Science.gov

Sample records for combine harvesters

  1. Combine harvester monitor system based on wireless sensor network

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A measurement method based on Wireless Sensor Network (WSN) was developed to monitor the working condition of combine harvester for remote application. Three JN5139 modules were chosen for sensor data acquisition and another two as a router and a coordinator, which could create a tree topology netwo...

  2. Wideband energy harvesting using a combination of an optimized synchronous electric charge extraction circuit and a bistable harvester

    NASA Astrophysics Data System (ADS)

    Liu, W. Q.; Badel, A.; Formosa, F.; Wu, Y. P.; Agbossou, A.

    2013-12-01

    The challenge of variable vibration frequencies for energy harvesting calls for the development of wideband energy harvesters. Bistability has been proven to be a potential solution. Optimization of the energy extraction is another important objective for energy harvesting. Nonlinear synchronized switching techniques have demonstrated some of the best performances. This paper presents a novel energy harvesting solution which combines these two techniques: the OSECE (optimized synchronous electric charge extraction) technique is used along with a BSM (buckled-spring-mass) bistable generator to achieve wideband energy harvesting. The effect of the electromechanical coupling coefficient on the harvested power for the bistable harvester with the nonlinear energy extraction technique is discussed for the first time. The performances of the proposed solution for different levels of electromechanical coupling coefficients in the cases of chirp and noise excitations are compared against the performances of the bistable harvester with the standard technique. It is shown that the OSECE technique is a much better option for wideband energy harvesting than the standard circuit. Moreover, the harvested energy is drastically increased for all excitations in the case of low electromechanical coupling coefficients. When the electromechanical coupling coefficient is high, the performance of the OSECE technique is not as good as the standard circuit for forward sweeps, but superior for the reverse sweep and band-limited noise cases. However, considering that real excitation signals are more similar to noise signals, the OSECE technique enhances the performance.

  3. Fundamental Limits in Combine Harvester Header Height Control.

    PubMed

    Xie, Yangmin; Alleyne, Andrew G; Greer, Ashley; Deneault, Dustin

    2013-05-01

    This paper investigates fundamental performance limitations in the control of a combine harvester's header height control system. There are two primary subsystem characteristics that influence the achievable bandwidth by affecting the open loop transfer function. The first subsystem is the mechanical configuration of the combine and header while the second subsystem is the electrohydraulic actuation for the header. The mechanical combine + header subsystem results in an input-output representation that is underactuated and has a noncollocated sensor/actuator pair. The electrohydraulic subsystem introduces a significant time delay. In combination, they each reinforce the effect of the other thereby exacerbating the overall system limitation of the closed loop bandwidth. Experimental results are provided to validate the model and existence of the closed loop bandwidth limitations that stem from specific system design configurations. PMID:23904647

  4. Harvesting

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since the introduction of the first successful mechanical harvester, mechanized cotton harvest has continued to decrease the cost and man hours required to produce a bale of cotton. Cotton harvesting in the US is completely mechanized and is accomplished by two primary machines, the spindle picker a...

  5. Spiral electrode d33 mode piezoelectric diaphragm combined with proof mass as energy harvester

    NASA Astrophysics Data System (ADS)

    Shen, Zhiyuan; Liu, Shuwei; Miao, Jianmin; Woh, Lye Sun; Wang, Zhihong

    2015-03-01

    The paper demonstrates an energy harvester using a freestanding piezoelectric diaphragm combined with a proof mass. The diaphragm bearing double-sided spiral electrodes makes use of the d33 piezoelectric effect to realize energy scavenging. The harvester was fabricated by using a MEMS technique. The energy converting performance of the diaphragm was characterized by a shaker system. Proof masses were combined at the center of the diaphragm to tune the resonance of the harvester for the sake of scavenging low frequency vibrational energy. A receptance model was built to explain the vibrational behavior of the combined system. The resonance tuning and energy harvesting performance of the combination system was experimentally verified.

  6. High School Harvest: Combining Food Service Training and Institutional Procurement

    ERIC Educational Resources Information Center

    Conner, David; Estrin, Hans; Becot, Florence

    2014-01-01

    This article discusses High School Harvest (HSH), an Extension educator-led project in five Vermont schools to provide students with job training and food system education and to provide lightly processed produce to school lunch programs. One hundred and twenty-one students participated, logging 8,752 hours growing, harvesting, and processing…

  7. Timber harvest planning a combined optimization/simulation model

    SciTech Connect

    Arthur, J.L.; Dykstra, D.P.

    1980-11-01

    A special cascading fixed charge model can be used to characterize a forest management planning problem in which the objectives are to identify the optimal shape of forest harvest cutting units and simultaneously to assign facilities for logging those units. A four-part methodology was developed to assist forest managers in analyzing areas proposed for harvesting. This methodology: analyzes harvesting feasibility; computes the optimal solution to the cascading fixed charge problem; undertakes a GASP IV simulation to provide additional information about the proposed harvesting operation; and permits the forest manager to perform a time-cost analysis that may lead to a more realistic, and thus improved, solution. (5 diagrams, 16 references, 3 tables)

  8. Hybrid acoustic energy harvesting using combined electromagnetic and piezoelectric conversion.

    PubMed

    Khan, Farid Ullah; Izhar

    2016-02-01

    This paper reports a novel hybrid acoustic energy harvester. The harvester utilizes both the electromagnetic and piezoelectric conversion mechanisms simultaneously to convert the ambient acoustical noise into electrical power for self-powered wireless sensor nodes. The proposed harvester is comprised of a Helmholtz resonator, two magnets mounted on a piezoelectric plate, and a wound coil located under the magnets. The harvester is characterized both under harmonic and real random acoustical excitations. In-lab, under harmonic acoustical excitation at a sound pressure level of 130 dB and frequency of 2.1 kHz, an optimum power of 2.86 μW (at 114 Ω optimum load) is obtained from electromagnetic conversion and 50 μW (at 1000 Ω optimum load) is generated by the piezoelectric harvester's part. Moreover, in real acoustical environment of a domestic electric generator the peak voltages of 40 and 123 mV are produced by the electromagnetic and piezoelectric portions of the acoustic energy harvester. PMID:26931884

  9. Hybrid acoustic energy harvesting using combined electromagnetic and piezoelectric conversion

    NASA Astrophysics Data System (ADS)

    Khan, Farid Ullah; Izhar

    2016-02-01

    This paper reports a novel hybrid acoustic energy harvester. The harvester utilizes both the electromagnetic and piezoelectric conversion mechanisms simultaneously to convert the ambient acoustical noise into electrical power for self-powered wireless sensor nodes. The proposed harvester is comprised of a Helmholtz resonator, two magnets mounted on a piezoelectric plate, and a wound coil located under the magnets. The harvester is characterized both under harmonic and real random acoustical excitations. In-lab, under harmonic acoustical excitation at a sound pressure level of 130 dB and frequency of 2.1 kHz, an optimum power of 2.86 μW (at 114 Ω optimum load) is obtained from electromagnetic conversion and 50 μW (at 1000 Ω optimum load) is generated by the piezoelectric harvester's part. Moreover, in real acoustical environment of a domestic electric generator the peak voltages of 40 and 123 mV are produced by the electromagnetic and piezoelectric portions of the acoustic energy harvester.

  10. Remote Fault Information Acquisition and Diagnosis System of the Combine Harvester Based on LabVIEW

    NASA Astrophysics Data System (ADS)

    Chen, Jin; Wu, Pei; Xu, Kai

    Most combine harvesters have not be equipped with online fault diagnosis system. A fault information acquisition and diagnosis system of the Combine Harvester based on LabVIEW is designed, researched and developed. Using ARM development board, by collecting many sensors' signals, this system can achieve real-time measurement, collection, displaying and analysis of different parts of combine harvesters. It can also realize detection online of forward velocity, roller speed, engine temperature, etc. Meanwhile the system can judge the fault location. A new database function is added so that we can search the remedial measures to solve the faults and also we can add new faults to the database. So it is easy to take precautions against before the combine harvester breaking down then take measures to service the harvester.

  11. Computer simulation of combine harvesting and handling of sugar cane in Barbados

    SciTech Connect

    Harvey, W.O.

    1983-01-01

    The broad objective of this study was to improve the efficiency of combine harvesting of sugar cane in Barbados. The harvesting process was broken down into two subsystems: a field subsystem and a factory yard subsystem. Two computer simulation models structured in GASP IV simulation language, were developed to model the operations involved in these systems. Model FIELDOP simulated the activities involved in the harvesting and loading of cane in the field, and in its transportation to the factory for processing. Model FACYARD simulated the weighing and unloading activities performed on cane transport units at the factory. Output from the models included utilization factors for the various component machines, daily cane delivery from the field system, and daily amounts of cane handled by the factory yard system. This output was fed into a cost program which calculated unit harvesting costs and total annual cane delivery for the equipment combinations simulated. Results indicated that a second scale at the factory can reduce the factory residence time of transport units by 88%, increase combine harvester utilization efficiency by 50-60%, increase daily cane receipts at the factory by more than 30%, and eliminate milling lost time due to lack of cane. The economic analysis demonstrated that harvesting cost per tonne can be significantly reduced.

  12. MICROBIAL AEROSOLS: ESTIMATED CONTRIBUTION OF COMBINE HARVESTING TO AN AIRSHED

    EPA Science Inventory

    From plate counts of the airborne microorganisms in the downwind dust plume of operating grass-seed combines, the mean source concentrations were calculated to be 6.4 x 10 to the 8th power and 4.7 x 10 to the 8th power/cu m, respectively, potentially accounting for at least 41.9%...

  13. Combined Pyroelectric, Piezoelectric and Shape Memory Effects for Thermal Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Zakharov, D.; Gusarov, B.; Gusarova, E.; Viala, B.; Cugat, O.; Delamare, J.; Gimeno, L.

    2013-12-01

    This work proposes an enhanced method for thermal energy harvesting exploiting combined pyroelectric, piezoelectric and shape memory (SME) effects, and presents its experimental validation. A material which is pyroelectric is also piezoelectric. If it is combined with a material with SME, which generates large strain and stress in a rather narrow temperature range, the resulting composite material would generate voltage from temperature variations using two different energy conversion principles at once: (1) pyroelectric effect, (2) piezoelectric effect driven by SME. A Macro Fiber Composite piezoelectric was shown here to exhibit significant pyroelectric effect (~4 V/°C). When combining it with a SME Ti-Ni-Cu alloy into a laminated structure, this effect increased by 50%. This increase may be an order of magnitude higher for an optimized system. Such composites open an opportunity to harvest thermal energy from natural sources, since this method can increase the rather low efficiency of current pyroelectric materials especially for small temperature variations.

  14. Mode shape combination in a two-dimensional vibration energy harvester through mass loading structural modification

    NASA Astrophysics Data System (ADS)

    Sharpes, Nathan; Abdelkefi, Abdessattar; Abdelmoula, Hichem; Kumar, Prashant; Adler, Jan; Priya, Shashank

    2016-07-01

    Mode shapes in the design of mechanical energy harvesters, as a means of performance increase, have been largely overlooked. Currently, the vast majority of energy harvester designs employ some variation of a single-degree-of-freedom cantilever, and the mode shapes of such beams are well known. This is especially true for the first bending mode, which is almost exclusively the chosen vibration mode for energy harvesting. Two-dimensional beam shapes (those which curve, meander, spiral, etc., in a plane) have recently gained research interest, as they offer freedom to modify the vibration characteristics of the harvester beam for achieving higher power density. In this study, the second bending mode shape of the "Elephant" two-dimensional beam shape is examined, and its interaction with the first bending mode is evaluated. A combinatory mode shape created by using mass loading structural modification to lower the second bending modal frequency was found to interact with the first bending mode. This is possible since the first two bending modes do not share common areas of displacement. The combined mode shape is shown to produce the most power of any of the considered mode shapes.

  15. Combined use of nitrogen and coatings to improve the quality of mechanically harvested Manzanilla olives.

    PubMed

    Ramírez, Eva; Sánchez, Antonio H; Romero, Concepción; Brenes, Manuel

    2015-03-15

    The combined effect of an edible coating and a nitrogen atmosphere on the quality of Manzanilla olives mechanically harvested and processed as Spanish-style green olives was assessed. The percentage of olives free of any brown spots ranged between 35-50%, 10-25% and 50-65% for fruit directly processed, storage under nitrogen and coated and storage under nitrogen respectively. Moreover, olives stored in the open air developed brown spots due to the oxidation of oleuropein. By contrast, the anoxic conditions prevented oleuropein from undergoing enzymatic oxidation but not from its enzymatic hydrolysis. Hence, the phenolic derivative HyEDA was formed in olives stored under nitrogen, and this substance was rapidly oxidized in the open air to give rise to brown spots although to a lesser extent in the coated fruit. Therefore, the postharvest storage of coated olives under nitrogen can be a good method to prevent bruise damage in mechanically harvested fruit. PMID:25308641

  16. Noise exposed of the operators of combine harvesters with and without a cab.

    PubMed

    Sümer, Sarp Korkut; Say, Sait M; Ege, Fikri; Sabanci, Alaettin

    2006-11-01

    A considerable number of the combine harvesters in Turkey are rather old and used without cabs resulting in unhealthy working conditions for their operators. Noise is one of the detrimental factors. This study deals with determining and comparing the noise exposed on the operators of the combines with and without a cab used for wheat harvesting in Turkey. The sound pressure levels (dB) at octave band center frequencies (31.5-8000Hz) and the sound levels (dBA) at the ear level of the operators were measured on 37 different combine harvesters with four different makes and different years from 1976 to 2001. Fifteen of the combines were without a cab, another 15 had original cabs while remaining seven combines had cabs mounted on them after manufacturing. The sound pressure levels were in a decreasing trend from the lower frequencies to higher frequencies. This trend was more noticeable for the combines with original cab and with the cab mounted after manufacturing compared to the ones without cab. The use of a cab was more effective in the insulation of the noise at the medium and higher frequencies, which have more bothersome effect compared to the lower frequencies. The sound pressure levels were 75-102dB and 46-89dB at low (31.5-500Hz) and high (500-8000Hz) frequencies for all combines, respectively. The sound pressure levels at the frequency of 4000Hz at which the human ear is most sensitive were 6-17dB lower for the combines with the cabs mounted after manufacturing and 9-28dB lower for the ones with the original cabs compared to the combines without cab. The sound levels were 85-90, 81-83, and 76-81dBA for the combines without cab, with cab mounted after manufacturing, and with original cab, respectively. The study showed that the use of a cab was useful in the insulation of the noise, particularly at higher frequencies. In addition, it protects the operator from the factors having detrimental effects on the working efficiency such as high temperature and dusty

  17. Electrostatic vibration energy harvester with combined effect of electrical nonlinearities and mechanical impact

    NASA Astrophysics Data System (ADS)

    Basset, P.; Galayko, D.; Cottone, F.; Guillemet, R.; Blokhina, E.; Marty, F.; Bourouina, T.

    2014-03-01

    This paper presents an advanced study including the design, characterization and theoretical analysis of a capacitive vibration energy harvester. Although based on a resonant electromechanical device, it is intended for operation in a wide frequency band due to the combination of stop-end effects and a strong biasing electrical field. The electrostatic transducer has an interdigited comb geometry with in-plane motion, and is obtained through a simple batch process using two masks. A continuous conditioning circuit is used for the characterization of the transducer. A nonlinear model of the coupled system ‘transduce-conditioning circuit’ is presented and analyzed employing two different semi-analytical techniques together with precise numerical modelling. Experimental results are in good agreement with results obtained from numerical modelling. With the 1 g amplitude of harmonic external acceleration at atmospheric pressure, the system transducer-conditioning circuit has a half-power bandwidth of more than 30% and converts more than 2 µW of the power of input mechanical vibrations over the range of 140 and 160 Hz. The harvester has also been characterized under stochastic noise-like input vibrations.

  18. Combined harvesting of a stage structured prey-predator model incorporating cannibalism in competitive environment.

    PubMed

    Chakraborty, Kunal; Das, Kunal; Kar, Tapan Kumar

    2013-01-01

    In this paper, we propose a prey-predator system with stage structure for predator. The proposed system incorporates cannibalism for predator populations in a competitive environment. The combined fishing effort is considered as control used to harvest the populations. The steady states of the system are determined and the dynamical behavior of the system is discussed. Local stability of the system is analyzed and sufficient conditions are derived for the global stability of the system at the positive equilibrium point. The existence of the Hopf bifurcation phenomenon is examined at the positive equilibrium point of the proposed system. We consider harvesting effort as a control parameter and subsequently, characterize the optimal control parameter in order to formulate the optimal control problem under the dynamic framework towards optimal utilization of the resource. Moreover, the optimal system is solved numerically to investigate the sustainability of the ecosystem using an iterative method with a Runge-Kutta fourth-order scheme. Simulation results show that the optimal control scheme can achieve sustainable ecosystem. Results are analyzed with the help of graphical illustrations. PMID:23537768

  19. Possible combined effects of climate change, deforestation, and harvesting on the epiphyte Catopsis compacta: a multidisciplinary approach

    PubMed Central

    del Castillo, Rafael F; Trujillo-Argueta, Sonia; Rivera-García, Raul; Gómez-Ocampo, Zaneli; Mondragón-Chaparro, Demetria

    2013-01-01

    Climate change, habitat loss, and harvesting are potential drivers of species extinction. These factors are unlikely to act on isolation, but their combined effects are poorly understood. We explored these effects in Catopsis compacta, an epiphytic bromeliad commercially harvested in Oaxaca, Mexico. We analyzed local climate change projections, the dynamics of the vegetation patches, the distribution of Catopsis in the patches, together with population genetics and demographic information. A drying and warming climate trend projected by most climate change models may contribute to explain the poor forest regeneration. Catopsis shows a positive mean stochastic population growth. A PVA reveals that quasi-extinction probabilities are not significantly affected by the current levels of harvesting or by a high drop in the frequency of wet years (2%) but increase sharply when harvesting intensity duplicates. Genetic analyses show a high population genetic diversity, and no evidences of population subdivision or a past bottleneck. Colonization mostly takes place on hosts at the edges of the fragments. Over the last 27 years, the vegetation cover has being lost at a 0.028 years−1 rate, but fragment perimeter has increased 0.076 years−1. The increases in fragment perimeter and vegetation openness, likely caused by climate change and logging, appear to increase the habitat of Catopsis, enhance gene flow, and maintain a growing and highly genetically diverse population, in spite of harvesting. Our study evidences conflicting requirements between the epiphytes and their hosts and antagonistic effects of climate change and fragmentation with harvesting on a species that can exploit open spaces in the forest. A full understanding of the consequences of potential threatening factors on species persistence or extinction requires the inspection of the interactions of these factors among each other and their effects on both the focus species and the species on which this species

  20. Simple and Efficient System for Combined Solar Energy Harvesting and Reversible Hydrogen Storage.

    PubMed

    Li, Lu; Mu, Xiaoyue; Liu, Wenbo; Mi, Zetian; Li, Chao-Jun

    2015-06-24

    Solar energy harvesting and hydrogen economy are the two most important green energy endeavors for the future. However, a critical hurdle to the latter is how to safely and densely store and transfer hydrogen. Herein, we developed a reversible hydrogen storage system based on low-cost liquid organic cyclic hydrocarbons at room temperature and atmospheric pressure. A facile switch of hydrogen addition (>97% conversion) and release (>99% conversion) with superior capacity of 7.1 H2 wt % can be quickly achieved over a rationally optimized platinum catalyst with high electron density, simply regulated by dark/light conditions. Furthermore, the photodriven dehydrogenation of cyclic alkanes gave an excellent apparent quantum efficiency of 6.0% under visible light illumination (420-600 nm) without any other energy input, which provides an alternative route to artificial photosynthesis for directly harvesting and storing solar energy in the form of chemical fuel. PMID:26059734

  1. A Proposal for Automatic Fruit Harvesting by Combining a Low Cost Stereovision Camera and a Robotic Arm

    PubMed Central

    Font, Davinia; Pallejà, Tomàs; Tresanchez, Marcel; Runcan, David; Moreno, Javier; Martínez, Dani; Teixidó, Mercè; Palacín, Jordi

    2014-01-01

    This paper proposes the development of an automatic fruit harvesting system by combining a low cost stereovision camera and a robotic arm placed in the gripper tool. The stereovision camera is used to estimate the size, distance and position of the fruits whereas the robotic arm is used to mechanically pickup the fruits. The low cost stereovision system has been tested in laboratory conditions with a reference small object, an apple and a pear at 10 different intermediate distances from the camera. The average distance error was from 4% to 5%, and the average diameter error was up to 30% in the case of a small object and in a range from 2% to 6% in the case of a pear and an apple. The stereovision system has been attached to the gripper tool in order to obtain relative distance, orientation and size of the fruit. The harvesting stage requires the initial fruit location, the computation of the inverse kinematics of the robotic arm in order to place the gripper tool in front of the fruit, and a final pickup approach by iteratively adjusting the vertical and horizontal position of the gripper tool in a closed visual loop. The complete system has been tested in controlled laboratory conditions with uniform illumination applied to the fruits. As a future work, this system will be tested and improved in conventional outdoor farming conditions. PMID:24984059

  2. A proposal for automatic fruit harvesting by combining a low cost stereovision camera and a robotic arm.

    PubMed

    Font, Davinia; Pallejà, Tomàs; Tresanchez, Marcel; Runcan, David; Moreno, Javier; Martínez, Dani; Teixidó, Mercè; Palacín, Jordi

    2014-01-01

    This paper proposes the development of an automatic fruit harvesting system by combining a low cost stereovision camera and a robotic arm placed in the gripper tool. The stereovision camera is used to estimate the size, distance and position of the fruits whereas the robotic arm is used to mechanically pickup the fruits. The low cost stereovision system has been tested in laboratory conditions with a reference small object, an apple and a pear at 10 different intermediate distances from the camera. The average distance error was from 4% to 5%, and the average diameter error was up to 30% in the case of a small object and in a range from 2% to 6% in the case of a pear and an apple. The stereovision system has been attached to the gripper tool in order to obtain relative distance, orientation and size of the fruit. The harvesting stage requires the initial fruit location, the computation of the inverse kinematics of the robotic arm in order to place the gripper tool in front of the fruit, and a final pickup approach by iteratively adjusting the vertical and horizontal position of the gripper tool in a closed visual loop. The complete system has been tested in controlled laboratory conditions with uniform illumination applied to the fruits. As a future work, this system will be tested and improved in conventional outdoor farming conditions. PMID:24984059

  3. Combining biological control with physical and chemical treatments to control fruit decays after harvest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article reviews research on combining alternatives to conventional fungicide treatment with biological control to reduce postharvest decays on fruits. The basis for selection of the alternative treatments, the effectiveness of the combined treatments, and feasibility and readiness of their imp...

  4. Excitons in a photosynthetic light-harvesting system: A combined molecular dynamics, quantum chemistry, and polaron model study

    NASA Astrophysics Data System (ADS)

    Damjanović, Ana; Kosztin, Ioan; Kleinekathöfer, Ulrich; Schulten, Klaus

    2002-03-01

    The dynamics of pigment-pigment and pigment-protein interactions in light-harvesting complexes is studied with an approach that combines molecular dynamics simulations with quantum chemistry calculations and a polaron model analysis. The molecular dynamics simulation of light-harvesting (LH) complexes was performed on an 87 055 atom system comprised of a LH-II complex of Rhodospirillum molischianum embedded in a lipid bilayer and surrounded with appropriate water layers. For each of the 16 B850 bacteriochlorophylls (BChls), we performed 400 ab initio quantum chemistry calculations on geometries that emerged from the molecular dynamical simulations, determining the fluctuations of pigment excitation energies as a function of time. From the results of these calculations we construct a time-dependent Hamiltonian of the B850 exciton system from which we determine within linear response theory the absorption spectrum. Finally, a polaron model is introduced to describe both the excitonic and coupled phonon degrees of freedom by quantum mechanics. The exciton-phonon coupling that enters into the polaron model, and the corresponding phonon spectral function, are derived from the molecular dynamics and quantum chemistry simulations. The model predicts that excitons in the B850 BChl ring are delocalized over five pigments at room temperature. Also, the polaron model permits the calculation of the absorption and circular dichroism spectra of the B850 excitons from the sole knowledge of the autocorrelation function of the excitation energies of individual BChls, which is readily available from the combined molecular dynamics and quantum chemistry simulations. The obtained results are found to be in good agreement with the experimentally measured absorption and circular dichroism spectra.

  5. Interactions with Combined Chemical Cues Inform Harvester Ant Foragers' Decisions to Leave the Nest in Search of Food

    PubMed Central

    Greene, Michael J.; Pinter-Wollman, Noa; Gordon, Deborah M.

    2013-01-01

    Social insect colonies operate without central control or any global assessment of what needs to be done by workers. Colony organization arises from the responses of individuals to local cues. Red harvester ants (Pogonomyrmex barbatus) regulate foraging using interactions between returning and outgoing foragers. The rate at which foragers return with seeds, a measure of food availability, sets the rate at which outgoing foragers leave the nest on foraging trips. We used mimics to test whether outgoing foragers inside the nest respond to the odor of food, oleic acid, the odor of the forager itself, cuticular hydrocarbons, or a combination of both with increased foraging activity. We compared foraging activity, the rate at which foragers passed a line on a trail, before and after the addition of mimics. The combination of both odors, those of food and of foragers, is required to stimulate foraging. The addition of blank mimics, mimics coated with food odor alone, or mimics coated with forager odor alone did not increase foraging activity. We compared the rates at which foragers inside the nest interacted with other ants, blank mimics, and mimics coated with a combination of food and forager odor. Foragers inside the nest interacted more with mimics coated with combined forager/seed odors than with blank mimics, and these interactions had the same effect as those with other foragers. Outgoing foragers inside the nest entrance are stimulated to leave the nest in search of food by interacting with foragers returning with seeds. By using the combined odors of forager cuticular hydrocarbons and of seeds, the colony captures precise information, on the timescale of seconds, about the current availability of food. PMID:23308106

  6. Combined plerixafor and granulocyte colony-stimulating factor for harvesting high-dose hematopoietic stem cells: Possible niche for plerixafor use in pediatric patients.

    PubMed

    Bitan, Menachem; Eshel, Rinat; Sadot, Efraim; Friedman, Shirley; Pinhasov, Aviva; Levin, Dror; Dvir, Rina; Manisterski, Michal; Berger-Achituv, Sivan; Rosenfeld-Keidar, Hila; Elhasid, Ronit

    2016-06-01

    PB is a source of HSC, especially for autologous HCT in solid tumors. However, there is a risk of failing to achieve the target number of SC after mobilization with growth factors alone in patients who were heavily pretreated with chemotherapy or those in need for tandem transplants. SC were harvested from seven pediatric patients with solid tumors who were in need of autologous HCT following combination GCSF and plerixafor. Six of them received plerixafor after failing to achieve enough SC with GCSF only, while the seventh patient received the combined protocol upfront. All seven patients achieved the target number of SC according to their treatment protocol. There were no adverse events. All patients underwent autologous HCT using the harvested HSC and achieved full engraftment. A protocol for harvesting autologous HCT using GCSF and plerixafor is feasible and safe in children with solid tumors who had been heavily pretreated with chemotherapy or needed tandem transplants. PMID:26991903

  7. Structure Optimization of a Grain Impact Piezoelectric Sensor and Its Application for Monitoring Separation Losses on Tangential-Axial Combine Harvesters

    PubMed Central

    Liang, Zhenwei; Li, Yaoming; Zhao, Zhan; Xu, Lizhang

    2015-01-01

    Grain separation losses is a key parameter to weigh the performance of combine harvesters, and also a dominant factor for automatically adjusting their major working parameters. The traditional separation losses monitoring method mainly rely on manual efforts, which require a high labor intensity. With recent advancements in sensor technology, electronics and computational processing power, this paper presents an indirect method for monitoring grain separation losses in tangential-axial combine harvesters in real-time. Firstly, we developed a mathematical monitoring model based on detailed comparative data analysis of different feeding quantities. Then, we developed a grain impact piezoelectric sensor utilizing a YT-5 piezoelectric ceramic as the sensing element, and a signal process circuit designed according to differences in voltage amplitude and rise time of collision signals. To improve the sensor performance, theoretical analysis was performed from a structural vibration point of view, and the optimal sensor structural has been selected. Grain collide experiments have shown that the sensor performance was greatly improved. Finally, we installed the sensor on a tangential-longitudinal axial combine harvester, and grain separation losses monitoring experiments were carried out in North China, which results have shown that the monitoring method was feasible, and the biggest measurement relative error was 4.63% when harvesting rice. PMID:25594592

  8. On-combine, multi-sensor data collection for post-harvest assessment of environmental stress in wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    On-combine yield monitors are widely used in precision agriculture for locating areas within fields where yields are reduced. However, the crop yield variability can be better interpreted by utilizing grain protein maps to reveal the factors limiting yield. The objective of this study was to devel...

  9. Noise Harvesting

    NASA Astrophysics Data System (ADS)

    Gammaitoni, L.; Cottone, F.; Neri, I.; Vocca, H.

    2009-04-01

    Kinetic energy harvesting has been the subject of a significant research effort in the last twenty years. Unfortunately most of the energy available at the microscales comes in the form of random vibrations with a wide spectrum of frequencies while standard harvesting methods are based on linear oscillators that are resonantly tuned in narrow frequency ranges. In this paper we present a novel approach based on the exploitation of nonlinear stochastic dynamics and show that, under proper conditions nonlinear oscillators can beat the standard linear approaches with significant increase in the harvesting efficency. For the sake of demonstration we present experimental results from a toy-model bistable oscillator made by a piezoelectric inverted pendulum.

  10. Cotton Harvesting

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton harvesting is performed in the US using either a spindle picker or brush-roll stripper. This presentation discusses the environmental, economic, geographic, and cultivar specific reasons behind a grower's choice to use either machine. The development of each machine system was discussed. A...

  11. Switchgrass harvest and storage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The feedstock characteristics of the conversion platform will influence the optimal harvest and post harvest management practices for switchgrass. However, many of the harvest management practices are tied to plant phenology and will be similar across platforms. Proper harvest and storage of switchg...

  12. 7 CFR 1221.12 - Harvest.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SORGHUM PROMOTION, RESEARCH, AND INFORMATION ORDER Sorghum Promotion, Research, and Information Order Definitions § 1221.12 Harvest. Harvest means combining or threshing sorghum for grain and/or severing the stalks from the land with...

