; Kim, Kyun-Hwan; Kwon, So Young

    2016-01-01

    Background/Aims: Before tenofovir (TDF) become available in South Korea, combination therapy with entecavir (ETV) and adefovir (ADV) was the most potent regimen for chronic hepatitis B (CHB) patients who fail to respond to rescue therapy for drug resistance. We analyzed the efficacy of ETV-ADV combination therapy and investigated the clinical and clonal results of TDF-based rescue therapy in CHB patients refractory to this combination. Methods: We retrospectively reviewed the medical records of CHB patients treated for up to 3 years with ETV-ADV combination therapy as a rescue therapy for drug resistance. In cases refractory to this combination, clinical and clonal analyses were performed for TDF-based rescue therapy. Results: The analysis was performed on 48 patients. Twelve patients achieved a virological response (VR) within 3 years. A VR was subsequently achieved in nine of the ten patients without a VR who switched to TDF monotherapy. A VR was also achieved in six of the seven patients who switched to lamivudine-TDF combination therapy, and in two of the two patients who switched to ETV-TDF combination therapy. In an in vitro susceptibility test, viral replication was detected with TDF monotherapy but not with ETV-TDF combination therapy. Conclusions: The efficacy of ETV-ADV combination therapy was insufficient in CHB patients who were refractory to rescue therapy. A more potent regimen such as ETV-TDF combination therapy may be considered in such refractory cases. PMID:27304549

  8. Cystic Fibrosis Gene Therapy in the UK and Elsewhere

    PubMed Central

    Pytel, Kamila M.; Alton, Eric W.F.W.

    2015-01-01

    Abstract The cystic fibrosis transmembrane conductance regulator (CFTR) gene was identified in 1989. This opened the door for the development of cystic fibrosis (CF) gene therapy, which has been actively pursued for the last 20 years. Although 26 clinical trials involving approximately 450 patients have been carried out, the vast majority of these trials were short and included small numbers of patients; they were not designed to assess clinical benefit, but to establish safety and proof-of-concept for gene transfer using molecular end points such as the detection of recombinant mRNA or correction of the ion transport defect. The only currently published trial designed and powered to assess clinical efficacy (defined as improvement in lung function) administered AAV2-CFTR to the lungs of patients with CF. The U.K. Cystic Fibrosis Gene Therapy Consortium completed, in the autumn of 2014, the first nonviral gene therapy trial designed to answer whether repeated nonviral gene transfer (12 doses over 12 months) can lead to clinical benefit. The demonstration that the molecular defect in CFTR can be corrected with small-molecule drugs, and the success of gene therapy in other monogenic diseases, is boosting interest in CF gene therapy. Developments are discussed here. PMID:25838137

  9. Cystic Fibrosis Gene Therapy in the UK and Elsewhere.

    PubMed

    Griesenbach, Uta; Pytel, Kamila M; Alton, Eric W F W

    2015-05-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) gene was identified in 1989. This opened the door for the development of cystic fibrosis (CF) gene therapy, which has been actively pursued for the last 20 years. Although 26 clinical trials involving approximately 450 patients have been carried out, the vast majority of these trials were short and included small numbers of patients; they were not designed to assess clinical benefit, but to establish safety and proof-of-concept for gene transfer using molecular end points such as the detection of recombinant mRNA or correction of the ion transport defect. The only currently published trial designed and powered to assess clinical efficacy (defined as improvement in lung function) administered AAV2-CFTR to the lungs of patients with CF. The U.K. Cystic Fibrosis Gene Therapy Consortium completed, in the autumn of 2014, the first nonviral gene therapy trial designed to answer whether repeated nonviral gene transfer (12 doses over 12 months) can lead to clinical benefit. The demonstration that the molecular defect in CFTR can be corrected with small-molecule drugs, and the success of gene therapy in other monogenic diseases, is boosting interest in CF gene therapy. Developments are discussed here. PMID:25838137

  10. Cardiovascular gene therapy: current status and therapeutic potential

    PubMed Central

    Gaffney, M M; Hynes, S O; Barry, F; O'Brien, T

    2007-01-01

    Gene therapy is emerging as a potential treatment option in patients suffering from a wide spectrum of cardiovascular diseases including coronary artery disease, peripheral vascular disease, vein graft failure and in-stent restenosis. Thus far preclinical studies have shown promise for a wide variety of genes, in particular the delivery of genes encoding growth factors such as vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) to treat ischaemic vascular disease both peripherally and in coronary artery disease. VEGF as well as other genes such as TIMPs have been used to target the development of neointimal hyperplasia to successfully prevent vein graft failure and in-stent restenosis in animal models. Subsequent phase I trials to examine safety of these therapies have been successful with low levels of serious adverse effects, and albeit in the absence of a placebo group some suggestion of efficacy. Phase 2 studies, which have incorporated a placebo group, have not confirmed this early promise of efficacy. In the next generation of clinical gene therapy trials for cardiovascular disease, many parameters will need to be adjusted in the search for an effective therapy, including the identification of a suitable vector, appropriate gene or genes and an effective vector delivery system for a specific disease target. Here we review the current status of cardiovascular gene therapy and the potential for this approach to become a viable treatment option. PMID:17558439

  11. Stem cell gene therapy: the risks of insertional mutagenesis and approaches to minimize genotoxicity

    PubMed Central

    Wu, Chuanfeng

    2012-01-01

    Virus-based vectors are widely used in hematopoietic stem cell (HSC) gene therapy, and have the ability to integrate permanently into genomic DNA, thus driving long-term expression of corrective genes in all hematopoietic lineages. To date, HSC gene therapy has been successfully employed in the clinic for improving clinical outcomes in small numbers of patients with X-linked severe combined immunodeficiency (SCID-X1), adenosine deaminase deficiency (ADA-SCID), adrenoleukodystrophy (ALD), thalassemia, chronic granulomatous disease (CGD), and Wiskott-Aldrich syndrome (WAS). However, adverse events were observed during some of these HSC gene therapy clinical trials, linked to insertional activation of proto-oncogenes by integrated proviral vectors leading to clonal expansion and eventual development of leukemia. Numerous studies have been performed to understand the molecular basis of vector-mediated genotoxicity, with the aim of developing safer vectors and lower-risk gene therapy protocols. This review will summarize current information on the mechanisms of insertional mutagenesis in hematopoietic stem and progenitor cells due to integrating gene transfer vectors, discuss the available assays for predicting genotoxicity and mapping vector integration sites, and introduce newly-developed approaches for minimizing genotoxicity as a way to further move HSC gene therapy forward into broader clinical application. PMID:22198747

  12. Multifunctional nanoparticle systems for combined chemoand photothermal cancer therapy

    NASA Astrophysics Data System (ADS)

    Wang, Hai; Zhao, Yu-Liang; Nie, Guang-Jun

    2013-06-01

    Hyperthermia has long been considered as an adjuvant therapy for treating various diseases. Cancer treatment exploiting hyperthermia shows great clinical potential for a wide range of tumors. Importantly, the efficacy of hyperthermal therapy has recently been enhanced by the development of functional nanomaterials. The unique physicochemical properties of nanomaterials afford the specific localization of hyperthermia to primary tumors and early-stage cancers. In particular, due to their high rate of light-to-heat conversion and their capacity to be activated by tissue-penetrating electromagnetic radiation, near-infrared (NIR) light-absorbing plasmonic nanomaterials have attracted considerable attention as candidates for noninvasive photothermal therapy. The purpose of this article is to provide a overview on the current development in multifunctional nanomaterials capable of combined hyperthermia-chemotherapy delivery.

  13. [Combined modality therapy for a patient with primary adrenal lymphoma].

    PubMed

    Matsuno, Teppei; Kuroda, Hiroyuki; Jomen, Wataru; Yoshida, Masahiro; Yamada, Michiko; Sato, Masanori; Abe, Tomoyuki; Sakurai, Tamaki; Fujii, Shigeyuki; Maeda, Masahiro; Fujita, Miri; Nagashima, Kazuo; Nojiri, Shuichi; Arihara, Yohei; Kato, Junji

    2014-04-01

    A 71-year-old man with malaise, anorexia, and weight loss was referred to our hospital from a clinic. Abdominal computed tomography(CT)revealed bilateral adrenal masses. An ultrasound-guided percutaneous needle biopsy of the adrenal grand indicated diffuse large B-cell lymphoma. A rapid adrenocorticotropic hormone(ACTH)test revealed primary adrenal failure. Rituximab-cyclophosphamide/doxorubicin/vincristine/prednisolone(common name, R-CHOP)therapy accompanied by intrathecal treatment was initiated along with steroid replacement therapy. After the fourth courses, a CT scan showed a reduction of the adrenal masses, and there was no[18F]-fluorodeoxyglucose(FDG)uptake in the adrenal masses. The patient has remained in metabolic complete remission. Subsequently, both adrenal lymphomas were irradiated. The patient has been disease-free for 6 months after the diagnosis of primary adrenal lymphoma. The combined modality of chemoradiation therapy plus intrathecal treatment could be effective for primary adrenal lymphoma with a poor prognosis. PMID:24743371

  14. Cell and gene therapy in Australia.

    PubMed

    Martiniello-Wilks, R; Rasko, J E J

    2007-01-01

    The expansion of human cells to produce cell therapeutic products for the treatment of disease is, with few exceptions, an experimental therapy. Because cell therapies involve a biological product, often with some genetic or other modification, they require extensive pre-clinical research and development. Cell therapy production processes and premises require licensing by the Therapeutic Goods Administration. In this review, timed to coincide with the international meetings of the ISCT and ISSCR in Australia, we describe some promising cell therapies currently under development. PMID:17464751

  15. Combinational chelation therapy abrogates lead-induced neurodegeneration in rats.

    PubMed

    Pachauri, Vidhu; Saxena, Geetu; Mehta, Ashish; Mishra, Deepshikha; Flora, Swaran J S

    2009-10-15

    Lead, a ubiquitous and potent neurotoxicant causes oxidative stress which leads to numerous neurobehavioral and physiological alterations. The ability of lead to bind sulfhydryl groups or compete with calcium could be one of the reasons for its debilitating effects. In the present study, we addressed: i) if chelation therapy could circumvent the altered oxidative stress and prevent neuronal apoptosis in chronic lead-intoxicated rats, ii) whether chelation therapy could reverse biochemical and behavioral changes, and iii) if mono or combinational therapy with captopril (an antioxidant) and thiol chelating agents (DMSA/MiADMSA) is more effective than individual thiol chelator in lead-exposed rats. Results indicated that lead caused a significant increase in reactive oxygen species, nitric oxide, and intracellular free calcium levels along with altered behavioral abnormalities in locomotor activity, exploratory behavior, learning, and memory that were supported by changes in neurotransmitter levels. A fall in membrane potential, release of cytochrome c, and DNA damage indicated mitochondrial-dependent apoptosis. Most of these alterations showed significant recovery following combined therapy with captopril with MiADMSA and to a smaller extend with captopril+DMSA over monotherapy with these chelators. It could be concluded from our present results that co-administration of a potent antioxidant (like captopril) might be a better treatment protocol than monotherapy to counter lead-induced oxidative stress. The major highlight of the work is an interesting experimental evidence of the efficacy of combinational therapy using an antioxidant with a thiol chelator in reversing neurological dystrophy caused due to chronic lead exposure in rats. PMID:19595699

  16. Combinational chelation therapy abrogates lead-induced neurodegeneration in rats

    SciTech Connect

    Pachauri, Vidhu; Saxena, Geetu; Mehta, Ashish; Mishra, Deepshikha; Flora, Swaran J.S.

    2009-10-15

    Lead, a ubiquitous and potent neurotoxicant causes oxidative stress which leads to numerous neurobehavioral and physiological alterations. The ability of lead to bind sulfhydryl groups or compete with calcium could be one of the reasons for its debilitating effects. In the present study, we addressed: i) if chelation therapy could circumvent the altered oxidative stress and prevent neuronal apoptosis in chronic lead-intoxicated rats, ii) whether chelation therapy could reverse biochemical and behavioral changes, and iii) if mono or combinational therapy with captopril (an antioxidant) and thiol chelating agents (DMSA/MiADMSA) is more effective than individual thiol chelator in lead-exposed rats. Results indicated that lead caused a significant increase in reactive oxygen species, nitric oxide, and intracellular free calcium levels along with altered behavioral abnormalities in locomotor activity, exploratory behavior, learning, and memory that were supported by changes in neurotransmitter levels. A fall in membrane potential, release of cytochrome c, and DNA damage indicated mitochondrial-dependent apoptosis. Most of these alterations showed significant recovery following combined therapy with captopril with MiADMSA and to a smaller extend with captopril + DMSA over monotherapy with these chelators. It could be concluded from our present results that co-administration of a potent antioxidant (like captopril) might be a better treatment protocol than monotherapy to counter lead-induced oxidative stress. The major highlight of the work is an interesting experimental evidence of the efficacy of combinational therapy using an antioxidant with a thiol chelator in reversing neurological dystrophy caused due to chronic lead exposure in rats.

  17. Precision medicine and personalized breast cancer: combination pertuzumab therapy

    PubMed Central

    Reynolds, Kerry; Sarangi, Sasmit; Bardia, Aditya; Dizon, Don S

    2014-01-01

    Trastuzumab (Herceptin), a monoclonal antibody directed against the human epidermal growth-factor receptor 2 (HER2), is the poster child for antibody-based targeted therapy in breast cancer. Pertuzumab, another humanized monoclonal antibody, binds to a different domain of HER2 and prevents the formation of HER2:HER3 dimers, which is the most potent heterodimer in the HER family. The combination of trastuzumab and pertuzumab has synergistic activity, and is associated with improved clinical outcomes. The US Food and Drug Administration (FDA) approved pertuzumab in combination with trastuzumab-based chemotherapy originally as first-line therapy for metastatic HER2-positive breast cancer in 2012, and more recently as neoadjuvant therapy for localized disease in 2013. Pertuzumab is the first neoadjuvant drug to receive accelerated approval by the FDA based on pathological complete response as the primary end point. In this article, we review the mechanism of action, pharmacokinetics, clinical efficacy, safety, and current role of pertuzumab in the management of breast cancer, as well as ongoing clinical trials and future directions regarding the utility of pertuzumab as a personalized therapeutic option for HER2-positive breast cancer. In the coming years, we anticipate increased utilization of neoadjuvant trials for drug development, biomarker discovery, and validation, and envision conduct of personalized breast cancer clinics in which therapies will be routinely selected based on genetic alterations in the tumor. Regardless of the targeted therapy combinations employed based on tumor genomic profile, trastuzumab and pertuzumab will likely continue to form the backbone of the personalized regimen for HER2-positive breast cancer. PMID:24715764

  18. Prevailing public perceptions of the ethics of gene therapy.

    PubMed

    Robillard, Julie M; Roskams-Edris, Dylan; Kuzeljevic, Boris; Illes, Judy

    2014-08-01

    Gene therapy research is advancing rapidly, and hopes of treating a large number of brain disorders exist alongside ethical concerns. Most surveys of public attitudes toward these ethical issues are already dated and the content of these surveys has been researcher-driven. To examine current public perceptions, we developed an online instrument that is responsive and relevant to the latest research about ethics, gene therapy, and the brain. The 16-question survey was launched with the platform Amazon Mechanical Turk and was made available to residents of Canada and the United States. The survey was divided into six themes: (1) demographic information, (2) general opinions about gene therapy, (3) medical applications of gene therapy, (4) identity and moral/belief systems, (5) enhancement, and (6) risks. We received and analyzed responses from a total of 467 participants. Our results show that a majority of respondents (>90%) accept gene therapy as a treatment for severe illnesses such as Alzheimer disease, but this receptivity decreases for conditions perceived as less severe such as attention deficit hyperactivity disorder (79%), and for nontherapeutic applications (47%). The greatest area of concern for the application of gene therapy to brain conditions is the fear of not receiving sufficient information before undergoing the treatment. The main ethical concerns with enhancement were the potential for disparities in resource allocation, access to the procedure, and discrimination. When comparing these data with those from the 1990s, our findings suggest that the acceptability of gene therapy is increasing and that this trend is occurring despite lingering concerns over ethical issues. Providing the public and patients with up-to-date information and opportunities to engage in the discourse about areas of research in gene therapy is a priority. PMID:24773182

  19. Optimal therapy for chronic hepatitis B: hepatitis B virus combination therapy?

    PubMed

    Petersen, Jorg; Dandri, Maura

    2015-01-01

    Currently available antiviral treatment for chronic hepatitis B can be divided into two classes of therapeutic agents: pegylated interferon alpha (PEG-IFN) and nucleos(t)ide analogues (NAs). The major advantages of NAs are good tolerance and potent antiviral activity associated with high rates of on-treatment response to therapy. The advantages of PEG-IFN include a finite course of treatment, the absence of drug resistance, and an opportunity to obtain a durable post-treatment response to therapy. The use of these two antiviral agents with different mechanisms of action in combination is theoretically an attractive approach for treatment, either simultaneously, as sequential combination therapy (add-on), or even as an immediate switch from one agent to the other. Different NAs have also been combined in certain clinical situations. At present, several studies have confirmed certain virological advantages to combination therapies, but pivotal prospective studies demonstrating long-term clinical benefit to patients are still missing. Therefore, combination treatment, especially with PEG-IFN plus NAs, is not indicated and was not recommended by the European Association for the Study of the Liver Clinical Practice Guidelines written in 2012, while the guidelines for the use of combination NAs is limited to very few clinical situations. PMID:25529096

  20. [Combination biological therapy for fistular Crohn's disease: clinical demonstration].

    PubMed

    Knyazev, O V; Parfenov, A I; Shcherbakov, P L; Konoplyannikov, A G; Ruchkina, I N; Lischchinskaya, A A

    2014-01-01

    Perianal fistulas are the most common and frequently encountered types of fistulas in Crohn's disease (CD). They are incurable, may worsen quality of life in a patient and increase the risk of total bowel resection. Despite the significant impact of biological (anticytokine) therapy for fistular CD, treatment in this category of patients remains a difficult task with the high risk of recurrent CD. Mesenchymal stromal cells (MSCs) having immunomodulatory properties and a great regenerative potential are currently also used to treat fistulas in CD and perianal fistulas of another etiology. The given clinical case demonstrates that complete fistula healing could be achieved only after a few local administrations of MSCs in combination with infliximab and azathioprine. World and our experiences indicate that there is a need for randomized controlled trials with a sufficient number of patients to prove the efficacy of MSCs in the combination therapy of fistulas in CD. PMID:24772517

  1. Perspectives on Best Practices for Gene Therapy Programs

    PubMed Central

    Cheever, Thomas R.; Berkley, Dale; Braun, Serge; Brown, Robert H.; Byrne, Barry J.; Chamberlain, Jeffrey S.; Cwik, Valerie; Duan, Dongsheng; Federoff, Howard J.; High, Katherine A.; Kaspar, Brian K.; Klinger, Katherine W.; Larkindale, Jane; Lincecum, John; Mavilio, Fulvio; McDonald, Cheryl L.; McLaughlin, James; Weiss McLeod, Bonnie; Mendell, Jerry R.; Nuckolls, Glen; Stedman, Hansell H.; Tagle, Danilo A.; Vandenberghe, Luk H.; Wang, Hao; Wernett, Pamela J.; Wilson, James M.; Porter, John D.

    2015-01-01

    Abstract With recent successes in gene therapy trials for hemophilia and retinal diseases, the promise and prospects for gene therapy are once again garnering significant attention. To build on this momentum, the National Institute of Neurological Disorders and Stroke and the Muscular Dystrophy Association jointly hosted a workshop in April 2014 on “Best Practices for Gene Therapy Programs,” with a focus on neuromuscular disorders. Workshop participants included researchers from academia and industry as well as representatives from the regulatory, legal, and patient advocacy sectors to cover the gamut from preclinical optimization to intellectual property concerns and regulatory approval. The workshop focused on three key issues in the field: (1) establishing adequate scientific premise for clinical trials in gene therapy, (2) addressing regulatory process issues, and (3) intellectual property and commercialization issues as they relate to gene therapy. The outcomes from the discussions at this workshop are intended to provide guidance for researchers and funders in the gene therapy field. PMID:25654329

  2. Bioethical conflicts of gene therapy: a brief critical review.

    PubMed

    Freire, José Ednésio da Cruz; Medeiros, Suelen Carneiro de; Lopes Neto, Antônio Viana; Monteiro Júnior, José Edvar; Sousa, Antônio Juscelino Sudário; Rocha, Antônio José; Menezes, Léa Maria Bezerra de

    2014-01-01

    Methods and techniques employed in gene therapy are reviewed in parallel with pertinent ethical conflicts. Clinical interventions based on gene therapy techniques preferentially use vectors for the transportation of therapeutic genes, however little is known about the potential risks and damages to the patient. Thus, attending carefully to the clinical complications arising as well as to security is essential. Despite the scientific and technological advances, there are still many uncertainties about the side effects of gene therapy. Moreover, there is a need, above all, to understand the principles of bioethics as both science and ethics, in accordance with its socioecological responsibility, in order to prioritize the health and welfare of man and nature, using properly natural resources and technology. Therefore, it is hard to determine objective results and to which extent the insertion of genes can affect the organism, as well as the ethical implication. PMID:25650850

  3. Correlation between mutations in the core and NS5A genes of hepatitis C virus genotypes 1a, 1b, 3a, 3b, 6f and the response to pegylated interferon and ribavirin combination therapy.

    PubMed

    Kumthip, K; Pantip, C; Chusri, P; Thongsawat, S; O'Brien, A; Nelson, K E; Maneekarn, N

    2011-04-01

    Several studies have reported correlation between mutations in core and NS5A proteins of hepatitis C virus (HCV) and response to interferon (IFN) therapy. In particular, mutations in NS5A protein have been shown to correlate with responsiveness to IFN treatment of HCV-1b in Japanese patients. This study investigated whether amino acid (aa) mutations in the core and NS5A proteins of HCV-1a, 1b, 3a, 3b and 6f correlated with the response to pegylated interferon (Peg-IFN) plus ribavirin (RBV) therapy in Thai patients. The entire sequences of core and NS5A of HCV from 76 HCV-infected patients were analysed in comparison with corresponding reference sequences. The data revealed that the number of aa mutations in full-length NS5A, its C-terminus, IFN sensitivity-determining region, variable region 3 (V3) and V3 plus flanking region of HCV-1b NS5A protein were significantly higher in responders than in the treatment failure group (P = 0.010, 0.031, 0.046, 0.020 and 0.006, respectively). Similar results were found in a putative protein kinase R binding domain region in HCV-6f NS5A protein (P = 0.022). Moreover, specific aa substitutions in NS5A that appeared to be associated with responders or the treatment failure group were observed at positions 78 and 305 for HCV-1b (P = 0.028), 64 and 52 for HCV-1a (P = 0.033) and 6f (P = 0.045). Nevertheless, analysis of aa sequences of core protein revealed highly conserved sequences among HCV genotypes and no significant differences between the viruses from responders and the treatment failure group. Our findings indicate that mutations in aa residues of NS5A of HCV-1a, 1b and 6f correlated well with responsiveness to Peg-IFN and RBV combination therapy. PMID:20955493

  4. More is better: combination therapies for myelodysplastic syndromes.

    PubMed

    Ornstein, Moshe C; Mukherjee, Sudipto; Sekeres, Mikkael A

    2015-03-01

    The myelodysplastic syndromes (MDS) are a heterogenous collection of clonal hematopoietic malignancies that exist as a subgroup of the myeloid neoplasms as classified by the World Health Organization (WHO). They are characterized by ineffective hematopoiesis, subsequent cytopenias, transformation to acute myeloid leukemia (AML), and poor overall survival. There are currently three FDA-approved medications for MDS; lenalidomide, azacitidine, and decitabine. The role of these agents is to diminish the clinical impact of MDS and delay its progression to AML. However, despite known results with these monotherapies, recent clinical trials with a variety of combinations for MDS have demonstrated promising results. These trials include combinations of hypomethylating agents, histone deacetylase inhibitors, growth factors, and chemotherapy among others. In this paper we review the current literature on combination therapies in MDS, analyze on-going and concluded trials, and suggest future possibilities for combination strategies in MDS. PMID:25659727

  5. Intraocular pressure-lowering combination therapies with prostaglandin analogues.

    PubMed

    Aptel, Florent; Chiquet, Christophe; Romanet, Jean-Paul

    2012-07-01

    Intraocular pressure (IOP) reduction is currently the only therapeutic approach demonstrated to preserve visual function in patients with glaucoma. The first line of glaucoma treatment consists of topical IOP-lowering medications, usually initiated as monotherapy. A significant proportion of patients require more than one medication to reach a target IOP at which optic nerve damage will not progress. As prostaglandin analogues (PGAs) are the most effective class for reducing IOP, one of the other commonly used classes (β-adrenoceptor antagonist [β-blocker], carbonic anhydrase inhibitor or α(2)-adrenoceptor agonist) is frequently combined with a PGA. In the last decade, the use of fixed combinations containing two medications in a single bottle has steadily increased. Fixed combinations have the potential to simplify the dosing regimen, increase patient adherence, avoid the washout effect of the second drop on the first medication instilled, decrease exposure to preservatives and, sometimes, reduce the cost of treatment. Clinical trials have evaluated PGA-based fixed combinations versus unfixed combinations (individual components administered concomitantly) or versus individual monotherapies; however, any advantage that the fixed combinations may have in terms of IOP-lowering efficacy is still debated. For these reasons, the PGA-based fixed combinations are not approved by regulatory authorities in some countries, such as the US. We review the published studies evaluating the efficacy and tolerability of the IOP-lowering unfixed and fixed combination therapies with PGAs. Regarding unfixed combinations, the review shows that α(2)-adrenergic agonists-PGA and carbonic anhydrase inhibitor-PGA combinations seem to be at least as effective at reducing IOP as the β-blocker-PGA combinations. As for the fixed combinations, the review shows that the three PGA-timolol fixed combinations are more effective than their component medications used separately as monotherapy and

  6. Initial dual oral combination therapy in pulmonary arterial hypertension.

    PubMed

    Sitbon, Olivier; Sattler, Caroline; Bertoletti, Laurent; Savale, Laurent; Cottin, Vincent; Jaïs, Xavier; De Groote, Pascal; Chaouat, Ari; Chabannes, Céline; Bergot, Emmanuel; Bouvaist, Hélène; Dauphin, Claire; Bourdin, Arnaud; Bauer, Fabrice; Montani, David; Humbert, Marc; Simonneau, Gérald

    2016-06-01

    Treatment for pulmonary arterial hypertension (PAH) has been underpinned by single-agent therapy to which concomitant drugs are added sequentially when pre-defined treatment goals are not met.This retrospective analysis of real-world clinical data in 97 patients with newly diagnosed PAH (86% in New York Heart Association functional class III-IV) explored initial dual oral combination treatment with bosentan plus sildenafil (n=61), bosentan plus tadalafil (n=17), ambrisentan plus tadalafil (n=11) or ambrisentan plus sildenafil (n=8).All regimens were associated with significant improvements in functional class, exercise capacity, dyspnoea and haemodynamic indices after 4 months of therapy. Over a median follow-up period of 30 months, 75 (82%) patients were still alive, 53 (71%) of whom received only dual oral combination therapy. Overall survival rates were 97%, 94% and 83% at 1, 2 and 3 years, respectively, and 96%, 94% and 84%, respectively, for the patients with idiopathic PAH, heritable PAH and anorexigen-induced PAH. Expected survival rates calculated from the French equation for the latter were 86%, 75% and 66% at 1, 2 and 3 years, respectively.Initial combination of oral PAH-targeted medications may offer clinical benefits, especially in PAH patients with severe haemodynamic impairment. PMID:26989105

