Science.gov

Sample records for combined cycle plant

  1. Combined cycle power plant incorporating coal gasification

    DOEpatents

    Liljedahl, Gregory N.; Moffat, Bruce K.

    1981-01-01

    A combined cycle power plant incorporating a coal gasifier as the energy source. The gases leaving the coal gasifier pass through a liquid couplant heat exchanger before being used to drive a gas turbine. The exhaust gases of the gas turbine are used to generate both high pressure and low pressure steam for driving a steam turbine, before being exhausted to the atmosphere.

  2. Hybrid solar central receiver for combined cycle power plant

    DOEpatents

    Bharathan, D.; Bohn, M.S.; Williams, T.A.

    1995-05-23

    A hybrid combined cycle power plant is described including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production. 1 figure.

  3. Hybrid solar central receiver for combined cycle power plant

    DOEpatents

    Bharathan, Desikan; Bohn, Mark S.; Williams, Thomas A.

    1995-01-01

    A hybrid combined cycle power plant including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production.

  4. Prospective steam turbines for combined-cycle plants

    NASA Astrophysics Data System (ADS)

    Barinberg, G. D.; Valamin, A. E.; Kultyshev, A. Yu.

    2008-08-01

    The design features and basic thermal scheme of the steam turbines developed on the basis of series-produced steam turbines of ZAO Ural Turbine Works for combined-cycle plants are presented, and their efficiency during operation as part of these plants is considered.

  5. A comparison of humid air turbine (HAT) cycle and combined-cycle power plants

    SciTech Connect

    Rao, A.D.; Francuz, V.J.; Shen, J.C.; West, E.W. )

    1991-03-01

    The Humid Air Turbine (HAT) cycle is a combustion turbine-based power generating cycle that provides an alternative to combined-cycle power generation. The HAT cycle differs from combined cycles in that it eliminates the steam turbine bottoming cycle by vaporizing water into the turbine's combustion air with heat obtained from the combustion turbine exhaust and other heat sources. This report presents the results of a study conducted by Fluor Daniel, Inc. for EPRI in which the HAT cycle was compared with combined-cycle plants in integration with the Texaco coal gasification process, and in natural gas-fired plants. The comparison of the coal gasification-based power plants utilizing the HAT cycle with Texaco coal gasification-based combined-cycle plants indicate that HAT cycle-based plants are less expensive and produce less environmental emissions. Whereas the combined-cycle plants require the use of expensive syngas coolers to achieve high efficiencies, the HAT cycle plants can achieve similar high efficiencies without the use of such equipment, resulting in a significant savings in capital cost and a reduction in levelized cost of electricity of up to 15%. In addition, HAT cycle plants produce very low levels of NO{sub x} emissions, possibly as little as 6 ppmv (dry, 15% O{sub 2} basis) without requiring the use of control technologies such as selective catalytic reduction. In natural gas-fired plants, the HAT cycle was calculated to have as much as a 4 percentage point gain in efficiency over the combined cycle and a potential for substantial reductions in NO{sub x} emissions, CO{sub 2} emissions, and water consumption. 71 figs., 74 tabs.

  6. Survey of integrated gasification combined cycle power plant performance estimates

    NASA Astrophysics Data System (ADS)

    Larson, J. W.

    1980-03-01

    The idea of a combined cycle power plant integrated with a coal gasification process has attracted broad interest in recent years. This interest is based on unique attributes of this concept which include potentially low pollutant emissions, low heat rate and competitive economics as compared to conventional steam plants with stack gas scrubbing. Results from a survey of technical literature containing performance and economic predictions have been compiled for comparison and evaluation of this new technique. These performance and economic results indicate good promise for near-term commercialization of an integrated gasification combined cycle power plant using current gas turbine firing temperatures. Also, these data show that advancements in turbine firing temperature are expected to provide sufficiently favorable economics for the concept to penetrate the market now held by conventional steam power plants.

  7. Combined-cycle cogen plant a successful good neighbor

    SciTech Connect

    Not Available

    1993-04-01

    This article describes a new natural-gas-fired combined cycle cogeneration plant in Bellingham, Washington. The topics of the article include community impact, siting constraints, natural gas fuel, the flexibility provided by the steam turbine, the cooling tower and pumps, air-quality, noise, and cooling water system constraints, and community relations program.

  8. Thermodynamics of combined-cycle electric power plants

    NASA Astrophysics Data System (ADS)

    Leff, Harvey S.

    2012-06-01

    Published data imply an average thermal efficiency of about 0.34 for U.S. electricity generating plants. With clever use of thermodynamics and technology, modern gas and steam turbines can be coupled, to effect dramatic efficiency increases. These combined-cycle power plants now reach thermal efficiencies in excess of 0.60. It is shown how the laws of thermodynamics make this possible.

  9. Operational strategies for dispatchable combined cycle plants, Part II

    SciTech Connect

    Nolan, J.P.; Landis, F.P.

    1996-11-01

    The Brush Cogeneration Facility is a dual-unit, combined cycle, cogeneration plant, operating in a dual cycling, automatically-dispatchable mode. Part I of this report described the contract, including automatic generation control (AGC) by Public Service Company of Colorado (PSCO), and the operation of Unit One. This part of the report covers the operation of Unit Two. Unit two is still in its operating infancy, but is showing that fuel efficiency and low emissions levels are not incompatible with cycling, load-following service. 1 fig.

  10. Combined cycle plants: Yesterday, today, and tomorrow (review)

    NASA Astrophysics Data System (ADS)

    Ol'khovskii, G. G.

    2016-07-01

    Gas turbine plants (GTP) for a long time have been developed by means of increasing the initial gas temperature and improvement of the turbo-machines aerodynamics and the efficiency of the critical components air cooling within the framework of a simple thermodynamic cycle. The application of watercooling systems that were used in experimental turbines and studied approximately 50 years ago revealed the fundamental difficulties that prevented the practical implementation of such systems in the industrial GTPs. The steam cooling researches have developed more substantially. The 300 MW power GTPs with a closedloop steam cooling, connected in parallel with the intermediate steam heating line in the steam cycle of the combined cycle plant (CCP) have been built, tested, and put into operation. The designs and cycle arrangements of such GTPs and entire combined cycle steam plants have become substantially more complicated without significant economic benefits. As a result, the steam cooling of gas turbines has not become widespread. The cycles—complicated by the intermediate air cooling under compression and reheat of the combustion products under expansion and their heat recovery to raise the combustion chamber entry temperature of the air—were used, in particular, in the domestic power GTPs with a moderate (700-800°C) initial gas turbine entry temperature. At the temperatures being reached to date (1300-1450°C), only one company, Alstom, applies in their 240-300 MW GTPs the recycled fuel cycle under expansion of gases in the turbine. Although these GTPs are reliable, there are no significant advantages in terms of their economy. To make a forecast of the further improvement of power GTPs, a brief review and assessment of the water cooling and steam cooling of hot components and complication of the GTP cycle by the recycling of fuel under expansion of gases in the turbine has been made. It is quite likely in the long term to reach the efficiency for the

  11. Steam turbine development for advanced combined cycle power plants

    SciTech Connect

    Oeynhausen, H.; Bergmann, D.; Balling, L.; Termuehlen, H.

    1996-12-31

    For advanced combined cycle power plants, the proper selection of steam turbine models is required to achieve optimal performance. The advancements in gas turbine technology must be followed by advances in the combined cycle steam turbine design. On the other hand, building low-cost gas turbines and steam turbines is desired which, however, can only be justified if no compromise is made in regard to their performance. The standard design concept of two-casing single-flow turbines seems to be the right choice for most of the present and future applications worldwide. Only for very specific applications it might be justified to select another design concept as a more suitable option.

  12. Model Predictive Control of Integrated Gasification Combined Cycle Power Plants

    SciTech Connect

    B. Wayne Bequette; Priyadarshi Mahapatra

    2010-08-31

    The primary project objectives were to understand how the process design of an integrated gasification combined cycle (IGCC) power plant affects the dynamic operability and controllability of the process. Steady-state and dynamic simulation models were developed to predict the process behavior during typical transients that occur in plant operation. Advanced control strategies were developed to improve the ability of the process to follow changes in the power load demand, and to improve performance during transitions between power levels. Another objective of the proposed work was to educate graduate and undergraduate students in the application of process systems and control to coal technology. Educational materials were developed for use in engineering courses to further broaden this exposure to many students. ASPENTECH software was used to perform steady-state and dynamic simulations of an IGCC power plant. Linear systems analysis techniques were used to assess the steady-state and dynamic operability of the power plant under various plant operating conditions. Model predictive control (MPC) strategies were developed to improve the dynamic operation of the power plants. MATLAB and SIMULINK software were used for systems analysis and control system design, and the SIMULINK functionality in ASPEN DYNAMICS was used to test the control strategies on the simulated process. Project funds were used to support a Ph.D. student to receive education and training in coal technology and the application of modeling and simulation techniques.

  13. The optimization air separation plants for combined cycle MHD-power plant applications

    NASA Technical Reports Server (NTRS)

    Juhasz, A. J.; Springmann, H.; Greenberg, R.

    1980-01-01

    Some of the design approaches being employed during a current supported study directed at developing an improved air separation process for the production of oxygen enriched air for magnetohydrodynamics (MHD) combustion are outlined. The ultimate objective is to arrive at conceptual designs of air separation plants, optimized for minimum specific power consumption and capital investment costs, for integration with MHD combined cycle power plants.

  14. Steam turbines of the Ural Turbine Works for combined-cycle plants

    NASA Astrophysics Data System (ADS)

    Barinberg, G. D.; Valamin, A. E.; Kultyshev, A. Yu.; Linder, T. Yu.

    2009-09-01

    Matters concerned with selecting the equipment for combined-cycle plants within the framework of work on implementing the investment program of Russian power engineering are discussed. The proposals of ZAO Ural Turbine Works regarding the supplies of steam turbines for combined-cycle plants used at retrofitted and newly constructed power stations are described.

  15. Catalytic combustor for integrated gasification combined cycle power plant

    DOEpatents

    Bachovchin, Dennis M.; Lippert, Thomas E.

    2008-12-16

    A gasification power plant 10 includes a compressor 32 producing a compressed air flow 36, an air separation unit 22 producing a nitrogen flow 44, a gasifier 14 producing a primary fuel flow 28 and a secondary fuel source 60 providing a secondary fuel flow 62 The plant also includes a catalytic combustor 12 combining the nitrogen flow and a combustor portion 38 of the compressed air flow to form a diluted air flow 39 and combining at least one of the primary fuel flow and secondary fuel flow and a mixer portion 78 of the diluted air flow to produce a combustible mixture 80. A catalytic element 64 of the combustor 12 separately receives the combustible mixture and a backside cooling portion 84 of the diluted air flow and allows the mixture and the heated flow to produce a hot combustion gas 46 provided to a turbine 48. When fueled with the secondary fuel flow, nitrogen is not combined with the combustor portion.

  16. LNG combined cycle power plant for stable power supply for Kiheung semiconductor plant

    SciTech Connect

    Chang, Choong Koo; Park, Hyo Jeong; Kim, In Chool

    1995-12-31

    Reserve margins of Korea Electric Power Corporation (KEPCO) was 12% in 1993, however it was reduced to less than 3% in the summer of 1994 due to increase of electric power consumption caused by life style change based on economic growth. Therefore stable supply of electric power to industrial plant was threatened during last summer`s peak. The process of semiconductor manufacturing is very precious and full processing time reaches several months. Furthermore interruption of power supply to the process causes abortion of every product in the process. Therefore, power failure of less than one (1) second, may result in enormous loss of capital. In order to protect disaster caused by power shortage during summer peaks. Samsung Electronics Co., Ltd (SEC) planned to construct LNG combined cycle power plant for the Klheung semiconductor plant which is the world`s leading maker of dynamic random access memory (DRAM) chips.

  17. Combined-cycle plant built in record time

    SciTech Connect

    1995-04-01

    This article reports that this low-cost cogeneration plant meets residential community`s environmental concerns with noise minimization, emissions control, and zero wastewater discharge. Supplying electricity to the local utility and steam to two hosts, the Auburndale cogeneration facility embodies the ``reference plant`` design approach developed by Westinghouse Power Generation (WPG), Orlando, Fla. With this approach customers meet their particular needs by choosing from a standard package of plant equipment and design options. Main goals of the concept are reduced construction time efficient and reliable power generation, minimal operating staff, and low cost. WPG built the plant on a turnkey basis for Auburndale Power Partners Limited Partnership (APP). APP is a partially owned subsidiary of Mission Energy, a California-based international developer and operator of independent-power facilities. The cogeneration facility supplies 150 MW of electric power to Florida Power Corp and exports 120,000 lb/hr of steam to Florida Distillers Co and Coca-Cola Foods.

  18. Innovative open air brayton combined cycle systems for the next generation nuclear power plants

    NASA Astrophysics Data System (ADS)

    Zohuri, Bahman

    The purpose of this research was to model and analyze a nuclear heated multi-turbine power conversion system operating with atmospheric air as the working fluid. The air is heated by a molten salt, or liquid metal, to gas heat exchanger reaching a peak temperature of 660 0C. The effects of adding a recuperator or a bottoming steam cycle have been addressed. The calculated results are intended to identify paths for future work on the next generation nuclear power plant (GEN-IV). This document describes the proposed system in sufficient detail to communicate a good understanding of the overall system, its components, and intended uses. The architecture is described at the conceptual level, and does not replace a detailed design document. The main part of the study focused on a Brayton --- Rankine Combined Cycle system and a Recuperated Brayton Cycle since they offer the highest overall efficiencies. Open Air Brayton power cycles also require low cooling water flows relative to other power cycles. Although the Recuperated Brayton Cycle achieves an overall efficiency slightly less that the Brayton --- Rankine Combined Cycle, it is completely free of a circulating water system and can be used in a desert climate. Detailed results of modeling a combined cycle Brayton-Rankine power conversion system are presented. The Rankine bottoming cycle appears to offer a slight efficiency advantage over the recuperated Brayton cycle. Both offer very significant advantages over current generation Light Water Reactor steam cycles. The combined cycle was optimized as a unit and lower pressure Rankine systems seem to be more efficient. The combined cycle requires a lot less circulating water than current power plants. The open-air Brayton systems appear to be worth investigating, if the higher temperatures predicted for the Next Generation Nuclear Plant do materialize.

  19. Integrated operation and management system for a 700MW combined cycle power plant

    SciTech Connect

    Shiroumaru, I. ); Iwamiya, T. ); Fukai, M. )

    1992-03-01

    Yanai Power Plant of the Chugoku Electric Power Co., Inc. (Yamaguchi Pref., Japan) is in the process of constructing a 1400MW state-of-the-art combined cycle power plant. The first phase, a 350MW power plant, started operation on a commercial basis in November, 1990. This power plant has achieved high efficiency and high operability, major features of a combined cycle power plant. The integrated operation and management system of the power plant takes care of operation, maintenance, control of general business, etc., and was built using the latest computer and digital control and communication technologies. This paper reports that it is expected that this system will enhance efficient operation and management for the power plant.

  20. Gasifier/combined-cycle plant minimizes environmental impacts. [California, coal water process

    SciTech Connect

    Not Available

    1985-04-01

    The successful operation of the Cool Water integrated gasification/ combined cycle power plant is reported. As the only coal-fired power station in California it has easily met the Federal new-source performance standards for emissions and the State's strict pollution-control laws. Details are given of plant performance and air-polluting emissions.

  1. Cogeneration and combined cycle plants emdash design, interconnection, and turbine applications

    SciTech Connect

    Schroeter, J.W.

    1990-01-01

    This book contains papers presented at the 1990 International Joint Power Generation Conference. Included are the following articles: Design and operation of Ambarli combined cycle power plant, Possibilities and examples of heat generation at low cost, Thermal performance testing of non-utility power plants.

  2. Diagnosis of Thermal Efficiency of Advanced Combined Cycle Power Plants Using Optical Torque Sensors

    NASA Astrophysics Data System (ADS)

    Umezawa, Shuichi

    A new optical torque measurement method was applied to diagnosis of thermal efficiency of advanced combined cycle, i.e. ACC, plants. Since the ACC power plant comprises a steam turbine and a gas turbine and both of them are connected to the same generator, it is difficult to identify which turbine in the plant deteriorates the performance when the plant efficiency is reduced. The sensor measures axial distortion caused by power transmission by use of He-Ne laser beams, small stainless steel reflectors having bar-code patterns, and a technique of signal processing featuring high frequency. The sensor was applied to the ACC plants of TOKYO ELECTRIC POWER COMPANY, TEPCO, following the success in the application to the early combined cycle plants of TEPCO. The sensor performance was inspected over a year. After an improvement related to the signal process, it is considered that the sensor performance has reached a practical use level.

  3. Reliability and availability assessments of selected domestic combined-cycle power-generating plants

    NASA Astrophysics Data System (ADS)

    Brown, H. W.; Gardner, N. J.

    1982-08-01

    This report presents the results of reliability and availability assessment performed with the cooperation of seven utilities operating combined-cycle power plants in service since 1974 to evaluate: combined-cycle unit equivalent availability and equivalent forced outage rates; system and component mean time between failures (MTBF) and mean downtime (MDT); and gas turbine reliability correlations with service hours, starting frequency, fuel type, and service factor. A data base was developed for 45 plant components or systems for the period 1978 through 1980; this led to recommendations for improving outage data collection for the purpose of reliability analysis. In addition reliability, availability, and maintainability prediction models for several commercial combined cycle plant designs were developed and validated.

  4. Reliability and availability assessments of selected domestic combined-cycle power-generating plants. Final report

    SciTech Connect

    Brown, H.W.; Gardner, N.J.

    1982-08-01

    This report presents the results of reliability and availability assessments performed with the cooperation of seven utilities operating combined-cycle power plants in service since 1974 to evaluate: combined-cycle unit equivalent availability and equivalent forced outage rates; system and component mean time between failures (MTBF) and mean downtime (MDT); and gas turbine reliability correlations with service hours, starting frequency, fuel type, and service factor. A data base was developed for 45 plant components or systems for the period 1978 through 1980; this led to recommendations for improving outage data collection for the purpose of reliability analysis. In addition reliability, availability, and maintainability prediction models for several commercial combined-cycle plant designs were developed and validated.

  5. Combined-cycle power plant experience in Pakistan and Egypt. Final report

    SciTech Connect

    Not Available

    1991-06-01

    The paper examines combined cycle power plants installed by A.I.D. in Pakistan and Egypt. Results show that, compared to coal-fired steam plants, the combined-cycle technology has a number of advantages, including: lower capital costs per megawatt, shorter construction schedules, similar availability, higher efficiency, and reduced environmental impact. The report cautions that operations in a power shortage situation induce stresses that may affect long-term reliability or equipment life. Recommendations are offered for electric utilities in developing countries and international donors.

  6. Introduction to combined cycles

    NASA Astrophysics Data System (ADS)

    Moore, M. J.

    Ideas and concepts underlying the technology of combined cycles including the scientific principles involved and the reasons these cycles are in fashion at the present time, are presented. A cycle is a steady flow process for conversion of heat energy into work, in which a working medium passes through a range of states, returning to its original state. Cycles for power production are the steam cycle, which is a closed cycle, and the gas turbine, which represents an open cycle. Combined cycle thermodynamic parameters, are discussed. The general arrangement of the plant is outlined and important features of their component parts described. The scope for future development is discussed. It is concluded that for the next few years the natural gas fired combined cycle will be the main type of plant installed for electricity generation and cogeneration. Whilst gas turbines may not increase substantially in unit size, there remains scope for further increase in firing temperature with consequent increase in cycle performance. However the larger global reserves of coal are providing an incentive to the development of plant for clean coal combustion using the inherent advantage of the combined cycle to attain high efficiencies.

  7. Development of a plant-wide dynamic model of an integrated gasification combined cycle (IGCC) plant

    SciTech Connect

    Bhattacharyya, D.; Turton, R.; Zitney, S.

    2009-01-01

    In this presentation, development of a plant-wide dynamic model of an advanced Integrated Gasification Combined Cycle (IGCC) plant with CO2 capture will be discussed. The IGCC reference plant generates 640 MWe of net power using Illinois No.6 coal as the feed. The plant includes an entrained, downflow, General Electric Energy (GEE) gasifier with a radiant syngas cooler (RSC), a two-stage water gas shift (WGS) conversion process, and two advanced 'F' class combustion turbines partially integrated with an elevated-pressure air separation unit (ASU). A subcritical steam cycle is considered for heat recovery steam generation. Syngas is selectively cleaned by a SELEXOL acid gas removal (AGR) process. Sulfur is recovered using a two-train Claus unit with tail gas recycle to the AGR. A multistage intercooled compressor is used for compressing CO2 to the pressure required for sequestration. Using Illinois No.6 coal, the reference plant generates 640 MWe of net power. The plant-wide steady-state and dynamic IGCC simulations have been generated using the Aspen Plus{reg_sign} and Aspen Plus Dynamics{reg_sign} process simulators, respectively. The model is generated based on the Case 2 IGCC configuration detailed in the study available in the NETL website1. The GEE gasifier is represented with a restricted equilibrium reactor model where the temperature approach to equilibrium for individual reactions can be modified based on the experimental data. In this radiant-only configuration, the syngas from the Radiant Syngas Cooler (RSC) is quenched in a scrubber. The blackwater from the scrubber bottom is further cleaned in the blackwater treatment plant. The cleaned water is returned back to the scrubber and also used for slurry preparation. The acid gas from the sour water stripper (SWS) is sent to the Claus plant. The syngas from the scrubber passes through a sour shift process. The WGS reactors are modeled as adiabatic plug flow reactors with rigorous kinetics based on the mid

  8. Comparison of intergrated coal gasification combined cycle power plants with current and advanced gas turbines

    SciTech Connect

    Banda, B.M.; Evans, T.F.; McCone, A.I.; Westisik, J.H.

    1984-08-01

    Two recent conceptual design studies examined ''grass roots'' integrated gasification-combined cycle (IGCC) plants for the Albany Station site of Niagara Mohawk Power Corporation. One of these studies was based on the Texaco Gasifier and the other was developed around the British Gas Co.-Lurgi slagging gasifier. Both gasifiers were operated in the ''oxygen-blown'' mode, producing medium Btu fuel gas. The studies also evaluated plant performance with both current and advanced gas turbines. Coalto-busbar efficiencies of approximately 35 percent were calculated for Texaco IGCC plants using current technology gas turbines. Efficiencies of approximately 39 percent were obtained for the same plant when using advanced technology gas turbines.

  9. Method and system to estimate variables in an integrated gasification combined cycle (IGCC) plant

    DOEpatents

    Kumar, Aditya; Shi, Ruijie; Dokucu, Mustafa

    2013-09-17

    System and method to estimate variables in an integrated gasification combined cycle (IGCC) plant are provided. The system includes a sensor suite to measure respective plant input and output variables. An extended Kalman filter (EKF) receives sensed plant input variables and includes a dynamic model to generate a plurality of plant state estimates and a covariance matrix for the state estimates. A preemptive-constraining processor is configured to preemptively constrain the state estimates and covariance matrix to be free of constraint violations. A measurement-correction processor may be configured to correct constrained state estimates and a constrained covariance matrix based on processing of sensed plant output variables. The measurement-correction processor is coupled to update the dynamic model with corrected state estimates and a corrected covariance matrix. The updated dynamic model may be configured to estimate values for at least one plant variable not originally sensed by the sensor suite.

  10. Diagnosis of Thermal Efficiency of Combined Cycle Power Plants Using Optical Torque Sensors

    NASA Astrophysics Data System (ADS)

    Umezawa, Shuichi

    A new optical torque measurement method is proposed for diagnosis of thermal efficiency of combined cycle power plants. In the case that the plant comprises a steam turbine and a gas turbine, both of which are connected to the same generator, it is difficult to identify which turbine causes deterioration of performance when the plant efficiency is reduced. Therefore, an optical torque sensor has been developed to measure the output of each turbine, which are important data to analyze performance of each machineries in a plant. The sensor measures axial distortion caused by power transmission by use of He-Ne laser beams, small stainless steel reflectors having bar-code patterns, and a technique of signal processing featuring high frequency. It was applied to TOKYO ELECTRIC POWER COMPANY (TEPCO) commercial plants. Following system improvements, it is concluded that error factors can be eliminated and sensor performance can reach a practical use level.

  11. Thermodynamic analysis and optimization of fuel cell based Combined Cycle Cogeneration plant

    NASA Astrophysics Data System (ADS)

    Odukoya, Adedoyin

    Power plants operating in combined cycle cogeneration configuration are becoming increasingly popular because of high energy conversion efficiency and reduced pollutant and green-house gas emissions. On the other hand, fuel cell technology continues to be of global interest because it can operate with very low to 0% green-house gas emission depending on the fuel. The aim of the present work is to investigate the effect of co-firing of natural gas with synthetic gas generated from coal gasification on the thermodynamic performance of an air blown coal gasification Combined Cycle Cogeneration unit with a solid oxide fuel cell (SOFC) arrangement. The effects of the operating temperature of the SOFC and the pressure ratio and turbine inlet temperature of the gas turbine on the net work output and efficiency of the power cycles on the cogeneration unit are simulated. Simulations are also conducted on the thermal and cogeneration efficiencies of the individual power cycle as well as the overall plants respectively. The optimal pressure ratio, temperature of operation of the SOFC and, gas turbine inlet temperature was determined using a sequential quadratic program solver base on the Quasi-Newton algorithm.

  12. The thermodynamic efficiency of the condensing process circuits of binary combined-cycle plants with gas-assisted heating of cycle air

    NASA Astrophysics Data System (ADS)

    Kovalevskii, V. P.

    2011-09-01

    The thermal efficiencies of condensing-type circuits of binary combined-cycle plants containing one, two, and three loops with different pressure levels and equipped with a GTE-160 (V94.2) gas turbine unit, and with preheating of cycle air are analyzed by way of comparison in a wide range of initial steam pressures. The variation of the combined-cycle plant efficiency, stream wetness, conditional overall heating surface of the heat-recovery boiler, and other parameters is presented.

  13. Thermodynamic and economic analysis of a gas turbine combined cycle plant with oxy-combustion

    NASA Astrophysics Data System (ADS)

    Kotowicz, Janusz; Job, Marcin

    2013-12-01

    This paper presents a gas turbine combined cycle plant with oxy-combustion and carbon dioxide capture. A gas turbine part of the unit with the operating parameters is presented. The methodology and results of optimization by the means of a genetic algorithm for the steam parts in three variants of the plant are shown. The variants of the plant differ by the heat recovery steam generator (HRSG) construction: the singlepressure HRSG (1P), the double-pressure HRSG with reheating (2PR), and the triple-pressure HRSG with reheating (3PR). For obtained results in all variants an economic evaluation was performed. The break-even prices of electricity were determined and the sensitivity analysis to the most significant economic factors were performed.

  14. Optimization of the oxidant supply system for combined cycle MHD power plants

    NASA Technical Reports Server (NTRS)

    Juhasz, A. J.

    1982-01-01

    An in-depth study was conducted to determine what, if any, improvements could be made on the oxidant supply system for combined cycle MHD power plants which could be reflected in higher thermal efficiency and a reduction in the cost of electricity, COE. A systematic analysis of air separation process varitions which showed that the specific energy consumption could be minimized when the product stream oxygen concentration is about 70 mole percent was conducted. The use of advanced air compressors, having variable speed and guide vane position control, results in additional power savings. The study also led to the conceptual design of a new air separation process, sized for a 500 MW sub e MHD plant, referred to a internal compression is discussed. In addition to its lower overall energy consumption, potential capital cost savings were identified for air separation plants using this process when constructed in a single large air separation train rather than multiple parallel trains, typical of conventional practice.

  15. Retrofitting the Strogino district heat supply station with construction of a 260-MW combined-cycle power plant (Consisting of two PGU-130 combined-cycle power units)

    NASA Astrophysics Data System (ADS)

    Aleksandrov, V. F.

    2010-02-01

    The retrofitting carried out at the Strogino district heat supply station and the specific features of works accomplished in the course of constructing the thermal power station based on a combined-cycle power plant at the station site are described; the layout solutions for the main building and turbine building are presented, and a comparison of the retrofitted station with the Kolomenskoe and Vnukovo gas turbine-based power stations is given.

  16. Advanced air separation for coal gasification-combined-cycle power plants: Final report

    SciTech Connect

    Kiersz, D.F.; Parysek, K.D.; Schulte, T.R.; Pavri, R.E.

    1987-08-01

    Union Carbide Corporation (UCC) and General Electric Company (GE) conducted a study to determine the benefits associated with extending the integration of integrated coal gasification-combined cycle (IGCC) systems to include the air separation plant which supplies oxygen to the gasifiers. This is achieved by extracting air from the gas turbine air compressors to feed the oxygen plant and returning waste nitrogen to the gas turbine. The ''Radiant Plus Convective Design'' (59/sup 0/F ambient temperature case) defined in EPRI report AP-3486 was selected as a base case into which the oxygen plant-gas turbine integration was incorporated and against which it was compared. General Electric Company's participation in evaluating gas turbine and power block performance ensured consistency between EPRI report AP-3486 and this study. Extending the IGCC integration to include an integrated oxygen plant-gas turbine results in a rare combination of benefits - higher efficiency and lower capital costs. Oxygen plant capital costs are over 20% less and the power requirement is reduced significantly. For the IGCC system, the net power output is higher for the same coal feed rate; this results in an overall improvement in heat rate of about 2% coupled with a reduction in capital costs of 2 to 3%. 6 refs., 11 figs., 7 tabs.

  17. Water chemistry of a combined-cycle power plant's auxiliary equipment cooling system

    NASA Astrophysics Data System (ADS)

    Larin, B. M.; Korotkov, A. N.; Oparin, M. Yu.; Larin, A. B.

    2013-04-01

    Results from an analysis of methods aimed at reducing the corrosion rate of structural metal used in heat-transfer systems with water coolant are presented. Data from examination of the closed-circuit system for cooling the auxiliary mechanisms of a combined-cycle plant-based power unit and the results from adjustment of its water chemistry are given. A conclusion is drawn about the possibility of using a reagent prepared on the basis of sodium sulfite for reducing the corrosion rate when the loss of coolant is replenished with nondeaerated water.

  18. Combined cycle electric power plant with coordinated plural feedback turbine control

    SciTech Connect

    Kiscaden, R.W.; Martz, L.F.; Uram, R.

    1980-01-22

    A combined cycle electric power plant includes gas and steam turbines and a steam generator for recovering the heat in the exhaust gases exited from the gas turbine and for using the recovered heat to produce and supply steam to the steam turbine. The steam generator includes a superheater tube through which a fluid, E.G. Water, is directed to be additionally heated into superheated steam by the exhaust gas turbine gases. An afterburner further heats the exhaust gas turbine gases passed to the superheater tube. The temperature of the gas turbine exhaust gases is sensed for varying the fuel flow to the afterburner by a fuel valve, whereby the temperatures of the gas turbine exhaust gases and therefore of the superheated steam, are controlled. A plant load demand error signal is utilized for correcting a coordinated gas turbine load reference and for trimming a feedforward afterburner control signal derived from the sensed gas turbine exhaust temperatures.

  19. Condition monitoring and optimization for a 1000 MW combined-cycle plant

    SciTech Connect

    1995-10-01

    Barking Power Ltd., an independent power producer in the southeast of England, appointed Boyce Engineering International to supply a performance condition monitoring and optimization package. The Barking Power combined-cycle plant operates five Frame 9E gas turbines manufactured by EGT in Belfort, France, and two steam turbines supplied by GEC Alsthom. The Boyce Engineering system selected by Power Ltd., is the DATM4 fully integrated condition monitoring system, which offers full diagnosis and optimization for the electrical, mechanical and thermal performance of the plant. The transient electrical analysis system will enable operating and maintenance engineers to diagnose and reduce problems caused by transient electrical impulses which may occur. All four modules will be handled on a single hardware platform using an OS/2 PC network. The Boyce system offers a number of distinct benefits to the customer, particularly in terms of maximizing profitability. Additional benefits of the system include a `what if` module, allowing engineers to troubleshoot aspects of the plant, evaluate the cost of any inefficiencies in relation to the plant`s bottom line and schedule maintenance efficiently, and the ability to ensure safe and clean operation meeting and exceeding current environmental legislative requirements.

  20. Thermal energy storage for integrated gasification combined-cycle power plants

    SciTech Connect

    Drost, M.K.; Antoniak, Z.I.; Brown, D.R.; Somasundaram, S.

    1990-07-01

    There are increasingly strong indications that the United States will face widespread electrical power generating capacity constraints in the 1990s; most regions of the country could experience capacity shortages by the year 2000. The demand for new generating capacity occurs at a time when there is increasing emphasis on environmental concerns. The integrated gasification combined-cycle (IGCC) power plant is an example of an advanced coal-fired technology that will soon be commercially available. The IGCC concept has proved to be efficient and cost-effective while meeting all current environmental regulations on emissions; however, the operating characteristics of the IGCC system have limited it to base load applications. The integration of thermal energy storage (TES) into an IGCC plant would allow it to meet cyclic loads while avoiding undesirable operating characteristics such as poor turn-down capability, impaired part-load performance, and long startup times. In an IGCC plant with TES, a continuously operated gasifier supplies medium-Btu fuel gas to a continuously operated gas turbine. The thermal energy from the fuel gas coolers and the gas turbine exhaust is stored as sensible heat in molten nitrate salt; heat is extracted during peak demand periods to produce electric power in a Rankine steam power cycle. The study documented in this report was conducted by Pacific Northwest Laboratory (PNL) and consists of a review of the technical and economic feasibility of using TES in an IGCC power plant to produce intermediate and peak load power. The study was done for the US Department of Energy's (DOE) Office of Energy Storage and Distribution. 11 refs., 5 figs., 18 tabs.