  13. 7 CFR 1221.12 - Harvest.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SORGHUM PROMOTION, RESEARCH, AND INFORMATION ORDER Sorghum Promotion, Research, and Information Order Definitions § 1221.12 Harvest. Harvest means combining or threshing sorghum for grain and/or severing the stalks from the land with...

  14. 7 CFR 1221.12 - Harvest.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SORGHUM PROMOTION, RESEARCH, AND INFORMATION ORDER Sorghum Promotion, Research, and Information Order Definitions § 1221.12 Harvest. Harvest means combining or threshing sorghum for grain and/or severing the stalks from the land with...

  15. 7 CFR 1221.12 - Harvest.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SORGHUM PROMOTION, RESEARCH, AND INFORMATION ORDER Sorghum Promotion, Research, and Information Order Definitions § 1221.12 Harvest. Harvest means combining or threshing sorghum for grain and/or severing the stalks from the land with...

  16. 7 CFR 1221.12 - Harvest.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE SORGHUM PROMOTION, RESEARCH, AND INFORMATION ORDER Sorghum Promotion, Research, and Information Order Definitions § 1221.12 Harvest. Harvest means combining or threshing sorghum for grain and/or severing the stalks from the land with...

  17. A New Grain Harvesting System for Single Pass Grain Harvest, Biomass Collection, Crop Residue Sizing and Grain Segregation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A cereal grain harvesting system is introduced that combines existing technologies in a unique way to improve cereal grain harvest performance, profitability and efficiently collect biomass. The harvesting system is comprised of three machines – one to gather the crop and prepare the residue for no...

  18. A New Grain Harvesting System for Single-Pass Grain Harvest, Biomass Collection, Crop Residue Sizing, and Grain Segregation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A cereal grain harvesting system is introduced that combines existing technologies in a unique way to improve cereal grain harvest performance, profitability and efficiently collect biomass. The harvesting system is comprised of three machines – one to gather the crop and prepare the residue for no...

  19. EDITORIAL Solar harvest Solar harvest

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2010-12-01

    into the charge transport mechanism and trap distribution in these composites [3]. An advantage of investigating solar cell technology based on organic materials rather than silicon is that silicon photovoltaics requires high-purity silicon, whereas the material demands of organic technology are not nearly so strict. Work by researchers in Denmark and Germany highlights the simplicity and tolerance to ambient conditions of organic photovoltaic fabrication in the demonstration of a nanostructured polymer solar cell made from a thermocleavable polymer material and zinc oxide nanoparticles. All the manipulations during device preparation could be carried out in air at around 20 °C and 35% humidity [4]. A possible route to enhancing cell performance is through the improvment of the transport efficiency. Researchers in Taiwan demonstrate how effectively this can be implemented in a hybrid device comprising TiO2 nanorods and poly[2-methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) [5]. In addition, inorganic semiconductor nanocrystals that have tunable optical bandgaps can be combined with organic semiconductors for the fabrication of hybrid photovoltaic devices with broad spectral sensitivity. A collaboration of researchers in the UK and the US has now developed a near-infrared sensitive hybrid photovoltaic system with PbS nanocrystals and C60. The reported improvement in device performance is attributed to increased carrier mobility of the PbS nanocrystal film [6]. In this issue, Patrick G Nicholson and Fernando A Castro from the National Physical Laboratory in the UK present a topical review on the principles and techniques for the characterization of organic photovoltaics [7]. The review presents a comprehensive picture of the current state-of-the-art understanding of the working mechanisms behind organic solar cells, and also describes electronic morphological considerations relevant to optimizing the devices, as well as different nanoscale techniques for

  20. Broadband pendulum energy harvester

    NASA Astrophysics Data System (ADS)

    Liang, Changwei; Wu, You; Zuo, Lei

    2016-09-01

    A novel electromagnetic pendulum energy harvester with mechanical motion rectifier (MMR) is proposed and investigated in this paper. MMR is a mechanism which rectifies the bidirectional swing motion of the pendulum into unidirectional rotation of the generator by using two one-way clutches in the gear system. In this paper, two prototypes of pendulum energy harvester with MMR and without MMR are designed and fabricated. The dynamic model of the proposed MMR pendulum energy harvester is established by considering the engagement and disengagement of the one way clutches. The simulation results show that the proposed MMR pendulum energy harvester has a larger output power at high frequencies comparing with non-MMR pendulum energy harvester which benefits from the disengagement of one-way clutch during pendulum vibration. Moreover, the proposed MMR pendulum energy harvester is broadband compare with non-MMR pendulum energy harvester, especially when the equivalent inertia is large. An experiment is also conducted to compare the energy harvesting performance of these two prototypes. A flywheel is attached at the end of the generator to make the disengagement more significant. The experiment results also verify that MMR pendulum energy harvester is broadband and has a larger output power at high frequency over the non-MMR pendulum energy harvester.

  1. Nonlinear piezomagnetoelastic harvester array for broadband energy harvesting

    NASA Astrophysics Data System (ADS)

    Upadrashta, Deepesh; Yang, Yaowen

    2016-08-01

    This article proposes an array of nonlinear piezomagnetoelastic energy harvesters (NPEHs) for scavenging electrical energy from broadband vibrations with low amplitudes (<2 m/s2). The array consists of monostable NPEHs combined to generate useful power output (˜100 μW) over wide bandwidth. The nonlinearity in each of the NPEHs is induced by the magnetic interaction between an embedded magnet in the tip mass of cantilever and a fixed magnet clamped to the rigid platform. The dynamic responses of two NPEHs, one with attractive configuration and the other with repulsive configuration, are combined to achieve a bandwidth of 3.3 Hz at a power level of 100 μW. A parametric study is carried out to obtain the gap distances between the magnets to achieve wide bandwidth. Experiments are performed to validate the proposed idea, the theoretical predictions, and to demonstrate the advantage of array of NPEHs over the array of linear piezoelectric energy harvesters (LPEHs). The experiments have clearly shown the advantage of NPEH array over its linear counterpart under both harmonic and random excitations. Approximately, 100% increase in the operation bandwidth is achieved by the NPEH array at harmonic excitation level of 2 m/s2. The NPEH array exhibits up to 80% improvement in the accumulated energy under random excitation when compared with the LPEH array. Furthermore, the performance of NPEH array with series and parallel connections between the individual harvesters using standard AC/DC interface circuits is also investigated and compared with its linear counterpart.

  2. Post-Harvest Physiology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Numerous plant microbial and physiological processes occur during forage harvest and storage and are almost always deleterious. These processes are influenced by preharvest factors such as mowing time of day, plant species, and maturity stage, as well as by harvest and storage variables. Avoidance o...

  3. Ambient energy harvesting using ferroelectric materials

    NASA Astrophysics Data System (ADS)

    Guyomar, Daniel; Sebald, Gaël; Pruvost, Sébastien; Lallart, Mickaël

    2008-03-01

    Recent progresses in electronics allow powering complex systems using either batteries or environmental energy harvesting. However using batteries raises the problems of limited lifespan and recycling process, leading to the research of other energy sources for mobile electronics. Recent work on Synchronized Switch Harvesting (SSH) shows a significant improvement of energy harvesting from vibrations compared to standard techniques. Nevertheless, harvesting energy from vibrations necessitates that the electromechanical structure has to be driven by mechanical solicitations, which generally have a limited amount of energy. Therefore, for the design of efficient and truly applicable self-powered devices, combining several sources for energy harvesting would be greatly beneficial. Thermal energy is rarely considered due to the difficulty of getting efficient devices. However, the potential of such a source is one of the most important. This paper deals with energy harvesting using either piezoelectric or pyroelectric effect. Theoretical and experimental validations of thermal energy harvesting are presented and discussed. Standard thermodynamic cycles may be adapted in order to improve conversion effectiveness. Experimental converted energy as high as 160 mJ.cm -3.cycle -1 has been measured with a 35°C temperature variation, corresponding to 2.15% of Carnot efficiency.

  4. Maple Sugar Harvesting/Wild Rice Harvesting.

    ERIC Educational Resources Information Center

    Minneapolis Public Schools, MN.

    Comprised of two separate booklets, this resource unit assists elementary teachers in explaining how the Ojibwe people harvest maple sugar and wild rice. The first booklet explains the procedure of tapping the maple trees for sap, preparation for boiling the sap, and the three forms the sugar is made into (granulated, "molded," and "taffy"). The…

  5. Harvesting rice's dispensable genome.

    PubMed

    Wing, Rod A

    2015-01-01

    A rapid and cost-effective approach has been developed to harvest and map the dispensable genome, that is, population-level natural sequence variation within a species that is not present in static genome assemblies. PMID:26429765

  6. Power Harvesting from Rotation?

    ERIC Educational Resources Information Center

    Chicone, Carmen; Feng, Z. C.

    2008-01-01

    We show the impossibility of harvesting power from rotational motions by devices attached to the rotating object. The presentation is suitable for students who have studied Lagrangian mechanics. (Contains 2 figures.)

  7. Tunable nonlinear piezoelectric vibration harvester

    NASA Astrophysics Data System (ADS)

    Neiss, S.; Goldschmidtboeing, F.; Kroener, M.; Woias, P.

    2014-11-01

    Nonlinear piezoelectric energy harvesting generators can provide a large bandwidth combined with a good resonant power output. However, the frequency response is characterized by a strong hysteresis making a technical use difficult if the hysteresis cannot be compensated. We propose a tuning mechanism that allows both, a compensation of the hysteresis as well as maintaining the optimal work point. The compensation algorithm can reduce the hysteresis to a minimum of only 1.5 Hz and maintain a high energy oscillation in a large frequency window between 53.3 Hz and 74.5 Hz.

  8. Internal resonance for nonlinear vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Cao, D. X.; Leadenham, S.; Erturk, A.

    2015-11-01

    The transformation of waste vibration energy into low-power electricity has been heavily researched over the last decade to enable self-sustained wireless electronic components. Monostable and bistable nonlinear oscillators have been explored by several research groups in an effort to enhance the frequency bandwidth of operation. Linear two-degree-of-freedom (2-DOF) configurations as well as the combination of a nonlinear single-DOF harvester with a linear oscillator to constitute a nonlinear 2-DOF harvester have also been explored to develop broadband energy harvesters. In the present work, the concept of nonlinear internal resonance in a continuous frame structure is explored for broadband energy harvesting. The L-shaped beam-mass structure with quadratic nonlinearity was formerly studied in the nonlinear dynamics literature to demonstrate modal energy exchange and the saturation phenomenon when carefully tuned for two-to-one internal resonance. In the current effort, piezoelectric coupling and an electrical load are introduced, and electromechanical equations of the L-shaped energy harvester are employed to explore primary resonance behaviors around the first and the second linear natural frequencies for bandwidth enhancement. Simulations using approximate analytical frequency response equations as well as numerical solutions reveal significant bandwidth enhancement as compared to a typical linear 2-DOF counterpart. Vibration and voltage responses are explored, and the effects of various system parameters on the overall dynamics of the internal resonance-based energy harvesting system are reported.

  9. Energy harvesting and wireless energy transmission for embedded sensor nodes

    NASA Astrophysics Data System (ADS)

    Farinholt, Kevin; Taylor, Stuart; Miller, Nathan; Sifuentes, Wilfredo; Moro, Erik; Park, Gyuhae; Farrar, Charles; Flynn, Eric; Mascarenas, David; Todd, Michael

    2009-03-01

    In this paper, we present experimental investigations using energy harvesting and wireless energy transmission to operate embedded structural health monitoring sensor nodes. The goal of this study is to develop sensing systems that can be permanently embedded within a host structure without the need for an on-board power source. With this approach the required energy will be harvested from the ambient environment, or periodically delivered by a RF energy source to supplement conventional harvesting approaches. This approach combines several transducer types to harvest energy from multiple sources, providing a more robust solution that does not rely on a single energy source. Both piezoelectric and thermoelectric transducers are considered as energy harvesters to extract the ambient energy commonly available on civil structures such as bridges. Methods of increasing the efficiency, energy storage medium, target applications and the integrated use of energy harvesting sources with wireless energy transmission will be discussed.

  10. Water harvest via dewing.

    PubMed

    Lee, Anna; Moon, Myoung-Woon; Lim, Hyuneui; Kim, Wan-Doo; Kim, Ho-Young

    2012-07-10

    Harvesting water from humid air via dewing can provide a viable solution to a water shortage problem where liquid-phase water is not available. Here we experimentally quantify the effects of wettability and geometry of the condensation substrate on the water harvest efficiency. Uniformly hydrophilic surfaces are found to exhibit higher rates of water condensation and collection than surfaces with lower wettability. This is in contrast to a fog basking method where the most efficient surface consists of hydrophilic islands surrounded by hydrophobic background. A thin drainage path in the lower portion of the condensation substrate is revealed to greatly enhance the water collection efficiency. The optimal surface conditions found in this work can be used to design a practical device that harvests water as its biological counterpart, a green tree frog, Litoria caerulea , does during the dry season in tropical northern Australia. PMID:22731870

  11. Experimental evaluation of population trend and harvest composition in a Wyoming cougar population

    USGS Publications Warehouse

    Anderson, C.R., Jr.; Lindzey, F.G.

    2005-01-01

    Cougar (Puma concolor) management has been hindered by inability to identify population trends. We documented changes in sex and age of harvested cougars during an experimentally induced reduction in population size and subsequent recovery to better understand the relationship between sex-age composition and population trend in exploited populations. The cougar population in the Snowy Range, southeast Wyoming, was reduced by increased harvest (treatment phase) from 58 independent cougars (>1 year old) (90% CI = 36-81) in the autumn of 1998 to 20 by the spring of 2000 (mean exploitation rate = 43%) and then increased to 46 by spring 2003 following 3 years of reduced harvests (mean exploitation rate = 18%). Pretreatment harvest composition was 63% subadults (1.0-2.5 years old), 23% adult males, and 14% adult females (2 seasons; n = 22). A reduction in subadult harvest, an initial increase followed by a reduction in adult male harvest, and a steady increase in adult female harvest characterized harvest composition trends during the treatment phase. Harvest composition was similar at high and low densities when harvest was light, but proportion of harvested subadult males increased at low density as they replaced adult males removed during the treatment period (high harvest). While sex ratio of harvested cougars alone appears of limited value in identifying population change, when combined with age class the 2 appear to provide an index to population change. Composition of the harvest can be applied to adaptively manage cougar populations where adequate sex and age data are collected from harvested animals.

  12. Kenaf harvest decision matrix or how should I harvest kenaf?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The correct harvest method for kenaf (Hibiscus cannabinus L., Malvaceae) is dependent on many factors, including production location, equipment availability, storage options, processing plans, plant utilization, and economics. Since its first domestication, kenaf has consistently been hand-harveste...

  13. Energy harvesting from an autoparametric vibration absorber

    NASA Astrophysics Data System (ADS)

    Yan, Zhimiao; Hajj, Muhammad R.

    2015-11-01

    The combined control and energy harvesting characteristics of an autoparametric vibration absorber consisting of a base structure subjected to the external force and a cantilever beam with a tip mass are investigated. The piezoelectric sheets are attached to the cantilever beam to convert the vibrations of the base structure into electrical energy. The coupled nonlinear representative model is developed by using the extended Hamiton’s principle. The effects of the electrical load resistance on the frequency and damping ratio of the cantilever beam are analyzed. The impacts of the external force and load resistance on the structural displacements of the base structure and the beam and on the level of harvested energy are determined. The results show that the initial conditions have a significant impact on the system’s response. The relatively high level of energy harvesting is not necessarily accompanied with the minimum displacements of the base structure.

  14. Piezoelectric monolayers as nonlinear energy harvesters.

    PubMed

    López-Suárez, Miquel; Pruneda, Miguel; Abadal, Gabriel; Rurali, Riccardo

    2014-05-01

    We study the dynamics of h-BN monolayers by first performing ab-initio calculations of the deformation potential energy and then solving numerically a Langevine-type equation to explore their use in nonlinear vibration energy harvesting devices. An applied compressive strain is used to drive the system into a nonlinear bistable regime, where quasi-harmonic vibrations are combined with low-frequency swings between the minima of a double-well potential. Due to its intrinsic piezoelectric response, the nonlinear mechanical harvester naturally provides an electrical power that is readily available or can be stored by simply contacting the monolayer at its ends. Engineering the induced nonlinearity, a 20 nm2 device is predicted to harvest an electrical power of up to 0.18 pW for a noisy vibration of 5 pN. PMID:24722065

  15. Pepper harvest technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peppers (Capsicum spp.) include a diverse collection of cultivars produced for a wide variety of end uses. This specialty crop and its processing industry are in the midst of a dual transition driven by labor cost and unavailability. Production and post-harvest processing is either converting to m...

  16. PEPPER HARVESTER DEVELOPMENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peppers (Capsicum spp.) include a diverse collection of cultivars produced for a wide variety of end uses. This specialty crop and its processing industry are in the midst of a transition driven by labor cost and unavailability. Production and post-harvest processing is either converting to mechan...

  17. Adaptive vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Behrens, Sam; Ward, John; Davidson, Josh

    2007-04-01

    By scavenging energy from their local environment, portable electronic devices such as mobile phones, radios and wireless sensors can achieve greater run-times with potentially lower weight. Vibration energy harvesting is one such approach where energy from parasitic vibrations can be converted into electrical energy, through the use of piezoelectric and electromagnetic transducers. Parasitic vibrations come from a range of sources such as wind, seismic forces and traffic. Existing approaches to vibration energy harvesting typically utilise a rectifier circuit, which is tuned to the resonant frequency of the harvesting structure and the dominant frequency of vibration. We have developed a novel approach to vibration energy harvesting, including adaption to non-periodic vibrations so as to extract the maximum amount of vibration energy available. Experimental results of an experimental apparatus using off-the-shelf transducer (i.e. speaker coil) show mechanical vibration to electrical energy conversion efficiencies of 27 - 34%. However, simulations of a more electro-mechanical efficient and lightly damped transducer show conversion efficiencies in excess of 80%.

  18. Advancements in Cotton Harvesting Research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton harvesting research within USDA ARS is focused on improving harvest productivity, cotton quality, and producer profitability. In recent years, our work has encompassed efforts to improve both spindle picker and brush-roll stripper harvesting systems. Specifically, work with cotton pickers i...

  19. Green Chile Pepper Harvest Mechanization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pungent green chile (genus /Capsicum/, also spelled chili) is a large, fragile fruit growing on berry shrubs. Chile is harvested by hand to maximize yields and minimize fruit damage. Labor for hand harvesting chile is increasingly costly and difficult to obtain. Harvest mechanization is viewed as...

  20. Harvesting contaminants from liquid

    DOEpatents

    Simpson, John T.; Hunter, Scott R.

    2016-05-31

    Disclosed are examples of apparatuses for evaporative purification of a contaminated liquid. In each example, there is a vessel for storing the contaminated fluid. The vessel includes a surface coated with a layer of superhydrophobic material and the surface is at least partially in contact with the contaminated liquid. The contaminants do not adhere to the surface as the purified liquid evaporates, thus allowing the contaminants to be harvested.

  1. Piezoelectric Energy Harvesting Solutions

    PubMed Central

    Caliò, Renato; Rongala, Udaya Bhaskar; Camboni, Domenico; Milazzo, Mario; Stefanini, Cesare; de Petris, Gianluca; Oddo, Calogero Maria

    2014-01-01

    This paper reviews the state of the art in piezoelectric energy harvesting. It presents the basics of piezoelectricity and discusses materials choice. The work places emphasis on material operating modes and device configurations, from resonant to non-resonant devices and also to rotational solutions. The reviewed literature is compared based on power density and bandwidth. Lastly, the question of power conversion is addressed by reviewing various circuit solutions. PMID:24618725

  2. Evaluation of mechanical tomato harvesting using wireless sensors.

    PubMed

    Arazuri, Silvia; Arana, Ignacio; Jaren, Carmen

    2010-01-01

    The harvesting of processing tomatoes is fully mechanised and it is well known that during harvest, fruits are subjected to mechanical stress causing physical injuries, including skin punctures, pulp and cell rupture. Some wireless sensors have been used for research during recent years with the main purpose of reducing the quality loss of tomato fruits by diminishing the number and intensity of impacts. In this study the IRD (impact recorder device) sensor was used to evaluate several tomato harvesters. The specific objectives were to evaluate the impacts during mechanical harvest using a wireless sensor, to determine the critical points at which damage occurs, and to assess the damage levels. Samples were taken to determine the influence of mechanical harvest on texture, or on other quality characteristics including percentage of damages. From the obtained data it has been possible to identify the critical points where the damages were produced for each one of the five harvester models examined. The highest risk of damage was in zone 1 of the combine--from the cutting system to the colour selector--because the impacts were of higher intensity and hit less absorbing surfaces than in zone 2--from colour selector to discharge. The shaker and exit from the shaker are two of the harvester elements that registered the highest intensity impacts. By adjusting, in a specific way each harvester model, using the results from this research, it has been possible to reduce the tomato damage percentage from 20 to 29% to less than 10%. PMID:22163516

  3. On the option interpretation of rational harvesting planning.

    PubMed

    Alvarez, L H

    2000-05-01

    We consider the determination of the harvesting strategy maximizing the present expected value of the cumulative yield from the present up to extinction. By relying on a combination of stochastic calculus, ordinary nonlinear programming, and the classical theory of diffusions, we show that if the underlying population evolves according to a logistic diffusion subject to a general diffusion coefficient, then there is a single threshold density at which harvesting should be initiated in a singular fashion. We derive the condition which uniquely determines the threshold and show that harvesting should be initiated only when the option value of further preserving another individual falls below its opportunity cost. In this way, we present a real option interpretation of rational harvesting planning. We also consider the comparative static properties of the value of the harvesting opportunity and state a set of usually satisfied conditions under which increased stochastic fluctuations (demographic or environmental) decrease the expected cumulative yield from harvesting and increase the optimal harvesting threshold, thus postponing the rational exercise of the irreversible harvesting decision. PMID:10885589

  4. Managing harvest and habitat as integrated components

    USGS Publications Warehouse

    Osnas, Erik; Runge, Michael C.; Mattsson, Brady J.; Austin, Jane E.; Boomer, G. S.; Clark, R. G.; Devers, P.; Eadie, J. M.; Lonsdorf, E. V.; Tavernia, Brian

    2014-01-01

    In 2007, several important initiatives in the North American waterfowl management community called for an integrated approach to habitat and harvest management. The essence of the call for integration is that harvest and habitat management affect the same resources, yet exist as separate endeavours with very different regulatory contexts. A common modelling framework could help these management streams to better understand their mutual effects. Particularly, how does successful habitat management increase harvest potential? Also, how do regional habitat programmes and large-scale harvest strategies affect continental population sizes (a metric used to express habitat goals)? In the ensuing five years, several projects took on different aspects of these challenges. While all of these projects are still on-going, and are not yet sufficiently developed to produce guidance for management decisions, they have been influential in expanding the dialogue and producing some important emerging lessons. The first lesson has been that one of the more difficult aspects of integration is not the integration across decision contexts, but the integration across spatial and temporal scales. Habitat management occurs at local and regional scales. Harvest management decisions are made at a continental scale. How do these actions, taken at different scales, combine to influence waterfowl population dynamics at all scales? The second lesson has been that consideration of the interface of habitat and harvest management can generate important insights into the objectives underlying the decision context. Often the objectives are very complex and trade-off against one another. The third lesson follows from the second – if an understanding of the fundamental objectives is paramount, there is no escaping the need for a better understanding of human dimensions, specifically the desires of hunters and nonhunters and the role they play in conservation. In the end, the compelling question is

  5. Economic Impact of Harvesting Corn Stover under Time Constraint: The Case of North Dakota

    DOE PAGESBeta

    Maung, Thein A.; Gustafson, Cole R.

    2013-01-01

    This study examines the impact of stochastic harvest field time on profit maximizing potential of corn cob/stover collection in North Dakota. Three harvest options are analyzed using mathematical programming models. Our findings show that under the first corn grain only harvest option, farmers are able to complete harvesting corn grain and achieve maximum net income in a fairly short amount of time with existing combine technology. However, under the second simultaneous corn grain and cob (one-pass) harvest option, farmers generate lower net income compared to the net income of the first option. This is due to the slowdown in combinemore » harvest capacity as a consequence of harvesting corn cobs. Under the third option of separate corn grain and stover (two-pass) harvest option, time allocation is the main challenge and our evidence shows that with limited harvest field time available, farmers find it optimal to allocate most of their time harvesting grain and then proceed to harvest and bale stover if time permits at the end of harvest season. The overall findings suggest is that it would be more economically efficient to allow a firm that is specialized in collecting biomass feedstock to participate in cob/stover harvest business.« less

  6. Light-harvesting dendrimers.

    PubMed

    Balzani, Vincenzo; Ceroni, Paola; Maestri, Mauro; Vicinelli, Veronica

    2003-12-01

    Dendrimers are well-defined, tree-like macromolecules, with a high degree of order and the possibility to contain selected chemical units in predetermined sites of their structure. Dendrimers are currently attracting the interest of many scientists because of their unusual chemical and physical properties and the wide range of potential applications. It is possible to design and synthesize dendrimers containing a variety of chromophoric groups organized in the dimensions of time, energy and space so as to obtain efficient light-harvesting devices that can be useful for solar energy conversion and other purposes. PMID:14644173

  7. Learning and adaptation in the management of waterfowl harvests

    USGS Publications Warehouse

    Johnson, Fred A.

    2011-01-01

    A formal framework for the adaptive management of waterfowl harvests was adopted by the U.S. Fish and Wildlife Service in 1995. The process admits competing models of waterfowl population dynamics and harvest impacts, and relies on model averaging to compute optimal strategies for regulating harvest. Model weights, reflecting the relative ability of the alternative models to predict changes in population size, are used in the model averaging and are updated each year based on a comparison of model predictions and observations of population size. Since its inception the adaptive harvest program has focused principally on mallards (Anas platyrhynchos), which constitute a large portion of the U.S. waterfowl harvest. Four competing models, derived from a combination of two survival and two reproductive hypotheses, were originally assigned equal weights. In the last year of available information (2007), model weights favored the weakly density-dependent reproductive hypothesis over the strongly density-dependent one, and the additive mortality hypothesis over the compensatory one. The change in model weights led to a more conservative harvesting policy than what was in effect in the early years of the program. Adaptive harvest management has been successful in many ways, but nonetheless has exposed the difficulties in defining management objectives, in predicting and regulating harvests, and in coping with the tradeoffs inherent in managing multiple waterfowl stocks exposed to a common harvest. The key challenge now facing managers is whether adaptive harvest management as an institution can be sufficiently adaptive, and whether the knowledge and experience gained from the process can be reflected in higher-level policy decisions.

  8. Engineering High-Fidelity Residue Separations for Selective Harvest

    SciTech Connect

    Kevin L. Kenney; Christopher T. Wright; Reed L. Hoskinson; J. Rochard Hess; David J. Muth, Jr.

    2006-07-01

    Composition and pretreatment studies of corn stover and wheat stover anatomical fractions clearly show that some corn and wheat stover anatomical fractions are of higher value than others as a biofeedstock. This premise, along with soil sustainability and erosion control concerns, provides the motivation for the selective harvest concept for separating and collecting the higher value residue fractions in a combine during grain harvest. This study recognizes the analysis of anatomical fractions as theoretical feedstock quality targets, but not as practical targets for developing selective harvest technologies. Rather, practical quality targets were established that identified the residue separation requirements of a selective harvest combine. Data are presented that shows that a current grain combine is not capable of achieving the fidelity of residue fractionation established by the performance targets. However, using a virtual engineering approach, based on an understanding of the fluid dynamics of the air stream separation, the separation fidelity can be significantly improved without significant changes to the harvester design. A virtual engineering model of a grain combine was developed and used to perform simulations of the residue separator performance. The engineered residue separator was then built into a selective harvest test combine, and tests performed to evaluate the separation fidelity. Field tests were run both with and without the residue separator installed in the test combine, and the chaff and straw residue streams were collected during harvest of Challis soft white spring wheat. The separation fidelity accomplished both with and without the residue separator was quantified by laboratory screening analysis. The screening results showed that the engineered baffle separator did a remarkable job of effecting high-fidelity separation of the straw and chaff residue streams, improving the chaff stream purity and increasing the straw stream yield.

  9. Uncertainty in age-specific harvest estimates and consequences for white-tailed deer management

    USGS Publications Warehouse

    Collier, B.A.; Krementz, D.G.

    2007-01-01

    age classes. Thus, we suggest that using harvest proportions for management planning and evaluation should be viewed with caution. In addition, we recommend that managers focus more attention on estimation of age-specific harvest rates, and modeling approaches which combine harvest rates with information from harvested individuals to further increase their ability to effectively manage deer populations under selective harvest programs. ?? 2006 Elsevier B.V. All rights reserved.

  10. Sunflower production, harvesting, drying and storage

    SciTech Connect

    Hofman, V.; Berglund, D.; Hellevang, K.

    1982-01-01

    Sunflower, produced for its edible oil, has recently evolved as an important cash crop for the Dakotas and Minnesota. This oilseed crop has increased from 81,000 hectares in the mid-1960's to over 1,620,000 hectares in 1981. Over 90% of the sunflower crop planted in the United States is of oilseed varieties. Sunflower tends to fit well in small grain cropping rotation. Sunflower is planted after small grains in the spring and harvested in the fall, following small grain harvest. Planting of sunflower is recommended from May 20 to May 31. Soil temperature should be between 4/sup 0/C and 10/sup 0/C for germinaton. Diseases occurring in sunflower can greatly reduce yield and hinder harvest operations. A sunflower crop is normally ready for harvest about 120 days after planting. Combines suitable for treshing small gains can be adapted to harvest sunflower. Sunflower can be dried in conventional crop dryers; bin, batch and continuous flow dryers have been used successfully. Sunflower dries easily due to the relatively small amount of water removed. Drying temperatures up to 104/sup 0/C do not have an adverse affect on the oil percentage or fatty acid composition of oil type sunflower. A serious fire hazard exists when drying sunflower. The storage of sunflower is similar to any other crop. The recommended storage moisture content is 8% for oil seeds and 10% for confectionary. Cooling the sunflower seed greatly increases the storability and decreases insect damage. Sunflower should be cooled to about 0/sup 0/C which nearly stops microbial activity. The sunflower should be checked at least weekly. 9 figures, 1 table. (DP)

  11. Water harvesting applications for rangelands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although water harvesting techniques have been used effectively in irrigated agriculture and domestic water supplies, there seems to have been little continued exploitation of the same techniques in arid and semiarid rangeland restoration. A review of the history of rangeland water harvesting allow...