  7. Combination pharmacological therapies for the management of benign prostatic hyperplasia.

    PubMed

    Cohen, Seth A; Parsons, J Kellogg

    2012-04-01

    Benign prostatic hyperplasia (BPH) is a highly prevalent condition of older men caused by unregulated growth of the prostate gland. Clinical trials of medical therapy for BPH have consistently demonstrated that combined therapy with an α(1)-adrenergic receptor (AR) antagonist and a 5α-reductase inhibitor is superior to either agent alone. The addition of anticholinergic therapy to a treatment regimen could effectively improve symptoms in men with persistent storage lower urinary tract symptoms (LUTS) who have not seen a benefit with an α(1)-AR antagonist or 5α-reductase inhibitor. Among α(1)-AR antagonists, doxazosin, terazosin, tamsulosin, and alfuzosin, although with slight differences in adverse event profiles, are equivalent in effectiveness and efficacy. No data in the form of direct comparator trials exist to suggest a difference in clinical efficacy of finasteride and dutasteride, the two 5α-reductase inhibitors currently available. Current American Urological Association guidelines do not recommend phytotherapy or dietary supplements in any combination for the medical management of BPH. The current literature supports the safety and efficacy of the combination of an α(1)-AR antagonist and a 5α-reductase inhibitor in the treatment of symptomatic BPH and, in select patients, the use of an α(1)-AR antagonist and anticholinergic medication in the treatment of LUTS suggestive of BPH. PMID:22428659

  8. Progresses towards safe and efficient gene therapy vectors

    PubMed Central

    Chira, Sergiu; Jackson, Carlo S.; Oprea, Iulian; Ozturk, Ferhat; Pepper, Michael S.; Diaconu, Iulia; Braicu, Cornelia; Raduly, Lajos-Zsolt; Calin, George A.; Berindan-Neagoe, Ioana

    2015-01-01

    The emergence of genetic engineering at the beginning of the 1970′s opened the era of biomedical technologies, which aims to improve human health using genetic manipulation techniques in a clinical context. Gene therapy represents an innovating and appealing strategy for treatment of human diseases, which utilizes vehicles or vectors for delivering therapeutic genes into the patients' body. However, a few past unsuccessful events that negatively marked the beginning of gene therapy resulted in the need for further studies regarding the design and biology of gene therapy vectors, so that this innovating treatment approach can successfully move from bench to bedside. In this paper, we review the major gene delivery vectors and recent improvements made in their design meant to overcome the issues that commonly arise with the use of gene therapy vectors. At the end of the manuscript, we summarized the main advantages and disadvantages of common gene therapy vectors and we discuss possible future directions for potential therapeutic vectors. PMID:26362400

  9. Winter depression recurrence one year after cognitive-behavioral therapy, light therapy, or combination treatment.

    PubMed

    Rohan, Kelly J; Roecklein, Kathryn A; Lacy, Timothy J; Vacek, Pamela M

    2009-09-01

    The central public health challenge in the management of seasonal affective disorder (SAD) is prevention of depression recurrence each fall/winter season. The need for time-limited treatments with enduring effects is underscored by questionable long-term compliance with clinical practice guidelines recommending daily light therapy during the symptomatic months each year. We previously developed a SAD-tailored group cognitive-behavioral therapy (CBT) and tested its acute efficacy in 2 pilot studies. Here, we report an intent-to-treat (ITT) analysis of outcomes during the subsequent winter season (i.e., approximately 1 year after acute treatment) using participants randomized to CBT, light therapy, and combination treatment across our pilot studies (N=69). We used multiple imputation to estimate next winter outcomes for the 17 individuals who dropped out during treatment, were withdrawn from protocol, or were lost to follow-up. The CBT (7.0%) and combination treatment (5.5%) groups had significantly smaller proportions of winter depression recurrences than the light therapy group (36.7%). CBT alone, but not combination treatment, was also associated with significantly lower interviewer- and patient-rated depression severity at 1 year as compared to light therapy alone. Among completers who provided 1-year data, all statistically significant differences between the CBT and light therapy groups persisted after adjustment for ongoing treatment with light therapy, antidepressants, and psychotherapy. If these findings are replicated, CBT could represent a more effective, practical, and palatable approach to long-term SAD management than light therapy. PMID:19647524

  10. Combinatorial gene therapy renders increased survival in cirrhotic rats

    PubMed Central

    2010-01-01

    Background Liver fibrosis ranks as the second cause of death in México's productive-age population. This pathology is characterized by acummulation of fibrillar proteins in hepatic parenchyma causing synthetic and metabolic disfunction. Remotion of excessive fibrous proteins might result in benefit for subjects increasing survival index. The goal of this work was to find whether the already known therapeutical effect of human urokinase Plasminogen Activator and human Matrix Metalloprotease 8 extends survival index in cirrhotic animals. Methods Wistar rats (80 g) underwent chronic intoxication with CCl4: mineral oil for 8 weeks. Cirrhotic animals were injected with a combined dose of Ad-delta-huPA plus Ad-MMP8 (3 × 1011 and 1.5 × 1011 vp/Kg, respectively) or with Ad-beta-Gal (4.5 × 1011) and were killed after 2, 4, 6, 8 and 10 days. Then, liver and serum were collected. An additional set of cirrhotic animals injected with combined gene therapy was also monitored for their probability of survival. Results Only the cirrhotic animals treated with therapeutical genes (Ad-delta-huPA+Ad-MMP-8) showed improvement in liver fibrosis. These results correlated with hydroxyproline determinations. A significant decrement in alpha-SMA and TGF-beta1 gene expression was also observed. Cirrhotic rats treated with Ad-delta-huPA plus Ad-MMP8 had a higher probability of survival at 60 days with respect to Ad-beta-Gal-injected animals. Conclusion A single administration of Ad-delta-huPA plus Ad-MMP-8 is efficient to induce fibrosis regression and increase survival in experimental liver fibrosis. PMID:20509929

  11. Combined immunomodulator and antimicrobial therapy eliminates polymicrobial sepsis and modulates cytokine production in combined injured mice

    PubMed Central

    Elliott, Thomas B.; Bolduc, David L.; Ledney, G. David; Kiang, Juliann G.; Fatanmi, Oluseyi O.; Wise, Stephen Y.; Romaine, Patricia L. P.; Newman, Victoria L.; Singh, Vijay K.

    2015-01-01

    Purpose: A combination therapy for combined injury (CI) using a non-specific immunomodulator, synthetic trehalose dicorynomycolate and monophosphoryl lipid A (STDCM-MPL), was evaluated to augment oral antimicrobial agents, levofloxacin (LVX) and amoxicillin (AMX), to eliminate endogenous sepsis and modulate cytokine production. Materials and methods: Female B6D2F1/J mice received 9.75 Gy cobalt-60 gamma-radiation and wound. Bacteria were isolated and identified in three tissues. Incidence of bacteria and cytokines were compared between treatment groups. Results: Results demonstrated that the lethal dose for 50% at 30 days (LD50/30) of B6D2F1/J mice was 9.42 Gy. Antimicrobial therapy increased survival in radiation-injured (RI) mice. Combination therapy increased survival after RI and extended survival time but did not increase survival after CI. Sepsis began five days earlier in CI mice than RI mice with Gram-negative species predominating early and Gram-positive species increasing later. LVX plus AMX eliminated sepsis in CI and RI mice. STDCM-MPL eliminated Gram-positive bacteria in CI and most RI mice but not Gram-negative. Treatments significantly modulated 12 cytokines tested, which pertain to wound healing or elimination of infection. Conclusions: Combination therapy eliminates infection and prolongs survival time but does not assure CI mouse survival, suggesting that additional treatment for proliferative-cell recovery is required. PMID:25994812

  12. Azilsartan/chlorthalidone combination therapy for blood pressure control

    PubMed Central

    Cheng, Judy WM

    2013-01-01

    Background Edarbyclor® is a combined angiotensin receptor blocker (ARB) and thiazide-like diuretic (azilsartan and chlorthalidone), and was approved on December 20, 2011 by the US Food and Drug Administration (FDA) for hypertension management. Objective To review the pharmacology, pharmacokinetics, efficacy, safety, tolerability, and role of azilsartan plus chlorthalidone for hypertension management. Methods Peer-reviewed clinical trials, review articles, and relevant treatment guidelines, were identified from the databases MEDLINE and Current Contents (both 1966 to February 15, 2013, inclusive) using search terms “azilsartan”, “chlorthalidone”, “pharmacology”, “pharmacokinetics”, “pharmacodynamics”, “pharmacoeconomics”, and “cost-effectiveness”. The FDA website, as well as manufacturer prescribing information, was also reviewed to identify other relevant information. Results Azilsartan is a new ARB with high affinity for the angiotensin 1 receptor, approved by the FDA for hypertension management. Unlike other ARBs, azilsartan has no clinical data supporting improvement in cardiovascular outcomes, and is not approved for indications other than hypertension, which a select few other ARBs may be used for (eg, diabetic nephropathy and heart failure). Chlorthalidone is a longer acting thiazide-like diuretic that has been demonstrated to improve cardiovascular outcomes. Combination treatment with azilsartan/chlorthalidone is effective for reducing blood pressure. Compared to olmesartan/hydrochlorothiazide and azilsartan/hydrochlorothiazide combinations, azilsartan/chlorthalidone appears to be more efficacious for reducing blood pressure. Conclusions Azilsartan/chlorthalidone can be considered an antihypertensive therapy option in patients for whom combination therapy is required (blood pressure >20 mmHg systolic or >10 mmHg diastolic above goal). Cost to patients and insurance coverage will probably determine whether azilsartan

  13. Development of gene and stem cell therapy for ocular neurodegeneration

    PubMed Central

    Zhang, Jing-Xue; Wang, Ning-Li; Lu, Qing-Jun

    2015-01-01

    Retinal degenerative diseases pose a serious threat to eye health, but there is currently no effective treatment available. Recent years have witnessed rapid development of several cutting-edge technologies, such as gene therapy, stem cell therapy, and tissue engineering. Due to the special features of ocular structure, some of these technologies have been translated into ophthalmological clinic practice with fruitful achievements, setting a good example for other fields. This paper reviews the development of the gene and stem cell therapies in ophthalmology. PMID:26086019

  14. Gene therapy for inhereted metabolic disorders in companion animals.

    PubMed

    Koeberl, Dwight D; Pinto, Carlos; Brown, Talmage; Chen, Y T

    2009-01-01

    Scientists first described inborn errors of metabolism, also termed inherited disorders of metabolism, early in the 20th century and since then have determined the biochemical and genetic bases of a great number of these disorders both in humans and in an increasing number of companion animals. The availability of metabolic screening tests has advanced the biochemical and genetic characterization in affected breeds of companion animals of inherited metabolic disorders involving amino acid, carbohydrate, fatty acid, and metal metabolism. Advances in gene therapy have led to the development of new treatments for inherited disorders of metabolism, and animal models have played a critical role in this research. For example, glycogen storage disease type Ia in dogs was highly responsive to adeno-associated viral vectormediated gene therapy, which prolonged survival and for more than a year prevented hypoglycemia during fasting. Gene therapy for other glycogen storage diseases and metabolic disorders will also be feasible. The establishment of a breeding colony and the ability to sustain affected animals are critical steps toward evaluating the safety and efficacy of gene therapy with clinically relevant endpoints. The further development of gene therapy for inherited disorders of metabolism could lead to curative therapy for affected humans and animals alike. PMID:19293457

  15. Therapeutic Prospects of Gene Therapy for Atrial Fibrillation.

    PubMed

    Farraha, Melad; Chong, James J H; Kizana, Eddy

    2016-08-01

    Atrial Fibrillation (AF) is one of the most common types of cardiac arrhythmias experienced in clinical practice, increasing the risk of stroke, dementia, myocardial infarction and death. Currently available options for the treatment of AF use either pharmacological agents or catheter-based ablation therapies to restore sinus rhythm or control the ventricular response rate. These current treatment options are suboptimal at best, motivating research into discovering more effective and innovative ways to treat AF. Gene therapy is being explored for its potential to treat various human conditions including cardiac arrhythmias. Gene transfer vectors with increasing transduction efficiency and biosafety have been developed and trialled for cardiovascular disease treatment. With an improved understanding of the molecular mechanisms of AF, several gene therapy targets have been identified and evaluated in an attempt to rate or rhythm control the heart during AF. This review will discuss the gene therapy vectors in use today and methods for delivery of these vectors to the atrium. Further, it will evaluate several gene therapy strategies and approaches for sinus rhythm restoration and ventricular rate control that have the potential to emerge as a therapy for AF. PMID:27262391

  16. Obstacles and future of gene therapy for hemophilia

    PubMed Central

    Arruda, Valder R; Samelson-Jones, Ben J

    2015-01-01

    Introduction The recent success of early-phase clinical trials for adeno-associated viral (AAV) liver-directed gene therapy for hemophilia B (HB) demonstrates the potential for gene therapy, in the future, to succeed protein-based prophylaxis therapy for HB. Significant obstacles, however, need to be overcome prior to widespread adoption. The largest obstacles include immune responses to the AAV capsid including preexisting neutralizing antibodies (NAbs) and a delayed cellular immune response. Emerging evidence suggests that the latter is vector-dose dependent. Furthermore, the development and eradication of inhibitors remains a significant safety concern. Similarly, biological differences between Factor VIII and Factor IX (FIX) impose challenges to direct adoption of the successes for HB to hemophilia A (HA). Areas covered The advantages and limitations of the current strategies addressing these obstacles for gene therapy for HB and HA are discussed, as well as vector manufacturing issues relevant to widespread adoption. Alternative strategies including both ex-vivo and in-vivo lentiviral-based methods are discussed, though we focus on AAV-based approaches because of their recent clinical success and potential. Expert opinion Our opinion is that these obstacles can be overcome with current approaches, and AAV-based gene therapy for HB will likely translate into future clinical care. Innovative approaches are, however, likely needed to solve the current problems obstructing HA gene therapy. PMID:26900534

  17. Gene Therapy for Alpha-1 Antitrypsin Deficiency Lung Disease.

    PubMed

    Chiuchiolo, Maria J; Crystal, Ronald G

    2016-08-01

    Alpha-1 antitrypsin (AAT) deficiency, characterized by low plasma levels of the serine protease inhibitor AAT, is associated with emphysema secondary to insufficient protection of the lung from neutrophil proteases. Although AAT augmentation therapy with purified AAT protein is efficacious, it requires weekly to monthly intravenous infusion of AAT purified from pooled human plasma, has the risk of viral contamination and allergic reactions, and is costly. As an alternative, gene therapy offers the advantage of single administration, eliminating the burden of protein infusion, and reduced risks and costs. The focus of this review is to describe the various strategies for AAT gene therapy for the pulmonary manifestations of AAT deficiency and the state of the art in bringing AAT gene therapy to the bedside. PMID:27564673

  18. Gene Therapy in Cardiac Surgery: Clinical Trials, Challenges, and Perspectives

    PubMed Central

    Katz, Michael G.; Fargnoli, Anthony S.; Kendle, Andrew P.; Hajjar, Roger J.; Bridges, Charles R.

    2016-01-01

    The concept of gene therapy was introduced in the 1970s after the development of recombinant DNA technology. Despite the initial great expectations, this field experienced early setbacks. Recent years have seen a revival of clinical programs of gene therapy in different fields of medicine. There are many promising targets for genetic therapy as an adjunct to cardiac surgery. The first positive long-term results were published for adenoviral administration of vascular endothelial growth factor with coronary artery bypass grafting. In this review we analyze the past, present, and future of gene therapy in cardiac surgery. The articles discussed were collected through PubMed and from author experience. The clinical trials referenced were found through the Wiley clinical trial database (http://www.wiley.com/legacy/wileychi/genmed/clinical/) as well as the National Institutes of Health clinical trial database (Clinicaltrials.gov). PMID:26801060

  19. Gene Therapy in Cardiac Surgery: Clinical Trials, Challenges, and Perspectives.

    PubMed

    Katz, Michael G; Fargnoli, Anthony S; Kendle, Andrew P; Hajjar, Roger J; Bridges, Charles R

    2016-06-01

    The concept of gene therapy was introduced in the 1970s after the development of recombinant DNA technology. Despite the initial great expectations, this field experienced early setbacks. Recent years have seen a revival of clinical programs of gene therapy in different fields of medicine. There are many promising targets for genetic therapy as an adjunct to cardiac surgery. The first positive long-term results were published for adenoviral administration of vascular endothelial growth factor with coronary artery bypass grafting. In this review we analyze the past, present, and future of gene therapy in cardiac surgery. The articles discussed were collected through PubMed and from author experience. The clinical trials referenced were found through the Wiley clinical trial database (http://www.wiley.com/legacy/wileychi/genmed/clinical/) as well as the National Institutes of Health clinical trial database (Clinicaltrials.gov). PMID:26801060

  20. Development of Viral Vectors for Use in Cardiovascular Gene Therapy

    PubMed Central

    Williams, Paul D.; Ranjzad, Parisa; Kakar, Salik J.; Kingston, Paul A.

    2010-01-01

    Cardiovascular disease represents the most common cause of mortality in the developed world but, despite two decades of promising pre-clinical research and numerous clinical trials, cardiovascular gene transfer has so far failed to demonstrate convincing benefits in the clinical setting. In this review we discuss the various targets which may be suitable for cardiovascular gene therapy and the viral vectors which have to date shown the most potential for clinical use. We conclude with a summary of the current state of clinical cardiovascular gene therapy and the key trials which are ongoing. PMID:21994642

  1. Gene therapy for cancer: regulatory considerations for approval

    PubMed Central

    Husain, S R; Han, J; Au, P; Shannon, K; Puri, R K

    2015-01-01

    The rapidly changing field of gene therapy promises a number of innovative treatments for cancer patients. Advances in genetic modification of cancer and immune cells and the use of oncolytic viruses and bacteria have led to numerous clinical trials for cancer therapy, with several progressing to late-stage product development. At the time of this writing, no gene therapy product has been approved by the United States Food and Drug Administration (FDA). Some of the key scientific and regulatory issues include understanding of gene transfer vector biology, safety of vectors in vitro and in animal models, optimum gene transfer, long-term persistence or integration in the host, shedding of a virus and ability to maintain transgene expression in vivo for a desired period of time. Because of the biological complexity of these products, the FDA encourages a flexible, data-driven approach for preclinical safety testing programs. The clinical trial design should be based on the unique features of gene therapy products, and should ensure the safety of enrolled subjects. This article focuses on regulatory considerations for gene therapy product development and also discusses guidance documents that have been published by the FDA. PMID:26584531

  2. Recent advances in gene therapy for lysosomal storage disorders

    PubMed Central

    Rastall, David PW; Amalfitano, Andrea

    2015-01-01

    Lysosomal storage disorders (LSDs) are a group of genetic diseases that result in metabolic derangements of the lysosome. Most LSDs are due to the genetic absence of a single catabolic enzyme, causing accumulation of the enzyme’s substrate within the lysosome. Over time, tissue-specific substrate accumulations result in a spectrum of symptoms and disabilities that vary by LSD. LSDs are promising targets for gene therapy because delivery of a single gene into a small percentage of the appropriate target cells may be sufficient to impact the clinical course of the disease. Recently, there have been several significant advancements in the potential for gene therapy of these disorders, including the first human trials. Future clinical trials will build upon these initial attempts, with an improved understanding of immune system responses to gene therapy, the obstacle that the blood–brain barrier poses for neuropathic LSDs, as well other biological barriers that, when overcome, may facilitate gene therapy for LSDs. In this manuscript, we will highlight the recent innovations in gene therapy for LSDs and discuss the clinical limitations that remain to be overcome, with the goal of fostering an understanding and further development of this important field. PMID:26170711

  3. Gene Therapies for Cancer: Strategies, Challenges and Successes

    PubMed Central

    DAS, SWADESH K.; MENEZES, MITCHELL E.; BHATIA, SHILPA; WANG, XIANG-YANG; EMDAD, LUNI; SARKAR, DEVANAND; FISHER, PAUL B.

    2015-01-01

    Gene therapy, which involves replacement of a defective gene with a functional, healthy copy of that gene, is a potentially beneficial cancer treatment approach particularly over chemotherapy, which often lacks selectivity and can cause non-specific toxicity. Despite significant progress pre-clinically with respect to both enhanced targeting and expression in a tumor-selective manner several hurdles still prevent success in the clinic, including non-specific expression, low-efficiency delivery and biosafety. Various innovative genetic approaches are under development to reconstruct vectors/transgenes to make them safer and more effective. Utilizing cutting-edge delivery technologies, gene expression can now be targeted in a tissue- and organ-specific manner. With these advances, gene therapy is poised to become amenable for routine cancer therapy with potential to elevate this methodology as a first line therapy for neoplastic diseases. This review discusses recent advances in gene therapy and their impact on a pre-clinical and clinical level. PMID:25196387

  4. Gene therapy for hemophilia: past, present and future.

    PubMed

    George, Lindsey A; Fogarty, Patrick F

    2016-01-01

    After numerous preclinical studies demonstrated consistent success in large and small animal models, gene therapy has finally seen initial signs of clinically meaningful success. In a landmark study, Nathwani and colleagues reported sustained factor (F)IX expression in individuals with severe hemophilia B following adeno-associated virus (AAV)-mediated in vivo FIX gene transfer. As the next possible treatment-changing paradigm in hemophilia care, gene therapy may provide patients with sufficient hemostatic improvement to achieve the World Federation of Hemophilia's aspirational goal of "integration of opportunities in all aspects of life… equivalent to someone without a bleeding disorder." Although promising momentum supports the potential of gene therapy to replace protein-based therapeutics for hemophilia, several obstacles remain. The largest challenges appear to be overcoming the cellular immune responses to the AAV capsid; preexisting AAV neutralizing antibodies, which immediately exclude approximately 50% of the target population; and the ability to scale-up vector manufacturing for widespread applicability. Additional obstacles specific to hemophilia A (HA) include designing a vector cassette to accommodate a larger cDNA; avoiding development of inhibitory antibodies; and, perhaps the greatest difficulty to overcome, ensuring adequate expression efficiency. This review discusses the relevance of gene therapy to the hemophilia disease state, previous research progress, the current landscape of clinical trials, and considerations for promoting the future availability of gene therapy for hemophilia. PMID:26805907

  5. Combination therapies improve the anticancer activities of retinoids in neuroblastoma

    PubMed Central

    Cheung, Belamy B

    2015-01-01

    Most therapeutic protocols for child cancers use cytotoxic agents which have a narrow therapeutic index, and resulting in severe acute and chronic toxicities to normal tissues. Despite the fact that most child cancer patients achieve complete remission after chemotherapy, death still occurs due to relapse of persistent minimal residual disease (MRD) which remaining after initial cytotoxic chemotherapy. Advanced neuroblastoma (NB) is a leading cause of cancer deaths in young children. Retinoids are an important component of advanced NB therapy at the stage of MRD, yet half of all patients treated with 13-cis-retinoic acid still relapse and die. More effective combination therapies, with a lower side-effect profile, are required to improve outcomes for NB. Fenretinide or N-4-hydroxyphenyl retinamide is a synthetic derivative of retinoic acid which works on cancer cells through nuclear receptor-dependent and -independent signalling mechanisms. Moreover, several histone deacetylase inhibitors have entered early phase trials, and, suberoylanilide hydroxamic acid has been approved for use in adult cutaneous T cell lymphoma. A number of studies suggest that retinoid signal activation is necessary for histone deacetylase inhibitor activity. A better understanding of their mechanism of actions will lead to more evidence-based retinoid combination therapies. PMID:26677433

  6. Optical Imaging, Photodynamic Therapy and Optically-Triggered Combination Treatments

    PubMed Central

    Hasan, Tayyaba

    2015-01-01

    Optical imaging is becoming increasingly promising for real-time image-guided resections and combined with photodynamic therapy (PDT), a photochemistry-based treatment modality, optical approaches can be intrinsically “theranostic”. Challenges in PDT include precise light delivery, dosimetry and photosensitizer tumor localization to establish tumor selectivity, and like all other modalities, incomplete treatment and subsequent activation of molecular escape pathways are often attributable to tumor heterogeneity. Key advances in molecular imaging, target-activatable photosensitizers and optically active nanoparticles that provide both cytotoxicity and a drug release mechanism, have opened exciting avenues to meet these challenges. The focus of the review is optical imaging in the context of PDT but the general principles presented are applicable to many of the conventional approaches to cancer management. We highlight the role of optical imaging in providing structural, functional and molecular information regarding photodynamic mechanisms of action, thereby advancing PDT and PDT-based combination therapies of cancer. These advances represent a PDT renaissance with increasing applications of clinical PDT as a frontline cancer therapy working in concert with fluorescence-guided surgery, chemotherapy and radiation. PMID:26049699

  7. Immunostimulatory Gene Therapy Using Oncolytic Viruses as Vehicles

    PubMed Central

    Loskog, Angelica

    2015-01-01

    Immunostimulatory gene therapy has been developed during the past twenty years. The aim of immunostimulatory gene therapy is to tilt the suppressive tumor microenvironment to promote anti-tumor immunity. Hence, like a Trojan horse, the gene vehicle can carry warriors and weapons into enemy territory to combat the tumor from within. The most promising immune stimulators are those activating and sustaining Th1 responses, but even if potent effects were seen in preclinical models, many clinical trials failed to show objective responses in cancer patients. However, with new tools to control ongoing immunosuppression in cancer patients, immunostimulatory gene therapy is now emerging as an interesting option. In parallel, oncolytic viruses have been shown to be safe in patients. To prolong immune stimulation and to increase efficacy, these two fields are now merging and oncolytic viruses are armed with immunostimulatory transgenes. These novel agents are racing towards approval as established cancer immunotherapeutics. PMID:26561829

  8. Gene Therapy for the Treatment of Neurological Disorders: Metabolic Disorders

    PubMed Central

    Gessler, Dominic J.; Gao, Guangping

    2016-01-01

    Metabolic disorders comprise a large group of heterogeneous diseases ranging from very prevalent diseases such as diabetes mellitus to rare genetic disorders like Canavan Disease. Whether either of these diseases is amendable by gene therapy depends to a large degree on the knowledge of their pathomechanism, availability of the therapeutic gene, vector selection, and availability of suitable animal models. In this book chapter, we review three metabolic disorders of the central nervous system (CNS; Canavan Disease, Niemann–Pick disease and Phenylketonuria) to give examples for primary and secondary metabolic disorders of the brain and the attempts that have been made to use adeno-associated virus (AAV) based gene therapy for treatment. Finally, we highlight commonalities and obstacles in the development of gene therapy for metabolic disorders of the CNS exemplified by those three diseases. PMID:26611604

  9. Immunostimulatory Gene Therapy Using Oncolytic Viruses as Vehicles.

    PubMed

    Loskog, Angelica

    2015-11-01

    Immunostimulatory gene therapy has been developed during the past twenty years. The aim of immunostimulatory gene therapy is to tilt the suppressive tumor microenvironment to promote anti-tumor immunity. Hence, like a Trojan horse, the gene vehicle can carry warriors and weapons into enemy territory to combat the tumor from within. The most promising immune stimulators are those activating and sustaining Th1 responses, but even if potent effects were seen in preclinical models, many clinical trials failed to show objective responses in cancer patients. However, with new tools to control ongoing immunosuppression in cancer patients, immunostimulatory gene therapy is now emerging as an interesting option. In parallel, oncolytic viruses have been shown to be safe in patients. To prolong immune stimulation and to increase efficacy, these two fields are now merging and oncolytic viruses are armed with immunostimulatory transgenes. These novel agents are racing towards approval as established cancer immunotherapeutics. PMID:26561829

  10. 5-Alpha-Reductase Inhibitors and Combination Therapy.

    PubMed

    Füllhase, Claudius; Schneider, Marc P

    2016-08-01

    By inhibiting the conversion from testosterone to dihydrotestosterone 5-Alpha reductase inhibitors (5ARIs) are able to hinder prostatic growth, shrink prostate volumes, and improve BPH-related LUTS. 5ARIs are particularly beneficial for patients with larger prostates (>30-40ml). Generally the side effects of 5ARI treatment are mild, and according to the FORTA classification 5ARIs are suitable for frail elderly. 5ARI / alpha-blocker (AB) combination therapy showed the best symptomatic outcome and risk reduction for clinical progression. Combining Phosphodieseterase type 5 inhbibitors (PDE5Is) with 5ARIs counteracts the negative androgenic sexual side effects of 5ARIs, and simultaneously combines their synergistic effects on LUTS. PMID:27476125

  11. Radiation-Inducible Caspase-8 Gene Therapy for Malignant Brain Tumors

    SciTech Connect

    Tsurushima, Hideo Yuan Xuan; Dillehay, Larry E.; Leong, Kam W.