  1. Coordinated optimization of the parameters of the cooled gas-turbine flow path and the parameters of gas-turbine cycles and combined-cycle power plants

    NASA Astrophysics Data System (ADS)

    Kler, A. M.; Zakharov, Yu. B.; Potanina, Yu. M.

    2014-06-01

    In the present paper, we evaluate the effectiveness of the coordinated solution to the optimization problem for the parameters of cycles in gas turbine and combined cycle power plants and to the optimization problem for the gas-turbine flow path parameters within an integral complex problem. We report comparative data for optimizations of the combined cycle power plant at coordinated and separate optimizations, when, first, the gas turbine and, then, the steam part of a combined cycle plant is optimized. The comparative data are presented in terms of economic indicators, energy-effectiveness characteristics, and specific costs. Models that were used in the present study for calculating the flow path enable taking into account, as a factor influencing the economic and energy effectiveness of the power plant, the heat stability of alloys from which the nozzle and rotor blades of gas-turbine stages are made.

  2. Transient studies of an Integrated Gasification Combined Cycle (IGCC) plant with CO2 capture

    SciTech Connect

    Bhattacharyya, D.; Turton, R.; Zitney, S.

    2010-01-01

    Next-generation coal-fired power plants need to consider the option for CO2 capture as stringent governmental mandates are expected to be issued in near future. Integrated gasification combined cycle (IGCC) plants are more efficient than the conventional coal combustion processes when the option for CO2 capture is considered. However, no IGCC plant with CO2 capture currently exists in the world. Therefore, it is important to consider the operability and controllability issues of such a plant before it is commercially built. To facilitate this objective, a detailed plant-wide dynamic simulation of an IGCC plant with 90% CO2 capture has been developed in Aspen Plus Dynamics{reg_sign}. The plant considers a General Electric Energy (GEE)-type downflow radiant-only gasifier followed by a quench section. A two-stage water gas shift (WGS) reaction is considered for conversion of CO to CO2. A two-stage acid gas removal (AGR) process based on a physical solvent is simulated for selective capture of H2S and CO2. Compression of the captured CO2 for sequestration, an oxy-Claus process for removal of H2S and NH3, black water treatment, and the sour water treatment are also modeled. The tail gas from the Claus unit is recycled to the SELEXOL unit. The clean syngas from the AGR process is sent to a gas turbine followed by a heat recovery steam generator. This turbine is modeled as per published data in the literature. Diluent N2 is used from the elevated-pressure ASU for reducing the NOx formation. The heat recovery steam generator (HRSG) is modeled by considering generation of high-pressure, intermediate-pressure, and low-pressure steam. All of the vessels, reactors, heat exchangers, and the columns have been sized. The basic IGCC process control structure has been synthesized by standard guidelines and existing practices. The steady state results are validated with data from a commercial gasifier. In the future grid-connected system, the plant should satisfy the environmental

  3. Combined cycle electric power plant with feedforward afterburner temperature setpoint control

    SciTech Connect

    Uram, R.

    1982-06-08

    A combined cycle electric power plant includes gas and steam turbines and a steam generator for recovering the heat in the exhaust gases exited from the gas turbine and for using the recovered heat to produce and supply steam to the steam turbine. The steam generator includes a superheater tube through which a fluid, e.g. water, is directed to be additionally heated into superheated steam by the exhaust gas turbine gases. An afterburner further heats the exhaust gas turbine gases passed to the superheater tube. The temperature of the gas turbine exhaust gases is sensed for varying the fuel flow to the afterburner by a fuel valve, whereby the temperatures of the gas turbine exhaust gases and therefore of the superheated steam, are controlled. The afterburner fuel flow is controlled through a feedforward setpoint signal derived as a predetermined function of sensed gas turbine exhaust temperature.

  4. Heat recovery steam generator outlet temperature control system for a combined cycle power plant

    SciTech Connect

    Martens, A.; Myers, G.A.; McCarty, W.L.; Wescott, K.R.

    1986-04-01

    This patent describes a command cycle electrical power plant including: a steam turbine and at least one set comprising a gas turbine, an afterburner and a heat recovery steam generator having an attemperator for supplying from an outlet thereof to the steam turbine superheated steam under steam turbine operating conditions requiring predetermined superheated steam temperature, flow and pressure; with the gas turbine and steam turbine each generating megawatts in accordance with a plant load demand; master control means being provided for controlling the steam turbine and the heat recovery steam generator so as to establish the steam operating conditions; the combination of: first control means responsive to the gas inlet temperature of the heat recovery steam generator and to the plant load demand for controlling the firing of the afterburner; second control means responsive to the superheated steam predetermined temperature and to superheated steam temperature from the outlet for controlling the attemperator between a closed and an open position; the first and second control means being operated concurrently to maintain the superheated steam outlet temperature while controlling the load of the gas turbine independently of the steam turbine operating conditions.

  5. Optimizing modes of a small-scale combined-cycle power plant with atmospheric-pressure gasifier

    NASA Astrophysics Data System (ADS)

    Donskoi, I. G.; Marinchenko, A. Yu.; Kler, A. M.; Ryzhkov, A. F.

    2015-09-01

    The scheme of an integrated coal gasification combined-cycle power plant with small capacity is proposed. Using the built mathematical model a feasibility study of this unit was performed, taking into account the kinetics of physical and chemical transformations in the fuel bed. The estimates of technical and economic efficiency of the plant have been obtained and compared with the alternative options.

  6. Performance Diagnosis using Optical Torque Sensor for Selection of a Steam Supply Plant among Advanced Combined Cycle Power Plants

    NASA Astrophysics Data System (ADS)

    Umezawa, Shuichi

    A newly developed optical torque sensor was applied to select a steam supply plant among advanced combined cycle, i.e. ACC, power plants of the Tokyo Electric Power Company. The sensor uses laser beams focused on small stainless steel reflectors having bar-code patterns attached on the surface of the rotating shaft, and a technique of signal processing using a correlation function featuring high frequency. The plant that supplied steam was selected on the basis of diagnosis of each steam turbine performance of the plants. Heat balance program was developed to analyze steam turbine performance using data of turbine output measured by the torque sensor and data measured by existing instruments of the power station. The steam turbine that supplied steam was determined by the present method using the optical torque sensor. The accuracy of the method to determine the steam supply plant was analyzed. It was then confirmed that the accuracy was greatly improved as compared with that of existing method.

  7. The effectiveness of combined-cycle power plants hot startups simulating

    NASA Astrophysics Data System (ADS)

    Radin, Yu. A.; Kontorovich, T. S.; Molchanov, K. A.

    2015-09-01

    Activities aimed at substantiating the maneuverability characteristics of power-generating equipment installed at district heating power plants (DHPP) and especially at combined-cycle power plants (CCPPs) are quite topical for the modern conditions and involve calculations of thermally stressed state and analysis of the cyclic strength of steam path critical elements at different loading rates. Until recently, such problems have been solved in two possible ways: based on the results of tests carried out on operating equipment and using the mathematical models of heavily stressed parts of CCPP equipment. In this article, preference is given to the second way. The results of mathematical modeling represented as time dependences of the temperature state of equipment critical parts were taken as initial data for calculating their thermally stressed state and for analyzing their damageability according to the criterion of the equivalent operating hours. This criterion is an integral indicator characterizing the extent of damage accumulated in equipment parts and can be used for elaborating equipment maintenance programs. A dependence of the equivalent operating hours on the initial temperature of the metal of the high-pressure steam superheater's outlet header, the component imposing the strongest limitations on the power unit loading rate, is obtained. It is shown that the number of equivalent operating hours of the CCPP steam circuit part equipment accumulated during hot startups does not have any essential effect on the equipment service life (heat-recovery steam generators, steam turbine, and steam lines).

  8. Recovery Act: Johnston Rhode Island Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    SciTech Connect

    Galowitz, Stephen

    2013-06-30

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Central Landfill in Johnston, Rhode Island. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting project reflected a cost effective balance of the following specific sub-objectives. 1) Meet environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas. 2) Utilize proven and reliable technology and equipment. 3) Maximize electrical efficiency. 4) Maximize electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Central Landfill. 5) Maximize equipment uptime. 6) Minimize water consumption. 7) Minimize post-combustion emissions. To achieve the Project Objective the project consisted of several components. 1) The landfill gas collection system was modified and upgraded. 2) A State-of-the Art gas clean up and compression facility was constructed. 3) A high pressure pipeline was constructed to convey cleaned landfill gas from the clean-up and compression facility to the power plant. 4) A combined cycle electric generating facility was constructed consisting of combustion turbine generator sets, heat recovery steam generators and a steam turbine. 5) The voltage of the electricity produced was increased at a newly constructed transformer/substation and the electricity was delivered to the local transmission system. The Project produced a myriad of beneficial impacts. 1) The Project created 453 FTE construction and manufacturing jobs and 25 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. 2) By combining state-of-the-art gas clean up systems with post combustion emissions control

  9. Integrated gasification combined-cycle power plant at Sears Island, Maine: feasibility study. Final report. Volume I. [Sears Island, Maine

    SciTech Connect

    Not Available

    1983-03-30

    This report presents the results of a feasibility study to evaluate the use of medium Btu synthesis gas, produced from high-sulfur coal, in an Integrated Gasification Combined Cycle (IGCC) power plant, as an alternative to a conventional pulverized coal plant with flue gas scrubbers presently planned for the Sears Island, Maine site of Central Maine Power Company. The process configuration is based on the oxygen-blown Texaco Coal Gasification Process and a General Electric Combined Cycle power plant. The plant design includes a 5000 ton per day oxygen plant, four 1200 tons per day gasification trains plus one spare to reduce risk, four gas turbine-generators with heat recovery steam generators, and a reheat steam turbine generator. Plant output at ISO (59/sup 0/F) conditions is 524 MW net. The report includes preliminary design and arrangement drawings, a detailed plant description, detailed cost information, performance data, schedules, and an extensive evaluation of technical, economic, and environmental results. The results of the study indicate that the IGCC power plant is still a rapidly evolving technology. Before Central Maine Power Company can commit to construction of such a plant, several issues raised in the study need to be addressed. These issues deal with refinements in cycle performance, demonstration of various major components, and construction schedule, among others. The IGCC Plant does have less environmental impact than a comparably sized conventional coal plant, while using a high sulfur, high ash, less expensive coal. The life-of-plant levelized busbar cost for the IGCC Plant is estimated to be 5% lower than for the conventional coal-fired plant, although the initial capital cost is approximately 60% higher. Other cycle designs were identified which have the potential for improving plant economics.

  10. Waste-heat boiler application for the Vresova combined cycle plant

    SciTech Connect

    Vicek, Z.

    1995-12-01

    This report describes a project proposal and implementation of two combined-cycle units of the Vresova Fuel Complex (PKV) with 2 x 200 MWe and heat supply. Participation of ENERGOPROJECT Praha a.s., in this project.

  11. The importance of combined cycle generating plants in integrating large levels of wind power generation

    SciTech Connect

    Puga, J. Nicolas

    2010-08-15

    Integration of high wind penetration levels will require fast-ramping combined cycle and steam cycles that, due to higher operating costs, will require proper pricing of ancillary services or other forms of compensation to remain viable. Several technical and policy recommendations are presented to help realign the generation mix to properly integrate the wind. (author)

  12. Combined cycle power unit with a binary system based on waste geothermal brine at Mutnovsk geothermal power plant

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.; Nikol'skii, A. I.; Semenov, V. N.

    2016-06-01

    The Russian geothermal power systems developed in the last few decades outperform their counterparts around the world in many respects. However, all Russian geothermal power stations employ steam as the geothermal fluid and discard the accompanying geothermal brine. In reality, the power of the existing Russian geothermal power stations may be increased without drilling more wells, if the waste brine is employed in combined cycle systems with steam and binary turbine units. For the example of the 50 MW Mutnovsk geothermal power plant, the optimal combined cycle power unit based on the waste geothermal brine is considered. It is of great interest to determine how the thermodynamic parameters of the secondary steam in the expansion unit and the pressure in the condenser affect the performance of the equipment in the combined cycle power unit at Mutnovsk geothermal power plant. For the utilization of the waste geothermal brine at Mutnovsk geothermal power plant, the optimal air temperature in the condensers of the combined cycle power unit is +5°C. The use of secondary steam obtained by flashing of the geothermal brine at Mutnovsk geothermal power plant 1 at a pressure of 0.2 MPa permits the generation of up to 8 MW of electric power in steam turbines and additional power of 5 MW in the turbines of the binary cycle.

  13. Analyzing the possibility of constructing the air heating system for an integrated solid fuel gasification combined-cycle power plant

    NASA Astrophysics Data System (ADS)

    Mikula, V. A.; Ryzhkov, A. F.; Val'tsev, N. V.

    2015-11-01

    Combined-cycle power plants operating on solid fuel have presently been implemented only in demonstration projects. One of possible ways for improving such plants consists in making a shift to hybrid process circuits of integrated gasification combined-cycle plants with external firing of solid fuel. A high-temperature air heater serving to heat compressed air is a key element of the hybrid process circuit. The article describes application of a high-temperature recuperative metal air heater in the process circuit of an integrated gasification combined-cycle power plant (IGCC). The available experience with high-temperature air heating is considered, and possible air heater layout arrangements are analyzed along with domestically produced heat-resistant grades of steel suitable for manufacturing such air heater. An alternative (with respect to the traditional one) design is proposed, according to which solid fuel is fired in a noncooled furnace extension, followed by mixing the combustion products with recirculation gases, after which the mixture is fed to a convective air heater. The use of this design makes it possible to achieve considerably smaller capital outlays and operating costs. The data obtained from thermal and aerodynamic calculations of the high-temperature air heater with a thermal capacity of 258 MW for heating air to a temperature of up to 800°C for being used in the hybrid process circuit of a combined-cycle power plant are presented.

  14. Recovery Act: Brea California Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    SciTech Connect

    Galowitz, Stephen

    2012-12-31

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Olinda Landfill near Brea, California. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting Project reflected a cost effective balance of the following specific sub-objectives: • Meeting the environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas • Utilizing proven and reliable technology and equipment • Maximizing electrical efficiency • Maximizing electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Olinda Landfill • Maximizing equipment uptime • Minimizing water consumption • Minimizing post-combustion emissions • The Project produced and will produce a myriad of beneficial impacts. o The Project created 360 FTE construction and manufacturing jobs and 15 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. o By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). o The Project will annually produce 280,320 MWh’s of clean energy o By destroying the methane in the landfill gas, the Project will generate CO2 equivalent reductions of 164,938 tons annually. The completed facility produces 27.4 MWnet and operates 24 hours a day, seven days a week.

  15. Combined-cycle power tower

    SciTech Connect

    Bohn, M S; Williams, T A; Price, H W

    1994-10-01

    This paper evaluates a new power tower concept that offers significant benefits for commercialization of power tower technology. The concept uses a molten nitrate salt centralreceiver plant to supply heat, in the form of combustion air preheat, to a conventional combined-cycle power plant. The evaluation focused on first commercial plants, examined three plant capacities (31, 100, and 300 MWe), and compared these plants with a solar-only 100-MWe plant and with gas-only combined-cycle plants in the same three capacities. Results of the analysis point to several benefits relative to the solar-only plant including low energy cost for first plants, low capital cost for first plants, reduced risk with respect to business uncertainties, and the potential for new markets. In addition, the concept appears to have minimal technology development requirements. Significantly, the results show that it is possible to build a first plant with this concept that can compete with existing gas-only combined-cycle plants.

  16. Determining Reliability Parameters for a Closed-Cycle Small Combined Heat and Power Plant

    NASA Astrophysics Data System (ADS)

    Vysokomorny, Vladimir S.; Vysokomornaya, Olga V.; Piskunov, Maxim V.

    2016-02-01

    The paper provides numerical values of the reliability parameters for independent power sources within the ambient temperature and output power range corresponding to the operation under the climatic conditions of Eastern Siberia and the Far East of the Russian Federation. We have determined the optimal values of the parameters necessary for the reliable operation of small CHP plants (combined heat and power plants) providing electricity for isolated facilities.

  17. Development of a dynamic simulator for a natural gas combined cycle (NGCC) power plant with post-combustion carbon capture

    SciTech Connect

    Liese, E.; Zitney, S.

    2012-01-01

    The AVESTAR Center located at the U.S. Department of Energy’s National Energy Technology Laboratory and West Virginia University is a world-class research and training environment dedicated to using dynamic process simulation as a tool for advancing the safe, efficient and reliable operation of clean energy plants with CO{sub 2} capture. The AVESTAR Center was launched with a high-fidelity dynamic simulator for an Integrated Gasification Combined Cycle (IGCC) power plant with pre-combustion carbon capture. The IGCC dynamic simulator offers full-scope Operator Training Simulator (OTS) Human Machine Interface (HMI) graphics for realistic, real-time control room operation and is integrated with a 3D virtual Immersive Training Simulator (ITS), thus allowing joint control room and field operator training. The IGCC OTS/ITS solution combines a “gasification with CO{sub 2} capture” process simulator with a “combined cycle” power simulator into a single high-performance dynamic simulation framework. This presentation will describe progress on the development of a natural gas combined cycle (NGCC) dynamic simulator based on the syngas-fired combined cycle portion of AVESTAR’s IGCC dynamic simulator. The 574 MW gross NGCC power plant design consisting of two advanced F-class gas turbines, two heat recovery steam generators (HRSGs), and a steam turbine in a multi-shaft 2x2x1 configuration will be reviewed. Plans for integrating a post-combustion carbon capture system will also be discussed.

  18. Study of Indonesia low rank coal utilization on modified fixed bed gasification for combined cycle power plant

    NASA Astrophysics Data System (ADS)

    Hardianto, T.; Amalia, A. R.; Suwono, A.; Riauwindu, P.

    2015-09-01

    Gasification is a conversion process converting carbon-based solid fuel into gaseous products that have considerable amount of calorific value. One of the carbon-based solid fuel that serves as feed for gasification is coal. Gasification gaseous product is termed as syngas (synthetic gas) that is composed of several different gases. Syngas produced from gasification vary from one process to another, this is due to several factors which are: feed characteristics, operation condition, gasified fluid condition, and gasification method or technology. One of the utilization of syngas is for combined cycle power plant fuel. In order to meet the need to convert carbon-based solid fuel into gaseous fuel for combined cycle power plant, engineering adjustment for gasification was done using related software to create the syngas with characteristics of natural gas that serve as fuel for combined cycle power plant in Indonesia. Feed used for the gasification process in this paper was Indonesian Low Rank Coal and the method used to obtain syngas was Modified Fixed Bed Gasifier. From the engineering adjustment process, the yielded syngas possessed lower heating value as much as 31828.32 kJ/kg in gasification condition of 600°C, 3.5 bar, and steam to feed ratio was 1 kg/kg. Syngas characteristics obtained from the process was used as a reference for the adjustment of the fuel system modification in combined cycle power plant that will have the same capacity with the conversion of the system's fuel from natural gas to syngas.

  19. Performance analysis of a bio-gasification based combined cycle power plant employing indirectly heated humid air turbine

    NASA Astrophysics Data System (ADS)

    Mukherjee, S.; Mondal, P.; Ghosh, S.

    2016-07-01

    Rapid depletion of fossil fuel has forced mankind to look into alternative fuel resources. In this context, biomass based power generation employing gas turbine appears to be a popular choice. Bio-gasification based combined cycle provides a feasible solution as far as grid-independent power generation is concerned for rural electrification projects. Indirectly heated gas turbine cycles are promising alternatives as they avoid downstream gas cleaning systems. Advanced thermodynamic cycles have become an interesting area of study to improve plant efficiency. Water injected system is one of the most attractive options in this field of applications. This paper presents a theoretical model of a biomass gasification based combined cycle that employs an indirectly heated humid air turbine (HAT) in the topping cycle. Maximum overall electrical efficiency is found to be around 41%. Gas turbine specific air consumption by mass is minimum when pressure ratio is 6. The study reveals that, incorporation of the humidification process helps to improve the overall performance of the plant.

  20. Impact of different fules on reheat and nonreheat combined cycle plant performance

    SciTech Connect

    Tawney, R.K.; Kamali, K. ); Yeager, W.L. )

    1988-01-01

    The combustion turbine is capable of firing a variety of gaseous and/or liquid fuels. This ability offers the power industry the advantage of utilizing the most economical fuel available in the market. The purpose of this paper is to evaluate qualitative and quantitative performance differences of combined cycle reheat versus non-reheat configurations when burning three different fuels--natural gas, distillate fuel, and coal-derived gas (coal gas). The performance data include power output, heat rates, steam produced, stack temperatures and other associated design factors.

  1. Evaluation of effects of groundwater withdrawals at the proposed Allen combined-cycle combustion turbine plant, Shelby County, Tennessee

    USGS Publications Warehouse

    Haugh, Connor J.

    2016-01-01

    The Mississippi Embayment Regional Aquifer Study groundwater-flow model was used to simulate the potential effects of future groundwater withdrawals at the proposed Allen combined-cycle combustion turbine plant in Shelby County, Tennessee. The scenario used in the simulation consisted of a 30-year average withdrawal period followed by a 30-day maximum withdrawal period. Effects of withdrawals at the Allen plant site on the Mississippi embayment aquifer system were evaluated by comparing the difference in simulated water levels in the aquifers at the end of the 30-year average withdrawal period and at the end of the scenario to a base case without the Allen combined-cycle combustion turbine plant withdrawals. Simulated potentiometric surface declines in the Memphis aquifer at the Allen plant site were about 7 feet at the end of the 30-year average withdrawal period and 11 feet at the end of the scenario. The affected area of the Memphis aquifer at the Allen plant site as delineated by the 4-foot potentiometric surface-decline contour was 2,590 acres at the end of the 30-year average withdrawal period and 11,380 acres at the end of the scenario. Simulated declines in the underlying Fort Pillow aquifer and overlying shallow aquifer were both less than 1 foot at the end of the 30-year average withdrawal period and the end of the scenario.

  2. Selecting the process arrangement for preparing the gas turbine working fluid for an integrated gasification combined-cycle power plant

    NASA Astrophysics Data System (ADS)

    Ryzhkov, A. F.; Gordeev, S. I.; Bogatova, T. F.

    2015-11-01

    Introduction of a combined-cycle technology based on fuel gasification integrated in the process cycle (commonly known as integrated gasification combined cycle technology) is among avenues of development activities aimed at achieving more efficient operation of coal-fired power units at thermal power plants. The introduction of this technology is presently facing the following difficulties: IGCC installations are characterized by high capital intensity, low energy efficiency, and insufficient reliability and availability indicators. It was revealed from an analysis of literature sources that these drawbacks are typical for the gas turbine working fluid preparation system, the main component of which is a gasification plant. Different methods for improving the gasification plant chemical efficiency were compared, including blast air high-temperature heating, use of industrial oxygen, and a combination of these two methods implying limited use of oxygen and moderate heating of blast air. Calculated investigations aimed at estimating the influence of methods for achieving more efficient air gasification are carried out taking as an example the gasifier produced by the Mitsubishi Heavy Industries (MHI) with a thermal capacity of 500 MW. The investigation procedure was verified against the known experimental data. Modes have been determined in which the use of high-temperature heating of blast air for gasification and cycle air upstream of the gas turbine combustion chamber makes it possible to increase the working fluid preparation system efficiency to a level exceeding the efficiency of the oxygen process performed according to the Shell technology. For the gasification plant's configuration and the GTU working fluid preparation system be selected on a well-grounded basis, this work should be supplemented with technical-economic calculations.

  3. Integrated air separation plant-integrated gasification combined cycle power generator

    SciTech Connect

    Allam, R.J.; Topham, A.

    1992-01-21

    This patent describes an integrated gasification combined cycle power generation system, comprising an air separation unit wherein air is compressed, cooled, and separated into an oxygen and nitrogen enriched fractions, a gasification system for generating a fuel gas, an air compressor system for supplying compressed air for use in combusting the fuel gas, a combustion zone for effecting combustion of the compressed air and the fuel gas, and a gas turbine for effecting the generation of power from the resulting combusted gases from the combustion zone in the combined cycle power generation system. It comprises independently compressing feed air to the air separation unit to pressures of from 8 to 20 bar from the compressor system used to compress air for the combustion zone; cryogenically separating the air in the air separation unit having at least one distillation column operating at pressures of between 8 and 20 bar and producing an oxygen enriched fraction consisting of low purity oxygen, and; utilizing at least a portion of the low purity oxygen for effecting gasification of a carbon containing fuel source by partial oxidation in the gasification system and thereby generating a fuel gas stream; removing at least a portion of a nitrogen enriched fraction from the air separation unit and boosting its pressures to a pressure substantially equal to that of the fuel gas stream; and expanding at least another portion of the nitrogen enriched fraction in an expansion engine.

  4. Numerical Hydraulic Study on Seawater Cooling System of Combined Cycle Power Plant

    NASA Astrophysics Data System (ADS)

    Kim, J. Y.; Park, S. M.; Kim, J. H.; Kim, S. W.

    2010-06-01

    As the rated flow and pressure increase in pumping facilities, a proper design against surges and severe cavitations in the pipeline system is required. Pressure surge due to start-up, shut-down process and operation failure causes the water hammer in upstream of the closing valve and the cavitational hammer in downstream of the valve. Typical cause of water hammer is the urgent closure of valves by breakdown of power supply and unexpected failure of pumps. The abrupt changes in the flow rate of the liquid results in high pressure surges in upstream of the valves, thus kinetic energy is transformed into potential energy which leads to the sudden increase of the pressure that is called as water hammer. Also, by the inertia, the liquid continues to flow downstream of the valve with initial speed. Accordingly, the pressure decreases and an expanding vapor bubble known as column separation are formed near the valve. In this research, the hydraulic study on the closed cooling water heat exchanger line, which is the one part of the power plant, is introduced. The whole power plant consists of 1,200 MW combined power plant and 220,000 m3/day desalination facility. Cooling water for the plant is supplied by sea water circulating system with a capacity of 29 m3/s. The primary focus is to verify the steady state hydraulic capacity of the system. The secondary is to quantify transient issues and solutions in the system. The circuit was modeled using a commercial software. The stable piping network was designed through the hydraulic studies using the simulation for the various scenarios.

  5. Power Plant Cycling Costs

    SciTech Connect

    Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

    2012-07-01

    This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

  6. Methodology for consideration of specific features of combined-cycle plants with the optimal sharing of the thermal and the electric loads at combined heat power plants with equipment of a complex configuration

    NASA Astrophysics Data System (ADS)

    Arakelyan, E. K.; Andriushin, A. V.; Burtsev, S. Y.; Andriushin, K. A.; Hurshudyan, S. R.

    2015-05-01

    When a combined-cycle power plant operates as part of a combined heat power plant, the optimal load-sharing among the power-generating units of the station is complicated owing to specific features of operating a combined-cycle power plant, viz., the dependence of its adjustment range values on the outdoor air temperature, degradation of the ecological and economic performance figures under underloading conditions, possibility of load-sharing between the gas turbines, and a high flexibility. A method for optimal sharing of the load among the power-generating plants of combined heat power plants is proposed that takes into consideration the above features of the combined-cycle power plants. The combined heat power plant is divided into "equivalent" units according to the group power supply points. The first step is the intra-unit optimization over the entire variation range of the thermal and electric loads to achieve the best energy performance of the "equivalent" unit. The second step is the optimization of the load-sharing among the "equivalent" units.

  7. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 5: Combined gas-steam turbine cycles. [energy conversion efficiency in electric power plants

    NASA Technical Reports Server (NTRS)

    Amos, D. J.; Foster-Pegg, R. W.; Lee, R. M.

    1976-01-01

    The energy conversion efficiency of gas-steam turbine cycles was investigated for selected combined cycle power plants. Results indicate that it is possible for combined cycle gas-steam turbine power plants to have efficiencies several point higher than conventional steam plants. Induction of low pressure steam into the steam turbine is shown to improve the plant efficiency. Post firing of the boiler of a high temperature combined cycle plant is found to increase net power but to worsen efficiency. A gas turbine pressure ratio of 12 to 1 was found to be close to optimum at all gas turbine inlet temperatures that were studied. The coal using combined cycle plant with an integrated low-Btu gasifier was calculated to have a plant efficiency of 43.6%, a capitalization of $497/kW, and a cost of electricity of 6.75 mills/MJ (24.3 mills/kwh). This combined cycle plant should be considered for base load power generation.

  8. An air-Brayton nuclear-hydrogen combined-cycle peak-and base-load electric plant

    SciTech Connect

    Forsberg, Charles W

    2008-01-01

    A combined-cycle power plant is proposed that uses heat from a high-temperature nuclear reactor and hydrogen produced by the high-temperature reactor to meet base-load and peak-load electrical demands. For base-load electricity production, air is compressed; flows through a heat exchanger, where it is heated to between 700 and 900 C; and exits through a high-temperature gas turbine to produce electricity. The heat, via an intermediate heat-transport loop, is provided by a high-temperature reactor. The hot exhaust from the Brayton-cycle turbine is then fed to a heat recovery steam generator that provides steam to a steam turbine for added electrical power production. To meet peak electricity demand, after nuclear heating of the compressed air, hydrogen is injected into the combustion chamber, combusts, and heats the air to 1300 C-the operating conditions for a standard natural-gas-fired combined-cycle plant. This process increases the plant efficiency and power output. Hydrogen is produced at night by electrolysis or other methods using energy from the nuclear reactor and is stored until needed. Therefore, the electricity output to the electric grid can vary from zero (i.e., when hydrogen is being produced) to the maximum peak power while the nuclear reactor operates at constant load. Because nuclear heat raises air temperatures above the auto-ignition temperatures of the hydrogen and powers the air compressor, the power output can be varied rapidly (compared with the capabilities of fossil-fired turbines) to meet spinning reserve requirements and stabilize the grid.

  9. System study of an MHD/gas turbine combined-cycle baseload power plant. HTGL report No. 134

    SciTech Connect

    Annen, K.D.

    1981-08-01

    The MHD/gas turbine combined-cycle system has been designed specifically for applications where the availability of cooling water is very limited. The base case systems which were studied consisted of an MHD plant with a gas turbine bottoming plant, and required no cooling water. The gas turbine plant uses only air as its working fluid and receives its energy input from the MHD exhaust gases by means of metal tube heat exchangers. In addition to the base case systems, vapor cycle variation systems were considered which included the addition of a vapor cycle bottoming plant to improve the thermal efficiency. These systems required a small amount of cooling water. The MHD/gas turbine systems were modeled with sufficient detail, using realistic component specifications and costs, so that the thermal and economic performance of the system could be accurately determined. Three cases of MHD/gas turbine systems were studied, with Case I being similar to an MHD/steam system so that a direct comparison of the performances could be made, with Case II being representative of a second generation MHD system, and with Case III considering oxygen enrichment for early commercial applications. The systems are nominally 800 MW/sub e/ to 1000 MW/sub e/ in size. The results show that the MHD/gas turbine system has very good thermal and economic performances while requiring either little or no cooling water. Compared to the MHD/steam system which has a cooling tower heat load of 720 MW, the Base Case I MHD/gas turbine system has a heat rate which is 13% higher and a cost of electricity which is only 7% higher while requiring no cooling water. Case II results show that an improved performance can be expected from second generation MHD/gas turbine systems. Case III results show that an oxygen enriched MHD/gas turbine system may be attractive for early commercial applications in dry regions of the country.

  10. Power and Efficiency Analysis of a Solar Central Receiver Combined Cycle Plant with a Small Particle Heat Exchanger Receiver

    NASA Astrophysics Data System (ADS)

    Virgen, Matthew Miguel

    Two significant goals in solar plant operation are lower cost and higher efficiencies. To achieve those goals, a combined cycle gas turbine (CCGT) system, which uses the hot gas turbine exhaust to produce superheated steam for a bottoming Rankine cycle by way of a heat recovery steam generator (HRSG), is investigated in this work. Building off of a previous gas turbine model created at the Combustion and Solar Energy Laboratory at SDSU, here are added the HRSG and steam turbine model, which had to handle significant change in the mass flow and temperature of air exiting the gas turbine due to varying solar input. A wide range of cases were run to explore options for maximizing both power and efficiency from the proposed CSP CCGT plant. Variable guide vanes (VGVs) were found in the earlier model to be an effective tool in providing operational flexibility to address the variable nature of solar input. Combined cycle efficiencies in the range of 50% were found to result from this plant configuration. However, a combustor inlet temperature (CIT) limit leads to two distinct Modes of operation, with a sharp drop in both plant efficiency and power occurring when the air flow through the receiver exceeded the CIT limit. This drawback can be partially addressed through strategic use of the VGVs. Since system response is fully established for the relevant range of solar input and variable guide vane angles, the System Advisor Model (SAM) from NREL can be used to find what the actual expected solar input would be over the course of the day, and plan accordingly. While the SAM software is not yet equipped to model a Brayton cycle cavity receiver, appropriate approximations were made in order to produce a suitable heliostat field to fit this system. Since the SPHER uses carbon nano-particles as the solar absorbers, questions of particle longevity and how the particles might affect the flame behavior in the combustor were addressed using the chemical kinetics software Chemkin

  11. Coal combined cycle system study. Volume I. Summary

    SciTech Connect

    Not Available

    1980-04-01

    The potential advantages for proceeding with demonstration of coal-fueled combined cycle power plants through retrofit of a few existing utility steam plants have been evaluated. Two combined cycle concepts were considered: Pressurized Fluidized Bed (PFB) combined cycle and gasification combined cycle. These concepts were compared with AFB steam plants, conventional steam plants with Flue Gas Desulfurization (FGD), and refueling such as with coal-oil mixtures. The ultimate targets are both new plants and conversion of existing plants. Combined cycle plants were found to be most competitive with conventional coal plants and offered lower air emissions and less adverse environmental impact. A demonstration is a necessary step toward commercialization.