  12. The Spindle Type Cotton Harvester

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The spindle type cotton picker was commercialized during the mid 1900’s and is currently produced by two US agricultural equipment manufacturers, John Deere and CaseIH. Picking is the predominate machine harvest method used throughout the US and world. Harvesting efficiency of a spindle type cotton ...

  13. High-efficiency integrated piezoelectric energy harvesting systems

    NASA Astrophysics Data System (ADS)

    Hande, Abhiman; Shah, Pradeep

    2010-04-01

    This paper describes hierarchically architectured development of an energy harvesting (EH) system that consists of micro and/or macro-scale harvesters matched to multiple components of remote wireless sensor and communication nodes. The micro-scale harvesters consist of thin-film MEMS piezoelectric cantilever arrays and power generation modules in IC-like form to allow efficient EH from vibrations. The design uses new high conversion efficiency thin-film processes combined with novel cantilever structures tuned to multiple resonant frequencies as broadband arrays. The macro-scale harvesters are used to power the collector nodes that have higher power specifications. These bulk harvesters can be integrated with efficient adaptive power management circuits that match transducer impedance and maximize power harvested from multiple scavenging sources with very low intrinsic power consumption. Texas MicroPower, Inc. is developing process based on a composition that has the highest reported energy density as compared to other commercially available bulk PZT-based sensor/actuator ceramic materials and extending it to thin-film materials and miniature conversion transducer structures. The multiform factor harvesters can be deployed for several military and commercial applications such as underground unattended sensors, sensors in oil rigs, structural health monitoring, supply chain management, and battlefield applications such as sensors on soldier apparel, equipment, and wearable electronics.

  14. Autonomous energy harvesting embedded sensors for border security applications

    NASA Astrophysics Data System (ADS)

    Hande, Abhiman; Shah, Pradeep; Falasco, James N.; Weiner, Doug

    2010-04-01

    Wireless networks of seismic sensors have proven to be a valuable tool for providing security forces with intrusion alerts even in densely forested areas. The cost of replenishing the power source is one of the primary obstacles preventing the widespread use of wireless sensors for passive barrier protection. This paper focuses on making use of energy from multiple sources to power these sensors. A system comprising of Texas Micropower's (TMP's) energy harvesting device and Crane Wireless Monitoring Solutions' sensor nodes is described. The energy harvesters are suitable for integration and for low cost, high volume production. The harvesters are used for powering sensors in Crane's wireless hub and spoke type sensor network. TMP's energy harvesting methodology is based on adaptive power management circuits that allow harvesting from multiple sources making them suitable for underground sensing/monitoring applications. The combined self-powered energy harvesting solutions are expected to be suitable for broad range of defense and industry applications. Preliminary results have indicated good feasibility to use a single power management solution that allows multi-source energy harvesting making such systems practical in remote sensing applications.

  15. Harvest-induced evolution and effective population size.

    PubMed

    Kuparinen, Anna; Hutchings, Jeffrey A; Waples, Robin S

    2016-06-01

    Much has been written about fishery-induced evolution (FIE) in exploited species, but relatively little attention has been paid to the consequences for one of the most important parameters in evolutionary biology-effective population size (N e). We use a combination of simulations of Atlantic cod populations experiencing harvest, artificial manipulation of cod life tables, and analytical methods to explore how adding harvest to natural mortality affects N e, census size (N), and the ratio N e/N. We show that harvest-mediated reductions in N e are due entirely to reductions in recruitment, because increasing adult mortality actually increases the N e/N ratio. This means that proportional reductions in abundance caused by harvest represent an upper limit to the proportional reductions in N e, and that in some cases N e can even increase with increased harvest. This result is a quite general consequence of increased adult mortality and does not depend on harvest selectivity or FIE, although both of these influence the results in a quantitative way. In scenarios that allowed evolution, N e recovered quickly after harvest ended and remained higher than in the preharvest population for well over a century, which indicates that evolution can help provide a long-term buffer against loss of genetic variability. PMID:27247617

  16. Electrochemically driven mechanical energy harvesting

    NASA Astrophysics Data System (ADS)

    Kim, Sangtae; Choi, Soon Ju; Zhao, Kejie; Yang, Hui; Gobbi, Giorgia; Zhang, Sulin; Li, Ju

    2016-01-01

    Efficient mechanical energy harvesters enable various wearable devices and auxiliary energy supply. Here we report a novel class of mechanical energy harvesters via stress-voltage coupling in electrochemically alloyed electrodes. The device consists of two identical Li-alloyed Si as electrodes, separated by electrolyte-soaked polymer membranes. Bending-induced asymmetric stresses generate chemical potential difference, driving lithium ion flux from the compressed to the tensed electrode to generate electrical current. Removing the bending reverses ion flux and electrical current. Our thermodynamic analysis reveals that the ideal energy-harvesting efficiency of this device is dictated by the Poisson's ratio of the electrodes. For the thin-film-based energy harvester used in this study, the device has achieved a generating capacity of 15%. The device demonstrates a practical use of stress-composition-voltage coupling in electrochemically active alloys to harvest low-grade mechanical energies from various low-frequency motions, such as everyday human activities.

  17. Electrochemically driven mechanical energy harvesting

    PubMed Central

    Kim, Sangtae; Choi, Soon Ju; Zhao, Kejie; Yang, Hui; Gobbi, Giorgia; Zhang, Sulin; Li, Ju

    2016-01-01

    Efficient mechanical energy harvesters enable various wearable devices and auxiliary energy supply. Here we report a novel class of mechanical energy harvesters via stress–voltage coupling in electrochemically alloyed electrodes. The device consists of two identical Li-alloyed Si as electrodes, separated by electrolyte-soaked polymer membranes. Bending-induced asymmetric stresses generate chemical potential difference, driving lithium ion flux from the compressed to the tensed electrode to generate electrical current. Removing the bending reverses ion flux and electrical current. Our thermodynamic analysis reveals that the ideal energy-harvesting efficiency of this device is dictated by the Poisson's ratio of the electrodes. For the thin-film-based energy harvester used in this study, the device has achieved a generating capacity of 15%. The device demonstrates a practical use of stress-composition–voltage coupling in electrochemically active alloys to harvest low-grade mechanical energies from various low-frequency motions, such as everyday human activities. PMID:26733282

  18. Tree mortality following partial harvests is determined by skidding proximity.

    PubMed

    Thorpe, H C; Thomas, S C; Caspersen, J P

    2008-10-01

    Recently developed structural retention harvesting strategies aim to improve habitat and ecological services provided by managed forest stands by better emulating natural disturbances. The potential for elevated mortality of residual trees following such harvests remains a critical concern for forest managers, and may present a barrier to more widespread implementation of the approach. We used a harvest chronosequence combined with dendrochronological techniques and an individual-based neighborhood analysis to examine the rate and time course of residual-tree mortality in the first decade following operational partial "structural retention" harvests in the boreal forest of Ontario, Canada. In the first year after harvest, residual-tree mortality peaked at 12.6 times the preharvest rate. Subsequently, mortality declined rapidly and approached preharvest levels within 10 years. Proximity to skid trails was the most important predictor both of windthrow and standing death, which contributed roughly equally to total postharvest mortality. Local exposure further increased windthrow risk, while crowding enhanced the risk of standing mortality. Ten years after harvest, an average of 10.5% of residual trees had died as a result of elevated postharvest mortality. Predicted cumulative elevated mortality in the first decade after harvest ranged from 2.4% to 37% of residual trees across the observed gradient of skid trail proximity, indicating that postharvest mortality will remain at or below acceptable rates only if skidding impacts are minimized. These results represent an important step toward understanding how elevated mortality may influence stand dynamics and habitat supply following moderate-severity disturbances such as partial harvests, insect outbreaks, and windstorms. PMID:18839761

  19. Adaptive tuned piezoelectric MEMS vibration energy harvester using an electrostatic device

    NASA Astrophysics Data System (ADS)

    Madinei, H.; Khodaparast, H. Haddad; Adhikari, S.; Friswell, M. I.; Fazeli, M.

    2015-11-01

    In this paper an adaptive tuned piezoelectric vibration based energy harvesting system based on the use of electrostatic device is proposed. The main motivation is to control the resonance frequency of the piezoelectric harvester with the DC voltage applied to the electrostatic system in order to maximize the harvested power. The idea is demonstrated in a hybrid system consisting of a cantilevered piezoelectric harvester combined with an electrostatic harvester which is connected to a variable voltage source. The nonlinear governing differential equation of motion is derived based on Euler Bernoulli theory, and solved to obtain the static and dynamic solutions. The results show that the harvester can be tuned to give a resonant response over a wide range of frequencies, and shows the great potential of this hybrid system.

  20. Influence of harvesting technique and maceration process on aroma and phenolic attributes of Sauvignon blanc wine.

    PubMed

    Olejar, Kenneth J; Fedrizzi, Bruno; Kilmartin, Paul A

    2015-09-15

    Sauvignon blanc wines are characterised by their varietal aromas and low phenolic content. Mechanical harvesting has been shown to increase several varietal aromas. Likewise, maceration techniques have produced increases in phenolic content and antioxidant activity, but these can also alter tactile attributes and sensory profiles. Mechanical harvesting and cryogenic maceration were used in combination to produce a Sauvignon blanc wine with increased phenolic content and antioxidant activity, while showing a similar sensory profile to control wines. Phenolic profiles of the wines showed differences between the harvesting and maceration techniques. Mechanical harvesting contributed to decreases in phenolics through reaction with oxidative radicals. Cryogenic maceration increased phenolics and antioxidant activity. Cryogenic maceration also increased the levels of several varietal aromas, for Sauvignon blanc wines made from both hand-picked and from machine-harvested fruit. Furthermore, cryogenic treatment of hand-picked fruit increased varietal thiols to levels similar to machine-harvested control wines. PMID:25863627

  1. A Hip Implant Energy Harvester

    NASA Astrophysics Data System (ADS)

    Pancharoen, K.; Zhu, D.; Beeby, S. P.

    2014-11-01

    This paper presents a kinetic energy harvester designed to be embedded in a hip implant which aims to operate at a low frequency associated with body motion of patients. The prototype is designed based on the constrained volume available in a hip prosthesis and the challenge is to harvest energy from low frequency movements (< 1 Hz) which is an average frequency during free walking of a patient. The concept of magnetic-force-driven energy harvesting is applied to this prototype considering the hip movements during routine activities of patients. The magnetic field within the harvester was simulated using COMSOL. The simulated resonant frequency was around 30 Hz and the voltage induced in a coil was predicted to be 47.8 mV. A prototype of the energy harvester was fabricated and tested. A maximum open circuit voltage of 39.43 mV was obtained and the resonant frequency of 28 Hz was observed. Moreover, the power output of 0.96 μW was achieved with an optimum resistive load of 250Ω.

  2. A multiaxial piezoelectric energy harvester

    NASA Astrophysics Data System (ADS)

    Mousselmal, H. D.; Cottinet, P. J.; Quiquerez, L.; Remaki, B.; Petit, L.

    2013-04-01

    An important limitation in the classical energy harvesters based on cantilever beam structure is its monodirectional sensibility. The external excitation must generate an orthogonal acceleration from the beam plane to induced flexural deformation. If the direction of the excitation deviates from this privileged direction, the harvester output power is drastically reduced. This point is obviously very restrictive in the case of an arbitrary excitation direction induced for example by human body movements or vehicles vibrations. In order to overcome this issue of the conventional resonant cantilever configuration with seismic mass, a multidirectional harvester is introduced here by the authors. The multidirectional ability relies on the exploitation of 3 degenerate structural vibration modes where each of them is induced by the corresponding component of the acceleration vector. This specific structure has been already used for 3 axis accelerometers but the approach is here totally revisited because the final functional goal is different. This paper presents the principle and the design considerations of such multidirectional piezoelectric energy harvester. A finite element model has been used for the harvester optimisation. It has been shown that the seismic mass is a relevant parameter for the modes tuning because the resonant frequency of the 1st exploited flexural mode directly depends on the mass whereas the resonance frequency of the 2nd flexural mode depends on its moment of inertia. A simplified centimetric prototype limited to a two orthogonal direction sensibility has permitted to valid the theoretical approach.

  3. Vibro-impacting power harvester

    NASA Astrophysics Data System (ADS)

    Moss, Scott; Powlesland, Ian; Galea, Stephen; Carman, Gregory

    2010-04-01

    The certification of retro-fitted structural health monitoring (SHM) systems for use on aircraft raises a number of challenges. One critical issue is determining the optimal means of supplying power to these systems, given that access to the existing aircraft power-system is often problematic. Previously, the DSTO has shown that a structural-strain based energy harvesting approach can be used to power a device for SHM of aircraft structure. Acceleration-based power harvesting from airframes can be more demanding than a strain based approach because the vibration spectrum of an aircraft structure can vary dynamically with flight conditions. A vibration spectrum with varying frequency may severely limit the power harvested by a single-degree-of-freedom resonance-based device, and hence a frequency agile or (relatively) broadband device is often required to maximize the energy harvested. This paper reports on an investigation into the use of a vibro-impact approach to construct an acceleration-based power harvester that can operate in the frequency range 29-41 Hz.

  4. Piezoelectric Water Drop Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Al Ahmad, Mahmoud

    2014-02-01

    Piezoelectric materials convert mechanical deformation directly into electrical charges, which can be harvested and used to drive micropower electronic devices. The low power consumption of such systems on the scale of microwatts leads to the possibility of using harvested vibrational energy due to its almost universal nature. Vibrational energy harvested using piezoelectric cantilevers provides sufficient output for small-scale power applications. This work reports on vibrational energy harvesting from free-falling droplets at the tip of lead zirconate titanate piezoelectric-based cantilevers. The harvester incorporates a multimorph clamped-free cantilever made of lead zirconate titanate piezoelectric thick films. During the impact, the droplet's kinetic energy is transferred to the form of mechanical stress, forcing the piezoelectric structure to vibrate and thereby producing charges. Experimental results show an instantaneous drop-power of 2.15 mW cm-3 g-1. The scenario of a medium intensity of falling water drops, i.e., 200 drops per second, yielded a power of 0.48 W cm-3 g-1 per second.

  5. Minimally invasive posterior hamstring harvest.

    PubMed

    Wilson, Trent J; Lubowitz, James H

    2013-01-01

    Autogenous hamstring harvesting for knee ligament reconstruction is a well-established standard. Minimally invasive posterior hamstring harvest is a simple, efficient, reproducible technique for harvest of the semitendinosus or gracilis tendon or both medial hamstring tendons. A 2- to 3-cm longitudinal incision from the popliteal crease proximally, in line with the semitendinosus tendon, is sufficient. The deep fascia is bluntly penetrated, and the tendon or tendons are identified. Adhesions are dissected. Then, an open tendon stripper is used to release the tendon or tendons proximally; a closed, sharp tendon stripper is used to release the tendon or tendons from the pes. Layered, absorbable skin closure is performed, and the skin is covered with a skin sealant, bolster dressing, and plastic adhesive bandage for 2 weeks. PMID:24266003

  6. Piezoelectric MEMS for energy harvesting

    NASA Astrophysics Data System (ADS)

    Kanno, Isaku

    2015-12-01

    Recently, piezoelectric MEMS have been intensively investigated to create new functional microdevices, and some of them have already been commercialized such as MEMS gyrosensors or miropumps of inkjet printer head. Piezoelectric energy harvesting is considered to be one of the promising future applications of piezoelectric MEMS. In this report, we introduce the deposition of the piezoelectric PZT thin films as well as lead-free KNN thin films. We fabricated piezoelectric energy harvesters of PZT and KNN thin films deposited on stainless steel cantilevers and compared their power generation performance.

  7. Harvesting of algae by froth flotation.

    PubMed

    LEVIN, G V; CLENDENNING, J R; GIBOR, A; BOGAR, F D

    1962-03-01

    A highly efficient froth flotation procedure has been developed for harvesting algae from dilute suspensions. The method does not depend upon the addition of flotants. Harvesting is carried out in a long column containing the feed solution which is aerated from below. A stable column of foam is produced and harvested from a side arm near the top of the column. The cell concentration of the harvest is a function of pH, aeration rate, aerator porosity, feed concentration, and height of foam in the harvesting column. The economic aspects of this process seem favorable for mass harvesting of algae for food or other purposes. PMID:14464557

  8. Developing recreational harvest regulations for an unexploited lake trout population

    USGS Publications Warehouse

    Lenker, Melissa A; Weidel, Brian C.; Jensen, Olaf P.; Solomon, Christopher T.

    2016-01-01

    Developing fishing regulations for previously unexploited populations presents numerous challenges, many of which stem from a scarcity of baseline information about abundance, population productivity, and expected angling pressure. We used simulation models to test the effect of six management strategies (catch and release; trophy, minimum, and maximum length limits; and protected and exploited slot length limits) on an unexploited population of Lake Trout Salvelinus namaycush in Follensby Pond, a 393-ha lake located in New York State’s Adirondack Park. We combined field and literature data and mark–recapture abundance estimates to parameterize an age-structured population model and used the model to assess the effects of each management strategy on abundance, catch per unit effort (CPUE), and harvest over a range of angler effort (0–2,000 angler-days/year). Lake Trout density (3.5 fish/ha for fish ≥ age 13, the estimated age at maturity) was similar to densities observed in other unexploited systems, but growth rate was relatively slow. Maximum harvest occurred at levels of effort ≤ 1,000 angler-days/year in all the scenarios considered. Regulations that permitted harvest of large postmaturation fish, such as New York’s standard Lake Trout minimum size limit or a trophy size limit, resulted in low harvest and high angler CPUE. Regulations that permitted harvest of small and sometimes immature fish, such as a protected slot or maximum size limit, allowed high harvest but resulted in low angler CPUE and produced rapid declines in harvest with increases in effort beyond the effort consistent with maximum yield. Management agencies can use these results to match regulations to management goals and to assess the risks of different management options for unexploited Lake Trout populations and other fish species with similar life history traits.

  9. Power management for energy harvesting wireless sensors

    NASA Astrophysics Data System (ADS)

    Arms, S. W.; Townsend, C. P.; Churchill, D. L.; Galbreath, J. H.; Mundell, S. W.

    2005-05-01

    The objective of this work was to demonstrate smart wireless sensing nodes capable of operation at extremely low power levels. These systems were designed to be compatible with energy harvesting systems using piezoelectric materials and/or solar cells. The wireless sensing nodes included a microprocessor, on-board memory, sensing means (1000 ohm foil strain gauge), sensor signal conditioning, 2.4 GHz IEEE 802.15.4 radio transceiver, and rechargeable battery. Extremely low power consumption sleep currents combined with periodic, timed wake-up was used to minimize the average power consumption. Furthermore, we deployed pulsed sensor excitation and microprocessor power control of the signal conditioning elements to minimize the sensors" average contribution to power draw. By sleeping in between samples, we were able to demonstrate extremely low average power consumption. At 10 Hz, current consumption was 300 microamps at 3 VDC (900 microwatts); at 5 Hz: 400 microwatts, at 1 Hz: 90 microwatts. When the RF stage was not used, but data were logged to memory, consumption was further reduced. Piezoelectric strain energy harvesting systems delivered ~2000 microwatts under low level vibration conditions. Output power levels were also measured from two miniature solar cells; which provided a wide range of output power (~100 to 1400 microwatts), depending on the light type & distance from the source. In summary, system power consumption may be reduced by: 1) removing the load from the energy harvesting & storage elements while charging, 2) by using sleep modes in between samples, 3) pulsing excitation to the sensing and signal conditioning elements in between samples, and 4) by recording and/or averaging, rather than frequently transmitting, sensor data.

  10. Carbon Nanotube Passive Intermodulation Device for Nonlinear Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Lerner, Mitchell; Perez, Israel; Rockway, John

    2014-03-01

    The navy is interested in designing RF front-ends for receivers to handle high power jammers and other strong interferers. Instead of blocking that energy or dissipating it as heat in filters or amplifiers, this project investigates re-directing that energy for harvesting and storage. The approach is based on channelizing a high power jamming signal into a passive intermodulation device to create intermodulation products in sub-band frequencies, which could then be harvested for energy. The intermodulation device is fabricated using carbon nanotube transistors and such devices can be modified by creating chemical defects in the sidewalls of the nanotubes and locally gating the devices with a slowly varying electric field. These effects controllably enhance the hysteretic non-linearity in the transistors IV behavior. Combining these components with a RF energy harvester on the back-end should optimize the re-use of inbound jamming energy while maximizing the utility of standard back end radio components.

  11. Sustainable Corn Stover Harvest Strategies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn stover has been identified as an important initial source of biomass for conversion to ethanol and other biofuels. This poster presentation outlines on-going cooperative research being conducted near Ames, IA. Our university partner is responsible for developing the one-pass harvester and our I...

  12. Harvesting the Ocean: Teachers' Handbook.

    ERIC Educational Resources Information Center

    Caton, Albert, Ed.; And Others

    This teaching guide is designed for use with three units of study (presented in separate booklets titled "The Ocean,""The Harvest," and "Using the Sea Wisely"). The multidisciplinary units contain teaching and learning resources designed to provide: students with learning experiences using a variety of thinking processes; learning experiences in…

  13. Noise powered nonlinear energy harvesting

    NASA Astrophysics Data System (ADS)

    Gammaitoni, Luca; Neri, Igor; Vocca, Helios

    2011-04-01

    The powering of small-scale electronic mobile devices has been in recent years the subject of a great number of research efforts aimed primarily at finding an alternative solution to standard batteries. The harvesting of kinetic energy present in the form of random vibrations (from non-equilibrium thermal noise up to machine vibrations) is an interesting option due to the almost universal presence of some kind of motion. Present working solutions for vibration energy harvesting are based on oscillating mechanical elements that convert kinetic energy via capacitive, inductive or piezoelectric methods. These oscillators are usually designed to be resonantly tuned to the ambient dominant frequency. However, in most cases the ambient random vibrations have their energy distributed over a wide spectrum of frequencies, especially at low frequency, and frequency tuning is not always possible due to geometrical/dynamical constraints. We present a new approach to the powering of small autonomous sensors based on vibration energy harvesting by the exploitation of nonlinear stochastic dynamics. Such a method is shown to outperform standard linear approaches based on the use of resonant oscillators and to overcome some of the most severe limitations of present strategies, like narrow bandwidth, need for continuous frequency tuning and low power efficiency. We demonstrate the superior performances of this method by applying it to piezoelectric energy harvesting from ambient vibration.

  14. Fluid flow nozzle energy harvesters

    NASA Astrophysics Data System (ADS)

    Sherrit, Stewart; Lee, Hyeong Jae; Walkemeyer, Phillip; Winn, Tyler; Tosi, Luis Phillipe; Colonius, Tim

    2015-04-01

    Power generation schemes that could be used downhole in an oil well to produce about 1 Watt average power with long-life (decades) are actively being developed. A variety of proposed energy harvesting schemes could be used to extract energy from this environment but each of these has their own limitations that limit their practical use. Since vibrating piezoelectric structures are solid state and can be driven below their fatigue limit, harvesters based on these structures are capable of operating for very long lifetimes (decades); thereby, possibly overcoming a principle limitation of existing technology based on rotating turbo-machinery. An initial survey [1] identified that spline nozzle configurations can be used to excite a vibrating piezoelectric structure in such a way as to convert the abundant flow energy into useful amounts of electrical power. This paper presents current flow energy harvesting designs and experimental results of specific spline nozzle/ bimorph design configurations which have generated suitable power per nozzle at or above well production analogous flow rates. Theoretical models for non-dimensional analysis and constitutive electromechanical model are also presented in this paper to optimize the flow harvesting system.

  15. Harvest prediction in `Algerie' loquat

    NASA Astrophysics Data System (ADS)

    Hueso, Juan J.; Pérez, Mercedes; Alonso, Francisca; Cuevas, Julián

    2007-05-01

    Plant phenology is in great measure driven by air temperature. To forecast harvest time for ‘Algerie’ loquat accurately, the growing degree days (GDD) needed from bloom to ripening were determined using data from nine seasons. The methods proposed by Zalom et al. (Zalom FG, Goodell PB, Wilson LT, Barnett WW, Bentley W, Degree-days: the calculation and use of heat units in pest management, leaflet no 21373, Division Agriculture and Natural Resources, University of California 10 pp, 1983) were compared as regards their ability to estimate heat summation based on hourly records. All the methods gave remarkably similar results for our cultivation area, although the double-sine method showed higher performance when temperatures were low. A base temperature of 3°C is proposed for ‘Algerie’ loquat because it provides a coefficient of variation in GDD among seasons of below 5%, and because of its compatibility with loquat growth. Based on these determinations, ‘Algerie’ loquat requires 1,715 GDD from bloom to harvest; under our conditions this heat is accumulated over an average of 159 days. Our procedure permits the ‘Algerie’ harvest date to be estimated with a mean error of 4.4 days (<3% for the bloom-harvest period). GDD summation did not prove superior to the use of the number of calendar days for predicting ‘Algerie’ harvest under non-limiting growing conditions. However, GDD reflects the developmental rate in water-stressed trees better than calendar days. Trees under deficit irrigation during flower development required more time and more heat to ripen their fruits.

  16. A Nonlinear Energy Sink with Energy Harvester

    NASA Astrophysics Data System (ADS)

    Kremer, Daniel

    The transfer of energy between systems is a natural process, manifesting in many different ways. In engineering transferable energy can be considered wanted or unwanted. Specifically in mechanical systems, energy transfer can occur as unwanted vibrations, passing from a source to a receiver. In electrical systems, energy transfer can be desirable, where energy from a source may be used elsewhere. This work proposes a method to combine the two, converting unwanted mechanical energy into useable electrical energy. A nonlinear energy sink (NES) is a vibration absorber that passively localizes vibrational energy, removing mechanical energy from a primary system. Consisting of a mass-spring-damper such that the stiffness is essentially nonlinear, a NES can localize vibrational energy from a source and dissipate it through damping. Replacing the NES mass with a series of magnets surrounded by coils fixed to the primary mass, the dissipated energy can be directly converted to electrical energy. A NES with energy harvesting properties is constructed and introduced. The system parameters are identified, with the NES having an essentially cubic nonlinear stiffness. A transduction factor is quantified linking the electrical and mechanical systems. An analytic analysis is carried out studying the transient and harmonically excited response of the system. It is found that the energy harvesting does not reduce the vibrational absorption capabilities of the NES. The performance of the system in both transient and harmonically excited responses is found to be heavily influenced by input energies. The system is tested, with good match to analytic results.

  17. Ergonomic evaluation and comparison of wood harvesting systems in Northwest Russia.

    PubMed

    Gerasimov, Yuri; Sokolov, Anton

    2014-03-01

    A comparison of 14 currently applicable wood harvesting systems was assessed with respect to ergonomic point of view. For this purpose, the research method, based on the Hodges-Lehmann rule and the integrated work-severity rate of single machinery, was developed for ergonomic evaluation of cut-to-length, tree-length and full-tree harvesting systems. Altogether, about 130 different parameters of 36 units of equipment that impact on the ergonomics and work conditions were measured and estimated in interviews undertaken directly at forestry harvesting workplaces in 15 logging companies in the Republic of Karelia, Northwest Russia. Then the results were compared to the effective norms, and the degree of compliance with the stipulated values was determined. The estimates obtained for the degree of compliance were combined. This permits a direct comparison of the workload on forestry harvesting workers such as operators, lumberjacks and choker setters. In many respects, the current ergonomic standard is standard, except for the operators of cable skidders, chainsaws and choker settings. Visibility and work postures were considered to be the most critical features influencing the operator's performance. Problems still exist, despite the extensive development of cabs. The best working conditions in terms of harvesting systems were provided by "harvester + forwarder" in cut-to-length harvesting, and "feller-buncher + grapple skidder" in full-tree harvesting. The motor-manual tree-length harvesting performed with cable skidders showed the worst results in terms of ergonomics. PMID:23706292

  18. Nyala and Bushbuck II: A Harvesting Model.

    ERIC Educational Resources Information Center

    Fay, Temple H.; Greeff, Johanna C.

    1999-01-01

    Adds a cropping or harvesting term to the animal overpopulation model developed in Part I of this article. Investigates various harvesting strategies that might suggest a solution to the overpopulation problem without actually culling any animals. (ASK)

  19. NMR-Based Metabolomic Study on Isatis tinctoria: Comparison of Different Accessions, Harvesting Dates, and the Effect of Repeated Harvesting.

    PubMed

    Guldbrandsen, Niels; Kostidis, Sarantos; Schäfer, Hartmut; De Mieri, Maria; Spraul, Manfred; Skaltsounis, Alexios-Leandros; Mikros, Emmanuel; Hamburger, Matthias

    2015-05-22

    Isatis tinctoria is an ancient dye and medicinal plant with potent anti-inflammatory and antiallergic properties. Metabolic differences were investigated by NMR spectroscopy of accessions from different origins that were grown under identical conditions on experimental plots. For these accessions, metabolite profiles at different harvesting dates were analyzed, and single and repeatedly harvested plants were compared. Leaf samples were shock-frozen in liquid N2 immediately after being harvested, freeze-dried, and cryomilled prior to extraction. Extracts were prepared by pressurized liquid extraction with ethyl acetate and 70% aqueous methanol. NMR spectra were analyzed using a combination of different methods of multivariate data analysis such as principal component analysis (PCA), canonical analysis (CA), and k-nearest neighbor concept (k-NN). Accessions and harvesting dates were well separated in the PCA/CA/k-NN analysis in both extracts. Pairwise statistical total correlation spectroscopy (STOCSY) revealed unsaturated fatty acids, porphyrins, carbohydrates, indole derivatives, isoprenoids, phenylpropanoids, and minor aromatic compounds as the cause of these differences. In addition, the metabolite profile was affected by the repeated harvest regime, causing a decrease of 1,5-anhydroglucitol, sucrose, unsaturated fatty acids, porphyrins, isoprenoids, and a flavonoid. PMID:25946005

  20. Carbon and nitrogen pools and mineralization rates in boreal forest soil after stump harvesting

    NASA Astrophysics Data System (ADS)

    Kaarakka, Lilli; Hyvönen, Riitta; Strömgren, Monika; Palviainen, Marjo; Persson, Tryggve; Olsson, Bengt A.; Helmisaari, Heljä-Sisko

    2016-04-01

    The use of forest-derived biomass has steadily increased in the Finland and Sweden during the past decades. Thus, more intensive forest management practices are becoming more common in the region, such as whole-tree harvesting, both above- and belowground. Stump harvesting causes a direct removal of carbon (C) in the form of biomass from the stand and can cause extensive soil disturbance, which in turn can result in increased C mineralization. In this study, the effects of stump harvesting on soil C and nitrogen (N) mineralization, and soil surface disturbance were studied at two different clear-felled Norway spruce (Picea abies) stands in Central Finland. The treatments were conventional stem-only harvesting combined with mounding (WTH) and stump harvesting (i.e. complete tree harvesting) combined with mounding (WTH+S). Logging residues were removed from all study sites. Soil samples down to a depth of 20 cm were systematically collected from the different soil disturbance surfaces (undisturbed soil, the mounds and the pits) 12-13 years after final harvest. Soil samples were incubated in the laboratory to determine the C and N mineralization rates. In addition, total C and N pools were estimated for each disturbance class and soil layer. Soil C and N pools were lower following stump harvesting, however, no statistically significant treatment effect was detected. Instead, C mineralization responses to treatment intensity was site-specific. C/N-ratio and organic matter content were significantly affected by harvest intensity. The observed changes in C and N pools appear to be related to the intrinsic variation of the surface disturbance and soil characteristics, and harvesting per se, rather than treatment intensity. Long-term studies are however needed to draw long-term conclusions whether stump harvesting significantly changes soil C and nutrient dynamics.

