Science.gov

Sample records for combined soxnox processes

  1. SOX/NOX sorbent and process of use

    DOEpatents

    Ziebarth, M.S.; Hager, M.J.; Beeckman, J.W.; Plecha, S.

    1995-05-09

    An alumina sorbent capable of adsorbing NOx and SOx from waste gases and being regenerated by heating above 600 C is made by incorporating an alumina stabilizing agent into the sorbent. A preferred method is to add the stabilizer when the alumina is precipitated. The precipitated powder is formed subsequently into a slurry, milled and dripped to form the stabilized spheroidal alumina particles. These particles are impregnated with an alkali metal or alkaline earth metal to form the stabilized sorbent. Alumina stabilizers include one or more of silica, lanthana, other rare earths, titania, zirconia and alkaline earths. 3 figs.

  2. SOx/NOx sorbent and process of use

    DOEpatents

    Ziebarth, M.S.; Hager, M.J.; Beeckman, J.W.; Plecha, S.

    1993-01-19

    An alumina sorbent capable of adsorbing NOx and SOx from waste gases and being regenerated by heating above 600 C. is made by incorporating an alumina stabilizing agent into the sorbent. A preferred method is to add the stabilizer when the alumina is precipitated. The precipitated powder is formed subsequently into a slurry, milled and dripped to form the stabilizing spheroidal alumina particles. These particles are impregnated with an alkali metal or alkaline earth metal to form the stabilized sorbent. Alumina stabilizers include one or more of silica, lanthana, other rare earths, titania, zirconia and alkaline earths.

  3. SOX/NOX sorbent and process of use

    DOEpatents

    Ziebarth, Michael S.; Hager, Michael J.; Beeckman, Jean W.; Plecha, Stanislaw

    1995-01-01

    An alumina sorbent capable of adsorbing NOx and SOx from waste gases and being regenerated by heating above 600.degree. C. is made by incorporating an alumina stabilizing agent into the sorbent. A preferred method is to add the stabilizer when the alumina is precipitated. The precipitated powder is formed subsequently into a slurry, milled and dripped to form the stabilized spheroidal alumina particles. These particles are impregnated with an alkali metal or alkaline earth metal to form the stabilized sorbent. Alumina stabilizers include one or more of silica, lanthana, other rare earths, titania, zirconia and alkaline earths.

  4. SOx/NOx sorbent and process of use

    DOEpatents

    Ziebarth, Michael S.; Hager, Michael J.; Beeckman, Jean W.; Plecha, Stanislaw

    1993-01-19

    An alumina sorbent capable of adsorbing NOx and SOx from waste gases and being regenerated by heating above 600.degree. C. is made by incorporating an alumina stabilizing agent into the sorbent. A preferred method is to add the stabilizer when the alumina is precipitated. The precipitated powder is formed subsequently into a slurry, milled and dripped to form the stabilizing spheroidal alumina particles. These particles are impregnated with an alkali metal or alkaline earth metal to form the stabilized sorbent. Alumina stabilizers include one or more of silica, lanthana, other rare earths, titania, zirconia and alkaline earths.

  5. Sox/Nox Sorbent And Process Of Use

    DOEpatents

    Ziebarth, Michael S.; Hager, Michael J.; Beeckman, Jean W.; Plecha, Stanislaw

    1996-12-17

    An alumina sorbent capable of adsorbing NOx and SOx from waste gases and being regenerated by heating above 650.degree. C. is made by incorporating an alumina stabilizing agent into the sorbent. A preferred method is to add the stabilizer when the alumina is precipitated. The precipitated powder is formed subsequently into a slurry, milled and spray dried to form the stabilized spheroidal alumina particles having a particle size of less than 500 microns. These particles are impregnated with an alkali metal or alkaline earth metal to form the stabilized sorbent. Alumina stabilizers include one or more of silica, lanthana, other rare earths, titania, zirconia and alkaline earths.

  6. Sox/Nox Sorbent And Process Of Use

    DOEpatents

    Ziebarth, Michael S.; Hager, Michael J.; Beeckman, Jean W.; Plecha, Stanislaw

    1995-06-27

    An alumina sorbent capable of adsorbing NOx and SOx from waste gases and being regenerated by heating above 650.degree. C. is made by incorporating an alumina stabilizing agent into the sorbent. A preferred method is to add the stabilizer when the alumina is precipitated. The precipitated powder is formed subsequently into a slurry, milled and spray dried to form the stabilized spheroidal alumina particles having a particle size of less than 500 microns. These particles are impregnated with an alkali metal or alkaline earth metal to form the stabilized sorbent. Alumina stabilizers include one or more of silica, lanthana, other rare earths, titania, zirconia and alkaline earths.

  7. Combined processing of lead concentrates

    NASA Astrophysics Data System (ADS)

    Kubasov, V. L.; Paretskii, V. M.; Sidorin, G. N.; Travkin, V. F.

    2013-06-01

    A combined scheme of processing of lead concentrates with the production of pure metallic lead and the important components containing in these concentrates is considered. This scheme includes sulfating roasting of the lead concentrates and two-stage leaching of the formed cinder with the formation of a sulfate solution and lead sulfate. When transformed into a carbonate form, lead sulfate is used for the production of pure metallic lead. Silver, indium, copper, cadmium, nickel, cobalt, and other important components are separately extracted from a solution. At the last stage, zinc is extracted by either extraction followed by electrolytic extraction of a metal or the return of the forming solution of sulfuric acid to cinder leaching.

  8. Industrial Holography Combined With Image Processing

    NASA Astrophysics Data System (ADS)

    Schorner, J.; Rottenkolber, H.; Roid, W.; Hinsch, K.

    1988-01-01

    Holographic test methods have gained to become a valuable tool for the engineer in research and development. But also in the field of non-destructive quality control holographic test equipment is now accepted for tests within the production line. The producer of aircraft tyres e. g. are using holographic tests to prove the guarantee of their tyres. Together with image processing the whole test cycle is automatisized. The defects within the tyre are found automatically and are listed on an outprint. The power engine industry is using holographic vibration tests for the optimization of their constructions. In the plastics industry tanks, wheels, seats and fans are tested holographically to find the optimum of shape. The automotive industry makes holography a tool for noise reduction. Instant holography and image processing techniques for quantitative analysis have led to an economic application of holographic test methods. New developments of holographic units in combination with image processing are presented.

  9. Combining human and machine processes (CHAMP)

    NASA Astrophysics Data System (ADS)

    Sudit, Moises; Sudit, David; Hirsch, Michael

    2015-05-01

    Machine Reasoning and Intelligence is usually done in a vacuum, without consultation of the ultimate decision-maker. The late consideration of the human cognitive process causes some major problems in the use of automated systems to provide reliable and actionable information that users can trust and depend to make the best Course-of-Action (COA). On the other hand, if automated systems are created exclusively based on human cognition, then there is a danger of developing systems that don't push the barrier of technology and are mainly done for the comfort level of selected subject matter experts (SMEs). Our approach to combining human and machine processes (CHAMP) is based on the notion of developing optimal strategies for where, when, how, and which human intelligence should be injected within a machine reasoning and intelligence process. This combination is based on the criteria of improving the quality of the output of the automated process while maintaining the required computational efficiency for a COA to be actuated in timely fashion. This research addresses the following problem areas: • Providing consistency within a mission: Injection of human reasoning and intelligence within the reliability and temporal needs of a mission to attain situational awareness, impact assessment, and COA development. • Supporting the incorporation of data that is uncertain, incomplete, imprecise and contradictory (UIIC): Development of mathematical models to suggest the insertion of a cognitive process within a machine reasoning and intelligent system so as to minimize UIIC concerns. • Developing systems that include humans in the loop whose performance can be analyzed and understood to provide feedback to the sensors.

  10. Cracking process with catalyst of combined zeolites

    SciTech Connect

    Gladrow, E. M.; Winter, W. E.

    1981-09-01

    A hydrocarbon cracking catalyst comprises an ultrastable y-type crystalline zeolite, a small pore crystalline zeolite such as mordenite, an inorganic oxide matrix and, optionally, a porous inert component. The cracking catalyst has a high activity and selectivity for the production of high octane naphtha fractions from higher boiling point hydrocarbonaceous oils. Catalytic cracking processes utilizing the catalyst are also provided.

  11. Combined transuranic-strontium extraction process

    DOEpatents

    Horwitz, E. Philip; Dietz, Mark L.

    1992-01-01

    The transuranic (TRU) elements neptunium, plutonium and americium can be separated together with strontium from nitric acid waste solutions in a single process. An extractant solution of a crown ether and an alkyl(phenyl)-N,N-dialkylcarbanylmethylphosphine oxide in an appropriate diluent will extract the TRU's together with strontium, uranium and technetium. The TRU's and the strontium can then be selectively stripped from the extractant for disposal.

  12. Combined transuranic-strontium extraction process

    DOEpatents

    Horwitz, E.P.; Dietz, M.L.

    1992-12-08

    The transuranic (TRU) elements neptunium, plutonium and americium can be separated together with strontium from nitric acid waste solutions in a single process. An extractant solution of a crown ether and an alkyl(phenyl)-N,N-dialkylcarbanylmethylphosphine oxide in an appropriate diluent will extract the TRU's together with strontium, uranium and technetium. The TRU's and the strontium can then be selectively stripped from the extractant for disposal. 3 figs.

  13. Exergetic simulation of a combined infrared-convective drying process

    NASA Astrophysics Data System (ADS)

    Aghbashlo, Mortaza

    2016-04-01

    Optimal design and performance of a combined infrared-convective drying system with respect to the energy issue is extremely put through the application of advanced engineering analyses. This article proposes a theoretical approach for exergy analysis of the combined infrared-convective drying process using a simple heat and mass transfer model. The applicability of the developed model to actual drying processes was proved using an illustrative example for a typical food.

  14. Products of the IGS - The Combination Process and Consistency Issues

    NASA Astrophysics Data System (ADS)

    Weber, R.; Ferland, R.; Gendt, G.

    2003-04-01

    Since 1992 the IGS generates several types of inter-dependant data products; namely: satellites ephemerides, earth rotation parameters, station coordinates/velocity, satellites/stations clock offsets, ionospheric and tropospheric delays. The first four are generally referred to as IGS core products. All those products are available to support a number of scientific activities. Many agencies contribute to the effort by providing the stations infrastructure and measurements and/or data distribution centers and/or data analysis. The Analysis Centers (AC) provide most of the products "building blocks" used to generate the IGS combined data products. These AC products are generated using independent software procedures. Those must be combined to generate the IGS data products. Simultaneous and rigorous combination of all the AC products would be difficult. A distributed approach was chosen to generate the IGS combined products, simplifying the tasks and distributing the workload, while trying to minimize the approximations. The satellites ephemerides and satellites/stations clock offsets are combined by the AC coordinator; the station coordinates/velocity and earth rotation parameters are combined within the Reference Frame Working Group (RFWG); the ionospheric and tropospheric products are generated within their respective working groups. The orbit combination is done using a weighted averaging process, where the solution from each AC provided using the SP3 format is assigned a constant weight. The clock offsets are also combined using the AC orbit weights. Originally, the ERP’s were also combined as part of the orbit combination process also using the AC orbit weights. Three types of orbit products are generated, based on the latency (ultra-rapid, rapid &final). Since 2000/02/27, the station coordinates/velocity and earth rotation parameters, provided by the ACs in the SINEX format, are combined using a rigorous least-squares adjustment with all the available

  15. Combining Noise Factors and Process Parameters in a Response Surface

    SciTech Connect

    Wyckoff, J.J.

    1998-03-19

    This presentation covers the strategy and analysis of an experiment to characterize a gas tungsten arc welding process. The experiment combined four uncontrolled noise factors and four controlled process parameters. A nontraditional response surface design was employed. Multiple responses were modeled. Optimal settings for the process parameters to successfully weld the widest range of the pertinent product features were identified. Thus, the process was made ''robust'' against ''noise'' factors. Comparisons are made between the experimental and analytical approach taken versus the Taguchi style of experimentation and analysis. This comparison is mainly done with respect to the information gained, such as product design criteria, incoming material specifications, and process adjustments for nonconforming material.

  16. A model for anaerobic ponds combining settling and biological processes.

    PubMed

    Effebi, K R; Jupsin, H; Keffala, C; Vasel, J L

    2013-01-01

    This work presents an approach to an anaerobic pond model by combining the stoichiometry of the hydrolysis and acidogenic processes of the main constituents of wastewater, i.e. carbohydrates, proteins, and lipids, grouped as a 'combined substrate' with a previously published settling model (see 'Suspended solids settling and half removal time in stabilization ponds (Tunisia)' by Effebi et al. (2011)). This approach includes biomass production. Coupling the kinetics and stoichiometry of the previous processes with the usual methanogenic model, we developed an anaerobic pond model. This paper gives the stoichiometry of the different chemical reactions that occur during the degradation of a conventional influent (corresponding to what we define as a 'combined substrate') of domestic wastewater and the model's first results. PMID:23787301

  17. Can Sentence Combining Play a Role in the Revision Process?

    ERIC Educational Resources Information Center

    Mellon, John C.

    Sentence combining is one kind of practice activity, quite specific in character, aimed at teaching syntactic fluency and judgment and the use of the devices of cohesion. Students can be led through the revision process step by step by converting the odd essay from real writing to a practice exercise, then actually providing the content needed for…

  18. Combined processing of observations from different Global Navigation Satellite Systems

    NASA Astrophysics Data System (ADS)

    Springer, T.; Dow, J.; Sanchez, J. F.; Romero, I.

    2007-12-01

    The upcoming the Galileo GNSS and the modernisation of the GPS and Glonass systems offers many exciting opportunities and challenges in the field of geosciences in the next decade. However, in order to obtain any positive effects on our geodetic and geophysical estimates the different GNSS systems will have to be observed by multi system receivers that track all systems on all available frequencies. Furthermore, these receivers should not introduce any biases between the tracked GNSS observations. In addition to this we need analysis software that can efficiently handle these multi-system and multi-frequency observations in one single estimation process. Over the last two years ESOC has put a significant effort into its Napeos processing software. This software is now capable of combined processing of SLR, DORIS, GPS, GLONASS, and GIOVE-A data. It is routinely used for a large number of tasks within ESOC, e.g., Envisat POD, GIOVE-A orbit predictions for SLR, and for the ESOC contributions to the Galileo Geodetic Service Provider. Furthermore, it will soon officially be used for generating all the ESOC products for the International GNSS Service (IGS). In our presentation we will show results from our combined GNSS analysis, both the combination of GPS and GLONASS as well as the combination of GPS and GIOVE-A. We will focus on the challenges and we were, and in part still are, faced with when combining the data of different GNSS. We will demonstrate that at present both GLONASS and GIOVE-A do not offer any benefits for our estimates. We will conclude our contribution with a discussion on the requirements which need to be fulfilled to be able to really benefit from a combined processing of multi Global Navigation Satellite Systems.

  19. Combined system of monothermal chemical exchange process with electrolysis and thermal diffusion process for enriching tritium

    SciTech Connect

    Kitamoto, A.; Hasegawa, K.; Masui, T.

    1988-09-01

    Monothermal chemical exchange process with electrolysis (wellknown as the CECE process) is an effective method for enriching and removing tritium from tritiated water of low to middle level activity. The thermal diffusion process (ThD) is a low inventory gas phase method for enriching tritium from hydrogen. ThD and CECE process can be combined with each other by hydrogen gas line.

  20. Combining image-processing and image compression schemes

    NASA Technical Reports Server (NTRS)

    Greenspan, H.; Lee, M.-C.

    1995-01-01

    An investigation into the combining of image-processing schemes, specifically an image enhancement scheme, with existing compression schemes is discussed. Results are presented on the pyramid coding scheme, the subband coding scheme, and progressive transmission. Encouraging results are demonstrated for the combination of image enhancement and pyramid image coding schemes, especially at low bit rates. Adding the enhancement scheme to progressive image transmission allows enhanced visual perception at low resolutions. In addition, further progressing of the transmitted images, such as edge detection schemes, can gain from the added image resolution via the enhancement.

  1. Elimination of Two Hormones by Ultrasonic and Ozone Combined Processes

    NASA Astrophysics Data System (ADS)

    Cui, Mingcan; Son, Younggyu; Lim, Myunghee; Na, Seungmin; Khim, Jeehyeong

    2010-07-01

    A direct ultrasonic (US) and ozone (O3) combination (US/O3) process for the removal of two hormones, estrone (E1) and estriol (E3), in aqueous solutions was investigated. These two hormones were detected in a wastewater treatment plant effluent in Korea. It was found that the ultrasonic/ozone process showed a higher removal performance than the US and O3 process even though the O3 process also showed approximately the same removal efficiency after 60 min. Chemical oxygen demand/total organic carbon (CODcr/TOC) ratios for E1 and E3 decreased, indicating that biodegradability could be increased significantly in the US/O3 process. The optimal pH condition was determined above the neutral pH condition.

  2. Combination of monthly gravity field solutions from different processing centers

    NASA Astrophysics Data System (ADS)

    Jean, Yoomin; Meyer, Ulrich; Jäggi, Adrian

    2015-04-01

    Currently, the official GRACE Science Data System (SDS) monthly gravity field solutions are generated independently by the Centre for Space Research (CSR) and the German Research Centre for Geosciences (GFZ). Additional GRACE SDS monthly fields are provided by the Jet Propulsion Laboratory (JPL) for validation and outside the SDS by a number of other institutions worldwide. Although the adopted background models and processing standards have been harmonized more and more by the various processing centers during the past years, notable differences still exist and the users are more or less left alone with a decision which model to choose for their individual applications. Combinations are well-established in the area of other space geodetic techniques, such as the Global Navigation Satellite Systems (GNSS), Satellite Laser Ranging (SLR), and Very Long Baseline Interferometry (VLBI), where regular comparisons and combinations of space-geodetic products have tremendously increased the usefulness of the products in a wide range of disciplines and scientific applications. In the frame of the recently started Horizon 2020 project European Gravity Service for Improved Emergency Management (EGSIEM), a scientific combination service shall therefore be established to deliver the best gravity products for applications in Earth and environmental science research based on the unified knowledge of the European GRACE community. In a first step the large variety of available monthly GRACE gravity field solutions shall be mutually compared spatially and spectrally. We assess the noise of the raw as well as filtered solutions and compare the secular and seasonal periodic variations fitted to the monthly solutions. In a second step we will explore ways to generate combined solutions, e.g., based on a weighted average of the individual solutions using empirical weights derived from pair-wise comparisons. We will also assess the quality of such a combined solution and discuss the

  3. Analyzing Business Process Efficiency by Combining Business Process Simulation with Data Envelopment Analysis

    NASA Astrophysics Data System (ADS)

    Dohmen, Anne; Leyer, Michael

    2010-10-01

    A well grounded understanding of process efficiency is essential for the sustainable success of organizations. This paper presents a novel method for analyzing the efficiency of business processes. It combines Data Envelopment Analysis (DEA) and Business Process Simulation (BPS) on process level. DEA is used to measure the efficiency of a process while BPS analyzes potential changes leading to a better efficiency. The combination of DEA and BPS is a promising approach for analyzing the structure of process (in-)efficiency. The methodology is presented by a numerical example dealing with a loan application process. The results show that it is a powerful methodology to assess process efficiency improvements. However, it is limited by the general disadvantages of a DEA and the assumptions required for conducting a business process simulation.

  4. Combining Advanced Oxidation Processes: Assessment Of Process Additivity, Synergism, And Antagonism

    SciTech Connect

    Peters, Robert W.; Sharma, M.P.; Gbadebo Adewuyi, Yusuf

    2007-07-01

    This paper addresses the process interactions from combining integrated processes (such as advanced oxidation processes (AOPs), biological operations, air stripping, etc.). AOPs considered include: Fenton's reagent, ultraviolet light, titanium dioxide, ozone (O{sub 3}), hydrogen peroxide (H{sub 2}O{sub 2}), sonication/acoustic cavitation, among others. A critical review of the technical literature has been performed, and the data has been analyzed in terms of the processes being additive, synergistic, or antagonistic. Predictions based on the individual unit operations are made and compared against the behavior of the combined unit operations. The data reported in this paper focus primarily on treatment of petroleum hydrocarbons and chlorinated solvents. (authors)

  5. Flue Gas Purification Utilizing SOx/NOx Reactions During Compression of CO{sub 2} Derived from Oxyfuel Combustion

    SciTech Connect

    Fogash, Kevin

    2010-09-30

    The United States wishes to decrease foreign energy dependence by utilizing the country’s significant coal reserves, while stemming the effects of global warming from greenhouse gases. In response to these needs, Air Products has developed a patented process for the compression and purification of the CO{sub 2} stream from oxyfuel combustion of pulverized coal. The purpose of this project was the development and performance of a comprehensive experimental and engineering evaluation to determine the feasibility of purifying CO{sub 2} derived from the flue gas generated in a tangentially fired coal combustion unit operated in the oxy-combustion mode. Following the design and construction of a 15 bar reactor system, Air Products conducted two test campaigns using the slip stream from the tangentially fired oxy-coal combustion unit. During the first test campaign, Air Products evaluated the reactor performance based on both the liquid and gaseous reactor effluents. The data obtained from the test run has enabled Air Products to determine the reaction and mass transfer rates, as well as the effectiveness of the reactor system. During the second test campaign, Air Products evaluated reactor performance based on effluents for different reactor pressures, as well as water recycle rates. Analysis of the reaction equations indicates that both pressure and water flow rate affect the process reaction rates, as well as the overall reactor performance.

  6. Flue Gas Perification Utilizing SOx/NOx Reactions During Compression of CO2 Derived from Oxyfuel Combustion

    SciTech Connect

    Kevin Fogash

    2010-09-30

    The United States wishes to decrease foreign energy dependence by utilizing the country’s significant coal reserves, while stemming the effects of global warming from greenhouse gases. In response to these needs, Air Products has developed a patented process for the compression and purification of the CO2 stream from oxyfuel combustion of pulverized coal. The purpose of this project was the development and performance of a comprehensive experimental and engineering evaluation to determine the feasibility of purifying CO2 derived from the flue gas generated in a tangentially fired coal combustion unit operated in the oxy-combustion mode. Following the design and construction of a 15 bar reactor system, Air Products conducted two test campaigns using the slip stream from the tangentially fired oxy-coal combustion unit. During the first test campaign, Air Products evaluated the reactor performance based on both the liquid and gaseous reactor effluents. The data obtained from the test run has enabled Air Products to determine the reaction and mass transfer rates, as well as the effectiveness of the reactor system. During the second test campaign, Air Products evaluated reactor performance based on effluents for different reactor pressures, as well as water recycle rates. Analysis of the reaction equations indicates that both pressure and water flow rate affect the process reaction rates, as well as the overall reactor performance.

  7. Two combined cryogenic processes cut sour natural-gas processing cost

    SciTech Connect

    Denton, R.D.; Rule, D.D.

    1985-08-19

    Acid gases can be separated by cryogenic distillation and the combining of this process with other low-temperature processing steps such as LNG or LPG production and/or nitrogen rejection holds many advantages as are discussed in this article. The processing of sour natural gas is described by examining how processes such as acid gas removal, liquefaction, and nitrogen rejection could be integrated in a cost-effective fashion. The results of this work are two combined cryogenic processes which efficiently integrate acid gas removal with downstream low temperature processing. The advantages of this technology are that it produces no waste, uses only hydrocarbons and the process steams are noncorrosive. Technology in sour gas separation is evolving rapidly. The use of acid gas stream in the low-BTU turbine fuel can significantly reduce the horsepower and capital costs associated with the integration.

  8. Symbolic Processing Combined with Model-Based Reasoning

    NASA Technical Reports Server (NTRS)

    James, Mark

    2009-01-01

    A computer program for the detection of present and prediction of future discrete states of a complex, real-time engineering system utilizes a combination of symbolic processing and numerical model-based reasoning. One of the biggest weaknesses of a purely symbolic approach is that it enables prediction of only future discrete states while missing all unmodeled states or leading to incorrect identification of an unmodeled state as a modeled one. A purely numerical approach is based on a combination of statistical methods and mathematical models of the applicable physics and necessitates development of a complete model to the level of fidelity required for prediction. In addition, a purely numerical approach does not afford the ability to qualify its results without some form of symbolic processing. The present software implements numerical algorithms to detect unmodeled events and symbolic algorithms to predict expected behavior, correlate the expected behavior with the unmodeled events, and interpret the results in order to predict future discrete states. The approach embodied in this software differs from that of the BEAM methodology (aspects of which have been discussed in several prior NASA Tech Briefs articles), which provides for prediction of future measurements in the continuous-data domain.

  9. Aerobic composting leachate treatment by the combination of membrane processes.

    PubMed

    Çakmakci, Mehmet; Özyaka, Vahide Seyda

    2013-02-01

    The main product of the conversion process of organic wastes to a useful organic fertilizer, known as compost, has gained an increasing interest in management of organic wastes recently. One of the main problems arising in the composting facilities is the high organic loaded leachate. In this study, a treatability experiment for composting leachate from a full-scale composting facility was carried out with the combination of membrane processes. The parameters such as chemical oxygen demand, total organic carbon, Cl⁻ and NH₄⁺ were analysed to evaluate the membrane treatment performances of single and combined membrane systems consisting centrifuge, cartridge filter, ultrafiltration and nanofiltration membranes. The removal efficiencies of all pollutants were observed between 4.4 and 98%. The highest removal efficiencies were observed with the nanofiltration membrane (NF90) having a lower molecular weight cut-off than the others used in this study. It was observed that the effluent of NF90 membrane did not exceed the allowed maximum COD value. PMID:23076267

  10. Slaughterhouse Wastewater Treatment by Combined Chemical Coagulation and Electrocoagulation Process

    PubMed Central

    Bazrafshan, Edris; Kord Mostafapour, Ferdos; Farzadkia, Mehdi; Ownagh, Kamal Aldin; Mahvi, Amir Hossein

    2012-01-01

    Slaughterhouse wastewater contains various and high amounts of organic matter (e.g., proteins, blood, fat and lard). In order to produce an effluent suitable for stream discharge, chemical coagulation and electrocoagulation techniques have been particularly explored at the laboratory pilot scale for organic compounds removal from slaughterhouse effluent. The purpose of this work was to investigate the feasibility of treating cattle-slaughterhouse wastewater by combined chemical coagulation and electrocoagulation process to achieve the required standards. The influence of the operating variables such as coagulant dose, electrical potential and reaction time on the removal efficiencies of major pollutants was determined. The rate of removal of pollutants linearly increased with increasing doses of PACl and applied voltage. COD and BOD5 removal of more than 99% was obtained by adding 100 mg/L PACl and applied voltage 40 V. The experiments demonstrated the effectiveness of chemical and electrochemical techniques for the treatment of slaughterhouse wastewaters. Consequently, combined processes are inferred to be superior to electrocoagulation alone for the removal of both organic and inorganic compounds from cattle-slaughterhouse wastewater. PMID:22768233

  11. Stabilized landfill leachate treatment by combined physicochemical-nanofiltration processes.

    PubMed

    Trebouet, D; Schlumpf, J P; Jaouen, P; Quemeneur, F

    2001-08-01

    Landfill leachate is a complex wastewater which the composition and concentration of contaminants are influenced by the type of waste deposited and the age of landfill. In the last years, several processes or process combinations were developed and tested to reach requirements for the discharge of leachate. Among the new processes, membrane processes are considered as promising: reverse osmosis is one of the most widely used treatment in the Northwestern European countries and nanofiltration is gained in popularity during the last 5 years. Successful application of membrane technology for the treatment of landfill leachates, requires efficient control of membrane fouling. Two organic membranes of nanofiltration were used for pilot-scale testing. Leachates were subject to several pretreatments (pH modification, prefiltration and coagulation with FeCl3) to remove potential foulants including dissolved organic and inorganic substances, colloidal and suspended particles. These pretreatments do not enhance the performances (retention and permeation flux) of membranes because the pH range and the presence of Fe3+ ions contribute greatly to change the characteristics of organic matter and the surface charges of membranes. However, the results show that nanofiltration is sufficient to eliminate refractory COD, the permeates have a COD lower than the requirements for discharge. PMID:11471693

  12. Styrene process condensate treatment with a combination process of UF and NF for reuse.

    PubMed

    Wang, Aijun; Liu, Guangmin; Huang, Jin; Wang, Lijuan; Li, Guangbin; Su, Xudong; Qi, Hong

    2013-01-15

    Aiming at reusing the SPC to save water resource and heat energy, a combination treatment process of UF/NF was applied to remove inorganic irons, suspended particles and little amount of organic contaminants in this article. To achieve the indexes of CODM≤5.00 mg L(-1), oil≤2.00 mg L(-1), conductivity≤10.00 μs cm(-1), pH of 6.0-8.0, the NF membrane process was adopted. It was necessary to employ a pretreatment process to reduce NF membrane fouling. Hence UF membrane as an efficient pretreatment unit was proposed to remove the inorganic particles, such as iron oxide catalyst, to meet the influent demands of NF. The effluent of UF, which was less than 0.02 mg L(-1) of total iron, went into a security filter and then was pumped into the NF process unit. High removal efficiencies of CODM, oil and conductivity were achieved by using NF process. The ABS grafting copolymerization experiment showed that the effluent of the combination process met the criteria of ABS production process, meanwhile the process could alleviate the environment pollution. It was shown that this combination process concept was feasible and successful in treating the SPC. PMID:23195599

  13. Precipitation processes as deduced by combining Doppler radar and disdrometer

    NASA Astrophysics Data System (ADS)

    Thomson, Alan Douglas

    Precipitation processes are investigated in stratiform and convective weather systems by combining Doppler radar and disdrometer measurements. Vertical scans are designed to measure the standard radar data fields and the power spectrum of the vertical Doppler velocities with high spatial and temporal resolution. A new method, based on iterative application of a disdrometer-determined Z-R relation, is developed to estimate vertical winds from the vertical scan data. Using this method, radar-based raindrop size spectra calculated near the surface in light stratiform rain compare well with simultaneous measurements from a collocated disdrometer. A full raindrop size spectrum profile is deduced for a specific steady state case. It is found that the spectrum does not vary with height, suggesting that the spectral shape is mainly controlled by the ice particles occurring above the 0oC level. Vertical scan data are also combined with volume scan data obtained by the Atmospheric Environment Service King City radar to examine the precipitation structure of a hail producing region within a severe squall line. The vertical scan shows a large variation in precipitation structure and also reveals important storm features which, in this case, are not detected by the conventional volume scans, such as a weak echo vault, a downdraught outflow, and streaks of very high downward velocity corresponding to separate hail trajectories. The power spectra were used to identify and locate hailstones, to deduce the growth of descending hailstones, and to qualitatively examine properties of raindrop size spectra. A conceptual model of hail formation is proposed by comparing the deduced storm structure and precipitation processes with the analyses of two somewhat similar storms documented in the literature.

  14. A combined physical/microbial process for coal beneficiation

    SciTech Connect

    Noah, K.S.; Glenn, A.W.; Stevens, C.J.; McAtee, N.B.; McIlwain, M.E.; Andrews, G.F.

    1993-11-01

    A combined physical/microbial process for the removal of pyritic sulfur from coal was demonstrated in a 200 L aerated trough slurry reactor. The reactor was divided into six sections, each of which acted as both a physical separator and a bioreactor. Settled solids from sections 2 through 6 were recycled to section 1 which acted as a rougher. The objective was physical removal of the larger pyritic inclusions, which would take many days to biodegrade, and biodegradation of the micropyrite, which is difficult to remove physically. The process was operated continuously for 8 months, treating two Illinois No. 6 coals (4 months each). Reduction of 90% in-pyritic sulfur with 90% energy recovery and 35% ash removal was obtained for a low pyrite Monterey coal at a 5 day coal retention time and 20% (w/w) slurry concentration. Increased coal loading reduced performance apparently due to losses of sulfur oxidizing bacteria. A low pyrite Consol coal gave 63--77% pyrite reduction with 23--30% ash removal and 77--90% heating value recovery. Product coal pyritic sulfur analysis indicated no differences between treatments of Consol coal. This suggests that the coal residence time could be further reduced and the slurry concentration increased in future work.

  15. Oilfield wastewater treatment by combined microfiltration and biological processes.

    PubMed

    Campos, J C; Borges, R M H; Oliveira Filho, A M; Nobrega, R; Sant'Anna, G L

    2002-01-01

    This work deals with the treatment of offshore oilfield wastewater from the Campos Basin (Rio de Janeiro State, Brazil). After coarse filtration, this high saline wastewater was microfiltrated through mixed cellulose ester (MCE) membranes, resulting in average removals of COD, TOC, O&G and phenols of 35%, 25%, 92% and 35%, respectively. The permeate effluent was fed into a 1-L air-lift reactor containing polystyrene particles of 2mm diameter, used as support material. This reactor was operated for 210 days, at three hydraulic retention times (HRT): 48, 24 and 12h. Even when operated at the lowest HRT (12 h), removal efficiencies of 65% COD, 80% TOC, 65% phenols and 40% ammonium were attained. The final effluent presented COD and TOC values of 230 and 55 mg/L, respectively. Results obtained by gas chromatography analyses and toxicity tests with Artemia salina showed that a significant improvement in the effluent's quality was achieved after treatment by the combined (microfiltration/biological) process. PMID:11767743

  16. Combined heat and mass transfer in absorption processes

    SciTech Connect

    Grossman, G.

    1982-01-01

    The approach to theoretical analysis of the combined heat and mass transfer process taking place in absorption systems is described. The two tranfer phenomena are strongly coupled here. The purpose of the analysis is to relate, quantitatively, the heat and mass transfer coefficients to the physical properties of the working fluids and to the geometry of the system. The preferred configuration is that of a falling film of liquid on a metallic surface which serves to transfer heat from the absorbent in contact with the vapor of the absorbate. The model developed may be solved for laminar, turbulent, or transition flow regimes. The results of the solution describe the development of the thermal and concentration boundary layers and the variation of the temperatures, concentrations, and heat and mass fluxes. These quantities in their normalized, dimensionless form depend on two characteristic parameters of the system: the Lewis number Le and the dimensionless heat of absorption lambda. The length in the direction of flow is normalized with respect to the Peclet number and the film thickness. Heat and mass transfer coefficients for the system were calculated. The Sherwood number for mass transfer from the vapor-liquid interface to the bulk of the film reaches a constant value of 3.63 with fully developed boundary layers for both the adiabatic and constant temperature wall. The Nusselt number for heat transfer from the interface to the bulk reaches under the same conditions values of 3.63 and 2.67 for the adiabatic and constant temperature wall, respectively. The Nusselt number for heat tranfer from the bulk to the wall reaches 1.60.

  17. Combined photo-fenton-SBR processes for the treatment of wastewater from the citrus processing industry.

    PubMed

    Guzmán, José; Mosteo, Rosa; Ormad, María P; Ovelleiro, José L

    2015-01-21

    In this study, the photo-Fenton process was combined with a sequencing batch reactor (SBR) for the treatment of synthetic samples of citrus wastewater (CWW). An experimental design based on the surface response methodology was applied to assess the individual and combined effects of several operating parameters (CODinitial, Fe3(+) concentration and H2O2 concentration) on the photo-Fenton treatment efficiency (DOC removal) with the aim of optimizing the process. The experimental results obtained under optimal conditions for CWW with high CODinitial (10000 mgO2/L) showed a partial degradation of organic matter of around of 61% (measured as DOC). Thereafter, the photo-Fenton effluent was neutralized and clarified before being subjected to the SBR reactor. The results show degradation yields up to 93% of the initial DOC removal without producing undesired side effects, using a hydraulic retention time (HRT) of 1.59 d. The final effluent contained a concentration of organic matter (measured as COD) of 120 mg O2/L. PMID:25531123

  18. Combination process for high-octane gasoline production

    SciTech Connect

    Bagirov, R.A.; Dadashev, B.A.; Gasimov, B.A.; Naviev, N.I.