  12. Steady-state simulation and optimization of an integrated gasification combined cycle power plant with CO2 capture

    SciTech Connect

    Bhattacharyya, D.; Turton, R.; Zitney, S.

    2011-01-01

    Integrated gasification combined cycle (IGCC) plants are a promising technology option for power generation with carbon dioxide (CO2) capture in view of their efficiency and environmental advantages over conventional coal utilization technologies. This paper presents a three-phase, top-down, optimization-based approach for designing an IGCC plant with precombustion CO2 capture in a process simulator environment. In the first design phase, important global design decisions are made on the basis of plant-wide optimization studies with the aim of increasing IGCC thermal efficiency and thereby making better use of coal resources and reducing CO2 emissions. For the design of an IGCC plant with 90% CO2 capture, the optimal combination of the extent of carbon monoxide (CO) conversion in the water-gas shift (WGS) reactors and the extent of CO2 capture in the SELEXOL process, using dimethylether of polyethylene glycol as the solvent, is determined in the first phase. In the second design phase, the impact of local design decisions is explored considering the optimum values of the decision variables from the first phase as additional constraints. Two decisions are made focusing on the SELEXOL and Claus unit. In the third design phase, the operating conditions are optimized considering the optimum values of the decision variables from the first and second phases as additional constraints. The operational flexibility of the plant must be taken into account before taking final design decisions. Two studies on the operational flexibility of the WGS reactors and one study focusing on the operational flexibility of the sour water stripper (SWS) are presented. At the end of the first iteration, after executing all the phases once, the net plant efficiency (HHV basis) increases to 34.1% compared to 32.5% in a previously published study (DOE/NETL-2007/1281; National Energy Technology Laboratory, 2007). The study shows that the three-phase, top-down design approach presented is very

  13. Clean combined-cycle SOFC power plant — cell modelling and process analysis

    NASA Astrophysics Data System (ADS)

    Riensche, E.; Achenbach, E.; Froning, D.; Haines, M. R.; Heidug, W. K.; Lokurlu, A.; von Andrian, S.

    The design principle of a specially adapted solid-oxide fuel cell power plant for the production of electricity from hydrocarbons without the emission of greenhouse gases is described. To achieve CO 2 separation in the exhaust stream, it is necessary to burn the unused fuel without directly mixing it with air, which would introduce nitrogen. Therefore, the spent fuel is passed over a bank of oxygen ion conducting tubes very similar in configuration to the electrochemical tubes in the main stack of the fuel cell. In such an SOFC system, pure CO 2 is produced without the need for a special CO 2 separation process. After liquefaction, CO 2 can be re-injected into an underground reservoir. A plant simulation model consists of four main parts, that is, turbo-expansion of natural gas, fuel cell stack, periphery of the stack, and CO 2 recompression. A tubular SOFC concept is preferred. The spent fuel leaving the cell tube bundle is burned with pure oxygen instead of air. The oxygen is separated from the air in an additional small tube bundle of oxygen separation tubes. In this process, mixing of CO 2 and N 2 is avoided, so that liquefaction of CO 2 becomes feasible. As a design tool, a computer model for tubular cells with an air feed tube has been developed based on an existing planar model. Plant simulation indicates the main contributors to power production (tubular SOFC, exhaust air expander) and power consumption (air compressor, oxygen separation).

  14. Material considerations for HRSGs in gas turbine combined cycle plants. Final report

    SciTech Connect

    Bourgeois, H.S.

    1996-08-01

    The primary objectives of this project are to investigate and identify the limitations of current heat recovery steam generator (HRSG) materials, identify potential materials that could be used in future high temperature HRSGs, and develop a research and development plan to address the deficiencies and the future requirements. The project team developed a comprehensive survey which was forwarded to many HRSG manufacturers worldwide. The manufacturers were questioned about cycle experience, failure experience, design practices, materials, research and development, and future designs. The team assembled the responses and other in-house data to identify the key problem areas, probably future operating parameters, and possible material issues. The draft report was circulated to the manufacturers surveyed for comments before the final report was issued. The predominant current problem area for HRSGs relates to insulation; however, it is anticipated that in future designs, tube failures and welds will become most important. Poor water chemistry has already resulted in numerous failure mechanisms. By 2005, HSRGs are expected to operated with the following average conditions: unfired gas temperatures of 1125 F, steam temperatures of 950 F, steam pressures of 1500 psi, and exhaust temperatures of 170 F.

  15. Biomass Gasification Combined Cycle

    SciTech Connect

    Judith A. Kieffer

    2000-07-01

    Gasification combined cycle continues to represent an important defining technology area for the forest products industry. The ''Forest Products Gasification Initiative'', organized under the Industry's Agenda 2020 technology vision and supported by the DOE ''Industries of the Future'' program, is well positioned to guide these technologies to commercial success within a five-to ten-year timeframe given supportive federal budgets and public policy. Commercial success will result in significant environmental and renewable energy goals that are shared by the Industry and the Nation. The Battelle/FERCO LIVG technology, which is the technology of choice for the application reported here, remains of high interest due to characteristics that make it well suited for integration with the infrastructure of a pulp production facility. The capital cost, operating economics and long-term demonstration of this technology area key input to future economically sustainable projects and must be verified by the 200 BDT/day demonstration facility currently operating in Burlington, Vermont. The New Bern application that was the initial objective of this project is not currently economically viable and will not be implemented at this time due to several changes at and around the mill which have occurred since the inception of the project in 1995. The analysis shows that for this technology, and likely other gasification technologies as well, the first few installations will require unique circumstances, or supportive public policies, or both to attract host sites and investors.

  16. Thermal and environmental characteristics of the primary equipment of the 480-MW Razdan-5 power-generating plant operating as a combined-cycle plant

    NASA Astrophysics Data System (ADS)

    Sargsyan, K. B.; Eritsyan, S. Kh.; Petrosyan, G. S.; Avtandilyan, A. V.; Gevorkyan, A. R.; Klub, M. V.

    2015-01-01

    Results of thermal tests of 480-MW power-generating Unit 5 of Razdan Thermal Power Plant (hereinafter, Razdan-5 power unit) are presented. The tests were carried out by LvivORGRES after an integration trial of the power unit. The aim of the tests was thermal characterization of the steam boiler and the steam turbine when the power unit operates as a combined-cycle plant. The economic efficiency of the boiler and the turbine and the environmental characteristics of the power unit are determined and the calculated and the actual values are compared. The specific heat gross and net rates required for the power unit to generate the electric power are established.

  17. Solid oxide fuel cell combined cycles

    SciTech Connect

    Bevc, F.P.; Lundberg, W.L.; Bachovchin, D.M.

    1996-12-31

    The integration of the solid oxide fuel cell and combustion turbine technologies can result in combined-cycle power plants, fueled with natural gas, that have high efficiencies and clean gaseous emissions. Results of a study are presented in which conceptual designs were developed for 3 power plants based upon such an integration, and ranging in rating from 3 to 10 MW net ac. The plant cycles are described and characteristics of key components summarized. Also, plant design-point efficiency estimates are presented as well as values of other plant performance parameters.

  18. Effects of groundwater withdrawals associated with combined-cycle combustion turbine plants in west Tennessee and northern Mississippi

    USGS Publications Warehouse

    Haugh, Connor J.

    2012-01-01

    The Mississippi Embayment Regional Aquifer Study groundwater-flow model was used to simulate the potential effects on future groundwater withdrawals at five powerplant sites-Gleason, Weakley County, Tennessee; Tenaska, Haywood County, Tennessee; Jackson, Madison County, Tennessee; Southaven, DeSoto County, Mississippi; and Magnolia, Benton County, Mississippi. The scenario used in the simulation consisted of a 30-year average water-use period followed by a 30-day peak water-demand period. Effects of the powerplants on the aquifer system were evaluated by comparing the difference in simulated water levels in the aquifers at the end of the scenario (30 years plus 30 days) with and without the combined-cycle-plant withdrawals. Simulated potentiometric surface declines in source aquifers at potential combined-cycle-plant sites ranged from 56 feet in the upper Wilcox aquifer at the Magnolia site to 20 feet in the Memphis aquifer at the Tenaska site. The affected areas in the source aquifers at the sites delineated by the 4-foot potentiometric surface-decline contour ranged from 11,362 acres at Jackson to 535,143 acres at Southaven. The extent of areas affected by potentiometric surface declines was similar at the Gleason and Magnolia sites. The affected area at the Tenaska site was smaller than the affected areas at the other sites, most likely as a result of lower withdrawal rates and greater aquifer thickness. The extent of effect was smallest at the Jackson site, where the nearby Middle Fork Forked Deer River may act as a recharge boundary. Additionally, the Jackson site lies in the Memphis aquifer outcrop area where model-simulated recharge rates are higher than in areas where the Memphis aquifer underlies less permeable deposits. The potentiometric surface decline in aquifers overlying or underlying a source aquifer was generally 2 feet or less at all the sites except Gleason. At the Gleason site, withdrawals from the Memphis aquifer resulted in declines of as much

  19. Combined cycle comes to the Philippines

    SciTech Connect

    1995-03-01

    The first combined cycle power station in the Philippines has gone into operation at National Power Corporation`s (NPC) Limay Bataan site, some 40 km west of Manila. The plant comprises two 300 MW blocks in 3+3+1 configuration, based on ABB Type GT11N gas turbines. It was built by a consortium of ABB, with their Japanese licensee Kawasaki Heavy Industries, and Marubeni Corporation. This paper discusses Philippine power production, design and operation of the Limay Bataan plant, and conversion of an existing turbine of the nuclear plant project that was abandoned earlier, into a combined cycle operation. 6 figs.

  20. A comparative analysis of the economic effect from using cogeneration gas-turbine units and combined-cycle plants in a power system

    NASA Astrophysics Data System (ADS)

    Treshchev, D. A.; Loshchakov, I. I.; Romakhova, G. A.

    2010-06-01

    The net cost of heat production at cogeneration stations equipped with gas turbine units, steam turbine units, and combined-cycle plants is analyzed by way of comparison. It is shown that the minimal net cost will be achieved in the case of using certain types of power installations depending on the network tariff for electric energy.

  1. State estimation of an acid gas removal (AGR) plant as part of an integrated gasification combined cycle (IGCC) plant with CO2 capture

    SciTech Connect

    Paul, P.; Bhattacharyya, D.; Turton, R.; Zitney, S.

    2012-01-01

    An accurate estimation of process state variables not only can increase the effectiveness and reliability of process measurement technology, but can also enhance plant efficiency, improve control system performance, and increase plant availability. Future integrated gasification combined cycle (IGCC) power plants with CO2 capture will have to satisfy stricter operational and environmental constraints. To operate the IGCC plant without violating stringent environmental emission standards requires accurate estimation of the relevant process state variables, outputs, and disturbances. Unfortunately, a number of these process variables cannot be measured at all, while some of them can be measured, but with low precision, low reliability, or low signal-to-noise ratio. As a result, accurate estimation of the process variables is of great importance to avoid the inherent difficulties associated with the inaccuracy of the data. Motivated by this, the current paper focuses on the state estimation of an acid gas removal (AGR) process as part of an IGCC plant with CO2 capture. This process has extensive heat and mass integration and therefore is very suitable for testing the efficiency of the designed estimators in the presence of complex interactions between process variables. The traditional Kalman filter (KF) (Kalman, 1960) algorithm has been used as a state estimator which resembles that of a predictor-corrector algorithm for solving numerical problems. In traditional KF implementation, good guesses for the process noise covariance matrix (Q) and the measurement noise covariance matrix (R) are required to obtain satisfactory filter performance. However, in the real world, these matrices are unknown and it is difficult to generate good guesses for them. In this paper, use of an adaptive KF will be presented that adapts Q and R at every time step of the algorithm. Results show that very accurate estimations of the desired process states, outputs or disturbances can be

  2. Externally fired combined cycle demonstration

    SciTech Connect

    Orozco, N.J.; Young, S.; LaHaye, P.G.; Strom-Olsen, J.; Seger, J.L.; Pickup, H.

    1995-11-01

    Externally Fired Combined Cycles (EFCCs) can increase the amount of electricity produced from ash bearing fuels up to 40%, with overall powerplant efficiencies in excess of 45%. Achieving such high efficiencies requires high temperature-high pressure air heaters capable of driving modern gas turbines from gas streams containing the products of coal combustion. A pilot plant has been constructed in Kennebunk, Maine to provide proof of concept and evaluation of system components. Tests using pulverized Western Pennsylvania bituminous coal have been carried out since April, 1995. The ceramic air heater extracts energy from the products of coal combustion to power a gas turbine. This air heater has operated at gas inlet temperatures over 1,095 C and pressures over 7.0 atm without damage to the ceramic tube string components. Stable gas turbine operation has been achieved with energy input from the air heater and a supplementary gas fired combustor. Efforts are underway to fire the cycle on coal only, and to increase the duration of the test runs. Air heater improvements are being implemented and evaluated. These improvements include installation of a second pass of ceramic tubes and evaluation of corrosion resistant coatings on the ceramic tubes.

  3. Cycling operation of fossil plants

    SciTech Connect

    Bhatnagar, U.S.; Weiss, M.D.; White, W.H. ); Buchanan, T.L.; Harvey, L.E.; Shewchuk, P.K.; Weinstein, R.E. )

    1991-05-01

    This report presents a methodology for examining the economic feasibility of converting fossil power plants from baseload to cycling service. It employs this approach to examine a proposed change of Pepco's Potomac River units 3, 4, and 5 from baseload operation of two-shift cycling. The project team first reviewed all components and listed potential cycling effects involved in the conversion of Potomac River units 3, 4, and 5. They developed general cycling plant screening criteria including the number of hot, warm, or cold restart per year and desired load ramp rates. In addition, they evaluated specific limitations on the boiler, turbine, and the balance of plant. They estimated the remaining life of the facility through component evaluation and boiler testing and also identified and prioritized potential component deficiencies by their impact on key operational factors: safety, heat rate, turn down, startup/shutdown time, and plant availability. They developed solutions to these problems; and, since many solutions mitigate more than one problem, they combined and reprioritized these synergistic solutions. Economic assessments were performed on all solutions. 13 figs., 20 tabs.

  4. Reduced emissions of CO2, NOx, and SO2 from U.S. power plants owing to switch from coal to natural gas with combined cycle technology

    NASA Astrophysics Data System (ADS)

    de Gouw, J. A.; Parrish, D. D.; Frost, G. J.; Trainer, M.

    2014-02-01

    Since 1997, an increasing fraction of electric power has been generated from natural gas in the United States. Here we use data from continuous emission monitoring systems (CEMS), which measure emissions at the stack of most U.S. electric power generation units, to investigate how this switch affected the emissions of CO2, NOx, and SO2. Per unit of energy produced, natural gas power plants equipped with combined cycle technology emit on an average 44% of the CO2 compared with coal power plants. As a result of the increased use of natural gas, CO2 emissions from U.S. fossil-fuel power plants were 23% lower in 2012 than they would have been if coal had continued to provide the same fraction of electric power as in 1997. In addition, natural gas power plants with combined cycle technology emit less NOx and far less SO2 per unit of energy produced than coal power plants. Therefore, the increased use of natural gas has led to emission reductions of NOx (40%) and SO2 (44%), in addition to those obtained from the implementation of emission control systems on coal power plants. These benefits to air quality and climate should be weighed against the increase in emissions of methane, volatile organic compounds, and other trace gases that are associated with the production, processing, storage, and transport of natural gas.

  5. Dynamic Modeling and Plantwide Control of a Hybrid Power and Chemical Plant: An Integrated Gasification Combined Cycle Coupled with a Methanol Plant

    NASA Astrophysics Data System (ADS)

    Robinson, Patrick J.

    Gasification has been used in industry on a relatively limited scale for many years, but it is emerging as the premier unit operation in the energy and chemical industries. The switch from expensive and insecure petroleum to solid hydrocarbon sources (coal and biomass) is occurring due to the vast amount of domestic solid resources, national security and global warming issues. Gasification (or partial oxidation) is a vital component of "clean coal" technology. Sulfur and nitrogen emissions can be reduced, overall energy efficiency is increased and carbon dioxide recovery and sequestration are facilitated. Gasification units in an electric power generation plant produce a fuel gas for driving combustion turbines. Gasification units in a chemical plant generate synthesis gas, which can be used to produce a wide spectrum of chemical products. Future plants are predicted to be hybrid power/chemical plants with gasification as the key unit operation. The coupling of an Integrated Gasification Combined Cycle (IGCC) with a methanol plant can handle swings in power demand by diverting hydrogen gas from a combustion turbine and synthesis gas from the gasifier to a methanol plant for the production of an easily-stored, hydrogen-consuming liquid product. An additional control degree of freedom is provided with this hybrid plant, fundamentally improving the controllability of the process. The idea is to base-load the gasifier and use the more responsive gas-phase units to handle disturbances. During the summer days, power demand can fluctuate up to 50% over a 12-hour period. The winter provides a different problem where spikes of power demand can go up 15% within the hour. The following dissertation develops a hybrid IGCC / methanol plant model, validates the steady-state results with a National Energy Technical Laboratory study, and tests a proposed control structure to handle these significant disturbances. All modeling was performed in the widely used chemical process

  6. Energy and exergy analyses of an integrated gasification combined cycle power plant with CO2 capture using hot potassium carbonate solvent.

    PubMed

    Li, Sheng; Jin, Hongguang; Gao, Lin; Mumford, Kathryn Anne; Smith, Kathryn; Stevens, Geoff

    2014-12-16

    Energy and exergy analyses were studied for an integrated gasification combined cycle (IGCC) power plant with CO2 capture using hot potassium carbonate solvent. The study focused on the combined impact of the CO conversion ratio in the water gas shift (WGS) unit and CO2 recovery rate on component exergy destruction, plant efficiency, and energy penalty for CO2 capture. A theoretical limit for the minimal efficiency penalty for CO2 capture was also provided. It was found that total plant exergy destruction increased almost linearly with CO2 recovery rate and CO conversion ratio at low CO conversion ratios, but the exergy destruction from the WGS unit and the whole plant increased sharply when the CO conversion ratio was higher than 98.5% at the design WGS conditions, leading to a significant decrease in plant efficiency and increase in efficiency penalty for CO2 capture. When carbon capture rate was over around 70%, via a combination of around 100% CO2 recovery rate and lower CO conversion ratios, the efficiency penalty for CO2 capture was reduced. The minimal efficiency penalty for CO2 capture was estimated to be around 5.0 percentage points at design conditions in an IGCC plant with 90% carbon capture. Unlike the traditional aim of 100% CO conversion, it was recommended that extremely high CO conversion ratios should not be considered in order to decrease the energy penalty for CO2 capture and increase plant efficiency. PMID:25389800

  7. Results of heat tests of the TGE-435 main boiler in the PGU-190/220 combined-cycle plant of the Tyumen' TETs-2 cogeneration plant

    SciTech Connect

    A.V. Kurochkin; A.L. Kovalenko; V.G. Kozlov; A.I. Krivobok

    2007-01-15

    Special features of operation of a boiler operating as a combined-cycle plant and having its own furnace and burner unit are descried. The flow of flue gases on the boiler is increased due to feeding of exhaust gases of the GTU into the furnace, which intensifies the convective heat exchange. In addition, it is not necessary to preheat air in the convective heating surfaces (the boiler has no air preheater). The convective heating surfaces of the boiler are used for heating the feed water, thus replacing the regeneration extractions of the steam turbine (HPP are absent in the circuit) and partially replacing the preheating of condensate (the LPP in the circuit of the unit are combined with preheaters of delivery water). Regeneration of the steam turbine is primarily used for the district cogeneration heating purposes. The furnace and burner unit of the exhaust-heat boiler (which is a new engineering solution for the given project) ensures utilization of not only the heat of the exhaust gases of the GTU but also of their excess volume, because the latter contains up to 15% oxygen that oxidizes the combustion process in the boiler. Thus, the gas temperature at the inlet to the boiler amounts to 580{sup o}C at an excess air factor a = 3.50; at the outlet these parameters are utilized to T{sub out} = 139{sup o}C and a{sub out} = 1.17. The proportions of the GTU/boiler loads that can actually be organized at the generating unit (and have been checked by testing) are presented and the proportions of loads recommended for the most efficient operation of the boiler are determined. The performance characteristics of the boiler are presented for various proportions of GTU/boiler loads. The operating conditions of the superheater and of the convective trailing heating surfaces are presented as well as the ecological parameters of the generating unit.

  8. H gas turbine combined cycle

    SciTech Connect

    Corman, J.

    1995-10-01

    A major step has been taken in the development of the Next Power Generation System - {open_quotes}H{close_quotes} Technology Combined Cycle. This new gas turbine combined-cycle system increases thermal performance to the 60% level by increasing gas turbine operating temperature to 1430 C (2600 F) at a pressure ratio of 23 to 1. Although this represents a significant increase in operating temperature for the gas turbine, the potential for single digit NOx levels (based upon 15% O{sub 2}, in the exhaust) has been retained. The combined effect of performance increase and environmental control is achieved by an innovative closed loop steam cooling system which tightly integrates the gas turbine and steam turbine cycles. The {open_quotes}H{close_quotes} Gas Turbine Combined Cycle System meets the goals and objectives of the DOE Advanced Turbine System Program. The development and demonstration of this new system is being carried out as part of the Industrial/Government cooperative agreement under the ATS Program. This program will achieve first commercial operation of this new system before the end of the century.

  9. Recovery, transport, and disposal of CO{sub 2} from an integrated gasification combined-cycle power plant

    SciTech Connect

    Livengood, C.D.; Doctor, R.D.; Molburg, J.C.; Thimmapuram, P.; Berry, G.F.

    1993-12-31

    Initiatives to limit CO{sub 2} emissions have drawn considerable interest to integrated gasification combined-cycle (IGCC) power generation, a process that reduces CO{sub 2} production and is amenable to CO{sub 2} capture. This paper presents a comparison of energy systems that encompass fuel supply, an IGCC system, CO{sub 2} recovery using commercial technologies, CO{sub 2} transport by pipeline, and land-based sequestering in geological reservoirs. The intent is to evaluate the energy efficiency impacts of controlling CO{sub 2} in such a system, and to provide the CO{sub 2} budget, or an equivalent CO{sub 2} budget, associated with each of the individual energy-cycle steps. The value used for the equivalent CO{sub 2} budget is 1 kg CO{sub 2}/kWh. The base case for the comparison is a 458-MW IGCC system using an air-blown Kellogg Rust Westinghouse (KRW) agglomerating fluidized-bed gasifier, Illinois No.6 bituminous coal, and in-bed sulfur removal. Mining, transportation, and preparation of the coal and limestone result in a net electric power production of 448 MW with a 0.872 kg/kWh CO{sub 2} release rate. For comparison, the gasifier output was taken through a water-gas shift to convert CO to CO{sub 2}, and processed in a Selexol unit to recover CO{sub 2} prior to the combustion turbine. A 500-km pipeline then took the CO{sub 2} to geological sequestering. The net electric power production was 383 MW with a 0.218 kg/kWh CO{sub 2} release rate.

  10. Airbreathing combined cycle engine systems

    NASA Technical Reports Server (NTRS)

    Rohde, John

    1992-01-01

    The Air Force and NASA share a common interest in developing advanced propulsion systems for commercial and military aerospace vehicles which require efficient acceleration and cruise operation in the Mach 4 to 6 flight regime. The principle engine of interest is the turboramjet; however, other combined cycles such as the turboscramjet, air turborocket, supercharged ejector ramjet, ejector ramjet, and air liquefaction based propulsion are also of interest. Over the past months careful planning and program implementation have resulted in a number of development efforts that will lead to a broad technology base for those combined cycle propulsion systems. Individual development programs are underway in thermal management, controls materials, endothermic hydrocarbon fuels, air intake systems, nozzle exhaust systems, gas turbines and ramjet ramburners.

  11. The effectiveness of using the combined-cycle technology in a nuclear power plant unit equipped with an SVBR-100 reactor

    NASA Astrophysics Data System (ADS)

    Kasilov, V. F.; Dudolin, A. A.; Gospodchenkov, I. V.

    2015-05-01

    The design of a modular SVBR-100 reactor with a lead-bismuth alloy liquid-metal coolant is described. The basic thermal circuit of a power unit built around the SVBR-100 reactor is presented together with the results of its calculation. The gross electrical efficiency of the turbine unit driven by saturated steam at a pressure of 6.7 MPa is estimated at η{el/gr} = 35.5%. Ways for improving the efficiency of this power unit and increasing its power output by applying gas-turbine and combined-cycle technologies are considered. With implementing a combined-cycle power-generating system comprising two GE-6101FA gas-turbine units with a total capacity of 140 MW, it becomes possible to obtain the efficiency of the combined-cycle plant equipped with the SVBR-100 reactor η{el/gr} = 45.39% and its electrical power output equal to 328 MW. The heat-recovery boiler used as part of this power installation generates superheated steam with a temperature of 560°C, due to which there is no need to use a moisture separator/steam reheater in the turbine unit thermal circuit.

  12. Cycling Through Plants

    ERIC Educational Resources Information Center

    Cavallo, Ann

    2005-01-01

    Children notice seeds and plants every day. But do they really understand what seeds are and how they are related to plants? Have they ever observed what is inside the seed? What happens to the "things" inside a seed when it grows? What do plants need to grow, and what do they need to stay healthy? Through a sequence of three related learning…

  13. Dynamic simulation and load-following control of an integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture

    SciTech Connect

    Bhattacharyya, D,; Turton, R.; Zitney, S.

    2012-01-01

    Load-following control of future integrated gasification combined cycle (IGCC) plants with pre-combustion CO{sub 2} capture is expected to be far more challenging as electricity produced by renewable energy is connected to the grid and strict environmental limits become mandatory requirements. To study control performance during load following, a plant-wide dynamic simulation of a coal-fed IGCC plant with CO{sub 2} capture has been developed. The slurry-fed gasifier is a single-stage, downward-fired, oxygen-blown, entrained-flow type with a radiant syngas cooler (RSC). The syngas from the outlet of the RSC goes to a scrubber followed by a two-stage sour shift process with inter-stage cooling. The acid gas removal (AGR) process is a dual-stage physical solvent-based process for selective removal of H{sub 2}S in the first stage and CO{sub 2} in the second stage. Sulfur is recovered using a Claus unit with tail gas recycle to the AGR. The recovered CO{sub 2} is compressed by a split-shaft multistage compressor and sent for sequestration after being treated in an absorber with triethylene glycol for dehydration. The clean syngas is sent to two advanced “F”-class gas turbines (GTs) partially integrated with an elevated-pressure air separation unit. A subcritical steam cycle is used for heat recovery steam generation. A treatment unit for the sour water strips off the acid gases for utilization in the Claus unit. The steady-state model developed in Aspen Plus® is converted to an Aspen Plus Dynamics® simulation and integrated with MATLAB® for control studies. The results from the plant-wide dynamic model are compared qualitatively with the data from a commercial plant having different configuration, operating condition, and feed quality than what has been considered in this work. For load-following control, the GT-lead with gasifier-follow control strategy is considered. A modified proportional–integral–derivative (PID) control is considered for the syngas

  14. Process screening study of alternative gas treating and sulfur removal systems for IGCC (Integrated Gasification Combined Cycle) power plant applications: Final report

    SciTech Connect

    Biasca, F.E.; Korens, N.; Schulman, B.L.; Simbeck, D.R.

    1987-12-01

    One of the inherent advantages of the Integrated Gasification Combined Cycle plant (IGCC) over other coal-based electric generation technologies is that the sulfur in the coal is converted into a form which can be removed and recovered. Extremely low sulfur oxide emissions can result. Gas treating and sulfur recovery processes for the control of sulfur emissions are an integral part of the overall IGCC plant design. There is a wide range of commercially proven technologies which are highly efficient for sulfur control. In addition, there are many developing technologies and new concepts for applying established technologies which offer potential improvements in both technical and economic performance. SFA Pacific, Inc. has completed a screening study to compare several alternative methods of removing sulfur from the gas streams generated by the Texaco coal gasification process for use in an IGCC plant. The study considered cleaning the gas made from high and low sulfur coals to produce a low sulfur fuel gas and a severely desulfurized synthesis gas (suitable for methanol synthesis), while maintaining a range of low levels of total sulfur emissions. The general approach was to compare the technical performance of the various processes in meeting the desulfurization specifications laid out in EPRI's design basis for the study. The processing scheme being tested at the Cool Water IGCC facility incorporates the Selexol acid gas removal process which is used in combination with a Claus sulfur plant and a SCOT tailgas treating unit. The study has identified several commercial systems, as well as some unusual applications, which can provide efficient removal of sulfur from the fuel gas and also produce extremely low sulfur emissions - so as to meet very stringent sulfur emissions standards. 29 refs., 8 figs., 8 tabs.

  15. Solid-Fueled Pressurized Chemical Looping with Flue-Gas Turbine Combined Cycle for Improved Plant Efficiency and CO{sub 2} Capture

    SciTech Connect

    Liu, Kunlei; Chen, Liangyong; Zhang, Yi; Richburg, Lisa; Simpson, James; White, Jay; Rossi, Gianalfredo

    2013-12-31

    The purpose of this document is to report the final result of techno-economic analysis for the proposed 550MWe integrated pressurized chemical looping combustion combined cycle process. An Aspen Plus based model is delivered in this report along with the results from three sensitivity scenarios including the operating pressure, excess air ratio and oxygen carrier performance. A process flow diagram and detailed stream table for the base case are also provided with the overall plant energy balance, carbon balance, sulfur balance and water balance. The approach to the process and key component simulation are explained. The economic analysis (OPEX and CAPX) on four study cases via DOE NETL Reference Case 12 are presented and explained.

  16. Evaluation and modification of ASPEN fixed-bed gasifier models for inclusion in an integrated gasification combined-cycle power plant simulation

    SciTech Connect

    Stefano, J.M.

    1985-05-01

    Several Advanced System for Process Engineering (ASPEN) fixed-bed gasifier models have been evaluated to determine which is the most suitable model for use in an integrated gasification combined-cycle (IGCC) power plant simulation. Four existing ASPEN models were considered: RGAS, a dry ash gasifier model developed by Halcon/Scientific Design Company; USRWEN, the WEN II dry ash gasifier model originally developed by C.Y. Wen at West Virginia University; the slagging gasifier model developed by Massachusetts Institute of Technology (MIT) and based on Continental Oil Company's (CONOCO) design study for the proposed Pipeline Demonstration Plant; and the ORNL dry ash gasifier model developed by Oak Ridge National Laboratory for the simulation of the Tri-States Indirect Liquefaction Process. Because none of the models studied were suitable in their present form for inclusion in an IGCC power plant simulation, the SLAGGER model was developed by making significant modifications to the MIT model. The major problems with the existing ASPEN models were most often inaccurate material and energy balances, limitations of coal type, or long run times. The SLAGGER model includes simplifications and improvements over the MIT model, runs quickly (less than 30 seconds of computer time on a VAX-11/780), and gives more accurate mass and energy balances.

  17. FUEL CELL/MICRO-TURBINE COMBINED CYCLE

    SciTech Connect

    Larry J. Chaney; Mike R. Tharp; Tom W. Wolf; Tim A. Fuller; Joe J. Hartvigson

    1999-12-01

    A wide variety of conceptual design studies have been conducted that describe ultra-high efficiency fossil power plant cycles. The most promising of these ultra-high efficiency cycles incorporate high temperature fuel cells with a gas turbine. Combining fuel cells with a gas turbine increases overall cycle efficiency while reducing per kilowatt emissions. This study has demonstrated that the unique approach taken to combining a fuel cell and gas turbine has both technical and economic merit. The approach used in this study eliminates most of the gas turbine integration problems associated with hybrid fuel cell turbine systems. By using a micro-turbine, and a non-pressurized fuel cell the total system size (kW) and complexity has been reduced substantially from those presented in other studies, while maintaining over 70% efficiency. The reduced system size can be particularly attractive in the deregulated electrical generation/distribution environment where the market may not demand multi-megawatt central stations systems. The small size also opens up the niche markets to this high efficiency, low emission electrical generation option.

  18. On high suppression of NO x and CO emissions in gas-turbine plants with combined gas-and-steam cycles

    NASA Astrophysics Data System (ADS)

    Ivanov, A. A.; Ermakov, A. N.; Shlyakhov, R. A.

    2010-12-01

    In this work are given results of analyzing processes of production of nitrogen oxides (NO x ) and afterburning of CO when firing natural gas at combined-cycle gas-turbine plants. It is shown that for suppressing emissions of the said microcomponents it is necessary to lower temperature in hot local zones of the flame in which NOx is formed, and, in so doing, to avoid chilling of cold flame zones that prevents afterburning of CO. The required lowering of the combustion temperature can be provided by combustion of mixtures of methane with steam, with high mixing uniformity that ensures the same and optimum fraction of the steam "ballast" in each microvolume of the flame. In addition to chilling, the steam ballast makes it possible to maintain a fairly high concentration of hydroxil radicals in the flame zone as well, and this provides high burning out of fuel and reduction in carbon monoxide emissions (active steam ballast). Due to this fact the fraction of steam when firing its mixtures with methane in a gas-turbine plant can be increased up to the weight ratio 4: 1. In this case, the concentrations of NO x and CO in emissions can be reduced to ultra-low values (less than 3 ppm).