    2008-06-01

    Purpose: Patients with malignant gliomas have a poor prognosis. To explore a novel and more effective approach for the treatment of patients with malignant gliomas, we designed a strategy that combines caspase-8 (CSP8) gene therapy and radiation treatment (RT). In addition, the specificity of the combined therapy was investigated to decrease the unpleasant effects experienced by the surrounding normal tissue. Methods and Materials: We constructed the plasmid pEGR-green fluorescence protein that included the radiation-inducible early growth response gene-1 (Egr-1) promoter and evaluated its characteristics. The pEGR-CSP8 was constructed and included the Egr-1 promoter and CSP8 complementary DNA. Assays that evaluated the apoptosis inducibility and cytotoxicity caused by CSP8 gene therapy combined with RT were performed using U251 and U87 glioma cells. The pEGR-CSP8 was transfected into the subcutaneous U251 glioma cells of nude mice by means of in vivo electroporation. The in vivo effects of CSP8 gene therapy combined with RT were evaluated. Results: The Egr-1 promoter yielded a better response with fractionated RT than with single-dose RT. In the assay of apoptosis inducibility and cytotoxicity, pEGR-CSP8 showed response for RT. The pEGR-CSP8 combined with RT is capable of inducing cell death effectively. In mice treated with pEGR-CSP8 and RT, apoptotic cells were detected in pathologic sections, and a significant difference was observed in tumor volumes. Conclusions: Our results indicate that radiation-inducible gene therapy may have great potential because this can be spatially or temporally controlled by exogenous RT and is safe and specific.

  12. Recent trends in the gene therapy of β-thalassemia

    PubMed Central

    Finotti, Alessia; Breda, Laura; Lederer, Carsten W; Bianchi, Nicoletta; Zuccato, Cristina; Kleanthous, Marina; Rivella, Stefano; Gambari, Roberto

    2015-01-01

    The β-thalassemias are a group of hereditary hematological diseases caused by over 300 mutations of the adult β-globin gene. Together with sickle cell anemia, thalassemia syndromes are among the most impactful diseases in developing countries, in which the lack of genetic counseling and prenatal diagnosis have contributed to the maintenance of a very high frequency of these genetic diseases in the population. Gene therapy for β-thalassemia has recently seen steadily accelerating progress and has reached a crossroads in its development. Presently, data from past and ongoing clinical trials guide the design of further clinical and preclinical studies based on gene augmentation, while fundamental insights into globin switching and new technology developments have inspired the investigation of novel gene-therapy approaches. Moreover, human erythropoietic stem cells from β-thalassemia patients have been the cellular targets of choice to date whereas future gene-therapy studies might increasingly draw on induced pluripotent stem cells. Herein, we summarize the most significant developments in β-thalassemia gene therapy over the last decade, with a strong emphasis on the most recent findings, for β-thalassemia model systems; for β-, γ-, and anti-sickling β-globin gene addition and combinatorial approaches including the latest results of clinical trials; and for novel approaches, such as transgene-mediated activation of γ-globin and genome editing using designer nucleases. PMID:25737641

  13. Combination chemotherapy and radiation therapy for small cell carcinoma.

    PubMed

    Holoye, P Y; Samuels, M L; Lanzotti, V J; Smith, T; Barkley, H T

    1977-03-21

    A three-drug combination of the chemotherapeutic agents cyclophosphamide, vincristine sulfate, and doxorubicin hydrochloride was given to 45 patients with small cell bronchogenic carcinoma. In addition, patients with limited disease received radiation therapy to the primary tumor. The complete response rate was 44%, with a median survival of 50 weeks. The partial response rate was 29%, with a median survival of 35 weeks. Patients who did not respond to therapy showed a median survival of only 12 weeks. Twenty percent of the patients had their first recurrence in the brain, and the median survival from the time of disease recurrence was ten weeks. Bone marrow metastasis was encountered in 24% of the patient population, but this did not adversely affect survival. PMID:190427

  14. A novel temperature-responsive micelle for enhancing combination therapy

    PubMed Central

    Peng, Cheng-Liang; Chen, Yuan-I; Liu, Hung-Jen; Lee, Pei-Chi; Luo, Tsai-Yueh; Shieh, Ming-Jium

    2016-01-01

    A novel thermosensitive polymer p(N-isopropylacrylamide-co-poly[ethylene glycol] methyl ether acrylate)-block-poly(epsilon-caprolactone), p(NIPAAM-co-PEGMEA)-b-PCL, was synthesized and developed as nanomicelles. The hydrophobic heat shock protein 90 inhibitor 17-allylamino-17-demethoxygeldanamycin and the photosensitizer cyanine dye infrared-780 were loaded into the core of the micelles to achieve both chemotherapy and photothermal therapy simultaneously at the tumor site. The release of the drug could be controlled by varying the temperature due to the thermosensitive nature of the micelles. The micelles were less than 200 nm in size, and the drug encapsulation efficiency was >50%. The critical micelle concentrations were small enough to allow micelle stability upon dilution. Data from cell viability and animal experiments indicate that this combination treatment using photothermal therapy with chemotherapy had synergistic effects while decreasing side effects. PMID:27524894

  15. Cancer Nanomedicine: From Targeted Delivery to Combination Therapy

    PubMed Central

    Xu, Xiaoyang; Ho, William; Zhang, Xueqing; Bertrand, Nicolas; Farokhzad, Omid

    2015-01-01

    The advent of nanomedicine marks an unparalleled opportunity to advance the treatment of a variety of diseases, including cancer. The unique properties of nanoparticles, such as large surface-to volume ratio, small size, the ability to encapsulate a variety of drugs, and tunable surface chemistry, gives them many advantages over their bulk counterparts. This includes multivalent surface modification with targeting ligands, efficient navigation of the complex in vivo environment, increased intracellular trafficking, and sustained release of drug payload. These advantages make nanoparticles a mode of treatment potentially superior to conventional cancer therapies. This article highlights the most recent developments in cancer treatment using nanoparticles as drug-delivery vehicles, including promising opportunities in targeted and combination therapy. PMID:25656384

  16. Metastatic melanoma treatment: Combining old and new therapies.

    PubMed

    Davey, Ryan J; van der Westhuizen, Andre; Bowden, Nikola A

    2016-02-01

    Metastatic melanoma is an aggressive form of cancer characterised by poor prognosis and a complex etiology. Until 2010, the treatment options for metastatic melanoma were very limited. Largely ineffective dacarbazine, temozolamide or fotemustine were the only agents in use for 35 years. In recent years, the development of molecularly targeted inhibitors in parallel with the development of checkpoint inhibition immunotherapies has rapidly improved the outcomes for metastatic melanoma patients. Despite these new therapies showing initial promise; resistance and poor duration of response have limited their effectiveness as monotherapies. Here we provide an overview of the history of melanoma treatment, as well as the current treatments in development. We also discuss the future of melanoma treatment as we go beyond monotherapies to a combinatorial approach. Combining older therapies with the new molecular and immunotherapies will be the most promising way forward for treatment of metastatic melanoma. PMID:26616525

  17. A novel temperature-responsive micelle for enhancing combination therapy.

    PubMed

    Peng, Cheng-Liang; Chen, Yuan-I; Liu, Hung-Jen; Lee, Pei-Chi; Luo, Tsai-Yueh; Shieh, Ming-Jium

    2016-01-01

    A novel thermosensitive polymer p(N-isopropylacrylamide-co-poly[ethylene glycol] methyl ether acrylate)-block-poly(epsilon-caprolactone), p(NIPAAM-co-PEGMEA)-b-PCL, was synthesized and developed as nanomicelles. The hydrophobic heat shock protein 90 inhibitor 17-allylamino-17-demethoxygeldanamycin and the photosensitizer cyanine dye infrared-780 were loaded into the core of the micelles to achieve both chemotherapy and photothermal therapy simultaneously at the tumor site. The release of the drug could be controlled by varying the temperature due to the thermosensitive nature of the micelles. The micelles were less than 200 nm in size, and the drug encapsulation efficiency was >50%. The critical micelle concentrations were small enough to allow micelle stability upon dilution. Data from cell viability and animal experiments indicate that this combination treatment using photothermal therapy with chemotherapy had synergistic effects while decreasing side effects. PMID:27524894

  18. Complete reversal of hypertensive cardiomyopathy after initiating combined antihypertensive therapy.

    PubMed

    Holl, Marijn J; van de Poll, Sweder W; Michels, Michelle

    2016-01-01

    Hypertensive cardiomyopathy is a common complication of hypertension, with a prevalence ranging from 12% to 26%. It is associated with an increased cardiac mortality and morbidity. Lifestyle changes and antihypertensive therapy usually have a significant, but relatively small effect on left ventricular hypertrophy (LVH), which is associated with a reduction in cardiovascular risk. In this paper, we describe a 39-year-old woman with severe LVH. On transthoracic echocardiogram there was concentric LVH, systolic function was a mildly reduced and there was diastolic dysfunction grade III. After only 6 months of therapy with a combination of antihypertensive agents, the left ventricular mass index was reduced by 29%, systolic function was normal and the diastolic dysfunction improved to grade I. This paper shows that in hypertensive cardiomyopathy, even severe LVH can be completely reversible. PMID:27060071

  19. Reappraisal of trimodal combination therapy for maxillary sinus carcinoma

    SciTech Connect

    Shibuya, H.; Suzuki, S.; Horiuchi, J.; Takagi, M.; Okuyama, T.; Suzuki, H.; Takeda, M.

    1982-12-15

    The introduction of trimodal combination therapy (surgery + radiation + intraarterial infusion) for maxillary carcinoma resulted in a change in the sites of recurrence and no satisfactory improvement in the local control rate. To examine the cause of these phenomena, external carotid angiography was performed on 51 patients prior to the start of the therapy and the results of the treatment were studied. Angiographic findings indicated that maxillary carcinoma is fed not only by the maxillary artery, but also by the internal carotid, facial, transverse facial and other arteries from the external carotid artery. The multiplicity of feeders causes irregular distribution of the intraarterially infused antimetabolites. Irregular and local low distribution of antimetabolites may well bring about the high rate of recurrence. The results of intraarterial transcatheter Tc-99m-MAA injection were also in accord with the angiographic findings.

  20. Synergistically combined gene delivery for enhanced VEGF secretion and anti-apoptosis

    PubMed Central

    Won, Young-Wook; Lee, Minhyung; Kim, Hyun Ah; Nam, Kihoon; Bull, David A.; Kim, Sung Wan

    2013-01-01

    With current pharmacological treatments, preventing the remodeling of the left ventricle and the progression to heart failure is a difficult task. Gene therapy is considered to provide a direct treatment to the long-term complications of ischemic heart diseases. Although current gene therapies that use single molecular targets seem potentially possible, they have not achieved a success in the treatment of ischemic diseases. With an efficient polymeric gene carrier, PAM-ABP, we designed a synergistically combined gene delivery strategy to enhance vascular endothelial growth factor (VEGF) secretion and prolong anti-apoptotic effects. A hypoxia-inducible plasmid expressing both hypoxia-inducible heme oxygenase-1 (HO-1) and the Src homology domain-2 containing tyrosine phosphatase-1 microRNA (miSHP 1) and a hypoxia-responsive VEGF plasmid were combined in this study. The positive feedback circuit between HO-1 and VEGF, and the negative regulatory role of SHP-1 in angiogenesis enhance VEGF secretion synergistically. The synergy in VEGF secretion as a consequence of the gene combination and the prolonged HO-1 activity was confirmed in hypoxic cardiomyocytes and cardiomyocyte apoptosis under hypoxia, and was decreased synergistically. These results suggest that the synergistic combination of VEGF, HO-1, and miSHP-1 may be promising for the clinical treatment of ischemic diseases. PMID:24007285

  1. Gene therapy for the treatment of cystic fibrosis.

    PubMed

    Burney, Tabinda J; Davies, Jane C

    2012-01-01

    Gene therapy is being developed as a novel treatment for cystic fibrosis (CF), a condition that has hitherto been widely-researched yet for which no treatment exists that halts the progression of lung disease. Gene therapy involves the transfer of correct copies of cystic fibrosis transmembrane conductance regulator (CFTR) DNA to the epithelial cells in the airways. The cloning of the CFTR gene in 1989 led to proof-of-principle studies of CFTR gene transfer in vitro and in animal models. The earliest clinical trials in CF patients were conducted in 1993 and used viral and non-viral gene transfer agents in both the nasal and bronchial airway epithelium. To date, studies have focused largely on molecular or bioelectric (chloride secretion) outcome measures, many demonstrating evidence of CFTR expression, but few have attempted to achieve clinical efficacy. As CF is a lifelong disease, turnover of the airway epithelium necessitates repeat administration. To date, this has been difficult to achieve with viral gene transfer agents due to host recognition leading to loss of expression. The UK Cystic Fibrosis Gene Therapy Consortium (Imperial College London, University of Edinburgh and University of Oxford) is currently working on a large and ambitious program to establish the clinical benefits of CF gene therapy. Wave 1, which has reached the clinic, uses a non-viral vector. A single-dose safety trial is nearing completion and a multi-dose clinical trial is shortly due to start; this will be powered for clinically-relevant changes. Wave 2, more futuristically, will look at the potential of lentiviruses, which have long-lasting expression. This review will summarize the current status of translational research in CF gene therapy. PMID:23776378

  2. Calcific Uremic Arteriolopathy on Multimodal Combination Therapy: Still Unmet Goal

    PubMed Central

    Malabu, Usman Hammawa; Manickam, Valli; Kan, George; Doherty, Susan Lynette; Sangla, Kunwarjit Singh

    2012-01-01

    Background. Calcific uremic arteriolopathy (CUA) or calciphylaxis though generally noted for its high mortality, recent case reports have shown promising results using single agent therapies. However, it is not clear whether combination therapeutic agents will improve course of the disease. Objective. To determine clinical outcome in subjects with CUA on multimodal treatment. Methods. All patients with end-stage renal failure (ESRF) at The Townsville Hospital, Australia, from April 1, 2006, to March 31, 2011, with diagnosis of CUA were retrospectively studied. Results. Six subjects with CUA (4 females and 2 males) were on various combination therapeutic agents comprising sodium thiosulphate, hyperbaric oxygen, prednisolone, cinacalcet, and parathyroidectomy in addition to intensified haemodialysis, specialist local wound care, and antibiotics. The wounds failed to heal in 3 patients while 5 of the 6 subjects died; cause of death being sepsis in 3 and myocardial infarction in 2. Conclusion. Prognosis of CUA remains poor in spite of multimodal combination therapy. Further prospective studies on a larger population are needed to verify our findings. PMID:22518312

  3. Combination of photodynamic therapy and immunotherapy - evolving role in dermatology

    NASA Astrophysics Data System (ADS)

    Wang, Xiu-Li; Wang, Hong-Wei; Huang, Zheng

    2008-02-01

    Photodynamic therapy (PDT) is a promising treatment modality. It offers alternative options in the treatment of cancer and vascular diseases. In cancer treatment, PDT has been used primarily for localized superficial or endoluminal malignant and premalignant conditions. More recently, its application has also been expanded to solid tumors. However, its antitumor efficacy remains debatable and its acceptance still variable. Pre-clinical studies demonstrate that, in addition to the primary local cytotoxicity, PDT might induce secondary host immune responses, which may further enhance PDT's therapeutic effects on primary tumor as well as metastasis. Therefore, PDT-induced local and systemic antitumor immune response might play an important role in successful control of malignant diseases. Furthermore, PDT's antitumor efficacy might also be enhanced through an effective immunoadjuvant or immunomodulator. Our recent clinical data also indicate that improved clinical outcomes can be obtained by a combination of PDT and immunomodulation therapy for the treatment of pre-malignant skin diseases. For instance, the combination of topical ALA-PDT and Imiquimod is effective for the treatment of genital bowenoid papulosis. This presentation will also report our preliminary data in developing combination approaches of PDT and immunotherapy for actinic keratosis (AK), basal cell carcinomas (BCCs) and Bowen's disease.

  4. Identification of essential genes and synthetic lethal gene combinations in Escherichia coli K-12.

    PubMed

    Mori, Hirotada; Baba, Tomoya; Yokoyama, Katsushi; Takeuchi, Rikiya; Nomura, Wataru; Makishi, Kazuichi; Otsuka, Yuta; Dose, Hitomi; Wanner, Barry L

    2015-01-01

    Here we describe the systematic identification of single genes and gene pairs, whose knockout causes lethality in Escherichia coli K-12. During construction of precise single-gene knockout library of E. coli K-12, we identified 328 essential gene candidates for growth in complex (LB) medium. Upon establishment of the Keio single-gene deletion library, we undertook the development of the ASKA single-gene deletion library carrying a different antibiotic resistance. In addition, we developed tools for identification of synthetic lethal gene combinations by systematic construction of double-gene knockout mutants. We introduce these methods herein. PMID:25636612

  5. Evaluating cost benefits of combination therapies for advanced melanoma

    PubMed Central

    Jensen, Ivar S.; Zacherle, Emily; Blanchette, Christopher M.; Zhang, Jie; Yin, Wes

    2016-01-01

    Background: Although a number of monoimmunotherapies and targeted therapies are available to treat BRAF+ advanced melanoma, response rates remain relatively low in the range of 22–53% with progression-free survival (PFS) in the range of 4.8–8.8 months. Recently, combination targeted therapies have improved response rates to about 66–69%, PFS to 11.0–12.6 months and overall survival (OS) to 25.1–25.6 months. While combination immunotherapies have improved response rates of 67 compared with 19–29% with monotherapies and improved PFS of 11.7 compared with 4.4–5.8 months with monotherapies, the OS benefit is yet to be established in phase 3 trials. As healthcare costs continue to rise, US payers have a predominant interest in assessing the value of available treatments. Therefore, a cost-benefit model was developed to evaluate the value of treating BRAF+ advanced melanoma with two combination therapies: nivolumab + ipilimumab (N+I) and dabrafenib + trametinib (D+T). Scope: The model was used to estimate total costs, total costs by expenditure category, cost per month of PFS and cost per responder for the payer, and societal perspectives of treating advanced melanoma patients with the BRAF V600 mutation using combination targeted therapy (D+T) or combination immunotherapy (N+I). The model followed patients from initiation of treatment to the point of progression or death. Deterministic and probabilistic sensitivity analyses were conducted to evaluate the robustness of the results and to understand the dispersion of simulated results. Findings: Based on a hypothetical payer with one million covered lives, it was expected that fourteen metastatic melanoma patients with the BRAF V600 mutation would be treated each year. Cost-benefit with N+I and D+T was simulated from the payer perspective. The cost per month of PFS for N+I was $22,162, while that for D+T was $17,716 (−$4,446 cost difference); the cost per responder for N+I was $388,746 and that for D+T was

  6. Advances in gene therapy for muscular dystrophies

    PubMed Central

    Abdul-Razak, Hayder; Malerba, Alberto; Dickson, George

    2016-01-01

    Duchenne muscular dystrophy (DMD) is a recessive lethal inherited muscular dystrophy caused by mutations in the gene encoding dystrophin, a protein required for muscle fibre integrity. So far, many approaches have been tested from the traditional gene addition to newer advanced approaches based on manipulation of the cellular machinery either at the gene transcription, mRNA processing or translation levels. Unfortunately, despite all these efforts, no efficient treatments for DMD are currently available. In this review, we highlight the most advanced therapeutic strategies under investigation as potential DMD treatments. PMID:27594988

  7. Advances in gene therapy for muscular dystrophies.

    PubMed

    Abdul-Razak, Hayder; Malerba, Alberto; Dickson, George

    2016-01-01

    Duchenne muscular dystrophy (DMD) is a recessive lethal inherited muscular dystrophy caused by mutations in the gene encoding dystrophin, a protein required for muscle fibre integrity. So far, many approaches have been tested from the traditional gene addition to newer advanced approaches based on manipulation of the cellular machinery either at the gene transcription, mRNA processing or translation levels. Unfortunately, despite all these efforts, no efficient treatments for DMD are currently available. In this review, we highlight the most advanced therapeutic strategies under investigation as potential DMD treatments. PMID:27594988

  8. TK gene combined with mIL-2 and mGM-CSF genes in treatment of gastric cancer

    PubMed Central

    Guo, Shan-Yu; Gu, Qin-Long; Zhu, Zheng-Gang; Hong, He-Qun; Lin, Yan-Zhen

    2003-01-01

    AIM: Cancer gene therapy has received more and more attentions in the recent decade. Various systems of gene therapy for cancer have been developed. One of the most promising choices is the suicide gene. The product of thymidine kinase (TK) gene can convert ganciclovir (GCV) to phosphorylated GCV, which inhibits the synthesis of cell DNA, and then induces the cells to death. Cytokines play an important role in anti-tumor immunity. This experiment was designed to combine the TK gene and mIL-2/mGM-CSF genes to treat gastric cancer, and was expected to produce a marked anti-tumor effect. METHODS: TK gene was constructed into the retroviral vector pLxSN, and the mIL-2 and mGM-CSF genes were inserted into the eukaryotic expressing vector pIRES. The gastric cancer cells were transfected by retroviral serum that was harvested from the package cells. In vitro study, the transfected gastric cancer cells were maintained in the GCV- contained medium, to assay the cell killing effect and bystander effect. In vivo experiment, retroviral serum and cytokines plasmid were transfected into tumor-bearing mice, to observe the changes of tumor volumes and survival of the mice. RESULTS: In vitro experiment, 20% TK gene transduced cells could cause 70%-80% of total cells to death. In vivo results showed that there was no treatment effect in control group and TK/GCV could inhibit the tumor growth. The strongest anti-tumor effect was shown in TK+mIL-2+mGM-CSF group. The pathologic examination showed necrosis of the cancer in the treated groups. CONCLUSION: TK/GCV can kill tumor cells and inhibit the tumor growth in vivo. IL-2 and GM-CSF strongly enhance the anti-tumor effect. Through the retrovirus and liposome methods, the suicide gene and cytokine genes are all expressed in the tissues. PMID:12532437

  9. Efficacy of Olanzapine Combined Therapy for Patients Receiving Highly Emetogenic Chemotherapy Resistant to Standard Antiemetic Therapy

    PubMed Central

    Abe, Masakazu; Kasamatsu, Yuka; Kado, Nobuhiro; Kuji, Shiho; Tanaka, Aki; Takahashi, Nobutaka; Takekuma, Munetaka; Hirashima, Yasuyuki

    2015-01-01

    Objective. Olanzapine is proved to be effective for chemotherapy induced nausea and vomiting (CINV). But its efficacy in combination with standard antiemetic therapy is unknown. The purpose of this study is to prove the preventive effect of olanzapine for the prevention of CINV caused by highly emetogenic chemotherapy when used with standard antiemetic therapy. Method. Gynecologic cancer patients receiving cisplatin-based chemotherapy who had grade 2 or 3 nausea in overall phase (0–120 h after chemotherapy) despite standard therapy were assigned to this study. From the next cycles to cycles in which patients developed grade 2 or 3 nausea, they received olanzapine with standard therapy. 5 mg oral olanzapine was administered for 7 days from the day before chemotherapy. The effectiveness of preventive administration of olanzapine was evaluated retrospectively. The primary endpoint was nausea control rate (grade 0 or 1) with olanzapine. Results. Fifty patients were evaluable. The nausea control rate with olanzapine was improved from 58% to 98% in acute phase (0–24 h after chemotherapy) and 2% to 94% in delayed phase (24–120 h after chemotherapy). In overall phase, the nausea control rate improved from 0% to 92%, and it was statistically significant (P < 0.001). Conclusion. Preventive use of olanzapine combined with standard antiemetic therapy showed improvement in control of refractory nausea. PMID:26425564

  10. Gene therapy for the prevention of vein graft disease

    PubMed Central

    Southerland, Kevin W.; Frazier, Sarah B.; Bowles, Dawn E.; Milano, Carmelo A.; Kontos, Christopher D.

    2013-01-01

    Ischemic cardiovascular disease remains the leading cause of death worldwide. Despite advances in the medical management of atherosclerosis over the past several decades, many patients require arterial revascularization to reduce mortality and alleviate ischemic symptoms. Technological advancements have led to dramatic increases in the use of percutaneous and endovascular approaches, yet surgical revascularization (bypass surgery) with autologous vein grafts remains a mainstay of therapy for both coronary and peripheral artery disease. Although bypass surgery is highly efficacious in the short-term, long-term outcomes are limited by relatively high failure rates as a result of intimal hyperplasia, which is a common feature of vein graft disease. The supply of native veins is limited, and many individuals require multiple grafts and repeat procedures. The need to prevent vein graft failure has led to great interest in gene therapy approaches to this problem. Bypass grafting presents an ideal opportunity for gene therapy, as surgically harvested vein grafts can be treated with gene delivery vectors ex vivo, thereby maximizing gene delivery while minimizing the potential for systemic toxicity and targeting the pathogenesis of vein graft disease at its onset. Here we will review the pathogenesis of vein graft disease and discuss vector delivery strategies and potential molecular targets for its prevention. We will summarize the preclinical and clinical literature on gene therapy in vein grafting and discuss additional considerations for future therapies to prevent vein graft disease. PMID:23274305

  11. 77 FR 71194 - Draft Guidance for Industry: Preclinical Assessment of Investigational Cellular and Gene Therapy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-29

    ... Investigational Cellular and Gene Therapy Products; Availability AGENCY: Food and Drug Administration, HHS. ACTION... document entitled ``Guidance for Industry: Preclinical Assessment of Investigational Cellular and Gene... for Biologics Research and Evaluation (CBER), Office of Cellular, Tissue, and Gene Therapies...

  12. Transcriptional targeting of tumor endothelial cells for gene therapy

    PubMed Central

    Dong, Zhihong; Nör, Jacques E.

    2009-01-01

    It is well known that angiogenesis plays a critical role in the pathobiology of tumors. Recent clinical trials have shown that inhibition of angiogenesis can be an effective therapeutic strategy for patients with cancer. However, one of the outstanding issues in anti-angiogenic treatment for cancer is the development of toxicities related to off-target effects of drugs. Transcriptional targeting of tumor endothelial cells involves the use of specific promoters for selective expression of therapeutic genes in the endothelial cells lining the blood vessels of tumors. Recently, several genes that are expressed specifically in tumor-associated endothelial cells have been identified and characterized. These discoveries have enhanced the prospectus of transcriptionaly targeting tumor endothelial cells for cancer gene therapy. In this manuscript, we review the promoters, vectors, and therapeutic genes that have been used for transcriptional targeting of tumor endothelial cells, and discuss the prospects of such approaches for cancer gene therapy. PMID:19393703

  13. The state of the art of adeno-associated virus-based vectors in gene therapy

    PubMed Central

    Coura, Renata dos Santos; Nardi, Nance Beyer

    2007-01-01

    The adeno-associated virus (AAV) has rapidly gained popularity in gene therapy since the establishment of the first AAV2 infectious clone, in 1982, due to some of their distinguishing characteristics such as lack of pathogenicity, wide range of infectivity, and ability to establish long-term transgene expression. Notably over the past decade, this virus has attracted considerable interest as a gene therapy vector, and about 85% of the currently available 2,041 PubMed references on adeno-associated viruses have been published during this time. The exponential progress of AAV-based vectors has been made possible by the advances in the knowledge of the virology and biology of this virus, which allows great improvement in AAV vectors construction and a better comprehension of their operation. Moreover, with the recent discovery of novel AAV serotypes, there is virtually one preferred serotype for nearly every organ or tissue to target. Thus, AAV-based vectors have been successfully overcoming the main gene therapy challenges such as transgene maintenance, safety and host immune response, and meeting the desirable vector system features of high level of safety combined with clinical efficacy and versatility in terms of potential applications. Consequently, AAV is increasingly becoming the vector of choice for a wide range of gene therapy approaches. This report will highlight the state of the art of AAV-based vectors studies and the advances on the use of AAV vectors for several gene therapy approaches. PMID:17939872

  14. Enhancing Photodynamyc Therapy Efficacy by Combination Therapy: Dated, Current and Oncoming Strategies

    PubMed Central

    Postiglione, Ilaria; Chiaviello, Angela; Palumbo, Giuseppe

    2011-01-01

    Combination therapy is a common practice in many medical disciplines. It is defined as the use of more than one drug to treat the same disease. Sometimes this expression describes the simultaneous use of therapeutic approaches that target different cellular/molecular pathways, increasing the chances of killing the diseased cell. This short review is concerned with therapeutic combinations in which PDT (Photodynamyc Therapy) is the core therapeutic partner. Besides the description of the principal methods used to assess the efficacy attained by combinations in respect to monotherapy, this review describes experimental results in which PDT was combined with conventional drugs in different experimental conditions. This inventory is far from exhaustive, as the number of photosensitizers used in combination with different drugs is very large. Reports cited in this work have been selected because considered representative. The combinations we have reviewed include the association of PDT with anti-oxidants, chemotherapeutics, drugs targeting topoisomerases I and II, antimetabolites and others. Some paragraphs are dedicated to PDT and immuno-modulation, others to associations of PDT with angiogenesis inhibitors, receptor inhibitors, radiotherapy and more. Finally, a look is dedicated to combinations involving the use of natural compounds and, as new entries, drugs that act as proteasome inhibitors. PMID:24212824

  15. Identification of Synergistic, Clinically Achievable, Combination Therapies for Osteosarcoma

    PubMed Central

    Yu, Diana; Kahen, Elliot; Cubitt, Christopher L.; McGuire, Jeremy; Kreahling, Jenny; Lee, Jae; Altiok, Soner; Lynch, Conor C.; Sullivan, Daniel M.; Reed, Damon R.

