Science.gov

Sample records for combined cycle plant

  1. Combined cycle power plant incorporating coal gasification

    DOEpatents

    Liljedahl, Gregory N.; Moffat, Bruce K.

    1981-01-01

    A combined cycle power plant incorporating a coal gasifier as the energy source. The gases leaving the coal gasifier pass through a liquid couplant heat exchanger before being used to drive a gas turbine. The exhaust gases of the gas turbine are used to generate both high pressure and low pressure steam for driving a steam turbine, before being exhausted to the atmosphere.

  2. Hybrid solar central receiver for combined cycle power plant

    DOEpatents

    Bharathan, D.; Bohn, M.S.; Williams, T.A.

    1995-05-23

    A hybrid combined cycle power plant is described including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production. 1 figure.

  3. Hybrid solar central receiver for combined cycle power plant

    DOEpatents

    Bharathan, Desikan; Bohn, Mark S.; Williams, Thomas A.

    1995-01-01

    A hybrid combined cycle power plant including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production.

  4. Prospective steam turbines for combined-cycle plants

    NASA Astrophysics Data System (ADS)

    Barinberg, G. D.; Valamin, A. E.; Kultyshev, A. Yu.

    2008-08-01

    The design features and basic thermal scheme of the steam turbines developed on the basis of series-produced steam turbines of ZAO Ural Turbine Works for combined-cycle plants are presented, and their efficiency during operation as part of these plants is considered.

  5. A comparison of humid air turbine (HAT) cycle and combined-cycle power plants

    SciTech Connect

    Rao, A.D.; Francuz, V.J.; Shen, J.C.; West, E.W. )

    1991-03-01

    The Humid Air Turbine (HAT) cycle is a combustion turbine-based power generating cycle that provides an alternative to combined-cycle power generation. The HAT cycle differs from combined cycles in that it eliminates the steam turbine bottoming cycle by vaporizing water into the turbine's combustion air with heat obtained from the combustion turbine exhaust and other heat sources. This report presents the results of a study conducted by Fluor Daniel, Inc. for EPRI in which the HAT cycle was compared with combined-cycle plants in integration with the Texaco coal gasification process, and in natural gas-fired plants. The comparison of the coal gasification-based power plants utilizing the HAT cycle with Texaco coal gasification-based combined-cycle plants indicate that HAT cycle-based plants are less expensive and produce less environmental emissions. Whereas the combined-cycle plants require the use of expensive syngas coolers to achieve high efficiencies, the HAT cycle plants can achieve similar high efficiencies without the use of such equipment, resulting in a significant savings in capital cost and a reduction in levelized cost of electricity of up to 15%. In addition, HAT cycle plants produce very low levels of NO{sub x} emissions, possibly as little as 6 ppmv (dry, 15% O{sub 2} basis) without requiring the use of control technologies such as selective catalytic reduction. In natural gas-fired plants, the HAT cycle was calculated to have as much as a 4 percentage point gain in efficiency over the combined cycle and a potential for substantial reductions in NO{sub x} emissions, CO{sub 2} emissions, and water consumption. 71 figs., 74 tabs.

  6. Survey of integrated gasification combined cycle power plant performance estimates

    NASA Astrophysics Data System (ADS)

    Larson, J. W.

    1980-03-01

    The idea of a combined cycle power plant integrated with a coal gasification process has attracted broad interest in recent years. This interest is based on unique attributes of this concept which include potentially low pollutant emissions, low heat rate and competitive economics as compared to conventional steam plants with stack gas scrubbing. Results from a survey of technical literature containing performance and economic predictions have been compiled for comparison and evaluation of this new technique. These performance and economic results indicate good promise for near-term commercialization of an integrated gasification combined cycle power plant using current gas turbine firing temperatures. Also, these data show that advancements in turbine firing temperature are expected to provide sufficiently favorable economics for the concept to penetrate the market now held by conventional steam power plants.

  7. Combined-cycle cogen plant a successful good neighbor

    SciTech Connect

    Not Available

    1993-04-01

    This article describes a new natural-gas-fired combined cycle cogeneration plant in Bellingham, Washington. The topics of the article include community impact, siting constraints, natural gas fuel, the flexibility provided by the steam turbine, the cooling tower and pumps, air-quality, noise, and cooling water system constraints, and community relations program.

  8. Thermodynamics of combined-cycle electric power plants

    NASA Astrophysics Data System (ADS)

    Leff, Harvey S.

    2012-06-01

    Published data imply an average thermal efficiency of about 0.34 for U.S. electricity generating plants. With clever use of thermodynamics and technology, modern gas and steam turbines can be coupled, to effect dramatic efficiency increases. These combined-cycle power plants now reach thermal efficiencies in excess of 0.60. It is shown how the laws of thermodynamics make this possible.

  9. Operational strategies for dispatchable combined cycle plants, Part II

    SciTech Connect

    Nolan, J.P.; Landis, F.P.

    1996-11-01

    The Brush Cogeneration Facility is a dual-unit, combined cycle, cogeneration plant, operating in a dual cycling, automatically-dispatchable mode. Part I of this report described the contract, including automatic generation control (AGC) by Public Service Company of Colorado (PSCO), and the operation of Unit One. This part of the report covers the operation of Unit Two. Unit two is still in its operating infancy, but is showing that fuel efficiency and low emissions levels are not incompatible with cycling, load-following service. 1 fig.

  10. Combined cycle plants: Yesterday, today, and tomorrow (review)

    NASA Astrophysics Data System (ADS)

    Ol'khovskii, G. G.

    2016-07-01

    Gas turbine plants (GTP) for a long time have been developed by means of increasing the initial gas temperature and improvement of the turbo-machines aerodynamics and the efficiency of the critical components air cooling within the framework of a simple thermodynamic cycle. The application of watercooling systems that were used in experimental turbines and studied approximately 50 years ago revealed the fundamental difficulties that prevented the practical implementation of such systems in the industrial GTPs. The steam cooling researches have developed more substantially. The 300 MW power GTPs with a closedloop steam cooling, connected in parallel with the intermediate steam heating line in the steam cycle of the combined cycle plant (CCP) have been built, tested, and put into operation. The designs and cycle arrangements of such GTPs and entire combined cycle steam plants have become substantially more complicated without significant economic benefits. As a result, the steam cooling of gas turbines has not become widespread. The cycles—complicated by the intermediate air cooling under compression and reheat of the combustion products under expansion and their heat recovery to raise the combustion chamber entry temperature of the air—were used, in particular, in the domestic power GTPs with a moderate (700-800°C) initial gas turbine entry temperature. At the temperatures being reached to date (1300-1450°C), only one company, Alstom, applies in their 240-300 MW GTPs the recycled fuel cycle under expansion of gases in the turbine. Although these GTPs are reliable, there are no significant advantages in terms of their economy. To make a forecast of the further improvement of power GTPs, a brief review and assessment of the water cooling and steam cooling of hot components and complication of the GTP cycle by the recycling of fuel under expansion of gases in the turbine has been made. It is quite likely in the long term to reach the efficiency for the

  11. Steam turbine development for advanced combined cycle power plants

    SciTech Connect

    Oeynhausen, H.; Bergmann, D.; Balling, L.; Termuehlen, H.

    1996-12-31

    For advanced combined cycle power plants, the proper selection of steam turbine models is required to achieve optimal performance. The advancements in gas turbine technology must be followed by advances in the combined cycle steam turbine design. On the other hand, building low-cost gas turbines and steam turbines is desired which, however, can only be justified if no compromise is made in regard to their performance. The standard design concept of two-casing single-flow turbines seems to be the right choice for most of the present and future applications worldwide. Only for very specific applications it might be justified to select another design concept as a more suitable option.

  12. Model Predictive Control of Integrated Gasification Combined Cycle Power Plants

    SciTech Connect

    B. Wayne Bequette; Priyadarshi Mahapatra

    2010-08-31

    The primary project objectives were to understand how the process design of an integrated gasification combined cycle (IGCC) power plant affects the dynamic operability and controllability of the process. Steady-state and dynamic simulation models were developed to predict the process behavior during typical transients that occur in plant operation. Advanced control strategies were developed to improve the ability of the process to follow changes in the power load demand, and to improve performance during transitions between power levels. Another objective of the proposed work was to educate graduate and undergraduate students in the application of process systems and control to coal technology. Educational materials were developed for use in engineering courses to further broaden this exposure to many students. ASPENTECH software was used to perform steady-state and dynamic simulations of an IGCC power plant. Linear systems analysis techniques were used to assess the steady-state and dynamic operability of the power plant under various plant operating conditions. Model predictive control (MPC) strategies were developed to improve the dynamic operation of the power plants. MATLAB and SIMULINK software were used for systems analysis and control system design, and the SIMULINK functionality in ASPEN DYNAMICS was used to test the control strategies on the simulated process. Project funds were used to support a Ph.D. student to receive education and training in coal technology and the application of modeling and simulation techniques.

  13. The optimization air separation plants for combined cycle MHD-power plant applications

    NASA Technical Reports Server (NTRS)

    Juhasz, A. J.; Springmann, H.; Greenberg, R.

    1980-01-01

    Some of the design approaches being employed during a current supported study directed at developing an improved air separation process for the production of oxygen enriched air for magnetohydrodynamics (MHD) combustion are outlined. The ultimate objective is to arrive at conceptual designs of air separation plants, optimized for minimum specific power consumption and capital investment costs, for integration with MHD combined cycle power plants.

  14. Steam turbines of the Ural Turbine Works for combined-cycle plants

    NASA Astrophysics Data System (ADS)

    Barinberg, G. D.; Valamin, A. E.; Kultyshev, A. Yu.; Linder, T. Yu.

    2009-09-01

    Matters concerned with selecting the equipment for combined-cycle plants within the framework of work on implementing the investment program of Russian power engineering are discussed. The proposals of ZAO Ural Turbine Works regarding the supplies of steam turbines for combined-cycle plants used at retrofitted and newly constructed power stations are described.

  15. Catalytic combustor for integrated gasification combined cycle power plant

    DOEpatents

    Bachovchin, Dennis M.; Lippert, Thomas E.

    2008-12-16

    A gasification power plant 10 includes a compressor 32 producing a compressed air flow 36, an air separation unit 22 producing a nitrogen flow 44, a gasifier 14 producing a primary fuel flow 28 and a secondary fuel source 60 providing a secondary fuel flow 62 The plant also includes a catalytic combustor 12 combining the nitrogen flow and a combustor portion 38 of the compressed air flow to form a diluted air flow 39 and combining at least one of the primary fuel flow and secondary fuel flow and a mixer portion 78 of the diluted air flow to produce a combustible mixture 80. A catalytic element 64 of the combustor 12 separately receives the combustible mixture and a backside cooling portion 84 of the diluted air flow and allows the mixture and the heated flow to produce a hot combustion gas 46 provided to a turbine 48. When fueled with the secondary fuel flow, nitrogen is not combined with the combustor portion.

  16. LNG combined cycle power plant for stable power supply for Kiheung semiconductor plant

    SciTech Connect

    Chang, Choong Koo; Park, Hyo Jeong; Kim, In Chool

    1995-12-31

    Reserve margins of Korea Electric Power Corporation (KEPCO) was 12% in 1993, however it was reduced to less than 3% in the summer of 1994 due to increase of electric power consumption caused by life style change based on economic growth. Therefore stable supply of electric power to industrial plant was threatened during last summer`s peak. The process of semiconductor manufacturing is very precious and full processing time reaches several months. Furthermore interruption of power supply to the process causes abortion of every product in the process. Therefore, power failure of less than one (1) second, may result in enormous loss of capital. In order to protect disaster caused by power shortage during summer peaks. Samsung Electronics Co., Ltd (SEC) planned to construct LNG combined cycle power plant for the Klheung semiconductor plant which is the world`s leading maker of dynamic random access memory (DRAM) chips.

  17. Combined-cycle plant built in record time

    SciTech Connect

    1995-04-01

    This article reports that this low-cost cogeneration plant meets residential community`s environmental concerns with noise minimization, emissions control, and zero wastewater discharge. Supplying electricity to the local utility and steam to two hosts, the Auburndale cogeneration facility embodies the ``reference plant`` design approach developed by Westinghouse Power Generation (WPG), Orlando, Fla. With this approach customers meet their particular needs by choosing from a standard package of plant equipment and design options. Main goals of the concept are reduced construction time efficient and reliable power generation, minimal operating staff, and low cost. WPG built the plant on a turnkey basis for Auburndale Power Partners Limited Partnership (APP). APP is a partially owned subsidiary of Mission Energy, a California-based international developer and operator of independent-power facilities. The cogeneration facility supplies 150 MW of electric power to Florida Power Corp and exports 120,000 lb/hr of steam to Florida Distillers Co and Coca-Cola Foods.

  18. Innovative open air brayton combined cycle systems for the next generation nuclear power plants

    NASA Astrophysics Data System (ADS)

    Zohuri, Bahman

    The purpose of this research was to model and analyze a nuclear heated multi-turbine power conversion system operating with atmospheric air as the working fluid. The air is heated by a molten salt, or liquid metal, to gas heat exchanger reaching a peak temperature of 660 0C. The effects of adding a recuperator or a bottoming steam cycle have been addressed. The calculated results are intended to identify paths for future work on the next generation nuclear power plant (GEN-IV). This document describes the proposed system in sufficient detail to communicate a good understanding of the overall system, its components, and intended uses. The architecture is described at the conceptual level, and does not replace a detailed design document. The main part of the study focused on a Brayton --- Rankine Combined Cycle system and a Recuperated Brayton Cycle since they offer the highest overall efficiencies. Open Air Brayton power cycles also require low cooling water flows relative to other power cycles. Although the Recuperated Brayton Cycle achieves an overall efficiency slightly less that the Brayton --- Rankine Combined Cycle, it is completely free of a circulating water system and can be used in a desert climate. Detailed results of modeling a combined cycle Brayton-Rankine power conversion system are presented. The Rankine bottoming cycle appears to offer a slight efficiency advantage over the recuperated Brayton cycle. Both offer very significant advantages over current generation Light Water Reactor steam cycles. The combined cycle was optimized as a unit and lower pressure Rankine systems seem to be more efficient. The combined cycle requires a lot less circulating water than current power plants. The open-air Brayton systems appear to be worth investigating, if the higher temperatures predicted for the Next Generation Nuclear Plant do materialize.

  19. Integrated operation and management system for a 700MW combined cycle power plant

    SciTech Connect

    Shiroumaru, I. ); Iwamiya, T. ); Fukai, M. )

    1992-03-01

    Yanai Power Plant of the Chugoku Electric Power Co., Inc. (Yamaguchi Pref., Japan) is in the process of constructing a 1400MW state-of-the-art combined cycle power plant. The first phase, a 350MW power plant, started operation on a commercial basis in November, 1990. This power plant has achieved high efficiency and high operability, major features of a combined cycle power plant. The integrated operation and management system of the power plant takes care of operation, maintenance, control of general business, etc., and was built using the latest computer and digital control and communication technologies. This paper reports that it is expected that this system will enhance efficient operation and management for the power plant.

  20. Gasifier/combined-cycle plant minimizes environmental impacts. [California, coal water process

    SciTech Connect

    Not Available

    1985-04-01

    The successful operation of the Cool Water integrated gasification/ combined cycle power plant is reported. As the only coal-fired power station in California it has easily met the Federal new-source performance standards for emissions and the State's strict pollution-control laws. Details are given of plant performance and air-polluting emissions.

  1. Cogeneration and combined cycle plants emdash design, interconnection, and turbine applications

    SciTech Connect

    Schroeter, J.W.

    1990-01-01

    This book contains papers presented at the 1990 International Joint Power Generation Conference. Included are the following articles: Design and operation of Ambarli combined cycle power plant, Possibilities and examples of heat generation at low cost, Thermal performance testing of non-utility power plants.

  2. Diagnosis of Thermal Efficiency of Advanced Combined Cycle Power Plants Using Optical Torque Sensors

    NASA Astrophysics Data System (ADS)

    Umezawa, Shuichi

    A new optical torque measurement method was applied to diagnosis of thermal efficiency of advanced combined cycle, i.e. ACC, plants. Since the ACC power plant comprises a steam turbine and a gas turbine and both of them are connected to the same generator, it is difficult to identify which turbine in the plant deteriorates the performance when the plant efficiency is reduced. The sensor measures axial distortion caused by power transmission by use of He-Ne laser beams, small stainless steel reflectors having bar-code patterns, and a technique of signal processing featuring high frequency. The sensor was applied to the ACC plants of TOKYO ELECTRIC POWER COMPANY, TEPCO, following the success in the application to the early combined cycle plants of TEPCO. The sensor performance was inspected over a year. After an improvement related to the signal process, it is considered that the sensor performance has reached a practical use level.

  3. Reliability and availability assessments of selected domestic combined-cycle power-generating plants

    NASA Astrophysics Data System (ADS)

    Brown, H. W.; Gardner, N. J.

    1982-08-01

    This report presents the results of reliability and availability assessment performed with the cooperation of seven utilities operating combined-cycle power plants in service since 1974 to evaluate: combined-cycle unit equivalent availability and equivalent forced outage rates; system and component mean time between failures (MTBF) and mean downtime (MDT); and gas turbine reliability correlations with service hours, starting frequency, fuel type, and service factor. A data base was developed for 45 plant components or systems for the period 1978 through 1980; this led to recommendations for improving outage data collection for the purpose of reliability analysis. In addition reliability, availability, and maintainability prediction models for several commercial combined cycle plant designs were developed and validated.

  4. Reliability and availability assessments of selected domestic combined-cycle power-generating plants. Final report

    SciTech Connect

    Brown, H.W.; Gardner, N.J.

    1982-08-01

    This report presents the results of reliability and availability assessments performed with the cooperation of seven utilities operating combined-cycle power plants in service since 1974 to evaluate: combined-cycle unit equivalent availability and equivalent forced outage rates; system and component mean time between failures (MTBF) and mean downtime (MDT); and gas turbine reliability correlations with service hours, starting frequency, fuel type, and service factor. A data base was developed for 45 plant components or systems for the period 1978 through 1980; this led to recommendations for improving outage data collection for the purpose of reliability analysis. In addition reliability, availability, and maintainability prediction models for several commercial combined-cycle plant designs were developed and validated.

  5. Combined-cycle power plant experience in Pakistan and Egypt. Final report

    SciTech Connect

    Not Available

    1991-06-01

    The paper examines combined cycle power plants installed by A.I.D. in Pakistan and Egypt. Results show that, compared to coal-fired steam plants, the combined-cycle technology has a number of advantages, including: lower capital costs per megawatt, shorter construction schedules, similar availability, higher efficiency, and reduced environmental impact. The report cautions that operations in a power shortage situation induce stresses that may affect long-term reliability or equipment life. Recommendations are offered for electric utilities in developing countries and international donors.

  6. Introduction to combined cycles

    NASA Astrophysics Data System (ADS)

    Moore, M. J.

    Ideas and concepts underlying the technology of combined cycles including the scientific principles involved and the reasons these cycles are in fashion at the present time, are presented. A cycle is a steady flow process for conversion of heat energy into work, in which a working medium passes through a range of states, returning to its original state. Cycles for power production are the steam cycle, which is a closed cycle, and the gas turbine, which represents an open cycle. Combined cycle thermodynamic parameters, are discussed. The general arrangement of the plant is outlined and important features of their component parts described. The scope for future development is discussed. It is concluded that for the next few years the natural gas fired combined cycle will be the main type of plant installed for electricity generation and cogeneration. Whilst gas turbines may not increase substantially in unit size, there remains scope for further increase in firing temperature with consequent increase in cycle performance. However the larger global reserves of coal are providing an incentive to the development of plant for clean coal combustion using the inherent advantage of the combined cycle to attain high efficiencies.

  7. Development of a plant-wide dynamic model of an integrated gasification combined cycle (IGCC) plant

    SciTech Connect

    Bhattacharyya, D.; Turton, R.; Zitney, S.

    2009-01-01

    In this presentation, development of a plant-wide dynamic model of an advanced Integrated Gasification Combined Cycle (IGCC) plant with CO2 capture will be discussed. The IGCC reference plant generates 640 MWe of net power using Illinois No.6 coal as the feed. The plant includes an entrained, downflow, General Electric Energy (GEE) gasifier with a radiant syngas cooler (RSC), a two-stage water gas shift (WGS) conversion process, and two advanced 'F' class combustion turbines partially integrated with an elevated-pressure air separation unit (ASU). A subcritical steam cycle is considered for heat recovery steam generation. Syngas is selectively cleaned by a SELEXOL acid gas removal (AGR) process. Sulfur is recovered using a two-train Claus unit with tail gas recycle to the AGR. A multistage intercooled compressor is used for compressing CO2 to the pressure required for sequestration. Using Illinois No.6 coal, the reference plant generates 640 MWe of net power. The plant-wide steady-state and dynamic IGCC simulations have been generated using the Aspen Plus{reg_sign} and Aspen Plus Dynamics{reg_sign} process simulators, respectively. The model is generated based on the Case 2 IGCC configuration detailed in the study available in the NETL website1. The GEE gasifier is represented with a restricted equilibrium reactor model where the temperature approach to equilibrium for individual reactions can be modified based on the experimental data. In this radiant-only configuration, the syngas from the Radiant Syngas Cooler (RSC) is quenched in a scrubber. The blackwater from the scrubber bottom is further cleaned in the blackwater treatment plant. The cleaned water is returned back to the scrubber and also used for slurry preparation. The acid gas from the sour water stripper (SWS) is sent to the Claus plant. The syngas from the scrubber passes through a sour shift process. The WGS reactors are modeled as adiabatic plug flow reactors with rigorous kinetics based on the mid

  8. Comparison of intergrated coal gasification combined cycle power plants with current and advanced gas turbines

    SciTech Connect

    Banda, B.M.; Evans, T.F.; McCone, A.I.; Westisik, J.H.

    1984-08-01

    Two recent conceptual design studies examined ''grass roots'' integrated gasification-combined cycle (IGCC) plants for the Albany Station site of Niagara Mohawk Power Corporation. One of these studies was based on the Texaco Gasifier and the other was developed around the British Gas Co.-Lurgi slagging gasifier. Both gasifiers were operated in the ''oxygen-blown'' mode, producing medium Btu fuel gas. The studies also evaluated plant performance with both current and advanced gas turbines. Coalto-busbar efficiencies of approximately 35 percent were calculated for Texaco IGCC plants using current technology gas turbines. Efficiencies of approximately 39 percent were obtained for the same plant when using advanced technology gas turbines.

  9. Method and system to estimate variables in an integrated gasification combined cycle (IGCC) plant

    DOEpatents

    Kumar, Aditya; Shi, Ruijie; Dokucu, Mustafa

    2013-09-17

    System and method to estimate variables in an integrated gasification combined cycle (IGCC) plant are provided. The system includes a sensor suite to measure respective plant input and output variables. An extended Kalman filter (EKF) receives sensed plant input variables and includes a dynamic model to generate a plurality of plant state estimates and a covariance matrix for the state estimates. A preemptive-constraining processor is configured to preemptively constrain the state estimates and covariance matrix to be free of constraint violations. A measurement-correction processor may be configured to correct constrained state estimates and a constrained covariance matrix based on processing of sensed plant output variables. The measurement-correction processor is coupled to update the dynamic model with corrected state estimates and a corrected covariance matrix. The updated dynamic model may be configured to estimate values for at least one plant variable not originally sensed by the sensor suite.

  10. Diagnosis of Thermal Efficiency of Combined Cycle Power Plants Using Optical Torque Sensors

    NASA Astrophysics Data System (ADS)

    Umezawa, Shuichi

    A new optical torque measurement method is proposed for diagnosis of thermal efficiency of combined cycle power plants. In the case that the plant comprises a steam turbine and a gas turbine, both of which are connected to the same generator, it is difficult to identify which turbine causes deterioration of performance when the plant efficiency is reduced. Therefore, an optical torque sensor has been developed to measure the output of each turbine, which are important data to analyze performance of each machineries in a plant. The sensor measures axial distortion caused by power transmission by use of He-Ne laser beams, small stainless steel reflectors having bar-code patterns, and a technique of signal processing featuring high frequency. It was applied to TOKYO ELECTRIC POWER COMPANY (TEPCO) commercial plants. Following system improvements, it is concluded that error factors can be eliminated and sensor performance can reach a practical use level.

  11. Thermodynamic analysis and optimization of fuel cell based Combined Cycle Cogeneration plant

    NASA Astrophysics Data System (ADS)

    Odukoya, Adedoyin

    Power plants operating in combined cycle cogeneration configuration are becoming increasingly popular because of high energy conversion efficiency and reduced pollutant and green-house gas emissions. On the other hand, fuel cell technology continues to be of global interest because it can operate with very low to 0% green-house gas emission depending on the fuel. The aim of the present work is to investigate the effect of co-firing of natural gas with synthetic gas generated from coal gasification on the thermodynamic performance of an air blown coal gasification Combined Cycle Cogeneration unit with a solid oxide fuel cell (SOFC) arrangement. The effects of the operating temperature of the SOFC and the pressure ratio and turbine inlet temperature of the gas turbine on the net work output and efficiency of the power cycles on the cogeneration unit are simulated. Simulations are also conducted on the thermal and cogeneration efficiencies of the individual power cycle as well as the overall plants respectively. The optimal pressure ratio, temperature of operation of the SOFC and, gas turbine inlet temperature was determined using a sequential quadratic program solver base on the Quasi-Newton algorithm.

  12. The thermodynamic efficiency of the condensing process circuits of binary combined-cycle plants with gas-assisted heating of cycle air

    NASA Astrophysics Data System (ADS)

    Kovalevskii, V. P.

    2011-09-01

    The thermal efficiencies of condensing-type circuits of binary combined-cycle plants containing one, two, and three loops with different pressure levels and equipped with a GTE-160 (V94.2) gas turbine unit, and with preheating of cycle air are analyzed by way of comparison in a wide range of initial steam pressures. The variation of the combined-cycle plant efficiency, stream wetness, conditional overall heating surface of the heat-recovery boiler, and other parameters is presented.

  13. Optimization of the oxidant supply system for combined cycle MHD power plants

    NASA Technical Reports Server (NTRS)

    Juhasz, A. J.

    1982-01-01

    An in-depth study was conducted to determine what, if any, improvements could be made on the oxidant supply system for combined cycle MHD power plants which could be reflected in higher thermal efficiency and a reduction in the cost of electricity, COE. A systematic analysis of air separation process varitions which showed that the specific energy consumption could be minimized when the product stream oxygen concentration is about 70 mole percent was conducted. The use of advanced air compressors, having variable speed and guide vane position control, results in additional power savings. The study also led to the conceptual design of a new air separation process, sized for a 500 MW sub e MHD plant, referred to a internal compression is discussed. In addition to its lower overall energy consumption, potential capital cost savings were identified for air separation plants using this process when constructed in a single large air separation train rather than multiple parallel trains, typical of conventional practice.

  14. Thermodynamic and economic analysis of a gas turbine combined cycle plant with oxy-combustion

    NASA Astrophysics Data System (ADS)

    Kotowicz, Janusz; Job, Marcin

    2013-12-01

    This paper presents a gas turbine combined cycle plant with oxy-combustion and carbon dioxide capture. A gas turbine part of the unit with the operating parameters is presented. The methodology and results of optimization by the means of a genetic algorithm for the steam parts in three variants of the plant are shown. The variants of the plant differ by the heat recovery steam generator (HRSG) construction: the singlepressure HRSG (1P), the double-pressure HRSG with reheating (2PR), and the triple-pressure HRSG with reheating (3PR). For obtained results in all variants an economic evaluation was performed. The break-even prices of electricity were determined and the sensitivity analysis to the most significant economic factors were performed.

  15. Retrofitting the Strogino district heat supply station with construction of a 260-MW combined-cycle power plant (Consisting of two PGU-130 combined-cycle power units)

    NASA Astrophysics Data System (ADS)

    Aleksandrov, V. F.

    2010-02-01

    The retrofitting carried out at the Strogino district heat supply station and the specific features of works accomplished in the course of constructing the thermal power station based on a combined-cycle power plant at the station site are described; the layout solutions for the main building and turbine building are presented, and a comparison of the retrofitted station with the Kolomenskoe and Vnukovo gas turbine-based power stations is given.

  16. Advanced air separation for coal gasification-combined-cycle power plants: Final report

    SciTech Connect

    Kiersz, D.F.; Parysek, K.D.; Schulte, T.R.; Pavri, R.E.

    1987-08-01

    Union Carbide Corporation (UCC) and General Electric Company (GE) conducted a study to determine the benefits associated with extending the integration of integrated coal gasification-combined cycle (IGCC) systems to include the air separation plant which supplies oxygen to the gasifiers. This is achieved by extracting air from the gas turbine air compressors to feed the oxygen plant and returning waste nitrogen to the gas turbine. The ''Radiant Plus Convective Design'' (59/sup 0/F ambient temperature case) defined in EPRI report AP-3486 was selected as a base case into which the oxygen plant-gas turbine integration was incorporated and against which it was compared. General Electric Company's participation in evaluating gas turbine and power block performance ensured consistency between EPRI report AP-3486 and this study. Extending the IGCC integration to include an integrated oxygen plant-gas turbine results in a rare combination of benefits - higher efficiency and lower capital costs. Oxygen plant capital costs are over 20% less and the power requirement is reduced significantly. For the IGCC system, the net power output is higher for the same coal feed rate; this results in an overall improvement in heat rate of about 2% coupled with a reduction in capital costs of 2 to 3%. 6 refs., 11 figs., 7 tabs.

  17. Water chemistry of a combined-cycle power plant's auxiliary equipment cooling system

    NASA Astrophysics Data System (ADS)

    Larin, B. M.; Korotkov, A. N.; Oparin, M. Yu.; Larin, A. B.

    2013-04-01

    Results from an analysis of methods aimed at reducing the corrosion rate of structural metal used in heat-transfer systems with water coolant are presented. Data from examination of the closed-circuit system for cooling the auxiliary mechanisms of a combined-cycle plant-based power unit and the results from adjustment of its water chemistry are given. A conclusion is drawn about the possibility of using a reagent prepared on the basis of sodium sulfite for reducing the corrosion rate when the loss of coolant is replenished with nondeaerated water.

  18. Combined cycle electric power plant with coordinated plural feedback turbine control

    SciTech Connect

    Kiscaden, R.W.; Martz, L.F.; Uram, R.

    1980-01-22

    A combined cycle electric power plant includes gas and steam turbines and a steam generator for recovering the heat in the exhaust gases exited from the gas turbine and for using the recovered heat to produce and supply steam to the steam turbine. The steam generator includes a superheater tube through which a fluid, E.G. Water, is directed to be additionally heated into superheated steam by the exhaust gas turbine gases. An afterburner further heats the exhaust gas turbine gases passed to the superheater tube. The temperature of the gas turbine exhaust gases is sensed for varying the fuel flow to the afterburner by a fuel valve, whereby the temperatures of the gas turbine exhaust gases and therefore of the superheated steam, are controlled. A plant load demand error signal is utilized for correcting a coordinated gas turbine load reference and for trimming a feedforward afterburner control signal derived from the sensed gas turbine exhaust temperatures.

  19. Condition monitoring and optimization for a 1000 MW combined-cycle plant

    SciTech Connect

    1995-10-01

    Barking Power Ltd., an independent power producer in the southeast of England, appointed Boyce Engineering International to supply a performance condition monitoring and optimization package. The Barking Power combined-cycle plant operates five Frame 9E gas turbines manufactured by EGT in Belfort, France, and two steam turbines supplied by GEC Alsthom. The Boyce Engineering system selected by Power Ltd., is the DATM4 fully integrated condition monitoring system, which offers full diagnosis and optimization for the electrical, mechanical and thermal performance of the plant. The transient electrical analysis system will enable operating and maintenance engineers to diagnose and reduce problems caused by transient electrical impulses which may occur. All four modules will be handled on a single hardware platform using an OS/2 PC network. The Boyce system offers a number of distinct benefits to the customer, particularly in terms of maximizing profitability. Additional benefits of the system include a `what if` module, allowing engineers to troubleshoot aspects of the plant, evaluate the cost of any inefficiencies in relation to the plant`s bottom line and schedule maintenance efficiently, and the ability to ensure safe and clean operation meeting and exceeding current environmental legislative requirements.

  20. Thermal energy storage for integrated gasification combined-cycle power plants

    SciTech Connect

    Drost, M.K.; Antoniak, Z.I.; Brown, D.R.; Somasundaram, S.

    1990-07-01

    There are increasingly strong indications that the United States will face widespread electrical power generating capacity constraints in the 1990s; most regions of the country could experience capacity shortages by the year 2000. The demand for new generating capacity occurs at a time when there is increasing emphasis on environmental concerns. The integrated gasification combined-cycle (IGCC) power plant is an example of an advanced coal-fired technology that will soon be commercially available. The IGCC concept has proved to be efficient and cost-effective while meeting all current environmental regulations on emissions; however, the operating characteristics of the IGCC system have limited it to base load applications. The integration of thermal energy storage (TES) into an IGCC plant would allow it to meet cyclic loads while avoiding undesirable operating characteristics such as poor turn-down capability, impaired part-load performance, and long startup times. In an IGCC plant with TES, a continuously operated gasifier supplies medium-Btu fuel gas to a continuously operated gas turbine. The thermal energy from the fuel gas coolers and the gas turbine exhaust is stored as sensible heat in molten nitrate salt; heat is extracted during peak demand periods to produce electric power in a Rankine steam power cycle. The study documented in this report was conducted by Pacific Northwest Laboratory (PNL) and consists of a review of the technical and economic feasibility of using TES in an IGCC power plant to produce intermediate and peak load power. The study was done for the US Department of Energy's (DOE) Office of Energy Storage and Distribution. 11 refs., 5 figs., 18 tabs.

  1. Coordinated optimization of the parameters of the cooled gas-turbine flow path and the parameters of gas-turbine cycles and combined-cycle power plants

    NASA Astrophysics Data System (ADS)

    Kler, A. M.; Zakharov, Yu. B.; Potanina, Yu. M.

    2014-06-01

    In the present paper, we evaluate the effectiveness of the coordinated solution to the optimization problem for the parameters of cycles in gas turbine and combined cycle power plants and to the optimization problem for the gas-turbine flow path parameters within an integral complex problem. We report comparative data for optimizations of the combined cycle power plant at coordinated and separate optimizations, when, first, the gas turbine and, then, the steam part of a combined cycle plant is optimized. The comparative data are presented in terms of economic indicators, energy-effectiveness characteristics, and specific costs. Models that were used in the present study for calculating the flow path enable taking into account, as a factor influencing the economic and energy effectiveness of the power plant, the heat stability of alloys from which the nozzle and rotor blades of gas-turbine stages are made.

  2. Transient studies of an Integrated Gasification Combined Cycle (IGCC) plant with CO2 capture

    SciTech Connect

    Bhattacharyya, D.; Turton, R.; Zitney, S.

    2010-01-01

    Next-generation coal-fired power plants need to consider the option for CO2 capture as stringent governmental mandates are expected to be issued in near future. Integrated gasification combined cycle (IGCC) plants are more efficient than the conventional coal combustion processes when the option for CO2 capture is considered. However, no IGCC plant with CO2 capture currently exists in the world. Therefore, it is important to consider the operability and controllability issues of such a plant before it is commercially built. To facilitate this objective, a detailed plant-wide dynamic simulation of an IGCC plant with 90% CO2 capture has been developed in Aspen Plus Dynamics{reg_sign}. The plant considers a General Electric Energy (GEE)-type downflow radiant-only gasifier followed by a quench section. A two-stage water gas shift (WGS) reaction is considered for conversion of CO to CO2. A two-stage acid gas removal (AGR) process based on a physical solvent is simulated for selective capture of H2S and CO2. Compression of the captured CO2 for sequestration, an oxy-Claus process for removal of H2S and NH3, black water treatment, and the sour water treatment are also modeled. The tail gas from the Claus unit is recycled to the SELEXOL unit. The clean syngas from the AGR process is sent to a gas turbine followed by a heat recovery steam generator. This turbine is modeled as per published data in the literature. Diluent N2 is used from the elevated-pressure ASU for reducing the NOx formation. The heat recovery steam generator (HRSG) is modeled by considering generation of high-pressure, intermediate-pressure, and low-pressure steam. All of the vessels, reactors, heat exchangers, and the columns have been sized. The basic IGCC process control structure has been synthesized by standard guidelines and existing practices. The steady state results are validated with data from a commercial gasifier. In the future grid-connected system, the plant should satisfy the environmental

  3. Combined cycle electric power plant with feedforward afterburner temperature setpoint control

    SciTech Connect

    Uram, R.

    1982-06-08

    A combined cycle electric power plant includes gas and steam turbines and a steam generator for recovering the heat in the exhaust gases exited from the gas turbine and for using the recovered heat to produce and supply steam to the steam turbine. The steam generator includes a superheater tube through which a fluid, e.g. water, is directed to be additionally heated into superheated steam by the exhaust gas turbine gases. An afterburner further heats the exhaust gas turbine gases passed to the superheater tube. The temperature of the gas turbine exhaust gases is sensed for varying the fuel flow to the afterburner by a fuel valve, whereby the temperatures of the gas turbine exhaust gases and therefore of the superheated steam, are controlled. The afterburner fuel flow is controlled through a feedforward setpoint signal derived as a predetermined function of sensed gas turbine exhaust temperature.

  4. Heat recovery steam generator outlet temperature control system for a combined cycle power plant

    SciTech Connect

    Martens, A.; Myers, G.A.; McCarty, W.L.; Wescott, K.R.

    1986-04-01

    This patent describes a command cycle electrical power plant including: a steam turbine and at least one set comprising a gas turbine, an afterburner and a heat recovery steam generator having an attemperator for supplying from an outlet thereof to the steam turbine superheated steam under steam turbine operating conditions requiring predetermined superheated steam temperature, flow and pressure; with the gas turbine and steam turbine each generating megawatts in accordance with a plant load demand; master control means being provided for controlling the steam turbine and the heat recovery steam generator so as to establish the steam operating conditions; the combination of: first control means responsive to the gas inlet temperature of the heat recovery steam generator and to the plant load demand for controlling the firing of the afterburner; second control means responsive to the superheated steam predetermined temperature and to superheated steam temperature from the outlet for controlling the attemperator between a closed and an open position; the first and second control means being operated concurrently to maintain the superheated steam outlet temperature while controlling the load of the gas turbine independently of the steam turbine operating conditions.

  5. Optimizing modes of a small-scale combined-cycle power plant with atmospheric-pressure gasifier

    NASA Astrophysics Data System (ADS)

    Donskoi, I. G.; Marinchenko, A. Yu.; Kler, A. M.; Ryzhkov, A. F.

    2015-09-01

    The scheme of an integrated coal gasification combined-cycle power plant with small capacity is proposed. Using the built mathematical model a feasibility study of this unit was performed, taking into account the kinetics of physical and chemical transformations in the fuel bed. The estimates of technical and economic efficiency of the plant have been obtained and compared with the alternative options.

  6. Performance Diagnosis using Optical Torque Sensor for Selection of a Steam Supply Plant among Advanced Combined Cycle Power Plants

    NASA Astrophysics Data System (ADS)

    Umezawa, Shuichi

    A newly developed optical torque sensor was applied to select a steam supply plant among advanced combined cycle, i.e. ACC, power plants of the Tokyo Electric Power Company. The sensor uses laser beams focused on small stainless steel reflectors having bar-code patterns attached on the surface of the rotating shaft, and a technique of signal processing using a correlation function featuring high frequency. The plant that supplied steam was selected on the basis of diagnosis of each steam turbine performance of the plants. Heat balance program was developed to analyze steam turbine performance using data of turbine output measured by the torque sensor and data measured by existing instruments of the power station. The steam turbine that supplied steam was determined by the present method using the optical torque sensor. The accuracy of the method to determine the steam supply plant was analyzed. It was then confirmed that the accuracy was greatly improved as compared with that of existing method.

  7. The effectiveness of combined-cycle power plants hot startups simulating

    NASA Astrophysics Data System (ADS)

    Radin, Yu. A.; Kontorovich, T. S.; Molchanov, K. A.

    2015-09-01

    Activities aimed at substantiating the maneuverability characteristics of power-generating equipment installed at district heating power plants (DHPP) and especially at combined-cycle power plants (CCPPs) are quite topical for the modern conditions and involve calculations of thermally stressed state and analysis of the cyclic strength of steam path critical elements at different loading rates. Until recently, such problems have been solved in two possible ways: based on the results of tests carried out on operating equipment and using the mathematical models of heavily stressed parts of CCPP equipment. In this article, preference is given to the second way. The results of mathematical modeling represented as time dependences of the temperature state of equipment critical parts were taken as initial data for calculating their thermally stressed state and for analyzing their damageability according to the criterion of the equivalent operating hours. This criterion is an integral indicator characterizing the extent of damage accumulated in equipment parts and can be used for elaborating equipment maintenance programs. A dependence of the equivalent operating hours on the initial temperature of the metal of the high-pressure steam superheater's outlet header, the component imposing the strongest limitations on the power unit loading rate, is obtained. It is shown that the number of equivalent operating hours of the CCPP steam circuit part equipment accumulated during hot startups does not have any essential effect on the equipment service life (heat-recovery steam generators, steam turbine, and steam lines).

  8. Recovery Act: Johnston Rhode Island Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    SciTech Connect

    Galowitz, Stephen

    2013-06-30

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Central Landfill in Johnston, Rhode Island. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting project reflected a cost effective balance of the following specific sub-objectives. 1) Meet environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas. 2) Utilize proven and reliable technology and equipment. 3) Maximize electrical efficiency. 4) Maximize electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Central Landfill. 5) Maximize equipment uptime. 6) Minimize water consumption. 7) Minimize post-combustion emissions. To achieve the Project Objective the project consisted of several components. 1) The landfill gas collection system was modified and upgraded. 2) A State-of-the Art gas clean up and compression facility was constructed. 3) A high pressure pipeline was constructed to convey cleaned landfill gas from the clean-up and compression facility to the power plant. 4) A combined cycle electric generating facility was constructed consisting of combustion turbine generator sets, heat recovery steam generators and a steam turbine. 5) The voltage of the electricity produced was increased at a newly constructed transformer/substation and the electricity was delivered to the local transmission system. The Project produced a myriad of beneficial impacts. 1) The Project created 453 FTE construction and manufacturing jobs and 25 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. 2) By combining state-of-the-art gas clean up systems with post combustion emissions control

  9. Integrated gasification combined-cycle power plant at Sears Island, Maine: feasibility study. Final report. Volume I. [Sears Island, Maine

    SciTech Connect

    Not Available

    1983-03-30

    This report presents the results of a feasibility study to evaluate the use of medium Btu synthesis gas, produced from high-sulfur coal, in an Integrated Gasification Combined Cycle (IGCC) power plant, as an alternative to a conventional pulverized coal plant with flue gas scrubbers presently planned for the Sears Island, Maine site of Central Maine Power Company. The process configuration is based on the oxygen-blown Texaco Coal Gasification Process and a General Electric Combined Cycle power plant. The plant design includes a 5000 ton per day oxygen plant, four 1200 tons per day gasification trains plus one spare to reduce risk, four gas turbine-generators with heat recovery steam generators, and a reheat steam turbine generator. Plant output at ISO (59/sup 0/F) conditions is 524 MW net. The report includes preliminary design and arrangement drawings, a detailed plant description, detailed cost information, performance data, schedules, and an extensive evaluation of technical, economic, and environmental results. The results of the study indicate that the IGCC power plant is still a rapidly evolving technology. Before Central Maine Power Company can commit to construction of such a plant, several issues raised in the study need to be addressed. These issues deal with refinements in cycle performance, demonstration of various major components, and construction schedule, among others. The IGCC Plant does have less environmental impact than a comparably sized conventional coal plant, while using a high sulfur, high ash, less expensive coal. The life-of-plant levelized busbar cost for the IGCC Plant is estimated to be 5% lower than for the conventional coal-fired plant, although the initial capital cost is approximately 60% higher. Other cycle designs were identified which have the potential for improving plant economics.

  10. Waste-heat boiler application for the Vresova combined cycle plant

    SciTech Connect

    Vicek, Z.

    1995-12-01

    This report describes a project proposal and implementation of two combined-cycle units of the Vresova Fuel Complex (PKV) with 2 x 200 MWe and heat supply. Participation of ENERGOPROJECT Praha a.s., in this project.

  11. The importance of combined cycle generating plants in integrating large levels of wind power generation

    SciTech Connect

    Puga, J. Nicolas

    2010-08-15

    Integration of high wind penetration levels will require fast-ramping combined cycle and steam cycles that, due to higher operating costs, will require proper pricing of ancillary services or other forms of compensation to remain viable. Several technical and policy recommendations are presented to help realign the generation mix to properly integrate the wind. (author)

  12. Combined cycle power unit with a binary system based on waste geothermal brine at Mutnovsk geothermal power plant

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.; Nikol'skii, A. I.; Semenov, V. N.

    2016-06-01

    The Russian geothermal power systems developed in the last few decades outperform their counterparts around the world in many respects. However, all Russian geothermal power stations employ steam as the geothermal fluid and discard the accompanying geothermal brine. In reality, the power of the existing Russian geothermal power stations may be increased without drilling more wells, if the waste brine is employed in combined cycle systems with steam and binary turbine units. For the example of the 50 MW Mutnovsk geothermal power plant, the optimal combined cycle power unit based on the waste geothermal brine is considered. It is of great interest to determine how the thermodynamic parameters of the secondary steam in the expansion unit and the pressure in the condenser affect the performance of the equipment in the combined cycle power unit at Mutnovsk geothermal power plant. For the utilization of the waste geothermal brine at Mutnovsk geothermal power plant, the optimal air temperature in the condensers of the combined cycle power unit is +5°C. The use of secondary steam obtained by flashing of the geothermal brine at Mutnovsk geothermal power plant 1 at a pressure of 0.2 MPa permits the generation of up to 8 MW of electric power in steam turbines and additional power of 5 MW in the turbines of the binary cycle.

  13. Analyzing the possibility of constructing the air heating system for an integrated solid fuel gasification combined-cycle power plant

    NASA Astrophysics Data System (ADS)

    Mikula, V. A.; Ryzhkov, A. F.; Val'tsev, N. V.

    2015-11-01

    Combined-cycle power plants operating on solid fuel have presently been implemented only in demonstration projects. One of possible ways for improving such plants consists in making a shift to hybrid process circuits of integrated gasification combined-cycle plants with external firing of solid fuel. A high-temperature air heater serving to heat compressed air is a key element of the hybrid process circuit. The article describes application of a high-temperature recuperative metal air heater in the process circuit of an integrated gasification combined-cycle power plant (IGCC). The available experience with high-temperature air heating is considered, and possible air heater layout arrangements are analyzed along with domestically produced heat-resistant grades of steel suitable for manufacturing such air heater. An alternative (with respect to the traditional one) design is proposed, according to which solid fuel is fired in a noncooled furnace extension, followed by mixing the combustion products with recirculation gases, after which the mixture is fed to a convective air heater. The use of this design makes it possible to achieve considerably smaller capital outlays and operating costs. The data obtained from thermal and aerodynamic calculations of the high-temperature air heater with a thermal capacity of 258 MW for heating air to a temperature of up to 800°C for being used in the hybrid process circuit of a combined-cycle power plant are presented.

  14. Recovery Act: Brea California Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    SciTech Connect

    Galowitz, Stephen

    2012-12-31

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Olinda Landfill near Brea, California. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting Project reflected a cost effective balance of the following specific sub-objectives: • Meeting the environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas • Utilizing proven and reliable technology and equipment • Maximizing electrical efficiency • Maximizing electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Olinda Landfill • Maximizing equipment uptime • Minimizing water consumption • Minimizing post-combustion emissions • The Project produced and will produce a myriad of beneficial impacts. o The Project created 360 FTE construction and manufacturing jobs and 15 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. o By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). o The Project will annually produce 280,320 MWh’s of clean energy o By destroying the methane in the landfill gas, the Project will generate CO2 equivalent reductions of 164,938 tons annually. The completed facility produces 27.4 MWnet and operates 24 hours a day, seven days a week.

  15. Combined-cycle power tower

    SciTech Connect

    Bohn, M S; Williams, T A; Price, H W

    1994-10-01

    This paper evaluates a new power tower concept that offers significant benefits for commercialization of power tower technology. The concept uses a molten nitrate salt centralreceiver plant to supply heat, in the form of combustion air preheat, to a conventional combined-cycle power plant. The evaluation focused on first commercial plants, examined three plant capacities (31, 100, and 300 MWe), and compared these plants with a solar-only 100-MWe plant and with gas-only combined-cycle plants in the same three capacities. Results of the analysis point to several benefits relative to the solar-only plant including low energy cost for first plants, low capital cost for first plants, reduced risk with respect to business uncertainties, and the potential for new markets. In addition, the concept appears to have minimal technology development requirements. Significantly, the results show that it is possible to build a first plant with this concept that can compete with existing gas-only combined-cycle plants.

  16. Determining Reliability Parameters for a Closed-Cycle Small Combined Heat and Power Plant

    NASA Astrophysics Data System (ADS)

    Vysokomorny, Vladimir S.; Vysokomornaya, Olga V.; Piskunov, Maxim V.

    2016-02-01

    The paper provides numerical values of the reliability parameters for independent power sources within the ambient temperature and output power range corresponding to the operation under the climatic conditions of Eastern Siberia and the Far East of the Russian Federation. We have determined the optimal values of the parameters necessary for the reliable operation of small CHP plants (combined heat and power plants) providing electricity for isolated facilities.

  17. Development of a dynamic simulator for a natural gas combined cycle (NGCC) power plant with post-combustion carbon capture

    SciTech Connect

    Liese, E.; Zitney, S.

    2012-01-01

    The AVESTAR Center located at the U.S. Department of Energy’s National Energy Technology Laboratory and West Virginia University is a world-class research and training environment dedicated to using dynamic process simulation as a tool for advancing the safe, efficient and reliable operation of clean energy plants with CO{sub 2} capture. The AVESTAR Center was launched with a high-fidelity dynamic simulator for an Integrated Gasification Combined Cycle (IGCC) power plant with pre-combustion carbon capture. The IGCC dynamic simulator offers full-scope Operator Training Simulator (OTS) Human Machine Interface (HMI) graphics for realistic, real-time control room operation and is integrated with a 3D virtual Immersive Training Simulator (ITS), thus allowing joint control room and field operator training. The IGCC OTS/ITS solution combines a “gasification with CO{sub 2} capture” process simulator with a “combined cycle” power simulator into a single high-performance dynamic simulation framework. This presentation will describe progress on the development of a natural gas combined cycle (NGCC) dynamic simulator based on the syngas-fired combined cycle portion of AVESTAR’s IGCC dynamic simulator. The 574 MW gross NGCC power plant design consisting of two advanced F-class gas turbines, two heat recovery steam generators (HRSGs), and a steam turbine in a multi-shaft 2x2x1 configuration will be reviewed. Plans for integrating a post-combustion carbon capture system will also be discussed.

  18. Study of Indonesia low rank coal utilization on modified fixed bed gasification for combined cycle power plant

    NASA Astrophysics Data System (ADS)

    Hardianto, T.; Amalia, A. R.; Suwono, A.; Riauwindu, P.

    2015-09-01

    Gasification is a conversion process converting carbon-based solid fuel into gaseous products that have considerable amount of calorific value. One of the carbon-based solid fuel that serves as feed for gasification is coal. Gasification gaseous product is termed as syngas (synthetic gas) that is composed of several different gases. Syngas produced from gasification vary from one process to another, this is due to several factors which are: feed characteristics, operation condition, gasified fluid condition, and gasification method or technology. One of the utilization of syngas is for combined cycle power plant fuel. In order to meet the need to convert carbon-based solid fuel into gaseous fuel for combined cycle power plant, engineering adjustment for gasification was done using related software to create the syngas with characteristics of natural gas that serve as fuel for combined cycle power plant in Indonesia. Feed used for the gasification process in this paper was Indonesian Low Rank Coal and the method used to obtain syngas was Modified Fixed Bed Gasifier. From the engineering adjustment process, the yielded syngas possessed lower heating value as much as 31828.32 kJ/kg in gasification condition of 600°C, 3.5 bar, and steam to feed ratio was 1 kg/kg. Syngas characteristics obtained from the process was used as a reference for the adjustment of the fuel system modification in combined cycle power plant that will have the same capacity with the conversion of the system's fuel from natural gas to syngas.

  19. Performance analysis of a bio-gasification based combined cycle power plant employing indirectly heated humid air turbine

    NASA Astrophysics Data System (ADS)

    Mukherjee, S.; Mondal, P.; Ghosh, S.

    2016-07-01

    Rapid depletion of fossil fuel has forced mankind to look into alternative fuel resources. In this context, biomass based power generation employing gas turbine appears to be a popular choice. Bio-gasification based combined cycle provides a feasible solution as far as grid-independent power generation is concerned for rural electrification projects. Indirectly heated gas turbine cycles are promising alternatives as they avoid downstream gas cleaning systems. Advanced thermodynamic cycles have become an interesting area of study to improve plant efficiency. Water injected system is one of the most attractive options in this field of applications. This paper presents a theoretical model of a biomass gasification based combined cycle that employs an indirectly heated humid air turbine (HAT) in the topping cycle. Maximum overall electrical efficiency is found to be around 41%. Gas turbine specific air consumption by mass is minimum when pressure ratio is 6. The study reveals that, incorporation of the humidification process helps to improve the overall performance of the plant.

  20. Impact of different fules on reheat and nonreheat combined cycle plant performance

    SciTech Connect

    Tawney, R.K.; Kamali, K. ); Yeager, W.L. )

    1988-01-01

    The combustion turbine is capable of firing a variety of gaseous and/or liquid fuels. This ability offers the power industry the advantage of utilizing the most economical fuel available in the market. The purpose of this paper is to evaluate qualitative and quantitative performance differences of combined cycle reheat versus non-reheat configurations when burning three different fuels--natural gas, distillate fuel, and coal-derived gas (coal gas). The performance data include power output, heat rates, steam produced, stack temperatures and other associated design factors.

  1. Evaluation of effects of groundwater withdrawals at the proposed Allen combined-cycle combustion turbine plant, Shelby County, Tennessee

    USGS Publications Warehouse

    Haugh, Connor J.

    2016-01-01

    The Mississippi Embayment Regional Aquifer Study groundwater-flow model was used to simulate the potential effects of future groundwater withdrawals at the proposed Allen combined-cycle combustion turbine plant in Shelby County, Tennessee. The scenario used in the simulation consisted of a 30-year average withdrawal period followed by a 30-day maximum withdrawal period. Effects of withdrawals at the Allen plant site on the Mississippi embayment aquifer system were evaluated by comparing the difference in simulated water levels in the aquifers at the end of the 30-year average withdrawal period and at the end of the scenario to a base case without the Allen combined-cycle combustion turbine plant withdrawals. Simulated potentiometric surface declines in the Memphis aquifer at the Allen plant site were about 7 feet at the end of the 30-year average withdrawal period and 11 feet at the end of the scenario. The affected area of the Memphis aquifer at the Allen plant site as delineated by the 4-foot potentiometric surface-decline contour was 2,590 acres at the end of the 30-year average withdrawal period and 11,380 acres at the end of the scenario. Simulated declines in the underlying Fort Pillow aquifer and overlying shallow aquifer were both less than 1 foot at the end of the 30-year average withdrawal period and the end of the scenario.

  2. Selecting the process arrangement for preparing the gas turbine working fluid for an integrated gasification combined-cycle power plant

    NASA Astrophysics Data System (ADS)

    Ryzhkov, A. F.; Gordeev, S. I.; Bogatova, T. F.

    2015-11-01

    Introduction of a combined-cycle technology based on fuel gasification integrated in the process cycle (commonly known as integrated gasification combined cycle technology) is among avenues of development activities aimed at achieving more efficient operation of coal-fired power units at thermal power plants. The introduction of this technology is presently facing the following difficulties: IGCC installations are characterized by high capital intensity, low energy efficiency, and insufficient reliability and availability indicators. It was revealed from an analysis of literature sources that these drawbacks are typical for the gas turbine working fluid preparation system, the main component of which is a gasification plant. Different methods for improving the gasification plant chemical efficiency were compared, including blast air high-temperature heating, use of industrial oxygen, and a combination of these two methods implying limited use of oxygen and moderate heating of blast air. Calculated investigations aimed at estimating the influence of methods for achieving more efficient air gasification are carried out taking as an example the gasifier produced by the Mitsubishi Heavy Industries (MHI) with a thermal capacity of 500 MW. The investigation procedure was verified against the known experimental data. Modes have been determined in which the use of high-temperature heating of blast air for gasification and cycle air upstream of the gas turbine combustion chamber makes it possible to increase the working fluid preparation system efficiency to a level exceeding the efficiency of the oxygen process performed according to the Shell technology. For the gasification plant's configuration and the GTU working fluid preparation system be selected on a well-grounded basis, this work should be supplemented with technical-economic calculations.

  3. Integrated air separation plant-integrated gasification combined cycle power generator

    SciTech Connect

    Allam, R.J.; Topham, A.

    1992-01-21

    This patent describes an integrated gasification combined cycle power generation system, comprising an air separation unit wherein air is compressed, cooled, and separated into an oxygen and nitrogen enriched fractions, a gasification system for generating a fuel gas, an air compressor system for supplying compressed air for use in combusting the fuel gas, a combustion zone for effecting combustion of the compressed air and the fuel gas, and a gas turbine for effecting the generation of power from the resulting combusted gases from the combustion zone in the combined cycle power generation system. It comprises independently compressing feed air to the air separation unit to pressures of from 8 to 20 bar from the compressor system used to compress air for the combustion zone; cryogenically separating the air in the air separation unit having at least one distillation column operating at pressures of between 8 and 20 bar and producing an oxygen enriched fraction consisting of low purity oxygen, and; utilizing at least a portion of the low purity oxygen for effecting gasification of a carbon containing fuel source by partial oxidation in the gasification system and thereby generating a fuel gas stream; removing at least a portion of a nitrogen enriched fraction from the air separation unit and boosting its pressures to a pressure substantially equal to that of the fuel gas stream; and expanding at least another portion of the nitrogen enriched fraction in an expansion engine.

  4. Numerical Hydraulic Study on Seawater Cooling System of Combined Cycle Power Plant

    NASA Astrophysics Data System (ADS)

    Kim, J. Y.; Park, S. M.; Kim, J. H.; Kim, S. W.

    2010-06-01

    As the rated flow and pressure increase in pumping facilities, a proper design against surges and severe cavitations in the pipeline system is required. Pressure surge due to start-up, shut-down process and operation failure causes the water hammer in upstream of the closing valve and the cavitational hammer in downstream of the valve. Typical cause of water hammer is the urgent closure of valves by breakdown of power supply and unexpected failure of pumps. The abrupt changes in the flow rate of the liquid results in high pressure surges in upstream of the valves, thus kinetic energy is transformed into potential energy which leads to the sudden increase of the pressure that is called as water hammer. Also, by the inertia, the liquid continues to flow downstream of the valve with initial speed. Accordingly, the pressure decreases and an expanding vapor bubble known as column separation are formed near the valve. In this research, the hydraulic study on the closed cooling water heat exchanger line, which is the one part of the power plant, is introduced. The whole power plant consists of 1,200 MW combined power plant and 220,000 m3/day desalination facility. Cooling water for the plant is supplied by sea water circulating system with a capacity of 29 m3/s. The primary focus is to verify the steady state hydraulic capacity of the system. The secondary is to quantify transient issues and solutions in the system. The circuit was modeled using a commercial software. The stable piping network was designed through the hydraulic studies using the simulation for the various scenarios.

  5. Power Plant Cycling Costs

    SciTech Connect

    Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

    2012-07-01

    This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

  6. Methodology for consideration of specific features of combined-cycle plants with the optimal sharing of the thermal and the electric loads at combined heat power plants with equipment of a complex configuration

    NASA Astrophysics Data System (ADS)

    Arakelyan, E. K.; Andriushin, A. V.; Burtsev, S. Y.; Andriushin, K. A.; Hurshudyan, S. R.

    2015-05-01

    When a combined-cycle power plant operates as part of a combined heat power plant, the optimal load-sharing among the power-generating units of the station is complicated owing to specific features of operating a combined-cycle power plant, viz., the dependence of its adjustment range values on the outdoor air temperature, degradation of the ecological and economic performance figures under underloading conditions, possibility of load-sharing between the gas turbines, and a high flexibility. A method for optimal sharing of the load among the power-generating plants of combined heat power plants is proposed that takes into consideration the above features of the combined-cycle power plants. The combined heat power plant is divided into "equivalent" units according to the group power supply points. The first step is the intra-unit optimization over the entire variation range of the thermal and electric loads to achieve the best energy performance of the "equivalent" unit. The second step is the optimization of the load-sharing among the "equivalent" units.

  7. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 5: Combined gas-steam turbine cycles. [energy conversion efficiency in electric power plants

    NASA Technical Reports Server (NTRS)

    Amos, D. J.; Foster-Pegg, R. W.; Lee, R. M.

    1976-01-01

    The energy conversion efficiency of gas-steam turbine cycles was investigated for selected combined cycle power plants. Results indicate that it is possible for combined cycle gas-steam turbine power plants to have efficiencies several point higher than conventional steam plants. Induction of low pressure steam into the steam turbine is shown to improve the plant efficiency. Post firing of the boiler of a high temperature combined cycle plant is found to increase net power but to worsen efficiency. A gas turbine pressure ratio of 12 to 1 was found to be close to optimum at all gas turbine inlet temperatures that were studied. The coal using combined cycle plant with an integrated low-Btu gasifier was calculated to have a plant efficiency of 43.6%, a capitalization of $497/kW, and a cost of electricity of 6.75 mills/MJ (24.3 mills/kwh). This combined cycle plant should be considered for base load power generation.

  8. An air-Brayton nuclear-hydrogen combined-cycle peak-and base-load electric plant

    SciTech Connect

    Forsberg, Charles W

    2008-01-01

    A combined-cycle power plant is proposed that uses heat from a high-temperature nuclear reactor and hydrogen produced by the high-temperature reactor to meet base-load and peak-load electrical demands. For base-load electricity production, air is compressed; flows through a heat exchanger, where it is heated to between 700 and 900 C; and exits through a high-temperature gas turbine to produce electricity. The heat, via an intermediate heat-transport loop, is provided by a high-temperature reactor. The hot exhaust from the Brayton-cycle turbine is then fed to a heat recovery steam generator that provides steam to a steam turbine for added electrical power production. To meet peak electricity demand, after nuclear heating of the compressed air, hydrogen is injected into the combustion chamber, combusts, and heats the air to 1300 C-the operating conditions for a standard natural-gas-fired combined-cycle plant. This process increases the plant efficiency and power output. Hydrogen is produced at night by electrolysis or other methods using energy from the nuclear reactor and is stored until needed. Therefore, the electricity output to the electric grid can vary from zero (i.e., when hydrogen is being produced) to the maximum peak power while the nuclear reactor operates at constant load. Because nuclear heat raises air temperatures above the auto-ignition temperatures of the hydrogen and powers the air compressor, the power output can be varied rapidly (compared with the capabilities of fossil-fired turbines) to meet spinning reserve requirements and stabilize the grid.

  9. System study of an MHD/gas turbine combined-cycle baseload power plant. HTGL report No. 134

    SciTech Connect

    Annen, K.D.

    1981-08-01

    The MHD/gas turbine combined-cycle system has been designed specifically for applications where the availability of cooling water is very limited. The base case systems which were studied consisted of an MHD plant with a gas turbine bottoming plant, and required no cooling water. The gas turbine plant uses only air as its working fluid and receives its energy input from the MHD exhaust gases by means of metal tube heat exchangers. In addition to the base case systems, vapor cycle variation systems were considered which included the addition of a vapor cycle bottoming plant to improve the thermal efficiency. These systems required a small amount of cooling water. The MHD/gas turbine systems were modeled with sufficient detail, using realistic component specifications and costs, so that the thermal and economic performance of the system could be accurately determined. Three cases of MHD/gas turbine systems were studied, with Case I being similar to an MHD/steam system so that a direct comparison of the performances could be made, with Case II being representative of a second generation MHD system, and with Case III considering oxygen enrichment for early commercial applications. The systems are nominally 800 MW/sub e/ to 1000 MW/sub e/ in size. The results show that the MHD/gas turbine system has very good thermal and economic performances while requiring either little or no cooling water. Compared to the MHD/steam system which has a cooling tower heat load of 720 MW, the Base Case I MHD/gas turbine system has a heat rate which is 13% higher and a cost of electricity which is only 7% higher while requiring no cooling water. Case II results show that an improved performance can be expected from second generation MHD/gas turbine systems. Case III results show that an oxygen enriched MHD/gas turbine system may be attractive for early commercial applications in dry regions of the country.

  10. Power and Efficiency Analysis of a Solar Central Receiver Combined Cycle Plant with a Small Particle Heat Exchanger Receiver

    NASA Astrophysics Data System (ADS)

    Virgen, Matthew Miguel

    Two significant goals in solar plant operation are lower cost and higher efficiencies. To achieve those goals, a combined cycle gas turbine (CCGT) system, which uses the hot gas turbine exhaust to produce superheated steam for a bottoming Rankine cycle by way of a heat recovery steam generator (HRSG), is investigated in this work. Building off of a previous gas turbine model created at the Combustion and Solar Energy Laboratory at SDSU, here are added the HRSG and steam turbine model, which had to handle significant change in the mass flow and temperature of air exiting the gas turbine due to varying solar input. A wide range of cases were run to explore options for maximizing both power and efficiency from the proposed CSP CCGT plant. Variable guide vanes (VGVs) were found in the earlier model to be an effective tool in providing operational flexibility to address the variable nature of solar input. Combined cycle efficiencies in the range of 50% were found to result from this plant configuration. However, a combustor inlet temperature (CIT) limit leads to two distinct Modes of operation, with a sharp drop in both plant efficiency and power occurring when the air flow through the receiver exceeded the CIT limit. This drawback can be partially addressed through strategic use of the VGVs. Since system response is fully established for the relevant range of solar input and variable guide vane angles, the System Advisor Model (SAM) from NREL can be used to find what the actual expected solar input would be over the course of the day, and plan accordingly. While the SAM software is not yet equipped to model a Brayton cycle cavity receiver, appropriate approximations were made in order to produce a suitable heliostat field to fit this system. Since the SPHER uses carbon nano-particles as the solar absorbers, questions of particle longevity and how the particles might affect the flame behavior in the combustor were addressed using the chemical kinetics software Chemkin

  11. Coal combined cycle system study. Volume I. Summary

    SciTech Connect

    Not Available

    1980-04-01

    The potential advantages for proceeding with demonstration of coal-fueled combined cycle power plants through retrofit of a few existing utility steam plants have been evaluated. Two combined cycle concepts were considered: Pressurized Fluidized Bed (PFB) combined cycle and gasification combined cycle. These concepts were compared with AFB steam plants, conventional steam plants with Flue Gas Desulfurization (FGD), and refueling such as with coal-oil mixtures. The ultimate targets are both new plants and conversion of existing plants. Combined cycle plants were found to be most competitive with conventional coal plants and offered lower air emissions and less adverse environmental impact. A demonstration is a necessary step toward commercialization.

  12. Steady-state simulation and optimization of an integrated gasification combined cycle power plant with CO2 capture

    SciTech Connect

    Bhattacharyya, D.; Turton, R.; Zitney, S.

    2011-01-01

    Integrated gasification combined cycle (IGCC) plants are a promising technology option for power generation with carbon dioxide (CO2) capture in view of their efficiency and environmental advantages over conventional coal utilization technologies. This paper presents a three-phase, top-down, optimization-based approach for designing an IGCC plant with precombustion CO2 capture in a process simulator environment. In the first design phase, important global design decisions are made on the basis of plant-wide optimization studies with the aim of increasing IGCC thermal efficiency and thereby making better use of coal resources and reducing CO2 emissions. For the design of an IGCC plant with 90% CO2 capture, the optimal combination of the extent of carbon monoxide (CO) conversion in the water-gas shift (WGS) reactors and the extent of CO2 capture in the SELEXOL process, using dimethylether of polyethylene glycol as the solvent, is determined in the first phase. In the second design phase, the impact of local design decisions is explored considering the optimum values of the decision variables from the first phase as additional constraints. Two decisions are made focusing on the SELEXOL and Claus unit. In the third design phase, the operating conditions are optimized considering the optimum values of the decision variables from the first and second phases as additional constraints. The operational flexibility of the plant must be taken into account before taking final design decisions. Two studies on the operational flexibility of the WGS reactors and one study focusing on the operational flexibility of the sour water stripper (SWS) are presented. At the end of the first iteration, after executing all the phases once, the net plant efficiency (HHV basis) increases to 34.1% compared to 32.5% in a previously published study (DOE/NETL-2007/1281; National Energy Technology Laboratory, 2007). The study shows that the three-phase, top-down design approach presented is very

  13. Clean combined-cycle SOFC power plant — cell modelling and process analysis

    NASA Astrophysics Data System (ADS)

    Riensche, E.; Achenbach, E.; Froning, D.; Haines, M. R.; Heidug, W. K.; Lokurlu, A.; von Andrian, S.

    The design principle of a specially adapted solid-oxide fuel cell power plant for the production of electricity from hydrocarbons without the emission of greenhouse gases is described. To achieve CO 2 separation in the exhaust stream, it is necessary to burn the unused fuel without directly mixing it with air, which would introduce nitrogen. Therefore, the spent fuel is passed over a bank of oxygen ion conducting tubes very similar in configuration to the electrochemical tubes in the main stack of the fuel cell. In such an SOFC system, pure CO 2 is produced without the need for a special CO 2 separation process. After liquefaction, CO 2 can be re-injected into an underground reservoir. A plant simulation model consists of four main parts, that is, turbo-expansion of natural gas, fuel cell stack, periphery of the stack, and CO 2 recompression. A tubular SOFC concept is preferred. The spent fuel leaving the cell tube bundle is burned with pure oxygen instead of air. The oxygen is separated from the air in an additional small tube bundle of oxygen separation tubes. In this process, mixing of CO 2 and N 2 is avoided, so that liquefaction of CO 2 becomes feasible. As a design tool, a computer model for tubular cells with an air feed tube has been developed based on an existing planar model. Plant simulation indicates the main contributors to power production (tubular SOFC, exhaust air expander) and power consumption (air compressor, oxygen separation).

  14. Material considerations for HRSGs in gas turbine combined cycle plants. Final report

    SciTech Connect

    Bourgeois, H.S.

    1996-08-01

    The primary objectives of this project are to investigate and identify the limitations of current heat recovery steam generator (HRSG) materials, identify potential materials that could be used in future high temperature HRSGs, and develop a research and development plan to address the deficiencies and the future requirements. The project team developed a comprehensive survey which was forwarded to many HRSG manufacturers worldwide. The manufacturers were questioned about cycle experience, failure experience, design practices, materials, research and development, and future designs. The team assembled the responses and other in-house data to identify the key problem areas, probably future operating parameters, and possible material issues. The draft report was circulated to the manufacturers surveyed for comments before the final report was issued. The predominant current problem area for HRSGs relates to insulation; however, it is anticipated that in future designs, tube failures and welds will become most important. Poor water chemistry has already resulted in numerous failure mechanisms. By 2005, HSRGs are expected to operated with the following average conditions: unfired gas temperatures of 1125 F, steam temperatures of 950 F, steam pressures of 1500 psi, and exhaust temperatures of 170 F.

  15. Biomass Gasification Combined Cycle

    SciTech Connect

    Judith A. Kieffer

    2000-07-01

    Gasification combined cycle continues to represent an important defining technology area for the forest products industry. The ''Forest Products Gasification Initiative'', organized under the Industry's Agenda 2020 technology vision and supported by the DOE ''Industries of the Future'' program, is well positioned to guide these technologies to commercial success within a five-to ten-year timeframe given supportive federal budgets and public policy. Commercial success will result in significant environmental and renewable energy goals that are shared by the Industry and the Nation. The Battelle/FERCO LIVG technology, which is the technology of choice for the application reported here, remains of high interest due to characteristics that make it well suited for integration with the infrastructure of a pulp production facility. The capital cost, operating economics and long-term demonstration of this technology area key input to future economically sustainable projects and must be verified by the 200 BDT/day demonstration facility currently operating in Burlington, Vermont. The New Bern application that was the initial objective of this project is not currently economically viable and will not be implemented at this time due to several changes at and around the mill which have occurred since the inception of the project in 1995. The analysis shows that for this technology, and likely other gasification technologies as well, the first few installations will require unique circumstances, or supportive public policies, or both to attract host sites and investors.