  19. Deoxygenation in cycling fossil plants

    SciTech Connect

    Pearl, W.L.; Hobart, R.L.; Hook, T.A.; McNea, D.A. )

    1992-04-01

    In a previous EPRI study (Phase 1 of RP1184-9) at the Port Everglades plant of Florida Power and Light, it was demonstrated that minimizing shutdown oxygen levels at a cycling plant could reduce corrosion product transport to the boilers. A continuation of the program was performed to demonstrate the use of two forms of activated carbon to catalyze the hydrazine/oxygen reaction as a method to minimize the oxygen levels of cycling fossil plants. An activated carbon impregnated fiber overlay on a powdered resin precoat was tested at TU Electric's Tradinghouse Creek Unit 1 and a carbon bed followed by a deep bed demineralizer was tested at Duquesne's Elrama Unit 4. The improvement in attainable oxygen control was demonstrated and the effect on corrosion product transport during cyclic operation was evaluated. The study also demonstrated the application of a data acquisition system for prompt data assessment, control of chemical additions, identification of problems, and development of responsive corrective actions.

  20. Sensor placement algorithm development to maximize the efficiency of acid gas removal unit for integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture

    SciTech Connect

    Paul, P.; Bhattacharyya, D.; Turton, R.; Zitney, S.

    2012-01-01

    Future integrated gasification combined cycle (IGCC) power plants with CO{sub 2} capture will face stricter operational and environmental constraints. Accurate values of relevant states/outputs/disturbances are needed to satisfy these constraints and to maximize the operational efficiency. Unfortunately, a number of these process variables cannot be measured while a number of them can be measured, but have low precision, reliability, or signal-to-noise ratio. In this work, a sensor placement (SP) algorithm is developed for optimal selection of sensor location, number, and type that can maximize the plant efficiency and result in a desired precision of the relevant measured/unmeasured states. In this work, an SP algorithm is developed for an selective, dual-stage Selexol-based acid gas removal (AGR) unit for an IGCC plant with pre-combustion CO{sub 2} capture. A comprehensive nonlinear dynamic model of the AGR unit is developed in Aspen Plus Dynamics® (APD) and used to generate a linear state-space model that is used in the SP algorithm. The SP algorithm is developed with the assumption that an optimal Kalman filter will be implemented in the plant for state and disturbance estimation. The algorithm is developed assuming steady-state Kalman filtering and steady-state operation of the plant. The control system is considered to operate based on the estimated states and thereby, captures the effects of the SP algorithm on the overall plant efficiency. The optimization problem is solved by Genetic Algorithm (GA) considering both linear and nonlinear equality and inequality constraints. Due to the very large number of candidate sets available for sensor placement and because of the long time that it takes to solve the constrained optimization problem that includes more than 1000 states, solution of this problem is computationally expensive. For reducing the computation time, parallel computing is performed using the Distributed Computing Server (DCS®) and the Parallel

  1. Economic evaluation of gasification-combined-cycle power plants based on the air-blown KILnGAS process. Final report

    SciTech Connect

    Hsu, W.W.; McFarland, R.E.; McNamee, G.P.; Ramanathan, V.; Siddoway, S.J.; Simon, A.; Smelser, S.C.

    1981-11-01

    This study is an engineering and economic evaluation of the KILnGAS process aimed at: development of overall plant process designs based on a design philosophy consistent with other studies under EPRI RP No. 239-2; preparation of necessary flowsheets, cost estimates and economic evaluations for two gasification combined-cycle (GCC) power plant cases based on the KILnGAS coal gasification process; and continued development of a consistent set of economic evaluations of GCC systems which employ both second-generation gasifiers and power block designs based on currently available combustion turbines having a 2000/sup 0/F firing temperature. Allis-Chalmers Corporation is developing the KILnGAS process to produce low Btu gas from coal by using a rotary, refractory-lined, ported kiln as the gasification reactor. Two base cases (KAAC-C and KAAC-Q) were evaluated. The two designs differ from each other in the manner in which the raw fuel gas is cleaned and cooled. Particulate removal in Case KAAC-C is achieved by a combination of cyclones and venturi scrubbers. In Case KAAC-Q, particulate removal is achieved in a water quench in a venturi scrubber. These designs yield nearly identical clean fuel gas production rates and compositions. Operating costs do not vary much from cyclone designs to water quench design. Five different gasifier configurations (varying the size and number of operating and spare gasifiers) were selected for each cooling design. A number of potential improvements were investigated for the KILnGAS process. Substantial commercial risks are associated with these potential design improvements.

  2. Cycling operation of fossil plants

    SciTech Connect

    Devendorf, D.; Kulczycky, T.G. )

    1991-05-01

    A necessity for many utilities today is the cycling of their fossil units. Fossil plants with their higher fuel costs are being converted to cycling operation to accommodate daily load swings and to decrease the overall system fuel costs. For a large oil-fired unit, such as Oswego Steam Station Unit 5, millions of dollars can be saved annually in fuel costs if the unit operates in a two-shift mode. However, there are also penalties attributable to cycling operation which are associated with availability and thermal performance. The objectives of Niagara Mohawk Power Corporation were to minimize the losses in availability and performance, and the degradation in the life of the equipment by incorporating certain cycling modifications into the unit. The objective of this project was to evaluate the effectiveness of three of these cycling modifications: (1) the superheater and turbine bypass (Hot Restart System), (2) the use of variable pressure operation, and (3) the full-flow condensate polishing system. To meet this objective, Unit 5 was tested using the cycling modifications, and a dynamic mathematical model of this unit was developed using the Modular Modeling System (MMS) Code from EPRI. This model was used to evaluate various operating modes and to assist in the assessment of operating procedures. 15 refs., 41 figs., 22 tabs.

  3. Combined Cycle Users' Group completes another successful year

    SciTech Connect

    Peltier, R.

    2006-06-15

    Presentations at the third annual meeting of the Combined Cycle Users' Group (CCUG) touched on a wide variety of topics. Among the more eclectic was repowering combined-cycle plants to burn gasified coal. Among the more mundane were selective catalytic reduction (SCR) system maintenance, the effects of cycling heat-recovery steam generators (HRSGs), staff training, and adopting best practices in O & M. Judging from the lively discussions and questions following the presentations, it was clear that operating a power plant is still as much art as science. Dr. S. Sato, senior engineering advisor for Mitsubishi Power Systems, highlighted the development history and aggressive R & D work under way to bring the company's integrated gasification combined-cycle (IGCC) plant to market. 1 tab., 5 photos.

  4. Fuel-flexible combined cycles for utility power and cogeneration

    NASA Astrophysics Data System (ADS)

    Roberts, P. B.; Duffy, T. E.; Schreiber, H.

    1980-03-01

    Two combustion turbine combined cycle power plants have been studied for performance and operating economics. Both power plants are in the sizing range that will be suitable for small utility application and use less than 106 GJ/hr (100 million Btu/hr). The first power plant is based on the Solar Turbines International (STI) Mars industrial gas turbine. The combined gas turbine/steam cycle is direct fired with No. 2 diesel fuel. A total installed cost for the system is estimated to be within the band 545 to 660 $/kW. The second power plant is based on STI's Centaur industrial gas turbine. The combined gas turbine/steam cycle is indirectly fired with solid fuel although it is intended that the installation can be initially fired with a liquid fuel.

  5. Modeling and optimization of a modified claus process as part of an integrted gasification combined cycle (IGCC) power plant with CO2 capture

    SciTech Connect

    Jones, D.; Bhattacharyya, D.; Turton, R.; Zitney, S.

    2011-01-01

    The modified Claus process is one of the most common technologies for sulfur recovery from acid gas streams. Important design criteria for the Claus unit, when part of an Integrated Gasification Combined Cycle (IGCC) power plant, are the ability to destroy ammonia completely and recover sulfur thoroughly from a relatively low purity acid gas stream without sacrificing flame stability. Due to these criteria, modifications are often required to the conventional process, resulting in a modified Claus process. For the studies discussed here, these modifications include the use of a 95% pure oxygen stream as the oxidant, a split flow configuration, and the preheating of the feeds with the intermediate pressure steam generated in the waste heat boiler (WHB). In the future, for IGCC plants with CO2 capture, the Claus unit must satisfy emission standards without sacrificing the plant efficiency in the face of typical disturbances of an IGCC plant such as rapid change in the feed flowrates due to load-following and wide changes in the feed composition because of changes in the coal feed to the gasifier. The Claus unit should be adequately designed and efficiently operated to satisfy these objectives. Even though the Claus process has been commercialized for decades, most papers concerned with the modeling of the Claus process treat the key reactions as equilibrium reactions. Such models are validated by manipulating the temperature approach to equilibrium for a set of steady-state operating data, but are of limited use for dynamic studies. One of the objectives of this study is to develop a model that can be used for dynamic studies. In a Claus process, especially in the furnace and the WHB, many reactions may take place. In this work, a set of linearly independent reactions has been identified and kinetic models of the furnace flame and anoxic zones, WHB, and catalytic reactors have been developed. To facilitate the modeling of the Claus furnace, a four-stage method was

  6. Rigorous Kinetic Modeling, Optimization, and Operability Studies of a Modified Claus Unit for an Integrated Gasification Combined Cycle (IGCC) Power Plant with CO{sub 2} Capture

    SciTech Connect

    Jones, Dustin; Bhattacharyya, Debangsu; Turton, Richard; Zitney, Stephen E

    2011-12-15

    The modified Claus process is one of the most common technologies for sulfur recovery from acid gas streams. Important design criteria for the Claus unit, when part of an Integrated Gasification Combined Cycle (IGCC) power plant, are the ability to destroy ammonia completely and the ability to recover sulfur thoroughly from a relatively low purity acid gas stream without sacrificing flame stability. Because of these criteria, modifications to the conventional process are often required, resulting in a modified Claus process. For the studies discussed here, these modifications include the use of a 95% pure oxygen stream as the oxidant, a split flow configuration, and the preheating of the feeds with the intermediate pressure steam generated in the waste heat boiler (WHB). In the future, for IGCC plants with CO{sub 2} capture, the Claus unit must satisfy emission standards without sacrificing the plant efficiency in the face of typical disturbances of an IGCC plant, such as rapid change in the feed flow rates due to load-following and wide changes in the feed composition because of changes in the coal feed to the gasifier. The Claus unit should be adequately designed and efficiently operated to satisfy these objectives. Even though the Claus process has been commercialized for decades, most papers concerned with the modeling of the Claus process treat the key reactions as equilibrium reactions. Such models are validated by manipulating the temperature approach to equilibrium for a set of steady-state operating data, but they are of limited use for dynamic studies. One of the objectives of this study is to develop a model that can be used for dynamic studies. In a Claus process, especially in the furnace and the WHB, many reactions may take place. In this work, a set of linearly independent reactions has been identified, and kinetic models of the furnace flame and anoxic zones, WHB, and catalytic reactors have been developed. To facilitate the modeling of the Claus

  7. Rigorous Kinetic Modeling and Optimization Study of a Modified Claus Unit for an Integrated Gasification Combined Cycle (IGCC) Power Plant with CO{sub 2} Capture

    SciTech Connect

    Jones, Dustin; Bhattacharyya, Debangsu; Turton, Richard; Zitney, Stephen E.

    2012-02-08

    The modified Claus process is one of the most common technologies for sulfur recovery from acid gas streams. Important design criteria for the Claus unit, when part of an Integrated Gasification Combined Cycle (IGCC) power plant, are the ability to destroy ammonia completely and the ability to recover sulfur thoroughly from a relatively low purity acid gas stream without sacrificing flame stability. Because of these criteria, modifications to the conventional process are often required, resulting in a modified Claus process. For the studies discussed here, these modifications include the use of a 95% pure oxygen stream as the oxidant, a split flow configuration, and the preheating of the feeds with the intermediate pressure steam generated in the waste heat boiler (WHB). In the future, for IGCC plants with CO{sub 2} capture, the Claus unit must satisfy emission standards without sacrificing the plant efficiency in the face of typical disturbances of an IGCC plant, such as rapid change in the feed flow rates due to load-following and wide changes in the feed composition because of changes in the coal feed to the gasifier. The Claus unit should be adequately designed and efficiently operated to satisfy these objectives. Even though the Claus process has been commercialized for decades, most papers concerned with the modeling of the Claus process treat the key reactions as equilibrium reactions. Such models are validated by manipulating the temperature approach to equilibrium for a set of steady-state operating data, but they are of limited use for dynamic studies. One of the objectives of this study is to develop a model that can be used for dynamic studies. In a Claus process, especially in the furnace and the WHB, many reactions may take place. In this work, a set of linearly independent reactions has been identified, and kinetic models of the furnace flame and anoxic zones, WHB, and catalytic reactors have been developed. To facilitate the modeling of the Claus

  8. A study on the evaluations of emission factors and uncertainty ranges for methane and nitrous oxide from combined-cycle power plant in Korea.

    PubMed

    Lee, Seehyung; Kim, Jinsu; Lee, Jeongwoo; Lee, Seongho; Jeon, Eui-Chan

    2013-01-01

    In this research, in order to develop technology/country-specific emission factors of methane (CH(4)) and nitrous oxide (N(2)O), a total of 585 samples from eight gas-fired turbine combined cycle (GTCC) power plants were measured and analyzed. The research found that the emission factor for CH(4) stood at "0.82 kg/TJ", which was an 18 % lower than the emission factor for liquefied natural gas (LNG) GTCC "1 kg/TJ" presented by Intergovernmental Panel on Climate Change (IPCC). The result was 8 % up when compared with the emission factor of Japan which stands at "0.75 kg/TJ". The emission factor for N(2)O was "0.65 kg/TJ", which is significantly lower than "3 kg/TJ" of the emission factor for LNG GTCC presented by IPCC, but over six times higher than the default N(2)O emission factor of LNG. The evaluation of uncertainty was conducted based on the estimated non-CO(2) emission factors, and the ranges of uncertainty for CH(4) and N(2)O were between -12.96 and +13.89 %, and -11.43 and +12.86 %, respectively, which is significantly lower than uncertainties presented by IPCC. These differences proved that non-CO(2) emissions can change depending on combustion technologies; therefore, it is vital to establish country/technology-specific emission factors. PMID:23001757

  9. Definitional-mission report: Combined-cycle power plant, Sultan Iskandar Power Station Phase 2-B, Tenaga Nasional BHD, Malaysia. Export trade information

    SciTech Connect

    Kadagathur, G.

    1990-12-10

    Tenaga Nasional BHD (TEN) formerly known as National Electricity Board of Malaysia is proposing to construct a Combined Cycle Power Plant at Pasir Gudang. The project is known as Sultan Iskandar Power Station Phase 2 (SIPS-2). U.S. engineering companies and U.S. equipment manufacturers are having difficulty in procuring contracts from the Malaysian Power Industry. To date, the industry is dominated by consortia with British and Swiss participation. Several U.S. engineering companies have approached the US Trade and Development Program (TDP) to assist them in breaking into the Malaysian utility market by supporting their effort on their current proposals for SIPS-2 project. It is recommended that TDP should approve a grant to TEN that would provide funds for engineering upto the preparation of equipment specifications and associated technology transfer. The grant along with the weak dollar should be attractive enough for TEN to strongly consider consortia with U.S. companies very favorably. The project also offers a potential for the export of U.S. manufactured equipment in the range of $170 million.

  10. A combined cycle engine test facility

    NASA Astrophysics Data System (ADS)

    Engers, R.; Cresci, D.; Tsai, C.

    Rocket-Based Combined-Cycle (RBCC) engines intended for missiles and/or space launch applications incorporate features of rocket propulsion systems operating in concert with airbreathing engine cycles. Performance evaluation of these types of engines, which are intended to operate from static sea level take-off to supersonic cruise or accerlerate to orbit, requires ground test capabilities which integrate rocket component testing with airbreathing engine testing. A combined cycle engine test facility has been constructed in the General Applied Science Laboratories, Inc. (GASL) Aeropropulsion Test Laboratory to meet this requirement. The facility was designed to support the development of an innovative combined cycle engine concept which features a rocket based ramjet combustor. The test requirements included the ability to conduct tests in which the propulsive force was generated by rocket only, the ramjet only and simultaneous rocket and ramjet power (combined cycle) to evaluate combustor operation over the entire engine cycle. The test facility provides simulation over the flight Mach number range of 0 to 8 and at various trajectories. The capabilities of the combined cycle engine test facility are presented.

  11. A combined cycle engine test facility

    SciTech Connect

    Engers, R.; Cresci, D.; Tsai, C.

    1995-09-01

    Rocket-Based Combined-Cycle (RBCC) engines intended for missiles and/or space launch applications incorporate features of rocket propulsion systems operating in concert with airbreathing engine cycles. Performance evaluation of these types of engines, which are intended to operate from static sea level take-off to supersonic cruise or accerlerate to orbit, requires ground test capabilities which integrate rocket component testing with airbreathing engine testing. A combined cycle engine test facility has been constructed in the General Applied Science Laboratories, Inc. (GASL) Aeropropulsion Test Laboratory to meet this requirement. The facility was designed to support the development of an innovative combined cycle engine concept which features a rocket based ramjet combustor. The test requirements included the ability to conduct tests in which the propulsive force was generated by rocket only, the ramjet only and simultaneous rocket and ramjet power (combined cycle) to evaluate combustor operation over the entire engine cycle. The test facility provides simulation over the flight Mach number range of 0 to 8 and at various trajectories. The capabilities of the combined cycle engine test facility are presented.

  12. Combined rankine and vapor compression cycles

    DOEpatents

    Radcliff, Thomas D.; Biederman, Bruce P.; Brasz, Joost J.

    2005-04-19

    An organic rankine cycle system is combined with a vapor compression cycle system with the turbine generator of the organic rankine cycle generating the power necessary to operate the motor of the refrigerant compressor. The vapor compression cycle is applied with its evaporator cooling the inlet air into a gas turbine, and the organic rankine cycle is applied to receive heat from a gas turbine exhaust to heat its boiler within one embodiment, a common condenser is used for the organic rankine cycle and the vapor compression cycle, with a common refrigerant, R-245a being circulated within both systems. In another embodiment, the turbine driven generator has a common shaft connected to the compressor to thereby eliminate the need for a separate motor to drive the compressor. In another embodiment, an organic rankine cycle system is applied to an internal combustion engine to cool the fluids thereof, and the turbo charged air is cooled first by the organic rankine cycle system and then by an air conditioner prior to passing into the intake of the engine.

  13. Simulation of a combined-cycle engine

    NASA Technical Reports Server (NTRS)

    Vangerpen, Jon

    1991-01-01

    A FORTRAN computer program was developed to simulate the performance of combined-cycle engines. These engines combine features of both gas turbines and reciprocating engines. The computer program can simulate both design point and off-design operation. Widely varying engine configurations can be evaluated for their power, performance, and efficiency as well as the influence of altitude and air speed. Although the program was developed to simulate aircraft engines, it can be used with equal success for stationary and automative applications.

  14. Configuration and performance of fuel cell-combined cycle options

    SciTech Connect

    Rath, L.K.; Le, P.H.; Sudhoff, F.A.

    1995-12-31

    The natural gas, indirect-fired, carbonate fuel-cell-bottomed, combined cycle (NG-IFCFC) and the topping natural-gas/solid-oxide fuel-cell combined cycle (NG-SOFCCC) are introduced as novel power-plant systems for the distributed power and on-site markets in the 20-200 mega-watt (MW) size range. The novel NG-IFCFC power-plant system configures the ambient pressure molten-carbonate fuel cell (MCFC) with a gas turbine, air compressor, combustor, and ceramic heat exchanger: The topping solid-oxide fuel-cell (SOFC) combined cycle is not new. The purpose of combining a gas turbine with a fuel cell was to inject pressurized air into a high-pressure fuel cell and to reduce the size, and thereby, to reduce the cost of the fuel cell. Today, the SOFC remains pressurized, but excess chemical energy is combusted and the thermal energy is utilized by the Carnot cycle heat engine to complete the system. ASPEN performance results indicate efficiencies and heat rates for the NG-IFCFC or NG-SOFCCC are better than conventional fuel cell or gas turbine steam-bottomed cycles, but with smaller and less expensive components. Fuel cell and gas turbine systems should not be viewed as competitors, but as an opportunity to expand to markets where neither gas turbines nor fuel cells alone would be commercially viable. Non-attainment areas are the most likely markets.

  15. Performance analysis of an OTEC plant and a desalination plant using an integrated hybrid cycle

    SciTech Connect

    Uehara, Haruo; Miyara, Akio; Ikegami, Yasuyuki; Nakaoka, Tsutomu

    1996-05-01

    A performance analysis of an OTEC plant using an integrated hybrid cycle (I-H OTEC Cycle) has been conducted. The I-H OTEC cycle is a combination of a closed-cycle OTEC plant and a spray flash desalination plant. In an I-H OTEC cycle, warm sea water evaporates the liquid ammonia in the OTEC evaporator, then enters the flash chamber and evaporates itself. The evaporated steam enters the desalination condenser and is condensed by the cold sea water passed through the OTEC condenser. The optimization of the I-H OTEC cycle is analyzed by the method of steepest descent. The total heat transfer area of heat exchangers per net power is used as an objective function. Numerical results are reported for a 10 MW I-H OTEC cycle with plate-type heat exchangers and ammonia as working fluid. The results are compared with those of a joint hybrid OTEC cycle (J-H OTEC Cycle).

  16. The combined cycle application of aeroderivative gas turbines

    SciTech Connect

    Sheard, A.G.; Raine, M.J.

    1998-07-01

    In recent years aeroderivative gas turbines have become an effective alternative to heavy industrial gas turbines. Marketing of aeroderivatives has focused on their simple cycle efficiency advantage. The use of aeroderivatives in combined cycle, however, has also been demonstrated to be competitive, with high net plant efficiency and moderate cost per installed kW. Aeroderivative gas turbines are also capable of achieving high baseload plant availabilities because of the maintenance philosophy of rapid gas turbine or module exchange on site. In this paper the rationale for choosing an aeroderivative over a conventional industrial gas turbine is discussed. Factors affecting the decision to opt for either a simple or combined cycle facility are considered. The economic case is made for combined cycle plant incorporating aeroderivatives, showing a lower total cost of ownership that the alternatives, including an assessment of the key factors necessary to make them viable. The paper continues with a description of an advanced single string power train concept. Implementation of the power train is presented, and its incorporation into an optimized 40 MW Class power station described. Reduction in cost of electricity and installed cost per kW are considered, as well as reduction in project lead time.

  17. Proceedings: 1990 fossil plant cycling conference

    SciTech Connect

    Not Available

    1991-12-01

    Fossil plant cycling continues to be a key issue for many electric utilities. EPRI's previous cycling workshops, held in 1983, 1985, and 1987, allowed utilities to benefit from collective industry experience in the conversion of baseload fossil units to cyclic operation. Continued improvements in equipment, retrofits, diagnostics, and controls were highlighted at the 1990 conference. The objective is to provide a forum for utility discussions of the cycling operation of fossil fuel power plants. Potomac Electric Power Company (PEPCO) hosted the 1990 EPRI Fossil Fuel Cycling Conference in Washington, DC, on December 4--6, 1990. More than 130 representatives from utilities, vendors, government agencies, universities, and industry associations attended the conference. Following the general session, technical sessions covered such topics as plant modifications, utility retrofit experience, cycling economics, life assessment, controls, environmental controls, and energy storage. Attendees also toured PEPCO's Potomac River generating station, the site of an earlier EPRI cycling conversion study.

  18. Westinghouse fuel cell combined cycle systems

    SciTech Connect

    Veyo, S.

    1996-12-31

    Efficiency (voltage) of the solid oxide fuel cell (SOFC) should increase with operating pressure, and a pressurized SOFC could function as the heat addition process in a Brayton cycle gas turbine (GT) engine. An overall cycle efficiency of 70% should be possible. In cogeneration, half of the waste heat from a PSOFC/GT should be able to be captured in process steam and hot water, leading to a fuel effectiveness of about 85%. In order to make the PSOFC/GT a commercial reality, satisfactory operation of the SOFC at elevated pressure must be verified, a pressurized SOFC generator module must be designed, built, and tested, and the combined cycle and parameters must be optimized. A prototype must also be demonstrated. This paper describes progress toward making the PSOFC/GT a reality.

  19. Heat Exchanger Design in Combined Cycle Engines

    NASA Astrophysics Data System (ADS)

    Webber, H.; Feast, S.; Bond, A.

    Combined cycle engines employing both pre-cooled air-breathing and rocket modes of operation are the most promising propulsion system for achieving single stage to orbit vehicles. The air-breathing phase is purely for augmentation of the mission velocity required in the rocket phase and as such must be mass effective, re-using the components of the rocket cycle, whilst achieving adequate specific impulse. This paper explains how the unique demands placed on the air-breathing cycle results in the need for sophisticated thermodynamics and the use of a series of different heat exchangers to enable precooling and high pressure ratio compression of the air for delivery to the rocket combustion chambers. These major heat exchanger roles are; extracting heat from incoming air in the precooler, topping up cycle flow temperatures to maintain constant turbine operating conditions and extracting rejected heat from the power cycle via regenerator loops for thermal capacity matching. The design solutions of these heat exchangers are discussed.

  20. SOFC combined cycle systems for distributed generation

    SciTech Connect

    Brown, R.A.

    1997-05-01

    The final phase of the tubular SOFC development program will focus on the development and demonstration of pressurized solid oxide fuel cell (PSOFC)/gas turbine (GT) combined cycle power systems for distributed power applications. The commercial PSOFC/GT product line will cover the power range 200 kWe to 50 MWe, and the electrical efficiency for these systems will range from 60 to 75% (net AC/LHV CH4), the highest of any known fossil fueled power generation technology. The first demonstration of a pressurized solid oxide fuel cell/gas turbine combined cycle will be a proof-of-concept 250 kWe PSOFC/MTG power system consisting of a single 200 kWe PSOFC module and a 50 kWe microturbine generator (MTG). The second demonstration of this combined cycle will be 1.3 MWe fully packaged, commercial prototype PSOFC/GT power system consisting of two 500 kWe PSOFC modules and a 300 kWe gas turbine.

  1. The combined cycle application of aeroderivative gas turbines

    SciTech Connect

    Sheard, A.G.; Raine, M.J.

    1998-07-01

    In recent years aeroderivative gas turbines have become an effective alternative to heavy industrial gas turbines. Marketing of aeroderivatives has focused on their simple cycle efficiency advantage. The use of aeroderivatives in combined cycle, however, has also been demonstrated to be competitive, with high net plant efficiency and moderate cost per installed kW. In this paper the rationale for choosing an aeroderivative over a conventional industrial gas turbine is discussed. Factors affecting the decision to opt for either a simple or combined cycle facility are considered. The economic case is made for combined cycle plant incorporating aeroderivatives, showing a lower total cost of ownership than the alternatives, including an assessment of the key factors necessary to make them viable. The paper continues with a description of an advanced ``single string'' power train concept. Implementation of the power train is presented, and its incorporation into an optimized 40 MW Class power station described. Reduction in cost of electricity and installed cost per kW are considered, as well as reduction in project lead time.

  2. The Strutjet Rocket Based Combined Cycle Engine

    NASA Technical Reports Server (NTRS)

    Siebenhaar, A.; Bulman, M. J.; Bonnar, D. K.

    1998-01-01

    The multi stage chemical rocket has been established over many years as the propulsion System for space transportation vehicles, while, at the same time, there is increasing concern about its continued affordability and rather involved reusability. Two broad approaches to addressing this overall launch cost problem consist in one, the further development of the rocket motor, and two, the use of airbreathing propulsion to the maximum extent possible as a complement to the limited use of a conventional rocket. In both cases, a single-stage-to-orbit (SSTO) vehicle is considered a desirable goal. However, neither the "all-rocket" nor the "all-airbreathing" approach seems realizable and workable in practice without appreciable advances in materials and manufacturing. An affordable system must be reusable with minimal refurbishing on-ground, and large mean time between overhauls, and thus with high margins in design. It has been suggested that one may use different engine cycles, some rocket and others airbreathing, in a combination over a flight trajectory, but this approach does not lead to a converged solution with thrust-to-mass, specific impulse, and other performance and operational characteristics that can be obtained in the different engines. The reason is this type of engine is simply a combination of different engines with no commonality of gas flowpath or components, and therefore tends to have the deficiencies of each of the combined engines. A further development in this approach is a truly combined cycle that incorporates a series of cycles for different modes of propulsion along a flight path with multiple use of a set of components and an essentially single gas flowpath through the engine. This integrated approach is based on realizing the benefits of both a rocket engine and airbreathing engine in various combinations by a systematic functional integration of components in an engine class usually referred to as a rocket-based combined cycle (RBCC) engine

  3. High-Temperature-Turbine Technology Program: Phase II. Technology test and support studies. Update of overall plant-design description-combined-cycle electric-power plant with integrated low-Btu-gas plant

    SciTech Connect

    Not Available

    1982-04-01

    Changes made to the preliminary design of a commercial combined cycle electric powerplant operating on low Btu gas fuel are described. Major elements changed were: gas turbine configuration; gas desulfurization system; gas cleanup system; and the steam system operating parameters. The net power output of this base load station was increased from 750 MW to 1032 MW, by increasing the size of the four gas turbines. The gas turbine configuration was changed from a 2-spool, annular burner arrangement to a single shaft engine with can-type combustors. Firing temperature is revised from 3000 to 2750/sup 0/F. The free power turbine arrangement of the original powerplant concept which permits double-ending the electrical generators was retained. The steam system configuration is changed from an 1800/1000 single level system to a 2400/1000/1000 single reheat configuration which utilizes heat extraction from the hot flue gas down to 280/sup 0/F, delivers gasifier steam and jacket water and provides fuel gas preheat. The steam system produces 376.MW of electrical power. The high temperature gas desulfurization and cleanup system of the original powerplant design is replaced by a cold water wash and a commercial Selexol desulfurization unit. This change produced a substantial reduction in overall powerplant efficiency, but was necessary because the previously-used developmental hot gas cleanup system has not advanced to commercial status. The Lurgi fixed bed gasifier utilized in the original powerplant concept was retained. The modular arrangement of the original powerplant design was retained. The overall powerplant coal pile to bus bar efficiency is 40.5%, conservatively based on demonstrated performance of individual commercial or near-commercial components utilized in the design.

  4. Extended operating cycles in ethylene plants

    SciTech Connect

    Bruin, C.J. de

    1994-12-31

    Length of ethylene plant operating cycles is mainly determined by: legislative requirements for statutory inspection, need for periodic major maintenance, and fouling depending on operating conditions and plant design provisions. After consultations with local authorities the authors were led to believe that requirement and scope of inspection may be relaxed. Equipment fouling is the principal operating cause for scheduled shutdowns. Based on actual experience in the Moerdijk Lower Olefins Plants key operating and design aspects influencing equipment fouling are discussed.

  5. Air-blown Integrated Gasification Combined Cycle demonstration project

    SciTech Connect

    Not Available

    1991-01-01

    Clean Power Cogeneration, Inc. (CPC) has requested financial assistance from DOE for the design construction, and operation of a normal 1270 ton-per-day (120-MWe), air-blown integrated gasification combined-cycle (IGCC) demonstration plant. The demonstration plant would produce both power for the utility grid and steam for a nearby industrial user. The objective of the proposed project is to demonstrate air-blown, fixed-bed Integrated Gasification Combined Cycle (IGCC) technology. The integrated performance to be demonstrated will involve all the subsystems in the air-blown IGCC system to include coal feeding; a pressurized air-blown, fixed-bed gasifier capable of utilizing caking coal; a hot gas conditioning systems for removing sulfur compounds, particulates, and other contaminants as necessary to meet environmental and combustion turbine fuel requirements; a conventional combustion turbine appropriately modified to utilize low-Btu coal gas as fuel; a briquetting system for improved coal feed performance; the heat recovery steam generation system appropriately modified to accept a NO{sub x} reduction system such as the selective catalytic reduction process; the steam cycle; the IGCC control systems; and the balance of plant. The base feed stock for the project is an Illinois Basin bituminous high-sulfur coal, which is a moderately caking coal. 5 figs., 1 tab.

  6. Open-Cycle Gas Turbine/Steam Turbine Combined Cycles with synthetic fuels from coal

    NASA Technical Reports Server (NTRS)

    Shah, R. P.; Corman, J. C.

    1977-01-01

    The Open-Cycle Gas Turbine/Steam Turbine Combined Cycle can be an effective energy conversion system for converting coal to electricity. The intermediate step in this energy conversion process is to convert the coal into a fuel acceptable to a gas turbine. This can be accomplished by producing a synthetic gas or liquid, and by removing, in the fuel conversion step, the elements in the fuel that would be harmful to the environment if combusted. In this paper, two open-cycle gas turbine combined systems are evaluated: one employing an integrated low-Btu gasifier, and one utilizing a semi-clean liquid fuel. A consistent technical/economic information base is developed for these two systems, and is compared with a reference steam plant burning coal directly in a conventional furnace.

  7. A combined gas cooled nuclear reactor and fuel cell cycle

    NASA Astrophysics Data System (ADS)

    Palmer, David J.

    Rising oil costs, global warming, national security concerns, economic concerns and escalating energy demands are forcing the engineering communities to explore methods to address these concerns. It is the intention of this thesis to offer a proposal for a novel design of a combined cycle, an advanced nuclear helium reactor/solid oxide fuel cell (SOFC) plant that will help to mitigate some of the above concerns. Moreover, the adoption of this proposal may help to reinvigorate the Nuclear Power industry while providing a practical method to foster the development of a hydrogen economy. Specifically, this thesis concentrates on the importance of the U.S. Nuclear Navy adopting this novel design for its nuclear electric vessels of the future with discussion on efficiency and thermodynamic performance characteristics related to the combined cycle. Thus, the goals and objectives are to develop an innovative combined cycle that provides a solution to the stated concerns and show that it provides superior performance. In order to show performance, it is necessary to develop a rigorous thermodynamic model and computer program to analyze the SOFC in relation with the overall cycle. A large increase in efficiency over the conventional pressurized water reactor cycle is realized. Both sides of the cycle achieve higher efficiencies at partial loads which is extremely important as most naval vessels operate at partial loads as well as the fact that traditional gas turbines operating alone have poor performance at reduced speeds. Furthermore, each side of the cycle provides important benefits to the other side. The high temperature exhaust from the overall exothermic reaction of the fuel cell provides heat for the reheater allowing for an overall increase in power on the nuclear side of the cycle. Likewise, the high temperature helium exiting the nuclear reactor provides a controllable method to stabilize the fuel cell at an optimal temperature band even during transients helping

  8. Parabolic Trough Organic Rankine Cycle Power Plant

    SciTech Connect

    Canada, S.; Cohen, G.; Cable, R.; Brosseau, D.; Price, H.