    1984-04-01

    This article describes the use of a combination unit for the catalytic isomerization of n-paraffins with continuous chromatography to increase the yield of high-octane gasoline. The feed, consisting of 44.6% n-pentane and n-hexane and 55.4% isoparaffins and cyclic hydrocarbons, enters the bottom of the adsorber in the vapor phase, and the adsorption of n-paraffins takes place in a fluidized bed of CaA zeolite. The recovery of n-paraffins from the pentane-hexane cut as a function of temperature was investigated in the 70-100/sup 0/C interval. It is determined that a combination of adsorption chromatography with catalytic isomerization of the straight-chain paraffins removed from the feed offers a means for increasing the octane number of the product by 18-20 units.

  19. Speaker verification using combined acoustic and EM sensor signal processing

    SciTech Connect

    Ng, L C; Gable, T J; Holzrichter, J F

    2000-11-10

    Low Power EM radar-like sensors have made it possible to measure properties of the human speech production system in real-time, without acoustic interference. This greatly enhances the quality and quantity of information for many speech related applications. See Holzrichter, Burnett, Ng, and Lea, J. Acoustic. SOC. Am . 103 ( 1) 622 (1998). By combining the Glottal-EM-Sensor (GEMS) with the Acoustic-signals, we've demonstrated an almost 10 fold reduction in error rates from a speaker verification system experiment under a moderate noisy environment (-10dB).

  20. Combined spectral and spatial processing of ERTS imagery data

    NASA Technical Reports Server (NTRS)

    Haralick, R. M.; Shanmugam, K. S.

    1973-01-01

    A procedure for extracting a set of textural features for ERTS-1 MSS data is presented. The textural features were combined with a set of spectral features and were used to develop a classification algorithm for identifying the land use categories of blocks of digital MSS data. The classification algorithm was derived from a training set of 314 blocks and tested on a set of 310 blocks. The overall accuracy of the classifier was found to be 83.5% on seven land use categories.

  1. Combined photo-Fenton-SBR process for antibiotic wastewater treatment.

    PubMed

    Elmolla, Emad S; Chaudhuri, Malay

    2011-09-15

    The study examined combined photo-Fenton-SBR treatment of an antibiotic wastewater containing amoxicillin and cloxacillin. Optimum H(2)O(2)/COD and H(2)O(2)/Fe(2+) molar ratio of the photo-Fenton pretreatment were observed to be 2.5 and 20, respectively. Complete degradation of the antibiotics occurred in one min. The sequencing batch reactor (SBR) was operated at different hydraulic retention times (HRTs) with the wastewater treated under different photo-Fenton operating conditions (H(2)O(2)/COD and H(2)O(2)/Fe(2+) molar ratio). The SBR performance was found to be very sensitive to BOD(5)/COD ratio of the photo-Fenton treated wastewater. Statistical analysis of the results indicated that it was possible to reduce the Fe(2+) dose and increase the irradiation time of the photo-Fenton pretreatment. The best operating conditions of the combined photo-Fenton-SBR treatment were observed to be H(2)O(2)/COD molar ratio 2, H(2)O(2)/Fe(2+) molar ratio 150, irradiation time 90 min and HRT of 12h. Under the best operating conditions, 89% removal of sCOD with complete nitrification was achieved and the SBR effluent met the discharge standards. PMID:21767911

  2. ANAEROBIC AND AEROBIC TREATMENT OF COMBINED POTATO PROCESSING AND MUNICIPAL WASTES

    EPA Science Inventory

    Demonstration and evaluation of the treatment of combined potato processing waste-water and domestic wastes using various combinations of anaerobic and aerated lagoons. Measured parameters included: BOD, COD, TSS, VSS, nitrogen, phosphorus, volatile acids, total coliform, fecal c...

  3. Lean Six Sigma Application in Rear Combination Automotive Lighting Process

    NASA Astrophysics Data System (ADS)

    Sodkomkham, Thanwarhat; Chutima, Parames

    2016-05-01

    The case study company produces various front and rear lightings for automobiles and motorcycles. Currently, it faces two problems, i.e. high defective rate and high inventory. Lean Six Sigma was applied as a tool to solve the first problem, whereas the other problem was managed by changing the production concept from push to pull. The results showed that after applying all new settings to the process, the defect rate was reduced from 36,361 DPPM to 3,029 DPPM. In addition, after the implementation of the Kanban system, the company achieved substantial improvement in lead time reduction by 44%, in-process inventory reduction by 42%, finished good inventory reduction by 50%, and finished good area increased by 16%.

  4. A combined cesium-strontium extraction/recovery process

    SciTech Connect

    Horwitz, E.P.; Dietz, M.L.; Jensen, M.P.

    1996-03-01

    A new solvent extraction process for the simultaneous extraction of cesium and strontium from acidic nitrate media is described. This process uses a solvent formulation comprised of 0.05 M di-t-butylcyclohexano-18-crown-6 (DtBuCH18C6), 0.1 M Crown 100{prime} (a proprietary, cesium-selective derivative of dibenzo-18-crown-6), 1.2 M tributyl phosphate (TBP), and 5% (v/v) lauryl nitrile in an isoparaffinic hydrocarbon diluent. Distribution ratios for cesium and strontium from 4 M nitric acid are 4.13 and 3.46, respectively. A benchtop batch countercurrent extraction experiment indicates that >98% of the cesium and strontium initially present in the feed solution can be removed in only four extraction stages. Through proper choice of extraction and strip conditions, extracted cesium and strontium can be recovered either together or individually.

  5. Combining advanced imaging processing and low cost remote imaging capabilities

    NASA Astrophysics Data System (ADS)

    Rohrer, Matthew J.; McQuiddy, Brian

    2008-04-01

    Target images are very important for evaluating the situation when Unattended Ground Sensors (UGS) are deployed. These images add a significant amount of information to determine the difference between hostile and non-hostile activities, the number of targets in an area, the difference between animals and people, the movement dynamics of targets, and when specific activities of interest are taking place. The imaging capabilities of UGS systems need to provide only target activity and not images without targets in the field of view. The current UGS remote imaging systems are not optimized for target processing and are not low cost. McQ describes in this paper an architectural and technologic approach for significantly improving the processing of images to provide target information while reducing the cost of the intelligent remote imaging capability.

  6. Process for combining multiple passes of interferometric SAR data

    DOEpatents

    Bickel, Douglas L.; Yocky, David A.; Hensley, Jr., William H.

    2000-11-21

    Interferometric synthetic aperture radar (IFSAR) is a promising technology for a wide variety of military and civilian elevation modeling requirements. IFSAR extends traditional two dimensional SAR processing to three dimensions by utilizing the phase difference between two SAR images taken from different elevation positions to determine an angle of arrival for each pixel in the scene. This angle, together with the two-dimensional location information in the traditional SAR image, can be transformed into geographic coordinates if the position and motion parameters of the antennas are known accurately.

  7. Retrofit SCADA installation combines SCADA and process control functions

    SciTech Connect

    Moffitt, T.O.

    1995-09-01

    When Gulf States Utilities Company`s (now part of Entergy Operations, Inc.) River Bend Nuclear Plant, decided to add a closed cooling water system for the plant service water, a new SCADA system was required. Previously the normal service water system shared common cooling towers and flume with the plant`s circulating water system. Closing the system required a new cooling tower with pumps and heat exchangers to be constructed in a remote location. Existing equipment in the area was controlled via a multichannel tone SCADA system that did not have sufficient spare capacity for control of the new components. This paper will discuss how a new SCADA system was designed and installed, that also included process control. It will also address the operational experience to date.

  8. Process for combined control of mercury and nitric oxide.

    SciTech Connect

    Livengood, C. D.; Mendelsohn, M. H.

    1999-11-03

    Continuing concern about the effects of mercury in the environment may lead to requirements for the control of mercury emissions from coal-fired power plants. If such controls are mandated, the use of existing flue-gas cleanup systems, such as wet scrubbers currently employed for flue-gas desulfurization, would be desirable, Such scrubbers have been shown to be effective for capturing oxidized forms of mercury, but cannot capture the very insoluble elemental mercury (Hg{sup 0}) that can form a significant fraction of the total emissions. At Argonne National Laboratory, we have proposed and tested a concept for enhancing removal of Hg{sup 0}, as well as nitric oxide, through introduction of an oxidizing agent into the flue gas upstream of a scrubber, which readily absorbs the soluble reaction products. Recently, we developed a new method for introducing the oxidizing agent into the flue-gas stream that dramatically improved reactant utilization. The oxidizing agent employed was NOXSORB{trademark}, which is a commercial product containing chloric acid and sodium chlorate. When a dilute solution of this agent was introduced into a gas stream containing Hg{sup 0} and other typical flue-gas species at 300 F, we found that about 100% of the mercury was removed from the gas phase and recovered in process liquids. At the same time, approximately 80% of the nitric oxide was removed. The effect of sulfur dioxide on this process was also investigated and the results showed that it slightly decreased the amount of Hg{sup 0} oxidized while appearing to increase the removal of nitric oxide from the gas phase. We are currently testing the effects of variations in NOXSORB{trademark} concentration, sulfur dioxide concentration, nitric oxide concentration, and reaction time (residence time). Preliminary economic projections based on the results to date indicate that the chemical cost for nitric oxide oxidation could be less than $5,000/ton removed, while for Hg{sup 0} oxidation it

  9. MAGIC: A Tool for Combining, Interpolating, and Processing Magnetograms

    NASA Technical Reports Server (NTRS)

    Allred, Joel

    2012-01-01

    Transients in the solar coronal magnetic field are ultimately the source of space weather. Models which seek to track the evolution of the coronal field require magnetogram images to be used as boundary conditions. These magnetograms are obtained by numerous instruments with different cadences and resolutions. A tool is required which allows modelers to fmd all available data and use them to craft accurate and physically consistent boundary conditions for their models. We have developed a software tool, MAGIC (MAGnetogram Interpolation and Composition), to perform exactly this function. MAGIC can manage the acquisition of magneto gram data, cast it into a source-independent format, and then perform the necessary spatial and temporal interpolation to provide magnetic field values as requested onto model-defined grids. MAGIC has the ability to patch magneto grams from different sources together providing a more complete picture of the Sun's field than is possible from single magneto grams. In doing this, care must be taken so as not to introduce nonphysical current densities along the seam between magnetograms. We have designed a method which minimizes these spurious current densities. MAGIC also includes a number of post-processing tools which can provide additional information to models. For example, MAGIC includes an interface to the DA VE4VM tool which derives surface flow velocities from the time evolution of surface magnetic field. MAGIC has been developed as an application of the KAMELEON data formatting toolkit which has been developed by the CCMC.

  10. Combined heat and mass transfer device for improving separation process

    DOEpatents

    Tran, Thanh Nhon

    1999-01-01

    A two-phase small channel heat exchange matrix simultaneously provides for heat transfer and mass transfer between the liquid and vapor phases of a multi-component mixture at a single, predetermined location within a separation column, significantly improving the thermodynamic efficiency of the separation process. The small channel heat exchange matrix is composed of a series of channels having a hydraulic diameter no greater than 5.0 millimeters for conducting a two-phase coolant. In operation, the matrix provides the liquid-vapor contacting surfaces within the separation column, such that heat and mass are transferred simultaneously between the liquid and vapor phases. The two-phase coolant allows for a uniform heat transfer coefficient to be maintained along the length of the channels and across the surface of the matrix. Preferably, a perforated, concave sheet connects each channel to an adjacent channel to facilitate the flow of the liquid and vapor phases within the column and to increase the liquid-vapor contacting surface area.

  11. Combined heat and mass transfer device for improving separation process

    DOEpatents

    Tran, T.N.

    1999-08-24

    A two-phase small channel heat exchange matrix simultaneously provides for heat transfer and mass transfer between the liquid and vapor phases of a multi-component mixture at a single, predetermined location within a separation column, significantly improving the thermodynamic efficiency of the separation process. The small channel heat exchange matrix is composed of a series of channels having a hydraulic diameter no greater than 5.0 millimeters for conducting a two-phase coolant. In operation, the matrix provides the liquid-vapor contacting surfaces within the separation column, such that heat and mass are transferred simultaneously between the liquid and vapor phases. The two-phase coolant allows for a uniform heat transfer coefficient to be maintained along the length of the channels and across the surface of the matrix. Preferably, a perforated, concave sheet connects each channel to an adjacent channel to facilitate the flow of the liquid and vapor phases within the column and to increase the liquid-vapor contacting surface area. 12 figs.

  12. Combined adsorption-UF process increases TOC removal

    SciTech Connect

    Chang, Y.J.; Choo, K.H.; Benjamin, M.M.; Reiber, S.

    1998-05-01

    Addition of heated iron oxide particles (HIOPs) as adsorbents to the feedwater of an ultrafiltration (UF) membrane system significantly increased removal of dissolved organic carbon (DOC) and reduced trihalomethane formation potential (THMFP). Treatment by the HIOP-UF process met the TOC removal criteria set by the enhanced coagulation provision of the proposed Disinfectants/Disinfection By-products Rule in all 16 water sources tested, even though those criteria were not met by enhanced coagulation with alum or ferric sulfate in many of the water sources. At pH 6.5 and for the operational conditions studied, 40--75 percent of the DOC was removed; this percentage might be increased at lower pH or a higher HIOP dosage. THMFP was reduced even more (approximately 5--10 percent more) than DOC. Although HIOPs tended to reduce membrane fouling, both soft water with extremely high DOC concentrations and hard, alkaline water with moderate DOC concentrations fouled the HIOP-UF system. Fouling was less severe at lower pH values.

  13. SYSTEMATIC SCANNING ELECTRON MICROSCOPY FOR EVALUATING COMBINED BIOLOGICAL/GRANULAR ACTIVATED CARBON TREATMENT PROCESSES

    EPA Science Inventory

    A semi-quantitative scanning electron microscope (SEK) analytical technique has been developed to examine granular activated carbon (GAC) utilized as media for biomass attachment in liquid waste treatment (combined processes). he procedure allows for the objective monitoring, com...

  14. Efficiency of combined process of ozone and bio-filtration in the treatment of secondary effluent.

    PubMed

    Tripathi, Smriti; Tripathi, B D

    2011-07-01

    The present work was aimed at studying the efficiency of the combined process of biofiltration with ozonation to improve the quality of secondary effluent. The secondary effluent from the Dinapur Sewage Treatment Plant Varanasi, India was used in this work. The process of biofiltration with the plant species of Eichornia crassipes and Lemna minor, at a flow rate of 262 ml min(-1) and plant density of 30 mg L(-1) for 48 h, in combination with the process of ozonation with ozone dose of 10 mg L(-1) and contact time of 5 min was applied. Results revealed that combined process was statistically most suitable for the highest degradation of physico-chemical and microbial parameters with improving BDOC value. The biofiltration process is able to remove highest percentage of toxic heavy metals from the secondary effluent without production of toxicity. This technique is highly recommendable for tropical wastewater where sewage is mixed with industrial effluents. PMID:21550800

  15. Children's Writing Processes when Using Computers: Insights Based on Combining Analyses of Product and Process

    ERIC Educational Resources Information Center

    Gnach, Aleksandra; Wiesner, Esther; Bertschi-Kaufmann, Andrea; Perrin, Daniel

    2007-01-01

    Children and young people are increasingly performing a variety of writing tasks using computers, with word processing programs thus becoming their natural writing environment. The development of keystroke logging programs enables us to track the process of writing, without changing the writing environment for the writers. In the myMoment schools…

  16. Process automation using combinations of process and machine control technologies with application to a continuous dissolver

    SciTech Connect

    Spencer, B.B.: Yarbro, O.O.

    1991-01-01

    Operation of a continuous rotary dissolver, designed to leach uranium-plutonium fuel from chopped sections of reactor fuel cladding using nitric acid, has been automated. The dissolver is a partly continuous, partly batch process that interfaces at both ends with batchwise processes, thereby requiring synchronization of certain operations. Liquid acid is fed and flows through the dissolver continuously, whereas chopped fuel elements are fed to the dissolver in small batches and move through the compartments of the dissolver stagewise. Sequential logic (or machine control) techniques are used to control discrete activities such as the sequencing of isolation valves. Feedback control is used to control acid flowrates and temperatures. Expert systems technology is used for on-line material balances and diagnostics of process operation. 1 ref., 3 figs.

  17. Dynamic infrared imaging in identification of breast cancer tissue with combined image processing and frequency analysis.

    PubMed

    Joro, R; Lääperi, A-L; Soimakallio, S; Järvenpää, R; Kuukasjärvi, T; Toivonen, T; Saaristo, R; Dastidar, P

    2008-01-01

    Five combinations of image-processing algorithms were applied to dynamic infrared (IR) images of six breast cancer patients preoperatively to establish optimal enhancement of cancer tissue before frequency analysis. mid-wave photovoltaic (PV) IR cameras with 320x254 and 640x512 pixels were used. The signal-to-noise ratio and the specificity for breast cancer were evaluated with the image-processing combinations from the image series of each patient. Before image processing and frequency analysis the effect of patient movement was minimized with a stabilization program developed and tested in the study by stabilizing image slices using surface markers set as measurement points on the skin of the imaged breast. A mathematical equation for superiority value was developed for comparison of the key ratios of the image-processing combinations. The ability of each combination to locate the mammography finding of breast cancer in each patient was compared. Our results show that data collected with a 640x512-pixel mid-wave PV camera applying image-processing methods optimizing signal-to-noise ratio, morphological image processing and linear image restoration before frequency analysis possess the greatest superiority value, showing the cancer area most clearly also in the match centre of the mammography estimation. PMID:18666012

  18. Mind over PMDD: A Glimpse into the Process of Pharmacotherapy-Psychotherapy Combination Treatment

    PubMed Central

    Adler Nevo, Gili W.; Nefsky, Colman

    2014-01-01

    The practice of combining pharmacotherapy with psychotherapy is advocated for as treatment of choice for many psychiatric disorders. Despite an abundance of outcome studies addressing this subject, little has been written about the process of combined treatment, leaving clinicians with insufficient guidance as to the “how” of the medication-psychotherapy merger. This case report follows the treatment course of a fourteen-year-old young woman initially diagnosed with Premenstrual Dysphoric Disorder (PMDD) and provisional Generalized Anxiety Disorder (GAD). It demonstrates the benefits, drawbacks, possible pitfalls and successful outcome of combined therapy, an outcome which may not have been achieved had only one of the modalities been used. PMID:24872831

  19. A sequence of calculation of the modes of dimensional combined processing by an electrode brush

    NASA Astrophysics Data System (ADS)

    Ryazantsev, A. Yu; Kirillov, O. N.; Smolentsev, V. P.; Totay, A. V.

    2016-04-01

    In the article the way of calculation of the modes of dimensional processing by an electrode brush is considered. The choice of a liquid working environment is presented. A calculation of tension in electrodes and forces of the technological current realized during processing is given. A choice of a clip of wire bunches in a processing zone, feeding an electrode brush to a non-rigid work piece. The recommended technological indicators of the process of the finishing combined treatment by an electrode brush are presented.

  20. Application of combined treatment for control of Botrytis cinerea in phytosanitary irradiation processing

    NASA Astrophysics Data System (ADS)

    Jung, Koo; Yoon, Minchul; Park, Hae-Jun; Youll Lee, Kwang; Jeong, Rae-Dong; Song, Beom-Seok; Lee, Ju-Woon

    2014-06-01

    Phytosanitary treatments are required to disinfest quarantine pests and pathogens in agricultural commodities. Gray mold in fruit is caused by Botrytis cinerea, which is one of the major postharvest pathogen of apple and pear. Irradiation treatment is a viable alternative for phytosanitary purposes and a useful nonchemical method for controlling pests and postharvest pathogens. An irradiation dose of over 0.4 kGy is used for the control of insects and fungal disease in fresh fruit, but a loss of firmness occurs. Combined treatments are needed to reduce the irradiation dose in phytosanitary irradiation processing. This study focuses on the application of combined treatments to reduce the loss of fruit quality when fresh fruit is irradiated for phytosanitary purposes. Comparing the antifungal activity against B. cinerea, while gamma irradiation showed no antifungal activity at a dose of 1.0 kGy, combined treatments (nano Ag particle, nano-sized silica silver) at a dose of 1.0 kGy showed the strongest antifungal activity. This study demonstrates the synergistic impacts of combined treatments in phytosanitary irradiation processing. Taken together, the combined treatments may affect reduction of fruit injury that occurred with irradiation only, meaning that the use of combined treatments with gamma irradiation is significantly effective for the preservation of fruit quality.

  1. Effect of different treatments on the preference of apple cubes dehydrated by a combined process.

    PubMed

    Ochoa-Martínez, Luz A; Márquez-Burciaga, Angelica; González-Herrera, Silvia M; Morales-Castro, Juliana; Gallegos-Infante, Jose A; Delgado, Efren

    2009-11-01

    The aim of this work was to determine the effect on consumer preference of dehydrated apple cubes caused by different modifications of a combined drying method. The combined process of convective-osmotic drying with pretreatment in solutions of CaCl(2) and citric acid was taken as the basic process, and was then modified to obtain six different treatments. The factors varied were the osmotic agent, the order of drying processes, and the addition of CaCl(2) to the osmotic solution. The drying kinetics of convective-osmotic treatment and the osmotic-convective process were studied. A sensory evaluation was conducted to determine the effect of these alterations in the drying process on the consumer preference for the product. The convective-osmotic treatment significantly reduced the time of processing. Water loss and solids gain were higher when fructose was used as the osmotic agent in the convective-osmotic process. According to the results of the preference test, only one of the modified processes showed significant preference compared with the basic process. PMID:19817634

  2. Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination--a review.

    PubMed

    Oller, I; Malato, S; Sánchez-Pérez, J A

    2011-09-15

    Nowadays there is a continuously increasing worldwide concern for development of alternative water reuse technologies, mainly focused on agriculture and industry. In this context, Advanced Oxidation Processes (AOPs) are considered a highly competitive water treatment technology for the removal of those organic pollutants not treatable by conventional techniques due to their high chemical stability and/or low biodegradability. Although chemical oxidation for complete mineralization is usually expensive, its combination with a biological treatment is widely reported to reduce operating costs. This paper reviews recent research combining AOPs (as a pre-treatment or post-treatment stage) and bioremediation technologies for the decontamination of a wide range of synthetic and real industrial wastewater. Special emphasis is also placed on recent studies and large-scale combination schemes developed in Mediterranean countries for non-biodegradable wastewater treatment and reuse. The main conclusions arrived at from the overall assessment of the literature are that more work needs to be done on degradation kinetics and reactor modeling of the combined process, and also dynamics of the initial attack on primary contaminants and intermediate species generation. Furthermore, better economic models must be developed to estimate how the cost of this combined process varies with specific industrial wastewater characteristics, the overall decontamination efficiency and the relative cost of the AOP versus biological treatment. PMID:20956012

  3. Inactivation kinetics and photoreactivation of vegetable oxidative enzymes after combined UV-C processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The inactivation kinetics of lipoxygenase (LOX), peroxidase (POD) and polyphenoloxidase (PPO) in phosphate buffer (pH 4.0 and 7.0) treated by combined thermal (25-65 C) and UV-C (1-10 min) processes were fitted using a traditional first-order kinetics model and the Weibull distribution function. For...

  4. DUAL PROCESS HIGH-RATE FILTRATION OF RAW SANITARY SEWAGE AND COMBINED SEWER OVERFLOWS

    EPA Science Inventory

    Pilot plant studies were conducted at New York's Newtown Creek Water Pollution Control Plant from 1975-1977 to investigate the suspended solids (SS) removal capabilities of the deep bed, high rate gravity filtration process on raw sewage and combined sewer overflows. The treatmen...

  5. Separation of Molybdenum-Uranium by a Process Combining Ion Exchange Resin and Membranes

    NASA Astrophysics Data System (ADS)

    Lounis, A.; Setti, L.; Djennane, A.; Melikchi, R.

    The purpose of this study is to determine whether the electrodeionization with ion-exchange resin is suitable for removing uranium from a solution containing molybdenum. A hybrid process combining ion exchange (resins and membranes) using electric current. For this electroextraction process, the cation exchange resin is introduced into an electrodialysis cell and compressed between two cations exchange membranes. We have investigated a continuous electroextraction process. As important result we note that: The factor of selectivity,r, for molybdenum versus uranium is superior to 3; the concentration in radio active element (U3O8) is lower than 1.5 mg L-1 and small cell voltage is observed.

  6. Optimization of LPDC Process Parameters Using the Combination of Artificial Neural Network and Genetic Algorithm Method

    NASA Astrophysics Data System (ADS)

    Zhang, Liqiang; Li, Luoxing; Wang, Shiuping; Zhu, Biwu

    2012-04-01

    In this article, the low-pressure die-cast (LPDC) process parameters of aluminum alloy thin-walled component with permanent mold are optimized using a combining artificial neural network and genetic algorithm (ANN/GA) method. In this method, an ANN model combining learning vector quantization (LVQ) and back-propagation (BP) algorithm is proposed to map the complex relationship between process conditions and quality indexes of LPDC. The genetic algorithm is employed to optimize the process parameters with the fitness function based on the trained ANN model. Then, by applying the optimized parameters, a thin-walled component with 300 mm in length, 100 mm in width, and 1.5 mm in thickness is successfully prepared and no obvious defects such as shrinkage, gas porosity, distortion, and crack were found in the component. The results indicate that the combining ANN/GA method is an effective tool for the process optimization of LPDC, and they also provide valuable reference on choosing the right process parameters for LPDC thin-walled aluminum alloy casting.

  7. Effective Reuse of Electroplating Rinse Wastewater by Combining PAC with H2O2/UV Process.

    PubMed

    Yen, Hsing Yuan; Kang, Shyh-Fang; Lin, Chen Pei

    2015-04-01

    This study evaluated the performance of treating electroplating rinse wastewater by powder activated carbon (PAC) adsorption, H2O2/UV oxidation, and their combination to remove organic compounds and heavy metals. The results showed that neither the process of PAC adsorption nor H2O2/UV oxidation could reduce COD to 100 mg/L, as enforced by the Taiwan Environmental Protection Agency. On the other hand, the water sample treated by the combined approach of using PAC (5 g/L) pre-adsorption and H2O2/UV post-oxidation (UV of 64 W, H2O2 of 100 mg/L, oxidation time of 90 min), COD and DOC were reduced to 8.2 mg/L and 3.8 mg/L, respectively. Also, the combined approach reduced heavy metals to meet the effluent standards and to satisfy the in-house water reuse criteria for the electroplating factory. The reaction constant analysis indicated that the reaction proceeded much more rapidly for the combined process. Hence, it is a more efficient, economic and environmentally friendly process. PMID:26462075

  8. Combining magnetic and seismic studies to constrain processes in massive stars

    NASA Astrophysics Data System (ADS)

    Neiner, Coralie; Degroote, Pieter; Coste, Blanche; Briquet, Maryline; Mathis, Stéphane

    2014-08-01

    The presence of pulsations influences the local parameters at the surface of massive stars and thus it modifies the Zeeman magnetic signatures. Therefore it makes the characterisation of a magnetic field in pulsating stars more difficult and the characterisation of pulsations is thus required for the study of magnetic massive stars. Conversely, the presence of a magnetic field can inhibit differential rotation and mixing in massive stars and thus provides important constraints for seismic modelling based on pulsation studies. As a consequence, it is necessary to combine spectropolarimetric and seismic studies for all massive classical pulsators. Below we show examples of such combined studies and the interplay between physical processes.

  9. Optimization of anaerobic digestion of municipal solid waste in combined process and sequential staging.

    PubMed

    Juanga, Jeanger P; Visvanathan, Chettiyappen; Tränkler, Josef

    2007-02-01

    The optimization of anaerobic digestion aims to maximize organic waste stabilization after a short digestion period. This paper presents the optimization performance of the combined anaerobic digestion and sequential staging concept in a thermophilic, solid-state batch system as a treatment technology prior to landfill. The former involves enhanced pre-stage flushing with the addition of microaeration and inoculum in the methane phase. The latter involves leachate cross-recirculation between the mature and fresh waste reactors without conducting a pre-stage operation. The optimized process for combined anaerobic digestion showed that reducing the pre-stage operation with the maximum removal of organics from the waste bed is beneficial. Moreover, the sequential staging concept offers an improved process over the combined anaerobic digestion wherein the specific methane yield of 11.9 and 7.2 L CH4 kg(-1) volatile solids (VS) per day was achieved, respectively. After 28 days of operation, the sequential staging process showed an improved waste stabilization with 86 and 79% mass and volume reduction, respectively. A higher methane yield of 334 L CH4 kg(-1) VS with 86% VS reduction, which is equivalent to 84% process efficiency was obtained. PMID:17346005

  10. A combined upflow anaerobic sludge bed and trickling biofilter process for the treatment of swine wastewater.

    PubMed

    Zhao, Bowei; Li, Jiangzheng; Buelna, Gerardo; Dubé, Rino; Le Bihan, Yann

    2016-05-01

    A combined upflow anaerobic sludge blanket (UASB)-trickling biofilter (TBF) process was constructed to treat swine wastewater, a typical high-strength organic wastewater with low carbon/nitrogen ratio and ammonia toxicity. The results showed that the UASB-TBF system can remarkably enhance the removal of pollutants in the swine wastewater. At an organic loading rate of 2.29 kg/m(3) d and hydraulic retention time of 48 h in the UASB, the chemical oxygen demand (COD), Suspended Solids and Total Kjeldahl Nitrogen removals of the combined process reached 83.6%, 84.1% and 41.2%, respectively. In the combined system the UASB served as a pretreatment process for COD removal while nitrification and denitrification occurred only in the TBF process. The TBF performed reasonably well at a surface hydraulic load as high as 0.12 m(3)/m(2) d. Since the ratio of influent COD to total mineral nitrogen was less than 3.23, it is reasonable to suggest that the wood chips in TBF can serve as a new carbon source for denitrification. PMID:26588487

  11. Combined treatment of olive mill wastewater by Fenton's reagent and anaerobic biological process.

    PubMed

    Amor, Carlos; Lucas, Marco S; García, Juan; Dominguez, Joaquín R; De Heredia, J Beltrán; Peres, José A

    2015-01-01

    This work presents the application of Fenton's reagent process combined with anaerobic digestion to treat an olive mill wastewater (OMW). Firstly, OMW was pre-treated by chemical oxidation in a batch reactor with Fenton's reagent, using a fixed H2O2/COD ratio of 0.20, pH = 3.5 and a H2O2/Fe(2+) molar ratio of 15:1. This advanced oxidation treatment allowed reaching reductions of 17.6 and 82.5% of chemical oxygen demand (COD) and total polyphenols (TP), respectively. Secondly, OMW treatment by anaerobic digestion was performed using previously adapted microorganisms immobilized in Sepiolite. These biological tests were carried out varying the substrate concentration supplied to the reactor and COD conversions from 52 to 74% were obtained. Afterwards, Fenton's reagent followed by anaerobic digestion was applied to OMW treatment. This combined process presented a significant improvement on organic load removal, reaching COD degradations from 64 to 88%. Beyond the pollutant load removal, it was also monitored the yield of methane generated throughout anaerobic experiments. The methane produced ranged from 281 cm(3) to 322 cm(3) of CH4/g COD removed. Additionally, a methane generation kinetic study was performed using the Monod Model. The application of this model allowed observing a kinetic constant increase of the combined process (kFN = 0.036 h(-1)) when compared to the single anaerobic process (kF = 0.017 h(-1)). PMID:25560262

  12. Combination of an electrolytic pretreatment unit with secondary water reclamation processes

    NASA Technical Reports Server (NTRS)

    Wells, G. W.; Bonura, M. S.

    1973-01-01

    The design and fabrication of a flight concept prototype electrolytic pretreatment unit (EPU) and of a contractor-furnished air evaporation unit (AEU) are described. The integrated EPU and AEU potable water recovery system is referred to as the Electrovap and is capable of processing the urine and flush water of a six-man crew. Results of a five-day performance verification test of the Electrovap system are presented and plans are included for the extended testing of the Electrovap to produce data applicable to the combination of electrolytic pretreatment with most final potable water recovery systems. Plans are also presented for a program to define the design requirements for combining the electrolytic pretreatment unit with a reverse osmosis final processing unit.

  13. Winery wastewater treatment by a combined process: long term aerated storage and Fenton's reagent.

    PubMed

    Lucas, Marco S; Mouta, Maria; Pirra, António; Peres, José A

    2009-01-01

    The degradation of the organic pollutants present in winery wastewater was carried out by the combination of two successive steps: an aerobic biological process followed by a chemical oxidation process using Fenton's reagent. The main goal of this study was to evaluate the temporal characteristics of solids and chemical oxygen demand (COD) present in winery wastewater in a long term aerated storage bioreactor. The performance of different air dosage daily supplied to the biologic reactor, in laboratory and pilot scale, were examined. The long term hydraulic retention time, 11 weeks, contributed remarkably to the reduction of COD (about 90%) and the combination with the Fenton's reagent led to a high overall COD reduction that reached 99.5% when the mass ratio (R = H(2)O(2)/COD) used was equal to 2.5, maintaining constant the molar ratio H(2)O(2)/Fe(2+)=15. PMID:19700849

  14. Americium purification by a combined anion exchange and bidentate organophosphorus solvent extraction process. [Patent application

    SciTech Connect

    Navratil, J.D.; Martella, L.L.

    1981-04-10

    Americium is separated from mixtures containing plutonium, other actinides, and other non-lanthamide impurities, by a combined process of anion exchange resin sorption to remove plutonium, and a bidentate organophosphorus solvent extraction of americium of the anion exchange resin effluent. Dihexyl-N,N-diethylcarbamylmethylenephosphonate is a preferred solvent. The initial mixture may be subjected to a cation exchange operation to remove monovalent impurities. The process is especially effective when aluminum, zinc, lead, and copper are present in significant quantities in the original mixture.

  15. The mutation process in a chlorella population under the combined action of radionuclides and chemical mutagens

    SciTech Connect

    Ptitsyna, S.N.; Sergeeva, S.A.; Shevchenko, V.A.; Shvobene, R.Y.

    1985-09-01

    This paper investigates the dynamics of the mutation process under the combined chronic action of radionuclides (/sup 144/Ce, /sup 90/Sr) and inhibitors of repair, acriflavine and caffeine, as well as under the joint action of ethyleneimine and acriflavine, in a Chlorella population. It is shown that the modifying effect of acriflavine is more pronounced under the action of /sup 144/Ce, which is evidently due to its stronger genetic effect, in comparison with /sup 90/Sr. Experiments with inhibitors confirm the participation of the repair systems in the establishment of the visible picture of the mutation process induced by radionuclides and by ethyleneimine (EI).