  16. Thermal and environmental characteristics of the primary equipment of the 480-MW Razdan-5 power-generating plant operating as a combined-cycle plant

    NASA Astrophysics Data System (ADS)

    Sargsyan, K. B.; Eritsyan, S. Kh.; Petrosyan, G. S.; Avtandilyan, A. V.; Gevorkyan, A. R.; Klub, M. V.

    2015-01-01

    Results of thermal tests of 480-MW power-generating Unit 5 of Razdan Thermal Power Plant (hereinafter, Razdan-5 power unit) are presented. The tests were carried out by LvivORGRES after an integration trial of the power unit. The aim of the tests was thermal characterization of the steam boiler and the steam turbine when the power unit operates as a combined-cycle plant. The economic efficiency of the boiler and the turbine and the environmental characteristics of the power unit are determined and the calculated and the actual values are compared. The specific heat gross and net rates required for the power unit to generate the electric power are established.

  17. Solid oxide fuel cell combined cycles

    SciTech Connect

    Bevc, F.P.; Lundberg, W.L.; Bachovchin, D.M.

    1996-12-31

    The integration of the solid oxide fuel cell and combustion turbine technologies can result in combined-cycle power plants, fueled with natural gas, that have high efficiencies and clean gaseous emissions. Results of a study are presented in which conceptual designs were developed for 3 power plants based upon such an integration, and ranging in rating from 3 to 10 MW net ac. The plant cycles are described and characteristics of key components summarized. Also, plant design-point efficiency estimates are presented as well as values of other plant performance parameters.

  18. Effects of groundwater withdrawals associated with combined-cycle combustion turbine plants in west Tennessee and northern Mississippi

    USGS Publications Warehouse

    Haugh, Connor J.

    2012-01-01

    The Mississippi Embayment Regional Aquifer Study groundwater-flow model was used to simulate the potential effects on future groundwater withdrawals at five powerplant sites-Gleason, Weakley County, Tennessee; Tenaska, Haywood County, Tennessee; Jackson, Madison County, Tennessee; Southaven, DeSoto County, Mississippi; and Magnolia, Benton County, Mississippi. The scenario used in the simulation consisted of a 30-year average water-use period followed by a 30-day peak water-demand period. Effects of the powerplants on the aquifer system were evaluated by comparing the difference in simulated water levels in the aquifers at the end of the scenario (30 years plus 30 days) with and without the combined-cycle-plant withdrawals. Simulated potentiometric surface declines in source aquifers at potential combined-cycle-plant sites ranged from 56 feet in the upper Wilcox aquifer at the Magnolia site to 20 feet in the Memphis aquifer at the Tenaska site. The affected areas in the source aquifers at the sites delineated by the 4-foot potentiometric surface-decline contour ranged from 11,362 acres at Jackson to 535,143 acres at Southaven. The extent of areas affected by potentiometric surface declines was similar at the Gleason and Magnolia sites. The affected area at the Tenaska site was smaller than the affected areas at the other sites, most likely as a result of lower withdrawal rates and greater aquifer thickness. The extent of effect was smallest at the Jackson site, where the nearby Middle Fork Forked Deer River may act as a recharge boundary. Additionally, the Jackson site lies in the Memphis aquifer outcrop area where model-simulated recharge rates are higher than in areas where the Memphis aquifer underlies less permeable deposits. The potentiometric surface decline in aquifers overlying or underlying a source aquifer was generally 2 feet or less at all the sites except Gleason. At the Gleason site, withdrawals from the Memphis aquifer resulted in declines of as much

  19. Combined cycle comes to the Philippines

    SciTech Connect

    1995-03-01

    The first combined cycle power station in the Philippines has gone into operation at National Power Corporation`s (NPC) Limay Bataan site, some 40 km west of Manila. The plant comprises two 300 MW blocks in 3+3+1 configuration, based on ABB Type GT11N gas turbines. It was built by a consortium of ABB, with their Japanese licensee Kawasaki Heavy Industries, and Marubeni Corporation. This paper discusses Philippine power production, design and operation of the Limay Bataan plant, and conversion of an existing turbine of the nuclear plant project that was abandoned earlier, into a combined cycle operation. 6 figs.

  20. A comparative analysis of the economic effect from using cogeneration gas-turbine units and combined-cycle plants in a power system

    NASA Astrophysics Data System (ADS)

    Treshchev, D. A.; Loshchakov, I. I.; Romakhova, G. A.

    2010-06-01

    The net cost of heat production at cogeneration stations equipped with gas turbine units, steam turbine units, and combined-cycle plants is analyzed by way of comparison. It is shown that the minimal net cost will be achieved in the case of using certain types of power installations depending on the network tariff for electric energy.

  1. State estimation of an acid gas removal (AGR) plant as part of an integrated gasification combined cycle (IGCC) plant with CO2 capture

    SciTech Connect

    Paul, P.; Bhattacharyya, D.; Turton, R.; Zitney, S.

    2012-01-01

    An accurate estimation of process state variables not only can increase the effectiveness and reliability of process measurement technology, but can also enhance plant efficiency, improve control system performance, and increase plant availability. Future integrated gasification combined cycle (IGCC) power plants with CO2 capture will have to satisfy stricter operational and environmental constraints. To operate the IGCC plant without violating stringent environmental emission standards requires accurate estimation of the relevant process state variables, outputs, and disturbances. Unfortunately, a number of these process variables cannot be measured at all, while some of them can be measured, but with low precision, low reliability, or low signal-to-noise ratio. As a result, accurate estimation of the process variables is of great importance to avoid the inherent difficulties associated with the inaccuracy of the data. Motivated by this, the current paper focuses on the state estimation of an acid gas removal (AGR) process as part of an IGCC plant with CO2 capture. This process has extensive heat and mass integration and therefore is very suitable for testing the efficiency of the designed estimators in the presence of complex interactions between process variables. The traditional Kalman filter (KF) (Kalman, 1960) algorithm has been used as a state estimator which resembles that of a predictor-corrector algorithm for solving numerical problems. In traditional KF implementation, good guesses for the process noise covariance matrix (Q) and the measurement noise covariance matrix (R) are required to obtain satisfactory filter performance. However, in the real world, these matrices are unknown and it is difficult to generate good guesses for them. In this paper, use of an adaptive KF will be presented that adapts Q and R at every time step of the algorithm. Results show that very accurate estimations of the desired process states, outputs or disturbances can be

  2. Externally fired combined cycle demonstration

    SciTech Connect

    Orozco, N.J.; Young, S.; LaHaye, P.G.; Strom-Olsen, J.; Seger, J.L.; Pickup, H.

    1995-11-01

    Externally Fired Combined Cycles (EFCCs) can increase the amount of electricity produced from ash bearing fuels up to 40%, with overall powerplant efficiencies in excess of 45%. Achieving such high efficiencies requires high temperature-high pressure air heaters capable of driving modern gas turbines from gas streams containing the products of coal combustion. A pilot plant has been constructed in Kennebunk, Maine to provide proof of concept and evaluation of system components. Tests using pulverized Western Pennsylvania bituminous coal have been carried out since April, 1995. The ceramic air heater extracts energy from the products of coal combustion to power a gas turbine. This air heater has operated at gas inlet temperatures over 1,095 C and pressures over 7.0 atm without damage to the ceramic tube string components. Stable gas turbine operation has been achieved with energy input from the air heater and a supplementary gas fired combustor. Efforts are underway to fire the cycle on coal only, and to increase the duration of the test runs. Air heater improvements are being implemented and evaluated. These improvements include installation of a second pass of ceramic tubes and evaluation of corrosion resistant coatings on the ceramic tubes.

  3. Cycling operation of fossil plants

    SciTech Connect

    Bhatnagar, U.S.; Weiss, M.D.; White, W.H. ); Buchanan, T.L.; Harvey, L.E.; Shewchuk, P.K.; Weinstein, R.E. )

    1991-05-01

    This report presents a methodology for examining the economic feasibility of converting fossil power plants from baseload to cycling service. It employs this approach to examine a proposed change of Pepco's Potomac River units 3, 4, and 5 from baseload operation of two-shift cycling. The project team first reviewed all components and listed potential cycling effects involved in the conversion of Potomac River units 3, 4, and 5. They developed general cycling plant screening criteria including the number of hot, warm, or cold restart per year and desired load ramp rates. In addition, they evaluated specific limitations on the boiler, turbine, and the balance of plant. They estimated the remaining life of the facility through component evaluation and boiler testing and also identified and prioritized potential component deficiencies by their impact on key operational factors: safety, heat rate, turn down, startup/shutdown time, and plant availability. They developed solutions to these problems; and, since many solutions mitigate more than one problem, they combined and reprioritized these synergistic solutions. Economic assessments were performed on all solutions. 13 figs., 20 tabs.

  4. Reduced emissions of CO2, NOx, and SO2 from U.S. power plants owing to switch from coal to natural gas with combined cycle technology

    NASA Astrophysics Data System (ADS)

    de Gouw, J. A.; Parrish, D. D.; Frost, G. J.; Trainer, M.

    2014-02-01

    Since 1997, an increasing fraction of electric power has been generated from natural gas in the United States. Here we use data from continuous emission monitoring systems (CEMS), which measure emissions at the stack of most U.S. electric power generation units, to investigate how this switch affected the emissions of CO2, NOx, and SO2. Per unit of energy produced, natural gas power plants equipped with combined cycle technology emit on an average 44% of the CO2 compared with coal power plants. As a result of the increased use of natural gas, CO2 emissions from U.S. fossil-fuel power plants were 23% lower in 2012 than they would have been if coal had continued to provide the same fraction of electric power as in 1997. In addition, natural gas power plants with combined cycle technology emit less NOx and far less SO2 per unit of energy produced than coal power plants. Therefore, the increased use of natural gas has led to emission reductions of NOx (40%) and SO2 (44%), in addition to those obtained from the implementation of emission control systems on coal power plants. These benefits to air quality and climate should be weighed against the increase in emissions of methane, volatile organic compounds, and other trace gases that are associated with the production, processing, storage, and transport of natural gas.

  5. Dynamic Modeling and Plantwide Control of a Hybrid Power and Chemical Plant: An Integrated Gasification Combined Cycle Coupled with a Methanol Plant

    NASA Astrophysics Data System (ADS)

    Robinson, Patrick J.

    Gasification has been used in industry on a relatively limited scale for many years, but it is emerging as the premier unit operation in the energy and chemical industries. The switch from expensive and insecure petroleum to solid hydrocarbon sources (coal and biomass) is occurring due to the vast amount of domestic solid resources, national security and global warming issues. Gasification (or partial oxidation) is a vital component of "clean coal" technology. Sulfur and nitrogen emissions can be reduced, overall energy efficiency is increased and carbon dioxide recovery and sequestration are facilitated. Gasification units in an electric power generation plant produce a fuel gas for driving combustion turbines. Gasification units in a chemical plant generate synthesis gas, which can be used to produce a wide spectrum of chemical products. Future plants are predicted to be hybrid power/chemical plants with gasification as the key unit operation. The coupling of an Integrated Gasification Combined Cycle (IGCC) with a methanol plant can handle swings in power demand by diverting hydrogen gas from a combustion turbine and synthesis gas from the gasifier to a methanol plant for the production of an easily-stored, hydrogen-consuming liquid product. An additional control degree of freedom is provided with this hybrid plant, fundamentally improving the controllability of the process. The idea is to base-load the gasifier and use the more responsive gas-phase units to handle disturbances. During the summer days, power demand can fluctuate up to 50% over a 12-hour period. The winter provides a different problem where spikes of power demand can go up 15% within the hour. The following dissertation develops a hybrid IGCC / methanol plant model, validates the steady-state results with a National Energy Technical Laboratory study, and tests a proposed control structure to handle these significant disturbances. All modeling was performed in the widely used chemical process

  6. Energy and exergy analyses of an integrated gasification combined cycle power plant with CO2 capture using hot potassium carbonate solvent.

    PubMed

    Li, Sheng; Jin, Hongguang; Gao, Lin; Mumford, Kathryn Anne; Smith, Kathryn; Stevens, Geoff

    2014-12-16

    Energy and exergy analyses were studied for an integrated gasification combined cycle (IGCC) power plant with CO2 capture using hot potassium carbonate solvent. The study focused on the combined impact of the CO conversion ratio in the water gas shift (WGS) unit and CO2 recovery rate on component exergy destruction, plant efficiency, and energy penalty for CO2 capture. A theoretical limit for the minimal efficiency penalty for CO2 capture was also provided. It was found that total plant exergy destruction increased almost linearly with CO2 recovery rate and CO conversion ratio at low CO conversion ratios, but the exergy destruction from the WGS unit and the whole plant increased sharply when the CO conversion ratio was higher than 98.5% at the design WGS conditions, leading to a significant decrease in plant efficiency and increase in efficiency penalty for CO2 capture. When carbon capture rate was over around 70%, via a combination of around 100% CO2 recovery rate and lower CO conversion ratios, the efficiency penalty for CO2 capture was reduced. The minimal efficiency penalty for CO2 capture was estimated to be around 5.0 percentage points at design conditions in an IGCC plant with 90% carbon capture. Unlike the traditional aim of 100% CO conversion, it was recommended that extremely high CO conversion ratios should not be considered in order to decrease the energy penalty for CO2 capture and increase plant efficiency. PMID:25389800

  7. Results of heat tests of the TGE-435 main boiler in the PGU-190/220 combined-cycle plant of the Tyumen' TETs-2 cogeneration plant

    SciTech Connect

    A.V. Kurochkin; A.L. Kovalenko; V.G. Kozlov; A.I. Krivobok

    2007-01-15

    Special features of operation of a boiler operating as a combined-cycle plant and having its own furnace and burner unit are descried. The flow of flue gases on the boiler is increased due to feeding of exhaust gases of the GTU into the furnace, which intensifies the convective heat exchange. In addition, it is not necessary to preheat air in the convective heating surfaces (the boiler has no air preheater). The convective heating surfaces of the boiler are used for heating the feed water, thus replacing the regeneration extractions of the steam turbine (HPP are absent in the circuit) and partially replacing the preheating of condensate (the LPP in the circuit of the unit are combined with preheaters of delivery water). Regeneration of the steam turbine is primarily used for the district cogeneration heating purposes. The furnace and burner unit of the exhaust-heat boiler (which is a new engineering solution for the given project) ensures utilization of not only the heat of the exhaust gases of the GTU but also of their excess volume, because the latter contains up to 15% oxygen that oxidizes the combustion process in the boiler. Thus, the gas temperature at the inlet to the boiler amounts to 580{sup o}C at an excess air factor a = 3.50; at the outlet these parameters are utilized to T{sub out} = 139{sup o}C and a{sub out} = 1.17. The proportions of the GTU/boiler loads that can actually be organized at the generating unit (and have been checked by testing) are presented and the proportions of loads recommended for the most efficient operation of the boiler are determined. The performance characteristics of the boiler are presented for various proportions of GTU/boiler loads. The operating conditions of the superheater and of the convective trailing heating surfaces are presented as well as the ecological parameters of the generating unit.

  8. H gas turbine combined cycle

    SciTech Connect

    Corman, J.

    1995-10-01

    A major step has been taken in the development of the Next Power Generation System - {open_quotes}H{close_quotes} Technology Combined Cycle. This new gas turbine combined-cycle system increases thermal performance to the 60% level by increasing gas turbine operating temperature to 1430 C (2600 F) at a pressure ratio of 23 to 1. Although this represents a significant increase in operating temperature for the gas turbine, the potential for single digit NOx levels (based upon 15% O{sub 2}, in the exhaust) has been retained. The combined effect of performance increase and environmental control is achieved by an innovative closed loop steam cooling system which tightly integrates the gas turbine and steam turbine cycles. The {open_quotes}H{close_quotes} Gas Turbine Combined Cycle System meets the goals and objectives of the DOE Advanced Turbine System Program. The development and demonstration of this new system is being carried out as part of the Industrial/Government cooperative agreement under the ATS Program. This program will achieve first commercial operation of this new system before the end of the century.

  9. Recovery, transport, and disposal of CO{sub 2} from an integrated gasification combined-cycle power plant

    SciTech Connect

    Livengood, C.D.; Doctor, R.D.; Molburg, J.C.; Thimmapuram, P.; Berry, G.F.

    1993-12-31

    Initiatives to limit CO{sub 2} emissions have drawn considerable interest to integrated gasification combined-cycle (IGCC) power generation, a process that reduces CO{sub 2} production and is amenable to CO{sub 2} capture. This paper presents a comparison of energy systems that encompass fuel supply, an IGCC system, CO{sub 2} recovery using commercial technologies, CO{sub 2} transport by pipeline, and land-based sequestering in geological reservoirs. The intent is to evaluate the energy efficiency impacts of controlling CO{sub 2} in such a system, and to provide the CO{sub 2} budget, or an equivalent CO{sub 2} budget, associated with each of the individual energy-cycle steps. The value used for the equivalent CO{sub 2} budget is 1 kg CO{sub 2}/kWh. The base case for the comparison is a 458-MW IGCC system using an air-blown Kellogg Rust Westinghouse (KRW) agglomerating fluidized-bed gasifier, Illinois No.6 bituminous coal, and in-bed sulfur removal. Mining, transportation, and preparation of the coal and limestone result in a net electric power production of 448 MW with a 0.872 kg/kWh CO{sub 2} release rate. For comparison, the gasifier output was taken through a water-gas shift to convert CO to CO{sub 2}, and processed in a Selexol unit to recover CO{sub 2} prior to the combustion turbine. A 500-km pipeline then took the CO{sub 2} to geological sequestering. The net electric power production was 383 MW with a 0.218 kg/kWh CO{sub 2} release rate.

  10. Airbreathing combined cycle engine systems

    NASA Technical Reports Server (NTRS)

    Rohde, John

    1992-01-01

    The Air Force and NASA share a common interest in developing advanced propulsion systems for commercial and military aerospace vehicles which require efficient acceleration and cruise operation in the Mach 4 to 6 flight regime. The principle engine of interest is the turboramjet; however, other combined cycles such as the turboscramjet, air turborocket, supercharged ejector ramjet, ejector ramjet, and air liquefaction based propulsion are also of interest. Over the past months careful planning and program implementation have resulted in a number of development efforts that will lead to a broad technology base for those combined cycle propulsion systems. Individual development programs are underway in thermal management, controls materials, endothermic hydrocarbon fuels, air intake systems, nozzle exhaust systems, gas turbines and ramjet ramburners.

  11. The effectiveness of using the combined-cycle technology in a nuclear power plant unit equipped with an SVBR-100 reactor

    NASA Astrophysics Data System (ADS)

    Kasilov, V. F.; Dudolin, A. A.; Gospodchenkov, I. V.

    2015-05-01

    The design of a modular SVBR-100 reactor with a lead-bismuth alloy liquid-metal coolant is described. The basic thermal circuit of a power unit built around the SVBR-100 reactor is presented together with the results of its calculation. The gross electrical efficiency of the turbine unit driven by saturated steam at a pressure of 6.7 MPa is estimated at η{el/gr} = 35.5%. Ways for improving the efficiency of this power unit and increasing its power output by applying gas-turbine and combined-cycle technologies are considered. With implementing a combined-cycle power-generating system comprising two GE-6101FA gas-turbine units with a total capacity of 140 MW, it becomes possible to obtain the efficiency of the combined-cycle plant equipped with the SVBR-100 reactor η{el/gr} = 45.39% and its electrical power output equal to 328 MW. The heat-recovery boiler used as part of this power installation generates superheated steam with a temperature of 560°C, due to which there is no need to use a moisture separator/steam reheater in the turbine unit thermal circuit.

  12. Cycling Through Plants

    ERIC Educational Resources Information Center

    Cavallo, Ann

    2005-01-01

    Children notice seeds and plants every day. But do they really understand what seeds are and how they are related to plants? Have they ever observed what is inside the seed? What happens to the "things" inside a seed when it grows? What do plants need to grow, and what do they need to stay healthy? Through a sequence of three related learning…

  13. Dynamic simulation and load-following control of an integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture

    SciTech Connect

    Bhattacharyya, D,; Turton, R.; Zitney, S.

    2012-01-01

    Load-following control of future integrated gasification combined cycle (IGCC) plants with pre-combustion CO{sub 2} capture is expected to be far more challenging as electricity produced by renewable energy is connected to the grid and strict environmental limits become mandatory requirements. To study control performance during load following, a plant-wide dynamic simulation of a coal-fed IGCC plant with CO{sub 2} capture has been developed. The slurry-fed gasifier is a single-stage, downward-fired, oxygen-blown, entrained-flow type with a radiant syngas cooler (RSC). The syngas from the outlet of the RSC goes to a scrubber followed by a two-stage sour shift process with inter-stage cooling. The acid gas removal (AGR) process is a dual-stage physical solvent-based process for selective removal of H{sub 2}S in the first stage and CO{sub 2} in the second stage. Sulfur is recovered using a Claus unit with tail gas recycle to the AGR. The recovered CO{sub 2} is compressed by a split-shaft multistage compressor and sent for sequestration after being treated in an absorber with triethylene glycol for dehydration. The clean syngas is sent to two advanced “F”-class gas turbines (GTs) partially integrated with an elevated-pressure air separation unit. A subcritical steam cycle is used for heat recovery steam generation. A treatment unit for the sour water strips off the acid gases for utilization in the Claus unit. The steady-state model developed in Aspen Plus® is converted to an Aspen Plus Dynamics® simulation and integrated with MATLAB® for control studies. The results from the plant-wide dynamic model are compared qualitatively with the data from a commercial plant having different configuration, operating condition, and feed quality than what has been considered in this work. For load-following control, the GT-lead with gasifier-follow control strategy is considered. A modified proportional–integral–derivative (PID) control is considered for the syngas

  14. Process screening study of alternative gas treating and sulfur removal systems for IGCC (Integrated Gasification Combined Cycle) power plant applications: Final report

    SciTech Connect

    Biasca, F.E.; Korens, N.; Schulman, B.L.; Simbeck, D.R.

    1987-12-01

    One of the inherent advantages of the Integrated Gasification Combined Cycle plant (IGCC) over other coal-based electric generation technologies is that the sulfur in the coal is converted into a form which can be removed and recovered. Extremely low sulfur oxide emissions can result. Gas treating and sulfur recovery processes for the control of sulfur emissions are an integral part of the overall IGCC plant design. There is a wide range of commercially proven technologies which are highly efficient for sulfur control. In addition, there are many developing technologies and new concepts for applying established technologies which offer potential improvements in both technical and economic performance. SFA Pacific, Inc. has completed a screening study to compare several alternative methods of removing sulfur from the gas streams generated by the Texaco coal gasification process for use in an IGCC plant. The study considered cleaning the gas made from high and low sulfur coals to produce a low sulfur fuel gas and a severely desulfurized synthesis gas (suitable for methanol synthesis), while maintaining a range of low levels of total sulfur emissions. The general approach was to compare the technical performance of the various processes in meeting the desulfurization specifications laid out in EPRI's design basis for the study. The processing scheme being tested at the Cool Water IGCC facility incorporates the Selexol acid gas removal process which is used in combination with a Claus sulfur plant and a SCOT tailgas treating unit. The study has identified several commercial systems, as well as some unusual applications, which can provide efficient removal of sulfur from the fuel gas and also produce extremely low sulfur emissions - so as to meet very stringent sulfur emissions standards. 29 refs., 8 figs., 8 tabs.

  15. Solid-Fueled Pressurized Chemical Looping with Flue-Gas Turbine Combined Cycle for Improved Plant Efficiency and CO{sub 2} Capture

    SciTech Connect

    Liu, Kunlei; Chen, Liangyong; Zhang, Yi; Richburg, Lisa; Simpson, James; White, Jay; Rossi, Gianalfredo

    2013-12-31

    The purpose of this document is to report the final result of techno-economic analysis for the proposed 550MWe integrated pressurized chemical looping combustion combined cycle process. An Aspen Plus based model is delivered in this report along with the results from three sensitivity scenarios including the operating pressure, excess air ratio and oxygen carrier performance. A process flow diagram and detailed stream table for the base case are also provided with the overall plant energy balance, carbon balance, sulfur balance and water balance. The approach to the process and key component simulation are explained. The economic analysis (OPEX and CAPX) on four study cases via DOE NETL Reference Case 12 are presented and explained.

  16. Evaluation and modification of ASPEN fixed-bed gasifier models for inclusion in an integrated gasification combined-cycle power plant simulation

    SciTech Connect

    Stefano, J.M.

    1985-05-01

    Several Advanced System for Process Engineering (ASPEN) fixed-bed gasifier models have been evaluated to determine which is the most suitable model for use in an integrated gasification combined-cycle (IGCC) power plant simulation. Four existing ASPEN models were considered: RGAS, a dry ash gasifier model developed by Halcon/Scientific Design Company; USRWEN, the WEN II dry ash gasifier model originally developed by C.Y. Wen at West Virginia University; the slagging gasifier model developed by Massachusetts Institute of Technology (MIT) and based on Continental Oil Company's (CONOCO) design study for the proposed Pipeline Demonstration Plant; and the ORNL dry ash gasifier model developed by Oak Ridge National Laboratory for the simulation of the Tri-States Indirect Liquefaction Process. Because none of the models studied were suitable in their present form for inclusion in an IGCC power plant simulation, the SLAGGER model was developed by making significant modifications to the MIT model. The major problems with the existing ASPEN models were most often inaccurate material and energy balances, limitations of coal type, or long run times. The SLAGGER model includes simplifications and improvements over the MIT model, runs quickly (less than 30 seconds of computer time on a VAX-11/780), and gives more accurate mass and energy balances.

  17. FUEL CELL/MICRO-TURBINE COMBINED CYCLE

    SciTech Connect

    Larry J. Chaney; Mike R. Tharp; Tom W. Wolf; Tim A. Fuller; Joe J. Hartvigson

    1999-12-01

    A wide variety of conceptual design studies have been conducted that describe ultra-high efficiency fossil power plant cycles. The most promising of these ultra-high efficiency cycles incorporate high temperature fuel cells with a gas turbine. Combining fuel cells with a gas turbine increases overall cycle efficiency while reducing per kilowatt emissions. This study has demonstrated that the unique approach taken to combining a fuel cell and gas turbine has both technical and economic merit. The approach used in this study eliminates most of the gas turbine integration problems associated with hybrid fuel cell turbine systems. By using a micro-turbine, and a non-pressurized fuel cell the total system size (kW) and complexity has been reduced substantially from those presented in other studies, while maintaining over 70% efficiency. The reduced system size can be particularly attractive in the deregulated electrical generation/distribution environment where the market may not demand multi-megawatt central stations systems. The small size also opens up the niche markets to this high efficiency, low emission electrical generation option.

  18. On high suppression of NO x and CO emissions in gas-turbine plants with combined gas-and-steam cycles

    NASA Astrophysics Data System (ADS)

    Ivanov, A. A.; Ermakov, A. N.; Shlyakhov, R. A.

    2010-12-01

    In this work are given results of analyzing processes of production of nitrogen oxides (NO x ) and afterburning of CO when firing natural gas at combined-cycle gas-turbine plants. It is shown that for suppressing emissions of the said microcomponents it is necessary to lower temperature in hot local zones of the flame in which NOx is formed, and, in so doing, to avoid chilling of cold flame zones that prevents afterburning of CO. The required lowering of the combustion temperature can be provided by combustion of mixtures of methane with steam, with high mixing uniformity that ensures the same and optimum fraction of the steam "ballast" in each microvolume of the flame. In addition to chilling, the steam ballast makes it possible to maintain a fairly high concentration of hydroxil radicals in the flame zone as well, and this provides high burning out of fuel and reduction in carbon monoxide emissions (active steam ballast). Due to this fact the fraction of steam when firing its mixtures with methane in a gas-turbine plant can be increased up to the weight ratio 4: 1. In this case, the concentrations of NO x and CO in emissions can be reduced to ultra-low values (less than 3 ppm).

  19. Deoxygenation in cycling fossil plants

    SciTech Connect

    Pearl, W.L.; Hobart, R.L.; Hook, T.A.; McNea, D.A. )

    1992-04-01

    In a previous EPRI study (Phase 1 of RP1184-9) at the Port Everglades plant of Florida Power and Light, it was demonstrated that minimizing shutdown oxygen levels at a cycling plant could reduce corrosion product transport to the boilers. A continuation of the program was performed to demonstrate the use of two forms of activated carbon to catalyze the hydrazine/oxygen reaction as a method to minimize the oxygen levels of cycling fossil plants. An activated carbon impregnated fiber overlay on a powdered resin precoat was tested at TU Electric's Tradinghouse Creek Unit 1 and a carbon bed followed by a deep bed demineralizer was tested at Duquesne's Elrama Unit 4. The improvement in attainable oxygen control was demonstrated and the effect on corrosion product transport during cyclic operation was evaluated. The study also demonstrated the application of a data acquisition system for prompt data assessment, control of chemical additions, identification of problems, and development of responsive corrective actions.

  20. Sensor placement algorithm development to maximize the efficiency of acid gas removal unit for integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture

    SciTech Connect

    Paul, P.; Bhattacharyya, D.; Turton, R.; Zitney, S.

    2012-01-01

    Future integrated gasification combined cycle (IGCC) power plants with CO{sub 2} capture will face stricter operational and environmental constraints. Accurate values of relevant states/outputs/disturbances are needed to satisfy these constraints and to maximize the operational efficiency. Unfortunately, a number of these process variables cannot be measured while a number of them can be measured, but have low precision, reliability, or signal-to-noise ratio. In this work, a sensor placement (SP) algorithm is developed for optimal selection of sensor location, number, and type that can maximize the plant efficiency and result in a desired precision of the relevant measured/unmeasured states. In this work, an SP algorithm is developed for an selective, dual-stage Selexol-based acid gas removal (AGR) unit for an IGCC plant with pre-combustion CO{sub 2} capture. A comprehensive nonlinear dynamic model of the AGR unit is developed in Aspen Plus Dynamics® (APD) and used to generate a linear state-space model that is used in the SP algorithm. The SP algorithm is developed with the assumption that an optimal Kalman filter will be implemented in the plant for state and disturbance estimation. The algorithm is developed assuming steady-state Kalman filtering and steady-state operation of the plant. The control system is considered to operate based on the estimated states and thereby, captures the effects of the SP algorithm on the overall plant efficiency. The optimization problem is solved by Genetic Algorithm (GA) considering both linear and nonlinear equality and inequality constraints. Due to the very large number of candidate sets available for sensor placement and because of the long time that it takes to solve the constrained optimization problem that includes more than 1000 states, solution of this problem is computationally expensive. For reducing the computation time, parallel computing is performed using the Distributed Computing Server (DCS®) and the Parallel

  1. Economic evaluation of gasification-combined-cycle power plants based on the air-blown KILnGAS process. Final report

    SciTech Connect

    Hsu, W.W.; McFarland, R.E.; McNamee, G.P.; Ramanathan, V.; Siddoway, S.J.; Simon, A.; Smelser, S.C.

    1981-11-01

    This study is an engineering and economic evaluation of the KILnGAS process aimed at: development of overall plant process designs based on a design philosophy consistent with other studies under EPRI RP No. 239-2; preparation of necessary flowsheets, cost estimates and economic evaluations for two gasification combined-cycle (GCC) power plant cases based on the KILnGAS coal gasification process; and continued development of a consistent set of economic evaluations of GCC systems which employ both second-generation gasifiers and power block designs based on currently available combustion turbines having a 2000/sup 0/F firing temperature. Allis-Chalmers Corporation is developing the KILnGAS process to produce low Btu gas from coal by using a rotary, refractory-lined, ported kiln as the gasification reactor. Two base cases (KAAC-C and KAAC-Q) were evaluated. The two designs differ from each other in the manner in which the raw fuel gas is cleaned and cooled. Particulate removal in Case KAAC-C is achieved by a combination of cyclones and venturi scrubbers. In Case KAAC-Q, particulate removal is achieved in a water quench in a venturi scrubber. These designs yield nearly identical clean fuel gas production rates and compositions. Operating costs do not vary much from cyclone designs to water quench design. Five different gasifier configurations (varying the size and number of operating and spare gasifiers) were selected for each cooling design. A number of potential improvements were investigated for the KILnGAS process. Substantial commercial risks are associated with these potential design improvements.

  2. Cycling operation of fossil plants

    SciTech Connect

    Devendorf, D.; Kulczycky, T.G. )

    1991-05-01

    A necessity for many utilities today is the cycling of their fossil units. Fossil plants with their higher fuel costs are being converted to cycling operation to accommodate daily load swings and to decrease the overall system fuel costs. For a large oil-fired unit, such as Oswego Steam Station Unit 5, millions of dollars can be saved annually in fuel costs if the unit operates in a two-shift mode. However, there are also penalties attributable to cycling operation which are associated with availability and thermal performance. The objectives of Niagara Mohawk Power Corporation were to minimize the losses in availability and performance, and the degradation in the life of the equipment by incorporating certain cycling modifications into the unit. The objective of this project was to evaluate the effectiveness of three of these cycling modifications: (1) the superheater and turbine bypass (Hot Restart System), (2) the use of variable pressure operation, and (3) the full-flow condensate polishing system. To meet this objective, Unit 5 was tested using the cycling modifications, and a dynamic mathematical model of this unit was developed using the Modular Modeling System (MMS) Code from EPRI. This model was used to evaluate various operating modes and to assist in the assessment of operating procedures. 15 refs., 41 figs., 22 tabs.

  3. Combined Cycle Users' Group completes another successful year

    SciTech Connect

    Peltier, R.

    2006-06-15

    Presentations at the third annual meeting of the Combined Cycle Users' Group (CCUG) touched on a wide variety of topics. Among the more eclectic was repowering combined-cycle plants to burn gasified coal. Among the more mundane were selective catalytic reduction (SCR) system maintenance, the effects of cycling heat-recovery steam generators (HRSGs), staff training, and adopting best practices in O & M. Judging from the lively discussions and questions following the presentations, it was clear that operating a power plant is still as much art as science. Dr. S. Sato, senior engineering advisor for Mitsubishi Power Systems, highlighted the development history and aggressive R & D work under way to bring the company's integrated gasification combined-cycle (IGCC) plant to market. 1 tab., 5 photos.

  4. Fuel-flexible combined cycles for utility power and cogeneration

    NASA Astrophysics Data System (ADS)

    Roberts, P. B.; Duffy, T. E.; Schreiber, H.

    1980-03-01

    Two combustion turbine combined cycle power plants have been studied for performance and operating economics. Both power plants are in the sizing range that will be suitable for small utility application and use less than 106 GJ/hr (100 million Btu/hr). The first power plant is based on the Solar Turbines International (STI) Mars industrial gas turbine. The combined gas turbine/steam cycle is direct fired with No. 2 diesel fuel. A total installed cost for the system is estimated to be within the band 545 to 660 $/kW. The second power plant is based on STI's Centaur industrial gas turbine. The combined gas turbine/steam cycle is indirectly fired with solid fuel although it is intended that the installation can be initially fired with a liquid fuel.

  5. Rigorous Kinetic Modeling, Optimization, and Operability Studies of a Modified Claus Unit for an Integrated Gasification Combined Cycle (IGCC) Power Plant with CO{sub 2} Capture

    SciTech Connect

    Jones, Dustin; Bhattacharyya, Debangsu; Turton, Richard; Zitney, Stephen E

    2011-12-15

    The modified Claus process is one of the most common technologies for sulfur recovery from acid gas streams. Important design criteria for the Claus unit, when part of an Integrated Gasification Combined Cycle (IGCC) power plant, are the ability to destroy ammonia completely and the ability to recover sulfur thoroughly from a relatively low purity acid gas stream without sacrificing flame stability. Because of these criteria, modifications to the conventional process are often required, resulting in a modified Claus process. For the studies discussed here, these modifications include the use of a 95% pure oxygen stream as the oxidant, a split flow configuration, and the preheating of the feeds with the intermediate pressure steam generated in the waste heat boiler (WHB). In the future, for IGCC plants with CO{sub 2} capture, the Claus unit must satisfy emission standards without sacrificing the plant efficiency in the face of typical disturbances of an IGCC plant, such as rapid change in the feed flow rates due to load-following and wide changes in the feed composition because of changes in the coal feed to the gasifier. The Claus unit should be adequately designed and efficiently operated to satisfy these objectives. Even though the Claus process has been commercialized for decades, most papers concerned with the modeling of the Claus process treat the key reactions as equilibrium reactions. Such models are validated by manipulating the temperature approach to equilibrium for a set of steady-state operating data, but they are of limited use for dynamic studies. One of the objectives of this study is to develop a model that can be used for dynamic studies. In a Claus process, especially in the furnace and the WHB, many reactions may take place. In this work, a set of linearly independent reactions has been identified, and kinetic models of the furnace flame and anoxic zones, WHB, and catalytic reactors have been developed. To facilitate the modeling of the Claus

  6. Rigorous Kinetic Modeling and Optimization Study of a Modified Claus Unit for an Integrated Gasification Combined Cycle (IGCC) Power Plant with CO{sub 2} Capture

    SciTech Connect

    Jones, Dustin; Bhattacharyya, Debangsu; Turton, Richard; Zitney, Stephen E.

    2012-02-08

    The modified Claus process is one of the most common technologies for sulfur recovery from acid gas streams. Important design criteria for the Claus unit, when part of an Integrated Gasification Combined Cycle (IGCC) power plant, are the ability to destroy ammonia completely and the ability to recover sulfur thoroughly from a relatively low purity acid gas stream without sacrificing flame stability. Because of these criteria, modifications to the conventional process are often required, resulting in a modified Claus process. For the studies discussed here, these modifications include the use of a 95% pure oxygen stream as the oxidant, a split flow configuration, and the preheating of the feeds with the intermediate pressure steam generated in the waste heat boiler (WHB). In the future, for IGCC plants with CO{sub 2} capture, the Claus unit must satisfy emission standards without sacrificing the plant efficiency in the face of typical disturbances of an IGCC plant, such as rapid change in the feed flow rates due to load-following and wide changes in the feed composition because of changes in the coal feed to the gasifier. The Claus unit should be adequately designed and efficiently operated to satisfy these objectives. Even though the Claus process has been commercialized for decades, most papers concerned with the modeling of the Claus process treat the key reactions as equilibrium reactions. Such models are validated by manipulating the temperature approach to equilibrium for a set of steady-state operating data, but they are of limited use for dynamic studies. One of the objectives of this study is to develop a model that can be used for dynamic studies. In a Claus process, especially in the furnace and the WHB, many reactions may take place. In this work, a set of linearly independent reactions has been identified, and kinetic models of the furnace flame and anoxic zones, WHB, and catalytic reactors have been developed. To facilitate the modeling of the Claus

  7. Modeling and optimization of a modified claus process as part of an integrted gasification combined cycle (IGCC) power plant with CO2 capture

    SciTech Connect

    Jones, D.; Bhattacharyya, D.; Turton, R.; Zitney, S.

    2011-01-01

    The modified Claus process is one of the most common technologies for sulfur recovery from acid gas streams. Important design criteria for the Claus unit, when part of an Integrated Gasification Combined Cycle (IGCC) power plant, are the ability to destroy ammonia completely and recover sulfur thoroughly from a relatively low purity acid gas stream without sacrificing flame stability. Due to these criteria, modifications are often required to the conventional process, resulting in a modified Claus process. For the studies discussed here, these modifications include the use of a 95% pure oxygen stream as the oxidant, a split flow configuration, and the preheating of the feeds with the intermediate pressure steam generated in the waste heat boiler (WHB). In the future, for IGCC plants with CO2 capture, the Claus unit must satisfy emission standards without sacrificing the plant efficiency in the face of typical disturbances of an IGCC plant such as rapid change in the feed flowrates due to load-following and wide changes in the feed composition because of changes in the coal feed to the gasifier. The Claus unit should be adequately designed and efficiently operated to satisfy these objectives. Even though the Claus process has been commercialized for decades, most papers concerned with the modeling of the Claus process treat the key reactions as equilibrium reactions. Such models are validated by manipulating the temperature approach to equilibrium for a set of steady-state operating data, but are of limited use for dynamic studies. One of the objectives of this study is to develop a model that can be used for dynamic studies. In a Claus process, especially in the furnace and the WHB, many reactions may take place. In this work, a set of linearly independent reactions has been identified and kinetic models of the furnace flame and anoxic zones, WHB, and catalytic reactors have been developed. To facilitate the modeling of the Claus furnace, a four-stage method was

  8. A study on the evaluations of emission factors and uncertainty ranges for methane and nitrous oxide from combined-cycle power plant in Korea.

    PubMed

    Lee, Seehyung; Kim, Jinsu; Lee, Jeongwoo; Lee, Seongho; Jeon, Eui-Chan

    2013-01-01

    In this research, in order to develop technology/country-specific emission factors of methane (CH(4)) and nitrous oxide (N(2)O), a total of 585 samples from eight gas-fired turbine combined cycle (GTCC) power plants were measured and analyzed. The research found that the emission factor for CH(4) stood at "0.82 kg/TJ", which was an 18 % lower than the emission factor for liquefied natural gas (LNG) GTCC "1 kg/TJ" presented by Intergovernmental Panel on Climate Change (IPCC). The result was 8 % up when compared with the emission factor of Japan which stands at "0.75 kg/TJ". The emission factor for N(2)O was "0.65 kg/TJ", which is significantly lower than "3 kg/TJ" of the emission factor for LNG GTCC presented by IPCC, but over six times higher than the default N(2)O emission factor of LNG. The evaluation of uncertainty was conducted based on the estimated non-CO(2) emission factors, and the ranges of uncertainty for CH(4) and N(2)O were between -12.96 and +13.89 %, and -11.43 and +12.86 %, respectively, which is significantly lower than uncertainties presented by IPCC. These differences proved that non-CO(2) emissions can change depending on combustion technologies; therefore, it is vital to establish country/technology-specific emission factors. PMID:23001757

  9. Definitional-mission report: Combined-cycle power plant, Sultan Iskandar Power Station Phase 2-B, Tenaga Nasional BHD, Malaysia. Export trade information

    SciTech Connect

    Kadagathur, G.

    1990-12-10

    Tenaga Nasional BHD (TEN) formerly known as National Electricity Board of Malaysia is proposing to construct a Combined Cycle Power Plant at Pasir Gudang. The project is known as Sultan Iskandar Power Station Phase 2 (SIPS-2). U.S. engineering companies and U.S. equipment manufacturers are having difficulty in procuring contracts from the Malaysian Power Industry. To date, the industry is dominated by consortia with British and Swiss participation. Several U.S. engineering companies have approached the US Trade and Development Program (TDP) to assist them in breaking into the Malaysian utility market by supporting their effort on their current proposals for SIPS-2 project. It is recommended that TDP should approve a grant to TEN that would provide funds for engineering upto the preparation of equipment specifications and associated technology transfer. The grant along with the weak dollar should be attractive enough for TEN to strongly consider consortia with U.S. companies very favorably. The project also offers a potential for the export of U.S. manufactured equipment in the range of $170 million.

  10. A combined cycle engine test facility

    NASA Astrophysics Data System (ADS)

    Engers, R.; Cresci, D.; Tsai, C.

    Rocket-Based Combined-Cycle (RBCC) engines intended for missiles and/or space launch applications incorporate features of rocket propulsion systems operating in concert with airbreathing engine cycles. Performance evaluation of these types of engines, which are intended to operate from static sea level take-off to supersonic cruise or accerlerate to orbit, requires ground test capabilities which integrate rocket component testing with airbreathing engine testing. A combined cycle engine test facility has been constructed in the General Applied Science Laboratories, Inc. (GASL) Aeropropulsion Test Laboratory to meet this requirement. The facility was designed to support the development of an innovative combined cycle engine concept which features a rocket based ramjet combustor. The test requirements included the ability to conduct tests in which the propulsive force was generated by rocket only, the ramjet only and simultaneous rocket and ramjet power (combined cycle) to evaluate combustor operation over the entire engine cycle. The test facility provides simulation over the flight Mach number range of 0 to 8 and at various trajectories. The capabilities of the combined cycle engine test facility are presented.

  11. A combined cycle engine test facility

    SciTech Connect

    Engers, R.; Cresci, D.; Tsai, C.

    1995-09-01

    Rocket-Based Combined-Cycle (RBCC) engines intended for missiles and/or space launch applications incorporate features of rocket propulsion systems operating in concert with airbreathing engine cycles. Performance evaluation of these types of engines, which are intended to operate from static sea level take-off to supersonic cruise or accerlerate to orbit, requires ground test capabilities which integrate rocket component testing with airbreathing engine testing. A combined cycle engine test facility has been constructed in the General Applied Science Laboratories, Inc. (GASL) Aeropropulsion Test Laboratory to meet this requirement. The facility was designed to support the development of an innovative combined cycle engine concept which features a rocket based ramjet combustor. The test requirements included the ability to conduct tests in which the propulsive force was generated by rocket only, the ramjet only and simultaneous rocket and ramjet power (combined cycle) to evaluate combustor operation over the entire engine cycle. The test facility provides simulation over the flight Mach number range of 0 to 8 and at various trajectories. The capabilities of the combined cycle engine test facility are presented.

  12. Combined rankine and vapor compression cycles

    DOEpatents

    Radcliff, Thomas D.; Biederman, Bruce P.; Brasz, Joost J.

    2005-04-19

    An organic rankine cycle system is combined with a vapor compression cycle system with the turbine generator of the organic rankine cycle generating the power necessary to operate the motor of the refrigerant compressor. The vapor compression cycle is applied with its evaporator cooling the inlet air into a gas turbine, and the organic rankine cycle is applied to receive heat from a gas turbine exhaust to heat its boiler within one embodiment, a common condenser is used for the organic rankine cycle and the vapor compression cycle, with a common refrigerant, R-245a being circulated within both systems. In another embodiment, the turbine driven generator has a common shaft connected to the compressor to thereby eliminate the need for a separate motor to drive the compressor. In another embodiment, an organic rankine cycle system is applied to an internal combustion engine to cool the fluids thereof, and the turbo charged air is cooled first by the organic rankine cycle system and then by an air conditioner prior to passing into the intake of the engine.

  13. Simulation of a combined-cycle engine

    NASA Technical Reports Server (NTRS)

    Vangerpen, Jon

    1991-01-01

    A FORTRAN computer program was developed to simulate the performance of combined-cycle engines. These engines combine features of both gas turbines and reciprocating engines. The computer program can simulate both design point and off-design operation. Widely varying engine configurations can be evaluated for their power, performance, and efficiency as well as the influence of altitude and air speed. Although the program was developed to simulate aircraft engines, it can be used with equal success for stationary and automative applications.

  14. Configuration and performance of fuel cell-combined cycle options

    SciTech Connect

    Rath, L.K.; Le, P.H.; Sudhoff, F.A.

    1995-12-31

    The natural gas, indirect-fired, carbonate fuel-cell-bottomed, combined cycle (NG-IFCFC) and the topping natural-gas/solid-oxide fuel-cell combined cycle (NG-SOFCCC) are introduced as novel power-plant systems for the distributed power and on-site markets in the 20-200 mega-watt (MW) size range. The novel NG-IFCFC power-plant system configures the ambient pressure molten-carbonate fuel cell (MCFC) with a gas turbine, air compressor, combustor, and ceramic heat exchanger: The topping solid-oxide fuel-cell (SOFC) combined cycle is not new. The purpose of combining a gas turbine with a fuel cell was to inject pressurized air into a high-pressure fuel cell and to reduce the size, and thereby, to reduce the cost of the fuel cell. Today, the SOFC remains pressurized, but excess chemical energy is combusted and the thermal energy is utilized by the Carnot cycle heat engine to complete the system. ASPEN performance results indicate efficiencies and heat rates for the NG-IFCFC or NG-SOFCCC are better than conventional fuel cell or gas turbine steam-bottomed cycles, but with smaller and less expensive components. Fuel cell and gas turbine systems should not be viewed as competitors, but as an opportunity to expand to markets where neither gas turbines nor fuel cells alone would be commercially viable. Non-attainment areas are the most likely markets.

  15. Performance analysis of an OTEC plant and a desalination plant using an integrated hybrid cycle

    SciTech Connect

    Uehara, Haruo; Miyara, Akio; Ikegami, Yasuyuki; Nakaoka, Tsutomu

    1996-05-01

    A performance analysis of an OTEC plant using an integrated hybrid cycle (I-H OTEC Cycle) has been conducted. The I-H OTEC cycle is a combination of a closed-cycle OTEC plant and a spray flash desalination plant. In an I-H OTEC cycle, warm sea water evaporates the liquid ammonia in the OTEC evaporator, then enters the flash chamber and evaporates itself. The evaporated steam enters the desalination condenser and is condensed by the cold sea water passed through the OTEC condenser. The optimization of the I-H OTEC cycle is analyzed by the method of steepest descent. The total heat transfer area of heat exchangers per net power is used as an objective function. Numerical results are reported for a 10 MW I-H OTEC cycle with plate-type heat exchangers and ammonia as working fluid. The results are compared with those of a joint hybrid OTEC cycle (J-H OTEC Cycle).

  16. The combined cycle application of aeroderivative gas turbines

    SciTech Connect

    Sheard, A.G.; Raine, M.J.

    1998-07-01

    In recent years aeroderivative gas turbines have become an effective alternative to heavy industrial gas turbines. Marketing of aeroderivatives has focused on their simple cycle efficiency advantage. The use of aeroderivatives in combined cycle, however, has also been demonstrated to be competitive, with high net plant efficiency and moderate cost per installed kW. Aeroderivative gas turbines are also capable of achieving high baseload plant availabilities because of the maintenance philosophy of rapid gas turbine or module exchange on site. In this paper the rationale for choosing an aeroderivative over a conventional industrial gas turbine is discussed. Factors affecting the decision to opt for either a simple or combined cycle facility are considered. The economic case is made for combined cycle plant incorporating aeroderivatives, showing a lower total cost of ownership that the alternatives, including an assessment of the key factors necessary to make them viable. The paper continues with a description of an advanced single string power train concept. Implementation of the power train is presented, and its incorporation into an optimized 40 MW Class power station described. Reduction in cost of electricity and installed cost per kW are considered, as well as reduction in project lead time.

  17. Proceedings: 1990 fossil plant cycling conference

    SciTech Connect

    Not Available

    1991-12-01

    Fossil plant cycling continues to be a key issue for many electric utilities. EPRI's previous cycling workshops, held in 1983, 1985, and 1987, allowed utilities to benefit from collective industry experience in the conversion of baseload fossil units to cyclic operation. Continued improvements in equipment, retrofits, diagnostics, and controls were highlighted at the 1990 conference. The objective is to provide a forum for utility discussions of the cycling operation of fossil fuel power plants. Potomac Electric Power Company (PEPCO) hosted the 1990 EPRI Fossil Fuel Cycling Conference in Washington, DC, on December 4--6, 1990. More than 130 representatives from utilities, vendors, government agencies, universities, and industry associations attended the conference. Following the general session, technical sessions covered such topics as plant modifications, utility retrofit experience, cycling economics, life assessment, controls, environmental controls, and energy storage. Attendees also toured PEPCO's Potomac River generating station, the site of an earlier EPRI cycling conversion study.

  18. Westinghouse fuel cell combined cycle systems

    SciTech Connect

    Veyo, S.

    1996-12-31

    Efficiency (voltage) of the solid oxide fuel cell (SOFC) should increase with operating pressure, and a pressurized SOFC could function as the heat addition process in a Brayton cycle gas turbine (GT) engine. An overall cycle efficiency of 70% should be possible. In cogeneration, half of the waste heat from a PSOFC/GT should be able to be captured in process steam and hot water, leading to a fuel effectiveness of about 85%. In order to make the PSOFC/GT a commercial reality, satisfactory operation of the SOFC at elevated pressure must be verified, a pressurized SOFC generator module must be designed, built, and tested, and the combined cycle and parameters must be optimized. A prototype must also be demonstrated. This paper describes progress toward making the PSOFC/GT a reality.

  19. Heat Exchanger Design in Combined Cycle Engines

    NASA Astrophysics Data System (ADS)

    Webber, H.; Feast, S.; Bond, A.

    Combined cycle engines employing both pre-cooled air-breathing and rocket modes of operation are the most promising propulsion system for achieving single stage to orbit vehicles. The air-breathing phase is purely for augmentation of the mission velocity required in the rocket phase and as such must be mass effective, re-using the components of the rocket cycle, whilst achieving adequate specific impulse. This paper explains how the unique demands placed on the air-breathing cycle results in the need for sophisticated thermodynamics and the use of a series of different heat exchangers to enable precooling and high pressure ratio compression of the air for delivery to the rocket combustion chambers. These major heat exchanger roles are; extracting heat from incoming air in the precooler, topping up cycle flow temperatures to maintain constant turbine operating conditions and extracting rejected heat from the power cycle via regenerator loops for thermal capacity matching. The design solutions of these heat exchangers are discussed.

  20. SOFC combined cycle systems for distributed generation

    SciTech Connect

    Brown, R.A.

    1997-05-01

    The final phase of the tubular SOFC development program will focus on the development and demonstration of pressurized solid oxide fuel cell (PSOFC)/gas turbine (GT) combined cycle power systems for distributed power applications. The commercial PSOFC/GT product line will cover the power range 200 kWe to 50 MWe, and the electrical efficiency for these systems will range from 60 to 75% (net AC/LHV CH4), the highest of any known fossil fueled power generation technology. The first demonstration of a pressurized solid oxide fuel cell/gas turbine combined cycle will be a proof-of-concept 250 kWe PSOFC/MTG power system consisting of a single 200 kWe PSOFC module and a 50 kWe microturbine generator (MTG). The second demonstration of this combined cycle will be 1.3 MWe fully packaged, commercial prototype PSOFC/GT power system consisting of two 500 kWe PSOFC modules and a 300 kWe gas turbine.

  1. The combined cycle application of aeroderivative gas turbines

    SciTech Connect

    Sheard, A.G.; Raine, M.J.

    1998-07-01

    In recent years aeroderivative gas turbines have become an effective alternative to heavy industrial gas turbines. Marketing of aeroderivatives has focused on their simple cycle efficiency advantage. The use of aeroderivatives in combined cycle, however, has also been demonstrated to be competitive, with high net plant efficiency and moderate cost per installed kW. In this paper the rationale for choosing an aeroderivative over a conventional industrial gas turbine is discussed. Factors affecting the decision to opt for either a simple or combined cycle facility are considered. The economic case is made for combined cycle plant incorporating aeroderivatives, showing a lower total cost of ownership than the alternatives, including an assessment of the key factors necessary to make them viable. The paper continues with a description of an advanced ``single string'' power train concept. Implementation of the power train is presented, and its incorporation into an optimized 40 MW Class power station described. Reduction in cost of electricity and installed cost per kW are considered, as well as reduction in project lead time.

  2. The Strutjet Rocket Based Combined Cycle Engine

    NASA Technical Reports Server (NTRS)

    Siebenhaar, A.; Bulman, M. J.; Bonnar, D. K.

    1998-01-01

    The multi stage chemical rocket has been established over many years as the propulsion System for space transportation vehicles, while, at the same time, there is increasing concern about its continued affordability and rather involved reusability. Two broad approaches to addressing this overall launch cost problem consist in one, the further development of the rocket motor, and two, the use of airbreathing propulsion to the maximum extent possible as a complement to the limited use of a conventional rocket. In both cases, a single-stage-to-orbit (SSTO) vehicle is considered a desirable goal. However, neither the "all-rocket" nor the "all-airbreathing" approach seems realizable and workable in practice without appreciable advances in materials and manufacturing. An affordable system must be reusable with minimal refurbishing on-ground, and large mean time between overhauls, and thus with high margins in design. It has been suggested that one may use different engine cycles, some rocket and others airbreathing, in a combination over a flight trajectory, but this approach does not lead to a converged solution with thrust-to-mass, specific impulse, and other performance and operational characteristics that can be obtained in the different engines. The reason is this type of engine is simply a combination of different engines with no commonality of gas flowpath or components, and therefore tends to have the deficiencies of each of the combined engines. A further development in this approach is a truly combined cycle that incorporates a series of cycles for different modes of propulsion along a flight path with multiple use of a set of components and an essentially single gas flowpath through the engine. This integrated approach is based on realizing the benefits of both a rocket engine and airbreathing engine in various combinations by a systematic functional integration of components in an engine class usually referred to as a rocket-based combined cycle (RBCC) engine

  3. High-Temperature-Turbine Technology Program: Phase II. Technology test and support studies. Update of overall plant-design description-combined-cycle electric-power plant with integrated low-Btu-gas plant

    SciTech Connect

    Not Available

    1982-04-01

    Changes made to the preliminary design of a commercial combined cycle electric powerplant operating on low Btu gas fuel are described. Major elements changed were: gas turbine configuration; gas desulfurization system; gas cleanup system; and the steam system operating parameters. The net power output of this base load station was increased from 750 MW to 1032 MW, by increasing the size of the four gas turbines. The gas turbine configuration was changed from a 2-spool, annular burner arrangement to a single shaft engine with can-type combustors. Firing temperature is revised from 3000 to 2750/sup 0/F. The free power turbine arrangement of the original powerplant concept which permits double-ending the electrical generators was retained. The steam system configuration is changed from an 1800/1000 single level system to a 2400/1000/1000 single reheat configuration which utilizes heat extraction from the hot flue gas down to 280/sup 0/F, delivers gasifier steam and jacket water and provides fuel gas preheat. The steam system produces 376.MW of electrical power. The high temperature gas desulfurization and cleanup system of the original powerplant design is replaced by a cold water wash and a commercial Selexol desulfurization unit. This change produced a substantial reduction in overall powerplant efficiency, but was necessary because the previously-used developmental hot gas cleanup system has not advanced to commercial status. The Lurgi fixed bed gasifier utilized in the original powerplant concept was retained. The modular arrangement of the original powerplant design was retained. The overall powerplant coal pile to bus bar efficiency is 40.5%, conservatively based on demonstrated performance of individual commercial or near-commercial components utilized in the design.

  4. Extended operating cycles in ethylene plants

    SciTech Connect

    Bruin, C.J. de

    1994-12-31

    Length of ethylene plant operating cycles is mainly determined by: legislative requirements for statutory inspection, need for periodic major maintenance, and fouling depending on operating conditions and plant design provisions. After consultations with local authorities the authors were led to believe that requirement and scope of inspection may be relaxed. Equipment fouling is the principal operating cause for scheduled shutdowns. Based on actual experience in the Moerdijk Lower Olefins Plants key operating and design aspects influencing equipment fouling are discussed.

  5. Air-blown Integrated Gasification Combined Cycle demonstration project

    SciTech Connect

    Not Available

    1991-01-01

    Clean Power Cogeneration, Inc. (CPC) has requested financial assistance from DOE for the design construction, and operation of a normal 1270 ton-per-day (120-MWe), air-blown integrated gasification combined-cycle (IGCC) demonstration plant. The demonstration plant would produce both power for the utility grid and steam for a nearby industrial user. The objective of the proposed project is to demonstrate air-blown, fixed-bed Integrated Gasification Combined Cycle (IGCC) technology. The integrated performance to be demonstrated will involve all the subsystems in the air-blown IGCC system to include coal feeding; a pressurized air-blown, fixed-bed gasifier capable of utilizing caking coal; a hot gas conditioning systems for removing sulfur compounds, particulates, and other contaminants as necessary to meet environmental and combustion turbine fuel requirements; a conventional combustion turbine appropriately modified to utilize low-Btu coal gas as fuel; a briquetting system for improved coal feed performance; the heat recovery steam generation system appropriately modified to accept a NO{sub x} reduction system such as the selective catalytic reduction process; the steam cycle; the IGCC control systems; and the balance of plant. The base feed stock for the project is an Illinois Basin bituminous high-sulfur coal, which is a moderately caking coal. 5 figs., 1 tab.

  6. Open-Cycle Gas Turbine/Steam Turbine Combined Cycles with synthetic fuels from coal

    NASA Technical Reports Server (NTRS)

    Shah, R. P.; Corman, J. C.

    1977-01-01

    The Open-Cycle Gas Turbine/Steam Turbine Combined Cycle can be an effective energy conversion system for converting coal to electricity. The intermediate step in this energy conversion process is to convert the coal into a fuel acceptable to a gas turbine. This can be accomplished by producing a synthetic gas or liquid, and by removing, in the fuel conversion step, the elements in the fuel that would be harmful to the environment if combusted. In this paper, two open-cycle gas turbine combined systems are evaluated: one employing an integrated low-Btu gasifier, and one utilizing a semi-clean liquid fuel. A consistent technical/economic information base is developed for these two systems, and is compared with a reference steam plant burning coal directly in a conventional furnace.

  7. A combined gas cooled nuclear reactor and fuel cell cycle

    NASA Astrophysics Data System (ADS)

    Palmer, David J.

    Rising oil costs, global warming, national security concerns, economic concerns and escalating energy demands are forcing the engineering communities to explore methods to address these concerns. It is the intention of this thesis to offer a proposal for a novel design of a combined cycle, an advanced nuclear helium reactor/solid oxide fuel cell (SOFC) plant that will help to mitigate some of the above concerns. Moreover, the adoption of this proposal may help to reinvigorate the Nuclear Power industry while providing a practical method to foster the development of a hydrogen economy. Specifically, this thesis concentrates on the importance of the U.S. Nuclear Navy adopting this novel design for its nuclear electric vessels of the future with discussion on efficiency and thermodynamic performance characteristics related to the combined cycle. Thus, the goals and objectives are to develop an innovative combined cycle that provides a solution to the stated concerns and show that it provides superior performance. In order to show performance, it is necessary to develop a rigorous thermodynamic model and computer program to analyze the SOFC in relation with the overall cycle. A large increase in efficiency over the conventional pressurized water reactor cycle is realized. Both sides of the cycle achieve higher efficiencies at partial loads which is extremely important as most naval vessels operate at partial loads as well as the fact that traditional gas turbines operating alone have poor performance at reduced speeds. Furthermore, each side of the cycle provides important benefits to the other side. The high temperature exhaust from the overall exothermic reaction of the fuel cell provides heat for the reheater allowing for an overall increase in power on the nuclear side of the cycle. Likewise, the high temperature helium exiting the nuclear reactor provides a controllable method to stabilize the fuel cell at an optimal temperature band even during transients helping

  8. Parabolic Trough Organic Rankine Cycle Power Plant

    SciTech Connect

    Canada, S.; Cohen, G.; Cable, R.; Brosseau, D.; Price, H.

    2005-01-01

    Arizona Public Service (APS) is required to generate a portion of its electricity from solar resources in order to satisfy its obligation under the Arizona Environmental Portfolio Standard (EPS). In recent years, APS has installed and operates over 4.5 MWe of fixed, tracking, and concentrating photovoltaic systems to help meet the solar portion of this obligation and to develop an understanding of which solar technologies provide the best cost and performance to meet utility needs. During FY04, APS began construction of a 1-MWe parabolic trough concentrating solar power plant. This plant represents the first parabolic trough plant to begin construction since 1991. The plant will also be the first commercial deployment of the Solargenix parabolic trough collector technology developed under contract to the National Renewable Energy Laboratory (NREL). The plant will use an organic Rankine cycle (ORC) power plant, provided by Ormat. The ORC power plant is much simpler than a conventional steam Rankine cycle power plant and allows unattended operation of the facility.

  9. Atomic-Based-Combined-Cycle Analysis

    NASA Technical Reports Server (NTRS)

    Han, Sam; Bai, Don; Schmidt, George

    2000-01-01

    Atomic-based-combined-cycle (ABCC) engine combines an air-breathing ramjet engine with an atomic reactor to increase the mission-averaged specific impulse and thereby increasing the dry-mass ratio. ABCC engine is similar to RBCC engine except that energy needed for the propulsive power is derived from nuclear reaction rather than chemical combustion used in the RBCC engine. The potential performance improvement of an ABCC engine over a RBCC engine comes from two factors. Firstly, the energy density of nuclear reaction is several order of magnitudes higher than the chemical combustion. Secondly, hydrogen can produce much higher nozzle exit velocity because of its small molecular weight. A one-dimensional, transient numerical model was used to analyze a generic scramjet engine and it is used as a baseline to evaluate an imaginary ABCC engine performance. A nuclear reactor is treated as a black box energy source that replaces the role of the primary rocket and the chemical combustion chamber in a RBCC engine. Hydrogen is heated by the reactor and accelerated to produce high-speed ejection velocity. The ejection velocity up 10,000 m/sec is theoretically possible because of high energy density from the reactor and large gas constant of the hydrogen. Oxygen contained in the entrained air reacts with hydrogen and produces propulsive power for ejector mode operation. To provide enough thrust for initial acceleration, relatively large amount of hydrogen must be pumped through the reactor. Amount of oxygen contained in the entrained air may not be sufficient to burn all hydrogen and consequently combustion could occur at the end of exit nozzle. It is assumed that this combustion process is constant-pressure combustion at 1.0 atmospheric pressure and thus not affects the nozzle exit condition.

  10. Atomic-Based-Combined-Cycle Analysis

    NASA Technical Reports Server (NTRS)

    Han, Samuel S.

    1999-01-01

    Atomic-based-combined-cycle (ABCC) engine combines an air-breathing ramjet engine with an atomic reactor to increase the mission-averaged specific impulse and thereby increasing the dry-mass ratio. ABCC engine is similar to RBCC engine except that energy needed for the propulsive power is derived from nuclear reaction rather than chemical combustion used in the RBCC engine. The potential performance improvement of an ABCC engine over a RBCC engine comes from two factors. Firstly, the energy density of nuclear reaction is several order of magnitudes higher than the chemical combustion. Secondly, hydrogen can produce much higher nozzle exit velocity because of its small molecular weight. A one-dimensional, transient numerical model was used to analyze a generic RBCC engine and it is used as a baseline to evaluate an imaginary ABCC engine performance. A nuclear reactor is treated as a black box energy source that replaces the role of the primary rocket and the chemical combustion chamber in a RBCC engine. The performance of a generic ABCC engine along a flight path (q0 =10 (exp 3) lbf per square ft) shows that the mission averaged-specific impulse is about twice larger than RBCC engine and the dry mass-ratio is about 50% larger. Results of the present ABCC engine performance are based on the assumptions that the flow passage of working fluids is identical to that of RBCC engine and that a nuclear reactor is treated as an energy black box. Preliminary heat transfer calculation shows that the rate of heat transfer to the working fluids is within the limit of turbulent convective heat transfer regimes. The flow passage of realistic ABCC engine must be known for a better prediction of ABCC engine performance. Also, critical heat transfer calculations must be performed for the ejector mode and ramjet mode operations. This is possible only when the details of a reactor configuration are available.

  11. Status of the Combined Cycle Engine Rig

    NASA Technical Reports Server (NTRS)

    Saunders, Dave; Slater, John; Dippold, Vance

    2009-01-01

    Status for the past year is provided of the turbine-based Combined-Cycle Engine (CCE) Rig for the hypersonic project. As part of the first stage propulsion of a two-stage-to-orbit vehicle concept, this engine rig is designed with a common inlet that supplies flow to a turbine engine and a dual-mode ramjet / scramjet engine in an over/under configuration. At Mach 4 the inlet has variable geometry to switch the airflow from the turbine to the ramjet / scramjet engine. This process is known as inlet mode-transition. In addition to investigating inlet aspects of mode transition, the rig will allow testing of turbine and scramjet systems later in the test series. Fully closing the splitter cowl "cocoons" the turbine engine and increases airflow to the scramjet duct. The CCE Rig will be a testbed to investigate integrated propulsion system and controls technology objectives. Four phases of testing are planned to 1) characterize the dual inlet database, 2) collect inlet dynamics using system identification techniques, 3) implement an inlet control to demonstrate mode-transition scenarios and 4) demonstrate integrated inlet/turbine engine operation through mode-transition. Status of the test planning and preparation activities is summarized with background on the inlet design and small-scale testing, analytical CFD predictions and some details of the large-scale hardware. The final stages of fabrication are underway.

  12. Coal-gasification combined-cycle power generation

    SciTech Connect

    Roberts, J.A.

    1984-06-01

    Rolls-Royce has joined forces with Foster Wheeler to offer a modern power plant that integrates the benefits of coal gasification with the efficiency advantages of combined-cycle power generation. Powered by fuel gas from two parallel Lurgi slagging gasifiers, the 150-MW power station employs two Rolls-Royce SK60 gas-turbine generating sets. The proposed plant is designed for continuous power generation and should operate efficiently down to one-third of its rated capacity. Rolls estimates that the installed cost for this station would be lower than that for a conventional coal-fired station of the same output with comparable operating costs. Cooling water requirements would be less than half those of a coal-fired station.

  13. Integrated gasifier combined cycle polygeneration system to produce liquid hydrogen

    NASA Technical Reports Server (NTRS)

    Burns, R. K.; Staiger, P. J.; Donovan, R. M.

    1982-01-01

    An integrated gasifier combined cycle (IGCC) system which simultaneously produces electricity, process steam, and liquid hydrogen was evaluated and compared to IGCC systems which cogenerate electricity and process steam. A number of IGCC plants, all employing a 15 MWe has turbine and producing from 0 to 20 tons per day of liquid hydrogen and from 0 to 20 MWt of process steam were considered. The annual revenue required to own and operate such plants was estimated to be significantly lower than the potential market value of the products. The results indicate a significant potential economic benefit to configuring IGCC systems to produce a clean fuel in addition to electricity and process steam in relatively small industrial applications.

  14. Features of erosion-corrosion wear in low-pressure evaporators of combined-cycle plant heat-recovery boilers at high void factor values

    NASA Astrophysics Data System (ADS)

    Galetsky, N. S.; Schwarz, A. L.

    2013-12-01

    The features of erosion-corrosion wear (ECW) in a low-pressure evaporator (LPE) combinedcycle plant (CCP) at high void factor values in the heat carrier are considered. It is shown that if the medium pressure in the evaporator is less than 1 MPa and steam quality x ≈ 0.5, the void fraction β is close to 1, at the outlet of the evaporator almost dry saturated steam moves, and the formation of liquid films is excluded. Under these conditions, the wear of the evaporator coil sections has an erosive nature, caused by high velocity steam, carrying the dense particles of corrosion products and large drops of water, previously plucked from the surface of the liquid films.

  15. Life cycle assessment of a biomass gasification combined-cycle power system

    SciTech Connect

    Mann, M.K.; Spath, P.L.

    1997-12-01

    The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a technoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

  16. Life cycle assessment of a biomass gasification combined-cycle power system

    SciTech Connect

    Mann, M.K.; Spath, P.L.

    1997-12-01

    The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a t echnoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

  17. ''An assessment of integrated gasification combined cycle power generation''

    SciTech Connect

    Hauber, D.A.; Kirk, R.J.; Pietruszkiewicz, J.; Smith, R.S.

    1983-11-01

    This paper presents the results of a comparative study of various selected technologies for coal-fired electric power generation with emphasis on the generation of power using the Integrated Gasification Combined Cycle (IGCC) Concept. This study was managed by Argonne National Laboratory for the U.S. Department of Energy, Office of Coal Utilization. All of the power plant conceptual designs were prepared as grassroots plants with a nominal output of 500 MWe, located in the east-central region of the United States. The designs were based upon a uniform set of design, performance, economic criteria and a 1990 state-of-the-art reference frame. Three IGCC power plant concepts were studied (Texaco, BGC/Lurgi, and Westinghouse gasification processes) and compared with conventional pulverized coal-fired power plants. Each of the IGCC plant concepts were designed to produce a medium-Btu fuel gas which was treated in a SELEXOL processing facility to remove sulfur from the fuel gas in order to meet NSPS SO/sub 2/ emission control requirements. The IGCC power generation facilities for each concept used advanced gas turbines with a rotor inlet temperature of 2,150/sup 0/F. Conventional heat recovery steam generators produced high pressure superheated steam which was expanded through a non-reheat steam turbine exhausting to a conventional condenser. The basic designs, estimated performance, and economics for the IGCC plants are presented for both eastern and western coals with varying sulfur removals and are compared with conventional power plants of the same outputs. A consistent set of technical and economic ground rules was employed in making the comparisons. Each of the base case concepts that were studied were found to be cost competitive under the economic ground rules.

  18. Assessment of integrated gasification combined cycle power generation

    SciTech Connect

    Huber, D.A.; Kirk, R.J.; Pietruszkiewicz, J.; Smith, R.S.