    2015-01-01

    Systemic therapy has improved osteosarcoma event-free and overall survival, but 30–50% of patients originally diagnosed will have progressive or recurrent disease, which is difficult to cure. Osteosarcoma has a complex karyotype, with loss of p53 in the vast majority of cases and an absence of recurrent, targetable pathways. In this study, we explored 54 agents that are clinically approved for other oncologic indications, agents in active clinical development, and others with promising preclinical data in osteosarcoma at clinically achievable concentrations in 5 osteosarcoma cell lines. We found significant single-agent activity of multiple agents and tested 10 drugs in all permutations of two-drug combinations to define synergistic combinations by Chou and Talalay analysis. We then evaluated order of addition to choose the combinations that may be best to translate to the clinic. We conclude that the repurposing of chemotherapeutics in osteosarcoma by using an in vitro system may define novel drug combinations with significant in vivo activity. In particular, combinations of proteasome inhibitors with histone deacetylase inhibitors and ixabepilone and MK1775 demonstrated excellent activity in our assays. PMID:26601688

  16. Immunotherapy regimens for combination with photodynamic therapy aimed at eradication of solid cancers

    NASA Astrophysics Data System (ADS)

    Korbelik, Mladen

    2000-06-01

    Due to inflammatory/immune responses elicited by photodynamic therapy (PDT), this modality is particularly suitable in combination with various forms of immunotherapy for an improved therapeutic gain. A wide variety of approaches that may be applicable in this context include those focusing on amplifying the activity of particular immune cell types (neutrophils, macrophages, dendritic cells, natural killer cells, helper or cytotoxic T lymphocytes). Another type of approach is to focus on a specific phase of immune response development, which comprises the activation of non-specific inflammatory immune effectors, immune recognition, immune memory, immune rejection, or blocking of immune suppression. These different strategies call for a variety of immunotherapeutic protocols to be employed in combination with PDT. These include treatments such as: (1) non-specific immunoactivators (e.g. bacterial vaccines), (2) specific immune agents (cytokines, or other activating factors), (3) adoptive immunotherapy treatments (transfer of dendritic cells, tumor-sensitized T lymphocytes or natural killer cells), or (4) their combinations. Techniques of gene therapy employed in some of these protocols offer novel opportunities for securing a potent and persistent immune activity. Using PDT and immunotherapy represents an attractive combination for cancer therapy that is capable of eradicating both localized and disseminated malignant lesions.

  17. Combination topical therapy in the treatment of acne.

    PubMed

    Del Rosso, James Q

    2006-08-01

    Many medications are available for the management of acne. The armamentarium includes topical retinoids (ie, adapalene, tazarotene, tretinoin), antimicrobial and antibacterial agents (ie, benzoyl peroxide, clindamycin, erythromycin, sulfacetamide with or without sulfur), oral antibiotics (ie, doxycycline, minocycline, tetracycline), hormonal agents (ie, oral contraceptives, spironolactone), and systemic retinoids (ie, isotretinoin). Acne usually is treated with combination therapy to address its multifactorial pathophysiology. The combination of clindamycin 1%-benzoyl peroxide 5% gel, available as a stable formulation in a single tube, is efficacious and well-tolerated. The product's excipients, glycerin and dimethicone, minimize treatment-related irritation, thereby increasing patient compliance. Clindamycin-benzoyl peroxide may be well-tolerated when applied with topical retinoids, creating a more targeted and complete treatment strategy. PMID:17966494

  18. Bioengineered lysozyme in combination therapies for Pseudomonas aeruginosa lung infections.

    PubMed

    Griswold, Karl E; Bement, Jenna L; Teneback, Charlotte C; Scanlon, Thomas C; Wargo, Matthew J; Leclair, Laurie W

    2014-01-01

    There is increasing urgency in the battle against drug-resistant bacterial pathogens, and this public health crisis has created a desperate need for novel antimicrobial agents. Recombinant human lysozyme represents one interesting candidate for treating pulmonary infections, but the wild type enzyme is subject to electrostatic mediated inhibition by anionic biopolymers that accumulate in the infected lung. We have redesigned lysozyme's electrostatic potential field, creating a genetically engineered variant that is less susceptible to polyanion inhibition, yet retains potent bactericidal activity. A recent publication demonstrated that the engineered enzyme outperforms wild type lysozyme in a murine model of Pseudomonas aeruginosa lung infection. Here, we expand upon our initial studies and consider dual therapies that combine lysozymes with an antimicrobial peptide. Consistent with our earlier results, the charge modified lysozyme combination outperformed its wild type counterpart, yielding more than an order-of-magnitude reduction in bacterial burden following treatment with a single dose. PMID:24637705

  19. Efficacy of combined photothermal therapy and chemotherapeutic drugs

    NASA Astrophysics Data System (ADS)

    Madsen, Steen J.; Shih, En-Chung; Hirschberg, Henry

    2015-03-01

    Hyperthermia has been shown to enhance the effects of chemotherapeutic agents in a wide variety of cancers. The purpose of this study was to investigate the combined effects of a number of commonly used chemotherapeutic drugs (bleomycin, doxorubicin and cisplatin) with photothermal therapy (PTT)-induced hyperthermia in an in vitro system consisting of human head and neck squamous carcinoma cells and murine lymphocytic monocytes which were used as delivery vehicles for gold-silica nanoshells (AuNS). PTT was accomplished via near infra-red (NIR) irradiation of AuNS. The results showed that PTT combined with cisplatin resulted in only a mild degree of synergism while additive effects were observed for concurrent treatments of PTT and doxorubicin and PTT and bleomycin.

  20. Mesenchymal stem cell-based gene therapy for erectile dysfunction.

    PubMed

    Kim, J H; Lee, H J; Song, Y S

    2016-05-01

    Despite the overwhelming success of PDE5 inhibitor (PDE5I), the demand for novel pharmacotherapeutic and surgical options for ED continues to rise owing to the increased proportion of elderly individuals in the population, in addition to the growing percentage of ED patients who do not respond to PDE5I. Surgical treatment of ED is associated with many complications, thus warranting the need for nonsurgical therapies. Moreover, none of the above-mentioned treatments essentially corrects, cures or prevents ED. Although gene therapy is a promising option, many challenges and obstacles such as local inflammatory response and random transgene expression, in addition to other safety issues, limit its use at the clinical level. The use of stem cell therapy alone also has many shortcomings. To overcome these inadequacies, many scientists and clinicians are investigating new gene and stem cell therapies. PMID:26888355

  1. [Is a gene therapy for diabetic syndromes foreseeable?].

    PubMed

    Assan, R; Clauser, E; Larger, E

    1994-01-01

    The concepts and methods of gene therapy are summarized in order to assess a possible implication in the treatment of diabetes mellitus. Gene therapy requires identification of the critical genetic defect and then the preparation and introduction of the therapeutic transgene, with an appropriate targeting and a strong regulated expression. The bases of the different human diabetic syndromes are reviewed in their present state of knowledge: they are mostly clarified in the case of MODY, extreme insulin resistance syndromes, and some mitochondrial diabetic syndromes; but still obscure in the case of Type 2 and Type 1 diabetic syndromes. Substantial contributions to the understanding of the pathophysiology of diabetes have been brought by transgenic animal models. Gene therapy of human diabetic syndromes may become available, in an undetermined future, particularly under the forms of insulin secreting transgenic "organoïds". Such treatments should be proportionate to the intrinsic severity of the candidate diseases and carefully screened for safety. PMID:8001711

  2. Adeno-associated virus for cystic fibrosis gene therapy.

    PubMed

    Martini, S V; Rocco, P R M; Morales, M M

    2011-11-01

    Gene therapy is an alternative treatment for genetic lung disease, especially monogenic disorders such as cystic fibrosis. Cystic fibrosis is a severe autosomal recessive disease affecting one in 2500 live births in the white population, caused by mutation of the cystic fibrosis transmembrane conductance regulator (CFTR). The disease is classically characterized by pancreatic enzyme insufficiency, an increased concentration of chloride in sweat, and varying severity of chronic obstructive lung disease. Currently, the greatest challenge for gene therapy is finding an ideal vector to deliver the transgene (CFTR) to the affected organ (lung). Adeno-associated virus is the most promising viral vector system for the treatment of respiratory disease because it has natural tropism for airway epithelial cells and does not cause any human disease. This review focuses on the basic properties of adeno-associated virus and its use as a vector for cystic fibrosis gene therapy. PMID:21952739

  3. Regulation of Cell and Gene Therapy Medicinal Products in Taiwan.

    PubMed

    Lin, Yi-Chu; Wang, Po-Yu; Tsai, Shih-Chih; Lin, Chien-Liang; Tai, Hsuen-Yung; Lo, Chi-Fang; Wu, Shiow-Ing; Chiang, Yu-Mei; Liu, Li-Ling

    2015-01-01

    Owing to the rapid and mature development of emerging biotechnology in the fields of cell culture, cell preservation, and recombinant DNA technology, more and more cell or gene medicinal therapy products have been approved for marketing, to treat serious diseases which have been challenging to treat with current medical practice or medicine. This chapter will briefly introduce the Taiwan Food and Drug Administration (TFDA) and elaborate regulation of cell and gene therapy medicinal products in Taiwan, including regulatory history evolution, current regulatory framework, application and review procedures, and relevant jurisdictional issues. Under the promise of quality, safety, and efficacy of medicinal products, it is expected the regulation and environment will be more flexible, streamlining the process of the marketing approval of new emerging cell or gene therapy medicinal products and providing diverse treatment options for physicians and patients. PMID:26374219

  4. Large Animal Models of Neurological Disorders for Gene Therapy

    PubMed Central

    Gagliardi, Christine; Bunnell, Bruce A.

    2009-01-01

    The development of therapeutic interventions for genetic disorders and diseases that affect the central nervous system (CNS) has proven challenging. There has been significant progress in the development of gene therapy strategies in murine models of human disease, but gene therapy outcomes in these models do not always translate to the human setting. Therefore, large animal models are crucial to the development of diagnostics, treatments, and eventual cures for debilitating neurological disorders. This review focuses on the description of large animal models of neurological diseases such as lysosomal storage diseases, Parkinson’s disease, Huntington’s disease, and neuroAIDS. The review also describes the contributions of these models to progress in gene therapy research. PMID:19293458

  5. Biocompatible polymeric nanocomplexes as an intracellular stimuli-sensitive prodrug for type-2 diabetes combination therapy.

    PubMed

    Wang, Feng-Zhen; Xie, Zhi-Shen; Xing, Lei; Zhang, Bing-Feng; Zhang, Jia-Liang; Cui, Peng-Fei; Qiao, Jian-Bin; Shi, Kun; Cho, Chong-Su; Cho, Myung-Haing; Xu, Xiaojun; Li, Ping; Jiang, Hu-Lin

    2015-12-01

    Combination therapy is usually considered as a promising strategy owing to its advantages such as reduced doses, minimized side effects and improved therapeutic efficiency in a variety of diseases including diabetes. Here we synthesized a new highly intracellular stimuli-sensitive chitosan-graft-metformin (CS-MET) prodrug by imine reaction between oxidative chitosan and metformin for type 2 diabetes (T2D) therapy. Hypothetically, CS-MET functions dually as an anti-diabetes prodrug as well as a gene delivery vector without superfluous materials. CS-MET formed nanocomplexes with therapeutic gene through electrostatic interactions and entered cells by Organic Cation Transporter (OCT)-independent endocytosis. The incorporation of metformin into chitosan has been found to increase endosomal escape via the proton sponge effect. When vector carrying a short-hairpin RNA (shRNA) silencing sterol regulatory element-binding protein (SREBP), a major transcription factor involved in de novo lipogenisis, it reduced the SREBP mRNA and proteins efficiently. Furthermore, by intraperitoneal injection, CS-MET/shSREBP nanocomplexes effectively knocked down SREBP in livers of western-type diet (WD)-induced obese C57BL/6J mice, markedly reversed insulin resistance and alleviated the fatty liver phenotype without obvious toxic effects. Thus we were able to show that the intracellular stimuli-sensitive CS-MET prodrug renders a potential platform to increase the anti-diabetes activity with synergistic enhancement of gene therapy. PMID:26409000

  6. Changes in winter depression phenotype correlate with white blood cell gene expression profiles: a combined metagene and gene ontology approach.

    PubMed

    Bosker, Fokko J; Terpstra, Peter; Gladkevich, Anatoliy V; Janneke Dijck-Brouwer, D A; te Meerman, Gerard; Nolen, Willem A; Schoevers, Robert A; Meesters, Ybe

    2015-04-01

    In the present study we evaluate the feasibility of gene expression in white blood cells as a peripheral marker for winter depression. Sixteen patients with winter type seasonal affective disorder were included in the study. Blood was taken by venous puncture at three time points; in winter prior and following bright light therapy and in summer. RNA was isolated, converted into cRNA, amplified and hybridized on Illumina® gene expression arrays. The raw optical array data were quantile normalized and thereafter analyzed using a metagene approach, based on previously published Affymetrix gene array data. The raw data were also subjected to a secondary analysis focusing on circadian genes and genes involved in serotonergic neurotransmission. Differences between the conditions were analyzed, using analysis of variance on the principal components of the metagene score matrix. After correction for multiple testing no statistically significant differences were found. Another approach uses the correlation between metagene factor weights and the actual expression values, averaged over conditions. When comparing the correlations of winter vs. summer and bright light therapy vs. summer significant changes for several metagenes were found. Subsequent gene ontology analyses (DAVID and GeneTrail) of 5 major metagenes suggest an interaction between brain and white blood cells. The hypothesis driven analysis with a smaller group of genes failed to demonstrate any significant effects. The results from the combined metagene and gene ontology analyses support the idea of communication between brain and white blood cells. Future studies will need a much larger sample size to obtain information at the level of single genes. PMID:25455571

  7. Antisense Gene Silencing: Therapy for Neurodegenerative Disorders?

    PubMed Central

    Nielsen, Troels T.; Nielsen, Jørgen E.

    2013-01-01

    Since the first reports that double-stranded RNAs can efficiently silence gene expression in C. elegans, the technology of RNA interference (RNAi) has been intensively exploited as an experimental tool to study gene function. With the subsequent discovery that RNAi could also be applied to mammalian cells, the technology of RNAi expanded from being a valuable experimental tool to being an applicable method for gene-specific therapeutic regulation, and much effort has been put into further refinement of the technique. This review will focus on how RNAi has developed over the years and how the technique is exploited in a pre-clinical and clinical perspective in relation to neurodegenerative disorders. PMID:24705213

  8. Technology evaluation: VEGF165 gene therapy, Valentis Inc.

    PubMed

    Morse, M A

    2001-02-01

    Valentis Inc, formerly GeneMedicine, is developing a vascular endothelial growth factor (VEGF165) non-viral gene therapy using its proprietary PINC polymer for plasmid condensation. Two physician-initiated phase II angioplasty trials are ongoing, one for treating peripheral vascular disease and one for treating coronary artery disease [281714], [347153]. In February 2000, the trials were expected to be completed in the fourth quarter of 2000 [356225]; however, in October 2000, it was reported that the trial for peripheral vascular disease would be completed in the first quarter of 2001 [385232]. In March 2000, Valentis initiated a trial incorporating Valentis's DOTMA-based cationic lipid gene delivery system and the VEGF165 gene with Eurogene's local collar-reservoir delivery device. The trial is designed to demonstrate that the VEGF165 gene, delivered locally to the outside surface of a blood vessel, will transfect and express in the smooth muscle cells of the vessel wall [360683]. In March 1999, Valentis was awarded with a Phase II SBIR grant of $686,260. The aim of grant was to advance the development of non-viral gene therapies for ischemia. Specifically, Valentis intended to select an optimal promoter to be used with the VEGF expression plasmid. Valentis also intended to evaluate the gene therapy system in a rabbit ischemia model and complete the necessary preclinical studies for submission of an IND [318137]. PMID:11249737

  9. Challenges and Prospects for Alpha-1 Antitrypsin Deficiency Gene Therapy.

    PubMed

    Wozniak, Joanna; Wandtke, Tomasz; Kopinski, Piotr; Chorostowska-Wynimko, Joanna

    2015-11-01

    Alpha-1 antitrypsin (AAT) is a protease inhibitor belonging to the serpin family. A number of identified mutations in the SERPINA1 gene encoding this protein result in alpha-1 antitrypsin deficiency (AATD). A decrease in AAT serum concentration or reduced biological activity causes considerable risk of chronic respiratory and liver disorders. As a monogenic disease, AATD appears to be an attractive target for gene therapy, particularly for patients with pulmonary dysfunction, where augmentation of functional AAT levels in plasma might slow down respiratory disease development. The short AAT coding sequence and its activity in the extracellular matrix would enable an increase in systemic serum AAT production by cellular secretion. In vitro and in vivo experimental AAT gene transfer with gamma-retroviral, lentiviral, adenoviral, and adeno-associated viral (AAV) vectors has resulted in enhanced AAT serum levels and a promising safety profile. Human clinical trials using intramuscular viral transfer with AAV1 and AAV2 vectors of the AAT gene demonstrated its safety, but did not achieve a protective level of AAT >11 μM in serum. This review provides an in-depth critical analysis of current progress in AATD gene therapy based on viral gene transfer. The factors affecting transgene expression levels, such as site of administration, dose and type of vector, and activity of the immune system, are discussed further as crucial variables for optimizing the clinical effectiveness of gene therapy in AATD subjects. PMID:26413996

  10. Solid Tumor Therapy Using a Cannon and Pawn Combination Strategy.

    PubMed

    Song, Wantong; Tang, Zhaohui; Zhang, Dawei; Wen, Xue; Lv, Shixian; Liu, Zhilin; Deng, Mingxiao; Chen, Xuesi

    2016-01-01

    Nanocarrier-based anti-tumor drugs hold great promise for reducing side effects and improving tumor-site drug retention in the treatment of solid tumors. However, therapeutic outcomes are still limited, primarily due to a lack of drug penetration within most tumor tissues. Herein, we propose a strategy using a nanocarrier-based combination of vascular disrupting agents (VDAs) and cytotoxic drugs for solid tumor therapy. Specifically, combretastatin A-4 (CA4) serves as a "cannon" by eradicating tumor cells at a distance from blood vessels; concomitantly, doxorubicin (DOX) serves as a "pawn" by killing tumor cells in close proximity to blood vessels. This "cannon and pawn" combination strategy acts without a need to penetrate every tumor cell and is expected to eliminate all tumor cells in a solid tumor. In a murine C26 colon tumor model, this strategy proved effective in eradicating greater than 94% of tumor cells and efficiently inhibited tumor growth with a weekly injection. In large solid tumor models (C26 and 4T1 tumors with volumes of approximately 250 mm(3)), this strategy also proved effective for inhibiting tumor growth. These results showing remarkable inhibition of tumor growth provide a valuable therapeutic choice for solid tumor therapy. PMID:27217835

  11. Solid Tumor Therapy Using a Cannon and Pawn Combination Strategy

    PubMed Central

    Song, Wantong; Tang, Zhaohui; Zhang, Dawei; Wen, Xue; Lv, Shixian; Liu, Zhilin; Deng, Mingxiao; Chen, Xuesi

    2016-01-01

    Nanocarrier-based anti-tumor drugs hold great promise for reducing side effects and improving tumor-site drug retention in the treatment of solid tumors. However, therapeutic outcomes are still limited, primarily due to a lack of drug penetration within most tumor tissues. Herein, we propose a strategy using a nanocarrier-based combination of vascular disrupting agents (VDAs) and cytotoxic drugs for solid tumor therapy. Specifically, combretastatin A-4 (CA4) serves as a “cannon” by eradicating tumor cells at a distance from blood vessels; concomitantly, doxorubicin (DOX) serves as a “pawn” by killing tumor cells in close proximity to blood vessels. This “cannon and pawn” combination strategy acts without a need to penetrate every tumor cell and is expected to eliminate all tumor cells in a solid tumor. In a murine C26 colon tumor model, this strategy proved effective in eradicating greater than 94% of tumor cells and efficiently inhibited tumor growth with a weekly injection. In large solid tumor models (C26 and 4T1 tumors with volumes of approximately 250 mm3), this strategy also proved effective for inhibiting tumor growth. These results showing remarkable inhibition of tumor growth provide a valuable therapeutic choice for solid tumor therapy. PMID:27217835

  12. Innovative approaches of clinical photodynamic therapy combined with immunotherapy

    NASA Astrophysics Data System (ADS)

    Huang, Zheng

    2006-02-01

    Photodynamic therapy (PDT) is a clinically approved new treatment modality. It has been used for treatment of non-malignant and malignant diseases. Over the last decade its clinical application has gained increasing acceptance around the world after regulatory approvals. PDT offers various treatment options in cancer management and has been used primarily for localized superficial or endoluminal malignant and premalignant conditions. Recently, its application has also been expanded to solid tumors. However, its efficacy for the treatment of malignant tumors remains debatable and its acceptance still variable. Pre-clinical studies demonstrate that, in addition to the direct local cytotoxicity, PDT can induce host immune responses, which may further enhance the therapeutic effects on primary tumor as well as metastasis. Therefore, PDT-induced antitumor immune response might play an important role in successful control of malignant diseases. Furthermore, the antitumor efficacy of PDT might also be enhanced through an effective immunoadjuvant to further expand its usefulness for a possible control of distant metastases. Recent clinical data also indicate that improved clinical outcomes are seen in the combination of PDT and immunomodulation therapy for non-malignant disease. This review will summarize recent progress in developing innovative approaches of PDT combined with immunotherapy for non-malignant and malignant diseases.

  13. Stem cells’ guided gene therapy of cancer: New frontier in personalized and targeted therapy

    PubMed Central

    Mavroudi, Maria; Zarogoulidis, Paul; Porpodis, Konstantinos; Kioumis, Ioannis; Lampaki, Sofia; Yarmus, Lonny; Malecki, Raf; Zarogoulidis, Konstantinos; Malecki, Marek

    2014-01-01

    Introduction Diagnosis and therapy of cancer remain to be the greatest challenges for all physicians working in clinical oncology and molecular medicine. The statistics speak for themselves with the grim reports of 1,638,910 men and women diagnosed with cancer and nearly 577,190 patients passed away due to cancer in the USA in 2012. For practicing clinicians, who treat patients suffering from advanced cancers with contemporary systemic therapies, the main challenge is to attain therapeutic efficacy, while minimizing side effects. Unfortunately, all contemporary systemic therapies cause side effects. In treated patients, these side effects may range from nausea to damaged tissues. In cancer survivors, the iatrogenic outcomes of systemic therapies may include genomic mutations and their consequences. Therefore, there is an urgent need for personalized and targeted therapies. Recently, we reviewed the current status of suicide gene therapy for cancer. Herein, we discuss the novel strategy: genetically engineered stem cells’ guided gene therapy. Review of therapeutic strategies in preclinical and clinical trials Stem cells have the unique potential for self renewal and differentiation. This potential is the primary reason for introducing them into medicine to regenerate injured or degenerated organs, as well as to rejuvenate aging tissues. Recent advances in genetic engineering and stem cell research have created the foundations for genetic engineering of stem cells as the vectors for delivery of therapeutic transgenes. Specifically in oncology, the stem cells are genetically engineered to deliver the cell suicide inducing genes selectively to the cancer cells only. Expression of the transgenes kills the cancer cells, while leaving healthy cells unaffected. Herein, we present various strategies to bioengineer suicide inducing genes and stem cell vectors. Moreover, we review results of the main preclinical studies and clinical trials. However, the main risk for

  14. Epigenetic therapy in gastrointestinal cancer: the right combination.

    PubMed

    Abdelfatah, Eihab; Kerner, Zachary; Nanda, Nainika; Ahuja, Nita

    2016-07-01

    Epigenetics is a relatively recent field of molecular biology that has arisen over the past 25 years. Cancer is now understood to be a disease of widespread epigenetic dysregulation that interacts extensively with underlying genetic mutations. The development of drugs targeting these processes has rapidly progressed; with several drugs already FDA approved as first-line therapy in hematological malignancies. Gastrointestinal (GI) cancers possess high degrees of epigenetic dysregulation, exemplified by subtypes such as CpG island methylator phenotype (CIMP), and the potential benefit of epigenetic therapy in these cancers is evident. The application of epigenetic drugs in solid tumors, including GI cancers, is just emerging, with increased understanding of the cancer epigenome. In this review, we provide a brief overview of cancer epigenetics and the epigenetic targets of therapy including deoxyribonucleic acid (DNA) methylation, histone modifications, and chromatin remodeling. We discuss the epigenetic drugs currently in use, with a focus on DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitors, and explain the pharmacokinetic and mechanistic challenges in their application. We present the strategies employed in incorporating these drugs into the treatment of GI cancers, and explain the concept of the cancer stem cell in epigenetic reprogramming and reversal of chemo resistance. We discuss the most promising combination strategies in GI cancers including: (1) epigenetic sensitization to radiotherapy, (2) epigenetic sensitization to cytotoxic chemotherapy, and (3) epigenetic immune modulation and priming for immune therapy. Finally, we present preclinical and clinical trial data employing these strategies thus far in various GI cancers including colorectal, esophageal, gastric, and pancreatic cancer. PMID:27366224

  15. Epigenetic therapy in gastrointestinal cancer: the right combination

    PubMed Central

    Abdelfatah, Eihab; Kerner, Zachary; Nanda, Nainika; Ahuja, Nita

    2016-01-01

    Epigenetics is a relatively recent field of molecular biology that has arisen over the past 25 years. Cancer is now understood to be a disease of widespread epigenetic dysregulation that interacts extensively with underlying genetic mutations. The development of drugs targeting these processes has rapidly progressed; with several drugs already FDA approved as first-line therapy in hematological malignancies. Gastrointestinal (GI) cancers possess high degrees of epigenetic dysregulation, exemplified by subtypes such as CpG island methylator phenotype (CIMP), and the potential benefit of epigenetic therapy in these cancers is evident. The application of epigenetic drugs in solid tumors, including GI cancers, is just emerging, with increased understanding of the cancer epigenome. In this review, we provide a brief overview of cancer epigenetics and the epigenetic targets of therapy including deoxyribonucleic acid (DNA) methylation, histone modifications, and chromatin remodeling. We discuss the epigenetic drugs currently in use, with a focus on DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitors, and explain the pharmacokinetic and mechanistic challenges in their application. We present the strategies employed in incorporating these drugs into the treatment of GI cancers, and explain the concept of the cancer stem cell in epigenetic reprogramming and reversal of chemo resistance. We discuss the most promising combination strategies in GI cancers including: (1) epigenetic sensitization to radiotherapy, (2) epigenetic sensitization to cytotoxic chemotherapy, and (3) epigenetic immune modulation and priming for immune therapy. Finally, we present preclinical and clinical trial data employing these strategies thus far in various GI cancers including colorectal, esophageal, gastric, and pancreatic cancer. PMID:27366224