    2005-01-01

    Arizona Public Service (APS) is required to generate a portion of its electricity from solar resources in order to satisfy its obligation under the Arizona Environmental Portfolio Standard (EPS). In recent years, APS has installed and operates over 4.5 MWe of fixed, tracking, and concentrating photovoltaic systems to help meet the solar portion of this obligation and to develop an understanding of which solar technologies provide the best cost and performance to meet utility needs. During FY04, APS began construction of a 1-MWe parabolic trough concentrating solar power plant. This plant represents the first parabolic trough plant to begin construction since 1991. The plant will also be the first commercial deployment of the Solargenix parabolic trough collector technology developed under contract to the National Renewable Energy Laboratory (NREL). The plant will use an organic Rankine cycle (ORC) power plant, provided by Ormat. The ORC power plant is much simpler than a conventional steam Rankine cycle power plant and allows unattended operation of the facility.

  9. Atomic-Based-Combined-Cycle Analysis

    NASA Technical Reports Server (NTRS)

    Han, Sam; Bai, Don; Schmidt, George

    2000-01-01

    Atomic-based-combined-cycle (ABCC) engine combines an air-breathing ramjet engine with an atomic reactor to increase the mission-averaged specific impulse and thereby increasing the dry-mass ratio. ABCC engine is similar to RBCC engine except that energy needed for the propulsive power is derived from nuclear reaction rather than chemical combustion used in the RBCC engine. The potential performance improvement of an ABCC engine over a RBCC engine comes from two factors. Firstly, the energy density of nuclear reaction is several order of magnitudes higher than the chemical combustion. Secondly, hydrogen can produce much higher nozzle exit velocity because of its small molecular weight. A one-dimensional, transient numerical model was used to analyze a generic scramjet engine and it is used as a baseline to evaluate an imaginary ABCC engine performance. A nuclear reactor is treated as a black box energy source that replaces the role of the primary rocket and the chemical combustion chamber in a RBCC engine. Hydrogen is heated by the reactor and accelerated to produce high-speed ejection velocity. The ejection velocity up 10,000 m/sec is theoretically possible because of high energy density from the reactor and large gas constant of the hydrogen. Oxygen contained in the entrained air reacts with hydrogen and produces propulsive power for ejector mode operation. To provide enough thrust for initial acceleration, relatively large amount of hydrogen must be pumped through the reactor. Amount of oxygen contained in the entrained air may not be sufficient to burn all hydrogen and consequently combustion could occur at the end of exit nozzle. It is assumed that this combustion process is constant-pressure combustion at 1.0 atmospheric pressure and thus not affects the nozzle exit condition.

  10. Atomic-Based-Combined-Cycle Analysis

    NASA Technical Reports Server (NTRS)

    Han, Samuel S.

    1999-01-01

    Atomic-based-combined-cycle (ABCC) engine combines an air-breathing ramjet engine with an atomic reactor to increase the mission-averaged specific impulse and thereby increasing the dry-mass ratio. ABCC engine is similar to RBCC engine except that energy needed for the propulsive power is derived from nuclear reaction rather than chemical combustion used in the RBCC engine. The potential performance improvement of an ABCC engine over a RBCC engine comes from two factors. Firstly, the energy density of nuclear reaction is several order of magnitudes higher than the chemical combustion. Secondly, hydrogen can produce much higher nozzle exit velocity because of its small molecular weight. A one-dimensional, transient numerical model was used to analyze a generic RBCC engine and it is used as a baseline to evaluate an imaginary ABCC engine performance. A nuclear reactor is treated as a black box energy source that replaces the role of the primary rocket and the chemical combustion chamber in a RBCC engine. The performance of a generic ABCC engine along a flight path (q0 =10 (exp 3) lbf per square ft) shows that the mission averaged-specific impulse is about twice larger than RBCC engine and the dry mass-ratio is about 50% larger. Results of the present ABCC engine performance are based on the assumptions that the flow passage of working fluids is identical to that of RBCC engine and that a nuclear reactor is treated as an energy black box. Preliminary heat transfer calculation shows that the rate of heat transfer to the working fluids is within the limit of turbulent convective heat transfer regimes. The flow passage of realistic ABCC engine must be known for a better prediction of ABCC engine performance. Also, critical heat transfer calculations must be performed for the ejector mode and ramjet mode operations. This is possible only when the details of a reactor configuration are available.

  11. Status of the Combined Cycle Engine Rig

    NASA Technical Reports Server (NTRS)

    Saunders, Dave; Slater, John; Dippold, Vance

    2009-01-01

    Status for the past year is provided of the turbine-based Combined-Cycle Engine (CCE) Rig for the hypersonic project. As part of the first stage propulsion of a two-stage-to-orbit vehicle concept, this engine rig is designed with a common inlet that supplies flow to a turbine engine and a dual-mode ramjet / scramjet engine in an over/under configuration. At Mach 4 the inlet has variable geometry to switch the airflow from the turbine to the ramjet / scramjet engine. This process is known as inlet mode-transition. In addition to investigating inlet aspects of mode transition, the rig will allow testing of turbine and scramjet systems later in the test series. Fully closing the splitter cowl "cocoons" the turbine engine and increases airflow to the scramjet duct. The CCE Rig will be a testbed to investigate integrated propulsion system and controls technology objectives. Four phases of testing are planned to 1) characterize the dual inlet database, 2) collect inlet dynamics using system identification techniques, 3) implement an inlet control to demonstrate mode-transition scenarios and 4) demonstrate integrated inlet/turbine engine operation through mode-transition. Status of the test planning and preparation activities is summarized with background on the inlet design and small-scale testing, analytical CFD predictions and some details of the large-scale hardware. The final stages of fabrication are underway.

  12. Integrated gasifier combined cycle polygeneration system to produce liquid hydrogen

    NASA Technical Reports Server (NTRS)

    Burns, R. K.; Staiger, P. J.; Donovan, R. M.

    1982-01-01

    An integrated gasifier combined cycle (IGCC) system which simultaneously produces electricity, process steam, and liquid hydrogen was evaluated and compared to IGCC systems which cogenerate electricity and process steam. A number of IGCC plants, all employing a 15 MWe has turbine and producing from 0 to 20 tons per day of liquid hydrogen and from 0 to 20 MWt of process steam were considered. The annual revenue required to own and operate such plants was estimated to be significantly lower than the potential market value of the products. The results indicate a significant potential economic benefit to configuring IGCC systems to produce a clean fuel in addition to electricity and process steam in relatively small industrial applications.

  13. Coal-gasification combined-cycle power generation

    SciTech Connect

    Roberts, J.A.

    1984-06-01

    Rolls-Royce has joined forces with Foster Wheeler to offer a modern power plant that integrates the benefits of coal gasification with the efficiency advantages of combined-cycle power generation. Powered by fuel gas from two parallel Lurgi slagging gasifiers, the 150-MW power station employs two Rolls-Royce SK60 gas-turbine generating sets. The proposed plant is designed for continuous power generation and should operate efficiently down to one-third of its rated capacity. Rolls estimates that the installed cost for this station would be lower than that for a conventional coal-fired station of the same output with comparable operating costs. Cooling water requirements would be less than half those of a coal-fired station.

  14. Features of erosion-corrosion wear in low-pressure evaporators of combined-cycle plant heat-recovery boilers at high void factor values

    NASA Astrophysics Data System (ADS)

    Galetsky, N. S.; Schwarz, A. L.

    2013-12-01

    The features of erosion-corrosion wear (ECW) in a low-pressure evaporator (LPE) combinedcycle plant (CCP) at high void factor values in the heat carrier are considered. It is shown that if the medium pressure in the evaporator is less than 1 MPa and steam quality x ≈ 0.5, the void fraction β is close to 1, at the outlet of the evaporator almost dry saturated steam moves, and the formation of liquid films is excluded. Under these conditions, the wear of the evaporator coil sections has an erosive nature, caused by high velocity steam, carrying the dense particles of corrosion products and large drops of water, previously plucked from the surface of the liquid films.

  15. Life cycle assessment of a biomass gasification combined-cycle power system

    SciTech Connect

    Mann, M.K.; Spath, P.L.

    1997-12-01

    The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a t echnoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

  16. Life cycle assessment of a biomass gasification combined-cycle power system

    SciTech Connect

    Mann, M.K.; Spath, P.L.

    1997-12-01

    The potential environmental benefits from biomass power are numerous. However, biomass power may also have some negative effects on the environment. Although the environmental benefits and drawbacks of biomass power have been debated for some time, the total significance has not been assessed. This study serves to answer some of the questions most often raised in regard to biomass power: What are the net CO{sub 2} emissions? What is the energy balance of the integrated system? Which substances are emitted at the highest rates? What parts of the system are responsible for these emissions? To provide answers to these questions, a life cycle assessment (LCA) of a hypothetical biomass power plant located in the Midwest United States was performed. LCA is an analytical tool for quantifying the emissions, resource consumption, and energy use, collectively known as environmental stressors, that are associated with converting a raw material to a final product. Performed in conjunction with a technoeconomic feasibility study, the total economic and environmental benefits and drawbacks of a process can be quantified. This study complements a technoeconomic analysis of the same process, reported in Craig and Mann (1996) and updated here. The process studied is based on the concept of power Generation in a biomass integrated gasification combined cycle (BIGCC) plant. Broadly speaking, the overall system consists of biomass production, its transportation to the power plant, electricity generation, and any upstream processes required for system operation. The biomass is assumed to be supplied to the plant as wood chips from a biomass plantation, which would produce energy crops in a manner similar to the way food and fiber crops are produced today. Transportation of the biomass and other materials is by both rail and truck. The IGCC plant is sized at 113 MW, and integrates an indirectly-heated gasifier with an industrial gas turbine and steam cycle. 63 refs., 34 figs., 32 tabs.

  17. ''An assessment of integrated gasification combined cycle power generation''

    SciTech Connect

    Hauber, D.A.; Kirk, R.J.; Pietruszkiewicz, J.; Smith, R.S.

    1983-11-01

    This paper presents the results of a comparative study of various selected technologies for coal-fired electric power generation with emphasis on the generation of power using the Integrated Gasification Combined Cycle (IGCC) Concept. This study was managed by Argonne National Laboratory for the U.S. Department of Energy, Office of Coal Utilization. All of the power plant conceptual designs were prepared as grassroots plants with a nominal output of 500 MWe, located in the east-central region of the United States. The designs were based upon a uniform set of design, performance, economic criteria and a 1990 state-of-the-art reference frame. Three IGCC power plant concepts were studied (Texaco, BGC/Lurgi, and Westinghouse gasification processes) and compared with conventional pulverized coal-fired power plants. Each of the IGCC plant concepts were designed to produce a medium-Btu fuel gas which was treated in a SELEXOL processing facility to remove sulfur from the fuel gas in order to meet NSPS SO/sub 2/ emission control requirements. The IGCC power generation facilities for each concept used advanced gas turbines with a rotor inlet temperature of 2,150/sup 0/F. Conventional heat recovery steam generators produced high pressure superheated steam which was expanded through a non-reheat steam turbine exhausting to a conventional condenser. The basic designs, estimated performance, and economics for the IGCC plants are presented for both eastern and western coals with varying sulfur removals and are compared with conventional power plants of the same outputs. A consistent set of technical and economic ground rules was employed in making the comparisons. Each of the base case concepts that were studied were found to be cost competitive under the economic ground rules.

  18. Assessment of integrated gasification combined cycle power generation

    SciTech Connect

    Huber, D.A.; Kirk, R.J.; Pietruszkiewicz, J.; Smith, R.S.

    1983-01-01

    This paper presents the results of a comparative study of various selected technologies for coal-fired electric power generation with emphasis on the generation of power using the Integrated Gasification Combined Cycle (IGCC) Concept. All of the power plant conceptual designs were prepared as grassroots plants with a nominal output of 500 MWe, located in the east-central region of the United States. The designs were based upon a uniform set of design, performance, economic criteria and a 1990 state-of-the-art reference frame. Three IGCC power plant concepts were studied (Texaco, BGC/Lurgi, and Westinghouse gasification processes) and compared with conventional pulverized coal-fired power plants. Each of the IGCC plant concepts were designed to produce a medium-Btu fuel gas which was treated in a SELEXOL processing facility to remove sulfur from the fuel gas in order to meet NSPS SO/sub 2/ emission control requirements. The IGCC power generation facilities for each concept used advanced gas turbines with a rotor inlet temperature of 2150/sup 0/F. Conventional heat recovery steam generators produced high pressure superheated steam which was expanded through a non-reheat steam turbine exhausting to a conventional condenser. The basic designs, estimated performance, and economics for the IGCC plants are presented for both eastern and western coals with varying sulfur removals and are compared with conventional power plants of the same outputs. A consistent set of technical and economic ground rules was employed in making the comparisons. Each of the base case concepts that were studied were found to be cost competitive under the economic ground rules. 8 figures, 12 tables.

  19. Benefits from incorporation of combined cycle propulsion

    NASA Astrophysics Data System (ADS)

    Czysz, Paul A.; Richards, Michael J.

    1999-09-01

    The X-33 program was initiated to develop a testbed for integrated RLV technologies that pave the way for a full scale development of a launch vehicle (Venture Star). Within the Nasa Future X Trailblazer program there is an Upgrade X-33 that focuses on materials and upgrades. The authors propose that the most significant gains can be realized by changing the propulsion cycle, not materials. The cycles examined are rocket cycles, with the combustion in the rocket motor. Specifically, these rocket cycles are: turbopump, topping, expander, air augmented, air augmented ram, LACE and deeply cooled. The vehicle size, volume, structural weight remain constant. The system and propellant tank weights vary with the propulsion system cycle. A reduction in dry weight, made possible by a reduced propellant tank volume, was converted into payload weight provided sufficient volume was made available by the propellant reduction. This analysis was extended to Venture Star for selected engine cycles. The results show that the X-33 test bed could carry a significant payload to LEO (10,000 Ib) and be a valuable test bed in developing a frequent flight to LEO capability. From X-33 published information the maximum speed is about 15,000 ft/sec. With a LACE rocket propulsion system Venture Star vehicle could be sized to a smaller vehicle with greater payload than the Venture Star baseline. Vehicle layout and characteristics were obtained from: http:// www.venturestar.com.

  20. Deoxygenation in cycling fossil plants. Final report

    SciTech Connect

    Pearl, W.L.; Hobart, R.L.; Hook, T.A.; McNea, D.A.

    1992-04-01

    In a previous EPRI study (Phase 1 of RP1184-9) at the Port Everglades plant of Florida Power and Light, it was demonstrated that minimizing shutdown oxygen levels at a cycling plant could reduce corrosion product transport to the boilers. A continuation of the program was performed to demonstrate the use of two forms of activated carbon to catalyze the hydrazine/oxygen reaction as a method to minimize the oxygen levels of cycling fossil plants. An activated carbon impregnated fiber overlay on a powdered resin precoat was tested at TU Electric`s Tradinghouse Creek Unit 1 and a carbon bed followed by a deep bed demineralizer was tested at Duquesne`s Elrama Unit 4. The improvement in attainable oxygen control was demonstrated and the effect on corrosion product transport during cyclic operation was evaluated. The study also demonstrated the application of a data acquisition system for prompt data assessment, control of chemical additions, identification of problems, and development of responsive corrective actions.

  1. Entrained gasification combined-cycle control study. Volume 3: model descriptions. Final report

    SciTech Connect

    Clark, J.; Denton, L.; Hashemi, M.; Joiner, J.; Smelser, S.; Chowaniec, C.; Hobbs, M.; Jennings, S.; Phelts, E.

    1980-07-01

    Two control strategies were evaluated for a new type of electric power plant as part of a large utility network. An entrained coal gasifier fuels a gas turbine/steam turbine combined-cycle unit forming the integrated plant which was simulated by computer to analyze alternative control strategies. Transient operation of this gasification-combined-cycle (GCC) plant was studied to determine open-loop response as a stand-alone plant, as well as closed-loop response while functioning in a typical utility power system. GCC plant performance during specified operating contingencies, such as equipment trip or emergency shutdown, was also studied. This volume presents the model descriptions for the Texaco entrained gasifiers, Selexol unit, oxygen plant, scrubber, ammonia absorber, water balance, combustion turbine-generator and gas-turbine controls, heat recovery steam generators, steam turbine-generator and steam-turbine controls, fuel gas expander, power system, and station controller.

  2. INTEGRATED GASIFICATION COMBINED CYCLE PROJECT 2 MW FUEL CELL DEMONSTRATION

    SciTech Connect

    FuelCell Energy

    2005-05-16

    With about 50% of power generation in the United States derived from coal and projections indicating that coal will continue to be the primary fuel for power generation in the next two decades, the Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCTDP) has been conducted since 1985 to develop innovative, environmentally friendly processes for the world energy market place. The 2 MW Fuel Cell Demonstration was part of the Kentucky Pioneer Energy (KPE) Integrated Gasification Combined Cycle (IGCC) project selected by DOE under Round Five of the Clean Coal Technology Demonstration Program. The participant in the CCTDP V Project was Kentucky Pioneer Energy for the IGCC plant. FuelCell Energy, Inc. (FCE), under subcontract to KPE, was responsible for the design, construction and operation of the 2 MW fuel cell power plant. Duke Fluor Daniel provided engineering design and procurement support for the balance-of-plant skids. Colt Engineering Corporation provided engineering design, fabrication and procurement of the syngas processing skids. Jacobs Applied Technology provided the fabrication of the fuel cell module vessels. Wabash River Energy Ltd (WREL) provided the test site. The 2 MW fuel cell power plant utilizes FuelCell Energy's Direct Fuel Cell (DFC) technology, which is based on the internally reforming carbonate fuel cell. This plant is capable of operating on coal-derived syngas as well as natural gas. Prior testing (1992) of a subscale 20 kW carbonate fuel cell stack at the Louisiana Gasification Technology Inc. (LGTI) site using the Dow/Destec gasification plant indicated that operation on coal derived gas provided normal performance and stable operation. Duke Fluor Daniel and FuelCell Energy developed a commercial plant design for the 2 MW fuel cell. The plant was designed to be modular, factory assembled and truck shippable to the site. Five balance-of-plant skids incorporating fuel processing, anode gas oxidation, heat recovery, water

  3. Rocket Based Combined Cycle (RBCC) Propulsion Workshop, volume 2

    NASA Technical Reports Server (NTRS)

    Chojnacki, Kent T.

    1992-01-01

    The goal of the Rocket Based Combined Cycle (RBCC) Propulsion Technology Workshop, was to impart technology information to the propulsion community with respect to hypersonic combined cycle propulsion capabilities. The major recommendation resulting from this technology workshop was as follows: conduct a systems-level applications study to define the desired propulsion system and vehicle technology requirements for LEO launch vehicles. All SSTO and TSTO options using the various propulsion systems (airbreathing combined cycle, rocket-based combined cycle, and all rocket) must be considered. Such a study should be accomplished as soon as possible. It must be conducted with a consistent set of ground rules and assumptions. Additionally, the study should be conducted before any major expenditures on a RBCC technology development program occur.

  4. Compressive Seal Development: Combined Ageing and Thermal Cycling Compressive

    SciTech Connect

    Chou, M.Y-S.; Stevenson, J.W.; Singh, P.

    2005-01-27

    The objective of this project was to evaluate the combined aging and cycling effect on hybrid Phlogopite mica seals with respect to materials and interfacial degradations in a simulated SOFC environment.

  5. Modeling and optimization of a hybrid solar combined cycle (HYCS)

    NASA Astrophysics Data System (ADS)

    Eter, Ahmad Adel

    2011-12-01

    The main objective of this thesis is to investigate the feasibility of integrating concentrated solar power (CSP) technology with the conventional combined cycle technology for electric generation in Saudi Arabia. The generated electricity can be used locally to meet the annual increasing demand. Specifically, it can be utilized to meet the demand during the hours 10 am-3 pm and prevent blackout hours, of some industrial sectors. The proposed CSP design gives flexibility in the operation system. Since, it works as a conventional combined cycle during night time and it switches to work as a hybrid solar combined cycle during day time. The first objective of the thesis is to develop a thermo-economical mathematical model that can simulate the performance of a hybrid solar-fossil fuel combined cycle. The second objective is to develop a computer simulation code that can solve the thermo-economical mathematical model using available software such as E.E.S. The developed simulation code is used to analyze the thermo-economic performance of different configurations of integrating the CSP with the conventional fossil fuel combined cycle to achieve the optimal integration configuration. This optimal integration configuration has been investigated further to achieve the optimal design of the solar field that gives the optimal solar share. Thermo-economical performance metrics which are available in the literature have been used in the present work to assess the thermo-economic performance of the investigated configurations. The economical and environmental impact of integration CSP with the conventional fossil fuel combined cycle are estimated and discussed. Finally, the optimal integration configuration is found to be solarization steam side in conventional combined cycle with solar multiple 0.38 which needs 29 hectare and LEC of HYCS is 63.17 $/MWh under Dhahran weather conditions.

  6. Entrained gasification combined-cycle control study. Volume 2. Results. Final report

    SciTech Connect

    Clark, J.; Denton, L.; Hashemi, M.; Joiner, J.; Smelser, S.; Chowaniec, C.; Hobbs, M.; Jennings, S.; Phelts, E.

    1980-07-01

    Two control strategies were evaluated for a new type of electric power plant as part of a large utility network. An entrained coal gasifier fuels a gas turbine/steam turbine combined-cycle unit forming the integrated plant which was simulated by computer to analyze alternative control strategies. Transient operation of this gasification-combined-cycle (GCC) plant was studied to determine open-loop response as a stand-alone plant, as well as closed-loop response while functioning in a typical utility power system. GCC plant performance during specified operating contingencies, such as equipment trip or emergency shutdown, was also studied. Features of the GCC plant as simulated include a single-stage entrained (Texaco) gasifier fed concurrently with a coal-water slurry and gaseous oxygen, a cold gas cleanup train with a physical absorption (Selexol) system for selective sulfur removal, and advanced gas turbine design gased upon 2400/sup 0/F combustor outlet temperature. Conclusions are as follows: The GCC plant may be controlled satisfactorily in either gasifier-lead or turbine-lead control mode. The absorber column consistently removed 90% H/sub 2/S in the raw fuel gas from high sulfur Illinois coal. GCC plant pressure control must be installed to minimize plant pressure transients at the absorber column. The local controllers adequately maintained the GCC plant operation during all the emergency upsets. The GCC plant responds well to typical variations in electric power demand. Supplemental fuel gas storage is not required. Oxygen plant can affect the response time of the GCC plant. Response rates of 3%/min at the oxygen plant would make the GCC plant very responsive to electrical load changes.

  7. Experience with organic Rankine cycles in heat recovery power plants

    SciTech Connect

    Bronicki, L.Y.; Elovic, A.; Rettger, P.

    1996-11-01

    Over the last 30 years, organic Rankine cycles (ORC) have been increasingly employed to produce power from various heat sources when other alternatives were either technically not feasible or economical. These power plants have logged a total of over 100 million turbine hours of experience demonstrating the maturity and field proven technology of the ORC cycle. The cycle is well adapted to low to moderate temperature heat sources such as waste heat from industrial plants and is widely used to recover energy from geothermal resources. The above cycle technology is well established and applicable to heat recovery of medium size gas turbines and offers significant advantages over conventional steam bottoming cycles.

  8. INTEGRATED PYROLYSIS COMBINED CYCLE BIOMASS POWER SYSTEM CONCEPT DEFINITION

    SciTech Connect

    Eric Sandvig; Gary Walling; Robert C. Brown; Ryan Pletka; Desmond Radlein; Warren Johnson

    2003-03-01

    Advanced power systems based on integrated gasification/combined cycles (IGCC) are often presented as a solution to the present shortcomings of biomass as fuel. Although IGCC has been technically demonstrated at full scale, it has not been adopted for commercial power generation. Part of the reason for this situation is the continuing low price for coal. However, another significant barrier to IGCC is the high level of integration of this technology: the gas output from the gasifier must be perfectly matched to the energy demand of the gas turbine cycle. We are developing an alternative to IGCC for biomass power: the integrated (fast) pyrolysis/ combined cycle (IPCC). In this system solid biomass is converted into liquid rather than gaseous fuel. This liquid fuel, called bio-oil, is a mixture of oxygenated organic compounds and water that serves as fuel for a gas turbine topping cycle. Waste heat from the gas turbine provides thermal energy to the steam turbine bottoming cycle. Advantages of the biomass-fueled IPCC system include: combined cycle efficiency exceeding 37 percent efficiency for a system as small as 7.6 MW{sub e}; absence of high pressure thermal reactors; decoupling of fuel processing and power generation; and opportunities for recovering value-added products from the bio-oil. This report provides a technical overview of the system including pyrolyzer design, fuel clean-up strategies, pyrolysate condenser design, opportunities for recovering pyrolysis byproducts, gas turbine cycle design, and Rankine steam cycle. The report also reviews the potential biomass fuel supply in Iowa, provide and economic analysis, and present a summery of benefits from the proposed system.

  9. The effect of ultradian and orbital cycles on plant growth

    NASA Technical Reports Server (NTRS)

    Berry, W.; Hoshizaki, T.; Ulrich, A.

    1986-01-01

    In a series of experiments using sugar beets, researchers investigated the effects of varying cycles lengths on growth (0.37 hr to 48 hr). Each cycle was equally divided into a light and dark period so that each treatment regardless of cycle length received the same amount of light over the 17 weeks of the experiment. Two growth parameters were used to evaluate the effects of cycle length, total fresh weight and sucrose content of the storage root. Both parameters showed very similar responses in that under long cycles (12 hr or greater) growth was normal, whereas plants growing under shorter cycle periods were progressively inhibited. Minimum growth occurred at a cycle period of 0.75 hr. The yield at the 0.75 hr cycle, where was at a minimum, for total fresh weight was only 51 percent compared to the 24 hr cycle. The yield of sucrose was even more reduced at 41 percent of the 24 hr cycle.

  10. Plant cycle chemistry during startup and shutdown and during cycling and peaking operation

    SciTech Connect

    Seipp, H.G.; Kloeckl, W.; Bursik, A.; Hajdamowicz, S.; Pflug, H.; Pieper, B.

    1995-01-01

    This paper presents some preliminary results of a VGB Subcommittee working on the preparation of VGB Guidelines for startup and shutdown and cycling and peaking operation. The main points are listed below: behavior of protective layers in steam generators; impurities transport; impact of different plant concepts and plant cycle chemistry treatments; recommended startup procedure for a unit operated on OT; and data acquisition and evaluation during startup, shutdown and cycling and peaking operation.

  11. TECHNOECONOMIC APPRAISAL OF INTEGRATED GASIFICATION COMBINED-CYCLE POWER GENERATION

    EPA Science Inventory

    The report is a technoeconomic appraisal of the integrated (coal) gasification combined-cycle (IGCC) system. lthough not yet a proven commercial technology, IGCC is a future competitive technology to current pulverized-coal boilers equipped with SO2 and NOx controls, because of i...

  12. Power Gas and Combined Cycles: Clean Power From Fossil Fuels

    ERIC Educational Resources Information Center

    Metz, William D.

    1973-01-01

    The combined-cycle system is currently regarded as a useful procedure for producing electricity. This system can burn natural gas and oil distillates in addition to coal. In the future when natural gas stocks will be low, coal may become an important fuel for such systems. Considerable effort must be made for research on coal gasification and…

  13. Spectral reflectance measurements of plant soil combinations

    NASA Technical Reports Server (NTRS)

    Macleod, N. H.

    1972-01-01

    Field and laboratory observations of plant and soil reflectance spectra were made to develop an understanding of the reflectance of solar energy by plants and soils. A related objective is the isolation of factors contributing to the image formed by multispectral scanners and return beam vidicons carried by ERTS or film-filter combinations used in the field or on aircraft. A set of objective criteria are to be developed for identifying plant and soil types and their changing condition through the seasons for application of space imagery to resource management. This is because the global scale of earth observations satellites requires objective rather than subjective techniques, particularly where ground truth is either not available or too costly to acquire. As the acquiring of ground truth for training sets may be impractical in many cases, attempts have been made to identify objectively standard responses which could be used for image interpretation.

  14. Model predictive control system and method for integrated gasification combined cycle power generation

    DOEpatents

    Kumar, Aditya; Shi, Ruijie; Kumar, Rajeeva; Dokucu, Mustafa

    2013-04-09

    Control system and method for controlling an integrated gasification combined cycle (IGCC) plant are provided. The system may include a controller coupled to a dynamic model of the plant to process a prediction of plant performance and determine a control strategy for the IGCC plant over a time horizon subject to plant constraints. The control strategy may include control functionality to meet a tracking objective and control functionality to meet an optimization objective. The control strategy may be configured to prioritize the tracking objective over the optimization objective based on a coordinate transformation, such as an orthogonal or quasi-orthogonal projection. A plurality of plant control knobs may be set in accordance with the control strategy to generate a sequence of coordinated multivariable control inputs to meet the tracking objective and the optimization objective subject to the prioritization resulting from the coordinate transformation.

  15. NASA-Lewis closed-cycle magnetohydrodynamics plant analysis

    NASA Technical Reports Server (NTRS)

    Penko, P. F.

    1979-01-01

    A brief review of preliminary analyses of coal fired closed cycle MHD power plants is presented. The performance of three power plants with differing combustion systems were compared. The combustion systems considered were (1) a direct coal-fired combustor, (2) a coal gasifier with in-bed desulfurization and (3) a coal gasifier requiring external fuel gas cleanup. Power plant efficiencies (auxiliary power excluded) were 44.5, 43, and 41 percent for the three plants, respectively.

  16. Stochastic modeling of coal gasification combined cycle systems: Cost models for selected integrated gasification combined cycle (IGCC) systems

    SciTech Connect

    Frey, H.C.; Rubin, E.S.

    1990-06-01

    This report documents cost models developed for selected integrated gasification combined cycle (IGCC) systems. The objective is to obtain a series of capital and operating cost models that can be integrated with an existing set of IGCC process performance models developed at the US Department of Energy Morgantown Energy Technology Center. These models are implemented in ASPEN, a Fortran-based process simulator. Under a separate task, a probabilistic modeling capability has been added to the ASPEN simulator, facilitating analysis of uncertainties in new process performance and cost (Diwekar and Rubin, 1989). One application of the cost models presented here is to explicitly characterize uncertainties in capital and annual costs, supplanting the traditional approach of incorporating uncertainty via a contingency factor. The IGCC systems selected by DOE/METC for cost model development include the following: KRW gasifier with cold gas cleanup; KRW gasifier with hot gas cleanup; and Lurgi gasifier with hot gas cleanup. For each technology, the cost model includes both capital and annual costs. The capital cost models estimate the costs of each major plant section as a function of key performance and design parameters. A standard cost method based on the Electric Power Research Institute (EPRI) Technical Assessment Guide (1986) was adopted. The annual cost models are based on operating and maintenance labor requirements, maintenance material requirements, the costs of utilities and reagent consumption, and credits from byproduct sales. Uncertainties in cost parameters are identified for both capital and operating cost models. Appendices contain cost models for the above three IGCC systems, a number of operating trains subroutines, range checking subroutines, and financial subroutines. 88 refs., 69 figs., 21 tabs.

  17. HTGR-GT closed-cycle gas turbine: a plant concept with inherent cogeneration (power plus heat production) capability

    SciTech Connect

    McDonald, C.F.

    1980-04-01

    The high-grade sensible heat rejection characteristic of the high-temperature gas-cooled reactor-gas turbine (HTGR-GT) plant is ideally suited to cogeneration. Cogeneration in this nuclear closed-cycle plant could include (1) bottoming Rankine cycle, (2) hot water or process steam production, (3) desalination, and (4) urban and industrial district heating. This paper discusses the HTGR-GT plant thermodynamic cycles, design features, and potential applications for the cogeneration operation modes. This paper concludes that the HTGR-GT plant, which can potentially approach a 50% overall efficiency in a combined cycle mode, can significantly aid national energy goals, particularly resource conservation.

  18. Evaluation of Indirect Combined Cycle in Very High Temperature Gas--Cooled Reactor

    SciTech Connect

    Chang Oh; Robert Barner; Cliff Davis; Steven Sherman; Paul Pickard

    2006-10-01

    The U.S. Department of Energy and Idaho National Laboratory are developing a very high temperature reactor to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is twofold: (a) efficient, low-cost energy generation and (b) hydrogen production. Although a next-generation plant could be developed as a single-purpose facility, early designs are expected to be dual purpose, as assumed here. A dual-purpose design with a combined cycle of a Brayton top cycle and a bottom Rankine cycle was investigated. An intermediate heat transport loop for transporting heat to a hydrogen production plant was used. Helium, CO2, and a helium-nitrogen mixture were studied to determine the best working fluid in terms of the cycle efficiency. The relative component sizes were estimated for the different working fluids to provide an indication of the relative capital costs. The relative size of the turbomachinery was measured by comparing the power input/output of the component. For heat exchangers the volume was computed and compared. Parametric studies away from the baseline values of the cycle were performed to determine the effects of varying conditions in the cycle. This gives some insight into the sensitivity of the cycle to various operating conditions as well as trade-offs between efficiency and component size. Parametric studies were carried out on reactor outlet temperature, mass flow, pressure, and turbine cooling.