  16. Comparison of Microbial and Photochemical Processes and Their Combination for Degradation of 2-Aminobenzothiazole▿

    PubMed Central

    Bunescu, Andrei; Besse-Hoggan, Pascale; Sancelme, Martine; Mailhot, Gilles; Delort, Anne-Marie

    2008-01-01

    The transformation of 2-aminobenzothiazole (ABT) was studied under various conditions: (i) a photodegradation process at a λ of >300 nm in the presence of an Fe(III)-nitrilotriacetic acid complex (FeNTA), (ii) a biodegradation process using Rhodococcus rhodochrous OBT18 cells, and (iii) the combined processes (FeNTA plus Rhodococcus rhodochrous in the presence or absence of light). The transformation of ABT in the combined system, with or without light, was much more efficient (99% degradation after 25 h) than in the separated systems (37% photodegradation and 26% biodegradation after 125 h). No direct photolysis of ABT was observed. The main result seen is the strong positive impact of FeNTA on the photodegradation, as expected, and on the biotransformation efficiency of ABT, which was more surprising. This positive impact of FeNTA on the microbial metabolism was dependent on the FeNTA concentration. The use of UV high-performance liquid chromatography, liquid chromatography-electrospray ionization mass spectrometry, and in situ 1H nuclear magnetic resonance provided evidence of the intermediary products and thus established transformation pathways of ABT in the different processes. These pathways were identical whether the degradation process was photo- or biotransformation. A new photoproduct was identified (4OH-ABT), corresponding to a hydroxylation reaction on position 4 of the aromatic ring of ABT. PMID:18310409

  17. Effects of combined traditional processing methods on the nutritional quality of beans

    PubMed Central

    Nakitto, Aisha M; Muyonga, John H; Nakimbugwe, Dorothy

    2015-01-01

    Consumption of dry beans is limited by long cooking times thus high fuel requirement. The bioavailability of nutrients in beans is also limited due to presence of antinutrients such as phytates and tannins. Little research has been done on combined processing methods for production of nutritious fast cooking bean flour and the effect of combined treatments on nutritional quality of beans has not previously determined. The aim of this study was to reduce cooking time and enhance the nutritional value of dry beans. Specifically to: develop protocols for production of fast cooking bean flours and assess the effect of processing on the nutritional characteristics of the flours. Dry beans (K131 variety) were soaked for 12 h; sprouted for 48 h; dehulled and steamed for 25 and 15 min for whole and dehulled beans respectively or roasted at 170°C for 45 and 15 min for whole and dehulled beans respectively. Dehulling eliminated phytates and tannins and increased protein digestibility. In vitro protein digestibility and mineral (iron and zinc) extractability were negatively correlated with tannin and phytate content. Total available carbohydrates were highest in moist heat-treated bean flours. Overall, combined processing of beans improved the nutritional quality of dry beans and the resulting precooked flours need less cooking time compared to whole dry beans. PMID:25987998

  18. The heterotrophic-combined-with-autotrophic denitrification process: performance and interaction mechanisms.

    PubMed

    Xu, Guihua; Feng, Cuijie; Fang, Fang; Chen, Shaohua; Xu, Yuanjian; Wang, Xingzu

    2015-01-01

    In this work, the interaction mechanisms between an autotrophic denitrification (AD) and heterotrophic denitrification (HD) process in a heterotrophic-autotrophic denitrification (HAD) system were investigated, and the performance of the HAD system under different S/Ac(-) molar ratios was also evaluated. The results demonstrated that the heterotrophic-combined-with-autotrophic denitrification process is a promising technology which can remove chemical oxygen demand (COD), sulfide and nitrate simultaneously. The reduction rate of NO(3)(-) to NO(2)(-) by the HD process was much faster than that of reducing NO(2)(-) to N₂, while the reduction rate of NO(3)(-) to NO(2)(-) by the AD process was slower than that of NO(2)(-) to N₂. Therefore, the AD process could use the surplus NO(2)(-) produced by the HD process. This could alleviate the NO(2)(-)-N accumulation and increase the denitrification rate. In addition, the inhibition effects of acetate on AD bacteria and sulfide on HD were observed, and the inhibition was compensated by the promotion effects on NO(2)(-). Therefore, the processes of AD and HD seem to react in parallel, without disturbing each other, in our HAD system. PMID:25909732

  19. Enhanced biological nitrogen removal in MLE combined with post-denitrification process and EF clarifier.

    PubMed

    Chung, C M; Cho, K W; Kim, Y J; Yamamoto, K; Chung, T H

    2012-05-01

    A modified ludzack ettinger reactor (MLE) combined with a post-denitrification reactor (PDMLE) using electroflotation (EF) as a secondary clarifier was investigated on its feasibility and process performance. Results indicated that higher mixed liquor suspended solids (MLSS) concentrations in bioreactor (5,350 ± 352 mg L(-1)) were maintained via the highly concentrated return sludge (16,771 ± 991 mg L(-1)) from the EF clarifier and the effluent suspended solids (SS) concentrations continued relatively low, representing effluent SS concentration of 1.71 ± 1.16 mg L(-1), compared with GS-A2O process during the operation of four months. The denitrification was improved by combining MLE process with post-denitrification based on endogenous decay (i.e. no additional carbon source was added), resulting in the removal efficiencies of TN were about 91 and 59% for the influent C/N ratio of 10 and 5, respectively, revealing relatively high nitrogen removal as compared with EF-A2O and gravity settling (GS)-A2O processes as a control. The nitrogen balance analysis indicates that pre-denitrification and post-denitrification contributed to 78 and 22% of TN removed, respectively. PMID:21947625

  20. [Enhancement for anaerobic digestion of sewage sludge pretreated by microwave and its combined processes ].

    PubMed

    Liu, Ji-bao; Ni, Xiao-tang; Wei, Yuan-song; Tong, Juan; Wang, Ya-wei

    2014-09-01

    To improve anaerobic digestion and dewatering of sludge, impacts of sludge pretreated by microwave (MW) and its combined processes on sludge anaerobic digestion and dewatering were investigated. The results showed that microwave and its combined processes could effectively enhance anaerobic sludge digestion. Not only the cumulative methane production in the test of the MW-H2O2-alkaline (0. 2) was increased by 13. 34% compared with the control, but also its methane production rate was much higher than that of the control. Compared with the single MW process, the addition of both H2O2 and alkaline enhanced the solubilization of particle COD( >0. 45 micron) , indicating that synergistically generated soluble organics were faster to biodegrade which resulted in the enhancement of anaerobic digestion. The MW-acid process was effective in improving sludge dewaterability, e. g. , Capillary Suction Time (CST) at only 9. 85 s. The improvement of sludge dewatering was significantly correlated with sludge physical properties such as zeta potential, surface charge density and particle size. Under different sludge pretreatment conditions, the sludge dewatering after anaerobic digestion was similar, though the difference of sludge dewatering to some degrees was observed for pretreated sludge. PMID:25518665

  1. Electrochemical advanced oxidation and biological processes for wastewater treatment: a review of the combined approaches.

    PubMed

    Ganzenko, Oleksandra; Huguenot, David; van Hullebusch, Eric D; Esposito, Giovanni; Oturan, Mehmet A

    2014-01-01

    As pollution becomes one of the biggest environmental challenges of the twenty-first century, pollution of water threatens the very existence of humanity, making immediate action a priority. The most persistent and hazardous pollutants come from industrial and agricultural activities; therefore, effective treatment of this wastewater prior to discharge into the natural environment is the solution. Advanced oxidation processes (AOPs) have caused increased interest due to their ability to degrade hazardous substances in contrast to other methods, which mainly only transfer pollution from wastewater to sludge, a membrane filter, or an adsorbent. Among a great variety of different AOPs, a group of electrochemical advanced oxidation processes (EAOPs), including electro-Fenton, is emerging as an environmental-friendly and effective treatment process for the destruction of persistent hazardous contaminants. The only concern that slows down a large-scale implementation is energy consumption and related investment and operational costs. A combination of EAOPs with biological treatment is an interesting solution. In such a synergetic way, removal efficiency is maximized, while minimizing operational costs. The goal of this review is to present cutting-edge research for treatment of three common and problematic pollutants and effluents: dyes and textile wastewater, olive processing wastewater, and pharmaceuticals and hospital wastewater. Each of these types is regarded in terms of recent scientific research on individual electrochemical, individual biological and a combined synergetic treatment. PMID:24965093

  2. Significant diethyl phthalate (DEP) degradation by combined advanced oxidation process in aqueous solution.

    PubMed

    Na, Seungmin; Ahn, Yun-Gyong; Cui, Mingcan; Khim, Jeehyeong

    2012-06-30

    Ultrasound (US) combined with ultraviolet (UV) irradiation and a titanium dioxide (TiO(2)) catalyst was used to effectively remove diethyl phthalate (DEP) from aqueous solutions. Single (sonolysis, photolysis, photocatalysis) and combined (sonophotolysis, sonophotocatalysis) processes were performed to confirm the synergistic effects and DEP degradation mechanism. Using only US, the optimum frequency for DEP degradation was 283 kHz. At this frequency a high rate of hydrogen peroxide (H(2)O(2)) formation was observed of approximately 0.32 mM min(-1). The pseudo-first order degradation rate constants were 10(-2)-10(-4) min(-1) depending on the process. Significant degradation and mineralization (TOC) of DEP were observed with the sonophotolytic and sonophotocatalytic processes. Moreover, synergistic effects of 1.29 and 1.95 were exhibited at the sonophotocatalytic and sonophotolytic DEP degradation, respectively. Furthermore, additional advantageous reactions may occur in the heterogeneous sonophotocatalytic process due to interactions between US, UV, and the photocatalyst. PMID:22406850

  3. Combination of minimal processing and irradiation to improve the microbiological safety of lettuce ( Lactuca sativa, L.)

    NASA Astrophysics Data System (ADS)

    Goularte, L.; Martins, C. G.; Morales-Aizpurúa, I. C.; Destro, M. T.; Franco, B. D. G. M.; Vizeu, D. M.; Hutzler, B. W.; Landgraf, M.

    2004-09-01

    The feasibility of gamma radiation in combination with minimal processing (MP) to reduce the number of Salmonella spp. and Escherichia coli O157:H7 in iceberg lettuce ( Lactuca sativa, L.) (shredded) was studied in order to increase the safety of the product. The reduction of the microbial population during the processing, the D10-values for Salmonella spp. and E. coli O157:H7 inoculated on shredded iceberg lettuce as well as the sensory evaluation of the irradiated product were evaluated. The immersion in chlorine (200 ppm) reduced coliform and aerobic mesophilic microorganisms by 0.9 and 2.7 log, respectively. D-values varied from 0.16 to 0.23 kGy for Salmonella spp. and from 0.11 to 0.12 kGy for E. coli O157:H7. Minimally processed iceberg lettuce exposed to 0.9 kGy does not show any change in sensory attributes. However, the texture of the vegetable was affected during the exposition to 1.1 kGy. The exposition of MP iceberg lettuce to 0.7 kGy reduced the population of Salmonella spp. by 4.0 log and E. coli by 6.8 log without impairing the sensory attributes. The combination of minimal process and gamma radiation to improve the safety of iceberg lettuce is feasible if good hygiene practices begins at farm stage.

  4. Pilot Cases of Combined Cognitive Processing Therapy and Smoking Cessation for Smokers With Posttraumatic Stress Disorder.

    PubMed

    Dedert, Eric A; Resick, Patricia A; McFall, Miles E; Dennis, Paul A; Olsen, Maren; Beckham, Jean C

    2016-01-01

    Posttraumatic stress disorder (PTSD) and smoking are often comorbid, and both problems are in need of improved access to evidence-based treatment. The combined approach could address two high-priority problems and increase patient access to both treatments, but research is needed to determine whether this is feasible and has promise for addressing both PTSD and smoking. We collected data from 15 test cases that received a treatment combining two evidence-based treatments: cognitive processing therapy-cognitive version (CPT-C) for PTSD and integrated care for smoking cessation (ICSC). We explored two combined treatment protocols including a brief (six-session) CPT-C with five follow-up in-person sessions focused on smoking cessation (n=9) and a full 12-session CPT-C protocol with ICSC (n=6). The combined interventions were feasible and acceptable to patients with PTSD making a quit attempt. Initial positive benefits of the combined treatments were observed. The six-session dose of CPT-C and smoking cessation resulted in 6-month bioverified smoking abstinence in two of nine participants, with clinically meaningful PTSD symptom reduction in three of nine participants. In the second cohort (full CPT-C and smoking treatment), both smoking and PTSD symptoms were improved, with three of six participants abstinent from smoking and four of six participants reporting clinically meaningful reduction in PTSD symptoms. Results suggested that individuals with PTSD who smoke are willing to engage in concurrent treatment of these problems and that combined treatment is feasible. PMID:26763497

  5. Non-biodegradable landfill leachate treatment by combined process of agitation, coagulation, SBR and filtration

    SciTech Connect

    Abood, Alkhafaji R.; Bao, Jianguo; Du, Jiangkun; Zheng, Dan; Luo, Ye

    2014-02-15

    Highlights: • A novel method of stripping (agitation) was investigated for NH{sub 3}-N removal. • PFS coagulation followed agitation process enhanced the leachate biodegradation. • Nitrification–denitrification achieved by changing operation process in SBR treatment. • A dual filter of carbon-sand is suitable as a polishing treatment of leachate. • Combined treatment success for the complete treatment of non-biodegradable leachate. - Abstract: This study describes the complete treatment of non-biodegradable landfill leachate by combined treatment processes. The processes consist of agitation as a novel stripping method used to overcome the ammonia toxicity regarding aerobic microorganisms. The NH{sub 3}-N removal ratio was 93.9% obtained at pH 11.5 and a gradient velocity (G) 150 s{sup −1} within a five-hour agitation time. By poly ferric sulphate (PFS) coagulation followed the agitation process; chemical oxygen demand (COD) and biological oxygen demand (BOD{sub 5}) were removed at 70.6% and 49.4%, respectively at an optimum dose of 1200 mg L{sup −1} at pH 5.0. The biodegradable ratio BOD{sub 5}/COD was improved from 0.18 to 0.31 during pretreatment step by agitation and PFS coagulation. Thereafter, the effluent was diluted with sewage at a different ratio before it was subjected to sequencing batch reactor (SBR) treatment. Up to 93.3% BOD{sub 5}, 95.5% COD and 98.1% NH{sub 3}-N removal were achieved by SBR operated under anoxic–aerobic–anoxic conditions. The filtration process was carried out using sand and carbon as a dual filter media as polishing process. The final effluent concentration of COD, BOD{sub 5}, suspended solid (SS), NH{sub 3}-N and total organic carbon (TOC) were 72.4 mg L{sup −1}, 22.8 mg L{sup −1}, 24.2 mg L{sup −1}, 18.4 mg L{sup −1} and 50.8 mg L{sup −1} respectively, which met the discharge standard. The results indicated that a combined process of agitation-coagulation-SBR and filtration effectively eliminated

  6. Nitrogen management in landfill leachate: Application of SHARON, ANAMMOX and combined SHARON-ANAMMOX process

    SciTech Connect

    Sri Shalini, S.; Joseph, Kurian

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Significant research on ammonia removal from leachate by SHARON and ANAMMOX process. Black-Right-Pointing-Pointer Operational parameters, microbiology, biochemistry and application of the process. Black-Right-Pointing-Pointer SHARON-ANAMMOX process for leachate a new research and this paper gives wide facts. Black-Right-Pointing-Pointer Cost-effective process, alternative to existing technologies for leachate treatment. Black-Right-Pointing-Pointer Address the issues and operational conditions for application in leachate treatment. - Abstract: In today's context of waste management, landfilling of Municipal Solid Waste (MSW) is considered to be one of the standard practices worldwide. Leachate generated from municipal landfills has become a great threat to the surroundings as it contains high concentration of organics, ammonia and other toxic pollutants. Emphasis has to be placed on the removal of ammonia nitrogen in particular, derived from the nitrogen content of the MSW and it is a long term pollution problem in landfills which determines when the landfill can be considered stable. Several biological processes are available for the removal of ammonia but novel processes such as the Single Reactor System for High Activity Ammonia Removal over Nitrite (SHARON) and Anaerobic Ammonium Oxidation (ANAMMOX) process have great potential and several advantages over conventional processes. The combined SHARON-ANAMMOX process for municipal landfill leachate treatment is a new, innovative and significant approach that requires more research to identify and solve critical issues. This review addresses the operational parameters, microbiology, biochemistry and application of both the processes to remove ammonia from leachate.

  7. Combined synchrotron XRD/Raman measurements: in situ identification of polymorphic transitions during crystallization processes.

    PubMed

    Klimakow, Maria; Leiterer, Jork; Kneipp, Janina; Rössler, Ernst; Panne, Ulrich; Rademann, Klaus; Emmerling, Franziska

    2010-07-01

    A combination of two analytical methods, time-resolved X-ray diffraction (XRD) and Raman spectroscopy, is presented as a novel tool for crystallization studies. An acoustic levitator was employed as sample environment. This setup enables the acquisition of XRD and Raman data in situ simultaneously within a 20 s period and hence permits investigation of polymorphic phase transitions during the crystallization process in different solvents (methanol, ethanol, acetone, dichloromethane, acetonitrile). These real time measurements allow the determination of the phase content from the onset of the first crystalline molecular assemblies to the stable system. To evaluate the capability of this approach, the setup was applied to elucidate the crystallization process of the polymorphic compound nifedipine. The results indicate the existence of solvent-dependent transient phases during the crystallization process. The quality of the data allowed the assignment of the lattice constants of the hitherto unknown crystal structure of the beta-polymorph. PMID:20222693

  8. Weld-brazing - a new joining process. [combination resistance spot welding and brazing of titanium alloys

    NASA Technical Reports Server (NTRS)

    Bales, T. T.; Royster, D. M.; Arnold, W. E., Jr.

    1972-01-01

    A joining process designated weld brazing which combines resistance spot welding and brazing has been developed. Resistance spot welding is used to position and align the parts as well as to establish a suitable faying surface gap for brazing. Fabrication is then completed by capillary flow of the braze alloy into the joint. The process has been used successfully to fabricate Ti-6Al-4V titanium alloy joints using 3003 aluminum braze alloy. Test results obtained on single overlap and hat-stiffened structural specimens show that weld brazed joints are superior in tensile shear, stress rupture, fatigue, and buckling than joint fabricated by spotwelding or brazing. Another attractive feature of the process is that the brazed joints is hermetically sealed by the braze material.

  9. TRENTA Facility for Trade-Off Studies Between Combined Electrolysis Catalytic Exchange and Cryogenic Distillation Processes

    SciTech Connect

    Cristescu, I.; Cristescu, I.R.; Doerr, L.; Glugla, M.; Hellriegel, G.; Schaefer, P.; Welte, S.; Kveton, O.; Murdoch, D

    2005-07-15

    One of the most used methods for tritium recovery from different sources of tritiated water is based on the combination between Combined Electrolysis Catalytic Exchange (CECE) and Cryogenic Distillation (CD) processes. The development, i.e. configuration, design and performance testing of critical components, of a tritium recovery system based on the combination CECE-CD is essential for both JET and ITER. For JET, a Water Detritiation System (WDS) is not only needed to process tritiated water which has already been accumulated from operation, but also for the tritiated water which will be generated during decommissioning. For ITER, the WDS is one of the key systems to control the tritium content in the effluents streams, to recover as much tritium as possible and consequently to minimize the impact on the environment. A cryogenic distillation facility with the aim to investigate the trade-off between CECE-CD, to validate different components and mathematical modelling software is current under development at Tritium Laboratory Karlsruhe (TLK) as an extension of the existing CECE facility.

  10. Non-biodegradable landfill leachate treatment by combined process of agitation, coagulation, SBR and filtration.

    PubMed

    Abood, Alkhafaji R; Bao, Jianguo; Du, Jiangkun; Zheng, Dan; Luo, Ye

    2014-02-01

    This study describes the complete treatment of non-biodegradable landfill leachate by combined treatment processes. The processes consist of agitation as a novel stripping method used to overcome the ammonia toxicity regarding aerobic microorganisms. The NH3-N removal ratio was 93.9% obtained at pH 11.5 and a gradient velocity (G) 150 s(-1) within a five-hour agitation time. By poly ferric sulphate (PFS) coagulation followed the agitation process; chemical oxygen demand (COD) and biological oxygen demand (BOD5) were removed at 70.6% and 49.4%, respectively at an optimum dose of 1200 mg L(-1) at pH 5.0. The biodegradable ratio BOD5/COD was improved from 0.18 to 0.31 during pretreatment step by agitation and PFS coagulation. Thereafter, the effluent was diluted with sewage at a different ratio before it was subjected to sequencing batch reactor (SBR) treatment. Up to 93.3% BOD5, 95.5% COD and 98.1% NH3-N removal were achieved by SBR operated under anoxic-aerobic-anoxic conditions. The filtration process was carried out using sand and carbon as a dual filter media as polishing process. The final effluent concentration of COD, BOD5, suspended solid (SS), NH3-N and total organic carbon (TOC) were 72.4 mg L(-1), 22.8 mg L(-1), 24.2 mg L(-1), 18.4 mg L(-1) and 50.8 mg L(-1) respectively, which met the discharge standard. The results indicated that a combined process of agitation-coagulation-SBR and filtration effectively eliminated pollutant loading from landfill leachate. PMID:24287299

  11. Meaningful call combinations and compositional processing in the southern pied babbler.

    PubMed

    Engesser, Sabrina; Ridley, Amanda R; Townsend, Simon W

    2016-05-24

    Language's expressive power is largely attributable to its compositionality: meaningful words are combined into larger/higher-order structures with derived meaning. Despite its importance, little is known regarding the evolutionary origins and emergence of this syntactic ability. Although previous research has shown a rudimentary capability to combine meaningful calls in primates, because of a scarcity of comparative data, it is unclear to what extent analog forms might also exist outside of primates. Here, we address this ambiguity and provide evidence for rudimentary compositionality in the discrete vocal system of a social passerine, the pied babbler (Turdoides bicolor). Natural observations and predator presentations revealed that babblers produce acoustically distinct alert calls in response to close, low-urgency threats and recruitment calls when recruiting group members during locomotion. On encountering terrestrial predators, both vocalizations are combined into a "mobbing sequence," potentially to recruit group members in a dangerous situation. To investigate whether babblers process the sequence in a compositional way, we conducted systematic experiments, playing back the individual calls in isolation as well as naturally occurring and artificial sequences. Babblers reacted most strongly to mobbing sequence playbacks, showing a greater attentiveness and a quicker approach to the loudspeaker, compared with individual calls or control sequences. We conclude that the sequence constitutes a compositional structure, communicating information on both the context and the requested action. Our work supports previous research suggesting combinatoriality as a viable mechanism to increase communicative output and indicates that the ability to combine and process meaningful vocal structures, a basic syntax, may be more widespread than previously thought. PMID:27155011

  12. Structure and properties of maize starch processed with a combination of α-amylase and pullulanase.

    PubMed

    Zhang, Huanxin; Tian, Yaoqi; Bai, Yuxiang; Xu, Xueming; Jin, Zhengyu

    2013-01-01

    The dissolution and digestion characteristics of maize starch processed with a combination of α-amylase and pullulanase (ERS) were investigated. The results were compared with those of high pressure-processed RS (HRS) and regular maize starch. The ERS exhibited a considerably lower dissolution and digestibility than the HRS under conditions that simulated the stomach and small intestine in vitro. Infrared spectroscopy showed two bands at 1047 and 1002 cm(-1) for ERS, which suggested an easily produced RS during the retrogradation process after enzymatic treatment. High-performance size-exclusion chromatography showed a hydrolyzed ERS forming a critical molecular weight fraction (MW 4833 Da; DP 29.8). X-ray diffraction analysis also revealed a significant difference between the types of HRS (B+V type) and ERS (in the transformation from B+V to V type) crystallinities, and the crystal structure change leads to improved anti-enzymatic properties of ERS. These results indicate that the enzyme-combined method is a more promising technique than high pressure to prepare RS from maize starch with greater resistance. PMID:23043758

  13. Use of combined coagulation-adsorption process as pretreatment of landfill leachate

    PubMed Central

    2013-01-01

    Landfill leachate is an important pollution factor resulting from municipal landfill sites. Physical and chemical processes are the better option for pretreatment or full treatment of landfill leachate. This article presents a combination of pre-treatment method (coagulation and adsorption) for leachate collected from municipal solid waste open dumping site. Physico chemical characteristics of stabilized and fresh leachate were examined. Coagulation process was examined by using alum and ferric chloride. A low cost adsorbent, fly ash was used for adsorption studies. Coagulation studies were carried out for fresh and stabilized leachate. Adsorption studies have been conducted for alum pre-treated stabilized leachate. Effect of coagulant dose, adsorbent dose, pH and contact time were carried out. The effective optimum coagulant dosages were 0.6 g/L and 0.7 g/L for alum and ferric chloride respectively for stabilized leachate and incase of fresh leachate 0.8 g/L and 0.6 g/L for alum and ferric chloride respectively. For the alum pretreated stabilized leachate, the maximum COD removal is 28% using fly ash adsorbent with equilibrium time of 210 min and optimum dose of 6 g/L. Overall COD removal efficiency of 82% was obtained by coagulation using alum and adsorption using fly ash for stabilized leachate. The results obtained showed that combined coagulation and adsorption process can be used effectively for stabilized leachate treatment. PMID:23517661

  14. Biocompatible Nanoemulsions for Improved Aceclofenac Skin Delivery: Formulation Approach Using Combined Mixture-Process Experimental Design.

    PubMed

    Isailović, Tanja; Ðorđević, Sanela; Marković, Bojan; Ranđelović, Danijela; Cekić, Nebojša; Lukić, Milica; Pantelić, Ivana; Daniels, Rolf; Savić, Snežana

    2016-01-01

    We aimed to develop lecithin-based nanoemulsions intended for effective aceclofenac (ACF) skin delivery utilizing sucrose esters [sucrose palmitate (SP) and sucrose stearate (SS)] as additional stabilizers and penetration enhancers. To find the suitable surfactant mixtures and levels of process variables (homogenization pressure and number of cycles - high pressure homogenization manufacturing method) that result in drug-loaded nanoemulsions with minimal droplet size and narrow size distribution, a combined mixture-process experimental design was employed. Based on optimization data, selected nanoemulsions were evaluated regarding morphology, surface charge, drug-excipient interactions, physical stability, and in vivo skin performances (skin penetration and irritation potential). The predicted physicochemical properties and storage stability were proved satisfying for ACF-loaded nanoemulsions containing 2% of SP in the blend with 0%-1% of SS and 1%-2% of egg lecithin (produced at 50°C/20 cycles/800 bar). Additionally, the in vivo tape stripping demonstrated superior ACF skin absorption from these nanoemulsions, particularly from those containing 2% of SP, 0.5% of SS, and 1.5% of egg lecithin, when comparing with the sample costabilized by conventional surfactant - polysorbate 80. In summary, the combined mixture-process experimental design was shown as a feasible tool for formulation development of multisurfactant-based nanosized delivery systems with potentially improved overall product performances. PMID:26539935

  15. Effect of combined physico-chemical processes on the phytotoxicity of olive mill wastewaters.

    PubMed

    Andreozzi, Roberto; Canterino, Marisa; Di Somma, Ilaria; Lo Giudice, Roberto; Marotta, Raffaele; Pinto, Gabriele; Pollio, Antonino

    2008-03-01

    A pool of laboratory experiments is planned with the aim of evaluating the possibility to reduce the phytotoxicity of olive mill wastewater (OMW) with combined physico-chemical processes (centrifugation-ozonation, centrifugation-solar photolysis, centrifugation-solar modified photoFenton, centrifugation-solar modified photoFenton-ozonation). A moderate COD removal of an OMW is reached by using ozonation or solar modified photoFenton separately or solar modified photoFenton/O(3) combined process even for prolonged treatment times. The O(3)-treated OMWs are still toxic towards algal growth (Pseudokirchneriella subcapitata) and only for dilutions equal to or higher than 1:160 a stimulation of algal growth is observed. The sole ozonation does not reduce significantly the phytotoxicity of tested OMW measured through the GI calculation of Raphanus sativus L., Cucumis sativus L. and Lactuca sativa L. A marked reduction of OMW inhibition, higher than 50%, is evidenced for 1:8 dilution OMW samples ozonated for 2h. The long-term storage of OMW associated with solar irradiation without or with Fe(III) ions under continuous aeration is less efficient than ozonation, and the combined action of the two former treatments does not significantly contribute to enhance both COD removal and germination index. Better results are obtained on seed germination and root elongation of plantlets of the three selected species, which germinated on OMW-free solidified medium and were then transferred on a solidified culture medium containing O(3)-treated OMW diluted 1:2 and 1:4. The operating costs are estimated for the solar modified photoFenton-ozonation process. PMID:18006039

  16. Combining enzymatic esterification with conventional alkaline transesterification in an integrated biodiesel process.

    PubMed

    Brask, Jesper; Damstrup, Marianne Linde; Nielsen, Per Munk; Holm, Hans Christian; Maes, Jeroen; De Greyt, Wim

    2011-04-01

    An integrated biodiesel process that combines enzymatic esterification and alkaline transesterification is suggested. With focus on the enzymatic step, the paper provides proof of concept and suggestions for further process development. Hence, palm fatty acid distillate (PFAD) has been enzymatically converted to fatty acid methyl esters in a two-step process using the immobilized lipase Novozym 435 in packed-bed columns. With only a small excess of methanol, the first reaction stage could reduce the free fatty acid (FFA) content from 85% to 5%. After removal of water by simple phase separation, it was possible to lower the FFA content to 2.5% in a second reaction stage. Both reaction stages are relatively fast with suggested reaction times of 15 min in column 1 (productivity 10 kg/kg/h) and 30 min in column 2 (productivity 5 kg/kg/h), resulting in 15% FFA after column 1 and 5% FFA after column 2. A lifetime study indicated that approximately 3,500 kg PFAD/kg Novozym 435 can be treated in the first reaction stage before the enzyme has become fully inactivated. With further optimization, the enzymatic process could be a real alternative to today's sulfuric acid catalyzed process. PMID:20878260

  17. Conflict game in evacuation process: A study combining Cellular Automata model

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaoping; Cheng, Yuan

    2011-03-01

    The game-theoretic approach is an essential tool in the research of conflicts of human behaviors. The aim of this study is to research crowd dynamic conflicts during evacuation processes. By combining a conflict game with a Cellular Automata model, the following factors such as rationality, herding effect and conflict cost are taken into the research on frequency of each strategy of evacuees, and evacuation time. Results from Monte Carlo simulations show that (i) in an emergency condition, rationality leads to “vying” behaviors and inhibited “polite” behavior; (ii) high herding causes a crowd of high rationality (especially in normal circumstances) to become more “vying” in behavior; (iii) the high-rationality crowd is shown to spend more evacuation time than a low-rationality crowd in emergency situations. This study provides a new perspective to understand conflicts in evacuation processes as well as the rationality of evacuees.

  18. Computational thermodynamics, Gaussian processes and genetic algorithms: combined tools to design new alloys

    NASA Astrophysics Data System (ADS)

    Tancret, F.

    2013-06-01

    A new alloy design procedure is proposed, combining in a single computational tool several modelling and predictive techniques that have already been used and assessed in the field of materials science and alloy design: a genetic algorithm is used to optimize the alloy composition for target properties and performance on the basis of the prediction of mechanical properties (estimated by Gaussian process regression of data on existing alloys) and of microstructural constitution, stability and processability (evaluated by computational themodynamics). These tools are integrated in a unique Matlab programme. An example is given in the case of the design of a new nickel-base superalloy for future power plant applications (such as the ultra-supercritical (USC) coal-fired plant, or the high-temperature gas-cooled nuclear reactor (HTGCR or HTGR), where the selection criteria include cost, oxidation and creep resistance around 750 °C, long-term stability at service temperature, forgeability, weldability, etc.

  19. Combination of PCA and LORETA for sources analysis of ERP data: an emotional processing study

    NASA Astrophysics Data System (ADS)

    Hu, Jin; Tian, Jie; Yang, Lei; Pan, Xiaohong; Liu, Jiangang

    2006-03-01

    The purpose of this paper is to study spatiotemporal patterns of neuronal activity in emotional processing by analysis of ERP data. 108 pictures (categorized as positive, negative and neutral) were presented to 24 healthy, right-handed subjects while 128-channel EEG data were recorded. An analysis of two steps was applied to the ERP data. First, principal component analysis was performed to obtain significant ERP components. Then LORETA was applied to each component to localize their brain sources. The first six principal components were extracted, each of which showed different spatiotemporal patterns of neuronal activity. The results agree with other emotional study by fMRI or PET. The combination of PCA and LORETA can be used to analyze spatiotemporal patterns of ERP data in emotional processing.

  20. Combined spatial filtering and Boolean operators applied to the processing of real images

    NASA Astrophysics Data System (ADS)

    Feltmate, B. E.

    1982-06-01

    Several new and seemingly successful scene analysis techniques for application to real image processing are presented. These techniques consist of particular combinations of spatial low pass filtering, global thresholding and Boolean operators, specifically the AND, OR and NOT operators. These combinatorial operators, hereafter referred to as the Boolpass operators, perform the task of picture energy/information reduction, while retaining the fundamental picture primitives such as edges which characterize the images. Over 150 figures are included which illustrate the results obtained from application of the Boolpass techniques to eight different natural scenes. These results indicate that the Boolpass operators do display great potential as important components of a larger more comprehensive pattern recognition machine. Such a machine would encompass further processing (for target classification/recognition) of the resulting Boolpass operator information.

  1. Combining analysis with optimization at Langley Research Center. An evolutionary process

    NASA Technical Reports Server (NTRS)

    Rogers, J. L., Jr.

    1982-01-01

    The evolutionary process of combining analysis and optimization codes was traced with a view toward providing insight into the long term goal of developing the methodology for an integrated, multidisciplinary software system for the concurrent analysis and optimization of aerospace structures. It was traced along the lines of strength sizing, concurrent strength and flutter sizing, and general optimization to define a near-term goal for combining analysis and optimization codes. Development of a modular software system combining general-purpose, state-of-the-art, production-level analysis computer programs for structures, aerodynamics, and aeroelasticity with a state-of-the-art optimization program is required. Incorporation of a modular and flexible structural optimization software system into a state-of-the-art finite element analysis computer program will facilitate this effort. This effort results in the software system used that is controlled with a special-purpose language, communicates with a data management system, and is easily modified for adding new programs and capabilities. A 337 degree-of-freedom finite element model is used in verifying the accuracy of this system.

  2. Combined compared to dissociated oral and intestinal sucrose stimuli induce different brain hedonic processes

    PubMed Central

    Clouard, Caroline; Meunier-Salaün, Marie-Christine; Meurice, Paul; Malbert, Charles-Henri; Val-Laillet, David

    2014-01-01

    The characterization of brain networks contributing to the processing of oral and/or intestinal sugar signals in a relevant animal model might help to understand the neural mechanisms related to the control of food intake in humans and suggest potential causes for impaired eating behaviors. This study aimed at comparing the brain responses triggered by oral and/or intestinal sucrose sensing in pigs. Seven animals underwent brain single photon emission computed tomography (99mTc-HMPAO) further to oral stimulation with neutral or sucrose artificial saliva paired with saline or sucrose infusion in the duodenum, the proximal part of the intestine. Oral and/or duodenal sucrose sensing induced differential cerebral blood flow changes in brain regions known to be involved in memory, reward processes and hedonic (i.e., pleasure) evaluation of sensory stimuli, including the dorsal striatum, prefrontal cortex, cingulate cortex, insular cortex, hippocampus, and parahippocampal cortex. Sucrose duodenal infusion only and combined sucrose stimulation induced similar activity patterns in the putamen, ventral anterior cingulate cortex and hippocampus. Some brain deactivations in the prefrontal and insular cortices were only detected in the presence of oral sucrose stimulation. Finally, activation of the right insular cortex was only induced by combined oral and duodenal sucrose stimulation, while specific activity patterns were detected in the hippocampus and parahippocampal cortex with oral sucrose dissociated from caloric load. This study sheds new light on the brain hedonic responses to sugar and has potential implications to unravel the neuropsychological mechanisms underlying food pleasure and motivation. PMID:25147536

  3. Adaptive convex combination approach for the identification of improper quaternion processes.

    PubMed

    Ujang, Bukhari Che; Jahanchahi, Cyrus; Took, Clive Cheong; Mandic, Danilo P

    2014-01-01

    Data-adaptive optimal modeling and identification of real-world vector sensor data is provided by combining the fractional tap-length (FT) approach with model order selection in the quaternion domain. To account rigorously for the generality of such processes, both second-order circular (proper) and noncircular (improper), the proposed approach in this paper combines the FT length optimization with both the strictly linear quaternion least mean square (QLMS) and widely linear QLMS (WL-QLMS). A collaborative approach based on QLMS and WL-QLMS is shown to both identify the type of processes (proper or improper) and to track their optimal parameters in real time. Analysis shows that monitoring the evolution of the convex mixing parameter within the collaborative approach allows us to track the improperness in real time. Further insight into the properties of those algorithms is provided by establishing a relationship between the steady-state error and optimal model order. The approach is supported by simulations on model order selection and identification of both strictly linear and widely linear quaternion-valued systems, such as those routinely used in renewable energy (wind) and human-centered computing (biomechanics). PMID:24806652

  4. Cracking Process and Stress Field Evolution in Specimen Containing Combined Flaw Under Uniaxial Compression

    NASA Astrophysics Data System (ADS)

    Liu, Ting; Lin, Baiquan; Yang, Wei; Zou, Quanle; Kong, Jia; Yan, Fazhi

    2016-08-01

    Hydraulic slotting, an efficient technique for underground enhanced coal bed methane (ECBM) recovery, has been widely used in China. However, its pressure relief mechanism is unclear. Thus far, only limited research has been conducted on the relationships among the mechanical properties, flaw parameters, and crack propagation patterns of coal after hydraulic slotting. In addition, because of the limitations of test methods, an in-depth information is not available for this purpose. In this work, numerical models of specimens containing combined flaws are established based on particle flow code method. Our results provide insights into the effects of flaw inclination angle on the mechanical properties, crack propagation patterns, and temporal and spatial evolution rules of stress field in specimens containing combined flaws during the loading process. Besides, based on the initiation position and underlying mechanism, three types of crack initiation modes are identified from the failure processes of specimens. Finally, the crack propagation pattern is quantitatively described by the fractal dimension, which is found to be inversely proportional to the uniaxial compressive strength and elastic modulus of the specimen. To verify the rationality of the numerical simulation results, laboratory tests were conducted and their results match well with those obtained from the numerical simulation.