    1983-01-01

    This paper presents the results of a comparative study of various selected technologies for coal-fired electric power generation with emphasis on the generation of power using the Integrated Gasification Combined Cycle (IGCC) Concept. All of the power plant conceptual designs were prepared as grassroots plants with a nominal output of 500 MWe, located in the east-central region of the United States. The designs were based upon a uniform set of design, performance, economic criteria and a 1990 state-of-the-art reference frame. Three IGCC power plant concepts were studied (Texaco, BGC/Lurgi, and Westinghouse gasification processes) and compared with conventional pulverized coal-fired power plants. Each of the IGCC plant concepts were designed to produce a medium-Btu fuel gas which was treated in a SELEXOL processing facility to remove sulfur from the fuel gas in order to meet NSPS SO/sub 2/ emission control requirements. The IGCC power generation facilities for each concept used advanced gas turbines with a rotor inlet temperature of 2150/sup 0/F. Conventional heat recovery steam generators produced high pressure superheated steam which was expanded through a non-reheat steam turbine exhausting to a conventional condenser. The basic designs, estimated performance, and economics for the IGCC plants are presented for both eastern and western coals with varying sulfur removals and are compared with conventional power plants of the same outputs. A consistent set of technical and economic ground rules was employed in making the comparisons. Each of the base case concepts that were studied were found to be cost competitive under the economic ground rules. 8 figures, 12 tables.

  19. Benefits from incorporation of combined cycle propulsion

    NASA Astrophysics Data System (ADS)

    Czysz, Paul A.; Richards, Michael J.

    1999-09-01

    The X-33 program was initiated to develop a testbed for integrated RLV technologies that pave the way for a full scale development of a launch vehicle (Venture Star). Within the Nasa Future X Trailblazer program there is an Upgrade X-33 that focuses on materials and upgrades. The authors propose that the most significant gains can be realized by changing the propulsion cycle, not materials. The cycles examined are rocket cycles, with the combustion in the rocket motor. Specifically, these rocket cycles are: turbopump, topping, expander, air augmented, air augmented ram, LACE and deeply cooled. The vehicle size, volume, structural weight remain constant. The system and propellant tank weights vary with the propulsion system cycle. A reduction in dry weight, made possible by a reduced propellant tank volume, was converted into payload weight provided sufficient volume was made available by the propellant reduction. This analysis was extended to Venture Star for selected engine cycles. The results show that the X-33 test bed could carry a significant payload to LEO (10,000 Ib) and be a valuable test bed in developing a frequent flight to LEO capability. From X-33 published information the maximum speed is about 15,000 ft/sec. With a LACE rocket propulsion system Venture Star vehicle could be sized to a smaller vehicle with greater payload than the Venture Star baseline. Vehicle layout and characteristics were obtained from: http:// www.venturestar.com.

  20. Deoxygenation in cycling fossil plants. Final report

    SciTech Connect

    Pearl, W.L.; Hobart, R.L.; Hook, T.A.; McNea, D.A.

    1992-04-01

    In a previous EPRI study (Phase 1 of RP1184-9) at the Port Everglades plant of Florida Power and Light, it was demonstrated that minimizing shutdown oxygen levels at a cycling plant could reduce corrosion product transport to the boilers. A continuation of the program was performed to demonstrate the use of two forms of activated carbon to catalyze the hydrazine/oxygen reaction as a method to minimize the oxygen levels of cycling fossil plants. An activated carbon impregnated fiber overlay on a powdered resin precoat was tested at TU Electric`s Tradinghouse Creek Unit 1 and a carbon bed followed by a deep bed demineralizer was tested at Duquesne`s Elrama Unit 4. The improvement in attainable oxygen control was demonstrated and the effect on corrosion product transport during cyclic operation was evaluated. The study also demonstrated the application of a data acquisition system for prompt data assessment, control of chemical additions, identification of problems, and development of responsive corrective actions.

  1. Entrained gasification combined-cycle control study. Volume 3: model descriptions. Final report

    SciTech Connect

    Clark, J.; Denton, L.; Hashemi, M.; Joiner, J.; Smelser, S.; Chowaniec, C.; Hobbs, M.; Jennings, S.; Phelts, E.

    1980-07-01

    Two control strategies were evaluated for a new type of electric power plant as part of a large utility network. An entrained coal gasifier fuels a gas turbine/steam turbine combined-cycle unit forming the integrated plant which was simulated by computer to analyze alternative control strategies. Transient operation of this gasification-combined-cycle (GCC) plant was studied to determine open-loop response as a stand-alone plant, as well as closed-loop response while functioning in a typical utility power system. GCC plant performance during specified operating contingencies, such as equipment trip or emergency shutdown, was also studied. This volume presents the model descriptions for the Texaco entrained gasifiers, Selexol unit, oxygen plant, scrubber, ammonia absorber, water balance, combustion turbine-generator and gas-turbine controls, heat recovery steam generators, steam turbine-generator and steam-turbine controls, fuel gas expander, power system, and station controller.

  2. INTEGRATED GASIFICATION COMBINED CYCLE PROJECT 2 MW FUEL CELL DEMONSTRATION

    SciTech Connect

    FuelCell Energy

    2005-05-16

    With about 50% of power generation in the United States derived from coal and projections indicating that coal will continue to be the primary fuel for power generation in the next two decades, the Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCTDP) has been conducted since 1985 to develop innovative, environmentally friendly processes for the world energy market place. The 2 MW Fuel Cell Demonstration was part of the Kentucky Pioneer Energy (KPE) Integrated Gasification Combined Cycle (IGCC) project selected by DOE under Round Five of the Clean Coal Technology Demonstration Program. The participant in the CCTDP V Project was Kentucky Pioneer Energy for the IGCC plant. FuelCell Energy, Inc. (FCE), under subcontract to KPE, was responsible for the design, construction and operation of the 2 MW fuel cell power plant. Duke Fluor Daniel provided engineering design and procurement support for the balance-of-plant skids. Colt Engineering Corporation provided engineering design, fabrication and procurement of the syngas processing skids. Jacobs Applied Technology provided the fabrication of the fuel cell module vessels. Wabash River Energy Ltd (WREL) provided the test site. The 2 MW fuel cell power plant utilizes FuelCell Energy's Direct Fuel Cell (DFC) technology, which is based on the internally reforming carbonate fuel cell. This plant is capable of operating on coal-derived syngas as well as natural gas. Prior testing (1992) of a subscale 20 kW carbonate fuel cell stack at the Louisiana Gasification Technology Inc. (LGTI) site using the Dow/Destec gasification plant indicated that operation on coal derived gas provided normal performance and stable operation. Duke Fluor Daniel and FuelCell Energy developed a commercial plant design for the 2 MW fuel cell. The plant was designed to be modular, factory assembled and truck shippable to the site. Five balance-of-plant skids incorporating fuel processing, anode gas oxidation, heat recovery, water

  3. Rocket Based Combined Cycle (RBCC) Propulsion Workshop, volume 2

    NASA Technical Reports Server (NTRS)

    Chojnacki, Kent T.

    1992-01-01

    The goal of the Rocket Based Combined Cycle (RBCC) Propulsion Technology Workshop, was to impart technology information to the propulsion community with respect to hypersonic combined cycle propulsion capabilities. The major recommendation resulting from this technology workshop was as follows: conduct a systems-level applications study to define the desired propulsion system and vehicle technology requirements for LEO launch vehicles. All SSTO and TSTO options using the various propulsion systems (airbreathing combined cycle, rocket-based combined cycle, and all rocket) must be considered. Such a study should be accomplished as soon as possible. It must be conducted with a consistent set of ground rules and assumptions. Additionally, the study should be conducted before any major expenditures on a RBCC technology development program occur.

  4. Compressive Seal Development: Combined Ageing and Thermal Cycling Compressive

    SciTech Connect

    Chou, M.Y-S.; Stevenson, J.W.; Singh, P.

    2005-01-27

    The objective of this project was to evaluate the combined aging and cycling effect on hybrid Phlogopite mica seals with respect to materials and interfacial degradations in a simulated SOFC environment.

  5. Modeling and optimization of a hybrid solar combined cycle (HYCS)

    NASA Astrophysics Data System (ADS)

    Eter, Ahmad Adel

    2011-12-01

    The main objective of this thesis is to investigate the feasibility of integrating concentrated solar power (CSP) technology with the conventional combined cycle technology for electric generation in Saudi Arabia. The generated electricity can be used locally to meet the annual increasing demand. Specifically, it can be utilized to meet the demand during the hours 10 am-3 pm and prevent blackout hours, of some industrial sectors. The proposed CSP design gives flexibility in the operation system. Since, it works as a conventional combined cycle during night time and it switches to work as a hybrid solar combined cycle during day time. The first objective of the thesis is to develop a thermo-economical mathematical model that can simulate the performance of a hybrid solar-fossil fuel combined cycle. The second objective is to develop a computer simulation code that can solve the thermo-economical mathematical model using available software such as E.E.S. The developed simulation code is used to analyze the thermo-economic performance of different configurations of integrating the CSP with the conventional fossil fuel combined cycle to achieve the optimal integration configuration. This optimal integration configuration has been investigated further to achieve the optimal design of the solar field that gives the optimal solar share. Thermo-economical performance metrics which are available in the literature have been used in the present work to assess the thermo-economic performance of the investigated configurations. The economical and environmental impact of integration CSP with the conventional fossil fuel combined cycle are estimated and discussed. Finally, the optimal integration configuration is found to be solarization steam side in conventional combined cycle with solar multiple 0.38 which needs 29 hectare and LEC of HYCS is 63.17 $/MWh under Dhahran weather conditions.

  6. Experience with organic Rankine cycles in heat recovery power plants

    SciTech Connect

    Bronicki, L.Y.; Elovic, A.; Rettger, P.

    1996-11-01

    Over the last 30 years, organic Rankine cycles (ORC) have been increasingly employed to produce power from various heat sources when other alternatives were either technically not feasible or economical. These power plants have logged a total of over 100 million turbine hours of experience demonstrating the maturity and field proven technology of the ORC cycle. The cycle is well adapted to low to moderate temperature heat sources such as waste heat from industrial plants and is widely used to recover energy from geothermal resources. The above cycle technology is well established and applicable to heat recovery of medium size gas turbines and offers significant advantages over conventional steam bottoming cycles.

  7. Entrained gasification combined-cycle control study. Volume 2. Results. Final report

    SciTech Connect

    Clark, J.; Denton, L.; Hashemi, M.; Joiner, J.; Smelser, S.; Chowaniec, C.; Hobbs, M.; Jennings, S.; Phelts, E.

    1980-07-01

    Two control strategies were evaluated for a new type of electric power plant as part of a large utility network. An entrained coal gasifier fuels a gas turbine/steam turbine combined-cycle unit forming the integrated plant which was simulated by computer to analyze alternative control strategies. Transient operation of this gasification-combined-cycle (GCC) plant was studied to determine open-loop response as a stand-alone plant, as well as closed-loop response while functioning in a typical utility power system. GCC plant performance during specified operating contingencies, such as equipment trip or emergency shutdown, was also studied. Features of the GCC plant as simulated include a single-stage entrained (Texaco) gasifier fed concurrently with a coal-water slurry and gaseous oxygen, a cold gas cleanup train with a physical absorption (Selexol) system for selective sulfur removal, and advanced gas turbine design gased upon 2400/sup 0/F combustor outlet temperature. Conclusions are as follows: The GCC plant may be controlled satisfactorily in either gasifier-lead or turbine-lead control mode. The absorber column consistently removed 90% H/sub 2/S in the raw fuel gas from high sulfur Illinois coal. GCC plant pressure control must be installed to minimize plant pressure transients at the absorber column. The local controllers adequately maintained the GCC plant operation during all the emergency upsets. The GCC plant responds well to typical variations in electric power demand. Supplemental fuel gas storage is not required. Oxygen plant can affect the response time of the GCC plant. Response rates of 3%/min at the oxygen plant would make the GCC plant very responsive to electrical load changes.

  8. INTEGRATED PYROLYSIS COMBINED CYCLE BIOMASS POWER SYSTEM CONCEPT DEFINITION

    SciTech Connect

    Eric Sandvig; Gary Walling; Robert C. Brown; Ryan Pletka; Desmond Radlein; Warren Johnson

    2003-03-01

    Advanced power systems based on integrated gasification/combined cycles (IGCC) are often presented as a solution to the present shortcomings of biomass as fuel. Although IGCC has been technically demonstrated at full scale, it has not been adopted for commercial power generation. Part of the reason for this situation is the continuing low price for coal. However, another significant barrier to IGCC is the high level of integration of this technology: the gas output from the gasifier must be perfectly matched to the energy demand of the gas turbine cycle. We are developing an alternative to IGCC for biomass power: the integrated (fast) pyrolysis/ combined cycle (IPCC). In this system solid biomass is converted into liquid rather than gaseous fuel. This liquid fuel, called bio-oil, is a mixture of oxygenated organic compounds and water that serves as fuel for a gas turbine topping cycle. Waste heat from the gas turbine provides thermal energy to the steam turbine bottoming cycle. Advantages of the biomass-fueled IPCC system include: combined cycle efficiency exceeding 37 percent efficiency for a system as small as 7.6 MW{sub e}; absence of high pressure thermal reactors; decoupling of fuel processing and power generation; and opportunities for recovering value-added products from the bio-oil. This report provides a technical overview of the system including pyrolyzer design, fuel clean-up strategies, pyrolysate condenser design, opportunities for recovering pyrolysis byproducts, gas turbine cycle design, and Rankine steam cycle. The report also reviews the potential biomass fuel supply in Iowa, provide and economic analysis, and present a summery of benefits from the proposed system.

  9. The effect of ultradian and orbital cycles on plant growth

    NASA Technical Reports Server (NTRS)

    Berry, W.; Hoshizaki, T.; Ulrich, A.

    1986-01-01

    In a series of experiments using sugar beets, researchers investigated the effects of varying cycles lengths on growth (0.37 hr to 48 hr). Each cycle was equally divided into a light and dark period so that each treatment regardless of cycle length received the same amount of light over the 17 weeks of the experiment. Two growth parameters were used to evaluate the effects of cycle length, total fresh weight and sucrose content of the storage root. Both parameters showed very similar responses in that under long cycles (12 hr or greater) growth was normal, whereas plants growing under shorter cycle periods were progressively inhibited. Minimum growth occurred at a cycle period of 0.75 hr. The yield at the 0.75 hr cycle, where was at a minimum, for total fresh weight was only 51 percent compared to the 24 hr cycle. The yield of sucrose was even more reduced at 41 percent of the 24 hr cycle.

  10. Plant cycle chemistry during startup and shutdown and during cycling and peaking operation

    SciTech Connect

    Seipp, H.G.; Kloeckl, W.; Bursik, A.; Hajdamowicz, S.; Pflug, H.; Pieper, B.

    1995-01-01

    This paper presents some preliminary results of a VGB Subcommittee working on the preparation of VGB Guidelines for startup and shutdown and cycling and peaking operation. The main points are listed below: behavior of protective layers in steam generators; impurities transport; impact of different plant concepts and plant cycle chemistry treatments; recommended startup procedure for a unit operated on OT; and data acquisition and evaluation during startup, shutdown and cycling and peaking operation.

  11. TECHNOECONOMIC APPRAISAL OF INTEGRATED GASIFICATION COMBINED-CYCLE POWER GENERATION

    EPA Science Inventory

    The report is a technoeconomic appraisal of the integrated (coal) gasification combined-cycle (IGCC) system. lthough not yet a proven commercial technology, IGCC is a future competitive technology to current pulverized-coal boilers equipped with SO2 and NOx controls, because of i...

  12. Power Gas and Combined Cycles: Clean Power From Fossil Fuels

    ERIC Educational Resources Information Center

    Metz, William D.

    1973-01-01

    The combined-cycle system is currently regarded as a useful procedure for producing electricity. This system can burn natural gas and oil distillates in addition to coal. In the future when natural gas stocks will be low, coal may become an important fuel for such systems. Considerable effort must be made for research on coal gasification and…

  13. Spectral reflectance measurements of plant soil combinations

    NASA Technical Reports Server (NTRS)

    Macleod, N. H.

    1972-01-01

    Field and laboratory observations of plant and soil reflectance spectra were made to develop an understanding of the reflectance of solar energy by plants and soils. A related objective is the isolation of factors contributing to the image formed by multispectral scanners and return beam vidicons carried by ERTS or film-filter combinations used in the field or on aircraft. A set of objective criteria are to be developed for identifying plant and soil types and their changing condition through the seasons for application of space imagery to resource management. This is because the global scale of earth observations satellites requires objective rather than subjective techniques, particularly where ground truth is either not available or too costly to acquire. As the acquiring of ground truth for training sets may be impractical in many cases, attempts have been made to identify objectively standard responses which could be used for image interpretation.

  14. Model predictive control system and method for integrated gasification combined cycle power generation

    DOEpatents

    Kumar, Aditya; Shi, Ruijie; Kumar, Rajeeva; Dokucu, Mustafa

    2013-04-09

    Control system and method for controlling an integrated gasification combined cycle (IGCC) plant are provided. The system may include a controller coupled to a dynamic model of the plant to process a prediction of plant performance and determine a control strategy for the IGCC plant over a time horizon subject to plant constraints. The control strategy may include control functionality to meet a tracking objective and control functionality to meet an optimization objective. The control strategy may be configured to prioritize the tracking objective over the optimization objective based on a coordinate transformation, such as an orthogonal or quasi-orthogonal projection. A plurality of plant control knobs may be set in accordance with the control strategy to generate a sequence of coordinated multivariable control inputs to meet the tracking objective and the optimization objective subject to the prioritization resulting from the coordinate transformation.

  15. NASA-Lewis closed-cycle magnetohydrodynamics plant analysis

    NASA Technical Reports Server (NTRS)

    Penko, P. F.

    1979-01-01

    A brief review of preliminary analyses of coal fired closed cycle MHD power plants is presented. The performance of three power plants with differing combustion systems were compared. The combustion systems considered were (1) a direct coal-fired combustor, (2) a coal gasifier with in-bed desulfurization and (3) a coal gasifier requiring external fuel gas cleanup. Power plant efficiencies (auxiliary power excluded) were 44.5, 43, and 41 percent for the three plants, respectively.

  16. Stochastic modeling of coal gasification combined cycle systems: Cost models for selected integrated gasification combined cycle (IGCC) systems

    SciTech Connect

    Frey, H.C.; Rubin, E.S.

    1990-06-01

    This report documents cost models developed for selected integrated gasification combined cycle (IGCC) systems. The objective is to obtain a series of capital and operating cost models that can be integrated with an existing set of IGCC process performance models developed at the US Department of Energy Morgantown Energy Technology Center. These models are implemented in ASPEN, a Fortran-based process simulator. Under a separate task, a probabilistic modeling capability has been added to the ASPEN simulator, facilitating analysis of uncertainties in new process performance and cost (Diwekar and Rubin, 1989). One application of the cost models presented here is to explicitly characterize uncertainties in capital and annual costs, supplanting the traditional approach of incorporating uncertainty via a contingency factor. The IGCC systems selected by DOE/METC for cost model development include the following: KRW gasifier with cold gas cleanup; KRW gasifier with hot gas cleanup; and Lurgi gasifier with hot gas cleanup. For each technology, the cost model includes both capital and annual costs. The capital cost models estimate the costs of each major plant section as a function of key performance and design parameters. A standard cost method based on the Electric Power Research Institute (EPRI) Technical Assessment Guide (1986) was adopted. The annual cost models are based on operating and maintenance labor requirements, maintenance material requirements, the costs of utilities and reagent consumption, and credits from byproduct sales. Uncertainties in cost parameters are identified for both capital and operating cost models. Appendices contain cost models for the above three IGCC systems, a number of operating trains subroutines, range checking subroutines, and financial subroutines. 88 refs., 69 figs., 21 tabs.

  17. HTGR-GT closed-cycle gas turbine: a plant concept with inherent cogeneration (power plus heat production) capability

    SciTech Connect

    McDonald, C.F.

    1980-04-01

    The high-grade sensible heat rejection characteristic of the high-temperature gas-cooled reactor-gas turbine (HTGR-GT) plant is ideally suited to cogeneration. Cogeneration in this nuclear closed-cycle plant could include (1) bottoming Rankine cycle, (2) hot water or process steam production, (3) desalination, and (4) urban and industrial district heating. This paper discusses the HTGR-GT plant thermodynamic cycles, design features, and potential applications for the cogeneration operation modes. This paper concludes that the HTGR-GT plant, which can potentially approach a 50% overall efficiency in a combined cycle mode, can significantly aid national energy goals, particularly resource conservation.

  18. Evaluation of Indirect Combined Cycle in Very High Temperature Gas--Cooled Reactor

    SciTech Connect

    Chang Oh; Robert Barner; Cliff Davis; Steven Sherman; Paul Pickard

    2006-10-01

    The U.S. Department of Energy and Idaho National Laboratory are developing a very high temperature reactor to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is twofold: (a) efficient, low-cost energy generation and (b) hydrogen production. Although a next-generation plant could be developed as a single-purpose facility, early designs are expected to be dual purpose, as assumed here. A dual-purpose design with a combined cycle of a Brayton top cycle and a bottom Rankine cycle was investigated. An intermediate heat transport loop for transporting heat to a hydrogen production plant was used. Helium, CO2, and a helium-nitrogen mixture were studied to determine the best working fluid in terms of the cycle efficiency. The relative component sizes were estimated for the different working fluids to provide an indication of the relative capital costs. The relative size of the turbomachinery was measured by comparing the power input/output of the component. For heat exchangers the volume was computed and compared. Parametric studies away from the baseline values of the cycle were performed to determine the effects of varying conditions in the cycle. This gives some insight into the sensitivity of the cycle to various operating conditions as well as trade-offs between efficiency and component size. Parametric studies were carried out on reactor outlet temperature, mass flow, pressure, and turbine cooling.

  19. Parametric analysis of closed cycle magnetohydrodynamic (MHD) power plants

    NASA Technical Reports Server (NTRS)

    Owens, W.; Berg, R.; Murthy, R.; Patten, J.

    1981-01-01

    A parametric analysis of closed cycle MHD power plants was performed which studied the technical feasibility, associated capital cost, and cost of electricity for the direct combustion of coal or coal derived fuel. Three reference plants, differing primarily in the method of coal conversion utilized, were defined. Reference Plant 1 used direct coal fired combustion while Reference Plants 2 and 3 employed on site integrated gasifiers. Reference Plant 2 used a pressurized gasifier while Reference Plant 3 used a ""state of the art' atmospheric gasifier. Thirty plant configurations were considered by using parametric variations from the Reference Plants. Parametric variations include the type of coal (Montana Rosebud or Illinois No. 6), clean up systems (hot or cold gas clean up), on or two stage atmospheric or pressurized direct fired coal combustors, and six different gasifier systems. Plant sizes ranged from 100 to 1000 MWe. Overall plant performance was calculated using two methodologies. In one task, the channel performance was assumed and the MHD topping cycle efficiencies were based on the assumed values. A second task involved rigorous calculations of channel performance (enthalpy extraction, isentropic efficiency and generator output) that verified the original (task one) assumptions. Closed cycle MHD capital costs were estimated for the task one plants; task two cost estimates were made for the channel and magnet only.

  20. Modeling Tritium Life cycle in Nuclear Plants

    SciTech Connect

    Hussey, D.; Saunders, P.; Morey, D.; Pitt, N.; Wilson, J.; Claes, B.

    2006-07-01

    The mathematical development of a tritium model for nuclear power plants is presented. The model requires that the water and tritium material balance be satisfied throughout normal operations and shutdown. The model results obtained at the time of publishing include the system definitions and comparison of the model predictions of tritium generations compared to the observed plant data of the Braidwood station. A scenario that models using ion exchange resin to remove coolant boron demonstrates the tritium concentration levels are manageable. (authors)

  1. Research Technology (ASTP) Rocket Based Combined Cycle (RBCC) Engine

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Pictured is an artist's concept of the Rocket Based Combined Cycle (RBCC) launch. The RBCC's overall objective is to provide a technology test bed to investigate critical technologies associated with opperational usage of these engines. The program will focus on near term technologies that can be leveraged to ultimately serve as the near term basis for Two Stage to Orbit (TSTO) air breathing propulsions systems and ultimately a Single Stage To Orbit (SSTO) air breathing propulsion system.

  2. Integrated gasification combined-cycle research development and demonstration activities

    SciTech Connect

    Ness, H.M.; Reuther, R.B.

    1995-12-01

    The United States Department of Energy (DOE) has selected six integrated gasification combined-cycle (IGCC) advanced power systems for demonstration in the Clean Coal Technology (CCT) Program. DOE`s Office of Fossil Energy, Morgantown Energy Technology Center, is managing a research development and demonstration (RD&D) program that supports the CCT program, and addresses long-term improvements in support of IGCC technology. This overview briefly describes the CCT projects and the supporting RD&D activities.

  3. Rocket based combined cycle (RBCC) propulsion systems offer additional options

    NASA Astrophysics Data System (ADS)

    Czysz, Paul A.

    The propulsion cycles presented at the 1991 IAF Congress in Montreal, and at The World Hydrogen Conference 1992 in Paris were the subject of an IAF paper for the 1992 World Space Conference in Washington DC. RBCC propulsion systems from several nations were analyzed in terms of a SSTO space launcher with a 7-Mg payload. The RBCC concept emerged from the advanced injector ramjet research of the early 1960s. The performance of the current RBCC propulsion systems such that the specific thrust of a rocket is combined with the specific impulse of an airbreather. This performance offers a new perspective to the options available. In a brief review of the present RBCC the reasons for these options are developed. The spectrum of the system options is presented in three examples, a LACE VTOL SSTO, an HTOL SSTO and a HTOL TSTO. Results using the present RBCC are dramatically different from the past concept of the Conventional Combined Cycle propulsion system, i.e., combinations of separate engines. The integration of the engine cycles into a single thermodynamically integrated system significantly changes the propulsion performance.

  4. Thermal-economic analysis of organic Rankine combined cycle cogeneration

    NASA Astrophysics Data System (ADS)

    Porter, R. W.

    1982-12-01

    An evaluation of organic rankine cycles (ORC) as combined with topping incorporating gas turbines or diesel engines, and with subsequent waste heat utilization is presented. It is found that the potential benefit of the proposed organic Rankine combined cycle cogeneration of useful heat and electricity is more flexible in meeting demands for the two products, by varying the mode of operation of the system. A thermal-economic analysis is developed and illustrated with cost and performance data for commercially available equipment, and with general economic parameters reflecting current regulations and market conditions. The performance of the ORC and of the entire combined cycle is described. Equations to evaluate the various thermodynamic and economic parameter, and the resultant case flows are presented. Criteria are developed to assess the addition of an ORC to a cogeneration system without ORC is viable based on rate of return on incremental investment. It is indicated that the proposed system is potentially viable, however, it is not viable under conditions prevailing in Chicago for the selected case studies.

  5. Investment and operating costs of binary cycle geothermal power plants

    NASA Technical Reports Server (NTRS)

    Holt, B.; Brugman, J.

    1974-01-01

    Typical investment and operating costs for geothermal power plants employing binary cycle technology and utilizing the heat energy in liquid-dominated reservoirs are discussed. These costs are developed as a function of reservoir temperature. The factors involved in optimizing plant design are discussed. A relationship between the value of electrical energy and the value of the heat energy in the reservoir is suggested.

  6. Tubular SOFC and SOFC/gas turbine combined cycle status and prospects

    SciTech Connect

    Veyo, S.E.; Lundberg, W.L.

    1996-12-31

    Presently under fabrication at Westinghouse for a consortium of Dutch and Danish utilities is the world`s first 100 kWe Solid Oxide Fuel Cell (SOFC) power generation system. This natural gas fueled experimental field unit will be installed near Arnhem, Netherlands, at an auxiliary district heating plant. Electrical generation efficiency of this simple cycle atmospheric pressure system will approach 50% [net ac/LHV]. For larger capacity systems, the horizon for the efficiency (atmospheric pressure) is about 55%. Pressurization would increase the efficiency. Objectives of the analyses reported were: (1) to document the improved performance potential of the two shaft turbine cycle given access to a better recuperator and lower lead losses, (2) to assess the performance of PSOFC/GT combined cycles in the 3 MW plant application that are based on use of a simple single shaft gas turbine having a design-point turbine inlet temperature that closely matches the temperature of the SOFC exhaust gas (about 850 C), (3) to estimate the performance potential of smaller combined cycle power plants employing a single SOFC submodule, and (4) to evaluate the cogeneration potential of such systems.

  7. Overview of the Turbine Based Combined Cycle Discipline

    NASA Technical Reports Server (NTRS)

    Thomas, Scott R.; Walker, James F.; Pittman, James L.

    2009-01-01

    The NASA Fundamental Aeronautics Hypersonics project is focused on technologies for combined cycle, airbreathing propulsions systems to enable reusable launch systems for access to space. Turbine Based Combined Cycle (TBCC) propulsion systems offer specific impulse (Isp) improvements over rocket-based propulsion systems in the subsonic takeoff and return mission segments and offer improved safety. The potential to realize more aircraft-like operations with expanded launch site capability and reduced system maintenance are additional benefits. The most critical TBCC enabling technologies as identified in the National Aeronautics Institute (NAI) study were: 1) mode transition from the low speed propulsion system to the high speed propulsion system, 2) high Mach turbine engine development, 3) transonic aero-propulsion performance, 4) low-Mach-number dual-mode scramjet operation, 5) innovative 3-D flowpath concepts and 6) innovative turbine based combined cycle integration. To address several of these key TBCC challenges, NASA s Hypersonics project (TBCC Discipline) initiated an experimental mode transition task that includes an analytic research endeavor to assess the state-of-the-art of propulsion system performance and design codes. This initiative includes inlet fluid and turbine performance codes and engineering-level algorithms. This effort has been focused on the Combined Cycle Engine Large-Scale Inlet Mode Transition Experiment (CCE LIMX) which is a fully integrated TBCC propulsion system with flow path sizing consistent with previous NASA and DoD proposed Hypersonic experimental flight test plans. This experiment is being tested in the NASA-GRC 10 x 10 Supersonic Wind Tunnel (SWT) Facility. The goal of this activity is to address key hypersonic combined-cycle-engine issues: (1) dual integrated inlet operability and performance issues unstart constraints, distortion constraints, bleed requirements, controls, and operability margins, (2) mode

  8. Integrated Turbine-Based Combined Cycle Dynamic Simulation Model

    NASA Technical Reports Server (NTRS)

    Haid, Daniel A.; Gamble, Eric J.

    2011-01-01

    A Turbine-Based Combined Cycle (TBCC) dynamic simulation model has been developed to demonstrate all modes of operation, including mode transition, for a turbine-based combined cycle propulsion system. The High Mach Transient Engine Cycle Code (HiTECC) is a highly integrated tool comprised of modules for modeling each of the TBCC systems whose interactions and controllability affect the TBCC propulsion system thrust and operability during its modes of operation. By structuring the simulation modeling tools around the major TBCC functional modes of operation (Dry Turbojet, Afterburning Turbojet, Transition, and Dual Mode Scramjet) the TBCC mode transition and all necessary intermediate events over its entire mission may be developed, modeled, and validated. The reported work details the use of the completed model to simulate a TBCC propulsion system as it accelerates from Mach 2.5, through mode transition, to Mach 7. The completion of this model and its subsequent use to simulate TBCC mode transition significantly extends the state-of-the-art for all TBCC modes of operation by providing a numerical simulation of the systems, interactions, and transient responses affecting the ability of the propulsion system to transition from turbine-based to ramjet/scramjet-based propulsion while maintaining constant thrust.

  9. Open cycle gas fired MHD power plants

    SciTech Connect

    Medin, S.A. ); Negrini, F. )

    1991-01-01

    In this paper, the main objectives for the present development of gas fired MHD power generation are considered. The state of the world-wide natural gas consumption and its utilization for electricity production is analyzed. The experimental efforts in gas-fired MHD studies are briefly described. The essential features of the two major world gas-fired MHD project - the Ryazan MHDES-580 (U-500) power plant and the Italian 230 MWt retrofit are presented. New suggestions for improving the efficiency of MHD systems and the theoretical and experimental aspects of MHD development are discussed.

  10. An example of a tailored industrial combined heat and power plant -- The Tarrogona power plant

    SciTech Connect

    Izarny-Gargas, L.

    1998-07-01

    Encouraged by the economic and regulatory context in some European countries like Spain. Middle-sized cogeneration plants known as combined heat and power plants continue to raise the interest of industrial companies. This type of power plant represents a reliable resource for aiding the competitiveness of their owners, using residual thermal energy or producing additional steam for a process, while generating electrical energy. The generated kilowatt-hours feed their own industrial utility, enabling substantial cuts in their energy bill, and sometimes generating profits from sales of electricity to the grid. One salient aspect of this type of project is the request for deep integration in the industrial utility, from the process point of view (exchanges of steam and water, control system interfaces...) as well as from the cultural point of view (compliance with the technical standards and requirements of a given industrial sector...). As a matter of fact, the newly commissioned TARRAGONA combined cycle power plant is representative of what can be achieved in terms of deep integration of a power plant in a petrochemical site. The aim of the present paper is not to provide an exhaustive description of the CHPP of TARRAGONA, rather to expose the most interesting aspects of the project and present the major components at the source of its efficiency and reliability : the FRAME 6B heavy duty gas turbine and the TM-2 steam turbine both manufactured by GEC ALSTHOM and especially adapted to this type of application. The GEC ALSTHOM combined cycle family VEGA X06 is based on these machines.

  11. Coal diesel combined-cycle project. Comprehensive report to Congress: Clean Coal Technology Program

    SciTech Connect

    Not Available

    1994-05-01

    One of the projects selected for funding is a project for the design, construction, and operation of a nominal 90 ton-per-day 14-megawatt electrical (MWe), diesel engine-based, combined-cycle demonstration plant using coal-water fuels (CWF). The project, named the Coal Diesel Combined-Cycle Project, is to be located at a power generation facility at Easton Utilities Commission`s Plant No. 2 in Easton, Talbot County, Maryland, and will use Cooper-Bessemer diesel engine technology. The integrated system performance to be demonstrated will involve all of the subsystems, including coal-cleaning and slurrying systems; a selective catalytic reduction (SCR) unit, a dry flue gas scrubber, and a baghouse; two modified diesel engines; a heat recovery steam generation system; a steam cycle; and the required balance of plant systems. The base feedstock for the project is bituminous coal from Ohio. The purpose of this Comprehensive Report is to comply with Public Law 102-154, which directs the DOE to prepare a full and comprehensive report to Congress on each project selected for award under the CCT-V Program.

  12. Cycle Analysis using Exhaust Heat of SOFC and Turbine Combined Cycle by Absorption Chiller

    NASA Astrophysics Data System (ADS)

    Takezawa, Shinya; Wakahara, Kenji; Araki, Takuto; Onda, Kazuo; Nagata, Susumu

    A power generating efficiency of solid oxide fuel cell (SOFC) and gas turbine combined cycle is fairly high. However, the exhaust gas temperature of the combined cycle is still high, about 300°C. So it should be recovered for energy saving, for example, by absorption chiller. The energy demand for refrigeration cooling is recently increasing year by year in Japan. Then, we propose here a cogeneration system by series connection of SOFC, gas turbine and LiBr absorption chiller to convert the exhaust heat to the cooling heat. As a result of cycle analysis of the combined system with 500kW class SOFC, the bottoming single-effect absorption chiller can produce the refrigerating capacity of about 120kW, and the double-effect absorption chiller can produce a little higher refrigerating capacity of about 130kW without any additional fuel. But the double-effect absorption chiller became more expensive and complex than the single-effect chiller.

  13. Gas turbine and combined-cycle capacity enhancement

    SciTech Connect

    1995-01-01

    This report presents interim results of a study of capacity enhancement of gas turbines and combined cycles. A portion of the study is based on a tailored collaboration study for Missouri Public Service. The techniques studied include water injection, steam injection, increased firing temperature, supercharging, and inlet cooling for the gas turbines. The inlet cooling approaches cover evaporative cooling with and without media, water cooling, thermal energy storage (TES) systems using ice or water and continuous refrigeration. Results are given for UTC FT4/GG4, GE MS5001, MS7001, W501 and W251 gas turbines. Duct firing of a three-pressure HRSG for peaking capacity is investigated. The GE PG7221(FA) is used as the reference gas turbine for this combined cycle. The results to-date indicate that the utilities have a number of viable options for capacity enhancement that are dependent on the mission of the gas turbine, local climate, and the design of the gas turbine.

  14. Analysis of energetic and exergetic efficiency, and environmental benefits of biomass integrated gasification combined cycle technology.

    PubMed

    Mínguez, María; Jiménez, Angel; Rodríguez, Javier; González, Celina; López, Ignacio; Nieto, Rafael

    2013-04-01

    The problem of the high carbon dioxide emissions linked to power generation makes necessary active research on the use of biofuels in gas turbine systems as a promising alternative to fossil fuels. Gasification of biomass waste is particularly of interest in obtaining a fuel to be run in gas turbines, as it is an efficient biomass-to-biofuel conversion process, and an integration into a combined cycle power plant leads to a high performance with regard to energetic efficiency. The goal of this study was to carry out an energetic, exergetic and environmental analysis of the behaviour of an integrated gasification combined cycle (IGCC) plant fuelled with different kinds of biomass waste by means of simulations. A preliminary economic study is also included. Although a technological development in gasification technology is necessary, the results of simulations indicate a high technical and environmental interest in the use of biomass integrated gasification combined cycle (BioIGCC) systems for large-scale power generation from biomass waste. PMID:23444152

  15. The NASA ASTP Combined-Cycle Propulsion Database Project

    NASA Technical Reports Server (NTRS)

    Hyde, Eric H.; Escher, Daric W.; Heck, Mary T.; Roddy, Jordan E.; Lyles, Garry (Technical Monitor)

    2000-01-01

    The National Aeronautics and Space Administration (NASA) communicated its long-term R&D goals for aeronautics and space transportation technologies in its 1997-98 annual progress report (Reference 1). Under "Pillar 3, Goal 9" a 25-year-horizon set of objectives has been stated for the Generation 3 Reusable Launch Vehicle ("Gen 3 RLV") class of space transportation systems. An initiative referred to as "Spaceliner 100" is being conducted to identify technology roadmaps in support of these objectives. Responsibility for running "Spaceliner 100" technology development and demonstration activities have been assigned to NASA's agency-wide Advanced Space Transportation Program (ASTP) office located at the Marshall Space Flight Center. A key technology area in which advances will be required in order to meet these objectives is propulsion. In 1996, in order to expand their focus beyond "allrocket" propulsion systems and technologies (see Appendix A for further discussion), ASTP initiated technology development and demonstration work on combined-cycle airbreathing/rocket propulsion systems (ARTT Contracts NAS8-40890 through 40894). Combined-cycle propulsion (CCP) activities (see Appendix B for definitions) have been pursued in the U.S. for over four decades, resulting in a large documented knowledge base on this subject (see Reference 2). In the fall of 1999 the Combined-Cycle Propulsion Database (CCPD) project was established with the primary purpose of collecting and consolidating CCP related technical information in support of the ASTP's ongoing technology development and demonstration program. Science Applications International Corporation (SAIC) was selected to perform the initial development of the Database under its existing support contract with MSFC (Contract NAS8-99060) because of the company's unique combination of capabilities in database development, information technology (IT) and CCP knowledge. The CCPD is summarized in the descriptive 2-page flyer appended

  16. Sacramento Power Authority experience of building and testing a successful turn key combined cycle project

    SciTech Connect

    Maring, J.; Yost, J.; Zachary, J.

    1998-07-01

    The following paper will describe a combined cycle power plant providing power and steam to a food processing plant. The project owner is Sacramento Power Authority in Sacramento, California, USA. A consortium led by Siemens supplied the equipment and provided the turn key project management. The project was completed in 23 months and the plant was released for dispatch 3 weeks ahead of schedule. The formal performance tests conducted in December 1997, indicated a better net output and a lower net heat rate from the guaranteed values. The thermal acceptance test procedure was in full compliance with the new Performance Test Code PTC-46 of the American Society of Mechanical Engineers (ASME) for combined cycle power plant testing, issued in 1996 and also met all the requirements of ISO 2314 Procedure. The paper will also discuss the performance of an evaporative cooler, used to lower compressor air inlet temperature and the methodology used to reduce the additional instrumentation uncertainty associated with such devices. The paper will also deal with the unique environmental emissions restrictions imposed on the project.

  17. Auxiliary steam supply and process steam extraction at the combined-cycle unit Moerdijk/The Netherlands

    SciTech Connect

    Toebes, J.A.; Beker, M.J.W.; Puts, J.J.

    1998-07-01

    The first combined-cycle plant to be operated in combination with a waste-to-energy (WTE) plant has been built by the Dutch electric power utility N.V. Electriciteits-Produktiemaatschappij Zuid-Nederland (N.V. EPZ). Steam generated by the combustion of municipal waste is supplied to the heat recovery steam generators of the combined cycle unit. In addition to generating electric power for the public grid, the plant also supplies process steam to a neighboring chemical plant. The combination results in nearly 70% utilization of the energy contained in the natural gas fuel. The plant has a maximum electrical output of 339 MW and reduces annual natural gas consumption by approximately 40 million cubic meters which corresponds to a CO{sub 2} emission reduction of nearly 100,000 metric tons per year. The combined-cycle plant started operation in mid 1996 and during the first two years of operation showed heat consumption and emission levels in conformity with requirements. This paper presents the integrated concept and the main operating results.

  18. New high efficiency low capital coal fueled combined cycle using existing CFBs and large gas turbines

    SciTech Connect

    Rohrer, J.W.

    1999-07-01

    Advanced Coal Power Technologies (IGCC, PFBII, and HIPPS) despite over two decades of technical development, have seen a disappointing lack of commercial (unsubsidized) utilization. Pulverized coal (PC) steam cycles still dominate because of the intrinsic high capital cost of advanced coal technologies. Recent studies have shown that partial gasification combined cycles yield higher efficiencies than full gasification IGCC cycles. They also show that atmospheric CFB combustors suffer little or no efficiency penalty versus pressurized combustors (and have substantially lower capital costs) because turbine exhaust heat can be fully recovered as the combustion air supply for atmospheric combustors. One new atmospheric partial gasification combined cycle is particularly promising from both a capital cost and efficiency basis. It integrates existing coal atmospheric CFB boiler technology with conventional simple cycle high temperature gas turbines. The CFB boiler also supplies hot bed material to an inexpensive raw coal devolatilizer riser tube which produces a medium-high BTU turbine fuel gas without the need for an expensive power robbing oxygen plant.

  19. Proposing a novel combined cycle for optimal exergy recovery of liquefied natural gas

    NASA Astrophysics Data System (ADS)

    Salimpour, M. R.; Zahedi, M. A.

    2012-08-01

    The effective utilization of the cryogenic exergy associated with liquefied natural gas (LNG) vaporization is important. In this paper, a novel combined power cycle is proposed which utilizes LNG in different ways to enhance the power generation of a power plant. In addition to the direct expansion in the appropriate expander, LNG is used as a low-temperature heat sink for a middle-pressure gas cycle which uses nitrogen as working fluid. Also, LNG is used to cool the inlet air of an open Brayton gas turbine cycle. These measures are accomplished to improve the exergy recovery of LNG. In order to analyze the performance of the system, the influence of several key parameters such as pressure ratio of LNG turbine, ratio of the mass flow rate of LNG to the mass flow rate of air, pressure ratio of different compressors, LNG pressure and inlet pressure of nitrogen compressor, on the thermal efficiency and exergy efficiency of the offered cycle is investigated. Finally, the proposed combined cycle is optimized on the basis of first and second laws of thermodynamics.

  20. Method of optimizing performance of Rankine cycle power plants

    DOEpatents

    Pope, William L.; Pines, Howard S.; Doyle, Padraic A.; Silvester, Lenard F.

    1982-01-01

    A method for efficiently operating a Rankine cycle power plant (10) to maximize fuel utilization efficiency or energy conversion efficiency or minimize costs by selecting a turbine (22) fluid inlet state which is substantially in the area adjacent and including the transposed critical temperature line (46).

  1. Complex technical and economic studies of combined-cycle units with flow gasifiers

    NASA Astrophysics Data System (ADS)

    Nakoryakov, V. E.; Nozdrenko, G. V.; Shchinnikov, P. A.; Borush, O. V.; Kuz'min, A. G.

    2010-12-01

    The method for determining the technical and economical indices of combined-cycle power plants (CCPPs) operating on coal with a low-charged steam generator and with a flow gasifier in combined production of electricity and heat, synthesis gas and hydrogen is considered. The results of analysis are presented and it is shown that such CCPPs have a higher technical and economical efficiency as compared to cogeneration plants (CPs) operating on pulverized coal and reconstructed with a gas-turbine topping. The material of this article is prepared in the framework of the Federal Targeted Program "Scientific and Scientific-Pedagogical Specialists of Innovative Russia for 2009-2013," application 1.2.2, the program "Research Works on Production of Fuels and Power from Organic Raw Materials."

  2. Comparison of Engine Cycle Codes for Rocket-Based Combined Cycle Engines

    NASA Technical Reports Server (NTRS)

    Waltrup, Paul J.; Auslender, Aaron H.; Bradford, John E.; Carreiro, Louis R.; Gettinger, Christopher; Komar, D. R.; McDonald, J.; Snyder, Christopher A.

    2002-01-01

    This paper summarizes the results from a one day workshop on Rocket-Based Combined Cycle (RBCC) Engine Cycle Codes held in Monterey CA in November of 2000 at the 2000 JANNAF JPM with the authors as primary participants. The objectives of the workshop were to discuss and compare the merits of existing Rocket-Based Combined Cycle (RBCC) engine cycle codes being used by government and industry to predict RBCC engine performance and interpret experimental results. These merits included physical and chemical modeling, accuracy and user friendliness. The ultimate purpose of the workshop was to identify the best codes for analyzing RBCC engines and to document any potential shortcomings, not to demonstrate the merits or deficiencies of any particular engine design. Five cases representative of the operating regimes of typical RBCC engines were used as the basis of these comparisons. These included Mach 0 sea level static and Mach 1.0 and Mach 2.5 Air-Augmented-Rocket (AAR), Mach 4 subsonic combustion ramjet or dual-mode scramjet, and Mach 8 scramjet operating modes. Specification of a generic RBCC engine geometry and concomitant component operating efficiencies, bypass ratios, fuel/oxidizer/air equivalence ratios and flight dynamic pressures were provided. The engine included an air inlet, isolator duct, axial rocket motor/injector, axial wall fuel injectors, diverging combustor, and exit nozzle. Gaseous hydrogen was used as the fuel with the rocket portion of the system using a gaseous H2/O2 propellant system to avoid cryogenic issues. The results of the workshop, even after post-workshop adjudication of differences, were surprising. They showed that the codes predicted essentially the same performance at the Mach 0 and I conditions, but progressively diverged from a common value (for example, for fuel specific impulse, Isp) as the flight Mach number increased, with the largest differences at Mach 8. The example cases and results are compared and discussed in this paper.

  3. Coal-gasification/MHD/steam-turbine combined-cycle (GMS) power generation

    SciTech Connect

    Lytle, J.M.; Marchant, D.D.

    1980-11-01

    The coal-gasification/MHD/steam-turbine combined cycle (GMS) refers to magnetohydrodynamic (MHD) systems in which coal gasification is used to supply a clean fuel (free of mineral matter and sulfur) for combustion in an MHD electrical power plant. Advantages of a clean-fuel system include the elimination of mineral matter or slag from all components other than the coal gasifier and gas cleanup system; reduced wear and corrosion on components; and increased seed recovery resulting from reduced exposure of seed to mineral matter or slag. Efficiencies in some specific GMS power plants are shown to be higher than for a comparably sized coal-burning MHD power plant. The use of energy from the MHD exhaust gas to gasify coal (rather than the typical approach of burning part of the coal) results in these higher efficiencies.

  4. Off-design performance of a hydro-combined cycle powerplant

    SciTech Connect

    Bettagli, N.; Bosio, A.; Carcasci, C.

    1994-12-31

    A coastal-sited hydraulic gas turbine (HGT) power-generating plant that smoothly adjusts to variations in energy demand is presented. In the proposed plant, a combined gas-steam plant, with a three-pressure bottomer cycle, is mechanically connected to the hydraulic turbine and pump, thereby providing easy regulation of the output power through the hydraulic section rather than, as current practice, through the thermal section. In addition, the turbine bleed is processed in a multiflash desalinator to produce desalinated water. The objectives of this work were: to optimize the pressure bleed; to size the multiflash desalinator; to evaluate the off-design performance of the desalinator and the hydraulic system.

  5. Gasification combined cycle: Carbon dioxide recovery, transport, and disposal

    SciTech Connect

    Doctor, R.D.; Molburg, J.C.; Thimmapuram, P.; Berry, G.F.; Livengood, C.D. ); Johnson, R.A. )

    1993-01-01

    Initiatives to limit carbon dioxide (CO[sub 2]) emissions have drawn considerable interest to integrated gasification combined-cycle (IGCC) power generation. This process can reduce C0[sub 2] production because of its higher efficiency, and it is amenable to C0[sub 2] capture, because C0[sub 2] can be removed before combustion and the associated dilution with atmospheric nitrogen. This paper presents a process-design baseline that encompasses the IGCC system, C0[sub 2] transport by pipeline, and land-based sequestering of C0[sub 2] in geological reservoirs.The intent of this study is to provide the C0[sub 2] budget, or an equivalent C0[sub 2]'' budget, associated with each of the individual energy-cycle steps. Design capital and operating costs for the process are included in the full study but are not reported in the present paper. The value used for the equivalent C0[sub 2]'' budget will be 1 kg C0[sub 2]/kWh[sub e].

  6. Combined glucose ingestion and mouth rinsing improves sprint cycling performance.

    PubMed

    Chong, Edwin; Guelfi, Kym J; Fournier, Paul A

    2014-12-01

    This study investigated whether combined ingestion and mouth rinsing with a carbohydrate solution could improve maximal sprint cycling performance. Twelve competitive male cyclists ingested 100 ml of one of the following solutions 20 min before exercise in a randomized double-blinded counterbalanced order (a) 10% glucose solution, (b) 0.05% aspartame solution, (c) 9.0% maltodextrin solution, or (d) water as a control. Fifteen min after ingestion, repeated mouth rinsing was carried out with 11 × 15 ml bolus doses of the same solution at 30-s intervals. Each participant then performed a 45-s maximal sprint effort on a cycle ergometer. Peak power output was significantly higher in response to the glucose trial (1188 ± 166 W) compared with the water (1036 ± 177 W), aspartame (1088 ± 128 W) and maltodextrin (1024 ± 202 W) trials by 14.7 ± 10.6, 9.2 ± 4.6 and 16.0 ± 6.0% respectively (p < .05). Mean power output during the sprint was significantly higher in the glucose trial compared with maltodextrin (p < .05) and also tended to be higher than the water trial (p = .075). Glucose and maltodextrin resulted in a similar increase in blood glucose, and the responses of blood lactate and pH to sprinting did not differ significantly between treatments (p > .05). These findings suggest that combining the ingestion of glucose with glucose mouth rinsing improves maximal sprint performance. This ergogenic effect is unlikely to be related to changes in blood glucose, sweetness, or energy sensing mechanisms in the gastrointestinal tract. PMID:24668608

  7. Parametric Study Conducted of Rocket- Based, Combined-Cycle Nozzles

    NASA Technical Reports Server (NTRS)

    Steffen, Christopher J., Jr.; Smith, Timothy D.

    1998-01-01

    Having reached the end of the 20th century, our society is quite familiar with the many benefits of recycling and reusing the products of civilization. The high-technology world of aerospace vehicle design is no exception. Because of the many potential economic benefits of reusable launch vehicles, NASA is aggressively pursuing this technology on several fronts. One of the most promising technologies receiving renewed attention is Rocket-Based, Combined-Cycle (RBCC) propulsion. This propulsion method combines many of the efficiencies of high-performance jet aircraft with the power and high-altitude capability of rocket engines. The goal of the present work at the NASA Lewis Research Center is to further understand the complex fluid physics within RBCC engines that govern system performance. This work is being performed in support of NASA's Advanced Reusable Technologies program. A robust RBCC engine design optimization demands further investigation of the subsystem performance of the engine's complex propulsion cycles. The RBCC propulsion system under consideration at Lewis is defined by four modes of operation in a singlestage- to-orbit configuration. In the first mode, the engine functions as a rocket-driven ejector. When the rocket engine is switched off, subsonic combustion (mode 2) is present in the ramjet mode. As the vehicle continues to accelerate, supersonic combustion (mode 3) occurs in the ramjet mode. Finally, as the edge of the atmosphere is approached and the engine inlet is closed off, the rocket is reignited and the final accent to orbit is undertaken in an all-rocket mode (mode 4). The performance of this fourth and final mode is the subject of this present study. Performance is being monitored in terms of the amount of thrust generated from a given amount of propellant.

  8. Design and operation of a geopressurized-geothermal hybrid cycle power plant

    SciTech Connect

    Campbell, R.G.; Hattar, M.M.

    1991-02-01

    Geopressured-geothermal resources can contribute significantly to the national electricity supply once technical and economic obstacles are overcome. Power plant performance under the harsh conditions of a geopressured resource was unproven, so a demonstration power plant was built and operated on the Pleasant Bayou geopressured resource in Texas. This one megawatt facility provided valuable data over a range of operating conditions. This power plant was a first-of-a-kind demonstration of the hybrid cycle concept. A hybrid cycle was used to take advantage of the fact that geopressured resources contain energy in more than one form -- hot water and natural gas. Studies have shown that hybrid cycles can yield thirty percent more power than stand-alone geothermal and fossil fuel power plants operating on the same resource. In the hybrid cycle at Pleasant Bayou, gas was burned in engines to generate electricity directly. Exhaust heat from the engines was then combined with heat from the brine to generate additional electricity in a binary cycle. Heat from the gas engine was available at high temperature, thus improving the efficiency of the binary portion of the hybrid cycle. Design power output was achieved, and 3445 MWh of power were sold to the local utility over the course of the test. Plant availability was 97.5% and the capacity factor was over 80% for the extended run at maximum power production. The hybrid cycle power plant demonstrated that there are no technical obstacles to electricity generation at Pleasant Bayou. 14 refs., 38 figs., 16 tabs.

  9. Externally-fired combined cycle: An effective coal fueled technology for repowering and new generation

    SciTech Connect

    Stoddard, L.E.; Bary, M.R.; Gray, K.M.; LaHaye, P.G.

    1995-06-01

    The Externally-Fired Combined Cycle (EFCC) is an attractive emerging technology for powering high efficiency combined gas and steam turbine cycles with coal or other ash bearing fuels. In the EFCC, the heat input to a gas turbine is supplied indirectly through a ceramic air heater. The air heater, along with an atmospheric coal combustor and ancillary equipment, replaces the conventional gas turbine combustor. A steam generator located downstream from the ceramic air heater and steam turbine cycle, along with an exhaust cleanup system, completes the combined cycle. A key element of the EFCC Development Program, the 25 MMBtu/h heat-input Kennebunk Test Facility (KTF), has recently begun operation. The KTF has been operating with natural gas and will begin operating with coal in early 1995. The US Department of Energy selected an EFCC repowering of the Pennsylvania Electric Company`s Warren Station for funding under the Clean Coal Technology Program Round V. The project focuses on repowering an existing 48 MW (gross) steam turbine with an EFCC power island incorporating a 30 MW gas turbine, for a gross power output of 78 MW and a net output of 72 MW. The net plant heat rate will be decreased by approximately 30% to below 9,700 Btu/kWh. Use of a dry scrubber and fabric filter will reduce sulfur dioxide (SO{sub 2}) and particulate emissions to levels under those required by the Clean Air Act Amendments (CAAA) of 1990. Nitrogen oxides (NO{sub x}) emissions are controlled by the use of staged combustion. The demonstration project is currently in the engineering phase, with startup scheduled for 1997. This paper discusses the background of the EFCC, the KTF, the Warren Station EFCC Clean Coal Technology Demonstration Project, the commercial plant concept, and the market potential for the EFCC.

  10. Simulated performance of biomass gasification based combined power and refrigeration plant for community scale application

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, S.; Mondal, P.; Ghosh, S.

    2016-07-01

    Thermal performance analysis and sizing of a biomass gasification based combined power and refrigeration plant (CPR) is reported in this study. The plant is capable of producing 100 kWe of electrical output while simultaneously producing a refrigeration effect, varying from 28-68 ton of refrigeration (TR). The topping gas turbine cycle is an indirectly heated all-air cycle. A combustor heat exchanger duplex (CHX) unit burns producer gas and transfer heat to air. This arrangement avoids complex gas cleaning requirements for the biomass-derived producer gas. The exhaust air of the topping GT is utilized to run a bottoming ammonia absorption refrigeration (AAR) cycle via a heat recovery steam generator (HRSG), steam produced in the HRSG supplying heat to the generator of the refrigeration cycle. Effects of major operating parameters like topping cycle pressure ratio (rp) and turbine inlet temperature (TIT) on the energetic performance of the plant are studied. Energetic performance of the plant is evaluated via energy efficiency, required biomass consumption and fuel energy savings ratio (FESR). The FESR calculation method is significant for indicating the savings in fuel of a combined power and process heat plant instead of separate plants for power and process heat. The study reveals that, topping cycle attains maximum power efficiency of 30%in pressure ratio range of 8-10. Up to a certain value of pressure ratio the required air flow rate through the GT unit decreases with increase in pressure ratio and then increases with further increase in pressure ratio. The capacity of refrigeration of the AAR unit initially decreases up to a certain value of topping GT cycle pressure ratio and then increases with further increase in pressure ratio. The FESR is found to be maximized at a pressure ratio of 9 (when TIT=1100°C), the maximum value being 53%. The FESR is higher for higher TIT. The heat exchanger sizing is also influenced by the topping cycle pressure ratio and GT-TIT.

  11. Environmental footprints and costs of coal-based integrated gasification combined cycle and pulverized coal technologies

    SciTech Connect

    2006-07-15

    The report presents the results of a study to establish the environmental footprint and costs of the coal-based integrated gasification combined cycle (IGCC) technology relative to the conventional pulverized coal (PC) technologies. The technology options evaluated are restricted to those that are projected by the authors to be commercially applied by 2010. The IGCC plant configurations include coal slurry-based and dry coal-based, oxygen-blown gasifiers. The PC plant configurations include subcritical, supercritical, and ultra-supercritical boiler designs. All study evaluations are based on the use of three different coals: bituminous, sub-bituminous, and lignite. The same electric generating capacity of 500 MW is used for each plant configuration. State-of-the-art environmental controls are also included as part of the design of each plant. The environmental comparisons of IGCC and PC plants are based on thermal performance, emissions of criteria and non-criteria air pollutants, solid waste generation rates, and water consumption and wastewater discharge rates associated with each plant. The IGCC plants in these comparisons include NOX and SO{sub 2} controls considered viable for 2010 deployment. In addition, the potential for use of other advanced controls, specifically the selective catalytic reduction system for NOX reduction and the ultra-efficient Selexol and Rectisol systems for SO{sub 2} reduction, is also investigated. The cost estimates presented in the report include capital and operating costs for each IGCC and PC plant configuration. Cost impacts of using the advanced NOx and SO{sub 2} controls are included. The report provides an assessment of the CO{sub 2} capture and sequestration potential for the IGCC and PC plants. A review of the technical and economic aspects of CO{sub 2} capture technologies is included. 20 refs., 75 figs., 3 apps.

  12. A Combined Experimental/Computational Investigation of a Rocket Based Combined Cycle Inlet

    NASA Technical Reports Server (NTRS)

    Smart, Michael K.; Trexler, Carl A.; Goldman, Allen L.

    2001-01-01

    A rocket based combined cycle inlet geometry has undergone wind tunnel testing and computational analysis with Mach 4 flow at the inlet face. Performance parameters obtained from the wind tunnel tests were the mass capture, the maximum back-pressure, and the self-starting characteristics of the inlet. The CFD analysis supplied a confirmation of the mass capture, the inlet efficiency and the details of the flowfield structure. Physical parameters varied during the test program were cowl geometry, cowl position, body-side bleed magnitude and ingested boundary layer thickness. An optimum configuration was determined for the inlet as a result of this work.

  13. Portland General Electric Beaver synfuels project a coal gasification combined cycle methanol facility development program

    SciTech Connect

    Skov, E.R.; Yott, R.A.; Clancy, G.M.

    1981-01-01

    The Beaver coal gasification facility is currently undergoing preliminary engineering and feasibility analysis. Based on the existing 600 MW (nominal) Beaver combined cycle generating station and the adjacent plant site, which is eminently suitable for receiving and storage of subbituminous coal from either Alaska or Wyoming, a non-integrated CGCC facility combined with a methanol plant for increased utilization of the plant facilities and capital investment looks attractive for the 1987 time frame and forward. The CGCC facility would be environmentally benign since the gasification process inherently permits removal of essentially all sulfur, metals and particulate matter. The association with a methanol plant permits a high utilization factor of the overall CGCC-methanol facility. The beaver coal gasification facility will produce 60 billion Btu/day of MBG equivalent to about 300MWe, plus 1,750 Ton/D methanol, 10 million SCP/D SNG, nd 90 Ton/Day ammonia from about 11,000 Ton/Day subbituminous coal. The products are forecast to be competitively marketed in the region. The project could be implemented on a six year schedule, and a preliminary economic evaluation indicated that the products can be competitive with gas and oil for the 1988 time frame and beyond. 6 refs.

  14. Rocket-Based Combined Cycle Engine Concept Development

    NASA Technical Reports Server (NTRS)

    Ratekin, G.; Goldman, Allen; Ortwerth, P.; Weisberg, S.; McArthur, J. Craig (Technical Monitor)

    2001-01-01

    The development of rocket-based combined cycle (RBCC) propulsion systems is part of a 12 year effort under both company funding and contract work. The concept is a fixed geometry integrated rocket, ramjet, scramjet, which is hydrogen fueled and uses hydrogen regenerative cooling. The baseline engine structural configuration uses an integral structure that eliminates panel seals, seal purge gas, and closeout side attachments. Engine A5 is the current configuration for NASA Marshall Space Flight Center (MSFC) for the ART program. Engine A5 models the complete flight engine flowpath of inlet, isolator, airbreathing combustor, and nozzle. High-performance rocket thrusters are integrated into the engine enabling both low speed air-augmented rocket (AAR) and high speed pure rocket operation. Engine A5 was tested in GASL's new Flight Acceleration Simulation Test (FAST) facility in all four operating modes, AAR, RAM, SCRAM, and Rocket. Additionally, transition from AAR to RAM and RAM to SCRAM was also demonstrated. Measured performance demonstrated vision vehicle performance levels for Mach 3 AAR operation and ramjet operation from Mach 3 to 4. SCRAM and rocket mode performance was above predictions. For the first time, testing also demonstrated transition between operating modes.

  15. Detritivores ameliorate the enhancing effect of plant-based trophic cascades on nitrogen cycling in an old-field system.

    PubMed

    Buchkowski, Robert W; Schmitz, Oswald J

    2015-04-01

    Nitrogen (N) cycling is a fundamental process central to numerous ecosystem functions and services. Accumulating evidence suggests that species within detritus- and plant-based food chains can play an instrumental role in regulating this process. However, the effects of each food chain are usually examined in isolation of each other, so it remains uncertain if their effects are equally important or if one chain exerts predominant control. We experimentally manipulated the species composition of detritus-based (isopods and spiders) and plant-based (grasshoppers and spiders) food chains individually and in combination within mesocosms containing plants and microbes from an old-field ecosystem. We tested: (i) their relative impact on N cycling, and (ii) whether interactions between them moderated the influence of one group or the other. We found that spiders in plant-based food chains exerted the only positive effect on N cycling. Detritus-based food chains had no net effects on N cycling but, when combined with plant-based food chains, ameliorated the positive effects of plant-based species. Our results suggest that detritus-based food chains may ultimately limit rates of N cycling by eroding the enhancing effects of plant-based food chains when antagonistic interactions between detritus- and plant-based species exist. PMID:25878045

  16. Detritivores ameliorate the enhancing effect of plant-based trophic cascades on nitrogen cycling in an old-field system

    PubMed Central

    Buchkowski, Robert W.; Schmitz, Oswald J.

    2015-01-01

    Nitrogen (N) cycling is a fundamental process central to numerous ecosystem functions and services. Accumulating evidence suggests that species within detritus- and plant-based food chains can play an instrumental role in regulating this process. However, the effects of each food chain are usually examined in isolation of each other, so it remains uncertain if their effects are equally important or if one chain exerts predominant control. We experimentally manipulated the species composition of detritus-based (isopods and spiders) and plant-based (grasshoppers and spiders) food chains individually and in combination within mesocosms containing plants and microbes from an old-field ecosystem. We tested: (i) their relative impact on N cycling, and (ii) whether interactions between them moderated the influence of one group or the other. We found that spiders in plant-based food chains exerted the only positive effect on N cycling. Detritus-based food chains had no net effects on N cycling but, when combined with plant-based food chains, ameliorated the positive effects of plant-based species. Our results suggest that detritus-based food chains may ultimately limit rates of N cycling by eroding the enhancing effects of plant-based food chains when antagonistic interactions between detritus- and plant-based species exist. PMID:25878045

  17. Life Cycle Cost Analysis of Ready Mix Concrete Plant

    NASA Astrophysics Data System (ADS)

    Topkar, V. M.; Duggar, A. R.; Kumar, A.; Bonde, P. P.; Girwalkar, R. S.; Gade, S. B.

    2013-11-01

    India, being a developing nation is experiencing major growth in its infrastructural sector. Concrete is the major component in construction. The requirement of good quality of concrete in large quantities can be fulfilled by ready mix concrete batching and mixing plants. The paper presents a technique of applying the value engineering tool life cycle cost analysis to a ready mix concrete plant. This will help an investor or an organization to take investment decisions regarding a ready mix concrete facility. No economic alternatives are compared in this study. A cost breakdown structure is prepared for the ready mix concrete plant. A market survey has been conducted to collect realistic costs for the ready mix concrete facility. The study establishes the cash flow for the ready mix concrete facility helpful in investment and capital generation related decisions. Transit mixers form an important component of the facility and are included in the calculations. A fleet size for transit mixers has been assumed for this purpose. The life cycle cost has been calculated for the system of the ready mix concrete plant and transit mixers.

  18. Wabash River Coal Gasification Combined Cycle Repowering Project: Clean Coal Technology Program. Environmental Assessment

    SciTech Connect

    Not Available

    1993-05-01

    The proposed project would result in a combined-cycle power plant with lower emissions and higher efficiency than most existing coal-fired power plants of comparable size. The net plant heat rate (energy content of the fuel input per useable electrical generation output; i.e., Btu/kilowatt hour) for the new repowered unit would be a 21% improvement over the existing unit, while reducing SO{sub 2} emissions by greater than 90% and limiting NO{sub x} emissions by greater than 85% over that produced by conventional coal-fired boilers. The technology, which relies on gasified coal, is capable of producing as much as 25% more electricity from a given amount of coal than today`s conventional coal-burning methods. Besides having the positive environmental benefit of producing less pollutants per unit of power generated, the higher overall efficiency of the proposed CGCC project encourages greater utilization to meet base load requirements in order to realize the associated economic benefits. This greater utilization (i.e., increased capacity factor) of a cleaner operating plant has global environmental benefits in that it is likely that such power would replace power currently being produced by less efficient plants emitting a greater volume of pollutants per unit of power generated.

  19. Improving geothermal power plants with a binary cycle

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.; Sorokina, E. V.

    2015-12-01

    The recent development of binary geothermal technology is analyzed. General trends in the introduction of low-temperature geothermal sources are summarized. The use of single-phase low-temperature geothermal fluids in binary power plants proves possible and expedient. The benefits of power plants with a binary cycle in comparison with traditional systems are shown. The selection of the working fluid is considered, and the influence of the fluid's physicochemical properties on the design of the binary power plant is discussed. The design of binary power plants is based on the chemical composition and energy potential of the geothermal fluids and on the landscape and climatic conditions at the intended location. Experience in developing a prototype 2.5 MW Russian binary power unit at Pauzhetka geothermal power plant (Kamchatka) is outlined. Most binary systems are designed individually for a specific location. Means of improving the technology and equipment at binary geothermal power plants are identified. One option is the development of modular systems based on several binary systems that employ the heat from the working fluid at different temperatures.

  20. 6. INTERIOR VIEW OF CROSSCUT HYDRO PLANT, SHOWING 25 CYCLE60 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. INTERIOR VIEW OF CROSSCUT HYDRO PLANT, SHOWING 25 CYCLE-60 CYCLE FREQUENCY CHANGER Photographer unknown, December 14, 1940 - Cross Cut Hydro Plant, North Side of Salt River, Tempe, Maricopa County, AZ

  1. Experimental investigation of an ammonia-based combined power and cooling cycle

    NASA Astrophysics Data System (ADS)

    Tamm, Gunnar Olavi

    A novel ammonia-water thermodynamic cycle, capable of producing both power and refrigeration, was proposed by D. Yogi Goswami. The binary mixture exhibits variable boiling temperatures during the boiling process, which leads to a good thermal match between the heating fluid and working fluid for efficient heat source utilization. The cycle can be driven by low temperature sources such as solar, geothermal, and waste heat from a conventional power cycle, reducing the reliance on high temperature sources such as fossil fuels. A theoretical simulation of the cycle at heat source temperatures obtainable from low and mid temperature solar collectors showed that the ideal cycle could produce power and refrigeration at a maximum exergy efficiency, defined as the ratio of the net work and refrigeration output to the change in availability of the heat source, of over 60%. The exergy efficiency is a useful measure of the cycle's performance as it compares the effectiveness of different cycles in harnessing the same source. An experimental system was constructed to demonstrate the feasibility of the cycle and to compare the experimental results with the theoretical simulations. In this first phase of experimentation, the turbine expansion was simulated with a throttling valve and a heat exchanger. Results showed that the vapor generation and absorption condensation processes work experimentally. The potential for combined turbine work and refrigeration output was evidenced in operating the system. Analysis of losses led to modifications in the system design, which were implemented to yield improvements in heat exchange, vapor generation, pump performance and overall stability. The research that has been conducted verifies the potential of the power and cooling cycle as an alternative to using conventional fossil fuel technologies. The research that continues is to further demonstrate the concept and direct it towards industry. On the large scale, the cycle can be used for

  2. An inlet air washer/chiller system for combined cycle planet repowering

    SciTech Connect

    Sengupta, U.; Soroka, G. )

    1989-01-01

    A conditioning method to achieve increased output at any relative humidity condition is an air washer and absorption chiller arrangement. At elevated temperatures and low humidity, the air washer operates as an evaporative cooler without the chiller in operation. In this mode, the air washer will give similar results as a media type evaporative cooler at a fraction of the pressure loss. In the air washer plus chiller operating mode the chiller maintains cooling effectiveness of the air washer during periods of high relative humidity. This makes such a system very appropriate anywhere relative humidity is high. Many combined cycle plants utilize supplemental firing of the heat recovery steam generators to offset the loss of gas turbine power at high ambient temperatures. This paper shows that in contrast to supplementary firing, the combination air washer/chiller system can generate power more efficiently and at lower cost.

  3. Research on Chinese life cycle-based wind power plant environmental influence prevention measures.

    PubMed

    Wang, Hanxi; Xu, Jianling; Liu, Yuanyuan; Zhang, Tian

    2014-08-01

    The environmental impact of wind power plants over their life cycle is divided into three stages: construction period, operation period and retired period. The impact is mainly reflected in ecological destruction, noise pollution, water pollution and the effect on bird migration. In response to these environmental effects, suggesting reasonable locations, reducing plant footprint, optimizing construction programs, shielding noise, preventing pollution of terrestrial ecosystems, implementing combined optical and acoustical early warning signals, making synthesized use of power generation equipment in the post-retired period and using other specific measures, including methods involving governance and protection efforts to reduce environmental pollution, can be performed to achieve sustainable development. PMID:25153474

  4. Research on Chinese Life Cycle-Based Wind Power Plant Environmental Influence Prevention Measures

    PubMed Central

    Wang, Hanxi; Xu, Jianling; Liu, Yuanyuan; Zhang, Tian

    2014-01-01

    The environmental impact of wind power plants over their life cycle is divided into three stages: construction period, operation period and retired period. The impact is mainly reflected in ecological destruction, noise pollution, water pollution and the effect on bird migration. In response to these environmental effects, suggesting reasonable locations, reducing plant footprint, optimizing construction programs, shielding noise, preventing pollution of terrestrial ecosystems, implementing combined optical and acoustical early warning signals, making synthesized use of power generation equipment in the post-retired period and using other specific measures, including methods involving governance and protection efforts to reduce environmental pollution, can be performed to achieve sustainable development. PMID:25153474

  5. KRW oxygen-blown gasification combined cycle: Carbon dioxide recovery, transport, and disposal

    SciTech Connect

    Doctor, R.D.; Molburg, J.C.; Thimmapuram, P.R.