  16. Stem Cell Based Gene Therapy in Prostate Cancer

    PubMed Central

    Lee, Hong Jun; Song, Yun Seob

    2014-01-01

    Current prostate cancer treatment, especially hormone refractory cancer, may create profound iatrogenic outcomes because of the adverse effects of cytotoxic agents. Suicide gene therapy has been investigated for the substitute modality for current chemotherapy because it enables the treatment targeting the cancer cells. However the classic suicide gene therapy has several profound side effects, including immune-compromised due to viral vector. Recently, stem cells have been regarded as a new upgraded cellular vehicle or vector because of its homing effects. Suicide gene therapy using genetically engineered mesenchymal stem cells or neural stem cells has the advantage of being safe, because prodrug administration not only eliminates tumor cells but consequently kills the more resistant therapeutic stem cells as well. The attractiveness of prodrug cancer gene therapy by stem cells targeted to tumors lies in activating the prodrug directly within the tumor mass, thus avoiding systemic toxicity. Therapeutic achievements using stem cells in prostate cancer include the cytosine deaminase/5-fluorocytosine prodrug system, herpes simplex virus thymidine kinase/ganciclovir, carboxyl esterase/CPT11, and interferon-beta. The aim of this study is to review the stem cell therapy in prostate cancer including its proven mechanisms and also limitations. PMID:25121103

  17. Gene therapy, fundamental rights, and the mandates of public health.

    PubMed

    Lynch, John

    2004-01-01

    Recent and near-future developments in the field of molecular biology will make possible the treatment of genetic disease on an unprecedented scale. The potential applications of these developments implicate important public policy considerations. Among the questions that may arise is the constitutionality of a state-mandated program of gene therapy for the purpose of eradicating certain genetic diseases. Though controversial, precedents of public health jurisprudence suggest that such a program could survive constitutional scrutiny. This article provides an overview of gene therapy in the context of fundamental rights and the mandates of public health. PMID:15255004

  18. Pathogenic mechanisms and the prospect of gene therapy for choroideremia

    PubMed Central

    Dimopoulos, Ioannis S; Chan, Stephanie; MacLaren, Robert E

    2015-01-01

    Introduction Choroideremia is a rare, X-linked disorder recognized by its specific ocular phenotype as a progressive degenerative retinopathy resulting in blindness. New therapeutic approaches, primarily based on genetic mechanisms, have emerged that aim to prevent the progressive vision loss. Areas covered This article will review the research that has progressed incrementally over the past two decades from mapping to gene discovery, uncovering the presumed mechanisms triggering the retinopathy to preclinical testing of potential therapies. Expert opinion While still in an evaluative phase, the introduction of gene replacement as a potential therapy has been greeted with great enthusiasm by patients, advocacy groups and the medical community. PMID:26251765

  19. MicroRNAs Used in Combination with Anti-Cancer Treatments Can Enhance Therapy Efficacy

    PubMed Central

    Mognato, Maddalena; Celotti, Lucia

    2015-01-01

    MicroRNAs (miRNAs), a recently discovered class of small non-coding RNAs, constitute a promising approach to anti-cancer treatments when they are used in combination with other agents. MiRNAs are evolutionarily conserved non-coding RNAs that negatively regulate gene expression by binding to the complementary sequence in the 3’-untranslated region (UTR) of target genes. MiRNAs typically suppress gene expression by direct association with target transcripts, thus decreasing the expression levels of target proteins. The delivery to cells of synthetic miRNAs that mimic endogenous miRNA targeting genes involved in the DNA-Damage Response (DDR) can perturb the process, making cells more sensitive to chemotherapy or radiotherapy. This review examines how cells respond to combined therapy and it provides insights into the role of miRNAs in targeting the DDR repair pathway when they are used in combination with chemical compounds or ionizing radiation to enhance cellular sensitivity to treatments. PMID:26156420

  20. Rapid screening of novel agents for combination therapy in sarcomas.

    PubMed

    Cubitt, Christopher L; Menth, Jiliana; Dawson, Jana; Martinez, Gary V; Foroutan, Parastou; Morse, David L; Bui, Marilyn M; Letson, G Douglas; Sullivan, Daniel M; Reed, Damon R

    2013-01-01

    For patients with sarcoma, metastatic disease remains very difficult to cure, and outcomes remain less than optimal. Treatment options have not largely changed, although some promising gains have been made with single agents in specific subtypes with the use of targeted agents. Here, we developed a system to investigate synergy of combinations of targeted and cytotoxic agents in a panel of sarcoma cell lines. Agents were investigated alone and in combination with varying dose ratios. Dose-response curves were analyzed for synergy using methods derived from Chou and Talalay (1984). A promising combination, dasatinib and triciribine, was explored in a murine model using the A673 cell line, and tumors were evaluated by MRI and histology for therapy effect. We found that histone deacetylase inhibitors were synergistic with etoposide, dasatinib, and Akt inhibitors across cell lines. Sorafenib and topotecan demonstrated a mixed response. Our systematic drug screening method allowed us to screen a large number of combinations of sarcoma agents. This method can be easily modified to accommodate other cell line models, and confirmatory assays, such as animal experiments, can provide excellent preclinical data to inform clinical trials for these rare malignancies. PMID:24282374

  1. Rapid Screening of Novel Agents for Combination Therapy in Sarcomas

    PubMed Central

    Cubitt, Christopher L.; Menth, Jiliana; Martinez, Gary V.; Foroutan, Parastou; Morse, David L.; Bui, Marilyn M.; Letson, G. Douglas; Sullivan, Daniel M.; Reed, Damon R.

    2013-01-01

    For patients with sarcoma, metastatic disease remains very difficult to cure, and outcomes remain less than optimal. Treatment options have not largely changed, although some promising gains have been made with single agents in specific subtypes with the use of targeted agents. Here, we developed a system to investigate synergy of combinations of targeted and cytotoxic agents in a panel of sarcoma cell lines. Agents were investigated alone and in combination with varying dose ratios. Dose-response curves were analyzed for synergy using methods derived from Chou and Talalay (1984). A promising combination, dasatinib and triciribine, was explored in a murine model using the A673 cell line, and tumors were evaluated by MRI and histology for therapy effect. We found that histone deacetylase inhibitors were synergistic with etoposide, dasatinib, and Akt inhibitors across cell lines. Sorafenib and topotecan demonstrated a mixed response. Our systematic drug screening method allowed us to screen a large number of combinations of sarcoma agents. This method can be easily modified to accommodate other cell line models, and confirmatory assays, such as animal experiments, can provide excellent preclinical data to inform clinical trials for these rare malignancies. PMID:24282374

  2. Combination Drug Therapy for Pain following Chronic Spinal Cord Injury

    PubMed Central

    Hama, Aldric; Sagen, Jacqueline

    2012-01-01

    A number of mechanisms have been elucidated that maintain neuropathic pain due to spinal cord injury (SCI). While target-based therapeutics are being developed based on elucidation of these mechanisms, treatment for neuropathic SCI pain has not been entirely satisfactory due in part to the significant convergence of neurological and inflammatory processes that maintain the neuropathic pain state. Thus, a combination drug treatment strategy, wherein several pain-related mechanism are simultaneously engaged, could be more efficacious than treatment against individual mechanisms alone. Also, by engaging several targets at once, it may be possible to reduce the doses of the individual drugs, thereby minimizing the potential for adverse side effects. Positive preclinical and clinical studies have demonstrated improved efficacy of combination drug treatment over single drug treatment in neuropathic pain of peripheral origin, and perhaps such combinations could be utilized for neuropathic SCI pain. At the same time, there are mechanisms that distinguish SCI from peripheral neuropathic pain, so novel combination therapies will be needed. PMID:22550581

  3. Current gene therapy using viral vectors for chronic pain.

    PubMed

    Guedon, Jean-Marc G; Wu, Shaogen; Zheng, Xuexing; Churchill, Caroline C; Glorioso, Joseph C; Liu, Ching-Hang; Liu, Shue; Vulchanova, Lucy; Bekker, Alex; Tao, Yuan-Xiang; Kinchington, Paul R; Goins, William F; Fairbanks, Carolyn A; Hao, Shuanglin

    2015-01-01

    The complexity of chronic pain and the challenges of pharmacotherapy highlight the importance of development of new approaches to pain management. Gene therapy approaches may be complementary to pharmacotherapy for several advantages. Gene therapy strategies may target specific chronic pain mechanisms in a tissue-specific manner. The present collection of articles features distinct gene therapy approaches targeting specific mechanisms identified as important in the specific pain conditions. Dr. Fairbanks group describes commonly used gene therapeutics (herpes simplex viral vector (HSV) and adeno-associated viral vector (AAV)), and addresses biodistribution and potential neurotoxicity in pre-clinical models of vector delivery. Dr. Tao group addresses that downregulation of a voltage-gated potassium channel (Kv1.2) contributes to the maintenance of neuropathic pain. Alleviation of chronic pain through restoring Kv1.2 expression in sensory neurons is presented in this review. Drs Goins and Kinchington group describes a strategy to use the replication defective HSV vector to deliver two different gene products (enkephalin and TNF soluble receptor) for the treatment of post-herpetic neuralgia. Dr. Hao group addresses the observation that the pro-inflammatory cytokines are an important shared mechanism underlying both neuropathic pain and the development of opioid analgesic tolerance and withdrawal. The use of gene therapy strategies to enhance expression of the anti-pro-inflammatory cytokines is summarized. Development of multiple gene therapy strategies may have the benefit of targeting specific pathologies associated with distinct chronic pain conditions (by Guest Editors, Drs. C. Fairbanks and S. Hao). PMID:25962909

  4. Theragnosis-based combined cancer therapy using doxorubicin-conjugated microRNA-221 molecular beacon.

    PubMed

    Lee, Jonghwan; Choi, Kyung-Ju; Moon, Sung Ung; Kim, Soonhag

    2016-01-01

    Recently, microRNA (miRNA or miR) has emerged as a new cancer biomarker because of its high expression level in various cancer types and its role in the control of tumor suppressor genes. In cancer studies, molecular imaging and treatment based on target cancer markers have been combined to facilitate simultaneous cancer diagnosis and therapy. In this study, for combined therapy with diagnosis of cancer, we developed a doxorubicin-conjugated miR-221 molecular beacon (miR-221 DOXO MB) in a single platform composed of three different nucleotides: miR-221 binding sequence, black hole quencher 1 (BHQ1), and doxorubicin binding site. Imaging of endogenous miR-221 was achieved by specific hybridization between miR-221 and the miR-221 binding site in miR-221 DOXO MB. The presence of miR-221 triggered detachment of the quencher oligo and subsequent activation of a fluorescent signal of miR-221 DOXO MB. Simultaneous cancer therapy in C6 astrocytoma cells and nude mice was achieved by inhibition of miRNA-221 function that downregulates tumor suppressor genes. The detection of miR-221 expression and inhibition of miR-221 function by miR-221 DOXO MB provide the feasibility as a cancer theragnostic probe. Furthermore, a cytotoxic effect was induced by unloading of doxorubicin intercalated into miR-221 DOXO MB inside cells. Loss of miR-221 function and cytotoxicity induced by the miR-221 DOXO MB provides combined therapeutic efficacy against cancers. This method could be used as a new theragnostic probe with enhanced therapy to detect and inhibit many cancer-related miRNAs. PMID:26454049

  5. HSV Recombinant Vectors for Gene Therapy

    PubMed Central

    Manservigi, Roberto; Argnani, Rafaela; Marconi, Peggy

    2010-01-01

    The very deep knowledge acquired on the genetics and molecular biology of herpes simplex virus (HSV), has allowed the development of potential replication-competent and replication-defective vectors for several applications in human healthcare. These include delivery and expression of human genes to cells of the nervous systems, selective destruction of cancer cells, prophylaxis against infection with HSV or other infectious diseases, and targeted infection to specific tissues or organs. Replication-defective recombinant vectors are non-toxic gene transfer tools that preserve most of the neurotropic features of wild type HSV-1, particularly the ability to express genes after having established latent infections, and are thus proficient candidates for therapeutic gene transfer settings in neurons. A replication-defective HSV vector for the treatment of pain has recently entered in phase 1 clinical trial. Replication-competent (oncolytic) vectors are becoming a suitable and powerful tool to eradicate brain tumours due to their ability to replicate and spread only within the tumour mass, and have reached phase II/III clinical trials in some cases. The progress in understanding the host immune response induced by the vector is also improving the use of HSV as a vaccine vector against both HSV infection and other pathogens. This review briefly summarizes the obstacle encountered in the delivery of HSV vectors and examines the various strategies developed or proposed to overcome such challenges. PMID:20835362

  6. State of the art: gene therapy of haemophilia.

    PubMed

    Spencer, H T; Riley, B E; Doering, C B

    2016-07-01

    Clinical gene therapy has been practiced for more than a quarter century and the first products are finally gaining regulatory/marketing approval. As of 2016, there have been 11 haemophilia gene therapy clinical trials of which six are currently open. Each of the ongoing phase 1/2 trials is testing a variation of a liver-directed adeno-associated viral (AAV) vector encoding either factor VIII (FVIII) or factor IX (FIX) . As summarized herein, the clinical results to date have been mixed with some perceived success and a clear recognition of the immune response to AAV as an obstacle to therapeutic success. We also attempt to highlight promising late-stage preclinical activities for AAV-FVIII where, due to inherent challenges with manufacture, delivery and transgene product biosynthesis, more technological development has been necessary to achieve results comparable to what has been observed previously for AAV-FIX. Finally, we describe the development of a stem cell-based lentiviral vector gene therapy product that has the potential to provide lifelong production of FVIII and provide a functional 'cure' for haemophilia A. Integral to this program has been the incorporation of a blood cell-specific gene expression element driving the production of a bioengineered FVIII designed for optimal efficiency. As clearly outlined herein, haemophilia remains at the forefront of the rapidly advancing clinical gene therapy field where there exists a shared expectation that transformational advances are on the horizon. PMID:27405679

  7. Megakaryocyte- and megakaryocyte precursor–related gene therapies

    PubMed Central

    2016-01-01

    Hematopoietic stem cells (HSCs) can be safely collected from the body, genetically modified, and re-infused into a patient with the goal to express the transgene product for an individual’s lifetime. Hematologic defects that can be corrected with an allogeneic bone marrow transplant can theoretically also be treated with gene replacement therapy. Because some genetic disorders affect distinct cell lineages, researchers are utilizing HSC gene transfer techniques using lineage-specific endogenous gene promoters to confine transgene expression to individual cell types (eg, ITGA2B for inherited platelet defects). HSCs appear to be an ideal target for platelet gene therapy because they can differentiate into megakaryocytes which are capable of forming several thousand anucleate platelets that circulate within blood vessels to establish hemostasis by repairing vascular injury. Platelets play an essential role in other biological processes (immune response, angiogenesis) as well as diseased states (atherosclerosis, cancer, thrombosis). Thus, recent advances in genetic manipulation of megakaryocytes could lead to new and improved therapies for treating a variety of disorders. In summary, genetic manipulation of megakaryocytes has progressed to the point where clinically relevant strategies are being developed for human trials for genetic disorders affecting platelets. Nevertheless, challenges still need to be overcome to perfect this field; therefore, strategies to increase the safety and benefit of megakaryocyte gene therapy will be discussed. PMID:26787735

  8. Alphavirus vectors as tools in neuroscience and gene therapy.

    PubMed

    Lundstrom, Kenneth

    2016-05-01

    Alphavirus-based vectors have been engineered for in vitro and in vivo expression of heterelogous genes. The rapid and easy generation of replication-deficient recombinant particles and the broad range of host cell infection have made alphaviruses attractive vehicles for applications in neuroscience and gene therapy. Efficient delivery to primary neurons and hippocampal slices has allowed localization studies of gene expression and electrophysiological recordings of ion channels. Alphavirus vectors have also been applied for in vivo delivery to rodent brain. Due to the strong local transient expression provided by alphavirus vectors a number of immunization and gene therapy approaches have demonstrated both therapeutic and prophylactic efficacy in various animal models. PMID:26307195

  9. Glaucoma: genes, phenotypes, and new directions for therapy

    PubMed Central

    Fan, Bao Jian; Wiggs, Janey L.

    2010-01-01

    Glaucoma, a leading cause of blindness worldwide, is characterized by progressive optic nerve damage, usually associated with intraocular pressure. Although the clinical progression of the disease is well defined, the molecular events responsible for glaucoma are currently poorly understood and current therapeutic strategies are not curative. This review summarizes the human genetics and genomic approaches that have shed light on the complex inheritance of glaucoma genes and the potential for gene-based and cellular therapies that this research makes possible. PMID:20811162

  10. Dystrophin Gene Replacement and Gene Repair Therapy for Duchenne Muscular Dystrophy in 2016: An Interview.

    PubMed

    Duan, Dongsheng

    2016-03-01

    After years of relentless efforts, gene therapy has now begun to deliver its therapeutic promise in several diseases. A number of gene therapy products have received regulatory approval in Europe and Asia. Duchenne muscular dystrophy (DMD) is an X-linked inherited lethal muscle disease. It is caused by mutations in the dystrophin gene. Replacing and/or repairing the mutated dystrophin gene holds great promises to treated DMD at the genetic level. Last several years have evidenced significant developments in preclinical experimentations in murine and canine models of DMD. There has been a strong interest in moving these promising findings to clinical trials. In light of rapid progress in this field, the Parent Project Muscular Dystrophy (PPMD) recently interviewed me on the current status of DMD gene therapy and readiness for clinical trials. Here I summarized the interview with PPMD. PMID:27003751

  11. Gene therapy ethics and haemophilia: an inevitable therapeutic future?

    PubMed

    Dimichele, D; Miller, F G; Fins, J J

    2003-03-01

    Haemophilia was recognized early on as an ideal candidate for a gene transfer approach to therapy. In the past decade, gene transfer experimentation in the haemophilias has indeed played an integral role in furthering the science in the global field of gene therapy. However, these expectations have placed haemophilia gene transfer researchers under pressure to succeed in a scientific domain in which successes are infrequent and progress is necessarily slow. These same expectations have also fueled the perception of gene therapy as the inevitable therapeutic goal for the youngest children with haemophilia. In this paper, we will discuss the ethical implications of this perception in light of anticipated benefits, acceptable risk, perceived consumer need and the unknown cost of this intervention. A framework for the future study and therapeutic implementation of gene transfer technology in this specific population is proposed. Public debate on this issue that includes the voices of the intended beneficiaries, especially the parents of the youngest children with haemophilia and the children themselves, is encouraged. PMID:12614364

  12. Genome-editing Technologies for Gene and Cell Therapy.

    PubMed

    Maeder, Morgan L; Gersbach, Charles A

    2016-03-01

    Gene therapy has historically been defined as the addition of new genes to human cells. However, the recent advent of genome-editing technologies has enabled a new paradigm in which the sequence of the human genome can be precisely manipulated to achieve a therapeutic effect. This includes the correction of mutations that cause disease, the addition of therapeutic genes to specific sites in the genome, and the removal of deleterious genes or genome sequences. This review presents the mechanisms of different genome-editing strategies and describes each of the common nuclease-based platforms, including zinc finger nucleases, transcription activator-like effector nucleases (TALENs), meganucleases, and the CRISPR/Cas9 system. We then summarize the progress made in applying genome editing to various areas of gene and cell therapy, including antiviral strategies, immunotherapies, and the treatment of monogenic hereditary disorders. The current challenges and future prospects for genome editing as a transformative technology for gene and cell therapy are also discussed. PMID:26755333

  13. Genome-editing Technologies for Gene and Cell Therapy

    PubMed Central

    Maeder, Morgan L; Gersbach, Charles A

    2016-01-01

    Gene therapy has historically been defined as the addition of new genes to human cells. However, the recent advent of genome-editing technologies has enabled a new paradigm in which the sequence of the human genome can be precisely manipulated to achieve a therapeutic effect. This includes the correction of mutations that cause disease, the addition of therapeutic genes to specific sites in the genome, and the removal of deleterious genes or genome sequences. This review presents the mechanisms of different genome-editing strategies and describes each of the common nuclease-based platforms, including zinc finger nucleases, transcription activator-like effector nucleases (TALENs), meganucleases, and the CRISPR/Cas9 system. We then summarize the progress made in applying genome editing to various areas of gene and cell therapy, including antiviral strategies, immunotherapies, and the treatment of monogenic hereditary disorders. The current challenges and future prospects for genome editing as a transformative technology for gene and cell therapy are also discussed. PMID:26755333

  14. Gene therapy for lung inflammatory diseases: not so far away?

    PubMed Central

    Sallenave, J. M.; Porteous, D. J.; Haslett, C.

    1997-01-01

    The lung is a readily accessible target organ for gene therapy. To date, therapeutic gene delivery has largely focused on introducing functional, corrective genes in lung diseases arising from single gene defects such as cystic fibrosis. More recently interest has centred on gene therapy as a potential therapeutic tool in modulating complex pathological processes such as pulmonary inflammation. Genetic modification of critical components of the inflammatory process may be beneficial-for example, overexpressing anti-elastase genes may circumvent elastase mediated lung damage in emphysema. With the development of improved viral and liposome vectors and the evolution of effective adjuvant immunosuppression to obviate host immune responses-- for example, using selective cytokines and blockers of T cell surface activation--the potential exists to target therapeutic doses of transgene to deficient or dysregulated cells. Furthermore, increased understanding of tissue-specific promoter regions and of mechanisms controlling regulation of gene expression offer the potential for close control of therapeutic gene expression within the lung. Continuing refinements in these technologies will provide new therapeutic strategies in inflammatory lung disease. 


 PMID:9337837

  15. Gene therapy for lung inflammatory diseases: not so far away?

    PubMed

    Sallenave, J M; Porteous, D J; Haslett, C

    1997-08-01

    The lung is a readily accessible target organ for gene therapy. To date, therapeutic gene delivery has largely focused on introducing functional, corrective genes in lung diseases arising from single gene defects such as cystic fibrosis. More recently interest has centred on gene therapy as a potential therapeutic tool in modulating complex pathological processes such as pulmonary inflammation. Genetic modification of critical components of the inflammatory process may be beneficial-for example, overexpressing anti-elastase genes may circumvent elastase mediated lung damage in emphysema. With the development of improved viral and liposome vectors and the evolution of effective adjuvant immunosuppression to obviate host immune responses--for example, using selective cytokines and blockers of T cell surface activation--the potential exists to target therapeutic doses of transgene to deficient or dysregulated cells. Furthermore, increased understanding of tissue-specific promoter regions and of mechanisms controlling regulation of gene expression offer the potential for close control of therapeutic gene expression within the lung. Continuing refinements in these technologies will provide new therapeutic strategies in inflammatory lung disease. PMID:9337837

  16. Combination therapy with anti-CTLA4 and anti-PD1 leads to distinct immunologic changes in-vivo

    PubMed Central

    Das, Rituparna; Verma, Rakesh; Sznol, Mario; Boddupalli, Chandra Sekhar; Gettinger, Scott N.; Kluger, Harriet; Callahan, Margaret; Wolchok, Jedd D; Halaban, Ruth; Dhodapkar, Madhav V.; Dhodapkar, Kavita M.

    2014-01-01

    Combination therapy concurrently targeting PD1 and CTLA4 immune checkpoints leads to remarkable anti-tumor effects. While both PD1 and CTLA4 dampen the T cell activation, the in vivo effects of these drugs in humans remain to be clearly defined. In order to better understand biologic effects of therapy, we analyzed blood/tumor tissue from 45 patients undergoing single or combination immune checkpoint blockade. We show that blockade of CTLA4, PD1 or combination of the two leads to distinct genomic and functional signatures in vivo in purified human T cells and monocytes. Therapy-induced changes are more prominent in T cells than in monocytes and involve largely non-overlapping changes in coding genes including alternatively-spliced transcripts, and non-coding RNAs. Pathway analysis revealed that CTLA4-blockade induces a proliferative signature predominantly in a subset of transitional memory T cells, while PD1-blockade instead leads to changes in genes implicated in cytolysis and natural killer cell function. Combination blockade leads to non-overlapping changes in gene expression including proliferation-associated and chemokine genes. These therapies also have differential effects on plasma levels of CXCL10, sIL2R and IL1α. Importantly, PD1 receptor occupancy following anti-PD1 therapy may be incomplete in the tumor T cells even in the setting of complete receptor occupancy in circulating T cells. These data demonstrate that in spite of shared property of checkpoint blockade, antibodies against PD1, CTLA4 alone or in combination have distinct immunologic effects in vivo. Improved understanding of pharmacodynamic effects of these agentsin patients will support rational development of immune-based combinations against cancer. PMID:25539810

  17. Niacin extended-release/lovastatin: combination therapy for lipid disorders.

    PubMed

    Moon, Yong S K; Kashyap, Moti L

    2002-12-01

    The new combination of niacin extended-release (ER) and lovastatin (Advicor, Kos pharmaceuticals), is a powerful lipid modifying agent and takes advantage of the different mechanisms of action of its two components. Niacin decreases hepatic atherogenic apolipoprotein (apo) B production whereas lovastatin increases apoB removal. Whereas niacin potently increases high density lipoprotein (HDL) levels by decreasing hepatic removal of antiatherogenic apoA-I particles, 3-hydroxy-3-methylglutaryl coenzyme A (HMGCoA) reductase inhibitors ('statins') appear to increase production of apoA-I. Although there is no outcome data with this combination product, each component has been independently associated with a reduction of cardiovascular event risk by approximately 25 - 35%. The results of a long-term trial in 814 patients, where > 600 had been treated for 6 months and > 200 for 1 year, found reductions of 45 and 42% in low density lipoprotein cholesterol and triglycerides, respectively, at the maximum dose (niacin ER 2000 mg/ lovastatin 40 mg). HDL cholesterol increased by 41%. In addition, the combination decreased lipoprotein (a) by 25% and C-reactive protein by 24%. The niacin ER/lovastatin combination was generally well-tolerated. Flushing was the most common side effect, with approximately 10% of patients intolerant to niacin ER/lovastatin. Hepatotoxicity in this study was 0.5% and myopathy did not occur. Recent studies indicate that niacin can be used safely in diabetic patients who have good glucose control (HbA(1c) < 9%). Once-daily niacin ER/lovastatin exhibits potent synergistic actions on multiple lipid risk factors and represents an effective new agent in the clinical management of dyslipidaemia. Outcome studies are needed to evaluate if combination therapy would result in additive effects on morbidity and mortality. PMID:12472373

  18. Combined anticancer therapies: an overview of the latest applications.

    PubMed

    Piccolo, Maria Teresa; Menale, Ciro; Crispi, Stefania

    2015-01-01

    Tumor resistance and low drug efficacy prompt to investigate new therapeutic strategies that have high efficacy and low toxicity, especially for cancers with poor prognosis. This goal has been recently achieved using particular pharmaceutical combination or nanotechnologies to specifically deliver drugs at the tumor site. Novel combined treatments employ either naturally active ingredients or drugs already intended for other uses, with the aim to increase cell sensitivity to therapy and reduce drug toxicity. Combined treatments usually improve the overall therapeutic efficacy of the single drug. Drug-drug interactions allow synergistic effects. Several evidences indicate that synergy can be affected by drug-drug ratio and drug administration order. Therapeutic efficacy can be enhanced through drug entrapment in nanocarriers that allow a site-specific targeting, resulting in a build-up of the drug in the tumor with a significant toxicity reduction. Several studies investigated combined entrapment of two or more drugs each one characterized by different mechanisms of action. These nanosystems improve synergistic efficacy and could be a device to resolve toxicity and multi-drug resistance. Nano-encapsulation of anticancer agents by targeting specific tumor tissues significantly optimizes drug bioavailability, biocompatibility and therapeutic efficacy. The efficacy of these formulations results from receptor-mediated endocytosis and prolonged circulation time. Drug encapsulation also allows using limited final concentration while avoiding its activity within the blood circulation. In this review we report recent findings about novel combined treatment focusing on synergistic effects and mechanisms of action. We will also overview the latest drug delivery system and their therapeutic benefits in cancer treatment. PMID:25584691

  19. Hydrotherapy combined with Snoezelen multi-sensory therapy.

    PubMed

    Lavie, Efrat; Shapiro, Michele; Julius, Mona

    2005-01-01

    The aim of this article is to present a new and challenging model of treatment that combines two therapeutic interventions: hydrotherapy and Snoezelen or controlled multisensory stimulation. The combination of the two therapeutic approaches enhances the treatment effect by utilizing the unique characteristics of each approach. We believe that this combined model will further enhance each media to the benefit of the clients and create a new intervention approach. This article relates to a hydrotherapy swimming pool facility that has been established at the Williams Island Therapeutic Swimming and Recreation Center, Beit Issie Shapiro, Raanana in Israel, after acquiring many years of experience and gaining substantial knowledge both in the field of hydrotherapy and Snoezelen intervention. Beit Issie Shapiro is a non-profit community organization providing a range of services for children with developmental disabilities and their families. The organization provides direct services for nearly 6,000 children and adults each year. This article provides an overview of hydrotherapy and Snoezelen and presents a case study, which will demonstrate the new model of treatment and show how this new and innovative form of therapy can be used as a successful intervention. We believe it will open a path to enriching the repertoire of therapists helping people with special needs. This article is also addressed to researchers to provide ideas for further studies in this area. PMID:15900815

  20. Novel molecular approaches to cystic fibrosis gene therapy

    PubMed Central

    Lee, Tim W. R.; Matthews, David A.; Blair, G. Eric

    2005-01-01

    Gene therapy holds promise for the treatment of a range of inherited diseases, such as cystic fibrosis. However, efficient delivery and expression of the therapeutic transgene at levels sufficient to result in phenotypic correction of cystic fibrosis pulmonary disease has proved elusive. There are many reasons for this lack of progress, both macroscopically in terms of airway defence mechanisms and at the molecular level with regard to effective cDNA delivery. This review of approaches to cystic fibrosis gene therapy covers these areas in detail and highlights recent progress in the field. For gene therapy to be effective in patients with cystic fibrosis, the cDNA encoding the cystic fibrosis transmembrane conductance regulator protein must be delivered effectively to the nucleus of the epithelial cells lining the bronchial tree within the lungs. Expression of the transgene must be maintained at adequate levels for the lifetime of the patient, either by repeat dosage of the vector or by targeting airway stem cells. Clinical trials of gene therapy for cystic fibrosis have demonstrated proof of principle, but gene expression has been limited to 30 days at best. Results suggest that viral vectors such as adenovirus and adeno-associated virus are unsuited to repeat dosing, as the immune response reduces the effectiveness of each subsequent dose. Nonviral approaches, such as cationic liposomes, appear more suited to repeat dosing, but have been less effective. Current work regarding non-viral gene delivery is now focused on understanding the mechanisms involved in cell entry, endosomal escape and nuclear import of the transgene. There is now increasing evidence to suggest that additional ligands that facilitate endosomal escape or contain a nuclear localization signal may enhance liposome-mediated gene delivery. Much progress in this area has been informed by advances in our understanding of the mechanisms by which viruses deliver their genomes to the nuclei of host

  1. Lentiviral Hematopoietic Stem Cell Gene Therapy in Inherited Metabolic Disorders

    PubMed Central

    2014-01-01

    Abstract After more than 20 years of development, lentiviral hematopoietic stem cell gene therapy has entered the stage of initial clinical implementation for immune deficiencies and storage disorders. This brief review summarizes the development and applications, focusing on the lysosomal enzyme deficiencies, especially Pompe disease. PMID:25184354

  2. Combination and triple therapy in patients with stable angina pectoris not adequately controlled by optimal β-blocker therapy

    PubMed Central

    Kok, W.E.M.; Visser, F.C.; Visser, C.A.