  5. Microstructure characterization of oxidation of aluminized coating prepared by a combined process

    NASA Astrophysics Data System (ADS)

    Liu, H. B.; Tao, J.; Xu, J.; Chen, Z. F.; Sun, X. J.; Xu, Z.

    2008-08-01

    Alumina layer is a good candidate for the tritium penetration barrier that is important in the control of tritium losses due to permeation through structural materials used in high-temperature gas-cooled reactors and in fusion reactors. This paper describes the microstructure of the oxide film of the tritium penetration barrier formed on 316L stainless steel, which was prepared by a combined process, namely, aluminizing and oxidizing treatments using a double glow plasma technology. Microstructure and phase structure of the coatings investigated were examined by scanning electronic microscope (SEM), X-ray diffraction analysis (XRD) and transmission electron microscopy (TEM), respectively. The chemical composition and the chemical states of Al, O elements in the oxidation film were identified by X-ray photoelectron spectroscopy (XPS). After aluminization, the typical microstructure of the coating mainly consisted of an outer high aluminum-containing intermetallic compound layer (Fe 2Al 5 and FeAl) and intermediate ferritic stainless steel (α Fe(Al))layer followed by the austenitic substrate. After the combined process, an oxide layer that consisted of Al 2O 3 and spinel FeAl 2O 4 had been successfully formed on the aluminizing coating surface, with an amorphous outmost surface and an underlying subsurface nanocrystalline structure.

  6. Combination processing of pyrolysis naphtha to obtain aromatic hydrocarbons and high-octane gasolines

    SciTech Connect

    Guseinova, A.D.; Asker-Zade, S.M.; Mubarak, A.R.M.

    1994-07-01

    In the pyrolysis of hydrocarbon feedstocks, production of the desired monomer - ethylene - is accompanied by the formation of pyrolysis naphtha, which has a high content of benzene (30%) and hence is processed solely for benzene recovery. In view of the increased demand for automotive gasolines, this processing scheme is extremely illogical. One of the possible means for rational utilization of pyrolysis naphtha is the combined production of high-octane unleaded gasolines and aromatic hydrocarbons, mainly benzene. With such a scheme, the pyrolysis naphtha and the fractions segregated from the naphtha can be processed separately. Another problem that requires a fast solution is the production of ecologically clean modified gasolines. The production and use of leaded gasolines are being phased out universally, in the interest of improving environmental health. For the improvement of octane number, tetraethyllead is being replaced by oxygen-containing compounds, mainly methyl tert-butyl ether and methyl tert-amyl ether. These oxygenates are used at concentrations of 2.0-2.7% in the gasoline. The content of aromatic hydrocarbons (particularly benzene) is limited to 1%. In this article we will describe an optimal scheme for processing pyrolysis naphtha, yielding benzene and AI-93 high-quality unleaded gasoline.

  7. An Approach to Optimize Size Parameters of Forging by Combining Hot-Processing Map and FEM

    NASA Astrophysics Data System (ADS)

    Hu, H. E.; Wang, X. Y.; Deng, L.

    2014-11-01

    The size parameters of 6061 aluminum alloy rib-web forging were optimized by using hot-processing map and finite element method (FEM) based on high-temperature compression data. The results show that the stress level of the alloy can be represented by a Zener-Holloman parameter in a hyperbolic sine-type equation with the hot deformation activation energy of 343.7 kJ/mol. Dynamic recovery and dynamic recrystallization concurrently preceded during high-temperature deformation of the alloy. Optimal hot-processing parameters for the alloy corresponding to the peak value of 0.42 are 753 K and 0.001 s-1. The instability domain occurs at deformation temperature lower than 653 K. FEM is an available method to validate hot-processing map in actual manufacture by analyzing the effect of corner radius, rib width, and web thickness on workability of rib-web forging of the alloy. Size parameters of die forgings can be optimized conveniently by combining hot-processing map and FEM.

  8. Advanced biorefinery in lower termite-effect of combined pretreatment during the chewing process

    PubMed Central

    2012-01-01

    Background Currently the major barrier in biomass utilization is the lack of an effective pretreatment of plant cell wall so that the carbohydrates can subsequently be hydrolyzed into sugars for fermentation into fuel or chemical molecules. Termites are highly effective in degrading lignocellulosics and thus can be used as model biological systems for studying plant cell wall degradation. Results We discovered a combination of specific structural and compositional modification of the lignin framework and partial degradation of carbohydrates that occurs in softwood with physical chewing by the termite, Coptotermes formosanus, which are critical for efficient cell wall digestion. Comparative studies on the termite-chewed and native (control) softwood tissues at the same size were conducted with the aid of advanced analytical techniques such as pyrolysis gas chromatography mass spectrometry, attenuated total reflectance Fourier transform infrared spectroscopy and thermogravimetry. The results strongly suggest a significant increase in the softwood cellulose enzymatic digestibility after termite chewing, accompanied with utilization of holocellulosic counterparts and an increase in the hydrolysable capacity of lignin collectively. In other words, the termite mechanical chewing process combines with specific biological pretreatment on the lignin counterpart in the plant cell wall, resulting in increased enzymatic cellulose digestibility in vitro. The specific lignin unlocking mechanism at this chewing stage comprises mainly of the cleavage of specific bonds from the lignin network and the modification and redistribution of functional groups in the resulting chewed plant tissue, which better expose the carbohydrate within the plant cell wall. Moreover, cleavage of the bond between the holocellulosic network and lignin molecule during the chewing process results in much better exposure of the biomass carbohydrate. Conclusion Collectively, these data indicate the

  9. Combined SO{sub 2} and NO{sub x} scrubbing process

    SciTech Connect

    Breault, R.W.; Bittenson, S.; Lani, B.

    1998-04-01

    A new wet scrubber process has been developed and undergone preliminary testing to verify the viability of a zero discharge system for SO{sub 2} and NO{sub x} removal. The process combines the Dravo ThioClear{reg_sign} process with Tecogen`s TecoLytic{trademark} process. The integration of these two technologies results a system that removes both SO{sub 2} and NO{sub x} while producing only salable byproducts. These by-products are wall board grade gypsum, magnesium hydroxide and up to 60 weight percent fertilizer grade calcium nitrate solution. Hence, a zero waste, zero discharge wet scrubber system is being demonstrated. The core of the integrated technology consists of two parts. The first part is the ThioClear process. In this process, a highly alkaline magnesium sulfite solution is used to capture the SO{sub 2} in a high velocity (greater than 15 ft/s with a nominal design of 25 ft/s) horizontal scrubber. Once captured, the sulfites are oxidized to sulfates in an oxidizing vessel. The effluent from the oxidizer is reacted with a magnesium-enhanced lime slurry to raise the pH to about 10.5. At this higher pH, 6 to Mg magnesium hydroxide precipitates and 80g or larger gypsum precipitates are formed. Subsequent product purification produces salable gypsum and magnesium hydroxide. The flue gas continues through the high velocity horizontal scrubber passing through the TecoLytic {trademark} section. In this section, high voltage is applied to produce highly reactive excited species. These species interact with the water vapor present to produce hydroxyl radicals while simultaneously oxidizing the NO to NO{sub 2}. The hydroxyl radicals rapidly oxidize the NO{sub 2} to nitric acid which is scrubbed in the second stage of the horizontal scrubber with a calcium nitrate - lime solution.

  10. Treatment of hazardous landfill leachate using Fenton process followed by a combined (UASB/DHS) system.

    PubMed

    Ismail, Sherif; Tawfik, Ahmed

    2016-01-01

    Fenton process for pre-treatment of hazardous landfill leachate (HLL) was investigated. Total, particulate and soluble chemical oxygen demand (CODt, CODp and CODs) removal efficiency amounted to 67%, 47% and 64%, respectively, at pH value of 3.5, molar ratio (H2O2/Fe(2+)) of 5, H2O2 dosage of 25 ml/L and contact time of 15 min. Various treatment scenarios were attempted and focused on studying the effect of pre-catalytic oxidation process on the performance of up-flow anaerobic sludge blanket (UASB), UASB/down-flow hanging sponge (DHS) and DHS system. The results obtained indicated that pre-catalytic oxidation process improved the CODt removal efficiency in the UASB reactor by a value of 51.4%. Overall removal efficiencies of CODt, CODs and CODp were 80 ± 6%, 80 ± 7% and 78 ± 16% for UASB/DHS treating pre-catalytic oxidation effluent, respectively. The removal efficiencies of CODt, CODs and CODp were, respectively, decreased to 54 ± 2%, 49 ± 2% and 71 ± 16% for UASB/DHS system without pre-treatment. However, the results for the combined process (UASB/DHS) system is almost similar to those obtained for UASB reactor treating pre-catalytic oxidation effluent. The DHS system achieved average removal efficiencies of 52 ± 4% for CODt, 51 ± 4% for CODs and 52 ± 15% for CODp. A higher COD fractions removal was obtained when HLL was pre-treated by Fenton reagent. The combined processes provided a removal efficiency of 85 ± 1% for CODt, 85 ± 1% for CODs and 83 ± 8% for CODp. The DHS system is not only effective for organics degradation but also for ammonia oxidation. Almost complete ammonia (NH4-N) removal (92 ± 3.6%) was occurred and the nitrate production amounted to 37 ± 6 mg/L in the treated effluent. This study strongly recommends applying Fenton process followed by DHS system for treatment of HLL. PMID:27054743

  11. Effect of combination processing on the microbial, chemical and sensory quality of ready-to-eat (RTE) vegetable pulav

    NASA Astrophysics Data System (ADS)

    Kumar, R.; George, Johnsy; Rajamanickam, R.; Nataraju, S.; Sabhapathy, S. N.; Bawa, A. S.

    2011-12-01

    Effect of irradiation in combination with retort processing on the shelf life and safety aspects of an ethnic Indian food product like vegetable pulav was investigated. Gamma irradiation of RTE vegetable pulav was carried out at different dosage rates with 60Co followed by retort processing. The combination processed samples were analysed for microbiological, chemical and sensory characteristics. Microbiological analysis indicated that irradiation in combination with retort processing has significantly reduced the microbial loads whereas the chemical and sensory analysis proved that this combination processing is effective in retaining the properties even after storage for one year at ambient conditions. The results also indicated that a minimum irradiation dosage at 4.0 kGy along with retort processing at an F0 value of 2.0 is needed to achieve the desired shelf life with improved organoleptic qualities.

  12. Advanced stratospheric data processing of radio occultation with a variational combination for multifrequency GNSS signals

    NASA Astrophysics Data System (ADS)

    Wee, Tae-Kwon; Kuo, Ying-Hwa

    2014-10-01

    As the understanding of our Earth system grows, the importance of comprehending the structure and processes in the remote stratosphere is intensified and the interest in stratospheric observations mushrooms. Despite its great potential, radio occultation (RO) data have been underused in exploiting the stratosphere. A major reason for the underutilization is the imperfections in preexisting RO data processing methods. We propose an advanced stratospheric RO data processing, where the variational method provides a general framework in which multiple-frequency RO measurements of different quality are effectively combined with the aid of a priori. The variational combination (VAR) is designed to extract the most information from RO measurements, where a priori plays a role of enhancing the observation and attenuating measurement noise. The signal-to-noise ratio (SNR) is found to be a universal quality indicator, which concisely describes the uncertainty of RO measurements in diverse conditions. The measured SNR is used to parameterize a dynamic observation error, which is essential for the VAR to use the observation optimally. Tests with real data show that VAR significantly improves the accuracy of the RO retrieval even in the upper stratosphere, where the RO data were once considered to possess little observational value. When compared with independent radiosonde observations, for instance, the VAR-produced data are more accurate than the analysis from the European Center for Medium-Range Weather Forecasts for which the radiosonde data have been assimilated. The VAR-produced data are also precise enough to reveal the systematic error of the radiosonde data.

  13. Combined effect of ohmic heating and enzyme assisted aqueous extraction process on soy oil recovery.

    PubMed

    Pare, Akash; Nema, Anurag; Singh, V K; Mandhyan, B L

    2014-08-01

    This research describes a new technological process for soybean oil extraction. The process deals with the combined effect of ohmic heating and enzyme assisted aqueous oil extraction process (EAEP) on enhancement of oil recovery from soybean seed. The experimental process consisted of following basic steps, namely, dehulling, wet grinding, enzymatic treatment, ohmic heating, aqueous extraction and centrifugation. The effect of ohmic heating parameters namely electric field strength (EFS), end point temperature (EPT) and holding time (HT) on aqueous oil extraction process were investigated. Three levels of electric field strength (i.e. OH600V, OH750V and OH900V), 3 levels of end point temperature (i.e. 70, 80 and 90 °C) and 3 levels of holding time (i.e. 0, 5 and 10 min.) were taken as independent variables using full factorial design. Percentage oil recovery from soybean by EAEP alone and EAEP coupled with ohmic heating were 53.12 % and 56.86 % to 73 % respectively. The maximum oil recovery (73 %) was obtained when the sample was heated and maintained at 90 °C using electric field strength of OH600V for a holding time of 10 min. The free fatty acid (FFA) of the extracted oil (i.e. in range of 0.97 to 1.29 %) was within the acceptable limit of 3 % (oleic acid) and 0.5-3 % prescribed respectively by PFA and BIS. PMID:25114355

  14. Upgrading InSAR observations by combination with leveling data to understand small scale deformation processes

    NASA Astrophysics Data System (ADS)

    Schenk, A.; Westerhaus, M.

    2012-04-01

    Estimation of surface displacements by InSAR methods has been steadily improved in recent years, mainly by innovative SAR sensors like TerraSAR-X, but also through constantly enhanced processing techniques like persistent scatterer interferometry. Despite its high accuracy plus favorable spatial resolution and coverage, InSAR observation is merely the one dimensional line of sight mapping of the true surface displacement. Thus a combination of InSAR with additional geodetic methods or a precise geodynamic model is inevitable to obtain the full displacement vector. We use leveling data in combination with TerraSAR-X persistent scatterer stacks observed in ascending and descending mode to retrieve the full surface displacement vector. A thin plate spline approximation is modeled for each scalar displacement field to allow for a continuous description of the discrete scattered data set. The thin plate spline model is advantageous as it makes use of general physical properties of deformation processes, like minimum bending energy, without the need for specific deformation geometries and processes. We apply the proposed method to the anthropogenic deformation phenomenon in the city of Staufen (Germany). The city is strongly affected by small scale surface movements with comparably large displacement rates up to 14 mm per month. Well drillings in late 2008 caused mineral conversion of anhydrite layers in depths between 60 and 130 m. The concurrent volume increase causes vertical surface uplift but also horizontal displacements in radial direction. The latter is significant as the inflation source is in comparably shallow depth. With the proposed method we determine the full displacement vector of the Staufen deformation without the use of a geodynamic model. The results of horizontal displacement rates are largely consistent with independent terrestrial observations, whereas some points reveal an overestimation of the westward component due to the glancing intersection

  15. Pilot-scale two-stage process: a combination of acidogenic hydrogenesis and methanogenesis.

    PubMed

    Han, S K; Kim, S H; Kim, H W; Shin, H S

    2005-01-01

    This study was performed to optimize both acidogenic hydrogenesis and methanogenesis, and then to develop a pilot-scale two-stage process producing not only CH4 but also H2. Firstly, acidogenic hydrogenesis of food waste was examined in pilot-scale leaching-bed reactors using dilution rate (D) as a tool to improve the environmental conditions. The maximum efficiency of 71.4% was obtained by adjusting D from 4.5 to 2.5 d(-1) depending on the state of degradation. Secondly, the wastewater from acidogenic hydrogenesis was converted to CH4 in a pilot-scale UASB reactor. The COD removal efficiency exceeded 95% up to the loading rates of 13.1 g COD/Ld, which corresponded to HRT of 0.25 d (6 h). Lastly, a pilot-scale two-stage process was devised based on a combination of acidogenic hydrogenesis and methanogenesis. Over 120 days, the pilot-scale process resulted in large VS reduction of 70.9% at the high loading rate of 12.5 kg VS/m3/d in a short SRT of 8 days. PMID:16180419

  16. Combined production and purification of hydrogen from methanol using steam iron process in fixed bed reactor

    NASA Astrophysics Data System (ADS)

    Campo, R.; Durán, P.; Plou, J.; Herguido, J.; Peña, J. A.

    2013-11-01

    A research work is being conducted to study the combined production and purification of hydrogen by means of redox processes departing from biomass fast pyrolysis oils (bio-oils). To achieve that goal, methanol has been used as featured material because it is the most representative compound of the alcoholic fraction of bio-oils. The study has been carried out in a fixed bed reactor where methanol decomposes in H2 and CO when gets in contact with a reactive solid based in an iron oxide at temperatures above 600 °C. During the first stage of the “steam-iron” process, reactive gases reduce the iron oxide to metallic iron. Afterward, in a following step, the previously reduced iron is reoxidized by steam producing a high purity hydrogen stream. Although coke deposition does exist during the reducing stage, this behaves as inert during the reoxidation process. Coke inert role has been corroborated by GC, SEM and TEM techniques, showing that carbon deposits were constituted by ordered structures (carbon nanotubes). The determination of the hydrogen production along successive cycles allowed the evaluation of the effect of temperature and alternating reactive atmospheres on the stability of the solid, as well as the optimum conditions for such purpose.

  17. A combined recovery process of metals in spent lithium-ion batteries.

    PubMed

    Li, Jinhui; Shi, Pixing; Wang, Zefeng; Chen, Yao; Chang, Chein-Chi

    2009-11-01

    This work proposes a new process of recovering Co from spent Li-ion batteries (LIBs) by a combination of crushing, ultrasonic washing, acid leaching and precipitation, in which ultrasonic washing was used for the first time as an alternative process to improve the recovery efficiency of Co and reduce energy consumption and pollution. Spent LIBs were crushed with a 12 mm aperture screen, and the undersize products were put into an ultrasonic washing container to separate electrode materials from their support substrate. The washed materials were filtered through a 2mm aperture screen to get underflow products, namely recovered electrodes. Ninety two percent of the Co was transferred to the recovered electrodes where Co accounted for 28% of the mass and impurities, including Al, Fe, and Cu, accounted for 2%. The valuable materials left in 2-12 mm products, including Cu, Al, and Fe, were presented as thin sheets, and could be easily separated. The recovered electrodes were leached with 4.0M HCl for 2.0 h, at 80 degrees C, along with concurrent agitation. Ninety seven percent of the Li and 99% of the Co in recovered electrodes could be dissolved. The impurities could be removed at pH 4.5-6.0 with little loss of Co by chemical precipitation. This process is feasible for recycling spent LIBs in scale-up. PMID:19775724

  18. Combining Different Tools for EEG Analysis to Study the Distributed Character of Language Processing.

    PubMed

    Rocha, Armando Freitas da; Foz, Flávia Benevides; Pereira, Alfredo

    2015-01-01

    Recent studies on language processing indicate that language cognition is better understood if assumed to be supported by a distributed intelligent processing system enrolling neurons located all over the cortex, in contrast to reductionism that proposes to localize cognitive functions to specific cortical structures. Here, brain activity was recorded using electroencephalogram while volunteers were listening or reading small texts and had to select pictures that translate meaning of these texts. Several techniques for EEG analysis were used to show this distributed character of neuronal enrollment associated with the comprehension of oral and written descriptive texts. Low Resolution Tomography identified the many different sets (s i ) of neurons activated in several distinct cortical areas by text understanding. Linear correlation was used to calculate the information H(e i ) provided by each electrode of the 10/20 system about the identified s i . H(e i ) Principal Component Analysis (PCA) was used to study the temporal and spatial activation of these sources s i . This analysis evidenced 4 different patterns of H(e i ) covariation that are generated by neurons located at different cortical locations. These results clearly show that the distributed character of language processing is clearly evidenced by combining available EEG technologies. PMID:26713089

  19. Partial Nitrification and Denitrifying Phosphorus Removal in a Pilot-Scale ABR/MBR Combined Process.

    PubMed

    Wu, Peng; Xu, Lezhong; Wang, Jianfang; Huang, Zhenxing; Zhang, Jiachao; Shen, Yaoliang

    2015-11-01

    A pilot-scale combined process consisting of an anaerobic baffled reactor (ABR) and an aerobic membrane bioreactor (MBR) for the purpose of achieving easy management, low energy demands, and high efficiencies on nutrient removal from municipal wastewater was investigated. The process operated at room temperature with hydraulic retention time (HRT) of 7.5 h, recycle ratio 1 of 200%, recycle ratio 2 of 100%, and dissolved oxygen (DO) of 1 mg/L and achieved good effluent quality with chemical oxygen demand (COD) of 25 mg/L, NH4 (+)-N of 4 mg/L, total nitrogen (TN) of 11 mg/L, and total phosphorus (TP) of 0.7 mg/L. The MBR achieved partial nitrification, and NO2 (-)-N has been accumulated (4 mg/L). Efficient short-cut denitrification was occurred in the ABR with a TN removal efficiency of 51%, while the role of denitrification and phosphorus removal removed partial TN (14%). Furthermore, nitrogen was further removed (11%) by simultaneous nitrification and denitrification in the MBR. In addition, phosphorus accumulating organisms in the MBR sufficiently uptake phosphorus; thus, effluent TP further reduced with a TP removal efficiency of 84%. Analysis of fluorescence in situ hybridization (FISH) showed that ammonia oxidizing bacteria (AOB) and phosphorus accumulating organisms (PAOs) were enriched in the process. In addition, the accumulation of NO2 (-)-N was contributed to the inhibition on the activities of the NOB rather than its elimination. PMID:26411352

  20. Combining Different Tools for EEG Analysis to Study the Distributed Character of Language Processing

    PubMed Central

    da Rocha, Armando Freitas; Foz, Flávia Benevides; Pereira, Alfredo

    2015-01-01

    Recent studies on language processing indicate that language cognition is better understood if assumed to be supported by a distributed intelligent processing system enrolling neurons located all over the cortex, in contrast to reductionism that proposes to localize cognitive functions to specific cortical structures. Here, brain activity was recorded using electroencephalogram while volunteers were listening or reading small texts and had to select pictures that translate meaning of these texts. Several techniques for EEG analysis were used to show this distributed character of neuronal enrollment associated with the comprehension of oral and written descriptive texts. Low Resolution Tomography identified the many different sets (si) of neurons activated in several distinct cortical areas by text understanding. Linear correlation was used to calculate the information H(ei) provided by each electrode of the 10/20 system about the identified si. H(ei) Principal Component Analysis (PCA) was used to study the temporal and spatial activation of these sources si. This analysis evidenced 4 different patterns of H(ei) covariation that are generated by neurons located at different cortical locations. These results clearly show that the distributed character of language processing is clearly evidenced by combining available EEG technologies. PMID:26713089

  1. Treatment of water-based printing ink wastewater by Fenton process combined with coagulation.

    PubMed

    Ma, Xiang-Juan; Xia, Hui-Long

    2009-02-15

    Attempts were made in this study to examine the efficiency of Fenton process combined with coagulation for treatment of water-based printing ink wastewater. Parameters affecting the Fenton process, such as pH, dosages of Fenton reagents and the settling time, were determined by using jar test experiments. 86.4% of color and 92.4% of chemical oxygen demand (COD) could be removed at pH 4, 50mg/l H(2)O(2), 25mg/l FeSO(4) and 30min settling time. The coagulation using polyaluminium chloride (PAC) and ferrous sulfate (FeSO(4)) was beneficial to improve the Fenton process treated effluent in reducing the flocs settling time, enhancing color and COD removal. The overall color, COD and suspended solids (SS) removal reached 100%, 93.4% and 87.2% under selected conditions, respectively. Thus this study might offer an effective way for wastewater treatment of water-based ink manufacturer and printing corporation. PMID:18583032

  2. Dewaxing by a combination centrifuge/catalytic process including solvent deoiling

    SciTech Connect

    Hafez, M. M.

    1984-10-16

    A hydrocarbon dewaxing process comprising the steps of: (a) chilling the waxy hydrocarbon feed to be dewaxed in the absence of solvent to crystallize a portion of the hard wax; (b) introducing the hydrocarbon feed to be dewaxed into a centrifuge; (c) centrifuging the solvent free hydrocarbon feed thereby generating two streams, stream (I) comprising a major portion of oil with a minor portion of entrained wax, stream (II) comprising a major portion of wax with a minor portion of entrained oil; (d) adding a dewaxing solvent to stream (II) generating a slurry A; (e) feeding slurry A to a centrifuge thereby separating slurry A into an oil-solvent stream (III) and a wax-solvent stream (IV); (f) passing the oil-solvent stream (III) to a membrane separation unit wherein the stream is separated into a recycle solvent stream and an oil-solvent stream of reduced solvent content (stream V); (g) passing oil-solvent stream (V) to an oil recovery unit wherein the stream is separated into a recycle solvent stream and an oil stream (VI); (h) passing the wax-solvent stream (IV) of step (e) to a wax recovery unit wherein the stream is separated into a recycle solvent stream and a recovered wax product stream; (i) combining wax-oil stream (I) of step (c) with oil stream (VI) of step (g) and passing the combined stream to a catalytic dewaxing unit wherein the combined waxy oil stream, in the presence of hydrogen, is contacted with a catalyst and has its wax content reduced, thereby generating a dewaxed oil product stream.

  3. Tracking of migrating cells under phase-contrast video microscopy with combined mean-shift processes.

    PubMed

    Debeir, O; Van Ham, P; Kiss, R; Decaestecker, C

    2005-06-01

    In this paper, we propose a combination of mean-shift-based tracking processes to establish migrating cell trajectories through in vitro phase-contrast video microscopy. After a recapitulation on how the mean-shift algorithm permits efficient object tracking we describe the proposed extension and apply it to the in vitro cell tracking problem. In this application, the cells are unmarked (i.e., no fluorescent probe is used) and are observed under classical phase-contrast microscopy. By introducing an adaptive combination of several kernels, we address several problems such as variations in size and shape of the tracked objects (e.g., those occurring in the case of cell membrane extensions), the presence of incomplete (or noncontrasted) object boundaries, partially overlapping objects and object splitting (in the case of cell divisions or mitoses). Comparing the tracking results automatically obtained to those generated manually by a human expert, we tested the stability of the different algorithm parameters and their effects on the tracking results. We also show how the method is resistant to a decrease in image resolution and accidental defocusing (which may occur during long experiments, e.g., dozens of hours). Finally, we applied our methodology on cancer cell tracking and showed that cytochalasin-D significantly inhibits cell motility. PMID:15957594

  4. Parametric Studies of the Ejector Process within a Turbine-Based Combined-Cycle Propulsion System

    NASA Technical Reports Server (NTRS)

    Georgiadis, Nicholas J.; Walker, James F.; Trefny, Charles J.

    1999-01-01

    Performance characteristics of the ejector process within a turbine-based combined-cycle (TBCC) propulsion system are investigated using the NPARC Navier-Stokes code. The TBCC concept integrates a turbine engine with a ramjet into a single propulsion system that may efficiently operate from takeoff to high Mach number cruise. At the operating point considered, corresponding to a flight Mach number of 2.0, an ejector serves to mix flow from the ramjet duct with flow from the turbine engine. The combined flow then passes through a diffuser where it is mixed with hydrogen fuel and burned. Three sets of fully turbulent Navier-Stokes calculations are compared with predictions from a cycle code developed specifically for the TBCC propulsion system. A baseline ejector system is investigated first. The Navier-Stokes calculations indicate that the flow leaving the ejector is not completely mixed, which may adversely affect the overall system performance. Two additional sets of calculations are presented; one set that investigated a longer ejector region (to enhance mixing) and a second set which also utilized the longer ejector but replaced the no-slip surfaces of the ejector with slip (inviscid) walls in order to resolve discrepancies with the cycle code. The three sets of Navier-Stokes calculations and the TBCC cycle code predictions are compared to determine the validity of each of the modeling approaches.

  5. Treatment of biomass gasification wastewater using a combined wet air oxidation/activated sludge process

    SciTech Connect

    English, C.J.; Petty, S.E.; Sklarew, D.S.

    1983-02-01

    A lab-scale treatability study for using thermal and biological oxidation to treat a biomass gasification wastewater (BGW) having a chemical oxygen demand (COD) of 46,000 mg/l is described. Wet air oxidation (WA0) at 300/sup 0/C and 13.8 MPa (2000 psi) was used to initially treat the BGW and resulted in a COD reduction of 74%. This was followed by conventional activated sludge treatment using operating conditions typical of municipal sewage treatment plants. This resulted in an additional 95% COD removal. Overall COD reduction for the combined process was 99%. A detailed chemical analysis of the raw BGW and thermal and biological effluents was performed using gas chromatography/mass spectrometry (GC/MS). These results showed a 97% decrease in total extractable organics with WA0 and a 99.6% decrease for combined WA0 and activated sludge treatment. Components of the treated waters tended to be fewer in number and more highly oxidized. An experiment was conducted to determine the amount of COD reduction caused by volatilization during biological treatment. Unfortunately, this did not yield conclusive results. Treatment of BGW using WA0 followed by activated sludge appears to be very effective and investigations at a larger scale are recommended.

  6. Combination of MVDR beamforming and single-channel spectral processing for enhancing noisy and reverberant speech

    NASA Astrophysics Data System (ADS)

    Cauchi, Benjamin; Kodrasi, Ina; Rehr, Robert; Gerlach, Stephan; Jukić, Ante; Gerkmann, Timo; Doclo, Simon; Goetze, Stefan

    2015-12-01

    This paper presents a system aiming at joint dereverberation and noise reduction by applying a combination of a beamformer with a single-channel spectral enhancement scheme. First, a minimum variance distortionless response beamformer with an online estimated noise coherence matrix is used to suppress noise and reverberation. The output of this beamformer is then processed by a single-channel spectral enhancement scheme, based on statistical room acoustics, minimum statistics, and temporal cepstrum smoothing, to suppress residual noise and reverberation. The evaluation is conducted using the REVERB challenge corpus, designed to evaluate speech enhancement algorithms in the presence of both reverberation and noise. The proposed system is evaluated using instrumental speech quality measures, the performance of an automatic speech recognition system, and a subjective evaluation of the speech quality based on a MUSHRA test. The performance achieved by beamforming, single-channel spectral enhancement, and their combination are compared, and experimental results show that the proposed system is effective in suppressing both reverberation and noise while improving the speech quality. The achieved improvements are particularly significant in conditions with high reverberation times.

  7. Use of uniform designs in combination with neural networks for viral infection process development.

    PubMed

    Buenno, Laís Hara; Rocha, José Celso; Leme, Jaci; Caricati, Celso Pereira; Tonso, Aldo; Fernández Núñez, Eutimio Gustavo

    2015-01-01

    This work aimed to compare the predictive capacity of empirical models, based on the uniform design utilization combined to artificial neural networks with respect to classical factorial designs in bioprocess, using as example the rabies virus replication in BHK-21 cells. The viral infection process parameters under study were temperature (34°C, 37°C), multiplicity of infection (0.04, 0.07, 0.1), times of infection, and harvest (24, 48, 72 hours) and the monitored output parameter was viral production. A multilevel factorial experimental design was performed for the study of this system. Fractions of this experimental approach (18, 24, 30, 36 and 42 runs), defined according uniform designs, were used as alternative for modelling through artificial neural network and thereafter an output variable optimization was carried out by means of genetic algorithm methodology. Model prediction capacities for all uniform design approaches under study were better than that found for classical factorial design approach. It was demonstrated that uniform design in combination with artificial neural network could be an efficient experimental approach for modelling complex bioprocess like viral production. For the present study case, 67% of experimental resources were saved when compared to a classical factorial design approach. In the near future, this strategy could replace the established factorial designs used in the bioprocess development activities performed within biopharmaceutical organizations because of the improvements gained in the economics of experimentation that do not sacrifice the quality of decisions. PMID:25627917

  8. Knowledge Extraction from MEDLINE by Combining Clustering with Natural Language Processing

    PubMed Central

    Miñarro-Giménez, Jose A.; Kreuzthaler, Markus; Schulz, Stefan

    2015-01-01

    The identification of relevant predicates between co-occurring concepts in scientific literature databases like MEDLINE is crucial for using these sources for knowledge extraction, in order to obtain meaningful biomedical predications as subject-predicate-object triples. We consider the manually assigned MeSH indexing terms (main headings and subheadings) in MEDLINE records as a rich resource for extracting a broad range of domain knowledge. In this paper, we explore the combination of a clustering method for co-occurring concepts based on their related MeSH subheadings in MEDLINE with the use of SemRep, a natural language processing engine, which extracts predications from free text documents. As a result, we generated sets of clusters of co-occurring concepts and identified the most significant predicates for each cluster. The association of such predicates with the co-occurrences of the resulting clusters produces the list of predications, which were checked for relevance. PMID:26958228

  9. Processing of combined domestic bath and laundry waste waters for reuse as commode flushing water

    NASA Technical Reports Server (NTRS)

    Hypes, W. D.; Batten, C. E.; Wilkins, J. R.

    1975-01-01

    An experimental investigation of processes and system configurations for reclaiming combined bath and laundry waste waters for reuse as commode flush water was conducted. A 90-min recycle flow was effective in removing particulates and in improving other physical characteristics to the extent that the filtered water was subjectively acceptable for reuse. The addition of a charcoal filter resulted in noticeable improvements in color, turbidity, and suds elimination. Heating and chlorination of the waste waters were investigated for reducing total organism counts and eliminating coliform organisms. A temperature of 335.9 K (145 F) for 30 min and chlorine concentrations of 20 mg/l in the collection tank followed by 10 mg/l in the storage tank were determined to be adequate for this purpose. Water volume relationships and energy-use rates for the waste water reuse systems are also discussed.

  10. Separation and purification of hemicellulose-derived saccharides from wood hydrolysate by combined process.

    PubMed

    Wang, Xiaojun; Zhuang, Jingshun; Jiang, Jungang; Fu, Yingjuan; Qin, Menghua; Wang, Zhaojiang

    2015-11-01

    Prehydrolysis of wood biomass prior to kraft cooking provides a stream containing hemicellulose-derived saccharides (HDSs) but also undesired non-saccharide compounds (NSCs) that were resulted from lignin depolymerization and carbohydrate degradation. In this study, a combined process consisting of lime treatment, resin adsorption, and gel filtration was developed to separate HDSs from NSCs. The macro-lignin impurities that accounted for 32.2% of NSCs were removed by lime treatment at 1.2% dosage with negligible HDSs loss. The majority of NSCs, lignin-derived phenolics, were eliminated by mixed bed ion exchange resin, elevating NSCs removal to 94.0%. The remaining NSCs, furfural and hydroxymethylfurfural, were excluded from HDSs by gel filtration. Chemical composition analysis showed that xylooligosaccharides (XOS) with the degree of depolymerization from 2 to 6 accounted for 28% of the total purified HDSs. PMID:26275826

  11. A combined kinetic and thermodynamic approach for the interpretation of continuous-flow heterogeneous catalytic processes.

    PubMed

    Bortolini, Olga; Cavazzini, Alberto; Giovannini, Pier Paolo; Greco, Roberto; Marchetti, Nicola; Massi, Alessandro; Pasti, Luisa

    2013-06-10

    The heterogeneous proline-catalyzed aldol reaction was investigated under continuous-flow conditions by means of a packed-bed microreactor. Reaction-progress kinetic analysis (RPKA) was used in combination with nonlinear chromatography for the interpretation, under synthetically relevant conditions, of important mechanistic aspects of the heterogeneous catalytic process at a molecular level. The information gathered by RPKA and nonlinear chromatography proved to be highly complementary and allowed for the assessment of optimal operating variables. In particular, the determination of the rate-determining step was pivotal for optimizing the feed composition. On the other hand, the competitive product inhibition was responsible for the unexpected decrease in the reaction yield following an apparently obvious variation in the feed composition. The study was facilitated by a suitable 2D instrumental arrangement for simultaneous flow reaction and online flow-injection analysis. PMID:23589216

  12. Process combinations for the manufacturing of metal-plastic hybrid parts

    NASA Astrophysics Data System (ADS)

    Drossel, W.-G.; Lies, C.; Albert, A.; Haase, R.; Müller, R.; Scholz, P.