    1996-08-01

    This project emphasizes CO{sub 2}-capture technologies combined with integrated gasification combined-cycle (IGCC) power systems. Complementary evaluations address CO{sub 2} transportation, CO{sub 2} use, and options for the long-term sequestration of unused CO{sub 2}. The intent is to provide the CO{sub 2} budget, or an equivalent CO{sub 2} budget, associated with each of the individual energy-cycle steps, in addition to process design capital and operating costs. The base case is a 458-MW (gross generation) IGCC system that uses an oxygen-blown Kellogg-Rust-Westinghouse agglomerating fluidized-bed gasifier, Illinois No. 6 bituminous coal feed, and low-pressure glycol sulfur removal followed by Claus/SCOT treatment to produce a saleable product. Mining, feed preparation, and conversion result in a net electric power production for the entire energy cycle of 411 MW, with a CO{sub 2} release rate of 0.801 kg/k Whe. For comparison, in two cases, the gasifier output was taken through water-gas shift and then to low-pressure glycol H{sub 2}S recovery, followed by either low-pressure glycol or membrane CO{sub 2} recovery and then by a combustion turbine being fed a high-hydrogen-content fuel. Two additional cases employed chilled methanol for H{sub 2}S recovery and a fuel cell as the topping cycle with no shift stages. From the IGCC plant, a 500-km pipeline took the CO{sub 2} to geological sequestering. In a comparison of air-blown and oxygen-blown CO{sub 2}-release base cases, the cost of electricity for the air-blown IGCC was 56.86 mills/kWh, and the cost of oxygen-blown IGCC was 58.29 mills/kWh.

  6. Life Cycle Assesment of Daugavgriva Waste Water Treatment Plant

    NASA Astrophysics Data System (ADS)

    Romagnoli, F.; Sampaio, F.; Blumberga, D.

    2009-01-01

    This paper presents the assessment of the environmental impacts caused by the treatment of Riga's waste water in the Daugavgriva plant with biogas energy cogeneration through the life cycle assessment (LCA). The LCA seems to be a good tool to assess and evaluate the most serious environmental impacts of a facility The results showed clearly that the impact category contributing the most to the total impact -eutrophicationcomes from the wastewater treatment stage. Climate change also seems to be a relevant impact coming from the wastewater treatment stage and the main contributor to the Climate change is N2O. The main environmental benefits, in terms of the percentages of the total impact, associated to the use of biogas instead of any other fossil fuel in the cogeneration plant are equal to: 3,11% for abiotic depletation, 1,48% for climate change, 0,51% for acidification and 0,12% for eutrophication.

  7. Closed cycle osmotic power plants for electric power production

    NASA Astrophysics Data System (ADS)

    Reali, M.

    1980-04-01

    The paper deals with closed-cycle osmotic power plants (CCOPPs), which are not meant for the exploitation of natural salinity gradients but, rather, for the exploitation of those abundant heat sources having temperatures slightly higher than ambient temperature, e.g., geothermal fields, ocean temperature gradients, waste heat from power plants, and solar energy. The paper gives a general description of the CCOPP, along with some indications of its potential for energy generation. The concept of the CCOPP lies in producing electric power by means of the osmotic flows of suitable solvents and subsequently in separating them again from their solutes by means of thermal energy obtained from any available heat source. The discussion covers osmotic phenomena and the CCOPP, as well as important features of the CCOPP.

  8. COMBINED SEWER OVERFLOW CHARACTERISTICS FROM TREATMENT PLANT DATA

    EPA Science Inventory

    This research was undertaken to evaluate the adequacy of using a mass balance technique with daily municipal wastewater treatment plant data to determine combined sewer runoff and overflow characteristics. The bias and variability associated with the mass balance technique togeth...

  9. Computer, Video, and Rapid-Cycling Plant Projects in an Undergraduate Plant Breeding Course.

    ERIC Educational Resources Information Center

    Michaels, T. E.

    1993-01-01

    Studies the perceived effectiveness of four student projects involving videotape production, computer conferencing, microcomputer simulation, and rapid-cycling Brassica breeding for undergraduate plant breeding students in two course offerings in consecutive years. Linking of the computer conferencing and video projects improved the rating of the…

  10. Prospective gas turbine and combined-cycle units for power engineering (a Review)

    NASA Astrophysics Data System (ADS)

    Ol'khovskii, G. G.

    2013-02-01

    The modern state of technology for making gas turbines around the world and heat-recovery combined-cycle units constructed on their basis are considered. The progress achieved in this field by Siemens, Mitsubishi, General Electric, and Alstom is analyzed, and the objectives these companies set forth for themselves for the near and more distant future are discussed. The 375-MW gas turbine unit with an efficiency of 40% produced by Siemens, which is presently the largest one, is subjected to a detailed analysis. The main specific features of this turbine are that the gas turbine unit's hot-path components have purely air cooling, due to which the installation has enhanced maneuverability. The single-shaft combined-cycle plant constructed on the basis of this turbine has a capacity of 570 MW and efficiency higher than 60%. Programs adopted by different companies for development of new-generation gas turbine units firing synthesis gas and fitted with low-emission combustion chambers and new cooling systems are considered. Concepts of rotor blades for new gas turbine units with improved thermal barrier coatings and composite blades different parts of which are made of materials selected in accordance with the conditions of their operation are discussed.

  11. Conceptual design study of a coal gasification combined-cycle powerplant for industrial cogeneration

    NASA Technical Reports Server (NTRS)

    Bloomfield, H. S.; Nelson, S. G.; Straight, H. F.; Subramaniam, T. K.; Winklepleck, R. G.

    1981-01-01

    A conceptual design study was conducted to assess technical feasibility, environmental characteristics, and economics of coal gasification. The feasibility of a coal gasification combined cycle cogeneration powerplant was examined in response to energy needs and to national policy aimed at decreasing dependence on oil and natural gas. The powerplant provides the steam heating and baseload electrical requirements while serving as a prototype for industrial cogeneration and a modular building block for utility applications. The following topics are discussed: (1) screening of candidate gasification, sulfur removal and power conversion components; (2) definition of a reference system; (3) quantification of plant emissions and waste streams; (4) estimates of capital and operating costs; and (5) a procurement and construction schedule. It is concluded that the proposed powerplant is technically feasible and environmentally superior.

  12. Conceptual design study of a coal gasification combined-cycle powerplant for industrial cogeneration

    NASA Astrophysics Data System (ADS)

    Bloomfield, H. S.; Nelson, S. G.; Straight, H. F.; Subramaniam, T. K.; Winklepleck, R. G.

    1981-03-01

    A conceptual design study was conducted to assess technical feasibility, environmental characteristics, and economics of coal gasification. The feasibility of a coal gasification combined cycle cogeneration powerplant was examined in response to energy needs and to national policy aimed at decreasing dependence on oil and natural gas. The powerplant provides the steam heating and baseload electrical requirements while serving as a prototype for industrial cogeneration and a modular building block for utility applications. The following topics are discussed: (1) screening of candidate gasification, sulfur removal and power conversion components; (2) definition of a reference system; (3) quantification of plant emissions and waste streams; (4) estimates of capital and operating costs; and (5) a procurement and construction schedule. It is concluded that the proposed powerplant is technically feasible and environmentally superior.

  13. Tightly-Coupled Plant-Soil Nitrogen Cycling: Comparison of Organic Farms across an Agricultural Landscape.

    PubMed

    Bowles, Timothy M; Hollander, Allan D; Steenwerth, Kerri; Jackson, Louise E

    2015-01-01

    How farming systems supply sufficient nitrogen (N) for high yields but with reduced N losses is a central challenge for reducing the tradeoffs often associated with N cycling in agriculture. Variability in soil organic matter and management of organic farms across an agricultural landscape may yield insights for improving N cycling and for evaluating novel indicators of N availability. We assessed yields, plant-soil N cycling, and root expression of N metabolism genes across a representative set of organic fields growing Roma-type tomatoes (Solanum lycopersicum L.) in an intensively-managed agricultural landscape in California, USA. The fields spanned a three-fold range of soil carbon (C) and N but had similar soil types, texture, and pH. Organic tomato yields ranged from 22.9 to 120.1 Mg ha-1 with a mean similar to the county average (86.1 Mg ha-1), which included mostly conventionally-grown tomatoes. Substantial variability in soil inorganic N concentrations, tomato N, and root gene expression indicated a range of possible tradeoffs between yields and potential for N losses across the fields. Fields showing evidence of tightly-coupled plant-soil N cycling, a desirable scenario in which high crop yields are supported by adequate N availability but low potential for N loss, had the highest total and labile soil C and N and received organic matter inputs with a range of N availability. In these fields, elevated expression of a key gene involved in root N assimilation, cytosolic glutamine synthetase GS1, confirmed that plant N assimilation was high even when inorganic N pools were low. Thus tightly-coupled N cycling occurred on several working organic farms. Novel combinations of N cycling indicators (i.e. inorganic N along with soil microbial activity and root gene expression for N assimilation) would support adaptive management for improved N cycling on organic as well as conventional farms, especially when plant-soil N cycling is rapid. PMID:26121264

  14. Tightly-Coupled Plant-Soil Nitrogen Cycling: Comparison of Organic Farms across an Agricultural Landscape

    PubMed Central

    Bowles, Timothy M.; Hollander, Allan D.; Steenwerth, Kerri; Jackson, Louise E.

    2015-01-01

    How farming systems supply sufficient nitrogen (N) for high yields but with reduced N losses is a central challenge for reducing the tradeoffs often associated with N cycling in agriculture. Variability in soil organic matter and management of organic farms across an agricultural landscape may yield insights for improving N cycling and for evaluating novel indicators of N availability. We assessed yields, plant-soil N cycling, and root expression of N metabolism genes across a representative set of organic fields growing Roma-type tomatoes (Solanum lycopersicum L.) in an intensively-managed agricultural landscape in California, USA. The fields spanned a three-fold range of soil carbon (C) and N but had similar soil types, texture, and pH. Organic tomato yields ranged from 22.9 to 120.1 Mg ha-1 with a mean similar to the county average (86.1 Mg ha-1), which included mostly conventionally-grown tomatoes. Substantial variability in soil inorganic N concentrations, tomato N, and root gene expression indicated a range of possible tradeoffs between yields and potential for N losses across the fields. Fields showing evidence of tightly-coupled plant-soil N cycling, a desirable scenario in which high crop yields are supported by adequate N availability but low potential for N loss, had the highest total and labile soil C and N and received organic matter inputs with a range of N availability. In these fields, elevated expression of a key gene involved in root N assimilation, cytosolic glutamine synthetase GS1, confirmed that plant N assimilation was high even when inorganic N pools were low. Thus tightly-coupled N cycling occurred on several working organic farms. Novel combinations of N cycling indicators (i.e. inorganic N along with soil microbial activity and root gene expression for N assimilation) would support adaptive management for improved N cycling on organic as well as conventional farms, especially when plant-soil N cycling is rapid. PMID:26121264

  15. Cycle Configurations for a PBMR Steam and Electricity Production Plant

    SciTech Connect

    Matzner, Dieter; Kriel, Willem; Correia, Michael; Greyvenstein, Renee

    2006-07-01

    The Pebble Bed Modular Reactor (PBMR) is an advanced helium-cooled, graphite moderated High Temperature Gas-cooled Reactor (HTGR) that is capable of multiple missions. The petrochemical industry requires the use of high temperature steam and electricity for their processes. Currently coal or natural gas is utilised for the generation of high temperature steam and electricity, which under-utilises natural resources and in the process emits CO{sub 2} into the atmosphere. This paper provides an overview of the PBMR product development path and discusses how steam production forms part of the future possibilities of the PBMR technology. Suitable cycle configurations for both process steam and electricity generation as required by petrochemical plants are discussed. (authors)

  16. Plant Growth and Development: An Outline for a Unit Structured Around the Life Cycle of Rapid-Cycling Brassica Rapa.

    ERIC Educational Resources Information Center

    Becker, Wayne M.

    This outline is intended for use in a unit of 10-12 lectures on plant growth and development at the introductory undergraduate level as part of a course on organismal biology. The series of lecture outlines is structured around the life cycle of rapid-cycling Brassica rapa (RCBr). The unit begins with three introductory lectures on general plant…

  17. Thioredoxin, a master regulator of the tricarboxylic acid cycle in plant mitochondria

    PubMed Central

    Daloso, Danilo M.; Müller, Karolin; Obata, Toshihiro; Florian, Alexandra; Tohge, Takayuki; Bottcher, Alexandra; Riondet, Christophe; Bariat, Laetitia; Carrari, Fernando; Nunes-Nesi, Adriano; Buchanan, Bob B.; Reichheld, Jean-Philippe; Araújo, Wagner L.; Fernie, Alisdair R.

    2015-01-01

    Plant mitochondria have a fully operational tricarboxylic acid (TCA) cycle that plays a central role in generating ATP and providing carbon skeletons for a range of biosynthetic processes in both heterotrophic and photosynthetic tissues. The cycle enzyme-encoding genes have been well characterized in terms of transcriptional and effector-mediated regulation and have also been subjected to reverse genetic analysis. However, despite this wealth of attention, a central question remains unanswered: “What regulates flux through this pathway in vivo?” Previous proteomic experiments with Arabidopsis discussed below have revealed that a number of mitochondrial enzymes, including members of the TCA cycle and affiliated pathways, harbor thioredoxin (TRX)-binding sites and are potentially redox-regulated. We have followed up on this possibility and found TRX to be a redox-sensitive mediator of TCA cycle flux. In this investigation, we first characterized, at the enzyme and metabolite levels, mutants of the mitochondrial TRX pathway in Arabidopsis: the NADP-TRX reductase a and b double mutant (ntra ntrb) and the mitochondrially located thioredoxin o1 (trxo1) mutant. These studies were followed by a comparative evaluation of the redistribution of isotopes when 13C-glucose, 13C-malate, or 13C-pyruvate was provided as a substrate to leaves of mutant or WT plants. In a complementary approach, we evaluated the in vitro activities of a range of TCA cycle and associated enzymes under varying redox states. The combined dataset suggests that TRX may deactivate both mitochondrial succinate dehydrogenase and fumarase and activate the cytosolic ATP-citrate lyase in vivo, acting as a direct regulator of carbon flow through the TCA cycle and providing a mechanism for the coordination of cellular function. PMID:25646482

  18. NOVEL GAS CLEANING/CONDITIONING FOR INTEGRATED GASIFICATION COMBINED CYCLE

    SciTech Connect

    Dennis A. Horazak; Richard A. Newby; Eugene E. Smeltzer; Rachid B. Slimane; P. Vann Bush; James L. Aderhold Jr; Bruce G. Bryan

    2005-12-01

    Development efforts have been underway for decades to replace dry-gas cleaning technology with humid-gas cleaning technology that would maintain the water vapor content in the raw gas by conducting cleaning at sufficiently high temperature to avoid water vapor condensation and would thus significantly simplify the plant and improve its thermal efficiency. Siemens Power Generation, Inc. conducted a program with the Gas Technology Institute (GTI) to develop a Novel Gas Cleaning process that uses a new type of gas-sorbent contactor, the ''filter-reactor''. The Filter-Reactor Novel Gas Cleaning process described and evaluated here is in its early stages of development and this evaluation is classified as conceptual. The commercial evaluations have been coupled with integrated Process Development Unit testing performed at a GTI coal gasifier test facility to demonstrate, at sub-scale the process performance capabilities. The commercial evaluations and Process Development Unit test results are presented in Volumes 1 and 2 of this report, respectively. Two gas cleaning applications with significantly differing gas cleaning requirements were considered in the evaluation: IGCC power generation, and Methanol Synthesis with electric power co-production. For the IGCC power generation application, two sets of gas cleaning requirements were applied, one representing the most stringent ''current'' gas cleaning requirements, and a second set representing possible, very stringent ''future'' gas cleaning requirements. Current gas cleaning requirements were used for Methanol Synthesis in the evaluation because these cleaning requirements represent the most stringent of cleaning requirements and the most challenging for the Filter-Reactor Novel Gas Cleaning process. The scope of the evaluation for each application was: (1) Select the configuration for the Filter-Reactor Novel Gas Cleaning Process, the arrangement of the individual gas cleaning stages, and the probable operating

  19. Influence of Plants on Chlorine Cycling in Terrestrial Environments

    NASA Astrophysics Data System (ADS)

    Montelius, Malin; Thiry, Yves; Marang, Laura; Ranger, Jacques; Cornelis, Jean-Thomas; Svensson, Teresia; Bastviken, David

    2016-04-01

    Chlorine (Cl), one of the 20 most abundant elements on Earth, is crucial for life as a regulator of cellular ionic strength and an essential co-factor in photosynthesis. Chlorinated organic compounds (Clorg) molecules are surprisingly abundant in soils, in fact many studies during the last decades show that Clorg typically account for more than 60% of the total soil Cl pool in boreal and temperate forest soils and frequently exceed chloride (Cl-) levels. The natural and primarily biotic formation of this Clorg pool has been confirmed experimentally but the detailed content of the Clorg pool and the reasons for its high abundance remains puzzling and there is a lack of Cl budgets for different ecosystems. Recently, the radioisotope 36Cl has caused concerns because of presence in radioactive waste, a long half-life (301 000 years), potential high mobility, and limited knowledge about Cl residence times, speciation and uptake by organisms in terrestrial environments. The chlorination of organic molecules may influence the pool of available Cl- to organisms and thereby the Cl cycling dynamics. This will prolong residence times of total Cl in the soil-vegetation system, which affects exposure times in radioactive 36Cl isotope risk assessments. We tested to what extent the dominating tree species influences the overall terrestrial Cl cycling and the balance between Cl- and Clorg. Total Cl and Clorg were measured in different tree compartments and soil horizons in the Breuil experimental forest, Bourgogne, established in 1976 and located at Breuil-Chenue in Eastern France. The results from this field experiment show how the dominating tree species affected Cl cycling and accumulation over a time period of 30 years. Cl uptake by trees as well as content of both total Cl and Clorg in soil humus was much higher in experimental plots with coniferous forests compared to deciduous forests. The amounts of Clorg found in plant tissue indicate significant Clorg production inside

  20. The application of cycling and cycling combined with feedback in the rehabilitation of stroke patients: a review.

    PubMed

    Barbosa, David; Santos, Cristina P; Martins, Maria

    2015-02-01

    Stroke is a leading cause of long-term disabilities, such as hemiparesis, inability to walk without assistance, and dependence of others in the activities of daily living. Motor function rehabilitation after stroke demands for methods oriented to the recovery of the walking capacity. Because of the similarities with walking, cycling leg exercise may present a solution to this problem. The aim of this article is to review the state of the art applications of cycling leg exercise as a (1) motor function rehabilitation method and an (2) aerobic training method for stroke patients as well as the commonly used (3) assessment tools. The cycling characteristics and applications, the applied test protocols as well as the tools used to assess the state and the recovery of patients and types of cycling devices are presented. In addition, the potential benefits of the use of other therapies, like feedback, together with cycling are explored. The application of cycling leg exercise alone and combined with feedback in stroke rehabilitation approaches has shown promising results. Positive effects on motor abilities were found in subacute and chronic patients. However, larger and normalized studies and assessments are needed because there is a high heterogeneity in the patients' characteristics, protocols and metrics. This wil allow the comparison between different studies related with cycling. PMID:25444025

  1. Programmed cell cycle arrest is required for infection of corn plants by the fungus Ustilago maydis.

    PubMed

    Castanheira, Sónia; Mielnichuk, Natalia; Pérez-Martín, José

    2014-12-01

    Ustilago maydis is a plant pathogen that requires a specific structure called infective filament to penetrate the plant tissue. Although able to grow, this filament is cell cycle arrested on the plant surface. This cell cycle arrest is released once the filament penetrates the plant tissue. The reasons and mechanisms for this cell cycle arrest are unknown. Here, we have tried to address these questions. We reached three conclusions from our studies. First, the observed cell cycle arrest is the result of the cooperation of at least two distinct mechanisms: one involving the activation of the DNA damage response (DDR) cascade; and the other relying on the transcriptional downregulation of Hsl1, a kinase that modulates the G2/M transition. Second, a sustained cell cycle arrest during the infective filament step is necessary for the virulence in U. maydis, as a strain unable to arrest the cell cycle was severely impaired in its ability to infect corn plants. Third, production of the appressorium, a structure required for plant penetration, is incompatible with an active cell cycle. The inability to infect plants by strains defective in cell cycle arrest seems to be caused by their failure to induce the appressorium formation process. In summary, our findings uncover genetic circuits to arrest the cell cycle during the growth of this fungus on the plant surface, thus allowing the penetration into plant tissue. PMID:25411209

  2. A combined power and ejector refrigeration cycle for low temperature heat sources

    SciTech Connect

    Zheng, B.; Weng, Y.W.

    2010-05-15

    A combined power and ejector refrigeration cycle for low temperature heat sources is under investigation in this paper. The proposed cycle combines the organic Rankine cycle and the ejector refrigeration cycle. The ejector is driven by the exhausts from the turbine to produce power and refrigeration simultaneously. A simulation was carried out to analyze the cycle performance using R245fa as the working fluid. A thermal efficiency of 34.1%, an effective efficiency of 18.7% and an exergy efficiency of 56.8% can be obtained at a generating temperature of 395 K, a condensing temperature of 298 K and an evaporating temperature of 280 K. Simulation results show that the proposed cycle has a big potential to produce refrigeration and most exergy losses take place in the ejector. (author)

  3. How-to-Do-It. Fast Plants--Rapid-Cycling Brassicas.

    ERIC Educational Resources Information Center

    Hafner, Robert

    1990-01-01

    Described is an activity in which the life cycle of a plant is investigated over a 20-day period. Included are background information, a list of materials, procedures, diagrams of the plant, apparatus, and pollination. An outline is suggested. (CW)

  4. Combining Wind Plant Control With Systems Engineering (Presentation)

    SciTech Connect

    Fleming, P.; Ning, A.; Gebraad, P.; Dykes, K.

    2015-02-01

    This presentation was given at the third Wind Energy Systems Engineering Workshop in Boulder, Colorado, and focused on wind plant controls research, combined optimization, a case study on the Princess Amalia Wind Park, results from the case study, and future work.

  5. Cogeneration steam turbines for combined-cycle installations of 170 230 MW

    NASA Astrophysics Data System (ADS)

    Barinberg, G. D.; Valamin, A. E.; Kogan, P. V.; Kultyshev, A. Yu.

    2008-06-01

    Design specifics, principal thermal schemes, and efficiency of cogeneration steam turbines operating as part of combined-cycle installations are considered. These turbines are developed on the basis of serially manufactured steam turbines of ZAO Ural Turbine Works.

  6. Qualifications of Candle Filters for Combined Cycle Combustion Applications

    SciTech Connect

    Tomasz Wiltowski

    2008-08-31

    The direct firing of coal produces particulate matter that has to be removed for environmental and process reasons. In order to increase the current advanced coal combustion processes, under the U.S. Department of Energy's auspices, Siemens Westinghouse Power Corporation (SWPC) has developed ceramic candle filters that can operate at high temperatures. The Coal Research Center of Southern Illinois University (SIUC), in collaboration with SWPC, developed a program for long-term filter testing at the SIUC Steam Plant followed by experiments using a single-filter reactor unit. The objectives of this program funded by the U.S. Department of Energy were to identify and demonstrate the stability of porous candle filter elements for use in high temperature atmospheric fluidized-bed combustion (AFBC) process applications. These verifications were accomplished through extended time slipstream testing of a candle filter array under AFBC conditions using SIUC's existing AFBC boiler. Temperature, mass flow rate, and differential pressure across the filter array were monitored for a duration of 45 days. After test exposure at SIUC, the filter elements were characterized using Scanning Electron Microscopy and BET surface area analyses. In addition, a single-filter reactor was built and utilized to study long term filter operation, the permeability exhibited by a filter element before and after the slipstream test, and the thermal shock resilience of a used filter by observing differential pressure changes upon rapid heating and cooling of the filter. The data acquired during the slipstream test and the post-test evaluations demonstrated the suitability of filter elements in advanced power generation applications.

  7. Performance potential of combined cycles integrated with low-Btu gasifiers for future electric utility applications

    NASA Technical Reports Server (NTRS)

    Nainiger, J. J.; Burns, R. K.

    1977-01-01

    A comparison and an assessment of 10 advanced utility power systems on a consistent basis and to a common level of detail were analyzed. Substantial emphasis was given to a combined cycle systems integrated with low-Btu gasifiers. Performance and cost results from that study were presented for these combined cycle systems, together with a comparative evaluation. The effect of the gasifier type and performance and the interface between the gasifier and the power system were discussed.

  8. Investigations of supercritical CO2 Rankine cycles for geothermal power plants

    SciTech Connect

    Sabau, Adrian S; Yin, Hebi; Qualls, A L; McFarlane, Joanna

    2011-01-01

    Supercritical CO2 Rankine cycles are investigated for geothermal power plants. The system of equations that describe the thermodynamic cycle is solved using a Newton-Rhapson method. This approach allows a high computational efficiency of the model when thermophysical properties of the working fluid depend strongly on the temperature and pressure. Numerical simulation results are presented for different cycle configurations in order to assess the influences of heat source temperature, waste heat rejection temperatures and internal heat exchanger design on cycle efficiency. The results show that thermodynamic cycle efficiencies above 10% can be attained with the supercritical brayton cycle while lower efficiencies can be attained with the transcritical CO2 Rankine cycle.

  9. Disentangling Facilitation Along the Life Cycle: Impacts of Plant-Plant Interactions at Vegetative and Reproductive Stages in a Mediterranean Forb.

    PubMed

    García-Cervigón, Ana I; Iriondo, José M; Linares, Juan C; Olano, José M

    2016-01-01

    Facilitation enables plants to improve their fitness in stressful environments. The overall impact of plant-plant interactions on the population dynamics of protégées is the net result of both positive and negative effects that may act simultaneously along the plant life cycle, and depends on the environmental context. This study evaluates the impact of the nurse plant Juniperus sabina on different stages of the life cycle of the forb Helleborus foetidus. Growth, number of leaves, flowers, carpels, and seeds per flower were compared for 240 individuals collected under nurse canopies and in open areas at two sites with contrasting stress levels. Spatial associations with nurse plants and age structures were also checked. A structural equation model was built to test the effect of facilitation on fecundity, accounting for sequential steps from flowering to seed production. The net impact of nurse plants depended on a combination of positive and negative effects on vegetative and reproductive variables. Although nurse plants caused a decrease in flower production at the low-stress site, their net impact there was neutral. In contrast, at the high-stress site the net outcome of plant-plant interactions was positive due to an increase in effective recruitment, plant density, number of viable carpels per flower, and fruit set under nurse canopies. The naturally lower rates of secondary growth and flower production at the high-stress site were compensated by the net positive impact of nurse plants here. Our results emphasize the need to evaluate entire processes and not only final outcomes when studying plant-plant interactions. PMID:26904086

  10. RL-10 Based Combined Cycle For A Small Reusable Single-Stage-To-Orbit Launcher

    NASA Technical Reports Server (NTRS)

    Balepin, Vladimir; Price, John; Filipenco, Victor

    1999-01-01

    This paper discusses a new application of the combined propulsion known as the KLIN(TM) cycle, consisting of a thermally integrated deeply cooled turbojet (DCTJ) and liquid rocket engine (LRE). If based on the RL10 rocket engine family, the KLIN (TM) cycle makes a small single-stage-to-orbit (SSTO) reusable launcher feasible and economically very attractive. Considered in this paper are the concept and parameters of a small SSTO reusable launch vehicle (RLV) powered by the KLIN (TM) cycle (sSSTO(TM)) launcher. Also discussed are the benefits of the small launcher, the reusability, and the combined cycle application. This paper shows the significant reduction of the gross take off weight (GTOW) and dry weight of the KLIN(TM) cycle-powered launcher compared to an all-rocket launcher.

  11. Combined Brayton-JT cycles with refrigerants for natural gas liquefaction

    NASA Astrophysics Data System (ADS)

    Chang, Ho-Myung; Park, Jae Hoon; Lee, Sanggyu; Choe, Kun Hyung

    2012-06-01

    Thermodynamic cycles for natural gas liquefaction with single-component refrigerants are investigated under a governmental project in Korea, aiming at new processes to meet the requirements on high efficiency, large capacity, and simple equipment. Based upon the optimization theory recently published by the present authors, it is proposed to replace the methane-JT cycle in conventional cascade process with a nitrogen-Brayton cycle. A variety of systems to combine nitrogen-Brayton, ethane-JT and propane-JT cycles are simulated with Aspen HYSYS and quantitatively compared in terms of thermodynamic efficiency, flow rate of refrigerants, and estimated size of heat exchangers. A specific Brayton-JT cycle is suggested with detailed thermodynamic data for further process development. The suggested cycle is expected to be more efficient and simpler than the existing cascade process, while still taking advantage of easy and robust operation with single-component refrigerants.

  12. The History and Promise of Combined Cycle Engines for Access to Space Applications

    NASA Technical Reports Server (NTRS)

    Clark, Casie

    2010-01-01

    For the summer of 2010, I have been working in the Aerodynamics and Propulsion Branch at NASA Dryden Flight Research Center studying combined-cycle engines, a high speed propulsion concept. Combined cycle engines integrate multiple propulsion systems into a single engine capable of running in multiple modes. These different modes allow the engine to be extremely versatile and efficient in varied flight conditions. The two most common types of combined cycle engines are Rocket-Based Combined Cycle (RBCC) and Turbine Based Combined Cycle (TBCC). The RBCC essentially combines a rocket and ramjet engine, while the TBCC integrates a turbojet and ramjet1. These two engines are able to switch between different propulsion modes to achieve maximum performance. Extensive conceptual and ground test studies of RBCC engines have been undertaken; however, an RBCC engine has never, to my knowledge, been demonstrated in flight. RBCC engines are of particular interest because they could potentially power a reusable launch vehicle (RLV) into space. The TBCC has been flight tested and shown to be effective at reaching supersonic speeds, most notably in the SR-71 Blackbird2.

  13. Evaluation of the ECAS open cycle MHD power plant design

    NASA Technical Reports Server (NTRS)

    Seikel, G. R.; Staiger, P. J.; Pian, C. C. P.

    1978-01-01

    The Energy Conversion Alternatives Study (ECAS) MHD/steam power plant is described. The NASA critical evaluation of the design is summarized. Performance of the MHD plant is compared to that of the other type ECAS plant designs on the basis of efficiency and the 30-year levelized cost of electricity. Techniques to improve the plant design and the potential performance of lower technology plants requiring shorter development time and lower development cost are then discussed.

  14. Steam Generator Component Model in a Combined Cycle of Power Conversion Unit for Very High Temperature Gas-Cooled Reactor

    SciTech Connect

    Oh, Chang H; Han, James; Barner, Robert; Sherman, Steven R

    2007-06-01

    The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP), Very High Temperature Gas-Cooled Reactor (VHTR) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. A combined cycle is considered as one of the power conversion units to be coupled to the very high-temperature gas-cooled reactor (VHTR). The combined cycle configuration consists of a Brayton top cycle coupled to a Rankine bottoming cycle by means of a steam generator. A detailed sizing and pressure drop model of a steam generator is not available in the HYSYS processes code. Therefore a four region model was developed for implementation into HYSYS. The focus of this study was the validation of a HYSYS steam generator model of two phase flow correlations. The correlations calculated the size and heat exchange of the steam generator. To assess the model, those calculations were input into a RELAP5 model and its results were compared with HYSYS results. The comparison showed many differences in parameters such as the heat transfer coefficients and revealed the different methods used by the codes. Despite differences in approach, the overall results of heat transfer were in good agreement.

  15. Beyond the conventional life cycle inventory in wastewater treatment plants.

    PubMed

    Lorenzo-Toja, Yago; Alfonsín, Carolina; Amores, María José; Aldea, Xavier; Marin, Desirée; Moreira, María Teresa; Feijoo, Gumersindo

    2016-05-15

    The conventional approach for the environmental assessment of wastewater treatment plants (WWTPs) is typically based on the removal efficiency of organic load and nutrients as well as the quantification of energy and chemicals consumption. Current wastewater treatment research entails the monitoring of direct emissions of greenhouse gases (GHG) and emerging pollutants such as pharmaceutical and personal care products (PPCPs), which have been rarely considered in the environmental assessment of a wastewater treatment facility by life cycle assessment (LCA) methodology. As a result of that, the real environmental impacts of a WWTP may be underestimated. In this study, two WWTPs located in different climatic regions (Atlantic and Mediterranean) of Spain were evaluated in extensive sampling campaigns that included not only conventional water quality parameters but also direct GHG emissions and PPCPs in water and sludge lines. Regarding the GHG monitoring campaign, on-site measurements of methane (CH4) and nitrous oxide (N2O) were performed and emission factors were calculated for both WWTPs. GHG direct emissions accounted for 62% of the total global warming potential (GWP), much more relevant than indirect CO2 emissions associated with electricity use. Regarding PPCPs, 19 compounds were measured in the main streams: influent, effluent and sludge, to perform the evaluation of the toxicity impact categories. Although the presence of heavy metals in the effluent and the sludge as well as the toxicity linked to the electricity production may shade the toxicity impacts linked to PPCPs in some impact categories, the latter showed a notable influence on freshwater ecotoxicity potential (FETP). For this impact category, the removal of PPCPs within the wastewater treatment was remarkably important and arose as an environmental benefit in comparison with the non-treatment scenario. PMID:26901804

  16. Numerical Research of Steam and Gas Plant Efficiency of Triple Cycle for Extreme North Regions

    NASA Astrophysics Data System (ADS)

    Galashov, Nikolay; Tsibulskii, Svjatoslav; Matveev, Aleksandr; Masjuk, Vladimir

    2016-02-01

    The present work shows that temperature decrease of heat rejection in a cycle is necessary for energy efficiency of steam turbine plants. Minimum temperature of heat rejection at steam turbine plant work on water steam is 15°C. Steam turbine plant of triple cycle where lower cycle of steam turbine plant is organic Rankine cycle on low-boiling substance with heat rejection in air condenser, which safely allows rejecting heat at condensation temperatures below 0°C, has been offered. Mathematical model of steam and gas plant of triple cycle, which allows conducting complex researches with change of working body appearance and parameters defining thermodynamic efficiency of cycles, has been developed. On the basis of the model a program of parameters and index cycles design of steam and gas plants has been developed in a package of electron tables Excel. Numerical studies of models showed that energy efficiency of steam turbine plants of triple cycle strongly depend on low-boiling substance type in a lower cycle. Energy efficiency of steam and gas plants net 60% higher can be received for steam and gas plants on the basis of gas turbine plant NK-36ST on pentane and its condensation temperature below 0°C. It was stated that energy efficiency of steam and gas plants net linearly depends on condensation temperature of low-boiling substance type and temperature of gases leaving reco very boiler. Energy efficiency increases by 1% at 10% decrease of condensation temperature of pentane, and it increases by 0.88% at 15°C temperature decrease of gases leaving recovery boiler.

  17. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 4: Open recuperated and bottomed gas turbine cycles. [performance prediction and energy conversion efficiency of gas turbines in electric power plants (thermodynamic cycles)

    NASA Technical Reports Server (NTRS)

    Amos, D. J.; Grube, J. E.

    1976-01-01

    Open-cycle recuperated gas turbine plant with inlet temperatures of 1255 to 1644 K (1800 to 2500 F) and recuperators with effectiveness values of 0, 70, 80 and 90% are considered. A 1644 K (2500 F) gas turbine would have a 33.5% plant efficiency in a simple cycle, 37.6% in a recuperated cycle and 47.6% when combined with a sulfur dioxide bottomer. The distillate burning recuperated plant was calculated to produce electricity at a cost of 8.19 mills/MJ (29.5 mills/kWh). Due to their low capital cost $170 to 200 $/kW, the open cycle gas turbine plant should see duty for peaking and intermediate load duty.

  18. High degree decentralization for the optimum thermoeconomic design of a combined cycle

    SciTech Connect

    Benelmir, R. . Lab. d'Energetique et automatique); Evans, R.B. . George W. Woodruff School of Mechanical Engineering); Spakovsky, M.R. Von . Dept. de mecanique)

    1992-01-01

    Decentralized design methods will always greatly facilitate the optimum design of large engineering systems whenever a High Degree of Decentralization (HDD) is achieved. HDD allows the optimization of each component by itself without significantly sacrificing the overall system optimum. In this paper, a primary engineering component costing expression is introduced, resulting in a significant HDD - called Primary Decentralized Thermoeconomic Design - for the design of gas turbine cycles with or without a steam power bottoming cycle. This costing expression is a compromise between simplicity and a representative model for engineering component costing. A requirement for such an expression is that it provides a balance not only between the capital cost expenditures and the dissipation of exergy, but also between the capital cost and the dissipation of heat removal capacity. In fact, additional exergy dissipation always results in the dissipation of more heat, which must be removed from the overall power generation cycle. Applied to a combined cycle (a gas and steam turbine cycle), such decentralization serves to show how the steam power bottoming cycle assists the gas turbine cycle. This approach produces a significant HDD which allows engineers to study many more possible improvements in combined cycles than could otherwise be considered.

  19. Plant heat cycles, vessel internal arrangement, and auxiliary systems. Volume five

    SciTech Connect

    Not Available

    1986-01-01

    This volume covers nuclear power plant heat cycles (type of nuclear power cycles, power cycle refinements, BWR/PWR power cycle, BWR/PWR reactor coolant system), reactor vessel internal arrangement (reactor vessel features, BWR/PWR reactor vessel and internals, BWR/PWR reactor core), reactor auxiliary systems (purpose of reactor auxiliary systems, PWR and BWR reactor auxiliary systems, PWR and BWR control rod drive mechanisms).

  20. Chemistry guidelines for cycling service of fossil power plants

    SciTech Connect

    Banweg, A. ); Mravich, N.J. ); Pocock, F.J.

    1989-01-01

    Many of the existing fossil-fired utility boilers in the U.S. are going into the cycling mode of operation (load cycling, on-off cycling, etc.). Corrosion protection for the pressure part components of these boilers relies on the proper control of the waterside environment, which has greater demands put upon it by the cycling mode of operation than the base loaded operation. Specific recommendations are made to minimize out-of-service corrosion, operational dissolved oxygen attack, and corrosion product transport.

  1. Uncertainty analysis of integrated gasification combined cycle systems based on Frame 7H versus 7F gas turbines

    SciTech Connect

    Yunhua Zhu; H. Christopher Frey

    2006-12-15

    Integrated gasification combined cycle (IGCC) technology is a promising alternative for clean generation of power and coproduction of chemicals from coal and other feedstocks. Advanced concepts for IGCC systems that incorporate state-of-the-art gas turbine systems, however, are not commercially demonstrated. Therefore, there is uncertainty regarding the future commercial-scale performance, emissions, and cost of such technologies. The Frame 7F gas turbine represents current state-of-practice, whereas the Frame 7H is the most recently introduced advanced commercial gas turbine. The objective of this study was to evaluate the risks and potential payoffs of IGCC technology based on different gas turbine combined cycle designs. Models of entrained-flow gasifier-based IGCC systems with Frame 7F (IGCC-7F) and 7H gas turbine combined cycles (IGCC-7H) were developed in ASPEN Plus. An uncertainty analysis was conducted. Gasifier carbon conversion and project cost uncertainty are identified as the most important uncertain inputs with respect to system performance and cost. The uncertainties in the difference of the efficiencies and costs for the two systems are characterized. Despite uncertainty, the IGCC-7H system is robustly preferred to the IGCC-7F system. Advances in gas turbine design will improve the performance, emissions, and cost of IGCC systems. The implications of this study for decision-making regarding technology selection, research planning, and plant operation are discussed. 38 refs., 11 figs., 5 tabs.

  2. Uncertainty analysis of integrated gasification combined cycle systems based on Frame 7H versus 7F gas turbines.

    PubMed

    Zhu, Yunhua; Frey, H Christopher

    2006-12-01

    Integrated gasification combined cycle (IGCC) technology is a promising alternative for clean generation of power and coproduction of chemicals from coal and other feedstocks. Advanced concepts for IGCC systems that incorporate state-of-the-art gas turbine systems, however, are not commercially demonstrated. Therefore, there is uncertainty regarding the future commercial-scale performance, emissions, and cost of such technologies. The Frame 7F gas turbine represents current state-of-practice, whereas the Frame 7H is the most recently introduced advanced commercial gas turbine. The objective of this study was to evaluate the risks and potential payoffs of IGCC technology based on different gas turbine combined cycle designs. Models of entrained-flow gasifier-based IGCC systems with Frame 7F (IGCC-7F) and 7H gas turbine combined cycles (IGCC-7H) were developed in ASPEN Plus. An uncertainty analysis was conducted. Gasifier carbon conversion and project cost uncertainty are identified as the most important uncertain inputs with respect to system performance and cost. The uncertainties in the difference of the efficiencies and costs for the two systems are characterized. Despite uncertainty, the IGCC-7H system is robustly preferred to the IGCC-7F system. Advances in gas turbine design will improve the performance, emissions, and cost of IGCC systems. The implications of this study for decision-making regarding technology selection, research planning, and plant operation are discussed. PMID:17195484

  3. Coevolution and Life Cycle Specialization of Plant Cell Wall Degrading Enzymes in a Hemibiotrophic Pathogen

    PubMed Central

    Brunner, Patrick C.; Torriani, Stefano F.F.; Croll, Daniel; Stukenbrock, Eva H.; McDonald, Bruce A.

    2013-01-01

    Zymoseptoria tritici is an important fungal pathogen on wheat that originated in the Fertile Crescent. Its closely related sister species Z. pseudotritici and Z. ardabiliae infect wild grasses in the same region. This recently emerged host–pathogen system provides a rare opportunity to investigate the evolutionary processes shaping the genome of an emerging pathogen. Here, we investigate genetic signatures in plant cell wall degrading enzymes (PCWDEs) that are likely affected by or driving coevolution in plant-pathogen systems. We hypothesize four main evolutionary scenarios and combine comparative genomics, transcriptomics, and selection analyses to assign the majority of PCWDEs in Z. tritici to one of these scenarios. We found widespread differential transcription among different members of the same gene family, challenging the idea of functional redundancy and suggesting instead that specialized enzymatic activity occurs during different stages of the pathogen life cycle. We also find that natural selection has significantly affected at least 19 of the 48 identified PCWDEs. The majority of genes showed signatures of purifying selection, typical for the scenario of conserved substrate optimization. However, six genes showed diversifying selection that could be attributed to either host adaptation or host evasion. This study provides a powerful framework to better understand the roles played by different members of multigene families and to determine which genes are the most appropriate targets for wet laboratory experimentation, for example, to elucidate enzymatic function during relevant phases of a pathogen’s life cycle. PMID:23515261

  4. Effect of fuel cycle length on plant performance and cost

    SciTech Connect

    O`Donnell, E.P.

    1996-08-01

    As competitive pressures increase in the utility industry, many nuclear units are moving to longer fuel cycles in order to increase capacity factors and lower cost. This paper reviews recent experience with longer cycle operation for both GPU Nuclear and the industry as a whole.

  5. Apparatus and methods for supplying auxiliary steam in a combined cycle system

    SciTech Connect

    Gorman, William G.; Carberg, William George; Jones, Charles Michael

    2002-01-01

    To provide auxiliary steam, a low pressure valve is opened in a combined cycle system to divert low pressure steam from the heat recovery steam generator to a header for supplying steam to a second combined cycle's steam turbine seals, sparging devices and cooling steam for the steam turbine if the steam turbine and gas turbine lie on a common shaft with the generator. Cooling steam is supplied the gas turbine in the combined cycle system from the high pressure steam turbine. Spent gas turbine cooling steam may augment the low pressure steam supplied to the header by opening a high pressure valve whereby high and low pressure steam flows are combined. An attemperator is used to reduce the temperature of the combined steam in response to auxiliary steam flows above a predetermined flow and a steam header temperature above a predetermined temperature. The auxiliary steam may be used to start additional combined cycle units or to provide a host unit with steam turbine cooling and sealing steam during full-speed no-load operation after a load rejection.

  6. Combined Ageing and Thermal Cycling of Compressive Mica Seals for Solid Oxide Fuel Cells

    SciTech Connect

    Chou, Y S.; Stevenson, Jeffry W.; Singh, Prabhakar

    2005-06-30

    Hybrid Phlogopite mica seals were evaluated in a combined ageing and thermal cycling test. Two interlayers were investigated: a glass and a metallic foil. Samples were first aged at 800 degrees C for {approx}500 or {approx}1000 hrs in a simulated SOFC environment, followed by short-term thermal cycling. The results of hybrid mica with glass interlayer showed extensive reaction and poor thermal cycle stability after ageing for 1036 hrs and 21 thermal cycles. Use of the brazing alloy as the interlayer showed no interaction with mica over 504 hrs, and reasonable leak rates were maintained through eight cycles. The leakage development was found to be consistent with fracture surface and microstructure analyses.

  7. Effect on combined cycle efficiency of stack gas temperature constraints to avoid acid corrosion

    NASA Technical Reports Server (NTRS)

    Nainiger, J. J.

    1980-01-01

    To avoid condensation of sulfuric acid in the gas turbine exhaust when burning fuel oils contaning sulfur, the exhaust stack temperature and cold-end heat exchanger surfaces must be kept above the condensation temperature. Raising the exhaust stack temperature, however, results in lower combined cycle efficiency compared to that achievable by a combined cycle burning a sulfur-free fuel. The maximum difference in efficiency between the use of sulfur-free and fuels containing 0.8 percent sulfur is found to be less than one percentage point. The effect of using a ceramic thermal barrier coating (TBC) and a fuel containing sulfur is also evaluated. The combined-cycle efficiency gain using a TBC with a fuel containing sulfur compared to a sulfur-free fuel without TBC is 0.6 to 1.0 percentage points with air-cooled gas turbines and 1.6 to 1.8 percentage points with water-cooled gas turbines.

  8. Preliminary results of an economic and engineering evaluation of the M.W. Kellogg air-blown gasification combined cycle

    SciTech Connect

    Wheeldon, J.M.; Booras, G.S.; Styles, G.A.; Vansickle, R.J.; Longanbach, J.; Mahajan, K.

    1998-12-31

    The capital cost of a coal-based power plant contributes over 50% to the busbar cost of electricity. For new coal-based power plants to be competitive, it is imperative that the capital cost be reduced. Additionally, they must have excellent environmental performance and high cycle efficiency. One of the most cost-competitive, coal-based power plant technologies is believed to be an air-blown, combined cycle incorporating a partial gasifier and pressurized char combustor. These two coal-conversion stages provide fuel gas and vitiated air to fire a combustion turbine. To protect the turbine from particle erosion damage, all the dust must be removed from the two hot gas streams. This operation involves high-temperature, high-pressure (HTHP) filtration, a technology currently under development at several locations funded by the Department of Energy. One of these locations is the Power Systems Development Facility (PSDF) at Wilsonville, Alabama. At this same site two potential air-blown, coal-based combined cycle power plant technologies are under development. These are: the M.W. Kellogg Company`s (Kellogg) gasification combined cycle (GCC), incorporating their transport reactor design as both the gasifier and the combustor; and Foster Wheeler`s (FW) topped pressurized fluidized bed combustor (PFBC), incorporating a bubbling-bed carbonizer and a circulating PFBC. It was decided to complete an engineering and economic evaluation of the technologies under development at the PSDF. The results are to quantify the process economics, and to focus the supporting Research and Development activities on those areas offering the greatest economic advantage. This paper presents preliminary results from the evaluation of a Kellogg air-blow GCC unit. Capital cost and thermal performance data are presented along with costs of electricity based on recent fuel price projections for the US. Space limitations prevent presentation of the results for the FW advanced PFBC train and these

  9. Tampa Electric Company`s Polk Power Station Integrated Gasification Combined Cycle Project

    SciTech Connect

    Jenkins, S.D.; Shafer, J.R.

    1994-12-31

    Tampa Electric Company (TEC) is in the construction phase for the new Polk Power Station, Unit {number_sign}1. This will be the first unit at a new site and will use Integrated Gasification Combined Cycle (IGCC) technology for power generation. The unit will utilize oxygen-blown entrained-flow coal gasification, along with combined cycle technology, to provide nominal net 26OMW of generation. As part of the environmental features of this process, the sulfur species in the coal will be recovered as a commercial grade sulfuric acid by-product. The sulfur will be removed from the synthesis gas utilizing a cold gas clean-up system (CGCU).

  10. [Horticultural plant diseases multispectral classification using combined classified methods].

    PubMed

    Feng, Jie; Li, Hong-Ning; Yang, Wei-Ping; Hou, De-Dong; Liao, Ning-Fang

    2010-02-01

    The research on multispectral data disposal is getting more and more attention with the development of multispectral technique, capturing data ability and application of multispectral technique in agriculture practice. In the present paper, a cultivated plant cucumber' familiar disease (Trichothecium roseum, Sphaerotheca fuliginea, Cladosporium cucumerinum, Corynespora cassiicola, Pseudoperonospora cubensis) is the research objects. The cucumber leaves multispectral images of 14 visible light channels, near infrared channel and panchromatic channel were captured using narrow-band multispectral imaging system under standard observation and illumination environment, and 210 multispectral data samples which are the 16 bands spectral reflectance of different cucumber disease were obtained. The 210 samples were classified by distance, relativity and BP neural network to discuss effective combination of classified methods for making a diagnosis. The result shows that the classified effective combination of distance and BP neural network classified methods has superior performance than each method, and the advantage of each method is fully used. And the flow of recognizing horticultural plant diseases using combined classified methods is presented. PMID:20384138

  11. Comparative analysis of CCMHD power plants. [Closed Cycle MHD

    NASA Technical Reports Server (NTRS)

    Alyea, F. N.; Marston, C. H.; Mantri, V. B.; Geisendorfer, B. G.; Doss, H.

    1981-01-01

    A study of Closed Cycle MHD (CCMHD) power generation systems has been conducted which emphasizes both advances in component conceptual design and overall system performance. New design data are presented for the high temperature, regenerative argon heaters (HTRH) and the heat recovery/seed recovery (HRSR) subsystem. Contamination of the argon by flue gas adsorbed in the HTRH is examined and a model for estimation of contamination effects in operating systems is developed. System performance and cost data have been developed for the standard CCMHD/steam cycle as powered by both direct fired cyclone combustors and selected coal gasifiers. In addition, a new CCMHD thermodynamic cycle has been identified.

  12. Foxboro, Bradley gear combined at Maxwell House plant

    SciTech Connect

    Maggs, J.

    1986-02-03

    In what is described as an unusual installation, industrial process control equipment from the Foxboro Co., Foxboro, Mass., and Allen Bradley Co., Milwaukee, was combined at General Foods' Maxwell House plant in Houston, and is working together with a Hewlett-Packard 1000 computer to improve product quality and cut energy costs, according to Kevin McCormick, decaffeination business manager. As a result, the process controls are expected to reduce energy costs at the facility by 5 to 10%, he said. Four Foxboro model 300 systems were installed to provide monitoring and analog control of four processes - coffee bean decaffeination, instant coffee preparation, Minute Rice preparation, and separate Foxboro system to control the plant's two boilers, which are fired with natural gas and with waste coffee grounds.

  13. Waste heat recovery options in a large gas-turbine combined power plant

    NASA Astrophysics Data System (ADS)

    Upathumchard, Ularee

    This study focuses on power plant heat loss and how to utilize the waste heat in energy recovery systems in order to increase the overall power plant efficiency. The case study of this research is a 700-MW natural gas combined cycle power plant, located in a suburban area of Thailand. An analysis of the heat loss of the combustion process, power generation process, lubrication system, and cooling system has been conducted to evaluate waste heat recovery options. The design of the waste heat recovery options depends to the amount of heat loss from each system and its temperature. Feasible waste heat sources are combustion turbine (CT) room ventilation air and lubrication oil return from the power plant. The following options are being considered in this research: absorption chillers for cooling with working fluids Ammonia-Water and Water-Lithium Bromide (in comparison) and Organic Rankine Cycle (ORC) with working fluids R134a and R245fa. The absorption cycles are modeled in three different stages; single-effect, double-effect and half-effect. ORC models used are simple ORC as a baseline, ORC with internal regenerator, ORC two-phase flash expansion ORC and ORC with multiple heat sources. Thermodynamic models are generated and each system is simulated using Engineering Equation Solver (EES) to define the most suitable waste heat recovery options for the power plant. The result will be synthesized and evaluated with respect to exergy utilization efficiency referred as the Second Law effectiveness and net output capacity. Results of the models give recommendation to install a baseline ORC of R134a and a double-effect water-lithium bromide absorption chiller, driven by ventilation air from combustion turbine compartment. The two technologies yield reasonable economic payback periods of 4.6 years and 0.7 years, respectively. The fact that this selected power plant is in its early stage of operation allows both models to economically and effectively perform waste heat

  14. Trickle water and feeding system in plant culture and light-dark cycle effects on plant growth

    NASA Technical Reports Server (NTRS)

    Takano, T.; Inada, K.; Takanashi, J.

    1987-01-01

    Rockwool, as an inert medium covered or bagged with polyethylene film, can be effectively used for plant culture in space stations. The most important machine is the pump adjusting the dripping rate in the feeding system. Hydro-aeroponics may be adaptable to a space laboratory. The shortening of the light-dark cycles inhibits plant growth and induces an abnormal morphogenesis. A photoperiod of 12 hr dark may be needed for plant growth.

  15. Looking at plant cell cycle from the chromatin window

    PubMed Central

    Desvoyes, Bénédicte; Fernández-Marcos, María; Sequeira-Mendes, Joana; Otero, Sofía; Vergara, Zaida; Gutierrez, Crisanto

    2014-01-01

    The cell cycle is defined by a series of complex events, finely coordinated through hormonal, developmental and environmental signals, which occur in a unidirectional manner and end up in producing two daughter cells. Accumulating evidence reveals that chromatin is not a static entity throughout the cell cycle. In fact, there are many changes that include nucleosome remodeling, histone modifications, deposition and exchange, among others. Interestingly, it is possible to correlate the occurrence of several of these chromatin-related events with specific processes necessary for cell cycle progression, e.g., licensing of DNA replication origins, the E2F-dependent transcriptional wave in G1, the activation of replication origins in S-phase, the G2-specific transcription of genes required for mitosis or the chromatin packaging occurring in mitosis. Therefore, an emerging view is that chromatin dynamics must be considered as an intrinsic part of cell cycle regulation. In this article, we review the main features of several key chromatin events that occur at defined times throughout the cell cycle and discuss whether they are actually controlling the transit through specific cell cycle stages. PMID:25120553

  16. An engineering analysis of a closed cycle plant growth module

    NASA Technical Reports Server (NTRS)

    Stickford, G. H., Jr.; Jakob, F. E.; Landstrom, D. K.

    1986-01-01

    The SOLGEM model is a numerical engineering model which solves the flow and energy balance equations for the air flowing through a growing environment, assuming quasi-steady state conditions within the system. SOLGEM provides a dynamic simulation of the controlled environment system in that the temperature and flow conditions of the growing environment are estimated on an hourly basis in response to the weather data and the plant growth parameters. The flow energy balance considers the incident solar flux; incoming air temperature, humidity, and flow rate; heat exchange with the roof and floor; and heat and moisture exchange with the plants. A plant transpiration subroutine was developed based plant growth research facility, intended for the study of bioregenerative life support theories. The results of a performance analysis of the plant growth module are given. The estimated energy requirements of the module components and the total energy are given.

  17. The MS6001FA gas turbine in mid-size combined cycle and cogeneration applications

    SciTech Connect

    Ruegger, W.A.; Anderson, R.O.

    1994-12-31

    The MS6001FA gas turbine is the latest addition to the F-technology family of gas turbines. The design is based on an aerodynamic scaling of the proven MS7001FA and MS9001FA products and is available in both 50 and 60 Hz configurations. As a result of its higher F-technology firing temperature, the 6FA is ideally suited for combined cycle and other heat recovery applications where its performance represents a significant improvement over previously available mid-size gas turbines. This paper describes the basic design of the MS6001FA, including its auxiliary systems. The gas turbine`s performance in simple cycle, combined cycle, repowering, and cogeneration applications is also reviewed.

  18. Technical and economic comparison of steam-injected versus combined- cycle retrofits on FT-4 engines

    SciTech Connect

    Silaghy, F.J. )

    1992-01-01

    The study discusses the findings of a conceptual site-specific investigation of the technical and economic aspects of converting the TPM FT4 simple cycle combustion turbines into either the steam injected gas turbine (SIGT) cycle or the combined cycle (CC). It describes the selection of the best retrofit alternatives through the evaluation and data analysis of a large number of sites and units at two utilities. Conceptual designs are performed on the best retrofit alternatives. Flow diagrams and general arrangement drawings are developed for various configurations utilizing drum type and once-through type multipressure heat recovery steam generators. Auxiliary power consumption and capital cost estimates are presented together with an economic evaluation and comparison of the retrofit alternatives. While the investigation is performed utilizing the FT4 combustion turbines, the steps presented in the report may be used as a guide for investigating the conversion of other gas turbines to either cycle at any utility site.

  19. Hydrogen-or-Fossil-Combustion Nuclear Combined-Cycle Systems for Base- and Peak-Load Electricity Production

    SciTech Connect

    Forsberg, Charles W; Conklin, Jim

    2007-09-01

    A combined-cycle power plant is described that uses (1) heat from a high-temperature nuclear reactor to meet base-load electrical demands and (2) heat from the same high-temperature reactor and burning natural gas, jet fuel, or hydrogen to meet peak-load electrical demands. For base-load electricity production, fresh air is compressed; then flows through a heat exchanger, where it is heated to between 700 and 900 C by heat provided by a high-temperature nuclear reactor via an intermediate heat-transport loop; and finally exits through a high-temperature gas turbine to produce electricity. The hot exhaust from the Brayton-cycle gas turbine is then fed to a heat recovery steam generator that provides steam to a steam turbine for added electrical power production. To meet peak electricity demand, the air is first compressed and then heated with the heat from a high-temperature reactor. Natural gas, jet fuel, or hydrogen is then injected into the hot air in a combustion chamber, combusts, and heats the air to 1300 C-the operating conditions for a standard natural-gas-fired combined-cycle plant. The hot gas then flows through a gas turbine and a heat recovery steam generator before being sent to the exhaust stack. The higher temperatures increase the plant efficiency and power output. If hydrogen is used, it can be produced at night using energy from the nuclear reactor and stored until needed. With hydrogen serving as the auxiliary fuel for peak power production, the electricity output to the electric grid can vary from zero (i.e., when hydrogen is being produced) to the maximum peak power while the nuclear reactor operates at constant load. Because nuclear heat raises air temperatures above the auto-ignition temperatures of the various fuels and powers the air compressor, the power output can be varied rapidly (compared with the capabilities of fossil-fired turbines) to meet spinning reserve requirements and stabilize the electric grid. This combined cycle uses the

  20. Fast-cycling unit of root turnover in perennial herbaceous plants in a cold temperate ecosystem

    PubMed Central

    Sun, Kai; Luke McCormack, M.; Li, Le; Ma, Zeqing; Guo, Dali

    2016-01-01

    Roots of perennial plants have both persistent portion and fast-cycling units represented by different levels of branching. In woody species, the distal nonwoody branch orders as a unit are born and die together relatively rapidly (within 1–2 years). However, whether the fast-cycling units also exist in perennial herbs is unknown. We monitored root demography of seven perennial herbs over two years in a cold temperate ecosystem and we classified the largest roots on the root collar or rhizome as basal roots, and associated finer laterals as secondary, tertiary and quaternary roots. Parallel to woody plants in which distal root orders form a fast-cycling module, basal root and its finer laterals also represent a fast-cycling module in herbaceous plants. Within this module, basal roots had a lifespan of 0.5–2 years and represented 62–87% of total root biomass, thus dominating annual root turnover (60%–81% of the total). Moreover, root traits including root length, tissue density, and biomass were useful predictors of root lifespan. We conclude that both herbaceous and woody plants have fast-cycling modular units and future studies identifying the fast-cycling module across plant species should allow better understanding of how root construction and turnover are linked to whole-plant strategies. PMID:26791578

  1. Fast-cycling unit of root turnover in perennial herbaceous plants in a cold temperate ecosystem

    NASA Astrophysics Data System (ADS)

    Sun, Kai; Luke McCormack, M.; Li, Le; Ma, Zeqing; Guo, Dali

    2016-01-01

    Roots of perennial plants have both persistent portion and fast-cycling units represented by different levels of branching. In woody species, the distal nonwoody branch orders as a unit are born and die together relatively rapidly (within 1-2 years). However, whether the fast-cycling units also exist in perennial herbs is unknown. We monitored root demography of seven perennial herbs over two years in a cold temperate ecosystem and we classified the largest roots on the root collar or rhizome as basal roots, and associated finer laterals as secondary, tertiary and quaternary roots. Parallel to woody plants in which distal root orders form a fast-cycling module, basal root and its finer laterals also represent a fast-cycling module in herbaceous plants. Within this module, basal roots had a lifespan of 0.5-2 years and represented 62-87% of total root biomass, thus dominating annual root turnover (60%-81% of the total). Moreover, root traits including root length, tissue density, and biomass were useful predictors of root lifespan. We conclude that both herbaceous and woody plants have fast-cycling modular units and future studies identifying the fast-cycling module across plant species should allow better understanding of how root construction and turnover are linked to whole-plant strategies.

  2. Microgravity effects on different stages of higher plant life cycle and completion of the seed-to-seed cycle.

    PubMed

    De Micco, V; De Pascale, S; Paradiso, R; Aronne, G

    2014-01-01

    Human inhabitation of Space requires the efficient realisation of crop cultivation in bioregenerative life-support systems (BLSS). It is well known that plants can grow under Space conditions; however, perturbations of many biological phenomena have been highlighted due to the effect of altered gravity and its possible interactions with other factors. The mechanisms priming plant responses to Space factors, as well as the consequences of such alterations on crop productivity, have not been completely elucidated. These perturbations can occur at different stages of plant life and are potentially responsible for failure of the completion of the seed-to-seed cycle. After brief consideration of the main constraints found in the most recent experiments aiming to produce seeds in Space, we focus on two developmental phases in which the plant life cycle can be interrupted more easily than in others also on Earth. The first regards seedling development and establishment; we discuss reasons for slow development at the seedling stage that often occurs under microgravity conditions and can reduce successful establishment. The second stage comprises gametogenesis and pollination; we focus on male gamete formation, also identifying potential constraints to subsequent fertilisation. We finally highlight how similar alterations at cytological level can not only be common to different processes occurring at different life stages, but can be primed by different stress factors; such alterations can be interpreted within the model of 'stress-induced morphogenic response' (SIMR). We conclude by suggesting that a systematic analysis of all growth and reproductive phases during the plant life cycle is needed to optimise resource use in plant-based BLSS. PMID:24015754

  3. Economic scales for first-generation biomass-gasifier/gas turbine combined cycles fueled from energy plantations

    SciTech Connect

    Larson, E.D.; Marrison, C.I.

    1997-04-01

    This paper assesses the scales at which commercial, first-generation biomass integrated-gasifier/gas turbine combined cycle (BIG/GTCC) technology is likely to be most economic when fueled by plantation-derived biomass. First-generation BIG/GTCC systems are likely to be commercially offered by vendors beginning around 2000 and will be based on either pressurized or atmospheric-pressure gasification. Both plant configurations are considered here, with estimates of capital and operating costs drawn from published and other sources. Prospective costs of a farm-grown energy crop (switchgrass) delivered to a power plant are developed with the aid of a geographic information system (GIS) for agricultural regions in the North Central and Southeast US in the year 2000 and 2020. A simplified approach is applied to estimate the cost of delivering chipped eucalyptus from an existing plantation in Northeast Brazil. The optimum capacity (MW{sub opt}), defined as that which yields the minimum calculated cost of electricity (COE{sub m}), varies by geographic region due to differences in delivered biomass costs. With pressurized BIG/GTCC plants, MW{sup opt} is in the range of 230--320 MW{sub e} for the sites considered, assuming most of the land around the power plant is farmed for energy crop production. For atmospheric-pressure BIG/GTCC plants, MW{sub opt} ranges from 110 to 142 MW{sub e}. When a lower fraction of the land around a plant is used for energy farming, values for MW{sub opt} are smaller than these. In all cases, the cost of electricity is relatively insensitive to plant capacity over a wide range around MW{sub opt}.

  4. Nitrogen cycling and water pulses in semiarid grasslands: Are microbial and plant processes temporarily asynchronous?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precipitation pulses in arid ecosystems can lead to temporal asynchrony in microbial and plant processing of nitrogen (N) during drying/wetting cycles causing increased N loss. In contrast, more consistent availability of soil moisture in mesic ecosystems can synchronize microbial and plant processe...

  5. Electric power generating plant having direct-coupled steam and compressed-air cycles

    DOEpatents

    Drost, M.K.

    1981-01-07

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  6. Electric power generating plant having direct coupled steam and compressed air cycles

    DOEpatents

    Drost, Monte K.

    1982-01-01

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  7. System studies of coal fired-closed cycle MHD for central station power plants

    NASA Technical Reports Server (NTRS)

    Zauderer, B.

    1976-01-01

    This paper presents a discussion of the closed-cycle MHD results obtained in a recent study of various advanced energy-conversion power systems. The direct coal-fired MHD topping-steam bottoming cycle was established as the current choice for central station power generation. Emphasis is placed on the background assumptions and the conclusions that can be drawn from the closed-cycle MHD analysis. It is concluded that closed-cycle MHD has efficiencies comparable to that of open-cycle MHD. Its cost will possibly be slightly higher than that of the open-cycle MHD system. Also, with reasonable fuel escalation assumptions, both systems can produce lower-cost electricity than conventional steam power plants. Suggestions for further work in closed-cycle MHD components and systems are made.

  8. An adaptive modeling and simulation environment for combined-cycle data reconciliation and degradation estimation

    NASA Astrophysics Data System (ADS)

    Lin, Tsungpo

    reduce the computation time and stabilize the problem solving for a complex power system such as a combined cycle power plant, meta-modeling using the response surface equation (RSE) and system/process decomposition are incorporated with the simultaneous scheme of SDRMC. The goal of this research work is to reduce the calibration uncertainties and, thus, the risks of providing performance guarantees arisen from uncertainties in performance simulation.

  9. Analysis of a New Rocket-Based Combined-Cycle Engine Concept at Low Speed

    NASA Technical Reports Server (NTRS)

    Yungster, S.; Trefny, C. J.

    1999-01-01

    An analysis of the Independent Ramjet Stream (IRS) cycle is presented. The IRS cycle is a variation of the conventional ejector-Ramjet, and is used at low speed in a rocket-based combined-cycle (RBCC) propulsion system. In this new cycle, complete mixing between the rocket and ramjet streams is not required, and a single rocket chamber can be used without a long mixing duct. Furthermore, this concept allows flexibility in controlling the thermal choke process. The resulting propulsion system is intended to be simpler, more robust, and lighter than an ejector-ramjet. The performance characteristics of the IRS cycle are analyzed for a new single-stage-to-orbit (SSTO) launch vehicle concept, known as "Trailblazer." The study is based on a quasi-one-dimensional model of the rocket and air streams at speeds ranging from lift-off to Mach 3. The numerical formulation is described in detail. A performance comparison between the IRS and ejector-ramjet cycles is also presented.

  10. Comparison of algae cultivation methods for bioenergy production using a combined life cycle assessment and life cycle costing approach.

    PubMed

    Resurreccion, Eleazer P; Colosi, Lisa M; White, Mark A; Clarens, Andres F

    2012-12-01

    Algae are an attractive energy source, but important questions still exist about the sustainability of this technology on a large scale. Two particularly important questions concern the method of cultivation and the type of algae to be used. This present study combines elements of life cycle analysis (LCA) and life cycle costing (LCC) to evaluate open pond (OP) systems and horizontal tubular photobioreactors (PBRs) for the cultivation of freshwater (FW) or brackish-to-saline water (BSW) algae. Based on the LCA, OPs have lower energy consumption and greenhouse gas emissions than PBRs; e.g., 32% less energy use for construction and operation. According to the LCC, all four systems are currently financially unattractive investments, though OPs are less so than PBRs. BSW species deliver better energy and GHG performance and higher profitability than FW species in both OPs and PBRs. Sensitivity analyses suggest that improvements in critical cultivation parameters (e.g., CO(2) utilization efficiency or algae lipid content), conversion parameters (e.g., anaerobic digestion efficiency), and market factors (e.g., costs of CO(2) and electricity, or sale prices for algae biodiesel) could alter these results. PMID:23117186

  11. Increased efficiency of topping cycle PCFB power plants

    SciTech Connect

    Robertson, A.; Domeracki, W.; Horazak, D.

    1996-05-01

    Pressurized circulating fluidized bed (PCFB) power plants offer the power industry significantly increased efficiencies with reduced costs of electricity and lower emissions. When topping combustion is incorporated in the plant, these advantages are enhanced. In the plant, coal is fed to a pressurized carbonizer that produces a low-Btu fuel gas and char. After passing through a cyclone and ceramic barrier filter to remove gas-entrained particulates and a packed bed of emathelite pellets to remove alkali vapors. the fuel gas is burned in a topping combustor to produce the energy required to drive a gas turbine. The gas turbine drives a generator combustor, and a fluidized bed heat exchanger (FBHE). The carbonizer char is burned in the PCFB and the exhaust gas passes through its own cyclone, ceramic barrier filter, and alkali getter and supports combustion of the fuel gas in the topping combustor. Steam generated in a heat-recovery steam generator (HRSG) downstream of the gas turbine and in the FBHE associated with the PCFB drives the steam turbine generator that furnishes the balance of electric power delivered by the plant.

  12. Raft River binary-cycle geothermal pilot power plant final report

    SciTech Connect

    Bliem, C.J.; Walrath, L.F.

    1983-04-01

    The design and performance of a 5-MW(e) binary-cycle pilot power plant that used a moderate-temperature hydrothermal resource, with isobutane as a working fluid, are examined. Operating problems experienced and solutions found are discussed and recommendations are made for improvements to future power plant designs. The plant and individual systems are analyzed for design specification versus actual performance figures.

  13. Drought regulates the C and N cycling in soil depending on plant community composition

    NASA Astrophysics Data System (ADS)

    Sanaullah, Muhammad; Chabbi, Abad; Rumpel, Cornelia

    2015-04-01

    Drought consequences on carbon (C) and nutrients cycling have been well explored, but little is known about interactions in the rhizosphere under various plant community composition. We compared drought effects on microbial biomass carbon (MBC) and on enzyme activities in the rhizosphere of three plants grown individually or in mixture: two grasses (Lolium perenne and Festuca arundinacea) and one legume (Medicago sativa). The activities of extracellular enzymes involved in C cycle (xylanase, β-cellobiosidase and β-glucosidase) and nitrogen (N) cycle (chitinase and Leucine-aminopeptidase) were compared to MBC changes. The MBC was highly correlated with root biomass. MBC increased in response to drought in soil under the plant mixture, whereas it showed variable trends under monocultures. Drought and plant species composition were responsible for more than 90% of the variation of enzyme activities. Most enzyme activities decreased in unplanted soil in response to drought. The activity of the enzyme involved in the N cycle increased strongly under mixture and two out of three monocultures, indicating an increased N demand under drought conditions. The activities of enzymes involved in the C cycle in soil under mixture (1) generally were lower during drought compared to soil under monocultures and (2) were unchanged or tended to decrease, while they were more likely to increase under monocultures. This has an important ecological consequence: the decomposition of plant residues and soil organic matter will be slower under drought when plants are grown in mixture compared to monocultures.

  14. Combination flash-bottoming cycle geothermal power generation: A case history

    SciTech Connect

    Gallup, D.L.