  1. Proso Millet Harvest: A Comparison of Conventional Harvest and Direct Harvest with a Stripper Header

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This research was conducted to determine if proso millet can be harvested with a stripper header. Stripper headers use extremely fast rotating metal teeth to rip the seed off the plant and leave the majority of residue standing in the field as opposed to cutting off the entire plant and running tha...

  2. Energy harvesting devices for harvesting energy from terahertz electromagnetic radiation

    DOEpatents

    Novack, Steven D.; Kotter, Dale K.; Pinhero, Patrick J.

    2012-10-09

    Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

  3. Fundamental Limits to Nonlinear Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Haji Hosseinloo, Ashkan; Turitsyn, Konstantin

    2015-12-01

    Linear and nonlinear vibration energy harvesting has been the focus of considerable research in recent years. However, fundamental limits on the harvestable energy of a harvester subjected to an arbitrary excitation force and different constraints is not yet fully understood. Understanding these limits is not only essential for an assessment of the technology potential, but it also provides a broader perspective on the current harvesting mechanisms and guidance in their improvement. Here, we derive the fundamental limits on the output power of an ideal energy harvester for arbitrary excitation waveforms and build on the current analysis framework for the simple computation of this limit for more sophisticated setups. We show that the optimal harvester maximizes the harvested energy through a mechanical analog of a buy-low-sell-high strategy. We also propose a nonresonant passive latch-assisted harvester to realize this strategy for an effective harvesting. It is shown that the proposed harvester harvests energy more effectively than its linear and bistable counterparts over a wider range of excitation frequencies and amplitudes. The buy-low-sell-high strategy also reveals why the conventional bistable harvester works well at low-frequency excitation.

  4. Water Harvesting II: Working toward Being Green

    ERIC Educational Resources Information Center

    Farenga, Stephen J.; Ness, Daniel; Craven, John A.

    2008-01-01

    As you have read in the previous "After the Bell" column, water harvesting is a process of diverting and collecting rainwater. One of the main reasons to harvest rainwater is to reduce the demand on local sources of water. The objective of the harvesting procedure is to gather water from a weather event that is usually lost as runoff and either…

  5. 25 CFR 163.12 - Harvesting restrictions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Harvesting restrictions. 163.12 Section 163.12 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GENERAL FORESTRY REGULATIONS Forest Management and Operations § 163.12 Harvesting restrictions. (a) Harvesting timber on commercial forest...

  6. 25 CFR 163.12 - Harvesting restrictions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Harvesting restrictions. 163.12 Section 163.12 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GENERAL FORESTRY REGULATIONS Forest Management and Operations § 163.12 Harvesting restrictions. (a) Harvesting timber on commercial forest...

  7. 25 CFR 163.12 - Harvesting restrictions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Harvesting restrictions. 163.12 Section 163.12 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GENERAL FORESTRY REGULATIONS Forest Management and Operations § 163.12 Harvesting restrictions. (a) Harvesting timber on commercial forest...

  8. 25 CFR 163.12 - Harvesting restrictions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Harvesting restrictions. 163.12 Section 163.12 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GENERAL FORESTRY REGULATIONS Forest Management and Operations § 163.12 Harvesting restrictions. (a) Harvesting timber on commercial forest...

  9. 25 CFR 163.12 - Harvesting restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Harvesting restrictions. 163.12 Section 163.12 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GENERAL FORESTRY REGULATIONS Forest Management and Operations § 163.12 Harvesting restrictions. (a) Harvesting timber on commercial forest...

  10. Approaches to automated protein crystal harvesting

    SciTech Connect

    Deller, Marc C. Rupp, Bernhard

    2014-01-28

    Approaches to automated and robot-assisted harvesting of protein crystals are critically reviewed. While no true turn-key solutions for automation of protein crystal harvesting are currently available, systems incorporating advanced robotics and micro-electromechanical systems represent exciting developments with the potential to revolutionize the way in which protein crystals are harvested.

  11. Effects of harvesting flowers from shrubs on the persistence and abundance of wild shrub populations at multiple spatial extents.

    PubMed

    Cabral, Juliano Sarmento; Bond, William J; Midgley, Guy F; Rebelo, Anthony G; Thuiller, Wilfried; Schurr, Frank M

    2011-02-01

    Wildflower harvesting is an economically important activity of which the ecological effects are poorly understood. We assessed how harvesting of flowers affects shrub persistence and abundance at multiple spatial extents. To this end, we built a process-based model to examine the mean persistence and abundance of wild shrubs whose flowers are subject to harvest (serotinous Proteaceae in the South African Cape Floristic Region). First, we conducted a general sensitivity analysis of how harvesting affects persistence and abundance at nested spatial extents. For most spatial extents and combinations of demographic parameters, persistence and abundance of flowering shrubs decreased abruptly once harvesting rate exceeded a certain threshold. At larger extents, metapopulations supported higher harvesting rates before their persistence and abundance decreased, but persistence and abundance also decreased more abruptly due to harvesting than at smaller extents. This threshold rate of harvest varied with species' dispersal ability, maximum reproductive rate, adult mortality, probability of extirpation or local extinction, strength of Allee effects, and carrying capacity. Moreover, spatial extent interacted with Allee effects and probability of extirpation because both these demographic properties affected the response of local populations to harvesting more strongly than they affected the response of metapopulations. Subsequently, we simulated the effects of harvesting on three Cape Floristic Region Proteaceae species and found that these species reacted differently to harvesting, but their persistence and abundance decreased at low rates of harvest. Our estimates of harvesting rates at maximum sustainable yield differed from those of previous investigations, perhaps because researchers used different estimates of demographic parameters, models of population dynamics, and spatial extent than we did. Good demographic knowledge and careful identification of the spatial extent

  12. Fruit harvesting robots in Japan.

    PubMed

    Kondo, N; Monta, M; Fujiura, T

    1996-01-01

    We have developed harvesting robots for tomato, petty-tomato, cucumber and grape in Japan. These robots mainly consist of manipulators, end-effectors, visual sensors and traveling devices. These mechanisms of the robot components were developed based on the physical properties of the work objects. The robots must work automatically by themselves in greenhouses or fields, since we are considering for one operator to tend several robots in the production system. The system is modeled after Japanese agriculture which is commonly seen to produce many kinds of crops in greenhouses and in many small fields intensively. Bioproduction in space is somewhat similar to the agricultural system in Japan, because few operators have to work in a small space. Employing robots for bioproduction in space is considered desirable in near future. The following is a description of the harvesting robots. PMID:11538961

  13. Principles of thermoacoustic energy harvesting

    NASA Astrophysics Data System (ADS)

    Avent, A. W.; Bowen, C. R.

    2015-11-01

    Thermoacoustics exploit a temperature gradient to produce powerful acoustic pressure waves. The technology has a key role to play in energy harvesting systems. A time-line in the development of thermoacoustics is presented from its earliest recorded example in glass blowing through to the development of the Sondhauss and Rijke tubes to Stirling engines and pulse-tube cryo-cooling. The review sets the current literature in context, identifies key publications and promising areas of research. The fundamental principles of thermoacoustic phenomena are explained; design challenges and factors influencing efficiency are explored. Thermoacoustic processes involve complex multi-physical coupling and transient, highly non-linear relationships which are computationally expensive to model; appropriate numerical modelling techniques and options for analyses are presented. Potential methods of harvesting the energy in the acoustic waves are also examined.

  14. Forage Harvest and Transport Costs

    SciTech Connect

    Butler, J.; Downing, M.; Turhollow, A.

    1998-12-01

    An engineering-economic approach is used to calculate harvest, in-field transport, and over-the-road transport costs for hay as bales and modules, silage, and crop residues as bales and modules. Costs included are equipment depreciation interest; fuel, lube, and oil; repairs; insurance, housing, and taxes; and labor. Field preparation, pest control, fertilizer, land, and overhead are excluded from the costs calculated Equipment is constrained by power available, throughput or carrying capacity, and field speed.

  15. Motorcycle waste heat energy harvesting

    NASA Astrophysics Data System (ADS)

    Schlichting, Alexander D.; Anton, Steven R.; Inman, Daniel J.

    2008-03-01

    Environmental concerns coupled with the depletion of fuel sources has led to research on ethanol, fuel cells, and even generating electricity from vibrations. Much of the research in these areas is stalling due to expensive or environmentally contaminating processes, however recent breakthroughs in materials and production has created a surge in research on waste heat energy harvesting devices. The thermoelectric generators (TEGs) used in waste heat energy harvesting are governed by the Thermoelectric, or Seebeck, effect, generating electricity from a temperature gradient. Some research to date has featured platforms such as heavy duty diesel trucks, model airplanes, and automobiles, attempting to either eliminate heavy batteries or the alternator. A motorcycle is another platform that possesses some very promising characteristics for waste heat energy harvesting, mainly because the exhaust pipes are exposed to significant amounts of air flow. A 1995 Kawasaki Ninja 250R was used for these trials. The module used in these experiments, the Melcor HT3-12-30, produced an average of 0.4694 W from an average temperature gradient of 48.73 °C. The mathematical model created from the Thermoelectric effect equation and the mean Seebeck coefficient displayed by the module produced an average error from the experimental data of 1.75%. Although the module proved insufficient to practically eliminate the alternator on a standard motorcycle, the temperature data gathered as well as the examination of a simple, yet accurate, model represent significant steps in the process of creating a TEG capable of doing so.

  16. Scaling effects for piezoelectric energy harvesters

    NASA Astrophysics Data System (ADS)

    Zhu, D.; Beeby, S. P.

    2015-05-01

    This paper presents a fundamental investigation into scaling effects for the mechanical properties and electrical output power of piezoelectric vibration energy harvesters. The mechanical properties investigated in this paper include resonant frequency of the harvester and its frequency tunability, which is essential for the harvester to operate efficiently under broadband excitations. Electrical output power studied includes cases when the harvester is excited under both constant vibration acceleration and constant vibration amplitude. The energy harvester analysed in this paper is based on a cantilever structure, which is typical of most vibration energy harvesters. Both detailed mathematical derivation and simulation are presented. Furthermore, various piezoelectric materials used in MEMS and non-MEMS harvesters are also considered in the scaling analysis.

  17. Wireless energy transmission to supplement energy harvesters in sensor network applications

    SciTech Connect

    Farinholt, Kevin M; Taylor, Stuart G; Park, Gyuhae; Farrar, Charles R

    2010-01-01

    In this paper we present a method for coupling wireless energy transmission with traditional energy harvesting techniques in order to power sensor nodes for structural health monitoring applications. The goal of this study is to develop a system that can be permanently embedded within civil structures without the need for on-board power sources. Wireless energy transmission is included to supplement energy harvesting techniques that rely on ambient or environmental, energy sources. This approach combines several transducer types that harvest ambient energy with wireless transmission sources, providing a robust solution that does not rely on a single energy source. Experimental results from laboratory and field experiments are presented to address duty cycle limitations of conventional energy harvesting techniques, and the advantages gained by incorporating a wireless energy transmission subsystem. Methods of increasing the efficiency, energy storage medium, target applications and the integrated use of energy harvesting sources with wireless energy transmission will be discussed.

  18. Biomass yield as affected by wheat harvest method

    SciTech Connect

    Allen, R.R.; Hollingsworth, L.D.

    1982-12-01

    Wheat biomass yield and the portions recoverable by different harvesting methods were investigated at Bushland, TX. Where all above-ground dry matter was removed by hand and threshed with a small bundle thresher; the grain, straw and chaff portions averaged about 40, 50, and 10, respectively, of the total biomass. When clipping samples at a simulated combine harvesting height (13-14 inches), the remaining stubble amounts ranged from 1500 to 3000 pounds per acre when grain yield levels averaged 3000 to 6000 pounds per acre. In treatments where the stubble was swathed and baled after conventional combine harvesting, the straw yields ranged from 2000 to 2800 pounds per acre. The bales accounted for 34 to 46 of the ''material other than grain.'' There was about 2000 pounds per acre of stubble remaining below the 3 to 4 inch swather cutting height. In treatments where the combine cutter-bar was operated near ground level (2 to 3 inches) and all straw discharge was caught (whole plant combining), the catchings ranged from 65 to 89 of the ''material other than grain.'' The catching weights ranged from 3900 to 6000 pounds per acre.

  19. A comparison of power output from linear and nonlinear kinetic energy harvesters using real vibration data

    NASA Astrophysics Data System (ADS)

    Beeby, Stephen P.; Wang, Leran; Zhu, Dibin; Weddell, Alex S.; Merrett, Geoff V.; Stark, Bernard; Szarka, Gyorgy; Al-Hashimi, Bashir M.

    2013-07-01

    The design of vibration energy harvesters (VEHs) is highly dependent upon the characteristics of the environmental vibrations present in the intended application. VEHs can be linear resonant systems tuned to particular frequencies or nonlinear systems with either bistable operation or a Duffing-type response. This paper provides detailed vibration data from a range of applications, which has been made freely available for download through the Energy Harvesting Network’s online data repository. In particular, this research shows that simulation is essential in designing and selecting the most suitable vibration energy harvester for particular applications. This is illustrated through C-based simulations of different types of VEHs, using real vibration data from a diesel ferry engine, a combined heat and power pump, a petrol car engine and a helicopter. The analysis shows that a bistable energy harvester only has a higher output power than a linear or Duffing-type nonlinear energy harvester with the same Q-factor when it is subjected to white noise vibration. The analysis also indicates that piezoelectric transduction mechanisms are more suitable for bistable energy harvesters than electromagnetic transduction. Furthermore, the linear energy harvester has a higher output power compared to the Duffing-type nonlinear energy harvester with the same Q factor in most cases. The Duffing-type nonlinear energy harvester can generate more power than the linear energy harvester only when it is excited at vibrations with multiple peaks and the frequencies of these peaks are within its bandwidth. Through these new observations, this paper illustrates the importance of simulation in the design of energy harvesting systems, with particular emphasis on the need to incorporate real vibration data.

  20. Myocardial Cell Pattern on Piezoelectric Nanofiber Mats for Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Liu, X.; Wang, X.; Zhao, H.; Du, Y.

    2014-11-01

    The paper presents in vitro contractile myocardial cell pattern on piezoelectric nanofiber mats with applications in energy harvesting. The cell-based energy harvester consists of myocardial cell sheet and a PDMS substrate with a PVDF nanofiber mat on. Experimentally, cultured on specifically distributed nanofiber mats, neonatal rat ventricular cardiomyocytes are characterized with the related morphology and contraction. Previously, we have come up with the concept of energy harvesting from heart beating using piezoelectric material. A bio-hybrid energy harvester combined living cardiomyocytes, PDMS polymer substrate and piezoelectric PVDF film with the electrical output of peak current 87.5nA and peak voltage 92.3mV. However, the thickness of the cardiomyocyte cultured on a two-dimensional substrate is much less than that of the piezoelectric film. The Micro Contact Printing (μCP) method used in cell pattern on the PDMS thin film has tough requirement for the film surface. As such, in this paper we fabricated nanofiber-constructed PDMS thin film to realize cell pattern due to PVDF nanofibers with better piezoelectricity and microstructures of nanofiber mats guiding cell distribution. Living cardiomyocytes patterned on those distributed piezoelectric nanofibers with the result of the same distribution as the nanofiber pattern.

  1. Principles of light harvesting from single photosynthetic complexes.

    PubMed

    Schlau-Cohen, G S

    2015-06-01

    Photosynthetic systems harness sunlight to power most life on Earth. In the initial steps of photosynthetic light harvesting, absorbed energy is converted to chemical energy with near-unity quantum efficiency. This is achieved by an efficient, directional and regulated flow of energy through a network of proteins. Here, we discuss the following three key principles of this flow and of photosynthetic light harvesting: thermal fluctuations of the protein structure; intrinsic conformational switches with defined functional consequences; and environmentally triggered conformational switches. Through these principles, photosynthetic systems balance two types of operational costs: metabolic costs, or the cost of maintaining and running the molecular machinery, and opportunity costs, or the cost of losing any operational time. Understanding how the molecular machinery and dynamics are designed to balance these costs may provide a blueprint for improved artificial light-harvesting devices. With a multi-disciplinary approach combining knowledge of biology, this blueprint could lead to low-cost and more effective solar energy conversion. Photosynthetic systems achieve widespread light harvesting across the Earth's surface; in the face of our growing energy needs, this is functionality we need to replicate, and perhaps emulate. PMID:26052423

  2. Pyroelectric energy harvesting using liquid-based switchable thermal interfaces

    SciTech Connect

    Cha, G; Ju, YS

    2013-01-15

    The pyroelectric effect offers an intriguing solid-state approach for harvesting ambient thermal energy to power distributed networks of sensors and actuators that are remotely located or otherwise difficult to access. There have been, however, few device-level demonstrations due to challenges in converting spatial temperature gradients into temporal temperature oscillations necessary for pyroelectric energy harvesting. We demonstrate the feasibility of a device concept that uses liquid-based thermal interfaces for rapid switching of the thermal conductance between a pyroelectric material and a heat source/sink and can thereby deliver high output power density. Using a thin film of a pyroelectric co-polymer together with a macroscale mechanical actuator, we operate pyroelectric thermal energy harvesting cycles at frequencies close to 1 Hz. Film-level power densities as high as 110 mW/cm(3) were achieved, limited by slow heat diffusion across a glass substrate. When combined with a laterally interdigitated electrode array and a MEMS actuator, the present design offers an attractive option for compact high-power density thermal energy harvesters. (C) 2012 Elsevier B.V. All rights reserved.

  3. Principles of light harvesting from single photosynthetic complexes

    PubMed Central

    Schlau-Cohen, G. S.

    2015-01-01

    Photosynthetic systems harness sunlight to power most life on Earth. In the initial steps of photosynthetic light harvesting, absorbed energy is converted to chemical energy with near-unity quantum efficiency. This is achieved by an efficient, directional and regulated flow of energy through a network of proteins. Here, we discuss the following three key principles of this flow and of photosynthetic light harvesting: thermal fluctuations of the protein structure; intrinsic conformational switches with defined functional consequences; and environmentally triggered conformational switches. Through these principles, photosynthetic systems balance two types of operational costs: metabolic costs, or the cost of maintaining and running the molecular machinery, and opportunity costs, or the cost of losing any operational time. Understanding how the molecular machinery and dynamics are designed to balance these costs may provide a blueprint for improved artificial light-harvesting devices. With a multi-disciplinary approach combining knowledge of biology, this blueprint could lead to low-cost and more effective solar energy conversion. Photosynthetic systems achieve widespread light harvesting across the Earth's surface; in the face of our growing energy needs, this is functionality we need to replicate, and perhaps emulate. PMID:26052423

  4. Flow energy harvesting -- another application of the biomimetic flapping foils

    NASA Astrophysics Data System (ADS)

    Zhu, Qiang; Peng, Zhangli

    2009-11-01

    Imitating fish fins and insect wings, flapping foils are usually used for biomimetic propulsion. Theoretical studies and experiments have demonstrated that through specific combinations of heaving and pitching motions, these foils can also extract energy from incoming wind or current. Compared with conventional flow energy harvesting devices based upon rotating turbines, this novel design promises mitigated impact upon the environment. To achieve the required motions, existing studies focus on hydrodynamic mode coupling, in which a periodic pitching motion is activated and a heaving motion is then generated by the oscillating lifting force. Energy extraction is achieved through a damper in the heaving direction (representing the generator). This design involves a complicated control and activation system. In addition, there is always the possibility that the energy required to activate the system exceeds the energy recovered by the generator. We have discovered that a much simpler device without activation, a 2DOF foil mounted on a rotational spring and a damper undergoing flow-induced motions can achieve stable flow energy harvesting. Using Navier-Stokes simulations we predicted different behaviors of the system during flow-induced vibrations and identified the specific requirements to achieve controllable periodic motions essential for stable energy harvesting. The energy harvesting capacity and efficiency were also determined.

  5. Innovative thermal energy harvesting for future autonomous applications

    NASA Astrophysics Data System (ADS)

    Monfray, Stephane

    2013-12-01

    As communicating autonomous systems market is booming, the role of energy harvesting will be a key enabler. As example, heat is one of the most abundant energy sources that can be converted into electricity in order to power circuits. Harvesting systems that use wasted heat open new ways to power autonomous sensors when the energy consumption is low, or to create systems of power generators when the conversion efficiency is high. The combination of different technologies (low power μ-processors, μ-batteries, radio, sensors...) with new energy harvesters compatible with large varieties of use-cases with allow to address this booming market. Thanks to the conjunction of ultra-low power electronic development, 3D technologies & Systems in Package approaches, the integration of autonomous sensors and electronics with ambient energy harvesting will be achievable. The applications are very wide, from environment and industrial sensors to medical portable applications, and the Internet of things may also represent in the future a several billions units market.

  6. Short-term impacts of energy wood harvesting on ectomycorrhizal fungal communities of Norway spruce saplings

    PubMed Central

    Huusko, Karoliina; Tarvainen, Oili; Saravesi, Karita; Pennanen, Taina; Fritze, Hannu; Kubin, Eero; Markkola, Annamari

    2015-01-01

    The increased demand for harvesting energy wood raises questions about its effects on the functioning of the forest ecosystems, soil processes and biodiversity. Impacts of tree stump removal on ectomycorrhizal fungal (EMF) communities of Norway spruce saplings were studied with 454-pyrosequencing in a 3-year field experiment replicated in 3 geographical areas. This is possibly the most thorough investigation of EMF communities associated with saplings grown on sites subjected to energy wood harvesting. To separate impacts of tree stump and logging residue removal on EMF and plant variables, we used three harvesting treatments with increasing complexity from patch mounding alone (P) to patch mounding combined with logging residue removal (RP), and patch mounding combined with both logging residue and stump removal (SRP). Saplings grown in uncut forests (F) served as references for harvesting treatments. A majority of sequences (>92%) and operational taxonomic units (OTUs, 55%) were assigned as EMF. EMF OTU richness, fungal community composition or sapling growth did not differ between harvesting treatments (P, RP and SRP), while EMF OTU richness, diversity and evenness were highest and sapling growth lowest in the undisturbed reference forests (F). The short study period may partially explain the similarities in fungal and sapling variables in different harvesting treatments. In conclusion, our results indicate that neither stump removal nor logging residue removal have significant additional negative impacts on EMF communities or growth of Norway spruce saplings in the short-term compared with the impacts of more conventional harvesting methods, including clear cutting and patch mounding. PMID:25171334

  7. Effect of shunted piezoelectric control for tuning piezoelectric power harvesting system responses—analytical techniques

    NASA Astrophysics Data System (ADS)

    Lumentut, M. F.; Howard, I. M.

    2015-10-01

    This paper presents new analytical modelling of shunt circuit control responses for tuning electromechanical piezoelectric vibration power harvesting structures with proof mass offset. For this combination, the dynamic closed-form boundary value equations reduced from strong form variational principles were developed using the extended Hamiltonian principle to formulate the new coupled orthonormalized electromechanical power harvesting equations showing combinations of the mechanical system (dynamical behaviour of piezoelectric structure), electromechanical system (electrical piezoelectric response) and electrical system (tuning and harvesting circuits). The reduced equations can be further formulated to give the complete forms of new electromechanical multi-mode frequency response functions and the time waveform of the standard AC-DC circuit interface. The proposed technique can demonstrate self-adaptive harvesting response capabilities for tuning the frequency band and the power amplitude of the harvesting devices. The self-adaptive tuning strategies are demonstrated by modelling the shunt circuit behaviour of the piezoelectric control layer in order to optimize the harvesting piezoelectric layer during operation under input base excitation. In such situations, with proper tuning parameters the system performance can be substantially improved. Moreover, the validation of the closed-form technique is also provided by developing the Ritz method-based weak form analytical approach giving similar results. Finally, the parametric analytical studies have been explored to identify direct and relevant contributions for vibration power harvesting behaviours.

  8. Short-term impacts of energy wood harvesting on ectomycorrhizal fungal communities of Norway spruce saplings.

    PubMed

    Huusko, Karoliina; Tarvainen, Oili; Saravesi, Karita; Pennanen, Taina; Fritze, Hannu; Kubin, Eero; Markkola, Annamari

    2015-03-01

    The increased demand for harvesting energy wood raises questions about its effects on the functioning of the forest ecosystems, soil processes and biodiversity. Impacts of tree stump removal on ectomycorrhizal fungal (EMF) communities of Norway spruce saplings were studied with 454-pyrosequencing in a 3-year field experiment replicated in 3 geographical areas. This is possibly the most thorough investigation of EMF communities associated with saplings grown on sites subjected to energy wood harvesting. To separate impacts of tree stump and logging residue removal on EMF and plant variables, we used three harvesting treatments with increasing complexity from patch mounding alone (P) to patch mounding combined with logging residue removal (RP), and patch mounding combined with both logging residue and stump removal (SRP). Saplings grown in uncut forests (F) served as references for harvesting treatments. A majority of sequences (>92%) and operational taxonomic units (OTUs, 55%) were assigned as EMF. EMF OTU richness, fungal community composition or sapling growth did not differ between harvesting treatments (P, RP and SRP), while EMF OTU richness, diversity and evenness were highest and sapling growth lowest in the undisturbed reference forests (F). The short study period may partially explain the similarities in fungal and sapling variables in different harvesting treatments. In conclusion, our results indicate that neither stump removal nor logging residue removal have significant additional negative impacts on EMF communities or growth of Norway spruce saplings in the short-term compared with the impacts of more conventional harvesting methods, including clear cutting and patch mounding. PMID:25171334

  9. Harvesting dental stem cells - Overview

    PubMed Central

    Sunil, P. M.; Manikandan, Ramanathan; Muthumurugan; Yoithapprabhunath, Thukanayakanpalayam Ragunathan; Sivakumar, Muniapillai

    2015-01-01

    Dental stem cells have recently become one of the widely researched areas in dentistry. Ever since the identification of stem cells from various dental tissues like deciduous teeth, dental papilla, periodontal ligament and third molars, storing them for future use for various clinical applications was being explored. Dental stem cells were harvested and isolated using various techniques by different investigators and laboratories. This article explains the technical aspects of preparing the patient, atraumatic and aseptic removal of the tooth and its safe transportation and preservation for future expansion. PMID:26538883

  10. Harvesting dental stem cells - Overview.

    PubMed

    Sunil, P M; Manikandan, Ramanathan; Muthumurugan; Yoithapprabhunath, Thukanayakanpalayam Ragunathan; Sivakumar, Muniapillai

    2015-08-01

    Dental stem cells have recently become one of the widely researched areas in dentistry. Ever since the identification of stem cells from various dental tissues like deciduous teeth, dental papilla, periodontal ligament and third molars, storing them for future use for various clinical applications was being explored. Dental stem cells were harvested and isolated using various techniques by different investigators and laboratories. This article explains the technical aspects of preparing the patient, atraumatic and aseptic removal of the tooth and its safe transportation and preservation for future expansion. PMID:26538883

  11. Investigation of concurrent energy harvesting from ambient vibrations and wind using a single piezoelectric generator

    NASA Astrophysics Data System (ADS)

    Bibo, A.; Daqaq, M. F.

    2013-06-01

    In this letter, a single vibratory energy harvester integrated with an airfoil is proposed to concurrently harness energy from ambient vibrations and wind. In terms of its transduction capabilities and power density, the integrated device is shown to have a superior performance under the combined loading when compared to utilizing two separate devices to harvest energy independently from the two available energy sources. Even below its flutter speed, the proposed device was able to provide 2.5 times the power obtained using two separate harvesters.

  12. Porous ferroelectrics for energy harvesting applications

    NASA Astrophysics Data System (ADS)

    Roscow, J.; Zhang, Y.; Taylor, J.; Bowen, C. R.

    2015-11-01

    This paper provides an overview of energy harvesting using ferroelectric materials, with a particular focus on the energy harvesting capabilities of porous ferroelectric ceramics for both piezo- and pyroelectric harvesting. The benefits of introducing porosity into ferro- electrics such as lead zirconate titanate (PZT) has been known for over 30 years, but the potential advantages for energy harvesting from both ambient vibrations and temperature fluctuations have not been studied in depth. The article briefly discusses piezoelectric and pyro- electric energy harvesting, before evaluating the potential benefits of porous materials for increasing energy harvesting figures of merits and electromechanical/electrothermal coupling factors. Established processing routes are evaluated in terms of the final porous structure and the resulting effects on the electrical, thermal and mechanical properties.

  13. The cost of silage harvest and transport systems for herbaceous crops

    SciTech Connect

    Turhollow, A.; Downing, M.; Butler, J.

    1996-12-31

    Some of the highest yielding herbaceous biomass crops are thick- stemmed species. Their relatively high moisture content necessitates they be handled and stored as silage rather than hay bales or modules. This paper presents estimated costs of harvesting and transporting herbaceous crops as silage. Costs are based on an engineering- economic approach. Equipment costs are estimated by combining per hour costs with the hours required to complete the operation. Harvest includes severing, chopping, and blowing stalks into a wagon or truck.