    2016-03-01

    The usage of innovative lightweight materials and processing technologies gains importance in manifold industrial scopes. Especially for moving parts and mobility products the weight is decisively. The aerospace and automotive industries use light and high-strength materials to reduce weight and energy consumption and thereby improve the performance of their products. Composites with reinforced plastics are of particular importance. They offer a low density in combination with high specific stiffness and strength. A pure material substitution through reinforced plastics is still not economical. The approach of using hybrid metal-plastic structures with the principle of “using the right material at the right place” is a promising solution for the economical realization of lightweight structures with a high achievement potential. The article shows four innovative manufacturing possibilities for the realization of metal-plastic-hybrid parts.

  13. Advanced oxidation processes for wastewater treatment using a plasma/ozone combination system

    NASA Astrophysics Data System (ADS)

    Takeuchi, Nozomi; Kamiya, Yu; Saeki, Ryo; Tachibana, Kosuke; Yasuoka, Koichi

    2014-10-01

    Advanced oxidation process (AOP) using OH radicals is a promising method for the decomposition of persistent organic compounds in wastewater. Although many types of plasma reactors have been developed for the AOP, they are unsuitable for the complete decomposition of highly concentrated organic compounds. The reason for the incomplete decomposition is that OH radicals, particularly at a high density, recombine among themselves to form hydrogen peroxide. We have developed a combination plasma reactor in which ozone gas is fed, so that the generated hydrogen peroxide is re-converted to OH radicals. Pulsed plasmas generated within oxygen bubbles supply not only OH radicals but also hydrogen peroxide into wastewater. The total organic carbon (TOC) of the wastewater was more than 1 gTOC/L. The TOC values decreased linearly with time, and the persistent compounds which could not be decomposed by ozone were completely mineralized within 8 h of operation.

  14. A new approach to study local corrosion processes on steel surfaces by combining different microscopic techniques

    NASA Astrophysics Data System (ADS)

    Heyer, A.; D'Souza, F.; Bruin, A.; Ferrari, G.; Mol, J. M. C.; de Wit, J. H. W.

    2012-09-01

    Corrosion studies of materials on the micro or even nano-scale level are cumbersome due to instrumental limitations and handling procedures. If biological processes are involved the spatial resolution is even more important and sample preparation is usually the limitation. Attachment of bacteria on stainless steel surface is a complex interfacial process including interactions of bacterial cells and bacterial extracellular polymeric substances with the surface. To overcome the limitations in sample preparations and resolution we present a new stainless steel sample holder to switch among epifluorescent microscope (EFM), AFM and SEM at exactly the same position. Exemplary bacterial accumulation was studied by staining the bacterial DNA with a fluorescent dye over time. It was possible to distinguish among bacteria and other surface characteristic such as deformations or grain structures. Also surface topographic features such as roughness at the grain boundaries and deposits were quantified. All three techniques complement one another in the way that AFM is a high-resolution technique that does not allow to distinguish directly bacterial cell structures, whereas EFM offers excellent bacterial identification based on staining at a low resolution that can complement AFM images. Application of SEM in the last step will reveal inclusions and grain structure and combined with EDX gives the composition of the substrate, inclusions and corrosion deposit. The combination of the three high-resolution techniques enables a more detailed understanding of surface phenomena. The method itself is quite elegant and easy to handle which is an important aspect in materials research, especially when a high sample throughput is needed.

  15. Evaluation of a Combined Cyclone and Gas Filtration System for Particulate Removal in the Gasification Process

    SciTech Connect

    Rizzo, Jeffrey J.

    2010-04-30

    The Wabash gasification facility, owned and operated by sgSolutions LLC, is one of the largest single train solid fuel gasification facilities in the world capable of transforming 2,000 tons per day of petroleum coke or 2,600 tons per day of bituminous coal into synthetic gas for electrical power generation. The Wabash plant utilizes Phillips66 proprietary E-Gas (TM) Gasification Process to convert solid fuels such as petroleum coke or coal into synthetic gas that is fed to a combined cycle combustion turbine power generation facility. During plant startup in 1995, reliability issues were realized in the gas filtration portion of the gasification process. To address these issues, a slipstream test unit was constructed at the Wabash facility to test various filter designs, materials and process conditions for potential reliability improvement. The char filtration slipstream unit provided a way of testing new materials, maintenance procedures, and process changes without the risk of stopping commercial production in the facility. It also greatly reduced maintenance expenditures associated with full scale testing in the commercial plant. This char filtration slipstream unit was installed with assistance from the United States Department of Energy (built under DOE Contract No. DE-FC26-97FT34158) and began initial testing in November of 1997. It has proven to be extremely beneficial in the advancement of the E-Gas (TM) char removal technology by accurately predicting filter behavior and potential failure mechanisms that would occur in the commercial process. After completing four (4) years of testing various filter types and configurations on numerous gasification feed stocks, a decision was made to investigate the economic and reliability effects of using a particulate removal gas cyclone upstream of the current gas filtration unit. A paper study had indicated that there was a real potential to lower both installed capital and operating costs by implementing a char

  16. Combined reactions thermomechanical processing applied to ferromagnetic iron-palladium binary alloys

    NASA Astrophysics Data System (ADS)

    Cantando, Elizabeth Dawn

    2011-12-01

    The aim of this thesis was to use a combination of thermomechanical processing and heat treatment, including magnetic field annealing, to tailor ultra-fine microstructures with enhanced properties in ferromagnetic alloys. The combined reactions strategy involves the use of thermomechanical processing to induce two or more solid-state reactions to occur concomitantly, synergistically and / or sequentially during microstructural development, e.g. severe plastic deformation followed by recrystallization in tandem with precipitation, ordering and / or decomposition. The specific thrust is aimed at producing exchange-coupled nanocomposite structures in off-stoichiometric Fe-Pd alloys, which might be expected to form two-phase mixtures of magnetically soft ferrite (alpha) and the magnetically hard L10 intermetallic phase. The severe plastic deformation of the parent phase serves to enhance diffusion kinetics in addition to catalyzing novel reaction paths and microstructural development as the system relaxes toward equilibrium. Vibrating sample magnetometry (VSM), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were performed to investigate the microstructure and the magnetic properties of combined reactions transformed hypo-stoichiometric iron-palladium. Two distinct microstructures were observed to develop in these alloys, resulting from two different modes of solid-state transformation. Conventional aging of the solutionized alloys resulted in eutectoid decomposition whereby the ferrite and L10 phases precipitate a cellular product on a 100nm length scale that coarsens as aging progresses. In contrast, aging the deformed alloys produces a nanoscale lamellar composite structure consisting of alternate L10 and metastable FCC phases, on a scale of 10nm. The finer scale product appears to derive from pseudospinodal decomposition, while ferrite is simultaneously observed to precipitate heterogeneously on grain

  17. A combined SO{sub 2} and NO{sub x} scrubbing process

    SciTech Connect

    Breault, R.W.; Bittenson, S.; Lani, B.

    1998-07-01

    A new wet scrubber process has been developed and undergone preliminary testing to verify the viability of a zero discharge system for SO{sub 2} and NO{sub x} removal. The process combines the Dravo ThioClear{reg{underscore}sign} process with Tecogen's TecoLytic{trademark} process. The integration of these two technologies results a system that removes both SO{sub 2} and NO{sub x} while producing only salable byproducts. These by-products are wall board grade gypsum, magnesium hydroxide and up to 60 weight percent fertilizer grade calcium nitrate solution. Hence, a zero waste, zero discharge wet scrubber system is being demonstrated. The core of the integrated technology consists of two parts. The first part is the ThioClear process. In this process, a highly alkaline magnesium sulfite solution is used to capture the SO{sub 2} in a high velocity (greater than 15 ft/s with a nominal design of 25 ft/s) horizontal scrubber. Once captured, the sulfites are oxidized to sulfates in an oxidizing vessel. The effluent from the oxidizer is reacted with a magnesium-enhanced lime slurry to raise the pH to about 10.5. At this higher pH, 6 to 10{micro} magnesium hydroxide precipitates and 80{micro} or larger gypsum precipitates are formed. Subsequent product purification produces salable gypsum and magnesium hydroxide. The flue gas continues through the high velocity horizontal scrubber passing through the TecoLytic{trademark} section. In this section, high voltage is applied to produce highly reactive excited species. These species interact with the water vapor present to produce hydroxyl radicals while simultaneously oxidizing the NO to NO{sub 2}. The hydroxyl radicals rapidly oxidize the NO{sub 2} to nitric acid which is scrubbed in the second stage of the horizontal scrubber with a calcium nitrate--lime solution. Bench scale tests have shown high potential. A pilot plant facility has been installed at Cincinnati Gas and Electric Company's Miami Fort facility. Pilot tests at

  18. Continuous-flow combined process of nitritation and ANAMMOX for treatment of landfill leachate.

    PubMed

    Wang, Zhong; Peng, Yongzhen; Miao, Lei; Cao, Tianhao; Zhang, Fangzhai; Wang, Shuying; Han, Jinhao

    2016-08-01

    Due to the difficulty in removing nitrogen from landfill leachate, a combined continuous-flow process of nitritation and anammox was applied to process mature leachate. The transformation rate of ammonia and nitrite accumulation ratio in A/O reactor were kept above 95% and 92% respectively through associated inhibition of free ammonia (FA) and free nitrous acid (FNA) to NOB. The total nitrogen volumetric load of anammox in an UASB reactor was brought up from 0.5kg/(m(3)·d) to 1.2kg/(m(3)·d) by gradually increasing influent substrate concentration and reducing hydraulic retention time (HRT). The results show that COD from mature leachate did not bring obvious inhibition effects to anammox. Under concentrations of influent ammonia and COD which were respectively 1330mg/L and 2250mg/L, the removal efficiencies of TN and COD reached 94% and 62% respectively. In the quantitative PCR reactions, the proportions occupied by AOB, NOB and anammox in A/O were 11.39%, 1.76% and 0.05% respectively; and proportions of those in UASB were 0.35%, 4.01% and 7.78% respectively. PMID:27176671

  19. Combined ultrasound and Fenton (US-Fenton) process for the treatment of ammunition wastewater.

    PubMed

    Li, Yangang; Hsieh, Wen-Pin; Mahmudov, Rovshan; Wei, Xiaomei; Huang, C P

    2013-01-15

    A wastewater collected from a regional ammunition process site was treated with combined US-Fenton process. Factors such as pH, temperature, reaction time, US energy intensity, initial TOC concentration, and the molar ratio of iron to hydrogen peroxide that might affect the treatment efficiency were investigated. The removal of TOC, COD, and color increased with decreasing pH and increasing temperature and US intensity. Color was removed rapidly reaching 85% in 10 min; whereas TOC and COD were removed slowly, only about 20% for both in 10 min and approaching 65 and 92% removal in 120 min, respectively. The optimal molar ratio of Fe(II) to H(2)O(2) for TOC and COD removal was 500. The results showed that the change in the average carbon oxidation number (ACON) was parallel to that of the removal efficiency of TOC, COD, and color. The toxicity of treated wastewater was reduced as assessed by the respiration rate of Escherichia coli. PMID:23274940

  20. Characteristics of electrolysis, ozonation, and their combination process on treatment of municipal wastewater.

    PubMed

    Kishimoto, Naoyuki; Morita, Yukako; Tsuno, Hiroshi; Yasuda, Yuuji

    2007-09-01

    The characteristics of municipal wastewater treatment by electrolysis, ozonation, and combination processes of electrolysis and aeration using three gaseous species (nitrogen [N2], oxygen [O2], and ozone [O3]) were discussed in this research using ruthenium oxide (RuO2)-coated titanium anodes and stainless-steel (SUS304) cathodes. Electrolysis and electrolysis with nitrogen aeration were characterized by a rapid decrease in 5-day biochemical oxygen demand (BODs) and total nitrogen and a slow decrease in chemical oxygen demand (COD). In contrast, ozonation, electrolysis with oxygen aeration, and electrolysis with ozone aeration were characterized by transformation of persistent organic matter to biodegradable matter and preservation of total nitrogen. The best energy efficiency in removing BOD5 and total nitrogen was demonstrated by electrolysis, as a result of direct anodic oxidation and indirect oxidation with free chlorine produced from the chloride ion (Cl-) at the anodes. However, electrolysis with ozone aeration was found to be superior to the other processes, in terms of its energy efficiency in removing COD and its ability to remove COD completely, as a result of hydroxyl radical (*OH) production via cathodic reduction of ozone. PMID:17910373

  1. Combination of algae and yeast fermentation for an integrated process to produce single cell oils.

    PubMed

    Dillschneider, R; Schulze, I; Neumann, A; Posten, C; Syldatk, C

    2014-09-01

    Economic and ecological reasons cause the industry to develop new innovative bio-based processes for the production of oil as renewable feedstock. Petroleum resources are expected to be depleted in the near future. Plant oils as sole substituent are highly criticized because of the competitive utilization of the agricultural area for food and energy feedstock production. Microbial lipids of oleaginous microorganisms are therefore a suitable alternative. To decrease production costs of microbial lipids and gain spatial independence from industrial sites of CO2 emission, a combination of heterotrophic and phototrophic cultivation with integrated CO2 recycling was investigated in this study. A feasibility study on a semi-pilot scale was conducted and showed that the cultivation of the oleaginous yeast Cryptococcus curvatus on a 1.2-L scale was sufficient to supply a culture of the oleaginous microalgae Phaeodactylum tricornutum in a 21-L bubble column reactor with CO2 while single cell oils were produced in both processes due to a nutrient limitation. PMID:24943047

  2. Treatment of olive oil mill wastewater by combined process electro-Fenton reaction and anaerobic digestion.

    PubMed

    Khoufi, Sonia; Aloui, Fathi; Sayadi, Sami

    2006-06-01

    In this work, we investigated an integrated technology for the treatment of the recalcitrant contaminants of olive mill wastewaters (OMW), allowing water recovery and reuse for agricultural purposes. The method involves an electrochemical pre-treatment step of the wastewater using the electro-Fenton reaction followed by an anaerobic bio-treatment. The electro-Fenton process removed 65.8% of the total polyphenolic compounds and subsequently decreased the OMW toxicity from 100% to 66.9%, which resulted in improving the performance of the anaerobic digestion. A continuous lab-scale methanogenic reactor was operated at a loading rate of 10 g chemical oxygen demand (COD)l(-1) d(-1) without any apparent toxicity. Furthermore, in the combined process, a high overall reduction in COD, suspended solids, polyphenols and lipid content was achieved by the two successive stages. This result opens promising perspectives since its conception as a fast and cheap pre-treatment prior to conventional anaerobic post-treatment. The use of electro-coagulation as post-treatment technology completely detoxified the anaerobic effluent and removed its toxic compounds. PMID:16678883

  3. Pretreatment of rice straw with combined process using dilute sulfuric acid and aqueous ammonia

    PubMed Central

    2013-01-01

    Background Use of lignocellulosic biomass has received attention lately because it can be converted into various versatile chemical compounds by biological processes. In this study, a two-step pretreatment with dilute sulfuric acid and aqueous ammonia was performed efficiently on rice straw to obtain fermentable sugar. The soaking in aqueous ammonia process was also optimized by a statistical method. Results Response surface methodology was employed. The determination coefficient (R2) value was found to be 0.9607 and the coefficient of variance was 6.77. The optimal pretreatment conditions were a temperature of 42.75°C, an aqueous ammonia concentration of 20.93%, and a reaction time of 48 h. The optimal enzyme concentration for saccharification was 30 filter paper units. The crystallinity index was approximately 60.23% and the Fourier transform infrared results showed the distinct peaks of glucan. Ethanol production using Saccharomyces cerevisiae K35 was performed to verify whether the glucose saccharified from rice straw was fermentable. Conclusions The combined pretreatment using dilute sulfuric acid and aqueous ammonia on rice straw efficiently yielded fermentable sugar and achieved almost the same crystallinity index as that of α-cellulose. PMID:23898802

  4. Combination of digital signal processing methods towards an improved analysis algorithm for structural health monitoring.

    NASA Astrophysics Data System (ADS)

    Pentaris, Fragkiskos P.; Makris, John P.

    2013-04-01

    In Structural Health Monitoring (SHM) is of great importance to reveal valuable information from the recorded SHM data that could be used to predict or indicate structural fault or damage in a building. In this work a combination of digital signal processing methods, namely FFT along with Wavelet Transform is applied, together with a proposed algorithm to study frequency dispersion, in order to depict non-linear characteristics of SHM data collected in two university buildings under natural or anthropogenic excitation. The selected buildings are of great importance from civil protection point of view, as there are the premises of a public higher education institute, undergoing high use, stress, visit from academic staff and students. The SHM data are collected from two neighboring buildings that have different age (4 and 18 years old respectively). Proposed digital signal processing methods are applied to the data, presenting a comparison of the structural behavior of both buildings in response to seismic activity, weather conditions and man-made activity. Acknowledgments This work was supported in part by the Archimedes III Program of the Ministry of Education of Greece, through the Operational Program "Educational and Lifelong Learning", in the framework of the project entitled «Interdisciplinary Multi-Scale Research of Earthquake Physics and Seismotectonics at the front of the Hellenic Arc (IMPACT-ARC) » and is co-financed by the European Union (European Social Fund) and Greek National Fund.

  5. Combined osmodehydration and high pressure processing on the enzyme stability and antioxidant capacity of a grapefruit jam

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A combined osmodehydration process and high pressure treatment (OD-HHP) was developed for grapefruit jam preservation. The inactivation kinetics of pectinmethylesterase (PME) and peroxidase (POD) in the osmodehydrated (OD) jam treated by combined thermal (45-75°C) and high pressure (550–700 MPa) pro...

  6. Removal of lead from cathode ray tube funnel glass by combined thermal treatment and leaching processes.

    PubMed

    Okada, Takashi; Nishimura, Fumihiro; Yonezawa, Susumu

    2015-11-01

    The reduction melting process is useful to recover toxic lead from cathode ray tube funnel glass; however, this process generates SiO2-containing residues that are disposed in landfill sites. To reduce the volume of landfill waste, it is desirable to recycle the SiO2-containing residues. In this study, SiO2 powder was recovered from the residue generated by reduction melting. The funnel glass was treated by a process combining reduction melting at 1000°C and annealing at 700°C to recover a large quantity of lead from the glass. The oxide phase generated by the thermal treatment was subjected to water leaching and acid leaching with 1M hydrochloric acid to wash out unwanted non-SiO2 elements for SiO2 purification. In the water washing, the oxide phase was microparticulated, and porous structures formed on the oxide surfaces. This increased the surface area of the oxide phase, and the unwanted elements were effectively washed out during the subsequent acid leaching. By controlling the acid leaching time and the amount of added acid, porous and amorphous SiO2 (purity >95 wt%) was recovered. In the obtained SiO2-concentrated product, unrecovered lead remained at concentrations of 0.25-0.79 wt%. When the Na2CO3 dosage in the thermal treatment was increased, the lead removal by acid leaching was enhanced, and the lead concentration in the obtained product decreased to 0.016 wt%. PMID:26022339

  7. Intensification of degradation of methomyl (carbamate group pesticide) by using the combination of ultrasonic cavitation and process intensifying additives.

    PubMed

    Raut-Jadhav, Sunita; Pinjari, Dipak V; Saini, Daulat R; Sonawane, Shirish H; Pandit, Aniruddha B

    2016-07-01

    In the present work, the degradation of methomyl has been carried out by using the ultrasound cavitation (US) and its combination with H2O2, Fenton and photo-Fenton process. The study of effect of operating pH and ultrasound power density has indicated that maximum extent of degradation of 28.57% could be obtained at the optimal pH of 2.5 and power density of 0.155 W/mL. Application of US in combination with H2O2, Fenton and photo-Fenton process has further accelerated the rate of degradation of methomyl with complete degradation of methomyl in 27 min, 18 min and 9 min respectively. Mineralization study has proved that a combination of US and photo-Fenton process is the most effective process with maximum extent of mineralization of 78.8%. Comparison of energy efficiency and cost effectiveness of various processes has indicated that the electrical cost of 79892.34Rs./m(3) for ultrasonic degradation of methomyl has drastically reduced to 2277.00Rs./m(3), 1518.00Rs./m(3) and 807.58Rs./m(3) by using US in combination with H2O2, Fenton and photo-Fenton process respectively. The cost analysis has also indicated that the combination of US and photo-Fenton process is the most energy efficient and cost effective process. PMID:26964933

  8. Mechanism of Bacterial Inactivation by (+)-Limonene and Its Potential Use in Food Preservation Combined Processes

    PubMed Central

    Espina, Laura; Gelaw, Tilahun K.; de Lamo-Castellví, Sílvia; Pagán, Rafael; García-Gonzalo, Diego

    2013-01-01

    This work explores the bactericidal effect of (+)-limonene, the major constituent of citrus fruits' essential oils, against E. coli. The degree of E. coli BJ4 inactivation achieved by (+)-limonene was influenced by the pH of the treatment medium, being more bactericidal at pH 4.0 than at pH 7.0. Deletion of rpoS and exposure to a sub-lethal heat or an acid shock did not modify E. coli BJ4 resistance to (+)-limonene. However, exposure to a sub-lethal cold shock decreased its resistance to (+)-limonene. Although no sub-lethal injury was detected in the cell envelopes after exposure to (+)-limonene by the selective-plating technique, the uptake of propidium iodide by inactivated E. coli BJ4 cells pointed out these structures as important targets in the mechanism of action. Attenuated Total Reflectance Infrared Microspectroscopy (ATR-IRMS) allowed identification of altered E. coli BJ4 structures after (+)-limonene treatments as a function of the treatment pH: β-sheet proteins at pH 4.0 and phosphodiester bonds at pH 7.0. The increased sensitivity to (+)-limonene observed at pH 4.0 in an E. coli MC4100 lptD4213 mutant with an increased outer membrane permeability along with the identification of altered β-sheet proteins by ATR-IRMS indicated the importance of this structure in the mechanism of action of (+)-limonene. The study of mechanism of inactivation by (+)-limonene led to the design of a synergistic combined process with heat for the inactivation of the pathogen E. coli O157:H7 in fruit juices. These results show the potential of (+)-limonene in food preservation, either acting alone or in combination with lethal heat treatments. PMID:23424676

  9. Combined effects of leaf litter and soil microsite on decomposition process in arid rangelands.

    PubMed

    Carrera, Analía Lorena; Bertiller, Mónica Beatriz

    2013-01-15

    The objective of this study was to analyze the combined effects of leaf litter quality and soil properties on litter decomposition and soil nitrogen (N) mineralization at conserved (C) and disturbed by sheep grazing (D) vegetation states in arid rangelands of the Patagonian Monte. It was hypothesized that spatial differences in soil inorganic-N levels have larger impact on decomposition processes of non-recalcitrant than recalcitrant leaf litter (low and high concentration of secondary compounds, respectively). Leaf litter and upper soil were extracted from modal size plant patches (patch microsite) and the associated inter-patch area (inter-patch microsite) in C and D. Leaf litter was pooled per vegetation state and soil was pooled combining vegetation state and microsite. Concentrations of N and secondary compounds in leaf litter and total and inorganic-N in soil were assessed at each pooled sample. Leaf litter decay and soil N mineralization at microsites of C and D were estimated in 160 microcosms incubated at field capacity (16 month). C soils had higher total N than D soils (0.58 and 0.41 mg/g, respectively). Patch soil of C and inter-patch soil of D exhibited the highest values of inorganic-N (8.8 and 8.4 μg/g, respectively). Leaf litter of C was less recalcitrant and decomposed faster than that of D. Non-recalcitrant leaf litter decay and induced soil N mineralization had larger variation among microsites (coefficients of variation = 25 and 41%, respectively) than recalcitrant leaf litter (coefficients of variation = 12 and 32%, respectively). Changes in the canopy structure induced by grazing disturbance increased leaf litter recalcitrance, and reduced litter decay and soil N mineralization, independently of soil N levels. This highlights the importance of the combined effects of soil and leaf litter properties on N cycling probably with consequences for vegetation reestablishment and dynamics, rangeland resistance and resilience with implications

  10. A dynamic process model of a natural gas combined cycle -- Model development with startup and shutdown simulations

    SciTech Connect

    Liese, Eric; Zitney, Stephen E.

    2013-01-01

    Research in dynamic process simulation for integrated gasification combined cycles (IGCC) with carbon capture has been ongoing at the National Energy Technology Laboratory (NETL), culminating in a full operator training simulator (OTS) and immersive training simulator (ITS) for use in both operator training and research. A derivative work of the IGCC dynamic simulator has been a modification of the combined cycle section to more closely represent a typical natural gas fired combined cycle (NGCC). This paper describes the NGCC dynamic process model and highlights some of the simulator’s current capabilities through a particular startup and shutdown scenario.

  11. A COMBINED REACTION/PRODUCT RECOVERY PROCESS FOR THE CONTINUOUS PRODUCTION OF BIODIESEL

    SciTech Connect

    Birdwell, J.F., Jr.; McFarlane, J.; Schuh, D.L.; Tsouris, C; Day, J.N.; Hullette, J.N.

    2009-09-01

    Oak Ridge National Laboratory (ORNL) and Nu-Energie, LLC entered into a Cooperative Research And Development Agreement (CRADA) for the purpose of demonstrating and deploying a novel technology for the continuous synthesis and recovery of biodiesel from the transesterification of triglycerides. The focus of the work was the demonstration of a combination Couette reactor and centrifugal separator - an invention of ORNL researchers - that facilitates both product synthesis and recovery from reaction byproducts in the same apparatus. At present, transesterification of triglycerides to produce biodiesel is performed in batch-type reactors with an excess of a chemical catalyst, which is required to achieve high reactant conversions in reasonable reaction times (e.g., 1 hour). The need for long reactor residence times requires use of large reactors and ancillary equipment (e.g., feed and product tankage), and correspondingly large facilities, in order to obtain the economy of scale required to make the process economically viable. Hence, the goal of this CRADA was to demonstrate successful, extended operation of a laboratory-scale reactor/separator prototype to process typical industrial reactant materials, and to design, fabricate, and test a production-scale unit for deployment at the biodiesel production site. Because of its ease of operation, rapid attainment of steady state, high mass transfer and phase separation efficiencies, and compact size, a centrifugal contactor was chosen for intensification of the biodiesel production process. The unit was modified to increase the residence time from a few seconds to minutes*. For this application, liquid phases were introduced into the reactor as separate streams. One was composed of the methanol and base catalyst and the other was the soy oil used in the experiments. Following reaction in the mixing zone, the immiscible glycerine and methyl ester products were separated in the high speed rotor and collected from separate

  12. Combined effects of organic aerosol loading and fog processing on organic aerosols oxidation and composition

    NASA Astrophysics Data System (ADS)

    Chakraborty, Abhishek; Tripathi, Sachchida; Gupta, Tarun

    2016-04-01

    Fog is a natural meteorological phenomenon that occurs throughout the world, it contains substantial quantity of liquid water and generally seen as a natural cleansing agent but it also has the potential to form highly oxidized secondary organic aerosols (SOA) via aqueous processing of ambient aerosols. On the other hand higher organic aerosols (OA) loading tend to decrease the overall oxidation level (O/C) of the particle phase organics, due to enhanced partitioning of less oxidized organics from gas to particle phase. However, combined impact of these two parameters; aqueous oxidation and OA loading, on the overall oxidation ratio (O/C) of ambient OA has never been studied. To assess this, real time ambient sampling using HR-ToF-AMS was carried out at Kanpur, India from 15 December 2014 - 10 February 2015. In first 3 weeks of this campaign, very high OA loading is (134 ± 42 μg/m3) observed (termed as high loading or HL period) while loading is substantially reduced from 2nd January, 2016 (56 ± 20 μg/m3, termed as low loading or LL period) . However, both the loading period was affected by several fog episodes (10 in HL and 7 in LL), thus providing the opportunity of studying the combined effects of fog and OA loading on OA oxidation. It is found that O/C ratio is very strongly anti-correlated with OA loading in both the loading period, however, slope of this ant-correlation is much steep during HL period than in LL period. Source apportionment of OA revealed that there is drastic change in the types of OA from HL to LL period, clearly indicating difference in OA composition from HL to LL period. During foggy night continuous oxidation of OA is observed from early evening to early morning with 15-20% enhancement in O/C ratio, while the same is absent during non-foggy period, clearly indicating the efficient fog processing of ambient OA. It is also found that night time fog aqueous oxidation can be as effective as daytime photo chemistry in oxidation of OA. Fog

  13. Bone marrow segmentation based on a combined consideration of transverse relaxation processes and Dixon oscillations.

    PubMed

    Balasubramanian, Mukund; Jarrett, Delma Y; Mulkern, Robert V

    2016-05-01

    The aim of this study was to demonstrate that gradient-echo sampling of single spin echoes can be used to isolate the signal from trabecular bone marrow, with high-quality segmentation and surface reconstructions resulting from the application of simple post-processing strategies. Theoretical expressions of the time-domain single-spin-echo signal were used to simulate signals from bone marrow, non-bone fatty deposits and muscle. These simulations were compared with and used to interpret signals obtained by the application of the gradient-echo sampling of a spin-echo sequence to image the knee and surrounding tissues at 1.5 T. Trabecular bone marrow has a much higher reversible transverse relaxation rate than surrounding non-bone fatty deposits and other musculoskeletal tissues. This observation, combined with a choice of gradient-echo spacing that accentuates Dixon-type oscillations from chemical-shift interference effects, enabled the isolation of bone marrow signal from surrounding tissues through the use of simple image subtraction and thresholding. Three-dimensional renderings of the marrow surface were then readily generated with this approach - renderings that may prove useful for bone morphology assessment, e.g. for the measurement of femoral anteversion. In conclusion, understanding the behavior of signals from bone marrow and surrounding tissue as a function of time through a spin echo facilitates the segmentation and reconstruction of bone marrow surfaces using straightforward post-processing strategies that are typically available on modern radiology workstations. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26866627

  14. Combining Dynamical Decoupling with Robust Optimal Control for Improved Quantum Information Processing

    NASA Astrophysics Data System (ADS)

    Grace, Matthew D.; Witzel, Wayne M.; Carroll, Malcolm S.

    2010-03-01

    Constructing high-fidelity control pulses that are robust to control and system/environment fluctuations is a crucial objective for quantum information processing (QIP). We combine dynamical decoupling (DD) with optimal control (OC) to identify control pulses that achieve this objective numerically. Previous DD work has shown that general errors up to (but not including) third order can be removed from π- and π/2-pulses without concatenation. By systematically integrating DD and OC, we are able to increase pulse fidelity beyond this limit. Our hybrid method of quantum control incorporates a newly-developed algorithm for robust OC, providing a nested DD-OC approach to generate robust controls. Motivated by solid-state QIP, we also incorporate relevant experimental constraints into this DD-OC formalism. To demonstrate the advantage of our approach, the resulting quantum controls are compared to previous DD results in open and uncertain model systems. This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  15. Nonthermal combined ultraviolet and vacuum-ultraviolet curing process for organosilicate dielectrics

    NASA Astrophysics Data System (ADS)

    Zheng, H.; Guo, X.; Pei, D.; Li, W.; Blatz, J.; Hsu, K.; Benjamin, D.; Lin, Y.-H.; Fung, H.-S.; Chen, C.-C.; Nishi, Y.; Shohet, J. L.

    2016-06-01

    Porous SiCOH films are of great interest in semiconductor fabrication due to their low-dielectric constant properties. Post-deposition treatments using ultraviolet (UV) light on organosilicate thin films are required to decompose labile pore generators (porogens) and to ensure optimum network formation to improve the electrical and mechanical properties of low-k dielectrics. The goal of this work is to choose the best vacuum-ultraviolet photon energy in conjunction with vacuum ultraviolet (VUV) photons without the need for heating the dielectric to identify those wavelengths that will have the most beneficial effect on improving the dielectric properties and minimizing damage. VUV irradiation between 8.3 and 8.9 eV was found to increase the hardness and elastic modulus of low-k dielectrics at room temperature. Combined with UV exposures of 6.2 eV, it was found that this "UV/VUV curing" process is improved compared with current UV curing. We show that UV/VUV curing can overcome drawbacks of UV curing and improve the properties of dielectrics more efficiently without the need for high-temperature heating of the dielectric.

  16. Modeling of combustion processes of stick propellants via combined Eulerian-Lagrangian approach

    NASA Technical Reports Server (NTRS)

    Kuo, K. K.; Hsieh, K. C.; Athavale, M. M.

    1988-01-01

    This research is motivated by the improved ballistic performance of large-caliber guns using stick propellant charges. A comprehensive theoretical model for predicting the flame spreading, combustion, and grain deformation phenomena of long, unslotted stick propellants is presented. The formulation is based upon a combined Eulerian-Lagrangian approach to simulate special characteristics of the two phase combustion process in a cartridge loaded with a bundle of sticks. The model considers five separate regions consisting of the internal perforation, the solid phase, the external interstitial gas phase, and two lumped parameter regions at either end of the stick bundle. For the external gas phase region, a set of transient one-dimensional fluid-dynamic equations using the Eulerian approach is obtained; governing equations for the stick propellants are formulated using the Lagrangian approach. The motion of a representative stick is derived by considering the forces acting on the entire propellant stick. The instantaneous temperature and stress fields in the stick propellant are modeled by considering the transient axisymmetric heat conduction equation and dynamic structural analysis.

  17. A combined wireless neural stimulating and recording system for study of pain processing.

    PubMed

    Ativanichayaphong, Thermpon; He, Ji Wei; Hagains, Christopher E; Peng, Yuan B; Chiao, J-C

    2008-05-15

    Clinical studies have shown that spinal or cortical neurostimulation could significantly improve pain relief. The currently available stimulators, however, are used only to generate specific electrical signals without the knowledge of physiologically responses caused from the stimulation. We thus propose a new system that can adaptively generate the optimized stimulating signals base on the correlated neuron activities. This new method could significantly improve the efficiency of neurostimulation for pain relief. We have developed an integrated wireless recording and stimulating system to transmit the neuronal signals and to activate the stimulator over the wireless link. A wearable prototype has been developed consisting of amplifiers, wireless modules and a microcontroller remotely controlled by a Labview program in a computer to generate desired stimulating pulses. The components were assembled on a board with a size of 2.5 cm x 5 cm to be carried by a rat. To validate our system, lumbar spinal cord dorsal horn neuron activities of anesthetized rats have been recorded in responses to various types of peripheral graded mechanical stimuli. The stimulation at the periaqueductal gray and anterior cingulate cortex with different combinations of electrical parameters showed a comparable inhibition of spinal cord dorsal horns activities in response to the mechanical stimuli. The Labview program was also used to monitor the neuronal activities and automatically activate the stimulator with designated pulses. Our wireless system has provided an opportunity for further study of pain processing with closed-loop stimulation paradigm in a potential new pain relief method. PMID:18262282

  18. PRODIAG: Combined expert system/neural network for process fault diagnosis. Volume 2, Code manual

    SciTech Connect

    Reifman, J.; Wei, T.Y.C.

    1995-09-01

    We recommend the reader first review Volume 1 of this document, Code Theory, before reading Volume 2. In this volume we make extensive use of terms and concepts described and defined in Volume 1 which are not redefined here to the same extent. To try to reduce the amount of redundant information, we have restricted this volume to the presentation of the expert system code and refer back to the theory described in Volume 1 when necessary. Verification and validation of the results are presented in Volume 3, Application, of this document. Volume 3 also presents the implementation of the component characteristics diagnostic approach through artificial neural networks discussed in Volume 1. We decided to present the component characteristics approach in Volume 3, as opposed to write a separate code manual for it, because the approach, although general, requires a case-by-case analysis. The purpose of this volume is to present the details of the expert system (ES) portion o the PRODIAG process diagnostic program. In addition, we present here the graphical diagnostics interface (GDI) and illustrate the combined use of the ES and GDI with a sample problem. For completeness, we provide the file names of all files, programs and major subroutines of these two systems, ES and GDI, and their corresponding location in the Reactor Analysis Division (RA) computer network and Reactor Engineering Division (RE) computer network as of 30 September 1995.