    1996-12-31

    High- and low-enthalpy, liquid-dominated geothermal resources are commonly exploited by steam flash and binary power cycles, respectively. Cooled brine from both flash and binary power cycles, respectively. Cooled brine from both flash and binary power plants is typically reinjected into the geothermal reservoir to replenish the aquifer, maintain reservoir pressure and to protect the environment. Silica tends to precipitate from geothermal brine at almost every stage of brine processing as the temperature is reduced, either as hydrous, amorphous opal or as metal silicate. Silica scale deposition in flash plants and brine reinjection systems is commonly controlled by disposing of brine at temperatures above which silica/silicate is saturated or only slightly over-saturated. A significant amount of heat remains in high temperature injection brine that may otherwise be extracted. In 1994, binary cycle units comprising 16 MWe were installed at the Bulalo, Philippines geothermal field utilizing flashed waste brine that was previously injected directly to the reservoir. The binary bottoming cycle consists of six energy converters each employing a preheater and a vaporizer. The brine temperature is reduced across the heat exchangers from 450{degree} to 408{degree}. During the heat recovery process, over-saturation of silica in the injection brine increases from < 10 to > 100%, and scaling rates are predicted to increase thirty-fold from 0.1 to 3 mm/yr. Siliceous scaling in heat exchangers, cooled injection brine piping, injection wells and near-wellbore formation is inhibited by acidification of brine sent to the binary plant. The heat recovery process, incorporating silica scale control by pH modification, has successfully operated at the Bulalo field for two years. Silica scaling, as a result of flashing and cooling brine has been reduced to less than 1 mm/yr.

  15. Multi-objective optimization of combined Brayton and inverse Brayton cycles using advanced optimization algorithms

    NASA Astrophysics Data System (ADS)

    Venkata Rao, R.; Patel, Vivek

    2012-08-01

    This study explores the use of teaching-learning-based optimization (TLBO) and artificial bee colony (ABC) algorithms for determining the optimum operating conditions of combined Brayton and inverse Brayton cycles. Maximization of thermal efficiency and specific work of the system are considered as the objective functions and are treated simultaneously for multi-objective optimization. Upper cycle pressure ratio and bottom cycle expansion pressure of the system are considered as design variables for the multi-objective optimization. An application example is presented to demonstrate the effectiveness and accuracy of the proposed algorithms. The results of optimization using the proposed algorithms are validated by comparing with those obtained by using the genetic algorithm (GA) and particle swarm optimization (PSO) on the same example. Improvement in the results is obtained by the proposed algorithms. The results of effect of variation of the algorithm parameters on the convergence and fitness values of the objective functions are reported.

  16. Analysis of a coal fired combined cycle with carried-heat gasification

    NASA Astrophysics Data System (ADS)

    Xu, Xiangdong; Zhu, Weimin; Zhao, Li; Fett, F. N.

    1994-12-01

    In the research of a more efficient, less costly, more environmentally responsible and less technically difficult method for generating electrical power from coal, the Carried-heat Gasification Combined Cycle (CGCC) is introduced by Tsinghua University. The high efficiency cycle includes carried-heat partial gasification, compressed air heating in a fluidized bed immersed air heater followed by a combustor and the heat recovery of gas turbine exhaust used as the combustion air for the differential-velocity atmospheric circulating fluidized bed (DFBC). Superheat steam is raised in the DFBC boiler. The comparison of results identifies the causes of performance difference between eight cases. Features of the cycle ensure a high coal conversion efficiency within current state of the art.

  17. Moving-bed gasification - combined-cycle control study. Volume 1: results and conclusions, Case 1 - air-blown dry-ash operation. Final report

    SciTech Connect

    Ahner, D.J.; Brower, A.S.; Dawes, M.H.; Patel, A.S.

    1981-03-01

    A simulation study has been conducted to investigate the inherent process dynamics and required control strategies for an integrated coal gasification/combined cycle (GCC) power plant to operate successfully under load-changing conditions to meet power system requirements. The simulated GCC plant configuration is similar to the flowsheet developed in earlier EPRI economic studies (RP239), based on an air-blown, dry-ash, moving-bed gasifier of the Lurgi-type. A following GCC plant control study will be based on a Lurgi-type gasifier modified for oxygen-blown, slagging operations such as that being developed by British Gas Corporation. A large ditial computer simulation model of the GCC plant operating on a large utility power system network was developed to examine alternate plant control strategies. Gas turbine-lead and gasifier-lead control modes were evaluated with respect to power system requirements for daily load following, tie-line flow regulation with thermal backup, and frequency regulation. Inherent features of the gasifier led to unique process dynamics for the GCC plant. Sizeable transients were observed during load-changing operations, both in the fuel process and the steam system. However, the plant compensated effectively for such transients with a modified gas turbine-lead control strategy, by making use of fast-responding gas turbine controls and the large inherent volume of the fuel process. The results verify the capability of the GCC plant to operate with the fuel process closely integrated with the combined cycle plant under rapidly changing conditions. Furthermore, a GCC plant control strategy was developed which can successfully meet power sytem requirements within fuel system limitations, allowing an overall plant response rate of four (4) percent per minute.

  18. Design of Biomass Gasification and Combined Heat and Power Plant Based on Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Haydary, Juma; Jelemenský, Ľudovít

    Three types of wooden biomass were characterized by calorimetric measurements, proximate and elemental analysis, thermogravimetry, kinetics of thermal decomposition and gas composition. Using the Aspen steady state simulation, a plant with the processing capacity of 18 ton/h of biomass was modelled based on the experimental data obtained under laboratory conditions. The gasification process has been modelled in two steps. The first step of the model describes the thermal decomposition of the biomass based on a kinetic model and in the second step, the equilibrium composition of syngas is calculated by the Gibbs free energy of the expected components. The computer model of the plant besides the reactor model includes also a simulation of other plant facilities such as: feed drying employing the energy from the process, ash and tar separation, gas-steam cycle, and hot water production heat exchangers. The effect of the steam to air ratio on the conversion, syngas composition, and reactor temperature was analyzed. Employment of oxygen and air for partial combustion was compared. The designed computer model using all Aspen simulation facilities can be applied to study different aspects of biomass gasification in a Combined Heat and Power plant.

  19. Aerodynamic Experiments of Small Scale Combined Cycle Engine in Various Mach Numbers

    NASA Astrophysics Data System (ADS)

    Tani, Kouichiro; Kouchi, Toshinori; Kato, Kanenori; Sakuranaka, Noboru; Watanabe, Syuuichi

    A small model aerodynamic tests of the combined cycle engine were carried out to evaluate its performance in subsonic and supersonic conditions. In this regime of the flow speed, the combined cycle engine operates as an ejector-jet or ramjet. The nitrogen gas was exhausted as the substitution for the actual rocket gas. In a subsonic condition, there appeared local pressure rise at the kink point of the ramp, increasing the pressure drag. Both wall pressure and the pitot pressure distribution at the exit of the model suggested that the flow structure is “two-layered” ; one is subsonic induced air flow, and the other is the supersonic rocket exhaust. A slit was carved on the topwall inside the isolator section, expecting a better suction performance in the ejector-jet mode. The modification actually had an effect to enhance the lower limit of the rocket pressure at which the choking of the induced air is achieved.

  20. Environmental Assessment for the Warren Station externally fired combined cycle demonstration project

    SciTech Connect

    1995-04-01

    The proposed Penelec project is one of 5 projects for potential funding under the fifth solicitation under the Clean Coal Technology program. In Penelec, two existing boilers would be replaced at Warren Station, PA; the new unit would produce 73 MW(e) in a combined cycle mode (using both gas-fired and steam turbines). The project would fill the need for a full utility-size demonstration of externally fire combined cycle (EFCC) technology as the next step toward commercialization. This environmental assessment was prepared for compliance with NEPA; its purpose is to provide sufficient basis for determining whether to prepare an environmental impact statement or to issue a finding of no significant impact. It is divided into the sections: purpose and need for proposed action; alternatives; brief description of affected environment; environmental consequences, including discussion of commercial operation beyond the demonstration period.

  1. Recent Activities in Research of the Combined Cycle Engine at JAXA

    NASA Astrophysics Data System (ADS)

    Tani, Kouichiro; Tomioka, Sadatake; Kato, Kanenori; Ueda, Syuichi; Takegoshi, Masao

    Recent activities of the researches on the rocket based combined cycle engine in Japan Aerospace Exploration Agency are summarized. Aiming to realize the flight test in 10 years, JAXA has been making sub-scale model experiments as well as a series of component tests. In 08 fiscal year, sub-scale tests were carried out in Mach 6 flight condition and the stable ramjet combustion was confirmed following the successful ramjet mode establishment in Mach 4 condition in previous year. Some improvements of flow modeling inside the combustor and the ejector analysis were also achieved. With the scramjet mode analysis due in ’09 fiscal year, the designing method of the combined cycle engine will be improved and the next test engine will be launched.

  2. Parametric Studies of the Ejector Process within a Turbine-Based Combined-Cycle Propulsion System

    NASA Technical Reports Server (NTRS)

    Georgiadis, Nicholas J.; Walker, James F.; Trefny, Charles J.

    1999-01-01

    Performance characteristics of the ejector process within a turbine-based combined-cycle (TBCC) propulsion system are investigated using the NPARC Navier-Stokes code. The TBCC concept integrates a turbine engine with a ramjet into a single propulsion system that may efficiently operate from takeoff to high Mach number cruise. At the operating point considered, corresponding to a flight Mach number of 2.0, an ejector serves to mix flow from the ramjet duct with flow from the turbine engine. The combined flow then passes through a diffuser where it is mixed with hydrogen fuel and burned. Three sets of fully turbulent Navier-Stokes calculations are compared with predictions from a cycle code developed specifically for the TBCC propulsion system. A baseline ejector system is investigated first. The Navier-Stokes calculations indicate that the flow leaving the ejector is not completely mixed, which may adversely affect the overall system performance. Two additional sets of calculations are presented; one set that investigated a longer ejector region (to enhance mixing) and a second set which also utilized the longer ejector but replaced the no-slip surfaces of the ejector with slip (inviscid) walls in order to resolve discrepancies with the cycle code. The three sets of Navier-Stokes calculations and the TBCC cycle code predictions are compared to determine the validity of each of the modeling approaches.

  3. Effect of Gas/Steam Turbine Inlet Temperatures on Combined Cycle Having Air Transpiration Cooled Gas Turbine

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Singh, O.

    2012-10-01

    Worldwide efforts are being made for further improving the gas/steam combined cycle performance by having better blade cooling technology in topping cycle and enhanced heat recovery in bottoming cycle. The scope of improvement is possible through turbines having higher turbine inlet temperatures (TITs) of both gas turbine and steam turbine. Literature review shows that a combined cycle with transpiration cooled gas turbine has not been analyzed with varying gas/steam TITs. In view of above the present study has been undertaken for thermodynamic study of gas/steam combined cycle with respect to variation in TIT in both topping and bottoming cycles, for air transpiration cooled gas turbine. The performance of combined cycle with dual pressure heat recovery steam generator has been evaluated for different cycle pressure ratios (CPRs) varying from 11 to 23 and the selection diagrams presented for TIT varying from 1,600 to 1,900 K. Both the cycle efficiency and specific work increase with TIT for each pressure ratio. For each TIT there exists an optimum pressure ratio for cycle efficiency and specific work. For the CPR of 23 the best cycle performance is seen at a TIT of 1,900 K for maximum steam temperature of 570 °C, which gives the cycle efficiency of 60.9 % with net specific work of 909 kJ/kg.

  4. Integrated gasification combined-cycle research development and demonstration activities in the US

    SciTech Connect

    Ness, H.M.; Brdar, R.D.

    1996-09-01

    The United States Department of Energy (DOE)`s Office of Fossil Energy, Morgantown Energy Technology Center, is managing a research development and demonstration (RD&D) program that supports the commercialization of integrated gasification combined-cycle (IGCC) advanced power systems. This overview briefly describes the supporting RD&D activities and the IGCC projects selected for demonstration in the Clean Coal Technology (CCT) Program.

  5. Integrated gasification combined-cycle research development and demonstration activities in the U.S.

    SciTech Connect

    Ness, H.M.

    1994-12-31

    The United States Department of Energy (DOE) has selected seven integrated gasification combined-cycle (IGCC) advanced power systems for demonstration in the Clean Coal Technology (CCT) Program. DOE`s Office of Fossil Energy, Morgantown Energy Technology Center, is managing a research development and demonstration (RD&D)program that supports the CCT program, and addresses long-term improvements in support of IGCC technology. This overview briefly describes the CCT projects and the supporting RD&D activities.

  6. Rocket-Based Combined-Cycle (RBCC) Propulsion Technology Workshop. Tutorial session

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The goal of this workshop was to illuminate the nation's space transportation and propulsion engineering community on the potential of hypersonic combined cycle (airbreathing/rocket) propulsion systems for future space transportation applications. Four general topics were examined: (1) selections from the expansive advanced propulsion archival resource; (2) related propulsion systems technical backgrounds; (3) RBCC engine multimode operations related subsystem background; and (4) focused review of propulsion aspects of current related programs.

  7. Rocket Based Combined Cycle (RBCC) Propulsion Technology Workshop. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Chojnacki, Kent T.

    1992-01-01

    The goal of the Rocket-Based Combined Cycle (RBCC) Propulsion Technology Workshop was to assess the RBCC propulsion system's viability for Earth-to-Orbit (ETO) transportation systems. This was accomplished by creating a forum (workshop) in which past work in the field of RBCC propulsion systems was reviewed, current technology status was evaluated, and future technology programs in the field of RBCC propulsion systems were postulated, discussed, and recommended.

  8. The Conceptual Design of an Integrated Nuclearhydrogen Production Plant Using the Sulfur Cycle Water Decomposition System

    NASA Technical Reports Server (NTRS)

    Farbman, G. H.

    1976-01-01

    A hydrogen production plant was designed based on a hybrid electrolytic-thermochemical process for decomposing water. The sulfur cycle water decomposition system is driven by a very high temperature nuclear reactor that provides 1,283 K helium working gas. The plant is sized to approximately ten million standard cubic meters per day of electrolytically pure hydrogen and has an overall thermal efficiently of 45.2 percent. The economics of the plant were evaluated using ground rules which include a 1974 cost basis without escalation, financing structure and other economic factors. Taking into account capital, operation, maintenance and nuclear fuel cycle costs, the cost of product hydrogen was calculated at $5.96/std cu m for utility financing. These values are significantly lower than hydrogen costs from conventional water electrolysis plants and competitive with hydrogen from coal gasification plants.

  9. Life cycle analysis of distributed concentrating solar combined heat and power: economics, global warming potential and water

    NASA Astrophysics Data System (ADS)

    Norwood, Zack; Kammen, Daniel

    2012-12-01

    We report on life cycle assessment (LCA) of the economics, global warming potential and water (both for desalination and water use in operation) for a distributed concentrating solar combined heat and power (DCS-CHP) system. Detailed simulation of system performance across 1020 sites in the US combined with a sensible cost allocation scheme informs this LCA. We forecast a levelized cost of 0.25 kWh-1 electricity and 0.03 kWh-1 thermal, for a system with a life cycle global warming potential of ˜80 gCO2eq kWh-1 of electricity and ˜10 gCO2eq kWh-1 thermal, sited in Oakland, California. On the basis of the economics shown for air cooling, and the fact that any combined heat and power system reduces the need for cooling while at the same time boosting the overall solar efficiency of the system, DCS-CHP compares favorably to other electric power generation systems in terms of minimization of water use in the maintenance and operation of the plant. The outlook for water desalination coupled with distributed concentrating solar combined heat and power is less favorable. At a projected cost of 1.40 m-3, water desalination with DCS-CHP would be economical and practical only in areas where water is very scarce or moderately expensive, primarily available through the informal sector, and where contaminated or salt water is easily available as feed-water. It is also interesting to note that 0.40-1.90 m-3 is the range of water prices in the developed world, so DCS-CHP desalination systems could also be an economical solution there under some conditions.

  10. Tubular SOFC and SOFC/Gas Turbine combined cycles-status and prospects

    SciTech Connect

    Veyo, S.E.; Lundberg, W.L.

    1996-12-31

    Presently under fabrication at Westinghouse for EDB/ELSAM, a consortium of Dutch and Danish utilities, is the world`s first 100 kWe Solid Oxide Fuel Cell (SOFC) power generation system. This natural gas fueled experimental field unit will be installed near Arnhem, The Netherlands, at an auxiliary district heating plant (Hulp Warmte Centrale) at the Rivierweg in Westervoort, a site provided by NUON, one of the Dutch participants, and will supply ac power to the utility grid and hot water to the district heating system serving the Duiven/Westervoort area. The electrical generation efficiency of this simple cycle atmospheric pressure system will approach 50%. The analysis of conceptual designs for larger capacity systems indicates that the horizon for the efficiency of simple cycle atmospheric pressure units is about 55%.

  11. Hydrogen production by water decomposition using a combined electrolytic-thermochemical cycle

    NASA Technical Reports Server (NTRS)

    Farbman, G. H.; Brecher, L. E.

    1976-01-01

    A proposed dual-purpose power plant generating nuclear power to provide energy for driving a water decomposition system is described. The entire system, dubbed Sulfur Cycle Water Decomposition System, works on sulfur compounds (sulfuric acid feedstock, sulfur oxides) in a hybrid electrolytic-thermochemical cycle; performance superior to either all-electrolysis systems or presently known all-thermochemical systems is claimed. The 3345 MW(th) graphite-moderated helium-cooled reactor (VHTR - Very High Temperature Reactor) generates both high-temperature heat and electric power for the process; the gas stream at core exit is heated to 1850 F. Reactor operation is described and reactor innards are illustrated. A cost assessment for on-stream performance in the 1990's is optimistic.

  12. Life-cycle CO{sub 2} emissions for air-blown gasification combined-cycle using selexol

    SciTech Connect

    Doctor, R.D.; Molburg, J.C.; Thimmapuram, P.; Berry, G.F.; Livengood, C.D.

    1993-06-01

    Initiatives to limit carbon dioxide (CO{sub 2}) emissions have drawn considerable interest to integrated gasification combined-cycle (IGCC) power generation. With its higher efficiency, this process can reduce CO{sub 2} production. It is also amenable to CO{sub 2} capture, because CO{sub 2} Can be removed before combustion and the associated dilution with atmospheric nitrogen. This paper presents a process-design baseline that encompasses the IGCC system, CO{sub 2} transport -by pipeline, and land-based sequestering of CO{sub 2} in geological reservoirs. The intent of this study is to provide the CO{sub 2} budget, or an ``equivalent CO{sub 2}`` budget, associated with each of the individual energy-cycle steps. Design capital and operating costs for the process are included in the fill study but are not reported in the present paper. The value used for the equivalent CO{sub 2} budget will be 1 kg CO{sub 2}/kWh{sub e}. The base case is a 470-MW (at the busbar) IGCC system using an air-blown Kellogg Rust Westinghouse (KRW) agglomerating fluidized-bed gasifier, US Illinois {number_sign}6 bituminous coal feed, and in-bed sulfur removal. Mining, feed preparation, and conversion result in a net electric power production of 461 MW, with a CO{sub 2} release rate of 0.830 kg/kWh{sub e}. In the CO{sub 2} recovery case, the gasifier output is taken through water-gas shift and then to Selexol, a glycol-based absorber-stripper process that recovers CO{sub 2} before it enters the combustion turbine. This process results in 350 MW at the busbar.

  13. Energy Economic Data Base (EEDB) Program: Phase 9 Update (1987) report, AGCC5-A supplement: Advanced gas turbine combined cycle (natural gas based) power generating station

    SciTech Connect

    Not Available

    1989-05-01

    The purpose of this AGCC5-A supplement is to identify direct equipment, material and labor costs, and indirect costs in sufficient detail to be used as a baseline for comparing the costs of combined-cycle gas-fired power plants with the costs of alternatives. This information is needed to satisfy the cost evaluation requirements of the Oak Ridge National Laboratory (ORNL) and the US Department of Energy (DOE). 11 refs., 9 figs., 15 tabs.

  14. Off-design study of an open cycle MHD power plant with oxygen enrichment

    NASA Astrophysics Data System (ADS)

    Geyer, H. K.; Berry, G. F.

    1981-01-01

    Some of the more important aspects of off-design operation for a magnetohydrodynamic (MHD) power plant are discussed. It is noted that the plant must be designed to meet part-load and overload conditions and that the optimal design should be subject to a specified load demand curve. An analysis is made for off-design regimes to determine the compatible joint operating conditions for an MHD topping cycle, a steam bottoming plant, a turbine train, a compressor, and an oxygen separation plant. The analysis is subject to such constraints as metal temperatures, second law violations, component performance requirements, and environmental considerations.

  15. System study on partial gasification combined cycle with CO{sub 2} recovery - article no. 051801

    SciTech Connect

    Xu, Y.J.; Jin, H.G.; Lin, R.M.; Han, W.

    2008-09-15

    S partial gasification combined cycle with CO{sub 2} recovery is proposed in this paper. Partial gasification adopts cascade conversion of the composition of coal. Active composition of coal is simply gasified, while inactive composition, that is char, is burnt in a boiler. Oxy-fuel combustion of syngas produces only CO{sub 2} and H{sub 2}O, so the CO{sub 2} can be separated through cooling the working fluid. This decreases the amount of energy consumption to separate CO{sub 2} compared with conventional methods. The novel system integrates the above two key technologies by injecting steam from a steam turbine into the combustion chamber of a gas turbine to combine the Rankine cycle with the Brayton cycle. The thermal efficiency of this system will be higher based on the cascade utilization of energy level. Compared with the conventional integrated gasification combined cycle (IGCC), the compressor of the gas turbine, heat recovery steam generator (HRSG) and gasifier are substituted for a pump, reheater, and partial gasifier, so the system is simplified. Furthermore, the novel system is investigated by means of energy-utilization diagram methodology and provides a simple analysis of their economic and environmental performance. As a result, the thermal efficiency of this system may be expected to be 45%, with CO{sub 2} recovery of 41.2%, which is 1.5-3.5% higher than that of an IGCC system. At the same time, the total investment cost of the new system is about 16% lower than that of an IGCC. The comparison between the partial gasification technology and the IGCC technology is based on the two representative cases to identify the specific feature of the proposed system.

  16. Power-cycle studies for a geothermal electric plant for MX operating bases

    SciTech Connect

    Bliem, C.J.; Kochan, R.J.

    1981-11-01

    Binary geothermal plants were investigated for providing electrical power for MX missile bases. A number of pure hydrocarbons and hydrocarbon mixtures were evaluated as working fluids for geothermal resource temperatures of 365, 400, and 450/sup 0/F. Cycle thermodynamic analyses were conducted for pure geothermal plants and for two types of coal-geothermal hybrid plants. Cycle performance results were presented as net geofluid effectiveness (net plant output in watts per geofluid flow in 1 bm/hr) and cooling water makeup effectiveness (net plant output in watts per makeup water flow in 1 bm/hr). A working fluid containing 90% (mass) isobutane/10% hexane was selected, and plant statepoints and energy balances were determined for 20MW(e) geothermal plants at each of the three resource temperatures. Working fluid heaters and condensers were sized for these plants. It is concluded that for the advanced plants investigated, geothermal resources in the 365 to 450/sup 0/F range can provide useful energy for powering MX missile bases.

  17. Containment integrity of SEP plants under combined loads. [PWR; BWR

    SciTech Connect

    Lo, T.; Nelson, T.A.; Chen, P.Y.; Persinko, D.; Grimes, C.

    1984-06-01

    Because the containment structure is the last barrier against the release of radioactivity, an assessment was undertaken to identify the design weaknesses and estimate the margins of safety for the SEP containments under the postulated, combined loading conditions of a safe shutdown earthquake (SSE) and a design basis accident (DBA). The design basis accident is either a loss-of-coolant accident (LOCA) or a main steam line break (MSLB). The containment designs analyzed consisted of three inverted light-bulb shaped drywells used in boiling water reactor (BWR) systems, and three steel-lined concrete containments and a spherical steel shell used in pressurized water reactor (PWR) systems. These designs cover a majority of the containment types used in domestic operating plants. The results indicate that five of the seven designs are adequate even under current design standards. For the remaining two designs, the possible design weaknesses identified were buckling of the spherical steel shell and over-stress in both the radial and tangential directions in one of the concrete containments near its base.

  18. NW African hydrology and vegetation during the Last Glacial cycle reflected in plant-wax-specific hydrogen and carbon isotopes

    NASA Astrophysics Data System (ADS)

    Kuechler, R. R.; Schefuß, E.; Beckmann, B.; Dupont, L.; Wefer, G.

    2013-12-01

    We present a hydrologic reconstruction of the Sahara-Sahel transition, covering the complete Last Glacial cycle (130 ka), based on a combination of plant-wax-specific hydrogen (δD) and carbon isotopes (δ13C). The δD and δ13C signatures of long-chain n-alkanes from ODP Site 659 off NW Africa reveal a significant anti-correlation. Complementary to published pollen data, we infer that this plant-wax signal reflects sensitive responses of the vegetation cover to precipitation changes in the Sahel region, as well as varying contributions from biomes north of the Sahara (C3 domain) by North-East Trade Winds (NETW). During arid phases, especially the northern parts of the Sahel likely experienced crucial water stress, which resulted in a pronounced contraction of the vegetation cover, thus reducing the amount of C4 plant waxes from the region. The increase in NETW strength during dry periods further promoted a more pronounced C3-plant-wax signal derived from the North African C3 plant domain. During humid periods, the C4-dominated Sahelian environments spread northward into the Saharan realm, in association with lower NETW inputs of C3 plant waxes. Arid-humid cycles deduced from plant-wax δD are in accordance with concomitant changes in weathering intensity reflected in varying major element distributions. Environmental shifts are generally linked to periods with large fluctuations in Northern Hemisphere summer insolation. During Marine Isotope Stages 2 and 3, when insolation variability was low, coupling of the hydrologic regime to alkenone-based estimates of NE Atlantic sea-surface temperatures becomes apparent.

  19. Advanced Shock Position Control for Mode Transition in a Turbine Based Combined Cycle Engine Inlet Model

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Stueber, Thomas J.

    2013-01-01

    A dual flow-path inlet system is being tested to evaluate methodologies for a Turbine Based Combined Cycle (TBCC) propulsion system to perform a controlled inlet mode transition. Prior to experimental testing, simulation models are used to test, debug, and validate potential control algorithms. One simulation package being used for testing is the High Mach Transient Engine Cycle Code simulation, known as HiTECC. This paper discusses the closed loop control system, which utilizes a shock location sensor to improve inlet performance and operability. Even though the shock location feedback has a coarse resolution, the feedback allows for a reduction in steady state error and, in some cases, better performance than with previous proposed pressure ratio based methods. This paper demonstrates the design and benefit with the implementation of a proportional-integral controller, an H-Infinity based controller, and a disturbance observer based controller.

  20. Development and application of performance and cost models for the externally-fired combined cycle. Task 1, Volume 2. Topical report, June 1995

    SciTech Connect

    Agarwal, P.; Frey, H.; Rubin, E.S.

    1995-07-01

    Increasing restrictions on emission of pollutants from conventional pulverized coal fired steam (PCFS) plant generating electrical power is raising capital and operating cost of these plants and at the same time lowering plant efficiency. This is creating a need for alternative technologies which result in lower emissions of regulated pollutants and which are thermally more efficient. Natural gas-fired combined cycle power generation systems have lower capital cost and higher efficiencies than conventional coal fired steam plants, and at this time they are the leading contender for new power plant construction in the U.S. But the intermediate and long term cost of these fuels is high and there is uncertainty regarding their long-term price and availability. Coal is a relatively low cost fuel which will be abundantly available in the long term. This has motivated the development of advanced technologies for power production from coal which will have advantages of other fuels. The Externally Fired Combined Cycle (EFCC) is one such technology. Air pollution control/hot gas cleanup issues associated with this technology are described.

  1. Computational Analysis for Rocket-Based Combined-Cycle Systems During Rocket-Only Operation

    NASA Technical Reports Server (NTRS)

    Steffen, C. J., Jr.; Smith, T. D.; Yungster, S.; Keller, D. J.

    2000-01-01

    A series of Reynolds-averaged Navier-Stokes calculations were employed to study the performance of rocket-based combined-cycle systems operating in an all-rocket mode. This parametric series of calculations were executed within a statistical framework, commonly known as design of experiments. The parametric design space included four geometric and two flowfield variables set at three levels each, for a total of 729 possible combinations. A D-optimal design strategy was selected. It required that only 36 separate computational fluid dynamics (CFD) solutions be performed to develop a full response surface model, which quantified the linear, bilinear, and curvilinear effects of the six experimental variables. The axisymmetric, Reynolds-averaged Navier-Stokes simulations were executed with the NPARC v3.0 code. The response used in the statistical analysis was created from Isp efficiency data integrated from the 36 CFD simulations. The influence of turbulence modeling was analyzed by using both one- and two-equation models. Careful attention was also given to quantify the influence of mesh dependence, iterative convergence, and artificial viscosity upon the resulting statistical model. Thirteen statistically significant effects were observed to have an influence on rocket-based combined-cycle nozzle performance. It was apparent that the free-expansion process, directly downstream of the rocket nozzle, can influence the Isp efficiency. Numerical schlieren images and particle traces have been used to further understand the physical phenomena behind several of the statistically significant results.

  2. Recent progress in scramjet/combined cycle engines at JAXA, Kakuda space center

    NASA Astrophysics Data System (ADS)

    Hiraiwa, Tetsuo; Ito, Katsuhiro; Sato, Shigeru; Ueda, Shuichi; Tani, Kouichiro; Tomioka, Sadatake; Kanda, Takeshi

    2008-09-01

    This report presents recent research activities of the Combined Propulsion Research Group of Japan Aerospace Exploration Agency. Aerodynamics and combustion of the scramjet engine and the rocket-ramjet combined-cycle engine, structure and material for the two engines and thermo-aerodynamic of a re-entry vehicle are major subjects. In Mach 6 condition tests, a scramjet engine model produced about 2000 N net thrust, whereas a model produced thrust almost equal to its drag in Mach 12 condition. A flight test of a combustor model was conducted with Hyshot-IV. A rocket-ramjet combined-cycle engine model is under construction with validation of the rocket engine component. Studies of combustor models and aerodynamic component models were conducted for demonstration of the engine operation and improvement of its performances. Light-weight cooling panel by electrochemical etching examined and C/ C composite structure was tested. Thermo-aerodynamics of re-entry vehicle was investigated and oxygen molecular density was measured also in high enthalpy flow.

  3. Examination of oxygen release from plants in constructed wetlands in different stages of wetland plant life cycle.

    PubMed

    Zhang, Jian; Wu, Haiming; Hu, Zhen; Liang, Shuang; Fan, Jinlin

    2014-01-01

    The quantification of oxygen release by plants in different stages of wetland plant life cycle was made in this study. Results obtained from 1 year measurement in subsurface wetland microcosms demonstrated that oxygen release from Phragmites australis varied from 108.89 to 404.44 mg O₂/m(2)/d during the different periods from budding to dormancy. Plant species, substrate types, and culture solutions had a significant effect on the capacity of oxygen release of wetland plants. Oxygen supply by wetland plants was estimated to potentially support a removal of 300.37 mg COD/m(2)/d or 55.87 mg NH₄-N/m(2)/d. According to oxygen balance analysis, oxygen release by plants could provide 0.43-1.12% of biochemical oxygen demand in typical subsurface-flow constructed wetlands (CWs). This demonstrates that oxygen release of plants may be a potential source for pollutants removal especially in low-loaded CWs. The results make it possible to quantify the role of plants in wastewater purification. PMID:24777322

  4. Dynamic Testing of the NASA Hypersonic Project Combined Cycle Engine Testbed for Mode Transition Experiments

    NASA Technical Reports Server (NTRS)

    2011-01-01

    NASA is interested in developing technology that leads to more routine, safe, and affordable access to space. Access to space using airbreathing propulsion systems has potential to meet these objectives based on Airbreathing Access to Space (AAS) system studies. To this end, the NASA Fundamental Aeronautics Program (FAP) Hypersonic Project is conducting fundamental research on a Turbine Based Combined Cycle (TBCC) propulsion system. The TBCC being studied considers a dual flow-path inlet system. One flow-path includes variable geometry to regulate airflow to a turbine engine cycle. The turbine cycle provides propulsion from take-off to supersonic flight. The second flow-path supports a dual-mode scramjet (DMSJ) cycle which would be initiated at supersonic speed to further accelerate the vehicle to hypersonic speed. For a TBCC propulsion system to accelerate a vehicle from supersonic to hypersonic speed, a critical enabling technology is the ability to safely and effectively transition from the turbine to the DMSJ-referred to as mode transition. To experimentally test methods of mode transition, a Combined Cycle Engine (CCE) Large-scale Inlet testbed was designed with two flow paths-a low speed flow-path sized for a turbine cycle and a high speed flow-path designed for a DMSJ. This testbed system is identified as the CCE Large-Scale Inlet for Mode Transition studies (CCE-LIMX). The test plan for the CCE-LIMX in the NASA Glenn Research Center (GRC) 10- by 10-ft Supersonic Wind Tunnel (10x10 SWT) is segmented into multiple phases. The first phase is a matrix of inlet characterization (IC) tests to evaluate the inlet performance and establish the mode transition schedule. The second phase is a matrix of dynamic system identification (SysID) experiments designed to support closed-loop control development at mode transition schedule operating points for the CCE-LIMX. The third phase includes a direct demonstration of controlled mode transition using a closed loop control

  5. Selection of odour removal technologies in wastewater treatment plants: a guideline based on Life Cycle Assessment.

    PubMed

    Alfonsín, Carolina; Lebrero, Raquel; Estrada, José M; Muñoz, Raúl; Kraakman, N J R Bart; Feijoo, Gumersindo; Moreira, M Teresa

    2015-02-01

    This paper aims at analysing the environmental benefits and impacts associated with the treatment of malodorous emissions from wastewater treatment plants (WWTPs). The life cycle assessment (LCA) methodology was applied to two biological treatments, namely biofilter (BF) and biotrickling filter (BTF), two physical/chemical alternatives, namely activated carbon tower (AC) and chemical scrubber (CS), and a hybrid combination of BTF + AC. The assessment provided consistent guidelines for technology selection, not only based on removal efficiencies, but also on the environmental impact associated with the treatment of emissions. The results showed that biological alternatives entailed the lowest impacts. On the contrary, the use of chemicals led to the highest impacts for CS. Energy use was the main contributor to the impact related to BF and BTF, whereas the production of glass fibre used as infrastructure material played an important role in BTF impact. Production of NaClO entailed the highest burdens among the chemicals used in CS, representing ∼ 90% of the impact associated to chemicals. The frequent replacement of packing material in AC was responsible for the highest environmental impacts, granular activated carbon (GAC) production and its final disposal representing more than 50% of the impact in most categories. Finally, the assessment of BTF + AC showed that the hybrid technology is less recommendable than BF and BTF, but friendlier to the environment than physical/chemical treatments. PMID:25463573

  6. Computational Fluid Dynamics Analysis Method Developed for Rocket-Based Combined Cycle Engine Inlet

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Renewed interest in hypersonic propulsion systems has led to research programs investigating combined cycle engines that are designed to operate efficiently across the flight regime. The Rocket-Based Combined Cycle Engine is a propulsion system under development at the NASA Lewis Research Center. This engine integrates a high specific impulse, low thrust-to-weight, airbreathing engine with a low-impulse, high thrust-to-weight rocket. From takeoff to Mach 2.5, the engine operates as an air-augmented rocket. At Mach 2.5, the engine becomes a dual-mode ramjet; and beyond Mach 8, the rocket is turned back on. One Rocket-Based Combined Cycle Engine variation known as the "Strut-Jet" concept is being investigated jointly by NASA Lewis, the U.S. Air Force, Gencorp Aerojet, General Applied Science Labs (GASL), and Lockheed Martin Corporation. Work thus far has included wind tunnel experiments and computational fluid dynamics (CFD) investigations with the NPARC code. The CFD method was initiated by modeling the geometry of the Strut-Jet with the GRIDGEN structured grid generator. Grids representing a subscale inlet model and the full-scale demonstrator geometry were constructed. These grids modeled one-half of the symmetric inlet flow path, including the precompression plate, diverter, center duct, side duct, and combustor. After the grid generation, full Navier-Stokes flow simulations were conducted with the NPARC Navier-Stokes code. The Chien low-Reynolds-number k-e turbulence model was employed to simulate the high-speed turbulent flow. Finally, the CFD solutions were postprocessed with a Fortran code. This code provided wall static pressure distributions, pitot pressure distributions, mass flow rates, and internal drag. These results were compared with experimental data from a subscale inlet test for code validation; then they were used to help evaluate the demonstrator engine net thrust.

  7. Response Surface Modeling of Combined-Cycle Propulsion Components using Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Steffen, C. J., Jr.

    2002-01-01

    Three examples of response surface modeling with CFD are presented for combined cycle propulsion components. The examples include a mixed-compression-inlet during hypersonic flight, a hydrogen-fueled scramjet combustor during hypersonic flight, and a ducted-rocket nozzle during all-rocket flight. Three different experimental strategies were examined, including full factorial, fractionated central-composite, and D-optimal with embedded Plackett-Burman designs. The response variables have been confined to integral data extracted from multidimensional CFD results. Careful attention to uncertainty assessment and modeling bias has been addressed. The importance of automating experimental setup and effectively communicating statistical results are emphasized.

  8. Cooling towers for combined cycles: Design philosophy, performance testing, and operating problems

    NASA Astrophysics Data System (ADS)

    Bauthier, J.

    The characteristics and parameters affecting the choice of a type of cooling tower and its installation in the circuit of a combined cycle are discussed. The different possibilities of water circuits that are encountered are defined. Two modes of exchange and two types of fill are discussed. The various types of wet towers are described and their advantages and disadvantages considered. Factors affecting the selection of a cooling tower include: cost of energy versus cost of tower; performances; water availability and quality; emissions (water, noise, air, and vapor); site locations; and operating conditions.

  9. Preliminary Sizing of Vertical Take-off Rocket-based Combined-cycle Powered Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Roche, Joseph M.; McCurdy, David R.

    2001-01-01

    The task of single-stage-to-orbit has been an elusive goal due to propulsion performance, materials limitations, and complex system integration. Glenn Research Center has begun to assemble a suite of relationships that tie Rocket-Based Combined-Cycle (RBCC) performance and advanced material data into a database for the purpose of preliminary sizing of RBCC-powered launch vehicles. To accomplish this, a near optimum aerodynamic and structural shape was established as a baseline. The program synthesizes a vehicle to meet the mission requirements, tabulates the results, and plots the derived shape. A discussion of the program architecture and an example application is discussed herein.

  10. [LH excretion during the ovulatory cycle and during therapy with various estrogen-gestagen combinations].

    PubMed

    Göretzlehner, G; Wilken, H

    1972-11-01

    Immunochemical determination of urinary LH was carried out in 7 normally ovulating women and in 25 women treated with various combined, sequential, and depot hormonal contraceptives. In ovulatory cycles without hormone treatment an LH peak was always observed at midcycle. During treatment with Ovosiston, OZN, and Quinestrol-norethisterone acetate, no LH peak was seen. In women receiving sequential preparations (mestranol-chlormadinone acetate, estrone cyanate-chlormadinone acetate), elevated LH levels were observed during estrogen medication. LH excretion was suppressed after administration of chlormadinone acetate. LH levels were also slightly elevated before and after medication with Quinestrol-chlormadinone acatate (1 pill per month). PMID:4121480

  11. Multidisciplinary design of a rocket-based combined cycle SSTO launch vehicle using Taguchi methods

    NASA Astrophysics Data System (ADS)

    Olds, John R.; Walberg, Gerald D.

    1993-02-01

    Results are presented from the optimization process of a winged-cone configuration SSTO launch vehicle that employs a rocket-based ejector/ramjet/scramjet/rocket operational mode variable-cycle engine. The Taguchi multidisciplinary parametric-design method was used to evaluate the effects of simultaneously changing a total of eight design variables, rather than changing them one at a time as in conventional tradeoff studies. A combination of design variables was in this way identified which yields very attractive vehicle dry and gross weights.

  12. Multidisciplinary design of a rocket-based combined cycle SSTO launch vehicle using Taguchi methods

    NASA Technical Reports Server (NTRS)

    Olds, John R.; Walberg, Gerald D.

    1993-01-01

    Results are presented from the optimization process of a winged-cone configuration SSTO launch vehicle that employs a rocket-based ejector/ramjet/scramjet/rocket operational mode variable-cycle engine. The Taguchi multidisciplinary parametric-design method was used to evaluate the effects of simultaneously changing a total of eight design variables, rather than changing them one at a time as in conventional tradeoff studies. A combination of design variables was in this way identified which yields very attractive vehicle dry and gross weights.

  13. Method of optimizing performance of Rankine cycle power plants. [US DOE Patent

    DOEpatents

    Pope, W.L.; Pines, H.S.; Doyle, P.A.; Silvester, L.F.

    1980-06-23

    A method is described for efficiently operating a Rankine cycle power plant to maximize fuel utilization efficiency or energy conversion efficiency or minimize costs by selecting a turbine fluid inlet state which is substantially on the area adjacent and including the transposed critical temperature line.

  14. 78 FR 47012 - Developing Software Life Cycle Processes Used in Safety Systems of Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-02

    ...The U.S. Nuclear Regulatory Commission (NRC) is issuing a revised regulatory guide (RG), revision 1 of RG 1.173, ``Developing Software Life Cycle Processes for Digital Computer Software used in Safety Systems of Nuclear Power Plants.'' This RG endorses the Institute of Electrical and Electronic Engineers (IEEE) Standard (Std.) 1074-2006, ``IEEE Standard for Developing a Software Project Life......

  15. A dynamic process model of a natural gas combined cycle -- Model development with startup and shutdown simulations

    SciTech Connect

    Liese, Eric; Zitney, Stephen E.

    2013-01-01

    Research in dynamic process simulation for integrated gasification combined cycles (IGCC) with carbon capture has been ongoing at the National Energy Technology Laboratory (NETL), culminating in a full operator training simulator (OTS) and immersive training simulator (ITS) for use in both operator training and research. A derivative work of the IGCC dynamic simulator has been a modification of the combined cycle section to more closely represent a typical natural gas fired combined cycle (NGCC). This paper describes the NGCC dynamic process model and highlights some of the simulator’s current capabilities through a particular startup and shutdown scenario.

  16. Integrating pH, substrate, and plant regrowth effects on soil nitrogen cycling after fire

    NASA Astrophysics Data System (ADS)

    Hanan, E. J.; Schimel, J.; Tague, C.; D'Antonio, C. M.

    2014-12-01

    Mediterranean-type ecosystems are structured by fire. In California chaparral, fires uncouple N production and consumption by enhancing nitrification and reducing plant uptake. NO3- that accumulates after fire is vulnerable to leaching. However, the extent to which fires decouple N fluxes can vary spatially and with timing of fire, and the specific mechanisms controlling N metabolism in recovering chaparral are not well understood. We combined empirical analysis and modeling in two chaparral watersheds to better understand how these systems recover from fire, and to explore their sensitivity to changing climate and fire regimes. To evaluate how pH, charcoal, and NH4+ supply influence N cycling, we measured mineralization and nitrification rates in chaparral soils that burned 1, 4, 20 and 40 years prior to sampling. We then experimentally adjusted pH, charcoal, and NH4+ concentrations for all soils in a factorial design, and incubated them for 8 weeks. Each week, we measured respiration, exchangeable NH4+ and NO3- content, nitrification potential, microbial biomass, and pH. Then to project the effects of altered precipitation patterns and fire timing on nitrogen dynamics and recovery, we used the hydro-biogeochemical model RHESSys. Fires were imposed at the beginning and end of the growing season under various climates. NO3- production was highest in soils collected from the most recently burned sites. Also, NO3- concentrations increased over the course of incubation in soils from all sites, especially at high pH, and with NH4+ addition. Charcoal slightly augmented the effects of elevated pH and NH4+ on NO3- production iduring the early stages of incubation in 1 and 4-year old sites, while it slightly dampened their effects by week 8. However, in 20 and 40-year old sites, charcoal had no effect. Overall, nitrification was most powerfully constrained by NH4+ supply. However, increases in pH that occur after fire may enhance nitrification rates when substrate is

  17. System studies of coal fired-closed cycle MHD for central station power plants

    NASA Technical Reports Server (NTRS)

    Zauderer, B.

    1976-01-01

    This paper presents a discussion of the closed cycle MHD results obtained in a recent study of various advanced energy conversion (ECAS) power systems. The study was part of the first phase of this ECAS study. Since this was the first opportunity to evaluate the coal fired closed cycle MHD system, a number of iterations were required to partially optimize the system. The present paper deals with the latter part of the study in which the direct coal fired, MHD topping-steam bottoming cycle was established as the current choice for central station power generation. The emphasis of the paper is on the background assumptions and the conclusions that can be drawn from the closed cycle MHD analysis. The author concludes that closed cycle MHD has efficiencies comparable to that of open cycle MHD and that both systems are considerably more efficient than the other system studies in Phase 1 of the GE ECAS. Its cost will possibly be slightly higher than that of the open cycle MHD system. Also, with reasonable fuel escalation assumptions, both systems can produce lower cost electricity than conventional steam power plants. Suggestions for further work in closed cycle MHD components and systems is made.

  18. Species-driven changes in nitrogen cycling can provide a mechanism for plant invasions.

    PubMed

    Laungani, Ramesh; Knops, Johannes M H

    2009-07-28

    Traits that permit successful invasions have often seemed idiosyncratic, and the key biological traits identified vary widely among species. This fundamentally limits our ability to determine the invasion potential of a species. However, ultimately, successful invaders must have positive growth rates that longer term result in higher biomass accumulation than competing established species. In many terrestrial ecosystems nitrogen limits plant growth, and is a key factor determining productivity and the outcome of competition among species. Plant nitrogen use may provide a powerful framework to evaluate the invasive potential of a species in nitrogen-limiting ecosystems. Six mechanisms influence plant nitrogen use or acquisition: photosynthetic tissue allocation, photosynthetic nitrogen use efficiency, nitrogen fixation, nitrogen-leaching losses, gross nitrogen mineralization, and plant nitrogen residence time. Here we show that among these alternatives, the key mechanism allowing invasion for Pinus strobus into nitrogen limited grasslands was its higher nitrogen residence time. This higher nitrogen residence time created a positive feedback that redistributed nitrogen from the soil into the plant. This positive feedback allowed P. strobus to accumulate twice as much nitrogen in its tissues and four times as much nitrogen to photosynthetic tissues, as compared with other plant species. In turn, this larger leaf nitrogen pool increased total plant carbon gain of P. strobus two- to sevenfold as compared with other plant species. Thus our data illustrate that plant species can change internal ecosystem nitrogen cycling feedbacks and this mechanism can allow them to gain a competitive advantage over other plant species. PMID:19592506

  19. Methane cycling in alpine wetlands - an interplay of microbial communities and vascular plants

    NASA Astrophysics Data System (ADS)

    Henneberger, Ruth; Cheema, Simrita; Zeyer, Josef

    2014-05-01

    Wetland environments play an important role for the global climate, as they represent a major terrestrial carbon store. These environments are potential sinks for atmospheric carbon due to reduced decomposition rates of plant material in the waterlogged, anoxic subsurface. In contrast, wetlands are also a major source of the highly potent greenhouse gas methane (CH4), which is produced in the anoxic zones through methanogenic archaea (methanogens) degrading organic matter. The CH4 emitted into the pore water diffuses upwards towards the surface, and is partially oxidized in the oxic zones by aerobic methanotrophic bacteria (methanotrophs) before reaching the atmosphere. Nonetheless, global emissions of atmospheric CH4 from natural wetlands are estimated to range from 100 to 230 Tg a-1. Natural wetlands can be found around the globe, and are also common in temperate-cold climates in the Northern hemisphere. Methane release from these environments is influenced by many factors (e.g., vegetation, water table, temperature, pH) and shows high seasonal and spatial variability. To comprehend these variations and further predict potential responses to climate change, the biotic and abiotic processes involved in CH4 turnover need to be understood in detail. Many research projects focus on (sub-)arctic wetland areas, while studies on CH4 emissions from alpine wetlands are scarce, despite similar processes occurring in these different regions. Recently, we conducted a survey of 14 wetlands (i.e., fens vegetated with vascular plants) located in the Swiss Alps, showing CH4 emissions between 74 ± 43 and 711 ± 212 mg CH4 m-2 d-1 (Franchini et al., in press). A detailed study of one fen also revealed that CH4 emission was highest immediately after snowmelt, followed by a decrease in CH4 emission throughout the snow-free period (Liebner et al., 2012). Even though the CH4 cycle is largely driven by microbially mediated processes, vascular plants also play a crucial role in CH4

  20. Cycling of clock genes entrained to the solar rhythm enables plants to tell time: data from arabidopsis

    PubMed Central

    Yeang, Hoong-Yeet

    2015-01-01

    Background and Aims An endogenous rhythm synchronized to dawn cannot time photosynthesis-linked genes to peak consistently at noon since the interval between sunrise and noon changes seasonally. In this study, a solar clock model that circumvents this limitation is proposed using two daily timing references synchronized to noon and midnight. Other rhythmic genes that are not directly linked to photosynthesis, and which peak at other times, also find an adaptive advantage in entrainment to the solar rhythm. Methods Fourteen datasets extracted from three published papers were used in a meta-analysis to examine the cyclic behaviour of the Arabidopsis thaliana photosynthesis-related gene CAB2 and the clock oscillator genes TOC1 and LHY in T cycles and N–H cycles. Key Results Changes in the rhythms of CAB2, TOC1 and LHY in plants subjected to non-24-h light:dark cycles matched the hypothesized changes in their behaviour as predicted by the solar clock model, thus validating it. The analysis further showed that TOC1 expression peaked ∼5·5 h after mid-day, CAB2 peaked close to noon, while LHY peaked ∼7·5 h after midnight, regardless of the cycle period, the photoperiod or the light:dark period ratio. The solar clock model correctly predicted the zeitgeber timing of these genes under 11 different lighting regimes comprising combinations of seven light periods, nine dark periods, four cycle periods and four light:dark period ratios. In short cycles that terminated before LHY could be expressed, the solar clock correctly predicted zeitgeber timing of its expression in the following cycle. Conclusions Regulation of gene phases by the solar clock enables the plant to tell the time, by which means a large number of genes are regulated. This facilitates the initiation of gene expression even before the arrival of sunrise, sunset or noon, thus allowing the plant to ‘anticipate’ dawn, dusk or mid-day respectively, independently of the photoperiod. PMID:26070640

  1. Analysis of a Rocket Based Combined Cycle Engine during Rocket Only Operation

    NASA Technical Reports Server (NTRS)

    Smith, T. D.; Steffen, C. J., Jr.; Yungster, S.; Keller, D. J.

    1998-01-01

    The all rocket mode of operation is a critical factor in the overall performance of a rocket based combined cycle (RBCC) vehicle. However, outside of performing experiments or a full three dimensional analysis, there are no first order parametric models to estimate performance. As a result, an axisymmetric RBCC engine was used to analytically determine specific impulse efficiency values based upon both full flow and gas generator configurations. Design of experiments methodology was used to construct a test matrix and statistical regression analysis was used to build parametric models. The main parameters investigated in this study were: rocket chamber pressure, rocket exit area ratio, percent of injected secondary flow, mixer-ejector inlet area, mixer-ejector area ratio, and mixer-ejector length-to-inject diameter ratio. A perfect gas computational fluid dynamics analysis was performed to obtain values of vacuum specific impulse. Statistical regression analysis was performed based on both full flow and gas generator engine cycles. Results were also found to be dependent upon the entire cycle assumptions. The statistical regression analysis determined that there were five significant linear effects, six interactions, and one second-order effect. Two parametric models were created to provide performance assessments of an RBCC engine in the all rocket mode of operation.

  2. USA National Phenology Network: Plant and Animal Life-Cycle Data Related to Climate Change

    DOE Data Explorer

    Phenology refers to recurring plant and animal life cycle stages, such as leafing and flowering, maturation of agricultural plants, emergence of insects, and migration of birds. It is also the study of these recurring plant and animal life cycle stages, especially their timing and relationships with weather and climate. Phenology affects nearly all aspects of the environment, including the abundance and diversity of organisms, their interactions with one another, their functions in food webs, and their seasonable behavior, and global-scale cycles of water, carbon, and other chemical elements. Phenology records can help us understand plant and animal responses to climate change; it is a key indicator. The USA-NPN brings together citizen scientists, government agencies, non-profit groups, educators, and students of all ages to monitor the impacts of climate change on plants and animals in the United States. The network harnesses the power of people and the Internet to collect and share information, providing researchers with far more data than they could collect alone.[Extracts copied from the USA-NPN home page and from http://www.usanpn.org/about].

  3. Implications of plant acclimation for future climate-carbon cycle feedbacks

    NASA Astrophysics Data System (ADS)

    Mercado, Lina; Kattge, Jens; Cox, Peter; Sitch, Stephen; Knorr, Wolfgang; Lloyd, Jon; Huntingford, Chris

    2010-05-01

    The response of land ecosystems to climate change and associated feedbacks are a key uncertainty in future climate prediction (Friedlingstein et al. 2006). However global models generally do not account for the acclimation of plant physiological processes to increased temperatures. Here we conduct a first global sensitivity study whereby we modify the Joint UK land Environment Simulator (JULES) to account for temperature acclimation of two main photosynthetic parameters, Vcmax and Jmax (Kattge and Knorr 2007) and plant respiration (Atkin and Tjoelker 2003). The model is then applied over the 21st Century within the IMOGEN framework (Huntingford et al. 2004). Model simulations will provide new and improved projections of biogeochemical cycling, forest resilience, and thus more accurate projections of climate-carbon cycle feedbacks and the future evolution of the Earth System. Friedlingstein P, Cox PM, Betts R et al. (2006) Climate-carbon cycle feedback analysis, results from the C4MIP model intercomparison. Journal of Climate, 19, 3337-3353. Kattge J and Knorr W (2007): Temperature acclimation in a biochemical model of photosynthesis: a reanalysis of data from 36 species. Plant, Cell and Environment 30, 1176-1190 Atkin O.K and Tjoelker, M. G. (2003): Thermal acclimation and the dynamic response of plant respiration to temperature. Trends in Plant Science 8 (7), 343-351 Huntingford C, et al. (2004) Using a GCM analogue model to investigate the potential for Amazonian forest dieback. Theoretical and Applied Climatology, 78, 177-185.

  4. Life cycle specialization of filamentous pathogens - colonization and reproduction in plant tissues.

    PubMed

    Haueisen, Janine; Stukenbrock, Eva H

    2016-08-01

    Filamentous plant pathogens explore host tissues to obtain nutrients for growth and reproduction. Diverse strategies for tissue invasion, defense manipulation, and colonization of inter and intra-cellular spaces have evolved. Most research has focused on effector molecules, which are secreted to manipulate plant immunity and facilitate infection. Effector genes are often found to evolve rapidly in response to the antagonistic host-pathogen co-evolution but other traits are also subject to adaptive evolution during specialization to the anatomy, biochemistry and ecology of different plant hosts. Although not directly related to virulence, these traits are important components of specialization but little is known about them. We present and discuss specific life cycle traits that facilitate exploration of plant tissues and underline the importance of increasing our insight into the biology of plant pathogens. PMID:27153045

  5. Simulation of existing gas-fuelled conventional steam power plant using Cycle Tempo

    NASA Astrophysics Data System (ADS)

    Jamel, M. S.; Abd Rahman, A.; Shamsuddin, A. H.

    2013-06-01

    Simulation of a 200 MW gas-fuelled conventional steam power plant located in Basra, Iraq was carried out. The thermodynamic performance of the considered power plant is estimated by a system simulation. A flow-sheet computer program, "Cycle-Tempo" is used for the study. The plant components and piping systems were considered and described in detail. The simulation results were verified against data gathered from the log sheet obtained from the station during its operation hours and good results were obtained. Operational factors like the stack exhaust temperature and excess air percentage were studied and discussed, as were environmental factors, such as ambient air temperature and water inlet temperature. In addition, detailed exergy losses were illustrated and describe the temperature profiles for the main plant components. The results prompted many suggestions for improvement of the plant performance.

  6. Networked solid oxide fuel cell stacks combined with a gas turbine cycle

    NASA Astrophysics Data System (ADS)

    Selimovic, Azra; Palsson, Jens

    An improved design of fuel cells stacks arrangement has been suggested before for MCFC where reactant streams are ducted such that they are fed and recycled among multiple MCFC stacks in series. By networking fuel cell stacks, increased efficiency, improved thermal balance, and higher total reactant utilisation can be achieved. In this study, a combination of networked solid oxide fuel cell (SOFC) stacks and a gas turbine (GT) has been modelled and analysed. In such a combination, the stacks are operating in series with respect to the fuel flow. In previous studies, conducted on hybrid SOFC/GT cycles by the authors, it was shown that the major part of the output of such cycles can be addressed to the fuel cell. In those studies, a single SOFC with parallel gas flows to individual cells were assumed. It can be expected that if the performance of the fuel cell is enhanced by networking, the overall system performance will improve. In the first part of this paper, the benefit of the networked stacks is demonstrated for a stand alone stack while the second part analyses and discusses the impact networking of the stacks has on the SOFC/GT system performance and design. For stacks with both reactant streams in series, a significant increase of system efficiency was found (almost 5% points), which, however, can be explained mainly by an improved thermal management.

  7. Analysis of R&D Strategy for Advanced Combined Cycle Power Systems

    NASA Astrophysics Data System (ADS)

    Akimoto, Keigo; Hayashi, Ayami; Kosugi, Takanobu; Tomoda, Toshimasa

    This article analyzes and evaluates the R&D strategy for advanced power generation technologies, such as natural gas combined cycles, IGCCs (Integrated coal Gasification Combined Cycles), and large-scale fuel cell power generation systems with a mixed-integer programming model. The R&D processes are explicitly formulated in the model through GERT (Graphical Evaluation and Review Technique), and the data on each required time of R&D was collected through questionnaire surveys among the experts. The obtained cost-effective strategy incorporates the optimum investment allocation among the developments of various elemental technologies, and at the same time, it incorporates the least-cost expansion planning of power systems in Japan including other power generation technologies such as conventional coal, oil, and gas fired, and hydro and wind power. The simulation results show the selection of the cost-effective technology developments and the importance of the concentrated investments in them. For example, IGCC, which has a relatively high thermal efficiency, and LNG-CCs of the assumed two efficiencies are the cost-effective investment targets in the no-CO2-regulation case.

  8. Analysis of operation of the gas turbine in a poligeneration combined cycle

    NASA Astrophysics Data System (ADS)

    Bartela, Łukasz; Kotowicz, Janusz

    2013-12-01

    In the paper the results of analysis of an integrated gasification combined cycle IGCC polygeneration system, of which the task is to produce both electricity and synthesis gas, are shown. Assuming the structure of the system and the power rating of a combined cycle, the consumption of the synthesis gas for chemical production makes it necessary to supplement the lack of synthesis gas used for electricity production with the natural gas. As a result a change of the composition of the fuel gas supplied to the gas turbine occurs. In the paper the influence of the change of gas composition on the gas turbine characteristics is shown. In the calculations of the gas turbine the own computational algorithm was used. During the study the influence of the change of composition of gaseous fuel on the characteristic quantities was examined. The calculations were realized for different cases of cooling of the gas turbine expander's blades (constant cooling air mass flow, constant cooling air index, constant temperature of blade material). Subsequently, the influence of the degree of integration of the gas turbine with the air separation unit on the main characteristics was analyzed.

  9. A high-temperature gas-and-steam turbine plant operating on combined fuel

    NASA Astrophysics Data System (ADS)

    Klimenko, A. V.; Milman, O. O.; Shifrin, B. A.

    2015-11-01

    A high-temperature gas-steam turbine plant (GSTP) for ultrasupercritical steam conditions is proposed based on an analysis of prospects for the development of power engineering around the world and in Russia up to 2040. The performance indicators of a GSTP using steam from a coal-fired boiler with a temperature of 560-620°C with its superheating to 1000-1500°C by firing natural gas with oxygen in a mixingtype steam superheater are analyzed. The thermal process circuit and design of a GSTP for a capacity of 25 MW with the high- and intermediate-pressure high-temperature parts with the total efficiency equal to 51.7% and the natural gas utilization efficiency equal to 64-68% are developed. The principles of designing and the design arrangement of a 300 MW GSTP are developed. The effect of economic parameters (the level and ratio of prices for solid fuel and gas, and capital investments) on the net cost of electric energy is determined. The net cost of electric energy produced by the GSTP is lower than that produced by modern combined-cycle power plants in a wide variation range of these parameters. The components of a high-temperature GSTP the development of which determines the main features of such installations are pointed out: a chamber for combusting natural gas and oxygen in a mixture with steam, a vacuum device for condensing steam with a high content of nondensables, and a control system. The possibility of using domestically available gas turbine technologies for developing the GSTP's intermediate-pressure high-temperature part is pointed out. In regard of its environmental characteristics, the GSTP is more advantageous as compared with modern condensing power plants: it allows a flow of concentrated carbon dioxide to be obtained at its outlet, which can be reclaimed; in addition, this plant requires half as much consumption of fresh water.

  10. Menstrual cycle and sex affect hemodynamic responses to combined orthostatic and heat stress.

    PubMed

    Meendering, Jessica R; Torgrimson, Britta N; Houghton, Belinda L; Halliwill, John R; Minson, Christopher T

    2005-08-01

    Women have decreased orthostatic tolerance compared with men, and anecdotal evidence suggests women are more susceptible to orthostatic intolerance in warm environments. Because estrogen and progesterone affect numerous physiological variables that may alter orthostatic tolerance, the purpose of our study was to compare orthostatic tolerance across the menstrual cycle phases in women during combined orthostatic and heat stress and to compare these data with those of men. Eight normally menstruating women and eight males (22 +/- 4.0 and 23 +/- 3.5 yr, respectively) completed the protocol. Women were studied during their early follicular (EF), ovulatory (OV), and midluteal (ML) phases. Men were studied twice within 2-4 wk. Heart rate, cardiac output, blood pressure, core temperature (T(c)), and cutaneous vascular conductance (CVC) were measured during three head-up tilt tests, consisting of two tilts in the thermoneutral condition and one tilt after a 0.5 degrees C rise in T(c). There was no difference in orthostatic tolerance across the menstrual cycle phases, despite higher CVC in the ML phase after heating (EF, 42.3 +/- 4.8; OV, 40.1 +/- 3.7; ML, 57.5 +/- 4.5; P < 0.05). Orthostatic tolerance in the heat was greater in men than women (P < 0.05). These data suggest that although many physiological variables associated with blood pressure regulation fluctuate during the menstrual cycle, orthostatic tolerance in the heat remains unchanged. Additionally, our data support a clear sex difference in orthostatic tolerance and extend upon previous data to show that the sex difference in the heat is not attributable to fluctuating hormone profiles during the menstrual cycle. PMID:15778279

  11. Single and combined effects of beetroot juice and caffeine supplementation on cycling time trial performance.

    PubMed

    Lane, Stephen C; Hawley, John A; Desbrow, Ben; Jones, Andrew M; Blackwell, James R; Ross, Megan L; Zemski, Adam J; Burke, Louise M

    2014-09-01

    Both caffeine and beetroot juice have ergogenic effects on endurance cycling performance. We investigated whether there is an additive effect of these supplements on the performance of a cycling time trial (TT) simulating the 2012 London Olympic Games course. Twelve male and 12 female competitive cyclists each completed 4 experimental trials in a double-blind Latin square design. Trials were undertaken with a caffeinated gum (CAFF) (3 mg·kg(-1) body mass (BM), 40 min prior to the TT), concentrated beetroot juice supplementation (BJ) (8.4 mmol of nitrate (NO3(-)), 2 h prior to the TT), caffeine plus beetroot juice (CAFF+BJ), or a control (CONT). Subjects completed the TT (females: 29.35 km; males: 43.83 km) on a laboratory cycle ergometer under conditions of best practice nutrition: following a carbohydrate-rich pre-event meal, with the ingestion of a carbohydrate-electrolyte drink and regular oral carbohydrate contact during the TT. Compared with CONT, power output was significantly enhanced after CAFF+BJ and CAFF (3.0% and 3.9%, respectively, p < 0.01). There was no effect of BJ supplementation when used alone (-0.4%, p = 0.6 compared with CONT) or when combined with caffeine (-0.9%, p = 0.4 compared with CAFF). We conclude that caffeine (3 mg·kg(-1) BM) administered in the form of a caffeinated gum increased cycling TT performance lasting ∼50-60 min by ∼3%-4% in both males and females. Beetroot juice supplementation was not ergogenic under the conditions of this study. PMID:25154895

  12. Live birth rates after combined adjuvant therapy in IVF-ICSI cycles: a matched case-control study.

    PubMed

    Motteram, C; Vollenhoven, B; Hope, N; Osianlis, T; Rombauts, L J

    2015-04-01

    The effectiveness of combined co-treatment with aspirin, doxycycline, prednisolone, with or without oestradiol patches, was investigated on live birth (LBR) rates after fresh and frozen embryo transfers (FET) in IVF and intracytoplasmic sperm injection cycles. Cases (n = 485) and controls (n = 485) were extensively matched in a one-to-one ratio on nine physical and clinical parameters: maternal age, body mass index, smoking status, stimulation cycle number, cumulative dose of FSH, stimulation protocol, insemination method, day of embryo transfer and number of embryos transferred. No significant differences were found in fresh cycles between cases and controls for the pregnancy outcomes analysed, but fewer surplus embryos were available for freezing in the combined adjuvant group. In FET cycles, LBR was lower in the treatment group (OR: 0.49, 95% CI 0.25 to 0.95). The lower LBR in FET cycles seemed to be clustered in patients receiving combined adjuvant treatment without luteal oestradiol (OR 0.37, 95% CI 0.17 to 0.80). No difference was found in LBR between cases and controls when stratified according to the number of previous cycles (<3 or ≥3). There is no benefit of this combined adjuvant strategy in fresh IVF cycles, and possible harm when used in frozen cycles. PMID:25676168

  13. Thermal analysis of heat and power plant with high temperature reactor and intermediate steam cycle

    NASA Astrophysics Data System (ADS)

    Fic, Adam; Składzień, Jan; Gabriel, Michał

    2015-03-01

    Thermal analysis of a heat and power plant with a high temperature gas cooled nuclear reactor is presented. The main aim of the considered system is to supply a technological process with the heat at suitably high temperature level. The considered unit is also used to produce electricity. The high temperature helium cooled nuclear reactor is the primary heat source in the system, which consists of: the reactor cooling cycle, the steam cycle and the gas heat pump cycle. Helium used as a carrier in the first cycle (classic Brayton cycle), which includes the reactor, delivers heat in a steam generator to produce superheated steam with required parameters of the intermediate cycle. The intermediate cycle is provided to transport energy from the reactor installation to the process installation requiring a high temperature heat. The distance between reactor and the process installation is assumed short and negligable, or alternatively equal to 1 km in the analysis. The system is also equipped with a high temperature argon heat pump to obtain the temperature level of a heat carrier required by a high temperature process. Thus, the steam of the intermediate cycle supplies a lower heat exchanger of the heat pump, a process heat exchanger at the medium temperature level and a classical steam turbine system (Rankine cycle). The main purpose of the research was to evaluate the effectiveness of the system considered and to assess whether such a three cycle cogeneration system is reasonable. Multivariant calculations have been carried out employing the developed mathematical model. The results have been presented in a form of the energy efficiency and exergy efficiency of the system as a function of the temperature drop in the high temperature process heat exchanger and the reactor pressure.

  14. Combined oil gun and coal guide for power plant boilers

    SciTech Connect

    Wiest, M.R.

    1990-08-28

    This paper discusses apparatus for introducing fuel into the combustion chamber of a power plant boiler. It comprises a coal guide; a coal disperser; tubular disperser support means; an oil gun; first actuator means; and second actuator means.

  15. Element cycling in the dominant plant community in the Alpine tundra zone of Changbai Mountains, China.

    PubMed

    Liu, Jing-Shuang; Yu, Jun-Bao

    2005-01-01

    Element cycling in the dominant plant communities including Rh. aureum, Rh. redowskianum and Vaccinium uliginosum in the Alpine tundra zone of Changbai Mountains in northeast China was studied. The results indicate that the amount of elements from litter decomposition was less than that of the plant uptake from soil, but that from plant uptake was higher than that in soil with mineralization process released. On the other hand, in the open system including precipitation input and soil leaching output, because of great number of elements from precipitation into the open system, the element cycling(except N, P) in the Alpine tundra ecosystem was in a dynamic balance. In this study, it was also found that different organ of plants had significant difference in accumulating elements. Ca, Mg, P and N were accumulated more obviously in leaves, while Fe was in roots. The degree of concentration of elements in different tissues of the same organ of the plants also was different, a higher concentration of Ca, Mg, P and N in mesophyll than in nerve but Fe was in a reversed order. The phenomenon indicates (1) a variety of biochemical functions of different elements, (2) the elements in mesophyll were with a shorter turnover period than those in nerve or fibre, but higher utilization rate for plant. Therefore, this study implies the significance of keeping element dynamic balance in the alpine tundra ecosystem of Changbai Mountains. PMID:16083139

  16. Selenium Cycling Across Soil-Plant-Atmosphere Interfaces: A Critical Review

    PubMed Central

    Winkel, Lenny H.E.; Vriens, Bas; Jones, Gerrad D.; Schneider, Leila S.; Pilon-Smits, Elizabeth; Bañuelos, Gary S.

    2015-01-01

    Selenium (Se) is an essential element for humans and animals, which occurs ubiquitously in the environment. It is present in trace amounts in both organic and inorganic forms in marine and freshwater systems, soils, biomass and in the atmosphere. Low Se levels in certain terrestrial environments have resulted in Se deficiency in humans, while elevated Se levels in waters and soils can be toxic and result in the death of aquatic wildlife and other animals. Human dietary Se intake is largely governed by Se concentrations in plants, which are controlled by root uptake of Se as a function of soil Se concentrations, speciation and bioavailability. In addition, plants and microorganisms can biomethylate Se, which can result in a loss of Se to the atmosphere. The mobilization of Se across soil-plant-atmosphere interfaces is thus of crucial importance for human Se status. This review gives an overview of current knowledge on Se cycling with a specific focus on soil-plant-atmosphere interfaces. Sources, speciation and mobility of Se in soils and plants will be discussed as well as Se hyperaccumulation by plants, biofortification and biomethylation. Future research on Se cycling in the environment is essential to minimize the adverse health effects associated with unsafe environmental Se levels. PMID:26035246

  17. Selenium cycling across soil-plant-atmosphere interfaces: a critical review.

    PubMed

    Winkel, Lenny H E; Vriens, Bas; Jones, Gerrad D; Schneider, Leila S; Pilon-Smits, Elizabeth; Bañuelos, Gary S

    2015-06-01

    Selenium (Se) is an essential element for humans and animals, which occurs ubiquitously in the environment. It is present in trace amounts in both organic and inorganic forms in marine and freshwater systems, soils, biomass and in the atmosphere. Low Se levels in certain terrestrial environments have resulted in Se deficiency in humans, while elevated Se levels in waters and soils can be toxic and result in the death of aquatic wildlife and other animals. Human dietary Se intake is largely governed by Se concentrations in plants, which are controlled by root uptake of Se as a function of soil Se concentrations, speciation and bioavailability. In addition, plants and microorganisms can biomethylate Se, which can result in a loss of Se to the atmosphere. The mobilization of Se across soil-plant-atmosphere interfaces is thus of crucial importance for human Se status. This review gives an overview of current knowledge on Se cycling with a specific focus on soil-plant-atmosphere interfaces. Sources, speciation and mobility of Se in soils and plants will be discussed as well as Se hyperaccumulation by plants, biofortification and biomethylation. Future research on Se cycling in the environment is essential to minimize the adverse health effects associated with unsafe environmental Se levels. PMID:26035246

  18. Energy analysis of a combined solid oxide fuel cell with a steam turbine power plant for marine applications

    NASA Astrophysics Data System (ADS)

    Welaya, Yousri M. A.; Mosleh, M.; Ammar, Nader R.