    2002-01-01

    In 60 to 80% of patients with stable angina pectoris at low risk for future coronary events, monotherapy with a β-blocker is an effective treatment. When patients with stable angina pectoris and low risk for events do not respond adequately to optimal β-blocker monotherapy, combination therapy or even triple therapy is may be recommended, but little is known of the actual benefit of such a strategy. We reviewed the evidence from the literature on the effectiveness of combination and triple therapy. Combination therapy with a calcium antagonist or nitrate was found to be more effective than β-blocker monotherapy in the majority of studies, but only an estimated 30% of patients objectively benefit from these combination therapies. Direct comparison shows that combination therapy of a β-blocker with a calcium antagonist is more effective than the combination of a β-blocker with a nitrate. An inadequate response to β-blocker monotherapy is more effectively improved by addition of a calcium antagonist than by alternative use of a calcium antagonist. The use of triple therapy is controversial and not recommended in patients with mild angina pectoris, while for patients with severe angina pectoris not responding to combination therapy of a β-blocker with a nitrate, triple therapy may be of advantage, although the number of patients studied has been small. PMID:25696045

  3. The relationship between gene transcription and combinations of histone modifications

    NASA Astrophysics Data System (ADS)

    Cui, Xiangjun; Li, Hong; Luo, Liaofu

    2012-09-01

    Histone modification is an important subject of epigenetics which plays an intrinsic role in transcriptional regulation. It is known that multiple histone modifications act in a combinatorial fashion. In this study, we demonstrated that the pathways within constructed Bayesian networks can give an indication for the combinations among 12 histone modifications which have been studied in the TSS+1kb region in S. cerevisiae. After Bayesian networks for the genes with high transcript levels (H-network) and low transcript levels (L-network) were constructed, the combinations of modifications within the two networks were analyzed from the view of transcript level. The results showed that different combinations played dissimilar roles in the regulation of gene transcription when there exist differences for gene expression at transcription level.

  4. Sequences and Combinations of Multifaceted Therapy In Advanced Prostate Cancer

    PubMed Central

    Vaishampayan, Ulka

    2015-01-01

    Purpose of Review Multiple agents with very distinct mechanisms of actions and unique toxicities and efficacies have become available for use in advanced prostate cancer. The next wave of investigations is focused on development of combinations and optimal sequences of the currently available agents. The focus of this review paper is to provide an update on clinical developments in advanced prostate cancer occurring within the past year, and to highlight the ongoing investigations of promising novel targets and compounds. Recent Findings The clinical use of enzalutamide prior to chemotherapy, demonstrated improvement in progression free survival (PFS) and overall survival (OS) as compared to placebo in metastatic castrate resistant prostate cancer (CRPC). This report of the PREVAIL trial led to the FDA approval of this agent. Novel agents such as cabozantinib and custirsen that had shown promising results in phase II trials, revealed disappointing results in the phase III setting. The breakthrough report, of the ability of the ARV-7 mutation, detected in circulating tumor cells, to predict lack of response to abiraterone or enzalutamide, and the remarkable responses of poly ADP ribose polymerase (PARP) inhibitors in prostate cancer with BRCA1/2 mutations, have elevated hopes of a bright future in the biomarker driven therapeutic arena. Summary As the clinical application of the recently approved multifaceted therapies widens, trials addressing optimal sequences and combinations are gaining importance. In addition, exploring the utility of therapies in the hormone naïve or non-metastatic settings is an area of active investigation. Early use of available agents, optimal sequencing and aid of biomarkers to guide therapeutic choices will make the achievement of lifetime remissions in advanced prostate cancer a reachable goal. PMID:25811344

  5. Vector platforms for gene therapy of inherited retinopathies

    PubMed Central

    Trapani, Ivana; Puppo, Agostina; Auricchio, Alberto

    2014-01-01

    Inherited retinopathies (IR) are common untreatable blinding conditions. Most of them are inherited as monogenic disorders, due to mutations in genes expressed in retinal photoreceptors (PR) and in retinal pigment epithelium (RPE). The retina’s compatibility with gene transfer has made transduction of different retinal cell layers in small and large animal models via viral and non-viral vectors possible. The ongoing identification of novel viruses as well as modifications of existing ones based either on rational design or directed evolution have generated vector variants with improved transduction properties. Dozens of promising proofs of concept have been obtained in IR animal models with both viral and non-viral vectors, and some of them have been relayed to clinical trials. To date, recombinant vectors based on the adeno-associated virus (AAV) represent the most promising tool for retinal gene therapy, given their ability to efficiently deliver therapeutic genes to both PR and RPE and their excellent safety and efficacy profiles in humans. However, AAVs’ limited cargo capacity has prevented application of the viral vector to treatments requiring transfer of genes with a coding sequence larger than 5 kb. Vectors with larger capacity, i.e. nanoparticles, adenoviral and lentiviral vectors are being exploited for gene transfer to the retina in animal models and, more recently, in humans. This review focuses on the available platforms for retinal gene therapy to fight inherited blindness, highlights their main strengths and examines the efforts to overcome some of their limitations. PMID:25124745

  6. Gene therapy for aromatic L-amino acid decarboxylase deficiency.

    PubMed

    Hwu, Wuh-Liang; Muramatsu, Shin-ichi; Tseng, Sheng-Hong; Tzen, Kai-Yuan; Lee, Ni-Chung; Chien, Yin-Hsiu; Snyder, Richard O; Byrne, Barry J; Tai, Chun-Hwei; Wu, Ruey-Meei

    2012-05-16

    Aromatic L-amino acid decarboxylase (AADC) is required for the synthesis of the neurotransmitters dopamine and serotonin. Children with defects in the AADC gene show compromised development, particularly in motor function. Drug therapy has only marginal effects on some of the symptoms and does not change early childhood mortality. Here, we performed adeno-associated viral vector-mediated gene transfer of the human AADC gene bilaterally into the putamen of four patients 4 to 6 years of age. All of the patients showed improvements in motor performance: One patient was able to stand 16 months after gene transfer, and the other three patients achieved supported sitting 6 to 15 months after gene transfer. Choreic dyskinesia was observed in all patients, but this resolved after several months. Positron emission tomography revealed increased uptake by the putamen of 6-[(18)F]fluorodopa, a tracer for AADC. Cerebrospinal fluid analysis showed increased dopamine and serotonin levels after gene transfer. Thus, gene therapy targeting primary AADC deficiency is well tolerated and leads to improved motor function. PMID:22593174

  7. Gene Therapy for Type I Glycogen Storage Diseases

    PubMed Central

    Chou, Janice Y.; Mansfield, Brian C.

    2008-01-01

    The type I glycogen storage diseases (GSD-I) are a group of related diseases caused by a deficiency in the glucose-6-phosphatase-α (G6Pase-α) system, a key enzyme complex that is essential for the maintenance of blood glucose homeostasis between meals. The complex consists of a glucose-6-phosphate transporter (G6PT) that translocates glucose-6-phosphate from the cytoplasm into the lumen of the endoplasmic reticulum, and a G6Pase-α catalytic unit that hydrolyses the glucose-6-phosphate into glucose and phosphate. A deficiency in G6Pase-α causes GSD type Ia (GSD-Ia) and a deficiency in G6PT causes GSD type Ib (GSD-Ib). Both GSD-Ia and GSD-Ib patients manifest a disturbed glucose homeostasis, while GSD-Ib patients also suffer symptoms of neutropenia and myeloid dysfunctions. G6Pase-α and G6PT are both hydrophobic endoplasmic reticulum-associated transmembrane proteins that can not expressed in soluble active forms. Therefore protein replacement therapy of GSD-I is not an option. Animal models of GSD-Ia and GSD-Ib that mimic the human disorders are available. Both adenovirus- and adeno-associated virus (AAV)-mediated gene therapies have been evaluated for GSD-Ia in these model systems. While adenoviral therapy produces only short term corrections and only impacts liver expression of the gene, AAV-mediated therapy delivers the transgene to both the liver and kidney, achieving longer term correction of the GSD-Ia disorder, although there are substantial differences in efficacy depending on the AAV serotype used. Gene therapy for GSD-Ib in the animal model is still in its infancy, although an adenoviral construct has improved the metabolic profile and myeloid function. Taken together further refinements in gene therapy may hold long term benefits for the treatment of type I GSD disorders. PMID:17430128

  8. Recent progress in gene therapy for cardiovascular disease.

    PubMed

    Morishita, Ryuichi

    2002-12-01

    Gene therapy is emerging as a potential strategy for the treatment of cardiovascular diseases, such as peripheral arterial disease, ischemic heart disease, restenosis after angioplasty, vascular bypass graft occlusion and transplant coronary vasculopathy, for which no known effective therapy exists. The first human trial in cardiovascular disease started in 1994 treating peripheral vascular disease with vascular endothelial growth factor (VEGF) and since then, many different potent angiogenic growth factors have been tested in clinical trials for the treatment of peripheral arterial disease. In addition, therapeutic angiogenesis using the VEGF gene has been used to treat ischemic heart disease since 1997. The results from these clinical trials have exceeded expectations; improvement in the clinical symptoms of peripheral arterial disease and ischemic heart disease has been reported. Another strategy for combating the disease processes, targeting the transcriptional process, has been tested in a human trial. IN particular, transfection of cis-element double-stranded (ds) oligodeoxynucleotides (ODN) (= decoy) is a powerful tool in a new class of anti-gene strategies. Transfection of ds-ODN corresponding to the cis sequence will attenuate the authentic cis-trans interaction, leading to removal of trans-factors from the endogenous cis-elements and subsequent modulation of gene expression. Genetically modified vein grafts transfected with a decoy against E2F, an essential transcription factor in cell cycle progression, appear to have long-term potency in human patients. There is great potential in gene therapy for cardiovascular disease. PMID:12499610

  9. Current Status of Gene Therapy for Inherited Lung Diseases

    PubMed Central

    Driskell, Ryan R.; Engelhardt, John F.

    2007-01-01

    Gene therapy as a treatment modality for pulmonary disorders has attracted significant interest over the past decade. Since the initiation of the first clinical trials for cystic fibrosis lung disease using recombinant adenovirus in the early 1990s, the field has encountered numerous obstacles including vector inflammation, inefficient delivery, and vector production. Despite these obstacles, enthusiasm for lung gene therapy remains high. In part, this enthusiasm is fueled through the diligence of numerous researchers whose studies continue to reveal great potential of new gene transfer vectors that demonstrate increased tropism for airway epithelia. Several newly identified serotypes of adeno-associated virus have demonstrated substantial promise in animal models and will likely surface soon in clinical trials. Furthermore, an increased understanding of vector biology has also led to the development of new technologies to enhance the efficiency and selectivity of gene delivery to the lung. Although the promise of gene therapy to the lung has yet to be realized, the recent concentrated efforts in the field that focus on the basic virology of vector development will undoubtedly reap great rewards over the next decade in treating lung diseases. PMID:12524461

  10. [Driver gene mutation and targeted therapy of lung cancer].

    PubMed

    Mitsudomi, Tetsuya

    2013-03-01

    Although cancers may have many genetic alterations, there are only a few mutations actually associated with essential traits of cancer cells such as cell proliferation or evasion from apoptosis. Because cancer cells are "addicted" to these "drive genes" , pharmacologic inhibition of these gene function is highly effective. Epidermal growth factor receptor(EGFR)-tyrosine kinase inhibitor(TKI)(such as gefitinib or erlotinib)treatment of lung cancer harboring EGFR gene mutation is one of the prototypes of such therapies. Several clinical trials clearly demonstrated that progression-free survival of patients treated with EGFR-TKI is significantly longer than that of those treated by conventional platinum doublet chemotherapy. EGFR-TKI therapy dramatically changed the paradigm of lung cancer treatment. Furthermore, in 2012, crizotinib was approved for lung cancer treatment with anaplastic lymphoma kinase(ALK)gene translocation. Targeted therapies for lung cancers "addicted" to other driver gene mutations including ROS1, RET or HER2 are also under development. Through these personalized approaches, lung cancer is changing from an acute fatal disease to a more chronic disease, and eventually we might be able to cure it. PMID:23507588

  11. Nanoparticle-based targeted gene therapy for lung cancer

    PubMed Central

    Lee, Hung-Yen; Mohammed, Kamal A; Nasreen, Najmunnisa

    2016-01-01

    Despite striking insights on lung cancer progression, and cutting-edge therapeutic approaches the survival of patients with lung cancer, remains poor. In recent years, targeted gene therapy with nanoparticles is one of the most rapidly evolving and extensive areas of research for lung cancer. The major goal of targeted gene therapy is to bring forward a safe and efficient treatment to cancer patients via specifically targeting and deterring cancer cells in the body. To achieve high therapeutic efficacy of gene delivery, various carriers have been engineered and developed to provide protection to the genetic materials and efficient delivery to targeted cancer cells. Nanoparticles play an important role in the area of drug delivery and have been widely applied in cancer treatments for the purposes of controlled release and cancer cell targeting. Nanoparticles composed of artificial polymers, proteins, polysaccharides and lipids have been developed for the delivery of therapeutic deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) sequences to target cancer. In addition, the effectiveness of cancer targeting has been enhanced by surface modification or conjugation with biomolecules on the surface of nanoparticles. In this review article we provide an overview on the latest developments in nanoparticle-based targeted gene therapy for lung cancers. Firstly, we outline the conventional therapies and discuss strategies for targeted gene therapy using nanoparticles. Secondly, we provide the most representative and recent researches in lung cancers including malignant pleural mesothelioma, mainly focusing on the application of Polymeric, Lipid-based, and Metal-based nanoparticles. Finally, we discuss current achievements and future challenges. PMID:27294004

  12. Perinatal stem-cell and gene therapy for hemoglobinopathies.

    PubMed

    Surbek, Daniel; Schoeberlein, Andreina; Wagner, Anna

    2008-08-01

    Most genetic diseases of the lymphohematopoietic system, including hemoglobinopathies, can now be diagnosed early in gestation. However, as yet, prenatal treatment is not available. Postnatal therapy by hematopoietic stem cell (HSC) transplantation from bone marrow, mobilized peripheral blood, or umbilical cord blood is possible for several of these diseases, in particular for the hemoglobinopathies, but is often limited by a lack of histocompatible donors, severe treatment-associated morbidity, and preexisting organ damage that developed before birth. In-utero transplantation of allogeneic HSC has been performed successfully in various animal models and recently in humans. However, the clinical success of this novel treatment is limited to diseases in which the fetus is affected by severe immunodeficiency. The lack of donor cell engraftment in nonimmunocompromised hosts is thought to be due to immunologic barriers, as well as to competitive fetal marrow population by host HSCs. Among the possible strategies to circumvent allogeneic HLA barriers, the use of gene therapy by genetically corrected autologous HSCs in the fetus is one of the most promising approaches. The recent development of strategies to overcome failure of efficient transduction of quiescent hematopoietic cells using new vector constructs and transduction protocols opens new perspectives for gene therapy in general, as well as for prenatal gene transfer in particular. The fetus might be especially susceptible for successful gene therapy approaches because of the developing, expanding hematopoietic system during gestation and the immunologic naiveté early in gestation, precluding immune reaction towards the transgene by inducing tolerance. Ethical issues, in particular regarding treatment safety, must be addressed more closely before clinical trials with fetal gene therapy in human pregnancies can be initiated. PMID:18420474

  13. Nanoparticle-based targeted gene therapy for lung cancer.

    PubMed

    Lee, Hung-Yen; Mohammed, Kamal A; Nasreen, Najmunnisa

    2016-01-01

    Despite striking insights on lung cancer progression, and cutting-edge therapeutic approaches the survival of patients with lung cancer, remains poor. In recent years, targeted gene therapy with nanoparticles is one of the most rapidly evolving and extensive areas of research for lung cancer. The major goal of targeted gene therapy is to bring forward a safe and efficient treatment to cancer patients via specifically targeting and deterring cancer cells in the body. To achieve high therapeutic efficacy of gene delivery, various carriers have been engineered and developed to provide protection to the genetic materials and efficient delivery to targeted cancer cells. Nanoparticles play an important role in the area of drug delivery and have been widely applied in cancer treatments for the purposes of controlled release and cancer cell targeting. Nanoparticles composed of artificial polymers, proteins, polysaccharides and lipids have been developed for the delivery of therapeutic deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) sequences to target cancer. In addition, the effectiveness of cancer targeting has been enhanced by surface modification or conjugation with biomolecules on the surface of nanoparticles. In this review article we provide an overview on the latest developments in nanoparticle-based targeted gene therapy for lung cancers. Firstly, we outline the conventional therapies and discuss strategies for targeted gene therapy using nanoparticles. Secondly, we provide the most representative and recent researches in lung cancers including malignant pleural mesothelioma, mainly focusing on the application of Polymeric, Lipid-based, and Metal-based nanoparticles. Finally, we discuss current achievements and future challenges. PMID:27294004

  14. Testing gene therapy vectors in human primary nasal epithelial cultures

    PubMed Central

    Cao, Huibi; Ouyang, Hong; Ip, Wan; Du, Kai; Duan, Wenming; Avolio, Julie; Wu, Jing; Duan, Cathleen; Yeger, Herman; Bear, Christine E; Gonska, Tanja; Hu, Jim; Moraes, Theo J

    2015-01-01

    Cystic fibrosis (CF) results from mutations in the CF transmembrane conductance regulator (CFTR) gene, which codes for a chloride/bicarbonate channel in the apical epithelial membranes. CFTR dysfunction results in a multisystem disease including the development of life limiting lung disease. The possibility of a cure for CF by replacing defective CFTR has led to different approaches for CF gene therapy; all of which ultimately have to be tested in preclinical model systems. Primary human nasal epithelial cultures (HNECs) derived from nasal turbinate brushing were used to test the efficiency of a helper-dependent adenoviral (HD-Ad) vector expressing CFTR. HD-Ad-CFTR transduction resulted in functional expression of CFTR at the apical membrane in nasal epithelial cells obtained from CF patients. These results suggest that HNECs can be used for preclinical testing of gene therapy vectors in CF. PMID:26730394

  15. Towards autotrophic tissue engineering: Photosynthetic gene therapy for regeneration.

    PubMed

    Chávez, Myra Noemi; Schenck, Thilo Ludwig; Hopfner, Ursula; Centeno-Cerdas, Carolina; Somlai-Schweiger, Ian; Schwarz, Christian; Machens, Hans-Günther; Heikenwalder, Mathias; Bono, María Rosa; Allende, Miguel L; Nickelsen, Jörg; Egaña, José Tomás

    2016-01-01

    The use of artificial tissues in regenerative medicine is limited due to hypoxia. As a strategy to overcome this drawback, we have shown that photosynthetic biomaterials can produce and provide oxygen independently of blood perfusion by generating chimeric animal-plant tissues during dermal regeneration. In this work, we demonstrate the safety and efficacy of photosynthetic biomaterials in vivo after engraftment in a fully immunocompetent mouse skin defect model. Further, we show that it is also possible to genetically engineer such photosynthetic scaffolds to deliver other key molecules in addition to oxygen. As a proof-of-concept, biomaterials were loaded with gene modified microalgae expressing the angiogenic recombinant protein VEGF. Survival of the algae, growth factor delivery and regenerative potential were evaluated in vitro and in vivo. This work proposes the use of photosynthetic gene therapy in regenerative medicine and provides scientific evidence for the use of engineered microalgae as an alternative to deliver recombinant molecules for gene therapy. PMID:26474040

  16. The Promise of Gene Therapy for Pancreatic Cancer.

    PubMed

    Vassaux, Georges; Angelova, Assia; Baril, Patrick; Midoux, Patrick; Rommelaere, Jean; Cordelier, Pierre

    2016-02-01

    Unlike for other digestive cancer entities, chemotherapy, radiotherapy, and targeted therapies have, so far, largely failed to improve patient survival in pancreatic adenocarcinoma (PDAC), which remains the fourth leading cause of cancer-related death in Europe and the United States. In this context, gene therapy may offer a new avenue for patients with PDAC. In this review, we explore the research currently ongoing in French laboratories aimed at defeating PDAC using nonviral therapeutic gene delivery, targeted transgene expression, or oncolytic virotherapy that recently or will soon bridge the gap between experimental models of cancer and clinical trials. These studies are likely to change clinical practice or thinking about PDAC management, as they represent a major advance not only for PDAC but may also significantly influence the field of gene-based molecular treatment of cancer. PMID:26603492

  17. Testing gene therapy vectors in human primary nasal epithelial cultures.

    PubMed

    Cao, Huibi; Ouyang, Hong; Ip, Wan; Du, Kai; Duan, Wenming; Avolio, Julie; Wu, Jing; Duan, Cathleen; Yeger, Herman; Bear, Christine E; Gonska, Tanja; Hu, Jim; Moraes, Theo J

    2015-01-01

    Cystic fibrosis (CF) results from mutations in the CF transmembrane conductance regulator (CFTR) gene, which codes for a chloride/bicarbonate channel in the apical epithelial membranes. CFTR dysfunction results in a multisystem disease including the development of life limiting lung disease. The possibility of a cure for CF by replacing defective CFTR has led to different approaches for CF gene therapy; all of which ultimately have to be tested in preclinical model systems. Primary human nasal epithelial cultures (HNECs) derived from nasal turbinate brushing were used to test the efficiency of a helper-dependent adenoviral (HD-Ad) vector expressing CFTR. HD-Ad-CFTR transduction resulted in functional expression of CFTR at the apical membrane in nasal epithelial cells obtained from CF patients. These results suggest that HNECs can be used for preclinical testing of gene therapy vectors in CF. PMID:26730394

  18. Regulatory Oversight of Gene Therapy and Cell Therapy Products in Korea.

    PubMed

    Choi, Minjoung; Han, Euiri; Lee, Sunmi; Kim, Taegyun; Shin, Won

    2015-01-01

    The Ministry of Food and Drug Safety regulates gene therapy and cell therapy products as biological products under the authority of the Pharmaceutical Affairs Act. As with other medicinal products, gene therapy and cell therapy products are subject to approval for use in clinical trials and for a subsequent marketing authorization and to post-market surveillance. Research and development of gene therapy and cell therapy products have been progressing rapidly in Korea with extensive investment, offering great potential for the treatment of various serious diseases. To facilitate development of safe and effective products and provide more opportunities to patients suffering from severe diseases, several regulatory programs, such as the use of investigational products for emergency situations, fast-track approval, prereview of application packages, and intensive regulatory consultation, can be applied to these products. The regulatory approach for these innovative products is case by case and founded on science-based review that is flexible and balances the risks and benefits. PMID:26374218

  19. Gene marking and gene therapy directed at primary hematopoietic cells.

    PubMed

    Dunbar, C E; Young, N S

    1996-11-01

    The past year has been a very active one in the field of gene transfer to hematopoietic targets, specifically stem cells and T cells. A number of clinical trials were published that both demonstrated progress as well as identified problems that investigators will face in trying to make the technology therapeutically applicable. Important laboratory and animal experiments focused on predictive models for human stem cell behavior, methods for culturing and expanding primitive cells ex vivo, immune responses against transgenes, in vitro and in vivo selection of transduced cells, and alternatives to standard retroviral vectors. PMID:9372114

  20. Gene therapy: Biological pacemaker created by gene transfer

    NASA Astrophysics Data System (ADS)

    Miake, Junichiro; Marbán, Eduardo; Nuss, H. Bradley

    2002-09-01

    The pacemaker cells of the heart initiate the heartbeat, sustain the circulation, and dictate the rate and rhythm of cardiac contraction. Circulatory collapse ensues when these specialized cells are damaged by disease, a situation that currently necessitates the implantation of an electronic pacemaker. Here we report the use of viral gene transfer to convert quiescent heart-muscle cells into pacemaker cells, and the successful generation of spontaneous, rhythmic electrical activity in the ventricle in vivo. Our results indicate that genetically engineered pacemakers could be developed as a possible alternative to implantable electronic devices.