  19. Multispectral processing of combined visible and x-ray fluorescence imagery in the Archimedes palimpsest

    NASA Astrophysics Data System (ADS)

    Walvoord, Derek; Bright, Allison; Easton, Roger L., Jr.

    2008-02-01

    The Archimedes palimpsest is one of the most significant early texts in the history of science that has survived to the present day. It includes the oldest known copies of text from seven treatises by Archimedes, along with pages from other important historical writings. In the 13th century, the original texts were erased and overwritten by a Christian prayer book, which was used in religious services probably into the 19th century. Since 2001, much of the text from treatises of Archimedes has been transcribed from images taken in reflected visible light and visible fluorescence generated by exposure of the parchment to ultraviolet light. However, these techniques do not work well on all pages of the manuscript, including the badly stained colophon, four pages of the manuscript obscured by icons painted during the first half of the 20th century, and some pages of non-Archimedes texts. Much of the text on the colophon and overpainted pages has been recovered from X-ray fluorescence (XRF) imagery. In this work, the XRF images of one of the other pages were combined with the bands of optical images to create hyperspectral image cubes and processed using standard statistical classification techniques developed for environmental remote sensing to test if this improved the recovery of the original text.

  20. Patterning of bioinorganic thin films by combining soft lithography and a biomimetic crystallization process

    NASA Astrophysics Data System (ADS)

    Kim, Yi-Yeoun

    The biomimetic synthesis of patterned mineral films, based on a combination of the microcontact printing technique and a novel mineralization process, called the Polymer-Induced Liquid-Precursor (PILP) process, was demonstrated. Self-assembled monolayers (SAMs) patterned by micro-contact printing are able to act as synthetic templates for biomimetic mineralization, mimicking the role of biological organic matrices, which spatially confine the deposition of biominerals, as well as template the nucleation and growth of the crystals. The PILP process enables the deposition of calcitic mineral films (100--500 nm in thickness) under low-temperature and aqueous-based conditions. A liquid-phase mineral precursor can be preferentially deposited onto specific areas templated with the SAMs of alkanethiolate on gold. The patterned precursor films then transform under constrained conditions, leading to control over both the location and morphology of patterned films. Based on microscopic analysis of the surface texture of the mineral films, we propose that the formation of these patterned calcite thin films is accomplished by the deposition of colloidal droplets of the liquid-phase precursor generated in solution. In order to further investigate crystal nucleation and growth which occurs via a precursor phase transformation, the cooperation of various functionalized endgroups of the SAMs and acidic macromolecules was extensively studied. It was observed that the morphology of the mineral phase depended on numerous variables, such as impurity ion concentration, polyelectrolyte concentration, mineral solution supersaturation level, pH and temperature. It was determined that the interaction of template functionality and the colloidal PILP particles has significance for controlling the trend of deposition, and that optimization of solution conditions is required to generate patterned thin films with a high level of resolution and reproducibility. An unexpected result was found

  1. Central Processing Energetic Factors Mediate Impaired Motor Control in ADHD Combined Subtype but Not in ADHD Inattentive Subtype

    ERIC Educational Resources Information Center

    Egeland, Jens; Ueland, Torill; Johansen, Susanne

    2012-01-01

    Participants with attention-deficit/hyperactivity disorder (ADHD) are often impaired in visuomotor tasks. However, little is known about the contribution of modal impairment in motor function relative to central processing deficits or whether different processes underlie the impairment in ADHD combined (ADHD-C) versus ADHD inattentive (ADHD-I)…

  2. GALILEO Precise Orbit and Clock Determinaiton using GPS and GALILEO Combined Processing Strategy

    NASA Astrophysics Data System (ADS)

    Cui, Hongzheng; Tang, Geshi; Song, Baiyan; Liu, Huicui; Han, Chao; Ge, Maorong

    2014-05-01

    The GALILEO system-still in its development phase-will be Europe's GNSS, and the in-orbit validation (IOV) phase has begun with launch of two IOV satellites, IOV-1 (E11) and IOV-2 (E12). High precise data processing is the precondition for upgrading navigation precision, monitoring and assessment of GNSS Open services, and expanding the application region for satellite navigation system. BACC is doing the work about operation and maintenance the iGMAS (international GNSS Monitoring and Assessment Service) Analysis Center (BAC), and producing the precision products to the users with equivalent accuracy to well-known institutes, such as IGS and CODE including precise satellite orbit and clock, tracking station coordinate and receiver clock, Zenith Total Delay (ZTD), Earth Orientation Parameter (EOP) parameters, global and statistical integrity and Ionospheric map, and this study just focuses on the combined orbit and clock. For GALILEO in the initial deployment phase, in order to take advantage of GPS observation and mature models to do joint orbit determination in a unified time and space frame to improve the orbit of other systems, and use the GPS orbit and clock from joint solution as the external check, we adopt combined orbit determination of GPS and GALILEO fixing firstly the coordinate of station, receiver clock and tropospheric parameters using GPS precise ephemeris and clock, and seting inter-system bias (ISB) between GPS and GALILEO as a parameter to be estimated. The observation data from a network of multi-GNSS capable receivers from the MGEX tracking network and a regional multi-GNSS network operated by China from day 321 to 334 in 2013, and the satellite force models and GFZ standard observation modeling except Yaw-control model are used in three day solution. For impact analysis, we compare the GPS orbit and clock to IGS final orbit and clock products to evaluate the accuracy, and the accuracy of GALILEO orbit and clock and can be validated by checking

  3. Combined Economic and Hydrologic Modeling to Support Collaborative Decision Making Processes

    NASA Astrophysics Data System (ADS)

    Sheer, D. P.

    2008-12-01

    For more than a decade, the core concept of the author's efforts in support of collaborative decision making has been a combination of hydrologic simulation and multi-objective optimization. The modeling has generally been used to support collaborative decision making processes. The OASIS model developed by HydroLogics Inc. solves a multi-objective optimization at each time step using a mixed integer linear program (MILP). The MILP can be configured to include any user defined objective, including but not limited too economic objectives. For example, an estimated marginal value for water for crops and M&I use were included in the objective function to drive trades in a model of the lower Rio Grande. The formulation of the MILP, constraints and objectives, in any time step is conditional: it changes based on the value of state variables and dynamic external forcing functions, such as rainfall, hydrology, market prices, arrival of migratory fish, water temperature, etc. It therefore acts as a dynamic short term multi-objective economic optimization for each time step. MILP is capable of solving a general problem that includes a very realistic representation of the physical system characteristics in addition to the normal multi-objective optimization objectives and constraints included in economic models. In all of these models, the short term objective function is a surrogate for achieving long term multi-objective results. The long term performance for any alternative (especially including operating strategies) is evaluated by simulation. An operating rule is the combination of conditions, parameters, constraints and objectives used to determine the formulation of the short term optimization in each time step. Heuristic wrappers for the simulation program have been developed improve the parameters of an operating rule, and are initiating research on a wrapper that will allow us to employ a genetic algorithm to improve the form of the rule (conditions, constraints

  4. Structural damage detection using extended Kalman filter combined with statistical process control

    NASA Astrophysics Data System (ADS)

    Jin, Chenhao; Jang, Shinae; Sun, Xiaorong

    2015-04-01

    Traditional modal-based methods, which identify damage based upon changes in vibration characteristics of the structure on a global basis, have received considerable attention in the past decades. However, the effectiveness of the modalbased methods is dependent on the type of damage and the accuracy of the structural model, and these methods may also have difficulties when applied to complex structures. The extended Kalman filter (EKF) algorithm which has the capability to estimate parameters and catch abrupt changes, is currently used in continuous and automatic structural damage detection to overcome disadvantages of traditional methods. Structural parameters are typically slow-changing variables under effects of operational and environmental conditions, thus it would be difficult to observe the structural damage and quantify the damage in real-time with EKF only. In this paper, a Statistical Process Control (SPC) is combined with EFK method in order to overcome this difficulty. Based on historical measurements of damage-sensitive feathers involved in the state-space dynamic models, extended Kalman filter (EKF) algorithm is used to produce real-time estimations of these features as well as standard derivations, which can then be used to form control ranges for SPC to detect any abnormality of the selected features. Moreover, confidence levels of the detection can be adjusted by choosing different times of sigma and number of adjacent out-of-range points. The proposed method is tested using simulated data of a three floors linear building in different damage scenarios, and numerical results demonstrate high damage detection accuracy and light computation of this presented method.

  5. SINCom - the new program package for combined processing of space geodetic observations

    NASA Astrophysics Data System (ADS)

    Brattseva, Olga; Gayazov, Iskandar; Kurdubov, Sergey; Suvorkin, Vladimir

    2014-05-01

    The software SINCom realizing the combination of standardized SINEX-files is introduced. The program package is meant to work in the following two modes: a combined solution within one observational technique on the appointed time interval and an inter-technique combination of daily SINEX-files. The problem-oriented aspects and the requirements for the content of incoming SINEX-files are viewed. The realization of stations velocities estimation is recounted. The mathematical model, algorithms and the special task-forming language are presented. The main features of developed software and the arising problems are discussed. The extensive plans of the SINCom use to obtaining TRF combined solution are considered. The fist experimental results of single-technique combination for VLBI, GPS and SLR observations are presented.

  6. SINCom --- the new program package for combined processing of space geodetic observations

    NASA Astrophysics Data System (ADS)

    Brattseva, O.; Gayazov, I.; Kurdubov, S.; Suvorkin, V.

    2015-08-01

    The software SINCom realizing the combination of standardized SINEX-files is introduced. The program package is meant to work in the following two modes: a combined solution within one observational technique on the appointed time interval and an inter-technique combination of daily SINEX-files. The realization of stations velocities estimation is recounted. The mathematical model, algorithms and the special task-forming language are presented. The main features of developed software and the arising problems are discussed. The problem-oriented aspects and the requirements for the content of incoming SINEX-files are viewed. The extensive plans of the SINCom use to obtaining TRF combined solution are considered. The first experimental results of single-technique combination for VLBI, GPS and SLR observations are presented.

  7. Mature landfill leachate treatment by coagulation/flocculation combined with Fenton and solar photo-Fenton processes.

    PubMed

    Amor, Carlos; De Torres-Socías, Estefanía; Peres, José A; Maldonado, Manuel I; Oller, Isabel; Malato, Sixto; Lucas, Marco S

    2015-04-01

    This work reports the treatment of a mature landfill leachate through the application of chemical-based treatment processes in order to achieve the discharge legal limits into natural water courses. Firstly, the effect of coagulation/flocculation with different chemicals was studied, evaluating the role of different initial pH and chemicals concentration. Afterwards, the efficiency of two different advanced oxidation processes for leachate remediation was assessed. Fenton and solar photo-Fenton processes were applied alone and in combination with a coagulation/flocculation pre-treatment. This physicochemical conditioning step, with 2 g L(-1) of FeCl3 · 6H2O at pH 5, allowed removing 63% of COD, 80% of turbidity and 74% of total polyphenols. Combining the coagulation/flocculation pre-treatment with Fenton reagent, it was possible to reach 89% of COD removal in 96 h. Moreover, coagulation/flocculation combined with solar photo-Fenton revealed higher DOC (75%) reductions than single solar photo-Fenton (54%). In the combined treatment (coagulation/flocculation and solar photo-Fenton), it was reached a DOC reduction of 50% after the chemical oxidation, with 110 kJ L(-1) of accumulated UV energy and a H2O2 consumption of 116 mM. Toxicity and biodegradability assays were performed to evaluate possible variations along the oxidation processes. After the combined treatment, the leachate under study presented non-toxicity but biodegradability increased. PMID:25590819

  8. SYSTEMATIC SCANNING ELECTRON MICROSCOPY TECHNIQUE FOR EVALUATING COMBINED BIOLOIGCAL/GRANULAR ACTIVATED CARBON TREATMENT PROCESSES

    EPA Science Inventory

    A systematic scanning election microscope analytical technique has been developed to examine granular activated carbon used a a medium for biomass attachment in liquid waste treatment. The procedure allows for the objective monitoring, comparing, and trouble shooting of combined ...

  9. Reduction of gas phase air toxics from combustion and incineration sources using the GE-Mitsui-BG activated coke process

    SciTech Connect

    Olson, D.G.; Tsuji, K.; Shiraishi, I.

    1998-04-01

    The dry desulfurization, denitification and air toxics removal process using activated coke (AC) was originally researched and developed during the 1960`s by Bergbau Forschung (BF), now called Deutsche Montan Technologies. Mitsui Mining Company (MMC) signed a licensing agreement with BF in 1982 to investigate, test and adapt the system to facilities in Japan. Japanese regulations are stricter than in the United States toward SOx/NOx pollutants, as well as flyash emissions from the utility industry, oil refineries and other industries. This process is installed on four coal-fired boilers and Fluidized Catalytic Cracker (FCC) units. These plants were constructed by MMC in Japan and Uhde GmbH in Germany. General Electric Environmental Services, Inc. (GEESI) signed a license agreement in 1992 with MMC and Mitsui and Company, Ltd. of Tokyo. Under this agreement, GEESI will market, design, fabricate and install the Mitsui-BF process for flue gas cleaning applications in North America. MMC also developed a technology to produce AC used in the dry DeSOx/DeNOx/Air Toxics removal process based on their own metallurgical coke manufacturing technology. This paper provides information on the details of MMC`s AC used in the dry DeSOx/DeNOx/Air Toxics removal process and of the DeSOx/DeNOx/Air Toxics removal process itself.

  10. The neural basis of sublexical speech and corresponding nonspeech processing: a combined EEG-MEG study.

    PubMed

    Kuuluvainen, Soila; Nevalainen, Päivi; Sorokin, Alexander; Mittag, Maria; Partanen, Eino; Putkinen, Vesa; Seppänen, Miia; Kähkönen, Seppo; Kujala, Teija

    2014-03-01

    We addressed the neural organization of speech versus nonspeech sound processing by investigating preattentive cortical auditory processing of changes in five features of a consonant-vowel syllable (consonant, vowel, sound duration, frequency, and intensity) and their acoustically matched nonspeech counterparts in a simultaneous EEG-MEG recording of mismatch negativity (MMN/MMNm). Overall, speech-sound processing was enhanced compared to nonspeech sound processing. This effect was strongest for changes which affect word meaning (consonant, vowel, and vowel duration) in the left and for the vowel identity change in the right hemisphere also. Furthermore, in the right hemisphere, speech-sound frequency and intensity changes were processed faster than their nonspeech counterparts, and there was a trend for speech-enhancement in frequency processing. In summary, the results support the proposed existence of long-term memory traces for speech sounds in the auditory cortices, and indicate at least partly distinct neural substrates for speech and nonspeech sound processing. PMID:24576806

  11. Organic matter and heavy metal removals from complexed metal plating effluent by the combined electrocoagulation/Fenton process.

    PubMed

    Kabdaşli, I; Arslan, T; Arslan-Alaton, I; Olmez-Hanci, T; Tünay, O

    2010-01-01

    In the present study, the treatment of metal plating wastewater containing complexed metals originating from the nickel and zinc plating process by electrocoagulation (EC) using stainless steel electrodes was explored. In order to improve the organic matter removal efficiency, the effect of H(2)O(2) addition to the electrocoagulation (the combined EC/Fenton process) application was investigated. For this purpose, a wide range of H(2)O(2) concentrations varying between 15 and 230 mM was tested. All EC and EC/Fenton processes were performed at an initial pH of 2.6 and at an optimized current density of 22 mA/cm(2). Although up to 30 mM H(2)O(2) addition improved the EC process performance in terms of organic matter abatement, the highest COD and TOC removal efficiencies were obtained for the combined EC/Fenton process in the presence of 20 mM H(2)O(2). Nickel and zinc were completely removed for all runs tested in the present study after pH adjustments. At the optimized operation conditions, the combined EC/Fenton process proved to be an alternative treatment method for the improvement of organic matter reduction as well as complexed metal removal from metal plating industry wastewater. PMID:20453336

  12. Processing of ICARTT Data Files Using Fuzzy Matching and Parser Combinators

    NASA Technical Reports Server (NTRS)

    Rutherford, Matthew T.; Typanski, Nathan D.; Wang, Dali; Chen, Gao

    2014-01-01

    In this paper, the task of parsing and matching inconsistent, poorly formed text data through the use of parser combinators and fuzzy matching is discussed. An object-oriented implementation of the parser combinator technique is used to allow for a relatively simple interface for adapting base parsers. For matching tasks, a fuzzy matching algorithm with Levenshtein distance calculations is implemented to match string pair, which are otherwise difficult to match due to the aforementioned irregularities and errors in one or both pair members. Used in concert, the two techniques allow parsing and matching operations to be performed which had previously only been done manually.

  13. DUAL PROCESS HIGHRATE FILTRATION OF RAW SANITARY SEWAGE AND COMBINED SEWER OVERFLOWS (EPA/600/2-79/015)

    EPA Science Inventory

    Pilot plant studies were conducted in New York City's Newtown Creek Water Pollution Control Plant from 19754977 to investigate the suspended solids (SS) removal capabilities of the deepbed, highrate gravity filtration process on raw sewage and combined sewer overflows.

  14. Research on Motivation in Collaborative Learning: Moving beyond the Cognitive-Situative Divide and Combining Individual and Social Processes

    ERIC Educational Resources Information Center

    Jarvela, Sanna; Volet, Simone; Jarvenoja, Hanna

    2010-01-01

    In this article we propose that in order to advance our understanding of motivation in collaborative learning we should move beyond the cognitive-situative epistemological divide and combine individual and social processes. Our claim is that although recent research has recognized the importance of social aspects in emerging and sustained…

  15. Neural Dynamics of Animacy Processing in Language Comprehension: ERP Evidence from the Interpretation of Classifier-Noun Combinations

    ERIC Educational Resources Information Center

    Zhang, Yaxu; Zhang, Jinlu; Min, Baoquan

    2012-01-01

    An event-related potential experiment was conducted to investigate the temporal neural dynamics of animacy processing in the interpretation of classifier-noun combinations. Participants read sentences that had a non-canonical structure, "object noun" + "subject noun" + "verb" + "numeral-classifier" + "adjective". The object noun and its classifier…

  16. The Process of Change in Cognitive Therapy for Depression when Combined with Antidepressant Medication: Predictors of Early Intersession Symptom Gains

    ERIC Educational Resources Information Center

    Strunk, Daniel R.; Cooper, Andrew A.; Ryan, Elizabeth T.; DeRubeis, Robert J.; Hollon, Steven D.

    2012-01-01

    Objective: Previous studies of cognitive therapy (CT) for depression have examined therapist adherence and the therapeutic alliance as predictors of subsequent symptom change. However, little is known about these CT process variables when CT is delivered in combination with antidepressant medication. Method: In a sample of 176 depressed…

  17. Improvement of process identification and discharge measurement by the combination of different sensors

    NASA Astrophysics Data System (ADS)

    Schimmel, Andreas; Hübl, Johannes; Koschuch, Richard

    2016-04-01

    The Lattenbach is a very active torrent located in a geologic fault zone in the western part of Austria with a catchment area of 5,3 km², feeding the river Sanna, which is a tributary of the river Inn. The highest elevation in the watershed is around 2900 m above sea level (asl), the confluence with the river Sanna at 840 m asl. Both, the village Grins in the middle reach of the torrent and the village Pians at the outlet of the catchment, are affected by the hydrologic and geomorphic processes within the watershed. Aside from the 'regular' flood events with bedload transport in spring and summer, the torrent produced five debris flows and three debris flow-like events within the last years (16/08/15, 09/08/15, 26/08/12, 10/07/10, 01/09/08, 20/06/07, 30/08/07 and 22/08/05, respectively). Due to the frequent debris flow and debris flood events the torrent is monitored by the Institute of Mountain Risk Engineering since several years. The parameters that are currently measured during an event includes meteorological data (rainfall, temperature, etc.) in the upper part of the catchment (station Dawinalpe) and run-off data from the middle and lower reach of the torrent at the villages Grins and Pians. In the last years the monitoring equipment has been improved: Since July 2013 a first version of a warning system based on a combination of infrasound and seismic data is installed at the monitoring station closed to Grins. This system is build up on a minimum of one seismic and one infrasound sensor which are co-located and a microcontroller which runs a detection algorithm to detect debris flows with high accuracy in real time directly on-site. The detection algorithm is based on an analyses of the evolution in time of the frequency content of the infrasound and seismic signals produced by a mass movement and has already been tested at several test sites in Austria, Italy and Switzerland. Further a high frequency pulse Doppler Radar has been installed which provides

  18. Capstone Teaching Models: Combining Simulation, Analytical Intuitive Learning Processes, History and Effectiveness

    ERIC Educational Resources Information Center

    Reid, Maurice; Brown, Steve; Tabibzadeh, Kambiz

    2012-01-01

    For the past decade teaching models have been changing, reflecting the dynamics, complexities, and uncertainties of today's organizations. The traditional and the more current active models of learning have disadvantages. Simulation provides a platform to combine the best aspects of both types of teaching practices. This research explores the…

  19. Gasifier/combined-cycle plant minimizes environmental impacts. [California, coal water process

    SciTech Connect

    Not Available

    1985-04-01

    The successful operation of the Cool Water integrated gasification/ combined cycle power plant is reported. As the only coal-fired power station in California it has easily met the Federal new-source performance standards for emissions and the State's strict pollution-control laws. Details are given of plant performance and air-polluting emissions.

  20. A Social Process Mode of Adolescent Deviance: Combining Social Control and Differential Association Perspectives.

    ERIC Educational Resources Information Center

    Erickson, Kristan Glasgow; Crosnoe, Robert; Dornbusch, Sanford M.

    2000-01-01

    Examined social factors associated with changes in two forms of adolescent deviance, substance use and delinquency using a model that combines social control and differential association perspectives. Results for approximately 2,000 high school students support the model and show that strong bonds to family, school, and community protect…

  1. Combining high productivity and high performance in image processing using Single Assignment C

    NASA Astrophysics Data System (ADS)

    Wieser, Volkmar; Moser, Bernhard; Scholz, Sven-Bodo; Herhut, Stephan; Guo, Jing

    2011-07-01

    In this paper the problem of high performance software engineering is addressed in the context of image processing regarding productivity and optimized exploitation of hardware resources. Therefore, we introduce the functional array processing language Single Assignment C (SaC), which relies on a hardware virtualization concept for automated, parallel machine code generation. An illustrative benchmarking example proves both utility and adequacy of SaC for image processing.

  2. Comprehensive microbial analysis of combined mesophilic anaerobic-thermophilic aerobic process treating high-strength food wastewater.

    PubMed

    Jang, Hyun Min; Ha, Jeong Hyub; Park, Jong Moon; Kim, Mi-Sun; Sommer, Sven G

    2015-04-15

    A combined mesophilic anaerobic-thermophilic aerobic process was used to treat high-strength food wastewater in this study. During the experimental period, most of solid residue from the mesophilic anaerobic reactor (R1) was separated by centrifugation and introduced into the thermophilic aerobic reactor (R2) for further digestion. Then, thermophilic aerobically-digested sludge was reintroduced into R1 to enhance reactor performance. The combined process was operated with two different Runs: Run I with hydraulic retention time (HRT) = 40 d (corresponding OLR = 3.5 kg COD/m(3) d) and Run II with HRT = 20 d (corresponding OLR = 7 kg COD/m(3)). For a comparison, a single-stage mesophilic anaerobic reactor (R3) was operated concurrently with same OLRs and HRTs as the combined process. During the overall digestion, all reactors showed high stability without pH control. The combined process demonstrated significantly higher organic matter removal efficiencies (over 90%) of TS, VS and COD and methane production than did R3. Quantitative real-time PCR (qPCR) results indicated that higher populations of both bacteria and archaea were maintained in R1 than in R3. Pyrosequencing analysis revealed relatively high abundance of phylum Actinobacteria in both R1 and R2, and a predominance of phyla Synergistetes and Firmicutes in R3 during Run II. Furthermore, R1 and R2 shared genera (Prevotella, Aminobacterium, Geobacillus and Unclassified Actinobacteria), which suggests synergy between mesophilic anaerobic digestion and thermophilic aerobic digestion. For archaea, in R1 methanogenic archaea shifted from genus Methanosaeta to Methanosarcina, whereas genera Methanosaeta, Methanobacterium and Methanoculleus were predominant in R3. The results demonstrated dynamics of key microbial populations that were highly consistent with an enhanced reactor performance of the combined process. PMID:25689817

  3. Application of a combined process of moving-bed biofilm reactor (MBBR) and chemical coagulation for dyeing wastewater treatment.

    PubMed

    Shin, D H; Shin, W S; Kim, Y H; Han, Myung Ho; Choi, S J

    2006-01-01

    A combined process consisted of a Moving-Bed Biofilm Reactor (MBBR) and chemical coagulation was investigated for textile wastewater treatment. The pilot scale MBBR system is composed of three MBBRs (anaerobic, aerobic-1 and aerobic-2 in series), each reactor was filled with 20% (v/v) of polyurethane-activated carbon (PU-AC) carrier for biological treatment followed by chemical coagulation with FeCl2. ln the MBBR process, 85% of COD and 70% of color (influent COD = 807.5 mg/L and color = 3,400 PtCo unit) were removed using relatively low MLSS concentration and short hydraulic retention time (HRT = 44 hr). The biologically treated dyeing wastewater was subjected to chemical coagulation. After coagulation with FeCl2, 95% of COD and 97% of color were removed overall. The combined process of MBBR and chemical coagulation has promising potential for dyeing wastewater treatment. PMID:17163056

  4. Combined image-processing algorithms for improved optical coherence tomography of prostate nerves

    NASA Astrophysics Data System (ADS)

    Chitchian, Shahab; Weldon, Thomas P.; Fiddy, Michael A.; Fried, Nathaniel M.

    2010-07-01

    Cavernous nerves course along the surface of the prostate gland and are responsible for erectile function. These nerves are at risk of injury during surgical removal of a cancerous prostate gland. In this work, a combination of segmentation, denoising, and edge detection algorithms are applied to time-domain optical coherence tomography (OCT) images of rat prostate to improve identification of cavernous nerves. First, OCT images of the prostate are segmented to differentiate the cavernous nerves from the prostate gland. Then, a locally adaptive denoising algorithm using a dual-tree complex wavelet transform is applied to reduce speckle noise. Finally, edge detection is used to provide deeper imaging of the prostate gland. Combined application of these three algorithms results in improved signal-to-noise ratio, imaging depth, and automatic identification of the cavernous nerves, which may be of direct benefit for use in laparoscopic and robotic nerve-sparing prostate cancer surgery.

  5. Advantage in using the combination of HL-800M and CAR process

    NASA Astrophysics Data System (ADS)

    Asai, Suyo; Kadowaki, Yasuhiro; Kawasaki, Katsuhiro; Mizuno, Kazui; Satoh, Hidetoshi; Hoga, Morihisa; Ikeda, Kazunori; Iguchi, Eri

    1999-08-01

    The advanced 50 kV e-beam mask writing system HL-800M (Hitachi Co. Ltd.) was developed for 0.25 - 0.18 micrometer design-rule mask fabrication and widely applied. The combination of 50 kV e-beam writing system (EB) and Chemically Amplified Resist (CAR) is one of the solutions to improve accuracy for the fabrication of further high-end masks. The purpose of this study is to show the advantages of Critical Dimension (CD) accuracy in using the combination of 50 kV EB;HL-800M and positive-CAR; RE-5120P (Hitachi Chemical Co. Ltd.). In order to control CD, Proximity Effect Correction (PEC) is indispensable for the high acceleration voltage EB. Therefore, HL-800M has a high-speed-PEC system with hardware circuits. In this study, the PEC condition of HL-800M was optimized to improve CD accuracy. As a result, CD linearity of 18 nm was obtained in the pattern width from 0.7 micrometer to 3 micrometer. Besides, we evaluated the CD variation due to resist heating in using this combination. And, in the experiment of the resist heating effect, the CD variation was less than plus or minus 7 nm in the range of dosage ratio from 100% (11 (mu) C/cm2) to 500%. In other words, the CD variation due to resist heating is not so much serious problem for practical use in using the combination of the 50 kV EB and CAR.

  6. A combined physical/microbial process for the beneficiation of coal

    SciTech Connect

    Andrews, G.F.; Stevens, C.J.; Noah, K.S.; McIlwain, M.E.

    1993-09-01

    A large-laboratory scale physical/microbial process was demonstrated for the removal of pyritic sulfur from coal. The process took place in an aerated-trough slurry reactor with a total slurry volume of 150 L. The reactor was divided into six sections, each of which acted as a physical separator and a bioreactor. The process objective was to physically remove the larger pyritic inclusions and to biodegrade the small inclusions (micropyrite). The process was continuously operated for 120 days, treating approximately 1 ton of Illinois {number_sign}6 coal. Ninety percent pyrite removal was achieved at a 20% slurry concentration and a reactor residence time of 5 days. Additional research should be performed to find the optimum values for reactor residence time, slurry concentration, and process hydraulic residence time (or recycle ratio). Finding these optimum values will enable a process to be developed that will maximize the amount of coal that can be processed per unit reactor volume per unit time with the desired level of pyritic sulfur removal.

  7. Cheminformatics and Computational Chemistry: A Powerful Combination for the Encoding of Process Science

    EPA Science Inventory

    The registration of new chemicals under the Toxicological Substances Control Act (TSCA) and new pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) requires knowledge of the process science underlying the transformation of organic chemicals in natural...

  8. Cheminformatics Applications and Physicochemical Property Calculators: A Powerful Combination for the Encoding of Process Science

    EPA Science Inventory

    The registration of new chemicals under the Toxic Substances Control Act (TSCA) and new pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) requires knowledge of the process science underlying the transport and transformation of organic chemicals in n...

  9. Characterization of dissolved organic matter in landfill leachate during the combined treatment process of air stripping, Fenton, SBR and coagulation

    SciTech Connect

    Liu, ZhiPing; Wu, WenHui; Shi, Ping; Guo, JinSong; Cheng, Jin

    2015-07-15

    Highlights: • DOM fractions spectra analysis during the whole treatment process. • Efficient method was achieved to remove organic matters in landfill leachate. • Molecular weight distribution and fractions were discussed. - Abstract: A combined treatment process of air stripping + Fenton + sequencing batch reactor (SBR)+ coagulation was performed to remove the pollutants in landfill leachate. Molecular weight (MW) distribution and fractions of dissolved organic matter (DOM) were discussed to study the characteristics. The experiment showed that the removal rate of chemical oxygen demand (COD), five day biological oxygen demand (BOD{sub 5}) and ammonia nitrogen (NH{sub 3}−N) by the combined process were 92.8%, 87.8% and 98.0%, respectively. Humic acid (HA) and fulvic acid (FA) were the main fractions in raw leachate with 81.8% of the total COD concentration, while hydrophilic organic matter (HyI) was the dominant fraction in the final effluent of the combined process with 63.5% of the total COD concentration. After the combined treatment process, the removal rate of DOM and fractions HA, FA, HyI were 91.9%, 97.1%, 95.8% and 71.7%, respectively. Organic matters of MW < 2 k and MW > 100 k were removed with 90.5% and 97.9% COD concentration after the treatment. The ultraviolet–visible spectra (UV–vis), Fourier transform infrared spectra (FTIR) and three-dimensional excitation-emission matrices spectra (EEMs) indicated that benzene materials and phenol compounds were preferentially removed in air stripping. High MW matters, aromatic rings, conjugated moieties and some functional groups were mainly removed by Fenton. While small MW fractions, carboxylic acids, alcohols and protein-like materials were preferentially biodegraded via SBR. Fulvic-like and humic-like materials were mainly destroyed via Fenton oxidation and coagulation.

  10. Combination process of limited filamentous bulking and nitrogen removal via nitrite for enhancing nitrogen removal and reducing aeration requirements.

    PubMed

    Guo, Jianhua; Peng, Yongzhen; Yang, Xiong; Gao, Chundi; Wang, Shuying

    2013-03-01

    Limited filamentous bulking (LFB) activated sludge process was proposed by Guo et al. (2010) to increase the removal of tiny suspended particulates in the clarifier and reduce aeration energy consumption. However, when the use of LFB process, ammonium removal efficiency would be compromised due to low dissolved oxygen (DO). In this study, the combination process of nitrogen removal via nitrite and LFB was achieved to enhance nitrogen removal and reduce aeration energy consumption by controlling low DO levels (0.5-1.0 mg L(-1)) in a lab-scale anoxic-oxic reactor (V=66 L) treating real domestic wastewater at room temperature. Above 85% of nitrite accumulation ratio was steadily maintained during continuous operation period. The combined process improved the total nitrogen (TN) removal by about 20% in comparison to the traditional process via the nitrate pathway, and also reduced the specific aeration energy consumption by 35%. COD, ammonium and TN removal efficiencies were up to 86%, 94% and 75%, respectively. The process proved effective in achieving a steady LFB state, whereby sludge volume index between 150 and 250 mL g(-1) was sustained for long-term operation. The microbial community structure was analyzed by fluorescence in situ hybridization, which indicated ammonia-oxidizing bacteria out-competed nitrite-oxidizing bacteria. Moreover, the filaments Type 0041 and Microthrix parvicella proliferated with limited abundance. The results indicated the combination process of LFB and nitrogen removal via nitrite under low DO was a feasible solution for saving energy and enhancing nitrogen removal when treating domestic wastewater. PMID:23305749

  11. Applications of radiation processing in combination with conventional treatments to assure food safety: New development

    NASA Astrophysics Data System (ADS)

    Lacroix, M.; Turgis, M.; Borsa, J.; Millette, M.; Salmieri, S.; Caillet, S.; Han, J.

    2009-11-01

    Spice extracts under the form of essential oils (Eos) were tested for their efficiency to increase the relative bacterial radiosensitivity (RBR) of Listeria monocytogenes, Escherichia coli and Salmonellatyphi in culture media under different atmospheric conditions. The selected Eos were tested for their ability to reduce the dose necessary to eliminate E. coli and S.typhi in medium fat ground beef (23% fat) and Listeria in ready-to-eat carrots when packed under air or under atmosphere rich in oxygen (MAP). Results have demonstrated that depending of the compound added and the combined treatment used, the RBR increased from 2 to 4 times. In order to evaluate the industrial feasibility, EOs were added in ground beef at a concentration which does not affect the taste and treated at a dose of 1.5 kGy. The content of total mesophilic aerobic, E. coli, Salmonella, total coliform, lactic acid bacteria, and Pseudomonas was determined during 28 days. The results showed that the combined treatment (radiation and EOs) can eliminate Salmonella and E. coli when done under air. When done under MAP, Pseudomonas could be eliminated and a shelf life of more than 28 days was observed. An active edible coating containing EOs was also developed and sprayed on ready-to-eat carrots before radiation treatment and Listeria was evaluated. A complete inhibition of Listeria was obtained at a dose of 0.5 kGy when applied under MAP. Our results have shown that the combination of an edible coating, MAP, and radiation can be used to maintain the safety of meat and vegetables.