    2013-12-01

    Strong restrictions on emissions from marine power plants (particularly SO x , NO x ) will probably be adopted in the near future. In this paper, a combined solid oxide fuel cell (SOFC) and steam turbine fuelled by natural gas is proposed as an attractive option to limit the environmental impact of the marine sector. The analyzed variant of the combined cycle includes a SOFC operated with natural gas fuel and a steam turbine with a single-pressure waste heat boiler. The calculations were performed for two types of tubular and planar SOFCs, each with an output power of 18 MW. This paper includes a detailed energy analysis of the combined system. Mass and energy balances are performed not only for the whole plant but also for each component in order to evaluate the thermal efficiency of the combined cycle. In addition, the effects of using natural gas as a fuel on the fuel cell voltage and performance are investigated. It has been found that a high overall efficiency approaching 60% may be achieved with an optimum configuration using the SOFC system. The hybrid system would also reduce emissions, fuel consumption, and improve the total system efficiency.

  19. Plant soil interactions alter carbon cycling in an upland grassland soil

    PubMed Central

    Thomson, Bruce C.; Ostle, Nick J.; McNamara, Niall P.; Oakley, Simon; Whiteley, Andrew S.; Bailey, Mark J.; Griffiths, Robert I.

    2013-01-01

    Soil carbon (C) storage is dependent upon the complex dynamics of fresh and native organic matter cycling, which are regulated by plant and soil-microbial activities. A fundamental challenge exists to link microbial biodiversity with plant-soil C cycling processes to elucidate the underlying mechanisms regulating soil carbon. To address this, we contrasted vegetated grassland soils with bare soils, which had been plant-free for 3 years, using stable isotope (13C) labeled substrate assays and molecular analyses of bacterial communities. Vegetated soils had higher C and N contents, biomass, and substrate-specific respiration rates. Conversely, following substrate addition unlabeled, native soil C cycling was accelerated in bare soil and retarded in vegetated soil; indicative of differential priming effects. Functional differences were reflected in bacterial biodiversity with Alphaproteobacteria and Acidobacteria dominating vegetated and bare soils, respectively. Significant isotopic enrichment of soil RNA was found after substrate addition and rates varied according to substrate type. However, assimilation was independent of plant presence which, in contrast to large differences in 13CO2 respiration rates, indicated greater substrate C use efficiency in bare, Acidobacteria-dominated soils. Stable isotope probing (SIP) revealed most community members had utilized substrates with little evidence for competitive outgrowth of sub-populations. Our findings support theories on how plant-mediated soil resource availability affects the turnover of different pools of soil carbon, and we further identify a potential role of soil microbial biodiversity. Specifically we conclude that emerging theories on the life histories of dominant soil taxa can be invoked to explain changes in soil carbon cycling linked to resource availability, and that there is a strong case for considering microbial biodiversity in future studies investigating the turnover of different pools of soil

  20. The life history of the plant pathogen Pseudomonas syringae is linked to the water cycle.

    PubMed

    Morris, Cindy E; Sands, David C; Vinatzer, Boris A; Glaux, Catherine; Guilbaud, Caroline; Buffière, Alain; Yan, Shuangchun; Dominguez, Hélène; Thompson, Brian M

    2008-03-01

    Pseudomonas syringae is a plant pathogen well known for its capacity to grow epiphytically on diverse plants and for its ice-nucleation activity. The ensemble of its known biology and ecology led us to postulate that this bacterium is also present in non-agricultural habitats, particularly those associated with water. Here, we report the abundance of P. syringae in rain, snow, alpine streams and lakes and in wild plants, in addition to the previously reported abundance in epilithic biofilms. Each of these substrates harbored strains that corresponded to P. syringae in terms of biochemical traits, pathogenicity and pathogenicity-related factors and that were ice-nucleation active. Phylogenetic comparisons of sequences of four housekeeping genes of the non-agricultural strains with strains of P. syringae from disease epidemics confirmed their identity as P. syringae. Moreover, strains belonging to the same clonal lineage were isolated from snow, irrigation water and a diseased crop plant. Our data suggest that the different substrates harboring P. syringae modify the structure of the associated populations. Here, we propose a comprehensive life cycle for P. syringae--in agricultural and non-agricultural habitats--driven by the environmental cycle of water. This cycle opens the opportunity to evaluate the importance of non-agricultural habitats in the evolution of a plant pathogen and the emergence of virulence. The ice-nucleation activity of all strains from snow, unlike from other substrates, strongly suggests that P. syringae plays an active role in the water cycle as an ice nucleus in clouds. PMID:18185595

  1. ENSO and annual cycle interaction: the combination mode representation in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Ren, Hong-Li; Zuo, Jinqing; Jin, Fei-Fei; Stuecker, Malte F.

    2015-08-01

    Recent research demonstrated the existence of a combination mode (C-mode) originating from the atmospheric nonlinear interaction between the El Niño-Southern Oscillation (ENSO) and the Pacific warm pool annual cycle. In this paper, we show that the majority of coupled climate models in the Coupled Model Intercomparison Project Phase 5 (CMIP5) are able to reproduce the observed spatial pattern of the C-mode in terms of surface wind anomalies reasonably well, and about half of the coupled models are able to reproduce spectral power at the combination tone periodicities of about 10 and/or 15 months. Compared to the CMIP5 historical simulations, the CMIP5 Atmospheric Model Intercomparison Project (AMIP) simulations can generally exhibit a more realistic simulation of the C-mode due to prescribed lower boundary forcing. Overall, the multi-model ensemble average of the CMIP5 models tends to capture the C-mode better than the individual models. Furthermore, the models with better performance in simulating the ENSO mode tend to also exhibit a more realistic C-mode with respect to its spatial pattern and amplitude, in both the CMIP5 historical and AMIP simulations. This study shows that the CMIP5 models are able to simulate the proposed combination mode mechanism to some degree, resulting from their reasonable performance in representing the ENSO mode. It is suggested that the main ENSO periods in the current climate models needs to be further improved for making the C-mode better.

  2. ENSO and annual cycle interaction: the combination mode representation in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Ren, Hong-Li; Zuo, Jinqing; Jin, Fei-Fei; Stuecker, Malte F.

    2016-06-01

    Recent research demonstrated the existence of a combination mode (C-mode) originating from the atmospheric nonlinear interaction between the El Niño-Southern Oscillation (ENSO) and the Pacific warm pool annual cycle. In this paper, we show that the majority of coupled climate models in the Coupled Model Intercomparison Project Phase 5 (CMIP5) are able to reproduce the observed spatial pattern of the C-mode in terms of surface wind anomalies reasonably well, and about half of the coupled models are able to reproduce spectral power at the combination tone periodicities of about 10 and/or 15 months. Compared to the CMIP5 historical simulations, the CMIP5 Atmospheric Model Intercomparison Project (AMIP) simulations can generally exhibit a more realistic simulation of the C-mode due to prescribed lower boundary forcing. Overall, the multi-model ensemble average of the CMIP5 models tends to capture the C-mode better than the individual models. Furthermore, the models with better performance in simulating the ENSO mode tend to also exhibit a more realistic C-mode with respect to its spatial pattern and amplitude, in both the CMIP5 historical and AMIP simulations. This study shows that the CMIP5 models are able to simulate the proposed combination mode mechanism to some degree, resulting from their reasonable performance in representing the ENSO mode. It is suggested that the main ENSO periods in the current climate models needs to be further improved for making the C-mode better.

  3. High-reliability gas turbine combined-cycle development program. Phase I. Final report

    SciTech Connect

    Kunkel, R.G.

    1981-01-01

    The results of the General Electric study indicated that the availability goals could be met at all levels of equipment, from the combustion-turbine unit to the total plant, but that mean-time-between-failures (MTBF) goals could only partially be met. The combustion-turbine unit alone could approximately meet the MTBF goal (9000 hours), while the combustion-turbine system could only reach an MTBF of about 1000 hours. When the steam cycle and its electric generator, associated equipment, and balance-of-plant items were added, the total plant MTBF was predicted to be no greater than roughly 500 hours. The field-data analyses indicated that the number of forced outages in the combustion-turbine system were caused mainly by the ancillary equipment, while the major contributor to the number of forced outage hours was the combustion turbine. Although some of the combustion turbines perform well, they offer the greatest potential for improvement. Accessories such as the control system and the fuel system also offer a great potential for improving the reliability performance. It was hoped that field-data analysis and reliability trade-off analysis would result in a clear picture of the desired changes and their contribution to improved reliability; however, the field data were not specific enough, and the analytic effort contained sufficient compromises, so that a definitive list of reliability-improving changes was not feasible. It was feasible, however, to determine some beneficial design parameters and to arrive at a design with a significant improvement in reliability. These modifications include the application of redundancy, improvement in accessories (such as controls and instrumentation) and the addition of diagnostic capabilities.

  4. Influence of different salt marsh plants on hydrocarbon degrading microorganisms abundance throughout a phenological cycle.

    PubMed

    Ribeiro, Hugo; Almeida, C Marisa R; Mucha, Ana Paula; Bordalo, Adriano A

    2013-01-01

    The influence of Juncus maritimus, Phragmites australis, and Triglochin striata on hydrocarbon degrading microorganisms (HD) in Lima River estuary (NW Portugal) was investigated through a year-long plant life cycle. Sediments un-colonized and colonized (rhizosediments) by those salt marsh plants were sampled for HD, total cell counts (TCC), and total petroleum hydrocarbons (TPHs) assessment. Generally, TCC seemed to be markedly thriving by the presence of roots, but without significant (p > 0.05) differences among rhizosediments. Nevertheless, plants seemed to have a distinct influence on HD abundance, particularly during the flowering season, with higher HD abundance in the rhizosediments of the fibrous roots plants (J. maritimus < P. australis < T. striata). Our data suggest that different plants have distinct influence on the dynamics of HD populations within its own rhizosphere, particularly during the flowering season, suggesting a period of higher rhizoremediation activity. Additionally, during the vegetative period, plants with fibrous and dense root system tend to retain hydrocarbons around their belowground tissues more efficiently than plants with adventitious root system. Overall results indicate that fibrous root plants have a higher potential to promote hydrocarbons degradation, and that seasonality should be taken into account when designing long-term rhizoremediation strategies in estuarine areas. PMID:23819270

  5. Dual Brayton cycle gas turbine pressurized fluidized bed combustion power plant concept

    SciTech Connect

    Yan, X.L.; Lidsky, L.M.

    1998-07-01

    High generating efficiency has compelling economic and environmental benefits for electric power plants. There are particular incentives to develop more efficient and cleaner coal-fired power plants in order to permit use of the world`s most abundant and secure energy source. This paper presents a newly conceived power plant design, the Dual Brayton Cycle Gas Turbine PFBC, that yields 45% net generating efficiency and fires on a wide range of fuels with minimum pollution, of which coal is a particularly intriguing target for its first application. The DBC-GT design allows power plants based on the state-of-the-art PFBC technology to achieve substantially higher generating efficiencies, while simultaneously providing modern gas turbine and related heat exchanger technologies access to the large coal power generation market.

  6. Computational Fluid Dynamic Modeling of Rocket Based Combined Cycle Engine Flowfields

    NASA Technical Reports Server (NTRS)

    Daines, Russell L.; Merkle, Charles L.

    1994-01-01

    Computational Fluid Dynamic techniques are used to study the flowfield of a fixed geometry Rocket Based Combined Cycle engine operating in rocket ejector mode. Heat addition resulting from the combustion of injected fuel causes the subsonic engine flow to choke and go supersonic in the slightly divergent combustor-mixer section. Reacting flow computations are undertaken to predict the characteristics of solutions where the heat addition is determined by the flowfield. Here, adaptive gridding is used to improve resolution in the shear layers. Results show that the sonic speed is reached in the unheated portions of the flow first, while the heated portions become supersonic later. Comparison with results from another code show reasonable agreement. The coupled solutions show that the character of the combustion-based thermal choking phenomenon can be controlled reasonably well such that there is opportunity to optimize the length and expansion ratio of the combustor-mixer.

  7. Aero-Thermo-Structural Analysis of Inlet for Rocket Based Combined Cycle Engines

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Challa, Preeti; Sree, Dave; Reddy, Dhanireddy R. (Technical Monitor)

    2000-01-01

    NASA has been developing advanced space transportation concepts and technologies to make access to space less costly. One such concept is the reusable vehicles with short turn-around times. The NASA Glenn Research Center's concept vehicle is the Trailblazer powered by a rocket-based combined cycle (RBCC) engine. Inlet is one of the most important components of the RBCC engine. This paper presents fluid flow, thermal, and structural analysis of the inlet for Mach 6 free stream velocity for fully supersonic and supercritical with backpressure conditions. The results concluded that the fully supersonic condition was the most severe case and the largest stresses occur in the ceramic matrix composite layer of the inlet cowl. The maximum tensile and the compressive stresses were at least 3.8 and 3.4, respectively, times less than the associated material strength.

  8. Family Life Cycle and Deforestation in Amazonia: Combining Remotely Sensed Information with Primary Data

    NASA Technical Reports Server (NTRS)

    Caldas, M.; Walker, R. T.; Shirota, R.; Perz, S.; Skole, D.

    2003-01-01

    This paper examines the relationships between the socio-demographic characteristics of small settlers in the Brazilian Amazon and the life cycle hypothesis in the process of deforestation. The analysis was conducted combining remote sensing and geographic data with primary data of 153 small settlers along the TransAmazon Highway. Regression analyses and spatial autocorrelation tests were conducted. The results from the empirical model indicate that socio-demographic characteristics of households as well as institutional and market factors, affect the land use decision. Although remotely sensed information is not very popular among Brazilian social scientists, these results confirm that they can be very useful for this kind of study. Furthermore, the research presented by this paper strongly indicates that family and socio-demographic data, as well as market data, may result in misspecification problems. The same applies to models that do not incorporate spatial analysis.

  9. MTCI/ThermoChem steam reforming process for solid fuels for combined cycle power generation

    SciTech Connect

    Mansour, M.N.; Voelker, G.; Dural-Swamy, K.

    1995-12-31

    Manufacturing and Technology Conversion International, Inc. (MTCI) has developed a novel technology to convert solid fuels including biomass, coal, municipal solid waste (MSW) and wastewater sludges into usable syngas by steam reforming in an indirectly heated, fluid-bed reactor. MTCI has licensed and patented the technology to ThermoChem, Inc. Both MTCI and ThermoChem have built two modular commercial-scale demonstration units: one for recycle paper mill rejects (similar to refuse-derived fuel [RDF]), and another for chemical recovery of black liquor. ThermoChem has entered into an agreement with Ajinkyatara Cooperative Sugar Factory, India, for building a 10 MW combined cycle power generation facility based on bagasse and agro-residue gasification.

  10. Analysis of potential benefits of integrated-gasifier combined cycles for a utility system

    NASA Technical Reports Server (NTRS)

    Choo, Y. K.

    1983-01-01

    Potential benefits of integrated gasifier combined cycle (IGCC) units were evaluated for a reference utility system by comparing long range expansion plans using IGCC units and gas turbine peakers with a plan using only state of the art steam turbine units and gas turbine peakers. Also evaluated was the importance of the benefits of individual IGCC unit characteristics, particularly unit efficiency, unit equivalent forced outage rate, and unit size. A range of IGCC units was analyzed, including cases achievable with state of the art gas turbines and cases assuming advanced gas turbine technology. All utility system expansion plans that used IGCC units showed substantial savings compared with the base expansion plan using the steam turbine units.

  11. Shock Position Control for Mode Transition in a Turbine Based Combined Cycle Engine Inlet Model

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Stueber, Thomas J.

    2013-01-01

    A dual flow-path inlet for a turbine based combined cycle (TBCC) propulsion system is to be tested in order to evaluate methodologies for performing a controlled inlet mode transition. Prior to experimental testing, simulation models are used to test, debug, and validate potential control algorithms which are designed to maintain shock position during inlet disturbances. One simulation package being used for testing is the High Mach Transient Engine Cycle Code simulation, known as HiTECC. This paper discusses the development of a mode transition schedule for the HiTECC simulation that is analogous to the development of inlet performance maps. Inlet performance maps, derived through experimental means, describe the performance and operability of the inlet as the splitter closes, switching power production from the turbine engine to the Dual Mode Scram Jet. With knowledge of the operability and performance tradeoffs, a closed loop system can be designed to optimize the performance of the inlet. This paper demonstrates the design of the closed loop control system and benefit with the implementation of a Proportional-Integral controller, an H-Infinity based controller, and a disturbance observer based controller; all of which avoid inlet unstart during a mode transition with a simulated disturbance that would lead to inlet unstart without closed loop control.

  12. Rocket-Based Combined-Cycle Propulsion Technology for Access-to-Space Applications

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe

    1999-01-01

    NASA's Office of Aero-Space Technology (OAST) established three major goals, referred to as, "The Three Pillars for Success". The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center (MSFC) in Huntsville, Ala. focuses on future space transportation technologies under the "Access to Space" pillar. One of the main activities over the past three years has been on advancing the hydrogen fueled rocket-based combined cycle (RBCC) technologies. The RBCC effort that was completed early this year was the initial step leading to flight demonstrations of the technology for space launch vehicle propulsion. Aerojet and Boeing-Rocketdyne designed, built and ground tested their RBCC engine concepts. In addition, ASTROX, Georgia Institute of Technology, McKinney Associates, Pennsylvania State University (PSU), and University of Alabama in Huntsville conducted supporting activities. The RBCC activity included ground testing of components (e.g., injectors, thrusters, ejectors and inlets) and integrated flowpaths. Inlet testing was performed at the Lewis Research Center's 1 x 1 wind tunnel. All direct connect and free-jet engine testing were conducted at the GASL facilities on Long Island, New York. Testing spanned the Mach range from sea level static to Mach 8. Testing of the rocket-only mode, simulating the final phase of the ascent mission profile, was also performed. The originally planned work on these contracts was completed in 1999. Follow-on activities have been initiated for both hydrogen and hydrocarbon fueled RBCC concepts. Studies to better understand system level issues with the integration of RBCC propulsion with earth-to-orbit vehicles have also been conducted. This paper describes the status, progress and future plans of the RBCC activities funded by NASA/MSFC with a major focus on the benefits of utilizing air-breathing combined-cycle propulsion in access-to-space applications.

  13. ABA Is Required for Plant Acclimation to a Combination of Salt and Heat Stress

    PubMed Central

    Suzuki, Nobuhiro; Bassil, Elias; Hamilton, Jason S.; Inupakutika, Madhuri A.; Zandalinas, Sara Izquierdo; Tripathy, Deesha; Luo, Yuting; Dion, Erin; Fukui, Ginga; Kumazaki, Ayana; Nakano, Ruka; Rivero, Rosa M.; Verbeck, Guido F.; Azad, Rajeev K.; Blumwald, Eduardo; Mittler, Ron

    2016-01-01

    Abiotic stresses such as drought, heat or salinity are a major cause of yield loss worldwide. Recent studies revealed that the acclimation of plants to a combination of different environmental stresses is unique and cannot be directly deduced from studying the response of plants to each of the different stresses applied individually. Here we report on the response of Arabidopsis thaliana to a combination of salt and heat stress using transcriptome analysis, physiological measurements and mutants deficient in abscisic acid, salicylic acid, jasmonic acid or ethylene signaling. Arabidopsis plants were found to be more susceptible to a combination of salt and heat stress compared to each of the different stresses applied individually. The stress combination resulted in a higher ratio of Na+/K+ in leaves and caused the enhanced expression of 699 transcripts unique to the stress combination. Interestingly, many of the transcripts that specifically accumulated in plants in response to the salt and heat stress combination were associated with the plant hormone abscisic acid. In accordance with this finding, mutants deficient in abscisic acid metabolism and signaling were found to be more susceptible to a combination of salt and heat stress than wild type plants. Our study highlights the important role abscisic acid plays in the acclimation of plants to a combination of two different abiotic stresses. PMID:26824246

  14. ABA Is Required for Plant Acclimation to a Combination of Salt and Heat Stress.

    PubMed

    Suzuki, Nobuhiro; Bassil, Elias; Hamilton, Jason S; Inupakutika, Madhuri A; Zandalinas, Sara Izquierdo; Tripathy, Deesha; Luo, Yuting; Dion, Erin; Fukui, Ginga; Kumazaki, Ayana; Nakano, Ruka; Rivero, Rosa M; Verbeck, Guido F; Azad, Rajeev K; Blumwald, Eduardo; Mittler, Ron

    2016-01-01

    Abiotic stresses such as drought, heat or salinity are a major cause of yield loss worldwide. Recent studies revealed that the acclimation of plants to a combination of different environmental stresses is unique and cannot be directly deduced from studying the response of plants to each of the different stresses applied individually. Here we report on the response of Arabidopsis thaliana to a combination of salt and heat stress using transcriptome analysis, physiological measurements and mutants deficient in abscisic acid, salicylic acid, jasmonic acid or ethylene signaling. Arabidopsis plants were found to be more susceptible to a combination of salt and heat stress compared to each of the different stresses applied individually. The stress combination resulted in a higher ratio of Na+/K+ in leaves and caused the enhanced expression of 699 transcripts unique to the stress combination. Interestingly, many of the transcripts that specifically accumulated in plants in response to the salt and heat stress combination were associated with the plant hormone abscisic acid. In accordance with this finding, mutants deficient in abscisic acid metabolism and signaling were found to be more susceptible to a combination of salt and heat stress than wild type plants. Our study highlights the important role abscisic acid plays in the acclimation of plants to a combination of two different abiotic stresses. PMID:26824246

  15. COMBINED REVERSE OSMOSIS AND FREEZE CONCENTRATION OF BLEACH PLANT EFFLUENTS

    EPA Science Inventory

    Reverse osmosis (RO) and freeze concentration (FC) were evaluated at three different pulp and paper mills as tools for concentrating bleach plant effluents. By these concentration processes, the feed effluent was divided into two streams. The clean water stream approached drinkin...

  16. Control Activity in Support of NASA Turbine Based Combined Cycle (TBCC) Research

    NASA Technical Reports Server (NTRS)

    Stueber, Thomas J.; Vrnak, Daniel R.; Le, Dzu K.; Ouzts, Peter J.

    2010-01-01

    Control research for a Turbine Based Combined Cycle (TBCC) propulsion system is the current focus of the Hypersonic Guidance, Navigation, and Control (GN&C) discipline team. The ongoing work at the NASA Glenn Research Center (GRC) supports the Hypersonic GN&C effort in developing tools to aid the design of control algorithms to manage a TBCC airbreathing propulsion system during a critical operating period. The critical operating period being addressed in this paper is the span when the propulsion system transitions from one cycle to another, referred to as mode transition. One such tool, that is a basic need for control system design activities, is computational models (hereto forth referred to as models) of the propulsion system. The models of interest for designing and testing controllers are Control Development Models (CDMs) and Control Validation Models (CVMs). CDMs and CVMs are needed for each of the following propulsion system elements: inlet, turbine engine, ram/scram dual-mode combustor, and nozzle. This paper presents an overall architecture for a TBCC propulsion system model that includes all of the propulsion system elements. Efforts are under way, focusing on one of the propulsion system elements, to develop CDMs and CVMs for a TBCC propulsion system inlet. The TBCC inlet aerodynamic design being modeled is that of the Combined-Cycle Engine (CCE) Testbed. The CCE Testbed is a large-scale model of an aerodynamic design that was verified in a small-scale screening experiment. The modeling approach includes employing existing state-of-the-art simulation codes, developing new dynamic simulations, and performing system identification experiments on the hardware in the NASA GRC 10 by10-Foot Supersonic Wind Tunnel. The developed CDMs and CVMs will be available for control studies prior to hardware buildup. The system identification experiments on the CCE Testbed will characterize the necessary dynamics to be represented in CDMs for control design. These

  17. Nuclear Air-Brayton Combined Cycle Power Conversion Design, Physical Performance Estimation and Economic Assessment

    NASA Astrophysics Data System (ADS)

    Andreades, Charalampos

    The combination of an increased demand for electricity for economic development in parallel with the widespread push for adoption of renewable energy sources and the trend toward liberalized markets has placed a tremendous amount of stress on generators, system operators, and consumers. Non-guaranteed cost recovery, intermittent capacity, and highly volatile market prices are all part of new electricity grids. In order to try and remediate some of these effects, this dissertation proposes and studies the design and performance, both physical and economic, of a novel power conversion system, the Nuclear Air-Brayton Combined Cycle (NACC). The NACC is a power conversion system that takes a conventional industrial frame type gas turbine, modifies it to accept external nuclear heat at 670°C, while also maintaining its ability to co-fire with natural gas to increase temperature and power output at a very quick ramp rate. The NACC addresses the above issues by allowing the generator to gain extra revenue through the provision of ancillary services in addition to energy payments, the grid operator to have a highly flexible source of capacity to back up intermittent renewable energy sources, and the consumer to possibly see less volatile electricity prices and a reduced probability of black/brown outs. This dissertation is split into six sections that delve into specific design and economic issues related to the NACC. The first section describes the basic design and modifications necessary to create a functional externally heated gas turbine, sets a baseline design based upon the GE 7FB, and estimates its physical performance under nominal conditions. The second section explores the off-nominal performance of the NACC and characterizes its startup and shutdown sequences, along with some of its safety measures. The third section deals with the power ramp rate estimation of the NACC, a key performance parameter in a renewable-heavy grid that needs flexible capacity. The

  18. Investigation of plant control strategies for the supercritical C0{sub 2}Brayton cycle for a sodium-cooled fast reactor using the plant dynamics code.

    SciTech Connect

    Moisseytsev, A.; Sienicki, J.

    2011-04-12

    The development of a control strategy for the supercritical CO{sub 2} (S-CO{sub 2}) Brayton cycle has been extended to the investigation of alternate control strategies for a Sodium-Cooled Fast Reactor (SFR) nuclear power plant incorporating a S-CO{sub 2} Brayton cycle power converter. The SFR assumed is the 400 MWe (1000 MWt) ABR-1000 preconceptual design incorporating metallic fuel. Three alternative idealized schemes for controlling the reactor side of the plant in combination with the existing automatic control strategy for the S-CO{sub 2} Brayton cycle are explored using the ANL Plant Dynamics Code together with the SAS4A/SASSYS-1 Liquid Metal Reactor (LMR) Analysis Code System coupled together using the iterative coupling formulation previously developed and implemented into the Plant Dynamics Code. The first option assumes that the reactor side can be ideally controlled through movement of control rods and changing the speeds of both the primary and intermediate coolant system sodium pumps such that the intermediate sodium flow rate and inlet temperature to the sodium-to-CO{sub 2} heat exchanger (RHX) remain unvarying while the intermediate sodium outlet temperature changes as the load demand from the electric grid changes and the S-CO{sub 2} cycle conditions adjust according to the S-CO{sub 2} cycle control strategy. For this option, the reactor plant follows an assumed change in load demand from 100 to 0 % nominal at 5 % reduction per minute in a suitable fashion. The second option allows the reactor core power and primary and intermediate coolant system sodium pump flow rates to change autonomously in response to the strong reactivity feedbacks of the metallic fueled core and assumed constant pump torques representing unchanging output from the pump electric motors. The plant behavior to the assumed load demand reduction is surprising close to that calculated for the first option. The only negative result observed is a slight increase in the intermediate

  19. POPCYCLE: a computer code for calculating nuclear and fossil plant levelized life-cycle power costs

    SciTech Connect

    Hardie, R.W.

    1982-02-01

    POPCYCLE, a computer code designed to calculate levelized life-cycle power costs for nuclear and fossil electrical generating plants is described. Included are (1) derivations of the equations and a discussion of the methodology used by POPCYCLE, (2) a description of the input required by the code, (3) a listing of the input for a sample case, and (4) the output for a sample case.

  20. Importance of the specific heat anomaly in the design of binary Rankine cycle power plants

    SciTech Connect

    Pope, W.L.; Doyle, P.A.; Fulton, R.L.; Silvester, L.F.

    1980-05-01

    The transposed critical temperature (TPCT) is shown to be an extremely important thermodynamic property in the selection of working fluids and turbine states for geothermal power plants operating on a closed organic (binary) Rankine cycle. When the optimum working fluid composition and process states are determined for specified source and sink conditions, turbine inlet states consistently lie adjacent to the working fluids' TPCT line for all resource temperatures, constraints, and cost and efficiency factors investigated.

  1. Plant origin and ploidy influence gene expression and life cycle characteristics in an invasive weed

    PubMed Central

    Broz, Amanda K; Manter, Daniel K; Bowman, Gillianne; Müller-Schärer, Heinz; Vivanco, Jorge M

    2009-01-01

    Background Ecological, evolutionary and physiological studies have thus far provided an incomplete picture of why some plants become invasive; therefore we used genomic resources to complement and advance this field. In order to gain insight into the invasive mechanism of Centaurea stoebe we compared plants of three geo-cytotypes, native Eurasian diploids, native Eurasian tetraploids and introduced North American tetraploids, grown in a common greenhouse environment. We monitored plant performance characteristics and life cycle habits and characterized the expression of genes related to constitutive defense and genome stability using quantitative PCR. Results Plant origin and ploidy were found to have a significant effect on both life cycle characteristics and gene expression, highlighting the importance of comparing appropriate taxonomic groups in studies of native and introduced plant species. We found that introduced populations of C. stoebe exhibit reduced expression of transcripts related to constitutive defense relative to their native tetraploid counterparts, as might be expected based on ideas of enemy release and rapid evolution. Measurements of several vegetative traits were similar for all geo-cytotypes; however, fecundity of tetraploids was significantly greater than diploids, due in part to their polycarpic nature. A simulation of seed production over time predicts that introduced tetraploids have the highest fecundity of the three geo-cytotypes. Conclusion Our results suggest that characterizing gene expression in an invasive species using populations from both its native and introduced range can provide insight into the biology of plant invasion that can complement traditional measurements of plant performance. In addition, these results highlight the importance of using appropriate taxonomic units in ecological genomics investigations. PMID:19309502

  2. Options for flight testing rocket-based combined-cycle (RBCC) engines

    NASA Technical Reports Server (NTRS)

    Olds, John

    1996-01-01

    While NASA's current next-generation launch vehicle research has largely focused on advanced all-rocket single-stage-to-orbit vehicles (i.e. the X-33 and it's RLV operational follow-on), some attention is being given to advanced propulsion concepts suitable for 'next-generation-and-a-half' vehicles. Rocket-based combined-cycle (RBCC) engines combining rocket and airbreathing elements are one candidate concept. Preliminary RBCC engine development was undertaken by the United States in the 1960's. However, additional ground and flight research is required to bring the engine to technological maturity. This paper presents two options for flight testing early versions of the RBCC ejector scramjet engine. The first option mounts a single RBCC engine module to the X-34 air-launched technology testbed for test flights up to about Mach 6.4. The second option links RBCC engine testing to the simultaneous development of a small-payload (220 lb.) two-stage-to-orbit operational vehicle in the Bantam payload class. This launcher/testbed concept has been dubbed the W vehicle. The W vehicle can also serve as an early ejector ramjet RBCC launcher (albeit at a lower payload). To complement current RBCC ground testing efforts, both flight test engines will use earth-storable propellants for their RBCC rocket primaries and hydrocarbon fuel for their airbreathing modes. Performance and vehicle sizing results are presented for both options.

  3. Combining direct and remote observations with modeling to understand the terrestrial carbon cycle

    NASA Astrophysics Data System (ADS)

    Churkina, G.

    2002-06-01

    Explaining observed regional-scale variability of carbon fluxes is critical for increasing the credibility of predictions of future ecosystem changes. Combining direct and remote observations is not straightforward because the observations are taken at different spatial and temporal scales and previous land satellite missions have not been designed for use together with existing measuring networks. Although ecosystem models, which estimate relevant components of the carbon cycle at different spatial and temporal scale, can serve as an integrative tool, their estimates of the state variables have uncertainties related to the poorly understood processes. Nevertheless, our first attempts to combine the three tools show interesting relationships between satellite indices and flux measurements as well as outline some issues, which can be resolve by the type of data provided by SPECTRA. A new technique of CO2 and energy fluxes measurements on tall (200-600 m) towers allows studying ecosystem-atmosphere interactions at the regional scale using a combination of CO2 observations, ecosystem modeling, and remote sensing. Signal measured at a tall tower integrates both daily biogeochemical cycles and small-scale heterogeneity of the land surface. For 1997-99 we compared the "preferred" annual net ecosystem exchange (NEE) measured at the tall tower in Wisconsin to the simulated annual NEE (BIOME-BGC model) and to adjusted normalized difference vegetation index (NDVI) aggregated over each year. Most of the differences between measured and modeled fluxes occurred in the beginning and the end of growing season. The length of the carbon uptake period defined by CO2 exchange observations was better captured by remote observations (NDVI) than by the model. Small deviations in growing season length resulted in significantly different annual NEE from measurements and model simulations. Analysis of the carbon uptake period by terrestrial vegetation and the annual net ecosystem exchange

  4. Degradation of phenanthrene and pyrene in spiked soils by single and combined plants cultivation.

    PubMed

    Cheema, Sardar Alam; Imran Khan, Muhammad; Shen, Chaofeng; Tang, Xianjin; Farooq, Muhammad; Chen, Lei; Zhang, Congkai; Chen, Yingxu

    2010-05-15

    The present study was conducted to investigate the capability of four plant species (tall fescue, ryegrass, alfalfa, and rape seed) grown alone and in combination to the degradation of phenanthrene and pyrene (polycyclic aromatic hydrocarbons, PAHs) in spiked soil. After 65 days of plant growth, plant biomass, dehydrogenase activity, water-soluble phenolic (WSP) compounds, plant uptake and accumulation and residual concentrations of phenanthrene and pyrene were determined. Our results showed that presence of vegetation significantly enhanced the dissipation of phenanthrene and pyrene from contaminated soils. Higher degradation rates of PAHs were observed in the combined plant cultivation (98.3-99.2% phenanthrene and 88.1-95.7% pyrene) compared to the single plant cultivation (97.0-98.0% phenanthrene and 79.8-86.0% pyrene). Contribution of direct plant uptake and accumulation of phenanthrene and pyrene was very low compared to the plant enhanced dissipation. By contrast, plant-promoted biodegradation was the predominant contribution to the remediation enhancement. The correlation analysis indicates a negative relation between biological activities (dehydrogenase activity and WSP compounds) and residual concentrations of phenanthrene and pyrene in planted soils. Our results suggest that phytoremediation could be a feasible choice for PAHs contaminated soil. Moreover, the combined plant cultivation has potential to enhance the process. PMID:20079966

  5. Mineralization of integrated gasification combined-cycle power-station wastewater effluent by a photo-Fenton process.

    PubMed

    Durán, A; Monteagudo, J M; San Martín, I; Aguirre, M

    2010-09-01

    The aim of this work was to study the mineralization of wastewater effluent from an integrated-gasification combined-cycle (IGCC) power station sited in Spain to meet the requirements of future environmental legislation. This study was done in a pilot plant using a homogeneous photo-Fenton oxidation process with continuous addition of H(2)O(2) and air to the system. The mineralization process was found to follow pseudo-first-order kinetics. Experimental kinetic constants were fitted using neural networks (NNs). The NNs model reproduced the experimental data to within a 90% confidence level and allowed the simulation of the process for any values of the parameters within the experimental range studied. At the optimum conditions (H(2)O(2) flow rate=120 mL/h, [Fe(II)]=7.6 mg/L, pH=3.75 and air flow rate=1 m(3)/h), a 90% mineralization was achieved in 150 min. Determination of the hydrogen peroxide consumed and remaining in the water revealed that 1.2 mol of H(2)O(2) was consumed per each mol of total organic carbon removed from solution. This result confirmed that an excess of dissolved H(2)O(2) was needed to achieve high mineralization rates, so continuous addition of peroxide is recommended for industrial application of this process. Air flow slightly improved the mineralization rate due to the formation of peroxo-organic radicals which enhanced the oxidation process. PMID:20510498

  6. Heterogeneity of cellular circadian clocks in intact plants and its correction under light-dark cycles

    PubMed Central

    Muranaka, Tomoaki; Oyama, Tokitaka

    2016-01-01

    Recent advances in single-cell analysis have revealed the stochasticity and nongenetic heterogeneity inherent to cellular processes. However, our knowledge of the actual cellular behaviors in a living multicellular organism is still limited. By using a single-cell bioluminescence imaging technique on duckweed, Lemna gibba, we demonstrate that, under constant conditions, cells in the intact plant work as individual circadian clocks that oscillate with their own frequencies and respond independently to external stimuli. Quantitative analysis uncovered the heterogeneity and instability of cellular clocks and partial synchronization between neighboring cells. Furthermore, we found that cellular clocks in the plant body under light-dark cycles showed a centrifugal phase pattern in which the effect of cell-to-cell heterogeneity in period lengths was almost masked. The inherent heterogeneity in the properties of cellular clocks observed under constant conditions is corrected under light-dark cycles to coordinate the daily rhythms of the plant body. These findings provide a novel perspective of spatiotemporal architectures in the plant circadian system. PMID:27453946

  7. Exergy analysis of internal regeneration in supercritical cycles of ORC power plant

    NASA Astrophysics Data System (ADS)

    Borsukiewicz-Gozdur, Aleksandra

    2012-09-01

    In the paper presented is an idea of organic Rankine cycle (ORC) operating with supercritical parameters and so called dry fluids. Discussed is one of the methods of improving the effectiveness of operation of supercritical cycle by application of internal regeneration of heat through the use of additional heat exchanger. The main objective of internal regenerator is to recover heat from the vapour leaving the turbine and its transfer to the liquid phase of working fluid after the circulation pump. In effect of application of the regenerative heat exchanger it is possible to obtain improved effectiveness of operation of the power plant, however, only in the case when the ORC plant is supplied from the so called sealed heat source. In the present paper presented is the discussion of heat sources and on the base of the case study of two heat sources, namely the rate of heat of thermal oil from the boiler and the rate of heat of hot air from the cooler of the clinkier from the cement production line having the same initial temperature of 260 oC, presented is the influence of the heat source on the justification of application of internal regeneration. In the paper presented are the calculations for the supercritical ORC power plant with R365mfc as a working fluid, accomplished has been exergy changes and exergy efficiency analysis with the view to select the most appropriate parameters of operation of the power plant for given parameters of the heat source.

  8. Heterogeneity of cellular circadian clocks in intact plants and its correction under light-dark cycles.

    PubMed

    Muranaka, Tomoaki; Oyama, Tokitaka

    2016-07-01

    Recent advances in single-cell analysis have revealed the stochasticity and nongenetic heterogeneity inherent to cellular processes. However, our knowledge of the actual cellular behaviors in a living multicellular organism is still limited. By using a single-cell bioluminescence imaging technique on duckweed, Lemna gibba, we demonstrate that, under constant conditions, cells in the intact plant work as individual circadian clocks that oscillate with their own frequencies and respond independently to external stimuli. Quantitative analysis uncovered the heterogeneity and instability of cellular clocks and partial synchronization between neighboring cells. Furthermore, we found that cellular clocks in the plant body under light-dark cycles showed a centrifugal phase pattern in which the effect of cell-to-cell heterogeneity in period lengths was almost masked. The inherent heterogeneity in the properties of cellular clocks observed under constant conditions is corrected under light-dark cycles to coordinate the daily rhythms of the plant body. These findings provide a novel perspective of spatiotemporal architectures in the plant circadian system. PMID:27453946

  9. Recovery of plant biomass and soil N cycling in Alaskan tundra following an unusual fire

    NASA Astrophysics Data System (ADS)

    Bret-Harte, M. S.; Mack, M. C.; Huebner, D. C.; Johnston, M.; Shaver, G. R.

    2012-12-01

    Climate warming is likely to increase the frequency of disturbances in the Arctic. The Anaktuvuk River fire of 2007 burned 1039 km2 of northern Alaskan tundra; this was unprecedented for this vegetation, which is clonal, slow-growing, and long-lived. We harvested plant biomass and soils from severely and moderately burned areas and controls in 2011 to assess recovery of plant productivity and soil N cycling four years after the fire. Biomass of vascular plants had recovered to nearly control levels in moderately burned areas, due primarily to resprouting by graminoids, particularly Eriophorum vaginatum. Graminoid biomass was actually greater in moderately burned tundra than in unburned tundra. Deciduous shrub and evergreen shrub biomass in moderately burned tundra was approximately half that seen in unburned tundra, but non-vascular plant biomass was much less, so that total aboveground biomass in moderately burned tundra had not returned to control levels. Severely burned tundra had less of all components of the community than in moderately burned tundra, except that there was higher biomass of non-vascular plants, due to colonization by fire-following liverworts and mosses. Productivity of vascular plants was similar in unburned and severely burned tundra plots, and higher in moderately burned plots, due in part to higher soil N availability. Recovery of plant biomass was largely due to resprouting of species that survived the fire, though numerous seedlings were seen. Biomass of vascular plants has recovered rapidly in the moderately burned sites, while severely burned sites and nonvascular plants are recovering more slowly, but the relative abundance of different species differs from unburned tundra. The relationship between spectral indices (NDVI, EVI-2) collected at the plot level and either biomass or NPP varied with burn category, which may complicate assessments of NPP by remote sensing following fire.

  10. Differentiating moss from higher plants is critical in studying the carbon cycle of the boreal biome.

    PubMed

    Yuan, Wenping; Liu, Shuguang; Dong, Wenjie; Liang, Shunlin; Zhao, Shuqing; Chen, Jingming; Xu, Wenfang; Li, Xianglan; Barr, Alan; Andrew Black, T; Yan, Wende; Goulden, Mike L; Kulmala, Liisa; Lindroth, Anders; Margolis, Hank A; Matsuura, Yojiro; Moors, Eddy; van der Molen, Michiel; Ohta, Takeshi; Pilegaard, Kim; Varlagin, Andrej; Vesala, Timo

    2014-01-01

    The satellite-derived normalized difference vegetation index (NDVI), which is used for estimating gross primary production (GPP), often includes contributions from both mosses and vascular plants in boreal ecosystems. For the same NDVI, moss can generate only about one-third of the GPP that vascular plants can because of its much lower photosynthetic capacity. Here, based on eddy covariance measurements, we show that the difference in photosynthetic capacity between these two plant functional types has never been explicitly included when estimating regional GPP in the boreal region, resulting in a substantial overestimation. The magnitude of this overestimation could have important implications regarding a change from a current carbon sink to a carbon source in the boreal region. Moss abundance, associated with ecosystem disturbances, needs to be mapped and incorporated into GPP estimates in order to adequately assess the role of the boreal region in the global carbon cycle. PMID:24967601

  11. The cervico-vaginal epithelium during 20 cycles' use of a combined contraceptive vaginal ring.

    PubMed

    Roumen, F J; Boon, M E; van Velzen, D; Dieben, T O; Coelingh Bennink, H J

    1996-11-01

    The aim of the study was to evaluate the influence of a combined contraceptive vaginal ring (CCVR) made of Silastic on the cervico-vaginal epithelium during 20 cycles of use. A total of 76 volunteers used the CCVR releasing 0.120 mg etonogestrel and 0.015 mg ethinyloestradiol daily. Cytological samples were taken of the vaginal epithelium, the ectocervix and the endocervix before the start, at 4 and 12 months, and at the end of the study. Cytology, hormonal profiles, human papilloma virus (HPV) status, DNA-flow cytometry, bacterial flora, and morphometry was performed on these samples. Colposcopy and histopathology of biopsy specimens were performed at the end. No cytological changes of the squamous epithelium or the columnar epithelium were found. HPV was detected in three samples of three different women. At least two of them reverted to HPV negative during the rest of the study period. Aneuploidy was diagnosed in 11 women before the study. Seven of them changed to diploid during the study. No changes from diploid to aneuploid were seen. Aneuploidy was not seen in any of the HPV positive samples. Although bacterial flora showed considerable variation during the study, no significant influence of the CCVR could be established. Morphometrical analysis showed an increasing nucleus:cytoplasm ratio of the squamous cells during the study. Mild dysplasia was detected in one woman at the end of the study. It was concluded that no unfavourable cytological or bacteriological changes of the cervico-vaginal epithelium were demonstrated during 20 cycles of CCVR use. The vaginal epithelium became more progestogenic during the study. PMID:8981130

  12. The potential for control of carbon dioxide emissions from integrated gasification/combined-cycle systems

    SciTech Connect

    Livengood, C.D.; Doctor, R.D.; Molburg, J.C.; Thimmapuram, P.; Berry, G.F.

    1994-06-01

    Initiatives to limit carbon dioxide (CO{sub 2}) emissions have drawn considerable interest to integrated gasification/combined-cycle (IGCC) power generation, a process that reduces CO{sub 2} production through efficient fuel used is amenable to CO{sub 2} capture. This paper presents a comparison of energy systems that encompass fuel supply, an IGCC system, CO{sub 2} recovery using commercial technologies, CO{sub 2} transport by pipeline, and land-based sequestering in geological reservoirs. The intent is to evaluate the energy-efficiency impacts of controlling CO{sub 2} in such systems and to provide the CO{sub 2} budget, or an to equivalent CO{sub 2}`` budget, associated with each of the individual energy-cycle steps. The value used for the ``equivalent CO{sub 2}`` budget is 1 kg/kWh CO{sub 2}. The base case for the comparison is a 457-MW IGCC system that uses an air-blown Kellogg-Rust-Westinghouse (KRW) agglomerating fluidized-bed gasifier, Illinois No. 6 bituminous coal, and in-bed sulfur removal. Mining, preparation, and transportation of the coal and limestone result in a net system electric power production of 454 MW with a 0.835 kg/kwh CO{sub 2} release rate. For comparison, the gasifier output is taken through a water-gas shift to convert CO to CO{sub 2} and then processed in a glycol-based absorber unit to recover CO{sub 2} Prior to the combustion turbine. A 500-km pipeline then transports the CO{sub 2} for geological sequestering. The net electric power production for the system with CO{sub 2} recovery is 381 MW with a 0.156 kg/kwh CO{sub 2} release rate.

  13. A Novel Absorption Cycle for Combined Water Heating, Dehumidification, and Evaporative Cooling

    SciTech Connect

    CHUGH, Devesh; Gluesenkamp, Kyle R; Abdelaziz, Omar; Moghaddam, Saeed

    2014-01-01

    In this study, development of a novel system for combined water heating, dehumidification, and space evaporative cooling is discussed. Ambient water vapor is used as a working fluid in an open system. First, water vapor is absorbed from an air stream into an absorbent solution. The latent heat of absorption is transferred into the process water that cools the absorber. The solution is then regenerated in the desorber, where it is heated by a heating fluid. The water vapor generated in the desorber is condensed and its heat of phase change is transferred to the process water in the condenser. The condensed water can then be used in an evaporative cooling process to cool the dehumidified air exiting the absorber, or it can be drained if primarily dehumidification is desired. Essentially, this open absorption cycle collects space heat and transfers it to process water. This technology is enabled by a membrane-based absorption/desorption process in which the absorbent is constrained by hydrophobic vapor-permeable membranes. Constraining the absorbent film has enabled fabrication of the absorber and desorber in a plate-and-frame configuration. An air stream can flow against the membrane at high speed without entraining the absorbent, which is a challenge in conventional dehumidifiers. Furthermore, the absorption and desorption rates of an absorbent constrained by a membrane are greatly enhanced. Isfahani and Moghaddam (Int. J. Heat Mass Transfer, 2013) demonstrated absorption rates of up to 0.008 kg/m2s in a membrane-based absorber and Isfahani et al. (Int. J. Multiphase Flow, 2013) have reported a desorption rate of 0.01 kg/m2s in a membrane-based desorber. The membrane-based architecture also enables economical small-scale systems, novel cycle configurations, and high efficiencies. The absorber, solution heat exchanger, and desorber are fabricated on a single metal sheet. In addition to the open arrangement and membrane-based architecture, another novel feature of the

  14. Oxygen isotopes and P cycle in the soil/plant system: where are we heading?

    NASA Astrophysics Data System (ADS)

    Tamburini, Federica; Pfahler, Verena; von Sperber, Christian; Bernasconi, Stefano; Frossard, Emmanuel

    2014-05-01

    Phosphorus (P) is a major nutrient for all living organisms. In the terrestrial environment, P is a double-edged sword. For this reason, a better understanding of P cycling in the soil/plant system and the processes influencing its transfers and transformations is needed to provide agricultural and environmental managers with better concepts for P use. In fact, whereas the effect of abiotic reactions on the P concentration in the soil solution are well understood, we still know too little about the forms of soil organic P, and about the importance of soil biological processes (e.g. on organic matter mineralization-immobilization, or on the role of microorganisms) in controlling P availability. Together with more traditional and routine analysis for P, in the last 20 years researchers have started using the ratio of stable oxygen isotopes in phosphate (δ18O-P) to investigate P cycle in the soil/plant system. The scientific community interested in using this isotopic tracer is expanding because δ18O-P has proven to provide important information on biological processes. A large part of the published studies has shown how δ18O-P can be used to track P in the environment, providing information on P transfer from one pool and/or sink to the other. The other part has used this tool as a tracer of biological activity, clarifying how P is cycled through the microbial biomass or by plants. Together with a short review of the most relevant published results, we will discuss whether, and under which conditions, the δ18O-P can be applied to study P cycling and transformations from the process to the ecosystem level.

  15. HEAVY-DUTY TRUCK TEST CYCLES: COMBINING DRIVEABILITY WITH REALISTIC ENGINE EXERCISE

    EPA Science Inventory

    Heavy-duty engine certification testing uses a cycle that is scaled to the capabilities of each engine. As such, every engine should be equally challenged by the cycle's power demands. It would seem that a chassis cycle, similarly scaled to the capabilities of each vehicle, could...

  16. Life Cycle Assessment of the MBT plant in Ano Liossia, Athens, Greece

    SciTech Connect

    Abeliotis, Konstadinos; Kalogeropoulos, Alexandros; Lasaridi, Katia

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer We model the operation of an MBT plant in Greece based on LCA. Black-Right-Pointing-Pointer We compare four different MBT operating scenarios (among them and with landfilling). Black-Right-Pointing-Pointer Even the current operation of the MBT plant is preferable to landfilling. Black-Right-Pointing-Pointer Utilization of the MBT compost and metals generates the most environmental gains. Black-Right-Pointing-Pointer Thermal exploitation of RDF improves further the environmental performance of the plant. - Abstract: The aim of this paper is the application of Life Cycle Assessment to the operation of the MBT facility of Ano Liossia in the region of Attica in Greece. The region of Attica is home to almost half the population of Greece and the management of its waste is a major issue. In order to explicitly analyze the operation of the MBT plant, five scenarios were generated. Actual operation data of the MBT plant for the year 2008 were provided by the region of Attica and the LCA modeling was performed via the SimaPro 5.1 software while impact assessment was performed utilizing the Eco-indicator'99 method. The results of our analysis indicate that even the current operation of the MBT plant is preferable to landfilling. Among the scenarios of MBT operation, the one with complete utilization of the MBT outputs, i.e. compost, RDF, ferrous and non-ferrous metals, is the one that generates the most environmental gains. Our analysis indicates that the exploitation of RDF via incineration is the key factor towards improving the environmental performance of the MBT plant. Our findings provide a quantitative understanding of the MBT plant. Interpretation of results showed that proper operation of the modern waste management systems can lead to substantial reduction of environmental impacts and savings of resources.

  17. Inlet Development for a Rocket Based Combined Cycle, Single Stage to Orbit Vehicle Using Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    DeBonis, J. R.; Trefny, C. J.; Steffen, C. J., Jr.

    1999-01-01

    Design and analysis of the inlet for a rocket based combined cycle engine is discussed. Computational fluid dynamics was used in both the design and subsequent analysis. Reynolds averaged Navier-Stokes simulations were performed using both perfect gas and real gas assumptions. An inlet design that operates over the required Mach number range from 0 to 12 was produced. Performance data for cycle analysis was post processed using a stream thrust averaging technique. A detailed performance database for cycle analysis is presented. The effect ot vehicle forebody compression on air capture is also examined.

  18. [Combining ability for the traits of stem branching and plant height in linseed lines].

    PubMed

    Kalinina, Ie Iu; Liakh, V A

    2011-01-01

    Combining ability for the traits of stem branching and plant height has been studied in ten pure lines of flax under complete and incomplete diallel crosses. High heritability of the traits "plant height", "the number of lateral stems" and "the number of lateral shoots" and essential role of genes with dominant effects of interaction in genetic control of the traits of stem branching and plant height have been shown. On the basis of combining ability indexes the ways for usage of certain genotypes and crossing combinations in flax breeding were defined. As a result of individual selection from hybrid combinations some new complexes of habit traits and agriculturally valuable plant characteristics were obtained. PMID:22168047

  19. Combining incidence and demographic modelling approaches to evaluate metapopulation parameters for an endangered riparian plant.

    PubMed

    Charney, Noah D; Record, Sydne

    2016-01-01

    Metapopulations are a central concept in ecology and conservation biology; however, estimating key parameters such as colonization rates presents a substantial obstacle to modelling metapopulations in many species. We develop spatial and non-spatial simulation models that combine incidence- and demographic-based approaches to build a relationship between observed patch occupancy, habitat turnover rates, colonization rates and dispersal scales. Applying these models to long-term observations of Pedicularis furbishiae (Furbish's lousewort), a rare plant endemic to the Saint John River, we predict that observed habitat patches averaging 550 m in length receive colonizing seedlings with a yearly probability of 0.45 or 0.54, based on two different models. Predictions are consistent with a standard analytic metapopulation formulation modified to partition extinction drivers during the early and the late phases of a population's life cycle. While the specific results rest on several simplifying assumptions, the models allow us to understand the impact that increasing rates of habitat turnover would have on the future survival of this species. PMID:27339047

  20. Combining incidence and demographic modelling approaches to evaluate metapopulation parameters for an endangered riparian plant

    PubMed Central

    Charney, Noah D.; Record, Sydne

    2016-01-01

    Metapopulations are a central concept in ecology and conservation biology; however, estimating key parameters such as colonization rates presents a substantial obstacle to modelling metapopulations in many species. We develop spatial and non-spatial simulation models that combine incidence- and demographic-based approaches to build a relationship between observed patch occupancy, habitat turnover rates, colonization rates and dispersal scales. Applying these models to long-term observations of Pedicularis furbishiae (Furbish’s lousewort), a rare plant endemic to the Saint John River, we predict that observed habitat patches averaging 550 m in length receive colonizing seedlings with a yearly probability of 0.45 or 0.54, based on two different models. Predictions are consistent with a standard analytic metapopulation formulation modified to partition extinction drivers during the early and the late phases of a population’s life cycle. While the specific results rest on several simplifying assumptions, the models allow us to understand the impact that increasing rates of habitat turnover would have on the future survival of this species. PMID:27339047

  1. Disentangling Facilitation Along the Life Cycle: Impacts of Plant–Plant Interactions at Vegetative and Reproductive Stages in a Mediterranean Forb

    PubMed Central

    García-Cervigón, Ana I.; Iriondo, José M.; Linares, Juan C.; Olano, José M.

    2016-01-01

    Facilitation enables plants to improve their fitness in stressful environments. The overall impact of plant–plant interactions on the population dynamics of protégées is the net result of both positive and negative effects that may act simultaneously along the plant life cycle, and depends on the environmental context. This study evaluates the impact of the nurse plant Juniperus sabina on different stages of the life cycle of the forb Helleborus foetidus. Growth, number of leaves, flowers, carpels, and seeds per flower were compared for 240 individuals collected under nurse canopies and in open areas at two sites with contrasting stress levels. Spatial associations with nurse plants and age structures were also checked. A structural equation model was built to test the effect of facilitation on fecundity, accounting for sequential steps from flowering to seed production. The net impact of nurse plants depended on a combination of positive and negative effects on vegetative and reproductive variables. Although nurse plants caused a decrease in flower production at the low-stress site, their net impact there was neutral. In contrast, at the high-stress site the net outcome of plant–plant interactions was positive due to an increase in effective recruitment, plant density, number of viable carpels per flower, and fruit set under nurse canopies. The naturally lower rates of secondary growth and flower production at the high-stress site were compensated by the net positive impact of nurse plants here. Our results emphasize the need to evaluate entire processes and not only final outcomes when studying plant–plant interactions. PMID:26904086

  2. Manipulation of the Xanthophyll Cycle Increases Plant Susceptibility to Sclerotinia sclerotiorum.

    PubMed

    Zhou, Jun; Zeng, Lizhang; Liu, Jian; Xing, Da

    2015-05-01

    The xanthophyll cycle is involved in dissipating excess light energy to protect the photosynthetic apparatus in a process commonly assessed from non-photochemical quenching (NPQ) of chlorophyll fluorescence. Here, it is shown that the xanthophyll cycle is modulated by the necrotrophic pathogen Sclerotinia sclerotiorum at the early stage of infection. Incubation of Sclerotinia led to a localized increase in NPQ even at low light intensity. Further studies showed that this abnormal change in NPQ was closely correlated with a decreased pH caused by Sclerotinia-secreted oxalate, which might decrease the ATP synthase activity and lead to a deepening of thylakoid lumen acidification under continuous illumination. Furthermore, suppression (with dithiothreitol) or a defect (in the npq1-2 mutant) of violaxanthin de-epoxidase (VDE) abolished the Sclerotinia-induced NPQ increase. HPLC analysis showed that the Sclerotinia-inoculated tissue accumulated substantial quantities of zeaxanthin at the expense of violaxanthin, with a corresponding decrease in neoxanthin content. Immunoassays revealed that the decrease in these xanthophyll precursors reduced de novo abscisic acid (ABA) biosynthesis and apparently weakened tissue defense responses, including ROS induction and callose deposition, resulting in enhanced plant susceptibility to Sclerotinia. We thus propose that Sclerotinia antagonizes ABA biosynthesis to suppress host defense by manipulating the xanthophyll cycle in early pathogenesis. These findings provide a model of how photoprotective metabolites integrate into the defense responses, and expand the current knowledge of early plant-Sclerotinia interactions at infection sites. PMID:25993128

  3. Manipulation of the Xanthophyll Cycle Increases Plant Susceptibility to Sclerotinia sclerotiorum

    PubMed Central

    Zhou, Jun; Zeng, Lizhang; Liu, Jian; Xing, Da

    2015-01-01

    The xanthophyll cycle is involved in dissipating excess light energy to protect the photosynthetic apparatus in a process commonly assessed from non-photochemical quenching (NPQ) of chlorophyll fluorescence. Here, it is shown that the xanthophyll cycle is modulated by the necrotrophic pathogen Sclerotinia sclerotiorum at the early stage of infection. Incubation of Sclerotinia led to a localized increase in NPQ even at low light intensity. Further studies showed that this abnormal change in NPQ was closely correlated with a decreased pH caused by Sclerotinia-secreted oxalate, which might decrease the ATP synthase activity and lead to a deepening of thylakoid lumen acidification under continuous illumination. Furthermore, suppression (with dithiothreitol) or a defect (in the npq1-2 mutant) of violaxanthin de-epoxidase (VDE) abolished the Sclerotinia-induced NPQ increase. HPLC analysis showed that the Sclerotinia-inoculated tissue accumulated substantial quantities of zeaxanthin at the expense of violaxanthin, with a corresponding decrease in neoxanthin content. Immunoassays revealed that the decrease in these xanthophyll precursors reduced de novo abscisic acid (ABA) biosynthesis and apparently weakened tissue defense responses, including ROS induction and callose deposition, resulting in enhanced plant susceptibility to Sclerotinia. We thus propose that Sclerotinia antagonizes ABA biosynthesis to suppress host defense by manipulating the xanthophyll cycle in early pathogenesis. These findings provide a model of how photoprotective metabolites integrate into the defense responses, and expand the current knowledge of early plant-Sclerotinia interactions at infection sites. PMID:25993128

  4. ECONOMICS AND FEASIBILITY OF RANKINE CYCLE IMPROVEMENTS FOR COAL FIRED POWER PLANTS

    SciTech Connect

    Richard E. Waryasz; Gregory N. Liljedahl

    2004-09-08

    ALSTOM Power Inc.'s Power Plant Laboratories (ALSTOM) has teamed with the U.S. Department of Energy National Energy Technology Laboratory (DOE NETL), American Electric Company (AEP) and Parsons Energy and Chemical Group to conduct a comprehensive study evaluating coal fired steam power plants, known as Rankine Cycles, equipped with three different combustion systems: Pulverized Coal (PC), Circulating Fluidized Bed (CFB), and Circulating Moving Bed (CMB{trademark}). Five steam cycles utilizing a wide range of steam conditions were used with these combustion systems. The motivation for this study was to establish through engineering analysis, the most cost-effective performance potential available through improvement in the Rankine Cycle steam conditions and combustion systems while at the same time ensuring that the most stringent emission performance based on CURC (Coal Utilization Research Council) 2010 targets are met: > 98% sulfur removal; < 0.05 lbm/MM-Btu NO{sub x}; < 0.01 lbm/MM-Btu Particulate Matter; and > 90% Hg removal. The final report discusses the results of a coal fired steam power plant project, which is comprised of two parts. The main part of the study is the analysis of ten (10) Greenfield steam power plants employing three different coal combustion technologies: Pulverized Coal (PC), Circulating Fluidized Bed (CFB), and Circulating Moving Bed (CMB{trademark}) integrated with five different steam cycles. The study explores the technical feasibility, thermal performance, environmental performance, and economic viability of ten power plants that could be deployed currently, in the near, intermediate, and long-term time frame. For the five steam cycles, main steam temperatures vary from 1,000 F to 1,292 F and pressures from 2,400 psi to 5,075 psi. Reheat steam temperatures vary from 1,000 F to 1,328 F. The number of feedwater heaters varies from 7 to 9 and the associated feedwater temperature varies from 500 F to 626 F. The main part of the study

  5. Dual-mode Operation of a Rocket-Ramjet Combined Cycle Engine

    NASA Astrophysics Data System (ADS)

    Tomioka, Sadatake; Tani, Koichiro; Masumoto, Ryo; Ueda, Shuuichi

    One-dimensional evaluation of Ramjet-mode operation was carried out on a rocket-ramjet combined cycle engine model. For simplicity, instantaneous mixing between the airflow and rocket exhaust, instantaneous heat release, and pressure recovery by a normal-shock wave were assumed. Shock wave location was so decided that the heat release at the injection (heat addition) location was to thermally-choke the combustion gas flow. By changing the injection location, it was shown that a further downstream injection resulted in a further thrust production and a further fuel flow rate requirement for choking, and a lesser specific impulse. Balancing the thrust production and the specific impulse in terms of the launch vehicle acceleration performance should be pursued. The total pressure loss within the engine model was dominated by the shock wave location, not depended on injection location and fuel flow rate, so that having shock wave penetration to further upstream location was beneficial both for thrust production in the engine and at the external nozzle.

  6. Ignition and Performance Tests of Rocket-Based Combined Cycle Propulsion System

    NASA Technical Reports Server (NTRS)

    Anderson, William E.

    2005-01-01

    The ground testing of a Rocket Based Combined Cycle engine implementing the Simultaneous Mixing and Combustion scheme was performed at the direct-connect facility of Purdue University's High Pressure Laboratory. The fuel-rich exhaust of a JP-8/H2O2 thruster was mixed with compressed, metered air in a constant area, axisymmetric duct. The thruster was similar in design and function to that which will be used in the flight test series of Dryden's Ducted-Rocket Experiment. The determination of duct ignition limits was made based on the variation of secondary air flow rates and primary thruster equivalence ratios. Thrust augmentation and improvements in specific impulse were studied along with the pressure and temperature profiles of the duct to study mixing lengths and thermal choking. The occurrence of ignition was favored by lower rocket equivalence ratios. However, among ignition cases, better thrust and specific impulse performance were seen with higher equivalence ratios owing to the increased fuel available for combustion. Thrust and specific impulse improvements by factors of 1.2 to 1.7 were seen. The static pressure and temperature profiles allowed regions of mixing and heat addition to be identified. The mixing lengths were found to be shorter at lower rocket equivalence ratios. Total pressure measurements allowed plume-based calculation of thrust, which agreed with load-cell measured values to within 6.5-8.0%. The corresponding Mach Number profile indicated the flow was not thermally choked for the highest duct static pressure case.

  7. Performance and operational economics estimates for a coal gasification combined-cycle cogeneration powerplant

    NASA Technical Reports Server (NTRS)

    Nainiger, J. J.; Burns, R. K.; Easley, A. J.

    1982-01-01

    A performance and operational economics analysis is presented for an integrated-gasifier, combined-cycle (IGCC) system to meet the steam and baseload electrical requirements. The effect of time variations in steam and electrial requirements is included. The amount and timing of electricity purchases from sales to the electric utility are determined. The resulting expenses for purchased electricity and revenues from electricity sales are estimated by using an assumed utility rate structure model. Cogeneration results for a range of potential IGCC cogeneration system sizes are compared with the fuel consumption and costs of natural gas and electricity to meet requirements without cogeneration. The results indicate that an IGCC cogeneration system could save about 10 percent of the total fuel energy presently required to supply steam and electrical requirements without cogeneration. Also for the assumed future fuel and electricity prices, an annual operating cost savings of 21 percent to 26 percent could be achieved with such a cogeneration system. An analysis of the effects of electricity price, fuel price, and system availability indicates that the IGCC cogeneration system has a good potential for economical operation over a wide range in these assumptions.

  8. Combustion Engineering Integrated Coal Gasification Combined Cycle Repowering Project: Clean Coal Technology Program

    SciTech Connect

    Not Available

    1992-03-01

    On February 22, 1988, DOE issued Program Opportunity Notice (PON) Number-DE-PS01-88FE61530 for Round II of the CCT Program. The purpose of the PON was to solicit proposals to conduct cost-shared ICCT projects to demonstrate technologies that are capable of being commercialized in the 1990s, that are more cost-effective than current technologies, and that are capable of achieving significant reduction of SO[sub 2] and/or NO[sub x] emissions from existing coal burning facilities, particularly those that contribute to transboundary and interstate pollution. The Combustion Engineering (C-E) Integrated Coal Gasification Combined Cycle (IGCC) Repowering Project was one of 16 proposals selected by DOE for negotiation of cost-shared federal funding support from among the 55 proposals that were received in response to the PON. The ICCT Program has developed a three-level strategy for complying with the National Environmental Policy Act (NEPA) that is consistent with the President's Council on Environmental Quality regulations implementing NEPA (40 CFR 1500-1508) and the DOE guidelines for compliance with NEPA (10 CFR 1021). The strategy includes the consideration of programmatic and project-specific environmental impacts during and subsequent to the reject selection process.

  9. Rocket-Based Combined Cycle Engine Technology Development: Inlet CFD Validation and Application

    NASA Technical Reports Server (NTRS)

    DeBonis, J. R.; Yungster, S.

    1996-01-01

    A CFD methodology has been developed for inlet analyses of Rocket-Based Combined Cycle (RBCC) Engines. A full Navier-Stokes analysis code, NPARC, was used in conjunction with pre- and post-processing tools to obtain a complete description of the flow field and integrated inlet performance. This methodology was developed and validated using results from a subscale test of the inlet to a RBCC 'Strut-Jet' engine performed in the NASA Lewis 1 x 1 ft. supersonic wind tunnel. Results obtained from this study include analyses at flight Mach numbers of 5 and 6 for super-critical operating conditions. These results showed excellent agreement with experimental data. The analysis tools were also used to obtain pre-test performance and operability predictions for the RBCC demonstrator engine planned for testing in the NASA Lewis Hypersonic Test Facility. This analysis calculated the baseline fuel-off internal force of the engine which is needed to determine the net thrust with fuel on.

  10. Rocket-Based Combined Cycle Activities in the Advanced Space Transportation Program Office

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe; Turner, James

    1999-01-01

    NASA's Office of Aero-Space Technology (OAST) has established three major goals, referred to as, "The Three Pillars for Success". The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center (MSFC) in Huntsville, Ala. focuses on future space transportation technologies Under the "Access to Space" pillar. The Core Technologies Project, part of ASTP, focuses on the reusable technologies beyond those being pursued by X-33. One of the main activities over the past two and a half years has been on advancing the rocket-based combined cycle (RBCC) technologies. In June of last year, activities for reusable launch vehicle (RLV) airframe and propulsion technologies were initiated. These activities focus primarily on those technologies that support the decision to determine the path this country will take for Space Shuttle and RLV. This year, additional technology efforts in the reusable technologies will be awarded. The RBCC effort that was completed early this year was the initial step leading to flight demonstrations of the technology for space launch vehicle propulsion.

  11. Thermodynamic analysis of a new conception of supplementary firing in a combined cycle

    NASA Astrophysics Data System (ADS)

    Kotowicz, Janusz; Bartela, Łukasz; Balicki, Adrian

    2010-10-01

    The paper analyzes a new concept of integration of combined cycle with the installation of supplementary firing. The whole system was enclosed by thermodynamic analysis, which consists of a gas-steam unit with triple-pressure heat recovery steam generator. The system uses a determined model of the gas turbine and the assumptions relating to the construction features of steam-water part were made. The proposed conception involves building of supplementary firing installation only on part of the exhaust stream leaving the gas turbine. In the proposed solution superheater was divided into two sections, one of which was located on the exhaust gases leaving the installation of supplementary firing. The paper presents the results of the analyses of which the main aim was to demonstrate the superiority of the new thermodynamic concept of the supplementary firing over the classical one. For this purpose a model of a system was built, in which it was possible to carry out simulations of the gradual transition from a classically understood supplementary firing to the supplementary firing completely modified. For building of a model the GateCycle™ software was used.

  12. 77 FR 76539 - Ameren Missouri; Combined License Application For Callaway Plant, Unit 2; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-28

    ... next FSAR update. The NRC granted the exemption as described in Federal Register Notice (FRN) 76 FR... COMMISSION Ameren Missouri; Combined License Application For Callaway Plant, Unit 2; Exemption 1.0 Background... Callaway Plant (Callaway), Unit 2, and located at the current Callaway County, Missouri site of...

  13. 76 FR 3927 - Ameren Missouri; Combined License Application for Callaway Plant Unit 2; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-21

    ... exemption will not have a significant effect on the quality of the human environment (76 FR 800). This... COMMISSION Ameren Missouri; Combined License Application for Callaway Plant Unit 2; Exemption 1.0 Background... Callaway Plant (Callaway), Unit 2, and located at the current Callaway County, Missouri site of...

  14. Reducing drying/preheat cycle time to increase pellet production at the BHP Whyalla Pellet Plant

    SciTech Connect

    Teo, C.S.; Reynolds, G.; Haines, B.

    1997-12-31

    The feasibility of changing the Whyalla Pellet Plant drying/preheat pattern to reduce the cycle time without causing extra spalling of the preheated balls was investigated using both plant and laboratory produced green balls in the BHP Research pot grate facility. It was found that the results were consistent for both plant and laboratory produced balls in that for the pellet production at 5,000t/d, spalling of the preheated balls was mainly caused by the remaining bound water in the balls. Removing the bound water resulted in a dramatic reduction in spalling. At the plant, the balls were dried at less than 350 C for less than 6 min, which was insufficient heat to drive off all the bound water. The balls then entered the preheat furnace at over 1,000 C. The bound water rapidly vaporized causing the balls to spall. Introducing a dehydration step would involve recouping air from the cooler at 600 C and directing this hot air to the hotter end of the drying furnace to remove most of the bound water. For increased pellet production at 5,800t/d, it was found that an extended dehydration (1/3 drying, 2/3 dehydration) step in the shorter drying/preheat cycle under a higher suction was necessary to have minimum spalling. Implementing this finding required mass and energy balance, a task undertaken by Robert Cnare of Davy John Brown, to allow recommendations to be made for an optimum configuration for plant modifications.

  15. Life Cycle Assessment of the MBT plant in Ano Liossia, Athens, Greece.

    PubMed

    Abeliotis, Konstadinos; Kalogeropoulos, Alexandros; Lasaridi, Katia

    2012-01-01

    The aim of this paper is the application of Life Cycle Assessment to the operation of the MBT facility of Ano Liossia in the region of Attica in Greece. The region of Attica is home to almost half the population of Greece and the management of its waste is a major issue. In order to explicitly analyze the operation of the MBT plant, five scenarios were generated. Actual operation data of the MBT plant for the year 2008 were provided by the region of Attica and the LCA modeling was performed via the SimaPro 5.1 software while impact assessment was performed utilizing the Eco-indicator'99 method. The results of our analysis indicate that even the current operation of the MBT plant is preferable to landfilling. Among the scenarios of MBT operation, the one with complete utilization of the MBT outputs, i.e. compost, RDF, ferrous and non-ferrous metals, is the one that generates the most environmental gains. Our analysis indicates that the exploitation of RDF via incineration is the key factor towards improving the environmental performance of the MBT plant. Our findings provide a quantitative understanding of the MBT plant. Interpretation of results showed that proper operation of the modern waste management systems can lead to substantial reduction of environmental impacts and savings of resources. PMID:21975302

  16. The simulation of organic rankine cycle power plant with n-pentane working fluid

    NASA Astrophysics Data System (ADS)

    Nurhilal, Otong; Mulyana, Cukup; Suhendi, Nendi; Sapdiana, Didi

    2016-02-01

    In the steam power plant in Indonesia the dry steam from separator directly used to drive the turbin. Meanwhile, brine from the separator with low grade temperature reinjected to the earth. The brine with low grade temperature can be converted indirectly to electrical power by organic Rankine cycle (ORC) methods. In ORC power plant the steam are released from vaporization of organic working fluid by brine. The steam released are used to drive an turbine which in connected to generator to convert the mechanical energy into electric energy. The objective of this research is the simulation ORC power plant with n-pentane as organic working fluid. The result of the simulation for brine temperature around 165°C and the pressure 8.001 bar optained the net electric power around 1173 kW with the cycle thermal efficiency 14.61% and the flow rate of n-pentane around 15.51 kg/s. This result enable to applied in any geothermal source in Indonesia.