  14. Controlling Light Harvesting with Light.

    PubMed

    Gwizdala, Michal; Berera, Rudi; Kirilovsky, Diana; van Grondelle, Rienk; Krüger, Tjaart P J

    2016-09-14

    When exposed to intense sunlight, all organisms performing oxygenic photosynthesis implement various photoprotective strategies to prevent potentially lethal photodamage. The rapidly responding photoprotective mechanisms, occurring in the light-harvesting pigment-protein antennae, take effect within tens of seconds, while the dramatic and potentially harmful light intensity fluctuations manifest also on shorter time scales. Here we show that, upon illumination, individual phycobilisomes from Synechocystis PCC 6803, which, in vivo under low-light conditions, harvest solar energy, and have the built-in capacity to switch rapidly and reversibly into light-activated energy-dissipating states. Simultaneously measured fluorescence intensity, lifetime, and spectra, compared with a multicompartmental kinetic model, revealed that essentially any subunit of a phycobilisome can be quenched, and that the core complexes were targeted most frequently. Our results provide the first evidence for fluorescence blinking from a biologically active system at physiological light intensities and suggest that the light-controlled switches to intrinsically available energy-dissipating states are responsible for a novel type of photoprotection in cyanobacteria. We anticipate other photosynthetic organisms to employ similar strategies to respond instantly to rapid solar light intensity fluctuations. A detailed understanding of the photophysics of photosynthetic antenna complexes is of great interest for bioinspired solar energy technologies. PMID:27546794

  15. Rooftop level rainwater harvesting system

    NASA Astrophysics Data System (ADS)

    Traboulsi, Hayssam; Traboulsi, Marwa

    2015-05-01

    Unfortunately, in Lebanon and other countries in the Middle East region, water becomes scarcer than ever before, and over the last decades the demand on domestic water has increased due to population and economic growth. Although rainwater harvesting is considered to be a safe and reliable alternative source for domestic water, the inconvenience or impracticalities related to the cost and space needed for the construction of ground or underground storage tanks makes this practice not widely common in rural areas and rarely implemented in urban cities. This paper introduces a new technique to rainwater harvesting which can be easily used in both rural and urban areas: it collects and stores rainwater directly in tanks already installed on building roofs and not necessarily in special ground or underground ones. If widely adopted in Lebanon, this technique could help in: (1) collecting around 23 MCM (70 % of the current deficit in the domestic water supply) of rainwater and thus increasing the available water per m2 of building by 0.4 m3 per year, (2) saving around 7 % of the amount of electric energy usually needed to pump water from an aquifer well and ground or underground tank, and (3) considerably reducing the rate of surface runoff of rainwater at the coastal zones where rainwater is not captured at all and goes directly to the sea.

  16. Vibration energy harvester optimization using artificial intelligence

    NASA Astrophysics Data System (ADS)

    Hadas, Z.; Ondrusek, C.; Kurfurst, J.; Singule, V.

    2011-06-01

    This paper deals with an optimization study of a vibration energy harvester. This harvester can be used as autonomous source of electrical energy for remote or wireless applications, which are placed in environment excited by ambient mechanical vibrations. The ambient energy of vibrations is usually on very low level but the harvester can be used as alternative source of energy for electronic devices with an expected low level of power consumption of several mW. The optimized design of the vibration energy harvester was based on previous development and the sensitivity of harvester design was improved for effective harvesting from mechanical vibrations in aeronautic applications. The vibration energy harvester is a mechatronic system which generates electrical energy from ambient vibrations due to precision tuning up generator parameters. The optimization study for maximization of harvested power or minimization of volume and weight are the main goals of our development. The optimization study of such complex device is complicated therefore artificial intelligence methods can be used for tuning up optimal harvester parameters.

  17. Apparatus and method for harvesting woody plantations

    DOEpatents

    Eggen, David L.

    1988-11-15

    A tree harvester for harvesting felled trees includes a wheel mounted wood chipper which moves toward the butt ends of the tree stems to be processed. The harvester includes a plurality of rotating alignment discs in front of the chipper. These discs align the tree stems to be processed with the mouth of the chipper. A chipper infeed cylinder is rotatably mounted between the discs and the front end of the chipper, and lifts the tree stem butts up from the ground into alignment with the chipper inlet port. The chips discharge from the chipper and go into a chip hopper which moves with the tree harvester.

  18. Apparatus and method for harvesting woody plantations

    DOEpatents

    Eggen, D.L.

    1988-11-15

    A tree harvester for harvesting felled trees includes a wheel mounted wood chipper which moves toward the butt ends of the tree stems to be processed. The harvester includes a plurality of rotating alignment discs in front of the chipper. These discs align the tree stems to be processed with the mouth of the chipper. A chipper infeed cylinder is rotatably mounted between the discs and the front end of the chipper, and lifts the tree stem butts up from the ground into alignment with the chipper inlet port. The chips discharge from the chipper and go into a chip hopper which moves with the tree harvester. 8 figs.

  19. Synchronized charge extraction for aeroelastic energy harvesting

    NASA Astrophysics Data System (ADS)

    Zhao, Liya; Tang, Lihua; Wu, Hao; Yang, Yaowen

    2014-03-01

    Aeroelastic instabilities have been frequently exploited for energy harvesting purpose to power standalone electronic systems, such as wireless sensors. Meanwhile, various energy harvesting interface circuits, such as synchronized charge extraction (SCE) and synchronized switching harvesting on inductor (SSHI), have been widely pursued in the literature for efficiency enhancement of energy harvesting from existing base vibrations. These interfaces, however, have not been applied for aeroelastic energy harvesting. This paper investigates the feasibility of the SCE interface in galloping-based piezoelectric energy harvesting, with a focus on its benefit for performance improvement and influence on the galloping dynamics in different electromechanical coupling regimes. A galloping-based piezoelectric energy harvester (GPEH) is prototyped with an aluminum cantilever bonded with a piezoelectric sheet. Wind tunnel test is conducted with a simple electrical interface composed of a resistive load. Circuit simulation is performed with equivalent circuit representation of the GPEH system and confirmed by experimental results. Consequently, a self-powered SCE interface is implemented with the capability of self peak-detecting and switching. Circuit simulation for various electromechanical coupling cases shows that the harvested power with SCE interface for GPEH is independent of the electrical load, similar to that for a vibration-based piezoelectric energy harvester (VPEH). The SCE interface outperforms the standard interface if the electromechanical coupling is weak, and requires much less piezoelectric material to achieve the maximum power output. Moreover, influence of electromechanical coupling on the dynamics of GPEH with SCE is found sensitive to the wind speed.

  20. Spatial and temporal variation in harvest probabilities for American black duck.

    PubMed

    Roy, Christian; Cumming, Steven G; McIntire, Eliot Jb

    2015-05-01

    Assessing spatial variation in waterfowl harvest probabilities from banding data is challenging because reporting and recovery probabilities have distinct spatial patterns that covary temporally with harvesting regulations, hunter effort, and reporting methods. We analyzed direct band recovery data from American black ducks banded on the Canadian breeding grounds from 1970 through 2010. Data were registered to a 1-degree grid and analyzed using hierarchical logistic regression models with spatially correlated errors to estimate the annual probabilities of band recovery and the proportion of individuals recovered in Canada. Probability of harvest was estimated from these values, in combination with independent estimates of reporting probabilities in Canada and the USA. Model covariates included estimates of hunting effort and factors for harvest regulation and band reporting methods. Both the band recovery processes and the proportion of individuals recovered in Canada had significant spatial structure. Recovery probabilities were highest in southern Ontario, along the Saint Lawrence River in Quebec, and in Nova Scotia. Black ducks breeding in Nova Scotia and southern Quebec were harvested predominantly in Canada. Recovery probabilities for juveniles were correlated with hunter effort, while the adult recoveries were weakly correlated with the implementation of stricter harvest regulations in the early 1980s. Mean harvest probability decreased in the northern portion of the survey area but remained stable or even increased in the south. Harvest probabilities for juveniles in 2010 exceeded 20% in southern Quebec and the Atlantic provinces. Our results demonstrate fine-scale variation in harvest probabilities for black duck on the Canadian breeding ground. In particular, harvest probabilities should be closely monitored along the Saint Lawrence River system and in the Atlantic provinces to avoid overexploitation. PMID:26045951

  1. Spatial and temporal variation in harvest probabilities for American black duck

    PubMed Central

    Roy, Christian; Cumming, Steven G; McIntire, Eliot JB

    2015-01-01

    Assessing spatial variation in waterfowl harvest probabilities from banding data is challenging because reporting and recovery probabilities have distinct spatial patterns that covary temporally with harvesting regulations, hunter effort, and reporting methods. We analyzed direct band recovery data from American black ducks banded on the Canadian breeding grounds from 1970 through 2010. Data were registered to a 1-degree grid and analyzed using hierarchical logistic regression models with spatially correlated errors to estimate the annual probabilities of band recovery and the proportion of individuals recovered in Canada. Probability of harvest was estimated from these values, in combination with independent estimates of reporting probabilities in Canada and the USA. Model covariates included estimates of hunting effort and factors for harvest regulation and band reporting methods. Both the band recovery processes and the proportion of individuals recovered in Canada had significant spatial structure. Recovery probabilities were highest in southern Ontario, along the Saint Lawrence River in Quebec, and in Nova Scotia. Black ducks breeding in Nova Scotia and southern Quebec were harvested predominantly in Canada. Recovery probabilities for juveniles were correlated with hunter effort, while the adult recoveries were weakly correlated with the implementation of stricter harvest regulations in the early 1980s. Mean harvest probability decreased in the northern portion of the survey area but remained stable or even increased in the south. Harvest probabilities for juveniles in 2010 exceeded 20% in southern Quebec and the Atlantic provinces. Our results demonstrate fine-scale variation in harvest probabilities for black duck on the Canadian breeding ground. In particular, harvest probabilities should be closely monitored along the Saint Lawrence River system and in the Atlantic provinces to avoid overexploitation. PMID:26045951

  2. 75 FR 3888 - Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-25

    ... Register on November 20, 2009 (74 FR 60228), to propose migratory bird subsistence harvest regulations in... Fish and Wildlife Service 50 CFR Part 92 RIN 1018-AW67 Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska During the 2010 Season AGENCY: Fish and Wildlife...

  3. A Monolithic Oxide-Based Transversal Thermoelectric Energy Harvester

    NASA Astrophysics Data System (ADS)

    Teichert, S.; Bochmann, A.; Reimann, T.; Schulz, T.; Dreßler, C.; Udich, S.; Töpfer, J.

    2016-03-01

    We report the fabrication and properties of a monolithic transversal thermoelectric energy harvester based on the combination of a thermoelectric oxide and a metal. The fabrication of the device is done with a ceramic multilayer technology using printing and co-firing processes. Five transversal devices were combined to a meander-like thermoelectric generator. Electrical measurements and finite element calculations were performed to characterize the resulting thermoelectric generator. A maximum experimental electrical power output of 30.2 mW at a temperature difference of {Δ }T = 208 K was found. The prepared monolithic thermoelectric generator provides at {Δ }T = 35 K sufficient energy to drive a simple electronic sensor application.

  4. Structure of Light-Harvesting Aggregates in Individual Chlorosomes.

    PubMed

    Günther, Lisa M; Jendrny, Marc; Bloemsma, Erik A; Tank, Marcus; Oostergetel, Gert T; Bryant, Donald A; Knoester, Jasper; Köhler, Jürgen

    2016-06-23

    Among all photosynthetic organisms, green bacteria have evolved one of the most efficient light-harvesting antenna, the chlorosome, that contains hundreds of thousands of bacteriochlorophyll molecules, allowing these bacteria to grow photosynthetically by absorbing only a few photons per bacteriochlorophyll molecule per day. In contrast to other photosynthetic light-harvesting antenna systems, for which a protein scaffold imposes the proper positioning of the chromophores with respect to each other, in chlorosomes, this is accomplished solely by self-assembly. This has aroused enormous interest in the structure-function relations of these assemblies, as they can serve as blueprints for artificial light harvesting systems. In spite of these efforts, conclusive structural information is not available yet, reflecting the sample heterogeneity inherent to the natural system. Here we combine mutagenesis, polarization-resolved single-particle fluorescence-excitation spectroscopy, cryo-electron microscopy, and theoretical modeling to study the chlorosomes of the green sulfur bacterium Chlorobaculum tepidum. We demonstrate that only the combination of these techniques yields unambiguous information on the structure of the bacteriochlorophyll aggregates within the chlorosomes. Moreover, we provide a quantitative estimate of the curvature variation of these aggregates that explains ongoing debates concerning the chlorosome structure. PMID:27240572

  5. Virtual Engineering Approach to Developing Selective Harvest Technologies

    SciTech Connect

    Kevin L. Kenney; Christopher T. Wright

    2005-07-01

    Agricultural crop residues (e.g., straw and stover) are a current focus for bioenergy feedstocks, with new technologies being developed to improve the economics of bioenergy production. Among the emerging technologies focused on feedstock engineering is the selective harvest concept. Due to the complexity of the biomass separations required for addressing the challenges and requirements of selective harvest, high fidelity models and advanced experimental methods that allow observation and measurement of the physical system are needed. These models and methods were developed and include computational fluid dynamics (CFD) modeling to simulate the cleaning shoe of a grain combine and a particle image velocimetry (PIV) technique to quantitatively and qualitatively characterize the cleaning shoe performance. While these techniques alone can be sufficient engineering and analysis tools for developing selective harvest technologies, this paper presents a new methodology, Virtual Engineering (VE), that integrates the CFD and PIV data into a virtual environment, where the data is coupled with the geometric model of a grain combine to provide a virtual representation of the cleaning shoe performance. Using VE visualization capabilities, the CFD and PIV data can be viewed in the context of the physical system for an interactive evaluation of characteristics and performance. This paper also discusses the concepts of additional VE tools that are being developed to provide necessary visualization, simulation and integration functionality.

  6. Harvesting microalgae grown on wastewater.

    PubMed

    Udom, Innocent; Zaribaf, Behnaz H; Halfhide, Trina; Gillie, Benjamin; Dalrymple, Omatoyo; Zhang, Qiong; Ergas, Sarina J

    2013-07-01

    The costs and life cycle impacts of microalgae harvesting for biofuel production were investigated. Algae were grown in semi-continuous culture in pilot-scale photobioreactors under natural light with anaerobic digester centrate as the feed source. Algae suspensions were collected and the optimal coagulant dosages for metal salts (alum, ferric chloride), cationic polymer (Zetag 8819), anionic polymer (E-38) and natural coagulants (Moringa Oleifera and Opuntia ficus-indica cactus) were determined using jar tests. The relative dewaterability of the algae cake was estimated by centrifugation. Alum, ferric chloride and cationic polymer could all achieve >91% algae recovery at optimal dosages. Life cycle assessment (LCA) and cost analysis results revealed that cationic polymer had the lowest cost but the highest environmental impacts, while ferric chloride had the highest cost and lowest environmental impacts. Based on the LCA results, belt presses are the recommended algae dewatering technology prior to oil extraction. PMID:23648758

  7. Adoption of safety eyewear among citrus harvesters in rural Florida.

    PubMed

    Monaghan, Paul F; Bryant, Carol A; McDermott, Robert J; Forst, Linda S; Luque, John S; Contreras, Ricardo B

    2012-06-01

    The community-based prevention marketing program planning framework was used to adapt an evidence-based intervention to address eye injuries among Florida's migrant citrus harvesters. Participant-observer techniques, other direct observations, and individual and focus group interviews provided data that guided refinement of a safety eyewear intervention. Workers were attracted to the eyewear's ability to minimize irritation, offer protection from trauma, and enable work without declines in productivity or comfort. Access to safety glasses equipped with worker-designed features reduced the perceived barriers of using them; deployment of trained peer-leaders helped promote adoption. Workers' use of safety glasses increased from less than 2% to between 28% and 37% in less than two full harvesting seasons. The combination of formative research and program implementation data provided insights for tailoring an existing evidence-based program for this occupational community and increase potential for future dissemination and worker protection. PMID:21643727

  8. Blueberry estimated harvest from seven new cultivars: fruit and anthocyanins.

    PubMed

    Scalzo, Jessica; Stevenson, David; Hedderley, Duncan

    2013-08-15

    This study compares the yields, weights and anthocyanin contents of fruit from a group of seven new cultivars released from the New Zealand blueberry breeding programme and selected for the longest possible combined harvest season. The measured factors were primarily influenced by cultivar, and seasonal variations had relatively minor effects. The late-ripening cultivars 'Velluto Blue' and 'Centra Blue' had the highest fruit yields, anthocyanin contents and estimated total anthocyanin harvestable from a given area. 'Blue Moon' and 'Sky Blue' had the largest fruit sizes. The early-ripening cultivars 'Blue Bayou', 'Blue Moon' and 'Sunset Blue' had the lowest anthocyanin contents. The yield, fruit size and total anthocyanin content results obtained from any single year were highly correlated with the average of the three years, which makes pursuing the evaluation for these traits from a single year and at an early stage of plant development a practical proposition. PMID:23561076

  9. Efficient thermal energy harvesting using nanoscale magnetoelectric heterostructures

    NASA Astrophysics Data System (ADS)

    Etesami, S. R.; Berakdar, J.

    2016-02-01

    Thermomechanical cycles with a ferroelectric working substance convert heat to electrical energy. As shown here, magnetoelectrically coupled ferroelectric/ferromagnetic composites (also called multiferroics) allow for an efficient thermal energy harvesting at room temperature by exploiting the pyroelectric effect. By virtue of the magnetoelectric coupling, external electric and magnetic fields can steer the operation of these heat engines. Our theoretical predictions are based on a combination of Landau-Khalatnikov-Tani approach (with a Ginzburg-Landau-Devonshire potential) to simulate the ferroelectric dynamics coupled to the magnetic dynamics. The latter is treated via the electric-polarization-dependent Landau-Lifshitz-Gilbert equation. By performing an adapted Olsen cycle we show that a multiferroic working substance is potentially much more superior to the sole ferroelectrics, as far as the thermal energy harvesting using pyroelectric effect is concerned. Our proposal holds promise not only for low-energy consuming devices but also for cooling technology.

  10. Rubber finger stripper harvester for green chile

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Harvest mechanization as a system requires modifying or creating new components including cultivars, production practices, and harvest, transportation and processing plant machinery. New Mexican chile is one of the last segments of the pepper industry to still rely on hand labor. This paper reports ...

  11. A DUST ABATEMENT DEVICE FOR HARVEST

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A prototype device was designed and tested by USDA and New Mexico State University researchers to reduce nuisance dust emissions during nut harvesting. The main goal of the project was to develop a device that could be retrofitted to the many harvesters already in service in the nut producing regio...

  12. An ergonomics approach to citrus harvest mechanization.

    PubMed

    Costa, Simone Emmanuelle Alves; Camarotto, João Alberto

    2012-01-01

    Due to the increase of production costs in manual harvesting, strategies must be developed in order to overcome these effects, such as the attempts in implementing agricultural machines in harvest activities, whether being totally or partially mechanized. This study brings a qualitative and quantitative comparison on the impacts in work conditions and productivity in Brazilian orchards caused by the use of semi-mechanized harvesting systems, such as multiplatforms. The results come from the application of Ergonomic Work Analysis method, which focuses in the activity, quantifying and analyzing times and frequencies of the harvesting cycle, as well as the amount of movements. To achieve this, footage, interviews and a stopwatch were used in the observation 12 pickers' work cycles, six for each method of harvesting. The data interpretation pointed to improvement in working conditions with a reduction in the amount of movements performed by the picker, and increase of up to 60% in productivity with the use of semi-mechanized harvesting. Thus, the found results indicate the viability of this harvesting method. However, other variables must be observed in future studies in order to complete the guidelines for a healthy progress in the area of citrus harvesting in Brazil. PMID:22317498

  13. Microbial degradation of post-harvest residues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management of post-harvest residues, produced during the green cane harvesting of sugarcane in Louisiana, has become an increasingly important issue for producers, particularly in areas where burning of the residues is banned or restricted. If the residues, which range from 4-8 tonnes per hectare, ...

  14. Pepper Harvest Mechanization: Past and Present

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peppers (Capsicum spp.) include a diverse collection of cultivars produced for a wide variety of end uses. Labor for hand harvest is as much as half of the cost of production. There have been attempts to mechanize pepper harvest since 1965, yet many segments of the industry still depend on hand la...

  15. A hybrid indoor ambient light and vibration energy harvester for wireless sensor nodes.

    PubMed

    Yu, Hua; Yue, Qiuqin; Zhou, Jielin; Wang, Wei

    2014-01-01

    To take advantage of applications where both light and vibration energy are available, a hybrid indoor ambient light and vibration energy harvesting scheme is proposed in this paper. This scheme uses only one power conditioning circuit to condition the combined output power harvested from both energy sources so as to reduce the power dissipation. In order to more accurately predict the instantaneous power harvested from the solar panel, an improved five-parameter model for small-scale solar panel applying in low light illumination is presented. The output voltage is increased by using the MEMS piezoelectric cantilever arrays architecture. It overcomes the disadvantage of traditional MEMS vibration energy harvester with low voltage output. The implementation of the maximum power point tracking (MPPT) for indoor ambient light is implemented using analog discrete components, which improves the whole harvester efficiency significantly compared to the digital signal processor. The output power of the vibration energy harvester is improved by using the impedance matching technique. An efficient mechanism of energy accumulation and bleed-off is also discussed. Experiment results obtained from an amorphous-silicon (a-Si) solar panel of 4.8 × 2.0 cm2 and a fabricated piezoelectric MEMS generator of 11 × 12.4 mm2 show that the hybrid energy harvester achieves a maximum efficiency around 76.7%. PMID:24854054

  16. Biogenesis of light harvesting proteins.

    PubMed

    Dall'Osto, Luca; Bressan, Mauro; Bassi, Roberto

    2015-09-01

    The LHC family includes nuclear-encoded, integral thylakoid membrane proteins, most of which coordinate chlorophyll and xanthophyll chromophores. By assembling with the core complexes of both photosystems, LHCs form a flexible peripheral moiety for enhancing light-harvesting cross-section, regulating its efficiency and providing protection against photo-oxidative stress. Upon its first appearance, LHC proteins underwent evolutionary diversification into a large protein family with a complex genetic redundancy. Such differentiation appears as a crucial event in the adaptation of photosynthetic organisms to changing environmental conditions and land colonization. The structure of photosystems, including nuclear- and chloroplast-encoded subunits, presented the cell with a number of challenges for the control of the light harvesting function. Indeed, LHC-encoding messages are translated in the cytosol, and pre-proteins imported into the chloroplast, processed to their mature size and targeted to the thylakoids where are assembled with chromophores. Thus, a tight coordination between nuclear and plastid gene expression, in response to environmental stimuli, is required to adjust LHC composition during photoacclimation. In recent years, remarkable progress has been achieved in elucidating structure, function and regulatory pathways involving LHCs; however, a number of molecular details still await elucidation. In this review, we will provide an overview on the current knowledge on LHC biogenesis, ranging from organization of pigment-protein complexes to the modulation of gene expression, import and targeting to the photosynthetic membranes, and regulation of LHC assembly and turnover. Genes controlling these events are potential candidate for biotechnological applications aimed at optimizing light use efficiency of photosynthetic organisms. This article is part of a Special Issue entitled: Chloroplast biogenesis. PMID:25687893

  17. Design Methodology of Micro Vibration Energy Harvesters

    NASA Astrophysics Data System (ADS)

    Tanaka, Shuji

    Recently, micro vibration energy harvesters are attracting much attention for wireless sensor applications. To answer the power requirement of practical applications, the design methodology is important. This paper first reviews the fundamental theory of vibration energy harvesting, and then discusses how to design a micro vibration energy harvester at a concept level. For the micro vibration energy harvesters, independent design parameters at the top level are only the mass and stroke of a seismic mass and quality factor, while the frequency and acceleration of vibration input are given parameters determined by the application. The key design point is simply to make the mass and stroke of the seismic mass as large as possible within the available device size. Some case studies based on the theory are also presented. This paper provides a guideline for the development of the micro vibration energy harvesters.

  18. HARVEST, a longitudinal patient record summarizer

    PubMed Central

    Hirsch, Jamie S; Tanenbaum, Jessica S; Lipsky Gorman, Sharon; Liu, Connie; Schmitz, Eric; Hashorva, Dritan; Ervits, Artem; Vawdrey, David; Sturm, Marc; Elhadad, Noémie

    2015-01-01

    Objective To describe HARVEST, a novel point-of-care patient summarization and visualization tool, and to conduct a formative evaluation study to assess its effectiveness and gather feedback for iterative improvements. Materials and methods HARVEST is a problem-based, interactive, temporal visualization of longitudinal patient records. Using scalable, distributed natural language processing and problem salience computation, the system extracts content from the patient notes and aggregates and presents information from multiple care settings. Clinical usability was assessed with physician participants using a timed, task-based chart review and questionnaire, with performance differences recorded between conditions (standard data review system and HARVEST). Results HARVEST displays patient information longitudinally using a timeline, a problem cloud as extracted from notes, and focused access to clinical documentation. Despite lack of familiarity with HARVEST, when using a task-based evaluation, performance and time-to-task completion was maintained in patient review scenarios using HARVEST alone or the standard clinical information system at our institution. Subjects reported very high satisfaction with HARVEST and interest in using the system in their daily practice. Discussion HARVEST is available for wide deployment at our institution. Evaluation provided informative feedback and directions for future improvements. Conclusions HARVEST was designed to address the unmet need for clinicians at the point of care, facilitating review of essential patient information. The deployment of HARVEST in our institution allows us to study patient record summarization as an informatics intervention in a real-world setting. It also provides an opportunity to learn how clinicians use the summarizer, enabling informed interface and content iteration and optimization to improve patient care. PMID:25352564

  19. A Self-Powered Hybrid Energy Scavenging System Utilizing RF and Vibration Based Electromagnetic Harvesters

    NASA Astrophysics Data System (ADS)

    Uluşan, H.; Gharehbaghi, K.; Zorlu, Ö.; Muhtaroğlu, A.; Külah, H.

    2015-12-01

    This study presents a novel hybrid system that combines the power generated simultaneously by a vibration-based Electromagnetic (EM) harvester and a UHF band RF harvester. The novel hybrid scavenger interface uses a power management circuit in 180 nm CMOS technology to step-up and to regulate the combined output. At the first stage of the system, the RF harvester generates positive DC output with a 7-stage threshold compensated rectifier, while the EM harvester generates negative DC output with a self-powered AC/DC negative doubler circuit. At the second stage, the generated voltages are serially added, stepped-up with an on-chip charge pump circuit, and regulated to a typical battery voltage of 3 V. Test results indicate that the hybrid operation enables generation of 9 μW at 3 V output for a wide range of input stimulations, which could not be attained with either harvesting mode by itself. Moreover the hybrid system behaves as a typical battery, and keeps the output voltage stable at 3 V up to 18 μW of output power. The presented system is the first battery-like harvester to our knowledge that generates energy from two independent sources and regulates the output to a stable DC voltage.

  20. Rain-induced spring wheat harvest losses

    NASA Technical Reports Server (NTRS)

    Bauer, A.; Black, A. L. (Principal Investigator)

    1983-01-01

    When rain or a combination of rain and high humidity delay wheat harvest, losses can occur in grain yield and/or grain quality. Yield losses can result from shattering, from reduction in test weight, and in the case of windrowed grain, from rooting of sprouting grain at the soil: windrow contact. Losses in grain quality can result from reduction in test weight and from sprouting. Sprouting causes a degradation of grain proteins and starches, hence flour quality is reduced, and the grain price deteriorates to the value of feed grain. Although losses in grain yield and quality are rain-induced, these losses do not necessarily occur because a standing or windrowed crop is wetted by rain. Spike water concentration in hard red spring wheat must be increased to about 45-49% before sprouting is initiated in grain that has overcome dormancy. The time required to overcome this dormancy after the cultivar has dried to 12 to 14% water concentration differs with hard red spring cultivars. The effect of rain on threshing-ready standing and windrowed hard red spring wheat grain yeild and quality was evaluated. A goal was to develop the capability to forecast the extent of expected loss of grain yield and quality from specific climatic events that delay threshing.

  1. Single Pass Multi-component Harvester

    SciTech Connect

    Reed Hoskinson; J. Richard Hess

    2004-08-01

    Abstract. In order to meet the U. S. government’s goal of supplementing the energy available from petroleum by increasing the production of energy from renewable resources, increased production of bioenergy has become one of the new goals of the United States government and our society. U.S. Executive Orders and new Federal Legislation have mandated changes in government procedures and caused reorganizations within the government to support these goals. The Biomass Research and Development Initiative is a multi-agency effort to coordinate and accelerate all U.S. Federal biobased products and bioenergy research and development. The Initiative is managed by the National Biomass Coordination Office, which is staffed by both the DOE and the USDA. One of the most readily available sources of biomass from which to produce bioenergy is an agricultural crop residue, of which straw from small grains is the most feasible residue with which to start. For the straw residue to be used its collection must be energy efficient and its removal must not impact the sustainability of the growing environment. In addition, its collection must be economically advantageous to the producer. To do all that, a single pass multi-component harvester system is most desirable. Results from our first prototype suggest that current combines probably do adequate threshing and that a separate chassis can be developed that does additional separation and that is economically feasible.

  2. A novel miniature thermomagnetic energy harvester

    NASA Astrophysics Data System (ADS)

    Chen, Chin-Chung; Chung, Tien-Kan; Cheng, Chi-Cheng; Tseng, Chia-Yuan

    2014-03-01

    Nowadays, thermal-energy-harvesting is an important research topic for powering wireless sensors. Among numerous thermal-energy-harvesting approaches, some researchers demonstrated novel thermomagnetic-energy harvesters to convert a thermal-energy from an ambient temperature-difference to an electrical-output to power the sensors. However, the harvesters are too bulky to be integrated with the sensors embedded in tiny mechanical-structures for some structuralhealth- monitoring applications. Therefore, miniaturized harvesters are needed. Hence, we demonstrate a miniature thermomagnetic-energy harvester. The harvester consists of CuBe-beams, PZT-piezoelectric-sheet, Gd-soft-magnet, NdFeB-hard-magnet, and mechanical-frame. The piezoelectric-sheet and soft-magnet is bounded at fixed-end and freeend of the beams, respectively. The mechanical-frame assembles the beams and hard-magnet. The length×width×thickness of the harvester is 2.5cm×1.7cm×1.5cm. According to this, our harvester is 20-times smaller than the other harvesters. In the initial-state of the energy-harvesting, the beams' free-end is near the cold-side. Thus, the soft-magnet is cooled lower than its curie temperature (Tc) and consequently changed from paramagnetic to ferromagnetic. Therefore, a magnetic-attractive force is produced between the soft-magnet and hard-magnet. Consequently, the beams/soft-magnet are down-pulled toward the hard-magnet fixed on the hot-side. The soft-magnet closing to the hot-side is heated higher than its Tc and subsequently changed to paramagnetic. Consequently, the magnetic-force is eliminated thus the beams are rebounded to the initial-state. Hence, when the harvester is under a temperature-difference, the beams' pulling-down/back process is cyclic. Due to the piezoelectric effect, the piezoelectric-sheet fixed on the beams continuously produces voltage-response. Under the temperature-difference of 29°C, the voltage-response of the harvester is 30.4 mV with an oscillating

  3. Ultra-wide bandwidth improvement of piezoelectric energy harvesters through electrical inductance coupling

    NASA Astrophysics Data System (ADS)

    Abdelmoula, H.; Abdelkefi, A.