  12. Bacterial radiosensitization by using radiation processing in combination with essential oil: Mechanism of action

    NASA Astrophysics Data System (ADS)

    Lacroix, Monique; Caillet, Stéphane; Shareck, Francois

    2009-07-01

    Spice extracts under the form of essential oils were tested for their efficiency to increase the relative radiosensitivity of Listeria monocytogenes and Escherichia coli O157H7 in culture media. The two pathogens were treated by gamma-irradiation alone or in combination with oregano essential oil to evaluate their mechanism of action. The membrane murein composition, and the intracellular and extracellular concentration of ATP was determined. The bacterial strains were treated with two irradiation doses: 1.2 kGy to induce cell damage and 3.5 kGy to cause cell death for L. monocytogenes. A dose of 0.4 kGy to induce cell damages, 1.1 kGy to obtain viable but nonculturable (VBNC) state and 1.3 kGy to obtain a lethal dose was also applied on E. coli O157H7. Oregano essential oil was used at 0.020% and 0.025% (w/v), which is the minimum inhibitory concentration (MIC) for L. monocytogenes. For E. coli O157H7, a concentration of 0.006% and 0.025% (w/v) which is the minimum inhibitory concentration was applied. The use of essential oils in combination with irradiation has permitted an increase of the bacterial radiosensitization by more than 3.1 times. All treatments had also a significant effect ( p⩽0.05) on the murein composition, although some muropeptides did not seem to be affected by the treatment. Each treatment influenced differently the relative percentage and number of muropeptides. There was a significant ( p⩽0.05) correlation between the reduction of intracellular ATP and increase in extracellular ATP following treatment of the cells with oregano oil. The reduction of intracellular ATP was even more important when essential oil was combined with irradiation, but irradiation of L. monocytogenes alone induced a significant decrease ( p⩽0.05) of the internal ATP without affecting the external ATP.

  13. Denoising of human speech using combined acoustic and em sensor signal processing

    SciTech Connect

    Ng, L C; Burnett, G C; Holzrichter, J F; Gable, T J

    1999-11-29

    Low Power EM radar-like sensors have made it possible to measure properties of the human speech production system in real-time, without acoustic interference. This greatly enhances the quality and quantify of information for many speech related applications. See Holzrichter, Burnett, Ng, and Lea, J. Acoustic. Soc. Am. 103 (1) 622 (1998). By using combined Glottal-EM- Sensor- and Acoustic-signals, segments of voiced, unvoiced, and no-speech can be reliably defined. Real-time Denoising filters can be constructed to remove noise from the user's corresponding speech signal.

  14. The reduction of gas phase air toxics from combustion and incineration sources using the GE-Mitsui-BF activated coke process

    SciTech Connect

    Olson, D.G.; Tsuji, K.; Shiraishi, I.

    1998-07-01

    The dry desulfurization, denitrification and air toxics removal process using activated coke (AC) was originally researched and developed during the 1960's by Bergbau Forschung (BF), now called Deutsche Montan Technologies. Mitsui Mining Company (MMC) signed a licensing agreement with BF in 1982 to investigate, test and adapt the system to facilities in Japan. Japanese regulations are stricter than in the US toward SOx/NOx pollutants, as well as flyash emissions from the utility industry, oil refineries and other industries. This process is installed on four coal-fired boilers and Fluidized Catalytic Cracker (FCC) units. These plants were constructed by MMC in Japan and Uhde GmbH in Germany. General Electric Environmental Services, Inc. (GEESI) signed a license agreement in 1992 with MMC and Mitsui and Company, Ltd. Of Tokyo. Under this agreement, GEESI will market, design, fabricate and install the Mitsui-BF process for flue gas cleaning applications in North America. MMC also developed a technology to produce AC used in the dry DeSOx/DeNOx/Air Toxics removal process based on their own metallurgical coke manufacturing technology. This paper provides information on the details of MMC's AC used in the dry DeSOx/DeNOx/Air Toxics removal process and of the DeSOx/DeNOx/Air Toxics removal process itself.

  15. An (even) broader perspective: Combining environmental processes and natural hazards education in a MSc programme

    NASA Astrophysics Data System (ADS)

    Heckmann, Tobias; Haas, Florian; Trappe, Martin; Cyffka, Bernd; Becht, Michael

    2010-05-01

    Natural hazards are processes occurring in the natural environment that negatively affect human society. In most instances, the definition of natural hazards implies sudden events as different as earthquakes, floods or landslides. In addition, there are other phenomena that occur more subtly or slowly, and nevertheless may have serious adverse effects on the human environment. Hence, a comprehensive study programme in natural hazards has to include not only the conspicuous causes and effects of natural catastrophes, but of environmental processes in general. Geography as a discipline is located at the interface of natural, social and economic sciences; the physical geography programme described here is designed to include the social and economic dimension as well as management issues. Modules strengthening the theoretical background of geomorphic, geological, hydrological and meteorological processes and hazards are complemented by practical work in the field and the laboratory, dealing with measuring and monitoring environmental processes. On this basis, modeling and managing skills are developed. Another thread in the transdisciplinary programme deals with sustainability and environmental policy issues, and environmental psychology (e.g. perception of and reaction to hazards). This will improve the communication and team working skills of students wherever they are part of an interdisciplinary working group. Through the involvement in research programmes, students are confronted ‘hands on' with the different aspects of environmental processes and their consequences; thus, they will be excellently but not exclusively qualified for positions in the ‘natural hazards' sector.

  16. A hybrid process combining homogeneous catalytic ozonation and membrane distillation for wastewater treatment.

    PubMed

    Zhang, Yong; Zhao, Peng; Li, Jie; Hou, Deyin; Wang, Jun; Liu, Huijuan

    2016-10-01

    A novel catalytic ozonation membrane reactor (COMR) coupling homogeneous catalytic ozonation and direct contact membrane distillation (DCMD) was developed for refractory saline organic pollutant treatment from wastewater. An ozonation process took place in the reactor to degrade organic pollutants, whilst the DCMD process was used to recover ionic catalysts and produce clean water. It was found that 98.6% total organic carbon (TOC) and almost 100% salt were removed and almost 100% metal ion catalyst was recovered. TOC in the permeate water was less than 16 mg/L after 5 h operation, which was considered satisfactory as the TOC in the potassium hydrogen phthalate (KHP) feed water was as high as 1000 mg/L. Meanwhile, the membrane distillation flux in the COMR process was 49.8% higher than that in DCMD process alone after 60 h operation. Further, scanning electron microscope images showed less amount and smaller size of contaminants on the membrane surface, which indicated the mitigation of membrane fouling. The tensile strength and FT-IR spectra tests did not reveal obvious changes for the polyvinylidene fluoride membrane after 60 h operation, which indicated the good durability. This novel COMR hybrid process exhibited promising application prospects for saline organic wastewater treatment. PMID:27372262

  17. Steam and CO{sub 2} combination processes in fractured porous media: Numerical studies

    SciTech Connect

    Liu, C.; Sharma, M.P.; Harris, H.G.

    1995-12-31

    A novel steam-plus-CO{sub 2} flooding process for oil recovery in fractured cores has been investigated experimentally. The oil recovery increased as much as 25% and 20% of original oil in place by steam-plus-CO{sub 2} process compared to steam-alone process from non-fractured and fractured cores respectively. In addition to the effects of injection temperature and injection rates on oil recovery and residual oil saturation, the ratio of steam to CO{sub 2}, a dimensionless number, was found to dominate the oil recovery process. In non-fractured sandstone cores, there exists an optimum ratio of steam to CO{sub 2} which yields a maximum oil recovery with the lowest residual oil saturation. The ratio does not depend on injection temperature and injection rates. In fractured cores, there still exists an optimum steam-CO{sub 2} ratio which yields a maximum oil recovery. However, it depends on injection temperature. A dual porosity and dual permeability thermal compositional simulator was employed to investigate the experimental processes numerically. The mechanisms in the simulations are based on the observations of the experiments which indicated that rate and amount of inhibition was favored by adding CO{sub 2} to steam by temperature increase. Some other mechanisms such as permeability change as temperature increase as well as conventional mechanisms in steam flooding are also investigated in this research.

  18. Degradation of diclofenac sodium using combined processes based on hydrodynamic cavitation and heterogeneous photocatalysis.

    PubMed

    Bagal, Manisha V; Gogate, Parag R

    2014-05-01

    Diclofenac sodium, a widely detected pharmaceutical drug in wastewater samples, has been selected as a model pollutant for degradation using novel combined approach of hydrodynamic cavitation and heterogeneous photocatalysis. A slit venturi has been used as cavitating device in the hydrodynamic cavitation reactor. The effect of various operating parameters such as inlet fluid pressure (2-4 bar) and initial pH of the solution (4-7.5) on the extent of degradation have been studied. The maximum extent of degradation of diclofenac sodium was obtained at inlet fluid pressure of 3 bar and initial pH as 4 using hydrodynamic cavitation alone. The loadings of TiO2 and H2O2 have been optimised to maximise the extent of degradation of diclofenac sodium. Kinetic study revealed that the degradation of diclofenac sodium fitted first order kinetics over the selected range of operating protocols. It has been observed that combination of hydrodynamic cavitation with UV, UV/TiO2 and UV/TiO2/H2O2 results in enhanced extents of degradation as compared to the individual schemes. The maximum extent of degradation as 95% with 76% reduction in TOC has been observed using hydrodynamic cavitation in conjunction with UV/TiO2/H2O2 under the optimised operating conditions. The diclofenac sodium degradation byproducts have been identified using LC/MS analysis. PMID:24262760

  19. Commercial biopreservatives combined with salt and sugar to control Listeria monocytogenes during smoked salmon processing.

    PubMed

    Montiel, Raquel; Bravo, Daniel; Medina, Margarita

    2013-08-01

    Three commercial antimicrobials, applied during the salting stage in the preparation of cold-smoked salmon, were investigated for their effect on the behavior of Listeria monocytogenes. Fresh salmon inoculated with L. monocytogenes INIA 2530 was treated with three bacteriocin-based commercial biopreservatives, which were applied in combination with a salt-sugar mix. The product was kept at 8°C for 7 days. L. monocytogenes grew by approximately 3 log CFU/g in control salmon (without the salt-sugar mix or biopreservatives). Pathogen levels were reduced by the three biopreservatives investigated. After 7 days at 8°C, L. monocytogenes counts in salmon treated with biopreservatives combined with the salt-sugar mix were significantly lower than those observed in salmon treated with only salt and sugar. At the end of storage, salmon treated with biopreservative derived from Pediococcus acidilactici had pathogen levels 3.6 log CFU/g lower than in control salmon (without the salt-sugar mix) and 1.5 log CFU/g lower than in the samples treated with only salt and sugar. The application of commercial biopreservatives to fresh salmon during the dry-salting stage might help control L. monocytogenes growth, thus enhancing the safety of cold-smoked salmon during refrigerated storage. PMID:23905807

  20. Process modelling of biomass conversion to biofuels with combined heat and power.

    PubMed

    Sharma, Abhishek; Shinde, Yogesh; Pareek, Vishnu; Zhang, Dongke

    2015-12-01

    A process model has been developed to study the pyrolysis of biomass to produce biofuel with heat and power generation. The gaseous and solid products were used to generate heat and electrical power, whereas the bio-oil was stored and supplied for other applications. The overall efficiency of the base case model was estimated for conversion of biomass into useable forms of bio-energy. It was found that the proposed design is not only significantly efficient but also potentially suitable for distributed operation of pyrolysis plants having centralised post processing facilities for production of other biofuels and chemicals. It was further determined that the bio-oil quality improved using a multi-stage condensation system. However, the recycling of flue gases coming from combustor instead of non-condensable gases in the pyrolyzer led to increase in the overall efficiency of the process with degradation of bio-oil quality. PMID:26402874

  1. Combined micromechanical and fabrication process optimization for metal-matrix composites

    NASA Technical Reports Server (NTRS)

    Morel, M.; Saravanos, D. A.; Chamis, C. C.

    1991-01-01

    A method is presented to minimize the residual matrix stresses in metal matrix composites. Fabrication parameters such as temperature and consolidation pressure are optimized concurrently with the characteristics (i.e., modulus, coefficient of thermal expansion, strength, and interphase thickness) of a fiber-matrix interphase. By including the interphase properties in the fabrication process, lower residual stresses are achievable. Results for an ultra-high modulus graphite (P100)/copper composite show a reduction of 21 percent for the maximum matrix microstress when optimizing the fabrication process alone. Concurrent optimization of the fabrication process and interphase properties show a 41 percent decrease in the maximum microstress. Therefore, this optimization method demonstrates the capability of reducing residual microstresses by altering the temperature and consolidation pressure histories and tailoring the interphase properties for an improved composite material. In addition, the results indicate that the consolidation pressures are the most important fabrication parameters, and the coefficient of thermal expansion is the most critical interphase property.

  2. Chemical industrial wastewater treated by combined biological and chemical oxidation process.

    PubMed

    Guomin, Cao; Guoping, Yang; Mei, Sheng; Yongjian, Wang

    2009-01-01

    Wastewaters from phenol and rubber synthesis were treated by the activated sludge process in a large-scale chemical factory in Shanghai, but the final effluent quality cannot conform with the local discharge limit without using river water for dilution. Therefore, this chemical factory had to upgrade its wastewater treatment plant. To fully use the present buildings and equipment during upgrading of the chemical factory's wastewater treatment plant and to save operation costs, a sequential biological pre-treatement, chemical oxidation, and biological post-treatment (or BCB for short) process had been proposed and investigated in a pilot trial. The pilot trial results showed that about 80% COD in the chemical wastewater could be removed through anoxic and aerobic degradation in the biological pre-treatement section, and the residual COD in the effluent of the biological pre-treatment section belongs to refractory chemicals which cannot be removed by the normal biological process. The refractory chemicals were partial oxidized using Fenton's reagent in the chemical oxidation section to improve their biodegradability; subsequently the wastewater was treated by the SBR process in the biological post-treatment section. The final effluent COD reached the first grade discharge limit (<100 mg l(-1)) of Chinese Notational Integrated Wastewater Discharge Standard (GB8978-1996) even if without using any dilution water. Compared with the original dilution and biological process, the operation cost of the BCB process increased by about 0.5 yuan (RMB) per cubic metre wastewater, but about 1,240,000 m(3) a(-1) dilution water could be saved and the COD emission could be cut down by 112 tonne each year. PMID:19273902

  3. Combination Across Domains: An MEG Investigation into the Relationship between Mathematical, Pictorial, and Linguistic Processing.

    PubMed

    Bemis, Douglas K; Pylkkänen, Liina

    2012-01-01

    Debates surrounding the evolution of language often hinge upon its relationship to cognition more generally and many investigations have attempted to demark the boundary between the two. Though results from these studies suggest that language may recruit domain-general mechanisms during certain types of complex processing, the domain-generality of basic combinatorial mechanisms that lie at the core of linguistic processing is still unknown. Our previous work (Bemis and Pylkkänen, 2011, 2012) used magnetoencephalography to isolate neural activity associated with the simple composition of an adjective and a noun ("red boat") and found increased activity during this processing localized to the left anterior temporal lobe (lATL), ventro-medial prefrontal cortex (vmPFC), and left angular gyrus (lAG). The present study explores the domain-generality of these effects and their associated combinatorial mechanisms through two parallel non-linguistic combinatorial tasks designed to be as minimal and natural as the linguistic paradigm. In the first task, we used pictures of colored shapes to elicit combinatorial conceptual processing similar to that evoked by the linguistic expressions and find increased activity again localized to the vmPFC during combinatorial processing. This result suggests that a domain-general semantic combinatorial mechanism operates during basic linguistic composition, and that activity generated by its processing localizes to the vmPFC. In the second task, we recorded neural activity as subjects performed simple addition between two small numerals. Consistent with a wide array of recent results, we find no effects related to basic addition that coincide with our linguistic effects and instead find increased activity localized to the intraparietal sulcus. This result suggests that the scope of the previously identified linguistic effects is restricted to compositional operations and does not extend generally to all tasks that are merely similar in

  4. Proper restorative material selection, digital processes allow highly esthetic shade match combined with layered porcelain.

    PubMed

    Kahng, Luke S

    2014-03-01

    Today's digital technologies are affording dentists and laboratory technicians more control over material choices for creating restorations and fabricating dental prostheses. Digital processes can potentially enable technicians to create ideal marginal areas and account for the thickness and support of layering porcelain over substructures in the design process. In this case report of a restoration of a single central incisor, a number of issues are addressed that are central to using the newest digital technology. As demonstrated, shade selection is a crucial early step in any restorative case preparation. PMID:24773196

  5. Combined process for ethanol fermentation at high-solids loading and biogas digestion from unwashed steam-exploded corn stover.

    PubMed

    Wang, Zhen; Lv, Zhe; Du, Jiliang; Mo, Chunling; Yang, Xiushan; Tian, Shen

    2014-08-01

    A combined process was designed for the co-production of ethanol and methane from unwashed steam-exploded corn stover. A terminal ethanol titer of 69.8 g/kg mass weight (72.5%) was achieved when the fed-batch mode was performed at a final solids loading of 35.5% (w/w) dry matter (DM) content. The whole stillage from high-solids ethanol fermentation was directly transferred in a 3-L anaerobic digester. During 52-day single-stage digester operation, the methane productivity was 320 mL CH₄/g volatile solids (VS) with a maximum VS reduction efficiency of 55.3%. The calculated overall product yield was 197 g ethanol + 96 g methane/kg corn stover. This indicated that the combined process was able to improve overall content utilization and extract a greater yield of lignocellulosic biomass compared to ethanol fermentation alone. PMID:24926600

  6. Combining the 'two worlds' of chemocatalysis and biocatalysis towards multi-step one-pot processes in aqueous media.

    PubMed

    Gröger, Harald; Hummel, Werner

    2014-04-01

    The combination of biocatalytic and chemocatalytic reactions leading to one-pot processes in aqueous medium represents an economically and ecologically attractive concept in organic synthesis due to the potential to avoid time and capacity consuming and waste producing work-up steps of intermediates. The use of water as a solvent has many advantages. A key feature is the opportunity it provides as the solvent in nature to make use of the full range of enzymes. In recent years development of chemoenzymatic one-pot processes in water has emerged tremendously, and proof of concepts for the combination of biotransformations with metal catalysts and organocatalysts were demonstrated. This review will focus on major contributions in this field, which also underline the compatibility of these two 'worlds' of catalysis with each other as well as the industrial potential of this one-pot approach. PMID:24709123

  7. Intelligent Modeling Combining Adaptive Neuro Fuzzy Inference System and Genetic Algorithm for Optimizing Welding Process Parameters

    NASA Astrophysics Data System (ADS)

    Gowtham, K. N.; Vasudevan, M.; Maduraimuthu, V.; Jayakumar, T.

    2011-04-01

    Modified 9Cr-1Mo ferritic steel is used as a structural material for steam generator components of power plants. Generally, tungsten inert gas (TIG) welding is preferred for welding of these steels in which the depth of penetration achievable during autogenous welding is limited. Therefore, activated flux TIG (A-TIG) welding, a novel welding technique, has been developed in-house to increase the depth of penetration. In modified 9Cr-1Mo steel joints produced by the A-TIG welding process, weld bead width, depth of penetration, and heat-affected zone (HAZ) width play an important role in determining the mechanical properties as well as the performance of the weld joints during service. To obtain the desired weld bead geometry and HAZ width, it becomes important to set the welding process parameters. In this work, adaptative neuro fuzzy inference system is used to develop independent models correlating the welding process parameters like current, voltage, and torch speed with weld bead shape parameters like depth of penetration, bead width, and HAZ width. Then a genetic algorithm is employed to determine the optimum A-TIG welding process parameters to obtain the desired weld bead shape parameters and HAZ width.

  8. Liposomes Size Engineering by Combination of Ethanol Injection and Supercritical Processing.

    PubMed

    Santo, Islane Espirito; Campardelli, Roberta; Albuquerque, Elaine Cabral; Vieira De Melo, Silvio A B; Reverchon, Ernesto; Della Porta, Giovanna

    2015-11-01

    Supercritical fluid extraction using a high-pressure packed tower is proposed not only to remove the ethanol residue from liposome suspensions but also to affect their size and distribution leading the production of nanosomes. Different operating pressures, temperatures, and gas to liquid ratios were explored and ethanol was successfully extracted up to a value of 400 ppm; liposome size and distribution were also reduced by the supercritical processing preserving their integrity, as confirmed by Z-potential data and Trasmission Electron Microscopy observations. Operating at 120 bar and 38°C, nanosomes with a mean diameter of about 180 ± 40 nm and good storage stability were obtained. The supercritical processing did not interfere on drug encapsulation, and no loss of entrapped drug was observed when the water-soluble fluorescein was loaded as a model compound. Fluorescein encapsulation efficiency was 30% if pure water was used during the supercritical extraction as processing fluid; whereas an encapsulation efficiency of 90% was obtained if the liposome suspension was processed in water/fluorescein solution. The described technology is easy to scale up to an industrial production and merge in one step the solvent extraction, liposome size engineering, and an excellent drug encapsulation in a single operation unit. PMID:26211426

  9. Combining Natural Language Processing and Statistical Text Mining: A Study of Specialized versus Common Languages

    ERIC Educational Resources Information Center

    Jarman, Jay

    2011-01-01

    This dissertation focuses on developing and evaluating hybrid approaches for analyzing free-form text in the medical domain. This research draws on natural language processing (NLP) techniques that are used to parse and extract concepts based on a controlled vocabulary. Once important concepts are extracted, additional machine learning algorithms,…

  10. Combining ARS Process-Based Water and Wind Erosion Prediction Technologies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Erosion process research in the United States has long been separated by location, experimental data collection, and prediction technologies. Erosion experiment stations were established in the l930’s throughout the country, however most examined erosion by water while a few in the Plains states we...

  11. New insights into Chlamydomonas reinhardtii hydrogen production processes by combined microarray/RNA-seq transcriptomics.

    PubMed

    Toepel, Jörg; Illmer-Kephalides, Maike; Jaenicke, Sebastian; Straube, Jasmin; May, Patrick; Goesmann, Alexander; Kruse, Olaf

    2013-08-01

    Hydrogen production with Chlamydomonas reinhardtii induced by sulphur starvation is a multiphase process while the cell internal metabolism is completely remodelled. The first cellular response is characterized by induction of genes with regulatory functions, followed by a total remodelling of the metabolism to provide reduction equivalents for cellular processes. We were able to characterize all major processes that provide energy and reduction equivalents during hydrogen production. Furthermore, C. reinhardtii showed a strong transcript increase for gene models responsible for stress response and detoxification of oxygen radicals. Finally, we were able to determine potential bottlenecks and target genes for manipulation to increase hydrogen production or to prolong the hydrogen production phase. The investigation of transcriptomic changes during the time course of hydrogen production in C. reinhardtii with microarrays and RNA-seq revealed new insights into the regulation and remodelling of the cell internal metabolism. Both methods showed a good correlation. The microarray platform can be used as a reliable standard tool for routine gene expression analysis. RNA-seq additionally allowed a detailed time-dependent study of gene expression and determination of new genes involved in the hydrogen production process. PMID:23551401

  12. SYSTEM AND PROCESS FOR PRODUCTION OF METHANOL FROM COMBINED WIND TURBINE AND FUEL CELL POWER

    EPA Science Inventory

    The paper examines an integrated use of ultra-clean wind turbines and high temperature fuel cells to produce methanol, especially for transportation purposes. The principal utility and application of the process is the production of transportation fuel from domestic resources to ...

  13. Characterization of dissolved organic matter in landfill leachate during the combined treatment process of air stripping, Fenton, SBR and coagulation.

    PubMed

    Liu, ZhiPing; Wu, WenHui; Shi, Ping; Guo, JinSong; Cheng, Jin

    2015-07-01

    A combined treatment process of air stripping+Fenton+sequencing batch reactor (SBR)+ coagulation was performed to remove the pollutants in landfill leachate. Molecular weight (MW) distribution and fractions of dissolved organic matter (DOM) were discussed to study the characteristics. The experiment showed that the removal rate of chemical oxygen demand (COD), five day biological oxygen demand (BOD5) and ammonia nitrogen (NH3N) by the combined process were 92.8%, 87.8% and 98.0%, respectively. Humic acid (HA) and fulvic acid (FA) were the main fractions in raw leachate with 81.8% of the total COD concentration, while hydrophilic organic matter (HyI) was the dominant fraction in the final effluent of the combined process with 63.5% of the total COD concentration. After the combined treatment process, the removal rate of DOM and fractions HA, FA, HyI were 91.9%, 97.1%, 95.8% and 71.7%, respectively. Organic matters of MW<2k and MW>100k were removed with 90.5% and 97.9% COD concentration after the treatment. The ultraviolet-visible spectra (UV-vis), Fourier transform infrared spectra (FTIR) and three-dimensional excitation-emission matrices spectra (EEMs) indicated that benzene materials and phenol compounds were preferentially removed in air stripping. High MW matters, aromatic rings, conjugated moieties and some functional groups were mainly removed by Fenton. While smallMW fractions, carboxylic acids, alcohols and protein-like materials were preferentially biodegraded via SBR. Fulvic-like and humic-like materials were mainly destroyed via Fenton oxidation and coagulation. PMID:25899801

  14. Auxiliary steam supply and process steam extraction at the combined-cycle unit Moerdijk/The Netherlands

    SciTech Connect

    Toebes, J.A.; Beker, M.J.W.; Puts, J.J.

    1998-07-01

    The first combined-cycle plant to be operated in combination with a waste-to-energy (WTE) plant has been built by the Dutch electric power utility N.V. Electriciteits-Produktiemaatschappij Zuid-Nederland (N.V. EPZ). Steam generated by the combustion of municipal waste is supplied to the heat recovery steam generators of the combined cycle unit. In addition to generating electric power for the public grid, the plant also supplies process steam to a neighboring chemical plant. The combination results in nearly 70% utilization of the energy contained in the natural gas fuel. The plant has a maximum electrical output of 339 MW and reduces annual natural gas consumption by approximately 40 million cubic meters which corresponds to a CO{sub 2} emission reduction of nearly 100,000 metric tons per year. The combined-cycle plant started operation in mid 1996 and during the first two years of operation showed heat consumption and emission levels in conformity with requirements. This paper presents the integrated concept and the main operating results.

  15. Combined crystal plasticity and phase-field method for recrystallization in a process chain of sheet metal production

    NASA Astrophysics Data System (ADS)

    Vondrous, Alexander; Bienger, Pierre; Schreijäg, Simone; Selzer, Michael; Schneider, Daniel; Nestler, Britta; Helm, Dirk; Mönig, Reiner

    2015-02-01

    In sheet metal production, a typical process chain contains hot rolling, cold rolling and annealing as a sequence of consecutive processing steps. We investigate the grain structure evolution of body centered cubic low carbon steel and focus on recrystallization, by employing different computational methods which operate across the process chain and across length scales. In particular, we combine finite element crystal plasticity with phase-field simulations to study the effect of deformation of the grain structure by hot and cold rolling on recrystallization during annealing. The overall goal is to represent the most important technological quantities such as texture evolution and the fraction of recrystallization. The results of grain quantities are validated by a comparison of the orientation distribution functions with experimental electron backscatter measurements. The coupling of the simulation methods has shown that the effects of recrystallization can be recovered well, depending on the preceding processing conditions.

  16. Magnesium Recycling of Partially Oxidized, Mixed Magnesium-Aluminum Scrap through Combined Refining and Solid Oxide Membrane Electrolysis Processes

    SciTech Connect

    Xiaofei Guan; Peter A. Zink; Uday B. Pal; Adam C. Powell

    2012-01-01

    Pure magnesium (Mg) is recycled from 19g of partially oxidized 50.5wt.% Mg-Aluminum (Al) alloy. During the refining process, potentiodynamic scans (PDS) were performed to determine the electrorefining potential for magnesium. The PDS show that the electrorefining potential increases over time as the magnesium content inside the Mg-Al scrap decreases. Up to 100% percent of magnesium is refined from the Mg-Al scrap by a novel refining process of dissolving magnesium and its oxide into a flux followed by vapor phase removal of dissolved magnesium and subsequently condensing the magnesium vapor. The solid oxide membrane (SOM) electrolysis process is employed in the refining system to enable additional recycling of magnesium from magnesium oxide (MgO) in the partially oxidized Mg-Al scrap. The combination of the refining and SOM processes yields 7.4g of pure magnesium.

  17. Magnesium Recycling of Partially Oxidized, Mixed Magnesium-Aluminum Scrap Through Combined Refining and Solid Oxide Membrane (SOM) Electrolysis Processes

    SciTech Connect

    Guan, Xiaofei; Zink, Peter; Pal, Uday

    2012-03-11

    Pure magnesium (Mg) is recycled from 19g of partially oxidized 50.5wt.%Mg-Aluminum (Al) alloy. During the refining process, potentiodynamic scans (PDS) were performed to determine the electrorefining potential for magnesium. The PDS show that the electrorefining potential increases over time as the Mg content inside the Mg-Al scrap decreases. Up to 100% percent of magnesium is refined from the Mg-Al scrap by a novel refining process of dissolving magnesium and its oxide into a flux followed by vapor phase removal of dissolved magnesium and subsequently condensing the magnesium vapors in a separate condenser. The solid oxide membrane (SOM) electrolysis process is employed in the refining system to enable additional recycling of magnesium from magnesium oxide (MgO) in the partially oxidized Mg-Al scrap. The combination of the refining and SOM processes yields 7.4g of pure magnesium; could not collect and weigh all of the magnesium recovered.

  18. MTCI/ThermoChem steam reforming process for solid fuels for combined cycle power generation

    SciTech Connect

    Mansour, M.N.; Voelker, G.; Dural-Swamy, K.

    1995-12-31

    Manufacturing and Technology Conversion International, Inc. (MTCI) has developed a novel technology to convert solid fuels including biomass, coal, municipal solid waste (MSW) and wastewater sludges into usable syngas by steam reforming in an indirectly heated, fluid-bed reactor. MTCI has licensed and patented the technology to ThermoChem, Inc. Both MTCI and ThermoChem have built two modular commercial-scale demonstration units: one for recycle paper mill rejects (similar to refuse-derived fuel [RDF]), and another for chemical recovery of black liquor. ThermoChem has entered into an agreement with Ajinkyatara Cooperative Sugar Factory, India, for building a 10 MW combined cycle power generation facility based on bagasse and agro-residue gasification.

  19. Biological improvement on combined mycelial pellet for aniline treatment by tourmaline in SBR process.

    PubMed

    Zhang, Si; Li, Ang; Cui, Di; Duan, Shuyue; Yang, Jixian; Ma, Fang; Shi, Shengnan; Ren, Nanqi

    2011-10-01

    As a biomass carrier, mycelial pellet of Aspergillus niger Y3 was used to immobilize the aniline-degrading bacterium Acinetobacter calcoaceticus JH-9 and the mix culture of the COD rapid degrading bacteria in this study. Tourmaline was added to this system in order to improve the aniline removal performance using combined mycelial pellet. Flask experiments were performed to investigate the promotion mechanism. The results showed that the start-up time was shorted from 7 cycles to only 1 cycle. The aniline and COD concentration in effluent were much lower in the tourmaline-adding system. It was suggested that tourmaline could enhance the number and activity of the aniline-degrading bacteria immobilized on the mycelial pellet. Therefore, the performance of mycelial pellet as a biomass carrier could be improved by tourmaline. PMID:21764303

  20. Combining analysis with optimization at Langley Research Center - An evolutionary process

    NASA Technical Reports Server (NTRS)

    Rogers, J. L., Jr.

    1982-01-01

    Analytical and computational advances, at Langely Research Center (La RC), contributing to the evolution of computer programs combining analysis and optimization are presented, namely, strength sizing, concurrent strength and flutter sizing, and general optimization. Current work on a software system which executes the analysis and optimization in a sequential rather than concurrent mode is then described, as a step toward the long-term goal at La RC of developing the methodology for such systems. The software system is designated Enginering Analysis Language (EAL)/Programming Structural Synthesis System (PR)SSS), and work is being done on the incorporation of PROSSS into EAL. EAL language can perform most FORTRAN operations, including testing, branching, and looping, and its data base system can easily be accessed by any processor using FORTRAN callable utility subroutines. Some numerical results showing the accuracy of EAL/PROSSS are given.

  1. The combined effect of wet granulation process parameters and dried granule moisture content on tablet quality attributes.

    PubMed

    Gabbott, Ian P; Al Husban, Farhan; Reynolds, Gavin K

    2016-09-01

    A pharmaceutical compound was used to study the effect of batch wet granulation process parameters in combination with the residual moisture content remaining after drying on granule and tablet quality attributes. The effect of three batch wet granulation process parameters was evaluated using a multivariate experimental design, with a novel constrained design space. Batches were characterised for moisture content, granule density, crushing strength, porosity, disintegration time and dissolution. Mechanisms of the effect of the process parameters on the granule and tablet quality attributes are proposed. Water quantity added during granulation showed a significant effect on granule density and tablet dissolution rate. Mixing time showed a significant effect on tablet crushing strength, and mixing speed showed a significant effect on the distribution of tablet crushing strengths obtained. The residual moisture content remaining after granule drying showed a significant effect on tablet crushing strength. The effect of moisture on tablet tensile strength has been reported before, but not in combination with granulation parameters and granule properties, and the impact on tablet dissolution was not assessed. Correlations between the energy input during granulation, the density of granules produced, and the quality attributes of the final tablets were also identified. Understanding the impact of the granulation and drying process parameters on granule and tablet properties provides a basis for process optimisation and scaling. PMID:27016211

  2. Self-purification processes of Lake Cerknica as a combination of wetland and SBR reactor.

    PubMed

    Krzyk, Mario; Drev, Darko; Kolbl, Sabina; Panjan, Jože

    2015-12-01

    Lake Cerknica is a periodically intermittent lake which may extend its surface up to 26 km(2) and reach 80 km(3) in volume. Lakes tend to age over time. Lake Cerknica does not possess properties of a real lake or those of usual wetlands thus making all of its physical, chemical, and biological processes unique. The feature with the greatest impact on plant development and animal life is the alternating nature of the lake where water from the lake is drained through the lake's bottom dries and refloods. Lake Cerknica was compared with a plant-based water treatment system and a sequential reactor with an approximately 6-month filling and emptying cycle. Lake Cerknica's basic processes of nutrient purification are the deposition of suspended nutrients on the lake bottom, integration of nutrients in plants, and partial denitrification. PMID:26304804

  3. Combining In-situ and In-transit Processing to Enable Extreme-Sscale Scientific Analysis

    SciTech Connect

    Bennett, Janine C.; Abbasi, Hasan; Bremer, Peer-Timo; Grout, Ray; Gyulassy, Attila; Jin, Tong; Klasky, Scott A; Kolla, Hemanth; Parashar, Manish; Pascucci, Valerio; Pebay, Philippe; Thompson, David; Yu, Hongfeng; Zhang, Fan; Chen, Jacqueline H

    2012-01-01

    With the onset of extreme-scale computing, I/O constraints make it increasingly difficult for scientists to save a sufficient amount of raw simulation data to persistent storage. One potential solution is to change the data analysis pipeline from a post-process centric to a concurrent approach based on either in-situ or in-transit processing. In this context computations are considered in-situ if they utilize the primary compute resources, while in-transit processing refers to offloading computations to a set of secondary resources using asynchronous data transfers. In this paper we explore the design and implementation of three common analysis techniques typically performed on large-scale scientific simulations: topological analysis, descriptive statistics, and visualization. We summarize algorithmic developments, describe a resource scheduling system to coordinate the execution of various analysis workflows, and discuss our implementation using the DataSpaces and ADIOS frameworks that support efficient data movement between in-situ and in-transit computations. We demonstrate the efficiency of our lightweight, flexible framework by deploying it on the Jaguar XK6 to analyze data generated by S3D, a massively parallel turbulent combustion code. Our framework allows scientists dealing with the data deluge at extreme scale to perform analyses at increased temporal resolutions, mitigate I/O costs, and significantly improve the time to insight.