  17. Phenotypic selection favors missing trait combinations in coexisting annual plants.

    PubMed

    Kimball, Sarah; Gremer, Jennifer R; Huxman, Travis E; Lawrence Venable, D; Angert, Amy L

    2013-08-01

    Trade-offs among traits are important for maintaining biodiversity, but the role of natural selection in their construction is not often known. It is possible that trade-offs reflect fundamental constraints, negative correlational selection, or directional selection operating on costly, redundant traits. In a Sonoran Desert community of winter annual plants, we have identified a trade-off between relative growth rate and water-use efficiency among species, such that species with high relative growth rate have low water-use efficiency and vice versa. We measured selection on water-use efficiency, relative growth rate, and underlying traits within populations of four species at two study sites with different average climates. Phenotypic trait correlations within species did not match the among-species trade-off. In fact, for two species with high water-use efficiency, individuals with high relative growth rate also had high water-use efficiency. All populations experienced positive directional selection for water-use efficiency and relative growth rate. Selection tended to be stronger on water-use efficiency at the warmer and drier site, and selection on relative growth rate tended to be stronger at the cooler and wetter site. Our results indicate that directional natural selection favors a phenotype not observed among species in the community, suggesting that the among-species trade-off could be due to pervasive genetic constraints, perhaps acting in concert with processes of community assembly. PMID:23852354

  18. The Importance of the Microbial N Cycle in Soil for Crop Plant Nutrition.

    PubMed

    Hirsch, Penny R; Mauchline, Tim H

    2015-01-01

    Nitrogen is crucial for living cells, and prior to the introduction of mineral N fertilizer, fixation of atmospheric N2 by diverse prokaryotes was the primary source of N in all ecosystems. Microorganisms drive the N cycle starting with N2 fixation to ammonia, through nitrification in which ammonia is oxidized to nitrate and denitrification where nitrate is reduced to N2 to complete the cycle, or partially reduced to generate the greenhouse gas nitrous oxide. Traditionally, agriculture has relied on rotations that exploited N fixed by symbiotic rhizobia in leguminous plants, and recycled wastes and manures that microbial activity mineralized to release ammonia or nitrate. Mineral N fertilizer provided by the Haber-Bosch process has become essential for modern agriculture to increase crop yields and replace N removed from the system at harvest. However, with the increasing global population and problems caused by unintended N wastage and pollution, more sustainable ways of managing the N cycle in soil and utilizing biological N2 fixation have become imperative. This review describes the biological N cycle and details the steps and organisms involved. The effects of various agricultural practices that exploit fixation, retard nitrification, and reduce denitrification are presented, together with strategies that minimize inorganic fertilizer applications and curtail losses. The development and implementation of new technologies together with rediscovering traditional practices are discussed to speculate how the grand challenge of feeding the world sustainably can be met. PMID:26505688

  19. Thermodynamic and design considerations of organic Rankine cycles in combined application with a solar thermal gas turbine

    NASA Astrophysics Data System (ADS)

    Braun, R.; Kusterer, K.; Sugimoto, T.; Tanimura, K.; Bohn, D.

    2013-12-01

    Concentrated Solar Power (CSP) technologies are considered to provide a significant contribution for the electric power production in the future. Different kinds of technologies are presently in operation or under development, e.g. parabolic troughs, central receivers, solar dish systems and Fresnel reflectors. This paper takes the focus on central receiver technologies, where the solar radiation is concentrated by a field of heliostats in a receiver on the top of a tall tower. To get this CSP technology ready for the future, the system costs have to reduce significantly. The main cost driver in such kind of CSP technologies are the huge amount of heliostats. To reduce the amount of heliostats, and so the investment costs, the efficiency of the energy conversion cycle becomes an important issue. An increase in the cycle efficiency results in a decrease of the solar heliostat field and thus, in a significant cost reduction. The paper presents the results of a thermodynamic model of an Organic Rankine Cycle (ORC) for combined cycle application together with a solar thermal gas turbine. The gas turbine cycle is modeled with an additional intercooler and recuperator and is based on a typical industrial gas turbine in the 2 MW class. The gas turbine has a two stage radial compressor and a three stage axial turbine. The compressed air is preheated within a solar receiver to 950°C before entering the combustor. A hybrid operation of the gas turbine is considered. In order to achieve a further increase of the overall efficiency, the combined operation of the gas turbine and an Organic Rankine Cycle is considered. Therefore an ORC has been set up, which is thermally connected to the gas turbine cycle at two positions. The ORC can be coupled to the solar-thermal gas turbine cycle at the intercooler and after the recuperator. Thus, waste heat from different cycle positions can be transferred to the ORC for additional production of electricity. Within this investigation

  20. Consequential environmental life cycle assessment of a farm-scale biogas plant.

    PubMed

    Van Stappen, Florence; Mathot, Michaël; Decruyenaere, Virginie; Loriers, Astrid; Delcour, Alice; Planchon, Viviane; Goffart, Jean-Pierre; Stilmant, Didier

    2016-06-15

    Producing biogas via anaerobic digestion is a promising technology for meeting European and regional goals on energy production from renewable sources. It offers interesting opportunities for the agricultural sector, allowing waste and by-products to be converted into bioenergy and bio-based materials. A consequential life cycle assessment (cLCA) was conducted to examine the consequences of the installation of a farm-scale biogas plant, taking account of assumptions about processes displaced by biogas plant co-products (power, heat and digestate) and the uses of the biogas plant feedstock prior to plant installation. Inventory data were collected on an existing farm-scale biogas plant. The plant inputs are maize cultivated for energy, solid cattle manure and various by-products from surrounding agro-food industries. Based on hypotheses about displaced electricity production (oil or gas) and the initial uses of the plant feedstock (animal feed, compost or incineration), six scenarios were analyzed and compared. Digested feedstock previously used in animal feed was replaced with other feed ingredients in equivalent feed diets, designed to take account of various nutritional parameters for bovine feeding. The displaced production of mineral fertilizers and field emissions due to the use of digestate as organic fertilizer was balanced against the avoided use of manure and compost. For all of the envisaged scenarios, the installation of the biogas plant led to reduced impacts on water depletion and aquatic ecotoxicity (thanks mainly to the displaced mineral fertilizer production). However, with the additional animal feed ingredients required to replace digested feedstock in the bovine diets, extra agricultural land was needed in all scenarios. Field emissions from the digestate used as organic fertilizer also had a significant impact on acidification and eutrophication. The choice of displaced marginal technologies has a huge influence on the results, as have the

  1. Thermodynamic analysis of a combined gas turbine power plant with a solid oxide fuel cell for marine applications

    NASA Astrophysics Data System (ADS)

    Welaya, Yousri M. A.; Mosleh, M.; Ammar, Nader R.

    2013-12-01

    Strong restrictions on emissions from marine power plants (particularly SOx, NOx) will probably be adopted in the near future. In this paper, a combined solid oxide fuel cell (SOFC) and gas turbine fuelled by natural gas is proposed as an attractive option to limit the environmental impact of the marine sector. It includes a study of a heatrecovery system for 18 MW SOFC fuelled by natural gas, to provide the electric power demand onboard commercial vessels. Feasible heat-recovery systems are investigated, taking into account different operating conditions of the combined system. Two types of SOFC are considered, tubular and planar SOFCs, operated with either natural gas or hydrogen fuels. This paper includes a detailed thermodynamic analysis for the combined system. Mass and energy balances are performed, not only for the whole plant but also for each individual component, in order to evaluate the thermal efficiency of the combined cycle. In addition, the effect of using natural gas as a fuel on the fuel cell voltage and performance is investigated. It is found that a high overall efficiency approaching 70% may be achieved with an optimum configuration using SOFC system under pressure. The hybrid system would also reduce emissions, fuel consumption, and improve the total system efficiency.

  2. The thermodynamic cycle models for geothermal power plants by considering the working fluid characteristic

    NASA Astrophysics Data System (ADS)

    Mulyana, Cukup; Adiprana, Reza; Saad, Aswad H.; M. Ridwan, H.; Muhammad, Fajar

    2016-02-01

    The scarcity of fossil energy accelerates the development of geothermal power plant in Indonesia. The main issue is how to minimize the energy loss from the geothermal working fluid so that the power generated can be increased. In some of geothermal power plant, the hot water which is resulted from flashing is flown to injection well, and steam out from turbine is condensed in condenser, while the temperature and pressure of the working fluid is still high. The aim of this research is how the waste energy can be re-used as energy source to generate electric power. The step of the research is started by studying the characteristics of geothermal fluid out from the well head. The temperature of fluid varies from 140°C - 250°C, the pressure is more than 7 bar and the fluid phase are liquid, gas, or mixing phase. Dry steam power plant is selected for vapor dominated source, single or multiple flash power plant is used for dominated water with temperature > 225°C, while the binary power plant is used for low temperature of fluid < 160°C. Theoretically, the process in the power plant can be described by thermodynamic cycle. Utilizing the heat loss of the brine and by considering the broad range of working fluid temperature, the integrated geothermal power plant has been developed. Started with two ordinary single flash power plants named unit 1 and unit 2, with the temperature 250°C resulting power is W1'+W2'. The power is enhanced by utilizing the steam that is out from first stage of the turbine by inputting the steam to the third stage, the power of the plant increase with W1''+W2" or 10% from the original power. By using flasher, the water from unit 1 and 2 is re-flashed at 200°C, and the steam is used to drive the turbine in unit 3, while the water is re-flashed at the temperature170°C and the steam is flown to the same turbine (unit 3) resulting the power of W3+W4. Using the fluid enthalpy, the calculated power of these double and triple flash power plant

  3. Monitoring of Plant Light/Dark Cycles Using Air-coupled Ultrasonic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fariñas, M. D.; Sancho-Knapik, D.; Peguero-Pina, J.; Gil-Pelegrín, E.; Álvarez-Arenas, T. E. G.

    This work presents the application of a technique based on the excitation, sensing and spectral analysis of leaves thickness resonances using air-coupled and wide-band ultrasound to monitor variations in leaves properties due to the plant response along light/dark cycles. The main features of these resonances are determined by the tautness of the cells walls in such a way that small modifications produced by variations in the transpiration rate, stomata aperture or water potential have a direct effect on the thickness resonances that can be measured in a completely non-invasive and contactless way. Results show that it is possible to monitor leaves changes due to variations in light intensity along the diurnal cycle, moreover, the technique reveals differences in the leaf response for different species and also within the same species but for specimens grown under different conditions that present different cell structures at the tissue level.

  4. Effects of dietary nitrate, caffeine, and their combination on 20-km cycling time trial performance.

    PubMed

    Glaister, Mark; Pattison, John R; Muniz-Pumares, Daniel; Patterson, Stephen D; Foley, Paul

    2015-01-01

    The aim of this study was to examine the acute supplementation effects of dietary nitrate, caffeine, and their combination on 20-km cycling time trial performance. Using a randomized, counterbalanced, double-blind Latin-square design, 14 competitive female cyclists (age: 31 ± 7 years; height: 1.69 ± 0.07 m; body mass: 61.6 ± 6.0 kg) completed four 20-km time trials on a racing bicycle fitted to a turbo trainer. Approximately 2.5 hours before each trial, subjects consumed a 70-ml dose of concentrated beetroot juice containing either 0.45 g of dietary nitrate or with the nitrate content removed (placebo). One hour before each trial, subjects consumed a capsule containing either 5 mg·kg of caffeine or maltodextrin (placebo). There was a significant effect of supplementation on power output (p = 0.001), with post hoc tests revealing higher power outputs in caffeine (205 ± 21 W) vs. nitrate (194 ± 22 W) and placebo (194 ± 25 W) trials only. Caffeine-induced improvements in power output corresponded with significantly higher measures of heart rate (caffeine: 166 ± 12 b·min vs. placebo: 159 ± 15 b·min; p = 0.02), blood lactate (caffeine: 6.54 ± 2.40 mmol·L vs. placebo: 4.50 ± 2.11 mmol·L; p < 0.001), and respiratory exchange ratio (caffeine: 0.95 ± 0.04 vs. placebo: 0.91 ± 0.05; p = 0.03). There were no effects (p ≥ 0.05) of supplementation on cycling cadence, rating of perceived exertion, (Equation is included in full-text article.), or integrated electromyographic activity. The results of this study support the well-established beneficial effects of caffeine supplementation on endurance performance. In contrast, acute supplementation with dietary nitrate seems to have no effect on endurance performance and adds nothing to the benefits afforded by caffeine supplementation. PMID:24978834

  5. Combining partially ranked data in plant breeding and biology: I. Rank aggregating methods.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Combining heterogeneous data from plant breeding trials into a single dataset can be challenging, especially if observations have been performed only on partially overlapping sets of accessions, or if evaluations were done with different rating scales. In the present work we propose combining such d...

  6. Changes in vascular plant functional types drive carbon cycling in peatlands

    NASA Astrophysics Data System (ADS)

    Zeh, Lilli; Bragazza, Luca; Erhagen, Björn; Limpens, Juul; Kalbitz, Karsten

    2016-04-01

    Northern peatlands store a large organic carbon (C) pool that is highly exposed to future environmental changes with consequent risk of releasing enormous amounts of C. Biotic changes in plant community structure and species abundance might have an even stronger impact on soil organic C dynamics in peatlands than the direct effects of abiotic changes. Therefore, a sound understanding of the impact of vegetation dynamics on C cycling will help to better predict the response of peatlands to environmental changes. Here, we aimed to assess the role of plant functional types (PFTs) in affecting peat decomposition in relation to climate warming. To this aim, we selected two peatlands at different altitude (i.e. 1300 and 1700 m asl) on the south-eastern Alps of Italy. The two sites represent a contrast in temperature, overall vascular plant biomass and relative ericoids abundance, with the highest biomass and ericoids occurrence at the low latitude. Within the sites we selected 20 plots of similar microtopographical position and general vegetation type (hummocks). All plots contained both graminoids and ericoids and had a 100% cover of Sphagnum mosses. The plots were subjected to four treatments (control, and three clipping treatments) in which we selectively removed aboveground biomass of ericoids, graminoids or both to explore the contribution of the different PFTs for soil respiration (n=5) and peat chemistry. Peat chemical composition was determined by the analysis of C and N and their stable isotopes in association with pyrolysis GC/MS. Soil respiration was measured after clipping with a Licor system. Preliminary findings suggest that peat decomposition pathway and rate depend on plant species composition and particularly on differences in root activity between PFTs. Finally, this study underlines the importance of biotic drivers to predict the effects of future environmental changes on peatland C cycling.

  7. A Turbine Based Combined Cycle Engine Inlet Model and Mode Transition Simulation Based on HiTECC Tool

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Stueber, Thomas J.

    2012-01-01

    An inlet system is being tested to evaluate methodologies for a turbine based combined cycle propulsion system to perform a controlled inlet mode transition. Prior to wind tunnel based hardware testing of controlled mode transitions, simulation models are used to test, debug, and validate potential control algorithms. One candidate simulation package for this purpose is the High Mach Transient Engine Cycle Code (HiTECC). The HiTECC simulation package models the inlet system, propulsion systems, thermal energy, geometry, nozzle, and fuel systems. This paper discusses the modification and redesign of the simulation package and control system to represent the NASA large-scale inlet model for Combined Cycle Engine mode transition studies, mounted in NASA Glenn s 10- by 10-Foot Supersonic Wind Tunnel. This model will be used for designing and testing candidate control algorithms before implementation.

  8. A Turbine Based Combined Cycle Engine Inlet Model and Mode Transition Simulation Based on HiTECC Tool

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey; Stueber, Thomas

    2012-01-01

    An inlet system is being tested to evaluate methodologies for a turbine based combined cycle propulsion system to perform a controlled inlet mode transition. Prior to wind tunnel based hardware testing of controlled mode transitions, simulation models are used to test, debug, and validate potential control algorithms. One candidate simulation package for this purpose is the High Mach Transient Engine Cycle Code (HiTECC). The HiTECC simulation package models the inlet system, propulsion systems, thermal energy, geometry, nozzle, and fuel systems. This paper discusses the modification and redesign of the simulation package and control system to represent the NASA large-scale inlet model for Combined Cycle Engine mode transition studies, mounted in NASA Glenn s 10-foot by 10-foot Supersonic Wind Tunnel. This model will be used for designing and testing candidate control algorithms before implementation.

  9. Combined Cycle Engine Large-Scale Inlet for Mode Transition Experiments: System Identification Rack Hardware Design

    NASA Technical Reports Server (NTRS)

    Thomas, Randy; Stueber, Thomas J.

    2013-01-01

    The System Identification (SysID) Rack is a real-time hardware-in-the-loop data acquisition (DAQ) and control instrument rack that was designed and built to support inlet testing in the NASA Glenn Research Center 10- by 10-Foot Supersonic Wind Tunnel. This instrument rack is used to support experiments on the Combined-Cycle Engine Large-Scale Inlet for Mode Transition Experiment (CCE? LIMX). The CCE?LIMX is a testbed for an integrated dual flow-path inlet configuration with the two flow paths in an over-and-under arrangement such that the high-speed flow path is located below the lowspeed flow path. The CCE?LIMX includes multiple actuators that are designed to redirect airflow from one flow path to the other; this action is referred to as "inlet mode transition." Multiple phases of experiments have been planned to support research that investigates inlet mode transition: inlet characterization (Phase-1) and system identification (Phase-2). The SysID Rack hardware design met the following requirements to support Phase-1 and Phase-2 experiments: safely and effectively move multiple actuators individually or synchronously; sample and save effector control and position sensor feedback signals; automate control of actuator positioning based on a mode transition schedule; sample and save pressure sensor signals; and perform DAQ and control processes operating at 2.5 KHz. This document describes the hardware components used to build the SysID Rack including their function, specifications, and system interface. Furthermore, provided in this document are a SysID Rack effectors signal list (signal flow); system identification experiment setup; illustrations indicating a typical SysID Rack experiment; and a SysID Rack performance overview for Phase-1 and Phase-2 experiments. The SysID Rack described in this document was a useful tool to meet the project objectives.

  10. Rocket Based Combined Cycle Exchange Inlet Performance Estimation at Supersonic Speeds

    NASA Astrophysics Data System (ADS)

    Murzionak, Aliaksandr

    A method to estimate the performance of an exchange inlet for a Rocket Based Combined Cycle engine is developed. This method is to be used for exchange inlet geometry optimization and as such should be able to predict properties that can be used in the design process within a reasonable amount of time to allow multiple configurations to be evaluated. The method is based on a curve fit of the shocks developed around the major components of the inlet using solutions for shocks around sharp cones and 2D estimations of the shocks around wedges with blunt leading edges. The total pressure drop across the estimated shocks as well as the mass flow rate through the exchange inlet are calculated. The estimations for a selected range of free-stream Mach numbers between 1.1 and 7 are compared against numerical finite volume method simulations which were performed using available commercial software (Ansys-CFX). The total pressure difference between the two methods is within 10% for the tested Mach numbers of 5 and below, while for the Mach 7 test case the difference is 30%. The mass flow rate on average differs by less than 5% for all tested cases with the maximum difference not exceeding 10%. The estimation method takes less than 3 seconds on 3.0 GHz single core processor to complete the calculations for a single flight condition as oppose to over 5 days on 8 cores at 2.4 GHz system while using 3D finite volume method simulation with 1.5 million elements mesh. This makes the estimation method suitable for the use with exchange inlet geometry optimization algorithm.

  11. Rocket-Based Combined Cycle Flowpath Testing for Modes 1 and 4

    NASA Technical Reports Server (NTRS)

    Rice, Tharen

    2002-01-01

    Under sponsorship of the NASA Glenn Research Center (NASA GRC), the Johns Hopkins University Applied Physics Laboratory (JHU/APL) designed and built a five-inch diameter, Rocket-Based Combined Cycle (RBCC) engine to investigate mode 1 and mode 4 engine performance as well as Mach 4 inlet performance. This engine was designed so that engine area and length ratios were similar to the NASA GRC GTX engine is shown. Unlike the GTX semi-circular engine design, the APL engine is completely axisymmetric. For this design, a traditional rocket thruster was installed inside of the scramjet flowpath, along the engine centerline. A three part test series was conducted to determine Mode I and Mode 4 engine performance. In part one, testing of the rocket thruster alone was accomplished and its performance determined (average Isp efficiency = 90%). In part two, Mode 1 (air-augmented rocket) testing was conducted at a nominal chamber pressure-to-ambient pressure ratio of 100 with the engine inlet fully open. Results showed that there was neither a thrust increment nor decrement over rocket-only thrust during Mode 1 operation. In part three, Mode 4 testing was conducted with chamber pressure-to-ambient pressure ratios lower than desired (80 instead of 600) with the inlet fully closed. Results for this testing showed a performance decrease of 20% as compared to the rocket-only testing. It is felt that these results are directly related to the low pressure ratio tested and not the engine design. During this program, Mach 4 inlet testing was also conducted. For these tests, a moveable centerbody was tested to determine the maximum contraction ratio for the engine design. The experimental results agreed with CFD results conducted by NASA GRC, showing a maximum geometric contraction ratio of approximately 10.5. This report details the hardware design, test setup, experimental results and data analysis associated with the aforementioned tests.

  12. Propulsion/ASME Rocket-Based Combined Cycle Activities in the Advanced Space Transportation Program Office

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe; Turner, James

    1998-01-01

    NASA's Office Of Aeronautics and Space Transportation Technology (OASTT) has establish three major coals. "The Three Pillars for Success". The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center in Huntsville,Ala. focuses on future space transportation technologies under the "Access to Space" pillar. The Advanced Reusable Technologies (ART) Project, part of ASTP, focuses on the reusable technologies beyond those being pursued by X-33. The main activity over the past two and a half years has been on advancing the rocket-based combined cycle (RBCC) technologies. In June of last year, activities for reusable launch vehicle (RLV) airframe and propulsion technologies were initiated. These activities focus primarily on those technologies that support the year 2000 decision to determine the path this country will take for Space Shuttle and RLV. In February of this year, additional technology efforts in the reusable technologies were awarded. The RBCC effort that was completed early this year was the initial step leading to flight demonstrations of the technology for space launch vehicle propulsion. Aerojet, Boeing-Rocketdyne and Pratt & Whitney were selected for a two-year period to design, build and ground test their RBCC engine concepts. In addition, ASTROX, Pennsylvania State University (PSU) and University of Alabama in Huntsville also conducted supporting activities. The activity included ground testing of components (e.g., injectors, thrusters, ejectors and inlets) and integrated flowpaths. An area that has caused a large amount of difficulty in the testing efforts is the means of initiating the rocket combustion process. All three of the prime contractors above were using silane (SiH4) for ignition of the thrusters. This follows from the successful use of silane in the NASP program for scramjet ignition. However, difficulties were immediately encountered when silane (an 80/20 mixture of hydrogen/silane) was used for rocket

  13. Technical and economic comparison of steam-injected versus combined- cycle retrofits on FT-4 engines. Final report

    SciTech Connect

    Silaghy, F.J.

    1992-01-01

    The study discusses the findings of a conceptual site-specific investigation of the technical and economic aspects of converting the TPM FT4 simple cycle combustion turbines into either the steam injected gas turbine (SIGT) cycle or the combined cycle (CC). It describes the selection of the best retrofit alternatives through the evaluation and data analysis of a large number of sites and units at two utilities. Conceptual designs are performed on the best retrofit alternatives. Flow diagrams and general arrangement drawings are developed for various configurations utilizing drum type and once-through type multipressure heat recovery steam generators. Auxiliary power consumption and capital cost estimates are presented together with an economic evaluation and comparison of the retrofit alternatives. While the investigation is performed utilizing the FT4 combustion turbines, the steps presented in the report may be used as a guide for investigating the conversion of other gas turbines to either cycle at any utility site.

  14. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 9: Closed-cycle MHD. [energy conversion efficiency of electric power plants using magnetohydrodynamics

    NASA Technical Reports Server (NTRS)

    Tsu, T. C.

    1976-01-01

    A closed-cycle MHD system for an electric power plant was studied. It consists of 3 interlocking loops, an external heating loop, a closed-cycle cesium seeded argon nonequilibrium ionization MHD loop, and a steam bottomer. A MHD duct maximum temperature of 2366 K (3800 F), a pressure of 0.939 MPa (9.27 atm) and a Mach number of 0.9 are found to give a topping cycle efficiency of 59.3%; however when combined with an integrated gasifier and optimistic steam bottomer the coal to bus bar efficiency drops to 45.5%. A 1978 K (3100 F) cycle has an efficiency of 55.1% and a power plant efficiency of 42.2%. The high cost of the external heating loop components results in a cost of electricity of 21.41 mills/MJ (77.07 mills/kWh) for the high temperature system and 19.0 mills/MJ (68.5 mills/kWh) for the lower temperature system. It is, therefore, thought that this cycle may be more applicable to internally heated systems such as some futuristic high temperature gas cooled reactor.

  15. Plant System Design of Supercritical CO{sub 2} Direct Cycle Gas Turbine Fast Reactor

    SciTech Connect

    Katsuhiro, Tozawa; Nobumasa, Tsuji; Yasushi, Muto; Yasuyoshi, Kato

    2006-07-01

    The conceptual plant design and preliminary safety analysis of SCDFR, Supercritical CO{sub 2} Direct Cycle Gas Turbine Fast Reactor, were performed. Plant thermal power is 600 MW. Core outlet/inlet pressure and temperature are 12.5/12.8 MPa and 527/388 deg C respectively. The core height and equivalent diameter are about 1.2 m and about 3.146 m respectively. The core can be burning for 10 years without refueling by adding 6.5% content of {sup 237}Np into the fuel as a burnable poison. Reactor pressure vessel height and inner diameter are about 19.3 m and about 6.55 m respectively. Steel containment vessel contains the reactor system and the gas turbine system. Preliminary analysis of core temperature behavior during the depressurization accident in SCDFR was performed. In the result of the analysis, core temperature is limited under 900 deg C, assumed limit temperature of the fuel clad, at the condition of minimum gas circulation flow rate of 2.0 m{sup 3}/s. On the other hand, gas circulator designed flow rate of the auxiliary core cooling system is over 11.6 m{sup 3}/s. These show that the integrity of the fuel clad during depressurization accident is maintained. We conclude that the plant concept of SCDFR is developed and the plant safety under depressurization accident conditions is confirmed by preliminary analysis. (authors)

  16. Uncovering the abilities of Agaricus bisporus to degrade plant biomass throughout its life cycle.

    PubMed

    Patyshakuliyeva, Aleksandrina; Post, Harm; Zhou, Miaomiao; Jurak, Edita; Heck, Albert J R; Hildén, Kristiina S; Kabel, Mirjam A; Mäkelä, Miia R; Altelaar, Maarten A F; de Vries, Ronald P

    2015-08-01

    The economically important edible basidiomycete mushroom Agaricus bisporus thrives on decaying plant material in forests and grasslands of North America and Europe. It degrades forest litter and contributes to global carbon recycling, depolymerizing (hemi-)cellulose and lignin in plant biomass. Relatively little is known about how A. bisporus grows in the controlled environment in commercial production facilities and utilizes its substrate. Using transcriptomics and proteomics, we showed that changes in plant biomass degradation by A. bisporus occur throughout its life cycle. Ligninolytic genes were only highly expressed during the spawning stage day 16. In contrast, (hemi-)cellulolytic genes were highly expressed at the first flush, whereas low expression was observed at the second flush. The essential role for many highly expressed plant biomass degrading genes was supported by exo-proteome analysis. Our data also support a model of sequential lignocellulose degradation by wood-decaying fungi proposed in previous studies, concluding that lignin is degraded at the initial stage of growth in compost and is not modified after the spawning stage. The observed differences in gene expression involved in (hemi-)cellulose degradation between the first and second flushes could partially explain the reduction in the number of mushrooms during the second flush. PMID:26118398

  17. Peatland carbon cycling at a Scottish wind farm: the role of plant-soil interactions

    NASA Astrophysics Data System (ADS)

    Richardson, Harriett; Whitaker, Jeanette; Waldron, Susan; Ostle, Nick

    2013-04-01

    Peatlands play a fundamental role in the terrestrial carbon cycle by storing 1/3 of the world's soil carbon (Limpens et al. 2008). In the UK, peatlands are often located in areas with potential for electricity generation by harvesting wind energy. Concerns have been raised, however, over the stability of these carbon stocks when large scale wind developments are sited upon them. This project aims to improve understanding of the impact of wind farms on carbon sequestration in peatlands. Wind turbine 'wake-effects' can alter microclimatic conditions, as a result of significant differences in air temperature, humidity, wind speed and turbulence (Baidya Roy and Traiteur 2010). These changes are likely to have a significant impact on above and below ground abiotic conditions and biotic properties, together with the processes they regulate that govern peatland carbon cycling. Specifically, the effects of interactions between typical peatland plant functional types (graminoids, bryophytes and shrubs) (Ward et al. 2009) and peat microbial community composition and function are poorly resolved. We examined a spatial gradient across an area of blanket bog at Black Law wind farm (Lanarkshire, Scotland) and executed a series of controlled mesocosm experiments to examine the impacts of potential microclimatic changes on plant-soil interactions and carbon sequestration processes. In particular we focused on the form and function of plant and microbial communities as determinants of decomposition (Ward et al. 2010) and greenhouse gas (GHG) emissions (Artz 2009). Measurements of plant-litter-soil carbon, nitrogen, microbial community composition (i.e. phospholipid fatty acid biomarkers) and litter mass loss have been made across the wind farm peatland to attribute spatial variance in biotic and biogeochemical properties. In addition, multi-factorial mesocosm experiments have been made to determine how abiotic and biotic changes caused by wind farm effects could influence peat GHG

  18. A Method to Teach Age-Specific Demography with Field Grown Rapid Cycling "Brassica rapa" (Wisconsin Fast Plants)

    ERIC Educational Resources Information Center

    Kelly, Martin G.; Terrana, Sebastian

    2004-01-01

    In this paper, we demonstrate that rapid cycling "Brassica rapa" (Wisconsin Fast Plants) can be used in inquiry-based, student ecological fieldwork. We are the first to describe age-specific survival for field-grown Fast Plants and identify life history traits associated with individual survival. This experiment can be adapted by educators as a…

  19. Fast Plants for Finer Science--An Introduction to the Biology of Rapid-Cycling Brassica Campestris (rapa) L.

    ERIC Educational Resources Information Center

    Tomkins, Stephen P.; Williams, Paul H.

    1990-01-01

    Rapid-cycling brassicas can be used in the classroom to teach concepts such as plant growth, tropisms, floral reproduction, pollination, embryonic development, and plant genetics. Directions on how to obtain them for classroom use and how they may be grown are included. Practical physiology and genetics exercises are listed. (KR)

  20. Insights into deep-time terrestrial carbon cycle processes from modern plant isotope ecology

    NASA Astrophysics Data System (ADS)

    Sheldon, N. D.; Smith, S. Y.

    2012-12-01

    While the terrestrial biosphere and soils contain much of the readily exchangeable carbon on Earth, how those reservoirs function on long time scales and at times of higher atmospheric CO2 and higher temperatures is poorly understood, which limits our ability to make accurate future predictions of their response to anthropogenic change. Recent data compilation efforts have outlined the response of plant carbon isotope compositions to a variety of environmental factors including precipitation amount and timing, elevation, and latitude. The compilations involve numerous types of plants, typically only found at a limited number of climatic conditions. Here, we expand on those efforts by examining the isotopic response of specific plant groups found both globally and across environmental gradients including: 1) ginkgo, 2) conifers, and 3) C4 grasses. Ginkgo is presently widely distributed as a cultivated plant and the ginkgoalean fossil record spans from the Permian to the present, making it an ideal model organism to understand climatic influence on carbon cycling both in modern and ancient settings. Ginkgo leaves have been obtained from a range of precipitation conditions (400-2200 mm yr-1), including dense sampling from individuals and populations in both Mediterranean and temperate climate areas and samples of different organs and developmental stages. Ginkgo carbon isotope results plot on the global C3 plant array, are consistent among trees at single sites, among plant organs, and among development stages, making ginkgo a robust recorder of both climatic conditions and atmospheric δ13C. In contrast, a climate-carbon isotope transect in Arizona highlights that conifers (specifically, pine and juniper) record large variability between organs and have a very different δ13C slope as a function of climate than the global C3 plant array, while C4 plants have a slope with the opposite sign as a function of climate. This has a number of implications for paleo

  1. Highlights from a Mach 4 Experimental Demonstration of Inlet Mode Transition for Turbine-Based Combined Cycle Hypersonic Propulsion

    NASA Technical Reports Server (NTRS)

    Foster, Lancert E.; Saunders, John D., Jr.; Sanders, Bobby W.; Weir, Lois J.

    2012-01-01

    NASA is focused on technologies for combined cycle, air-breathing propulsion systems to enable reusable launch systems for access to space. Turbine Based Combined Cycle (TBCC) propulsion systems offer specific impulse (Isp) improvements over rocket-based propulsion systems in the subsonic takeoff and return mission segments along with improved safety. Among the most critical TBCC enabling technologies are: 1) mode transition from the low speed propulsion system to the high speed propulsion system, 2) high Mach turbine engine development and 3) innovative turbine based combined cycle integration. To address these challenges, NASA initiated an experimental mode transition task including analytical methods to assess the state-of-the-art of propulsion system performance and design codes. One effort has been the Combined-Cycle Engine Large Scale Inlet Mode Transition Experiment (CCE-LIMX) which is a fully integrated TBCC propulsion system with flowpath sizing consistent with previous NASA and DoD proposed Hypersonic experimental flight test plans. This experiment was tested in the NASA GRC 10 by 10-Foot Supersonic Wind Tunnel (SWT) Facility. The goal of this activity is to address key hypersonic combined-cycle engine issues including: (1) dual integrated inlet operability and performance issues-unstart constraints, distortion constraints, bleed requirements, and controls, (2) mode-transition sequence elements caused by switching between the turbine and the ramjet/scramjet flowpaths (imposed variable geometry requirements), and (3) turbine engine transients (and associated time scales) during transition. Testing of the initial inlet and dynamic characterization phases were completed and smooth mode transition was demonstrated. A database focused on a Mach 4 transition speed with limited off-design elements was developed and will serve to guide future TBCC system studies and to validate higher level analyses.

  2. [Application of stable carbon isotope technique in the research of carbon cycling in soil-plant system].

    PubMed

    Liu, Wei; Lü, Hao-Hao; Chen, Ying-Xu; Wu, Wei-Xiang

    2008-03-01

    As a main life element, carbon plays important role in the matter cycling in soil-plant system. Stable carbon isotope 13C has been widely used in the study of carbon cycling in soil-plant system, due to its safe, no pollution, and easy to be handled. Through the analysis of both natural and labeled 13C organic matter in soil-plant system, a better understanding of the mechanisms of photosynthesis, the distribution of photosynthates in plant-soil system, the fate of plant litter, and the source of new carbon in soil could be achieved. In this paper, the applications of stable carbon isotope technique in the researches of photosynthesis, reconstruction of paleoclimate, turnover of soil organic matter, and interactions between plants and rhizosphere microorganisms were briefly summarized, and the perspectives of the application of stable carbon isotope technique were also discussed, based on the issues existed in current researches. PMID:18533543

  3. Phosphorus cycling in natural and low input soil/plant systems: the role of soil microorganisms

    NASA Astrophysics Data System (ADS)

    Tamburini, F.; Bünemann, E. K.; Oberson, A.; Bernasconi, S. M.; Frossard, E.

    2011-12-01

    Availability of phosphorus (as orthophosphate, Pi) limits biological production in many terrestrial ecosystems. During the first phase of soil development, weathering of minerals and leaching of Pi are the processes controlling Pi concentrations in the soil solution, while in mature soils, Pi is made available by desorption of mineral Pi and mineralization of organic compounds. In agricultural soils additional Pi is supplied by fertilization, either with mineral P and/or organic inputs (animal manure or plant residues). Soil microorganisms (bacteria and fungi) mediate several processes, which are central to the availability of Pi to plants. They play a role in the initial release of Pi from the mineral phase, and through extracellular phosphatase enzymes, they decompose and mineralize organic compounds, releasing Pi. On the other hand, microbial immobilization and internal turnover of Pi can decrease the soil available Pi pool, competing in this way with plants. Using radio- and stable isotopic approaches, we show evidence from different soil/plant systems which points to the central role of the microbial activity. In the presented case studies, P contained in the soil microbial biomass is a larger pool than available Pi. In a soil chronosequence after deglaciation, stable isotopes of oxygen associated to phosphate showed that even in the youngest soils microbial activity highly impacted the isotopic signature of available Pi. These results suggested that microorganisms were rapidly taking up and cycling Pi, using it to sustain their community. Microbial P turnover time was faster in the young (about 20 days) than in older soils (about 120 days), reflecting a different functioning of the microbial community. Microbial community crashes, caused by drying/rewetting and freezing/thawing cycles, were most likely responsible for microbial P release to the available P pool. In grassland fertilization experiments with mineral NK and NPK amendments, microbial P turnover

  4. Integrated Gasification Combined Cycle (IGCC) demonstration project, Polk Power Station -- Unit No. 1. Annual report, October 1993--September 1994

    SciTech Connect

    1995-05-01

    This describes the Tampa Electric Company`s Polk Power Station Unit 1 (PPS-1) Integrated Gasification Combined Cycle (IGCC) demonstration project which will use a Texaco pressurized, oxygen-blown, entrained-flow coal gasifier to convert approximately 2,300 tons per day of coal (dry basis) coupled with a combined cycle power block to produce a net 250 MW electrical power output. Coal is slurried in water, combined with 95% pure oxygen from an air separation unit, and sent to the gasifier to produce a high temperature, high pressure, medium-Btu syngas with a heat content of about 250 Btu/scf (LHV). The syngas then flows through a high temperature heat recovery unit which cools the syngas prior to its entering the cleanup systems. Molten coal ash flows from the bottom of the high temperature heat recovery unit into a water-filled quench chamber where it solidifies into a marketable slag by-product.

  5. Highlights of NASA's Special ETO Program Planning Workshop on rocket-based combined-cycle propulsion system technologies

    NASA Technical Reports Server (NTRS)

    Escher, W. J. D.

    1992-01-01

    A NASA workshop on rocket-based combined-cycle propulsion technologies is described emphasizing the development of a starting point for earth-to-orbit (ETO) rocket technologies. The tutorial is designed with attention given to the combined development of aeronautical airbreathing propulsion and space rocket propulsion. The format, agenda, and group deliberations for the tutorial are described, and group deliberations include: (1) mission and space transportation infrastructure; (2) vehicle-integrated propulsion systems; (3) development operations, facilities, and human resource needs; and (4) spaceflight fleet applications and operations. Although incomplete the workshop elevates the subject of combined-cycle hypersonic propulsion and develops a common set of priniciples regarding the development of these technologies.

  6. Leak detectors for organic Rankine cycle power plants: on-line and manual methods

    SciTech Connect

    Robertus, R.J.; Pool, K.H.; Kindle, C.H.; Sullivan, R.G.; Shannon, D.W.; Pierce, D.D.

    1984-10-01

    Two leak detector systems have been designed, built, and tested at a binary-cycle (organic Rankine cycle) geothermal plant. One system is capable of detecting water in hydrocarbon streams down to 100 ppM liquid water in liquid isobutane. The unit first cools and/or condenses the hydrocarbon sample stream in a small heat exchanger. The cooled liquid stream flows to a large settling chamber where the water and isobutane separate because of density differences. Any water present is collected in a pipe and automatically dumped using a solenoid operated valve when the level reaches a certain point. The magnitude of the leak is estimated from the frequency at which the solenoid operated valve opens and closes, i.e. the amount of water collected in a known period of time is directly related to the number of dump cycles. The second system can detect the presence of isobutane in water or brine streams down to 2 ppM liquid isobutane in liquid water or brine. The unit first cools the liquid stream if necessary then reduces the pressure in an expansion chamber so the hydrocarbon will vaporize. In brine streams flashed CO/sub 2/ carries the hydrocarbon to a non-dispersive infrared analyzer (NDIR). (In cooling water streams a nitrogen carrier gas is used to transport the hydrocarbon to the analyzer). The NDIR has been modified to be highly selective for isobutane. One can estimate the size of a leak knowing the total gas-to-liquid ratio entering the leak detection system and the concentration of hydrocarbon in the gas phase. Four of the leak detector systems will be installed in the Heber Geothermal Demonstration Plant at Heber, California. Two will be on the hydrocarbon system, one on the brine system, and one on the cooling water system.

  7. The carbon cycle and carbon dioxide over Phanerozoic time: the role of land plants

    PubMed Central

    Berner, R. A.

    1998-01-01

    A model (GEOCARB) of the long-term, or multimillion year, carbon cycle has been constructed which includes quantitative treatment of (1) uptake of atmospheric CO2 by the weathering of silicate and carbonate rocks on the continents, and the deposition of carbonate minerals and organic matter in oceanic sediments; and (2) the release of CO2 to the atmosphere via the weathering of kerogen in sedimentary rocks and degassing resulting from the volcanic-metamorphic-diagenetic breakdown of carbonates and organic matter at depth. Sensitivity analysis indicates that an important factor affecting CO2 was the rise of vascular plants in the Palaeozoic. A large Devonian drop in CO2 was brought about primarily by the acceleration of weathering of silicate rock by the development of deeply rooted plants in well-drained upland soils. The quantitative effect of this accelerated weathering has been crudely estimated by present-day field studies where all factors affecting weathering, other than the presence or absence of vascular plants, have been held relatively constant. An important additional factor, bringing about a further CO2 drop into the Carboniferous and Permian, was enhanced burial of organic matter in sediments, due probably to the production of microbially resistant plant remains (e.g. lignin). Phanerozoic palaeolevels of atmospheric CO2 calculated from the GEOCARB model generally agree with independent estimates based on measurements of the carbon isotopic composition of palaeosols and the stomatal index for fossil plants. Correlation of CO2 levels with estimates of palaeoclimate suggests that the atmospheric greenhouse effect has been a major factor in controlling global climate over the past 600 million years.

  8. Effects of inadequate pipe insulation on a power plant's heat cycle

    NASA Astrophysics Data System (ADS)

    Lanius, Mark A.; Choromanski, R. W.

    2001-03-01

    In the power generation industry, the efficiency of the plant's heat cycle is crucial in the age of de-regulation. As competition increases, the cost of generating electricity must decrease. To lower costs, nuclear power plants are always looking at ways of recovering lost megawatts. Additionally, plants are striving to maintain high availability, especially during the peak load demands. At the Limerick Generating Station (LGS), the System Manager was tackling both challenges. He determined that Unit #1 Drywell temperatures had been historically higher than Unit #2 Drywell temperatures. The Drywell is a concrete primary containment that houses both the nuclear reactor and recirculation pumps in a Boiling Water Reactor (BWR) plant. A driving force to resolve the higher temperatures was the plant's Technical Specifications which dictate a maximum allowable temperature of 135 degree(s)F in the Drywell. During the summer of 1999 (one of the hottest on record for the East Coast), the temperatures in the Unit #1 Drywell approached the maximum allowed by the Technical Specifications. Exceeding this temperature would require Unit #1 to reduce power during a critical demand period or even shut down. During a peak load condition, the loss of generating capabilities could be extremely costly for the utility. In extreme circumstances, as recent as the winter of 2001 in California, customers could be faced with the potential of roaming brown outs due to the reduced capacity on the electrical grid. Based on the System Manager's experience, the heat source was suspected to be from less than adequate insulated pipes in the Drywell. To determine the condition and status of the insulation, infrared was used to inspect the pipes. The ideal condition is to observe the maximum temperatures when the reactor is at 100% power, but due to the radiological and atmospheric conditions in the Drywell, the inspection would have to be performed immediately after the reactor was shut down for an

  9. Thermal-economic analysis of organic Rankine combined cycle cogeneration. ITT Energy management report TR-82-3

    SciTech Connect

    Porter, R.W.

    1982-12-01

    This study presents an evaluation of Organic Rankine Cycles (ORC) as combined with topping cycles incorporating gas turbines or diesel engines, and with subsequent waste heat utilization. The potential benefit of the proposed organic-Rankine-combined-cycle cogeneration of useful heat and electricity is more flexibility in meeting demands for the two products, by varying the mode of operation of the system. A thermal-economic analysis is developed and illustrated with cost and performance data for commercially available equipment, and with general economic parameters reflecting current regulations and market conditions. The performance of the ORC and of the entire combined cycle is described. Equations are presented for evaluating the various thermodynamic and economic parameters, and the resultant cash flows. Criteria are developed in order to assess whether or not the addition of an ORC to a cogeneration system without ORC is viable based on rate of return on incremental investment. Examples are given to illustrate how the method may be applied, namely to serve proposed commercial energy facilities for the North Loop Project and for Illinois Center, in Chicago. While results indicate that the proposed system is potentially viable, it is not viable under conditions prevailing in Chicago for the selected case studies.

  10. Mixing and reaction processes in rocket based combined cycle and conventional rocket engines

    NASA Astrophysics Data System (ADS)

    Lehman, Matthew Kurt

    Raman spectroscopy was used to make species measurements in two rocket engines. An airbreathing rocket, the rocket based combined cycle (RBCC) engine, and a conventional rocket were investigated. A supersonic rocket plume mixing with subsonic coflowing air characterizes the ejector mode of the RBCC engine. The mixing length required for the air and plume to become homogenous is a critical dimension. For the conventional rocket experiments, a gaseous oxygen/gaseous hydrogen single-element shear coaxial injector was used. Three chamber Mach number conditions, 0.1, 0.2 and 0.3, were chosen to assess the effect of Mach number on mixing. The flow within the chamber was entirely subsonic. For the RBCC experiments, vertical Raman line measurements were made at multiple axial locations downstream from the rocket nozzle plane. Species profiles assessed the mixing progress between the supersonic plume and subsonic air. For the conventional rocket, Raman line measurements were made downstream from the injector face. The goal was to evaluate the effect of increased chamber Mach number on injector mixing/reaction. For both engines, quantitative and qualitative information was collected for computational fluid dynamics (CFD development. The RBCC experiments were conducted for three distinct geometries. The primary flow path was a diffuse and afterburner design with a direct-connect air supply. A sea-level static (SLS) version and a thermally choked variant were also tested. The experimental results show that mixing length increases with additional coflow air in the DAB geometry. Operation of variable rocket mixture ratios at identical air flow rates did not significantly affect the mixing length. The thermally choked variant had a longer mixing length compared to the DAB geometry, and the SLS modification had a shorter mixing length due to a reduced air flow. The conventional rocket studies focused on the effect of chamber Mach number on primary injector mixing. Chamber Mach

  11. Combination of ascorbate/epigallocatechin-3-gallate/gemcitabine synergistically induces cell cycle deregulation and apoptosis in mesothelioma cells

    SciTech Connect

    Martinotti, Simona; Ranzato, Elia; Parodi, Monica; Vitale, Massimo; Burlando, Bruno

    2014-01-01

    Malignant mesothelioma (MMe) is a poor-prognosis tumor in need of innovative therapies. In a previous in vivo study, we showed synergistic anti-MMe properties of the ascorbate/epigallocatechin-3-gallate/gemcitabine combination. We have now focused on the mechanism of action, showing the induction of apoptosis and cell cycle arrest through measurements of caspase 3, intracellular Ca{sup 2+}, annexin V, and DNA content. StellArray™ PCR technology and Western immunoblotting revealed DAPK2-dependent apoptosis, upregulation of cell cycle promoters, downregulation of cell cycle checkpoints and repression of NFκB expression. The complex of data indicates that the mixture is synergistic in inducing cell cycle deregulation and non-inflammatory apoptosis, suggesting its possible use in MMe treatment. - Highlights: • Ascorbate/epigallocathechin-gallate/gemcitabine has been tested on mesothelioma cells • A synergistic mechanism has been shown for cell cycle arrest and apoptosis • PCR-array analysis has revealed the de-regulation of apoptosis and cell cycle genes • Maximum upregulation has been found for the Death-Associated Protein Kinase-2 gene • Data suggest that the mixture could be used as a clinical treatment.

  12. The combination of plant translational enhancers and terminator increase the expression of human glucocerebrosidase in Nicotiana benthamiana plants.

    PubMed

    Limkul, Juthamard; Misaki, Ryo; Kato, Ko; Fujiyama, Kazuhito

    2015-11-01

    Gaucher's disease is a lysosomal storage disorder caused by mutations in the gene encoding glucocerebrosidase (GCase). It is currently treated by enzyme replacement therapy using recombinant GCase expressed in mammalian cells. Plant production systems are among the most attractive alternatives for pharmaceutical protein production due to such advantages as low-cost, high-scalability, and safety from human pathogen contamination. Because of its high biomass yield, Nicotiana benthamiana could be an economical recombinant GCase production system. In this study, a translational enhancer and suitable terminator were utilized to obtain a powerful expression system for GCase production in N. benthamiana plants. Six plasmid constructs were used. The highest activity of 44.5units/mg protein (after subtraction of endogenous glucosidase activity of the wild-type plant) was observed in transgenic plants transformed with pAt-GC-HSP combined with a 5' untranslated region of the Arabidopsis alcohol dehydrogenase gene with the Arabidopsis heat shock protein terminator. These transgenic plant lines could pave the way to a stable plant-production system for low-cost, high-yield human GCase production. PMID:26475186

  13. Interim Report: Air-Cooled Condensers for Next Generation Geothermal Power Plants Improved Binary Cycle Performance

    SciTech Connect

    Daniel S. Wendt; Greg L. Mines

    2010-09-01

    As geothermal resources that are more expensive to develop are utilized for power generation, there will be increased incentive to use more efficient power plants. This is expected to be the case with Enhanced Geothermal System (EGS) resources. These resources will likely require wells drilled to depths greater than encountered with hydrothermal resources, and will have the added costs for stimulation to create the subsurface reservoir. It is postulated that plants generating power from these resources will likely utilize the binary cycle technology where heat is rejected sensibly to the ambient. The consumptive use of a portion of the produced geothermal fluid for evaporative heat rejection in the conventional flash-steam conversion cycle is likely to preclude its use with EGS resources. This will be especially true in those areas where there is a high demand for finite supplies of water. Though they have no consumptive use of water, using air-cooling systems for heat rejection has disadvantages. These systems have higher capital costs, reduced power output (heat is rejected at the higher dry-bulb temperature), increased parasitics (fan power), and greater variability in power generation on both a diurnal and annual basis (larger variation in the dry-bulb temperature). This is an interim report for the task ‘Air-Cooled Condensers in Next- Generation Conversion Systems’. The work performed was specifically aimed at a plant that uses commercially available binary cycle technologies with an EGS resource. Concepts were evaluated that have the potential to increase performance, lower cost, or mitigate the adverse effects of off-design operation. The impact on both cost and performance were determined for the concepts considered, and the scenarios identified where a particular concept is best suited. Most, but not all, of the concepts evaluated are associated with the rejection of heat. This report specifically addresses three of the concepts evaluated: the use of

  14. Life Cycle Assessment of a Parabolic Trough Concentrating Solar Power Plant and Impacts of Key Design Alternatives: Preprint

    SciTech Connect

    Heath, G. A.; Burkhardt, J. J.; Turchi, C. S.

    2011-09-01

    Climate change and water scarcity are important issues for today's power sector. To inform capacity expansion decisions, hybrid life cycle assessment is used to evaluate a reference design of a parabolic trough concentrating solar power (CSP) facility located in Daggett, California, along four sustainability metrics: life cycle greenhouse gas (GHG) emissions, water consumption, cumulative energy demand (CED), and energy payback time (EPBT). This wet-cooled, 103 MW plant utilizes mined nitrate salts in its two-tank, thermal energy storage (TES) system. Design alternatives of dry-cooling, a thermocline TES, and synthetically-derived nitrate salt are evaluated. During its life cycle, the reference CSP plant is estimated to emit 26 g CO2eq per kWh, consume 4.7 L/kWh of water, and demand 0.40 MJeq/kWh of energy, resulting in an EPBT of approximately 1 year. The dry-cooled alternative is estimated to reduce life cycle water consumption by 77% but increase life cycle GHG emissions and CED by 8%. Synthetic nitrate salts may increase life cycle GHG emissions by 52% compared to mined. Switching from two-tank to thermocline TES configuration reduces life cycle GHG emissions, most significantly for plants using synthetically-derived nitrate salts. CSP can significantly reduce GHG emissions compared to fossil-fueled generation; however, dry-cooling may be required in many locations to minimize water consumption.

  15. Combined compressed air storage-low BTU coal gasification power plant

    DOEpatents

    Kartsounes, George T.; Sather, Norman F.

    1979-01-01

    An electrical generating power plant includes a Compressed Air Energy Storage System (CAES) fueled with low BTU coal gas generated in a continuously operating high pressure coal gasifier system. This system is used in coordination with a continuously operating main power generating plant to store excess power generated during off-peak hours from the power generating plant, and to return the stored energy as peak power to the power generating plant when needed. The excess coal gas which is produced by the coal gasifier during off-peak hours is stored in a coal gas reservoir. During peak hours the stored coal gas is combined with the output of the coal gasifier to fuel the gas turbines and ultimately supply electrical power to the base power plant.

  16. Evaluation of new alternatives in wastewater treatment plants based on dynamic modelling and life cycle assessment (DM-LCA).

    PubMed

    Bisinella de Faria, A B; Spérandio, M; Ahmadi, A; Tiruta-Barna, L

    2015-11-01

    With a view to quantifying the energy and environmental advantages of Urine Source-Separation (USS) combined with different treatment processes, five wastewater treatment plant (WWTP) scenarios were compared to a reference scenario using Dynamic Modelling (DM) and Life Cycle Assessment (LCA), and an integrated DM-LCA framework was thus developed. Dynamic simulations were carried out in BioWin(®) in order to obtain a realistic evaluation of the dynamic behaviour and performance of plants under perturbation. LCA calculations were performed within Umberto(®) using the Ecoinvent database. A Python™ interface was used to integrate and convert simulation data and to introduce them into Umberto(®) to achieve a complete LCA evaluation comprising foreground and background processes. Comparisons between steady-state and dynamic simulations revealed the importance of considering dynamic aspects such as nutrient and flow peaks. The results of the evaluation highlighted the potential of the USS scenario for nutrient recovery whereas the Enhanced Primary Clarification (EPC) scenario gave increased biogas production and also notably decreased aeration consumption, leading to a positive energy balance. Both USS and EPC scenarios also showed increased stability of plant operation, with smaller daily averages of total nitrogen and phosphorus. In this context, USS and EPC results demonstrated that the coupled USS + EPC scenario and its combinations with agricultural spreading of N-rich effluent and nitritation/anaerobic deammonification could present an energy-positive balance with respectively 27% and 33% lower energy requirements and an increase in biogas production of 23%, compared to the reference scenario. The coupled scenarios also presented lesser environmental impacts (reduction of 31% and 39% in total endpoint impacts) along with effluent quality well within the specified limits. The marked environmental performance (reduction of global warming) when nitrogen is used

  17. Three Dimensional Numerical Simulation of Rocket-based Combined-cycle Engine Response During Mode Transition Events

    NASA Technical Reports Server (NTRS)

    Edwards, Jack R.; McRae, D. Scott; Bond, Ryan B.; Steffan, Christopher (Technical Monitor)

    2003-01-01

    The GTX program at NASA Glenn Research Center is designed to develop a launch vehicle concept based on rocket-based combined-cycle (RBCC) propulsion. Experimental testing, cycle analysis, and computational fluid dynamics modeling have all demonstrated the viability of the GTX concept, yet significant technical issues and challenges still remain. Our research effort develops a unique capability for dynamic CFD simulation of complete high-speed propulsion devices and focuses this technology toward analysis of the GTX response during critical mode transition events. Our principal attention is focused on Mode 1/Mode 2 operation, in which initial rocket propulsion is transitioned into thermal-throat ramjet propulsion. A critical element of the GTX concept is the use of an Independent Ramjet Stream (IRS) cycle to provide propulsion at Mach numbers less than 3. In the IRS cycle, rocket thrust is initially used for primary power, and the hot rocket plume is used as a flame-holding mechanism for hydrogen fuel injected into the secondary air stream. A critical aspect is the establishment of a thermal throat in the secondary stream through the combination of area reduction effects and combustion-induced heat release. This is a necessity to enable the power-down of the rocket and the eventual shift to ramjet mode. Our focus in this first year of the grant has been in three areas, each progressing directly toward the key initial goal of simulating thermal throat formation during the IRS cycle: CFD algorithm development; simulation of Mode 1 experiments conducted at Glenn's Rig 1 facility; and IRS cycle simulations. The remainder of this report discusses each of these efforts in detail and presents a plan of work for the next year.

  18. Microalgae Production from Power Plant Flue Gas: Environmental Implications on a Life Cycle Basis

    SciTech Connect

    Kadam, K. L.

    2001-06-22

    Power-plant flue gas can serve as a source of CO{sub 2} for microalgae cultivation, and the algae can be cofired with coal. This life cycle assessment (LCA) compared the environmental impacts of electricity production via coal firing versus coal/algae cofiring. The LCA results demonstrated lower net values for the algae cofiring scenario for the following using the direct injection process (in which the flue gas is directly transported to the algae ponds): SOx, NOx, particulates, carbon dioxide, methane, and fossil energy consumption. Carbon monoxide, hydrocarbons emissions were statistically unchanged. Lower values for the algae cofiring scenario, when compared to the burning scenario, were observed for greenhouse potential and air acidification potential. However, impact assessment for depletion of natural resources and eutrophication potential showed much higher values. This LCA gives us an overall picture of impacts across different environmental boundaries, and hence, can help in the decision-making process for implementation of the algae scenario.

  19. Synchronous power output fluctuations for an experimental open-cycle OTEC plant

    SciTech Connect

    Nihous, G.C.

    1997-12-01

    A 210 kW experimental Open-Cycle Ocean Thermal Energy Conversion plant was completed in Hawaii in 1993, and equipped with a synchronous generator to test its connection to the local power grid. During shakedown tests, large power output fluctuations were observed. Linear mathematical models of the system were developed, and numerical simulations reproduced observations well, for a given line frequency input, confirming in particular the resonant nature of a massive turbine rigidly connected to a small generator. The frequency-domain algorithm was extended to analyze the effect of inserting a fluid coupler between the turbine and the generator to eliminate large power output fluctuations. The actual installation of a fluid coupler in early 1994 allowed a validation of the model predictions.

  20. Role of plant-rock interactions in the N cycle of oligotrophic environments

    NASA Astrophysics Data System (ADS)

    Gaddis, E. E.; Zaharescu, D. G.; Dontsova, K.; Chorover, J.; Galey, M.; Huxman, T. E.

    2013-12-01

    The vital role of nitrogen--an abundant, but inaccessible building block for growth--in plants is well known. At the same time, plants and microorganisms are driving forces for accumulation of available N in the soils as they form. A deep understanding of N cycle initiation, progression, and link to ecological systems and their development is therefore necessary. A mesocosm experiment was set up with the goal of exploring the role of interactions between four rock types and biota on N fate in oligotrophic environments. Basalt, rhyolite, granite, and schist were used with 6 treatments: abiotic control; microbes only; grass and microbes; pine and microbes; grass, microbes, and mycorrhizal fungi; and pine, microbes, and mycorrhizal fungi. Pinus ponderosa and Buchloe dactyloides were seeded on the different rock media and maintained with purified air and water but no nutrient additions for 8 month. Throughout the experiment leachate solution was collected and its chemical composition characterized, including organic and inorganic C and N. In addition, plant roots were scanned and their images analyzed to quantify their morphological features. Root parameters included measurements of length, surface area, diameter, volume, the number of tips, forks and links, altitude, and overall plant biomass. Over the 8 month period, there was sustained vegetation growth on all rocks without N addition. A high C:N ratio was seen across all substrates, indicating N deficiency. A strong relationship was observed between total N removal in soil leachate and a number of plant parameters, including plant biomass, total surface area of the roots, sum of the root tips, and total root volume. These relationships were the strongest in basalt, where the pines had higher root surface area than grasses and this was accompanied by higher total N in leachate. There was also a positive correlation between total N removal and the total biomass, total N and the sum of the root tips, and total N and

  1. Passive coherent combining of CEP-stable few-cycle pulses from a temporally divided hollow fiber compressor.

    PubMed

    Jacqmin, Hermance; Jullien, Aurélie; Mercier, Brigitte; Hanna, Marc; Druon, Frédéric; Papadopoulos, Dimitrios; Lopez-Martens, Rodrigo

    2015-03-01

    We demonstrate a simple and robust passive coherent combining technique for temporal compression of millijoule energy laser pulses down to few-cycle duration in a gas-filled hollow fiber. High combining efficiency is achieved by using carefully oriented calcite plates for temporal pulse division and recombination. Carrier-envelope phase (CEP)-stable, 6-fs, 800-nm pulses with more than 0.6 mJ energy are routinely generated. This method could aid in the energy scaling of CEP-stable hollow-fiber compressor systems. PMID:25723413

  2. Effects of the plant growth-promoting bacterium Burkholderia phytofirmans PsJN throughout the life cycle of Arabidopsis thaliana.

    PubMed

    Poupin, María Josefina; Timmermann, Tania; Vega, Andrea; Zuñiga, Ana; González, Bernardo

    2013-01-01

    Plant growth-promoting rhizobacteria (PGPR) induce positive effects in plants, such as increased growth or reduced stress susceptibility. The mechanisms behind PGPR/plant interaction are poorly understood, as most studies have described short-term responses on plants and only a few studies have analyzed plant molecular responses under PGPR colonization. Here, we studied the effects of the PGPR bacterial model Burkholderiaphytofirmans PsJN on the whole life cycle of Arabidopsis thaliana plants. We reported that at different plant developmental points, strain PsJN can be found in the rhizosphere and also colonizing their internal tissues. In early ontogeny, strain PsJN increased several growth parameters and accelerated growth rate of the plants. Also, an Arabidopsis transcriptome analysis revealed that 408 genes showed differential expression in PsJN-inoculated plants; some of these genes are involved in stress response and hormone pathways. Specifically, genes implicated in auxin and gibberellin pathways were induced. Quantitative transcriptional analyses of selected genes in different developmental stages revealed that the beginning of these changes could be evidenced early in development, especially among the down-regulated genes. The inoculation with heat-killed bacteria provoked a more severe transcriptional response in plants, but was not able to induce plant growth-promotion. Later in ontogeny, the growth rates of inoculated plants decreased with respect to the non-inoculated group and, interestingly, the inoculation accelerated the flowering time and the appearance of senescence signs in plants; these modifications correlate with the early up-regulation of flowering control genes. Then, we show that a single inoculation with a PGPR could affect the whole life cycle of a plant, accelerating its growth rate and shortening its vegetative period, both effects relevant for most crops. Thus, these findings provide novel and interesting aspects of these relevant

  3. Realizing the potential of rapid-cycling Brassica as a model system for use in plant biology research

    NASA Technical Reports Server (NTRS)

    Musgrave, M. E.

    2000-01-01

    Rapid-cycling Brassica populations were initially developed as a model for probing the genetic basis of plant disease. Paul Williams and co-workers selected accessions of the six main species for short time to flower and rapid seed maturation. Over multiple generations of breeding and selection, rapid-cycling populations of each of the six species were developed. Because of their close relationship with economically important Brassica species, rapid-cycling Brassica populations, especially those of B. rapa (RCBr) and B. oleracea, have seen wide application in plant and crop physiology investigations. Adding to the popularity of these small, short-lived plants for research applications is their extensive use in K-12 education and outreach.

  4. Biochar impacts soil microbial community composition and nitrogen cycling in an acidic soil planted with rape.

    PubMed

    Xu, Hui-Juan; Wang, Xiao-Hui; Li, Hu; Yao, Huai-Ying; Su, Jian-Qiang; Zhu, Yong-Guan

    2014-08-19

    Biochar has been suggested to improve acidic soils and to mitigate greenhouse gas emissions. However, little has been done on the role of biochar in ameliorating acidified soils induced by overuse of nitrogen fertilizers. In this study, we designed a pot trial with an acidic soil (pH 4.48) in a greenhouse to study the interconnections between microbial community, soil chemical property changes, and N2O emissions after biochar application. The results showed that biochar increased plant growth, soil pH, total carbon, total nitrogen, C/N ratio, and soil cation exchange capacity. The results of high-throughput sequencing showed that biochar application increased α-diversity significantly and changed the relative abundances of some microbes that are related with carbon and nitrogen cycling at the family level. Biochar amendment stimulated both nitrification and denitrification processes, while reducing N2O emissions overall. Results of redundancy analysis indicated biochar could shift the soil microbial community by changing soil chemical properties, which modulate N-cycling processes and soil N2O emissions. The significantly increased nosZ transcription suggests that biochar decreased soil N2O emissions by enhancing its further reduction to N2. PMID:25054835

  5. Manifold coherent combining of few-cycle pulses in hollow-fiber compressors

    NASA Astrophysics Data System (ADS)

    Jacqmin, Hermance; Mercier, Brigitte; Jullien, Aurélie; Lopez-Martens, Rodrigo

    2016-08-01

    We demonstrate fourfold coherent combining in a gas-filled hollow-fiber compressor with 92 % efficiency. Our passive approach relies on the use of carefully oriented birefringent plates for temporal pulse dividing and combining. We perform a detailed theoretical and experimental analysis of the effects degrading the combining process, as polarization change or nonlinear interactions between pulse replicas. We show how to overcome these limitations to generate 10-fs output pulses with high temporal quality.

  6. Cell cycle and cell death are not necessary for appressorium formation and plant infection in the fungal plant pathogen Colletotrichum gloeosporioides

    PubMed Central

    Nesher, Iris; Barhoom, Sima; Sharon, Amir

    2008-01-01

    Background In order to initiate plant infection, fungal spores must germinate and penetrate into the host plant. Many fungal species differentiate specialized infection structures called appressoria on the host surface, which are essential for successful pathogenic development. In the model plant pathogen Magnaporthe grisea completion of mitosis and autophagy cell death of the spore are necessary for appressoria-mediated plant infection; blocking of mitosis prevents appressoria formation, and prevention of autophagy cell death results in non-functional appressoria. Results We found that in the closely related plant pathogen Colletotrichum gloeosporioides, blocking of the cell cycle did not prevent spore germination and appressoria formation. The cell cycle always lagged behind the morphogenetic changes that follow spore germination, including germ tube and appressorium formation, differentiation of the penetrating hypha, and in planta formation of primary hyphae. Nuclear division was arrested following appressorium formation and was resumed in mature appressoria after plant penetration. Unlike in M. grisea, blocking of mitosis had only a marginal effect on appressoria formation; development in hydroxyurea-treated spores continued only for a limited number of cell divisions, but normal numbers of fully developed mature appressoria were formed under conditions that support appressoria formation. Similar results were also observed in other Colletotrichum species. Spores, germ tubes, and appressoria retained intact nuclei and remained viable for several days post plant infection. Conclusion We showed that in C. gloeosporioides the differentiation of infection structures including appressoria precedes mitosis and can occur without nuclear division. This phenomenon was also found to be common in other Colletotrichum species. Spore cell death did not occur during plant infection and the fungus primary infection structures remained viable throughout the infection cycle

  7. Chemical signals synchronize the life cycles of a plant-parasitic nematode and its vector beetle.

    PubMed

    Zhao, Lilin; Zhang, Shuai; Wei, Wei; Hao, Haijun; Zhang, Bin; Butcher, Rebecca A; Sun, Jianghua

    2013-10-21

    The pinewood nematode Bursaphelenchus xylophilus has caused severe damage to pine forests in large parts of the world [1-4]. Dispersal of this plant-parasitic nematode occurs when the nematode develops into the dispersal fourth larval stage (LIV) upon encountering its insect vector, the Monochamus pine sawyer beetle, inside an infected pine tree [5-9]. Here, we show that LIV formation in B. xylophilus is induced by C16 and C18 fatty acid ethyl esters (FAEEs), which are produced abundantly on the body surface of the vector beetle specifically during the late development pupal, emerging adult, and newly eclosed adult stages. The LIV can then enter the tracheal system of the adult beetle for dispersal to a new pine tree. Treatment of B. xylophilus with long-chain FAEEs, or the PI3 kinase inhibitor LY294002, promotes LIV formation, while Δ7-dafachronic acid blocks the effects of these chemicals, suggesting a conserved role for the insulin/IGF-1 and DAF-12 pathways in LIV formation. Our work provides a mechanism by which LIV formation in B. xylophilus is specifically coordinated with the life cycle of its vector beetle. Knowledge of the chemical signals that control the LIV developmental decision could be used to interfere with the dispersal of this plant-parasitic nematode. PMID:24120638

  8. Life cycle assessment of introducing an anaerobic digester in a municipal wastewater treatment plant in Spain.

    PubMed

    Blanco, David; Collado, Sergio; Laca, Adriana; Díaz, Mario

    2016-01-01

    Anaerobic digestion (AD) is being established as a standard technology to recover some of the energy contained in the sludge in wastewater treatment plants (WWTPs) as biogas, allowing an economy in electricity and heating and a decrease in climate gas emission. The purpose of this study was to quantify the contributions to the total environmental impact of the plant using life cycle assessment methodology. In this work, data from real operation during 2012 of a municipal WWTP were utilized as the basis to determine the impact of including AD in the process. The climate change human health was the most important impact category when AD was included in the treatment (Scenario 1), especially due to fossil carbon dioxide emissions. Without AD (Scenario 2), increased emissions of greenhouse gases, mostly derived from the use of electricity, provoked a rise in the climate change categories. Biogas utilization was able to provide 47% of the energy required in the WWTP in Scenario 1. Results obtained make Scenario 1 the better environmental choice by far, mainly due to the use of the digested sludge as fertilizer. PMID:26901726

  9. The effects of combined cover crop termination and planting in a cotton no-till system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One method to save resources while positively impacting the environment is combining agricultural field operations. In no-till systems, cover crop termination and cash crop planting can be performed simultaneously utilizing a tractor as a single power source. A no-till field experiment merging cover...

  10. COMBINED EFFECT OF SULFUR DIOXIDE AND OZONE ON BEAN AND TOBACCO PLANTS

    EPA Science Inventory

    Plants of two cultivars of Phaseolus vulgaris and one cultivar of Nicotiana tabacum were exposed to a replicated series of concentrations of sulfur dioxide (SO2), ozone (03), and combinations of these two air pollutants for single four-hour periods. Experiments were performed in ...

  11. 76 FR 78702 - Progress Energy Florida, Inc. (Combined License Application for Levy County Nuclear Power Plant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-19

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Progress Energy Florida, Inc. (Combined License Application for Levy County Nuclear Power Plant, Units 1 and 2) Notice of Atomic Safety and Licensing Board Reconstitution Pursuant to 10 CFR...