  19. Parametric analysis of closed cycle magnetohydrodynamic (MHD) power plants

    NASA Technical Reports Server (NTRS)

    Owens, W.; Berg, R.; Murthy, R.; Patten, J.

    1981-01-01

    A parametric analysis of closed cycle MHD power plants was performed which studied the technical feasibility, associated capital cost, and cost of electricity for the direct combustion of coal or coal derived fuel. Three reference plants, differing primarily in the method of coal conversion utilized, were defined. Reference Plant 1 used direct coal fired combustion while Reference Plants 2 and 3 employed on site integrated gasifiers. Reference Plant 2 used a pressurized gasifier while Reference Plant 3 used a ""state of the art' atmospheric gasifier. Thirty plant configurations were considered by using parametric variations from the Reference Plants. Parametric variations include the type of coal (Montana Rosebud or Illinois No. 6), clean up systems (hot or cold gas clean up), on or two stage atmospheric or pressurized direct fired coal combustors, and six different gasifier systems. Plant sizes ranged from 100 to 1000 MWe. Overall plant performance was calculated using two methodologies. In one task, the channel performance was assumed and the MHD topping cycle efficiencies were based on the assumed values. A second task involved rigorous calculations of channel performance (enthalpy extraction, isentropic efficiency and generator output) that verified the original (task one) assumptions. Closed cycle MHD capital costs were estimated for the task one plants; task two cost estimates were made for the channel and magnet only.

  20. Modeling Tritium Life cycle in Nuclear Plants

    SciTech Connect

    Hussey, D.; Saunders, P.; Morey, D.; Pitt, N.; Wilson, J.; Claes, B.

    2006-07-01

    The mathematical development of a tritium model for nuclear power plants is presented. The model requires that the water and tritium material balance be satisfied throughout normal operations and shutdown. The model results obtained at the time of publishing include the system definitions and comparison of the model predictions of tritium generations compared to the observed plant data of the Braidwood station. A scenario that models using ion exchange resin to remove coolant boron demonstrates the tritium concentration levels are manageable. (authors)

  1. Integrated gasification combined-cycle research development and demonstration activities

    SciTech Connect

    Ness, H.M.; Reuther, R.B.

    1995-12-01

    The United States Department of Energy (DOE) has selected six integrated gasification combined-cycle (IGCC) advanced power systems for demonstration in the Clean Coal Technology (CCT) Program. DOE`s Office of Fossil Energy, Morgantown Energy Technology Center, is managing a research development and demonstration (RD&D) program that supports the CCT program, and addresses long-term improvements in support of IGCC technology. This overview briefly describes the CCT projects and the supporting RD&D activities.

  2. Research Technology (ASTP) Rocket Based Combined Cycle (RBCC) Engine

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Pictured is an artist's concept of the Rocket Based Combined Cycle (RBCC) launch. The RBCC's overall objective is to provide a technology test bed to investigate critical technologies associated with opperational usage of these engines. The program will focus on near term technologies that can be leveraged to ultimately serve as the near term basis for Two Stage to Orbit (TSTO) air breathing propulsions systems and ultimately a Single Stage To Orbit (SSTO) air breathing propulsion system.

  3. Rocket based combined cycle (RBCC) propulsion systems offer additional options

    NASA Astrophysics Data System (ADS)

    Czysz, Paul A.

    The propulsion cycles presented at the 1991 IAF Congress in Montreal, and at The World Hydrogen Conference 1992 in Paris were the subject of an IAF paper for the 1992 World Space Conference in Washington DC. RBCC propulsion systems from several nations were analyzed in terms of a SSTO space launcher with a 7-Mg payload. The RBCC concept emerged from the advanced injector ramjet research of the early 1960s. The performance of the current RBCC propulsion systems such that the specific thrust of a rocket is combined with the specific impulse of an airbreather. This performance offers a new perspective to the options available. In a brief review of the present RBCC the reasons for these options are developed. The spectrum of the system options is presented in three examples, a LACE VTOL SSTO, an HTOL SSTO and a HTOL TSTO. Results using the present RBCC are dramatically different from the past concept of the Conventional Combined Cycle propulsion system, i.e., combinations of separate engines. The integration of the engine cycles into a single thermodynamically integrated system significantly changes the propulsion performance.

  4. Thermal-economic analysis of organic Rankine combined cycle cogeneration

    NASA Astrophysics Data System (ADS)

    Porter, R. W.

    1982-12-01

    An evaluation of organic rankine cycles (ORC) as combined with topping incorporating gas turbines or diesel engines, and with subsequent waste heat utilization is presented. It is found that the potential benefit of the proposed organic Rankine combined cycle cogeneration of useful heat and electricity is more flexible in meeting demands for the two products, by varying the mode of operation of the system. A thermal-economic analysis is developed and illustrated with cost and performance data for commercially available equipment, and with general economic parameters reflecting current regulations and market conditions. The performance of the ORC and of the entire combined cycle is described. Equations to evaluate the various thermodynamic and economic parameter, and the resultant case flows are presented. Criteria are developed to assess the addition of an ORC to a cogeneration system without ORC is viable based on rate of return on incremental investment. It is indicated that the proposed system is potentially viable, however, it is not viable under conditions prevailing in Chicago for the selected case studies.

  5. Tubular SOFC and SOFC/gas turbine combined cycle status and prospects

    SciTech Connect

    Veyo, S.E.; Lundberg, W.L.

    1996-12-31

    Presently under fabrication at Westinghouse for a consortium of Dutch and Danish utilities is the world`s first 100 kWe Solid Oxide Fuel Cell (SOFC) power generation system. This natural gas fueled experimental field unit will be installed near Arnhem, Netherlands, at an auxiliary district heating plant. Electrical generation efficiency of this simple cycle atmospheric pressure system will approach 50% [net ac/LHV]. For larger capacity systems, the horizon for the efficiency (atmospheric pressure) is about 55%. Pressurization would increase the efficiency. Objectives of the analyses reported were: (1) to document the improved performance potential of the two shaft turbine cycle given access to a better recuperator and lower lead losses, (2) to assess the performance of PSOFC/GT combined cycles in the 3 MW plant application that are based on use of a simple single shaft gas turbine having a design-point turbine inlet temperature that closely matches the temperature of the SOFC exhaust gas (about 850 C), (3) to estimate the performance potential of smaller combined cycle power plants employing a single SOFC submodule, and (4) to evaluate the cogeneration potential of such systems.

  6. Investment and operating costs of binary cycle geothermal power plants

    NASA Technical Reports Server (NTRS)

    Holt, B.; Brugman, J.

    1974-01-01

    Typical investment and operating costs for geothermal power plants employing binary cycle technology and utilizing the heat energy in liquid-dominated reservoirs are discussed. These costs are developed as a function of reservoir temperature. The factors involved in optimizing plant design are discussed. A relationship between the value of electrical energy and the value of the heat energy in the reservoir is suggested.

  7. Overview of the Turbine Based Combined Cycle Discipline

    NASA Technical Reports Server (NTRS)

    Thomas, Scott R.; Walker, James F.; Pittman, James L.

    2009-01-01

    The NASA Fundamental Aeronautics Hypersonics project is focused on technologies for combined cycle, airbreathing propulsions systems to enable reusable launch systems for access to space. Turbine Based Combined Cycle (TBCC) propulsion systems offer specific impulse (Isp) improvements over rocket-based propulsion systems in the subsonic takeoff and return mission segments and offer improved safety. The potential to realize more aircraft-like operations with expanded launch site capability and reduced system maintenance are additional benefits. The most critical TBCC enabling technologies as identified in the National Aeronautics Institute (NAI) study were: 1) mode transition from the low speed propulsion system to the high speed propulsion system, 2) high Mach turbine engine development, 3) transonic aero-propulsion performance, 4) low-Mach-number dual-mode scramjet operation, 5) innovative 3-D flowpath concepts and 6) innovative turbine based combined cycle integration. To address several of these key TBCC challenges, NASA s Hypersonics project (TBCC Discipline) initiated an experimental mode transition task that includes an analytic research endeavor to assess the state-of-the-art of propulsion system performance and design codes. This initiative includes inlet fluid and turbine performance codes and engineering-level algorithms. This effort has been focused on the Combined Cycle Engine Large-Scale Inlet Mode Transition Experiment (CCE LIMX) which is a fully integrated TBCC propulsion system with flow path sizing consistent with previous NASA and DoD proposed Hypersonic experimental flight test plans. This experiment is being tested in the NASA-GRC 10 x 10 Supersonic Wind Tunnel (SWT) Facility. The goal of this activity is to address key hypersonic combined-cycle-engine issues: (1) dual integrated inlet operability and performance issues unstart constraints, distortion constraints, bleed requirements, controls, and operability margins, (2) mode

  8. Integrated Turbine-Based Combined Cycle Dynamic Simulation Model

    NASA Technical Reports Server (NTRS)

    Haid, Daniel A.; Gamble, Eric J.

    2011-01-01

    A Turbine-Based Combined Cycle (TBCC) dynamic simulation model has been developed to demonstrate all modes of operation, including mode transition, for a turbine-based combined cycle propulsion system. The High Mach Transient Engine Cycle Code (HiTECC) is a highly integrated tool comprised of modules for modeling each of the TBCC systems whose interactions and controllability affect the TBCC propulsion system thrust and operability during its modes of operation. By structuring the simulation modeling tools around the major TBCC functional modes of operation (Dry Turbojet, Afterburning Turbojet, Transition, and Dual Mode Scramjet) the TBCC mode transition and all necessary intermediate events over its entire mission may be developed, modeled, and validated. The reported work details the use of the completed model to simulate a TBCC propulsion system as it accelerates from Mach 2.5, through mode transition, to Mach 7. The completion of this model and its subsequent use to simulate TBCC mode transition significantly extends the state-of-the-art for all TBCC modes of operation by providing a numerical simulation of the systems, interactions, and transient responses affecting the ability of the propulsion system to transition from turbine-based to ramjet/scramjet-based propulsion while maintaining constant thrust.

  9. Open cycle gas fired MHD power plants

    SciTech Connect

    Medin, S.A. ); Negrini, F. )

    1991-01-01

    In this paper, the main objectives for the present development of gas fired MHD power generation are considered. The state of the world-wide natural gas consumption and its utilization for electricity production is analyzed. The experimental efforts in gas-fired MHD studies are briefly described. The essential features of the two major world gas-fired MHD project - the Ryazan MHDES-580 (U-500) power plant and the Italian 230 MWt retrofit are presented. New suggestions for improving the efficiency of MHD systems and the theoretical and experimental aspects of MHD development are discussed.

  10. An example of a tailored industrial combined heat and power plant -- The Tarrogona power plant

    SciTech Connect

    Izarny-Gargas, L.

    1998-07-01

    Encouraged by the economic and regulatory context in some European countries like Spain. Middle-sized cogeneration plants known as combined heat and power plants continue to raise the interest of industrial companies. This type of power plant represents a reliable resource for aiding the competitiveness of their owners, using residual thermal energy or producing additional steam for a process, while generating electrical energy. The generated kilowatt-hours feed their own industrial utility, enabling substantial cuts in their energy bill, and sometimes generating profits from sales of electricity to the grid. One salient aspect of this type of project is the request for deep integration in the industrial utility, from the process point of view (exchanges of steam and water, control system interfaces...) as well as from the cultural point of view (compliance with the technical standards and requirements of a given industrial sector...). As a matter of fact, the newly commissioned TARRAGONA combined cycle power plant is representative of what can be achieved in terms of deep integration of a power plant in a petrochemical site. The aim of the present paper is not to provide an exhaustive description of the CHPP of TARRAGONA, rather to expose the most interesting aspects of the project and present the major components at the source of its efficiency and reliability : the FRAME 6B heavy duty gas turbine and the TM-2 steam turbine both manufactured by GEC ALSTHOM and especially adapted to this type of application. The GEC ALSTHOM combined cycle family VEGA X06 is based on these machines.

  11. Coal diesel combined-cycle project. Comprehensive report to Congress: Clean Coal Technology Program

    SciTech Connect

    Not Available

    1994-05-01

    One of the projects selected for funding is a project for the design, construction, and operation of a nominal 90 ton-per-day 14-megawatt electrical (MWe), diesel engine-based, combined-cycle demonstration plant using coal-water fuels (CWF). The project, named the Coal Diesel Combined-Cycle Project, is to be located at a power generation facility at Easton Utilities Commission`s Plant No. 2 in Easton, Talbot County, Maryland, and will use Cooper-Bessemer diesel engine technology. The integrated system performance to be demonstrated will involve all of the subsystems, including coal-cleaning and slurrying systems; a selective catalytic reduction (SCR) unit, a dry flue gas scrubber, and a baghouse; two modified diesel engines; a heat recovery steam generation system; a steam cycle; and the required balance of plant systems. The base feedstock for the project is bituminous coal from Ohio. The purpose of this Comprehensive Report is to comply with Public Law 102-154, which directs the DOE to prepare a full and comprehensive report to Congress on each project selected for award under the CCT-V Program.

  12. Cycle Analysis using Exhaust Heat of SOFC and Turbine Combined Cycle by Absorption Chiller

    NASA Astrophysics Data System (ADS)

    Takezawa, Shinya; Wakahara, Kenji; Araki, Takuto; Onda, Kazuo; Nagata, Susumu

    A power generating efficiency of solid oxide fuel cell (SOFC) and gas turbine combined cycle is fairly high. However, the exhaust gas temperature of the combined cycle is still high, about 300°C. So it should be recovered for energy saving, for example, by absorption chiller. The energy demand for refrigeration cooling is recently increasing year by year in Japan. Then, we propose here a cogeneration system by series connection of SOFC, gas turbine and LiBr absorption chiller to convert the exhaust heat to the cooling heat. As a result of cycle analysis of the combined system with 500kW class SOFC, the bottoming single-effect absorption chiller can produce the refrigerating capacity of about 120kW, and the double-effect absorption chiller can produce a little higher refrigerating capacity of about 130kW without any additional fuel. But the double-effect absorption chiller became more expensive and complex than the single-effect chiller.

  13. Gas turbine and combined-cycle capacity enhancement

    SciTech Connect

    1995-01-01

    This report presents interim results of a study of capacity enhancement of gas turbines and combined cycles. A portion of the study is based on a tailored collaboration study for Missouri Public Service. The techniques studied include water injection, steam injection, increased firing temperature, supercharging, and inlet cooling for the gas turbines. The inlet cooling approaches cover evaporative cooling with and without media, water cooling, thermal energy storage (TES) systems using ice or water and continuous refrigeration. Results are given for UTC FT4/GG4, GE MS5001, MS7001, W501 and W251 gas turbines. Duct firing of a three-pressure HRSG for peaking capacity is investigated. The GE PG7221(FA) is used as the reference gas turbine for this combined cycle. The results to-date indicate that the utilities have a number of viable options for capacity enhancement that are dependent on the mission of the gas turbine, local climate, and the design of the gas turbine.

  14. Analysis of energetic and exergetic efficiency, and environmental benefits of biomass integrated gasification combined cycle technology.

    PubMed

    Mínguez, María; Jiménez, Angel; Rodríguez, Javier; González, Celina; López, Ignacio; Nieto, Rafael

    2013-04-01

    The problem of the high carbon dioxide emissions linked to power generation makes necessary active research on the use of biofuels in gas turbine systems as a promising alternative to fossil fuels. Gasification of biomass waste is particularly of interest in obtaining a fuel to be run in gas turbines, as it is an efficient biomass-to-biofuel conversion process, and an integration into a combined cycle power plant leads to a high performance with regard to energetic efficiency. The goal of this study was to carry out an energetic, exergetic and environmental analysis of the behaviour of an integrated gasification combined cycle (IGCC) plant fuelled with different kinds of biomass waste by means of simulations. A preliminary economic study is also included. Although a technological development in gasification technology is necessary, the results of simulations indicate a high technical and environmental interest in the use of biomass integrated gasification combined cycle (BioIGCC) systems for large-scale power generation from biomass waste. PMID:23444152

  15. The NASA ASTP Combined-Cycle Propulsion Database Project

    NASA Technical Reports Server (NTRS)

    Hyde, Eric H.; Escher, Daric W.; Heck, Mary T.; Roddy, Jordan E.; Lyles, Garry (Technical Monitor)

    2000-01-01

    The National Aeronautics and Space Administration (NASA) communicated its long-term R&D goals for aeronautics and space transportation technologies in its 1997-98 annual progress report (Reference 1). Under "Pillar 3, Goal 9" a 25-year-horizon set of objectives has been stated for the Generation 3 Reusable Launch Vehicle ("Gen 3 RLV") class of space transportation systems. An initiative referred to as "Spaceliner 100" is being conducted to identify technology roadmaps in support of these objectives. Responsibility for running "Spaceliner 100" technology development and demonstration activities have been assigned to NASA's agency-wide Advanced Space Transportation Program (ASTP) office located at the Marshall Space Flight Center. A key technology area in which advances will be required in order to meet these objectives is propulsion. In 1996, in order to expand their focus beyond "allrocket" propulsion systems and technologies (see Appendix A for further discussion), ASTP initiated technology development and demonstration work on combined-cycle airbreathing/rocket propulsion systems (ARTT Contracts NAS8-40890 through 40894). Combined-cycle propulsion (CCP) activities (see Appendix B for definitions) have been pursued in the U.S. for over four decades, resulting in a large documented knowledge base on this subject (see Reference 2). In the fall of 1999 the Combined-Cycle Propulsion Database (CCPD) project was established with the primary purpose of collecting and consolidating CCP related technical information in support of the ASTP's ongoing technology development and demonstration program. Science Applications International Corporation (SAIC) was selected to perform the initial development of the Database under its existing support contract with MSFC (Contract NAS8-99060) because of the company's unique combination of capabilities in database development, information technology (IT) and CCP knowledge. The CCPD is summarized in the descriptive 2-page flyer appended

  16. Sacramento Power Authority experience of building and testing a successful turn key combined cycle project

    SciTech Connect

    Maring, J.; Yost, J.; Zachary, J.

    1998-07-01

    The following paper will describe a combined cycle power plant providing power and steam to a food processing plant. The project owner is Sacramento Power Authority in Sacramento, California, USA. A consortium led by Siemens supplied the equipment and provided the turn key project management. The project was completed in 23 months and the plant was released for dispatch 3 weeks ahead of schedule. The formal performance tests conducted in December 1997, indicated a better net output and a lower net heat rate from the guaranteed values. The thermal acceptance test procedure was in full compliance with the new Performance Test Code PTC-46 of the American Society of Mechanical Engineers (ASME) for combined cycle power plant testing, issued in 1996 and also met all the requirements of ISO 2314 Procedure. The paper will also discuss the performance of an evaporative cooler, used to lower compressor air inlet temperature and the methodology used to reduce the additional instrumentation uncertainty associated with such devices. The paper will also deal with the unique environmental emissions restrictions imposed on the project.

  17. Auxiliary steam supply and process steam extraction at the combined-cycle unit Moerdijk/The Netherlands

    SciTech Connect

    Toebes, J.A.; Beker, M.J.W.; Puts, J.J.

    1998-07-01

    The first combined-cycle plant to be operated in combination with a waste-to-energy (WTE) plant has been built by the Dutch electric power utility N.V. Electriciteits-Produktiemaatschappij Zuid-Nederland (N.V. EPZ). Steam generated by the combustion of municipal waste is supplied to the heat recovery steam generators of the combined cycle unit. In addition to generating electric power for the public grid, the plant also supplies process steam to a neighboring chemical plant. The combination results in nearly 70% utilization of the energy contained in the natural gas fuel. The plant has a maximum electrical output of 339 MW and reduces annual natural gas consumption by approximately 40 million cubic meters which corresponds to a CO{sub 2} emission reduction of nearly 100,000 metric tons per year. The combined-cycle plant started operation in mid 1996 and during the first two years of operation showed heat consumption and emission levels in conformity with requirements. This paper presents the integrated concept and the main operating results.

  18. Proposing a novel combined cycle for optimal exergy recovery of liquefied natural gas

    NASA Astrophysics Data System (ADS)

    Salimpour, M. R.; Zahedi, M. A.

    2012-08-01

    The effective utilization of the cryogenic exergy associated with liquefied natural gas (LNG) vaporization is important. In this paper, a novel combined power cycle is proposed which utilizes LNG in different ways to enhance the power generation of a power plant. In addition to the direct expansion in the appropriate expander, LNG is used as a low-temperature heat sink for a middle-pressure gas cycle which uses nitrogen as working fluid. Also, LNG is used to cool the inlet air of an open Brayton gas turbine cycle. These measures are accomplished to improve the exergy recovery of LNG. In order to analyze the performance of the system, the influence of several key parameters such as pressure ratio of LNG turbine, ratio of the mass flow rate of LNG to the mass flow rate of air, pressure ratio of different compressors, LNG pressure and inlet pressure of nitrogen compressor, on the thermal efficiency and exergy efficiency of the offered cycle is investigated. Finally, the proposed combined cycle is optimized on the basis of first and second laws of thermodynamics.

  19. New high efficiency low capital coal fueled combined cycle using existing CFBs and large gas turbines

    SciTech Connect

    Rohrer, J.W.

    1999-07-01

    Advanced Coal Power Technologies (IGCC, PFBII, and HIPPS) despite over two decades of technical development, have seen a disappointing lack of commercial (unsubsidized) utilization. Pulverized coal (PC) steam cycles still dominate because of the intrinsic high capital cost of advanced coal technologies. Recent studies have shown that partial gasification combined cycles yield higher efficiencies than full gasification IGCC cycles. They also show that atmospheric CFB combustors suffer little or no efficiency penalty versus pressurized combustors (and have substantially lower capital costs) because turbine exhaust heat can be fully recovered as the combustion air supply for atmospheric combustors. One new atmospheric partial gasification combined cycle is particularly promising from both a capital cost and efficiency basis. It integrates existing coal atmospheric CFB boiler technology with conventional simple cycle high temperature gas turbines. The CFB boiler also supplies hot bed material to an inexpensive raw coal devolatilizer riser tube which produces a medium-high BTU turbine fuel gas without the need for an expensive power robbing oxygen plant.

  20. Method of optimizing performance of Rankine cycle power plants

    DOEpatents

    Pope, William L.; Pines, Howard S.; Doyle, Padraic A.; Silvester, Lenard F.

    1982-01-01

    A method for efficiently operating a Rankine cycle power plant (10) to maximize fuel utilization efficiency or energy conversion efficiency or minimize costs by selecting a turbine (22) fluid inlet state which is substantially in the area adjacent and including the transposed critical temperature line (46).

  1. Complex technical and economic studies of combined-cycle units with flow gasifiers

    NASA Astrophysics Data System (ADS)

    Nakoryakov, V. E.; Nozdrenko, G. V.; Shchinnikov, P. A.; Borush, O. V.; Kuz'min, A. G.

    2010-12-01

    The method for determining the technical and economical indices of combined-cycle power plants (CCPPs) operating on coal with a low-charged steam generator and with a flow gasifier in combined production of electricity and heat, synthesis gas and hydrogen is considered. The results of analysis are presented and it is shown that such CCPPs have a higher technical and economical efficiency as compared to cogeneration plants (CPs) operating on pulverized coal and reconstructed with a gas-turbine topping. The material of this article is prepared in the framework of the Federal Targeted Program "Scientific and Scientific-Pedagogical Specialists of Innovative Russia for 2009-2013," application 1.2.2, the program "Research Works on Production of Fuels and Power from Organic Raw Materials."

  2. Comparison of Engine Cycle Codes for Rocket-Based Combined Cycle Engines

    NASA Technical Reports Server (NTRS)

    Waltrup, Paul J.; Auslender, Aaron H.; Bradford, John E.; Carreiro, Louis R.; Gettinger, Christopher; Komar, D. R.; McDonald, J.; Snyder, Christopher A.

    2002-01-01

    This paper summarizes the results from a one day workshop on Rocket-Based Combined Cycle (RBCC) Engine Cycle Codes held in Monterey CA in November of 2000 at the 2000 JANNAF JPM with the authors as primary participants. The objectives of the workshop were to discuss and compare the merits of existing Rocket-Based Combined Cycle (RBCC) engine cycle codes being used by government and industry to predict RBCC engine performance and interpret experimental results. These merits included physical and chemical modeling, accuracy and user friendliness. The ultimate purpose of the workshop was to identify the best codes for analyzing RBCC engines and to document any potential shortcomings, not to demonstrate the merits or deficiencies of any particular engine design. Five cases representative of the operating regimes of typical RBCC engines were used as the basis of these comparisons. These included Mach 0 sea level static and Mach 1.0 and Mach 2.5 Air-Augmented-Rocket (AAR), Mach 4 subsonic combustion ramjet or dual-mode scramjet, and Mach 8 scramjet operating modes. Specification of a generic RBCC engine geometry and concomitant component operating efficiencies, bypass ratios, fuel/oxidizer/air equivalence ratios and flight dynamic pressures were provided. The engine included an air inlet, isolator duct, axial rocket motor/injector, axial wall fuel injectors, diverging combustor, and exit nozzle. Gaseous hydrogen was used as the fuel with the rocket portion of the system using a gaseous H2/O2 propellant system to avoid cryogenic issues. The results of the workshop, even after post-workshop adjudication of differences, were surprising. They showed that the codes predicted essentially the same performance at the Mach 0 and I conditions, but progressively diverged from a common value (for example, for fuel specific impulse, Isp) as the flight Mach number increased, with the largest differences at Mach 8. The example cases and results are compared and discussed in this paper.

  3. Off-design performance of a hydro-combined cycle powerplant

    SciTech Connect

    Bettagli, N.; Bosio, A.; Carcasci, C.

    1994-12-31

    A coastal-sited hydraulic gas turbine (HGT) power-generating plant that smoothly adjusts to variations in energy demand is presented. In the proposed plant, a combined gas-steam plant, with a three-pressure bottomer cycle, is mechanically connected to the hydraulic turbine and pump, thereby providing easy regulation of the output power through the hydraulic section rather than, as current practice, through the thermal section. In addition, the turbine bleed is processed in a multiflash desalinator to produce desalinated water. The objectives of this work were: to optimize the pressure bleed; to size the multiflash desalinator; to evaluate the off-design performance of the desalinator and the hydraulic system.

  4. Coal-gasification/MHD/steam-turbine combined-cycle (GMS) power generation

    SciTech Connect

    Lytle, J.M.; Marchant, D.D.

    1980-11-01

    The coal-gasification/MHD/steam-turbine combined cycle (GMS) refers to magnetohydrodynamic (MHD) systems in which coal gasification is used to supply a clean fuel (free of mineral matter and sulfur) for combustion in an MHD electrical power plant. Advantages of a clean-fuel system include the elimination of mineral matter or slag from all components other than the coal gasifier and gas cleanup system; reduced wear and corrosion on components; and increased seed recovery resulting from reduced exposure of seed to mineral matter or slag. Efficiencies in some specific GMS power plants are shown to be higher than for a comparably sized coal-burning MHD power plant. The use of energy from the MHD exhaust gas to gasify coal (rather than the typical approach of burning part of the coal) results in these higher efficiencies.

  5. Gasification combined cycle: Carbon dioxide recovery, transport, and disposal

    SciTech Connect

    Doctor, R.D.; Molburg, J.C.; Thimmapuram, P.; Berry, G.F.; Livengood, C.D. ); Johnson, R.A. )

    1993-01-01

    Initiatives to limit carbon dioxide (CO[sub 2]) emissions have drawn considerable interest to integrated gasification combined-cycle (IGCC) power generation. This process can reduce C0[sub 2] production because of its higher efficiency, and it is amenable to C0[sub 2] capture, because C0[sub 2] can be removed before combustion and the associated dilution with atmospheric nitrogen. This paper presents a process-design baseline that encompasses the IGCC system, C0[sub 2] transport by pipeline, and land-based sequestering of C0[sub 2] in geological reservoirs.The intent of this study is to provide the C0[sub 2] budget, or an equivalent C0[sub 2]'' budget, associated with each of the individual energy-cycle steps. Design capital and operating costs for the process are included in the full study but are not reported in the present paper. The value used for the equivalent C0[sub 2]'' budget will be 1 kg C0[sub 2]/kWh[sub e].

  6. Combined glucose ingestion and mouth rinsing improves sprint cycling performance.

    PubMed

    Chong, Edwin; Guelfi, Kym J; Fournier, Paul A

    2014-12-01

    This study investigated whether combined ingestion and mouth rinsing with a carbohydrate solution could improve maximal sprint cycling performance. Twelve competitive male cyclists ingested 100 ml of one of the following solutions 20 min before exercise in a randomized double-blinded counterbalanced order (a) 10% glucose solution, (b) 0.05% aspartame solution, (c) 9.0% maltodextrin solution, or (d) water as a control. Fifteen min after ingestion, repeated mouth rinsing was carried out with 11 × 15 ml bolus doses of the same solution at 30-s intervals. Each participant then performed a 45-s maximal sprint effort on a cycle ergometer. Peak power output was significantly higher in response to the glucose trial (1188 ± 166 W) compared with the water (1036 ± 177 W), aspartame (1088 ± 128 W) and maltodextrin (1024 ± 202 W) trials by 14.7 ± 10.6, 9.2 ± 4.6 and 16.0 ± 6.0% respectively (p < .05). Mean power output during the sprint was significantly higher in the glucose trial compared with maltodextrin (p < .05) and also tended to be higher than the water trial (p = .075). Glucose and maltodextrin resulted in a similar increase in blood glucose, and the responses of blood lactate and pH to sprinting did not differ significantly between treatments (p > .05). These findings suggest that combining the ingestion of glucose with glucose mouth rinsing improves maximal sprint performance. This ergogenic effect is unlikely to be related to changes in blood glucose, sweetness, or energy sensing mechanisms in the gastrointestinal tract. PMID:24668608

  7. Parametric Study Conducted of Rocket- Based, Combined-Cycle Nozzles

    NASA Technical Reports Server (NTRS)

    Steffen, Christopher J., Jr.; Smith, Timothy D.

    1998-01-01

    Having reached the end of the 20th century, our society is quite familiar with the many benefits of recycling and reusing the products of civilization. The high-technology world of aerospace vehicle design is no exception. Because of the many potential economic benefits of reusable launch vehicles, NASA is aggressively pursuing this technology on several fronts. One of the most promising technologies receiving renewed attention is Rocket-Based, Combined-Cycle (RBCC) propulsion. This propulsion method combines many of the efficiencies of high-performance jet aircraft with the power and high-altitude capability of rocket engines. The goal of the present work at the NASA Lewis Research Center is to further understand the complex fluid physics within RBCC engines that govern system performance. This work is being performed in support of NASA's Advanced Reusable Technologies program. A robust RBCC engine design optimization demands further investigation of the subsystem performance of the engine's complex propulsion cycles. The RBCC propulsion system under consideration at Lewis is defined by four modes of operation in a singlestage- to-orbit configuration. In the first mode, the engine functions as a rocket-driven ejector. When the rocket engine is switched off, subsonic combustion (mode 2) is present in the ramjet mode. As the vehicle continues to accelerate, supersonic combustion (mode 3) occurs in the ramjet mode. Finally, as the edge of the atmosphere is approached and the engine inlet is closed off, the rocket is reignited and the final accent to orbit is undertaken in an all-rocket mode (mode 4). The performance of this fourth and final mode is the subject of this present study. Performance is being monitored in terms of the amount of thrust generated from a given amount of propellant.

  8. Design and operation of a geopressurized-geothermal hybrid cycle power plant

    SciTech Connect

    Campbell, R.G.; Hattar, M.M.

    1991-02-01

    Geopressured-geothermal resources can contribute significantly to the national electricity supply once technical and economic obstacles are overcome. Power plant performance under the harsh conditions of a geopressured resource was unproven, so a demonstration power plant was built and operated on the Pleasant Bayou geopressured resource in Texas. This one megawatt facility provided valuable data over a range of operating conditions. This power plant was a first-of-a-kind demonstration of the hybrid cycle concept. A hybrid cycle was used to take advantage of the fact that geopressured resources contain energy in more than one form -- hot water and natural gas. Studies have shown that hybrid cycles can yield thirty percent more power than stand-alone geothermal and fossil fuel power plants operating on the same resource. In the hybrid cycle at Pleasant Bayou, gas was burned in engines to generate electricity directly. Exhaust heat from the engines was then combined with heat from the brine to generate additional electricity in a binary cycle. Heat from the gas engine was available at high temperature, thus improving the efficiency of the binary portion of the hybrid cycle. Design power output was achieved, and 3445 MWh of power were sold to the local utility over the course of the test. Plant availability was 97.5% and the capacity factor was over 80% for the extended run at maximum power production. The hybrid cycle power plant demonstrated that there are no technical obstacles to electricity generation at Pleasant Bayou. 14 refs., 38 figs., 16 tabs.

  9. Externally-fired combined cycle: An effective coal fueled technology for repowering and new generation

    SciTech Connect

    Stoddard, L.E.; Bary, M.R.; Gray, K.M.; LaHaye, P.G.