  4. The combined influence of central and peripheral routes in the online persuasion process.

    PubMed

    SanJosé-Cabezudo, Rebeca; Gutiérrez-Arranz, Ana M; Gutiérrez-Cillán, Jesús

    2009-06-01

    The elaboration likelihood model (ELM) is one of the most widely used psychological theories in academic literature to account for how advertising information is processed. The current work seeks to overturn one of the basic principles of the ELM and takes account of new variables in the model that help to explain the online persuasion process more clearly. Specifically, we posit that in a context of high-involvement exposure to advertising (e.g., Web pages), central and peripheral processing routes may act together. In a repeated-measures experimental design, 112 participants were exposed to two Web sites of a fictitious travel agency, differing only in their design--serious versus amusing. Findings evidence that a peripheral cue, such as how the Web pages are presented, does prove relevant when attempting to reflect the level of effectiveness. Moreover, if we take account of individuals' motivation when accessing the Internet, whether cognitive or affective, the motivation will impact their response to the Web site design. The work contributes to ELM literature and may help firms to pinpoint those areas and features of Internet advertising that prove most efficient. PMID:19445636

  5. Psychophysics, fitting, and signal processing for combined hearing aid and cochlear implant stimulation.

    PubMed

    Francart, Tom; McDermott, Hugh J

    2013-01-01

    The addition of acoustic stimulation to electric stimulation via a cochlear implant has been shown to be advantageous for speech perception in noise, sound quality, music perception, and sound source localization. However, the signal processing and fitting procedures of current cochlear implants and hearing aids were developed independently, precluding several potential advantages of bimodal stimulation, such as improved sound source localization and binaural unmasking of speech in noise. While there is a large and increasing population of implantees who use a hearing aid, there are currently no generally accepted fitting methods for this configuration. It is not practical to fit current commercial devices to achieve optimal binaural loudness balance or optimal binaural cue transmission for arbitrary signals and levels. There are several promising experimental signal processing systems specifically designed for bimodal stimulation. In this article, basic psychophysical studies with electric acoustic stimulation are reviewed, along with the current state of the art in fitting, and experimental signal processing techniques for electric acoustic stimulation. PMID:24165299

  6. Combined expert system/neural networks method for process fault diagnosis

    DOEpatents

    Reifman, Jaques; Wei, Thomas Y. C.

    1995-01-01

    A two-level hierarchical approach for process fault diagnosis is an operating system employs a function-oriented approach at a first level and a component characteristic-oriented approach at a second level, where the decision-making procedure is structured in order of decreasing intelligence with increasing precision. At the first level, the diagnostic method is general and has knowledge of the overall process including a wide variety of plant transients and the functional behavior of the process components. An expert system classifies malfunctions by function to narrow the diagnostic focus to a particular set of possible faulty components that could be responsible for the detected functional misbehavior of the operating system. At the second level, the diagnostic method limits its scope to component malfunctions, using more detailed knowledge of component characteristics. Trained artificial neural networks are used to further narrow the diagnosis and to uniquely identify the faulty component by classifying the abnormal condition data as a failure of one of the hypothesized components through component characteristics. Once an anomaly is detected, the hierarchical structure is used to successively narrow the diagnostic focus from a function misbehavior, i.e., a function oriented approach, until the fault can be determined, i.e., a component characteristic-oriented approach.

  7. Combined expert system/neural networks method for process fault diagnosis

    DOEpatents

    Reifman, J.; Wei, T.Y.C.

    1995-08-15

    A two-level hierarchical approach for process fault diagnosis of an operating system employs a function-oriented approach at a first level and a component characteristic-oriented approach at a second level, where the decision-making procedure is structured in order of decreasing intelligence with increasing precision. At the first level, the diagnostic method is general and has knowledge of the overall process including a wide variety of plant transients and the functional behavior of the process components. An expert system classifies malfunctions by function to narrow the diagnostic focus to a particular set of possible faulty components that could be responsible for the detected functional misbehavior of the operating system. At the second level, the diagnostic method limits its scope to component malfunctions, using more detailed knowledge of component characteristics. Trained artificial neural networks are used to further narrow the diagnosis and to uniquely identify the faulty component by classifying the abnormal condition data as a failure of one of the hypothesized components through component characteristics. Once an anomaly is detected, the hierarchical structure is used to successively narrow the diagnostic focus from a function misbehavior, i.e., a function oriented approach, until the fault can be determined, i.e., a component characteristic-oriented approach. 9 figs.

  8. Study on treatment of coking wastewater by biofilm reactors combined with zero-valent iron process.

    PubMed

    Lai, Peng; Zhao, Hua-Zhang; Zeng, Ming; Ni, Jin-Ren

    2009-03-15

    Experiments were conducted to investigate the behavior of the integrated system with biofilm reactors and zero-valent iron (ZVI) process for coking wastewater treatment. Particular attention was paid to the performance of the integrated system for removal of organic and inorganic nitrogen compounds. Maximal removal efficiencies of chemical oxygen demand (COD), ammonia nitrogen (NH(3)-N) and total inorganic nitrogen (TIN) were up to 96.1, 99.2 and 92.3%, respectively. Moreover, it was found that some phenolic compounds were effectively removed. The refractory organic compounds were primarily removed in ZVI process of the integrated system. These compounds, with molecular weights either ranged 10,000-30,000 Da or 0-2000 Da, were mainly the humic acid (HA) and hydrophilic (HyI) compounds. Oxidation-reduction and coagulation were the main removal mechanisms in ZVI process, which could enhance the biodegradability of the system effluent. Furthermore, the integrated system showed a rapid recovery performance against the sudden loading shock and remained high efficiencies for pollutants removal. Overall, the integrated system was proved feasible for coking wastewater treatment in practical applications. PMID:18639983

  9. Coking wastewater treatment for industrial reuse purpose: combining biological processes with ultrafiltration, nanofiltration and reverse osmosis.

    PubMed

    Jin, Xuewen; Li, Enchao; Lu, Shuguang; Qiu, Zhaofu; Sui, Qian

    2013-08-01

    A full-scale plant using anaerobic, anoxic and oxic processes (A1/A2/O), along with a pilot-scale membrane bioreactor (MBR), nanofiltration (NF) and reverse osmosis (RO) integrated system developed by Shanghai Baosteel Chemical Co. Ltd., was investigated to treat coking wastewater for industrial reuse over a period of one year. The removals reached 82.5% (COD), 89.6% (BOD), 99.8% (ammonium nitrogen), 99.9% (phenol), 44.6% (total cyanide (T-CN)), 99.7% (thiocyanide (SCN-)) and 8.9% (fluoride), during the A1/A2/O biological treatment stage, and all parameters were further reduced by over 96.0%, except for fluoride (86.4%), in the final discharge effluent from the currently operating plant. The pilot-scale MBR process reduced the turbidity to less than 0.65 NTU, and most of the toxic organic compounds were degraded or intercepted by the A1/A2/O followed MBR processes. In addition, parameters including COD, T-CN, total nitrogen, fluoride, chloride ion, hardness and conductivity were significantly reduced by the NF-RO system to a level suitable for industrial reuse, with a total water production ratio of 70.7%. However, the concentrates from the NF and RO units were highly polluted and should be disposed of properly or further treated before being discharged. PMID:24520694

  10. Pregnancy detection and monitoring in cattle via combined foetus electrocardiogram and phonocardiogram signal processing

    PubMed Central

    2012-01-01

    Background Pregnancy testing in cattle is commonly invasive requiring manual rectal palpation of the reproductive tract that presents risks to the operator and pregnancy. Alternative non-invasive tests have been developed but have not gained popularity due to poor specificity, sensitivity and the inconvenience of sample handling. Our aim is to present the pilot study and proof of concept of a new non invasive technique to sense the presence and age (limited to the closest trimester of pregnancy) of the foetus by recording the electrical and audio signals produced by the foetus heartbeat using an array of specialized sensors embedded in a stand alone handheld prototype device. The device was applied to the right flank (approximately at the intercept of a horizontal line drawn through the right mid femur region of the cow and a vertical line drawn anywhere between lumbar vertebrae 3 to 5) of more than 2000 cattle from 13 different farms, including pregnant and not pregnant, a diversity of breeds, and both dairy and beef herds. Pregnancy status response is given “on the spot” from an optimized machine learning algorithm running on the device within seconds after data collection. Results Using combined electrical and audio foetal signals we detected pregnancy with a sensitivity of 87.6% and a specificity of 74.6% for all recorded data. Those values increase to 91% and 81% respectively by removing files with excessive noise (19%). Foetus ageing was achieved by comparing the detected foetus heart-rate with published tables. However, given the challenging farm environment of a restless cow, correct foetus ageing was achieved for only 21% of the correctly diagnosed pregnant cows. Conclusions In conclusion we have found that combining ECG and PCG measurements on the right flank of cattle provides a reliable and rapid method of pregnancy testing. The device has potential to be applied by unskilled operators. This will generate more efficient and productive management of

  11. On-body calibration and processing for a combination of two radio-frequency personal exposimeters.

    PubMed

    Thielens, Arno; Agneessens, Sam; Verloock, Leen; Tanghe, Emmeric; Rogier, Hendrik; Martens, Luc; Joseph, Wout

    2015-01-01

    Two radio-frequency personal exposimeters (PEMs) worn on both hips are calibrated on a subject in an anechoic chamber. The PEMs' response and crosstalk are determined for realistically polarised incident electric fields using this calibration. The 50 % confidence interval of the PEMs' response is reduced (2.6 dB on average) when averaged over both PEMs. A significant crosstalk (up to a ratio of 1.2) is measured, indicating that PEM measurements can be obfuscated by crosstalk. Simultaneous measurements with two PEMs are carried out in Ghent, Belgium. The highest exposure is measured for Global System for Mobile Communication downlink (0.052 mW m(-2) on average), while the lowest exposure is found for Universal Mobile Telecommunications System uplink (0.061 μW m(-2) on average). The authors recommend the use of a combination of multiple PEMs and, considering the multivariate data, to provide the mean vector and the covariance matrix next to the commonly listed univariate summary statistics, in future PEM studies. PMID:24729592

  12. Identification of gasoline adulteration using comprehensive two-dimensional gas chromatography combined to multivariate data processing.

    PubMed

    Pedroso, Marcio Pozzobon; de Godoy, Luiz Antonio Fonseca; Ferreira, Ernesto Correa; Poppi, Ronei Jesus; Augusto, Fabio

    2008-08-01

    A method to detect potential adulteration of commercial gasoline (Type C gasoline, available in Brazil and containing 25% (v/v) ethanol) is presented here. Comprehensive two-dimensional gas chromatography with flame ionization detection (GCxGC-FID) data and multivariate calibration (multi-way partial least squares regression, N-PLS) were combined to obtain regression models correlating the concentration of gasoline on samples from chromatographic data. Blends of gasoline and white spirit, kerosene and paint thinner (adopted as model adulterants) were used for calibration; the regression models were evaluated using samples of Type C gasoline spiked with these solvents, as well as with ethanol. The method was also checked with real samples collected from gas stations and analyzed using the official method. The root mean square error of prediction (RMSEP) for gasoline concentrations on test samples calculated using the regression model ranged from 3.3% (v/v) to 8.2% (v/v), depending on the composition of the blends; in addition, the results for the real samples agree with the official method. These observations suggest that GCxGC-FID and N-PLS can be an alternative for routine monitoring of fuel adulteration, as well as to solve several other similar analytical problems where mixtures should be detected and quantified as single species in complex samples. PMID:18571187

  13. Hybrid Processes Combining Photocatalysis and Ceramic Membrane Filtration for Degradation of Humic Acids in Saline Water

    PubMed Central

    Song, Lili; Zhu, Bo; Gray, Stephen; Duke, Mikel; Muthukumaran, Shobha

    2016-01-01

    This study explored the combined effects of photocatalysis with ceramic membrane filtration for the removal of humic acid in the presence of salt; to simulate saline wastewater conditions. The effects of operating parameters, such as salinity and TiO2 concentration on permeate fluxes, total organic carbon (TOC), and UV absorbance removal, were investigated. The interaction between the humic acids and TiO2 photocatalyst played an important role in the observed flux change during ceramic membrane filtration. The results for this hybrid system showed that the TOC removal was more than 70% for both without NaCl and with the 500 ppm NaCl concentration, and 62% and 66% for 1000 and 2000 ppm NaCl concentrations. The reduction in UV absorbance was more complete in the absence of NaCl compared to the presence of NaCl. The operation of the integrated photoreactor-ceramic membrane filter over five repeat cycles is described. It can be concluded that the overall removal performance of the hybrid system was influenced by the presence of salts, as salt leads to agglomeration of TiO2 particles by suppressing the stabilising effects of electrostatic repulsion and thereby reduces the effective surface contact between the pollutant and the photocatalyst. PMID:26938568

  14. On Chemical Modeling an Alchemical Process: The Use of Combined Chemical Methods in a Historical Study

    NASA Astrophysics Data System (ADS)

    Rodygin, Mikhail Yu.; Rodygin, Irene V.

    1997-08-01

    Laboratory work is an important component of a course in the History of Chemistry and Alchemy, though it can only be illustrative and not comprehensive. The course should exercise both the cognitive and research abilities of an university student. Therefore methods of modeling are of prime importance at this stage of instruction. Modeling can be both a priori and experimental. The experiment can use the alchemist's materials, or it can reproduce the procedure with modern reagents. A good example for the use of this method is a recipe for the preparation of the Philosopher's Stone attributed to Lullius and cited by J. Ripley in Liber Duodecium Portarum. Thus, the Ripley's recipe is not only considered to be the first indication of the existence of acetone, but it may also indicate the formation of acetyl acetone and its derivatives. Thus, as far as the history of alchemy is concerned, the use of an experimental model not only allows us to solve a number of specific problems such as recipe interpretation and product identification, but it allows also to probe the essence of alchemical work. The combination of empirical and speculative modelings leads to the interaction of the exact methods of chemistry with the broad historico-chemical generalizations, thus introducing some additional dimensions to the definition of historico-chemical practice.

  15. Combined frontal and parietal P300 amplitudes indicate compensated cognitive processing across the lifespan

    PubMed Central

    van Dinteren, Rik; Arns, Martijn; Jongsma, Marijtje L. A.; Kessels, Roy P. C.

    2014-01-01

    In the present study the frontal and parietal P300, elicited in an auditory oddball paradigm were investigated in a large sample of healthy participants (N = 1572), aged 6–87. According to the concepts of the compensation-related utilization of neural circuits hypothesis (CRUNCH) it was hypothesized that the developmental trajectories of the frontal P300 would reach a maximum in amplitude at an older age than the amplitude of the parietal P300 amplitude. In addition, the amplitude of the frontal P300 was expected to increase with aging in adulthood in contrast to a decline in amplitude of the parietal P300 amplitude. Using curve-fitting methods, a comparison was made between the developmental trajectories of the amplitudes of the frontal and parietal P300. It was found that the developmental trajectories of frontal and parietal P300 amplitudes differed significantly across the lifespan. During adulthood, the amplitude of the parietal P300 declines with age, whereas both the frontal P300 amplitude and behavioral performance remain unaffected. A lifespan trajectory of combined frontal and parietal P300 amplitudes was found to closely resemble the lifespan trajectory of behavioral performance. Our results can be understood within the concepts of CRUNCH. That is, to compensate for declining neural resources, older participants recruit additional neural resources of prefrontal origin and consequently preserve a stable behavioral performance. Though, a direct relation between amplitude of the frontal P300 and compensatory mechanisms cannot yet be claimed. PMID:25386141

  16. Combined Theoretical and Experimental Analysis of Processes Determining Cathode Performance in Solid Oxide Fuel Cells

    SciTech Connect

    Kukla, Maija M.; Kotomin, Eugene Alexej; Merkle, R.; Mastrikov, Yuri; Maier, J.

    2013-02-11

    Solid oxide fuel cells (SOFC) are under intensive investigation since the 1980’s as these devices open the way for ecologically clean direct conversion of the chemical energy into electricity, avoiding the efficiency limitation by Carnot’s cycle for thermochemical conversion. However, the practical development of SOFC faces a number of unresolved fundamental problems, in particular concerning the kinetics of the electrode reactions, especially oxygen reduction reaction. We review recent experimental and theoretical achievements in the current understanding of the cathode performance by exploring and comparing mostly three materials: (La,Sr)MnO3 (LSM), (La,Sr)(Co,Fe)O3 (LSCF) and (Ba,Sr)(Co,Fe)O3 (BSCF). Special attention is paid to a critical evaluation of advantages and disadvantages of BSCF, which shows the best cathode kinetics known so far for oxides. We demonstrate that it is the combined experimental and theoretical analysis of all major elementary steps of the oxygen reduction reaction which allows us to predict the rate determining steps for a given material under specific operational conditions and thus control and improve SOFC performance.

  17. A combined approach of simulation and analytic hierarchy process in assessing production facility layouts

    NASA Astrophysics Data System (ADS)

    Ramli, Razamin; Cheng, Kok-Min

    2014-07-01

    One of the important areas of concern in order to obtain a competitive level of productivity in a manufacturing system is the layout design and material transportation system (conveyor system). However, changes in customers' requirements have triggered the need to design other alternatives of the manufacturing layout for existing production floor. Hence, this paper discusses effective alternatives of the process layout specifically, the conveyor system layout. Subsequently, two alternative designs for the conveyor system were proposed with the aims to increase the production output and minimize space allocation. The first proposed layout design includes the installation of conveyor oven in the particular manufacturing room based on priority, and the second one is the one without the conveyor oven in the layout. Simulation technique was employed to design the new facility layout. Eventually, simulation experiments were conducted to understand the performance of each conveyor layout design based on operational characteristics, which include predicting the output of layouts. Utilizing the Analytic Hierarchy Process (AHP), the newly and improved layout designs were assessed before the final selection was done. As a comparison, the existing conveyor system layout was included in the assessment process. Relevant criteria involved in this layout design problem were identified as (i) usage of space of each design, (ii) operator's utilization rates, (iii) return of investment (ROI) of the layout, and (iv) output of the layout. In the final stage of AHP analysis, the overall priority of each alternative layout was obtained and thus, a selection for final use by the management was made based on the highest priority value. This efficient planning and designing of facility layout in a particular manufacturing setting is able to minimize material handling cost, minimize overall production time, minimize investment in equipment, and optimize utilization of space.

  18. Resistance of Mexican fruit fly to quarantine treatments of high-pressure processing combined with cold.

    PubMed

    Castañón-Rodríguez, Juan F; Vargas-Ortiz, Manuel A; Montoya, Pablo; García, Hugo S; Velazquez, Gonzalo; Ramírez, José A; Vázquez, Manuel

    2011-07-01

    Mexican fruit fly Anastrepha ludens Loew (Diptera: Tephritidae) is one of the most important insects infesting fruits. Although high pressure has been proposed as an alternative quarantine process for this pest, conditions applied to destroy eggs and larvae can also damage the fruits. The objective of this study was to assess the biological viability of A. ludens eggs treated by high-pressure processing at 0°C, establishing whether nondestroyed eggs and larvae preserved their ability to develop and reproduce. One-, 2-, 3-, and 4-day-old eggs were pressurized at 50, 70, or 90 MPa for 0, 3, 6, or 9 min. The hatching ability of pressurized eggs and their capacity to develop larvae, pupae, and reproductive adults were evaluated. The ability of pressurized larvae to pupate was also registered. The results showed that most of the eggs that resisted the treatments were able to produce adults with capability to reproduce a new generation of A. ludens flies. Larvae were less resistant than eggs. All larvae were killed at 90 MPa for 9 min. The pressure induced the expression of heat shock proteins (HSP) in second- and third-instar larvae. The HSP showed a baroprotective effect in A. ludens larvae. These results are relevant to the industry because they show that eggs of insects infesting fruits treated by high-pressure processing were able to pupate after treatments. This indicates that efforts must be addressed to destroy all eggs because most of the surviving organisms could reach an adult stage and reproduce. PMID:21492022

  19. Remediation of a winery wastewater combining aerobic biological oxidation and electrochemical advanced oxidation processes.

    PubMed

    Moreira, Francisca C; Boaventura, Rui A R; Brillas, Enric; Vilar, Vítor J P

    2015-05-15

    Apart from a high biodegradable fraction consisting of organic acids, sugars and alcohols, winery wastewaters exhibit a recalcitrant fraction containing high-molecular-weight compounds as polyphenols, tannins and lignins. In this context, a winery wastewater was firstly subjected to a biological oxidation to mineralize the biodegradable fraction and afterwards an electrochemical advanced oxidation process (EAOP) was applied in order to mineralize the refractory molecules or transform them into simpler ones that can be further biodegraded. The biological oxidation led to above 97% removals of dissolved organic carbon (DOC), chemical oxygen demand (COD) and 5-day biochemical oxygen demand (BOD5), but was inefficient on the degradation of a bioresistant fraction corresponding to 130 mg L(-1) of DOC, 380 mg O2 L(-1) of COD and 8.2 mg caffeic acid equivalent L(-1) of total dissolved polyphenols. Various EAOPs such as anodic oxidation with electrogenerated H2O2 (AO-H2O2), electro-Fenton (EF), UVA photoelectro-Fenton (PEF) and solar PEF (SPEF) were then applied to the recalcitrant effluent fraction using a 2.2 L lab-scale flow plant containing an electrochemical cell equipped with a boron-doped diamond (BDD) anode and a carbon-PTFE air-diffusion cathode and coupled to a photoreactor with compound parabolic collectors (CPCs). The influence of initial Fe(2+) concentration and current density on the PEF process was evaluated. The relative oxidative ability of EAOPs increased in the order AO-H2O2 < EF < PEF ≤ SPEF. The SPEF process using an initial Fe(2+) concentration of 35 mg L(-1), current density of 25 mA cm(-2), pH of 2.8 and 25 °C reached removals of 86% on DOC and 68% on COD after 240 min, regarding the biologically treated effluent, along with energy consumptions of 45 kWh (kg DOC)(-1) and 5.1 kWh m(-3). After this coupled treatment, color, odor, COD, BOD5, NH4(+), NO3(-) and SO4(2-) parameters complied with the legislation targets and, in addition, a total

  20. Combined flatland ST radar and digital-barometer network observations of mesoscale processes

    NASA Technical Reports Server (NTRS)

    Clark, W. L.; Vanzandt, T. E.; Gage, K. S.; Einaudi, F. E.; Rottman, J. W.; Hollinger, S. E.

    1991-01-01

    The paper describes a six-station digital-barometer network centered on the Flatland ST radar to support observational studies of gravity waves and other mesoscale features at the Flatland Atmospheric Observatory in central Illinois. The network's current mode of operation is examined, and a preliminary example of an apparent group of waves evident throughout the network as well as throughout the troposphere is presented. Preliminary results demonstrate the capabilities of the current operational system to study wave convection, wave-front, and other coherent mesoscale interactions and processes throughout the troposphere. Unfiltered traces for the pressure and horizontal zonal wind, for days 351 to 353 UT, 1990, are illustrated.

  1. Sensor combination and chemometric modelling for improved process monitoring in recombinant E. coli fed-batch cultivations.

    PubMed

    Clementschitsch, Franz; Jürgen, Kern; Florentina, Pötschacher; Karl, Bayer

    2005-11-01

    The key objective for the optimisation of recombinant protein production in bacteria is to optimize the exploitation of the host cell's synthesis potential. Recent studies show that the novel concept of transcription rate control allows the tuning of recombinant gene expression in relation to the metabolic capacity of the host cell. To adjust the inducer-biomass ratio to a tolerable level, real-time knowledge about key process variables is paramount. Since there are no reliable online-sensors for key variables such as biomass or recombinant product, it is necessary to relate available online signals to process variables by mathematical models. To improve chemometric modelling of process variables, dielectric spectroscopy and a multi-wavelength online fluorescence sensor for two-dimensional fluorescence spectroscopy were applied in a series of recombinant Escherichia coli fed-batch cultivations applying two different process operation states. Dielectric spectroscopy signals were closely correlated to biomass, while two-dimensional fluorescence spectroscopy allowed the monitoring of fluorescent biogenic components. Chemometric modelling of key process variables with two different modelling techniques showed that this sensor combination greatly improved the estimation (i.e. reduce error magnitude) of process variables in recombinant E. coli cultivations, thereby enhancing process monitoring capabilities. PMID:16139381

  2. Electrochemical process combined with UV light irradiation for synergistic degradation of ammonia in chloride-containing solutions.

    PubMed

    Xiao, Shuhu; Qu, Jiuhui; Zhao, Xu; Liu, Hujuan; Wan, Dongjin

    2009-03-01

    An electrochemical process combined with ultraviolet light irradiation (UPE) using nonphotoactive dimensionally stable anodes (DSAs) like RuO2/Ti and IrO2/Ti in the presence of chlorides was investigated for ammonia degradation. In this process, the in situ electrogenerated active chlorine and in situ photogenerated chlorine radicals were responsible for the high efficiency of ammonia degradation. More than 97% of ammonia was converted to nitrogen and a significantly synergistic effect was confirmed. Compared with the single electrochemical (E) and photochemical (P) process, the degradation rates of ammonia and the average current efficiencies (ACEs) of the UPE process increased by 1.5 and 1.7 times using RuO2/Ti and IrO2/Ti electrodes, respectively. On the basis of the linear voltammograms, Electrochemical Impedance Spectra (EIS), UV-vis spectra, Electron Spin Resonance (ESR) analysis and a series of experiments designed, the synergistic mechanism was investigated. In addition, this unique process succeeded in transferring the reaction from the electrode surface to the bulk of the solution compared with the conventional photoelectrocatalytic (PEC) process. The loss of chloride decreased from 21.0% to 7.2% and the recycle of chloride was accelerated in the UPE process. Finally the effects of initial pH, current density and ammonia-nitrogen concentration were discussed. Results indicated that pH and ammonia concentration exerted little influences on the degradation rates and current density was the "rate-determining" factor. PMID:19135227

  3. Mesoscale modeling of combined aerosol and photo-oxidant processes in the eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Lazaridis, M.; Spyridaki, A.; Solberg, S.; Smolík, J.; Ždímal, V.; Eleftheriadis, K.; Aleksandropoulou, V.; Hov, O.; Georgopoulos, P. G.

    2004-09-01

    Particulate matter and photo-oxidant processes in the Eastern Mediterranean have been studied using the UAM-AERO mesoscale air quality model in conjunction with the NILU-CTM regional model. Meteorological data were obtained from the RAMS prognostic meteorological model. The modeling domain includes the eastern Mediterranean area between the Greek mainland and the island of Crete. The modeling system is applied to study the atmospheric processes in three periods, i.e. 13-16 July 2000, 26-30 July 2000 and 7-14 January 2001. The spatial and temporal distributions of both gaseous and particulate matter pollutants have been extensively studied together with the identification of major emission sources in the area. The modeling results were compared with field data obtained in the same period. Comparison of the modeling results with measured data was performed for a number of gaseous and aerosol species. The UAM-AERO model underestimates the PM10 measured concentrations during summer but better comparison has been obtained for the winter data.

  4. Clean combined-cycle SOFC power plant — cell modelling and process analysis

    NASA Astrophysics Data System (ADS)

    Riensche, E.; Achenbach, E.; Froning, D.; Haines, M. R.; Heidug, W. K.; Lokurlu, A.; von Andrian, S.

    The design principle of a specially adapted solid-oxide fuel cell power plant for the production of electricity from hydrocarbons without the emission of greenhouse gases is described. To achieve CO 2 separation in the exhaust stream, it is necessary to burn the unused fuel without directly mixing it with air, which would introduce nitrogen. Therefore, the spent fuel is passed over a bank of oxygen ion conducting tubes very similar in configuration to the electrochemical tubes in the main stack of the fuel cell. In such an SOFC system, pure CO 2 is produced without the need for a special CO 2 separation process. After liquefaction, CO 2 can be re-injected into an underground reservoir. A plant simulation model consists of four main parts, that is, turbo-expansion of natural gas, fuel cell stack, periphery of the stack, and CO 2 recompression. A tubular SOFC concept is preferred. The spent fuel leaving the cell tube bundle is burned with pure oxygen instead of air. The oxygen is separated from the air in an additional small tube bundle of oxygen separation tubes. In this process, mixing of CO 2 and N 2 is avoided, so that liquefaction of CO 2 becomes feasible. As a design tool, a computer model for tubular cells with an air feed tube has been developed based on an existing planar model. Plant simulation indicates the main contributors to power production (tubular SOFC, exhaust air expander) and power consumption (air compressor, oxygen separation).

  5. Does lake size matter? Combining morphology and process modeling to examine the contribution of lake classes to population-scale processes

    USGS Publications Warehouse

    Winslow, Luke A.; Read, Jordan S.; Hanson, Paul C.; Stanley, Emily H.

    2014-01-01

    With lake abundances in the thousands to millions, creating an intuitive understanding of the distribution of morphology and processes in lakes is challenging. To improve researchers’ understanding of large-scale lake processes, we developed a parsimonious mathematical model based on the Pareto distribution to describe the distribution of lake morphology (area, perimeter and volume). While debate continues over which mathematical representation best fits any one distribution of lake morphometric characteristics, we recognize the need for a simple, flexible model to advance understanding of how the interaction between morphometry and function dictates scaling across large populations of lakes. These models make clear the relative contribution of lakes to the total amount of lake surface area, volume, and perimeter. They also highlight the critical thresholds at which total perimeter, area and volume would be evenly distributed across lake size-classes have Pareto slopes of 0.63, 1 and 1.12, respectively. These models of morphology can be used in combination with models of process to create overarching “lake population” level models of process. To illustrate this potential, we combine the model of surface area distribution with a model of carbon mass accumulation rate. We found that even if smaller lakes contribute relatively less to total surface area than larger lakes, the increasing carbon accumulation rate with decreasing lake size is strong enough to bias the distribution of carbon mass accumulation towards smaller lakes. This analytical framework provides a relatively simple approach to upscaling morphology and process that is easily generalizable to other ecosystem processes.

  6. Models for Curricular Materials Development: Combining Applied Development Processes with Theory

    NASA Astrophysics Data System (ADS)

    Appleton, James; Lawrenz, Frances; Craft, Elaine; Cudmore, Wynn; Hall, Jim; Waintraub, Jack

    2007-12-01

    Developing curricular materials for technical and vocational education is particularly challenging because of the comprehensive requirements for technical education and the rapidity with which technical positions are evolving. Well-educated employees are expected to have general communication, reasoning, problem-solving, and behavioral skills in addition to occupation-specific technical knowledge. Furthermore, technical and vocational education materials must meet the needs of various contexts each with its own unique array of factors which must be accommodated. To assist in the process of materials development, this paper presents a comprehensive and contextualized model as a guide for curricular developers. This model was formed through the synthesis of two theoretical and four applied models, with the outline of the applied models occurring as part of a national evaluation of the National Science Foundation's Advanced Technological Education Program. Examples illuminating the elements of the template are provided.

  7. Mesoscale modeling of combined aerosol and photo-oxidant processes in the Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Lazaridis, M.; Spyridaki, A.; Solberg, S.; Smolík, J.; Zdímal, V.; Eleftheriadis, K.; Aleksanropoulou, V.; Hov, O.; Georgopoulos, P. G.

    2005-03-01

    Particulate matter and photo-oxidant processes in the Eastern Mediterranean have been studied using the UAM-AERO mesoscale air quality model in conjunction with the NILU-CTM regional model. Meteorological data were obtained from the RAMS prognostic meteorological model. The modeling domain includes the eastern Mediterranean area between the Greek mainland and the island of Crete. The modeling system is applied to study the atmospheric processes in three periods, i.e. 13-16 July 2000, 26-30 July 2000 and 7-14 January 2001. The spatial and temporal distributions of both gaseous and particulate matter pollutants have been extensively studied together with the identification of major emission sources in the area. The modeling results were compared with field data obtained in the same period. The objective of the current modeling work was mainly to apply the UAM-AERO mesoscale model in the eastern Mediterranean in order to assess the performed field campaigns and determine that the applied mesoscale model is fit for this purpose. Comparison of the modeling results with measured data was performed for a number of gaseous and aerosol species. The UAM-AERO model underestimates the PM10 measured concentrations during summer and winter campaigns. Discrepancies between modeled and measured data are attributed to unresolved particulate matter emissions. Particulate matter in the area is mainly composed by sulphate, sea salt and crustal materials, and with significant amounts of nitrate, ammonium and organics. During winter the particulate matter and oxidant concentrations were lower than the summer values.

  8. Reconstructing fragmentation processes at Santiaguito volcano by combining ash analysis with geophysical measurements

    NASA Astrophysics Data System (ADS)

    Hornby, Adrian; Lavallée, Yan; Clesham, Stephen; De Angelis, Silvio; Kendrick, Jackie; Cimarelli, Corrado; Rollinson, Gavyn; Butcher, Alan

    2016-04-01

    Santiaguito volcano exhibits cyclic deformation and regular Vulcanian gas-and-ash explosions, ongoing for almost 100 years. Airfall ash samples collected 500 m from the active Caliente vent constitute a snapshot of the ash-forming mechanisms between and during eruptive events. Samples collected following ashfall from Vulcanian explosion plumes and following a major dome collapse with associated pyroclastic density currents on 28 November 2012, appear blocky and poorly vesicular under scanning electron microscope, indicating fragmentation of dense, low porosity magma. Particle size distributions show a single dominant fragmentation mechanism during co-pyroclastic flow airfall ash, at least three significant sources of erupted ash can be identified for vulcanian plume-derived ash. We employ QEMSCAN analysis, which provides a micron-scale dataset of ash particle morphology and phase distribution, to explore the textural fingerprint of these fragmentation processes. Ash generated during dome collapse shows a greater abundance of interstitial glass at particle boundaries over most of the particle size range, showing that the segregation of glass-enriched fines into airfall deposits during pyroclastic flow cannot fully account for this trend. Conversely, the relative depletion of glass in vulcanian explosion deposits may be due to viscous stress accommodation within interstitial glass, which concentrates stress within crystalline phases during fragmentation. By comparing ash analyses with observations of dome inflation and faulting, lava effusion and seismic and infrasound measurements, including recent measurements recorded during Workshops on Volcanoes 2016, we describe a stable sequence of ash-generating processes occurring during normal vulcanian activity: 1) Fracture and faulting and abrasion of plug material, 2) Failure and fragmentation of magma below the plug, 3) Expulsion of clastic material residing above the fragmentation depth, 4) Expansion and flow of the

  9. A combined process of adsorption and Fenton-like oxidation for furfural removal using zero-valent iron residue.

    PubMed

    Li, Furong; Bao, Jianguo; Zhang, Tian C; Lei, Yutian

    2015-01-01

    In this study, the feasibility of using a combined adsorption and Fenton-like oxidation process (with zero-valent iron (ZVI) residue from heat wraps as an absorbent and catalyst) to remove furfural in the solution was evaluated. The influencing parameters (e.g. pH, H2O2 concentration, initial furfural concentration) and the reusability of ZVI residue (to replace the iron powder) were estimated. The ZVI residue was found to have much better adsorption effect on furfural at pH 2.0 compared with pH 6.7. For Fenton-like reaction alone with ZVI residue, the highest furfural removal of 97.5% was observed at the concentration of 0.176 mol/L H2O2, and all of the samples had >80% removal efficiency at different initial furfural concentrations of 2, 10, 20, 30 and 40 mmol/L. However, with a combined adsorption and Fenton-like oxidation, the removal efficiency of furfural was nearly 100% for all treatments. The ZVI residue used for furfural removal was much better than that of iron powder in the Fenton-like reaction at a seven-cycle experiment. This study suggests the combined process of adsorption and Fenton-like oxidation using ZVI residue is effective for the treatment of furfural in the liquid. PMID:26006292

  10. Mathematical modeling of COD removal via the combined treatment of domestic wastewater and landfill leachate based on the PACT process.

    PubMed

    Fernández Bou, Ángel S; Nascentes, Alexandre Lioi; Costa Pereira, Barbara; Da Silva, Leonardo Duarte Batista; Alberto Ferreira, João; Campos, Juacyara Carbonelli

    2015-01-01

    The experiments performed in this study consisted of 16 batch reactors fed different mixtures of landfill leachate combined with synthetic wastewater treated using the Powdered Activated Carbon Treatment (PACT) process. The objective was to measure the COD mass removal per liter each day for each reactor using two models: the first model combined the variables PAC concentration (0 g·L(-1), 2 g·L(-1), 4 g·L(-1), and 6 g·L(-1)) and leachate rate in the wastewater (0%, 2%, 5%, and 10%), and the second model combined the PAC concentration and the influent COD. The Response Surface Methodology with Central Composite Design was used to describe the response surface of both models considered in this study. Domestic wastewater was produced under controlled conditions in the laboratory where the experiments were performed. The results indicated that the PAC effect was null when the influent did not contain leachate; however, as the concentration of leachate applied to the mixture was increased, the addition of a higher PAC concentration resulted in a better COD mass removal in the reactors. The adjusted R(2) values of the two models were greater than 0.95, and the predicted R(2) values were greater than 0.93. The models may be useful for wastewater treatment companies to calculate PAC requirements in order to meet COD mass removal objectives in combined treatment. PMID:25723064