    2015-11-01

    The design and analysis of innovative ultra-wide bandwidth piezoelectric energy harvesters are deeply investigated. An electrical inductance is considered in the harvester's circuit to be connected in series or parallel to a load resistance. A lumped-parameter model is used to model the electromechanical response of the harvester when subjected to harmonic excitations. A linear comprehensive analysis is performed to investigate the effects of an electrical inductance on the coupled frequencies and damping of the harvester. It is shown that including an electrical inductance connected in series or in parallel to an electrical load resistance can result in the appearance of a second coupled frequency of electrical type. The results show that the inclusion of an inductance may give the opportunity to tune one of the coupled frequencies of mechanical and electrical types to the available excitation frequency in the environment. Using the gradient method, an optimization analysis is then performed to determine the optimum values of the electrical inductance and load resistance that maximize the harvested power. It is demonstrated that, for each excitation frequency, there is a combination of optimum values of the electrical inductance and resistance in such a way an optimum constant value of the harvested power is found. Numerical analysis is then performed to show the importance of considering an additional inductance in the harvester's circuitry in order to design broadband energy harvesters. The results show that the presence of the second coupled frequency of electrical type due to the inductance gives the possibility to design optimal broadband inductive-resistive piezoelectric energy harvesters with minimum displacement due to shunt damping effect.

  4. Approaches to automated protein crystal harvesting

    PubMed Central

    Deller, Marc C.; Rupp, Bernhard

    2014-01-01

    The harvesting of protein crystals is almost always a necessary step in the determination of a protein structure using X-ray crystallographic techniques. However, protein crystals are usually fragile and susceptible to damage during the harvesting process. For this reason, protein crystal harvesting is the single step that remains entirely dependent on skilled human intervention. Automation has been implemented in the majority of other stages of the structure-determination pipeline, including cloning, expression, purification, crystallization and data collection. The gap in automation between crystallization and data collection results in a bottleneck in throughput and presents unfortunate opportunities for crystal damage. Several automated protein crystal harvesting systems have been developed, including systems utilizing microcapillaries, microtools, microgrippers, acoustic droplet ejection and optical traps. However, these systems have yet to be commonly deployed in the majority of crystallography laboratories owing to a variety of technical and cost-related issues. Automation of protein crystal harvesting remains essential for harnessing the full benefits of fourth-generation synchrotrons, free-electron lasers and microfocus beamlines. Furthermore, automation of protein crystal harvesting offers several benefits when compared with traditional manual approaches, including the ability to harvest microcrystals, improved flash-cooling procedures and increased throughput. PMID:24637746

  5. Rainwater Harvesting and Consumption in urban Area

    NASA Astrophysics Data System (ADS)

    Akbar Abbasi, Ali; Tabatabaee, Javad; Ranaee, Ehsan

    2013-04-01

    The soaring rate of urban demand for soft water and the rising cost associated with construction and protection of centralized large-scale water treatment and distribution systems associated with expansion of cities and immigrations of rural population to cities have contributed to increase acceptance of water harvesting systems in urban areas at least. This issue requires special attention in Iran as a developing country in the Middle East semitropical area. In this context, a recent pilot project has been proposed to analyze the performance of rainwater harvesting systems as an answer to some parts of soft water demand in Iranian urban society. A system of rainwater draining and storage has been implemented in a two hectares urban area. Observations and analyses related to runoff quantity and quality have been performed between November 2007 and November 2009 at the basin outlet as well as inside a storage tank which has been set up in the area for water harvesting purposes. The potential of the harvested rainwater to be employed in different consumption contexts has been analyzed in light of national and international standards. Although most of the sampling results support the idea that the quality of harvested water is adequate for any field of consuption, including drinking use (especially during rainfall period of time), a comparison between biological quality evaluation plus turbidity and color of samples with the related standards has led to identify limitations of harvested water usage with particular reference to plant consumptions. Keywords- rainwater harvesting system, runoff, water quality standards

  6. Rainwater harvesting state regulations and technical resources

    SciTech Connect

    Loper, Susan A.

    2015-06-01

    Pacific Northwest National Laboratory (PNNL) conducted in-depth research of state-level rainwater harvesting regulations for the Federal Energy Management Program (FEMP) to help federal agencies strategically identify locations conducive to rainwater harvesting projects. Currently, rainwater harvesting is not regulated by the federal government but rather it is up to individual states to regulate the collection and use of rainwater. There is no centralized information on state-level regulations on rainwater harvesting maintained by a federal agency or outside organization. To fill this information gap, PNNL performed detailed internet searches for each state, which included state agencies, universities, Cooperative Extension Offices, city governments, and related organizations. The state-by-state information on rainwater harvesting regulations was compiled and assembled into an interactive map that is color coded by state regulations. The map provides a visual representation of the general types of rainwater harvesting policies across the country as well as general information on the state programs if applicable. The map allows the user to quickly discern where rainwater harvesting is supported and regulated by the state. This map will be available on the FEMP website by September 2015.

  7. Approaches to automated protein crystal harvesting.

    PubMed

    Deller, Marc C; Rupp, Bernhard

    2014-02-01

    The harvesting of protein crystals is almost always a necessary step in the determination of a protein structure using X-ray crystallographic techniques. However, protein crystals are usually fragile and susceptible to damage during the harvesting process. For this reason, protein crystal harvesting is the single step that remains entirely dependent on skilled human intervention. Automation has been implemented in the majority of other stages of the structure-determination pipeline, including cloning, expression, purification, crystallization and data collection. The gap in automation between crystallization and data collection results in a bottleneck in throughput and presents unfortunate opportunities for crystal damage. Several automated protein crystal harvesting systems have been developed, including systems utilizing microcapillaries, microtools, microgrippers, acoustic droplet ejection and optical traps. However, these systems have yet to be commonly deployed in the majority of crystallography laboratories owing to a variety of technical and cost-related issues. Automation of protein crystal harvesting remains essential for harnessing the full benefits of fourth-generation synchrotrons, free-electron lasers and microfocus beamlines. Furthermore, automation of protein crystal harvesting offers several benefits when compared with traditional manual approaches, including the ability to harvest microcrystals, improved flash-cooling procedures and increased throughput. PMID:24637746

  8. Autotransplantation donor tooth site harvesting using piezosurgery

    PubMed Central

    Ylikontiola, Leena P.; Sándor, George K.

    2016-01-01

    Background: The harvesting of a tooth as a candidate for tooth autotransplantation requires that the delicate dental tissues around the tooth be minimally traumatized. This is especially so for the periradicular tissues of the tooth root and the follicular tissues surrounding the crown. The aim of this report is to describe the use of piezosurgery as an attempt at morbidity reduction in the harvesting of teeth for autotransplantation. Methods: A piezosurgical handpiece and its selection of tips were easily adapted to allow the harvesting and delivery of teeth for autotransplantation purposes. Results: Twenty premolar teeth were harvested using a piezosurgical device. The harvested teeth were subsequently successfully autotransplanted. All twenty teeth healed in a satisfactory manner without excessive mobility or ankyloses. Conclusions: Piezosurgery avoids some of the traumatic aspects of harvesting teeth and removing bone which are associated with thermal damage from the use of conventional rotary instruments or saws. Piezosurgery can be adapted to facilitate the predictable harvesting of teeth for autotransplantation purposes. PMID:27563612

  9. The relation of harvesting intensity to changes in soil, soil water, and stream chemistry in a northern hardwood forest, Catskill Mountains, USA

    USGS Publications Warehouse

    Siemion, Jason; Burns, Douglas A.; Murdoch, Peter S.; Germain, Rene H.

    2011-01-01

    Previous studies have shown that clearcutting of northern hardwood forests mobilizes base cations, inorganic monomeric aluminum (Alim), and nitrate (NO3--N) from soils to surface waters, but the effects of partial harvests on NO3--N have been less frequently studied. In this study we describe the effects of a series of partial harvests of varying proportions of basal area removal (22%, 28% and 68%) on Alim, calcium (Ca2+), and NO3--N concentrations in soil extracts, soil water, and surface water in the Catskill Mountains of New York, USA. Increases in NO3--N concentrations relative to pre-harvest values were observed within a few months after harvest in soils, soil water, and stream water for all three harvests. Increases in Alim and Ca2+ concentrations were also evident in soil water and stream water over the same time period for all three harvests. The increases in Alim, Ca2+, and NO3--N concentrations in the 68% harvest were statistically significant as measured by comparing the 18-month pre-harvest period with the 18-month post-harvest period, with fewer significant responses in the two harvests of lowest intensity. All three solutes returned to pre-harvest concentrations in soil water and stream water in the two lowest intensity harvests in 2–3 years compared to a full 3 years in the 68% harvest. When the results of this study were combined with those of a previous nearby clearcut and 40% harvest, the post-harvest increases in NO3--N concentrations in stream water and soil water suggest a harvesting level above which the relation between concentration and harvest intensity changes; there was a greater change in concentration per unit change in harvest intensity when basal area removal was greater than 40%. These results indicate that the deleterious effects on aquatic ecosystems previously demonstrated for intensive harvests in northern hardwood forests of northeastern North America that receive high levels of atmospheric N deposition can be greatly

  10. Enhanced PVDF film for multi energy harvesting

    NASA Astrophysics Data System (ADS)

    Karunarathna, Ranmunige Nadeeka

    PVDF is a very important piezoelectric polymer material which has a promising range of applications in a variety of fields such as acoustic sensors and transducers, electrical switches, medical instrumentation, artificial sensitive skin in robotics, automotive detection on roads, nondestructive testing, structural health monitoring and as a biocampatible material. In this research cantilever based multi energy harvester was developed to maximize the power output of PVDF sensor. Nano mixture containing ferrofluid (FF) and ZnO nano particles were used to enhance the piezoelectric output of the sensor. The samples were tested under different energy conditions to observe the behavior of nano coated PVDF film under multi energy conditions. Composition of the ZnO and FF nano particles were changed by weight, in order to achieve the optimal composition of the nano mixture. Light energy, vibration energy, combined effect of light and vibration energy, and magnetic effect were used to explore the behavior of the sensor. The sensor with 60% ZnO and 40% FF achieved a maximum power output of 10.7 microwatts when it is under the combined effect of light and vibration energy. Which is nearly 16 times more power output than PVDF sensor. When the magnetic effect is considered the sensor with 100% FF showed the highest power output of 11.2 microwatts which is nearly 17 times more power output than pure PVDF. The effective piezoelctric volume of the sensor was 0.017 cm3. In order to explore the effect of magnetic flux, cone patterns were created on the sensor by means of a external magnetic field. Stability of the cones generated on the sensor played a major role in generated power output.

  11. Energy harvesting through wind excitation of a piezoelectric flag-like harvester

    NASA Astrophysics Data System (ADS)

    Truitt, Andrew

    This study seeks to propose a novel approach to wind-based piezoelectric energy harvesting. A brief literature review of energy harvesting followed by a discussion of piezoelectric system dynamics is offered. Biomedical applications for piezoelectric energy harvesting are then presented offering a segue into fluid based energy harvesting. Fluid based energy harvesting is a relatively young subfield within piezoelectric energy harvesting, but it is increasingly pursued due to the ubiquitous nature of the excitation source as well as the strong correlation with other types of excitation. Vortex-induced vibrations (VIV), as well as vibrations induced by bluff bodies, and the effect of their shape on potential gains have been investigated. The interactions of VIVs on a flag-like membrane form the foundation for the piezoelectric energy harvester in this study. Polyvinylidene fluoride (PVDF) piezoelectric energy harvesters are chosen due to their desirable flexibility. Modeling of flag-like systems is review followed by system modeling of a PVDF piezoelectric flag. Numerical and experimental results from the PVDF flag-like piezoelectric energy harvester are generated and compared. A maximum power output of 1.5 mW is achieved with the flag-like system which is competitive when compared to power output and energy density levels of other studies. The power output of this system provides concrete evidence for the effective use of not only this type of energy harvester system model but also for the use of PVDFs in wind-based applications.

  12. Damage induced dissipation in electroactive polymer harvesters

    NASA Astrophysics Data System (ADS)

    Colonnelli, S.; Saccomandi, G.; Zurlo, G.

    2014-10-01

    Electromechanical harvesters based on dielectric electroactive polymers are promising devices for the production of electrical energy by the conversion of abundant sources of mechanical work available in Nature. However, severe limitations to the performance of these devices arise from various sources of dissipation and failure of the polymeric material. By making use of an energetic approach, we establish a direct and quantitative connection between the Mullins effect taking place in the polymeric material and the harvesting efficiency, showing the prominent role of rate-independent effects in the hysteretic behavior of electromechanical harvesters.

  13. The effects of harvest on waterfowl populations

    USGS Publications Warehouse

    Cooch, Evan G.; Guillemain, Matthieu; Boomer, G Scott; Lebreton, Jean-Dominique; Nichols, James D.

    2014-01-01

    Overall, there is substantial uncertainty about system dynamics, about the impacts of potential management and conservation decisions on those dynamics, and how to optimise management decisions in the presence of such uncertainties. Such relationships are unlikely to be stationary over space or time, and selective harvest of some individuals can potentially alter life history allocation of resources over time – both of which will potentially influence optimal harvest strategies. These sources of variation and uncertainty argue for the use of adaptive approaches to waterfowl harvest management.

  14. Hybrid piezoelectric energy harvesting transducer system

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing (Inventor); Jiang, Xiaoning (Inventor); Su, Ji (Inventor); Rehrig, Paul W. (Inventor); Hackenberger, Wesley S. (Inventor)

    2008-01-01

    A hybrid piezoelectric energy harvesting transducer system includes: (a) first and second symmetric, pre-curved piezoelectric elements mounted separately on a frame so that their concave major surfaces are positioned opposite to each other; and (b) a linear piezoelectric element mounted separately on the frame and positioned between the pre-curved piezoelectric elements. The pre-curved piezoelectric elements and the linear piezoelectric element are spaced from one another and communicate with energy harvesting circuitry having contact points on the frame. The hybrid piezoelectric energy harvesting transducer system has a higher electromechanical energy conversion efficiency than any known piezoelectric transducer.

  15. Energy harvesting via ferrofluidic induction

    NASA Astrophysics Data System (ADS)

    Monroe, J. G.; Vasquez, Erick S.; Aspin, Zachary S.; Fairley, John D.; Walters, Keisha B.; Berg, Matthew J.; Thompson, Scott M.

    2015-05-01

    A series of experiments were conducted to investigate and characterize the concept of ferrofluidic induction - a process for generating electrical power via cyclic oscillation of ferrofluid (iron-based nanofluid) through a solenoid. Experimental parameters include: number of bias magnets, magnet spacing, solenoid core, fluid pulse frequency and ferrofluid-particle diameter. A peristaltic pump was used to cyclically drive two aqueous ferrofluids, consisting of 7-10 nm iron-oxide particles and commercially-available hydroxyl-coated magnetic beads (~800 nm), respectively. The solutions were pulsated at 3, 6, and 10 Hz through 3.2 mm internal diameter Tygon tubing. A 1000 turn copper-wire solenoid was placed around the tube 45 cm away from the pump. The experimental results indicate that the ferrofluid is capable of inducing a maximum electric potential of approximately +/- 20 μV across the solenoid during its cyclic passage. As the frequency of the pulsating flow increased, the ferro-nanoparticle diameter increased, or the bias magnet separation decreased, the induced voltage increased. The type of solenoid core material (copper or plastic) did not have a discernible effect on induction. These results demonstrate the feasibility of ferrofluidic induction and provide insight into its dependence on fluid/flow parameters. Such fluidic/magneto-coupling can be exploited for energy harvesting and/or conversion system design for a variety of applications.

  16. Thermal Energy Harvesting from Wildlife

    NASA Astrophysics Data System (ADS)

    Woias, P.; Schule, F.; Bäumke, E.; Mehne, P.; Kroener, M.

    2014-11-01

    In this paper we present the measurement of temperature differences between the ambient air and the body temperature of a sheep (Heidschnucke) and its applicability for thermoelectric energy harvesting from livestock, demonstrated via the test of a specially tailored TEG system in a real-life experiment. In three measurement campaigns average temperature differences were found between 2.5 K and 3.5 K. Analytical models and FEM simulations were carried out to determine the actual thermal resistance of the sheep's fur from comparisons with the temperature measurements. With these data a thermoelectric (TEG) generator was built in a thermally optimized housing with adapted heats sink. The whole TEG system was mounted to a collar, including a data logger for recording temperature and TEG voltage. First measurements at the neck of a sheep were accomplished, with a calculated maximal average power output of 173 μW at the TEG. Taking the necessity of a low-voltage step-up converter into account, an electric output power of 54 μW is available which comes close to the power consumption of a low-power VHF tracking system.

  17. Laser Scanning Measurements on Trees for Logging Harvesting Operations

    PubMed Central

    Zheng, Yili; Liu, Jinhao; Wang, Dian; Yang, Ruixi

    2012-01-01

    Logging harvesters represent a set of high-performance modern forestry machinery, which can finish a series of continuous operations such as felling, delimbing, peeling, bucking and so forth with human intervention. It is found by experiment that during the process of the alignment of the harvesting head to capture the trunk, the operator needs a lot of observation, judgment and repeated operations, which lead to the time and fuel losses. In order to improve the operation efficiency and reduce the operating costs, the point clouds for standing trees are collected with a low-cost 2D laser scanner. A cluster extracting algorithm and filtering algorithm are used to classify each trunk from the point cloud. On the assumption that every cross section of the target trunk is approximate a standard circle and combining the information of an Attitude and Heading Reference System, the radii and center locations of the trunks in the scanning range are calculated by the Fletcher-Reeves conjugate gradient algorithm. The method is validated through experiments in an aspen forest, and the optimized calculation time consumption is compared with the previous work of other researchers. Moreover, the implementation of the calculation result for automotive capturing trunks by the harvesting head during the logging operation is discussed in particular. PMID:23012543

  18. Structural Optimization of Triboelectric Nanogenerator for Harvesting Water Wave Energy.

    PubMed

    Jiang, Tao; Zhang, Li Min; Chen, Xiangyu; Han, Chang Bao; Tang, Wei; Zhang, Chi; Xu, Liang; Wang, Zhong Lin

    2015-12-22

    Ocean waves are one of the most abundant energy sources on earth, but harvesting such energy is rather challenging due to various limitations of current technologies. Recently, networks formed by triboelectric nanogenerator (TENG) have been proposed as a promising technology for harvesting water wave energy. In this work, a basic unit for the TENG network was studied and optimized, which has a box structure composed of walls made of TENG composed of a wavy-structured Cu-Kapton-Cu film and two FEP thin films, with a metal ball enclosed inside. By combination of the theoretical calculations and experimental studies, the output performances of the TENG unit were investigated for various structural parameters, such as the size, mass, or number of the metal balls. From the viewpoint of theory, the output characteristics of TENG during its collision with the ball were numerically calculated by the finite element method and interpolation method, and there exists an optimum ball size or mass to reach maximized output power and electric energy. Moreover, the theoretical results were well verified by the experimental tests. The present work could provide guidance for structural optimization of wavy-structured TENGs for effectively harvesting water wave energy toward the dream of large-scale blue energy. PMID:26567754

  19. Increasing the potential of agricultural water harvesting in Africa

    NASA Astrophysics Data System (ADS)

    Irvine, Brian; Kirkby, Mike; Woldearegay, Kifle

    2014-05-01

    The WAHARA project aims to increase the potential of water harvesting in Africa. The WAHARA project draws on expertise and field data from four study sites in Ethiopia, Tunisia, Burkina Faso and Zambia. The project is transdisciplinary working closely with stakeholders to ensure that the water harvesting technologies selected and tested meet their needs. The effectiveness of WH technologies will be assessed under different environmental and socio-economic conditions. Each study site offers a number of WH technologies and aim to trial technologies from other study sites. The results from the study sites will inform the adaptation of the PESERA model and the potential of WH for the whole of Africa This presentation highlights the climate range in which the field trials are being carried out and the technologies being trialed in northern Ethiopia. Conceptual models for each technology are considered and incorporated into the PESERA model. The model is applied for the study site with both field based and catchment based technologies being assessed. The transferability and potential of individual and combined technologies will be considered across climate gradients and soil type for Africa. A quick assessment tool has been developed and offers an initial assessment of water harvesting potential. The tool can be used to quickly assess which kinds of WHT could be used in specific areas in Africa and is available to interested parties.

  20. Laser scanning measurements on trees for logging harvesting operations.

    PubMed

    Zheng, Yili; Liu, Jinhao; Wang, Dian; Yang, Ruixi

    2012-01-01

    Logging harvesters represent a set of high-performance modern forestry machinery, which can finish a series of continuous operations such as felling, delimbing, peeling, bucking and so forth with human intervention. It is found by experiment that during the process of the alignment of the harvesting head to capture the trunk, the operator needs a lot of observation, judgment and repeated operations, which lead to the time and fuel losses. In order to improve the operation efficiency and reduce the operating costs, the point clouds for standing trees are collected with a low-cost 2D laser scanner. A cluster extracting algorithm and filtering algorithm are used to classify each trunk from the point cloud. On the assumption that every cross section of the target trunk is approximate a standard circle and combining the information of an Attitude and Heading Reference System, the radii and center locations of the trunks in the scanning range are calculated by the Fletcher-Reeves conjugate gradient algorithm. The method is validated through experiments in an aspen forest, and the optimized calculation time consumption is compared with the previous work of other researchers. Moreover, the implementation of the calculation result for automotive capturing trunks by the harvesting head during the logging operation is discussed in particular. PMID:23012543

  1. Plasmonic Enhancement Mechanisms in Solar Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Cushing, Scott K.

    Semiconductor photovoltaics (solar-to-electrical) and photocatalysis (solar-to-chemical) requires sunlight to be converted into excited charge carriers with sufficient lifetimes and mobility to drive a current or photoreaction. Thin semiconductor films are necessary to reduce the charge recombination and mobility losses, but thin films also limit light absorption, reducing the solar energy conversion efficiency. Further, in photocatalysis, the band edges of semiconductor must straddle the redox potentials of a photochemical reaction, reducing light absorption to half the solar spectrum in water splitting. Plasmonics transforms metal nanoparticles into antennas with resonances tuneable across the solar spectrum. If energy can be transferred from the plasmon to the semiconductor, light absorption in the semiconductor can be increased in thin films and occur at energies smaller than the band gap. This thesis investigates why, despite this potential, plasmonic solar energy harvesting techniques rarely appear in top performing solar architectures. To accomplish this goal, the possible plasmonic enhancement mechanisms for solar energy conversion were identified, isolated, and optimized by combining systematic sample design with transient absorption spectroscopy, photoelectrochemical and photocatalytic testing, and theoretical development. Specifically, metal semiconductor nanostructures were designed to modulate the plasmon's scattering, hot carrier, and near field interactions as well as remove heating and self-catalysis effects. Transient absorption spectroscopy then revealed how the structure design affected energy and charge carrier transfer between metal and semiconductor. Correlating this data with wavelength-dependent photoconversion efficiencies and theoretical developments regarding metal-semiconductor interactions identified the origin of the plasmonic enhancement. Using this methodology, it has first been proven that three plasmonic enhancement routes are

  2. Plasmonic Enhancement Mechanisms in Solar Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Cushing, Scott K.

    Semiconductor photovoltaics (solar-to-electrical) and photocatalysis (solar-to-chemical) requires sunlight to be converted into excited charge carriers with sufficient lifetimes and mobility to drive a current or photoreaction. Thin semiconductor films are necessary to reduce the charge recombination and mobility losses, but thin films also limit light absorption, reducing the solar energy conversion efficiency. Further, in photocatalysis, the band edges of semiconductor must straddle the redox potentials of a photochemical reaction, reducing light absorption to half the solar spectrum in water splitting. Plasmonics transforms metal nanoparticles into antennas with resonances tuneable across the solar spectrum. If energy can be transferred from the plasmon to the semiconductor, light absorption in the semiconductor can be increased in thin films and occur at energies smaller than the band gap. This thesis investigates why, despite this potential, plasmonic solar energy harvesting techniques rarely appear in top performing solar architectures. To accomplish this goal, the possible plasmonic enhancement mechanisms for solar energy conversion were identified, isolated, and optimized by combining systematic sample design with transient absorption spectroscopy, photoelectrochemical and photocatalytic testing, and theoretical development. Specifically, metal semiconductor nanostructures were designed to modulate the plasmon's scattering, hot carrier, and near field interactions as well as remove heating and self-catalysis effects. Transient absorption spectroscopy then revealed how the structure design affected energy and charge carrier transfer between metal and semiconductor. Correlating this data with wavelength-dependent photoconversion efficiencies and theoretical developments regarding metal-semiconductor interactions identified the origin of the plasmonic enhancement. Using this methodology, it has first been proven that three plasmonic enhancement routes are

  3. Developing index maps of water-harvest potential in Africa

    USGS Publications Warehouse

    Senay, G.B.; Verdin, J.P.

    2004-01-01

    The food security problem in Africa is tied to the small farmer, whose subsistence farming relies heavily on rain-fed agriculture. A dry spell lasting two to three weeks can cause a significant yield reduction. A small-scale irrigation scheme from small-capacity ponds can alleviate this problem. This solution would require a water harvest mechanism at a farm level. In this study, we looked at the feasibility of implementing such a water harvest mechanism in drought prone parts of Africa. A water balance study was conducted at different watershed levels. Runoff (watershed yield) was estimated using the SCS curve number technique and satellite derived rainfall estimates (RFE). Watersheds were delineated from the Africa-wide HYDRO-1K digital elevation model (DEM) data set in a GIS environment. Annual runoff volumes that can potentially be stored in a pond during storm events were estimated as the product of the watershed area and runoff excess estimated from the SCS Curve Number method. Estimates were made for seepage and net evaporation losses. A series of water harvest index maps were developed based on a combination of factors that took into account the availability of runoff, evaporation losses, population density, and the required watershed size needed to fill a small storage reservoir that can be used to alleviate water stress during a crop growing season. This study presents Africa-wide water-harvest index maps that could be used for conducting feasibility studies at a regional scale in assessing the relative differences in runoff potential between regions for the possibility of using ponds as a water management tool. ?? 2004 American Society of Agricultural Engineers.

  4. 50 CFR 300.112 - Harvesting permits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ownership is not reported, the violation is chargeable to the previous owner. Title 15 CFR part 904 governs... subject to the jurisdiction of the United States to harass, capture, harm, kill, harvest, or import...

  5. 50 CFR 300.112 - Harvesting permits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ownership is not reported, the violation is chargeable to the previous owner. Title 15 CFR part 904 governs... subject to the jurisdiction of the United States to harass, capture, harm, kill, harvest, or import...

  6. Adaptive learning algorithms for vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Ward, John K.; Behrens, Sam

    2008-06-01

    By scavenging energy from their local environment, portable electronic devices such as MEMS devices, mobile phones, radios and wireless sensors can achieve greater run times with potentially lower weight. Vibration energy harvesting is one such approach where energy from parasitic vibrations can be converted into electrical energy through the use of piezoelectric and electromagnetic transducers. Parasitic vibrations come from a range of sources such as human movement, wind, seismic forces and traffic. Existing approaches to vibration energy harvesting typically utilize a rectifier circuit, which is tuned to the resonant frequency of the harvesting structure and the dominant frequency of vibration. We have developed a novel approach to vibration energy harvesting, including adaptation to non-periodic vibrations so as to extract the maximum amount of vibration energy available. Experimental results of an experimental apparatus using an off-the-shelf transducer (i.e. speaker coil) show mechanical vibration to electrical energy conversion efficiencies of 27-34%.

  7. Manual harvesting of high population Leucaena stands

    SciTech Connect

    Pecson, R.D.; Van Den Beldt, R.J.

    1983-01-01

    Five-year-old giant Leucaena leucocephala, planted at spacing 1x0.5 m, were harvested using bolos (Filipino machetes) and chainsaws. For felling alone, chainsaws took 35% less time than bolos. For the total harvest including delimbing and hauling an average 20 m to the edge of the stand, chainsaws took 20% less time than bolos. Assuming chainsaws are economically viable, it may be advisable to fell with chainsaws in advance of bolo teams that buck and haul. 2 references.

  8. Study on Pyroelectric Harvesters with Various Geometry.

    PubMed

    Siao, An-Shen; Chao, Ching-Kong; Hsiao, Chun-Ching

    2015-01-01

    Pyroelectric harvesters convert time-dependent temperature variations into electric current. The appropriate geometry of the pyroelectric cells, coupled with the optimal period of temperature fluctuations, is key to driving the optimal load resistance, which enhances the performance of pyroelectric harvesters. The induced charge increases when the thickness of the pyroelectric cells decreases. Moreover, the induced charge is extremely reduced for the thinner pyroelectric cell when not used for the optimal period. The maximum harvested power is achieved when a 100 μm-thick PZT (Lead zirconate titanate) cell is used to drive the optimal load resistance of about 40 MΩ. Moreover, the harvested power is greatly reduced when the working resistance diverges even slightly from the optimal load resistance. The stored voltage generated from the 75 μm-thick PZT cell is less than that from the 400 μm-thick PZT cell for a period longer than 64 s. Although the thinner PZT cell is advantageous in that it enhances the efficiency of the pyroelectric harvester, the much thinner 75 μm-thick PZT cell and the divergence from the optimal period further diminish the performance of the pyroelectric cell. Therefore, the designers of pyroelectric harvesters need to consider the coupling effect between the geometry of the pyroelectric cells and the optimal period of temperature fluctuations to drive the optimal load resistance. PMID:26270666

  9. Hybrid energy harvesting using active thermal backplane

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Wook; Lee, Dong-Gun

    2016-04-01

    In this study, we demonstrate the concept of a new hybrid energy harvesting system by combing solar cells with magneto-thermoelectric generator (MTG, i.e., thermal energy harvesting). The silicon solar cell can easily reach high temperature under normal operating conditions. Thus the heated solar cell becomes rapidly less efficient as the temperature of solar cell rises. To increase the efficiency of the solar cell, air or water-based cooling system is used. To surpass conventional cooling devices requiring additional power as well as large working space for air/water collectors, we develop a new technology of pairing an active thermal backplane (ATB) to solar cell. The ATB design is based on MTG technology utilizing the physics of the 2nd order phase transition of active ferromagnetic materials. The MTG is cost-effective conversion of thermal energy to electrical energy and is fundamentally different from Seebeck TEG devices. The ATB (MTG) is in addition to being an energy conversion system, a very good conveyor of heat through both conduction and convection. Therefore, the ATB can provide dual-mode for the proposed hybrid energy harvesting. One is active convective and conductive cooling for heated solar cell. Another is active thermal energy harvesting from heat of solar cell. These novel hybrid energy harvesting device have potentially simultaneous energy conversion capability of solar and thermal energy into electricity. The results presented can be used for better understanding of hybrid energy harvesting system that can be integrated into commercial applications.