  12. High-potential Working Fluids for Next Generation Binary Cycle Geothermal Power Plants

    SciTech Connect

    Zia, Jalal; Sevincer, Edip; Chen, Huijuan; Hardy, Ajilli; Wickersham, Paul; Kalra, Chiranjeev; Laursen, Anna Lis; Vandeputte, Thomas

    2013-06-29

    A thermo-economic model has been built and validated for prediction of project economics of Enhanced Geothermal Projects. The thermo-economic model calculates and iteratively optimizes the LCOE (levelized cost of electricity) for a prospective EGS (Enhanced Geothermal) site. It takes into account the local subsurface temperature gradient, the cost of drilling and reservoir creation, stimulation and power plant configuration. It calculates and optimizes the power plant configuration vs. well depth. Thus outputs from the model include optimal well depth and power plant configuration for the lowest LCOE. The main focus of this final report was to experimentally validate the thermodynamic properties that formed the basis of the thermo-economic model built in Phase 2, and thus build confidence that the predictions of the model could be used reliably for process downselection and preliminary design at a given set of geothermal (and/or waste heat) boundary conditions. The fluid and cycle downselected was based on a new proprietary fluid from a vendor in a supercritical ORC cycle at a resource condition of 200�C inlet temperature. The team devised and executed a series of experiments to prove the suitability of the new fluid in realistic ORC cycle conditions. Furthermore, the team performed a preliminary design study for a MW-scale turbo expander that would be used for a supercritical ORC cycle with this new fluid. The following summarizes the main findings in the investigative campaign that was undertaken: 1. Chemical compatibility of the new fluid with common seal/gasket/Oring materials was found to be problematic. Neoprene, Viton, and silicone materials were found to be incompatible, suffering chemical decomposition, swelling and/or compression set issues. Of the materials tested, only TEFLON was found to be compatible under actual ORC temperature and pressure conditions. 2. Thermal stability of the new fluid at 200�C and 40 bar was found to be acceptable after 399

  13. Open-cycle magnetohydrodynamic power plant with CO.sub.2 recycling

    DOEpatents

    Berry, Gregory F.

    1991-01-01

    A method of converting the chemical energy of fossil fuel to electrical and mechanical energy with a MHD generator. The fossil fuel is mixed with preheated oxygen and carbon dioxide and a conducting seed of potassium carbonate to form a combustive and electrically conductive mixture which is burned in a combustion chamber. The burned combustion mixture is passed through a MHD generator to generate electrical energy. The burned combustion mixture is passed through a diffuser to restore the mixture approximately to atmospheric pressure, leaving a spent combustion mixture which is used to heat oxygen from an air separation plant and recycled carbon dioxide for combustion in a high temperature oxygen preheater and for heating water/steam for producing superheated steam. Relatively pure carbon dioxide is separated from the spent combustion mixture for further purification or for exhaust, while the remainder of the carbon dioxide is recycled from the spent combustion mixture to a carbon dioxide purification plant for removal of water and any nitrous oxides present, leaving a greater than 98% pure carbon dioxide. A portion of the greater then 98% pure carbon dioxide stream is recovered and the remainder is recycled to combine with the oxygen for preheating and combination with the fossil fuel to form a combustion mixture.

  14. Geothermal power plant R and D: an analysis of cost-performance tradeoffs and the Heber Binary-Cycle Demonstration Project

    SciTech Connect

    Cassel, T.A.V.; Amundsen, C.B.; Blair, P.D.

    1983-06-30

    A study of advancements in power plant designs for use at geothermal resources in the low to moderate (300 to 400F) temperature range is reported. In 3 case studies, the benefits of R and D to achieve these advancements are evaluated in terms of expected increases in installed geothermal generating capacity over the next 2 decades. A parametric sensitivity study is discussed which analyzes differential power development for combinations of power plant efficiency and capitol cost. Affordable tradeoffs between plant performance and capital costs are illustrated. The independent review and analysis of the expected costs of construction, operation and maintenance of the Heber Binary Cycle Geothermal Power Demonstration Plant are described. Included in this assessment is an analysis of each of the major cost components of the project, including (1) construction cost, (2) well field development costs, (3) fluid purchase costs, and (4) well field and power plant operation and maintenance costs. The total cost of power generated from the Heber Plant (in terms of mills per kWh) is then compared to the cost of power from alternative fossil-fueled base load units. Also evaluated are the provisions of both: (a) the Cooperative Agreement between the federal government and San Diego Gas and Electric (SDG and E); and (b) the Geothermal Heat Sales Contract with Union Oil Company.

  15. A Binary Host Plant Volatile Lure Combined With Acetic Acid to Monitor Codling Moth (Lepidoptera: Tortricidae).

    PubMed

    Knight, A L; Basoalto, E; Katalin, J; El-Sayed, A M

    2015-10-01

    Field studies were conducted in the United States, Hungary, and New Zealand to evaluate the effectiveness of septa lures loaded with ethyl (E,Z)-2,4-decadienoate (pear ester) and (E)-4,8-dimethyl-1,3,7-nonatriene (nonatriene) alone and in combination with an acetic acid co-lure for both sexes of codling moth, Cydia pomonella (L.). Additional studies were conducted to evaluate these host plant volatiles and acetic acid in combination with the sex pheromone, (E,E)-8,10-dodecadien-1-ol (codlemone). Traps baited with pear ester/nonatriene + acetic acid placed within orchards treated either with codlemone dispensers or left untreated caught significantly more males, females, and total moths than similar traps baited with pear ester + acetic acid in some assays. Similarly, traps baited with codlemone/pear ester/nonatriene + acetic acid caught significantly greater numbers of moths than traps with codlemone/pear ester + acetic acid lures in some assays in orchards treated with combinational dispensers (dispensers loaded with codlemone/pear ester). These data suggest that monitoring of codling moth can be marginally improved in orchards under variable management plans using a binary host plant volatile lure in combination with codlemone and acetic acid. These results are likely to be most significant in orchards treated with combinational dispensers. Significant increases in the catch of female codling moths in traps with the binary host plant volatile blend plus acetic acid should be useful in developing more effective mass trapping strategies. PMID:26314018

  16. Plant and Soil Natural Abundance delta-15N: Indicators of Nitrogen Cycling in the Catskill Mountains, New York, USA

    NASA Astrophysics Data System (ADS)

    Templer, P. H.; Lovett, G. M.; Weathers, K.; Arthur, M. A.

    2002-12-01

    We examined the potential use of natural abundance 15N of plants and soils as an indicator of forest nitrogen (N) cycling rates within the Catskill Mountains, NY. These watersheds receive among the highest rates of N deposition in the northeastern United States and are beginning to show signs of N saturation. Many studies have shown a link between increased N cycling rates and 15N enrichment of soil and plant pools. Faster rates of N cycling processes, especially nitrification, lead to fractionation of 14/15N, creating N products that are relatively depleted in 15N. This can lead to enrichment of soil pools, as lighter 14N is lost from the system via leaching or denitrification. Plant N pools can become increasingly enriched as they take up 15N-enriched soil N. Despite similar amounts of N deposition across the Catskill Mountains, forests dominated by different tree species appear to vary in the amount of N retained or lost to nearby streams. To determine if plant and soil 15N could be used as indicators of N cycling rates, we collected foliage, wood, litterfall, organic and mineral soil, and fine roots from single species stands of American beech (Fagus grandifolia), eastern hemlock (Tsuga canadensis), red oak (Quercus rubra), and sugar maple (Acer saccharum). Fine roots and soil 15N were highest within sugar maple stands (p<0.05). Sugar maple soils also had the highest rates of net nitrification and N leaching. Therefore, soil 15N appears to correlate with forest N retention and loss. However, 15N enrichment was highest within foliage, litterfall and wood of beech trees (p<0.05). The decoupling between foliage 15N and N cycling, as well as between 15N of foliage and fine roots, illustrates that it may not be possible to use a single plant pool as an indicator of N cycling rates.

  17. An Ejector Air Intake Design Method for a Novel Rocket-Based Combined-Cycle Rocket Nozzle

    NASA Astrophysics Data System (ADS)

    Waung, Timothy S.

    Rocket-based combined-cycle (RBCC) vehicles have the potential to reduce launch costs through the use of several different air breathing engine cycles, which reduce fuel consumption. The rocket-ejector cycle, in which air is entrained into an ejector section by the rocket exhaust, is used at flight speeds below Mach 2. This thesis develops a design method for an air intake geometry around a novel RBCC rocket nozzle design for the rocket-ejector engine cycle. This design method consists of a geometry creation step in which a three-dimensional intake geometry is generated, and a simple flow analysis step which predicts the air intake mass flow rate. The air intake geometry is created using the rocket nozzle geometry and eight primary input parameters. The input parameters are selected to give the user significant control over the air intake shape. The flow analysis step uses an inviscid panel method and an integral boundary layer method to estimate the air mass flow rate through the intake geometry. Intake mass flow rate is used as a performance metric since it directly affects the amount of thrust a rocket-ejector can produce. The design method results for the air intake operating at several different points along the subsonic portion of the Ariane 4 flight profile are found to under predict mass flow rate by up to 8.6% when compared to three-dimensional computational fluid dynamics simulations for the same air intake.

  18. Mercury cycling in a wastewater treatment plant treating waters with high mercury contents.

    NASA Astrophysics Data System (ADS)

    García-Noguero, Eva M.; García-Noguero, Carolina; Higueras, Pablo; Reyes-Bozo, Lorenzo; Esbrí, José M.

    2015-04-01

    The Almadén mercury mining district has been historically the most important producer of this element since Romans times to 2004, when both mining and metallurgic activities ceased as a consequence both of reserves exhaustion and persistent low prices for this metal. The reclamation of the main dump of the mine in 2007-2008 reduced drastically the atmospheric presence of the gaseous mercury pollutant in the local atmosphere. But still many areas, and in particular in the Almadén town area, can be considered as contaminated, and produce mercury releases that affect the urban residual waters. Two wastewater treatment plants (WWTP) where built in the area in year 2002, but in their design the projects did not considered the question of high mercury concentrations received as input from the town area. This communication presents data of mercury cycling in one of the WWTP, the Almadén-Chillón one, being the larger and receiving the higher Hg concentrations, due to the fact that it treats the waters coming from the West part of the town, in the immediate proximity to the mine area. Data were collected during a number of moments of activity of the plant, since April 2004 to nowadays. Analyses were carried out by means of cold vapor-atomic fluorescence spectroscopy (CV-AFS), using a PSA Millennium Merlin analytical device with gold trap. The detection limit is 0.1 ng/l. The calibration standards are prepared using the Panreac ICP Standard Mercury Solution (1,000±0,002 g/l Hg in HNO3 2-5%). Results of the surveys indicate that mercury concentrations in input and output waters in this plant has suffered an important descent since the cessation of mining and metallurgical activities, and minor reduction also after the reclamation of the main mine's dump. Since 2009, some minor seasonal variations are detected, in particular apparently related to accumulation during summer of mercury salts and particles, which are washed to the plant with the autumn's rains. Further

  19. Miocene ocean circulation inferred from marine carbon cycle modeling combined with benthic isotope records

    NASA Astrophysics Data System (ADS)

    Butzin, Martin; Lohmann, Gerrit; Bickert, Torsten

    2011-02-01

    In a modeling sensitivity study we investigate the evolution of the ocean circulation and of marine carbon isotope (δ13C) records during the Miocene (about 23-5 million years ago). For this purpose we ran an ocean-circulation carbon cycle model of intermediate complexity (Large Scale Geostrophic- Hamburg Ocean Carbon Cycle Model, version 2s) exploring various seaway configurations. Our investigations confirm that the Central American Seaway played a decisive role in the history of the Miocene ocean circulation. In simulations with a deep Central American Seaway (depth range 1-3 km), typical for the early to middle Miocene, deep water production in the North Atlantic is absent or weak, while the meridional overturning circulation is dominated by water mass formation in the Southern Ocean. Deep water formation in the North Atlantic begins when the Central American Seaway shoals to a few hundreds of meters, which is typical for the late Miocene. Our results do not support ideas that the mid-Miocene closing of the Eastern Tethys contributed to Antarctic glaciation. On the other hand, we find some water exchange between the Indian Ocean and the Atlantic via the Eastern Tethys during the early Miocene. Our model results for the Atlantic meridional overturning circulation and for Atlantic δ13C during the late Miocene are largely independent from depth variations of the Greenland-Scotland Ridge. To a large extent, the evolution of Miocene deep-sea δ13C records can be explained with large-scale ocean circulation changes. Our model-data comparison for the middle and early Miocene suggests that during the early Neogene the seaway effect on benthic δ13C may have been superimposed by further factors such as climate regime shifts and/or terrestrial carbon cycle changes.

  20. Investigating the Effect of Livestock Grazing and Associated Plant Community Shifts on Carbon and Nutrient Cycling in Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Hewins, D. B.; Chuan, S.; Stolnikova, E.; Bork, E. W.; Carlyle, C. N.; Chang, S. X.

    2015-12-01

    Grassland ecosystems are ubiquitous across the globe covering an estimated 40 % of Earth's terrestrial landmass. These ecosystems are widely valued for providing forage for domestic livestock and a suite of important ecosystem goods and services including carbon (C) storage. Despite storing more than 30 % of soil C globally, the effect of both livestock grazing and the associated change in plant community structure in response to grazing on C and nutrient cycling remains uncertain. To gain a quantitative understanding of the direct and indirect effects of livestock grazing on C and nutrient cycling, we established study sites at 15 existing site localities with paired long-term grazing (ca. 30 y) and non-grazed treatments (totaling 30 unique plant communities). Our sites were distributed widely across Alberta in three distinct grassland bioclimatic zones allowing us to make comparisons across the broad range of climate variability typical of western Canadian grasslands. In each plant community we decomposed 5 common plant species that are known to increase or decrease in response to grazing pressure, a unique plant community sample, and a cellulose paper control. We measured mass loss, initial lignin, C and N concentrations at 0, 1, 3, 6 and 12 months of field incubation. In addition we assayed hydrolytic and oxidative extracellular enzymes associated with for C (n= 5 hydrolytic; phenoloxidase and peroxidase) and nutrients (i.e. N and P; n=1 ea.) cycling from each litter sample at each collection. Our results suggest that by changing the plant community structure, grazing can affect rates of decomposition and associated biogeochemical cycling by changing plant species and associated litter inputs. Moreover, measures of microbial function are controlled by site-specific conditions (e.g. temperature and precipitation), litter chemistry over the course of our incubation.

  1. Effect of residue combinations on plant uptake of nutrients and potentially toxic elements.

    PubMed

    Brännvall, Evelina; Nilsson, Malin; Sjöblom, Rolf; Skoglund, Nils; Kumpiene, Jurate

    2014-01-01

    The aim of the plant pot experiment was to evaluate potential environmental impacts of combined industrial residues to be used as soil fertilisers by analysing i) element availability in fly ash and biosolids mixed with soil both individual and in combination, ii) changes in element phytoavailability in soil fertilised with these materials and iii) impact of the fertilisers on plant growth and element uptake. Plant pot experiments were carried out, using soil to which fresh residue mixtures had been added. The results showed that element availability did not correlate with plant growth in the fertilised soil with. The largest concentrations of K (3534 mg/l), Mg (184 mg/l), P (1.8 mg/l), S (760 mg/l), Cu (0.39 mg/l) and Zn (0.58 mg/l) in soil pore water were found in the soil mixture with biosolids and MSWI fly ashes; however plants did not grow at all in mixtures containing the latter, most likely due to the high concentration of chlorides (82 g/kg in the leachate) in this ash. It is known that high salinity of soil can reduce germination by e.g. limiting water absorption by the seeds. The concentrations of As, Cd and Pb in grown plants were negligible in most of the soils and were below the instrument detection limit values. The proportions of biofuel fly ash and biosolids can be adjusted in order to balance the amount and availability of macronutrients, while the possible increase of potentially toxic elements in biomass is negligible seeing as the plant uptake of such elements was low. PMID:24321288

  2. Combining agent-based modeling and life cycle assessment for the evaluation of mobility policies.

    PubMed

    Florent, Querini; Enrico, Benetto

    2015-02-01

    This article presents agent-based modeling (ABM) as a novel approach for consequential life cycle assessment (C-LCA) of large scale policies, more specifically mobility-related policies. The approach is validated at the Luxembourgish level (as a first case study). The agent-based model simulates the car market (sales, use, and dismantling) of the population of users in the period 2013-2020, following the implementation of different mobility policies and available electric vehicles. The resulting changes in the car fleet composition as well as the hourly uses of the vehicles are then used to derive consistent LCA results, representing the consequences of the policies. Policies will have significant environmental consequences: when using ReCiPe2008, we observe a decrease of global warming, fossil depletion, acidification, ozone depletion, and photochemical ozone formation and an increase of metal depletion, ionizing radiations, marine eutrophication, and particulate matter formation. The study clearly shows that the extrapolation of LCA results for the circulating fleet at national scale following the introduction of the policies from the LCAs of single vehicles by simple up-scaling (using hypothetical deployment scenarios) would be flawed. The inventory has to be directly conducted at full scale and to this aim, ABM is indeed a promising approach, as it allows identifying and quantifying emerging effects while modeling the Life Cycle Inventory of vehicles at microscale through the concept of agents. PMID:25587896

  3. Combined Climate and Carbon-Cycle Effects of Large-Scale Deforestation

    SciTech Connect

    Bala, G; Caldeira, K; Wickett, M; Phillips, T J; Lobell, D B; Delire, C; Mirin, A

    2006-10-17

    The prevention of deforestation and promotion of afforestation have often been cited as strategies to slow global warming. Deforestation releases CO{sub 2} to the atmosphere, which exerts a warming influence on Earth's climate. However, biophysical effects of deforestation, which include changes in land surface albedo, evapotranspiration, and cloud cover also affect climate. Here we present results from several large-scale deforestation experiments performed with a three-dimensional coupled global carbon-cycle and climate model. These are the first such simulations performed using a fully three-dimensional model representing physical and biogeochemical interactions among land, atmosphere, and ocean. We find that global-scale deforestation has a net cooling influence on Earth's climate, since the warming carbon-cycle effects of deforestation are overwhelmed by the net cooling associated with changes in albedo and evapotranspiration. Latitude-specific deforestation experiments indicate that afforestation projects in the tropics would be clearly beneficial in mitigating global-scale warming, but would be counterproductive if implemented at high latitudes and would offer only marginal benefits in temperate regions. While these results question the efficacy of mid- and high-latitude afforestation projects for climate mitigation, forests remain environmentally valuable resources for many reasons unrelated to climate.

  4. Scale Resistant Heat Exchanger for Low Temperature Geothermal Binary Cycle Power Plant

    SciTech Connect

    Hays, Lance G.

    2014-11-18

    Phase 1 of the investigation of improvements to low temperature geothermal power systems was completed. The improvements considered were reduction of scaling in heat exchangers and a hermetic turbine generator (eliminating seals, seal system, gearbox, and lube oil system). A scaling test system with several experiments was designed and operated at Coso geothermal resource with brine having a high scaling potential. Several methods were investigated at the brine temperature of 235 ºF. One method, circulation of abradable balls through the brine passages, was found to substantially reduce scale deposits. The test heat exchanger was operated with brine outlet temperatures as low as 125 ºF, which enables increased heat input available to power conversion systems. For advanced low temperature cycles, such as the Variable Phase Cycle (VPC) or Kalina Cycle, the lower brine temperature will result in a 20-30% increase in power production from low temperature resources. A preliminary design of an abradable ball system (ABS) was done for the heat exchanger of the 1 megawatt VPC system at Coso resource. The ABS will be installed and demonstrated in Phase 2 of this project, increasing the power production above that possible with the present 175 ºF brine outlet limit. A hermetic turbine generator (TGH) was designed and manufacturing drawings produced. This unit will use the working fluid (R134a) to lubricate the bearings and cool the generator. The 200 kW turbine directly drives the generator, eliminating a gearbox and lube oil system. Elimination of external seals eliminates the potential of leakage of the refrigerant or hydrocarbon working fluids, resulting in environmental improvement. A similar design has been demonstrated by Energent in an ORC waste heat recovery system. The existing VPC power plant at Coso was modified to enable the “piggyback” demonstration of the TGH. The existing heat exchanger, pumps, and condenser will be operated to provide the required

  5. Existence of limit cycles and homoclinic bifurcation in a plant-herbivore model with toxin-determined functional response

    NASA Astrophysics Data System (ADS)

    Zhao, Yulin; Feng, Zhilan; Zheng, Yiqiang; Cen, Xiuli

    2015-04-01

    In this paper we study a two-dimensional toxin-determined functional response model (TDFRM). The toxin-determined functional response explicitly takes into consideration the reduction in the consumption of plants by herbivore due to chemical defense, which generates more complex dynamics of the plant-herbivore interactions. The purpose of the present paper is to analyze the existence of limit cycles and bifurcations of the model. By applying the theories of rotated vector fields and the extended planar termination principle, we establish the conditions for the existence of limit cycles and homoclinic loop. It is shown that a limit cycle is generated in a supercritical Hopf bifurcation and terminated in a homoclinic bifurcation, as the parameters vary. Analytic proofs are provided for all results, which generalize the results presented in [11].

  6. Manganese Cycling in a Long-term Plant Litter Decomposition Time Series

    NASA Astrophysics Data System (ADS)

    Keiluweit, M.; Nico, P. S.; Kleber, M.; Bougoure, J.; Harmon, M. E.; Pett-Ridge, J.

    2012-12-01

    Climate change is predicted to affect the chemical composition of plant litter, and global warming may increase microbial and enzymatic activity, with uncertain consequences for litter decomposition rates in soils. This uncertainty has highlighted the need to better understand the controls on litter decomposition rates and pathways. A key controlling processes that is poorly understood is the coupling between decomposition pathways and the inorganic resources available in fresh litter or the underlying soil. For example, a strong correlation was established between the concentration of manganese (Mn) in needle litter and the degradation of litter lignocellulose across boreal forest ecosystems, suggesting that litter decomposition proceeds more efficiently in the presence of Mn. There is good reason to assume that this is due to the critical role of Mn(III)-ligand complexes acting as potent oxidizers in the fungal decomposition of lignocellulose. Here we investigated how litter decomposing organisms redistribute and repurpose the Mn inherently present in fresh plant litter in order to enhance decomposition. For this purpose, we used two 7-year litter decomposition time series collected at sites at the H.J. Andrews Experimental Forest with widely differing decomposition rates. Spatially-resolved X-ray absorption spectroscopy and wet-chemical extractions were used to track pathways of microbially-mediated Mn transport and associated changes in its speciation in each annual litter layer. The cycling of Mn and other metal cations (e.g., Ca and Fe) was then related to changes in the litter chemistry as documented by 13C TMAH and FTIR. Our results show that, as litter decomposition progresses, reduced Mn in the vascular system of fresh needles is transformed into oxidized forms concentrated in Mn oxide precipitates. This transformation of Mn into more reactive forms proceeds faster at the site of greater decomposition. Our imaging data suggests that during this process Mn

  7. Measuring diurnal cycles of plant transpiration fluxes in the Arctic with an automated clear chamber

    NASA Astrophysics Data System (ADS)

    Cohen, L. R.; Raz Yaseef, N.; Curtis, J. B.; Rahn, T. A.; Young, J. M.; Newman, B. D.

    2013-12-01

    Evapotranspiration is an important greenhouse gas and a major component of the hydrological cycle, but methodological challenges still limit our knowledge of this flux. Measuring evapotranspiration is even more difficult when aiming to partition plant transpiration and soil evaporation. Information on this process for arctic systems is very limited. In order to decrease this gap, our objective was to directly measure plant transpiration in Barrow, Alaska (71.3°N 156.7°W). A commercial system allows measuring carbon soil respiration fluxes with an automated clear chamber connected to an infrared gas-analyzer (Licor 8100), and while it simultaneously measures water concentrations, it is not calibrated to measure vapor fluxes. We calibrated the clear chamber against a previously established method based on a Licor 6400 soil chamber, and we developed a code to calculate fluxes. We performed laboratory comparisons in New Mexico and field comparisons in the Arctic, suggesting that this is a valid tool for a large range of climates. In the field we found a strong correlation between the two instruments with R2 of 0.79. Even with 24 hours of daylight in the Arctic, the system captures a clear diurnal transpiration flux, peaking at 0.9 mmol m-2 s-1 and showing no flux at the lowest points. This new method should be a powerful approach for long term measurements of specific vegetation types or surface features. Such Data can also be used to help understand controls on larger scale eddy covariance tower measurements of evapotranspiration.

  8. Reconstructing 40ky of N cycling from stable isotopes of plant compounds in a Siberian permafrost soil

    NASA Astrophysics Data System (ADS)

    Enders, S. K.; Houlton, B. Z.; Ohkouchi, N.; Wagner, D.; Ogawa, N. O.; Chikaraishi, Y.; Suga, H.

    2015-12-01

    Terrestrial nitrogen (N) cycling has an important dual role in regulating global climate, as N is both a limiting plant nutrient and a constituent of a potent greenhouse gas. Reconstructing past terrestrial N cycling is a valuable complement to experimental manipulation of complex climate-carbon-N interactions, but has been challenged by shortcomings of available proxies. We here examine 40ky of terrestrial N cycling on the landscape of northeast Siberia as recorded in N-isotopes of chlorophyll degradation products preserved in a permafrost soil core. This dataset gives insight into the response of the N cycle to concurrent changes in climate, plant community, and atmospheric pCO2 that accompany a cycle of glaciation. This study is the first application to temporal reconstruction of this compound-specific, soil-based proxy for an integrated foliar N isotope signal. We infer ~10 per mil swings in foliar N-isotope values at this site, pointing to the sensitivity of denitrification at high latitudes to changes in environmental conditions. We further observe the effect of increases in N-fixing species on stimulating N cycling as recorded by our proxy. We do not see an effect of progressive N limitation due to pre-anthropogenic increases in pCO2 accompanying deglaciation.

  9. Combining hexanoic acid plant priming with Bacillus thuringiensis insecticidal activity against Colorado potato beetle.

    PubMed

    García-Robles, Inmaculada; Ochoa-Campuzano, Camila; Fernández-Crespo, Emma; Camañes, Gemma; Martínez-Ramírez, Amparo C; González-Bosch, Carmen; García-Agustín, Pilar; Rausell, Carolina; Real, María Dolores

    2013-01-01

    Interaction between insect herbivores and host plants can be modulated by endogenous and exogenous compounds present in the source of food and might be successfully exploited in Colorado potato beetle (CPB) pest management. Feeding tests with CPB larvae reared on three solanaceous plants (potato, eggplant and tomato) resulted in variable larval growth rates and differential susceptibility to Bacillus thuringiensis Cry3Aa toxin as a function of the host plant. An inverse correlation with toxicity was observed in Cry3Aa proteolytic patterns generated by CPB midgut brush-border membrane vesicles (BBMV) from Solanaceae-fed larvae, being the toxin most extensively proteolyzed on potato, followed by eggplant and tomato. We found that CPB cysteine proteases intestains may interact with Cry3Aa toxin and, in CPB BBMV from larvae fed all three Solanaceae, the toxin was able to compete for the hydrolysis of a papain substrate. In response to treatment with the JA-dependent plant inducer Hexanoic acid (Hx), we showed that eggplant reduced OPDA basal levels and both, potato and eggplant induced JA-Ile. CPB larvae feeding on Hx-induced plants exhibited enhanced Cry3Aa toxicity, which correlated with altered papain activity. Results indicated host-mediated effects on B. thuringiensis efficacy against CPB that can be enhanced in combination with Hx plant induction. PMID:23743826

  10. Combining Hexanoic Acid Plant Priming with Bacillus thuringiensis Insecticidal Activity against Colorado Potato Beetle

    PubMed Central

    García-Robles, Inmaculada; Ochoa-Campuzano, Camila; Fernández-Crespo, Emma; Camañes, Gemma; Martínez-Ramírez, Amparo C.; González-Bosch, Carmen; García-Agustín, Pilar; Rausell, Carolina; Real, María Dolores

    2013-01-01

    Interaction between insect herbivores and host plants can be modulated by endogenous and exogenous compounds present in the source of food and might be successfully exploited in Colorado potato beetle (CPB) pest management. Feeding tests with CPB larvae reared on three solanaceous plants (potato, eggplant and tomato) resulted in variable larval growth rates and differential susceptibility to Bacillus thuringiensis Cry3Aa toxin as a function of the host plant. An inverse correlation with toxicity was observed in Cry3Aa proteolytic patterns generated by CPB midgut brush-border membrane vesicles (BBMV) from Solanaceae-fed larvae, being the toxin most extensively proteolyzed on potato, followed by eggplant and tomato. We found that CPB cysteine proteases intestains may interact with Cry3Aa toxin and, in CPB BBMV from larvae fed all three Solanaceae, the toxin was able to compete for the hydrolysis of a papain substrate. In response to treatment with the JA-dependent plant inducer Hexanoic acid (Hx), we showed that eggplant reduced OPDA basal levels and both, potato and eggplant induced JA-Ile. CPB larvae feeding on Hx-induced plants exhibited enhanced Cry3Aa toxicity, which correlated with altered papain activity. Results indicated host-mediated effects on B. thuringiensis efficacy against CPB that can be enhanced in combination with Hx plant induction. PMID:23743826

  11. Combining microtomy and confocal laser scanning microscopy for structural analyses of plant-fungus associations.

    PubMed

    Rath, Magnus; Grolig, Franz; Haueisen, Janine; Imhof, Stephan

    2014-05-01

    The serious problem of extended tissue thickness in the analysis of plant-fungus associations was overcome using a new method that combines physical and optical sectioning of the resin-embedded sample by microtomy and confocal microscopy. Improved tissue infiltration of the fungal-specific, high molecular weight fluorescent probe wheat germ agglutinin conjugated to Alexa Fluor® 633 resulted in high fungus-specific fluorescence even in deeper tissue sections. If autofluorescence was insufficient, additional counterstaining with Calcofluor White M2R or propidium iodide was applied in order to visualise the host plant tissues. Alternatively, the non-specific fluorochrome acid fuchsine was used for rapid staining of both, the plant and the fungal cells. The intricate spatial arrangements of the plant and fungal cells were preserved by immobilization in the hydrophilic resin Unicryl™. Microtomy was used to section the resin-embedded roots or leaves until the desired plane was reached. The data sets generated by confocal laser scanning microscopy of the remaining resin stubs allowed the precise spatial reconstruction of complex structures in the plant-fungus associations of interest. This approach was successfully tested on tissues from ectomycorrhiza (Betula pendula), arbuscular mycorrhiza (Galium aparine; Polygala paniculata, Polygala rupestris), ericoid mycorrhiza (Calluna vulgaris), orchid mycorrhiza (Limodorum abortivum, Serapias parviflora) and on one leaf-fungus association (Zymoseptoria tritici on Triticum aestivum). The method provides an efficient visualisation protocol applicable with a wide range of plant-fungus symbioses. PMID:24249491

  12. Carbon cost of plant nitrogen acquisition: global carbon cycle impact from an improved plant nitrogen cycle in the Community Land Model.

    PubMed

    Shi, Mingjie; Fisher, Joshua B; Brzostek, Edward R; Phillips, Richard P

    2016-03-01

    Plants typically expend a significant portion of their available carbon (C) on nutrient acquisition - C that could otherwise support growth. However, given that most global terrestrial biosphere models (TBMs) do not include the C cost of nutrient acquisition, these models fail to represent current and future constraints to the land C sink. Here, we integrated a plant productivity-optimized nutrient acquisition model - the Fixation and Uptake of Nitrogen Model - into one of the most widely used TBMs, the Community Land Model. Global plant nitrogen (N) uptake is dynamically simulated in the coupled model based on the C costs of N acquisition from mycorrhizal roots, nonmycorrhizal roots, N-fixing microbes, and retranslocation (from senescing leaves). We find that at the global scale, plants spend 2.4 Pg C yr(-1) to acquire 1.0 Pg N yr(-1) , and that the C cost of N acquisition leads to a downregulation of global net primary production (NPP) by 13%. Mycorrhizal uptake represented the dominant pathway by which N is acquired, accounting for ~66% of the N uptake by plants. Notably, roots associating with arbuscular mycorrhizal (AM) fungi - generally considered for their role in phosphorus (P) acquisition - are estimated to be the primary source of global plant N uptake owing to the dominance of AM-associated plants in mid- and low-latitude biomes. Overall, our coupled model improves the representations of NPP downregulation globally and generates spatially explicit patterns of belowground C allocation, soil N uptake, and N retranslocation at the global scale. Such model improvements are critical for predicting how plant responses to altered N availability (owing to N deposition, rising atmospheric CO2 , and warming temperatures) may impact the land C sink. PMID:26473512

  13. In vivo antiplasmodial potentials of the combinations of four nigerian antimalarial plants.

    PubMed

    Adebajo, Adeleke Clement; Odediran, Samuel Akintunde; Aliyu, Fatimah Abosede; Nwafor, Paul Alozie; Nwoko, Ndifreke Thomas; Umana, Usenobong Samuel

    2014-01-01

    Various combinations of Nauclea latifolia root, Artocarpus altilis stem bark, Murraya koenigii leaf and Enantia chlorantha stem bark used in African ethnomedicine as decoctions for malaria and fevers, and combinations with standard drugs, were investigated for antiplasmodial activities using Plasmodium berghei berghei-infected mice. The respective prophylactic and curative ED50 values of 189.4 and 174.5 mg/kg for N. latifolia and chemosuppressive ED50 value of 227.2 mg/kg for A. altilis showed that they were the best antimalarial herbal drugs. A 1.6-fold increase of the survival time given by the negative control was elicited by M. koenigii, thereby confirming its curative activity. Pyrimethamine with an ED50 of 0.5 ± 0.1 mg/kg for the prophylactic, and chloroquine with ED50 = 2.2 ± 0.1 and 2.2 ± 0.0 mg/kg for the chemosuppressive and curative tests, respectively, were significantly (p < 0.05) more active. Co-administrations of N. latifolia with the standard drugs significantly reduced their prophylactic, chemosuppressive and curative actions, possibly increasing the parasites' resistance. Binary combinations of N. latifolia or M. koenigii with any of the other plants significantly increased the prophylactic and suppressive activities of their individual plants, respectively. Also, E. chlorantha with A. altilis or N. latifolia enhanced their respective prophylactic or curative activities, making these combinations most beneficial against malaria infections. Combinations of three and four extracts gave varied activities. Hence, the results justified the combinations of ethnomedicinal plants in antimalarial herbal remedies and showed the importance of the three in vivo models in establishing antimalarial activity. PMID:25162955

  14. Cryogenic hydrogen-induced air-liquefaction technologies for combined-cycle propulsion applications

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.

    1992-01-01

    Given here is a technical assessment of the realization of cryogenic hydrogen induced air liquefaction technologies in a prospective onboard aerospace vehicle process setting. The technical findings related to the status of air liquefaction technologies are reviewed. Compact lightweight cryogenic heat exchangers, heat exchanger atmospheric constituent fouling alleviation measures, para/ortho-hydrogen shift-conversion catalysts, cryogenic air compressors and liquid air pumps, hydrogen recycling using slush hydrogen as a heat sink, liquid hydrogen/liquid air rocket-type combustion devices, and technically related engine concepts are discussed. Much of the LACE work is related to aerospaceplane propulsion concepts that were developed in the 1960's. Emphasis is placed on the Liquid Air Cycle Engine (LACE).

  15. Studies of an extensively axisymmetric rocket based combined cycle (RBCC) engine powered single-stage-to-orbit (SSTO) vehicle

    SciTech Connect

    Foster, R.W.; Escher, W.J.D.; Robinson, J.W.

    1989-01-01

    The present comparative performance study has established that rocket-based combined cycle (RBCC) propulsion systems, when incorporated by essentially axisymmetric SSTO launch vehicle configurations whose conical forebody maximizes both capture-area ratio and total capture area, are capable of furnishing payload-delivery capabilities superior to those of most multistage, all-rocket launchers. Airbreathing thrust augmentation in the rocket-ejector mode of an RBCC powerplant is noted to make a major contribution to final payload capability, by comparison to nonair-augmented rocket engine propulsion systems. 16 refs.

  16. Studies of an extensively axisymmetric rocket based combined cycle (RBCC) engine powered single-stage-to-orbit (SSTO) vehicle

    NASA Technical Reports Server (NTRS)

    Foster, Richard W.; Escher, William J. D.; Robinson, John W.

    1989-01-01

    The present comparative performance study has established that rocket-based combined cycle (RBCC) propulsion systems, when incorporated by essentially axisymmetric SSTO launch vehicle configurations whose conical forebody maximizes both capture-area ratio and total capture area, are capable of furnishing payload-delivery capabilities superior to those of most multistage, all-rocket launchers. Airbreathing thrust augmentation in the rocket-ejector mode of an RBCC powerplant is noted to make a major contribution to final payload capability, by comparison to nonair-augmented rocket engine propulsion systems.

  17. Reuse fo a Cold War Surveillance Drone to Flight Test a NASA Rocket Based Combined Cycle Engine

    NASA Technical Reports Server (NTRS)

    Brown, T. M.; Smith, Norm

    1999-01-01

    Plans for and early feasibility investigations into the modification of a Lockheed D21B drone to flight test the DRACO Rocket Based Combined Cycle (RBCC) engine are discussed. Modifications include the addition of oxidizer tanks, modern avionics systems, actuators, and a vehicle recovery system. Current study results indicate that the D21B is a suitable candidate for this application and will allow demonstrations of all DRACO engine operating modes at Mach numbers between 0.8 and 4.0. Higher Mach numbers may be achieved with more extensive modification. Possible project risks include low speed stability and control, and recovery techniques.

  18. Cost versus life cycle assessment-based environmental impact optimization of drinking water production plants.

    PubMed

    Capitanescu, F; Rege, S; Marvuglia, A; Benetto, E; Ahmadi, A; Gutiérrez, T Navarrete; Tiruta-Barna, L

    2016-07-15

    Empowering decision makers with cost-effective solutions for reducing industrial processes environmental burden, at both design and operation stages, is nowadays a major worldwide concern. The paper addresses this issue for the sector of drinking water production plants (DWPPs), seeking for optimal solutions trading-off operation cost and life cycle assessment (LCA)-based environmental impact while satisfying outlet water quality criteria. This leads to a challenging bi-objective constrained optimization problem, which relies on a computationally expensive intricate process-modelling simulator of the DWPP and has to be solved with limited computational budget. Since mathematical programming methods are unusable in this case, the paper examines the performances in tackling these challenges of six off-the-shelf state-of-the-art global meta-heuristic optimization algorithms, suitable for such simulation-based optimization, namely Strength Pareto Evolutionary Algorithm (SPEA2), Non-dominated Sorting Genetic Algorithm (NSGA-II), Indicator-based Evolutionary Algorithm (IBEA), Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), Differential Evolution (DE), and Particle Swarm Optimization (PSO). The results of optimization reveal that good reduction in both operating cost and environmental impact of the DWPP can be obtained. Furthermore, NSGA-II outperforms the other competing algorithms while MOEA/D and DE perform unexpectedly poorly. PMID:27107954

  19. A "footprint" of plant carbon fixation cycle functions during the development of a heterotrophic fungus.

    PubMed

    Lyu, Xueliang; Shen, Cuicui; Xie, Jiatao; Fu, Yanping; Jiang, Daohong; Hu, Zijin; Tang, Lihua; Tang, Liguang; Ding, Feng; Li, Kunfei; Wu, Song; Hu, Yanping; Luo, Lilian; Li, Yuanhao; Wang, Qihua; Li, Guoqing; Cheng, Jiasen

    2015-01-01

    Carbon fixation pathway of plants (CFPP) in photosynthesis converts solar energy to biomass, bio-products and biofuel. Intriguingly, a large number of heterotrophic fungi also possess enzymes functionally associated with CFPP, raising the questions about their roles in fungal development and in evolution. Here, we report on the presence of 17 CFPP associated enzymes (ten in Calvin-Benson-Basham reductive pentose phosphate pathway and seven in C4-dicarboxylic acid cycle) in the genome of Sclerotinia sclerotiorum, a heterotrophic phytopathogenic fungus, and only two unique enzymes: ribulose-1, 5-bisphosphate carboxylase-oxygenase (Rubisco) and phosphoribulokinase (PRK) were absent. This data suggested an incomplete CFPP-like pathway (CLP) in fungi. Functional profile analysis demonstrated that the activity of the incomplete CLP was dramatically regulated during different developmental stages of S. sclerotiorum. Subsequent experiments confirmed that many of them were essential to the virulence and/or sclerotial formation. Most of the CLP associated genes are conserved in fungi. Phylogenetic analysis showed that many of them have undergone gene duplication, gene acquisition or loss and functional diversification in evolutionary history. These findings showed an evolutionary links in the carbon fixation processes of autotrophs and heterotrophs and implicated the functions of related genes were in course of continuous change in different organisms in evolution. PMID:26263551

  20. A methodology to estimate greenhouse gases emissions in Life Cycle Inventories of wastewater treatment plants

    SciTech Connect

    Rodriguez-Garcia, G.; Moreira, M.T.

    2012-11-15

    The main objective of this paper is to present the Direct Emissions Estimation Model (DEEM), a model for the estimation of CO{sub 2} and N{sub 2}O emissions from a wastewater treatment plant (WWTP). This model is consistent with non-specific but widely used models such as AS/AD and ASM no. 1 and presents the benefits of simplicity and application over a common WWTP simulation platform, BioWin Registered-Sign , making it suitable for Life Cycle Assessment and Carbon Footprint studies. Its application in a Spanish WWTP indicates direct N{sub 2}O emissions to be 8 times larger than those associated with electricity use and thus relevant for LCA. CO{sub 2} emissions can be of similar importance to electricity-associated ones provided that 20% of them are of non-biogenic origin. - Highlights: Black-Right-Pointing-Pointer A model has been developed for the estimation of GHG emissions in WWTP. Black-Right-Pointing-Pointer Model was consistent with both ASM no. 1 and AS/AD. Black-Right-Pointing-Pointer N{sub 2}O emissions are 8 times more relevant than the one associated with electricity. Black-Right-Pointing-Pointer CO{sub 2} emissions are as important as electricity if 20% of it is non-biogenic.

  1. Seasonal changes of violaxanthin cycle pigment de-epoxidation in wintergreen and evergreen plants.

    PubMed

    Dymova, Olga; Golovko, Tamara

    2012-01-01

    We studied carotenoids composition and the activities of the xanthophylls pigments in evergreen conifers (Abies sibirica, Juniperus communis, Picea obovata) and dwarf-shrub (Vaccinium vitis-idaea), and in wintergreen herbaceous plants (Ajuga reptans, Pyrola rotundifolia) growing near Syktyvkar (61°67(/) N 50°77(/) E). The carotenoid pool consisted mainly of following xanthophylls: lutein (70%), neoxanthin (7-10%) and a xanthophylls cycle component - violaxanthin (3-15%). Zeaxanthin and antheraxanthin were found in conifer samples collected in December-March while in other species - during all year. A direct connection between xanthophyll pigment de-epoxidation level and light energy thermal dissipation was shown only for boreal conifer species. It is proposed that zeaxanthin plays a central role in the dissipation of excess excitation energy (nonphotochemical quenching) in the antenna of photosystem II (PSII). We conclude that the increase in the extent of de-epoxidation is beneficial for the retention of PSII activity for conifers in early spring and for herbs in summer. PMID:22428127

  2. Coal diesel combined-cycle project. Annual report, January 1996--January 1997

    SciTech Connect

    1997-12-31

    The Clean Coal Diesel project will demonstrate a new Clean Coal Technology that has technical, economic and environmental advantages over conventional power generating methods. This innovative technology enables utilization of coal-based fuel in large-bore, medium-speed, diesel engines. Modular power generating applications in the 10 to 100 megawatt size range are the target applications. The University of Alaska campus in Fairbanks, Alaska, is the project`s host site. At this location, the University will construct and operate the Clean Coal Diesel System, which will serve as a 6.2 MW diesel powerplant addition. The University will also assemble and operate a 5-ton per hour coal-water fuel processing plant. The plant will utilize local coal, brought by truck from Usibelli`s mine in Healey, AK. The estimated performance characteristics of the mature commercial embodiment of the Clean Coal Diesel, if achieved, will make this technology quite competitive: 48% efficiency; $1,300/kW installed cost; and emission levels controlled to 50--70% below New Source Performance Standards. Specific objectives are to demonstrate that the Coal Diesel Technology: is durable and can operate 6,000 hours in a realistic commercial setting; will meet efficiency targets; can effectively control criteria pollutants to levels that are well below anticipated standards, as well as reduce greenhouse gas emissions; and can accommodate substantial power demand swings.

  3. Design and optimization of organic rankine cycle for low temperature geothermal power plant

    NASA Astrophysics Data System (ADS)

    Barse, Kirtipal A.

    Rising oil prices and environmental concerns have increased attention to renewable energy. Geothermal energy is a very attractive source of renewable energy. Although low temperature resources (90°C to 150°C) are the most common and most abundant source of geothermal energy, they were not considered economical and technologically feasible for commercial power generation. Organic Rankine Cycle (ORC) technology makes it feasible to use low temperature resources to generate power by using low boiling temperature organic liquids. The first hypothesis for this research is that using ORC is technologically and economically feasible to generate electricity from low temperature geothermal resources. The second hypothesis for this research is redesigning the ORC system for the given resource condition will improve efficiency along with improving economics. ORC model was developed using process simulator and validated with the data obtained from Chena Hot Springs, Alaska. A correlation was observed between the critical temperature of the working fluid and the efficiency for the cycle. Exergy analysis of the cycle revealed that the highest exergy destruction occurs in evaporator followed by condenser, turbine and working fluid pump for the base case scenarios. Performance of ORC was studied using twelve working fluids in base, Internal Heat Exchanger and turbine bleeding constrained and non-constrained configurations. R601a, R245ca, R600 showed highest first and second law efficiency in the non-constrained IHX configuration. The highest net power was observed for R245ca, R601a and R601 working fluids in the non-constrained base configuration. Combined heat exchanger area and size parameter of the turbine showed an increasing trend as the critical temperature of the working fluid decreased. The lowest levelized cost of electricity was observed for R245ca followed by R601a, R236ea in non-constrained base configuration. The next best candidates in terms of LCOE were R601a, R

  4. Combined DECS Analysis and Next-Generation Sequencing Enable Efficient Detection of Novel Plant RNA Viruses.

    PubMed

    Yanagisawa, Hironobu; Tomita, Reiko; Katsu, Koji; Uehara, Takuya; Atsumi, Go; Tateda, Chika; Kobayashi, Kappei; Sekine, Ken-Taro

    2016-03-01

    The presence of high molecular weight double-stranded RNA (dsRNA) within plant cells is an indicator of infection with RNA viruses as these possess genomic or replicative dsRNA. DECS (dsRNA isolation, exhaustive amplification, cloning, and sequencing) analysis has been shown to be capable of detecting unknown viruses. We postulated that a combination of DECS analysis and next-generation sequencing (NGS) would improve detection efficiency and usability of the technique. Here, we describe a model case in which we efficiently detected the presumed genome sequence of Blueberry shoestring virus (BSSV), a member of the genus Sobemovirus, which has not so far been reported. dsRNAs were isolated from BSSV-infected blueberry plants using the dsRNA-binding protein, reverse-transcribed, amplified, and sequenced using NGS. A contig of 4,020 nucleotides (nt) that shared similarities with sequences from other Sobemovirus species was obtained as a candidate of the BSSV genomic sequence. Reverse transcription (RT)-PCR primer sets based on sequences from this contig enabled the detection of BSSV in all BSSV-infected plants tested but not in healthy controls. A recombinant protein encoded by the putative coat protein gene was bound by the BSSV-antibody, indicating that the candidate sequence was that of BSSV itself. Our results suggest that a combination of DECS analysis and NGS, designated here as "DECS-C," is a powerful method for detecting novel plant viruses. PMID:27072419

  5. Combined DECS Analysis and Next-Generation Sequencing Enable Efficient Detection of Novel Plant RNA Viruses

    PubMed Central

    Yanagisawa, Hironobu; Tomita, Reiko; Katsu, Koji; Uehara, Takuya; Atsumi, Go; Tateda, Chika; Kobayashi, Kappei; Sekine, Ken-Taro

    2016-01-01

    The presence of high molecular weight double-stranded RNA (dsRNA) within plant cells is an indicator of infection with RNA viruses as these possess genomic or replicative dsRNA. DECS (dsRNA isolation, exhaustive amplification, cloning, and sequencing) analysis has been shown to be capable of detecting unknown viruses. We postulated that a combination of DECS analysis and next-generation sequencing (NGS) would improve detection efficiency and usability of the technique. Here, we describe a model case in which we efficiently detected the presumed genome sequence of Blueberry shoestring virus (BSSV), a member of the genus Sobemovirus, which has not so far been reported. dsRNAs were isolated from BSSV-infected blueberry plants using the dsRNA-binding protein, reverse-transcribed, amplified, and sequenced using NGS. A contig of 4,020 nucleotides (nt) that shared similarities with sequences from other Sobemovirus species was obtained as a candidate of the BSSV genomic sequence. Reverse transcription (RT)-PCR primer sets based on sequences from this contig enabled the detection of BSSV in all BSSV-infected plants tested but not in healthy controls. A recombinant protein encoded by the putative coat protein gene was bound by the BSSV-antibody, indicating that the candidate sequence was that of BSSV itself. Our results suggest that a combination of DECS analysis and NGS, designated here as “DECS-C,” is a powerful method for detecting novel plant viruses. PMID:27072419

  6. Climate change impairs processes of soil and plant N cycling in European beech forests on marginal soil

    NASA Astrophysics Data System (ADS)

    Tejedor, Javier; Gasche, Rainer; Gschwendtner, Silvia; Leberecht, Martin; Bimüller, Carolin; Kögel-Knabner, Ingrid; Pole, Andrea; Schloter, Michael; Rennenberg, Heinz; Simon, Judy; Hanewinkel, Marc; Baltensweiler, Andri; Bilela, Silvija; Dannenmann, Michael

    2014-05-01

    Beech forests of Central Europe are covering large areas with marginal calcareous soils, but provide important ecological services and represent a significant economical value. The vulnerability of these ecosystems to projected climate conditions (higher temperatures, increase of extreme drought and precipitation events) is currently unclear. Here we present comprehensive data on the influence of climate change conditions on ecosystem performance, considering soil nitrogen biogeochemistry, soil microbiology, mycorrhiza ecology and plant physiology. We simultaneously quantified major plant and soil gross N turnover processes by homogenous triple 15N isotope labeling of intact beech natural regeneration-soil-microbe systems. This isotope approach was combined with a space for time climate change experiment, i.e. we transferred intact beech seedling-soil-microbe mesocosms from a slope with N-exposure (representing present day climate conditions) to a slope with S exposure (serving as a warmer and drier model climate for future conditions). Transfers within N slope served as controls. After an equilibration period of 1 year, three isotope labeling/harvest cycles were performed. Reduced soil water content resulted in a persistent decline of ammonia oxidizing bacteria in soil (AOB). Consequently, we found a massive five-fold reduction of gross nitrification in the climate change treatment and a subsequent strong decline in soil nitrate concentrations as well as nitrate uptake by microorganisms and beech. Because nitrate was the major nutrient for beech in this forest type with little importance of ammonium and amino acids, this resulted in a strongly reduced performance of beech natural regeneration with reduced N content, N metabolite concentrations and plant biomass. These findings provided an explanation for a large-scale decline of distribution of beech forests on calcareous soils in Europe by almost 80% until 2080 predicted by statistical modeling. Hence, we

  7. Nitrogen Fertilization of Corn: Plant Biochemistry Effects and Carbon Cycle Implications

    NASA Astrophysics Data System (ADS)

    Gallagher, M. E.; Hockaday, W. C.; Masiello, C. A.; McSwiney, C. P.; Robertson, G. P.; Baldock, J. A.

    2008-05-01

    Atmospheric carbon dioxide (CO2) concentrations are rising due to anthropogenic CO2 emissions (Alley et al. 2007; Prentice et al. 2001). About half of the anthropogenic CO2 emitted during the 1990s was absorbed by the terrestrial biosphere and ocean (Prentice et al. 2001). It is possible to estimate the size of terrestrial and oceanic carbon sinks individually using atmospheric CO2 and O2 measurements (Keeling et al. 1996). To best estimate the sizes of these carbon sinks, we need to accurately know the oxidative ratio (OR) of the terrestrial biosphere (Randerson et al. 2006). OR is the ratio of the moles of O2 released per moles of CO2 consumed in gas fluxes between the terrestrial biosphere and atmosphere. Though it is likely that the net OR of the biosphere varies with ecosystem type and nutrient status, OR is assumed constant in carbon sink apportionment calculations (e.g. Prentice et al. 2001). Small shifts in OR can lead to large variations in the calculated sizes of the terrestrial biosphere and ocean carbon sinks (Randerson et al. 2006). OR likely shifts with changes in climate, nutrient status, and land use. These shifts are due, in part, to shifts in plant biochemistry. We are measuring ecosystem OR in corn agricultural ecosystems under a range of nitrogen fertilization treatments at the Kellogg Biological Station-Long Term Ecological Research Site (KBS-LTER) in Michigan. We measure OR indirectly, through its relationship with organic carbon oxidation state (Cox) (Masiello et al. in press 2008). Cox can be measured through elemental analysis and, with basic knowledge of plant nitrogen use patterns, Cox values can be converted to OR values. Cox can also be measured through 13C nuclear magnetic resonance spectroscopy (NMR), which can be combined with a molecular mixing model to determine Cox, OR, and plant biochemical composition (i.e. percentage carbohydrates, lignin, lipids, and proteins) (Baldock et al. 2004). Here we present data showing the effects of

  8. Ultrasensitive enzyme-linked immunosorbent assay (ELISA) of proteins by combination with the thio-NAD cycling method

    PubMed Central

    Watabe, Satoshi; Kodama, Hiromi; Kaneda, Mugiho; Morikawa, Mika; Nakaishi, Kazunari; Yoshimura, Teruki; Iwai, Atsushi; Miura, Toshiaki; Ito, Etsuro

    2014-01-01

    An ultrasensitive method for the determination of proteins is described that combines an enzyme-linked immunosorbent assay (ELISA) and a thionicotinamide-adenine dinucleotide (thio-NAD) cycling method. A sandwich method using a primary and a secondary antibody for antigens is employed in an ELISA. An androsterone derivative, 3α-hydroxysteroid, is produced by the hydrolysis of 3α-hydroxysteroid 3-phosphate with alkaline phosphatase linked to the secondary antibody. This 3α-hydroxysteroid is oxidized to a 3-ketosteroid by 3α- hydroxysteroid dehydrogenase (3α-HSD) with a cofactor thio-NAD. By the opposite reaction, the 3-ketosteroid is reduced to a 3α-hydroxysteroid by 3α-HSD with a cofactor NADH. During this cycling reaction, thio-NADH accumulates in a quadratic function-like fashion. Accumulated thio-NADH can be measured directly at an absorbance of 400 nm without any interference from other cofactors. These features enable us to detect a target protein with ultrasensitivity (10−19 mol/assay) by measuring the cumulative quantity of thio-NADH. Our ultrasensitive determination of proteins thus allows for the detection of small amounts of proteins only by the application of thio-NAD cycling reagents to the usual ELISA system. PMID:27493498

  9. Carbon isotopes of plant biomarkers record past changes in the carbon cycle, but separating signal from noise is key to reducing uncertainties

    NASA Astrophysics Data System (ADS)

    Diefendorf, A. F.; Freeman, K. H.; Wing, S. L.; Currano, E. D.

    2014-12-01

    The carbon isotopic composition of plant biomarkers (δ13C) can provide unique insights into the past carbon cycle perturbations and associated climate change, however local records are influenced by ecological processes, local climate, as well as changes in the carbon isotope composition of the atmosphere. To examine the sources and amounts of geographic variation, we focused on long-term changes in the carbon cycle. We combined modern calibrations, δ13C of biomarkers in sediment, and Monte Carlo analyses to measure and predict the fractionation of carbon isotopes by plants (Δleaf) and to estimate error. We used data from multiple sites of different ages, in the western U.S. For each age and location, Δleaf was calculated from the δ13C of plant biomarkers and atmospheric δ13C values inferred from marine carbonates. Δleaf values calculated from n-alkanes and triterpenoids (angiosperm biomarkers) were found to be the same at each site. Δleaf calculated from diterpenoids (conifer biomarkers) was 2‰ lower. This is consistent with differences in Δleaf between living angiosperms and conifers. Predicted Δleaf values, from modern calibrations and paleoclimate data, were consistently offset (0.7‰) from measured values indicating that modern calibrations are useful for reconciling past changes in plant fractionation and that vegetation and precipitation, like modern plants, were the key controls on Δleaf in ancient vegetation. However, uncertainties in the measured and predicted Δleaf values were very large (>2‰, 1σ). A one-at-a-time sensitivity analysis indicates that 'biological noise' in modern calibrations explains most of this uncertainty. If the full extent of this biological noise were transferred to sediments, then extracting signal from noise would be challenging. However, we speculate that the process of deposition homogenizes variability at the leaf and tree level thereby reducing 'biological noise' observed in modern calibrations.

  10. Topping combustor development for second-generation pressurized fluidized bed combined cycles

    SciTech Connect

    Domeracki, W.F.; Dowdy, T.E.; Bachovchin, D.M.

    1994-08-01

    A project team consisting of Foster Wheeler Development Corp. Westinghouse Electric Corp., Gilbert/Commonwealth and the Institute of Gas Technology, are developing a Second Generation Pressurized Fluidized Bed System. Foster Wheeler is developing a carbonizer (a partial gasifier) and a pressurized fluidized bed combustor. Both these units operate a nominal 1600{degrees}F (870{degrees}C) for optimal sulfur capture. Since this temperature is well below the current combustion turbine combustor outlet operating temperature of 2350{degrees}F (1290{degrees}C) to reach commercialization, a topping combustor and hot gas cleanup (HGCU) equipment must be developed. Westinghouse is participating in the development of the high temperature gas cleanup equipment and the topping combustor. This paper concentrates on the design and test of the topping combustor. The topping combustor in this cycle must utilize a low heating value syngas from the carbonizer at approximately 1600{degrees}F (870{degrees}C) and 150 to 210 psi (1.0 to 1.4 MPa). The syngas entering the topping combustor has been previously cleaned of particulates and alkali by the hot gas cleanup (HGCU) system. It also contains significant fuel bound nitrogen present as ammonia and other compounds. The fuel-bound nitrogen is significant because it will selectively convert to NO{sub x} if the fuel is burned under the highly oxidizing conditions of standard combustion turbine combustors.

  11. Performance evaluation of adding ethanol production into an existing combined heat and power plant.

    PubMed

    Starfelt, F; Thorin, E; Dotzauer, E; Yan, J

    2010-01-01

    In this paper, the configuration and performance of a polygeneration system are studied by modelling the integration of a lignocellulosic wood-to-ethanol process with an existing combined heat and power (CHP) plant. Data from actual plants are applied to validate the simulation models. The integrated polygeneration system reaches a total efficiency of 50%, meeting the heating load in the district heating system. Excess heat from the ethanol production plant supplies 7.9 MW to the district heating system, accounting for 17.5% of the heat supply at full heating load. The simulation results show that the production of ethanol from woody biomass is more efficient when integrated with a CHP plant compared to a stand-alone production plant. The total biomass consumption is reduced by 13.9% while producing the same amounts of heat, electricity and ethanol fuel as in the stand-alone configurations. The results showed that another feature of the integrated polygeneration system is the longer annual operating period compared to existing cogeneration. Thus, the renewable electricity production is increased by 2.7% per year. PMID:19758800

  12. A Technology Pathway for Airbreathing, Combined-Cycle, Horizontal Space Launch Through SR-71 Based Trajectory Modeling

    NASA Technical Reports Server (NTRS)

    Kloesel, Kurt J.; Ratnayake, Nalin A.; Clark, Casie M.

    2011-01-01

    Access to space is in the early stages of commercialization. Private enterprises, mainly under direct or indirect subsidy by the government, have been making headway into the LEO launch systems infrastructure, of small-weight-class payloads of approximately 1000 lbs. These moderate gains have emboldened the launch industry and they are poised to move into the middle-weight class (roughly 5000 lbs). These commercially successful systems are based on relatively straightforward LOX-RP, two-stage, bi-propellant rocket technology developed by the government 40 years ago, accompanied by many technology improvements. In this paper we examine a known generic LOX-RP system with the focus on the booster stage (1st stage). The booster stage is then compared to modeled Rocket-Based and Turbine-Based Combined Cycle booster stages. The air-breathing propulsion stages are based on/or extrapolated from known performance parameters of ground tested RBCC (the Marquardt Ejector Ramjet) and TBCC (the SR-71/J-58 engine) data. Validated engine models using GECAT and SCCREAM are coupled with trajectory optimization and analysis in POST-II to explore viable launch scenarios using hypothetical aerospaceplane platform obeying the aerodynamic model of the SR-71. Finally, and assessment is made of the requisite research technology advances necessary for successful commercial and government adoption of combined-cycle engine systems for space access.

  13. Testing of the NASA Hypersonics Project Combined Cycle Engine Large Scale Inlet Mode Transition Experiment (CCE LlMX)

    NASA Technical Reports Server (NTRS)

    Saunders, J. D.; Stueber, T. J.; Thomas, S. R.; Suder, K. L.; Weir, L. J.; Sanders, B. W.

    2012-01-01

    Status on an effort to develop Turbine Based Combined Cycle (TBCC) propulsion is described. This propulsion technology can enable reliable and reusable space launch systems. TBCC propulsion offers improved performance and safety over rocket propulsion. The potential to realize aircraft-like operations and reduced maintenance are additional benefits. Among most the critical TBCC enabling technologies are: 1) mode transition from turbine to scramjet propulsion, 2) high Mach turbine engines and 3) TBCC integration. To address these TBCC challenges, the effort is centered on a propulsion mode transition experiment and includes analytical research. The test program, the Combined-Cycle Engine Large Scale Inlet Mode Transition Experiment (CCE LIMX), was conceived to integrate TBCC propulsion with proposed hypersonic vehicles. The goals address: (1) dual inlet operability and performance, (2) mode-transition sequences enabling a switch between turbine and scramjet flow paths, and (3) turbine engine transients during transition. Four test phases are planned from which a database can be used to both validate design and analysis codes and characterize operability and integration issues for TBCC propulsion. In this paper we discuss the research objectives, features of the CCE hardware and test plans, and status of the parametric inlet characterization testing which began in 2011. This effort is sponsored by the NASA Fundamental Aeronautics Hypersonics project

  14. Contribution of aboveground plant respiration to carbon cycling in a Bornean tropical rainforet

    NASA Astrophysics Data System (ADS)

    Katayama, Ayumi; Tanaka, Kenzo; Ichie, Tomoaki; Kume, Tomonori; Matsumoto, Kazuho; Ohashi, Mizue; Kumagai, Tomo'omi

    2014-05-01

    Bornean tropical rainforests have a different characteristic from Amazonian tropical rainforests, that is, larger aboveground biomass caused by higher stand density of large trees. Larger biomass may cause different carbon cycling and allocation pattern. However, there are fewer studies on carbon allocation and each component in Bornean tropical rainforests, especially for aboveground plant respiration, compared to Amazonian forests. In this study, we measured woody tissue respiration and leaf respiration, and estimated those in ecosystem scale in a Bornean tropical rainforest. Then, we examined carbon allocation using the data of soil respiration and aboveground net primary production obtained from our previous studies. Woody tissue respiration rate was positively correlated with diameter at breast height (dbh) and stem growth rate. Using the relationships and biomass data, we estimated woody tissue respiration in ecosystem scale though methods of scaling resulted in different estimates values (4.52 - 9.33 MgC ha-1 yr-1). Woody tissue respiration based on surface area (8.88 MgC ha-1 yr-1) was larger than those in Amazon because of large aboveground biomass (563.0 Mg ha-1). Leaf respiration rate was positively correlated with height. Using the relationship and leaf area density data at each 5-m height, leaf respiration in ecosystem scale was estimated (9.46 MgC ha-1 yr-1), which was similar to those in Amazon because of comparable LAI (5.8 m2 m-2). Gross primary production estimated from biometric measurements (44.81 MgC ha-1 yr-1) was much higher than those in Amazon, and more carbon was allocated to woody tissue respiration and total belowground carbon flux. Large tree with dbh > 60cm accounted for about half of aboveground biomass and aboveground biomass increment. Soil respiration was also related to position of large trees, resulting in high soil respiration rate in this study site. Photosynthesis ability of top canopy for large trees was high and leaves for

  15. Comparative analysis of optimisation methods applied to thermal cycle of a coal fired power plant

    NASA Astrophysics Data System (ADS)

    Kowalczyk, Łukasz; Elsner, Witold

    2013-12-01

    The paper presents a thermodynamic optimization of 900MW power unit for ultra-supercritical parameters, modified according to AD700 concept. The aim of the study was to verify two optimisation methods, i.e., the finding the minimum of a constrained nonlinear multivariable function (fmincon) and the Nelder-Mead method with their own constrain functions. The analysis was carried out using IPSEpro software combined with MATLAB, where gross power generation efficiency was chosen as the objective function. In comparison with the Nelder-Mead method it was shown that using fmincon function gives reasonable results and a significant reduction of computational time. Unfortunately, with the increased number of decision parameters, the benefit measured by the increase in efficiency is becoming smaller. An important drawback of fmincon method is also a lack of repeatability by using different starting points. The obtained results led to the conclusion, that the Nelder-Mead method is a better tool for optimisation of thermal cycles with a high degree of complexity like the coal-fired power unit.

  16. The influence of operating temperature on the efficiency of a combined heat and power fuel cell plant

    NASA Astrophysics Data System (ADS)

    Au, S. F.; McPhail, S. J.; Woudstra, N.; Hemmes, K.

    It is generally accepted that the ideal operating temperature of a molten carbonate fuel cell (MCFC) is 650 °C. Nevertheless, when waste heat utilization in the form of an expander and steam production cycle is introduced in the system, another temperature level might prove more productive. This article is a first attempt to the optimization of MCFC operating temperatures of a MCFC system by presenting a case study in which the efficiency of a combined heat and power (CHP) plant is analyzed. The fuel cell plant under investigation is designed around a 250 kW-class MCFC fuelled by natural gas, which is externally reformed by a heat exchange reformer (HER). The operating temperature of the MCFC is varied over a temperature range between 600 and 700 °C while keeping the rest of the system the same as far as possible. Changes in energetic efficiency are given and the causes of these changes are further analyzed. Furthermore, the exergetic efficiencies of the system and the distribution of exergy losses in the system are given. Flowsheet calculations show that there is little dependency on the temperature in the first order. Both the net electrical performance and the overall exergetic performance show a maximum at approximately 675 °C, with an electrical efficiency of 51.9% (LHV), and an exergy efficiency of 58.7%. The overall thermal efficiency of this CHP plant increases from 87.1% at 600 °C to 88.9% at 700 °C. Overall, the change in performance is small in this typical range of MCFC operating temperature.

  17. Cooling towers for combined cycles: New developments to meet environmental requirements

    NASA Astrophysics Data System (ADS)

    Vouche, M.; Bouton, F.; Lemmens, P.

    Two new developments in dry cooling systems are presented: the single row condenser (SRC) finned tube and the natural draft air-cooled condenser (NDC). The SRC tube is a flat finned tube based on a technology used for compact heat exchangers. This tube was specifically developed for vacuum air-cooled condensers. The serpentine fins of the SRC tube could be made in aluminum or in galvanized steel. The special technique of the brazing of the aluminum fins is described. A technical and economical comparison is made between the classical dry cooling equipment and the NDC. This comparison concludes with the high economic interest in combining the NDC and the single row design. The mechanical draught wet cooling towers with plume abatement are introduced and compared to classical parallel hybrid and reduced plume towers. The environmental impact of wet cooling towers is discussed with regard to heat and mass transfer, plume, bulkiness, and noise.

  18. The interrelationship between the lower oxygen limit, chlorophyll fluorescence and the xanthophyll cycle in plants.

    PubMed

    Wright, A Harrison; DeLong, John M; Gunawardena, Arunika H L A N; Prange, Robert K

    2011-03-01

    The lower oxygen limit (LOL) in plants may be identified through the measure of respiratory gases [i.e. the anaerobic compensation point (ACP) or the respiratory quotient breakpoint (RQB)], but recent work shows it may also be identified by a sudden rise in dark minimum fluorescence (F(o)). The interrelationship between aerobic respiration and fermentative metabolism, which occur in the mitochondria and cytosol, respectively, and fluorescence, which emanates from the chloroplasts, is not well documented in the literature. Using spinach (Spinacia oleracea), this study showed that F(o) and photochemical quenching (q(P)) remained relatively unchanged until O(2) levels dropped below the LOL. An over-reduction of the plastoquinone (PQ) pool is believed to increase F(o) under dark + anoxic conditions. It is proposed that excess cytosolic reductant due to inhibition of the mitochondria's cytochrome oxidase under low-O(2), may be the primary reductant source. The maximum fluorescence (F(m)) is largely unaffected by low-O(2) in the dark, but was severely quenched, mirroring changes to the xanthophyll de-epoxidation state (DEPS), under even low-intensity light (≈4 μmol m(-2) s(-1)). In low light, the low-O(2)-induced increase in F(o) was also quenched, likely by non-photochemical and photochemical means. The degree of quenching in the light was negatively correlated with the level of ethanol fermentation in the dark. A discussion detailing the possible roles of cyclic electron flow, the xanthophyll cycle, chlororespiration and a pathway we termed 'chlorofermentation' were used to interpret fluorescence phenomena of both spinach and apple (Malus domestica) over a range of atmospheric conditions under both dark and low-light. PMID:21290261

  19. Unravelling the impact of inheritance within the Wilson Cycle: a combined mapping and numerical modelling approach

    NASA Astrophysics Data System (ADS)

    Chenin, Pauline; Manatschal, Gianreto; Lavier, Luc

    2015-04-01

    Our study aims to unravel how structural, lithological and thermal heterogeneities may influence both orogenic and rift systems within the Wilson Cycle. To do this, we map first-order rift structural domains, timing of the main rift events as well as major heterogeneities and structures inherited from previous orogenies. Besides, we design numerical modelling experiments to investigate the relationships highlighted from the comparison of these maps. We apply this approach to the North Atlantic region, which underwent two major orogenic phases during the Palaeozoic: (1) the Caledonian orogeny - now extending from United-Kingdom to northern Norway and Eastern Greenland - resulted from the Late Ordovician closure of the large Iapetus ocean (> 2 000 km) and smaller Tornquist Seaway. It was followed by purely mechanical extensional orogenic collapse; (2) the Variscides of Southwestern Europe were essentially built from the Devono-Carboniferous suturing of several small oceanic basins (< 200 km) in addition to the large Rheic Ocean. The subsequent orogenic collapse was accompanied by significant magmatic activity, which resulted in mafic underplating and associated mantle depletion over the whole orogenic area. Our study is twofolds: On the one hand, we investigate how the size and maturity of the intervening oceanic basins affect subduction and orogeny, considering two end-members: (a) immature oceanic basins defined as hyperextended rift systems that never achieved steady state seafloor spreading; and (b) mature oceans characterized by a self-sustained magmatic system forming homogeneous oceanic crust. On the other hand, we study how post-orogenic collapse-related underplating and associated mantle depletion may impact subsequent rifting depending on the thermal state (e.g. the duration of relaxation time between the magmatic episode and the onset of rifting). Our results highlight a very different behaviour of the North Atlantic rift with respect to the Caledonian and

  20. Combination of Potassium Pentagamavunon-0 and Doxorubicin Induces Apoptosis and Cell Cycle Arrest and Inhibits Metastasis in Breast Cancer Cells.

    PubMed

    Putri, Herwandhani; Jenie, Riris Istighfari; Handayani, Sri; Kastian, Ria Fajarwati; Meiyanto, Edy

    2016-01-01

    A salt compound of a curcumin analogue, potassium pentagamavunon-0 (K PGV-0) has been synthesized to improve solubility of pentagamavunon-0 which has been proven to have anti-proliferative effects on several cancer cells. The purpose of this study was to investigate cytotoxic activity and metastasis inhibition by K PGV- 0 alone and in combination with achemotherapeutic agent, doxorubicin (dox), in breast cancer cells. Based on MTT assay analysis, K PGV-0 showed cytotoxic activity in T47D and 4T1 cell lines with IC50 values of 94.9 μM and 49.0±0.2 μM, respectively. In general, K PGV-0+dox demonstrated synergistic effects and decreased cell viability up to 84.7% in T47D cells and 62.6% in 4T1 cells. Cell cycle modulation and apoptosis induction were examined by flow cytometry. K PGV-0 and K PGV-0+dox caused cell accumulation in G2/M phase and apoptosis induction. Regarding cancer metastasis, while K PGV-0 alone did not show any inhibition of 4T1 cell migration, K PGV-0+dox exerted inhibition. K PGV-0 and its combination with dox inhibited the activity of MMP-9 which has a pivotal role in extracellular matrix degradation. These results show that a combination of K PGV-0 and doxorubicin inhibits cancer cell growth through cell cycling, apoptosis induction, and inhibition of cell migration and MMP-9 activity. Therefore, K PGV-0 may have potential for development as a co-chemotherapeutic agent. PMID:27268651