    1995-06-01

    The Externally-Fired Combined Cycle (EFCC) is an attractive emerging technology for powering high efficiency combined gas and steam turbine cycles with coal or other ash bearing fuels. In the EFCC, the heat input to a gas turbine is supplied indirectly through a ceramic air heater. The air heater, along with an atmospheric coal combustor and ancillary equipment, replaces the conventional gas turbine combustor. A steam generator located downstream from the ceramic air heater and steam turbine cycle, along with an exhaust cleanup system, completes the combined cycle. A key element of the EFCC Development Program, the 25 MMBtu/h heat-input Kennebunk Test Facility (KTF), has recently begun operation. The KTF has been operating with natural gas and will begin operating with coal in early 1995. The US Department of Energy selected an EFCC repowering of the Pennsylvania Electric Company`s Warren Station for funding under the Clean Coal Technology Program Round V. The project focuses on repowering an existing 48 MW (gross) steam turbine with an EFCC power island incorporating a 30 MW gas turbine, for a gross power output of 78 MW and a net output of 72 MW. The net plant heat rate will be decreased by approximately 30% to below 9,700 Btu/kWh. Use of a dry scrubber and fabric filter will reduce sulfur dioxide (SO{sub 2}) and particulate emissions to levels under those required by the Clean Air Act Amendments (CAAA) of 1990. Nitrogen oxides (NO{sub x}) emissions are controlled by the use of staged combustion. The demonstration project is currently in the engineering phase, with startup scheduled for 1997. This paper discusses the background of the EFCC, the KTF, the Warren Station EFCC Clean Coal Technology Demonstration Project, the commercial plant concept, and the market potential for the EFCC.

  10. Simulated performance of biomass gasification based combined power and refrigeration plant for community scale application

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, S.; Mondal, P.; Ghosh, S.

    2016-07-01

    Thermal performance analysis and sizing of a biomass gasification based combined power and refrigeration plant (CPR) is reported in this study. The plant is capable of producing 100 kWe of electrical output while simultaneously producing a refrigeration effect, varying from 28-68 ton of refrigeration (TR). The topping gas turbine cycle is an indirectly heated all-air cycle. A combustor heat exchanger duplex (CHX) unit burns producer gas and transfer heat to air. This arrangement avoids complex gas cleaning requirements for the biomass-derived producer gas. The exhaust air of the topping GT is utilized to run a bottoming ammonia absorption refrigeration (AAR) cycle via a heat recovery steam generator (HRSG), steam produced in the HRSG supplying heat to the generator of the refrigeration cycle. Effects of major operating parameters like topping cycle pressure ratio (rp) and turbine inlet temperature (TIT) on the energetic performance of the plant are studied. Energetic performance of the plant is evaluated via energy efficiency, required biomass consumption and fuel energy savings ratio (FESR). The FESR calculation method is significant for indicating the savings in fuel of a combined power and process heat plant instead of separate plants for power and process heat. The study reveals that, topping cycle attains maximum power efficiency of 30%in pressure ratio range of 8-10. Up to a certain value of pressure ratio the required air flow rate through the GT unit decreases with increase in pressure ratio and then increases with further increase in pressure ratio. The capacity of refrigeration of the AAR unit initially decreases up to a certain value of topping GT cycle pressure ratio and then increases with further increase in pressure ratio. The FESR is found to be maximized at a pressure ratio of 9 (when TIT=1100°C), the maximum value being 53%. The FESR is higher for higher TIT. The heat exchanger sizing is also influenced by the topping cycle pressure ratio and GT-TIT.

  11. Environmental footprints and costs of coal-based integrated gasification combined cycle and pulverized coal technologies

    SciTech Connect

    2006-07-15

    The report presents the results of a study to establish the environmental footprint and costs of the coal-based integrated gasification combined cycle (IGCC) technology relative to the conventional pulverized coal (PC) technologies. The technology options evaluated are restricted to those that are projected by the authors to be commercially applied by 2010. The IGCC plant configurations include coal slurry-based and dry coal-based, oxygen-blown gasifiers. The PC plant configurations include subcritical, supercritical, and ultra-supercritical boiler designs. All study evaluations are based on the use of three different coals: bituminous, sub-bituminous, and lignite. The same electric generating capacity of 500 MW is used for each plant configuration. State-of-the-art environmental controls are also included as part of the design of each plant. The environmental comparisons of IGCC and PC plants are based on thermal performance, emissions of criteria and non-criteria air pollutants, solid waste generation rates, and water consumption and wastewater discharge rates associated with each plant. The IGCC plants in these comparisons include NOX and SO{sub 2} controls considered viable for 2010 deployment. In addition, the potential for use of other advanced controls, specifically the selective catalytic reduction system for NOX reduction and the ultra-efficient Selexol and Rectisol systems for SO{sub 2} reduction, is also investigated. The cost estimates presented in the report include capital and operating costs for each IGCC and PC plant configuration. Cost impacts of using the advanced NOx and SO{sub 2} controls are included. The report provides an assessment of the CO{sub 2} capture and sequestration potential for the IGCC and PC plants. A review of the technical and economic aspects of CO{sub 2} capture technologies is included. 20 refs., 75 figs., 3 apps.

  12. A Combined Experimental/Computational Investigation of a Rocket Based Combined Cycle Inlet

    NASA Technical Reports Server (NTRS)

    Smart, Michael K.; Trexler, Carl A.; Goldman, Allen L.

    2001-01-01

    A rocket based combined cycle inlet geometry has undergone wind tunnel testing and computational analysis with Mach 4 flow at the inlet face. Performance parameters obtained from the wind tunnel tests were the mass capture, the maximum back-pressure, and the self-starting characteristics of the inlet. The CFD analysis supplied a confirmation of the mass capture, the inlet efficiency and the details of the flowfield structure. Physical parameters varied during the test program were cowl geometry, cowl position, body-side bleed magnitude and ingested boundary layer thickness. An optimum configuration was determined for the inlet as a result of this work.

  13. Portland General Electric Beaver synfuels project a coal gasification combined cycle methanol facility development program

    SciTech Connect

    Skov, E.R.; Yott, R.A.; Clancy, G.M.

    1981-01-01

    The Beaver coal gasification facility is currently undergoing preliminary engineering and feasibility analysis. Based on the existing 600 MW (nominal) Beaver combined cycle generating station and the adjacent plant site, which is eminently suitable for receiving and storage of subbituminous coal from either Alaska or Wyoming, a non-integrated CGCC facility combined with a methanol plant for increased utilization of the plant facilities and capital investment looks attractive for the 1987 time frame and forward. The CGCC facility would be environmentally benign since the gasification process inherently permits removal of essentially all sulfur, metals and particulate matter. The association with a methanol plant permits a high utilization factor of the overall CGCC-methanol facility. The beaver coal gasification facility will produce 60 billion Btu/day of MBG equivalent to about 300MWe, plus 1,750 Ton/D methanol, 10 million SCP/D SNG, nd 90 Ton/Day ammonia from about 11,000 Ton/Day subbituminous coal. The products are forecast to be competitively marketed in the region. The project could be implemented on a six year schedule, and a preliminary economic evaluation indicated that the products can be competitive with gas and oil for the 1988 time frame and beyond. 6 refs.

  14. Rocket-Based Combined Cycle Engine Concept Development

    NASA Technical Reports Server (NTRS)

    Ratekin, G.; Goldman, Allen; Ortwerth, P.; Weisberg, S.; McArthur, J. Craig (Technical Monitor)

    2001-01-01

    The development of rocket-based combined cycle (RBCC) propulsion systems is part of a 12 year effort under both company funding and contract work. The concept is a fixed geometry integrated rocket, ramjet, scramjet, which is hydrogen fueled and uses hydrogen regenerative cooling. The baseline engine structural configuration uses an integral structure that eliminates panel seals, seal purge gas, and closeout side attachments. Engine A5 is the current configuration for NASA Marshall Space Flight Center (MSFC) for the ART program. Engine A5 models the complete flight engine flowpath of inlet, isolator, airbreathing combustor, and nozzle. High-performance rocket thrusters are integrated into the engine enabling both low speed air-augmented rocket (AAR) and high speed pure rocket operation. Engine A5 was tested in GASL's new Flight Acceleration Simulation Test (FAST) facility in all four operating modes, AAR, RAM, SCRAM, and Rocket. Additionally, transition from AAR to RAM and RAM to SCRAM was also demonstrated. Measured performance demonstrated vision vehicle performance levels for Mach 3 AAR operation and ramjet operation from Mach 3 to 4. SCRAM and rocket mode performance was above predictions. For the first time, testing also demonstrated transition between operating modes.

  15. Detritivores ameliorate the enhancing effect of plant-based trophic cascades on nitrogen cycling in an old-field system.

    PubMed

    Buchkowski, Robert W; Schmitz, Oswald J

    2015-04-01

    Nitrogen (N) cycling is a fundamental process central to numerous ecosystem functions and services. Accumulating evidence suggests that species within detritus- and plant-based food chains can play an instrumental role in regulating this process. However, the effects of each food chain are usually examined in isolation of each other, so it remains uncertain if their effects are equally important or if one chain exerts predominant control. We experimentally manipulated the species composition of detritus-based (isopods and spiders) and plant-based (grasshoppers and spiders) food chains individually and in combination within mesocosms containing plants and microbes from an old-field ecosystem. We tested: (i) their relative impact on N cycling, and (ii) whether interactions between them moderated the influence of one group or the other. We found that spiders in plant-based food chains exerted the only positive effect on N cycling. Detritus-based food chains had no net effects on N cycling but, when combined with plant-based food chains, ameliorated the positive effects of plant-based species. Our results suggest that detritus-based food chains may ultimately limit rates of N cycling by eroding the enhancing effects of plant-based food chains when antagonistic interactions between detritus- and plant-based species exist. PMID:25878045

  16. Detritivores ameliorate the enhancing effect of plant-based trophic cascades on nitrogen cycling in an old-field system

    PubMed Central

    Buchkowski, Robert W.; Schmitz, Oswald J.

    2015-01-01

    Nitrogen (N) cycling is a fundamental process central to numerous ecosystem functions and services. Accumulating evidence suggests that species within detritus- and plant-based food chains can play an instrumental role in regulating this process. However, the effects of each food chain are usually examined in isolation of each other, so it remains uncertain if their effects are equally important or if one chain exerts predominant control. We experimentally manipulated the species composition of detritus-based (isopods and spiders) and plant-based (grasshoppers and spiders) food chains individually and in combination within mesocosms containing plants and microbes from an old-field ecosystem. We tested: (i) their relative impact on N cycling, and (ii) whether interactions between them moderated the influence of one group or the other. We found that spiders in plant-based food chains exerted the only positive effect on N cycling. Detritus-based food chains had no net effects on N cycling but, when combined with plant-based food chains, ameliorated the positive effects of plant-based species. Our results suggest that detritus-based food chains may ultimately limit rates of N cycling by eroding the enhancing effects of plant-based food chains when antagonistic interactions between detritus- and plant-based species exist. PMID:25878045

  17. Wabash River Coal Gasification Combined Cycle Repowering Project: Clean Coal Technology Program. Environmental Assessment

    SciTech Connect

    Not Available

    1993-05-01

    The proposed project would result in a combined-cycle power plant with lower emissions and higher efficiency than most existing coal-fired power plants of comparable size. The net plant heat rate (energy content of the fuel input per useable electrical generation output; i.e., Btu/kilowatt hour) for the new repowered unit would be a 21% improvement over the existing unit, while reducing SO{sub 2} emissions by greater than 90% and limiting NO{sub x} emissions by greater than 85% over that produced by conventional coal-fired boilers. The technology, which relies on gasified coal, is capable of producing as much as 25% more electricity from a given amount of coal than today`s conventional coal-burning methods. Besides having the positive environmental benefit of producing less pollutants per unit of power generated, the higher overall efficiency of the proposed CGCC project encourages greater utilization to meet base load requirements in order to realize the associated economic benefits. This greater utilization (i.e., increased capacity factor) of a cleaner operating plant has global environmental benefits in that it is likely that such power would replace power currently being produced by less efficient plants emitting a greater volume of pollutants per unit of power generated.

  18. Life Cycle Cost Analysis of Ready Mix Concrete Plant

    NASA Astrophysics Data System (ADS)

    Topkar, V. M.; Duggar, A. R.; Kumar, A.; Bonde, P. P.; Girwalkar, R. S.; Gade, S. B.

    2013-11-01

    India, being a developing nation is experiencing major growth in its infrastructural sector. Concrete is the major component in construction. The requirement of good quality of concrete in large quantities can be fulfilled by ready mix concrete batching and mixing plants. The paper presents a technique of applying the value engineering tool life cycle cost analysis to a ready mix concrete plant. This will help an investor or an organization to take investment decisions regarding a ready mix concrete facility. No economic alternatives are compared in this study. A cost breakdown structure is prepared for the ready mix concrete plant. A market survey has been conducted to collect realistic costs for the ready mix concrete facility. The study establishes the cash flow for the ready mix concrete facility helpful in investment and capital generation related decisions. Transit mixers form an important component of the facility and are included in the calculations. A fleet size for transit mixers has been assumed for this purpose. The life cycle cost has been calculated for the system of the ready mix concrete plant and transit mixers.

  19. Improving geothermal power plants with a binary cycle

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.; Sorokina, E. V.

    2015-12-01

    The recent development of binary geothermal technology is analyzed. General trends in the introduction of low-temperature geothermal sources are summarized. The use of single-phase low-temperature geothermal fluids in binary power plants proves possible and expedient. The benefits of power plants with a binary cycle in comparison with traditional systems are shown. The selection of the working fluid is considered, and the influence of the fluid's physicochemical properties on the design of the binary power plant is discussed. The design of binary power plants is based on the chemical composition and energy potential of the geothermal fluids and on the landscape and climatic conditions at the intended location. Experience in developing a prototype 2.5 MW Russian binary power unit at Pauzhetka geothermal power plant (Kamchatka) is outlined. Most binary systems are designed individually for a specific location. Means of improving the technology and equipment at binary geothermal power plants are identified. One option is the development of modular systems based on several binary systems that employ the heat from the working fluid at different temperatures.

  20. 6. INTERIOR VIEW OF CROSSCUT HYDRO PLANT, SHOWING 25 CYCLE60 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. INTERIOR VIEW OF CROSSCUT HYDRO PLANT, SHOWING 25 CYCLE-60 CYCLE FREQUENCY CHANGER Photographer unknown, December 14, 1940 - Cross Cut Hydro Plant, North Side of Salt River, Tempe, Maricopa County, AZ

  1. Experimental investigation of an ammonia-based combined power and cooling cycle

    NASA Astrophysics Data System (ADS)

    Tamm, Gunnar Olavi

    A novel ammonia-water thermodynamic cycle, capable of producing both power and refrigeration, was proposed by D. Yogi Goswami. The binary mixture exhibits variable boiling temperatures during the boiling process, which leads to a good thermal match between the heating fluid and working fluid for efficient heat source utilization. The cycle can be driven by low temperature sources such as solar, geothermal, and waste heat from a conventional power cycle, reducing the reliance on high temperature sources such as fossil fuels. A theoretical simulation of the cycle at heat source temperatures obtainable from low and mid temperature solar collectors showed that the ideal cycle could produce power and refrigeration at a maximum exergy efficiency, defined as the ratio of the net work and refrigeration output to the change in availability of the heat source, of over 60%. The exergy efficiency is a useful measure of the cycle's performance as it compares the effectiveness of different cycles in harnessing the same source. An experimental system was constructed to demonstrate the feasibility of the cycle and to compare the experimental results with the theoretical simulations. In this first phase of experimentation, the turbine expansion was simulated with a throttling valve and a heat exchanger. Results showed that the vapor generation and absorption condensation processes work experimentally. The potential for combined turbine work and refrigeration output was evidenced in operating the system. Analysis of losses led to modifications in the system design, which were implemented to yield improvements in heat exchange, vapor generation, pump performance and overall stability. The research that has been conducted verifies the potential of the power and cooling cycle as an alternative to using conventional fossil fuel technologies. The research that continues is to further demonstrate the concept and direct it towards industry. On the large scale, the cycle can be used for

  2. An inlet air washer/chiller system for combined cycle planet repowering

    SciTech Connect

    Sengupta, U.; Soroka, G. )

    1989-01-01

    A conditioning method to achieve increased output at any relative humidity condition is an air washer and absorption chiller arrangement. At elevated temperatures and low humidity, the air washer operates as an evaporative cooler without the chiller in operation. In this mode, the air washer will give similar results as a media type evaporative cooler at a fraction of the pressure loss. In the air washer plus chiller operating mode the chiller maintains cooling effectiveness of the air washer during periods of high relative humidity. This makes such a system very appropriate anywhere relative humidity is high. Many combined cycle plants utilize supplemental firing of the heat recovery steam generators to offset the loss of gas turbine power at high ambient temperatures. This paper shows that in contrast to supplementary firing, the combination air washer/chiller system can generate power more efficiently and at lower cost.

  3. Research on Chinese life cycle-based wind power plant environmental influence prevention measures.

    PubMed

    Wang, Hanxi; Xu, Jianling; Liu, Yuanyuan; Zhang, Tian

    2014-08-01

    The environmental impact of wind power plants over their life cycle is divided into three stages: construction period, operation period and retired period. The impact is mainly reflected in ecological destruction, noise pollution, water pollution and the effect on bird migration. In response to these environmental effects, suggesting reasonable locations, reducing plant footprint, optimizing construction programs, shielding noise, preventing pollution of terrestrial ecosystems, implementing combined optical and acoustical early warning signals, making synthesized use of power generation equipment in the post-retired period and using other specific measures, including methods involving governance and protection efforts to reduce environmental pollution, can be performed to achieve sustainable development. PMID:25153474

  4. Research on Chinese Life Cycle-Based Wind Power Plant Environmental Influence Prevention Measures

    PubMed Central

    Wang, Hanxi; Xu, Jianling; Liu, Yuanyuan; Zhang, Tian

    2014-01-01

    The environmental impact of wind power plants over their life cycle is divided into three stages: construction period, operation period and retired period. The impact is mainly reflected in ecological destruction, noise pollution, water pollution and the effect on bird migration. In response to these environmental effects, suggesting reasonable locations, reducing plant footprint, optimizing construction programs, shielding noise, preventing pollution of terrestrial ecosystems, implementing combined optical and acoustical early warning signals, making synthesized use of power generation equipment in the post-retired period and using other specific measures, including methods involving governance and protection efforts to reduce environmental pollution, can be performed to achieve sustainable development. PMID:25153474

  5. KRW oxygen-blown gasification combined cycle: Carbon dioxide recovery, transport, and disposal

    SciTech Connect

    Doctor, R.D.; Molburg, J.C.; Thimmapuram, P.R.

    1996-08-01

    This project emphasizes CO{sub 2}-capture technologies combined with integrated gasification combined-cycle (IGCC) power systems. Complementary evaluations address CO{sub 2} transportation, CO{sub 2} use, and options for the long-term sequestration of unused CO{sub 2}. The intent is to provide the CO{sub 2} budget, or an equivalent CO{sub 2} budget, associated with each of the individual energy-cycle steps, in addition to process design capital and operating costs. The base case is a 458-MW (gross generation) IGCC system that uses an oxygen-blown Kellogg-Rust-Westinghouse agglomerating fluidized-bed gasifier, Illinois No. 6 bituminous coal feed, and low-pressure glycol sulfur removal followed by Claus/SCOT treatment to produce a saleable product. Mining, feed preparation, and conversion result in a net electric power production for the entire energy cycle of 411 MW, with a CO{sub 2} release rate of 0.801 kg/k Whe. For comparison, in two cases, the gasifier output was taken through water-gas shift and then to low-pressure glycol H{sub 2}S recovery, followed by either low-pressure glycol or membrane CO{sub 2} recovery and then by a combustion turbine being fed a high-hydrogen-content fuel. Two additional cases employed chilled methanol for H{sub 2}S recovery and a fuel cell as the topping cycle with no shift stages. From the IGCC plant, a 500-km pipeline took the CO{sub 2} to geological sequestering. In a comparison of air-blown and oxygen-blown CO{sub 2}-release base cases, the cost of electricity for the air-blown IGCC was 56.86 mills/kWh, and the cost of oxygen-blown IGCC was 58.29 mills/kWh.

  6. COMBINED SEWER OVERFLOW CHARACTERISTICS FROM TREATMENT PLANT DATA

    EPA Science Inventory

    This research was undertaken to evaluate the adequacy of using a mass balance technique with daily municipal wastewater treatment plant data to determine combined sewer runoff and overflow characteristics. The bias and variability associated with the mass balance technique togeth...

  7. Life Cycle Assesment of Daugavgriva Waste Water Treatment Plant

    NASA Astrophysics Data System (ADS)

    Romagnoli, F.; Sampaio, F.; Blumberga, D.

    2009-01-01

    This paper presents the assessment of the environmental impacts caused by the treatment of Riga's waste water in the Daugavgriva plant with biogas energy cogeneration through the life cycle assessment (LCA). The LCA seems to be a good tool to assess and evaluate the most serious environmental impacts of a facility The results showed clearly that the impact category contributing the most to the total impact -eutrophicationcomes from the wastewater treatment stage. Climate change also seems to be a relevant impact coming from the wastewater treatment stage and the main contributor to the Climate change is N2O. The main environmental benefits, in terms of the percentages of the total impact, associated to the use of biogas instead of any other fossil fuel in the cogeneration plant are equal to: 3,11% for abiotic depletation, 1,48% for climate change, 0,51% for acidification and 0,12% for eutrophication.

  8. Closed cycle osmotic power plants for electric power production

    NASA Astrophysics Data System (ADS)

    Reali, M.

    1980-04-01

    The paper deals with closed-cycle osmotic power plants (CCOPPs), which are not meant for the exploitation of natural salinity gradients but, rather, for the exploitation of those abundant heat sources having temperatures slightly higher than ambient temperature, e.g., geothermal fields, ocean temperature gradients, waste heat from power plants, and solar energy. The paper gives a general description of the CCOPP, along with some indications of its potential for energy generation. The concept of the CCOPP lies in producing electric power by means of the osmotic flows of suitable solvents and subsequently in separating them again from their solutes by means of thermal energy obtained from any available heat source. The discussion covers osmotic phenomena and the CCOPP, as well as important features of the CCOPP.

  9. Computer, Video, and Rapid-Cycling Plant Projects in an Undergraduate Plant Breeding Course.

    ERIC Educational Resources Information Center

    Michaels, T. E.

    1993-01-01

    Studies the perceived effectiveness of four student projects involving videotape production, computer conferencing, microcomputer simulation, and rapid-cycling Brassica breeding for undergraduate plant breeding students in two course offerings in consecutive years. Linking of the computer conferencing and video projects improved the rating of the…

  10. Prospective gas turbine and combined-cycle units for power engineering (a Review)

    NASA Astrophysics Data System (ADS)

    Ol'khovskii, G. G.

    2013-02-01

    The modern state of technology for making gas turbines around the world and heat-recovery combined-cycle units constructed on their basis are considered. The progress achieved in this field by Siemens, Mitsubishi, General Electric, and Alstom is analyzed, and the objectives these companies set forth for themselves for the near and more distant future are discussed. The 375-MW gas turbine unit with an efficiency of 40% produced by Siemens, which is presently the largest one, is subjected to a detailed analysis. The main specific features of this turbine are that the gas turbine unit's hot-path components have purely air cooling, due to which the installation has enhanced maneuverability. The single-shaft combined-cycle plant constructed on the basis of this turbine has a capacity of 570 MW and efficiency higher than 60%. Programs adopted by different companies for development of new-generation gas turbine units firing synthesis gas and fitted with low-emission combustion chambers and new cooling systems are considered. Concepts of rotor blades for new gas turbine units with improved thermal barrier coatings and composite blades different parts of which are made of materials selected in accordance with the conditions of their operation are discussed.

  11. Conceptual design study of a coal gasification combined-cycle powerplant for industrial cogeneration

    NASA Astrophysics Data System (ADS)

    Bloomfield, H. S.; Nelson, S. G.; Straight, H. F.; Subramaniam, T. K.; Winklepleck, R. G.

    1981-03-01

    A conceptual design study was conducted to assess technical feasibility, environmental characteristics, and economics of coal gasification. The feasibility of a coal gasification combined cycle cogeneration powerplant was examined in response to energy needs and to national policy aimed at decreasing dependence on oil and natural gas. The powerplant provides the steam heating and baseload electrical requirements while serving as a prototype for industrial cogeneration and a modular building block for utility applications. The following topics are discussed: (1) screening of candidate gasification, sulfur removal and power conversion components; (2) definition of a reference system; (3) quantification of plant emissions and waste streams; (4) estimates of capital and operating costs; and (5) a procurement and construction schedule. It is concluded that the proposed powerplant is technically feasible and environmentally superior.

  12. Conceptual design study of a coal gasification combined-cycle powerplant for industrial cogeneration

    NASA Technical Reports Server (NTRS)

    Bloomfield, H. S.; Nelson, S. G.; Straight, H. F.; Subramaniam, T. K.; Winklepleck, R. G.

    1981-01-01

    A conceptual design study was conducted to assess technical feasibility, environmental characteristics, and economics of coal gasification. The feasibility of a coal gasification combined cycle cogeneration powerplant was examined in response to energy needs and to national policy aimed at decreasing dependence on oil and natural gas. The powerplant provides the steam heating and baseload electrical requirements while serving as a prototype for industrial cogeneration and a modular building block for utility applications. The following topics are discussed: (1) screening of candidate gasification, sulfur removal and power conversion components; (2) definition of a reference system; (3) quantification of plant emissions and waste streams; (4) estimates of capital and operating costs; and (5) a procurement and construction schedule. It is concluded that the proposed powerplant is technically feasible and environmentally superior.

  13. Tightly-Coupled Plant-Soil Nitrogen Cycling: Comparison of Organic Farms across an Agricultural Landscape.

    PubMed

    Bowles, Timothy M; Hollander, Allan D; Steenwerth, Kerri; Jackson, Louise E

    2015-01-01

    How farming systems supply sufficient nitrogen (N) for high yields but with reduced N losses is a central challenge for reducing the tradeoffs often associated with N cycling in agriculture. Variability in soil organic matter and management of organic farms across an agricultural landscape may yield insights for improving N cycling and for evaluating novel indicators of N availability. We assessed yields, plant-soil N cycling, and root expression of N metabolism genes across a representative set of organic fields growing Roma-type tomatoes (Solanum lycopersicum L.) in an intensively-managed agricultural landscape in California, USA. The fields spanned a three-fold range of soil carbon (C) and N but had similar soil types, texture, and pH. Organic tomato yields ranged from 22.9 to 120.1 Mg ha-1 with a mean similar to the county average (86.1 Mg ha-1), which included mostly conventionally-grown tomatoes. Substantial variability in soil inorganic N concentrations, tomato N, and root gene expression indicated a range of possible tradeoffs between yields and potential for N losses across the fields. Fields showing evidence of tightly-coupled plant-soil N cycling, a desirable scenario in which high crop yields are supported by adequate N availability but low potential for N loss, had the highest total and labile soil C and N and received organic matter inputs with a range of N availability. In these fields, elevated expression of a key gene involved in root N assimilation, cytosolic glutamine synthetase GS1, confirmed that plant N assimilation was high even when inorganic N pools were low. Thus tightly-coupled N cycling occurred on several working organic farms. Novel combinations of N cycling indicators (i.e. inorganic N along with soil microbial activity and root gene expression for N assimilation) would support adaptive management for improved N cycling on organic as well as conventional farms, especially when plant-soil N cycling is rapid. PMID:26121264

  14. Tightly-Coupled Plant-Soil Nitrogen Cycling: Comparison of Organic Farms across an Agricultural Landscape

    PubMed Central

    Bowles, Timothy M.; Hollander, Allan D.; Steenwerth, Kerri; Jackson, Louise E.

    2015-01-01

    How farming systems supply sufficient nitrogen (N) for high yields but with reduced N losses is a central challenge for reducing the tradeoffs often associated with N cycling in agriculture. Variability in soil organic matter and management of organic farms across an agricultural landscape may yield insights for improving N cycling and for evaluating novel indicators of N availability. We assessed yields, plant-soil N cycling, and root expression of N metabolism genes across a representative set of organic fields growing Roma-type tomatoes (Solanum lycopersicum L.) in an intensively-managed agricultural landscape in California, USA. The fields spanned a three-fold range of soil carbon (C) and N but had similar soil types, texture, and pH. Organic tomato yields ranged from 22.9 to 120.1 Mg ha-1 with a mean similar to the county average (86.1 Mg ha-1), which included mostly conventionally-grown tomatoes. Substantial variability in soil inorganic N concentrations, tomato N, and root gene expression indicated a range of possible tradeoffs between yields and potential for N losses across the fields. Fields showing evidence of tightly-coupled plant-soil N cycling, a desirable scenario in which high crop yields are supported by adequate N availability but low potential for N loss, had the highest total and labile soil C and N and received organic matter inputs with a range of N availability. In these fields, elevated expression of a key gene involved in root N assimilation, cytosolic glutamine synthetase GS1, confirmed that plant N assimilation was high even when inorganic N pools were low. Thus tightly-coupled N cycling occurred on several working organic farms. Novel combinations of N cycling indicators (i.e. inorganic N along with soil microbial activity and root gene expression for N assimilation) would support adaptive management for improved N cycling on organic as well as conventional farms, especially when plant-soil N cycling is rapid. PMID:26121264

  15. Cycle Configurations for a PBMR Steam and Electricity Production Plant

    SciTech Connect

    Matzner, Dieter; Kriel, Willem; Correia, Michael; Greyvenstein, Renee

    2006-07-01

    The Pebble Bed Modular Reactor (PBMR) is an advanced helium-cooled, graphite moderated High Temperature Gas-cooled Reactor (HTGR) that is capable of multiple missions. The petrochemical industry requires the use of high temperature steam and electricity for their processes. Currently coal or natural gas is utilised for the generation of high temperature steam and electricity, which under-utilises natural resources and in the process emits CO{sub 2} into the atmosphere. This paper provides an overview of the PBMR product development path and discusses how steam production forms part of the future possibilities of the PBMR technology. Suitable cycle configurations for both process steam and electricity generation as required by petrochemical plants are discussed. (authors)

  16. Plant Growth and Development: An Outline for a Unit Structured Around the Life Cycle of Rapid-Cycling Brassica Rapa.

    ERIC Educational Resources Information Center

    Becker, Wayne M.

    This outline is intended for use in a unit of 10-12 lectures on plant growth and development at the introductory undergraduate level as part of a course on organismal biology. The series of lecture outlines is structured around the life cycle of rapid-cycling Brassica rapa (RCBr). The unit begins with three introductory lectures on general plant…

  17. Thioredoxin, a master regulator of the tricarboxylic acid cycle in plant mitochondria

    PubMed Central

    Daloso, Danilo M.; Müller, Karolin; Obata, Toshihiro; Florian, Alexandra; Tohge, Takayuki; Bottcher, Alexandra; Riondet, Christophe; Bariat, Laetitia; Carrari, Fernando; Nunes-Nesi, Adriano; Buchanan, Bob B.; Reichheld, Jean-Philippe; Araújo, Wagner L.; Fernie, Alisdair R.