  10. Study on Pyroelectric Harvesters with Various Geometry

    PubMed Central

    Siao, An-Shen; Chao, Ching-Kong; Hsiao, Chun-Ching

    2015-01-01

    Pyroelectric harvesters convert time-dependent temperature variations into electric current. The appropriate geometry of the pyroelectric cells, coupled with the optimal period of temperature fluctuations, is key to driving the optimal load resistance, which enhances the performance of pyroelectric harvesters. The induced charge increases when the thickness of the pyroelectric cells decreases. Moreover, the induced charge is extremely reduced for the thinner pyroelectric cell when not used for the optimal period. The maximum harvested power is achieved when a 100 μm-thick PZT (Lead zirconate titanate) cell is used to drive the optimal load resistance of about 40 MΩ. Moreover, the harvested power is greatly reduced when the working resistance diverges even slightly from the optimal load resistance. The stored voltage generated from the 75 μm-thick PZT cell is less than that from the 400 μm-thick PZT cell for a period longer than 64 s. Although the thinner PZT cell is advantageous in that it enhances the efficiency of the pyroelectric harvester, the much thinner 75 μm-thick PZT cell and the divergence from the optimal period further diminish the performance of the pyroelectric cell. Therefore, the designers of pyroelectric harvesters need to consider the coupling effect between the geometry of the pyroelectric cells and the optimal period of temperature fluctuations to drive the optimal load resistance. PMID:26270666

  11. Endoscopic vein harvesting: technique, outcomes, concerns & controversies

    PubMed Central

    Sarang, Zubair

    2013-01-01

    The choice of the graft conduit for coronary artery bypass grafting (CABG) has significant implications both in the short- and long-term. The patency of a coronary conduit is closely associated with an uneventful postoperative course, better long-term patient survival and superior freedom from re-intervention. The internal mammary artery is regarded as the primary conduit for CABG patients, given its association with long-term patency and survival. However, long saphenous vein (LSV) continues to be utilized universally as patients presenting for CABG often have multiple coronary territories requiring revascularization. Traditionally, the LSV has been harvested by creating incisions from the ankle up to the groin termed open vein harvesting (OVH). However, such harvesting methods are associated with incisional pain and leg wound infections. In addition, patients find such large incisions to be cosmetically unappealing. These concerns regarding wound morbidity and patient satisfaction led to the emergence of endoscopic vein harvesting (EVH). Published experience comparing OVH with EVH suggests decreased wound related complications, improved patient satisfaction, shorter hospital stay, and reduced postoperative pain at the harvest site following EVH. Despite these reported advantages concerns regarding risk of injury at the time of harvest with its potential detrimental effect on vein graft patency and clinical outcomes have prevented universal adoption of EVH. This review article provides a detailed insight into the technical aspects, outcomes, concerns, and controversies associated with EVH. PMID:24251019

  12. Harvesting Vibrational Energy Using Material Work Functions

    PubMed Central

    Varpula, Aapo; Laakso, Sampo J.; Havia, Tahvo; Kyynäräinen, Jukka; Prunnila, Mika

    2014-01-01

    Vibration energy harvesters scavenge energy from mechanical vibrations to energise low power electronic devices. In this work, we report on vibration energy harvesting scheme based on the charging phenomenon occurring naturally between two bodies with different work functions. Such work function energy harvester (WFEH) is similar to electrostatic energy harvester with the fundamental distinction that neither external power supplies nor electrets are needed. A theoretical model and description of different operation modes of WFEHs are presented. The WFEH concept is tested with macroscopic experiments, which agree well with the model. The feasibility of miniaturizing WFEHs is shown by simulating a realistic MEMS device. The WFEH can be operated as a charge pump that pushes charge and energy into an energy storage element. We show that such an operation mode is highly desirable for applications and that it can be realised with either a charge shuttle or with switches. The WFEH is shown to give equal or better output power in comparison to traditional electrostatic harvesters. Our findings indicate that WFEH has great potential in energy harvesting applications. PMID:25348004

  13. Harvesting Vibrational Energy Using Material Work Functions

    NASA Astrophysics Data System (ADS)

    Varpula, Aapo; Laakso, Sampo J.; Havia, Tahvo; Kyynäräinen, Jukka; Prunnila, Mika

    2014-10-01

    Vibration energy harvesters scavenge energy from mechanical vibrations to energise low power electronic devices. In this work, we report on vibration energy harvesting scheme based on the charging phenomenon occurring naturally between two bodies with different work functions. Such work function energy harvester (WFEH) is similar to electrostatic energy harvester with the fundamental distinction that neither external power supplies nor electrets are needed. A theoretical model and description of different operation modes of WFEHs are presented. The WFEH concept is tested with macroscopic experiments, which agree well with the model. The feasibility of miniaturizing WFEHs is shown by simulating a realistic MEMS device. The WFEH can be operated as a charge pump that pushes charge and energy into an energy storage element. We show that such an operation mode is highly desirable for applications and that it can be realised with either a charge shuttle or with switches. The WFEH is shown to give equal or better output power in comparison to traditional electrostatic harvesters. Our findings indicate that WFEH has great potential in energy harvesting applications.

  14. Accounting for tagging-to-harvest mortality in a Brownie tag-recovery model by incorporating radio-telemetry data

    USGS Publications Warehouse

    Buderman, Frances E.; Diefenbach, Duane R.; Casalena, Mary Jo; Rosenberry, Christopher S.; Wallingford, Bret D.

    2014-01-01

    The Brownie tag-recovery model is useful for estimating harvest rates but assumes all tagged individuals survive to the first hunting season; otherwise, mortality between time of tagging and the hunting season will cause the Brownie estimator to be negatively biased. Alternatively, fitting animals with radio transmitters can be used to accurately estimate harvest rate but may be more costly. We developed a joint model to estimate harvest and annual survival rates that combines known-fate data from animals fitted with transmitters to estimate the probability of surviving the period from capture to the first hunting season, and data from reward-tagged animals in a Brownie tag-recovery model. We evaluated bias and precision of the joint estimator, and how to optimally allocate effort between animals fitted with radio transmitters and inexpensive ear tags or leg bands. Tagging-to-harvest survival rates from >20 individuals with radio transmitters combined with 50–100 reward tags resulted in an unbiased and precise estimator of harvest rates. In addition, the joint model can test whether transmitters affect an individual's probability of being harvested. We illustrate application of the model using data from wild turkey, Meleagris gallapavo,to estimate harvest rates, and data from white-tailed deer, Odocoileus virginianus, to evaluate whether the presence of a visible radio transmitter is related to the probability of a deer being harvested. The joint known-fate tag-recovery model eliminates the requirement to capture and mark animals immediately prior to the hunting season to obtain accurate and precise estimates of harvest rate. In addition, the joint model can assess whether marking animals with radio transmitters affects the individual's probability of being harvested, caused by hunter selectivity or changes in a marked animal's behavior.

  15. Jungle Giants: Assessing Sustainable Harvesting in a Difficult-to-Survey Species (Python reticulatus)

    PubMed Central

    Natusch, Daniel J. D.; Lyons, Jessica A.; Mumpuni; Riyanto, Awal; Shine, Richard

    2016-01-01

    Sustainability of wildlife harvests is critical but difficult to assess. Evaluations of sustainability typically combine modelling with the measurement of underlying abundances. For many taxa harvested in developing countries, however, abundances are near-impossible to survey and a lack of detailed ecological information impedes the reliability of models. In such cases, repeated surveys of the attributes of harvested individuals may provide more robust information on sustainability. If the numbers, sizes and other demographic attributes of animals taken for the commercial trade do not change over biologically significant time intervals (decades), there is a prima facie case that the harvest is indeed sustainable. Here, we report the results of examinations of > 4,200 reticulated pythons (Python reticulatus) taken for the commercial leather industry in northern and southern Sumatra, Indonesia. The numbers, mean body sizes, clutch sizes, sizes at maturity and proportion of giant specimens have not decreased between our first surveys (1995) and repeat surveys (2015). Thus, despite assumptions to the contrary, the harvest appears to be sustainable. We use our data to inform the design of future monitoring programs for this species. Our study underpins the need for robust science to inform wildlife trade policy and decision-making, and urges wildlife managers to assess sustainability of difficult-to-survey terrestrial wildlife by drawing inferences directly from the harvest itself. PMID:27391138

  16. Jungle Giants: Assessing Sustainable Harvesting in a Difficult-to-Survey Species (Python reticulatus).

    PubMed

    Natusch, Daniel J D; Lyons, Jessica A; Mumpuni; Riyanto, Awal; Shine, Richard

    2016-01-01

    Sustainability of wildlife harvests is critical but difficult to assess. Evaluations of sustainability typically combine modelling with the measurement of underlying abundances. For many taxa harvested in developing countries, however, abundances are near-impossible to survey and a lack of detailed ecological information impedes the reliability of models. In such cases, repeated surveys of the attributes of harvested individuals may provide more robust information on sustainability. If the numbers, sizes and other demographic attributes of animals taken for the commercial trade do not change over biologically significant time intervals (decades), there is a prima facie case that the harvest is indeed sustainable. Here, we report the results of examinations of > 4,200 reticulated pythons (Python reticulatus) taken for the commercial leather industry in northern and southern Sumatra, Indonesia. The numbers, mean body sizes, clutch sizes, sizes at maturity and proportion of giant specimens have not decreased between our first surveys (1995) and repeat surveys (2015). Thus, despite assumptions to the contrary, the harvest appears to be sustainable. We use our data to inform the design of future monitoring programs for this species. Our study underpins the need for robust science to inform wildlife trade policy and decision-making, and urges wildlife managers to assess sustainability of difficult-to-survey terrestrial wildlife by drawing inferences directly from the harvest itself. PMID:27391138

  17. Autonomous grain combine control system

    SciTech Connect

    Hoskinson, Reed L.; Kenney, Kevin L.; Lucas, James R.; Prickel, Marvin A.

    2013-06-25

    A system for controlling a grain combine having a rotor/cylinder, a sieve, a fan, a concave, a feeder, a header, an engine, and a control system. The feeder of the grain combine is engaged and the header is lowered. A separator loss target, engine load target, and a sieve loss target are selected. Grain is harvested with the lowered header passing the grain through the engaged feeder. Separator loss, sieve loss, engine load and ground speed of the grain combine are continuously monitored during the harvesting. If the monitored separator loss exceeds the selected separator loss target, the speed of the rotor/cylinder, the concave setting, the engine load target, or a combination thereof is adjusted. If the monitored sieve loss exceeds the selected sieve loss target, the speed of the fan, the size of the sieve openings, or the engine load target is adjusted.

  18. An analytical framework for the design and comparative analysis of galloping energy harvesters under quasi-steady aerodynamics

    NASA Astrophysics Data System (ADS)

    Bibo, Amin; Daqaq, Mohammed F.

    2015-09-01

    This paper presents a generalized formulation, analysis, and optimization of energy harvesters subjected to galloping and base excitations. The harvester consists of a cantilever beam with a bluff body attached at the free end. A nondimensional lumped-parameter model which accounts for the combined loading and different electro-mechanical transduction mechanisms is presented. The aerodynamic loading is modeled using the quasi-steady assumption with polynomial approximation. A nonlinear analysis is carried out and an approximate analytical solution is obtained. A dimensional analysis is performed to identify the important parameters that affect the system's response. The analysis of the response is divided into two parts. The first treats a harvester subjected to only galloping excitations. It is shown that, for a given shape of the bluff body and under quasi-steady flow conditions, the harvester's dimensionless response can be described by a single universal curve irrespective to the geometric, mechanical, and electrical design parameters of the harvester. In the second part, a harvester under concurrent galloping and base excitations is analyzed. It is shown that, the total output power depends on three dimensionless loading parameters; wind speed, base excitation amplitude, and excitation frequency. The response curves of the harvester are generated in terms of the loading parameters. These curves can serve as a complete design guide for scaling and optimizing the performance of galloping-based harvesters.

  19. Harvesting electricity from human hair.

    PubMed

    Tulachan, Brindan; Singh, Sushil K; Philip, Deepu; Das, Mainak

    2016-01-01

    continuously hydrating the polymer with water vapor, we prolonged the process. If this interesting aspect of polymer is exploited further and fine tuned, then it will open new avenues for development of sophisticated polymer-based systems, which could be used to harvest electricity from waste heat. PMID:27319058

  20. Microalgae harvesting and processing: a literature review

    SciTech Connect

    Shelef, G.; Sukenik, A.; Green, M.

    1984-08-01

    The objective of this report is to present a discussion of the literature review performed on methods of harvesting microalgae. There is no single best method of harvesting microalgae. The choice of preferable harvesting technology depends on algae species, growth medium, algae production, end product, and production cost benefit. Algae size is an important factor since low-cost filtration procedures are presently applicable only for harvesting fairly large microalgae. Small microalgae should be flocculated into larger bodies that can be harvested by one of the methods mentioned above. However, the cells' mobility affects the flocculation process, and addition of nonresidual oxidants to stop the mobility should be considered to aid flocculation. The decision between sedimentation or flotation methods depends on the density difference between the algae cell and the growth medium. For oil-laden algae with low cell density, flotation technologies should be considered. Moreover, oxygen release from algae cells and oxygen supersaturation conditions in growth medium support the use of flotation methods. If high-quality algae are to be produced for human consumption, continuous harvesting by solid ejecting or nozzle-type disc centrifuges is recommended. These centrifuges can easily be cleaned and sterilized. They are suitable for all types of microalgae, but their high operating costs should be compared with the benefits from their use. Another basic criterion for selecting the suitable harvesting procedure is the final algae paste concentration required for the next process. Solids requirements up to 30% can be attained by established dewatering processes. For more concentrated solids, drying methods are required. The various systems for algae drying differ both in the extent of capital investment and the energy requirements. Selection of the drying method depends on the scale of operation and the use for which the dried product is intended.

  1. 78 FR 75321 - Migratory Bird Subsistence Harvest in Alaska; Harvest Regulations for Migratory Birds in Alaska...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-11

    ...The U.S. Fish and Wildlife Service (Service or we) proposes migratory bird subsistence harvest regulations in Alaska for the 2014 season. These regulations would enable the continuation of customary and traditional subsistence uses of migratory birds in Alaska and prescribe regional information on when and where the harvesting of birds may occur. These regulations were developed under a......

  2. Double synchronized switch harvesting (DSSH): a new energy harvesting scheme for efficient energy extraction.

    PubMed

    Lallart, Mickaël; Garbuio, Lauric; Petit, Lionel; Richard, Claude; Guyomar, Daniel

    2008-10-01

    This paper presents a new technique for optimized energy harvesting using piezoelectric microgenerators called double synchronized switch harvesting (DSSH). This technique consists of a nonlinear treatment of the output voltage of the piezoelectric element. It also integrates an intermediate switching stage that ensures an optimal harvested power whatever the load connected to the microgenerator. Theoretical developments are presented considering either constant vibration magnitude, constant driving force, or independent extraction. Then experimental measurements are carried out to validate the theoretical predictions. This technique exhibits a constant output power for a wide range of load connected to the microgenerator. In addition, the extracted power obtained using such a technique allows a gain up to 500% in terms of maximal power output compared with the standard energy harvesting method. It is also shown that such a technique allows a fine-tuning of the trade-off between vibration damping and energy harvesting. PMID:18986861

  3. Sugarcane Post-harvest Residue Retention and Certain Ripener Applications Reduce First and Second Ratoon Yields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Retention of sugarcane (interspecific hybrids of Saccharum spp.) post-harvest residue and certain glyphosate ripener application regimes have independently been shown to reduce yields of the subsequent ratoon crop. The objective of this experiment was to determine the combined effects of post-harve...

  4. Proso Millet Yield and Residue Mass Following Direct Harvest with a Stripper-header

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proso millet (Panicum miliaceum L.) (PM) is an important crop for dryland agricultural rotations in the central Great Plains. The crop is traditionally swathed prior to combining to promote uniform drying of the panicle and to minimize seed shattering losses. Direct harvesting of PM with a stripper ...

  5. Acquiring geographical data with web harvesting

    NASA Astrophysics Data System (ADS)

    Dramowicz, K.

    2016-04-01

    Many websites contain very attractive and up to date geographical information. This information can be extracted, stored, analyzed and mapped using web harvesting techniques. Poorly organized data from websites are transformed with web harvesting into a more structured format, which can be stored in a database and analyzed. Almost 25% of web traffic is related to web harvesting, mostly while using search engines. This paper presents how to harvest geographic information from web documents using the free tool called the Beautiful Soup, one of the most commonly used Python libraries for pulling data from HTML and XML files. It is a relatively easy task to process one static HTML table. The more challenging task is to extract and save information from tables located in multiple and poorly organized websites. Legal and ethical aspects of web harvesting are discussed as well. The paper demonstrates two case studies. The first one shows how to extract various types of information about the Good Country Index from the multiple web pages, load it into one attribute table and map the results. The second case study shows how script tools and GIS can be used to extract information from one hundred thirty six websites about Nova Scotia wines. In a little more than three minutes a database containing one hundred and six liquor stores selling these wines is created. Then the availability and spatial distribution of various types of wines (by grape types, by wineries, and by liquor stores) are mapped and analyzed.

  6. A self-adaptive energy harvesting system

    NASA Astrophysics Data System (ADS)

    Hoffmann, D.; Willmann, A.; Hehn, T.; Folkmer, B.; Manoli, Y.

    2016-03-01

    This paper reports on a self-adaptive energy harvesting system, which is able to adapt its eigenfrequency to the operating conditions of power units. The power required for frequency tuning is delivered by the energy harvester itself. The tuning mechanism is based on a magnetic concept and incorporates a circular tuning magnet and a coupling magnet. In this manner, both coupling modes (attractive and repulsive) can be utilized for tuning the eigenfrequency of the energy harvester. The tuning range and its center frequency can be tailored to the application by careful design of the spring stiffness and the gap between tuning magnet and coupling magnet. Experimental results demonstrate that, in contrast to a conventional non-tunable vibration energy harvester, the net power can be significantly increased if a self-adaptive system is utilized, although additional power is required for regular adjustments of the eigenfrequency. The outcome confirms that active tuning is a real and practical option to extend the operational frequency range and to increase the net power of a conventional vibration energy harvester.

  7. A novel bistable energy harvesting concept

    NASA Astrophysics Data System (ADS)

    Scarselli, G.; Nicassio, F.; Pinto, F.; Ciampa, F.; Iervolino, O.; Meo, M.

    2016-05-01

    Bistable energy harvesting has become a major field of research due to some unique features for converting mechanical energy into electrical power. When properly loaded, bistable structures snap-through from one stable configuration to another, causing large strains and consequently power generation. Moreover, bistable structures can harvest energy across a broad-frequency bandwidth due to their nonlinear characteristics. Despite the fact that snap-through may be triggered regardless of the form or frequency of exciting vibration, the external force must reach a specific snap-through activation threshold value to trigger the transition from one stable state to another. This aspect is a limiting factor for realistic vibration energy harvesting application with bistable devices. This paper presents a novel power harvesting concept for bistable composites based on a ‘lever effect’ aimed at minimising the activation force to cause the snap through by choosing properly the bistable structures’ constraints. The concept was demonstrated with the help of numerical simulation and experimental testing. The results showed that the actuation force is one order of magnitude smaller (3%-6%) than the activation force of conventionally constrained bistable devices. In addition, it was shown that the output voltage was higher than the conventional configuration, leading to a significant increase in power generation. This novel concept could lead to a new generation of more efficient bistable energy harvesters for realistic vibration environments.

  8. A hydrostatic pressure-cycle energy harvester

    NASA Astrophysics Data System (ADS)

    Shafer, Michael W.; Hahn, Gregory; Morgan, Eric

    2015-04-01

    There have been a number of new applications for energy harvesting with the ever-decreasing power consumption of microelectronic devices. In this paper we explore a new area of marine animal energy harvesting for use in powering tags known as bio-loggers. These devices record data about the animal or its surroundings, but have always had limited deployment times due to battery depletion. Reduced solar irradiance below the water's surface provides the impetus to explore other energy harvesting concepts beyond solar power for use on marine animals. We review existing tag technologies in relation to this application, specifically relating to energy consumption. Additionally, we propose a new idea for energy harvesting, using hydrostatic pressure changes as a source for energy production. We present initial testing results of a bench-top model and show that the daily energy harvesting potential from this technology can meet or exceed that consumed by current marine bio-logging tags. The application of this concept in the arena of bio-logging technology could substantially increase bio-logger deployment lifetimes, allowing for longitudinal studies over the course of multiple breeding and/or migration cycles.

  9. Triboelectric Nanogenerators for Blue Energy Harvesting.

    PubMed

    Khan, Usman; Kim, Sang-Woo

    2016-07-26

    Blue energy in the form of ocean waves offers an enormous energy resource. However, it has yet to be fully exploited in order to make it available for the use of mankind. Blue energy harvesting is a challenging task as the kinetic energy from ocean waves is irregular in amplitude and is at low frequencies. Though electromagnetic generators (EMGs) are well-known for harvesting mechanical kinetic energies, they have a crucial limitation for blue energy conversion. Indeed, the output voltage of EMGs can be impractically low at the low frequencies of ocean waves. In contrast, triboelectric nanogenerators (TENGs) are highly suitable for blue energy harvesting as they can effectively harvest mechanical energies from low frequencies (<1 Hz) to relatively high frequencies (∼kHz) and are also low-cost, lightweight, and easy to fabricate. Several important steps have been taken by Wang's group to develop TENG technology for blue energy harvesting. In this Perspective, we describe some of the recent progress and also address concerns related to durable packaging of TENGs in consideration of harsh marine environments and power management for an efficient power transfer and distribution for commercial applications. PMID:27408982

  10. MEMS electromagnetic energy harvesters with multiple resonances

    NASA Astrophysics Data System (ADS)

    Nelatury, Sudarshan R.; Gray, Robert

    2014-06-01

    There is going on a flurry of research activity in the development of effcient energy harvesters from all branches of energy conversion. The need for developing self-powered wireless sensors and actuators to be employed in unmanned combat vehicles also seems to grow steadily. These vehicles are inducted into perilous war zones for silent watch missions. Energy management is sometimes carried out using misson-aware energy expenditure strategies. Also, when there is a requirement for constant monitoring of events, the sensors and the subsystems of combat vehicles require energy harvesters that can operate over a discrete set of spot frequencies. This paper attempts to review some of the recent techniques and the energy harvesting devices based on electromagnetic and electromechanical principles. In particular, we shall discuss the design and performance of a MEMS-harvester that exhibits multiple resonances. Frequency response of a simulated electromagnetic harvester is plotted. It has three dominant peaks at three different resonant frequencies. Variation in the load power in the normalized units as a function of load is found, which determines the matched load resistance.

  11. Achieving multiple benefits from stormwater harvesting.

    PubMed

    Mitchell, V G; Deletic, A; Fletcher, T D; Hatt, B E; McCarthy, D T

    2007-01-01

    As the concept of integrated urban water management is incorporated into the practice of urban water servicing, new options, such as stormwater harvesting, which can have multiple benefits, are of increasing interest. The multi-functional benefits of stormwater harvesting include the potential to enhance urban stream health through improvements to the flow regime as well as providing a valuable water supply source. This paper synthesises a current research programme being undertaken to assess the viability of, and develop recommendations for, stormwater harvesting. The design of the collection, treatment, storage, flood protection, and distribution components of an integrated system are each discussed, along with the environmental flow consequences of urban stormwater harvesting. The incorporation of swales and biofilters into the collection system was not found to lead to significant exfiltration and evaporation losses in most circumstances and so can be employed as part of the treatment train. Further treatment can be provided by WSUD-type biophysical measures such as ponds, wetlands or novelly designed biofilters or physio-chemical treatment processes. Depending on the design, the stormwater storage component may or may not provide flood protection. In many circumstances, the storage capacity requirements are not considered to be a barrier to stormwater harvesting. PMID:17425080

  12. Plucked piezoelectric bimorphs for energy harvesting applications

    NASA Astrophysics Data System (ADS)

    Pozzi, Michele; Zhu, Meiling

    2011-06-01

    The modern drive towards mobility and wireless devices is motivating intense research in energy harvesting (EH) technologies. In an effort to reduce the battery burden of people, we are investigating a novel piezoelectric wearable energy harvester. As piezoelectric EH is significantly more effective at high frequencies, in opposition to the characteristically low-frequency human activities, we propose the use of an up-conversion strategy analogous to the pizzicato musical technique. In order to guide the design of such harvester, we have modelled with Finite Elements (FE) the response and power generation of a piezoelectric bimorph while it is "plucked", i.e. deflected, then released and permitted to vibrate freely. An experimental rig has been devised and set up to reproduce the action of the bimorph in the harvester. Measurements of the voltage output and the energy dissipated across a series resistor are reported and compared with the FE predictions. As the novel harvester will feature a number of bimorphs, each plucked tens of times per step, we predict a total power output of several mW, with imperceptible effect on the wearer's gait.

  13. Acceleration-assisted entanglement harvesting and rangefinding

    NASA Astrophysics Data System (ADS)

    Salton, Grant; Mann, Robert B.; Menicucci, Nicolas C.

    2015-03-01

    We study entanglement harvested from a quantum field through local interaction with Unruh-DeWitt detectors undergoing linear acceleration. The interactions allow entanglement to be swapped locally from the field to the detectors. We find an enhancement in the entanglement harvesting by two detectors with anti-parallel acceleration over those with inertial motion. This enhancement is characterized by the presence of entanglement between two detectors that would otherwise maintain a separable state in the absence of relativistic motion (with the same distance of closest approach in both cases). We also find that entanglement harvesting is degraded for two detectors undergoing parallel acceleration in the same way as for two static, comoving detectors in a de Sitter universe. This degradation is known to be different from that of two inertial detectors in a thermal bath. We comment on the physical origin of the harvested entanglement and present three methods for determining distance between two detectors using properties of the harvested entanglement. Information about the separation is stored nonlocally in the joint state of the accelerated detectors after the interaction; a single detector alone contains none. We also find an example of entanglement sudden death exhibited in parameter space.

  14. Enhanced energy harvesting in commercial ferroelectric materials

    NASA Astrophysics Data System (ADS)

    Patel, Satyanarayan; Chauhan, Aditya; Vaish, Rahul

    2014-04-01

    Ferroelectric materials are used in a number of applications ranging from simple sensors and actuators to ferroelectric random access memories (FRAMs), transducers, health monitoring system and microelectronics. The multiphysical coupling ability possessed by these materials has been established to be useful for energy harvesting applications. However, conventional energy harvesting techniques employing ferroelectric materials possess low energy density. This has prevented the successful commercialization of ferroelectric based energy harvesting systems. In this context, the present study aims at proposing a novel approach for enhanced energy harvesting using commercially available ferroelectric materials. This technique was simulated to be used for two commercially available piezoelectric materials namely PKI-552 and APCI-840, soft and hard lead-zirconate-titanate (PZT) pervoskite ceramics, respectively. It was observed that a maximum energy density of 348 kJm-3cycle-1 can be obtained for cycle parameters of (0-1 ton compressive stress and 1-25 kV.cm-1 electric field) using APCI-840. The reported energy density is several hundred times larger than the maximum energy density reported in the literature for vibration harvesting systems.

  15. Ecological impacts of energy-wood harvests: lessons from whole-tree harvesting and natural disturbance

    USGS Publications Warehouse

    Berger, Alaina L.; Palik, Brian; D'Amato, Anthony W.; Fraver, Shawn; Bradford, John B.; Nislow, Keith H.; King, David; Brooks, Robert T.

    2013-01-01

    Recent interest in using forest residues and small-diameter material for biofuels is generating a renewed focus on harvesting impacts and forest sustainability. The rich legacy of research from whole-tree harvesting studies can be examined in light of this interest. Although this research largely focused on consequences for forest productivity, in particular carbon and nutrient pools, it also has relevance for examining potential consequences for biodiversity and aquatic ecosystems. This review is framed within a context of contrasting ecosystem impacts from whole-tree harvesting because it represents a high level of biomass removal. Although whole-tree harvesting does not fully use the nonmerchantable biomass available, it indicates the likely direction and magnitude of impacts that can occur through energy-wood harvesting compared with less-intensive conventional harvesting and to dynamics associated with various natural disturbances. The intent of this comparison is to gauge the degree of departure of energy-wood harvesting from less intensive conventional harvesting. The review of the literature found a gradient of increasing departure in residual structural conditions that remained in the forest when conventional and whole-tree harvesting was compared with stand-replacing natural disturbance. Important stand- and landscape-level processes were related to these structural conditions. The consequence of this departure may be especially potent because future energy-wood harvests may more completely use a greater range of forest biomass at potentially shortened rotations, creating a great need for research that explores the largely unknown scale of disturbance that may apply to our forest ecosystems.

  16. Low Cost Mechanical Aid for Rice Harvesting

    NASA Astrophysics Data System (ADS)

    Bora, Ganesh C.; Hansen, Gunner K.

    A small engine-powered harvesting aid for small area rice farmers was developed. The machine was a modified brush cutter. The original cutter blade was replaced by a 25 cm diameter circular saw blade. A metal plate and rubber guard assembly was fitted behind the blade on the handle to guide the cut stalk to the left side. The machine performed well in the field conditions with a field capacity of 0.51 ha day-1 consuming 0.25 L of fuel in an hour. It was 7.8 times faster than manual harvesting though the field loss was around 2.3% as against 1% in manual harvesting. The break-even area was 1 ha and the payback period for the investment was one year. The machine should be affordable to low income farmers in developing countries and women would also be able to taste the fruits of mechanization.