  1. Oncogenesis following delivery of a nonprimate lentiviral gene therapy vector to fetal and neonatal mice.

    PubMed

    Themis, Mike; Waddington, Simon N; Schmidt, Manfred; von Kalle, Christof; Wang, Yoahe; Al-Allaf, Faisal; Gregory, Lisa G; Nivsarkar, Megha; Themis, Matthew; Holder, Maxine V; Buckley, Suzanne M K; Dighe, Niraja; Ruthe, Alaine T; Mistry, Ajay; Bigger, Brian; Rahim, Ahad; Nguyen, Tuan H; Trono, Didier; Thrasher, Adrian J; Coutelle, Charles

    2005-10-01

    Gene therapy by use of integrating vectors carrying therapeutic transgene sequences offers the potential for a permanent cure of genetic diseases by stable vector insertion into the patients' chromosomes. However, three cases of T cell lymphoproliferative disease have been identified almost 3 years after retrovirus gene therapy for X-linked severe combined immune deficiency. In two of these cases vector insertion into the LMO2 locus was implicated in leukemogenesis, demonstrating that a more profound understanding is required of the genetic and molecular effects imposed on the host by vector integration or transgene expression. In vivo models to test for retro- and lentiviral vector safety prior to clinical application are therefore needed. Here we present a high incidence of lentiviral vector-associated tumorigenesis following in utero and neonatal gene transfer in mice. This system may provide a highly sensitive model to investigate integrating vector safety prior to clinical application. PMID:16084128

  2. Role of nanotechnology and gene delivery systems in TRAIL-based therapies

    PubMed Central

    Naoum, George E; Tawadros, Fady; Farooqi, Ammad Ahmad; Qureshi, Muhammad Zahid; Tabassum, Sobia; Buchsbaum, Donald J; Arafat, Waleed

    2016-01-01

    Since its identification as a member of the tumour necrosis factor (TNF) family, TRAIL (TNF-related apoptosis-inducing ligand) has emerged as a new avenue in apoptosis-inducing cancer therapies. Its ability to circumvent the chemoresistance of conventional therapeutics and to interact with cancer stem cells (CSCs) self-renewal pathways, amplified its potential as a cancer apoptotic agent. Many recombinant preparations of this death ligand and monoclonal antibodies targeting its death receptors have been tested in monotherapy and combinational clinical trials. Gene therapy is a new approach for cancer treatment which implies viral or non-viral functional transgene induction of apoptosis in cancer cells or repair of the underlying genetic abnormality on a molecular level. The role of this approach in overcoming the traditional barriers of radiation and chemotherapeutics systemic toxicity, risk of recurrence, and metastasis made it a promising platform for cancer treatment. The recent first Food Drug Administration (FDA) approved oncolytic herpes virus for melanoma treatment brings forth the potency of the cancer gene therapy approach in the future. Many gene delivery systems have been studied for intratumoural TRAIL gene delivery alone or in combination with chemotherapeutic agents to produce synergistic cancer cytotoxicity. However, there still remain many obstacles to be conquered for this different gene delivery systems. Nanomedicine on the other hand offers a new frontier for clinical trials and biomedical research. The FDA approved nanodrugs motivates horizon exploration for other nanoscale designed particles’ implications in gene delivery. In this review we aim to highlight the molecular role of TRAIL in apoptosis and interaction with cancer stem cells (CSCs) self-renewal pathways. Finally, we also aim to discuss the different roles of gene delivery systems, mesenchymal cells, and nanotechnology designs in TRAIL gene delivery. PMID:27594905

  3. Role of nanotechnology and gene delivery systems in TRAIL-based therapies.

    PubMed

    Naoum, George E; Tawadros, Fady; Farooqi, Ammad Ahmad; Qureshi, Muhammad Zahid; Tabassum, Sobia; Buchsbaum, Donald J; Arafat, Waleed

    2016-01-01

    Since its identification as a member of the tumour necrosis factor (TNF) family, TRAIL (TNF-related apoptosis-inducing ligand) has emerged as a new avenue in apoptosis-inducing cancer therapies. Its ability to circumvent the chemoresistance of conventional therapeutics and to interact with cancer stem cells (CSCs) self-renewal pathways, amplified its potential as a cancer apoptotic agent. Many recombinant preparations of this death ligand and monoclonal antibodies targeting its death receptors have been tested in monotherapy and combinational clinical trials. Gene therapy is a new approach for cancer treatment which implies viral or non-viral functional transgene induction of apoptosis in cancer cells or repair of the underlying genetic abnormality on a molecular level. The role of this approach in overcoming the traditional barriers of radiation and chemotherapeutics systemic toxicity, risk of recurrence, and metastasis made it a promising platform for cancer treatment. The recent first Food Drug Administration (FDA) approved oncolytic herpes virus for melanoma treatment brings forth the potency of the cancer gene therapy approach in the future. Many gene delivery systems have been studied for intratumoural TRAIL gene delivery alone or in combination with chemotherapeutic agents to produce synergistic cancer cytotoxicity. However, there still remain many obstacles to be conquered for this different gene delivery systems. Nanomedicine on the other hand offers a new frontier for clinical trials and biomedical research. The FDA approved nanodrugs motivates horizon exploration for other nanoscale designed particles' implications in gene delivery. In this review we aim to highlight the molecular role of TRAIL in apoptosis and interaction with cancer stem cells (CSCs) self-renewal pathways. Finally, we also aim to discuss the different roles of gene delivery systems, mesenchymal cells, and nanotechnology designs in TRAIL gene delivery. PMID:27594905

  4. Artemisinin-based combination therapies for uncomplicated malaria.

    PubMed

    Davis, Timothy M E; Karunajeewa, Harin A; Ilett, Kenneth F

    2005-02-21

    There has been a relentless increase in resistance of malaria parasites to conventional antimalarial drugs, including chloroquine, sulfadoxine-pyrimethamine and mefloquine. In response to this situation, short-course artemisinin-based combination therapies (ACTs) have been developed. The World Health Organization has endorsed ACT as first-line treatment where the potentially life-threatening parasite Plasmodium falciparum is the predominant infecting species. ACTs combine the rapid schizontocidal activity of an artemisinin derivative (artesunate, artemether or dihydroartemisinin) with a longer-half-life partner drug. Although the use of chloroquine and sulfadoxine-pyrimethamine as partners in ACT improves their efficacy, this may only have value as a short-term measure in patients with a degree of immunity to malaria. Alternative currently available partner drugs include mefloquine, lumefantrine and piperaquine. Artesunate-mefloquine is highly effective but is expensive and side effects (mainly neurotoxicity) can be problematic. Artemether-lumefantrine, the only ACT available in Australia, appears less effective than artesunate-mefloquine and needs to be administered with food to ensure adequate bioavailability. Dihydroartemisinin-piperaquine is highly effective, well tolerated and relatively inexpensive. The goal of potent, safe, easy-to-administer and inexpensive ACTs may see trioxolanes in place of artemisinin derivatives, as well as novel partner drugs such as pyronaridine or naphthoquine, in the future. PMID:15720175

  5. Quantifying the pharmacology of antimalarial drug combination therapy.

    PubMed

    Hastings, Ian M; Hodel, Eva Maria; Kay, Katherine

    2016-01-01

    Most current antimalarial drugs are combinations of an artemisinin plus a 'partner' drug from another class, and are known as artemisinin-based combination therapies (ACTs). They are the frontline drugs in treating human malaria infections. They also have a public-health role as an essential component of recent, comprehensive scale-ups of malaria interventions and containment efforts conceived as part of longer term malaria elimination efforts. Recent reports that resistance has arisen to artemisinins has caused considerable concern. We investigate the likely impact of artemisinin resistance by quantifying the contribution artemisinins make to the overall therapeutic capacity of ACTs. We achieve this using a simple, easily understood, algebraic approach and by more sophisticated pharmacokinetic/pharmacodynamic analyses of drug action; the two approaches gave consistent results. Surprisingly, the artemisinin component typically makes a negligible contribution (≪0.0001%) to the therapeutic capacity of the most widely used ACTs and only starts to make a significant contribution to therapeutic outcome once resistance has started to evolve to the partner drugs. The main threat to antimalarial drug effectiveness and control comes from resistance evolving to the partner drugs. We therefore argue that public health policies be re-focussed to maximise the likely long-term effectiveness of the partner drugs. PMID:27604175

  6. Treatment of porcine Pseudomonas ARDS with combination drug therapy.

    PubMed

    Sielaff, T D; Sugerman, H J; Tatum, J L; Kellum, J M; Blocher, C R

    1987-12-01

    A combination drug therapy (Poly-5: ibuprofen 12.5 mg/kg, methylprednisolone 30 mg/kg, cimetidine 150 mg, diphenhydramine 10 mg/kg, and ketanserin 0.2 mg/kg) given at 20 and 120 minutes after starting continuous intravenous Pseudomonas (Ps, 5 X 10(8) CFU/20 kg/min) was studied in three groups of swine: saline control (C, n = 9), Ps alone (Ps, n = 8), and Ps plus Poly-5 (n = 5). PaO2, systemic (SAP) and pulmonary arterial (PAP) pressures, cardiac index (CI), thermal-cardiogreen extravascular lung water (EVLW), pulmonary albumin flux (slope index, SI), and arterial blood serotonin levels (5-HT) were measured. Ps produced significant (p less than 0.05) increases in PAP, EVLW, and SI with decreases in PaO2, CI, and SAP. 5-HT fell significantly compared to baseline. Poly-5 prevented (p less than 0.05) the rise in EVLW and SI and the fall in PaO2 and CI compared to Ps. PAP and SI were maintained at C until 90 and 150 minutes, respectively. SAP fell significantly from C at 30, 60, and 180 minutes. 5-HT was significantly lower than Ps throughout, and significantly lower than baseline at 180 minutes. Combined blockade of arachidonic acid metabolites, histamine, and serotonin receptors prevented hypoxemia, increased pulmonary capillary permeability, and cardiovascular deterioration in this porcine septic ARDS model. PMID:3694722

  7. Combination Therapy in the Management of Atrophic Acne Scars

    PubMed Central

    Garg, Shilpa; Baveja, Sukriti

    2014-01-01

    Background: Atrophic acne scars are difficult to treat. The demand for less invasive but highly effective treatment for scars is growing. Objective: To assess the efficacy of combination therapy using subcision, microneedling and 15% trichloroacetic acid (TCA) peel in the management of atrophic scars. Materials and Methods: Fifty patients with atrophic acne scars were graded using Goodman and Baron Qualitative grading. After subcision, dermaroller and 15% TCA peel were performed alternatively at 2-weeks interval for a total of 6 sessions of each. Grading of acne scar photographs was done pretreatment and 1 month after last procedure. Patients own evaluation of improvement was assessed. Results: Out of 16 patients with Grade 4 scars, 10 (62.5%) patients improved to Grade 2 and 6 (37.5%) patients improved to Grade 3 scars. Out of 22 patients with Grade 3 scars, 5 (22.7%) patients were left with no scars, 2 (9.1%) patients improved to Grade 1and 15 (68.2%) patients improved to Grade 2. All 11 (100%) patients with Grade 2 scars were left with no scars. There was high level of patient satisfaction. Conclusion: This combination has shown good results in treating not only Grade 2 but also severe Grade 4 and 3 scars. PMID:24761094

  8. Search for "weapons of mass destruction" for cancer -- immuno/ gene therapy comes of age.

    PubMed

    Wei, Ming Q; Metharom, Pat; Ellem, Kay A O; Barth, Stefan

    2005-10-01

    The complexity of a cancer, such as cell heterogeneity, and the existence of hypoxia, stromal cells and stem cells has so far prevented successful development and treatment of patients suffering from the later stages of cancers. At present, the use of conventional therapies, such as chemo/radio therapy is limited, and only therapies that are focused on utilizing the patient's immune response to combat against the disease appear to be the most reliable and promising. Two decades ago, cytokines were discovered to be able to activate the immune systems and mount an anti-tumour response. Then, dendritic cells were hailed as the most significant regulators of immunity and are employed in a variety of cancer management schemes. This review introduces current development in the field, focusing on combination of the components of the rapidly growing fields of immunotherapy and gene transfer/therapy, providing useful and significant detailed information for readers of cellular and molecular immunology. PMID:16368061

  9. Gene therapy for trigeminal pain in mice

    PubMed Central

    Tzabazis, Alexander Z.; Klukinov, Michael; Feliciano, David P.; Wilson, Steven P.; Yeomans, David C.

    2014-01-01

    The aim of this study was to test the efficacy of a single direct injection of viral vector encoding for encephalin to induce a widespread expression of the transgene and potential analgesic effect in trigeminal behavioral pain models in mice. After direct injection of HSV-1 based vectors encoding for human preproenkephalin (SHPE) or the lacZ reporter gene (SHZ.1, control virus) into the trigeminal ganglia in mice, we performed an orofacial formalin test and assessed the cumulative nociceptive behavior at different time points after injection of the viral vectors. We observed an analgesic effect on nociceptive behavior that lasted up to 8 weeks after a single injection of SHPE into the trigeminal ganglia. Control virus injected animals showed nociceptive behavior similar to naïve mice. The analgesic effect of SHPE injection was reversed/attenuated by subcutaneous naloxone injections, a μ-opioid receptor antagonist. SHPE injected mice also showed normalization in withdrawal latencies upon thermal noxious stimulation of inflamed ears after subdermal complete Freund’s adjuvans injection indicating widespread expression of the transgene. Quantitative immunohistochemistry of trigeminal ganglia showed expression of human preproenkephalin after SHPE injection. Direct injection of viral vectors proved to be useful for exploring the distinct pathophysiology of the trigeminal system and could also be an interesting addition to the pain therapists’ armamentarium. PMID:24572785

  10. [Pegylated interferon plus ribavirin combination therapy for patients with chronic hepatitis C].

    PubMed

    Oze, Tsugiko; Hiramatsu, Naoki; Takehara, Tetsuo

    2015-02-01

    The antiviral therapy for patients with chronic hepatitis C virus(HCV) infection has changed from interferon(IFN) monotherapy to dual therapy with IFN plus ribavirin(RBV), moreover pegylated IFN(Peg-IFN) plus RBV. The sustained virologic response(SVR), defined as HCV RNA negativiation at 24 weeks after the treatment, were obtained 50% among the patients with genotype 1 (48 weeks treatment) and 80% among those with genotype 2 (24 weeks treatment) in Peg-IFN plus RBV combination therapy. The baseline host factors such as age, the degree of liver fibrosis progression and a genetic polymorphism near the IL28B gene, the viral factors such as HCV genotype, mutant virus at HCV core region and interferon sensitivity determining region, the treatment factors such as drug adherence and treatment duration have been reported to be associated with SVR. The risk for hepatocellular carcinoma (HCC) incidence was significantly lower in SVR patients than non-SVR patients. Especially, alpha-fetoprotein (AFP) levels decreased through therapy, and the patients with < 5 ng/mL had a low potential of HCC incidence regardless of HCV eradication. It is suggested that AFP levels at 24 weeks after the treatment can be a good surrogate marker for HCC incidence irrespective of the virologic response. PMID:25764679

  11. Polymeric oncolytic adenovirus for cancer gene therapy

    PubMed Central

    Choi, Joung-Woo; Lee, Young Sook; Yun, Chae-Ok; Kim, Sung Wan

    2015-01-01

    Oncolytic adenovirus (Ad) vectors present a promising modality to treat cancer. Many clinical trials have been done with either naked oncolytic Ad or combination with chemotherapies. However, the systemic injection of oncolytic Ad in clinical applications is restricted due to significant liver toxicity and immunogenicity. To overcome these issues, Ad has been engineered physically or chemically with numerous polymers for shielding the Ad surface, accomplishing extended blood circulation time and reduced immunogenicity as well as hepatotoxicity. In this review, we describe and classify the characteristics of polymer modified oncolytic Ad following each strategy for cancer treatment. Furthermore, this review concludes with the highlights of various polymer-coated Ads and their prospects, and directions for future research. PMID:26453806

  12. Gene Profiling Technique to Accelerate Stem Cell Therapies for Eye Diseases

    MedlinePlus

    ... to accelerate stem cell therapies for eye diseases Gene profiling technique to accelerate stem cell therapies for ... The method simultaneously measures the expression of multiple genes, allowing scientists to quickly characterize cells according to ...

  13. 77 FR 73472 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-10

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Cellular, Tissue and Gene Therapies Advisory Committee... and Gene Therapies Advisory Committee. General Function of the Committee: To provide advice...

  14. A Treatment Planning Method for Sequentially Combining Radiopharmaceutical Therapy and External Radiation Therapy;External beam therapy; Radiopharmaceutical therapy; Three-dimensional dosimetry; Treatment planning

    SciTech Connect

    Hobbs, Robert F.; McNutt, Todd; Baechler, Sebastien; He Bin; Esaias, Caroline E.; Frey, Eric C.; Loeb, David M.; Wahl, Richard L.; Shokek, Ori; Sgouros, George

    2011-07-15

    Purpose: Effective cancer treatment generally requires combination therapy. The combination of external beam therapy (XRT) with radiopharmaceutical therapy (RPT) requires accurate three-dimensional dose calculations to avoid toxicity and evaluate efficacy. We have developed and tested a treatment planning method, using the patient-specific three-dimensional dosimetry package 3D-RD, for sequentially combined RPT/XRT therapy designed to limit toxicity to organs at risk. Methods and Materials: The biologic effective dose (BED) was used to translate voxelized RPT absorbed dose (D{sub RPT}) values into a normalized total dose (or equivalent 2-Gy-fraction XRT absorbed dose), NTD{sub RPT} map. The BED was calculated numerically using an algorithmic approach, which enabled a more accurate calculation of BED and NTD{sub RPT}. A treatment plan from the combined Samarium-153 and external beam was designed that would deliver a tumoricidal dose while delivering no more than 50 Gy of NTD{sub sum} to the spinal cord of a patient with a paraspinal tumor. Results: The average voxel NTD{sub RPT} to tumor from RPT was 22.6 Gy (range, 1-85 Gy); the maximum spinal cord voxel NTD{sub RPT} from RPT was 6.8 Gy. The combined therapy NTD{sub sum} to tumor was 71.5 Gy (range, 40-135 Gy) for a maximum voxel spinal cord NTD{sub sum} equal to the maximum tolerated dose of 50 Gy. Conclusions: A method that enables real-time treatment planning of combined RPT-XRT has been developed. By implementing a more generalized conversion between the dose values from the two modalities and an activity-based treatment of partial volume effects, the reliability of combination therapy treatment planning has been expanded.

  15. Combination effect of oncolytic adenovirus therapy and herpes simplex virus thymidine kinase/ganciclovir in hepatic carcinoma animal models

    PubMed Central

    Zheng, Fei-qun; Xu, Yin; Yang, Ren-jie; Wu, Bin; Tan, Xiao-hua; Qin, Yi-de; Zhang, Qun-wei

    2009-01-01

    Aim: Oncolytic adenovirus, also called conditionally replicating adenovirus (CRAD), can selectively propagate in tumor cells and cause cell lysis. The released viral progeny can infect neighboring cancer cells, initiating a cascade that can lead to the ultimate destruction of the tumor. Suicide gene therapy using herpes simplex virus thymidine kinase (HSV-TK) and ganciclovir (GCV) offers a potential treatment strategy for cancer and is undergoing preclinical trials for a variety of tumors. We hypothesized that HSV-TK gene therapy combined with oncolytic adenoviral therapy would have an enhanced effect compared with the individual effects of the therapies and is a potential novel therapeutic strategy to treat liver cancer. Methods: To address our hypothesis, a novel CRAD was created, which consisted of a telomerase-dependent oncolytic adenovirus engineered to express E1A and HSV-TK genes (Ad-ETK). The combined effect of Ad-ETK and GCV was assessed both in vitro and in vivo in nude mice bearing HepG2 cell-derived tumors. Expression of the therapeutic genes by the transduced tumor cells was analyzed by RT-PCR and Western blotting. Results: We confirmed that Ad-ETK had antitumorigenic effects on human hepatocellular carcinoma (HCC) both in vitro and in vivo, and the TK/GCV system enhanced oncolytic adenoviral therapy. We confirmed that both E1A and HSV-TK genes were expressed in vivo. Conclusion: The Ad-ETK construct should provide a relatively safe and selective approach to killing cancer cells and should be investigated as an adjuvant therapy for hepatocellular carcinoma. PMID:19363518

  16. Bacteriophages and medical oncology: targeted gene therapy of cancer.

    PubMed

    Bakhshinejad, Babak; Karimi, Marzieh; Sadeghizadeh, Majid

    2014-08-01

    Targeted gene therapy of cancer is of paramount importance in medical oncology. Bacteriophages, viruses that specifically infect bacterial cells, offer a variety of potential applications in biomedicine. Their genetic flexibility to go under a variety of surface modifications serves as a basis for phage display methodology. These surface manipulations allow bacteriophages to be exploited for targeted delivery of therapeutic genes. Moreover, the excellent safety profile of these viruses paves the way for their potential use as cancer gene therapy platforms. The merge of phage display and combinatorial technology has led to the emergence of phage libraries turning phage display into a high throughput technology. Random peptide libraries, as one of the most frequently used phage libraries, provide a rich source of clinically useful peptide ligands. Peptides are known as a promising category of pharmaceutical agents in medical oncology that present advantages such as inexpensive synthesis, efficient tissue penetration and the lack of immunogenicity. Phage peptide libraries can be screened, through biopanning, against various targets including cancer cells and tissues that results in obtaining cancer-homing ligands. Cancer-specific peptides isolated from phage libraries show huge promise to be utilized for targeting of various gene therapy vectors towards malignant cells. Beyond doubt, bacteriophages will play a more impressive role in the future of medical oncology. PMID:25012686

  17. Suicide Gene Therapy for Cancer – Current Strategies

    PubMed Central

    Zarogoulidis, Paul; Darwiche, Kaid; Sakkas, Antonios; Yarmus, Lonny; Huang, Haidong; Li, Qiang; Freitag, Lutz; Zarogoulidis, Konstantinos; Malecki, Marek

    2013-01-01

    Current cancer treatments may create profound iatrogenic outcomes. The adverse effects of these treatments still remain, as the serious problems that practicing physicians have to cope with in clinical practice. Although, non-specific cytotoxic agents constitute an effective treatment modality against cancer cells, they also tend to kill normal, quickly dividing cells. On the other hand, therapies targeting the genome of the tumors are both under investigation, and some others are already streamlined to clinical practice. Several approaches have been investigated in order to find a treatment targeting the cancer cells, while not affecting the normal cells. Suicide gene therapy is a therapeutic strategy, in which cell suicide inducing transgenes are introduced into cancer cells. The two major suicide gene therapeutic strategies currently pursued are: cytosine deaminase/5-fluorocytosine and the herpes simplex virus/ganciclovir. The novel strategies include silencing gene expression, expression of intracellular antibodies blocking cells’ vital pathways, and transgenic expression of caspases and DNases. We analyze various elements of cancer cells’ suicide inducing strategies including: targets, vectors, and mechanisms. These strategies have been extensively investigated in various types of cancers, while exploring multiple delivery routes including viruses, non-viral vectors, liposomes, nanoparticles, and stem cells. We discuss various stages of streamlining of the suicide gene therapy into clinical oncology as applied to different types of cancer. Moreover, suicide gene therapy is in the center of attention as a strategy preventing cancer from developing in patients participating in the clinical trials of regenerative medicine. In oncology, these clinical trials are aimed at regenerating, with the aid of stem cells, of the patients’ organs damaged by pathologic and/or iatrogenic factors. However, the stem cells carry the risk of neoplasmic transformation. We

  18. To Bleed or Not to Bleed. A Prediction Based on Individual Gene Profiling Combined With Dose-Volume Histogram Shapes in Prostate Cancer Patients Undergoing Three-Dimensional Conformal Radiation Therapy

    SciTech Connect

    Valdagni, Riccardo Rancati, Tiziana; Ghilotti, Marco; Cozzarini, Cesare; Vavassori, Vittorio; Fellin, Gianni; Fiorino, Claudio; Girelli, Giuseppe; Barra, Salvina; Zaffaroni, Nadia; Pierotti, Marco Alessandro; Gariboldi, Manuela

    2009-08-01

    Purpose: The main purpose of this work was to try to elucidate why, despite excellent rectal dose-volume histograms (DVHs), some patients treated for prostate cancer exhibit late rectal bleeding (LRB) and others with poor DVHs do not. Thirty-five genes involved in DNA repair/radiation response were analyzed in patients accrued in the AIROPROS 0101 trial, which investigated the correlation between LRB and dosimetric parameters. Methods and Materials: Thirty patients undergoing conformal radiotherapy with prescription doses higher than 70 Gy (minimum follow-up, 48 months) were selected: 10 patients in the low-risk group (rectal DVH with the percent volume of rectum receiving more than 70 Gy [V70Gy] < 20% and the percent volume of rectum receiving more than 50 Gy [V50Gy] < 55%) with Grade 2 or Grade 3 (G2-G3) LRB, 10 patients in the high-risk group (V70Gy > 25% and V50Gy > 60%) with G2-G3 LRB, and 10 patients in the high-risk group with no toxicity. Quantitative reverse-transcriptase polymerase chain reaction was performed on RNA from lymphoblastoid cell lines obtained from Epstein-Barr virus-immortalized peripheral-blood mononucleated cells and on peripheral blood mononucleated cells. Interexpression levels were compared by using the Kruskal-Wallis test. Results: Intergroup comparison showed many constitutive differences: nine genes were significantly down-regulated in the low-risk bleeder group vs. the high-risk bleeder and high-risk nonbleeder groups: AKR1B1 (p = 0.019), BAZ1B (p = 0.042), LSM7 (p = 0.0016), MRPL23 (p = 0.015), NUDT1 (p = 0.0031), PSMB4 (p = 0.079), PSMD1 (p = 0.062), SEC22L1 (p = 0.040), and UBB (p = 0.018). Four genes were significantly upregulated in the high-risk nonbleeder group than in the other groups: DDX17 (p = 0.048), DRAP1 (p = 0.0025), RAD23 (p = 0.015), and SRF (p = 0.024). For most of these genes, it was possible to establish a cut-off value that correctly classified most patients. Conclusions: The predictive value of sensitivity and

  19. Stem cell-based gene therapy activated using magnetic hyperthermia to enhance the treatment of cancer.

    PubMed

    Yin, Perry T; Shah, Shreyas; Pasquale, Nicholas J; Garbuzenko, Olga B; Minko, Tamara; Lee, Ki-Bum

    2016-03-01

    Stem cell-based gene therapies, wherein stem cells are genetically engineered to express therapeutic molecules, have shown tremendous potential for cancer applications owing to their innate ability to home to tumors. However, traditional stem cell-based gene therapies are hampered by our current inability to control when the therapeutic genes are actually turned on, thereby resulting in detrimental side effects. Here, we report the novel application of magnetic core-shell nanoparticles for the dual purpose of delivering and activating a heat-inducible gene vector that encodes TNF-related apoptosis-inducing ligand (TRAIL) in adipose-derived mesenchymal stem cells (AD-MSCs). By combining the tumor tropism of the AD-MSCs with the spatiotemporal MCNP-based delivery and activation of TRAIL expression, this platform provides an attractive means with which to enhance our control over the activation of stem cell-based gene therapies. In particular, we found that these engineered AD-MSCs retained their innate ability to proliferate, differentiate, and, most importantly, home to tumors, making them ideal cellular carriers. Moreover, exposure of the engineered AD-MSCS to mild magnetic hyperthermia resulted in the selective expression of TRAIL from the engineered AD-MSCs and, as a result, induced significant ovarian cancer cell death in vitro and in vivo. PMID:26720500

  20. 76 FR 81513 - Cellular, Tissue, and Gene Therapies Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-28

    ... HUMAN SERVICES Food and Drug Administration Cellular, Tissue, and Gene Therapies Advisory Committee..., Tissue, and Gene Therapies Advisory Committee. General Function of the Committee: To provide advice and... Gene Therapies, Center for Biologics Evaluation and Research, FDA. FDA intends to make...

  1. 78 FR 79699 - Cellular, Tissue, and Gene Therapies Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-31

    ... HUMAN SERVICES Food and Drug Administration Cellular, Tissue, and Gene Therapies Advisory Committee... be open to the public. Name of Committee: Cellular, Tissue, and Gene Therapies Advisory Committee..., Tissue, and Gene Therapies, Center for Biologics Evaluation and Research (CBER), FDA. On February...

  2. 75 FR 66381 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-28

    ... HUMAN SERVICES Food and Drug Administration Cellular, Tissue and Gene Therapies Advisory Committee... be open to the public. Name of Committee: Cellular, Tissue and Gene Therapies Advisory Committee... Lentiviral Vector Based Gene Therapy Products. FDA intends to make background material available to...

  3. 78 FR 44133 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-23

    ... HUMAN SERVICES Food and Drug Administration Cellular, Tissue and Gene Therapies Advisory Committee... be open to the public. Name of Committee: Cellular, Tissue and Gene Therapies Advisory Committee... on guidance documents issued from the Office of Cellular, Tissue and Gene Therapies, Center...

  4. 76 FR 22405 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-21

    ... HUMAN SERVICES Food and Drug Administration Cellular, Tissue and Gene Therapies Advisory Committee... be open to the public. Name of Committee: Cellular, Tissue and Gene Therapies Advisory Committee... gene therapy products for the treatment of retinal disorders. Topics to be considered include...

  5. Progress on gene therapy, cell therapy, and pharmacological strategies toward the treatment of oculopharyngeal muscular dystrophy.