    2015-01-01

    Plant mitochondria have a fully operational tricarboxylic acid (TCA) cycle that plays a central role in generating ATP and providing carbon skeletons for a range of biosynthetic processes in both heterotrophic and photosynthetic tissues. The cycle enzyme-encoding genes have been well characterized in terms of transcriptional and effector-mediated regulation and have also been subjected to reverse genetic analysis. However, despite this wealth of attention, a central question remains unanswered: “What regulates flux through this pathway in vivo?” Previous proteomic experiments with Arabidopsis discussed below have revealed that a number of mitochondrial enzymes, including members of the TCA cycle and affiliated pathways, harbor thioredoxin (TRX)-binding sites and are potentially redox-regulated. We have followed up on this possibility and found TRX to be a redox-sensitive mediator of TCA cycle flux. In this investigation, we first characterized, at the enzyme and metabolite levels, mutants of the mitochondrial TRX pathway in Arabidopsis: the NADP-TRX reductase a and b double mutant (ntra ntrb) and the mitochondrially located thioredoxin o1 (trxo1) mutant. These studies were followed by a comparative evaluation of the redistribution of isotopes when 13C-glucose, 13C-malate, or 13C-pyruvate was provided as a substrate to leaves of mutant or WT plants. In a complementary approach, we evaluated the in vitro activities of a range of TCA cycle and associated enzymes under varying redox states. The combined dataset suggests that TRX may deactivate both mitochondrial succinate dehydrogenase and fumarase and activate the cytosolic ATP-citrate lyase in vivo, acting as a direct regulator of carbon flow through the TCA cycle and providing a mechanism for the coordination of cellular function. PMID:25646482

  18. NOVEL GAS CLEANING/CONDITIONING FOR INTEGRATED GASIFICATION COMBINED CYCLE

    SciTech Connect

    Dennis A. Horazak; Richard A. Newby; Eugene E. Smeltzer; Rachid B. Slimane; P. Vann Bush; James L. Aderhold Jr; Bruce G. Bryan

    2005-12-01

    Development efforts have been underway for decades to replace dry-gas cleaning technology with humid-gas cleaning technology that would maintain the water vapor content in the raw gas by conducting cleaning at sufficiently high temperature to avoid water vapor condensation and would thus significantly simplify the plant and improve its thermal efficiency. Siemens Power Generation, Inc. conducted a program with the Gas Technology Institute (GTI) to develop a Novel Gas Cleaning process that uses a new type of gas-sorbent contactor, the ''filter-reactor''. The Filter-Reactor Novel Gas Cleaning process described and evaluated here is in its early stages of development and this evaluation is classified as conceptual. The commercial evaluations have been coupled with integrated Process Development Unit testing performed at a GTI coal gasifier test facility to demonstrate, at sub-scale the process performance capabilities. The commercial evaluations and Process Development Unit test results are presented in Volumes 1 and 2 of this report, respectively. Two gas cleaning applications with significantly differing gas cleaning requirements were considered in the evaluation: IGCC power generation, and Methanol Synthesis with electric power co-production. For the IGCC power generation application, two sets of gas cleaning requirements were applied, one representing the most stringent ''current'' gas cleaning requirements, and a second set representing possible, very stringent ''future'' gas cleaning requirements. Current gas cleaning requirements were used for Methanol Synthesis in the evaluation because these cleaning requirements represent the most stringent of cleaning requirements and the most challenging for the Filter-Reactor Novel Gas Cleaning process. The scope of the evaluation for each application was: (1) Select the configuration for the Filter-Reactor Novel Gas Cleaning Process, the arrangement of the individual gas cleaning stages, and the probable operating

  19. Influence of Plants on Chlorine Cycling in Terrestrial Environments

    NASA Astrophysics Data System (ADS)

    Montelius, Malin; Thiry, Yves; Marang, Laura; Ranger, Jacques; Cornelis, Jean-Thomas; Svensson, Teresia; Bastviken, David

    2016-04-01

    Chlorine (Cl), one of the 20 most abundant elements on Earth, is crucial for life as a regulator of cellular ionic strength and an essential co-factor in photosynthesis. Chlorinated organic compounds (Clorg) molecules are surprisingly abundant in soils, in fact many studies during the last decades show that Clorg typically account for more than 60% of the total soil Cl pool in boreal and temperate forest soils and frequently exceed chloride (Cl-) levels. The natural and primarily biotic formation of this Clorg pool has been confirmed experimentally but the detailed content of the Clorg pool and the reasons for its high abundance remains puzzling and there is a lack of Cl budgets for different ecosystems. Recently, the radioisotope 36Cl has caused concerns because of presence in radioactive waste, a long half-life (301 000 years), potential high mobility, and limited knowledge about Cl residence times, speciation and uptake by organisms in terrestrial environments. The chlorination of organic molecules may influence the pool of available Cl- to organisms and thereby the Cl cycling dynamics. This will prolong residence times of total Cl in the soil-vegetation system, which affects exposure times in radioactive 36Cl isotope risk assessments. We tested to what extent the dominating tree species influences the overall terrestrial Cl cycling and the balance between Cl- and Clorg. Total Cl and Clorg were measured in different tree compartments and soil horizons in the Breuil experimental forest, Bourgogne, established in 1976 and located at Breuil-Chenue in Eastern France. The results from this field experiment show how the dominating tree species affected Cl cycling and accumulation over a time period of 30 years. Cl uptake by trees as well as content of both total Cl and Clorg in soil humus was much higher in experimental plots with coniferous forests compared to deciduous forests. The amounts of Clorg found in plant tissue indicate significant Clorg production inside

  20. The application of cycling and cycling combined with feedback in the rehabilitation of stroke patients: a review.

    PubMed

    Barbosa, David; Santos, Cristina P; Martins, Maria

    2015-02-01

    Stroke is a leading cause of long-term disabilities, such as hemiparesis, inability to walk without assistance, and dependence of others in the activities of daily living. Motor function rehabilitation after stroke demands for methods oriented to the recovery of the walking capacity. Because of the similarities with walking, cycling leg exercise may present a solution to this problem. The aim of this article is to review the state of the art applications of cycling leg exercise as a (1) motor function rehabilitation method and an (2) aerobic training method for stroke patients as well as the commonly used (3) assessment tools. The cycling characteristics and applications, the applied test protocols as well as the tools used to assess the state and the recovery of patients and types of cycling devices are presented. In addition, the potential benefits of the use of other therapies, like feedback, together with cycling are explored. The application of cycling leg exercise alone and combined with feedback in stroke rehabilitation approaches has shown promising results. Positive effects on motor abilities were found in subacute and chronic patients. However, larger and normalized studies and assessments are needed because there is a high heterogeneity in the patients' characteristics, protocols and metrics. This wil allow the comparison between different studies related with cycling. PMID:25444025

  1. Programmed cell cycle arrest is required for infection of corn plants by the fungus Ustilago maydis.

    PubMed

    Castanheira, Sónia; Mielnichuk, Natalia; Pérez-Martín, José

    2014-12-01

    Ustilago maydis is a plant pathogen that requires a specific structure called infective filament to penetrate the plant tissue. Although able to grow, this filament is cell cycle arrested on the plant surface. This cell cycle arrest is released once the filament penetrates the plant tissue. The reasons and mechanisms for this cell cycle arrest are unknown. Here, we have tried to address these questions. We reached three conclusions from our studies. First, the observed cell cycle arrest is the result of the cooperation of at least two distinct mechanisms: one involving the activation of the DNA damage response (DDR) cascade; and the other relying on the transcriptional downregulation of Hsl1, a kinase that modulates the G2/M transition. Second, a sustained cell cycle arrest during the infective filament step is necessary for the virulence in U. maydis, as a strain unable to arrest the cell cycle was severely impaired in its ability to infect corn plants. Third, production of the appressorium, a structure required for plant penetration, is incompatible with an active cell cycle. The inability to infect plants by strains defective in cell cycle arrest seems to be caused by their failure to induce the appressorium formation process. In summary, our findings uncover genetic circuits to arrest the cell cycle during the growth of this fungus on the plant surface, thus allowing the penetration into plant tissue. PMID:25411209

  2. A combined power and ejector refrigeration cycle for low temperature heat sources

    SciTech Connect

    Zheng, B.; Weng, Y.W.

    2010-05-15

    A combined power and ejector refrigeration cycle for low temperature heat sources is under investigation in this paper. The proposed cycle combines the organic Rankine cycle and the ejector refrigeration cycle. The ejector is driven by the exhausts from the turbine to produce power and refrigeration simultaneously. A simulation was carried out to analyze the cycle performance using R245fa as the working fluid. A thermal efficiency of 34.1%, an effective efficiency of 18.7% and an exergy efficiency of 56.8% can be obtained at a generating temperature of 395 K, a condensing temperature of 298 K and an evaporating temperature of 280 K. Simulation results show that the proposed cycle has a big potential to produce refrigeration and most exergy losses take place in the ejector. (author)

  3. How-to-Do-It. Fast Plants--Rapid-Cycling Brassicas.

    ERIC Educational Resources Information Center

    Hafner, Robert

    1990-01-01

    Described is an activity in which the life cycle of a plant is investigated over a 20-day period. Included are background information, a list of materials, procedures, diagrams of the plant, apparatus, and pollination. An outline is suggested. (CW)

  4. Combining Wind Plant Control With Systems Engineering (Presentation)

    SciTech Connect

    Fleming, P.; Ning, A.; Gebraad, P.; Dykes, K.

    2015-02-01

    This presentation was given at the third Wind Energy Systems Engineering Workshop in Boulder, Colorado, and focused on wind plant controls research, combined optimization, a case study on the Princess Amalia Wind Park, results from the case study, and future work.

  5. Cogeneration steam turbines for combined-cycle installations of 170 230 MW

    NASA Astrophysics Data System (ADS)

    Barinberg, G. D.; Valamin, A. E.; Kogan, P. V.; Kultyshev, A. Yu.

    2008-06-01

    Design specifics, principal thermal schemes, and efficiency of cogeneration steam turbines operating as part of combined-cycle installations are considered. These turbines are developed on the basis of serially manufactured steam turbines of ZAO Ural Turbine Works.

  6. Performance potential of combined cycles integrated with low-Btu gasifiers for future electric utility applications

    NASA Technical Reports Server (NTRS)

    Nainiger, J. J.; Burns, R. K.

    1977-01-01

    A comparison and an assessment of 10 advanced utility power systems on a consistent basis and to a common level of detail were analyzed. Substantial emphasis was given to a combined cycle systems integrated with low-Btu gasifiers. Performance and cost results from that study were presented for these combined cycle systems, together with a comparative evaluation. The effect of the gasifier type and performance and the interface between the gasifier and the power system were discussed.

  7. Qualifications of Candle Filters for Combined Cycle Combustion Applications

    SciTech Connect

    Tomasz Wiltowski

    2008-08-31

    The direct firing of coal produces particulate matter that has to be removed for environmental and process reasons. In order to increase the current advanced coal combustion processes, under the U.S. Department of Energy's auspices, Siemens Westinghouse Power Corporation (SWPC) has developed ceramic candle filters that can operate at high temperatures. The Coal Research Center of Southern Illinois University (SIUC), in collaboration with SWPC, developed a program for long-term filter testing at the SIUC Steam Plant followed by experiments using a single-filter reactor unit. The objectives of this program funded by the U.S. Department of Energy were to identify and demonstrate the stability of porous candle filter elements for use in high temperature atmospheric fluidized-bed combustion (AFBC) process applications. These verifications were accomplished through extended time slipstream testing of a candle filter array under AFBC conditions using SIUC's existing AFBC boiler. Temperature, mass flow rate, and differential pressure across the filter array were monitored for a duration of 45 days. After test exposure at SIUC, the filter elements were characterized using Scanning Electron Microscopy and BET surface area analyses. In addition, a single-filter reactor was built and utilized to study long term filter operation, the permeability exhibited by a filter element before and after the slipstream test, and the thermal shock resilience of a used filter by observing differential pressure changes upon rapid heating and cooling of the filter. The data acquired during the slipstream test and the post-test evaluations demonstrated the suitability of filter elements in advanced power generation applications.

  8. Investigations of supercritical CO2 Rankine cycles for geothermal power plants

    SciTech Connect

    Sabau, Adrian S; Yin, Hebi; Qualls, A L; McFarlane, Joanna

    2011-01-01

    Supercritical CO2 Rankine cycles are investigated for geothermal power plants. The system of equations that describe the thermodynamic cycle is solved using a Newton-Rhapson method. This approach allows a high computational efficiency of the model when thermophysical properties of the working fluid depend strongly on the temperature and pressure. Numerical simulation results are presented for different cycle configurations in order to assess the influences of heat source temperature, waste heat rejection temperatures and internal heat exchanger design on cycle efficiency. The results show that thermodynamic cycle efficiencies above 10% can be attained with the supercritical brayton cycle while lower efficiencies can be attained with the transcritical CO2 Rankine cycle.

  9. Disentangling Facilitation Along the Life Cycle: Impacts of Plant-Plant Interactions at Vegetative and Reproductive Stages in a Mediterranean Forb.

    PubMed

    García-Cervigón, Ana I; Iriondo, José M; Linares, Juan C; Olano, José M

    2016-01-01

    Facilitation enables plants to improve their fitness in stressful environments. The overall impact of plant-plant interactions on the population dynamics of protégées is the net result of both positive and negative effects that may act simultaneously along the plant life cycle, and depends on the environmental context. This study evaluates the impact of the nurse plant Juniperus sabina on different stages of the life cycle of the forb Helleborus foetidus. Growth, number of leaves, flowers, carpels, and seeds per flower were compared for 240 individuals collected under nurse canopies and in open areas at two sites with contrasting stress levels. Spatial associations with nurse plants and age structures were also checked. A structural equation model was built to test the effect of facilitation on fecundity, accounting for sequential steps from flowering to seed production. The net impact of nurse plants depended on a combination of positive and negative effects on vegetative and reproductive variables. Although nurse plants caused a decrease in flower production at the low-stress site, their net impact there was neutral. In contrast, at the high-stress site the net outcome of plant-plant interactions was positive due to an increase in effective recruitment, plant density, number of viable carpels per flower, and fruit set under nurse canopies. The naturally lower rates of secondary growth and flower production at the high-stress site were compensated by the net positive impact of nurse plants here. Our results emphasize the need to evaluate entire processes and not only final outcomes when studying plant-plant interactions. PMID:26904086

  10. RL-10 Based Combined Cycle For A Small Reusable Single-Stage-To-Orbit Launcher

    NASA Technical Reports Server (NTRS)

    Balepin, Vladimir; Price, John; Filipenco, Victor

    1999-01-01

    This paper discusses a new application of the combined propulsion known as the KLIN(TM) cycle, consisting of a thermally integrated deeply cooled turbojet (DCTJ) and liquid rocket engine (LRE). If based on the RL10 rocket engine family, the KLIN (TM) cycle makes a small single-stage-to-orbit (SSTO) reusable launcher feasible and economically very attractive. Considered in this paper are the concept and parameters of a small SSTO reusable launch vehicle (RLV) powered by the KLIN (TM) cycle (sSSTO(TM)) launcher. Also discussed are the benefits of the small launcher, the reusability, and the combined cycle application. This paper shows the significant reduction of the gross take off weight (GTOW) and dry weight of the KLIN(TM) cycle-powered launcher compared to an all-rocket launcher.

  11. Combined Brayton-JT cycles with refrigerants for natural gas liquefaction

    NASA Astrophysics Data System (ADS)

    Chang, Ho-Myung; Park, Jae Hoon; Lee, Sanggyu; Choe, Kun Hyung

    2012-06-01

    Thermodynamic cycles for natural gas liquefaction with single-component refrigerants are investigated under a governmental project in Korea, aiming at new processes to meet the requirements on high efficiency, large capacity, and simple equipment. Based upon the optimization theory recently published by the present authors, it is proposed to replace the methane-JT cycle in conventional cascade process with a nitrogen-Brayton cycle. A variety of systems to combine nitrogen-Brayton, ethane-JT and propane-JT cycles are simulated with Aspen HYSYS and quantitatively compared in terms of thermodynamic efficiency, flow rate of refrigerants, and estimated size of heat exchangers. A specific Brayton-JT cycle is suggested with detailed thermodynamic data for further process development. The suggested cycle is expected to be more efficient and simpler than the existing cascade process, while still taking advantage of easy and robust operation with single-component refrigerants.

  12. The History and Promise of Combined Cycle Engines for Access to Space Applications

    NASA Technical Reports Server (NTRS)

    Clark, Casie

    2010-01-01

    For the summer of 2010, I have been working in the Aerodynamics and Propulsion Branch at NASA Dryden Flight Research Center studying combined-cycle engines, a high speed propulsion concept. Combined cycle engines integrate multiple propulsion systems into a single engine capable of running in multiple modes. These different modes allow the engine to be extremely versatile and efficient in varied flight conditions. The two most common types of combined cycle engines are Rocket-Based Combined Cycle (RBCC) and Turbine Based Combined Cycle (TBCC). The RBCC essentially combines a rocket and ramjet engine, while the TBCC integrates a turbojet and ramjet1. These two engines are able to switch between different propulsion modes to achieve maximum performance. Extensive conceptual and ground test studies of RBCC engines have been undertaken; however, an RBCC engine has never, to my knowledge, been demonstrated in flight. RBCC engines are of particular interest because they could potentially power a reusable launch vehicle (RLV) into space. The TBCC has been flight tested and shown to be effective at reaching supersonic speeds, most notably in the SR-71 Blackbird2.

  13. Evaluation of the ECAS open cycle MHD power plant design

    NASA Technical Reports Server (NTRS)

    Seikel, G. R.; Staiger, P. J.; Pian, C. C. P.

    1978-01-01

    The Energy Conversion Alternatives Study (ECAS) MHD/steam power plant is described. The NASA critical evaluation of the design is summarized. Performance of the MHD plant is compared to that of the other type ECAS plant designs on the basis of efficiency and the 30-year levelized cost of electricity. Techniques to improve the plant design and the potential performance of lower technology plants requiring shorter development time and lower development cost are then discussed.

  14. Steam Generator Component Model in a Combined Cycle of Power Conversion Unit for Very High Temperature Gas-Cooled Reactor

    SciTech Connect

    Oh, Chang H; Han, James; Barner, Robert; Sherman, Steven R

    2007-06-01

    The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP), Very High Temperature Gas-Cooled Reactor (VHTR) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. A combined cycle is considered as one of the power conversion units to be coupled to the very high-temperature gas-cooled reactor (VHTR). The combined cycle configuration consists of a Brayton top cycle coupled to a Rankine bottoming cycle by means of a steam generator. A detailed sizing and pressure drop model of a steam generator is not available in the HYSYS processes code. Therefore a four region model was developed for implementation into HYSYS. The focus of this study was the validation of a HYSYS steam generator model of two phase flow correlations. The correlations calculated the size and heat exchange of the steam generator. To assess the model, those calculations were input into a RELAP5 model and its results were compared with HYSYS results. The comparison showed many differences in parameters such as the heat transfer coefficients and revealed the different methods used by the codes. Despite differences in approach, the overall results of heat transfer were in good agreement.

  15. Beyond the conventional life cycle inventory in wastewater treatment plants.

    PubMed

    Lorenzo-Toja, Yago; Alfonsín, Carolina; Amores, María José; Aldea, Xavier; Marin, Desirée; Moreira, María Teresa; Feijoo, Gumersindo

    2016-05-15

    The conventional approach for the environmental assessment of wastewater treatment plants (WWTPs) is typically based on the removal efficiency of organic load and nutrients as well as the quantification of energy and chemicals consumption. Current wastewater treatment research entails the monitoring of direct emissions of greenhouse gases (GHG) and emerging pollutants such as pharmaceutical and personal care products (PPCPs), which have been rarely considered in the environmental assessment of a wastewater treatment facility by life cycle assessment (LCA) methodology. As a result of that, the real environmental impacts of a WWTP may be underestimated. In this study, two WWTPs located in different climatic regions (Atlantic and Mediterranean) of Spain were evaluated in extensive sampling campaigns that included not only conventional water quality parameters but also direct GHG emissions and PPCPs in water and sludge lines. Regarding the GHG monitoring campaign, on-site measurements of methane (CH4) and nitrous oxide (N2O) were performed and emission factors were calculated for both WWTPs. GHG direct emissions accounted for 62% of the total global warming potential (GWP), much more relevant than indirect CO2 emissions associated with electricity use. Regarding PPCPs, 19 compounds were measured in the main streams: influent, effluent and sludge, to perform the evaluation of the toxicity impact categories. Although the presence of heavy metals in the effluent and the sludge as well as the toxicity linked to the electricity production may shade the toxicity impacts linked to PPCPs in some impact categories, the latter showed a notable influence on freshwater ecotoxicity potential (FETP). For this impact category, the removal of PPCPs within the wastewater treatment was remarkably important and arose as an environmental benefit in comparison with the non-treatment scenario. PMID:26901804

  16. Numerical Research of Steam and Gas Plant Efficiency of Triple Cycle for Extreme North Regions

    NASA Astrophysics Data System (ADS)

    Galashov, Nikolay; Tsibulskii, Svjatoslav; Matveev, Aleksandr; Masjuk, Vladimir

    2016-02-01

    The present work shows that temperature decrease of heat rejection in a cycle is necessary for energy efficiency of steam turbine plants. Minimum temperature of heat rejection at steam turbine plant work on water steam is 15°C. Steam turbine plant of triple cycle where lower cycle of steam turbine plant is organic Rankine cycle on low-boiling substance with heat rejection in air condenser, which safely allows rejecting heat at condensation temperatures below 0°C, has been offered. Mathematical model of steam and gas plant of triple cycle, which allows conducting complex researches with change of working body appearance and parameters defining thermodynamic efficiency of cycles, has been developed. On the basis of the model a program of parameters and index cycles design of steam and gas plants has been developed in a package of electron tables Excel. Numerical studies of models showed that energy efficiency of steam turbine plants of triple cycle strongly depend on low-boiling substance type in a lower cycle. Energy efficiency of steam and gas plants net 60% higher can be received for steam and gas plants on the basis of gas turbine plant NK-36ST on pentane and its condensation temperature below 0°C. It was stated that energy efficiency of steam and gas plants net linearly depends on condensation temperature of low-boiling substance type and temperature of gases leaving reco very boiler. Energy efficiency increases by 1% at 10% decrease of condensation temperature of pentane, and it increases by 0.88% at 15°C temperature decrease of gases leaving recovery boiler.

  17. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 4: Open recuperated and bottomed gas turbine cycles. [performance prediction and energy conversion efficiency of gas turbines in electric power plants (thermodynamic cycles)

    NASA Technical Reports Server (NTRS)

    Amos, D. J.; Grube, J. E.

    1976-01-01

    Open-cycle recuperated gas turbine plant with inlet temperatures of 1255 to 1644 K (1800 to 2500 F) and recuperators with effectiveness values of 0, 70, 80 and 90% are considered. A 1644 K (2500 F) gas turbine would have a 33.5% plant efficiency in a simple cycle, 37.6% in a recuperated cycle and 47.6% when combined with a sulfur dioxide bottomer. The distillate burning recuperated plant was calculated to produce electricity at a cost of 8.19 mills/MJ (29.5 mills/kWh). Due to their low capital cost $170 to 200 $/kW, the open cycle gas turbine plant should see duty for peaking and intermediate load duty.

  18. High degree decentralization for the optimum thermoeconomic design of a combined cycle

    SciTech Connect

    Benelmir, R. . Lab. d'Energetique et automatique); Evans, R.B. . George W. Woodruff School of Mechanical Engineering); Spakovsky, M.R. Von . Dept. de mecanique)

    1992-01-01

    Decentralized design methods will always greatly facilitate the optimum design of large engineering systems whenever a High Degree of Decentralization (HDD) is achieved. HDD allows the optimization of each component by itself without significantly sacrificing the overall system optimum. In this paper, a primary engineering component costing expression is introduced, resulting in a significant HDD - called Primary Decentralized Thermoeconomic Design - for the design of gas turbine cycles with or without a steam power bottoming cycle. This costing expression is a compromise between simplicity and a representative model for engineering component costing. A requirement for such an expression is that it provides a balance not only between the capital cost expenditures and the dissipation of exergy, but also between the capital cost and the dissipation of heat removal capacity. In fact, additional exergy dissipation always results in the dissipation of more heat, which must be removed from the overall power generation cycle. Applied to a combined cycle (a gas and steam turbine cycle), such decentralization serves to show how the steam power bottoming cycle assists the gas turbine cycle. This approach produces a significant HDD which allows engineers to study many more possible improvements in combined cycles than could otherwise be considered.

  19. Plant heat cycles, vessel internal arrangement, and auxiliary systems. Volume five

    SciTech Connect

    Not Available

    1986-01-01

    This volume covers nuclear power plant heat cycles (type of nuclear power cycles, power cycle refinements, BWR/PWR power cycle, BWR/PWR reactor coolant system), reactor vessel internal arrangement (reactor vessel features, BWR/PWR reactor vessel and internals, BWR/PWR reactor core), reactor auxiliary systems (purpose of reactor auxiliary systems, PWR and BWR reactor auxiliary systems, PWR and BWR control rod drive mechanisms).

  20. Chemistry guidelines for cycling service of fossil power plants

    SciTech Connect

    Banweg, A. ); Mravich, N.J. ); Pocock, F.J.

    1989-01-01

    Many of the existing fossil-fired utility boilers in the U.S. are going into the cycling mode of operation (load cycling, on-off cycling, etc.). Corrosion protection for the pressure part components of these boilers relies on the proper control of the waterside environment, which has greater demands put upon it by the cycling mode of operation than the base loaded operation. Specific recommendations are made to minimize out-of-service corrosion, operational dissolved oxygen attack, and corrosion product transport.

  1. Uncertainty analysis of integrated gasification combined cycle systems based on Frame 7H versus 7F gas turbines.

    PubMed

    Zhu, Yunhua; Frey, H Christopher

    2006-12-01

    Integrated gasification combined cycle (IGCC) technology is a promising alternative for clean generation of power and coproduction of chemicals from coal and other feedstocks. Advanced concepts for IGCC systems that incorporate state-of-the-art gas turbine systems, however, are not commercially demonstrated. Therefore, there is uncertainty regarding the future commercial-scale performance, emissions, and cost of such technologies. The Frame 7F gas turbine represents current state-of-practice, whereas the Frame 7H is the most recently introduced advanced commercial gas turbine. The objective of this study was to evaluate the risks and potential payoffs of IGCC technology based on different gas turbine combined cycle designs. Models of entrained-flow gasifier-based IGCC systems with Frame 7F (IGCC-7F) and 7H gas turbine combined cycles (IGCC-7H) were developed in ASPEN Plus. An uncertainty analysis was conducted. Gasifier carbon conversion and project cost uncertainty are identified as the most important uncertain inputs with respect to system performance and cost. The uncertainties in the difference of the efficiencies and costs for the two systems are characterized. Despite uncertainty, the IGCC-7H system is robustly preferred to the IGCC-7F system. Advances in gas turbine design will improve the performance, emissions, and cost of IGCC systems. The implications of this study for decision-making regarding technology selection, research planning, and plant operation are discussed. PMID:17195484

  2. Uncertainty analysis of integrated gasification combined cycle systems based on Frame 7H versus 7F gas turbines

    SciTech Connect

    Yunhua Zhu; H. Christopher Frey

    2006-12-15

    Integrated gasification combined cycle (IGCC) technology is a promising alternative for clean generation of power and coproduction of chemicals from coal and other feedstocks. Advanced concepts for IGCC systems that incorporate state-of-the-art gas turbine systems, however, are not commercially demonstrated. Therefore, there is uncertainty regarding the future commercial-scale performance, emissions, and cost of such technologies. The Frame 7F gas turbine represents current state-of-practice, whereas the Frame 7H is the most recently introduced advanced commercial gas turbine. The objective of this study was to evaluate the risks and potential payoffs of IGCC technology based on different gas turbine combined cycle designs. Models of entrained-flow gasifier-based IGCC systems with Frame 7F (IGCC-7F) and 7H gas turbine combined cycles (IGCC-7H) were developed in ASPEN Plus. An uncertainty analysis was conducted. Gasifier carbon conversion and project cost uncertainty are identified as the most important uncertain inputs with respect to system performance and cost. The uncertainties in the difference of the efficiencies and costs for the two systems are characterized. Despite uncertainty, the IGCC-7H system is robustly preferred to the IGCC-7F system. Advances in gas turbine design will improve the performance, emissions, and cost of IGCC systems. The implications of this study for decision-making regarding technology selection, research planning, and plant operation are discussed. 38 refs., 11 figs., 5 tabs.

  3. Coevolution and Life Cycle Specialization of Plant Cell Wall Degrading Enzymes in a Hemibiotrophic Pathogen

    PubMed Central

    Brunner, Patrick C.; Torriani, Stefano F.F.; Croll, Daniel; Stukenbrock, Eva H.; McDonald, Bruce A.

    2013-01-01

    Zymoseptoria tritici is an important fungal pathogen on wheat that originated in the Fertile Crescent. Its closely related sister species Z. pseudotritici and Z. ardabiliae infect wild grasses in the same region. This recently emerged host–pathogen system provides a rare opportunity to investigate the evolutionary processes shaping the genome of an emerging pathogen. Here, we investigate genetic signatures in plant cell wall degrading enzymes (PCWDEs) that are likely affected by or driving coevolution in plant-pathogen systems. We hypothesize four main evolutionary scenarios and combine comparative genomics, transcriptomics, and selection analyses to assign the majority of PCWDEs in Z. tritici to one of these scenarios. We found widespread differential transcription among different members of the same gene family, challenging the idea of functional redundancy and suggesting instead that specialized enzymatic activity occurs during different stages of the pathogen life cycle. We also find that natural selection has significantly affected at least 19 of the 48 identified PCWDEs. The majority of genes showed signatures of purifying selection, typical for the scenario of conserved substrate optimization. However, six genes showed diversifying selection that could be attributed to either host adaptation or host evasion. This study provides a powerful framework to better understand the roles played by different members of multigene families and to determine which genes are the most appropriate targets for wet laboratory experimentation, for example, to elucidate enzymatic function during relevant phases of a pathogen’s life cycle. PMID:23515261

  4. Apparatus and methods for supplying auxiliary steam in a combined cycle system

    SciTech Connect

    Gorman, William G.; Carberg, William George; Jones, Charles Michael

    2002-01-01

    To provide auxiliary steam, a low pressure valve is opened in a combined cycle system to divert low pressure steam from the heat recovery steam generator to a header for supplying steam to a second combined cycle's steam turbine seals, sparging devices and cooling steam for the steam turbine if the steam turbine and gas turbine lie on a common shaft with the generator. Cooling steam is supplied the gas turbine in the combined cycle system from the high pressure steam turbine. Spent gas turbine cooling steam may augment the low pressure steam supplied to the header by opening a high pressure valve whereby high and low pressure steam flows are combined. An attemperator is used to reduce the temperature of the combined steam in response to auxiliary steam flows above a predetermined flow and a steam header temperature above a predetermined temperature. The auxiliary steam may be used to start additional combined cycle units or to provide a host unit with steam turbine cooling and sealing steam during full-speed no-load operation after a load rejection.

  5. Combined Ageing and Thermal Cycling of Compressive Mica Seals for Solid Oxide Fuel Cells

    SciTech Connect

    Chou, Y S.; Stevenson, Jeffry W.; Singh, Prabhakar

    2005-06-30

    Hybrid Phlogopite mica seals were evaluated in a combined ageing and thermal cycling test. Two interlayers were investigated: a glass and a metallic foil. Samples were first aged at 800 degrees C for {approx}500 or {approx}1000 hrs in a simulated SOFC environment, followed by short-term thermal cycling. The results of hybrid mica with glass interlayer showed extensive reaction and poor thermal cycle stability after ageing for 1036 hrs and 21 thermal cycles. Use of the brazing alloy as the interlayer showed no interaction with mica over 504 hrs, and reasonable leak rates were maintained through eight cycles. The leakage development was found to be consistent with fracture surface and microstructure analyses.

  6. Effect of fuel cycle length on plant performance and cost

    SciTech Connect

    O`Donnell, E.P.

    1996-08-01

    As competitive pressures increase in the utility industry, many nuclear units are moving to longer fuel cycles in order to increase capacity factors and lower cost. This paper reviews recent experience with longer cycle operation for both GPU Nuclear and the industry as a whole.

  7. Effect on combined cycle efficiency of stack gas temperature constraints to avoid acid corrosion

    NASA Technical Reports Server (NTRS)

    Nainiger, J. J.

    1980-01-01

    To avoid condensation of sulfuric acid in the gas turbine exhaust when burning fuel oils contaning sulfur, the exhaust stack temperature and cold-end heat exchanger surfaces must be kept above the condensation temperature. Raising the exhaust stack temperature, however, results in lower combined cycle efficiency compared to that achievable by a combined cycle burning a sulfur-free fuel. The maximum difference in efficiency between the use of sulfur-free and fuels containing 0.8 percent sulfur is found to be less than one percentage point. The effect of using a ceramic thermal barrier coating (TBC) and a fuel containing sulfur is also evaluated. The combined-cycle efficiency gain using a TBC with a fuel containing sulfur compared to a sulfur-free fuel without TBC is 0.6 to 1.0 percentage points with air-cooled gas turbines and 1.6 to 1.8 percentage points with water-cooled gas turbines.

  8. Preliminary results of an economic and engineering evaluation of the M.W. Kellogg air-blown gasification combined cycle

    SciTech Connect

    Wheeldon, J.M.; Booras, G.S.; Styles, G.A.; Vansickle, R.J.; Longanbach, J.; Mahajan, K.

    1998-12-31

    The capital cost of a coal-based power plant contributes over 50% to the busbar cost of electricity. For new coal-based power plants to be competitive, it is imperative that the capital cost be reduced. Additionally, they must have excellent environmental performance and high cycle efficiency. One of the most cost-competitive, coal-based power plant technologies is believed to be an air-blown, combined cycle incorporating a partial gasifier and pressurized char combustor. These two coal-conversion stages provide fuel gas and vitiated air to fire a combustion turbine. To protect the turbine from particle erosion damage, all the dust must be removed from the two hot gas streams. This operation involves high-temperature, high-pressure (HTHP) filtration, a technology currently under development at several locations funded by the Department of Energy. One of these locations is the Power Systems Development Facility (PSDF) at Wilsonville, Alabama. At this same site two potential air-blown, coal-based combined cycle power plant technologies are under development. These are: the M.W. Kellogg Company`s (Kellogg) gasification combined cycle (GCC), incorporating their transport reactor design as both the gasifier and the combustor; and Foster Wheeler`s (FW) topped pressurized fluidized bed combustor (PFBC), incorporating a bubbling-bed carbonizer and a circulating PFBC. It was decided to complete an engineering and economic evaluation of the technologies under development at the PSDF. The results are to quantify the process economics, and to focus the supporting Research and Development activities on those areas offering the greatest economic advantage. This paper presents preliminary results from the evaluation of a Kellogg air-blow GCC unit. Capital cost and thermal performance data are presented along with costs of electricity based on recent fuel price projections for the US. Space limitations prevent presentation of the results for the FW advanced PFBC train and these

  9. Tampa Electric Company`s Polk Power Station Integrated Gasification Combined Cycle Project

    SciTech Connect

    Jenkins, S.D.; Shafer, J.R.

    1994-12-31

    Tampa Electric Company (TEC) is in the construction phase for the new Polk Power Station, Unit {number_sign}1. This will be the first unit at a new site and will use Integrated Gasification Combined Cycle (IGCC) technology for power generation. The unit will utilize oxygen-blown entrained-flow coal gasification, along with combined cycle technology, to provide nominal net 26OMW of generation. As part of the environmental features of this process, the sulfur species in the coal will be recovered as a commercial grade sulfuric acid by-product. The sulfur will be removed from the synthesis gas utilizing a cold gas clean-up system (CGCU).

  10. [Horticultural plant diseases multispectral classification using combined classified methods].

    PubMed

    Feng, Jie; Li, Hong-Ning; Yang, Wei-Ping; Hou, De-Dong; Liao, Ning-Fang

    2010-02-01

    The research on multispectral data disposal is getting more and more attention with the development of multispectral technique, capturing data ability and application of multispectral technique in agriculture practice. In the present paper, a cultivated plant cucumber' familiar disease (Trichothecium roseum, Sphaerotheca fuliginea, Cladosporium cucumerinum, Corynespora cassiicola, Pseudoperonospora cubensis) is the research objects. The cucumber leaves multispectral images of 14 visible light channels, near infrared channel and panchromatic channel were captured using narrow-band multispectral imaging system under standard observation and illumination environment, and 210 multispectral data samples which are the 16 bands spectral reflectance of different cucumber disease were obtained. The 210 samples were classified by distance, relativity and BP neural network to discuss effective combination of classified methods for making a diagnosis. The result shows that the classified effective combination of distance and BP neural network classified methods has superior performance than each method, and the advantage of each method is fully used. And the flow of recognizing horticultural plant diseases using combined classified methods is presented. PMID:20384138