  17. Subwavelength resonant antennas enhancing electromagnetic energy harvesting

    NASA Astrophysics Data System (ADS)

    Oumbe Tekam, Gabin; Ginis, Vincent; Seetharamdoo, Divitha; Danckaert, Jan

    2016-04-01

    In this work, an electromagnetic energy harvester operating at microwave frequencies is designed based on a cut- wire metasurface. This metamaterial is known to contain a quasistatic electric dipole resonator leading to a strong resonant electric response when illuminated by electromagnetic fields.1 Starting from an equivalent electrical circuit, we analytically design the parameters of the system to tune the resonance frequency of the harvester at the desired frequency band. Subsequently, we compare these results with numerical simulations, which have been obtained using finite elements numerical simulations. Finally, we optimize the design by investigating the best arrangement for energy harvesting by coupling in parallel and in series many single layers of cut-wire metasurfaces. We also discuss the implementation of different geometries and sizes of the cut-wire metasurface for achieving different center frequencies and bandwidths.

  18. Piezoelectric energy harvesting from raised crosswalk devices

    NASA Astrophysics Data System (ADS)

    Ticali, Dario; Denaro, Mario; Barracco, Alessandro; Guerrieri, Marco

    2015-03-01

    This paper presents the main characteristics of an experimental energy harvesting device that can be used to recover energy from the vehicular and pedestrian traffic. The use of a piezoelectric bender devices leads to a innovative approach to Henergy Harvesting. The study focuses on the definition and specification of a mechanical configuration able to transfer the vibration from the main box to the piezoelectric transducer. The piezoelectric devices tested is the commonly used monolithic piezoceramic material lead-zirconate-titanate (PZT). The experimental results estimate the efficiency of this device tested and identify the feasibility of their use in real world applications. The results presented in this paper show the potential of piezoelectric materials for use in power harvesting applications.

  19. Mitigation strategies for Campylobacter spp. in broiler at pre-harvest and harvest level.

    PubMed

    Klein, Günter; Jansen, Wiebke; Kittler, Sophie; Reich, Felix

    2015-01-01

    In contrast to other foodborne zoonotic agents an elimination of Campylobacter spp. from animal production, especially poultry production, seems not to be feasible. Therefore mitigation strategies focus on reduction of the Campylobacter spp. concentration in primary production and further minimalisation during processing. In primary production biosecurity measures (incl. hygiene barriers and restricted access) are the methods applied most commonly and most effectively so far. Experimental approaches and few field trials also showed that bacteriophages, electrolyzed oxidizing water, organic acids or medium chain fatty acids (applied via drinking water) are also effective in reducing Campylobacter prevalence and/or concentration However this reduction cannot be transferred in all cases to the situation in the slaughterhouse. Therefore additional measures have to be taken in account in the slaughterhouse to prevent cross-contamination. Logistic or scheduled slaughter can prevent cross-contamination but cannot further reduce Campylobacter concentration. Process parameters like elevated scalding temperature can contribute to such a reduction, but may also alter the product quality. Therefore no single pre- or harvest measure is sufficient for the reduction of Campylobacter concentration, but a combination of measures in both production levels is needed. PMID:25876273

  20. Integrated actuation and energy harvesting in prestressed piezoelectric synthetic jets

    NASA Astrophysics Data System (ADS)

    Mane, Poorna

    With the looming energy crisis compounded by the global economic downturn there is an urgent need to increase energy efficiency and to discover new energy sources. An approach to solve this problem is to improve the efficiency of aerodynamic vehicles by using active flow control tools such as synthetic jet actuators. These devices are able to reduce fuel consumption and streamlined vehicle design by reducing drag and weight, and increasing maneuverability. Hence, the main goal of this dissertation is to study factors that affect the efficiency of synthetic jets by incorporating energy harvesting into actuator design using prestressed piezoelectric composites. Four state-of-the-art piezoelectric composites were chosen as active diaphragms in synthetic jet actuators. These composites not only overcome the inherent brittle and fragile nature of piezoelectric materials but also enhance domain movement which in turn enhances intrinsic contributions. With these varying characteristics among different types of composites, the intricacies of the synthetic jet design and its implementation increases. In addition the electrical power requirements of piezoelectric materials make the new SJA system a coupled multiphysics problem involving electro-mechanical and structural-fluid interactions. Due to the nature of this system, a design of experiments approach, a method of combining experiments and statistics, is utilized. Geometric and electro-mechanical factors are investigated using a fractional factorial design with peak synthetic jet velocity as a response variable. Furthermore, energy generated by the system oscillations is harvested with a prestressed composite and a piezo-polymer. Using response surface methodology the process is optimized under different temperatures and pressures to simulate harsh environmental conditions. Results of the fractional factorial experimental design showed that cavity dimensions and type of signal used to drive the synthetic jet actuator

  1. The effects of harvest regulations on behaviors of duck hunters

    USGS Publications Warehouse

    Haugen, Matthew T.; Powell, Larkin A.; Vrtiska, Mark P.; Pope, Kevin L.

    2015-01-01

    Uncertainty exists as to how duck harvest regulations influence waterfowl hunter behavior. We used the U.S. Fish and Wildlife Service’s Parts Collection Survey to examine how harvest regulations affected behaviors of Central Flyway duck hunters. We stratified hunters into ranked groups based on seasonal harvest and identified three periods (1975–1984, 1988–1993, 2002–2011) that represented different harvest regulations (moderate, restrictive, and liberal, respectively; season length and daily bag limits smallest in restrictive seasons and largest in liberal seasons). We examined variability of seven measures of duck hunter behaviors across the periods: days harvesting ducks, daily harvest, hunter mobility, mallard (Anas platyrhynchos) selectivity, gender selectivity, daily female mallard harvest, and timing of harvest. Hunters reported harvesting ducks on more days, at a higher efficiency, and in slightly more counties during liberal seasons relative to restrictive and moderate seasons. We provide evidence to suggest that future regulation change will affect hunter behaviors.

  2. Neck hairline incision for simultaneous harvesting of temporal and mastoid fasciae: a technical note.

    PubMed

    Nazari, Shahriar; Bohluli, Behnam; Besharatizadeh, Rozina; Sadr-Eshkevari, Pooyan; Rashad, Ashkan

    2013-09-01

    Fasciae are known reservoirs of ideal graft material. The temporalis and mastoid fasciae are 2 of the most important graft reservoirs used by plastic surgeons, otolaryngologists, and oral and maxillofacial surgeons. The temporalis fascia is harvested predominantly by plastic surgeons, whereas otolaryngologists often prefer the mastoid fascia. In either case, graft harvesting might be accompanied by donor-site complications, such as hair loss, bleeding, hematoma, and scar formation, which can limit its application. To gain access to the temporal and mastoid fasciae simultaneously, the authors combined conventional techniques to develop a modified single-approach incision line that would minimize most donor-site complications. PMID:23706275

  3. Influence and optimization of the electrodes position in a piezoelectric energy harvesting flag

    NASA Astrophysics Data System (ADS)

    Piñeirua, Miguel; Doaré, Olivier; Michelin, Sébastien

    2015-06-01

    Fluttering piezoelectric plates may harvest energy from a fluid flow by converting the plate's mechanical deformation into electric energy in an output circuit. This work focuses on the influence of the arrangement of the piezoelectric electrodes along the plate's surface on the energy harvesting efficiency of the system, using a combination of experiments and numerical simulations. A weakly nonlinear model of a plate in axial flow, equipped with a discrete number of piezoelectric patches is derived and confronted to experimental results. Numerical simulations are then used to optimize the position and dimensions of the piezoelectric electrodes. These optimal configurations can be understood physically in the limit of small and large electromechanical coupling.

  4. Fabrication of zinc oxide nanoneedles on conductive textile for harvesting piezoelectric potential

    NASA Astrophysics Data System (ADS)

    Khan, Azam; Hussain, Mushtaque; Nur, Omer; Willander, Magnus

    2014-09-01

    Keeping the fact in mind that different morphologies have strong influence on piezoelectric properties, ZnO NNs were synthesized on textile for harvesting piezoelectricity. Piezoelectric potential was captured from ZnO NNs grown on textile by using AFM in contact mode. Structural study was carried out by using FESEM, HRTEM and XRD techniques. The recorded output potential and current was more than 45 mV and 150 nA. The combination of ZnO NNs and textile can be used effectively for energy harvesting applications and the use of textile fabric can pave the way for cheap, flexible, wearable, washable and environment friendly nanodevices.

  5. Particulate residue separators for harvesting devices

    DOEpatents

    Hoskinson, Reed L.; Kenney, Kevin L.; Wright, Christopher T.; Hess, John R.

    2010-06-29

    A particulate residue separator and a method for separating a particulate residue stream may include a plenum borne by a harvesting device, and have a first, intake end and a second, exhaust end; first and second particulate residue air streams which are formed by the harvesting device and which travel, at least in part, along the plenum and in a direction of the second, exhaust end; and a baffle assembly which is located in partially occluding relation relative to the plenum, and which substantially separates the first and second particulate residue air streams.

  6. A Five-Year Assessment of Corn Stover Harvest in Central Iowa, USA

    SciTech Connect

    Douglas L. Karlen; Stuart J. Birell; J. Richard Hess

    2011-11-01

    Sustainable feedstock harvest strategies are needed to ensure bioenergy production does not irreversibly degrade soil resources. The objective for this study was to document corn (Zea mays L.) grain and stover fraction yields, plant nutrient removal and replacement costs, feedstock quality, soil-test changes, and soil quality indicator response to four stover harvest strategies for continuous corn and a corn-soybean [Glycine max. (L.) Merr.] rotation. The treatments included collecting (1) all standing plant material above a stubble height of 10 cm (whole plant), (2) the upper-half by height (ear shank upward), (3) the lower-half by height (from the 10 cm stubble height to just below the earshank), or (4) no removal. Collectable biomass from Treatment 2 averaged 3.9 ({+-}0.8) Mg ha{sup -1} for continuous corn (2005 through 2009), and 4.8 ({+-}0.4) Mg ha{sup -1} for the rotated corn (2005, 2007, and 2009). Compared to harvesting only the grain, collecting stover increased the average N-P-K removal by 29, 3 and 34 kg ha{sup -1} for continuous corn and 42, 3, and 34 kg ha{sup -1} for rotated corn, respectively. Harvesting the lower-half of the corn plant (Treatment 3) required two passes, resulted in frequent plugging of the combine, and provided a feedstock with low quality for conversion to biofuel. Therefore, Treatment 3 was replaced by a 'cobs-only' harvest starting in 2009. Structural sugars glucan and xylan accounted for up to 60% of the chemical composition, while galactan, arabinan, and mannose constituted less than 5% of the harvest fractions collected from 2005 through 2008. Soil-test data from samples collected after the first harvest (2005) revealed low to very low plant-available P and K levels which reduced soybean yield in 2006 after harvesting the whole-plant in 2005. Average continuous corn yields were 21% lower than rotated yields with no significant differences due to stover harvest. Rotated corn yields in 2009 showed some significant differences

  7. Metamaterial electromagnetic energy harvester with high selective harvesting for left- and right-handed circularly polarized waves

    NASA Astrophysics Data System (ADS)

    Shang, Shuai; Yang, Shizhong; Liu, Jing; Shan, Meng; Cao, Hailin

    2016-07-01

    In this paper, a metamaterial electromagnetic energy harvester constructed via the capacitive loading of metal circular split rings is presented. Each energy-harvesting cell is loaded with a resistance that imitates the input impedance of a rectifier circuit. Specifically, the metamaterial energy harvester has high selective harvesting for left- and right-handed circularly polarized waves. Here, the energy absorption is mostly induced by the resistive load; thus, effective energy harvesting can be achieved. Moreover, the proposed energy harvester exhibits a high-efficiency harvesting for right-handed circularly polarized waves over a wide range of incident angles. Further, a transmission line model is adopted to interpret the energy harvesting mechanism, which shows that a good impedance matching and low dielectric loss can further enhance the harvesting efficiency. To demonstrate the design, a 15 × 15 unit-cell prototype is fabricated and measured, and the measured results reasonably agree with the simulated ones.

  8. Post-harvest field manipulations to conserve waste rice for waterfowl

    USGS Publications Warehouse

    Stafford, J.D.; Kaminski, R.M.; Reinecke, K.J.; Kurtz, M.E.; Manley, S.W.

    2005-01-01

    Rice seeds escaping collection by combines during harvest (hereafter, waste rice) provide quality forage for migrating and wintering waterfowl in the Lower Mississippi Alluvial Valley (MAV) and other rice growing regions in the United States. Recent sample surveys across the MAV have revealed abundance of waste rice in fields declined an average of 71% between harvest and late autumn. Thus, we evaluated the ability of common post-harvest, field-management practices to conserve waste rice for waterfowl until early winter via controlled experiments in Mississippi rice test plots in 2001 and 2003 and analyses of data from MAV-wide surveys of waste rice in rice production fields in 2000-2002. Our experiments indicated test plots with burned rice stubble that were not flooded during autumn contained more waste rice than other treatments in 2001 (P?0.10). Waste-rice abundance in test plots did not differ among postharvest treatments in 2003 (P = 0.97). Our analyses of data from the MAV sample surveys did not detect differences in abundance of waste rice among fields burned, rolled, disked, or left in standing stubble post-harvest (P?0.04; Bonferroni corrected critical ( a= 0.017). Because results from test-plot experiments were inconclusive, we based our primary inference regarding best post-harvest treatments on patterns of rice abundance identified from the MAV surveys and previously documented environmental and agronomic benefits of managing harvested rice fields for wintering waterfowl. Therefore, we recommend leaving standing stubble in rice fields after harvest as a preliminary beneficial management practice. We suggest future research evaluate potential of postharvest practices to conserve waste rice for waterfowl and reduce straw in production rice fields managed for wintering waterfowl throughout the MAV.

  9. Scavenging vibration energy from seismically isolated bridges using an electromagnetic harvester

    NASA Astrophysics Data System (ADS)

    Lu, Qiuchen; Loong, Chengning; Chang, Chih-Chen; Dimitrakopoulos, Elias G.

    2014-04-01

    The increasing worldwide efforts in securing renewable energy sources increase incentive for civil engineers to investigate whether the kinetic energy associated with the vibration of larger-scale structures can be harvested. Such a research remains challenging and incomplete despite that hundreds of related articles have been published in the last decade. Base isolation is one of the most popular means of protecting a civil engineering structure against earthquake forces. Seismic isolation hinges on the decoupling of the structure from the shaking ground, hence protecting the structure from stress and damage during an earthquake excitation. The low stiffness isolator inserted between the structure and the ground dominates the response leading to a structural system of longer vibration period. As a consequence of this period shift, the spectral acceleration is reduced, but higher response displacements are produced. To mitigate this side effect, usually isolators are combined with the use of additional energy dissipation. In this study, the feasibility of scavenging the need-to-be dissipated energy from the isolator installed in a seismically isolated bridge using an electromagnetic (EM) energy harvester is investigated. The EM energy harvester consists of an energy harvesting circuit and a capacitor for energy storage. A mathematical model for this proposed EM energy harvester is developed and implemented on an idealized base-isolated single-degree-of-freedom system. The effect of having this EM energy harvester on the performance of this seismic isolated system is analyzed and discussed. The potential of installing such an EM energy harvester on a seismically isolated bridge is also addressed.

  10. Liquid-Desiccant Vapor Separation Reduces the Energy Requirements of Atmospheric Moisture Harvesting.

    PubMed

    Gido, Ben; Friedler, Eran; Broday, David M

    2016-08-01

    An innovative atmospheric moisture harvesting system is proposed, where water vapor is separated from the air prior to cooling and condensation. The system was studied using a model that simulates its three interconnected cycles (air, desiccant, and water) over a range of ambient conditions, and optimal configurations are reported for different operation conditions. Model results were compared to specifications of commercial atmospheric moisture harvesting systems and found to represent saving of 5-65% of the electrical energy requirements due to the vapor separation process. We show that the liquid desiccant separation stage that is integrated into atmospheric moisture harvesting systems can work under a wide range of environmental conditions using low grade or solar heating as a supplementary energy source, and that the performance of the combined system is superior. PMID:27435379

  11. Metal oxide semiconductors for solar energy harvesting

    NASA Astrophysics Data System (ADS)

    Thimsen, Elijah James

    The correlation between energy consumption and human development illustrates the importance of this societal resource. We will consume more energy in the future. In light of issues with the status quo, such as climate change, long-term supply and security, solar energy is an attractive source. It is plentiful, virtually inexhaustible, and can provide more than enough energy to power society. However, the issue with producing electricity and fuels from solar energy is that it is expensive, primarily from the materials (silicon) used in building the cells. Metal oxide semiconductors are an attractive class of materials that are extremely low cost and can be produced at the scale needed to meet widespread demand. An industrially attractive thin film synthesis process based on aerosol deposition was developed that relies on self-assembly to afford rational control over critical materials parameters such as film morphology and nanostructure. The film morphology and nanostructure were found to have dramatic effects on the performance of TiO2-based photovoltaic dye-sensitized solar cells. Taking a cue from nature, to overcome the spatial and temporal mismatch between the supply of sunlight and demand for energy consumption, it is desirable to produce solar fuels such as hydrogen from photoelectrochemical water splitting. The source of water is important---seawater is attractive. The fundamental reaction mechanism for TiO2-based cells is discussed in the context of seawater splitting. There are two primary issues with producing hydrogen by photoelectrochemical water splitting using metal-oxide semiconductors: visible light activity and spontaneous activity. To address the light absorption issue, a combined theory-experiment approach was taken to understand the fundamental role of chemical composition in determining the visible light absorption properties of mixed metal-oxide semiconductors. To address the spontaneous activity issue, self-biasing all oxide p/n bulk

  12. The Single Pass Multi-component Harvester

    SciTech Connect

    Reed Hoskinson; John R. Hess

    2004-08-01

    collection must be economically advantageous to the producer. To do all that, a single pass multi-component harvester system is most desirable. Results from our first prototype suggest that current combines probably do adequate threshing and that a separate chassis can be developed that does additional separation and that is economically feasible.

  13. Assessment of bias in US waterfowl harvest estimates

    USGS Publications Warehouse

    Padding, Paul I.; Royle, J. Andrew

    2012-01-01

    Context. North American waterfowl managers have long suspected that waterfowl harvest estimates derived from national harvest surveys in the USA are biased high. Survey bias can be evaluated by comparing survey results with like estimates from independent sources. Aims. We used band-recovery data to assess the magnitude of apparent bias in duck and goose harvest estimates, using mallards (Anas platyrhynchos) and Canada geese (Branta canadensis) as representatives of ducks and geese, respectively. Methods. We compared the number of reported mallard and Canada goose band recoveries, adjusted for band reporting rates, with the estimated harvests of banded mallards and Canada geese from the national harvest surveys. Weused the results of those comparisons to develop correction factors that can be applied to annual duck and goose harvest estimates of the national harvest survey. Key results. National harvest survey estimates of banded mallards harvested annually averaged 1.37 times greater than those calculated from band-recovery data, whereas Canada goose harvest estimates averaged 1.50 or 1.63 times greater than comparable band-recovery estimates, depending on the harvest survey methodology used. Conclusions. Duck harvest estimates produced by the national harvest survey from 1971 to 2010 should be reduced by a factor of 0.73 (95% CI = 0.71–0.75) to correct for apparent bias. Survey-specific correction factors of 0.67 (95% CI = 0.65–0.69) and 0.61 (95% CI = 0.59–0.64) should be applied to the goose harvest estimates for 1971–2001 (duck stamp-based survey) and 1999–2010 (HIP-based survey), respectively. Implications. Although this apparent bias likely has not influenced waterfowl harvest management policy in the USA, it does have negative impacts on some applications of harvest estimates, such as indirect estimation of population size. For those types of analyses, we recommend applying the appropriate correction factor to harvest estimates.

  14. Two degrees of freedom piezoelectric vibration energy harvester

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Liu, Shengsheng; Cao, Junyi; Zhou, Shengxi; Lin, Jing

    2016-04-01

    Recently, vibration energy harvesting from surrounding environments to power wearable devices and wireless sensors in structure health monitoring has received considerable interest. Piezoelectric conversion mechanism has been employed to develop many successful energy harvesting devices due to its simple structure, long life span, high harvesting efficiency and so on. However, there are many difficulties of microscale cantilever configurations in energy harvesting from low frequency ambient. In order to improve the adaptability of energy harvesting from ambient vibrations, a two degrees of freedom (2-DOF) magnetic-coupled piezoelectric energy harvester is proposed in this paper. The electromechanical governing models of the cantilever and clamped hybrid energy harvester are derived to describe the dynamic characteristics for 2-DOF magnetic-coupled piezoelectric vibration energy harvester. Numerical simulations based on Matlab and ANSYS software show that the proposed magnetically coupled energy harvester can enhance the effective operating frequency bandwidth and increase the energy density. The experimental voltage responses of 2-DOF harvester under different structure parameters are acquired to demonstrate the effectiveness of the lumped parameter model for low frequency excitations. Moreover, the proposed energy harvester can enhance the energy harvesting performance over a wider bandwidth of low frequencies and has a great potential for broadband vibration energy harvesting.

  15. Multi-physics model of a thermo-magnetic energy harvester

    NASA Astrophysics Data System (ADS)

    Joshi, Keyur B.; Priya, Shashank

    2013-05-01

    Harvesting small thermal gradients effectively to generate electricity still remains a challenge. Ujihara et al (2007 Appl. Phys. Lett. 91 093508) have recently proposed a thermo-magnetic energy harvester that incorporates a combination of hard and soft magnets on a vibrating beam structure and two opposing heat transfer surfaces. This design has many advantages and could present an optimum solution to harvest energy in low temperature gradient conditions. In this paper, we describe a multi-physics numerical model for this harvester configuration that incorporates all the relevant parameters, including heat transfer, magnetic force, beam vibration, contact surface and piezoelectricity. The model was used to simulate the complete transient behavior of the system. Results are presented for the evolution of the magnetic force, changes in the internal temperature of the soft magnet (gadolinium (Gd)), thermal contact conductance, contact pressure and heat transfer over a complete cycle. Variation of the vibration frequency with contact stiffness and gap distance was also modeled. Limit cycle behavior and its bifurcations are illustrated as a function of device parameters. The model was extended to include a piezoelectric energy harvesting mechanism and, using a piezoelectric bimorph as spring material, a maximum power of 318 μW was predicted across a 100 kΩ external load.

  16. Transient characteristics and stability analysis of standing wave thermoacoustic-piezoelectric harvesters.

    PubMed

    Nouh, Mostafa; Aldraihem, Osama; Baz, Amr

    2014-02-01

    Standing wave thermoacoustic-piezoelectric (TAP) energy harvesters convert thermal energy, such as solar or waste heat energy, directly into electrical energy without the need for any moving components. The input thermal energy generates a steep temperature gradient along a porous medium called "stack." At a critical threshold of the temperature gradient, self-sustained acoustic waves are developed inside an acoustic resonator. The associated pressure fluctuations impinge on a piezoelectric diaphragm, placed at the end of the resonator, to generate electricity. The behavior of this multi-field system is modeled using the electrical analogy approach. The developed model combines the descriptions of the acoustic resonator and the stack with the characteristics of the piezoelectric diaphragm. The equivalent electric network is analyzed to determine the system's stability and predict the temperature gradient necessary to developing self-sustained oscillations inside the harvester. The developed network is utilized also to investigate the transient performance of the harvester by employing the network theory and Simulation Program with Integrated Circuit Emphasis software package. The established stability boundaries are validated against the predictions of the root locus technique. Furthermore, the obtained results are compared with experimental results extracted from testing a prototype of the harvester. The developed approach presents an innovative tool for the design of TAP energy harvesters. PMID:25234876

  17. 50 CFR 622.75 - Harvest limitations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... aquaculture site— (A) May not be placed over naturally occurring reef outcrops, limestone ledges, coral reefs... ADMINISTRATION, DEPARTMENT OF COMMERCE FISHERIES OF THE CARIBBEAN, GULF OF MEXICO, AND SOUTH ATLANTIC Coral and Coral Reefs of the Gulf of Mexico § 622.75 Harvest limitations. (a) Aquacultured live rock. In the...

  18. 50 CFR 622.75 - Harvest limitations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... aquaculture site— (A) May not be placed over naturally occurring reef outcrops, limestone ledges, coral reefs... ADMINISTRATION, DEPARTMENT OF COMMERCE FISHERIES OF THE CARIBBEAN, GULF OF MEXICO, AND SOUTH ATLANTIC Coral and Coral Reefs of the Gulf of Mexico § 622.75 Harvest limitations. (a) Aquacultured live rock. In the...

  19. 50 CFR 622.225 - Harvest limitations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... over naturally occurring reef outcrops, limestone ledges, coral reefs, or vegetated areas. (B) Must be... ADMINISTRATION, DEPARTMENT OF COMMERCE FISHERIES OF THE CARIBBEAN, GULF OF MEXICO, AND SOUTH ATLANTIC Coral, Coral Reefs, and Live/Hard Bottom Habitats of the South Atlantic Region § 622.225 Harvest...

  20. 50 CFR 622.225 - Harvest limitations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... over naturally occurring reef outcrops, limestone ledges, coral reefs, or vegetated areas. (B) Must be... ADMINISTRATION, DEPARTMENT OF COMMERCE FISHERIES OF THE CARIBBEAN, GULF OF MEXICO, AND SOUTH ATLANTIC Coral, Coral Reefs, and Live/Hard Bottom Habitats of the South Atlantic Region § 622.225 Harvest...

  1. Cyclic energy harvesting from pyroelectric materials.

    PubMed

    Mane, Poorna; Xie, Jingsi; Leang, Kam K; Mossi, Karla

    2011-01-01

    A method of continuously harvesting energy from pyroelectric materials is demonstrated using an innovative cyclic heating scheme. In traditional pyroelectric energy harvesting methods, static heating sources are used, and most of the available energy has to be harvested at once. A cyclic heating system is developed such that the temperature varies between hot and cold regions. Although the energy harvested during each period of the heating cycle is small, the accumulated total energy over time may exceed traditional methods. Three materials are studied: a commonly available soft lead zirconate titanate (PZT), a pre-stressed PZT composite, and single-crystal PMN-30PT. Radiation heating and natural cooling are used such that, at smaller cyclic frequencies, the temporal rate of change in temperature is large enough to produce high power densities. The maximum power density of 8.64 μW/cm3 is generated with a PMN-30PT single crystal at an angular velocity of 0.64 rad/s with a rate of 8.5°C/s. The pre-stressed PZT composite generated a power density of 6.31 μW/cm(3), which is 40% larger than the density of 4.48 μW/cm3 obtained from standard PZT. PMID:21244970

  2. Human Motion Energy Harvesting for AAL Applications

    NASA Astrophysics Data System (ADS)

    Ylli, K.; Hoffmann, D.; Becker, P.; Willmann, A.; Folkmer, B.; Manoli, Y.

    2014-11-01

    Research and development into the topic of ambient assisted living has led to an increasing range of devices that facilitate a person's life. The issue of the power supply of these modern mobile systems however has not been solved satisfactorily yet. In this paper a flat inductive multi-coil harvester for integration into the shoe sole is presented. The device is designed for ambient assisted living (AAL) applications and particularly to power a self-lacing shoe. The harvester exploits the horizontal swing motion of the foot to generate energy. Stacks of opposing magnets move through a number of equally spaced coils to induce a voltage. The requirement of a flat structure which can be integrated into the shoe sole is met by a reduced form factor of the magnet stack. In order to exploit the full width of the shoe sole, supporting structures are used to parallelize the harvester and therefore increase the number of active elements, i.e. magnets and coils. The development and characterization of different harvester variations is presented with the best tested design generating an average power of up to 2.14 mW at a compact device size of 75 × 41.5 × 15 mm3 including housing.

  3. Management of post-harvest residue blanket

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Timely and effective residue management is essential for maximum sugar yields. Several studies were implemented in 2003 and harvested in 2004 in an effort to increase the effectiveness of residue management practices. Six studies were conducted to determine the effect of residue removal timing a...

  4. Attitudes toward Posthumous Harvesting and Reproduction

    ERIC Educational Resources Information Center

    Hans, Jason D.

    2008-01-01

    Attitudes toward posthumous harvesting of reproductive material and beliefs about medical professionals' obligation to assist were examined using a multiple segment factorial vignette survey design with 407 randomly selected respondents from a southern state. Attitudes and beliefs were primarily shaped by the vignette couple's marital status,…

  5. 50 CFR 640.21 - Harvest limitations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., DEPARTMENT OF COMMERCE SPINY LOBSTER FISHERY OF THE GULF OF MEXICO AND SOUTH ATLANTIC Management Measures § 640.21 Harvest limitations. (a) Berried lobsters. A berried (egg-bearing) spiny lobster or slipper lobster in or from the EEZ must be returned immediately to the water unharmed. If found in a trap in...

  6. 50 CFR 640.21 - Harvest limitations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ADMINISTRATION, DEPARTMENT OF COMMERCE SPINY LOBSTER FISHERY OF THE GULF OF MEXICO AND SOUTH ATLANTIC Management Measures § 640.21 Harvest limitations. (a) Berried lobsters. A berried (egg-bearing) spiny lobster or slipper lobster in or from the EEZ must be returned immediately to the water unharmed. If found in a...

  7. 50 CFR 640.21 - Harvest limitations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ADMINISTRATION, DEPARTMENT OF COMMERCE SPINY LOBSTER FISHERY OF THE GULF OF MEXICO AND SOUTH ATLANTIC Management Measures § 640.21 Harvest limitations. (a) Berried lobsters. A berried (egg-bearing) spiny lobster in or... berried spiny lobster may not be retained in the trap. A berried spiny lobster in or from the EEZ may...

  8. Calibrating your forage harvester's yield monitor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With some attention to the details, you will have a harvester that should be able to produce yield maps that will allow the same precision management that is expected in cereal crops. Forage yield maps, coupled with site-specific technologies in application of soil amendments, fertilizers, and pesti...

  9. Economics of residue harvest: Regional partnership evaluation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Economic analyses on the viability of corn (Zea mays, L.) stover harvest for bioenergy production have largely been based on simulation modeling. While some studies have utilized field research data, most field-based analyses have included a limited number of sites and a narrow geographic distributi...

  10. The Ripe Harvest: Educating Migrant Children.

    ERIC Educational Resources Information Center

    Cheyney, Arnold B., Ed.

    "The Ripe Harvest" is a compilation of original writings by authors who have worked closely with migrant children in a variety of settings. Designed for educators and lay people who are concerned with teaching migrant children, this volume is divided into three sections. Part I discusses human considerations--the dilatory effects of poor health on…