    PubMed

    Harish, Pradeep; Malerba, Alberto; Dickson, George; Bachtarzi, Houria

    2015-05-01

    Oculopharyngeal muscular dystrophy (OPMD) is a muscle-specific, late-onset degenerative disorder whereby muscles of the eyes (causing ptosis), throat (leading to dysphagia), and limbs (causing proximal limb weakness) are mostly affected. The disease is characterized by a mutation in the poly(A)-binding protein nuclear-1 (PABPN1) gene, resulting in a short GCG expansion in the polyalanine tract of PABPN1 protein. Accumulation of filamentous intranuclear inclusions in affected skeletal muscle cells constitutes the pathological hallmark of OPMD. This review highlights the current translational research advances in the treatment of OPMD. In vitro and in vivo disease models are described. Conventional and experimental therapeutic approaches are discussed with emphasis on novel molecular therapies including the use of intrabodies, gene therapy, and myoblast transfer therapy. PMID:25860803

  6. Phenomics of Vascular Disease: The Systematic Approach to the Combination Therapy.

    PubMed

    Han, Yeshan; Li, Li; Zhang, Yaping; Yuan, Hong; Ye, Linda; Zhao, Jianzhong; Duan, Dayue Darrel

    2015-01-01

    Vascular diseases are usually caused by multifactorial pathogeneses involving genetic and environmental factors. Our current understanding of vascular disease is, however, based on the focused genotype/phenotype studies driven by the "one-gene/one-phenotype" hypothesis. Drugs with "pure target" at individual molecules involved in the pathophysiological pathways are the mainstream of current clinical treatments and the basis of combination therapy of vascular diseases. Recently, the combination of genomics, proteomics, and metabolomics has unraveled the etiology and pathophysiology of vascular disease in a big-data fashion and also revealed unmatched relationships between the omic variability and the much narrower definition of various clinical phenotypes of vascular disease in individual patients. Here, we introduce the phenomics strategy that will change the conventional focused phenotype/genotype/genome study to a new systematic phenome/genome/proteome approach to the understanding of pathophysiology and combination therapy of vascular disease. A phenome is the sum total of an organism's phenotypic traits that signify the expression of genome and specific environmental influence. Phenomics is the study of phenome to quantitatively correlate complex traits to variability not only in genome, but also in transcriptome, proteome, metabolome, interactome, and environmental factors by exploring the systems biology that links the genomic and phenomic spaces. The application of phenomics and the phenome-wide associated study (PheWAS) will not only identify a systemically-integrated set of biomarkers for diagnosis and prognosis of vascular disease but also provide novel treatment targets for combination therapy and thus make a revolutionary paradigm shift in the clinical treatment of these devastating diseases. PMID:25313004

  7. Combination therapy for hepatocellular carcinoma: Additive preclinical efficacy of the HDAC inhibitor panobinostat with sorafenib

    PubMed Central

    Lachenmayer, Anja; Toffanin, Sara; Cabellos, Laia; Alsinet, Clara; Hoshida, Yujin; Villanueva, Augusto; Minguez, Beatriz; Tsai, Hung-Wen; Ward, Stephen C.; Thung, Swan; Friedman, Scott L.; Llovet, Josep M.

    2012-01-01

    Background & Aims Hepatocellular carcinoma (HCC) is a heterogeneous cancer in which sorafenib is the only approved systemic therapy. Histone deacetylases (HDAC) are commonly dysregulated in cancer and therefore represent promising targets for therapies, however their role in HCC pathogenesis is still unknown. We analyzed the expression of 11 HDACs in human HCCs and assessed the efficacy of the pan-HDAC inhibitor panobinostat alone and in combination with sorafenib in preclinical models of liver cancer. Methods Gene expression and copy number changes were analyzed in a cohort of 334 human HCCs, while the effects of panobinostat and sorafenib were evaluated in 3 liver cancer cell lines and a murine xenograft model. Results Aberrant HDAC expression was identified and validated in 91 and 243 HCCs, respectively. Upregulation of HDAC3 and 5 mRNAs were significantly correlated with DNA copy number gains. Inhibiting HDACs with panobinostat led to strong anti-tumoral effects in vitro and vivo, enhanced by the addition of sorafenib. Cell viability and proliferation declined, while apoptosis and autophagy increased. Panobinostat increased Histone H3 and HSP90 acetylation, downregulated BIRC5 (survivin) and upregulated CDH1. Combination therapy with panobinostat and sorafenib significantly decreased vessel density, and most significantly decreased tumor volume and increased survival in HCC xenografts. Conclusions Aberrant expression of several HDACs and copy number gains of HDAC3 and HDAC5 occur in HCC. Treatment with panobinostat combined with sorafenib demonstrated the highest preclinical efficacy in HCC models, providing the rationale for clinical studies with this novel combination. PMID:22322234

  8. Phenomics of Vascular Disease: The Systematic Approach to the Combination Therapy

    PubMed Central

    Han, Yeshan; Li, Li; Zhang, Yaping; Yuan, Hong; Ye, Linda; Zhao, Jianzhong; Duan, Dayue Darrel

    2015-01-01

    Vascular diseases are usually caused by multifactorial pathogeneses involving genetic and environmental factors. Our current understanding of vascular disease is, however, based on the focused genotype/phenotype studies driven by the “one-gene/one-phenotype” hypothesis. Drugs with “pure target” at individual molecules involved in the pathophysiological pathways are the mainstream of current clinical treatments and the basis of combination therapy of vascular diseases. Recently, the combination of genomics, proteomics, and metabolomics has unraveled the etiology and pathophysiology of vascular disease in a big-data fashion and also revealed unmatched relationships between the omic variability and the much narrower definition of various clinical phenotypes of vascular disease in individual patients. Here, we introduce the phenomics strategy that will change the conventional focused phenotype/genotype/genome study to a new systematic phenome/genome/proteome approach to the understanding of pathophysiology and combination therapy of vascular disease. A phenome is the sum total of an organism’s phenotypic traits that signify the expression of genome and specific environmental influence. Phenomics is the study of phenome to quantitatively correlate complex traits to variability not only in genome, but also in transcriptome, proteome, metabolome, interactome, and environmental factors by exploring the systems biology that links the genomic and phenomic spaces. The application of phenomics and the phenome-wide associated study (PheWAS) will not only identify a systemically-integrated set of biomarkers for diagnosis and prognosis of vascular disease but also provide novel treatment targets for combination therapy and thus make a revolutionary paradigm shift in the clinical treatment of these devastating diseases.

  9. The application of prodrug-based nano-drug delivery strategy in cancer combination therapy.

    PubMed

    Ge, Yanxiu; Ma, Yakun; Li, Lingbing

    2016-10-01

    Single drug therapy that leads to the multidrug resistance of cancer cells and severe side-effect is a thing of the past. Combination therapies that affect multiple signaling pathways have been the focus of recent active research. Due to the successful development of prodrug-based nano-drug delivery systems (P-N-DDSs), their use has been extended to combination therapy as drug delivery platforms. In this review, we focus specifically on the P-N-DDSs in the field of combination therapy including the combinations of prodrugs with different chemotherapeutic agents, other therapeutic agents, nucleic acid or the combination of different types of therapy (e.g. chemotherapy and phototherapy). The relevant examples of prodrug-based nanoparticulate drug delivery strategy in combination cancer therapy from the recent literature are discussed to demonstrate the feasibilities of relevant technology. PMID:27400243

  10. Combination therapy counteracts the enhanced transmission of drug-resistant malaria parasites to mosquitoes.

    PubMed

    Hallett, Rachel L; Sutherland, Colin J; Alexander, Neal; Ord, Rosalynn; Jawara, Musa; Drakeley, Chris J; Pinder, Margaret; Walraven, Gijs; Targett, Geoffrey A T; Alloueche, Ali

    2004-10-01

    Malaria parasites carrying genes conferring resistance to antimalarials are thought to have a selective advantage which leads to higher rates of transmissibility from the drug-treated host. This is a likely mechanism for the increasing prevalence of parasites with resistance to chloroquine (CQ) and sulfadoxine-pyrimethamine in sub-Saharan Africa. Combination therapy is the key strategy being implemented to reduce the impact of resistance, but its effect on the transmission of genetically resistant parasites from treated patients to mosquito vectors has not been measured directly. In a trial comparing CQ monotherapy to the combination CQ plus artesunate (AS) in Gambian children with uncomplicated falciparum malaria, we measured transmissibility by feeding Anopheles gambiae mosquitoes with blood from 43 gametocyte-positive patients through a membrane. In the CQ-treated group, gametocytes from patients carrying parasites with the CQ resistance-associated allele pfcrt-76T prior to treatment produced infected mosquitoes with 38 times higher Plasmodium falciparum oocyst burdens than mosquitoes fed on gametocytes from patients infected with sensitive parasites (P < 0.001). Gametocytes from parasites carrying the resistance-associated allele pfmdr1-86Y produced 14-fold higher oocyst burdens than gametocytes from patients infected with sensitive parasites (P = 0.011). However, parasites carrying either of these resistance-associated alleles pretreatment were not associated with higher mosquito oocyst burdens in the CQ-AS-treated group. Thus, combination therapy overcomes the transmission advantage enjoyed by drug-resistant parasites. PMID:15388456

  11. Application of electroporation gene therapy: past, current, and future.

    PubMed

    Mir, Lluis M

    2008-01-01

    Twenty-five years after the publication of the first report on gene transfer in vitro in cultured cells by the means of electric pulse delivery, reversible cell electroporation for gene transfer and gene therapy (DNA electrotransfer) is at a crossroad in its development. Present knowledge on the effects of cell exposure to appropriate electric field pulses, particularly at the level of the cell membrane, is reported here as an introduction to the large range of applications described in this book. The importance of the models of electric field distribution in tissues and of the correct choice of electrodes and applied voltages is highlighted. The mechanisms involved in DNA electrotransfer, which include cell electropermeabilization and DNA electrophoresis, are also surveyed. The feasibility of electric pulse for gene transfer in humans is discussed taking into account that electric pulse delivery is already regularly used for localized drug delivery in the treatment of cutaneous and subcutaneous solid tumors by electrochemotherapy. Because recent technological developments have made DNA electrotransfer more efficient and safer, this nonviral gene therapy approach is now ready to reach the clinical stage. A good understanding of DNA electrotransfer principles and a respect for safe procedures will be key elements for the successful future transition of DNA electrotransfer to the clinics. PMID:18370187

  12. Gene mutation-based and specific therapies in precision medicine.

    PubMed

    Wang, Xiangdong

    2016-04-01

    Precision medicine has been initiated and gains more and more attention from preclinical and clinical scientists. A number of key elements or critical parts in precision medicine have been described and emphasized to establish a systems understanding of precision medicine. The principle of precision medicine is to treat patients on the basis of genetic alterations after gene mutations are identified, although questions and challenges still remain before clinical application. Therapeutic strategies of precision medicine should be considered according to gene mutation, after biological and functional mechanisms of mutated gene expression or epigenetics, or the correspondent protein, are clearly validated. It is time to explore and develop a strategy to target and correct mutated genes by direct elimination, restoration, correction or repair of mutated sequences/genes. Nevertheless, there are still numerous challenges to integrating widespread genomic testing into individual cancer therapies and into decision making for one or another treatment. There are wide-ranging and complex issues to be solved before precision medicine becomes clinical reality. Thus, the precision medicine can be considered as an extension and part of clinical and translational medicine, a new alternative of clinical therapies and strategies, and have an important impact on disease cures and patient prognoses. PMID:26994883

  13. Gene, Stem Cell, and Alternative Therapies for SCA 1

    PubMed Central

    Wagner, Jacob L.; O'Connor, Deirdre M.; Donsante, Anthony; Boulis, Nicholas M.

    2016-01-01

    Spinocerebellar ataxia 1 is an autosomal dominant disease characterized by neurodegeneration and motor dysfunction. In disease pathogenesis, polyglutamine expansion within Ataxin-1, a gene involved in transcriptional repression, causes protein nuclear inclusions to form. Most notably, neuronal dysfunction presents in Purkinje cells. However, the effect of mutant Ataxin-1 is not entirely understood. Two mouse models are employed to represent spinocerebellar ataxia 1, a B05 transgenic model that specifically expresses mutant Ataxin-1 in Purkinje cells, and a Sca1 154Q/2Q model that inserts the polyglutamine expansion into the mouse Ataxin-1 locus so that the mutant Ataxin-1 is expressed in all cells that express Ataxin-1. This review aims to summarize and evaluate the wide variety of therapies proposed for spinocerebellar ataxia 1, specifically gene and stem cell therapies. PMID:27570504

  14. Gene, Stem Cell, and Alternative Therapies for SCA 1.

    PubMed

    Wagner, Jacob L; O'Connor, Deirdre M; Donsante, Anthony; Boulis, Nicholas M

    2016-01-01

    Spinocerebellar ataxia 1 is an autosomal dominant disease characterized by neurodegeneration and motor dysfunction. In disease pathogenesis, polyglutamine expansion within Ataxin-1, a gene involved in transcriptional repression, causes protein nuclear inclusions to form. Most notably, neuronal dysfunction presents in Purkinje cells. However, the effect of mutant Ataxin-1 is not entirely understood. Two mouse models are employed to represent spinocerebellar ataxia 1, a B05 transgenic model that specifically expresses mutant Ataxin-1 in Purkinje cells, and a Sca1 154Q/2Q model that inserts the polyglutamine expansion into the mouse Ataxin-1 locus so that the mutant Ataxin-1 is expressed in all cells that express Ataxin-1. This review aims to summarize and evaluate the wide variety of therapies proposed for spinocerebellar ataxia 1, specifically gene and stem cell therapies. PMID:27570504

  15. Viral vectors and delivery strategies for CNS gene therapy

    PubMed Central

    Gray, Steven J; Woodard, Kenton T; Samulski, R Jude

    2015-01-01

    This review aims to provide a broad overview of the targets, challenges and potential for gene therapy in the CNS, citing specific examples. There are a broad range of therapeutic targets, with very different requirements for a suitable viral vector. By utilizing different vector tropisms, novel routes of administration and engineered promoter control, transgenes can be targeted to specific therapeutic applications. Viral vectors have proven efficacious in preclinical models for several disease applications, spurring several clinical trials. While the field has pushed the limits of existing adeno-associated virus-based vectors, a next generation of vectors based on rational engineering of viral capsids should expand the application of gene therapy to be more effective in specific therapeutic applications. PMID:22833965

  16. [Gene therapy for the treatment of inborn errors of metabolism].

    PubMed

    Pérez-López, Jordi

    2014-06-16

    Due to the enzymatic defect in inborn errors of metabolism, there is a blockage in the metabolic pathways and an accumulation of toxic metabolites. Currently available therapies include dietary restriction, empowering of alternative metabolic pathways, and the replacement of the deficient enzyme by cell transplantation, liver transplantation or administration of the purified enzyme. Gene therapy, using the transfer in the body of the correct copy of the altered gene by a vector, is emerging as a promising treatment. However, the difficulty of vectors currently used to cross the blood brain barrier, the immune response, the cellular toxicity and potential oncogenesis are some limitations that could greatly limit its potential clinical application in human beings. PMID:23932565

  17. Degradation of Artemisinin-Based Combination Therapies under Tropical Conditions

    PubMed Central

    Hall, Zoe; Allan, Elizabeth Louise; van Schalkwyk, Donelly Andrew; van Wyk, Albert; Kaur, Harparkash

    2016-01-01

    Poor quality antimalarials, including falsified, substandard, and degraded drugs, are a serious health concern in malaria-endemic countries. Guidelines are lacking on how to distinguish between substandard and degraded drugs. “Forced degradation” in an oven was carried out on three common artemisinin-based combination therapy (ACT) brands to detect products of degradation using liquid chromatography mass spectrometry and help facilitate classification of degraded drugs. “Natural aging” of 2,880 tablets each of ACTs artemether/lumefantrine and artesunate/amodiaquine was undertaken to evaluate their long-term stability in tropical climates. Samples were aged in the presence and absence of light on-site in Ghana and in a stability chamber (London), removed at regular intervals, and analyzed to determine loss of the active pharmaceutical ingredients (APIs) over time and detect products of degradation. Loss of APIs in naturally aged tablets (both in Ghana and the pharmaceutical stability chamber) was 0–7% over 3 years (∼12 months beyond expiry) with low levels of degradation products detected. Using this developed methodology, it was found that a quarter of ACTs purchased in Enugu, Nigeria (concurrent study), that would have been classified as substandard, were in fact degraded. Presence of degradation products together with evidence of insufficient APIs can be used to classify drugs as degraded. PMID:26951346

  18. Polymeric-gold nanohybrids for combined imaging and cancer therapy.

    PubMed

    Topete, Antonio; Alatorre-Meda, Manuel; Villar-Alvarez, Eva M; Carregal-Romero, Susana; Barbosa, Silvia; Parak, Wolfgang J; Taboada, Pablo; Mosquera, Víctor

    2014-08-01

    Here, the use of folic acid (FA)-functionalized, doxorubicin (DOXO)/superparamagnetic iron oxide nanoparticles (SPION)-loaded poly(lactic-co-glycolic acid) (PLGA)-Au porous shell nanoparticles (NPs) as potential nanoplatforms is reported for targeted multimodal chemo- and photothermal therapy combined with optical and magnetic resonance imaging in cancer. These polymeric-gold nanohybrids (PGNH) are produced by a seeded-growth method using chitosan as an electrostatic "glue" to attach Au seeds to DOXO/SPION-PLGA NPs. In order to determine their potential as theranostic nanoplatforms, their physicochemical properties, cellular uptake, and photothermal and chemotherapeutic efficiencies are tested in vitro using a human cervical cancer (HeLa) cell line. The present NPs show a near-infrared (NIR)-light-triggered release of cargo molecules under illumination and a great capacity to induce localized cell death in a well-focused region. The functionalization of the PGNH NPs with the targeting ligand FA improves their internalization efficiency and specificity. Furthermore, the possibility to guide the PGNH NPs to cancer cells by an external magnetic field is also proven in vitro, which additionally increases the cellular uptake and therapeutic efficiency. PMID:24764284

  19. Degradation of Artemisinin-Based Combination Therapies Under Tropical Conditions.

    PubMed

    Hall, Zoe; Allan, Elizabeth Louise; van Schalkwyk, Donelly Andrew; van Wyk, Albert; Kaur, Harparkash

    2016-05-01

    Poor quality antimalarials, including falsified, substandard, and degraded drugs, are a serious health concern in malaria-endemic countries. Guidelines are lacking on how to distinguish between substandard and degraded drugs. "Forced degradation" in an oven was carried out on three common artemisinin-based combination therapy (ACT) brands to detect products of degradation using liquid chromatography mass spectrometry and help facilitate classification of degraded drugs. "Natural aging" of 2,880 tablets each of ACTs artemether/lumefantrine and artesunate/amodiaquine was undertaken to evaluate their long-term stability in tropical climates. Samples were aged in the presence and absence of light on-site in Ghana and in a stability chamber (London), removed at regular intervals, and analyzed to determine loss of the active pharmaceutical ingredients (APIs) over time and detect products of degradation. Loss of APIs in naturally aged tablets (both in Ghana and the pharmaceutical stability chamber) was 0-7% over 3 years (∼12 months beyond expiry) with low levels of degradation products detected. Using this developed methodology, it was found that a quarter of ACTs purchased in Enugu, Nigeria (concurrent study), that would have been classified as substandard, were in fact degraded. Presence of degradation products together with evidence of insufficient APIs can be used to classify drugs as degraded. PMID:26951346

  20. Anti-tumor mechanism in IL-12 Gene therapy using liposomal bubbles and ultrasound

    NASA Astrophysics Data System (ADS)

    Suzuki, Ryo; Oda, Yusuke; Koshima, Risa; Hirata, Keiichi; Nomura, Tetsuya; Negishi, Yoichi; Utoguchi, Naoki; Nakagawa, Shinsaku; Maruyama, Kazuo

    2011-09-01

    Sonoporation combined with nano/microbubbles is an attractive technique for developing non-invasive and non-viral gene delivery systems. Previously, we developed novel ultrasound sensitive liposomes (Bubble liposomes) which contain the ultrasound imaging gas perfluoropropane. IL-12 corded plasmid DNA delivery into tumor tissue by sonoporation combined with Bubble liposomes was found to suppress tumor growth. In this study, we examined the mechanism of the anti-tumor effect in this IL-12 gene delivery. This therapeutic effect was T-cell dependent, requiring mainly CD8+ T lymphocytes in the effector phase, as confirmed by a mouse in vivo depletion assay. In addition, migration of CD8+ T cells was observed in the mice. These results suggest that CD8+ T lymphocytes play an important role in the anti-tumor effects of this IL-12 gene therapy.

  1. Contemporary Animal Models For Human Gene Therapy Applications.

    PubMed

    Gopinath, Chitra; Nathar, Trupti Job; Ghosh, Arkasubhra; Hickstein, Dennis Durand; Remington Nelson, Everette Jacob

    2015-01-01

    Over the past three decades, gene therapy has been making considerable progress as an alternative strategy in the treatment of many diseases. Since 2009, several studies have been reported in humans on the successful treatment of various diseases. Animal models mimicking human disease conditions are very essential at the preclinical stage before embarking on a clinical trial. In gene therapy, for instance, they are useful in the assessment of variables related to the use of viral vectors such as safety, efficacy, dosage and localization of transgene expression. However, choosing a suitable disease-specific model is of paramount importance for successful clinical translation. This review focuses on the animal models that are most commonly used in gene therapy studies, such as murine, canine, non-human primates, rabbits, porcine, and a more recently developed humanized mice. Though small and large animals both have their own pros and cons as disease-specific models, the choice is made largely based on the type and length of study performed. While small animals with a shorter life span could be well-suited for degenerative/aging studies, large animals with longer life span could suit longitudinal studies and also help with dosage adjustments to maximize therapeutic benefit. Recently, humanized mice or mouse-human chimaeras have gained interest in the study of human tissues or cells, thereby providing a more reliable understanding of therapeutic interventions. Thus, animal models are of great importance with regard to testing new vector technologies in vivo for assessing safety and efficacy prior to a gene therapy clinical trial. PMID:26415576

  2. Combination of adenovirus and cross-linked low molecular weight PEI improves efficiency of gene transduction

    NASA Astrophysics Data System (ADS)

    Han, Jianfeng; Zhao, Dong; Zhong, Zhirong; Zhang, Zhirong; Gong, Tao; Sun, Xun

    2010-03-01

    Recombinant adenovirus (Ad)-mediated gene therapy is an exciting novel strategy in cancer treatment. However, poor infection efficiency with coxsackievirus and adenovirus receptor (CAR) down-regulated cancer cell lines is one of the major challenges for its practical and extensive application. As an alternative method of viral gene delivery, a non-viral carrier using cationic materials could compensate for the limitation of adenovirus. In our study, adenovectors were complexed with a new synthetic polymer PEI-DEG-bis-NPC (PDN) based on polyethylenimine (PEI), and then the properties of the vehicle were characterized by measurement of size distribution, zeta potential and transmission electron microscopy (TEM). Enhancement of gene transduction by Ad/PDN complexes was observed in both CAR-overexpressing cell lines (A549) and CAR-lacking cell lines (MDCK, CHO, LLC), as a result of facilitating binding and cell uptake of adenoviral particles by the cationic component. Ad/PDN complexes also promoted the inhibition of tumor growth in vivo and prolonged the survival time of tumor-bearing mice. These data suggest that a combination of viral and non-viral gene delivery methods may offer a new approach to successful cancer gene therapy.

  3. The Challenge for Gene Therapy: Innate Immune Response to Adenoviruses

    PubMed Central

    Thaci, Bart; Ulasov, Ilya V.; Wainwright, Derek A.; Lesniak, Maciej S.

    2011-01-01

    Adenoviruses are the most commonly used vectors for gene therapy. Despite the promising safety profile demonstrated in clinical trials, the efficacy of using adenoviruses for gene therapy is poor. A major hurdle to adenoviral-mediated gene therapy is the innate immune system. Cell-mediated recognition of viruses via capsid components or nucleic acids has received significant attention, principally thought to be regulated by the toll-like receptors (TLRs). Antiviral innate immune responses are initiated by the infected cell, which activates the interferon (IFN) response to block viral replication, while simultaneously releasing chemokines to attract neutrophils, mononuclear- and natural killer-cells. While the IFN and cellular recruitment pathways are activated and regulated independently of each other, both are required to overcome immune escape mechanisms by adenoviruses. Recent work has shown that the generation of adenoviral vectors lacking specific transcriptionally-active regions decreases immune system activation and increases the chance for immune escape. In this review, we elucidate how adenoviral vector modifications alter the IFN and innate inflammatory pathway response and propose future targets with clinically-translational relevance. PMID:21399236

  4. Modulation of HCV Replication After Combination Antiretroviral Therapy in HCV/HIV Coinfected Patients

    PubMed Central

    Sherman, Kenneth E.; Guedj, Jeremie; Shata, Mohamed Tarek; Blackard, Jason T.; Rouster, Susan D.; Castro, Mario; Feinberg, Judith; Sterling, Richard K.; Goodman, Zachary; Aronow, Bruce J.; Perelson, Alan S.

    2015-01-01

    The hepatitis C virus (HCV) is an important contributor to morbidity and mortality in patients coinfected with human immunodeficiency virus (HIV). Coinfection results in increased HCV replication and more rapid rates of liver disease progression. The effect of HIV combination antiretroviral therapy (cART) on HCV replication has not been studied in depth. To address this issue, we enrolled a small cohort of HCV/HIV coinfected patients into a cART initiation trial, and used dynamic modeling combined with evaluation of immune responses and microarray profiles to determine how effective treatment of HIV affects HCV. Treatment with cART resulted in HCV flare and alanine aminotransferase (ALT) increase (2× or more increase from baseline) in a subset of treated patients. Subjects with evidence of hepatic injury (increased ALT) were more likely to have HCV-specific immune responses directed against HCV epitopes. Over time, HCV viral loads declined. Reproducible and biologically important gene expression changes occurred in patients who underwent successful cART, particularly with respect to downregulation of genes with known antiviral roles. Our findings suggest that the effective suppression of HIV by cART initiates a cascade of early and late events in treated patients with HCV. Early events involving downregulation of interferon-stimulated genes may lead to transiently increased viral replication and hepatic injury. At later time points, HCV viral load declines to levels comparable to those seen in the setting of HCV monoinfection. These findings support early antiretroviral therapy in those with HCV/HIV coinfection. PMID:25101888

  5. Development of HIV vectors for anti-HIV gene therapy.

    PubMed Central

    Poeschla, E; Corbeau, P; Wong-Staal, F

    1996-01-01

    Current gene therapy protocols for HIV infection use transfection or murine retrovirus mediated transfer of antiviral genes into CD4+ T cells or CD34+ progenitor cells ex vivo, followed by infusion of the gene altered cells into autologous or syngeneic/allogeneic recipients. While these studies are essential for safety and feasibility testing, several limitations remain: long-term reconstitution of the immune system is not effected for lack of access to the macrophage reservoir or the pluripotent stem cell population, which is usually quiescent, and ex vivo manipulation of the target cells will be too expensive and impractical for global application. In these regards, the lentivirus-specific biologic properties of the HIVs, which underlie their pathogenetic mechanisms, are also advantageous as vectors for gene therapy. The ability of HIV to specifically target CD4+ cells, as well as non-cycling cells, makes it a promising candidate for in vivo gene transfer vector on one hand, and for transduction of non-cycling stem cells on the other. Here we report the use of replication-defective vectors and stable vector packaging cell lines derived from both HIV-1 and HIV-2. Both HIV envelopes and vesicular stomatitis virus glycoprotein G were effective in mediating high-titer gene transfer, and an HIV-2 vector could be cross-packaged by HIV-1. Both HIV-1 and HIV-2 vectors were able to transduce primary human macrophages, a property not shared by murine retroviruses. Vesicular stomatitis virus glycoprotein G-pseudotyped HIV vectors have the potential to mediate gene transfer into non-cycling hematopoietic stem cells. If so, HIV or other lentivirus-based vectors will have applications beyond HIV infection. Images Fig. 1 PMID:8876146

  6. Combination Therapy for Treatment of Infections with Gram-Negative Bacteria

    PubMed Central

    Cosgrove, Sara E.; Maragakis, Lisa L.

    2012-01-01

    Summary: Combination antibiotic therapy for invasive infections with Gram-negative bacteria is employed in many health care facilities, especially for certain subgroups of patients, including those with neutropenia, those with infections caused by Pseudomonas aeruginosa, those with ventilator-associated pneumonia, and the severely ill. An argument can be made for empiric combination therapy, as we are witnessing a rise in infections caused by multidrug-resistant Gram-negative organisms. The wisdom of continued combination therapy after an organism is isolated and antimicrobial susceptibility data are known, however, is more controversial. The available evidence suggests that the greatest benefit of combination antibiotic